Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include <linux/sched/xacct.h>
  32#include <linux/io_uring/cmd.h>
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "export.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
 
  38#include "volumes.h"
  39#include "locking.h"
 
  40#include "backref.h"
 
  41#include "send.h"
  42#include "dev-replace.h"
  43#include "props.h"
  44#include "sysfs.h"
  45#include "qgroup.h"
  46#include "tree-log.h"
  47#include "compression.h"
  48#include "space-info.h"
 
  49#include "block-group.h"
  50#include "fs.h"
  51#include "accessors.h"
  52#include "extent-tree.h"
  53#include "root-tree.h"
  54#include "defrag.h"
  55#include "dir-item.h"
  56#include "uuid-tree.h"
  57#include "ioctl.h"
  58#include "file.h"
  59#include "scrub.h"
  60#include "super.h"
  61
  62#ifdef CONFIG_64BIT
  63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  64 * structures are incorrect, as the timespec structure from userspace
  65 * is 4 bytes too small. We define these alternatives here to teach
  66 * the kernel about the 32-bit struct packing.
  67 */
  68struct btrfs_ioctl_timespec_32 {
  69	__u64 sec;
  70	__u32 nsec;
  71} __attribute__ ((__packed__));
  72
  73struct btrfs_ioctl_received_subvol_args_32 {
  74	char	uuid[BTRFS_UUID_SIZE];	/* in */
  75	__u64	stransid;		/* in */
  76	__u64	rtransid;		/* out */
  77	struct btrfs_ioctl_timespec_32 stime; /* in */
  78	struct btrfs_ioctl_timespec_32 rtime; /* out */
  79	__u64	flags;			/* in */
  80	__u64	reserved[16];		/* in */
  81} __attribute__ ((__packed__));
  82
  83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  84				struct btrfs_ioctl_received_subvol_args_32)
  85#endif
  86
  87#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  88struct btrfs_ioctl_send_args_32 {
  89	__s64 send_fd;			/* in */
  90	__u64 clone_sources_count;	/* in */
  91	compat_uptr_t clone_sources;	/* in */
  92	__u64 parent_root;		/* in */
  93	__u64 flags;			/* in */
  94	__u32 version;			/* in */
  95	__u8  reserved[28];		/* in */
  96} __attribute__ ((__packed__));
  97
  98#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  99			       struct btrfs_ioctl_send_args_32)
 100
 101struct btrfs_ioctl_encoded_io_args_32 {
 102	compat_uptr_t iov;
 103	compat_ulong_t iovcnt;
 104	__s64 offset;
 105	__u64 flags;
 106	__u64 len;
 107	__u64 unencoded_len;
 108	__u64 unencoded_offset;
 109	__u32 compression;
 110	__u32 encryption;
 111	__u8 reserved[64];
 112};
 113
 114#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
 115				       struct btrfs_ioctl_encoded_io_args_32)
 116#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
 117					struct btrfs_ioctl_encoded_io_args_32)
 118#endif
 119
 120/* Mask out flags that are inappropriate for the given type of inode. */
 121static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
 122		unsigned int flags)
 123{
 124	if (S_ISDIR(inode->i_mode))
 125		return flags;
 126	else if (S_ISREG(inode->i_mode))
 127		return flags & ~FS_DIRSYNC_FL;
 128	else
 129		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 130}
 131
 132/*
 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 134 * ioctl.
 135 */
 136static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 137{
 138	unsigned int iflags = 0;
 139	u32 flags = binode->flags;
 140	u32 ro_flags = binode->ro_flags;
 141
 142	if (flags & BTRFS_INODE_SYNC)
 143		iflags |= FS_SYNC_FL;
 144	if (flags & BTRFS_INODE_IMMUTABLE)
 145		iflags |= FS_IMMUTABLE_FL;
 146	if (flags & BTRFS_INODE_APPEND)
 147		iflags |= FS_APPEND_FL;
 148	if (flags & BTRFS_INODE_NODUMP)
 149		iflags |= FS_NODUMP_FL;
 150	if (flags & BTRFS_INODE_NOATIME)
 151		iflags |= FS_NOATIME_FL;
 152	if (flags & BTRFS_INODE_DIRSYNC)
 153		iflags |= FS_DIRSYNC_FL;
 154	if (flags & BTRFS_INODE_NODATACOW)
 155		iflags |= FS_NOCOW_FL;
 156	if (ro_flags & BTRFS_INODE_RO_VERITY)
 157		iflags |= FS_VERITY_FL;
 158
 159	if (flags & BTRFS_INODE_NOCOMPRESS)
 160		iflags |= FS_NOCOMP_FL;
 161	else if (flags & BTRFS_INODE_COMPRESS)
 162		iflags |= FS_COMPR_FL;
 163
 164	return iflags;
 165}
 166
 167/*
 168 * Update inode->i_flags based on the btrfs internal flags.
 169 */
 170void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 171{
 172	struct btrfs_inode *binode = BTRFS_I(inode);
 173	unsigned int new_fl = 0;
 174
 175	if (binode->flags & BTRFS_INODE_SYNC)
 176		new_fl |= S_SYNC;
 177	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 178		new_fl |= S_IMMUTABLE;
 179	if (binode->flags & BTRFS_INODE_APPEND)
 180		new_fl |= S_APPEND;
 181	if (binode->flags & BTRFS_INODE_NOATIME)
 182		new_fl |= S_NOATIME;
 183	if (binode->flags & BTRFS_INODE_DIRSYNC)
 184		new_fl |= S_DIRSYNC;
 185	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 186		new_fl |= S_VERITY;
 187
 188	set_mask_bits(&inode->i_flags,
 189		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 190		      S_VERITY, new_fl);
 
 
 
 
 
 
 
 
 
 
 191}
 192
 193/*
 194 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 195 * the old and new flags are not conflicting
 196 */
 197static int check_fsflags(unsigned int old_flags, unsigned int flags)
 198{
 199	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 200		      FS_NOATIME_FL | FS_NODUMP_FL | \
 201		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 202		      FS_NOCOMP_FL | FS_COMPR_FL |
 203		      FS_NOCOW_FL))
 204		return -EOPNOTSUPP;
 205
 206	/* COMPR and NOCOMP on new/old are valid */
 207	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 208		return -EINVAL;
 209
 210	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 211		return -EINVAL;
 212
 213	/* NOCOW and compression options are mutually exclusive */
 214	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 215		return -EINVAL;
 216	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 217		return -EINVAL;
 218
 219	return 0;
 220}
 221
 222static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 223				    unsigned int flags)
 224{
 225	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 226		return -EPERM;
 227
 228	return 0;
 229}
 230
 231int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
 232{
 233	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
 234		return -ENAMETOOLONG;
 235	return 0;
 236}
 237
 238static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
 239{
 240	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
 241		return -ENAMETOOLONG;
 242	return 0;
 243}
 244
 245/*
 246 * Set flags/xflags from the internal inode flags. The remaining items of
 247 * fsxattr are zeroed.
 248 */
 249int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 250{
 251	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 252
 253	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 254	return 0;
 255}
 256
 257int btrfs_fileattr_set(struct mnt_idmap *idmap,
 258		       struct dentry *dentry, struct fileattr *fa)
 259{
 260	struct inode *inode = d_inode(dentry);
 261	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 262	struct btrfs_inode *binode = BTRFS_I(inode);
 263	struct btrfs_root *root = binode->root;
 264	struct btrfs_trans_handle *trans;
 265	unsigned int fsflags, old_fsflags;
 266	int ret;
 267	const char *comp = NULL;
 268	u32 binode_flags;
 269
 
 
 
 270	if (btrfs_root_readonly(root))
 271		return -EROFS;
 272
 273	if (fileattr_has_fsx(fa))
 274		return -EOPNOTSUPP;
 275
 276	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 277	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 278	ret = check_fsflags(old_fsflags, fsflags);
 279	if (ret)
 280		return ret;
 281
 282	ret = check_fsflags_compatible(fs_info, fsflags);
 
 
 
 
 283	if (ret)
 284		return ret;
 
 
 
 
 285
 286	binode_flags = binode->flags;
 287	if (fsflags & FS_SYNC_FL)
 288		binode_flags |= BTRFS_INODE_SYNC;
 289	else
 290		binode_flags &= ~BTRFS_INODE_SYNC;
 291	if (fsflags & FS_IMMUTABLE_FL)
 292		binode_flags |= BTRFS_INODE_IMMUTABLE;
 293	else
 294		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 295	if (fsflags & FS_APPEND_FL)
 296		binode_flags |= BTRFS_INODE_APPEND;
 297	else
 298		binode_flags &= ~BTRFS_INODE_APPEND;
 299	if (fsflags & FS_NODUMP_FL)
 300		binode_flags |= BTRFS_INODE_NODUMP;
 301	else
 302		binode_flags &= ~BTRFS_INODE_NODUMP;
 303	if (fsflags & FS_NOATIME_FL)
 304		binode_flags |= BTRFS_INODE_NOATIME;
 305	else
 306		binode_flags &= ~BTRFS_INODE_NOATIME;
 307
 308	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 309	if (!fa->flags_valid) {
 310		/* 1 item for the inode */
 311		trans = btrfs_start_transaction(root, 1);
 312		if (IS_ERR(trans))
 313			return PTR_ERR(trans);
 314		goto update_flags;
 315	}
 316
 317	if (fsflags & FS_DIRSYNC_FL)
 318		binode_flags |= BTRFS_INODE_DIRSYNC;
 319	else
 320		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 321	if (fsflags & FS_NOCOW_FL) {
 322		if (S_ISREG(inode->i_mode)) {
 323			/*
 324			 * It's safe to turn csums off here, no extents exist.
 325			 * Otherwise we want the flag to reflect the real COW
 326			 * status of the file and will not set it.
 327			 */
 328			if (inode->i_size == 0)
 329				binode_flags |= BTRFS_INODE_NODATACOW |
 330						BTRFS_INODE_NODATASUM;
 331		} else {
 332			binode_flags |= BTRFS_INODE_NODATACOW;
 333		}
 334	} else {
 335		/*
 336		 * Revert back under same assumptions as above
 337		 */
 338		if (S_ISREG(inode->i_mode)) {
 339			if (inode->i_size == 0)
 340				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 341						  BTRFS_INODE_NODATASUM);
 342		} else {
 343			binode_flags &= ~BTRFS_INODE_NODATACOW;
 344		}
 345	}
 346
 347	/*
 348	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 349	 * flag may be changed automatically if compression code won't make
 350	 * things smaller.
 351	 */
 352	if (fsflags & FS_NOCOMP_FL) {
 353		binode_flags &= ~BTRFS_INODE_COMPRESS;
 354		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 355	} else if (fsflags & FS_COMPR_FL) {
 356
 357		if (IS_SWAPFILE(inode))
 358			return -ETXTBSY;
 
 
 359
 360		binode_flags |= BTRFS_INODE_COMPRESS;
 361		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 362
 363		comp = btrfs_compress_type2str(fs_info->compress_type);
 364		if (!comp || comp[0] == 0)
 365			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 366	} else {
 367		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 368	}
 369
 370	/*
 371	 * 1 for inode item
 372	 * 2 for properties
 373	 */
 374	trans = btrfs_start_transaction(root, 3);
 375	if (IS_ERR(trans))
 376		return PTR_ERR(trans);
 
 
 377
 378	if (comp) {
 379		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
 380				     comp, strlen(comp), 0);
 381		if (ret) {
 382			btrfs_abort_transaction(trans, ret);
 383			goto out_end_trans;
 384		}
 385	} else {
 386		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
 387				     NULL, 0, 0);
 388		if (ret && ret != -ENODATA) {
 389			btrfs_abort_transaction(trans, ret);
 390			goto out_end_trans;
 391		}
 392	}
 393
 394update_flags:
 395	binode->flags = binode_flags;
 396	btrfs_sync_inode_flags_to_i_flags(inode);
 397	inode_inc_iversion(inode);
 398	inode_set_ctime_current(inode);
 399	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 400
 401 out_end_trans:
 402	btrfs_end_transaction(trans);
 
 
 
 403	return ret;
 404}
 405
 406/*
 407 * Start exclusive operation @type, return true on success
 
 
 408 */
 409bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 410			enum btrfs_exclusive_operation type)
 411{
 412	bool ret = false;
 413
 414	spin_lock(&fs_info->super_lock);
 415	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 416		fs_info->exclusive_operation = type;
 417		ret = true;
 418	}
 419	spin_unlock(&fs_info->super_lock);
 
 
 
 
 420
 421	return ret;
 
 
 
 
 
 
 
 
 
 422}
 423
 424/*
 425 * Conditionally allow to enter the exclusive operation in case it's compatible
 426 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 427 * btrfs_exclop_finish.
 428 *
 429 * Compatibility:
 430 * - the same type is already running
 431 * - when trying to add a device and balance has been paused
 432 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 433 *   must check the condition first that would allow none -> @type
 434 */
 435bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 436				 enum btrfs_exclusive_operation type)
 437{
 438	spin_lock(&fs_info->super_lock);
 439	if (fs_info->exclusive_operation == type ||
 440	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
 441	     type == BTRFS_EXCLOP_DEV_ADD))
 442		return true;
 443
 444	spin_unlock(&fs_info->super_lock);
 445	return false;
 446}
 447
 448void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 449{
 450	spin_unlock(&fs_info->super_lock);
 451}
 452
 453void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 454{
 455	spin_lock(&fs_info->super_lock);
 456	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 457	spin_unlock(&fs_info->super_lock);
 458	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 459}
 
 
 
 460
 461void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
 462			  enum btrfs_exclusive_operation op)
 463{
 464	switch (op) {
 465	case BTRFS_EXCLOP_BALANCE_PAUSED:
 466		spin_lock(&fs_info->super_lock);
 467		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
 468		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
 469		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
 470		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 471		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
 472		spin_unlock(&fs_info->super_lock);
 473		break;
 474	case BTRFS_EXCLOP_BALANCE:
 475		spin_lock(&fs_info->super_lock);
 476		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 477		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
 478		spin_unlock(&fs_info->super_lock);
 479		break;
 480	default:
 481		btrfs_warn(fs_info,
 482			"invalid exclop balance operation %d requested", op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483	}
 
 
 
 
 
 484}
 485
 486static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
 487{
 
 
 488	return put_user(inode->i_generation, arg);
 489}
 490
 491static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 492					void __user *arg)
 493{
 494	struct btrfs_device *device;
 
 495	struct fstrim_range range;
 496	u64 minlen = ULLONG_MAX;
 497	u64 num_devices = 0;
 498	int ret;
 499
 500	if (!capable(CAP_SYS_ADMIN))
 501		return -EPERM;
 502
 503	/*
 504	 * btrfs_trim_block_group() depends on space cache, which is not
 505	 * available in zoned filesystem. So, disallow fitrim on a zoned
 506	 * filesystem for now.
 507	 */
 508	if (btrfs_is_zoned(fs_info))
 509		return -EOPNOTSUPP;
 510
 511	/*
 512	 * If the fs is mounted with nologreplay, which requires it to be
 513	 * mounted in RO mode as well, we can not allow discard on free space
 514	 * inside block groups, because log trees refer to extents that are not
 515	 * pinned in a block group's free space cache (pinning the extents is
 516	 * precisely the first phase of replaying a log tree).
 517	 */
 518	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 519		return -EROFS;
 520
 521	rcu_read_lock();
 522	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 523				dev_list) {
 524		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
 525			continue;
 526		num_devices++;
 527		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
 528				    minlen);
 
 
 
 529	}
 530	rcu_read_unlock();
 531
 532	if (!num_devices)
 533		return -EOPNOTSUPP;
 534	if (copy_from_user(&range, arg, sizeof(range)))
 535		return -EFAULT;
 536
 537	/*
 538	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 539	 * block group is in the logical address space, which can be any
 540	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 541	 */
 542	if (range.len < fs_info->sectorsize)
 543		return -EINVAL;
 544
 545	range.minlen = max(range.minlen, minlen);
 546	ret = btrfs_trim_fs(fs_info, &range);
 
 
 547
 548	if (copy_to_user(arg, &range, sizeof(range)))
 549		return -EFAULT;
 550
 551	return ret;
 552}
 553
 554int __pure btrfs_is_empty_uuid(const u8 *uuid)
 555{
 556	int i;
 557
 558	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 559		if (uuid[i])
 560			return 0;
 561	}
 562	return 1;
 563}
 564
 565/*
 566 * Calculate the number of transaction items to reserve for creating a subvolume
 567 * or snapshot, not including the inode, directory entries, or parent directory.
 568 */
 569static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
 570{
 571	/*
 572	 * 1 to add root block
 573	 * 1 to add root item
 574	 * 1 to add root ref
 575	 * 1 to add root backref
 576	 * 1 to add UUID item
 577	 * 1 to add qgroup info
 578	 * 1 to add qgroup limit
 579	 *
 580	 * Ideally the last two would only be accounted if qgroups are enabled,
 581	 * but that can change between now and the time we would insert them.
 582	 */
 583	unsigned int num_items = 7;
 584
 585	if (inherit) {
 586		/* 2 to add qgroup relations for each inherited qgroup */
 587		num_items += 2 * inherit->num_qgroups;
 588	}
 589	return num_items;
 590}
 591
 592static noinline int create_subvol(struct mnt_idmap *idmap,
 593				  struct inode *dir, struct dentry *dentry,
 594				  struct btrfs_qgroup_inherit *inherit)
 595{
 596	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 597	struct btrfs_trans_handle *trans;
 598	struct btrfs_key key;
 599	struct btrfs_root_item *root_item;
 600	struct btrfs_inode_item *inode_item;
 601	struct extent_buffer *leaf;
 602	struct btrfs_root *root = BTRFS_I(dir)->root;
 603	struct btrfs_root *new_root;
 604	struct btrfs_block_rsv block_rsv;
 605	struct timespec64 cur_time = current_time(dir);
 606	struct btrfs_new_inode_args new_inode_args = {
 607		.dir = dir,
 608		.dentry = dentry,
 609		.subvol = true,
 610	};
 611	unsigned int trans_num_items;
 612	int ret;
 613	dev_t anon_dev;
 
 614	u64 objectid;
 615	u64 qgroup_reserved = 0;
 
 616
 617	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 618	if (!root_item)
 619		return -ENOMEM;
 620
 621	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 622	if (ret)
 623		goto out_root_item;
 
 
 
 
 624
 625	/*
 626	 * Don't create subvolume whose level is not zero. Or qgroup will be
 627	 * screwed up since it assumes subvolume qgroup's level to be 0.
 628	 */
 629	if (btrfs_qgroup_level(objectid)) {
 630		ret = -ENOSPC;
 631		goto out_root_item;
 632	}
 633
 634	ret = get_anon_bdev(&anon_dev);
 635	if (ret < 0)
 636		goto out_root_item;
 637
 638	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
 639	if (!new_inode_args.inode) {
 640		ret = -ENOMEM;
 641		goto out_anon_dev;
 642	}
 643	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 644	if (ret)
 645		goto out_inode;
 646	trans_num_items += create_subvol_num_items(inherit);
 647
 648	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 649	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 650					       trans_num_items, false);
 
 
 
 651	if (ret)
 652		goto out_new_inode_args;
 653	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
 654
 655	trans = btrfs_start_transaction(root, 0);
 656	if (IS_ERR(trans)) {
 657		ret = PTR_ERR(trans);
 658		goto out_release_rsv;
 
 659	}
 660	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 661	qgroup_reserved = 0;
 662	trans->block_rsv = &block_rsv;
 663	trans->bytes_reserved = block_rsv.size;
 664
 665	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
 666	if (ret)
 667		goto out;
 668
 669	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 670				      0, BTRFS_NESTING_NORMAL);
 671	if (IS_ERR(leaf)) {
 672		ret = PTR_ERR(leaf);
 673		goto out;
 674	}
 675
 676	btrfs_mark_buffer_dirty(trans, leaf);
 677
 678	inode_item = &root_item->inode;
 679	btrfs_set_stack_inode_generation(inode_item, 1);
 680	btrfs_set_stack_inode_size(inode_item, 3);
 681	btrfs_set_stack_inode_nlink(inode_item, 1);
 682	btrfs_set_stack_inode_nbytes(inode_item,
 683				     fs_info->nodesize);
 684	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 685
 686	btrfs_set_root_flags(root_item, 0);
 687	btrfs_set_root_limit(root_item, 0);
 688	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 689
 690	btrfs_set_root_bytenr(root_item, leaf->start);
 691	btrfs_set_root_generation(root_item, trans->transid);
 692	btrfs_set_root_level(root_item, 0);
 693	btrfs_set_root_refs(root_item, 1);
 694	btrfs_set_root_used(root_item, leaf->len);
 695	btrfs_set_root_last_snapshot(root_item, 0);
 696
 697	btrfs_set_root_generation_v2(root_item,
 698			btrfs_root_generation(root_item));
 699	generate_random_guid(root_item->uuid);
 700	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 701	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 702	root_item->ctime = root_item->otime;
 703	btrfs_set_root_ctransid(root_item, trans->transid);
 704	btrfs_set_root_otransid(root_item, trans->transid);
 705
 706	btrfs_tree_unlock(leaf);
 
 
 707
 708	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 709
 710	key.objectid = objectid;
 711	key.offset = 0;
 712	key.type = BTRFS_ROOT_ITEM_KEY;
 713	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 714				root_item);
 715	if (ret) {
 716		int ret2;
 717
 718		/*
 719		 * Since we don't abort the transaction in this case, free the
 720		 * tree block so that we don't leak space and leave the
 721		 * filesystem in an inconsistent state (an extent item in the
 722		 * extent tree with a backreference for a root that does not
 723		 * exists).
 724		 */
 725		btrfs_tree_lock(leaf);
 726		btrfs_clear_buffer_dirty(trans, leaf);
 727		btrfs_tree_unlock(leaf);
 728		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 729		if (ret2 < 0)
 730			btrfs_abort_transaction(trans, ret2);
 731		free_extent_buffer(leaf);
 732		goto out;
 733	}
 734
 735	free_extent_buffer(leaf);
 736	leaf = NULL;
 737
 738	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
 
 739	if (IS_ERR(new_root)) {
 
 740		ret = PTR_ERR(new_root);
 741		btrfs_abort_transaction(trans, ret);
 742		goto out;
 743	}
 744	/* anon_dev is owned by new_root now. */
 745	anon_dev = 0;
 746	BTRFS_I(new_inode_args.inode)->root = new_root;
 747	/* ... and new_root is owned by new_inode_args.inode now. */
 748
 749	ret = btrfs_record_root_in_trans(trans, new_root);
 
 
 
 750	if (ret) {
 
 751		btrfs_abort_transaction(trans, ret);
 752		goto out;
 753	}
 754
 755	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 756				  BTRFS_UUID_KEY_SUBVOL, objectid);
 
 
 
 
 
 
 757	if (ret) {
 758		btrfs_abort_transaction(trans, ret);
 759		goto out;
 760	}
 761
 762	ret = btrfs_create_new_inode(trans, &new_inode_args);
 
 763	if (ret) {
 764		btrfs_abort_transaction(trans, ret);
 765		goto out;
 766	}
 767
 768	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
 
 
 
 
 
 769
 770	d_instantiate_new(dentry, new_inode_args.inode);
 771	new_inode_args.inode = NULL;
 
 
 
 
 772
 773out:
 
 
 
 
 
 
 774	trans->block_rsv = NULL;
 775	trans->bytes_reserved = 0;
 776	btrfs_end_transaction(trans);
 777out_release_rsv:
 778	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
 779	if (qgroup_reserved)
 780		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 781out_new_inode_args:
 782	btrfs_new_inode_args_destroy(&new_inode_args);
 783out_inode:
 784	iput(new_inode_args.inode);
 785out_anon_dev:
 
 
 
 
 
 786	if (anon_dev)
 787		free_anon_bdev(anon_dev);
 788out_root_item:
 789	kfree(root_item);
 790	return ret;
 791}
 792
 793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 794			   struct dentry *dentry, bool readonly,
 795			   struct btrfs_qgroup_inherit *inherit)
 796{
 797	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 798	struct inode *inode;
 799	struct btrfs_pending_snapshot *pending_snapshot;
 800	unsigned int trans_num_items;
 801	struct btrfs_trans_handle *trans;
 802	struct btrfs_block_rsv *block_rsv;
 803	u64 qgroup_reserved = 0;
 804	int ret;
 805
 806	/* We do not support snapshotting right now. */
 807	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 808		btrfs_warn(fs_info,
 809			   "extent tree v2 doesn't support snapshotting yet");
 810		return -EOPNOTSUPP;
 811	}
 812
 813	if (btrfs_root_refs(&root->root_item) == 0)
 814		return -ENOENT;
 815
 816	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 817		return -EINVAL;
 818
 819	if (atomic_read(&root->nr_swapfiles)) {
 820		btrfs_warn(fs_info,
 821			   "cannot snapshot subvolume with active swapfile");
 822		return -ETXTBSY;
 823	}
 824
 825	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 826	if (!pending_snapshot)
 827		return -ENOMEM;
 828
 829	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 830	if (ret < 0)
 831		goto free_pending;
 832	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 833			GFP_KERNEL);
 834	pending_snapshot->path = btrfs_alloc_path();
 835	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 836		ret = -ENOMEM;
 837		goto free_pending;
 838	}
 839
 840	block_rsv = &pending_snapshot->block_rsv;
 841	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
 842	/*
 843	 * 1 to add dir item
 844	 * 1 to add dir index
 845	 * 1 to update parent inode item
 
 
 
 846	 */
 847	trans_num_items = create_subvol_num_items(inherit) + 3;
 848	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
 849					       trans_num_items, false);
 850	if (ret)
 851		goto free_pending;
 852	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
 853
 854	pending_snapshot->dentry = dentry;
 855	pending_snapshot->root = root;
 856	pending_snapshot->readonly = readonly;
 857	pending_snapshot->dir = BTRFS_I(dir);
 858	pending_snapshot->inherit = inherit;
 859
 860	trans = btrfs_start_transaction(root, 0);
 861	if (IS_ERR(trans)) {
 862		ret = PTR_ERR(trans);
 863		goto fail;
 864	}
 865	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
 866	if (ret) {
 867		btrfs_end_transaction(trans);
 868		goto fail;
 869	}
 870	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 871	qgroup_reserved = 0;
 872
 873	trans->pending_snapshot = pending_snapshot;
 
 
 
 874
 875	ret = btrfs_commit_transaction(trans);
 876	if (ret)
 877		goto fail;
 878
 879	ret = pending_snapshot->error;
 880	if (ret)
 881		goto fail;
 882
 883	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 884	if (ret)
 885		goto fail;
 886
 887	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 888	if (IS_ERR(inode)) {
 889		ret = PTR_ERR(inode);
 890		goto fail;
 891	}
 892
 893	d_instantiate(dentry, inode);
 894	ret = 0;
 895	pending_snapshot->anon_dev = 0;
 896fail:
 897	/* Prevent double freeing of anon_dev */
 898	if (ret && pending_snapshot->snap)
 899		pending_snapshot->snap->anon_dev = 0;
 900	btrfs_put_root(pending_snapshot->snap);
 901	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
 902	if (qgroup_reserved)
 903		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 904free_pending:
 905	if (pending_snapshot->anon_dev)
 906		free_anon_bdev(pending_snapshot->anon_dev);
 907	kfree(pending_snapshot->root_item);
 908	btrfs_free_path(pending_snapshot->path);
 909	kfree(pending_snapshot);
 910
 911	return ret;
 912}
 913
 914/*  copy of may_delete in fs/namei.c()
 915 *	Check whether we can remove a link victim from directory dir, check
 916 *  whether the type of victim is right.
 917 *  1. We can't do it if dir is read-only (done in permission())
 918 *  2. We should have write and exec permissions on dir
 919 *  3. We can't remove anything from append-only dir
 920 *  4. We can't do anything with immutable dir (done in permission())
 921 *  5. If the sticky bit on dir is set we should either
 922 *	a. be owner of dir, or
 923 *	b. be owner of victim, or
 924 *	c. have CAP_FOWNER capability
 925 *  6. If the victim is append-only or immutable we can't do anything with
 926 *     links pointing to it.
 927 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 928 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 929 *  9. We can't remove a root or mountpoint.
 930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 931 *     nfs_async_unlink().
 932 */
 933
 934static int btrfs_may_delete(struct mnt_idmap *idmap,
 935			    struct inode *dir, struct dentry *victim, int isdir)
 936{
 937	int error;
 938
 939	if (d_really_is_negative(victim))
 940		return -ENOENT;
 941
 942	/* The @victim is not inside @dir. */
 943	if (d_inode(victim->d_parent) != dir)
 944		return -EINVAL;
 945	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 946
 947	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 948	if (error)
 949		return error;
 950	if (IS_APPEND(dir))
 951		return -EPERM;
 952	if (check_sticky(idmap, dir, d_inode(victim)) ||
 953	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 954	    IS_SWAPFILE(d_inode(victim)))
 955		return -EPERM;
 956	if (isdir) {
 957		if (!d_is_dir(victim))
 958			return -ENOTDIR;
 959		if (IS_ROOT(victim))
 960			return -EBUSY;
 961	} else if (d_is_dir(victim))
 962		return -EISDIR;
 963	if (IS_DEADDIR(dir))
 964		return -ENOENT;
 965	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 966		return -EBUSY;
 967	return 0;
 968}
 969
 970/* copy of may_create in fs/namei.c() */
 971static inline int btrfs_may_create(struct mnt_idmap *idmap,
 972				   struct inode *dir, struct dentry *child)
 973{
 974	if (d_really_is_positive(child))
 975		return -EEXIST;
 976	if (IS_DEADDIR(dir))
 977		return -ENOENT;
 978	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
 979		return -EOVERFLOW;
 980	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 981}
 982
 983/*
 984 * Create a new subvolume below @parent.  This is largely modeled after
 985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 986 * inside this filesystem so it's quite a bit simpler.
 987 */
 988static noinline int btrfs_mksubvol(const struct path *parent,
 989				   struct mnt_idmap *idmap,
 990				   const char *name, int namelen,
 991				   struct btrfs_root *snap_src,
 992				   bool readonly,
 993				   struct btrfs_qgroup_inherit *inherit)
 994{
 995	struct inode *dir = d_inode(parent->dentry);
 996	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 997	struct dentry *dentry;
 998	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
 999	int error;
1000
1001	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002	if (error == -EINTR)
1003		return error;
1004
1005	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006	error = PTR_ERR(dentry);
1007	if (IS_ERR(dentry))
1008		goto out_unlock;
1009
1010	error = btrfs_may_create(idmap, dir, dentry);
1011	if (error)
1012		goto out_dput;
1013
1014	/*
1015	 * even if this name doesn't exist, we may get hash collisions.
1016	 * check for them now when we can safely fail
1017	 */
1018	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019					       dir->i_ino, &name_str);
 
1020	if (error)
1021		goto out_dput;
1022
1023	down_read(&fs_info->subvol_sem);
1024
1025	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026		goto out_up_read;
1027
1028	if (snap_src)
1029		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030	else
1031		error = create_subvol(idmap, dir, dentry, inherit);
1032
1033	if (!error)
1034		fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036	up_read(&fs_info->subvol_sem);
1037out_dput:
1038	dput(dentry);
1039out_unlock:
1040	btrfs_inode_unlock(BTRFS_I(dir), 0);
1041	return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045				   struct mnt_idmap *idmap,
1046				   const char *name, int namelen,
1047				   struct btrfs_root *root,
1048				   bool readonly,
1049				   struct btrfs_qgroup_inherit *inherit)
1050{
1051	int ret;
 
1052
1053	/*
1054	 * Force new buffered writes to reserve space even when NOCOW is
1055	 * possible. This is to avoid later writeback (running dealloc) to
1056	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057	 */
1058	btrfs_drew_read_lock(&root->snapshot_lock);
1059
1060	ret = btrfs_start_delalloc_snapshot(root, false);
1061	if (ret)
1062		goto out;
1063
1064	/*
1065	 * All previous writes have started writeback in NOCOW mode, so now
1066	 * we force future writes to fallback to COW mode during snapshot
1067	 * creation.
1068	 */
1069	atomic_inc(&root->snapshot_force_cow);
 
1070
1071	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1072
1073	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1074			     root, readonly, inherit);
1075	atomic_dec(&root->snapshot_force_cow);
1076out:
 
 
1077	btrfs_drew_read_unlock(&root->snapshot_lock);
1078	return ret;
1079}
1080
1081/*
1082 * Try to start exclusive operation @type or cancel it if it's running.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083 *
1084 * Return:
1085 *   0        - normal mode, newly claimed op started
1086 *  >0        - normal mode, something else is running,
1087 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1088 * ECANCELED  - cancel mode, successful cancel
1089 * ENOTCONN   - cancel mode, operation not running anymore
1090 */
1091static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1092			enum btrfs_exclusive_operation type, bool cancel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093{
1094	if (!cancel) {
1095		/* Start normal op */
1096		if (!btrfs_exclop_start(fs_info, type))
1097			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1098		/* Exclusive operation is now claimed */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100	}
1101
1102	/* Cancel running op */
1103	if (btrfs_exclop_start_try_lock(fs_info, type)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104		/*
1105		 * This blocks any exclop finish from setting it to NONE, so we
1106		 * request cancellation. Either it runs and we will wait for it,
1107		 * or it has finished and no waiting will happen.
1108		 */
1109		atomic_inc(&fs_info->reloc_cancel_req);
1110		btrfs_exclop_start_unlock(fs_info);
 
 
 
 
 
 
1111
1112		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1113			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1114				    TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115
1116		return -ECANCELED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117	}
1118
1119	/* Something else is running or none */
1120	return -ENOTCONN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123static noinline int btrfs_ioctl_resize(struct file *file,
1124					void __user *arg)
1125{
1126	BTRFS_DEV_LOOKUP_ARGS(args);
1127	struct inode *inode = file_inode(file);
1128	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1129	u64 new_size;
1130	u64 old_size;
1131	u64 devid = 1;
1132	struct btrfs_root *root = BTRFS_I(inode)->root;
1133	struct btrfs_ioctl_vol_args *vol_args;
1134	struct btrfs_trans_handle *trans;
1135	struct btrfs_device *device = NULL;
1136	char *sizestr;
1137	char *retptr;
1138	char *devstr = NULL;
1139	int ret = 0;
1140	int mod = 0;
1141	bool cancel;
1142
1143	if (!capable(CAP_SYS_ADMIN))
1144		return -EPERM;
1145
1146	ret = mnt_want_write_file(file);
1147	if (ret)
1148		return ret;
1149
1150	/*
1151	 * Read the arguments before checking exclusivity to be able to
1152	 * distinguish regular resize and cancel
1153	 */
 
1154	vol_args = memdup_user(arg, sizeof(*vol_args));
1155	if (IS_ERR(vol_args)) {
1156		ret = PTR_ERR(vol_args);
1157		goto out_drop;
1158	}
1159	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1160	if (ret < 0)
1161		goto out_free;
1162
1163	sizestr = vol_args->name;
1164	cancel = (strcmp("cancel", sizestr) == 0);
1165	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1166	if (ret)
1167		goto out_free;
1168	/* Exclusive operation is now claimed */
1169
 
1170	devstr = strchr(sizestr, ':');
1171	if (devstr) {
1172		sizestr = devstr + 1;
1173		*devstr = '\0';
1174		devstr = vol_args->name;
1175		ret = kstrtoull(devstr, 10, &devid);
1176		if (ret)
1177			goto out_finish;
1178		if (!devid) {
1179			ret = -EINVAL;
1180			goto out_finish;
1181		}
1182		btrfs_info(fs_info, "resizing devid %llu", devid);
1183	}
1184
1185	args.devid = devid;
1186	device = btrfs_find_device(fs_info->fs_devices, &args);
1187	if (!device) {
1188		btrfs_info(fs_info, "resizer unable to find device %llu",
1189			   devid);
1190		ret = -ENODEV;
1191		goto out_finish;
1192	}
1193
1194	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1195		btrfs_info(fs_info,
1196			   "resizer unable to apply on readonly device %llu",
1197		       devid);
1198		ret = -EPERM;
1199		goto out_finish;
1200	}
1201
1202	if (!strcmp(sizestr, "max"))
1203		new_size = bdev_nr_bytes(device->bdev);
1204	else {
1205		if (sizestr[0] == '-') {
1206			mod = -1;
1207			sizestr++;
1208		} else if (sizestr[0] == '+') {
1209			mod = 1;
1210			sizestr++;
1211		}
1212		new_size = memparse(sizestr, &retptr);
1213		if (*retptr != '\0' || new_size == 0) {
1214			ret = -EINVAL;
1215			goto out_finish;
1216		}
1217	}
1218
1219	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1220		ret = -EPERM;
1221		goto out_finish;
1222	}
1223
1224	old_size = btrfs_device_get_total_bytes(device);
1225
1226	if (mod < 0) {
1227		if (new_size > old_size) {
1228			ret = -EINVAL;
1229			goto out_finish;
1230		}
1231		new_size = old_size - new_size;
1232	} else if (mod > 0) {
1233		if (new_size > ULLONG_MAX - old_size) {
1234			ret = -ERANGE;
1235			goto out_finish;
1236		}
1237		new_size = old_size + new_size;
1238	}
1239
1240	if (new_size < SZ_256M) {
1241		ret = -EINVAL;
1242		goto out_finish;
1243	}
1244	if (new_size > bdev_nr_bytes(device->bdev)) {
1245		ret = -EFBIG;
1246		goto out_finish;
1247	}
1248
1249	new_size = round_down(new_size, fs_info->sectorsize);
1250
1251	if (new_size > old_size) {
1252		trans = btrfs_start_transaction(root, 0);
1253		if (IS_ERR(trans)) {
1254			ret = PTR_ERR(trans);
1255			goto out_finish;
1256		}
1257		ret = btrfs_grow_device(trans, device, new_size);
1258		btrfs_commit_transaction(trans);
1259	} else if (new_size < old_size) {
1260		ret = btrfs_shrink_device(device, new_size);
1261	} /* equal, nothing need to do */
1262
1263	if (ret == 0 && new_size != old_size)
1264		btrfs_info_in_rcu(fs_info,
1265			"resize device %s (devid %llu) from %llu to %llu",
1266			btrfs_dev_name(device), device->devid,
1267			old_size, new_size);
1268out_finish:
1269	btrfs_exclop_finish(fs_info);
1270out_free:
1271	kfree(vol_args);
1272out_drop:
 
1273	mnt_drop_write_file(file);
1274	return ret;
1275}
1276
1277static noinline int __btrfs_ioctl_snap_create(struct file *file,
1278				struct mnt_idmap *idmap,
1279				const char *name, unsigned long fd, int subvol,
1280				bool readonly,
1281				struct btrfs_qgroup_inherit *inherit)
1282{
1283	int namelen;
1284	int ret = 0;
1285
1286	if (!S_ISDIR(file_inode(file)->i_mode))
1287		return -ENOTDIR;
1288
1289	ret = mnt_want_write_file(file);
1290	if (ret)
1291		goto out;
1292
1293	namelen = strlen(name);
1294	if (strchr(name, '/')) {
1295		ret = -EINVAL;
1296		goto out_drop_write;
1297	}
1298
1299	if (name[0] == '.' &&
1300	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1301		ret = -EEXIST;
1302		goto out_drop_write;
1303	}
1304
1305	if (subvol) {
1306		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1307				     namelen, NULL, readonly, inherit);
1308	} else {
1309		CLASS(fd, src)(fd);
1310		struct inode *src_inode;
1311		if (fd_empty(src)) {
1312			ret = -EINVAL;
1313			goto out_drop_write;
1314		}
1315
1316		src_inode = file_inode(fd_file(src));
1317		if (src_inode->i_sb != file_inode(file)->i_sb) {
1318			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1319				   "Snapshot src from another FS");
1320			ret = -EXDEV;
1321		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1322			/*
1323			 * Subvolume creation is not restricted, but snapshots
1324			 * are limited to own subvolumes only
1325			 */
1326			ret = -EPERM;
1327		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1328			/*
1329			 * Snapshots must be made with the src_inode referring
1330			 * to the subvolume inode, otherwise the permission
1331			 * checking above is useless because we may have
1332			 * permission on a lower directory but not the subvol
1333			 * itself.
1334			 */
1335			ret = -EINVAL;
1336		} else {
1337			ret = btrfs_mksnapshot(&file->f_path, idmap,
1338					       name, namelen,
1339					       BTRFS_I(src_inode)->root,
1340					       readonly, inherit);
1341		}
 
1342	}
1343out_drop_write:
1344	mnt_drop_write_file(file);
1345out:
1346	return ret;
1347}
1348
1349static noinline int btrfs_ioctl_snap_create(struct file *file,
1350					    void __user *arg, int subvol)
1351{
1352	struct btrfs_ioctl_vol_args *vol_args;
1353	int ret;
1354
1355	if (!S_ISDIR(file_inode(file)->i_mode))
1356		return -ENOTDIR;
1357
1358	vol_args = memdup_user(arg, sizeof(*vol_args));
1359	if (IS_ERR(vol_args))
1360		return PTR_ERR(vol_args);
1361	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1362	if (ret < 0)
1363		goto out;
1364
1365	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1366					vol_args->name, vol_args->fd, subvol,
1367					false, NULL);
1368
1369out:
1370	kfree(vol_args);
1371	return ret;
1372}
1373
1374static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1375					       void __user *arg, int subvol)
1376{
1377	struct btrfs_ioctl_vol_args_v2 *vol_args;
1378	int ret;
1379	bool readonly = false;
1380	struct btrfs_qgroup_inherit *inherit = NULL;
1381
1382	if (!S_ISDIR(file_inode(file)->i_mode))
1383		return -ENOTDIR;
1384
1385	vol_args = memdup_user(arg, sizeof(*vol_args));
1386	if (IS_ERR(vol_args))
1387		return PTR_ERR(vol_args);
1388	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1389	if (ret < 0)
1390		goto free_args;
1391
1392	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1393		ret = -EOPNOTSUPP;
1394		goto free_args;
1395	}
1396
1397	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1398		readonly = true;
1399	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1400		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1401
1402		if (vol_args->size < sizeof(*inherit) ||
1403		    vol_args->size > PAGE_SIZE) {
1404			ret = -EINVAL;
1405			goto free_args;
1406		}
1407		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1408		if (IS_ERR(inherit)) {
1409			ret = PTR_ERR(inherit);
1410			goto free_args;
1411		}
1412
1413		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1414		if (ret < 0)
1415			goto free_inherit;
1416	}
1417
1418	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1419					vol_args->name, vol_args->fd, subvol,
1420					readonly, inherit);
1421	if (ret)
1422		goto free_inherit;
1423free_inherit:
1424	kfree(inherit);
1425free_args:
1426	kfree(vol_args);
1427	return ret;
1428}
1429
1430static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1431						void __user *arg)
1432{
1433	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 
1434	struct btrfs_root *root = BTRFS_I(inode)->root;
1435	int ret = 0;
1436	u64 flags = 0;
1437
1438	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1439		return -EINVAL;
1440
1441	down_read(&fs_info->subvol_sem);
1442	if (btrfs_root_readonly(root))
1443		flags |= BTRFS_SUBVOL_RDONLY;
1444	up_read(&fs_info->subvol_sem);
1445
1446	if (copy_to_user(arg, &flags, sizeof(flags)))
1447		ret = -EFAULT;
1448
1449	return ret;
1450}
1451
1452static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1453					      void __user *arg)
1454{
1455	struct inode *inode = file_inode(file);
1456	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1457	struct btrfs_root *root = BTRFS_I(inode)->root;
1458	struct btrfs_trans_handle *trans;
1459	u64 root_flags;
1460	u64 flags;
1461	int ret = 0;
1462
1463	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1464		return -EPERM;
1465
1466	ret = mnt_want_write_file(file);
1467	if (ret)
1468		goto out;
1469
1470	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1471		ret = -EINVAL;
1472		goto out_drop_write;
1473	}
1474
1475	if (copy_from_user(&flags, arg, sizeof(flags))) {
1476		ret = -EFAULT;
1477		goto out_drop_write;
1478	}
1479
1480	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1481		ret = -EOPNOTSUPP;
1482		goto out_drop_write;
1483	}
1484
1485	down_write(&fs_info->subvol_sem);
1486
1487	/* nothing to do */
1488	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1489		goto out_drop_sem;
1490
1491	root_flags = btrfs_root_flags(&root->root_item);
1492	if (flags & BTRFS_SUBVOL_RDONLY) {
1493		btrfs_set_root_flags(&root->root_item,
1494				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1495	} else {
1496		/*
1497		 * Block RO -> RW transition if this subvolume is involved in
1498		 * send
1499		 */
1500		spin_lock(&root->root_item_lock);
1501		if (root->send_in_progress == 0) {
1502			btrfs_set_root_flags(&root->root_item,
1503				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1504			spin_unlock(&root->root_item_lock);
1505		} else {
1506			spin_unlock(&root->root_item_lock);
1507			btrfs_warn(fs_info,
1508				   "Attempt to set subvolume %llu read-write during send",
1509				   btrfs_root_id(root));
1510			ret = -EPERM;
1511			goto out_drop_sem;
1512		}
1513	}
1514
1515	trans = btrfs_start_transaction(root, 1);
1516	if (IS_ERR(trans)) {
1517		ret = PTR_ERR(trans);
1518		goto out_reset;
1519	}
1520
1521	ret = btrfs_update_root(trans, fs_info->tree_root,
1522				&root->root_key, &root->root_item);
1523	if (ret < 0) {
1524		btrfs_end_transaction(trans);
1525		goto out_reset;
1526	}
1527
1528	ret = btrfs_commit_transaction(trans);
1529
1530out_reset:
1531	if (ret)
1532		btrfs_set_root_flags(&root->root_item, root_flags);
1533out_drop_sem:
1534	up_write(&fs_info->subvol_sem);
1535out_drop_write:
1536	mnt_drop_write_file(file);
1537out:
1538	return ret;
1539}
1540
1541static noinline int key_in_sk(struct btrfs_key *key,
1542			      struct btrfs_ioctl_search_key *sk)
1543{
1544	struct btrfs_key test;
1545	int ret;
1546
1547	test.objectid = sk->min_objectid;
1548	test.type = sk->min_type;
1549	test.offset = sk->min_offset;
1550
1551	ret = btrfs_comp_cpu_keys(key, &test);
1552	if (ret < 0)
1553		return 0;
1554
1555	test.objectid = sk->max_objectid;
1556	test.type = sk->max_type;
1557	test.offset = sk->max_offset;
1558
1559	ret = btrfs_comp_cpu_keys(key, &test);
1560	if (ret > 0)
1561		return 0;
1562	return 1;
1563}
1564
1565static noinline int copy_to_sk(struct btrfs_path *path,
1566			       struct btrfs_key *key,
1567			       struct btrfs_ioctl_search_key *sk,
1568			       u64 *buf_size,
1569			       char __user *ubuf,
1570			       unsigned long *sk_offset,
1571			       int *num_found)
1572{
1573	u64 found_transid;
1574	struct extent_buffer *leaf;
1575	struct btrfs_ioctl_search_header sh;
1576	struct btrfs_key test;
1577	unsigned long item_off;
1578	unsigned long item_len;
1579	int nritems;
1580	int i;
1581	int slot;
1582	int ret = 0;
1583
1584	leaf = path->nodes[0];
1585	slot = path->slots[0];
1586	nritems = btrfs_header_nritems(leaf);
1587
1588	if (btrfs_header_generation(leaf) > sk->max_transid) {
1589		i = nritems;
1590		goto advance_key;
1591	}
1592	found_transid = btrfs_header_generation(leaf);
1593
1594	for (i = slot; i < nritems; i++) {
1595		item_off = btrfs_item_ptr_offset(leaf, i);
1596		item_len = btrfs_item_size(leaf, i);
1597
1598		btrfs_item_key_to_cpu(leaf, key, i);
1599		if (!key_in_sk(key, sk))
1600			continue;
1601
1602		if (sizeof(sh) + item_len > *buf_size) {
1603			if (*num_found) {
1604				ret = 1;
1605				goto out;
1606			}
1607
1608			/*
1609			 * return one empty item back for v1, which does not
1610			 * handle -EOVERFLOW
1611			 */
1612
1613			*buf_size = sizeof(sh) + item_len;
1614			item_len = 0;
1615			ret = -EOVERFLOW;
1616		}
1617
1618		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1619			ret = 1;
1620			goto out;
1621		}
1622
1623		sh.objectid = key->objectid;
1624		sh.offset = key->offset;
1625		sh.type = key->type;
1626		sh.len = item_len;
1627		sh.transid = found_transid;
1628
1629		/*
1630		 * Copy search result header. If we fault then loop again so we
1631		 * can fault in the pages and -EFAULT there if there's a
1632		 * problem. Otherwise we'll fault and then copy the buffer in
1633		 * properly this next time through
1634		 */
1635		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1636			ret = 0;
1637			goto out;
1638		}
1639
1640		*sk_offset += sizeof(sh);
1641
1642		if (item_len) {
1643			char __user *up = ubuf + *sk_offset;
1644			/*
1645			 * Copy the item, same behavior as above, but reset the
1646			 * * sk_offset so we copy the full thing again.
1647			 */
1648			if (read_extent_buffer_to_user_nofault(leaf, up,
1649						item_off, item_len)) {
1650				ret = 0;
1651				*sk_offset -= sizeof(sh);
1652				goto out;
1653			}
1654
1655			*sk_offset += item_len;
1656		}
1657		(*num_found)++;
1658
1659		if (ret) /* -EOVERFLOW from above */
1660			goto out;
1661
1662		if (*num_found >= sk->nr_items) {
1663			ret = 1;
1664			goto out;
1665		}
1666	}
1667advance_key:
1668	ret = 0;
1669	test.objectid = sk->max_objectid;
1670	test.type = sk->max_type;
1671	test.offset = sk->max_offset;
1672	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1673		ret = 1;
1674	else if (key->offset < (u64)-1)
1675		key->offset++;
1676	else if (key->type < (u8)-1) {
1677		key->offset = 0;
1678		key->type++;
1679	} else if (key->objectid < (u64)-1) {
1680		key->offset = 0;
1681		key->type = 0;
1682		key->objectid++;
1683	} else
1684		ret = 1;
1685out:
1686	/*
1687	 *  0: all items from this leaf copied, continue with next
1688	 *  1: * more items can be copied, but unused buffer is too small
1689	 *     * all items were found
1690	 *     Either way, it will stops the loop which iterates to the next
1691	 *     leaf
1692	 *  -EOVERFLOW: item was to large for buffer
1693	 *  -EFAULT: could not copy extent buffer back to userspace
1694	 */
1695	return ret;
1696}
1697
1698static noinline int search_ioctl(struct inode *inode,
1699				 struct btrfs_ioctl_search_key *sk,
1700				 u64 *buf_size,
1701				 char __user *ubuf)
1702{
1703	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1704	struct btrfs_root *root;
1705	struct btrfs_key key;
1706	struct btrfs_path *path;
1707	int ret;
1708	int num_found = 0;
1709	unsigned long sk_offset = 0;
1710
1711	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1712		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1713		return -EOVERFLOW;
1714	}
1715
1716	path = btrfs_alloc_path();
1717	if (!path)
1718		return -ENOMEM;
1719
1720	if (sk->tree_id == 0) {
1721		/* search the root of the inode that was passed */
1722		root = btrfs_grab_root(BTRFS_I(inode)->root);
1723	} else {
1724		root = btrfs_get_fs_root(info, sk->tree_id, true);
1725		if (IS_ERR(root)) {
1726			btrfs_free_path(path);
1727			return PTR_ERR(root);
1728		}
1729	}
1730
1731	key.objectid = sk->min_objectid;
1732	key.type = sk->min_type;
1733	key.offset = sk->min_offset;
1734
1735	while (1) {
1736		ret = -EFAULT;
1737		/*
1738		 * Ensure that the whole user buffer is faulted in at sub-page
1739		 * granularity, otherwise the loop may live-lock.
1740		 */
1741		if (fault_in_subpage_writeable(ubuf + sk_offset,
1742					       *buf_size - sk_offset))
1743			break;
1744
1745		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1746		if (ret != 0) {
1747			if (ret > 0)
1748				ret = 0;
1749			goto err;
1750		}
1751		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1752				 &sk_offset, &num_found);
1753		btrfs_release_path(path);
1754		if (ret)
1755			break;
1756
1757	}
1758	if (ret > 0)
1759		ret = 0;
1760err:
1761	sk->nr_items = num_found;
1762	btrfs_put_root(root);
1763	btrfs_free_path(path);
1764	return ret;
1765}
1766
1767static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1768					    void __user *argp)
1769{
1770	struct btrfs_ioctl_search_args __user *uargs = argp;
1771	struct btrfs_ioctl_search_key sk;
 
1772	int ret;
1773	u64 buf_size;
1774
1775	if (!capable(CAP_SYS_ADMIN))
1776		return -EPERM;
1777
 
 
1778	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1779		return -EFAULT;
1780
1781	buf_size = sizeof(uargs->buf);
1782
 
1783	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1784
1785	/*
1786	 * In the origin implementation an overflow is handled by returning a
1787	 * search header with a len of zero, so reset ret.
1788	 */
1789	if (ret == -EOVERFLOW)
1790		ret = 0;
1791
1792	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1793		ret = -EFAULT;
1794	return ret;
1795}
1796
1797static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1798					       void __user *argp)
1799{
1800	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1801	struct btrfs_ioctl_search_args_v2 args;
 
1802	int ret;
1803	u64 buf_size;
1804	const u64 buf_limit = SZ_16M;
1805
1806	if (!capable(CAP_SYS_ADMIN))
1807		return -EPERM;
1808
1809	/* copy search header and buffer size */
 
1810	if (copy_from_user(&args, uarg, sizeof(args)))
1811		return -EFAULT;
1812
1813	buf_size = args.buf_size;
1814
1815	/* limit result size to 16MB */
1816	if (buf_size > buf_limit)
1817		buf_size = buf_limit;
1818
 
1819	ret = search_ioctl(inode, &args.key, &buf_size,
1820			   (char __user *)(&uarg->buf[0]));
1821	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1822		ret = -EFAULT;
1823	else if (ret == -EOVERFLOW &&
1824		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1825		ret = -EFAULT;
1826
1827	return ret;
1828}
1829
1830/*
1831 * Search INODE_REFs to identify path name of 'dirid' directory
1832 * in a 'tree_id' tree. and sets path name to 'name'.
1833 */
1834static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1835				u64 tree_id, u64 dirid, char *name)
1836{
1837	struct btrfs_root *root;
1838	struct btrfs_key key;
1839	char *ptr;
1840	int ret = -1;
1841	int slot;
1842	int len;
1843	int total_len = 0;
1844	struct btrfs_inode_ref *iref;
1845	struct extent_buffer *l;
1846	struct btrfs_path *path;
1847
1848	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1849		name[0]='\0';
1850		return 0;
1851	}
1852
1853	path = btrfs_alloc_path();
1854	if (!path)
1855		return -ENOMEM;
1856
1857	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1858
1859	root = btrfs_get_fs_root(info, tree_id, true);
1860	if (IS_ERR(root)) {
1861		ret = PTR_ERR(root);
1862		root = NULL;
1863		goto out;
1864	}
1865
1866	key.objectid = dirid;
1867	key.type = BTRFS_INODE_REF_KEY;
1868	key.offset = (u64)-1;
1869
1870	while (1) {
1871		ret = btrfs_search_backwards(root, &key, path);
1872		if (ret < 0)
1873			goto out;
1874		else if (ret > 0) {
1875			ret = -ENOENT;
1876			goto out;
 
 
 
 
 
 
1877		}
1878
1879		l = path->nodes[0];
1880		slot = path->slots[0];
 
1881
1882		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1883		len = btrfs_inode_ref_name_len(l, iref);
1884		ptr -= len + 1;
1885		total_len += len + 1;
1886		if (ptr < name) {
1887			ret = -ENAMETOOLONG;
1888			goto out;
1889		}
1890
1891		*(ptr + len) = '/';
1892		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1893
1894		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1895			break;
1896
1897		btrfs_release_path(path);
1898		key.objectid = key.offset;
1899		key.offset = (u64)-1;
1900		dirid = key.objectid;
1901	}
1902	memmove(name, ptr, total_len);
1903	name[total_len] = '\0';
1904	ret = 0;
1905out:
1906	btrfs_put_root(root);
1907	btrfs_free_path(path);
1908	return ret;
1909}
1910
1911static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1912				struct inode *inode,
1913				struct btrfs_ioctl_ino_lookup_user_args *args)
1914{
1915	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1916	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1917	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
 
1918	u64 dirid = args->dirid;
1919	unsigned long item_off;
1920	unsigned long item_len;
1921	struct btrfs_inode_ref *iref;
1922	struct btrfs_root_ref *rref;
1923	struct btrfs_root *root = NULL;
1924	struct btrfs_path *path;
1925	struct btrfs_key key, key2;
1926	struct extent_buffer *leaf;
1927	struct inode *temp_inode;
1928	char *ptr;
1929	int slot;
1930	int len;
1931	int total_len = 0;
1932	int ret;
1933
1934	path = btrfs_alloc_path();
1935	if (!path)
1936		return -ENOMEM;
1937
1938	/*
1939	 * If the bottom subvolume does not exist directly under upper_limit,
1940	 * construct the path in from the bottom up.
1941	 */
1942	if (dirid != upper_limit) {
1943		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1944
1945		root = btrfs_get_fs_root(fs_info, treeid, true);
1946		if (IS_ERR(root)) {
1947			ret = PTR_ERR(root);
1948			goto out;
1949		}
1950
1951		key.objectid = dirid;
1952		key.type = BTRFS_INODE_REF_KEY;
1953		key.offset = (u64)-1;
1954		while (1) {
1955			ret = btrfs_search_backwards(root, &key, path);
1956			if (ret < 0)
1957				goto out_put;
1958			else if (ret > 0) {
1959				ret = -ENOENT;
1960				goto out_put;
 
 
 
 
 
 
 
 
 
1961			}
1962
1963			leaf = path->nodes[0];
1964			slot = path->slots[0];
 
1965
1966			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1967			len = btrfs_inode_ref_name_len(leaf, iref);
1968			ptr -= len + 1;
1969			total_len += len + 1;
1970			if (ptr < args->path) {
1971				ret = -ENAMETOOLONG;
1972				goto out_put;
1973			}
1974
1975			*(ptr + len) = '/';
1976			read_extent_buffer(leaf, ptr,
1977					(unsigned long)(iref + 1), len);
1978
1979			/* Check the read+exec permission of this directory */
1980			ret = btrfs_previous_item(root, path, dirid,
1981						  BTRFS_INODE_ITEM_KEY);
1982			if (ret < 0) {
1983				goto out_put;
1984			} else if (ret > 0) {
1985				ret = -ENOENT;
1986				goto out_put;
1987			}
1988
1989			leaf = path->nodes[0];
1990			slot = path->slots[0];
1991			btrfs_item_key_to_cpu(leaf, &key2, slot);
1992			if (key2.objectid != dirid) {
1993				ret = -ENOENT;
1994				goto out_put;
1995			}
1996
1997			/*
1998			 * We don't need the path anymore, so release it and
1999			 * avoid deadlocks and lockdep warnings in case
2000			 * btrfs_iget() needs to lookup the inode from its root
2001			 * btree and lock the same leaf.
2002			 */
2003			btrfs_release_path(path);
2004			temp_inode = btrfs_iget(key2.objectid, root);
2005			if (IS_ERR(temp_inode)) {
2006				ret = PTR_ERR(temp_inode);
2007				goto out_put;
2008			}
2009			ret = inode_permission(idmap, temp_inode,
2010					       MAY_READ | MAY_EXEC);
2011			iput(temp_inode);
2012			if (ret) {
2013				ret = -EACCES;
2014				goto out_put;
2015			}
2016
2017			if (key.offset == upper_limit)
2018				break;
2019			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2020				ret = -EACCES;
2021				goto out_put;
2022			}
2023
 
2024			key.objectid = key.offset;
2025			key.offset = (u64)-1;
2026			dirid = key.objectid;
2027		}
2028
2029		memmove(args->path, ptr, total_len);
2030		args->path[total_len] = '\0';
2031		btrfs_put_root(root);
2032		root = NULL;
2033		btrfs_release_path(path);
2034	}
2035
2036	/* Get the bottom subvolume's name from ROOT_REF */
2037	key.objectid = treeid;
2038	key.type = BTRFS_ROOT_REF_KEY;
2039	key.offset = args->treeid;
2040	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2041	if (ret < 0) {
2042		goto out;
2043	} else if (ret > 0) {
2044		ret = -ENOENT;
2045		goto out;
2046	}
2047
2048	leaf = path->nodes[0];
2049	slot = path->slots[0];
2050	btrfs_item_key_to_cpu(leaf, &key, slot);
2051
2052	item_off = btrfs_item_ptr_offset(leaf, slot);
2053	item_len = btrfs_item_size(leaf, slot);
2054	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2055	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2056	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2057		ret = -EINVAL;
2058		goto out;
2059	}
2060
2061	/* Copy subvolume's name */
2062	item_off += sizeof(struct btrfs_root_ref);
2063	item_len -= sizeof(struct btrfs_root_ref);
2064	read_extent_buffer(leaf, args->name, item_off, item_len);
2065	args->name[item_len] = 0;
2066
2067out_put:
2068	btrfs_put_root(root);
2069out:
2070	btrfs_free_path(path);
2071	return ret;
2072}
2073
2074static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2075					   void __user *argp)
2076{
2077	struct btrfs_ioctl_ino_lookup_args *args;
 
2078	int ret = 0;
2079
2080	args = memdup_user(argp, sizeof(*args));
2081	if (IS_ERR(args))
2082		return PTR_ERR(args);
2083
 
 
2084	/*
2085	 * Unprivileged query to obtain the containing subvolume root id. The
2086	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2087	 */
2088	if (args->treeid == 0)
2089		args->treeid = btrfs_root_id(root);
2090
2091	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2092		args->name[0] = 0;
2093		goto out;
2094	}
2095
2096	if (!capable(CAP_SYS_ADMIN)) {
2097		ret = -EPERM;
2098		goto out;
2099	}
2100
2101	ret = btrfs_search_path_in_tree(root->fs_info,
2102					args->treeid, args->objectid,
2103					args->name);
2104
2105out:
2106	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107		ret = -EFAULT;
2108
2109	kfree(args);
2110	return ret;
2111}
2112
2113/*
2114 * Version of ino_lookup ioctl (unprivileged)
2115 *
2116 * The main differences from ino_lookup ioctl are:
2117 *
2118 *   1. Read + Exec permission will be checked using inode_permission() during
2119 *      path construction. -EACCES will be returned in case of failure.
2120 *   2. Path construction will be stopped at the inode number which corresponds
2121 *      to the fd with which this ioctl is called. If constructed path does not
2122 *      exist under fd's inode, -EACCES will be returned.
2123 *   3. The name of bottom subvolume is also searched and filled.
2124 */
2125static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2126{
2127	struct btrfs_ioctl_ino_lookup_user_args *args;
2128	struct inode *inode;
2129	int ret;
2130
2131	args = memdup_user(argp, sizeof(*args));
2132	if (IS_ERR(args))
2133		return PTR_ERR(args);
2134
2135	inode = file_inode(file);
2136
2137	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2138	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2139		/*
2140		 * The subvolume does not exist under fd with which this is
2141		 * called
2142		 */
2143		kfree(args);
2144		return -EACCES;
2145	}
2146
2147	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2148
2149	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2150		ret = -EFAULT;
2151
2152	kfree(args);
2153	return ret;
2154}
2155
2156/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2157static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2158{
2159	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2160	struct btrfs_fs_info *fs_info;
2161	struct btrfs_root *root;
2162	struct btrfs_path *path;
2163	struct btrfs_key key;
2164	struct btrfs_root_item *root_item;
2165	struct btrfs_root_ref *rref;
2166	struct extent_buffer *leaf;
2167	unsigned long item_off;
2168	unsigned long item_len;
 
2169	int slot;
2170	int ret = 0;
2171
2172	path = btrfs_alloc_path();
2173	if (!path)
2174		return -ENOMEM;
2175
2176	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2177	if (!subvol_info) {
2178		btrfs_free_path(path);
2179		return -ENOMEM;
2180	}
2181
 
2182	fs_info = BTRFS_I(inode)->root->fs_info;
2183
2184	/* Get root_item of inode's subvolume */
2185	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2186	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2187	if (IS_ERR(root)) {
2188		ret = PTR_ERR(root);
2189		goto out_free;
2190	}
2191	root_item = &root->root_item;
2192
2193	subvol_info->treeid = key.objectid;
2194
2195	subvol_info->generation = btrfs_root_generation(root_item);
2196	subvol_info->flags = btrfs_root_flags(root_item);
2197
2198	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2199	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2200						    BTRFS_UUID_SIZE);
2201	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2202						    BTRFS_UUID_SIZE);
2203
2204	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2205	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2206	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2207
2208	subvol_info->otransid = btrfs_root_otransid(root_item);
2209	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2210	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2211
2212	subvol_info->stransid = btrfs_root_stransid(root_item);
2213	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2214	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2215
2216	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2217	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2218	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2219
2220	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2221		/* Search root tree for ROOT_BACKREF of this subvolume */
2222		key.type = BTRFS_ROOT_BACKREF_KEY;
2223		key.offset = 0;
2224		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2225		if (ret < 0) {
2226			goto out;
2227		} else if (path->slots[0] >=
2228			   btrfs_header_nritems(path->nodes[0])) {
2229			ret = btrfs_next_leaf(fs_info->tree_root, path);
2230			if (ret < 0) {
2231				goto out;
2232			} else if (ret > 0) {
2233				ret = -EUCLEAN;
2234				goto out;
2235			}
2236		}
2237
2238		leaf = path->nodes[0];
2239		slot = path->slots[0];
2240		btrfs_item_key_to_cpu(leaf, &key, slot);
2241		if (key.objectid == subvol_info->treeid &&
2242		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2243			subvol_info->parent_id = key.offset;
2244
2245			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2246			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2247
2248			item_off = btrfs_item_ptr_offset(leaf, slot)
2249					+ sizeof(struct btrfs_root_ref);
2250			item_len = btrfs_item_size(leaf, slot)
2251					- sizeof(struct btrfs_root_ref);
2252			read_extent_buffer(leaf, subvol_info->name,
2253					   item_off, item_len);
2254		} else {
2255			ret = -ENOENT;
2256			goto out;
2257		}
2258	}
2259
2260	btrfs_free_path(path);
2261	path = NULL;
2262	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2263		ret = -EFAULT;
2264
2265out:
2266	btrfs_put_root(root);
2267out_free:
2268	btrfs_free_path(path);
2269	kfree(subvol_info);
2270	return ret;
2271}
2272
2273/*
2274 * Return ROOT_REF information of the subvolume containing this inode
2275 * except the subvolume name.
2276 */
2277static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2278					  void __user *argp)
2279{
2280	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2281	struct btrfs_root_ref *rref;
 
2282	struct btrfs_path *path;
2283	struct btrfs_key key;
2284	struct extent_buffer *leaf;
 
2285	u64 objectid;
2286	int slot;
2287	int ret;
2288	u8 found;
2289
2290	path = btrfs_alloc_path();
2291	if (!path)
2292		return -ENOMEM;
2293
2294	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2295	if (IS_ERR(rootrefs)) {
2296		btrfs_free_path(path);
2297		return PTR_ERR(rootrefs);
2298	}
2299
2300	objectid = btrfs_root_id(root);
 
 
 
2301	key.objectid = objectid;
2302	key.type = BTRFS_ROOT_REF_KEY;
2303	key.offset = rootrefs->min_treeid;
2304	found = 0;
2305
2306	root = root->fs_info->tree_root;
2307	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308	if (ret < 0) {
2309		goto out;
2310	} else if (path->slots[0] >=
2311		   btrfs_header_nritems(path->nodes[0])) {
2312		ret = btrfs_next_leaf(root, path);
2313		if (ret < 0) {
2314			goto out;
2315		} else if (ret > 0) {
2316			ret = -EUCLEAN;
2317			goto out;
2318		}
2319	}
2320	while (1) {
2321		leaf = path->nodes[0];
2322		slot = path->slots[0];
2323
2324		btrfs_item_key_to_cpu(leaf, &key, slot);
2325		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2326			ret = 0;
2327			goto out;
2328		}
2329
2330		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2331			ret = -EOVERFLOW;
2332			goto out;
2333		}
2334
2335		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2336		rootrefs->rootref[found].treeid = key.offset;
2337		rootrefs->rootref[found].dirid =
2338				  btrfs_root_ref_dirid(leaf, rref);
2339		found++;
2340
2341		ret = btrfs_next_item(root, path);
2342		if (ret < 0) {
2343			goto out;
2344		} else if (ret > 0) {
2345			ret = -EUCLEAN;
2346			goto out;
2347		}
2348	}
2349
2350out:
2351	btrfs_free_path(path);
2352
2353	if (!ret || ret == -EOVERFLOW) {
2354		rootrefs->num_items = found;
2355		/* update min_treeid for next search */
2356		if (found)
2357			rootrefs->min_treeid =
2358				rootrefs->rootref[found - 1].treeid + 1;
2359		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2360			ret = -EFAULT;
2361	}
2362
2363	kfree(rootrefs);
 
2364
2365	return ret;
2366}
2367
2368static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2369					     void __user *arg,
2370					     bool destroy_v2)
2371{
2372	struct dentry *parent = file->f_path.dentry;
 
2373	struct dentry *dentry;
2374	struct inode *dir = d_inode(parent);
2375	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2376	struct inode *inode;
2377	struct btrfs_root *root = BTRFS_I(dir)->root;
2378	struct btrfs_root *dest = NULL;
2379	struct btrfs_ioctl_vol_args *vol_args = NULL;
2380	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2381	struct mnt_idmap *idmap = file_mnt_idmap(file);
2382	char *subvol_name, *subvol_name_ptr = NULL;
2383	int subvol_namelen;
2384	int ret = 0;
2385	bool destroy_parent = false;
2386
2387	/* We don't support snapshots with extent tree v2 yet. */
2388	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2389		btrfs_err(fs_info,
2390			  "extent tree v2 doesn't support snapshot deletion yet");
2391		return -EOPNOTSUPP;
2392	}
2393
2394	if (destroy_v2) {
2395		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2396		if (IS_ERR(vol_args2))
2397			return PTR_ERR(vol_args2);
2398
2399		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2400			ret = -EOPNOTSUPP;
2401			goto out;
2402		}
2403
2404		/*
2405		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2406		 * name, same as v1 currently does.
2407		 */
2408		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2409			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2410			if (ret < 0)
2411				goto out;
2412			subvol_name = vol_args2->name;
2413
2414			ret = mnt_want_write_file(file);
2415			if (ret)
2416				goto out;
2417		} else {
2418			struct inode *old_dir;
2419
2420			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2421				ret = -EINVAL;
2422				goto out;
2423			}
2424
2425			ret = mnt_want_write_file(file);
2426			if (ret)
2427				goto out;
2428
2429			dentry = btrfs_get_dentry(fs_info->sb,
2430					BTRFS_FIRST_FREE_OBJECTID,
2431					vol_args2->subvolid, 0);
2432			if (IS_ERR(dentry)) {
2433				ret = PTR_ERR(dentry);
2434				goto out_drop_write;
2435			}
2436
2437			/*
2438			 * Change the default parent since the subvolume being
2439			 * deleted can be outside of the current mount point.
2440			 */
2441			parent = btrfs_get_parent(dentry);
2442
2443			/*
2444			 * At this point dentry->d_name can point to '/' if the
2445			 * subvolume we want to destroy is outsite of the
2446			 * current mount point, so we need to release the
2447			 * current dentry and execute the lookup to return a new
2448			 * one with ->d_name pointing to the
2449			 * <mount point>/subvol_name.
2450			 */
2451			dput(dentry);
2452			if (IS_ERR(parent)) {
2453				ret = PTR_ERR(parent);
2454				goto out_drop_write;
2455			}
2456			old_dir = dir;
2457			dir = d_inode(parent);
2458
2459			/*
2460			 * If v2 was used with SPEC_BY_ID, a new parent was
2461			 * allocated since the subvolume can be outside of the
2462			 * current mount point. Later on we need to release this
2463			 * new parent dentry.
2464			 */
2465			destroy_parent = true;
2466
2467			/*
2468			 * On idmapped mounts, deletion via subvolid is
2469			 * restricted to subvolumes that are immediate
2470			 * ancestors of the inode referenced by the file
2471			 * descriptor in the ioctl. Otherwise the idmapping
2472			 * could potentially be abused to delete subvolumes
2473			 * anywhere in the filesystem the user wouldn't be able
2474			 * to delete without an idmapped mount.
2475			 */
2476			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2477				ret = -EOPNOTSUPP;
2478				goto free_parent;
2479			}
2480
2481			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2482						fs_info, vol_args2->subvolid);
2483			if (IS_ERR(subvol_name_ptr)) {
2484				ret = PTR_ERR(subvol_name_ptr);
2485				goto free_parent;
2486			}
2487			/* subvol_name_ptr is already nul terminated */
2488			subvol_name = (char *)kbasename(subvol_name_ptr);
2489		}
2490	} else {
2491		vol_args = memdup_user(arg, sizeof(*vol_args));
2492		if (IS_ERR(vol_args))
2493			return PTR_ERR(vol_args);
2494
2495		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2496		if (ret < 0)
2497			goto out;
2498
2499		subvol_name = vol_args->name;
2500
2501		ret = mnt_want_write_file(file);
2502		if (ret)
2503			goto out;
2504	}
2505
2506	subvol_namelen = strlen(subvol_name);
2507
2508	if (strchr(subvol_name, '/') ||
2509	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2510		ret = -EINVAL;
2511		goto free_subvol_name;
2512	}
2513
2514	if (!S_ISDIR(dir->i_mode)) {
2515		ret = -ENOTDIR;
2516		goto free_subvol_name;
2517	}
2518
2519	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2520	if (ret == -EINTR)
2521		goto free_subvol_name;
2522	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2523	if (IS_ERR(dentry)) {
2524		ret = PTR_ERR(dentry);
2525		goto out_unlock_dir;
2526	}
2527
2528	if (d_really_is_negative(dentry)) {
2529		ret = -ENOENT;
2530		goto out_dput;
2531	}
2532
2533	inode = d_inode(dentry);
2534	dest = BTRFS_I(inode)->root;
2535	if (!capable(CAP_SYS_ADMIN)) {
2536		/*
2537		 * Regular user.  Only allow this with a special mount
2538		 * option, when the user has write+exec access to the
2539		 * subvol root, and when rmdir(2) would have been
2540		 * allowed.
2541		 *
2542		 * Note that this is _not_ check that the subvol is
2543		 * empty or doesn't contain data that we wouldn't
2544		 * otherwise be able to delete.
2545		 *
2546		 * Users who want to delete empty subvols should try
2547		 * rmdir(2).
2548		 */
2549		ret = -EPERM;
2550		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2551			goto out_dput;
2552
2553		/*
2554		 * Do not allow deletion if the parent dir is the same
2555		 * as the dir to be deleted.  That means the ioctl
2556		 * must be called on the dentry referencing the root
2557		 * of the subvol, not a random directory contained
2558		 * within it.
2559		 */
2560		ret = -EINVAL;
2561		if (root == dest)
2562			goto out_dput;
2563
2564		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2565		if (ret)
2566			goto out_dput;
2567	}
2568
2569	/* check if subvolume may be deleted by a user */
2570	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2571	if (ret)
2572		goto out_dput;
2573
2574	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2575		ret = -EINVAL;
2576		goto out_dput;
2577	}
2578
2579	btrfs_inode_lock(BTRFS_I(inode), 0);
2580	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2581	btrfs_inode_unlock(BTRFS_I(inode), 0);
2582	if (!ret)
2583		d_delete_notify(dir, dentry);
 
 
2584
2585out_dput:
2586	dput(dentry);
2587out_unlock_dir:
2588	btrfs_inode_unlock(BTRFS_I(dir), 0);
2589free_subvol_name:
2590	kfree(subvol_name_ptr);
2591free_parent:
2592	if (destroy_parent)
2593		dput(parent);
2594out_drop_write:
2595	mnt_drop_write_file(file);
2596out:
2597	kfree(vol_args2);
2598	kfree(vol_args);
2599	return ret;
2600}
2601
2602static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2603{
2604	struct inode *inode = file_inode(file);
2605	struct btrfs_root *root = BTRFS_I(inode)->root;
2606	struct btrfs_ioctl_defrag_range_args range = {0};
2607	int ret;
2608
2609	ret = mnt_want_write_file(file);
2610	if (ret)
2611		return ret;
2612
2613	if (btrfs_root_readonly(root)) {
2614		ret = -EROFS;
2615		goto out;
2616	}
2617
2618	switch (inode->i_mode & S_IFMT) {
2619	case S_IFDIR:
2620		if (!capable(CAP_SYS_ADMIN)) {
2621			ret = -EPERM;
2622			goto out;
2623		}
2624		ret = btrfs_defrag_root(root);
2625		break;
2626	case S_IFREG:
2627		/*
2628		 * Note that this does not check the file descriptor for write
2629		 * access. This prevents defragmenting executables that are
2630		 * running and allows defrag on files open in read-only mode.
2631		 */
2632		if (!capable(CAP_SYS_ADMIN) &&
2633		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2634			ret = -EPERM;
2635			goto out;
2636		}
2637
 
 
 
 
 
 
2638		if (argp) {
2639			if (copy_from_user(&range, argp, sizeof(range))) {
 
2640				ret = -EFAULT;
2641				goto out;
2642			}
2643			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2644				ret = -EOPNOTSUPP;
2645				goto out;
2646			}
2647			/* compression requires us to start the IO */
2648			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2649				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2650				range.extent_thresh = (u32)-1;
2651			}
2652		} else {
2653			/* the rest are all set to zero by kzalloc */
2654			range.len = (u64)-1;
2655		}
2656		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2657					&range, BTRFS_OLDEST_GENERATION, 0);
2658		if (ret > 0)
2659			ret = 0;
 
2660		break;
2661	default:
2662		ret = -EINVAL;
2663	}
2664out:
2665	mnt_drop_write_file(file);
2666	return ret;
2667}
2668
2669static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2670{
2671	struct btrfs_ioctl_vol_args *vol_args;
2672	bool restore_op = false;
2673	int ret;
2674
2675	if (!capable(CAP_SYS_ADMIN))
2676		return -EPERM;
2677
2678	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2679		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2680		return -EINVAL;
2681	}
2682
2683	if (fs_info->fs_devices->temp_fsid) {
2684		btrfs_err(fs_info,
2685			  "device add not supported on cloned temp-fsid mount");
2686		return -EINVAL;
2687	}
2688
2689	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2690		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2691			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2692
2693		/*
2694		 * We can do the device add because we have a paused balanced,
2695		 * change the exclusive op type and remember we should bring
2696		 * back the paused balance
2697		 */
2698		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2699		btrfs_exclop_start_unlock(fs_info);
2700		restore_op = true;
2701	}
2702
2703	vol_args = memdup_user(arg, sizeof(*vol_args));
2704	if (IS_ERR(vol_args)) {
2705		ret = PTR_ERR(vol_args);
2706		goto out;
2707	}
2708
2709	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2710	if (ret < 0)
2711		goto out_free;
2712
2713	ret = btrfs_init_new_device(fs_info, vol_args->name);
2714
2715	if (!ret)
2716		btrfs_info(fs_info, "disk added %s", vol_args->name);
2717
2718out_free:
2719	kfree(vol_args);
2720out:
2721	if (restore_op)
2722		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2723	else
2724		btrfs_exclop_finish(fs_info);
2725	return ret;
2726}
2727
2728static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2729{
2730	BTRFS_DEV_LOOKUP_ARGS(args);
2731	struct inode *inode = file_inode(file);
2732	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2733	struct btrfs_ioctl_vol_args_v2 *vol_args;
2734	struct file *bdev_file = NULL;
2735	int ret;
2736	bool cancel = false;
2737
2738	if (!capable(CAP_SYS_ADMIN))
2739		return -EPERM;
2740
 
 
 
 
2741	vol_args = memdup_user(arg, sizeof(*vol_args));
2742	if (IS_ERR(vol_args))
2743		return PTR_ERR(vol_args);
 
 
2744
2745	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2746		ret = -EOPNOTSUPP;
2747		goto out;
2748	}
2749
2750	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2751	if (ret < 0)
2752		goto out;
 
2753
2754	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2755		args.devid = vol_args->devid;
2756	} else if (!strcmp("cancel", vol_args->name)) {
2757		cancel = true;
2758	} else {
2759		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2760		if (ret)
2761			goto out;
2762	}
2763
2764	ret = mnt_want_write_file(file);
2765	if (ret)
2766		goto out;
2767
2768	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2769					   cancel);
2770	if (ret)
2771		goto err_drop;
2772
2773	/* Exclusive operation is now claimed */
2774	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2775
2776	btrfs_exclop_finish(fs_info);
2777
2778	if (!ret) {
2779		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2780			btrfs_info(fs_info, "device deleted: id %llu",
2781					vol_args->devid);
2782		else
2783			btrfs_info(fs_info, "device deleted: %s",
2784					vol_args->name);
2785	}
2786err_drop:
2787	mnt_drop_write_file(file);
2788	if (bdev_file)
2789		fput(bdev_file);
2790out:
2791	btrfs_put_dev_args_from_path(&args);
2792	kfree(vol_args);
 
 
2793	return ret;
2794}
2795
2796static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2797{
2798	BTRFS_DEV_LOOKUP_ARGS(args);
2799	struct inode *inode = file_inode(file);
2800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2801	struct btrfs_ioctl_vol_args *vol_args;
2802	struct file *bdev_file = NULL;
2803	int ret;
2804	bool cancel = false;
2805
2806	if (!capable(CAP_SYS_ADMIN))
2807		return -EPERM;
2808
2809	vol_args = memdup_user(arg, sizeof(*vol_args));
2810	if (IS_ERR(vol_args))
2811		return PTR_ERR(vol_args);
2812
2813	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2814	if (ret < 0)
2815		goto out_free;
2816
2817	if (!strcmp("cancel", vol_args->name)) {
2818		cancel = true;
2819	} else {
2820		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2821		if (ret)
2822			goto out;
2823	}
2824
2825	ret = mnt_want_write_file(file);
2826	if (ret)
 
2827		goto out;
2828
2829	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2830					   cancel);
2831	if (ret == 0) {
2832		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2833		if (!ret)
2834			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2835		btrfs_exclop_finish(fs_info);
2836	}
2837
2838	mnt_drop_write_file(file);
2839	if (bdev_file)
2840		fput(bdev_file);
2841out:
2842	btrfs_put_dev_args_from_path(&args);
2843out_free:
2844	kfree(vol_args);
 
 
 
 
 
2845	return ret;
2846}
2847
2848static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2849				void __user *arg)
2850{
2851	struct btrfs_ioctl_fs_info_args *fi_args;
2852	struct btrfs_device *device;
2853	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2854	u64 flags_in;
2855	int ret = 0;
2856
2857	fi_args = memdup_user(arg, sizeof(*fi_args));
2858	if (IS_ERR(fi_args))
2859		return PTR_ERR(fi_args);
2860
2861	flags_in = fi_args->flags;
2862	memset(fi_args, 0, sizeof(*fi_args));
2863
2864	rcu_read_lock();
2865	fi_args->num_devices = fs_devices->num_devices;
2866
2867	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2868		if (device->devid > fi_args->max_id)
2869			fi_args->max_id = device->devid;
2870	}
2871	rcu_read_unlock();
2872
2873	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2874	fi_args->nodesize = fs_info->nodesize;
2875	fi_args->sectorsize = fs_info->sectorsize;
2876	fi_args->clone_alignment = fs_info->sectorsize;
2877
2878	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2879		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2880		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2881		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2882	}
2883
2884	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2885		fi_args->generation = btrfs_get_fs_generation(fs_info);
2886		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2887	}
2888
2889	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2890		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2891		       sizeof(fi_args->metadata_uuid));
2892		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2893	}
2894
2895	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2896		ret = -EFAULT;
2897
2898	kfree(fi_args);
2899	return ret;
2900}
2901
2902static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2903				 void __user *arg)
2904{
2905	BTRFS_DEV_LOOKUP_ARGS(args);
2906	struct btrfs_ioctl_dev_info_args *di_args;
2907	struct btrfs_device *dev;
2908	int ret = 0;
 
2909
2910	di_args = memdup_user(arg, sizeof(*di_args));
2911	if (IS_ERR(di_args))
2912		return PTR_ERR(di_args);
2913
2914	args.devid = di_args->devid;
2915	if (!btrfs_is_empty_uuid(di_args->uuid))
2916		args.uuid = di_args->uuid;
2917
2918	rcu_read_lock();
2919	dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
2920	if (!dev) {
2921		ret = -ENODEV;
2922		goto out;
2923	}
2924
2925	di_args->devid = dev->devid;
2926	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2927	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2928	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2929	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2930	if (dev->name)
2931		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2932	else
 
2933		di_args->path[0] = '\0';
 
2934
2935out:
2936	rcu_read_unlock();
2937	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2938		ret = -EFAULT;
2939
2940	kfree(di_args);
2941	return ret;
2942}
2943
2944static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2945{
2946	struct inode *inode = file_inode(file);
2947	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2948	struct btrfs_root *root = BTRFS_I(inode)->root;
2949	struct btrfs_root *new_root;
2950	struct btrfs_dir_item *di;
2951	struct btrfs_trans_handle *trans;
2952	struct btrfs_path *path = NULL;
2953	struct btrfs_disk_key disk_key;
2954	struct fscrypt_str name = FSTR_INIT("default", 7);
2955	u64 objectid = 0;
2956	u64 dir_id;
2957	int ret;
2958
2959	if (!capable(CAP_SYS_ADMIN))
2960		return -EPERM;
2961
2962	ret = mnt_want_write_file(file);
2963	if (ret)
2964		return ret;
2965
2966	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2967		ret = -EFAULT;
2968		goto out;
2969	}
2970
2971	if (!objectid)
2972		objectid = BTRFS_FS_TREE_OBJECTID;
2973
2974	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2975	if (IS_ERR(new_root)) {
2976		ret = PTR_ERR(new_root);
2977		goto out;
2978	}
2979	if (!is_fstree(btrfs_root_id(new_root))) {
2980		ret = -ENOENT;
2981		goto out_free;
2982	}
2983
2984	path = btrfs_alloc_path();
2985	if (!path) {
2986		ret = -ENOMEM;
2987		goto out_free;
2988	}
 
2989
2990	trans = btrfs_start_transaction(root, 1);
2991	if (IS_ERR(trans)) {
2992		ret = PTR_ERR(trans);
2993		goto out_free;
2994	}
2995
2996	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2997	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2998				   dir_id, &name, 1);
2999	if (IS_ERR_OR_NULL(di)) {
3000		btrfs_release_path(path);
3001		btrfs_end_transaction(trans);
3002		btrfs_err(fs_info,
3003			  "Umm, you don't have the default diritem, this isn't going to work");
3004		ret = -ENOENT;
3005		goto out_free;
3006	}
3007
3008	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3009	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3010	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3011	btrfs_release_path(path);
3012
3013	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3014	btrfs_end_transaction(trans);
3015out_free:
3016	btrfs_put_root(new_root);
3017	btrfs_free_path(path);
3018out:
3019	mnt_drop_write_file(file);
3020	return ret;
3021}
3022
3023static void get_block_group_info(struct list_head *groups_list,
3024				 struct btrfs_ioctl_space_info *space)
3025{
3026	struct btrfs_block_group *block_group;
3027
3028	space->total_bytes = 0;
3029	space->used_bytes = 0;
3030	space->flags = 0;
3031	list_for_each_entry(block_group, groups_list, list) {
3032		space->flags = block_group->flags;
3033		space->total_bytes += block_group->length;
3034		space->used_bytes += block_group->used;
3035	}
3036}
3037
3038static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3039				   void __user *arg)
3040{
3041	struct btrfs_ioctl_space_args space_args = { 0 };
3042	struct btrfs_ioctl_space_info space;
3043	struct btrfs_ioctl_space_info *dest;
3044	struct btrfs_ioctl_space_info *dest_orig;
3045	struct btrfs_ioctl_space_info __user *user_dest;
3046	struct btrfs_space_info *info;
3047	static const u64 types[] = {
3048		BTRFS_BLOCK_GROUP_DATA,
3049		BTRFS_BLOCK_GROUP_SYSTEM,
3050		BTRFS_BLOCK_GROUP_METADATA,
3051		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3052	};
3053	int num_types = 4;
3054	int alloc_size;
3055	int ret = 0;
3056	u64 slot_count = 0;
3057	int i, c;
3058
3059	if (copy_from_user(&space_args,
3060			   (struct btrfs_ioctl_space_args __user *)arg,
3061			   sizeof(space_args)))
3062		return -EFAULT;
3063
3064	for (i = 0; i < num_types; i++) {
3065		struct btrfs_space_info *tmp;
3066
3067		info = NULL;
3068		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3069			if (tmp->flags == types[i]) {
3070				info = tmp;
3071				break;
3072			}
3073		}
 
3074
3075		if (!info)
3076			continue;
3077
3078		down_read(&info->groups_sem);
3079		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3080			if (!list_empty(&info->block_groups[c]))
3081				slot_count++;
3082		}
3083		up_read(&info->groups_sem);
3084	}
3085
3086	/*
3087	 * Global block reserve, exported as a space_info
3088	 */
3089	slot_count++;
3090
3091	/* space_slots == 0 means they are asking for a count */
3092	if (space_args.space_slots == 0) {
3093		space_args.total_spaces = slot_count;
3094		goto out;
3095	}
3096
3097	slot_count = min_t(u64, space_args.space_slots, slot_count);
3098
3099	alloc_size = sizeof(*dest) * slot_count;
3100
3101	/* we generally have at most 6 or so space infos, one for each raid
3102	 * level.  So, a whole page should be more than enough for everyone
3103	 */
3104	if (alloc_size > PAGE_SIZE)
3105		return -ENOMEM;
3106
3107	space_args.total_spaces = 0;
3108	dest = kmalloc(alloc_size, GFP_KERNEL);
3109	if (!dest)
3110		return -ENOMEM;
3111	dest_orig = dest;
3112
3113	/* now we have a buffer to copy into */
3114	for (i = 0; i < num_types; i++) {
3115		struct btrfs_space_info *tmp;
3116
3117		if (!slot_count)
3118			break;
3119
3120		info = NULL;
3121		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3122			if (tmp->flags == types[i]) {
3123				info = tmp;
3124				break;
3125			}
3126		}
 
3127
3128		if (!info)
3129			continue;
3130		down_read(&info->groups_sem);
3131		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3132			if (!list_empty(&info->block_groups[c])) {
3133				get_block_group_info(&info->block_groups[c],
3134						     &space);
3135				memcpy(dest, &space, sizeof(space));
3136				dest++;
3137				space_args.total_spaces++;
3138				slot_count--;
3139			}
3140			if (!slot_count)
3141				break;
3142		}
3143		up_read(&info->groups_sem);
3144	}
3145
3146	/*
3147	 * Add global block reserve
3148	 */
3149	if (slot_count) {
3150		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3151
3152		spin_lock(&block_rsv->lock);
3153		space.total_bytes = block_rsv->size;
3154		space.used_bytes = block_rsv->size - block_rsv->reserved;
3155		spin_unlock(&block_rsv->lock);
3156		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3157		memcpy(dest, &space, sizeof(space));
3158		space_args.total_spaces++;
3159	}
3160
3161	user_dest = (struct btrfs_ioctl_space_info __user *)
3162		(arg + sizeof(struct btrfs_ioctl_space_args));
3163
3164	if (copy_to_user(user_dest, dest_orig, alloc_size))
3165		ret = -EFAULT;
3166
3167	kfree(dest_orig);
3168out:
3169	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3170		ret = -EFAULT;
3171
3172	return ret;
3173}
3174
3175static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3176					    void __user *argp)
3177{
3178	struct btrfs_trans_handle *trans;
3179	u64 transid;
3180
3181	/*
3182	 * Start orphan cleanup here for the given root in case it hasn't been
3183	 * started already by other means. Errors are handled in the other
3184	 * functions during transaction commit.
3185	 */
3186	btrfs_orphan_cleanup(root);
3187
3188	trans = btrfs_attach_transaction_barrier(root);
3189	if (IS_ERR(trans)) {
3190		if (PTR_ERR(trans) != -ENOENT)
3191			return PTR_ERR(trans);
3192
3193		/* No running transaction, don't bother */
3194		transid = btrfs_get_last_trans_committed(root->fs_info);
3195		goto out;
3196	}
3197	transid = trans->transid;
3198	btrfs_commit_transaction_async(trans);
 
 
 
 
3199out:
3200	if (argp)
3201		if (copy_to_user(argp, &transid, sizeof(transid)))
3202			return -EFAULT;
3203	return 0;
3204}
3205
3206static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3207					   void __user *argp)
3208{
3209	/* By default wait for the current transaction. */
3210	u64 transid = 0;
3211
3212	if (argp)
3213		if (copy_from_user(&transid, argp, sizeof(transid)))
3214			return -EFAULT;
3215
 
 
3216	return btrfs_wait_for_commit(fs_info, transid);
3217}
3218
3219static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3220{
3221	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3222	struct btrfs_ioctl_scrub_args *sa;
3223	int ret;
3224
3225	if (!capable(CAP_SYS_ADMIN))
3226		return -EPERM;
3227
3228	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3229		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3230		return -EINVAL;
3231	}
3232
3233	sa = memdup_user(arg, sizeof(*sa));
3234	if (IS_ERR(sa))
3235		return PTR_ERR(sa);
3236
3237	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3238		ret = -EOPNOTSUPP;
3239		goto out;
3240	}
3241
3242	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3243		ret = mnt_want_write_file(file);
3244		if (ret)
3245			goto out;
3246	}
3247
3248	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3249			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3250			      0);
3251
3252	/*
3253	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3254	 * error. This is important as it allows user space to know how much
3255	 * progress scrub has done. For example, if scrub is canceled we get
3256	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3257	 * space. Later user space can inspect the progress from the structure
3258	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3259	 * previously (btrfs-progs does this).
3260	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3261	 * then return -EFAULT to signal the structure was not copied or it may
3262	 * be corrupt and unreliable due to a partial copy.
3263	 */
3264	if (copy_to_user(arg, sa, sizeof(*sa)))
3265		ret = -EFAULT;
3266
3267	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3268		mnt_drop_write_file(file);
3269out:
3270	kfree(sa);
3271	return ret;
3272}
3273
3274static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3275{
3276	if (!capable(CAP_SYS_ADMIN))
3277		return -EPERM;
3278
3279	return btrfs_scrub_cancel(fs_info);
3280}
3281
3282static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3283				       void __user *arg)
3284{
3285	struct btrfs_ioctl_scrub_args *sa;
3286	int ret;
3287
3288	if (!capable(CAP_SYS_ADMIN))
3289		return -EPERM;
3290
3291	sa = memdup_user(arg, sizeof(*sa));
3292	if (IS_ERR(sa))
3293		return PTR_ERR(sa);
3294
3295	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3296
3297	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3298		ret = -EFAULT;
3299
3300	kfree(sa);
3301	return ret;
3302}
3303
3304static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3305				      void __user *arg)
3306{
3307	struct btrfs_ioctl_get_dev_stats *sa;
3308	int ret;
3309
3310	sa = memdup_user(arg, sizeof(*sa));
3311	if (IS_ERR(sa))
3312		return PTR_ERR(sa);
3313
3314	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3315		kfree(sa);
3316		return -EPERM;
3317	}
3318
3319	ret = btrfs_get_dev_stats(fs_info, sa);
3320
3321	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3322		ret = -EFAULT;
3323
3324	kfree(sa);
3325	return ret;
3326}
3327
3328static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3329				    void __user *arg)
3330{
3331	struct btrfs_ioctl_dev_replace_args *p;
3332	int ret;
3333
3334	if (!capable(CAP_SYS_ADMIN))
3335		return -EPERM;
3336
3337	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3338		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3339		return -EINVAL;
3340	}
3341
3342	p = memdup_user(arg, sizeof(*p));
3343	if (IS_ERR(p))
3344		return PTR_ERR(p);
3345
3346	switch (p->cmd) {
3347	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3348		if (sb_rdonly(fs_info->sb)) {
3349			ret = -EROFS;
3350			goto out;
3351		}
3352		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3353			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3354		} else {
3355			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3356			btrfs_exclop_finish(fs_info);
3357		}
3358		break;
3359	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3360		btrfs_dev_replace_status(fs_info, p);
3361		ret = 0;
3362		break;
3363	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3364		p->result = btrfs_dev_replace_cancel(fs_info);
3365		ret = 0;
3366		break;
3367	default:
3368		ret = -EINVAL;
3369		break;
3370	}
3371
3372	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3373		ret = -EFAULT;
3374out:
3375	kfree(p);
3376	return ret;
3377}
3378
3379static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3380{
3381	int ret = 0;
3382	int i;
3383	u64 rel_ptr;
3384	int size;
3385	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3386	struct inode_fs_paths *ipath = NULL;
3387	struct btrfs_path *path;
3388
3389	if (!capable(CAP_DAC_READ_SEARCH))
3390		return -EPERM;
3391
3392	path = btrfs_alloc_path();
3393	if (!path) {
3394		ret = -ENOMEM;
3395		goto out;
3396	}
3397
3398	ipa = memdup_user(arg, sizeof(*ipa));
3399	if (IS_ERR(ipa)) {
3400		ret = PTR_ERR(ipa);
3401		ipa = NULL;
3402		goto out;
3403	}
3404
3405	size = min_t(u32, ipa->size, 4096);
3406	ipath = init_ipath(size, root, path);
3407	if (IS_ERR(ipath)) {
3408		ret = PTR_ERR(ipath);
3409		ipath = NULL;
3410		goto out;
3411	}
3412
3413	ret = paths_from_inode(ipa->inum, ipath);
3414	if (ret < 0)
3415		goto out;
3416
3417	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3418		rel_ptr = ipath->fspath->val[i] -
3419			  (u64)(unsigned long)ipath->fspath->val;
3420		ipath->fspath->val[i] = rel_ptr;
3421	}
3422
3423	btrfs_free_path(path);
3424	path = NULL;
3425	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3426			   ipath->fspath, size);
3427	if (ret) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432out:
3433	btrfs_free_path(path);
3434	free_ipath(ipath);
3435	kfree(ipa);
3436
3437	return ret;
3438}
3439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3440static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3441					void __user *arg, int version)
3442{
3443	int ret = 0;
3444	int size;
3445	struct btrfs_ioctl_logical_ino_args *loi;
3446	struct btrfs_data_container *inodes = NULL;
3447	struct btrfs_path *path = NULL;
3448	bool ignore_offset;
3449
3450	if (!capable(CAP_SYS_ADMIN))
3451		return -EPERM;
3452
3453	loi = memdup_user(arg, sizeof(*loi));
3454	if (IS_ERR(loi))
3455		return PTR_ERR(loi);
3456
3457	if (version == 1) {
3458		ignore_offset = false;
3459		size = min_t(u32, loi->size, SZ_64K);
3460	} else {
3461		/* All reserved bits must be 0 for now */
3462		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3463			ret = -EINVAL;
3464			goto out_loi;
3465		}
3466		/* Only accept flags we have defined so far */
3467		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3468			ret = -EINVAL;
3469			goto out_loi;
3470		}
3471		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3472		size = min_t(u32, loi->size, SZ_16M);
3473	}
3474
3475	inodes = init_data_container(size);
3476	if (IS_ERR(inodes)) {
3477		ret = PTR_ERR(inodes);
3478		goto out_loi;
3479	}
3480
3481	path = btrfs_alloc_path();
3482	if (!path) {
3483		ret = -ENOMEM;
3484		goto out;
3485	}
 
 
 
 
 
 
 
 
3486	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3487					  inodes, ignore_offset);
3488	btrfs_free_path(path);
3489	if (ret == -EINVAL)
3490		ret = -ENOENT;
3491	if (ret < 0)
3492		goto out;
3493
3494	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3495			   size);
3496	if (ret)
3497		ret = -EFAULT;
3498
3499out:
 
3500	kvfree(inodes);
3501out_loi:
3502	kfree(loi);
3503
3504	return ret;
3505}
3506
3507void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3508			       struct btrfs_ioctl_balance_args *bargs)
3509{
3510	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3511
3512	bargs->flags = bctl->flags;
3513
3514	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3515		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3516	if (atomic_read(&fs_info->balance_pause_req))
3517		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3518	if (atomic_read(&fs_info->balance_cancel_req))
3519		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3520
3521	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3522	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3523	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3524
3525	spin_lock(&fs_info->balance_lock);
3526	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3527	spin_unlock(&fs_info->balance_lock);
3528}
3529
3530/*
3531 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3532 * required.
3533 *
3534 * @fs_info:       the filesystem
3535 * @excl_acquired: ptr to boolean value which is set to false in case balance
3536 *                 is being resumed
3537 *
3538 * Return 0 on success in which case both fs_info::balance is acquired as well
3539 * as exclusive ops are blocked. In case of failure return an error code.
3540 */
3541static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3542{
3543	int ret;
3544
3545	/*
3546	 * Exclusive operation is locked. Three possibilities:
3547	 *   (1) some other op is running
3548	 *   (2) balance is running
3549	 *   (3) balance is paused -- special case (think resume)
3550	 */
3551	while (1) {
3552		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3553			*excl_acquired = true;
3554			mutex_lock(&fs_info->balance_mutex);
3555			return 0;
3556		}
3557
3558		mutex_lock(&fs_info->balance_mutex);
3559		if (fs_info->balance_ctl) {
3560			/* This is either (2) or (3) */
3561			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3562				/* This is (2) */
3563				ret = -EINPROGRESS;
3564				goto out_failure;
3565
3566			} else {
3567				mutex_unlock(&fs_info->balance_mutex);
3568				/*
3569				 * Lock released to allow other waiters to
3570				 * continue, we'll reexamine the status again.
3571				 */
3572				mutex_lock(&fs_info->balance_mutex);
3573
3574				if (fs_info->balance_ctl &&
3575				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3576					/* This is (3) */
3577					*excl_acquired = false;
3578					return 0;
3579				}
3580			}
3581		} else {
3582			/* This is (1) */
3583			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3584			goto out_failure;
3585		}
3586
3587		mutex_unlock(&fs_info->balance_mutex);
3588	}
3589
3590out_failure:
3591	mutex_unlock(&fs_info->balance_mutex);
3592	*excl_acquired = false;
3593	return ret;
3594}
3595
3596static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3597{
3598	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3599	struct btrfs_fs_info *fs_info = root->fs_info;
3600	struct btrfs_ioctl_balance_args *bargs;
3601	struct btrfs_balance_control *bctl;
3602	bool need_unlock = true;
3603	int ret;
3604
3605	if (!capable(CAP_SYS_ADMIN))
3606		return -EPERM;
3607
3608	ret = mnt_want_write_file(file);
3609	if (ret)
3610		return ret;
3611
3612	bargs = memdup_user(arg, sizeof(*bargs));
3613	if (IS_ERR(bargs)) {
3614		ret = PTR_ERR(bargs);
3615		bargs = NULL;
3616		goto out;
3617	}
3618
3619	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3620	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621		goto out;
 
3622
3623	lockdep_assert_held(&fs_info->balance_mutex);
 
3624
3625	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3626		if (!fs_info->balance_ctl) {
3627			ret = -ENOTCONN;
 
3628			goto out_unlock;
3629		}
3630
3631		bctl = fs_info->balance_ctl;
3632		spin_lock(&fs_info->balance_lock);
3633		bctl->flags |= BTRFS_BALANCE_RESUME;
3634		spin_unlock(&fs_info->balance_lock);
3635		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3636
3637		goto do_balance;
3638	}
 
 
3639
3640	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3641		ret = -EINVAL;
3642		goto out_unlock;
 
3643	}
3644
3645	if (fs_info->balance_ctl) {
3646		ret = -EINPROGRESS;
3647		goto out_unlock;
3648	}
3649
3650	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3651	if (!bctl) {
3652		ret = -ENOMEM;
3653		goto out_unlock;
3654	}
3655
3656	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3657	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3658	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
 
 
 
 
 
 
 
 
 
 
 
 
3659
3660	bctl->flags = bargs->flags;
3661do_balance:
3662	/*
3663	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3664	 * bctl is freed in reset_balance_state, or, if restriper was paused
3665	 * all the way until unmount, in free_fs_info.  The flag should be
3666	 * cleared after reset_balance_state.
3667	 */
3668	need_unlock = false;
3669
3670	ret = btrfs_balance(fs_info, bctl, bargs);
3671	bctl = NULL;
3672
3673	if (ret == 0 || ret == -ECANCELED) {
3674		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3675			ret = -EFAULT;
3676	}
3677
 
3678	kfree(bctl);
 
 
3679out_unlock:
3680	mutex_unlock(&fs_info->balance_mutex);
3681	if (need_unlock)
3682		btrfs_exclop_finish(fs_info);
3683out:
3684	mnt_drop_write_file(file);
3685	kfree(bargs);
3686	return ret;
3687}
3688
3689static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3690{
3691	if (!capable(CAP_SYS_ADMIN))
3692		return -EPERM;
3693
3694	switch (cmd) {
3695	case BTRFS_BALANCE_CTL_PAUSE:
3696		return btrfs_pause_balance(fs_info);
3697	case BTRFS_BALANCE_CTL_CANCEL:
3698		return btrfs_cancel_balance(fs_info);
3699	}
3700
3701	return -EINVAL;
3702}
3703
3704static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3705					 void __user *arg)
3706{
3707	struct btrfs_ioctl_balance_args *bargs;
3708	int ret = 0;
3709
3710	if (!capable(CAP_SYS_ADMIN))
3711		return -EPERM;
3712
3713	mutex_lock(&fs_info->balance_mutex);
3714	if (!fs_info->balance_ctl) {
3715		ret = -ENOTCONN;
3716		goto out;
3717	}
3718
3719	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3720	if (!bargs) {
3721		ret = -ENOMEM;
3722		goto out;
3723	}
3724
3725	btrfs_update_ioctl_balance_args(fs_info, bargs);
3726
3727	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3728		ret = -EFAULT;
3729
3730	kfree(bargs);
3731out:
3732	mutex_unlock(&fs_info->balance_mutex);
3733	return ret;
3734}
3735
3736static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3737{
3738	struct inode *inode = file_inode(file);
3739	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3740	struct btrfs_ioctl_quota_ctl_args *sa;
3741	int ret;
3742
3743	if (!capable(CAP_SYS_ADMIN))
3744		return -EPERM;
3745
3746	ret = mnt_want_write_file(file);
3747	if (ret)
3748		return ret;
3749
3750	sa = memdup_user(arg, sizeof(*sa));
3751	if (IS_ERR(sa)) {
3752		ret = PTR_ERR(sa);
3753		goto drop_write;
3754	}
3755
 
 
3756	switch (sa->cmd) {
3757	case BTRFS_QUOTA_CTL_ENABLE:
3758	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3759		down_write(&fs_info->subvol_sem);
3760		ret = btrfs_quota_enable(fs_info, sa);
3761		up_write(&fs_info->subvol_sem);
3762		break;
3763	case BTRFS_QUOTA_CTL_DISABLE:
3764		/*
3765		 * Lock the cleaner mutex to prevent races with concurrent
3766		 * relocation, because relocation may be building backrefs for
3767		 * blocks of the quota root while we are deleting the root. This
3768		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3769		 * need the same protection.
3770		 *
3771		 * This also prevents races between concurrent tasks trying to
3772		 * disable quotas, because we will unlock and relock
3773		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3774		 *
3775		 * We take this here because we have the dependency of
3776		 *
3777		 * inode_lock -> subvol_sem
3778		 *
3779		 * because of rename.  With relocation we can prealloc extents,
3780		 * so that makes the dependency chain
3781		 *
3782		 * cleaner_mutex -> inode_lock -> subvol_sem
3783		 *
3784		 * so we must take the cleaner_mutex here before we take the
3785		 * subvol_sem.  The deadlock can't actually happen, but this
3786		 * quiets lockdep.
3787		 */
3788		mutex_lock(&fs_info->cleaner_mutex);
3789		down_write(&fs_info->subvol_sem);
3790		ret = btrfs_quota_disable(fs_info);
3791		up_write(&fs_info->subvol_sem);
3792		mutex_unlock(&fs_info->cleaner_mutex);
3793		break;
3794	default:
3795		ret = -EINVAL;
3796		break;
3797	}
3798
3799	kfree(sa);
 
3800drop_write:
3801	mnt_drop_write_file(file);
3802	return ret;
3803}
3804
3805/*
3806 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3807 * done before any operations.
3808 */
3809static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3810{
3811	bool ret = true;
3812
3813	mutex_lock(&fs_info->qgroup_ioctl_lock);
3814	if (!fs_info->quota_root)
3815		ret = false;
3816	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3817
3818	return ret;
3819}
3820
3821static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3822{
3823	struct inode *inode = file_inode(file);
3824	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3825	struct btrfs_root *root = BTRFS_I(inode)->root;
3826	struct btrfs_ioctl_qgroup_assign_args *sa;
3827	struct btrfs_qgroup_list *prealloc = NULL;
3828	struct btrfs_trans_handle *trans;
3829	int ret;
3830	int err;
3831
3832	if (!capable(CAP_SYS_ADMIN))
3833		return -EPERM;
3834
3835	if (!qgroup_enabled(root->fs_info))
3836		return -ENOTCONN;
3837
3838	ret = mnt_want_write_file(file);
3839	if (ret)
3840		return ret;
3841
3842	sa = memdup_user(arg, sizeof(*sa));
3843	if (IS_ERR(sa)) {
3844		ret = PTR_ERR(sa);
3845		goto drop_write;
3846	}
3847
3848	if (sa->assign) {
3849		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3850		if (!prealloc) {
3851			ret = -ENOMEM;
3852			goto drop_write;
3853		}
3854	}
3855
3856	trans = btrfs_join_transaction(root);
3857	if (IS_ERR(trans)) {
3858		ret = PTR_ERR(trans);
3859		goto out;
3860	}
3861
3862	/*
3863	 * Prealloc ownership is moved to the relation handler, there it's used
3864	 * or freed on error.
3865	 */
3866	if (sa->assign) {
3867		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3868		prealloc = NULL;
3869	} else {
3870		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3871	}
3872
3873	/* update qgroup status and info */
3874	mutex_lock(&fs_info->qgroup_ioctl_lock);
3875	err = btrfs_run_qgroups(trans);
3876	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3877	if (err < 0)
3878		btrfs_warn(fs_info,
3879			   "qgroup status update failed after %s relation, marked as inconsistent",
3880			   sa->assign ? "adding" : "deleting");
3881	err = btrfs_end_transaction(trans);
3882	if (err && !ret)
3883		ret = err;
3884
3885out:
3886	kfree(prealloc);
3887	kfree(sa);
3888drop_write:
3889	mnt_drop_write_file(file);
3890	return ret;
3891}
3892
3893static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3894{
3895	struct inode *inode = file_inode(file);
3896	struct btrfs_root *root = BTRFS_I(inode)->root;
3897	struct btrfs_ioctl_qgroup_create_args *sa;
3898	struct btrfs_trans_handle *trans;
3899	int ret;
3900	int err;
3901
3902	if (!capable(CAP_SYS_ADMIN))
3903		return -EPERM;
3904
3905	if (!qgroup_enabled(root->fs_info))
3906		return -ENOTCONN;
3907
3908	ret = mnt_want_write_file(file);
3909	if (ret)
3910		return ret;
3911
3912	sa = memdup_user(arg, sizeof(*sa));
3913	if (IS_ERR(sa)) {
3914		ret = PTR_ERR(sa);
3915		goto drop_write;
3916	}
3917
3918	if (!sa->qgroupid) {
3919		ret = -EINVAL;
3920		goto out;
3921	}
3922
3923	if (sa->create && is_fstree(sa->qgroupid)) {
3924		ret = -EINVAL;
3925		goto out;
3926	}
3927
3928	trans = btrfs_join_transaction(root);
3929	if (IS_ERR(trans)) {
3930		ret = PTR_ERR(trans);
3931		goto out;
3932	}
3933
3934	if (sa->create) {
3935		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3936	} else {
3937		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3938	}
3939
3940	err = btrfs_end_transaction(trans);
3941	if (err && !ret)
3942		ret = err;
3943
3944out:
3945	kfree(sa);
3946drop_write:
3947	mnt_drop_write_file(file);
3948	return ret;
3949}
3950
3951static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3952{
3953	struct inode *inode = file_inode(file);
3954	struct btrfs_root *root = BTRFS_I(inode)->root;
3955	struct btrfs_ioctl_qgroup_limit_args *sa;
3956	struct btrfs_trans_handle *trans;
3957	int ret;
3958	int err;
3959	u64 qgroupid;
3960
3961	if (!capable(CAP_SYS_ADMIN))
3962		return -EPERM;
3963
3964	if (!qgroup_enabled(root->fs_info))
3965		return -ENOTCONN;
3966
3967	ret = mnt_want_write_file(file);
3968	if (ret)
3969		return ret;
3970
3971	sa = memdup_user(arg, sizeof(*sa));
3972	if (IS_ERR(sa)) {
3973		ret = PTR_ERR(sa);
3974		goto drop_write;
3975	}
3976
3977	trans = btrfs_join_transaction(root);
3978	if (IS_ERR(trans)) {
3979		ret = PTR_ERR(trans);
3980		goto out;
3981	}
3982
3983	qgroupid = sa->qgroupid;
3984	if (!qgroupid) {
3985		/* take the current subvol as qgroup */
3986		qgroupid = btrfs_root_id(root);
3987	}
3988
3989	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3990
3991	err = btrfs_end_transaction(trans);
3992	if (err && !ret)
3993		ret = err;
3994
3995out:
3996	kfree(sa);
3997drop_write:
3998	mnt_drop_write_file(file);
3999	return ret;
4000}
4001
4002static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4003{
4004	struct inode *inode = file_inode(file);
4005	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4006	struct btrfs_ioctl_quota_rescan_args *qsa;
4007	int ret;
4008
4009	if (!capable(CAP_SYS_ADMIN))
4010		return -EPERM;
4011
4012	if (!qgroup_enabled(fs_info))
4013		return -ENOTCONN;
4014
4015	ret = mnt_want_write_file(file);
4016	if (ret)
4017		return ret;
4018
4019	qsa = memdup_user(arg, sizeof(*qsa));
4020	if (IS_ERR(qsa)) {
4021		ret = PTR_ERR(qsa);
4022		goto drop_write;
4023	}
4024
4025	if (qsa->flags) {
4026		ret = -EINVAL;
4027		goto out;
4028	}
4029
4030	ret = btrfs_qgroup_rescan(fs_info);
4031
4032out:
4033	kfree(qsa);
4034drop_write:
4035	mnt_drop_write_file(file);
4036	return ret;
4037}
4038
4039static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4040						void __user *arg)
4041{
4042	struct btrfs_ioctl_quota_rescan_args qsa = {0};
 
4043
4044	if (!capable(CAP_SYS_ADMIN))
4045		return -EPERM;
4046
 
 
 
 
4047	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4048		qsa.flags = 1;
4049		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4050	}
4051
4052	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4053		return -EFAULT;
4054
4055	return 0;
 
4056}
4057
4058static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
 
4059{
4060	if (!capable(CAP_SYS_ADMIN))
4061		return -EPERM;
4062
4063	return btrfs_qgroup_wait_for_completion(fs_info, true);
4064}
4065
4066static long _btrfs_ioctl_set_received_subvol(struct file *file,
4067					    struct mnt_idmap *idmap,
4068					    struct btrfs_ioctl_received_subvol_args *sa)
4069{
4070	struct inode *inode = file_inode(file);
4071	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4072	struct btrfs_root *root = BTRFS_I(inode)->root;
4073	struct btrfs_root_item *root_item = &root->root_item;
4074	struct btrfs_trans_handle *trans;
4075	struct timespec64 ct = current_time(inode);
4076	int ret = 0;
4077	int received_uuid_changed;
4078
4079	if (!inode_owner_or_capable(idmap, inode))
4080		return -EPERM;
4081
4082	ret = mnt_want_write_file(file);
4083	if (ret < 0)
4084		return ret;
4085
4086	down_write(&fs_info->subvol_sem);
4087
4088	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4089		ret = -EINVAL;
4090		goto out;
4091	}
4092
4093	if (btrfs_root_readonly(root)) {
4094		ret = -EROFS;
4095		goto out;
4096	}
4097
4098	/*
4099	 * 1 - root item
4100	 * 2 - uuid items (received uuid + subvol uuid)
4101	 */
4102	trans = btrfs_start_transaction(root, 3);
4103	if (IS_ERR(trans)) {
4104		ret = PTR_ERR(trans);
4105		trans = NULL;
4106		goto out;
4107	}
4108
4109	sa->rtransid = trans->transid;
4110	sa->rtime.sec = ct.tv_sec;
4111	sa->rtime.nsec = ct.tv_nsec;
4112
4113	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4114				       BTRFS_UUID_SIZE);
4115	if (received_uuid_changed &&
4116	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4117		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4118					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4119					  btrfs_root_id(root));
4120		if (ret && ret != -ENOENT) {
4121		        btrfs_abort_transaction(trans, ret);
4122		        btrfs_end_transaction(trans);
4123		        goto out;
4124		}
4125	}
4126	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4127	btrfs_set_root_stransid(root_item, sa->stransid);
4128	btrfs_set_root_rtransid(root_item, sa->rtransid);
4129	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4130	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4131	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4132	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4133
4134	ret = btrfs_update_root(trans, fs_info->tree_root,
4135				&root->root_key, &root->root_item);
4136	if (ret < 0) {
4137		btrfs_end_transaction(trans);
4138		goto out;
4139	}
4140	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4141		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4142					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143					  btrfs_root_id(root));
4144		if (ret < 0 && ret != -EEXIST) {
4145			btrfs_abort_transaction(trans, ret);
4146			btrfs_end_transaction(trans);
4147			goto out;
4148		}
4149	}
4150	ret = btrfs_commit_transaction(trans);
4151out:
4152	up_write(&fs_info->subvol_sem);
4153	mnt_drop_write_file(file);
4154	return ret;
4155}
4156
4157#ifdef CONFIG_64BIT
4158static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4159						void __user *arg)
4160{
4161	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4162	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4163	int ret = 0;
4164
4165	args32 = memdup_user(arg, sizeof(*args32));
4166	if (IS_ERR(args32))
4167		return PTR_ERR(args32);
4168
4169	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4170	if (!args64) {
4171		ret = -ENOMEM;
4172		goto out;
4173	}
4174
4175	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4176	args64->stransid = args32->stransid;
4177	args64->rtransid = args32->rtransid;
4178	args64->stime.sec = args32->stime.sec;
4179	args64->stime.nsec = args32->stime.nsec;
4180	args64->rtime.sec = args32->rtime.sec;
4181	args64->rtime.nsec = args32->rtime.nsec;
4182	args64->flags = args32->flags;
4183
4184	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4185	if (ret)
4186		goto out;
4187
4188	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4189	args32->stransid = args64->stransid;
4190	args32->rtransid = args64->rtransid;
4191	args32->stime.sec = args64->stime.sec;
4192	args32->stime.nsec = args64->stime.nsec;
4193	args32->rtime.sec = args64->rtime.sec;
4194	args32->rtime.nsec = args64->rtime.nsec;
4195	args32->flags = args64->flags;
4196
4197	ret = copy_to_user(arg, args32, sizeof(*args32));
4198	if (ret)
4199		ret = -EFAULT;
4200
4201out:
4202	kfree(args32);
4203	kfree(args64);
4204	return ret;
4205}
4206#endif
4207
4208static long btrfs_ioctl_set_received_subvol(struct file *file,
4209					    void __user *arg)
4210{
4211	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4212	int ret = 0;
4213
4214	sa = memdup_user(arg, sizeof(*sa));
4215	if (IS_ERR(sa))
4216		return PTR_ERR(sa);
4217
4218	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4219
4220	if (ret)
4221		goto out;
4222
4223	ret = copy_to_user(arg, sa, sizeof(*sa));
4224	if (ret)
4225		ret = -EFAULT;
4226
4227out:
4228	kfree(sa);
4229	return ret;
4230}
4231
4232static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4233					void __user *arg)
4234{
4235	size_t len;
4236	int ret;
4237	char label[BTRFS_LABEL_SIZE];
4238
4239	spin_lock(&fs_info->super_lock);
4240	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4241	spin_unlock(&fs_info->super_lock);
4242
4243	len = strnlen(label, BTRFS_LABEL_SIZE);
4244
4245	if (len == BTRFS_LABEL_SIZE) {
4246		btrfs_warn(fs_info,
4247			   "label is too long, return the first %zu bytes",
4248			   --len);
4249	}
4250
4251	ret = copy_to_user(arg, label, len);
4252
4253	return ret ? -EFAULT : 0;
4254}
4255
4256static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4257{
4258	struct inode *inode = file_inode(file);
4259	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4260	struct btrfs_root *root = BTRFS_I(inode)->root;
4261	struct btrfs_super_block *super_block = fs_info->super_copy;
4262	struct btrfs_trans_handle *trans;
4263	char label[BTRFS_LABEL_SIZE];
4264	int ret;
4265
4266	if (!capable(CAP_SYS_ADMIN))
4267		return -EPERM;
4268
4269	if (copy_from_user(label, arg, sizeof(label)))
4270		return -EFAULT;
4271
4272	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4273		btrfs_err(fs_info,
4274			  "unable to set label with more than %d bytes",
4275			  BTRFS_LABEL_SIZE - 1);
4276		return -EINVAL;
4277	}
4278
4279	ret = mnt_want_write_file(file);
4280	if (ret)
4281		return ret;
4282
4283	trans = btrfs_start_transaction(root, 0);
4284	if (IS_ERR(trans)) {
4285		ret = PTR_ERR(trans);
4286		goto out_unlock;
4287	}
4288
4289	spin_lock(&fs_info->super_lock);
4290	strcpy(super_block->label, label);
4291	spin_unlock(&fs_info->super_lock);
4292	ret = btrfs_commit_transaction(trans);
4293
4294out_unlock:
4295	mnt_drop_write_file(file);
4296	return ret;
4297}
4298
4299#define INIT_FEATURE_FLAGS(suffix) \
4300	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4301	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4302	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4303
4304int btrfs_ioctl_get_supported_features(void __user *arg)
4305{
4306	static const struct btrfs_ioctl_feature_flags features[3] = {
4307		INIT_FEATURE_FLAGS(SUPP),
4308		INIT_FEATURE_FLAGS(SAFE_SET),
4309		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4310	};
4311
4312	if (copy_to_user(arg, &features, sizeof(features)))
4313		return -EFAULT;
4314
4315	return 0;
4316}
4317
4318static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4319					void __user *arg)
4320{
4321	struct btrfs_super_block *super_block = fs_info->super_copy;
4322	struct btrfs_ioctl_feature_flags features;
4323
4324	features.compat_flags = btrfs_super_compat_flags(super_block);
4325	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4326	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4327
4328	if (copy_to_user(arg, &features, sizeof(features)))
4329		return -EFAULT;
4330
4331	return 0;
4332}
4333
4334static int check_feature_bits(struct btrfs_fs_info *fs_info,
4335			      enum btrfs_feature_set set,
4336			      u64 change_mask, u64 flags, u64 supported_flags,
4337			      u64 safe_set, u64 safe_clear)
4338{
4339	const char *type = btrfs_feature_set_name(set);
4340	char *names;
4341	u64 disallowed, unsupported;
4342	u64 set_mask = flags & change_mask;
4343	u64 clear_mask = ~flags & change_mask;
4344
4345	unsupported = set_mask & ~supported_flags;
4346	if (unsupported) {
4347		names = btrfs_printable_features(set, unsupported);
4348		if (names) {
4349			btrfs_warn(fs_info,
4350				   "this kernel does not support the %s feature bit%s",
4351				   names, strchr(names, ',') ? "s" : "");
4352			kfree(names);
4353		} else
4354			btrfs_warn(fs_info,
4355				   "this kernel does not support %s bits 0x%llx",
4356				   type, unsupported);
4357		return -EOPNOTSUPP;
4358	}
4359
4360	disallowed = set_mask & ~safe_set;
4361	if (disallowed) {
4362		names = btrfs_printable_features(set, disallowed);
4363		if (names) {
4364			btrfs_warn(fs_info,
4365				   "can't set the %s feature bit%s while mounted",
4366				   names, strchr(names, ',') ? "s" : "");
4367			kfree(names);
4368		} else
4369			btrfs_warn(fs_info,
4370				   "can't set %s bits 0x%llx while mounted",
4371				   type, disallowed);
4372		return -EPERM;
4373	}
4374
4375	disallowed = clear_mask & ~safe_clear;
4376	if (disallowed) {
4377		names = btrfs_printable_features(set, disallowed);
4378		if (names) {
4379			btrfs_warn(fs_info,
4380				   "can't clear the %s feature bit%s while mounted",
4381				   names, strchr(names, ',') ? "s" : "");
4382			kfree(names);
4383		} else
4384			btrfs_warn(fs_info,
4385				   "can't clear %s bits 0x%llx while mounted",
4386				   type, disallowed);
4387		return -EPERM;
4388	}
4389
4390	return 0;
4391}
4392
4393#define check_feature(fs_info, change_mask, flags, mask_base)	\
4394check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4395		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4396		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4397		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4398
4399static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4400{
4401	struct inode *inode = file_inode(file);
4402	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4403	struct btrfs_root *root = BTRFS_I(inode)->root;
4404	struct btrfs_super_block *super_block = fs_info->super_copy;
4405	struct btrfs_ioctl_feature_flags flags[2];
4406	struct btrfs_trans_handle *trans;
4407	u64 newflags;
4408	int ret;
4409
4410	if (!capable(CAP_SYS_ADMIN))
4411		return -EPERM;
4412
4413	if (copy_from_user(flags, arg, sizeof(flags)))
4414		return -EFAULT;
4415
4416	/* Nothing to do */
4417	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4418	    !flags[0].incompat_flags)
4419		return 0;
4420
4421	ret = check_feature(fs_info, flags[0].compat_flags,
4422			    flags[1].compat_flags, COMPAT);
4423	if (ret)
4424		return ret;
4425
4426	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4427			    flags[1].compat_ro_flags, COMPAT_RO);
4428	if (ret)
4429		return ret;
4430
4431	ret = check_feature(fs_info, flags[0].incompat_flags,
4432			    flags[1].incompat_flags, INCOMPAT);
4433	if (ret)
4434		return ret;
4435
4436	ret = mnt_want_write_file(file);
4437	if (ret)
4438		return ret;
4439
4440	trans = btrfs_start_transaction(root, 0);
4441	if (IS_ERR(trans)) {
4442		ret = PTR_ERR(trans);
4443		goto out_drop_write;
4444	}
4445
4446	spin_lock(&fs_info->super_lock);
4447	newflags = btrfs_super_compat_flags(super_block);
4448	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4449	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4450	btrfs_set_super_compat_flags(super_block, newflags);
4451
4452	newflags = btrfs_super_compat_ro_flags(super_block);
4453	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4454	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4455	btrfs_set_super_compat_ro_flags(super_block, newflags);
4456
4457	newflags = btrfs_super_incompat_flags(super_block);
4458	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4459	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4460	btrfs_set_super_incompat_flags(super_block, newflags);
4461	spin_unlock(&fs_info->super_lock);
4462
4463	ret = btrfs_commit_transaction(trans);
4464out_drop_write:
4465	mnt_drop_write_file(file);
4466
4467	return ret;
4468}
4469
4470static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4471{
4472	struct btrfs_ioctl_send_args *arg;
4473	int ret;
4474
4475	if (compat) {
4476#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4477		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4478
4479		ret = copy_from_user(&args32, argp, sizeof(args32));
4480		if (ret)
4481			return -EFAULT;
4482		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4483		if (!arg)
4484			return -ENOMEM;
4485		arg->send_fd = args32.send_fd;
4486		arg->clone_sources_count = args32.clone_sources_count;
4487		arg->clone_sources = compat_ptr(args32.clone_sources);
4488		arg->parent_root = args32.parent_root;
4489		arg->flags = args32.flags;
4490		arg->version = args32.version;
4491		memcpy(arg->reserved, args32.reserved,
4492		       sizeof(args32.reserved));
4493#else
4494		return -ENOTTY;
4495#endif
4496	} else {
4497		arg = memdup_user(argp, sizeof(*arg));
4498		if (IS_ERR(arg))
4499			return PTR_ERR(arg);
4500	}
4501	ret = btrfs_ioctl_send(inode, arg);
4502	kfree(arg);
4503	return ret;
4504}
4505
4506static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4507				    bool compat)
4508{
4509	struct btrfs_ioctl_encoded_io_args args = { 0 };
4510	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4511					     flags);
4512	size_t copy_end;
4513	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4514	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4515	struct extent_io_tree *io_tree = &inode->io_tree;
4516	struct iovec iovstack[UIO_FASTIOV];
4517	struct iovec *iov = iovstack;
4518	struct iov_iter iter;
4519	loff_t pos;
4520	struct kiocb kiocb;
4521	ssize_t ret;
4522	u64 disk_bytenr, disk_io_size;
4523	struct extent_state *cached_state = NULL;
4524
4525	if (!capable(CAP_SYS_ADMIN)) {
4526		ret = -EPERM;
4527		goto out_acct;
4528	}
4529
4530	if (compat) {
4531#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4532		struct btrfs_ioctl_encoded_io_args_32 args32;
4533
4534		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4535				       flags);
4536		if (copy_from_user(&args32, argp, copy_end)) {
4537			ret = -EFAULT;
4538			goto out_acct;
4539		}
4540		args.iov = compat_ptr(args32.iov);
4541		args.iovcnt = args32.iovcnt;
4542		args.offset = args32.offset;
4543		args.flags = args32.flags;
4544#else
4545		return -ENOTTY;
4546#endif
4547	} else {
4548		copy_end = copy_end_kernel;
4549		if (copy_from_user(&args, argp, copy_end)) {
4550			ret = -EFAULT;
4551			goto out_acct;
4552		}
4553	}
4554	if (args.flags != 0) {
4555		ret = -EINVAL;
4556		goto out_acct;
4557	}
4558
4559	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4560			   &iov, &iter);
4561	if (ret < 0)
4562		goto out_acct;
4563
4564	if (iov_iter_count(&iter) == 0) {
4565		ret = 0;
4566		goto out_iov;
4567	}
4568	pos = args.offset;
4569	ret = rw_verify_area(READ, file, &pos, args.len);
4570	if (ret < 0)
4571		goto out_iov;
4572
4573	init_sync_kiocb(&kiocb, file);
4574	kiocb.ki_pos = pos;
4575
4576	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4577				 &disk_bytenr, &disk_io_size);
4578
4579	if (ret == -EIOCBQUEUED) {
4580		bool unlocked = false;
4581		u64 start, lockend, count;
4582
4583		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4584		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4585
4586		if (args.compression)
4587			count = disk_io_size;
4588		else
4589			count = args.len;
4590
4591		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4592						 &cached_state, disk_bytenr,
4593						 disk_io_size, count,
4594						 args.compression, &unlocked);
4595
4596		if (!unlocked) {
4597			unlock_extent(io_tree, start, lockend, &cached_state);
4598			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4599		}
4600	}
4601
4602	if (ret >= 0) {
4603		fsnotify_access(file);
4604		if (copy_to_user(argp + copy_end,
4605				 (char *)&args + copy_end_kernel,
4606				 sizeof(args) - copy_end_kernel))
4607			ret = -EFAULT;
4608	}
4609
4610out_iov:
4611	kfree(iov);
4612out_acct:
4613	if (ret > 0)
4614		add_rchar(current, ret);
4615	inc_syscr(current);
4616	return ret;
4617}
4618
4619static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4620{
4621	struct btrfs_ioctl_encoded_io_args args;
4622	struct iovec iovstack[UIO_FASTIOV];
4623	struct iovec *iov = iovstack;
4624	struct iov_iter iter;
4625	loff_t pos;
4626	struct kiocb kiocb;
4627	ssize_t ret;
4628
4629	if (!capable(CAP_SYS_ADMIN)) {
4630		ret = -EPERM;
4631		goto out_acct;
4632	}
4633
4634	if (!(file->f_mode & FMODE_WRITE)) {
4635		ret = -EBADF;
4636		goto out_acct;
4637	}
4638
4639	if (compat) {
4640#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4641		struct btrfs_ioctl_encoded_io_args_32 args32;
4642
4643		if (copy_from_user(&args32, argp, sizeof(args32))) {
4644			ret = -EFAULT;
4645			goto out_acct;
4646		}
4647		args.iov = compat_ptr(args32.iov);
4648		args.iovcnt = args32.iovcnt;
4649		args.offset = args32.offset;
4650		args.flags = args32.flags;
4651		args.len = args32.len;
4652		args.unencoded_len = args32.unencoded_len;
4653		args.unencoded_offset = args32.unencoded_offset;
4654		args.compression = args32.compression;
4655		args.encryption = args32.encryption;
4656		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4657#else
4658		return -ENOTTY;
4659#endif
4660	} else {
4661		if (copy_from_user(&args, argp, sizeof(args))) {
4662			ret = -EFAULT;
4663			goto out_acct;
4664		}
4665	}
4666
4667	ret = -EINVAL;
4668	if (args.flags != 0)
4669		goto out_acct;
4670	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4671		goto out_acct;
4672	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4673	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4674		goto out_acct;
4675	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4676	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4677		goto out_acct;
4678	if (args.unencoded_offset > args.unencoded_len)
4679		goto out_acct;
4680	if (args.len > args.unencoded_len - args.unencoded_offset)
4681		goto out_acct;
4682
4683	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4684			   &iov, &iter);
4685	if (ret < 0)
4686		goto out_acct;
4687
4688	if (iov_iter_count(&iter) == 0) {
4689		ret = 0;
4690		goto out_iov;
4691	}
4692	pos = args.offset;
4693	ret = rw_verify_area(WRITE, file, &pos, args.len);
4694	if (ret < 0)
4695		goto out_iov;
4696
4697	init_sync_kiocb(&kiocb, file);
4698	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4699	if (ret)
4700		goto out_iov;
4701	kiocb.ki_pos = pos;
4702
4703	file_start_write(file);
4704
4705	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4706	if (ret > 0)
4707		fsnotify_modify(file);
4708
4709	file_end_write(file);
4710out_iov:
4711	kfree(iov);
4712out_acct:
4713	if (ret > 0)
4714		add_wchar(current, ret);
4715	inc_syscw(current);
4716	return ret;
4717}
4718
4719/*
4720 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4721 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4722 * off and cleanup the I/O in btrfs_uring_read_finished.
4723 */
4724struct btrfs_uring_priv {
4725	struct io_uring_cmd *cmd;
4726	struct page **pages;
4727	unsigned long nr_pages;
4728	struct kiocb iocb;
4729	struct iovec *iov;
4730	struct iov_iter iter;
4731	struct extent_state *cached_state;
4732	u64 count;
4733	u64 start;
4734	u64 lockend;
4735	int err;
4736	bool compressed;
4737};
4738
4739struct io_btrfs_cmd {
4740	struct btrfs_uring_priv *priv;
4741};
4742
4743static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4744{
4745	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4746	struct btrfs_uring_priv *priv = bc->priv;
4747	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4748	struct extent_io_tree *io_tree = &inode->io_tree;
4749	unsigned long index;
4750	u64 cur;
4751	size_t page_offset;
4752	ssize_t ret;
4753
4754	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4755	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4756
4757	if (priv->err) {
4758		ret = priv->err;
4759		goto out;
4760	}
4761
4762	if (priv->compressed) {
4763		index = 0;
4764		page_offset = 0;
4765	} else {
4766		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4767		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4768	}
4769	cur = 0;
4770	while (cur < priv->count) {
4771		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4772
4773		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4774				      &priv->iter) != bytes) {
4775			ret = -EFAULT;
4776			goto out;
4777		}
4778
4779		index++;
4780		cur += bytes;
4781		page_offset = 0;
4782	}
4783	ret = priv->count;
4784
4785out:
4786	unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4787	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4788
4789	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4790	add_rchar(current, ret);
4791
4792	for (index = 0; index < priv->nr_pages; index++)
4793		__free_page(priv->pages[index]);
4794
4795	kfree(priv->pages);
4796	kfree(priv->iov);
4797	kfree(priv);
4798}
4799
4800void btrfs_uring_read_extent_endio(void *ctx, int err)
4801{
4802	struct btrfs_uring_priv *priv = ctx;
4803	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4804
4805	priv->err = err;
4806	bc->priv = priv;
4807
4808	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4809}
4810
4811static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4812				   u64 start, u64 lockend,
4813				   struct extent_state *cached_state,
4814				   u64 disk_bytenr, u64 disk_io_size,
4815				   size_t count, bool compressed,
4816				   struct iovec *iov, struct io_uring_cmd *cmd)
4817{
4818	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4819	struct extent_io_tree *io_tree = &inode->io_tree;
4820	struct page **pages;
4821	struct btrfs_uring_priv *priv = NULL;
4822	unsigned long nr_pages;
4823	int ret;
4824
4825	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4826	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4827	if (!pages)
4828		return -ENOMEM;
4829	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4830	if (ret) {
4831		ret = -ENOMEM;
4832		goto out_fail;
4833	}
4834
4835	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4836	if (!priv) {
4837		ret = -ENOMEM;
4838		goto out_fail;
4839	}
4840
4841	priv->iocb = *iocb;
4842	priv->iov = iov;
4843	priv->iter = *iter;
4844	priv->count = count;
4845	priv->cmd = cmd;
4846	priv->cached_state = cached_state;
4847	priv->compressed = compressed;
4848	priv->nr_pages = nr_pages;
4849	priv->pages = pages;
4850	priv->start = start;
4851	priv->lockend = lockend;
4852	priv->err = 0;
4853
4854	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4855						    disk_io_size, pages, priv);
4856	if (ret && ret != -EIOCBQUEUED)
4857		goto out_fail;
4858
4859	/*
4860	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4861	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4862	 * and inode and freeing the allocations.
4863	 */
4864
4865	/*
4866	 * We're returning to userspace with the inode lock held, and that's
4867	 * okay - it'll get unlocked in a worker thread.  Call
4868	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4869	 */
4870	btrfs_lockdep_inode_release(inode, i_rwsem);
4871
4872	return -EIOCBQUEUED;
4873
4874out_fail:
4875	unlock_extent(io_tree, start, lockend, &cached_state);
4876	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4877	kfree(priv);
4878	return ret;
4879}
4880
4881struct btrfs_uring_encoded_data {
4882	struct btrfs_ioctl_encoded_io_args args;
4883	struct iovec iovstack[UIO_FASTIOV];
4884	struct iovec *iov;
4885	struct iov_iter iter;
4886};
4887
4888static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4889{
4890	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4891	size_t copy_end;
4892	int ret;
4893	u64 disk_bytenr, disk_io_size;
4894	struct file *file;
4895	struct btrfs_inode *inode;
4896	struct btrfs_fs_info *fs_info;
4897	struct extent_io_tree *io_tree;
4898	loff_t pos;
4899	struct kiocb kiocb;
4900	struct extent_state *cached_state = NULL;
4901	u64 start, lockend;
4902	void __user *sqe_addr;
4903	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4904
4905	if (!capable(CAP_SYS_ADMIN)) {
4906		ret = -EPERM;
4907		goto out_acct;
4908	}
4909	file = cmd->file;
4910	inode = BTRFS_I(file->f_inode);
4911	fs_info = inode->root->fs_info;
4912	io_tree = &inode->io_tree;
4913	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4914
4915	if (issue_flags & IO_URING_F_COMPAT) {
4916#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4917		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4918#else
4919		return -ENOTTY;
4920#endif
4921	} else {
4922		copy_end = copy_end_kernel;
4923	}
4924
4925	if (!data) {
4926		data = kzalloc(sizeof(*data), GFP_NOFS);
4927		if (!data) {
4928			ret = -ENOMEM;
4929			goto out_acct;
4930		}
4931
4932		io_uring_cmd_get_async_data(cmd)->op_data = data;
4933
4934		if (issue_flags & IO_URING_F_COMPAT) {
4935#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4936			struct btrfs_ioctl_encoded_io_args_32 args32;
4937
4938			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4939				ret = -EFAULT;
4940				goto out_acct;
4941			}
4942
4943			data->args.iov = compat_ptr(args32.iov);
4944			data->args.iovcnt = args32.iovcnt;
4945			data->args.offset = args32.offset;
4946			data->args.flags = args32.flags;
4947#endif
4948		} else {
4949			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4950				ret = -EFAULT;
4951				goto out_acct;
4952			}
4953		}
4954
4955		if (data->args.flags != 0) {
4956			ret = -EINVAL;
4957			goto out_acct;
4958		}
4959
4960		data->iov = data->iovstack;
4961		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4962				   ARRAY_SIZE(data->iovstack), &data->iov,
4963				   &data->iter);
4964		if (ret < 0)
4965			goto out_acct;
4966
4967		if (iov_iter_count(&data->iter) == 0) {
4968			ret = 0;
4969			goto out_free;
4970		}
4971	}
4972
4973	pos = data->args.offset;
4974	ret = rw_verify_area(READ, file, &pos, data->args.len);
4975	if (ret < 0)
4976		goto out_free;
4977
4978	init_sync_kiocb(&kiocb, file);
4979	kiocb.ki_pos = pos;
4980
4981	if (issue_flags & IO_URING_F_NONBLOCK)
4982		kiocb.ki_flags |= IOCB_NOWAIT;
4983
4984	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4985	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4986
4987	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4988				 &disk_bytenr, &disk_io_size);
4989	if (ret < 0 && ret != -EIOCBQUEUED)
4990		goto out_free;
4991
4992	file_accessed(file);
4993
4994	if (copy_to_user(sqe_addr + copy_end,
4995			 (const char *)&data->args + copy_end_kernel,
4996			 sizeof(data->args) - copy_end_kernel)) {
4997		if (ret == -EIOCBQUEUED) {
4998			unlock_extent(io_tree, start, lockend, &cached_state);
4999			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
5000		}
5001		ret = -EFAULT;
5002		goto out_free;
5003	}
5004
5005	if (ret == -EIOCBQUEUED) {
5006		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
5007
5008		/* Match ioctl by not returning past EOF if uncompressed. */
5009		if (!data->args.compression)
5010			count = min_t(u64, count, data->args.len);
5011
5012		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
5013					      cached_state, disk_bytenr, disk_io_size,
5014					      count, data->args.compression,
5015					      data->iov, cmd);
5016
5017		goto out_acct;
5018	}
5019
5020out_free:
5021	kfree(data->iov);
5022
5023out_acct:
5024	if (ret > 0)
5025		add_rchar(current, ret);
5026	inc_syscr(current);
5027
5028	return ret;
5029}
5030
5031int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5032{
5033	switch (cmd->cmd_op) {
5034	case BTRFS_IOC_ENCODED_READ:
5035#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5036	case BTRFS_IOC_ENCODED_READ_32:
5037#endif
5038		return btrfs_uring_encoded_read(cmd, issue_flags);
5039	}
5040
5041	return -EINVAL;
5042}
5043
5044static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5045{
5046	struct btrfs_root *root;
5047	struct btrfs_ioctl_subvol_wait args = { 0 };
5048	signed long sched_ret;
5049	int refs;
5050	u64 root_flags;
5051	bool wait_for_deletion = false;
5052	bool found = false;
5053
5054	if (copy_from_user(&args, argp, sizeof(args)))
5055		return -EFAULT;
5056
5057	switch (args.mode) {
5058	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5059		/*
5060		 * Wait for the first one deleted that waits until all previous
5061		 * are cleaned.
5062		 */
5063		spin_lock(&fs_info->trans_lock);
5064		if (!list_empty(&fs_info->dead_roots)) {
5065			root = list_last_entry(&fs_info->dead_roots,
5066					       struct btrfs_root, root_list);
5067			args.subvolid = btrfs_root_id(root);
5068			found = true;
5069		}
5070		spin_unlock(&fs_info->trans_lock);
5071		if (!found)
5072			return -ENOENT;
5073
5074		fallthrough;
5075	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5076		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5077		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5078			return -EINVAL;
5079		break;
5080	case BTRFS_SUBVOL_SYNC_COUNT:
5081		spin_lock(&fs_info->trans_lock);
5082		args.count = list_count_nodes(&fs_info->dead_roots);
5083		spin_unlock(&fs_info->trans_lock);
5084		if (copy_to_user(argp, &args, sizeof(args)))
5085			return -EFAULT;
5086		return 0;
5087	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5088		spin_lock(&fs_info->trans_lock);
5089		/* Last in the list was deleted first. */
5090		if (!list_empty(&fs_info->dead_roots)) {
5091			root = list_last_entry(&fs_info->dead_roots,
5092					       struct btrfs_root, root_list);
5093			args.subvolid = btrfs_root_id(root);
5094		} else {
5095			args.subvolid = 0;
5096		}
5097		spin_unlock(&fs_info->trans_lock);
5098		if (copy_to_user(argp, &args, sizeof(args)))
5099			return -EFAULT;
5100		return 0;
5101	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5102		spin_lock(&fs_info->trans_lock);
5103		/* First in the list was deleted last. */
5104		if (!list_empty(&fs_info->dead_roots)) {
5105			root = list_first_entry(&fs_info->dead_roots,
5106						struct btrfs_root, root_list);
5107			args.subvolid = btrfs_root_id(root);
5108		} else {
5109			args.subvolid = 0;
5110		}
5111		spin_unlock(&fs_info->trans_lock);
5112		if (copy_to_user(argp, &args, sizeof(args)))
5113			return -EFAULT;
5114		return 0;
5115	default:
5116		return -EINVAL;
5117	}
5118
5119	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5120	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5121		return -EOVERFLOW;
5122
5123	while (1) {
5124		/* Wait for the specific one. */
5125		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5126			return -EINTR;
5127		refs = -1;
5128		spin_lock(&fs_info->fs_roots_radix_lock);
5129		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5130					 (unsigned long)args.subvolid);
5131		if (root) {
5132			spin_lock(&root->root_item_lock);
5133			refs = btrfs_root_refs(&root->root_item);
5134			root_flags = btrfs_root_flags(&root->root_item);
5135			spin_unlock(&root->root_item_lock);
5136		}
5137		spin_unlock(&fs_info->fs_roots_radix_lock);
5138		up_read(&fs_info->subvol_sem);
5139
5140		/* Subvolume does not exist. */
5141		if (!root)
5142			return -ENOENT;
5143
5144		/* Subvolume not deleted at all. */
5145		if (refs > 0)
5146			return -EEXIST;
5147		/* We've waited and now the subvolume is gone. */
5148		if (wait_for_deletion && refs == -1) {
5149			/* Return the one we waited for as the last one. */
5150			if (copy_to_user(argp, &args, sizeof(args)))
5151				return -EFAULT;
5152			return 0;
5153		}
5154
5155		/* Subvolume not found on the first try (deleted or never existed). */
5156		if (refs == -1)
5157			return -ENOENT;
5158
5159		wait_for_deletion = true;
5160		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5161		sched_ret = schedule_timeout_interruptible(HZ);
5162		/* Early wake up or error. */
5163		if (sched_ret != 0)
5164			return -EINTR;
5165	}
5166
5167	return 0;
5168}
5169
5170long btrfs_ioctl(struct file *file, unsigned int
5171		cmd, unsigned long arg)
5172{
5173	struct inode *inode = file_inode(file);
5174	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5175	struct btrfs_root *root = BTRFS_I(inode)->root;
5176	void __user *argp = (void __user *)arg;
5177
5178	switch (cmd) {
 
 
 
 
5179	case FS_IOC_GETVERSION:
5180		return btrfs_ioctl_getversion(inode, argp);
5181	case FS_IOC_GETFSLABEL:
5182		return btrfs_ioctl_get_fslabel(fs_info, argp);
5183	case FS_IOC_SETFSLABEL:
5184		return btrfs_ioctl_set_fslabel(file, argp);
5185	case FITRIM:
5186		return btrfs_ioctl_fitrim(fs_info, argp);
5187	case BTRFS_IOC_SNAP_CREATE:
5188		return btrfs_ioctl_snap_create(file, argp, 0);
5189	case BTRFS_IOC_SNAP_CREATE_V2:
5190		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5191	case BTRFS_IOC_SUBVOL_CREATE:
5192		return btrfs_ioctl_snap_create(file, argp, 1);
5193	case BTRFS_IOC_SUBVOL_CREATE_V2:
5194		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5195	case BTRFS_IOC_SNAP_DESTROY:
5196		return btrfs_ioctl_snap_destroy(file, argp, false);
5197	case BTRFS_IOC_SNAP_DESTROY_V2:
5198		return btrfs_ioctl_snap_destroy(file, argp, true);
5199	case BTRFS_IOC_SUBVOL_GETFLAGS:
5200		return btrfs_ioctl_subvol_getflags(inode, argp);
5201	case BTRFS_IOC_SUBVOL_SETFLAGS:
5202		return btrfs_ioctl_subvol_setflags(file, argp);
5203	case BTRFS_IOC_DEFAULT_SUBVOL:
5204		return btrfs_ioctl_default_subvol(file, argp);
5205	case BTRFS_IOC_DEFRAG:
5206		return btrfs_ioctl_defrag(file, NULL);
5207	case BTRFS_IOC_DEFRAG_RANGE:
5208		return btrfs_ioctl_defrag(file, argp);
5209	case BTRFS_IOC_RESIZE:
5210		return btrfs_ioctl_resize(file, argp);
5211	case BTRFS_IOC_ADD_DEV:
5212		return btrfs_ioctl_add_dev(fs_info, argp);
5213	case BTRFS_IOC_RM_DEV:
5214		return btrfs_ioctl_rm_dev(file, argp);
5215	case BTRFS_IOC_RM_DEV_V2:
5216		return btrfs_ioctl_rm_dev_v2(file, argp);
5217	case BTRFS_IOC_FS_INFO:
5218		return btrfs_ioctl_fs_info(fs_info, argp);
5219	case BTRFS_IOC_DEV_INFO:
5220		return btrfs_ioctl_dev_info(fs_info, argp);
 
 
5221	case BTRFS_IOC_TREE_SEARCH:
5222		return btrfs_ioctl_tree_search(inode, argp);
5223	case BTRFS_IOC_TREE_SEARCH_V2:
5224		return btrfs_ioctl_tree_search_v2(inode, argp);
5225	case BTRFS_IOC_INO_LOOKUP:
5226		return btrfs_ioctl_ino_lookup(root, argp);
5227	case BTRFS_IOC_INO_PATHS:
5228		return btrfs_ioctl_ino_to_path(root, argp);
5229	case BTRFS_IOC_LOGICAL_INO:
5230		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5231	case BTRFS_IOC_LOGICAL_INO_V2:
5232		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5233	case BTRFS_IOC_SPACE_INFO:
5234		return btrfs_ioctl_space_info(fs_info, argp);
5235	case BTRFS_IOC_SYNC: {
5236		int ret;
5237
5238		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5239		if (ret)
5240			return ret;
5241		ret = btrfs_sync_fs(inode->i_sb, 1);
5242		/*
5243		 * There may be work for the cleaner kthread to do (subvolume
5244		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
 
5245		 */
5246		wake_up_process(fs_info->cleaner_kthread);
5247		return ret;
5248	}
5249	case BTRFS_IOC_START_SYNC:
5250		return btrfs_ioctl_start_sync(root, argp);
5251	case BTRFS_IOC_WAIT_SYNC:
5252		return btrfs_ioctl_wait_sync(fs_info, argp);
5253	case BTRFS_IOC_SCRUB:
5254		return btrfs_ioctl_scrub(file, argp);
5255	case BTRFS_IOC_SCRUB_CANCEL:
5256		return btrfs_ioctl_scrub_cancel(fs_info);
5257	case BTRFS_IOC_SCRUB_PROGRESS:
5258		return btrfs_ioctl_scrub_progress(fs_info, argp);
5259	case BTRFS_IOC_BALANCE_V2:
5260		return btrfs_ioctl_balance(file, argp);
5261	case BTRFS_IOC_BALANCE_CTL:
5262		return btrfs_ioctl_balance_ctl(fs_info, arg);
5263	case BTRFS_IOC_BALANCE_PROGRESS:
5264		return btrfs_ioctl_balance_progress(fs_info, argp);
5265	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5266		return btrfs_ioctl_set_received_subvol(file, argp);
5267#ifdef CONFIG_64BIT
5268	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5269		return btrfs_ioctl_set_received_subvol_32(file, argp);
5270#endif
5271	case BTRFS_IOC_SEND:
5272		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5273#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5274	case BTRFS_IOC_SEND_32:
5275		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5276#endif
5277	case BTRFS_IOC_GET_DEV_STATS:
5278		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5279	case BTRFS_IOC_QUOTA_CTL:
5280		return btrfs_ioctl_quota_ctl(file, argp);
5281	case BTRFS_IOC_QGROUP_ASSIGN:
5282		return btrfs_ioctl_qgroup_assign(file, argp);
5283	case BTRFS_IOC_QGROUP_CREATE:
5284		return btrfs_ioctl_qgroup_create(file, argp);
5285	case BTRFS_IOC_QGROUP_LIMIT:
5286		return btrfs_ioctl_qgroup_limit(file, argp);
5287	case BTRFS_IOC_QUOTA_RESCAN:
5288		return btrfs_ioctl_quota_rescan(file, argp);
5289	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5290		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5291	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5292		return btrfs_ioctl_quota_rescan_wait(fs_info);
5293	case BTRFS_IOC_DEV_REPLACE:
5294		return btrfs_ioctl_dev_replace(fs_info, argp);
5295	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5296		return btrfs_ioctl_get_supported_features(argp);
5297	case BTRFS_IOC_GET_FEATURES:
5298		return btrfs_ioctl_get_features(fs_info, argp);
5299	case BTRFS_IOC_SET_FEATURES:
5300		return btrfs_ioctl_set_features(file, argp);
 
 
 
 
5301	case BTRFS_IOC_GET_SUBVOL_INFO:
5302		return btrfs_ioctl_get_subvol_info(inode, argp);
5303	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5304		return btrfs_ioctl_get_subvol_rootref(root, argp);
5305	case BTRFS_IOC_INO_LOOKUP_USER:
5306		return btrfs_ioctl_ino_lookup_user(file, argp);
5307	case FS_IOC_ENABLE_VERITY:
5308		return fsverity_ioctl_enable(file, (const void __user *)argp);
5309	case FS_IOC_MEASURE_VERITY:
5310		return fsverity_ioctl_measure(file, argp);
5311	case BTRFS_IOC_ENCODED_READ:
5312		return btrfs_ioctl_encoded_read(file, argp, false);
5313	case BTRFS_IOC_ENCODED_WRITE:
5314		return btrfs_ioctl_encoded_write(file, argp, false);
5315#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5316	case BTRFS_IOC_ENCODED_READ_32:
5317		return btrfs_ioctl_encoded_read(file, argp, true);
5318	case BTRFS_IOC_ENCODED_WRITE_32:
5319		return btrfs_ioctl_encoded_write(file, argp, true);
5320#endif
5321	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5322		return btrfs_ioctl_subvol_sync(fs_info, argp);
5323	}
5324
5325	return -ENOTTY;
5326}
5327
5328#ifdef CONFIG_COMPAT
5329long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5330{
5331	/*
5332	 * These all access 32-bit values anyway so no further
5333	 * handling is necessary.
5334	 */
5335	switch (cmd) {
 
 
 
 
 
 
5336	case FS_IOC32_GETVERSION:
5337		cmd = FS_IOC_GETVERSION;
5338		break;
5339	}
5340
5341	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5342}
5343#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
 
 
 
 
  29#include "ctree.h"
  30#include "disk-io.h"
  31#include "export.h"
  32#include "transaction.h"
  33#include "btrfs_inode.h"
  34#include "print-tree.h"
  35#include "volumes.h"
  36#include "locking.h"
  37#include "inode-map.h"
  38#include "backref.h"
  39#include "rcu-string.h"
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
  48#include "delalloc-space.h"
  49#include "block-group.h"
 
 
 
 
 
 
 
 
 
 
 
  50
  51#ifdef CONFIG_64BIT
  52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  53 * structures are incorrect, as the timespec structure from userspace
  54 * is 4 bytes too small. We define these alternatives here to teach
  55 * the kernel about the 32-bit struct packing.
  56 */
  57struct btrfs_ioctl_timespec_32 {
  58	__u64 sec;
  59	__u32 nsec;
  60} __attribute__ ((__packed__));
  61
  62struct btrfs_ioctl_received_subvol_args_32 {
  63	char	uuid[BTRFS_UUID_SIZE];	/* in */
  64	__u64	stransid;		/* in */
  65	__u64	rtransid;		/* out */
  66	struct btrfs_ioctl_timespec_32 stime; /* in */
  67	struct btrfs_ioctl_timespec_32 rtime; /* out */
  68	__u64	flags;			/* in */
  69	__u64	reserved[16];		/* in */
  70} __attribute__ ((__packed__));
  71
  72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  73				struct btrfs_ioctl_received_subvol_args_32)
  74#endif
  75
  76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  77struct btrfs_ioctl_send_args_32 {
  78	__s64 send_fd;			/* in */
  79	__u64 clone_sources_count;	/* in */
  80	compat_uptr_t clone_sources;	/* in */
  81	__u64 parent_root;		/* in */
  82	__u64 flags;			/* in */
  83	__u64 reserved[4];		/* in */
 
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  87			       struct btrfs_ioctl_send_args_32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88#endif
  89
  90/* Mask out flags that are inappropriate for the given type of inode. */
  91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  92		unsigned int flags)
  93{
  94	if (S_ISDIR(inode->i_mode))
  95		return flags;
  96	else if (S_ISREG(inode->i_mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 104 * ioctl.
 105 */
 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 107{
 108	unsigned int iflags = 0;
 
 
 109
 110	if (flags & BTRFS_INODE_SYNC)
 111		iflags |= FS_SYNC_FL;
 112	if (flags & BTRFS_INODE_IMMUTABLE)
 113		iflags |= FS_IMMUTABLE_FL;
 114	if (flags & BTRFS_INODE_APPEND)
 115		iflags |= FS_APPEND_FL;
 116	if (flags & BTRFS_INODE_NODUMP)
 117		iflags |= FS_NODUMP_FL;
 118	if (flags & BTRFS_INODE_NOATIME)
 119		iflags |= FS_NOATIME_FL;
 120	if (flags & BTRFS_INODE_DIRSYNC)
 121		iflags |= FS_DIRSYNC_FL;
 122	if (flags & BTRFS_INODE_NODATACOW)
 123		iflags |= FS_NOCOW_FL;
 
 
 124
 125	if (flags & BTRFS_INODE_NOCOMPRESS)
 126		iflags |= FS_NOCOMP_FL;
 127	else if (flags & BTRFS_INODE_COMPRESS)
 128		iflags |= FS_COMPR_FL;
 129
 130	return iflags;
 131}
 132
 133/*
 134 * Update inode->i_flags based on the btrfs internal flags.
 135 */
 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 137{
 138	struct btrfs_inode *binode = BTRFS_I(inode);
 139	unsigned int new_fl = 0;
 140
 141	if (binode->flags & BTRFS_INODE_SYNC)
 142		new_fl |= S_SYNC;
 143	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 144		new_fl |= S_IMMUTABLE;
 145	if (binode->flags & BTRFS_INODE_APPEND)
 146		new_fl |= S_APPEND;
 147	if (binode->flags & BTRFS_INODE_NOATIME)
 148		new_fl |= S_NOATIME;
 149	if (binode->flags & BTRFS_INODE_DIRSYNC)
 150		new_fl |= S_DIRSYNC;
 
 
 151
 152	set_mask_bits(&inode->i_flags,
 153		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 154		      new_fl);
 155}
 156
 157static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 158{
 159	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 160	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
 161
 162	if (copy_to_user(arg, &flags, sizeof(flags)))
 163		return -EFAULT;
 164	return 0;
 165}
 166
 167/*
 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 169 * the old and new flags are not conflicting
 170 */
 171static int check_fsflags(unsigned int old_flags, unsigned int flags)
 172{
 173	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 174		      FS_NOATIME_FL | FS_NODUMP_FL | \
 175		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 176		      FS_NOCOMP_FL | FS_COMPR_FL |
 177		      FS_NOCOW_FL))
 178		return -EOPNOTSUPP;
 179
 180	/* COMPR and NOCOMP on new/old are valid */
 181	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 182		return -EINVAL;
 183
 184	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 185		return -EINVAL;
 186
 187	/* NOCOW and compression options are mutually exclusive */
 188	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 189		return -EINVAL;
 190	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 191		return -EINVAL;
 192
 193	return 0;
 194}
 195
 196static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 
 197{
 198	struct inode *inode = file_inode(file);
 199	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	struct btrfs_inode *binode = BTRFS_I(inode);
 201	struct btrfs_root *root = binode->root;
 202	struct btrfs_trans_handle *trans;
 203	unsigned int fsflags, old_fsflags;
 204	int ret;
 205	const char *comp = NULL;
 206	u32 binode_flags;
 207
 208	if (!inode_owner_or_capable(inode))
 209		return -EPERM;
 210
 211	if (btrfs_root_readonly(root))
 212		return -EROFS;
 213
 214	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
 215		return -EFAULT;
 216
 217	ret = mnt_want_write_file(file);
 
 
 218	if (ret)
 219		return ret;
 220
 221	inode_lock(inode);
 222	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
 223	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 224
 225	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
 226	if (ret)
 227		goto out_unlock;
 228
 229	ret = check_fsflags(old_fsflags, fsflags);
 230	if (ret)
 231		goto out_unlock;
 232
 233	binode_flags = binode->flags;
 234	if (fsflags & FS_SYNC_FL)
 235		binode_flags |= BTRFS_INODE_SYNC;
 236	else
 237		binode_flags &= ~BTRFS_INODE_SYNC;
 238	if (fsflags & FS_IMMUTABLE_FL)
 239		binode_flags |= BTRFS_INODE_IMMUTABLE;
 240	else
 241		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 242	if (fsflags & FS_APPEND_FL)
 243		binode_flags |= BTRFS_INODE_APPEND;
 244	else
 245		binode_flags &= ~BTRFS_INODE_APPEND;
 246	if (fsflags & FS_NODUMP_FL)
 247		binode_flags |= BTRFS_INODE_NODUMP;
 248	else
 249		binode_flags &= ~BTRFS_INODE_NODUMP;
 250	if (fsflags & FS_NOATIME_FL)
 251		binode_flags |= BTRFS_INODE_NOATIME;
 252	else
 253		binode_flags &= ~BTRFS_INODE_NOATIME;
 
 
 
 
 
 
 
 
 
 
 254	if (fsflags & FS_DIRSYNC_FL)
 255		binode_flags |= BTRFS_INODE_DIRSYNC;
 256	else
 257		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 258	if (fsflags & FS_NOCOW_FL) {
 259		if (S_ISREG(inode->i_mode)) {
 260			/*
 261			 * It's safe to turn csums off here, no extents exist.
 262			 * Otherwise we want the flag to reflect the real COW
 263			 * status of the file and will not set it.
 264			 */
 265			if (inode->i_size == 0)
 266				binode_flags |= BTRFS_INODE_NODATACOW |
 267						BTRFS_INODE_NODATASUM;
 268		} else {
 269			binode_flags |= BTRFS_INODE_NODATACOW;
 270		}
 271	} else {
 272		/*
 273		 * Revert back under same assumptions as above
 274		 */
 275		if (S_ISREG(inode->i_mode)) {
 276			if (inode->i_size == 0)
 277				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 278						  BTRFS_INODE_NODATASUM);
 279		} else {
 280			binode_flags &= ~BTRFS_INODE_NODATACOW;
 281		}
 282	}
 283
 284	/*
 285	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 286	 * flag may be changed automatically if compression code won't make
 287	 * things smaller.
 288	 */
 289	if (fsflags & FS_NOCOMP_FL) {
 290		binode_flags &= ~BTRFS_INODE_COMPRESS;
 291		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 292	} else if (fsflags & FS_COMPR_FL) {
 293
 294		if (IS_SWAPFILE(inode)) {
 295			ret = -ETXTBSY;
 296			goto out_unlock;
 297		}
 298
 299		binode_flags |= BTRFS_INODE_COMPRESS;
 300		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 301
 302		comp = btrfs_compress_type2str(fs_info->compress_type);
 303		if (!comp || comp[0] == 0)
 304			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 305	} else {
 306		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 307	}
 308
 309	/*
 310	 * 1 for inode item
 311	 * 2 for properties
 312	 */
 313	trans = btrfs_start_transaction(root, 3);
 314	if (IS_ERR(trans)) {
 315		ret = PTR_ERR(trans);
 316		goto out_unlock;
 317	}
 318
 319	if (comp) {
 320		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 321				     strlen(comp), 0);
 322		if (ret) {
 323			btrfs_abort_transaction(trans, ret);
 324			goto out_end_trans;
 325		}
 326	} else {
 327		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 328				     0, 0);
 329		if (ret && ret != -ENODATA) {
 330			btrfs_abort_transaction(trans, ret);
 331			goto out_end_trans;
 332		}
 333	}
 334
 
 335	binode->flags = binode_flags;
 336	btrfs_sync_inode_flags_to_i_flags(inode);
 337	inode_inc_iversion(inode);
 338	inode->i_ctime = current_time(inode);
 339	ret = btrfs_update_inode(trans, root, inode);
 340
 341 out_end_trans:
 342	btrfs_end_transaction(trans);
 343 out_unlock:
 344	inode_unlock(inode);
 345	mnt_drop_write_file(file);
 346	return ret;
 347}
 348
 349/*
 350 * Translate btrfs internal inode flags to xflags as expected by the
 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
 352 * silently dropped.
 353 */
 354static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
 
 355{
 356	unsigned int xflags = 0;
 357
 358	if (flags & BTRFS_INODE_APPEND)
 359		xflags |= FS_XFLAG_APPEND;
 360	if (flags & BTRFS_INODE_IMMUTABLE)
 361		xflags |= FS_XFLAG_IMMUTABLE;
 362	if (flags & BTRFS_INODE_NOATIME)
 363		xflags |= FS_XFLAG_NOATIME;
 364	if (flags & BTRFS_INODE_NODUMP)
 365		xflags |= FS_XFLAG_NODUMP;
 366	if (flags & BTRFS_INODE_SYNC)
 367		xflags |= FS_XFLAG_SYNC;
 368
 369	return xflags;
 370}
 371
 372/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
 373static int check_xflags(unsigned int flags)
 374{
 375	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
 376		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
 377		return -EOPNOTSUPP;
 378	return 0;
 379}
 380
 381/*
 382 * Set the xflags from the internal inode flags. The remaining items of fsxattr
 383 * are zeroed.
 
 
 
 
 
 
 
 384 */
 385static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
 
 386{
 387	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 388	struct fsxattr fa;
 
 
 
 389
 390	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
 391	if (copy_to_user(arg, &fa, sizeof(fa)))
 392		return -EFAULT;
 393
 394	return 0;
 
 
 395}
 396
 397static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
 398{
 399	struct inode *inode = file_inode(file);
 400	struct btrfs_inode *binode = BTRFS_I(inode);
 401	struct btrfs_root *root = binode->root;
 402	struct btrfs_trans_handle *trans;
 403	struct fsxattr fa, old_fa;
 404	unsigned old_flags;
 405	unsigned old_i_flags;
 406	int ret = 0;
 407
 408	if (!inode_owner_or_capable(inode))
 409		return -EPERM;
 410
 411	if (btrfs_root_readonly(root))
 412		return -EROFS;
 413
 414	if (copy_from_user(&fa, arg, sizeof(fa)))
 415		return -EFAULT;
 416
 417	ret = check_xflags(fa.fsx_xflags);
 418	if (ret)
 419		return ret;
 420
 421	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
 422		return -EOPNOTSUPP;
 423
 424	ret = mnt_want_write_file(file);
 425	if (ret)
 426		return ret;
 427
 428	inode_lock(inode);
 429
 430	old_flags = binode->flags;
 431	old_i_flags = inode->i_flags;
 432
 433	simple_fill_fsxattr(&old_fa,
 434			    btrfs_inode_flags_to_xflags(binode->flags));
 435	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
 436	if (ret)
 437		goto out_unlock;
 438
 439	if (fa.fsx_xflags & FS_XFLAG_SYNC)
 440		binode->flags |= BTRFS_INODE_SYNC;
 441	else
 442		binode->flags &= ~BTRFS_INODE_SYNC;
 443	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
 444		binode->flags |= BTRFS_INODE_IMMUTABLE;
 445	else
 446		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
 447	if (fa.fsx_xflags & FS_XFLAG_APPEND)
 448		binode->flags |= BTRFS_INODE_APPEND;
 449	else
 450		binode->flags &= ~BTRFS_INODE_APPEND;
 451	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
 452		binode->flags |= BTRFS_INODE_NODUMP;
 453	else
 454		binode->flags &= ~BTRFS_INODE_NODUMP;
 455	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
 456		binode->flags |= BTRFS_INODE_NOATIME;
 457	else
 458		binode->flags &= ~BTRFS_INODE_NOATIME;
 459
 460	/* 1 item for the inode */
 461	trans = btrfs_start_transaction(root, 1);
 462	if (IS_ERR(trans)) {
 463		ret = PTR_ERR(trans);
 464		goto out_unlock;
 465	}
 466
 467	btrfs_sync_inode_flags_to_i_flags(inode);
 468	inode_inc_iversion(inode);
 469	inode->i_ctime = current_time(inode);
 470	ret = btrfs_update_inode(trans, root, inode);
 471
 472	btrfs_end_transaction(trans);
 473
 474out_unlock:
 475	if (ret) {
 476		binode->flags = old_flags;
 477		inode->i_flags = old_i_flags;
 478	}
 479
 480	inode_unlock(inode);
 481	mnt_drop_write_file(file);
 482
 483	return ret;
 484}
 485
 486static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 487{
 488	struct inode *inode = file_inode(file);
 489
 490	return put_user(inode->i_generation, arg);
 491}
 492
 493static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 494					void __user *arg)
 495{
 496	struct btrfs_device *device;
 497	struct request_queue *q;
 498	struct fstrim_range range;
 499	u64 minlen = ULLONG_MAX;
 500	u64 num_devices = 0;
 501	int ret;
 502
 503	if (!capable(CAP_SYS_ADMIN))
 504		return -EPERM;
 505
 506	/*
 
 
 
 
 
 
 
 
 507	 * If the fs is mounted with nologreplay, which requires it to be
 508	 * mounted in RO mode as well, we can not allow discard on free space
 509	 * inside block groups, because log trees refer to extents that are not
 510	 * pinned in a block group's free space cache (pinning the extents is
 511	 * precisely the first phase of replaying a log tree).
 512	 */
 513	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 514		return -EROFS;
 515
 516	rcu_read_lock();
 517	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 518				dev_list) {
 519		if (!device->bdev)
 520			continue;
 521		q = bdev_get_queue(device->bdev);
 522		if (blk_queue_discard(q)) {
 523			num_devices++;
 524			minlen = min_t(u64, q->limits.discard_granularity,
 525				     minlen);
 526		}
 527	}
 528	rcu_read_unlock();
 529
 530	if (!num_devices)
 531		return -EOPNOTSUPP;
 532	if (copy_from_user(&range, arg, sizeof(range)))
 533		return -EFAULT;
 534
 535	/*
 536	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 537	 * block group is in the logical address space, which can be any
 538	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 539	 */
 540	if (range.len < fs_info->sb->s_blocksize)
 541		return -EINVAL;
 542
 543	range.minlen = max(range.minlen, minlen);
 544	ret = btrfs_trim_fs(fs_info, &range);
 545	if (ret < 0)
 546		return ret;
 547
 548	if (copy_to_user(arg, &range, sizeof(range)))
 549		return -EFAULT;
 550
 551	return 0;
 552}
 553
 554int __pure btrfs_is_empty_uuid(u8 *uuid)
 555{
 556	int i;
 557
 558	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 559		if (uuid[i])
 560			return 0;
 561	}
 562	return 1;
 563}
 564
 565static noinline int create_subvol(struct inode *dir,
 566				  struct dentry *dentry,
 567				  const char *name, int namelen,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568				  struct btrfs_qgroup_inherit *inherit)
 569{
 570	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 571	struct btrfs_trans_handle *trans;
 572	struct btrfs_key key;
 573	struct btrfs_root_item *root_item;
 574	struct btrfs_inode_item *inode_item;
 575	struct extent_buffer *leaf;
 576	struct btrfs_root *root = BTRFS_I(dir)->root;
 577	struct btrfs_root *new_root;
 578	struct btrfs_block_rsv block_rsv;
 579	struct timespec64 cur_time = current_time(dir);
 580	struct inode *inode;
 
 
 
 
 
 581	int ret;
 582	int err;
 583	dev_t anon_dev = 0;
 584	u64 objectid;
 585	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 586	u64 index = 0;
 587
 588	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 589	if (!root_item)
 590		return -ENOMEM;
 591
 592	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
 593	if (ret)
 594		goto fail_free;
 595
 596	ret = get_anon_bdev(&anon_dev);
 597	if (ret < 0)
 598		goto fail_free;
 599
 600	/*
 601	 * Don't create subvolume whose level is not zero. Or qgroup will be
 602	 * screwed up since it assumes subvolume qgroup's level to be 0.
 603	 */
 604	if (btrfs_qgroup_level(objectid)) {
 605		ret = -ENOSPC;
 606		goto fail_free;
 607	}
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 610	/*
 611	 * The same as the snapshot creation, please see the comment
 612	 * of create_snapshot().
 613	 */
 614	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 615	if (ret)
 616		goto fail_free;
 
 617
 618	trans = btrfs_start_transaction(root, 0);
 619	if (IS_ERR(trans)) {
 620		ret = PTR_ERR(trans);
 621		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 622		goto fail_free;
 623	}
 
 
 624	trans->block_rsv = &block_rsv;
 625	trans->bytes_reserved = block_rsv.size;
 626
 627	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 628	if (ret)
 629		goto fail;
 630
 631	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
 632	if (IS_ERR(leaf)) {
 633		ret = PTR_ERR(leaf);
 634		goto fail;
 635	}
 636
 637	btrfs_mark_buffer_dirty(leaf);
 638
 639	inode_item = &root_item->inode;
 640	btrfs_set_stack_inode_generation(inode_item, 1);
 641	btrfs_set_stack_inode_size(inode_item, 3);
 642	btrfs_set_stack_inode_nlink(inode_item, 1);
 643	btrfs_set_stack_inode_nbytes(inode_item,
 644				     fs_info->nodesize);
 645	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 646
 647	btrfs_set_root_flags(root_item, 0);
 648	btrfs_set_root_limit(root_item, 0);
 649	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 650
 651	btrfs_set_root_bytenr(root_item, leaf->start);
 652	btrfs_set_root_generation(root_item, trans->transid);
 653	btrfs_set_root_level(root_item, 0);
 654	btrfs_set_root_refs(root_item, 1);
 655	btrfs_set_root_used(root_item, leaf->len);
 656	btrfs_set_root_last_snapshot(root_item, 0);
 657
 658	btrfs_set_root_generation_v2(root_item,
 659			btrfs_root_generation(root_item));
 660	generate_random_guid(root_item->uuid);
 661	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 662	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 663	root_item->ctime = root_item->otime;
 664	btrfs_set_root_ctransid(root_item, trans->transid);
 665	btrfs_set_root_otransid(root_item, trans->transid);
 666
 667	btrfs_tree_unlock(leaf);
 668	free_extent_buffer(leaf);
 669	leaf = NULL;
 670
 671	btrfs_set_root_dirid(root_item, new_dirid);
 672
 673	key.objectid = objectid;
 674	key.offset = 0;
 675	key.type = BTRFS_ROOT_ITEM_KEY;
 676	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 677				root_item);
 678	if (ret)
 679		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680
 681	key.offset = (u64)-1;
 682	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 683	if (IS_ERR(new_root)) {
 684		free_anon_bdev(anon_dev);
 685		ret = PTR_ERR(new_root);
 686		btrfs_abort_transaction(trans, ret);
 687		goto fail;
 688	}
 689	/* Freeing will be done in btrfs_put_root() of new_root */
 690	anon_dev = 0;
 
 
 691
 692	btrfs_record_root_in_trans(trans, new_root);
 693
 694	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 695	btrfs_put_root(new_root);
 696	if (ret) {
 697		/* We potentially lose an unused inode item here */
 698		btrfs_abort_transaction(trans, ret);
 699		goto fail;
 700	}
 701
 702	mutex_lock(&new_root->objectid_mutex);
 703	new_root->highest_objectid = new_dirid;
 704	mutex_unlock(&new_root->objectid_mutex);
 705
 706	/*
 707	 * insert the directory item
 708	 */
 709	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 710	if (ret) {
 711		btrfs_abort_transaction(trans, ret);
 712		goto fail;
 713	}
 714
 715	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 716				    BTRFS_FT_DIR, index);
 717	if (ret) {
 718		btrfs_abort_transaction(trans, ret);
 719		goto fail;
 720	}
 721
 722	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 723	ret = btrfs_update_inode(trans, root, dir);
 724	if (ret) {
 725		btrfs_abort_transaction(trans, ret);
 726		goto fail;
 727	}
 728
 729	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 730				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 731	if (ret) {
 732		btrfs_abort_transaction(trans, ret);
 733		goto fail;
 734	}
 735
 736	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 737				  BTRFS_UUID_KEY_SUBVOL, objectid);
 738	if (ret)
 739		btrfs_abort_transaction(trans, ret);
 740
 741fail:
 742	kfree(root_item);
 743	trans->block_rsv = NULL;
 744	trans->bytes_reserved = 0;
 745	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 746
 747	err = btrfs_commit_transaction(trans);
 748	if (err && !ret)
 749		ret = err;
 750
 751	if (!ret) {
 752		inode = btrfs_lookup_dentry(dir, dentry);
 753		if (IS_ERR(inode))
 754			return PTR_ERR(inode);
 755		d_instantiate(dentry, inode);
 756	}
 757	return ret;
 758
 759fail_free:
 760	if (anon_dev)
 761		free_anon_bdev(anon_dev);
 
 762	kfree(root_item);
 763	return ret;
 764}
 765
 766static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 767			   struct dentry *dentry, bool readonly,
 768			   struct btrfs_qgroup_inherit *inherit)
 769{
 770	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 771	struct inode *inode;
 772	struct btrfs_pending_snapshot *pending_snapshot;
 
 773	struct btrfs_trans_handle *trans;
 
 
 774	int ret;
 775
 
 
 
 
 
 
 
 
 
 
 776	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 777		return -EINVAL;
 778
 779	if (atomic_read(&root->nr_swapfiles)) {
 780		btrfs_warn(fs_info,
 781			   "cannot snapshot subvolume with active swapfile");
 782		return -ETXTBSY;
 783	}
 784
 785	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 786	if (!pending_snapshot)
 787		return -ENOMEM;
 788
 789	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 790	if (ret < 0)
 791		goto free_pending;
 792	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 793			GFP_KERNEL);
 794	pending_snapshot->path = btrfs_alloc_path();
 795	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 796		ret = -ENOMEM;
 797		goto free_pending;
 798	}
 799
 800	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 801			     BTRFS_BLOCK_RSV_TEMP);
 802	/*
 803	 * 1 - parent dir inode
 804	 * 2 - dir entries
 805	 * 1 - root item
 806	 * 2 - root ref/backref
 807	 * 1 - root of snapshot
 808	 * 1 - UUID item
 809	 */
 810	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 811					&pending_snapshot->block_rsv, 8,
 812					false);
 813	if (ret)
 814		goto free_pending;
 
 815
 816	pending_snapshot->dentry = dentry;
 817	pending_snapshot->root = root;
 818	pending_snapshot->readonly = readonly;
 819	pending_snapshot->dir = dir;
 820	pending_snapshot->inherit = inherit;
 821
 822	trans = btrfs_start_transaction(root, 0);
 823	if (IS_ERR(trans)) {
 824		ret = PTR_ERR(trans);
 825		goto fail;
 826	}
 
 
 
 
 
 
 
 827
 828	spin_lock(&fs_info->trans_lock);
 829	list_add(&pending_snapshot->list,
 830		 &trans->transaction->pending_snapshots);
 831	spin_unlock(&fs_info->trans_lock);
 832
 833	ret = btrfs_commit_transaction(trans);
 834	if (ret)
 835		goto fail;
 836
 837	ret = pending_snapshot->error;
 838	if (ret)
 839		goto fail;
 840
 841	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 842	if (ret)
 843		goto fail;
 844
 845	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 846	if (IS_ERR(inode)) {
 847		ret = PTR_ERR(inode);
 848		goto fail;
 849	}
 850
 851	d_instantiate(dentry, inode);
 852	ret = 0;
 853	pending_snapshot->anon_dev = 0;
 854fail:
 855	/* Prevent double freeing of anon_dev */
 856	if (ret && pending_snapshot->snap)
 857		pending_snapshot->snap->anon_dev = 0;
 858	btrfs_put_root(pending_snapshot->snap);
 859	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
 
 
 860free_pending:
 861	if (pending_snapshot->anon_dev)
 862		free_anon_bdev(pending_snapshot->anon_dev);
 863	kfree(pending_snapshot->root_item);
 864	btrfs_free_path(pending_snapshot->path);
 865	kfree(pending_snapshot);
 866
 867	return ret;
 868}
 869
 870/*  copy of may_delete in fs/namei.c()
 871 *	Check whether we can remove a link victim from directory dir, check
 872 *  whether the type of victim is right.
 873 *  1. We can't do it if dir is read-only (done in permission())
 874 *  2. We should have write and exec permissions on dir
 875 *  3. We can't remove anything from append-only dir
 876 *  4. We can't do anything with immutable dir (done in permission())
 877 *  5. If the sticky bit on dir is set we should either
 878 *	a. be owner of dir, or
 879 *	b. be owner of victim, or
 880 *	c. have CAP_FOWNER capability
 881 *  6. If the victim is append-only or immutable we can't do anything with
 882 *     links pointing to it.
 883 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 884 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 885 *  9. We can't remove a root or mountpoint.
 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 887 *     nfs_async_unlink().
 888 */
 889
 890static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 
 891{
 892	int error;
 893
 894	if (d_really_is_negative(victim))
 895		return -ENOENT;
 896
 897	BUG_ON(d_inode(victim->d_parent) != dir);
 
 
 898	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 899
 900	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 901	if (error)
 902		return error;
 903	if (IS_APPEND(dir))
 904		return -EPERM;
 905	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
 906	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
 
 907		return -EPERM;
 908	if (isdir) {
 909		if (!d_is_dir(victim))
 910			return -ENOTDIR;
 911		if (IS_ROOT(victim))
 912			return -EBUSY;
 913	} else if (d_is_dir(victim))
 914		return -EISDIR;
 915	if (IS_DEADDIR(dir))
 916		return -ENOENT;
 917	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 918		return -EBUSY;
 919	return 0;
 920}
 921
 922/* copy of may_create in fs/namei.c() */
 923static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 
 924{
 925	if (d_really_is_positive(child))
 926		return -EEXIST;
 927	if (IS_DEADDIR(dir))
 928		return -ENOENT;
 929	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 
 
 930}
 931
 932/*
 933 * Create a new subvolume below @parent.  This is largely modeled after
 934 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 935 * inside this filesystem so it's quite a bit simpler.
 936 */
 937static noinline int btrfs_mksubvol(const struct path *parent,
 
 938				   const char *name, int namelen,
 939				   struct btrfs_root *snap_src,
 940				   bool readonly,
 941				   struct btrfs_qgroup_inherit *inherit)
 942{
 943	struct inode *dir = d_inode(parent->dentry);
 944	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 945	struct dentry *dentry;
 
 946	int error;
 947
 948	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 949	if (error == -EINTR)
 950		return error;
 951
 952	dentry = lookup_one_len(name, parent->dentry, namelen);
 953	error = PTR_ERR(dentry);
 954	if (IS_ERR(dentry))
 955		goto out_unlock;
 956
 957	error = btrfs_may_create(dir, dentry);
 958	if (error)
 959		goto out_dput;
 960
 961	/*
 962	 * even if this name doesn't exist, we may get hash collisions.
 963	 * check for them now when we can safely fail
 964	 */
 965	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 966					       dir->i_ino, name,
 967					       namelen);
 968	if (error)
 969		goto out_dput;
 970
 971	down_read(&fs_info->subvol_sem);
 972
 973	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 974		goto out_up_read;
 975
 976	if (snap_src)
 977		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 978	else
 979		error = create_subvol(dir, dentry, name, namelen, inherit);
 980
 981	if (!error)
 982		fsnotify_mkdir(dir, dentry);
 983out_up_read:
 984	up_read(&fs_info->subvol_sem);
 985out_dput:
 986	dput(dentry);
 987out_unlock:
 988	inode_unlock(dir);
 989	return error;
 990}
 991
 992static noinline int btrfs_mksnapshot(const struct path *parent,
 
 993				   const char *name, int namelen,
 994				   struct btrfs_root *root,
 995				   bool readonly,
 996				   struct btrfs_qgroup_inherit *inherit)
 997{
 998	int ret;
 999	bool snapshot_force_cow = false;
1000
1001	/*
1002	 * Force new buffered writes to reserve space even when NOCOW is
1003	 * possible. This is to avoid later writeback (running dealloc) to
1004	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1005	 */
1006	btrfs_drew_read_lock(&root->snapshot_lock);
1007
1008	ret = btrfs_start_delalloc_snapshot(root);
1009	if (ret)
1010		goto out;
1011
1012	/*
1013	 * All previous writes have started writeback in NOCOW mode, so now
1014	 * we force future writes to fallback to COW mode during snapshot
1015	 * creation.
1016	 */
1017	atomic_inc(&root->snapshot_force_cow);
1018	snapshot_force_cow = true;
1019
1020	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1021
1022	ret = btrfs_mksubvol(parent, name, namelen,
1023			     root, readonly, inherit);
 
1024out:
1025	if (snapshot_force_cow)
1026		atomic_dec(&root->snapshot_force_cow);
1027	btrfs_drew_read_unlock(&root->snapshot_lock);
1028	return ret;
1029}
1030
1031/*
1032 * When we're defragging a range, we don't want to kick it off again
1033 * if it is really just waiting for delalloc to send it down.
1034 * If we find a nice big extent or delalloc range for the bytes in the
1035 * file you want to defrag, we return 0 to let you know to skip this
1036 * part of the file
1037 */
1038static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1039{
1040	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1041	struct extent_map *em = NULL;
1042	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1043	u64 end;
1044
1045	read_lock(&em_tree->lock);
1046	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1047	read_unlock(&em_tree->lock);
1048
1049	if (em) {
1050		end = extent_map_end(em);
1051		free_extent_map(em);
1052		if (end - offset > thresh)
1053			return 0;
1054	}
1055	/* if we already have a nice delalloc here, just stop */
1056	thresh /= 2;
1057	end = count_range_bits(io_tree, &offset, offset + thresh,
1058			       thresh, EXTENT_DELALLOC, 1);
1059	if (end >= thresh)
1060		return 0;
1061	return 1;
1062}
1063
1064/*
1065 * helper function to walk through a file and find extents
1066 * newer than a specific transid, and smaller than thresh.
1067 *
1068 * This is used by the defragging code to find new and small
1069 * extents
1070 */
1071static int find_new_extents(struct btrfs_root *root,
1072			    struct inode *inode, u64 newer_than,
1073			    u64 *off, u32 thresh)
1074{
1075	struct btrfs_path *path;
1076	struct btrfs_key min_key;
1077	struct extent_buffer *leaf;
1078	struct btrfs_file_extent_item *extent;
1079	int type;
1080	int ret;
1081	u64 ino = btrfs_ino(BTRFS_I(inode));
1082
1083	path = btrfs_alloc_path();
1084	if (!path)
1085		return -ENOMEM;
1086
1087	min_key.objectid = ino;
1088	min_key.type = BTRFS_EXTENT_DATA_KEY;
1089	min_key.offset = *off;
1090
1091	while (1) {
1092		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1093		if (ret != 0)
1094			goto none;
1095process_slot:
1096		if (min_key.objectid != ino)
1097			goto none;
1098		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1099			goto none;
1100
1101		leaf = path->nodes[0];
1102		extent = btrfs_item_ptr(leaf, path->slots[0],
1103					struct btrfs_file_extent_item);
1104
1105		type = btrfs_file_extent_type(leaf, extent);
1106		if (type == BTRFS_FILE_EXTENT_REG &&
1107		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1108		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1109			*off = min_key.offset;
1110			btrfs_free_path(path);
1111			return 0;
1112		}
1113
1114		path->slots[0]++;
1115		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1116			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1117			goto process_slot;
1118		}
1119
1120		if (min_key.offset == (u64)-1)
1121			goto none;
1122
1123		min_key.offset++;
1124		btrfs_release_path(path);
1125	}
1126none:
1127	btrfs_free_path(path);
1128	return -ENOENT;
1129}
1130
1131static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1132{
1133	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1134	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1135	struct extent_map *em;
1136	u64 len = PAGE_SIZE;
1137
1138	/*
1139	 * hopefully we have this extent in the tree already, try without
1140	 * the full extent lock
1141	 */
1142	read_lock(&em_tree->lock);
1143	em = lookup_extent_mapping(em_tree, start, len);
1144	read_unlock(&em_tree->lock);
1145
1146	if (!em) {
1147		struct extent_state *cached = NULL;
1148		u64 end = start + len - 1;
1149
1150		/* get the big lock and read metadata off disk */
1151		lock_extent_bits(io_tree, start, end, &cached);
1152		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1153		unlock_extent_cached(io_tree, start, end, &cached);
1154
1155		if (IS_ERR(em))
1156			return NULL;
1157	}
1158
1159	return em;
1160}
1161
1162static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1163{
1164	struct extent_map *next;
1165	bool ret = true;
1166
1167	/* this is the last extent */
1168	if (em->start + em->len >= i_size_read(inode))
1169		return false;
1170
1171	next = defrag_lookup_extent(inode, em->start + em->len);
1172	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1173		ret = false;
1174	else if ((em->block_start + em->block_len == next->block_start) &&
1175		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1176		ret = false;
1177
1178	free_extent_map(next);
1179	return ret;
1180}
1181
1182static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1183			       u64 *last_len, u64 *skip, u64 *defrag_end,
1184			       int compress)
1185{
1186	struct extent_map *em;
1187	int ret = 1;
1188	bool next_mergeable = true;
1189	bool prev_mergeable = true;
1190
1191	/*
1192	 * make sure that once we start defragging an extent, we keep on
1193	 * defragging it
1194	 */
1195	if (start < *defrag_end)
1196		return 1;
1197
1198	*skip = 0;
1199
1200	em = defrag_lookup_extent(inode, start);
1201	if (!em)
1202		return 0;
1203
1204	/* this will cover holes, and inline extents */
1205	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1206		ret = 0;
1207		goto out;
1208	}
1209
1210	if (!*defrag_end)
1211		prev_mergeable = false;
1212
1213	next_mergeable = defrag_check_next_extent(inode, em);
1214	/*
1215	 * we hit a real extent, if it is big or the next extent is not a
1216	 * real extent, don't bother defragging it
1217	 */
1218	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1219	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1220		ret = 0;
1221out:
1222	/*
1223	 * last_len ends up being a counter of how many bytes we've defragged.
1224	 * every time we choose not to defrag an extent, we reset *last_len
1225	 * so that the next tiny extent will force a defrag.
1226	 *
1227	 * The end result of this is that tiny extents before a single big
1228	 * extent will force at least part of that big extent to be defragged.
1229	 */
1230	if (ret) {
1231		*defrag_end = extent_map_end(em);
1232	} else {
1233		*last_len = 0;
1234		*skip = extent_map_end(em);
1235		*defrag_end = 0;
1236	}
1237
1238	free_extent_map(em);
1239	return ret;
1240}
1241
1242/*
1243 * it doesn't do much good to defrag one or two pages
1244 * at a time.  This pulls in a nice chunk of pages
1245 * to COW and defrag.
1246 *
1247 * It also makes sure the delalloc code has enough
1248 * dirty data to avoid making new small extents as part
1249 * of the defrag
1250 *
1251 * It's a good idea to start RA on this range
1252 * before calling this.
 
 
 
 
1253 */
1254static int cluster_pages_for_defrag(struct inode *inode,
1255				    struct page **pages,
1256				    unsigned long start_index,
1257				    unsigned long num_pages)
1258{
1259	unsigned long file_end;
1260	u64 isize = i_size_read(inode);
1261	u64 page_start;
1262	u64 page_end;
1263	u64 page_cnt;
1264	int ret;
1265	int i;
1266	int i_done;
1267	struct btrfs_ordered_extent *ordered;
1268	struct extent_state *cached_state = NULL;
1269	struct extent_io_tree *tree;
1270	struct extent_changeset *data_reserved = NULL;
1271	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1272
1273	file_end = (isize - 1) >> PAGE_SHIFT;
1274	if (!isize || start_index > file_end)
1275		return 0;
1276
1277	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1278
1279	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1280			start_index << PAGE_SHIFT,
1281			page_cnt << PAGE_SHIFT);
1282	if (ret)
1283		return ret;
1284	i_done = 0;
1285	tree = &BTRFS_I(inode)->io_tree;
1286
1287	/* step one, lock all the pages */
1288	for (i = 0; i < page_cnt; i++) {
1289		struct page *page;
1290again:
1291		page = find_or_create_page(inode->i_mapping,
1292					   start_index + i, mask);
1293		if (!page)
1294			break;
1295
1296		page_start = page_offset(page);
1297		page_end = page_start + PAGE_SIZE - 1;
1298		while (1) {
1299			lock_extent_bits(tree, page_start, page_end,
1300					 &cached_state);
1301			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1302							      page_start);
1303			unlock_extent_cached(tree, page_start, page_end,
1304					     &cached_state);
1305			if (!ordered)
1306				break;
1307
1308			unlock_page(page);
1309			btrfs_start_ordered_extent(inode, ordered, 1);
1310			btrfs_put_ordered_extent(ordered);
1311			lock_page(page);
1312			/*
1313			 * we unlocked the page above, so we need check if
1314			 * it was released or not.
1315			 */
1316			if (page->mapping != inode->i_mapping) {
1317				unlock_page(page);
1318				put_page(page);
1319				goto again;
1320			}
1321		}
1322
1323		if (!PageUptodate(page)) {
1324			btrfs_readpage(NULL, page);
1325			lock_page(page);
1326			if (!PageUptodate(page)) {
1327				unlock_page(page);
1328				put_page(page);
1329				ret = -EIO;
1330				break;
1331			}
1332		}
1333
1334		if (page->mapping != inode->i_mapping) {
1335			unlock_page(page);
1336			put_page(page);
1337			goto again;
1338		}
1339
1340		pages[i] = page;
1341		i_done++;
1342	}
1343	if (!i_done || ret)
1344		goto out;
1345
1346	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1347		goto out;
1348
1349	/*
1350	 * so now we have a nice long stream of locked
1351	 * and up to date pages, lets wait on them
1352	 */
1353	for (i = 0; i < i_done; i++)
1354		wait_on_page_writeback(pages[i]);
1355
1356	page_start = page_offset(pages[0]);
1357	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1358
1359	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1360			 page_start, page_end - 1, &cached_state);
1361	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1362			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1363			  EXTENT_DEFRAG, 0, 0, &cached_state);
1364
1365	if (i_done != page_cnt) {
1366		spin_lock(&BTRFS_I(inode)->lock);
1367		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1368		spin_unlock(&BTRFS_I(inode)->lock);
1369		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1370				start_index << PAGE_SHIFT,
1371				(page_cnt - i_done) << PAGE_SHIFT, true);
1372	}
1373
1374
1375	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1376			  &cached_state);
1377
1378	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379			     page_start, page_end - 1, &cached_state);
1380
1381	for (i = 0; i < i_done; i++) {
1382		clear_page_dirty_for_io(pages[i]);
1383		ClearPageChecked(pages[i]);
1384		set_page_extent_mapped(pages[i]);
1385		set_page_dirty(pages[i]);
1386		unlock_page(pages[i]);
1387		put_page(pages[i]);
1388	}
1389	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1390	extent_changeset_free(data_reserved);
1391	return i_done;
1392out:
1393	for (i = 0; i < i_done; i++) {
1394		unlock_page(pages[i]);
1395		put_page(pages[i]);
1396	}
1397	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1398			start_index << PAGE_SHIFT,
1399			page_cnt << PAGE_SHIFT, true);
1400	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401	extent_changeset_free(data_reserved);
1402	return ret;
1403
1404}
1405
1406int btrfs_defrag_file(struct inode *inode, struct file *file,
1407		      struct btrfs_ioctl_defrag_range_args *range,
1408		      u64 newer_than, unsigned long max_to_defrag)
1409{
1410	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411	struct btrfs_root *root = BTRFS_I(inode)->root;
1412	struct file_ra_state *ra = NULL;
1413	unsigned long last_index;
1414	u64 isize = i_size_read(inode);
1415	u64 last_len = 0;
1416	u64 skip = 0;
1417	u64 defrag_end = 0;
1418	u64 newer_off = range->start;
1419	unsigned long i;
1420	unsigned long ra_index = 0;
1421	int ret;
1422	int defrag_count = 0;
1423	int compress_type = BTRFS_COMPRESS_ZLIB;
1424	u32 extent_thresh = range->extent_thresh;
1425	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426	unsigned long cluster = max_cluster;
1427	u64 new_align = ~((u64)SZ_128K - 1);
1428	struct page **pages = NULL;
1429	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430
1431	if (isize == 0)
1432		return 0;
1433
1434	if (range->start >= isize)
1435		return -EINVAL;
1436
1437	if (do_compress) {
1438		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439			return -EINVAL;
1440		if (range->compress_type)
1441			compress_type = range->compress_type;
1442	}
1443
1444	if (extent_thresh == 0)
1445		extent_thresh = SZ_256K;
1446
1447	/*
1448	 * If we were not given a file, allocate a readahead context. As
1449	 * readahead is just an optimization, defrag will work without it so
1450	 * we don't error out.
1451	 */
1452	if (!file) {
1453		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454		if (ra)
1455			file_ra_state_init(ra, inode->i_mapping);
1456	} else {
1457		ra = &file->f_ra;
1458	}
1459
1460	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1461	if (!pages) {
1462		ret = -ENOMEM;
1463		goto out_ra;
1464	}
1465
1466	/* find the last page to defrag */
1467	if (range->start + range->len > range->start) {
1468		last_index = min_t(u64, isize - 1,
1469			 range->start + range->len - 1) >> PAGE_SHIFT;
1470	} else {
1471		last_index = (isize - 1) >> PAGE_SHIFT;
1472	}
1473
1474	if (newer_than) {
1475		ret = find_new_extents(root, inode, newer_than,
1476				       &newer_off, SZ_64K);
1477		if (!ret) {
1478			range->start = newer_off;
1479			/*
1480			 * we always align our defrag to help keep
1481			 * the extents in the file evenly spaced
1482			 */
1483			i = (newer_off & new_align) >> PAGE_SHIFT;
1484		} else
1485			goto out_ra;
1486	} else {
1487		i = range->start >> PAGE_SHIFT;
1488	}
1489	if (!max_to_defrag)
1490		max_to_defrag = last_index - i + 1;
1491
1492	/*
1493	 * make writeback starts from i, so the defrag range can be
1494	 * written sequentially.
1495	 */
1496	if (i < inode->i_mapping->writeback_index)
1497		inode->i_mapping->writeback_index = i;
1498
1499	while (i <= last_index && defrag_count < max_to_defrag &&
1500	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1501		/*
1502		 * make sure we stop running if someone unmounts
1503		 * the FS
 
1504		 */
1505		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506			break;
1507
1508		if (btrfs_defrag_cancelled(fs_info)) {
1509			btrfs_debug(fs_info, "defrag_file cancelled");
1510			ret = -EAGAIN;
1511			break;
1512		}
1513
1514		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515					 extent_thresh, &last_len, &skip,
1516					 &defrag_end, do_compress)){
1517			unsigned long next;
1518			/*
1519			 * the should_defrag function tells us how much to skip
1520			 * bump our counter by the suggested amount
1521			 */
1522			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523			i = max(i + 1, next);
1524			continue;
1525		}
1526
1527		if (!newer_than) {
1528			cluster = (PAGE_ALIGN(defrag_end) >>
1529				   PAGE_SHIFT) - i;
1530			cluster = min(cluster, max_cluster);
1531		} else {
1532			cluster = max_cluster;
1533		}
1534
1535		if (i + cluster > ra_index) {
1536			ra_index = max(i, ra_index);
1537			if (ra)
1538				page_cache_sync_readahead(inode->i_mapping, ra,
1539						file, ra_index, cluster);
1540			ra_index += cluster;
1541		}
1542
1543		inode_lock(inode);
1544		if (IS_SWAPFILE(inode)) {
1545			ret = -ETXTBSY;
1546		} else {
1547			if (do_compress)
1548				BTRFS_I(inode)->defrag_compress = compress_type;
1549			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550		}
1551		if (ret < 0) {
1552			inode_unlock(inode);
1553			goto out_ra;
1554		}
1555
1556		defrag_count += ret;
1557		balance_dirty_pages_ratelimited(inode->i_mapping);
1558		inode_unlock(inode);
1559
1560		if (newer_than) {
1561			if (newer_off == (u64)-1)
1562				break;
1563
1564			if (ret > 0)
1565				i += ret;
1566
1567			newer_off = max(newer_off + 1,
1568					(u64)i << PAGE_SHIFT);
1569
1570			ret = find_new_extents(root, inode, newer_than,
1571					       &newer_off, SZ_64K);
1572			if (!ret) {
1573				range->start = newer_off;
1574				i = (newer_off & new_align) >> PAGE_SHIFT;
1575			} else {
1576				break;
1577			}
1578		} else {
1579			if (ret > 0) {
1580				i += ret;
1581				last_len += ret << PAGE_SHIFT;
1582			} else {
1583				i++;
1584				last_len = 0;
1585			}
1586		}
1587	}
1588
1589	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1590		filemap_flush(inode->i_mapping);
1591		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1592			     &BTRFS_I(inode)->runtime_flags))
1593			filemap_flush(inode->i_mapping);
1594	}
1595
1596	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1597		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1598	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1599		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1600	}
1601
1602	ret = defrag_count;
1603
1604out_ra:
1605	if (do_compress) {
1606		inode_lock(inode);
1607		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608		inode_unlock(inode);
1609	}
1610	if (!file)
1611		kfree(ra);
1612	kfree(pages);
1613	return ret;
1614}
1615
1616static noinline int btrfs_ioctl_resize(struct file *file,
1617					void __user *arg)
1618{
 
1619	struct inode *inode = file_inode(file);
1620	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1621	u64 new_size;
1622	u64 old_size;
1623	u64 devid = 1;
1624	struct btrfs_root *root = BTRFS_I(inode)->root;
1625	struct btrfs_ioctl_vol_args *vol_args;
1626	struct btrfs_trans_handle *trans;
1627	struct btrfs_device *device = NULL;
1628	char *sizestr;
1629	char *retptr;
1630	char *devstr = NULL;
1631	int ret = 0;
1632	int mod = 0;
 
1633
1634	if (!capable(CAP_SYS_ADMIN))
1635		return -EPERM;
1636
1637	ret = mnt_want_write_file(file);
1638	if (ret)
1639		return ret;
1640
1641	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1642		mnt_drop_write_file(file);
1643		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1644	}
1645
1646	vol_args = memdup_user(arg, sizeof(*vol_args));
1647	if (IS_ERR(vol_args)) {
1648		ret = PTR_ERR(vol_args);
1649		goto out;
1650	}
 
 
 
1651
1652	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
1653
1654	sizestr = vol_args->name;
1655	devstr = strchr(sizestr, ':');
1656	if (devstr) {
1657		sizestr = devstr + 1;
1658		*devstr = '\0';
1659		devstr = vol_args->name;
1660		ret = kstrtoull(devstr, 10, &devid);
1661		if (ret)
1662			goto out_free;
1663		if (!devid) {
1664			ret = -EINVAL;
1665			goto out_free;
1666		}
1667		btrfs_info(fs_info, "resizing devid %llu", devid);
1668	}
1669
1670	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
 
1671	if (!device) {
1672		btrfs_info(fs_info, "resizer unable to find device %llu",
1673			   devid);
1674		ret = -ENODEV;
1675		goto out_free;
1676	}
1677
1678	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1679		btrfs_info(fs_info,
1680			   "resizer unable to apply on readonly device %llu",
1681		       devid);
1682		ret = -EPERM;
1683		goto out_free;
1684	}
1685
1686	if (!strcmp(sizestr, "max"))
1687		new_size = device->bdev->bd_inode->i_size;
1688	else {
1689		if (sizestr[0] == '-') {
1690			mod = -1;
1691			sizestr++;
1692		} else if (sizestr[0] == '+') {
1693			mod = 1;
1694			sizestr++;
1695		}
1696		new_size = memparse(sizestr, &retptr);
1697		if (*retptr != '\0' || new_size == 0) {
1698			ret = -EINVAL;
1699			goto out_free;
1700		}
1701	}
1702
1703	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1704		ret = -EPERM;
1705		goto out_free;
1706	}
1707
1708	old_size = btrfs_device_get_total_bytes(device);
1709
1710	if (mod < 0) {
1711		if (new_size > old_size) {
1712			ret = -EINVAL;
1713			goto out_free;
1714		}
1715		new_size = old_size - new_size;
1716	} else if (mod > 0) {
1717		if (new_size > ULLONG_MAX - old_size) {
1718			ret = -ERANGE;
1719			goto out_free;
1720		}
1721		new_size = old_size + new_size;
1722	}
1723
1724	if (new_size < SZ_256M) {
1725		ret = -EINVAL;
1726		goto out_free;
1727	}
1728	if (new_size > device->bdev->bd_inode->i_size) {
1729		ret = -EFBIG;
1730		goto out_free;
1731	}
1732
1733	new_size = round_down(new_size, fs_info->sectorsize);
1734
1735	if (new_size > old_size) {
1736		trans = btrfs_start_transaction(root, 0);
1737		if (IS_ERR(trans)) {
1738			ret = PTR_ERR(trans);
1739			goto out_free;
1740		}
1741		ret = btrfs_grow_device(trans, device, new_size);
1742		btrfs_commit_transaction(trans);
1743	} else if (new_size < old_size) {
1744		ret = btrfs_shrink_device(device, new_size);
1745	} /* equal, nothing need to do */
1746
1747	if (ret == 0 && new_size != old_size)
1748		btrfs_info_in_rcu(fs_info,
1749			"resize device %s (devid %llu) from %llu to %llu",
1750			rcu_str_deref(device->name), device->devid,
1751			old_size, new_size);
 
 
1752out_free:
1753	kfree(vol_args);
1754out:
1755	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1756	mnt_drop_write_file(file);
1757	return ret;
1758}
1759
1760static noinline int __btrfs_ioctl_snap_create(struct file *file,
 
1761				const char *name, unsigned long fd, int subvol,
1762				bool readonly,
1763				struct btrfs_qgroup_inherit *inherit)
1764{
1765	int namelen;
1766	int ret = 0;
1767
1768	if (!S_ISDIR(file_inode(file)->i_mode))
1769		return -ENOTDIR;
1770
1771	ret = mnt_want_write_file(file);
1772	if (ret)
1773		goto out;
1774
1775	namelen = strlen(name);
1776	if (strchr(name, '/')) {
1777		ret = -EINVAL;
1778		goto out_drop_write;
1779	}
1780
1781	if (name[0] == '.' &&
1782	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1783		ret = -EEXIST;
1784		goto out_drop_write;
1785	}
1786
1787	if (subvol) {
1788		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1789				     NULL, readonly, inherit);
1790	} else {
1791		struct fd src = fdget(fd);
1792		struct inode *src_inode;
1793		if (!src.file) {
1794			ret = -EINVAL;
1795			goto out_drop_write;
1796		}
1797
1798		src_inode = file_inode(src.file);
1799		if (src_inode->i_sb != file_inode(file)->i_sb) {
1800			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1801				   "Snapshot src from another FS");
1802			ret = -EXDEV;
1803		} else if (!inode_owner_or_capable(src_inode)) {
1804			/*
1805			 * Subvolume creation is not restricted, but snapshots
1806			 * are limited to own subvolumes only
1807			 */
1808			ret = -EPERM;
 
 
 
 
 
 
 
 
 
1809		} else {
1810			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1811					     BTRFS_I(src_inode)->root,
1812					     readonly, inherit);
 
1813		}
1814		fdput(src);
1815	}
1816out_drop_write:
1817	mnt_drop_write_file(file);
1818out:
1819	return ret;
1820}
1821
1822static noinline int btrfs_ioctl_snap_create(struct file *file,
1823					    void __user *arg, int subvol)
1824{
1825	struct btrfs_ioctl_vol_args *vol_args;
1826	int ret;
1827
1828	if (!S_ISDIR(file_inode(file)->i_mode))
1829		return -ENOTDIR;
1830
1831	vol_args = memdup_user(arg, sizeof(*vol_args));
1832	if (IS_ERR(vol_args))
1833		return PTR_ERR(vol_args);
1834	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
1835
1836	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1837					subvol, false, NULL);
 
1838
 
1839	kfree(vol_args);
1840	return ret;
1841}
1842
1843static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1844					       void __user *arg, int subvol)
1845{
1846	struct btrfs_ioctl_vol_args_v2 *vol_args;
1847	int ret;
1848	bool readonly = false;
1849	struct btrfs_qgroup_inherit *inherit = NULL;
1850
1851	if (!S_ISDIR(file_inode(file)->i_mode))
1852		return -ENOTDIR;
1853
1854	vol_args = memdup_user(arg, sizeof(*vol_args));
1855	if (IS_ERR(vol_args))
1856		return PTR_ERR(vol_args);
1857	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
 
 
1858
1859	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1860		ret = -EOPNOTSUPP;
1861		goto free_args;
1862	}
1863
1864	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1865		readonly = true;
1866	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1867		if (vol_args->size > PAGE_SIZE) {
 
 
 
1868			ret = -EINVAL;
1869			goto free_args;
1870		}
1871		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1872		if (IS_ERR(inherit)) {
1873			ret = PTR_ERR(inherit);
1874			goto free_args;
1875		}
 
 
 
 
1876	}
1877
1878	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1879					subvol, readonly, inherit);
 
1880	if (ret)
1881		goto free_inherit;
1882free_inherit:
1883	kfree(inherit);
1884free_args:
1885	kfree(vol_args);
1886	return ret;
1887}
1888
1889static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1890						void __user *arg)
1891{
1892	struct inode *inode = file_inode(file);
1893	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1894	struct btrfs_root *root = BTRFS_I(inode)->root;
1895	int ret = 0;
1896	u64 flags = 0;
1897
1898	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1899		return -EINVAL;
1900
1901	down_read(&fs_info->subvol_sem);
1902	if (btrfs_root_readonly(root))
1903		flags |= BTRFS_SUBVOL_RDONLY;
1904	up_read(&fs_info->subvol_sem);
1905
1906	if (copy_to_user(arg, &flags, sizeof(flags)))
1907		ret = -EFAULT;
1908
1909	return ret;
1910}
1911
1912static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1913					      void __user *arg)
1914{
1915	struct inode *inode = file_inode(file);
1916	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917	struct btrfs_root *root = BTRFS_I(inode)->root;
1918	struct btrfs_trans_handle *trans;
1919	u64 root_flags;
1920	u64 flags;
1921	int ret = 0;
1922
1923	if (!inode_owner_or_capable(inode))
1924		return -EPERM;
1925
1926	ret = mnt_want_write_file(file);
1927	if (ret)
1928		goto out;
1929
1930	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1931		ret = -EINVAL;
1932		goto out_drop_write;
1933	}
1934
1935	if (copy_from_user(&flags, arg, sizeof(flags))) {
1936		ret = -EFAULT;
1937		goto out_drop_write;
1938	}
1939
1940	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1941		ret = -EOPNOTSUPP;
1942		goto out_drop_write;
1943	}
1944
1945	down_write(&fs_info->subvol_sem);
1946
1947	/* nothing to do */
1948	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1949		goto out_drop_sem;
1950
1951	root_flags = btrfs_root_flags(&root->root_item);
1952	if (flags & BTRFS_SUBVOL_RDONLY) {
1953		btrfs_set_root_flags(&root->root_item,
1954				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1955	} else {
1956		/*
1957		 * Block RO -> RW transition if this subvolume is involved in
1958		 * send
1959		 */
1960		spin_lock(&root->root_item_lock);
1961		if (root->send_in_progress == 0) {
1962			btrfs_set_root_flags(&root->root_item,
1963				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1964			spin_unlock(&root->root_item_lock);
1965		} else {
1966			spin_unlock(&root->root_item_lock);
1967			btrfs_warn(fs_info,
1968				   "Attempt to set subvolume %llu read-write during send",
1969				   root->root_key.objectid);
1970			ret = -EPERM;
1971			goto out_drop_sem;
1972		}
1973	}
1974
1975	trans = btrfs_start_transaction(root, 1);
1976	if (IS_ERR(trans)) {
1977		ret = PTR_ERR(trans);
1978		goto out_reset;
1979	}
1980
1981	ret = btrfs_update_root(trans, fs_info->tree_root,
1982				&root->root_key, &root->root_item);
1983	if (ret < 0) {
1984		btrfs_end_transaction(trans);
1985		goto out_reset;
1986	}
1987
1988	ret = btrfs_commit_transaction(trans);
1989
1990out_reset:
1991	if (ret)
1992		btrfs_set_root_flags(&root->root_item, root_flags);
1993out_drop_sem:
1994	up_write(&fs_info->subvol_sem);
1995out_drop_write:
1996	mnt_drop_write_file(file);
1997out:
1998	return ret;
1999}
2000
2001static noinline int key_in_sk(struct btrfs_key *key,
2002			      struct btrfs_ioctl_search_key *sk)
2003{
2004	struct btrfs_key test;
2005	int ret;
2006
2007	test.objectid = sk->min_objectid;
2008	test.type = sk->min_type;
2009	test.offset = sk->min_offset;
2010
2011	ret = btrfs_comp_cpu_keys(key, &test);
2012	if (ret < 0)
2013		return 0;
2014
2015	test.objectid = sk->max_objectid;
2016	test.type = sk->max_type;
2017	test.offset = sk->max_offset;
2018
2019	ret = btrfs_comp_cpu_keys(key, &test);
2020	if (ret > 0)
2021		return 0;
2022	return 1;
2023}
2024
2025static noinline int copy_to_sk(struct btrfs_path *path,
2026			       struct btrfs_key *key,
2027			       struct btrfs_ioctl_search_key *sk,
2028			       size_t *buf_size,
2029			       char __user *ubuf,
2030			       unsigned long *sk_offset,
2031			       int *num_found)
2032{
2033	u64 found_transid;
2034	struct extent_buffer *leaf;
2035	struct btrfs_ioctl_search_header sh;
2036	struct btrfs_key test;
2037	unsigned long item_off;
2038	unsigned long item_len;
2039	int nritems;
2040	int i;
2041	int slot;
2042	int ret = 0;
2043
2044	leaf = path->nodes[0];
2045	slot = path->slots[0];
2046	nritems = btrfs_header_nritems(leaf);
2047
2048	if (btrfs_header_generation(leaf) > sk->max_transid) {
2049		i = nritems;
2050		goto advance_key;
2051	}
2052	found_transid = btrfs_header_generation(leaf);
2053
2054	for (i = slot; i < nritems; i++) {
2055		item_off = btrfs_item_ptr_offset(leaf, i);
2056		item_len = btrfs_item_size_nr(leaf, i);
2057
2058		btrfs_item_key_to_cpu(leaf, key, i);
2059		if (!key_in_sk(key, sk))
2060			continue;
2061
2062		if (sizeof(sh) + item_len > *buf_size) {
2063			if (*num_found) {
2064				ret = 1;
2065				goto out;
2066			}
2067
2068			/*
2069			 * return one empty item back for v1, which does not
2070			 * handle -EOVERFLOW
2071			 */
2072
2073			*buf_size = sizeof(sh) + item_len;
2074			item_len = 0;
2075			ret = -EOVERFLOW;
2076		}
2077
2078		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2079			ret = 1;
2080			goto out;
2081		}
2082
2083		sh.objectid = key->objectid;
2084		sh.offset = key->offset;
2085		sh.type = key->type;
2086		sh.len = item_len;
2087		sh.transid = found_transid;
2088
2089		/*
2090		 * Copy search result header. If we fault then loop again so we
2091		 * can fault in the pages and -EFAULT there if there's a
2092		 * problem. Otherwise we'll fault and then copy the buffer in
2093		 * properly this next time through
2094		 */
2095		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2096			ret = 0;
2097			goto out;
2098		}
2099
2100		*sk_offset += sizeof(sh);
2101
2102		if (item_len) {
2103			char __user *up = ubuf + *sk_offset;
2104			/*
2105			 * Copy the item, same behavior as above, but reset the
2106			 * * sk_offset so we copy the full thing again.
2107			 */
2108			if (read_extent_buffer_to_user_nofault(leaf, up,
2109						item_off, item_len)) {
2110				ret = 0;
2111				*sk_offset -= sizeof(sh);
2112				goto out;
2113			}
2114
2115			*sk_offset += item_len;
2116		}
2117		(*num_found)++;
2118
2119		if (ret) /* -EOVERFLOW from above */
2120			goto out;
2121
2122		if (*num_found >= sk->nr_items) {
2123			ret = 1;
2124			goto out;
2125		}
2126	}
2127advance_key:
2128	ret = 0;
2129	test.objectid = sk->max_objectid;
2130	test.type = sk->max_type;
2131	test.offset = sk->max_offset;
2132	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2133		ret = 1;
2134	else if (key->offset < (u64)-1)
2135		key->offset++;
2136	else if (key->type < (u8)-1) {
2137		key->offset = 0;
2138		key->type++;
2139	} else if (key->objectid < (u64)-1) {
2140		key->offset = 0;
2141		key->type = 0;
2142		key->objectid++;
2143	} else
2144		ret = 1;
2145out:
2146	/*
2147	 *  0: all items from this leaf copied, continue with next
2148	 *  1: * more items can be copied, but unused buffer is too small
2149	 *     * all items were found
2150	 *     Either way, it will stops the loop which iterates to the next
2151	 *     leaf
2152	 *  -EOVERFLOW: item was to large for buffer
2153	 *  -EFAULT: could not copy extent buffer back to userspace
2154	 */
2155	return ret;
2156}
2157
2158static noinline int search_ioctl(struct inode *inode,
2159				 struct btrfs_ioctl_search_key *sk,
2160				 size_t *buf_size,
2161				 char __user *ubuf)
2162{
2163	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2164	struct btrfs_root *root;
2165	struct btrfs_key key;
2166	struct btrfs_path *path;
2167	int ret;
2168	int num_found = 0;
2169	unsigned long sk_offset = 0;
2170
2171	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2172		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2173		return -EOVERFLOW;
2174	}
2175
2176	path = btrfs_alloc_path();
2177	if (!path)
2178		return -ENOMEM;
2179
2180	if (sk->tree_id == 0) {
2181		/* search the root of the inode that was passed */
2182		root = btrfs_grab_root(BTRFS_I(inode)->root);
2183	} else {
2184		root = btrfs_get_fs_root(info, sk->tree_id, true);
2185		if (IS_ERR(root)) {
2186			btrfs_free_path(path);
2187			return PTR_ERR(root);
2188		}
2189	}
2190
2191	key.objectid = sk->min_objectid;
2192	key.type = sk->min_type;
2193	key.offset = sk->min_offset;
2194
2195	while (1) {
2196		ret = fault_in_pages_writeable(ubuf + sk_offset,
2197					       *buf_size - sk_offset);
2198		if (ret)
 
 
 
 
2199			break;
2200
2201		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2202		if (ret != 0) {
2203			if (ret > 0)
2204				ret = 0;
2205			goto err;
2206		}
2207		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2208				 &sk_offset, &num_found);
2209		btrfs_release_path(path);
2210		if (ret)
2211			break;
2212
2213	}
2214	if (ret > 0)
2215		ret = 0;
2216err:
2217	sk->nr_items = num_found;
2218	btrfs_put_root(root);
2219	btrfs_free_path(path);
2220	return ret;
2221}
2222
2223static noinline int btrfs_ioctl_tree_search(struct file *file,
2224					   void __user *argp)
2225{
2226	struct btrfs_ioctl_search_args __user *uargs;
2227	struct btrfs_ioctl_search_key sk;
2228	struct inode *inode;
2229	int ret;
2230	size_t buf_size;
2231
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234
2235	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2236
2237	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2238		return -EFAULT;
2239
2240	buf_size = sizeof(uargs->buf);
2241
2242	inode = file_inode(file);
2243	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2244
2245	/*
2246	 * In the origin implementation an overflow is handled by returning a
2247	 * search header with a len of zero, so reset ret.
2248	 */
2249	if (ret == -EOVERFLOW)
2250		ret = 0;
2251
2252	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2253		ret = -EFAULT;
2254	return ret;
2255}
2256
2257static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2258					       void __user *argp)
2259{
2260	struct btrfs_ioctl_search_args_v2 __user *uarg;
2261	struct btrfs_ioctl_search_args_v2 args;
2262	struct inode *inode;
2263	int ret;
2264	size_t buf_size;
2265	const size_t buf_limit = SZ_16M;
2266
2267	if (!capable(CAP_SYS_ADMIN))
2268		return -EPERM;
2269
2270	/* copy search header and buffer size */
2271	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2272	if (copy_from_user(&args, uarg, sizeof(args)))
2273		return -EFAULT;
2274
2275	buf_size = args.buf_size;
2276
2277	/* limit result size to 16MB */
2278	if (buf_size > buf_limit)
2279		buf_size = buf_limit;
2280
2281	inode = file_inode(file);
2282	ret = search_ioctl(inode, &args.key, &buf_size,
2283			   (char __user *)(&uarg->buf[0]));
2284	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2285		ret = -EFAULT;
2286	else if (ret == -EOVERFLOW &&
2287		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2288		ret = -EFAULT;
2289
2290	return ret;
2291}
2292
2293/*
2294 * Search INODE_REFs to identify path name of 'dirid' directory
2295 * in a 'tree_id' tree. and sets path name to 'name'.
2296 */
2297static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2298				u64 tree_id, u64 dirid, char *name)
2299{
2300	struct btrfs_root *root;
2301	struct btrfs_key key;
2302	char *ptr;
2303	int ret = -1;
2304	int slot;
2305	int len;
2306	int total_len = 0;
2307	struct btrfs_inode_ref *iref;
2308	struct extent_buffer *l;
2309	struct btrfs_path *path;
2310
2311	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2312		name[0]='\0';
2313		return 0;
2314	}
2315
2316	path = btrfs_alloc_path();
2317	if (!path)
2318		return -ENOMEM;
2319
2320	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2321
2322	root = btrfs_get_fs_root(info, tree_id, true);
2323	if (IS_ERR(root)) {
2324		ret = PTR_ERR(root);
2325		root = NULL;
2326		goto out;
2327	}
2328
2329	key.objectid = dirid;
2330	key.type = BTRFS_INODE_REF_KEY;
2331	key.offset = (u64)-1;
2332
2333	while (1) {
2334		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2335		if (ret < 0)
2336			goto out;
2337		else if (ret > 0) {
2338			ret = btrfs_previous_item(root, path, dirid,
2339						  BTRFS_INODE_REF_KEY);
2340			if (ret < 0)
2341				goto out;
2342			else if (ret > 0) {
2343				ret = -ENOENT;
2344				goto out;
2345			}
2346		}
2347
2348		l = path->nodes[0];
2349		slot = path->slots[0];
2350		btrfs_item_key_to_cpu(l, &key, slot);
2351
2352		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2353		len = btrfs_inode_ref_name_len(l, iref);
2354		ptr -= len + 1;
2355		total_len += len + 1;
2356		if (ptr < name) {
2357			ret = -ENAMETOOLONG;
2358			goto out;
2359		}
2360
2361		*(ptr + len) = '/';
2362		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2363
2364		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2365			break;
2366
2367		btrfs_release_path(path);
2368		key.objectid = key.offset;
2369		key.offset = (u64)-1;
2370		dirid = key.objectid;
2371	}
2372	memmove(name, ptr, total_len);
2373	name[total_len] = '\0';
2374	ret = 0;
2375out:
2376	btrfs_put_root(root);
2377	btrfs_free_path(path);
2378	return ret;
2379}
2380
2381static int btrfs_search_path_in_tree_user(struct inode *inode,
 
2382				struct btrfs_ioctl_ino_lookup_user_args *args)
2383{
2384	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2385	struct super_block *sb = inode->i_sb;
2386	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2387	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2388	u64 dirid = args->dirid;
2389	unsigned long item_off;
2390	unsigned long item_len;
2391	struct btrfs_inode_ref *iref;
2392	struct btrfs_root_ref *rref;
2393	struct btrfs_root *root = NULL;
2394	struct btrfs_path *path;
2395	struct btrfs_key key, key2;
2396	struct extent_buffer *leaf;
2397	struct inode *temp_inode;
2398	char *ptr;
2399	int slot;
2400	int len;
2401	int total_len = 0;
2402	int ret;
2403
2404	path = btrfs_alloc_path();
2405	if (!path)
2406		return -ENOMEM;
2407
2408	/*
2409	 * If the bottom subvolume does not exist directly under upper_limit,
2410	 * construct the path in from the bottom up.
2411	 */
2412	if (dirid != upper_limit.objectid) {
2413		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2414
2415		root = btrfs_get_fs_root(fs_info, treeid, true);
2416		if (IS_ERR(root)) {
2417			ret = PTR_ERR(root);
2418			goto out;
2419		}
2420
2421		key.objectid = dirid;
2422		key.type = BTRFS_INODE_REF_KEY;
2423		key.offset = (u64)-1;
2424		while (1) {
2425			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426			if (ret < 0) {
 
 
 
2427				goto out_put;
2428			} else if (ret > 0) {
2429				ret = btrfs_previous_item(root, path, dirid,
2430							  BTRFS_INODE_REF_KEY);
2431				if (ret < 0) {
2432					goto out_put;
2433				} else if (ret > 0) {
2434					ret = -ENOENT;
2435					goto out_put;
2436				}
2437			}
2438
2439			leaf = path->nodes[0];
2440			slot = path->slots[0];
2441			btrfs_item_key_to_cpu(leaf, &key, slot);
2442
2443			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2444			len = btrfs_inode_ref_name_len(leaf, iref);
2445			ptr -= len + 1;
2446			total_len += len + 1;
2447			if (ptr < args->path) {
2448				ret = -ENAMETOOLONG;
2449				goto out_put;
2450			}
2451
2452			*(ptr + len) = '/';
2453			read_extent_buffer(leaf, ptr,
2454					(unsigned long)(iref + 1), len);
2455
2456			/* Check the read+exec permission of this directory */
2457			ret = btrfs_previous_item(root, path, dirid,
2458						  BTRFS_INODE_ITEM_KEY);
2459			if (ret < 0) {
2460				goto out_put;
2461			} else if (ret > 0) {
2462				ret = -ENOENT;
2463				goto out_put;
2464			}
2465
2466			leaf = path->nodes[0];
2467			slot = path->slots[0];
2468			btrfs_item_key_to_cpu(leaf, &key2, slot);
2469			if (key2.objectid != dirid) {
2470				ret = -ENOENT;
2471				goto out_put;
2472			}
2473
2474			temp_inode = btrfs_iget(sb, key2.objectid, root);
 
 
 
 
 
 
 
2475			if (IS_ERR(temp_inode)) {
2476				ret = PTR_ERR(temp_inode);
2477				goto out_put;
2478			}
2479			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
 
2480			iput(temp_inode);
2481			if (ret) {
2482				ret = -EACCES;
2483				goto out_put;
2484			}
2485
2486			if (key.offset == upper_limit.objectid)
2487				break;
2488			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2489				ret = -EACCES;
2490				goto out_put;
2491			}
2492
2493			btrfs_release_path(path);
2494			key.objectid = key.offset;
2495			key.offset = (u64)-1;
2496			dirid = key.objectid;
2497		}
2498
2499		memmove(args->path, ptr, total_len);
2500		args->path[total_len] = '\0';
2501		btrfs_put_root(root);
2502		root = NULL;
2503		btrfs_release_path(path);
2504	}
2505
2506	/* Get the bottom subvolume's name from ROOT_REF */
2507	key.objectid = treeid;
2508	key.type = BTRFS_ROOT_REF_KEY;
2509	key.offset = args->treeid;
2510	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2511	if (ret < 0) {
2512		goto out;
2513	} else if (ret > 0) {
2514		ret = -ENOENT;
2515		goto out;
2516	}
2517
2518	leaf = path->nodes[0];
2519	slot = path->slots[0];
2520	btrfs_item_key_to_cpu(leaf, &key, slot);
2521
2522	item_off = btrfs_item_ptr_offset(leaf, slot);
2523	item_len = btrfs_item_size_nr(leaf, slot);
2524	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2525	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2526	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2527		ret = -EINVAL;
2528		goto out;
2529	}
2530
2531	/* Copy subvolume's name */
2532	item_off += sizeof(struct btrfs_root_ref);
2533	item_len -= sizeof(struct btrfs_root_ref);
2534	read_extent_buffer(leaf, args->name, item_off, item_len);
2535	args->name[item_len] = 0;
2536
2537out_put:
2538	btrfs_put_root(root);
2539out:
2540	btrfs_free_path(path);
2541	return ret;
2542}
2543
2544static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2545					   void __user *argp)
2546{
2547	struct btrfs_ioctl_ino_lookup_args *args;
2548	struct inode *inode;
2549	int ret = 0;
2550
2551	args = memdup_user(argp, sizeof(*args));
2552	if (IS_ERR(args))
2553		return PTR_ERR(args);
2554
2555	inode = file_inode(file);
2556
2557	/*
2558	 * Unprivileged query to obtain the containing subvolume root id. The
2559	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2560	 */
2561	if (args->treeid == 0)
2562		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2563
2564	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2565		args->name[0] = 0;
2566		goto out;
2567	}
2568
2569	if (!capable(CAP_SYS_ADMIN)) {
2570		ret = -EPERM;
2571		goto out;
2572	}
2573
2574	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2575					args->treeid, args->objectid,
2576					args->name);
2577
2578out:
2579	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2580		ret = -EFAULT;
2581
2582	kfree(args);
2583	return ret;
2584}
2585
2586/*
2587 * Version of ino_lookup ioctl (unprivileged)
2588 *
2589 * The main differences from ino_lookup ioctl are:
2590 *
2591 *   1. Read + Exec permission will be checked using inode_permission() during
2592 *      path construction. -EACCES will be returned in case of failure.
2593 *   2. Path construction will be stopped at the inode number which corresponds
2594 *      to the fd with which this ioctl is called. If constructed path does not
2595 *      exist under fd's inode, -EACCES will be returned.
2596 *   3. The name of bottom subvolume is also searched and filled.
2597 */
2598static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2599{
2600	struct btrfs_ioctl_ino_lookup_user_args *args;
2601	struct inode *inode;
2602	int ret;
2603
2604	args = memdup_user(argp, sizeof(*args));
2605	if (IS_ERR(args))
2606		return PTR_ERR(args);
2607
2608	inode = file_inode(file);
2609
2610	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2611	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2612		/*
2613		 * The subvolume does not exist under fd with which this is
2614		 * called
2615		 */
2616		kfree(args);
2617		return -EACCES;
2618	}
2619
2620	ret = btrfs_search_path_in_tree_user(inode, args);
2621
2622	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2623		ret = -EFAULT;
2624
2625	kfree(args);
2626	return ret;
2627}
2628
2629/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2630static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2631{
2632	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2633	struct btrfs_fs_info *fs_info;
2634	struct btrfs_root *root;
2635	struct btrfs_path *path;
2636	struct btrfs_key key;
2637	struct btrfs_root_item *root_item;
2638	struct btrfs_root_ref *rref;
2639	struct extent_buffer *leaf;
2640	unsigned long item_off;
2641	unsigned long item_len;
2642	struct inode *inode;
2643	int slot;
2644	int ret = 0;
2645
2646	path = btrfs_alloc_path();
2647	if (!path)
2648		return -ENOMEM;
2649
2650	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2651	if (!subvol_info) {
2652		btrfs_free_path(path);
2653		return -ENOMEM;
2654	}
2655
2656	inode = file_inode(file);
2657	fs_info = BTRFS_I(inode)->root->fs_info;
2658
2659	/* Get root_item of inode's subvolume */
2660	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2661	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2662	if (IS_ERR(root)) {
2663		ret = PTR_ERR(root);
2664		goto out_free;
2665	}
2666	root_item = &root->root_item;
2667
2668	subvol_info->treeid = key.objectid;
2669
2670	subvol_info->generation = btrfs_root_generation(root_item);
2671	subvol_info->flags = btrfs_root_flags(root_item);
2672
2673	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2674	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2675						    BTRFS_UUID_SIZE);
2676	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2677						    BTRFS_UUID_SIZE);
2678
2679	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2680	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2681	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2682
2683	subvol_info->otransid = btrfs_root_otransid(root_item);
2684	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2685	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2686
2687	subvol_info->stransid = btrfs_root_stransid(root_item);
2688	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2689	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2690
2691	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2692	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2693	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2694
2695	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2696		/* Search root tree for ROOT_BACKREF of this subvolume */
2697		key.type = BTRFS_ROOT_BACKREF_KEY;
2698		key.offset = 0;
2699		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2700		if (ret < 0) {
2701			goto out;
2702		} else if (path->slots[0] >=
2703			   btrfs_header_nritems(path->nodes[0])) {
2704			ret = btrfs_next_leaf(fs_info->tree_root, path);
2705			if (ret < 0) {
2706				goto out;
2707			} else if (ret > 0) {
2708				ret = -EUCLEAN;
2709				goto out;
2710			}
2711		}
2712
2713		leaf = path->nodes[0];
2714		slot = path->slots[0];
2715		btrfs_item_key_to_cpu(leaf, &key, slot);
2716		if (key.objectid == subvol_info->treeid &&
2717		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2718			subvol_info->parent_id = key.offset;
2719
2720			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2721			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2722
2723			item_off = btrfs_item_ptr_offset(leaf, slot)
2724					+ sizeof(struct btrfs_root_ref);
2725			item_len = btrfs_item_size_nr(leaf, slot)
2726					- sizeof(struct btrfs_root_ref);
2727			read_extent_buffer(leaf, subvol_info->name,
2728					   item_off, item_len);
2729		} else {
2730			ret = -ENOENT;
2731			goto out;
2732		}
2733	}
2734
 
 
2735	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2736		ret = -EFAULT;
2737
2738out:
2739	btrfs_put_root(root);
2740out_free:
2741	btrfs_free_path(path);
2742	kfree(subvol_info);
2743	return ret;
2744}
2745
2746/*
2747 * Return ROOT_REF information of the subvolume containing this inode
2748 * except the subvolume name.
2749 */
2750static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
 
2751{
2752	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2753	struct btrfs_root_ref *rref;
2754	struct btrfs_root *root;
2755	struct btrfs_path *path;
2756	struct btrfs_key key;
2757	struct extent_buffer *leaf;
2758	struct inode *inode;
2759	u64 objectid;
2760	int slot;
2761	int ret;
2762	u8 found;
2763
2764	path = btrfs_alloc_path();
2765	if (!path)
2766		return -ENOMEM;
2767
2768	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2769	if (IS_ERR(rootrefs)) {
2770		btrfs_free_path(path);
2771		return PTR_ERR(rootrefs);
2772	}
2773
2774	inode = file_inode(file);
2775	root = BTRFS_I(inode)->root->fs_info->tree_root;
2776	objectid = BTRFS_I(inode)->root->root_key.objectid;
2777
2778	key.objectid = objectid;
2779	key.type = BTRFS_ROOT_REF_KEY;
2780	key.offset = rootrefs->min_treeid;
2781	found = 0;
2782
 
2783	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2784	if (ret < 0) {
2785		goto out;
2786	} else if (path->slots[0] >=
2787		   btrfs_header_nritems(path->nodes[0])) {
2788		ret = btrfs_next_leaf(root, path);
2789		if (ret < 0) {
2790			goto out;
2791		} else if (ret > 0) {
2792			ret = -EUCLEAN;
2793			goto out;
2794		}
2795	}
2796	while (1) {
2797		leaf = path->nodes[0];
2798		slot = path->slots[0];
2799
2800		btrfs_item_key_to_cpu(leaf, &key, slot);
2801		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2802			ret = 0;
2803			goto out;
2804		}
2805
2806		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2807			ret = -EOVERFLOW;
2808			goto out;
2809		}
2810
2811		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2812		rootrefs->rootref[found].treeid = key.offset;
2813		rootrefs->rootref[found].dirid =
2814				  btrfs_root_ref_dirid(leaf, rref);
2815		found++;
2816
2817		ret = btrfs_next_item(root, path);
2818		if (ret < 0) {
2819			goto out;
2820		} else if (ret > 0) {
2821			ret = -EUCLEAN;
2822			goto out;
2823		}
2824	}
2825
2826out:
 
 
2827	if (!ret || ret == -EOVERFLOW) {
2828		rootrefs->num_items = found;
2829		/* update min_treeid for next search */
2830		if (found)
2831			rootrefs->min_treeid =
2832				rootrefs->rootref[found - 1].treeid + 1;
2833		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2834			ret = -EFAULT;
2835	}
2836
2837	kfree(rootrefs);
2838	btrfs_free_path(path);
2839
2840	return ret;
2841}
2842
2843static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2844					     void __user *arg,
2845					     bool destroy_v2)
2846{
2847	struct dentry *parent = file->f_path.dentry;
2848	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2849	struct dentry *dentry;
2850	struct inode *dir = d_inode(parent);
 
2851	struct inode *inode;
2852	struct btrfs_root *root = BTRFS_I(dir)->root;
2853	struct btrfs_root *dest = NULL;
2854	struct btrfs_ioctl_vol_args *vol_args = NULL;
2855	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
 
2856	char *subvol_name, *subvol_name_ptr = NULL;
2857	int subvol_namelen;
2858	int err = 0;
2859	bool destroy_parent = false;
2860
 
 
 
 
 
 
 
2861	if (destroy_v2) {
2862		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2863		if (IS_ERR(vol_args2))
2864			return PTR_ERR(vol_args2);
2865
2866		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2867			err = -EOPNOTSUPP;
2868			goto out;
2869		}
2870
2871		/*
2872		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2873		 * name, same as v1 currently does.
2874		 */
2875		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2876			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
 
 
2877			subvol_name = vol_args2->name;
2878
2879			err = mnt_want_write_file(file);
2880			if (err)
2881				goto out;
2882		} else {
 
 
2883			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2884				err = -EINVAL;
2885				goto out;
2886			}
2887
2888			err = mnt_want_write_file(file);
2889			if (err)
2890				goto out;
2891
2892			dentry = btrfs_get_dentry(fs_info->sb,
2893					BTRFS_FIRST_FREE_OBJECTID,
2894					vol_args2->subvolid, 0, 0);
2895			if (IS_ERR(dentry)) {
2896				err = PTR_ERR(dentry);
2897				goto out_drop_write;
2898			}
2899
2900			/*
2901			 * Change the default parent since the subvolume being
2902			 * deleted can be outside of the current mount point.
2903			 */
2904			parent = btrfs_get_parent(dentry);
2905
2906			/*
2907			 * At this point dentry->d_name can point to '/' if the
2908			 * subvolume we want to destroy is outsite of the
2909			 * current mount point, so we need to release the
2910			 * current dentry and execute the lookup to return a new
2911			 * one with ->d_name pointing to the
2912			 * <mount point>/subvol_name.
2913			 */
2914			dput(dentry);
2915			if (IS_ERR(parent)) {
2916				err = PTR_ERR(parent);
2917				goto out_drop_write;
2918			}
 
2919			dir = d_inode(parent);
2920
2921			/*
2922			 * If v2 was used with SPEC_BY_ID, a new parent was
2923			 * allocated since the subvolume can be outside of the
2924			 * current mount point. Later on we need to release this
2925			 * new parent dentry.
2926			 */
2927			destroy_parent = true;
2928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2929			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2930						fs_info, vol_args2->subvolid);
2931			if (IS_ERR(subvol_name_ptr)) {
2932				err = PTR_ERR(subvol_name_ptr);
2933				goto free_parent;
2934			}
2935			/* subvol_name_ptr is already NULL termined */
2936			subvol_name = (char *)kbasename(subvol_name_ptr);
2937		}
2938	} else {
2939		vol_args = memdup_user(arg, sizeof(*vol_args));
2940		if (IS_ERR(vol_args))
2941			return PTR_ERR(vol_args);
2942
2943		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
 
 
 
2944		subvol_name = vol_args->name;
2945
2946		err = mnt_want_write_file(file);
2947		if (err)
2948			goto out;
2949	}
2950
2951	subvol_namelen = strlen(subvol_name);
2952
2953	if (strchr(subvol_name, '/') ||
2954	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2955		err = -EINVAL;
2956		goto free_subvol_name;
2957	}
2958
2959	if (!S_ISDIR(dir->i_mode)) {
2960		err = -ENOTDIR;
2961		goto free_subvol_name;
2962	}
2963
2964	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2965	if (err == -EINTR)
2966		goto free_subvol_name;
2967	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2968	if (IS_ERR(dentry)) {
2969		err = PTR_ERR(dentry);
2970		goto out_unlock_dir;
2971	}
2972
2973	if (d_really_is_negative(dentry)) {
2974		err = -ENOENT;
2975		goto out_dput;
2976	}
2977
2978	inode = d_inode(dentry);
2979	dest = BTRFS_I(inode)->root;
2980	if (!capable(CAP_SYS_ADMIN)) {
2981		/*
2982		 * Regular user.  Only allow this with a special mount
2983		 * option, when the user has write+exec access to the
2984		 * subvol root, and when rmdir(2) would have been
2985		 * allowed.
2986		 *
2987		 * Note that this is _not_ check that the subvol is
2988		 * empty or doesn't contain data that we wouldn't
2989		 * otherwise be able to delete.
2990		 *
2991		 * Users who want to delete empty subvols should try
2992		 * rmdir(2).
2993		 */
2994		err = -EPERM;
2995		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2996			goto out_dput;
2997
2998		/*
2999		 * Do not allow deletion if the parent dir is the same
3000		 * as the dir to be deleted.  That means the ioctl
3001		 * must be called on the dentry referencing the root
3002		 * of the subvol, not a random directory contained
3003		 * within it.
3004		 */
3005		err = -EINVAL;
3006		if (root == dest)
3007			goto out_dput;
3008
3009		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3010		if (err)
3011			goto out_dput;
3012	}
3013
3014	/* check if subvolume may be deleted by a user */
3015	err = btrfs_may_delete(dir, dentry, 1);
3016	if (err)
3017		goto out_dput;
3018
3019	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3020		err = -EINVAL;
3021		goto out_dput;
3022	}
3023
3024	inode_lock(inode);
3025	err = btrfs_delete_subvolume(dir, dentry);
3026	inode_unlock(inode);
3027	if (!err) {
3028		fsnotify_rmdir(dir, dentry);
3029		d_delete(dentry);
3030	}
3031
3032out_dput:
3033	dput(dentry);
3034out_unlock_dir:
3035	inode_unlock(dir);
3036free_subvol_name:
3037	kfree(subvol_name_ptr);
3038free_parent:
3039	if (destroy_parent)
3040		dput(parent);
3041out_drop_write:
3042	mnt_drop_write_file(file);
3043out:
3044	kfree(vol_args2);
3045	kfree(vol_args);
3046	return err;
3047}
3048
3049static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3050{
3051	struct inode *inode = file_inode(file);
3052	struct btrfs_root *root = BTRFS_I(inode)->root;
3053	struct btrfs_ioctl_defrag_range_args *range;
3054	int ret;
3055
3056	ret = mnt_want_write_file(file);
3057	if (ret)
3058		return ret;
3059
3060	if (btrfs_root_readonly(root)) {
3061		ret = -EROFS;
3062		goto out;
3063	}
3064
3065	switch (inode->i_mode & S_IFMT) {
3066	case S_IFDIR:
3067		if (!capable(CAP_SYS_ADMIN)) {
3068			ret = -EPERM;
3069			goto out;
3070		}
3071		ret = btrfs_defrag_root(root);
3072		break;
3073	case S_IFREG:
3074		/*
3075		 * Note that this does not check the file descriptor for write
3076		 * access. This prevents defragmenting executables that are
3077		 * running and allows defrag on files open in read-only mode.
3078		 */
3079		if (!capable(CAP_SYS_ADMIN) &&
3080		    inode_permission(inode, MAY_WRITE)) {
3081			ret = -EPERM;
3082			goto out;
3083		}
3084
3085		range = kzalloc(sizeof(*range), GFP_KERNEL);
3086		if (!range) {
3087			ret = -ENOMEM;
3088			goto out;
3089		}
3090
3091		if (argp) {
3092			if (copy_from_user(range, argp,
3093					   sizeof(*range))) {
3094				ret = -EFAULT;
3095				kfree(range);
 
 
 
3096				goto out;
3097			}
3098			/* compression requires us to start the IO */
3099			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3100				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3101				range->extent_thresh = (u32)-1;
3102			}
3103		} else {
3104			/* the rest are all set to zero by kzalloc */
3105			range->len = (u64)-1;
3106		}
3107		ret = btrfs_defrag_file(file_inode(file), file,
3108					range, BTRFS_OLDEST_GENERATION, 0);
3109		if (ret > 0)
3110			ret = 0;
3111		kfree(range);
3112		break;
3113	default:
3114		ret = -EINVAL;
3115	}
3116out:
3117	mnt_drop_write_file(file);
3118	return ret;
3119}
3120
3121static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3122{
3123	struct btrfs_ioctl_vol_args *vol_args;
 
3124	int ret;
3125
3126	if (!capable(CAP_SYS_ADMIN))
3127		return -EPERM;
3128
3129	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3130		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3131
3132	vol_args = memdup_user(arg, sizeof(*vol_args));
3133	if (IS_ERR(vol_args)) {
3134		ret = PTR_ERR(vol_args);
3135		goto out;
3136	}
3137
3138	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
3139	ret = btrfs_init_new_device(fs_info, vol_args->name);
3140
3141	if (!ret)
3142		btrfs_info(fs_info, "disk added %s", vol_args->name);
3143
 
3144	kfree(vol_args);
3145out:
3146	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
 
 
 
3147	return ret;
3148}
3149
3150static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3151{
 
3152	struct inode *inode = file_inode(file);
3153	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3154	struct btrfs_ioctl_vol_args_v2 *vol_args;
 
3155	int ret;
 
3156
3157	if (!capable(CAP_SYS_ADMIN))
3158		return -EPERM;
3159
3160	ret = mnt_want_write_file(file);
3161	if (ret)
3162		return ret;
3163
3164	vol_args = memdup_user(arg, sizeof(*vol_args));
3165	if (IS_ERR(vol_args)) {
3166		ret = PTR_ERR(vol_args);
3167		goto err_drop;
3168	}
3169
3170	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3171		ret = -EOPNOTSUPP;
3172		goto out;
3173	}
3174
3175	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3176		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3177		goto out;
3178	}
3179
3180	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3181		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
 
 
3182	} else {
3183		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3184		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
 
3185	}
3186	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	if (!ret) {
3189		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3190			btrfs_info(fs_info, "device deleted: id %llu",
3191					vol_args->devid);
3192		else
3193			btrfs_info(fs_info, "device deleted: %s",
3194					vol_args->name);
3195	}
 
 
 
 
3196out:
 
3197	kfree(vol_args);
3198err_drop:
3199	mnt_drop_write_file(file);
3200	return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3204{
 
3205	struct inode *inode = file_inode(file);
3206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207	struct btrfs_ioctl_vol_args *vol_args;
 
3208	int ret;
 
3209
3210	if (!capable(CAP_SYS_ADMIN))
3211		return -EPERM;
3212
3213	ret = mnt_want_write_file(file);
3214	if (ret)
3215		return ret;
 
 
 
 
3216
3217	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3218		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3219		goto out_drop_write;
 
 
 
3220	}
3221
3222	vol_args = memdup_user(arg, sizeof(*vol_args));
3223	if (IS_ERR(vol_args)) {
3224		ret = PTR_ERR(vol_args);
3225		goto out;
 
 
 
 
 
 
 
 
3226	}
3227
3228	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3229	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3230
3231	if (!ret)
3232		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
 
3233	kfree(vol_args);
3234out:
3235	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3236out_drop_write:
3237	mnt_drop_write_file(file);
3238
3239	return ret;
3240}
3241
3242static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3243				void __user *arg)
3244{
3245	struct btrfs_ioctl_fs_info_args *fi_args;
3246	struct btrfs_device *device;
3247	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3248	u64 flags_in;
3249	int ret = 0;
3250
3251	fi_args = memdup_user(arg, sizeof(*fi_args));
3252	if (IS_ERR(fi_args))
3253		return PTR_ERR(fi_args);
3254
3255	flags_in = fi_args->flags;
3256	memset(fi_args, 0, sizeof(*fi_args));
3257
3258	rcu_read_lock();
3259	fi_args->num_devices = fs_devices->num_devices;
3260
3261	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3262		if (device->devid > fi_args->max_id)
3263			fi_args->max_id = device->devid;
3264	}
3265	rcu_read_unlock();
3266
3267	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3268	fi_args->nodesize = fs_info->nodesize;
3269	fi_args->sectorsize = fs_info->sectorsize;
3270	fi_args->clone_alignment = fs_info->sectorsize;
3271
3272	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3273		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3274		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3275		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3276	}
3277
3278	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3279		fi_args->generation = fs_info->generation;
3280		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3281	}
3282
3283	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3284		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3285		       sizeof(fi_args->metadata_uuid));
3286		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3287	}
3288
3289	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3290		ret = -EFAULT;
3291
3292	kfree(fi_args);
3293	return ret;
3294}
3295
3296static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3297				 void __user *arg)
3298{
 
3299	struct btrfs_ioctl_dev_info_args *di_args;
3300	struct btrfs_device *dev;
3301	int ret = 0;
3302	char *s_uuid = NULL;
3303
3304	di_args = memdup_user(arg, sizeof(*di_args));
3305	if (IS_ERR(di_args))
3306		return PTR_ERR(di_args);
3307
 
3308	if (!btrfs_is_empty_uuid(di_args->uuid))
3309		s_uuid = di_args->uuid;
3310
3311	rcu_read_lock();
3312	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3313				NULL, true);
3314
3315	if (!dev) {
3316		ret = -ENODEV;
3317		goto out;
3318	}
3319
3320	di_args->devid = dev->devid;
3321	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3322	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3323	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3324	if (dev->name) {
3325		strncpy(di_args->path, rcu_str_deref(dev->name),
3326				sizeof(di_args->path) - 1);
3327		di_args->path[sizeof(di_args->path) - 1] = 0;
3328	} else {
3329		di_args->path[0] = '\0';
3330	}
3331
3332out:
3333	rcu_read_unlock();
3334	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3335		ret = -EFAULT;
3336
3337	kfree(di_args);
3338	return ret;
3339}
3340
3341static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3342{
3343	struct inode *inode = file_inode(file);
3344	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3345	struct btrfs_root *root = BTRFS_I(inode)->root;
3346	struct btrfs_root *new_root;
3347	struct btrfs_dir_item *di;
3348	struct btrfs_trans_handle *trans;
3349	struct btrfs_path *path = NULL;
3350	struct btrfs_disk_key disk_key;
 
3351	u64 objectid = 0;
3352	u64 dir_id;
3353	int ret;
3354
3355	if (!capable(CAP_SYS_ADMIN))
3356		return -EPERM;
3357
3358	ret = mnt_want_write_file(file);
3359	if (ret)
3360		return ret;
3361
3362	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3363		ret = -EFAULT;
3364		goto out;
3365	}
3366
3367	if (!objectid)
3368		objectid = BTRFS_FS_TREE_OBJECTID;
3369
3370	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3371	if (IS_ERR(new_root)) {
3372		ret = PTR_ERR(new_root);
3373		goto out;
3374	}
3375	if (!is_fstree(new_root->root_key.objectid)) {
3376		ret = -ENOENT;
3377		goto out_free;
3378	}
3379
3380	path = btrfs_alloc_path();
3381	if (!path) {
3382		ret = -ENOMEM;
3383		goto out_free;
3384	}
3385	path->leave_spinning = 1;
3386
3387	trans = btrfs_start_transaction(root, 1);
3388	if (IS_ERR(trans)) {
3389		ret = PTR_ERR(trans);
3390		goto out_free;
3391	}
3392
3393	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3394	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3395				   dir_id, "default", 7, 1);
3396	if (IS_ERR_OR_NULL(di)) {
3397		btrfs_release_path(path);
3398		btrfs_end_transaction(trans);
3399		btrfs_err(fs_info,
3400			  "Umm, you don't have the default diritem, this isn't going to work");
3401		ret = -ENOENT;
3402		goto out_free;
3403	}
3404
3405	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3406	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3407	btrfs_mark_buffer_dirty(path->nodes[0]);
3408	btrfs_release_path(path);
3409
3410	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3411	btrfs_end_transaction(trans);
3412out_free:
3413	btrfs_put_root(new_root);
3414	btrfs_free_path(path);
3415out:
3416	mnt_drop_write_file(file);
3417	return ret;
3418}
3419
3420static void get_block_group_info(struct list_head *groups_list,
3421				 struct btrfs_ioctl_space_info *space)
3422{
3423	struct btrfs_block_group *block_group;
3424
3425	space->total_bytes = 0;
3426	space->used_bytes = 0;
3427	space->flags = 0;
3428	list_for_each_entry(block_group, groups_list, list) {
3429		space->flags = block_group->flags;
3430		space->total_bytes += block_group->length;
3431		space->used_bytes += block_group->used;
3432	}
3433}
3434
3435static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3436				   void __user *arg)
3437{
3438	struct btrfs_ioctl_space_args space_args;
3439	struct btrfs_ioctl_space_info space;
3440	struct btrfs_ioctl_space_info *dest;
3441	struct btrfs_ioctl_space_info *dest_orig;
3442	struct btrfs_ioctl_space_info __user *user_dest;
3443	struct btrfs_space_info *info;
3444	static const u64 types[] = {
3445		BTRFS_BLOCK_GROUP_DATA,
3446		BTRFS_BLOCK_GROUP_SYSTEM,
3447		BTRFS_BLOCK_GROUP_METADATA,
3448		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3449	};
3450	int num_types = 4;
3451	int alloc_size;
3452	int ret = 0;
3453	u64 slot_count = 0;
3454	int i, c;
3455
3456	if (copy_from_user(&space_args,
3457			   (struct btrfs_ioctl_space_args __user *)arg,
3458			   sizeof(space_args)))
3459		return -EFAULT;
3460
3461	for (i = 0; i < num_types; i++) {
3462		struct btrfs_space_info *tmp;
3463
3464		info = NULL;
3465		rcu_read_lock();
3466		list_for_each_entry_rcu(tmp, &fs_info->space_info,
3467					list) {
3468			if (tmp->flags == types[i]) {
3469				info = tmp;
3470				break;
3471			}
3472		}
3473		rcu_read_unlock();
3474
3475		if (!info)
3476			continue;
3477
3478		down_read(&info->groups_sem);
3479		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3480			if (!list_empty(&info->block_groups[c]))
3481				slot_count++;
3482		}
3483		up_read(&info->groups_sem);
3484	}
3485
3486	/*
3487	 * Global block reserve, exported as a space_info
3488	 */
3489	slot_count++;
3490
3491	/* space_slots == 0 means they are asking for a count */
3492	if (space_args.space_slots == 0) {
3493		space_args.total_spaces = slot_count;
3494		goto out;
3495	}
3496
3497	slot_count = min_t(u64, space_args.space_slots, slot_count);
3498
3499	alloc_size = sizeof(*dest) * slot_count;
3500
3501	/* we generally have at most 6 or so space infos, one for each raid
3502	 * level.  So, a whole page should be more than enough for everyone
3503	 */
3504	if (alloc_size > PAGE_SIZE)
3505		return -ENOMEM;
3506
3507	space_args.total_spaces = 0;
3508	dest = kmalloc(alloc_size, GFP_KERNEL);
3509	if (!dest)
3510		return -ENOMEM;
3511	dest_orig = dest;
3512
3513	/* now we have a buffer to copy into */
3514	for (i = 0; i < num_types; i++) {
3515		struct btrfs_space_info *tmp;
3516
3517		if (!slot_count)
3518			break;
3519
3520		info = NULL;
3521		rcu_read_lock();
3522		list_for_each_entry_rcu(tmp, &fs_info->space_info,
3523					list) {
3524			if (tmp->flags == types[i]) {
3525				info = tmp;
3526				break;
3527			}
3528		}
3529		rcu_read_unlock();
3530
3531		if (!info)
3532			continue;
3533		down_read(&info->groups_sem);
3534		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3535			if (!list_empty(&info->block_groups[c])) {
3536				get_block_group_info(&info->block_groups[c],
3537						     &space);
3538				memcpy(dest, &space, sizeof(space));
3539				dest++;
3540				space_args.total_spaces++;
3541				slot_count--;
3542			}
3543			if (!slot_count)
3544				break;
3545		}
3546		up_read(&info->groups_sem);
3547	}
3548
3549	/*
3550	 * Add global block reserve
3551	 */
3552	if (slot_count) {
3553		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3554
3555		spin_lock(&block_rsv->lock);
3556		space.total_bytes = block_rsv->size;
3557		space.used_bytes = block_rsv->size - block_rsv->reserved;
3558		spin_unlock(&block_rsv->lock);
3559		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3560		memcpy(dest, &space, sizeof(space));
3561		space_args.total_spaces++;
3562	}
3563
3564	user_dest = (struct btrfs_ioctl_space_info __user *)
3565		(arg + sizeof(struct btrfs_ioctl_space_args));
3566
3567	if (copy_to_user(user_dest, dest_orig, alloc_size))
3568		ret = -EFAULT;
3569
3570	kfree(dest_orig);
3571out:
3572	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3573		ret = -EFAULT;
3574
3575	return ret;
3576}
3577
3578static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3579					    void __user *argp)
3580{
3581	struct btrfs_trans_handle *trans;
3582	u64 transid;
3583	int ret;
 
 
 
 
 
 
3584
3585	trans = btrfs_attach_transaction_barrier(root);
3586	if (IS_ERR(trans)) {
3587		if (PTR_ERR(trans) != -ENOENT)
3588			return PTR_ERR(trans);
3589
3590		/* No running transaction, don't bother */
3591		transid = root->fs_info->last_trans_committed;
3592		goto out;
3593	}
3594	transid = trans->transid;
3595	ret = btrfs_commit_transaction_async(trans, 0);
3596	if (ret) {
3597		btrfs_end_transaction(trans);
3598		return ret;
3599	}
3600out:
3601	if (argp)
3602		if (copy_to_user(argp, &transid, sizeof(transid)))
3603			return -EFAULT;
3604	return 0;
3605}
3606
3607static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3608					   void __user *argp)
3609{
3610	u64 transid;
 
3611
3612	if (argp) {
3613		if (copy_from_user(&transid, argp, sizeof(transid)))
3614			return -EFAULT;
3615	} else {
3616		transid = 0;  /* current trans */
3617	}
3618	return btrfs_wait_for_commit(fs_info, transid);
3619}
3620
3621static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3622{
3623	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3624	struct btrfs_ioctl_scrub_args *sa;
3625	int ret;
3626
3627	if (!capable(CAP_SYS_ADMIN))
3628		return -EPERM;
3629
 
 
 
 
 
3630	sa = memdup_user(arg, sizeof(*sa));
3631	if (IS_ERR(sa))
3632		return PTR_ERR(sa);
3633
 
 
 
 
 
3634	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3635		ret = mnt_want_write_file(file);
3636		if (ret)
3637			goto out;
3638	}
3639
3640	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3641			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3642			      0);
3643
3644	/*
3645	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3646	 * error. This is important as it allows user space to know how much
3647	 * progress scrub has done. For example, if scrub is canceled we get
3648	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3649	 * space. Later user space can inspect the progress from the structure
3650	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3651	 * previously (btrfs-progs does this).
3652	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3653	 * then return -EFAULT to signal the structure was not copied or it may
3654	 * be corrupt and unreliable due to a partial copy.
3655	 */
3656	if (copy_to_user(arg, sa, sizeof(*sa)))
3657		ret = -EFAULT;
3658
3659	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3660		mnt_drop_write_file(file);
3661out:
3662	kfree(sa);
3663	return ret;
3664}
3665
3666static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3667{
3668	if (!capable(CAP_SYS_ADMIN))
3669		return -EPERM;
3670
3671	return btrfs_scrub_cancel(fs_info);
3672}
3673
3674static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3675				       void __user *arg)
3676{
3677	struct btrfs_ioctl_scrub_args *sa;
3678	int ret;
3679
3680	if (!capable(CAP_SYS_ADMIN))
3681		return -EPERM;
3682
3683	sa = memdup_user(arg, sizeof(*sa));
3684	if (IS_ERR(sa))
3685		return PTR_ERR(sa);
3686
3687	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3688
3689	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3690		ret = -EFAULT;
3691
3692	kfree(sa);
3693	return ret;
3694}
3695
3696static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3697				      void __user *arg)
3698{
3699	struct btrfs_ioctl_get_dev_stats *sa;
3700	int ret;
3701
3702	sa = memdup_user(arg, sizeof(*sa));
3703	if (IS_ERR(sa))
3704		return PTR_ERR(sa);
3705
3706	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3707		kfree(sa);
3708		return -EPERM;
3709	}
3710
3711	ret = btrfs_get_dev_stats(fs_info, sa);
3712
3713	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3714		ret = -EFAULT;
3715
3716	kfree(sa);
3717	return ret;
3718}
3719
3720static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3721				    void __user *arg)
3722{
3723	struct btrfs_ioctl_dev_replace_args *p;
3724	int ret;
3725
3726	if (!capable(CAP_SYS_ADMIN))
3727		return -EPERM;
3728
 
 
 
 
 
3729	p = memdup_user(arg, sizeof(*p));
3730	if (IS_ERR(p))
3731		return PTR_ERR(p);
3732
3733	switch (p->cmd) {
3734	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3735		if (sb_rdonly(fs_info->sb)) {
3736			ret = -EROFS;
3737			goto out;
3738		}
3739		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3740			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3741		} else {
3742			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3743			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3744		}
3745		break;
3746	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3747		btrfs_dev_replace_status(fs_info, p);
3748		ret = 0;
3749		break;
3750	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3751		p->result = btrfs_dev_replace_cancel(fs_info);
3752		ret = 0;
3753		break;
3754	default:
3755		ret = -EINVAL;
3756		break;
3757	}
3758
3759	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3760		ret = -EFAULT;
3761out:
3762	kfree(p);
3763	return ret;
3764}
3765
3766static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3767{
3768	int ret = 0;
3769	int i;
3770	u64 rel_ptr;
3771	int size;
3772	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3773	struct inode_fs_paths *ipath = NULL;
3774	struct btrfs_path *path;
3775
3776	if (!capable(CAP_DAC_READ_SEARCH))
3777		return -EPERM;
3778
3779	path = btrfs_alloc_path();
3780	if (!path) {
3781		ret = -ENOMEM;
3782		goto out;
3783	}
3784
3785	ipa = memdup_user(arg, sizeof(*ipa));
3786	if (IS_ERR(ipa)) {
3787		ret = PTR_ERR(ipa);
3788		ipa = NULL;
3789		goto out;
3790	}
3791
3792	size = min_t(u32, ipa->size, 4096);
3793	ipath = init_ipath(size, root, path);
3794	if (IS_ERR(ipath)) {
3795		ret = PTR_ERR(ipath);
3796		ipath = NULL;
3797		goto out;
3798	}
3799
3800	ret = paths_from_inode(ipa->inum, ipath);
3801	if (ret < 0)
3802		goto out;
3803
3804	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3805		rel_ptr = ipath->fspath->val[i] -
3806			  (u64)(unsigned long)ipath->fspath->val;
3807		ipath->fspath->val[i] = rel_ptr;
3808	}
3809
 
 
3810	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3811			   ipath->fspath, size);
3812	if (ret) {
3813		ret = -EFAULT;
3814		goto out;
3815	}
3816
3817out:
3818	btrfs_free_path(path);
3819	free_ipath(ipath);
3820	kfree(ipa);
3821
3822	return ret;
3823}
3824
3825static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3826{
3827	struct btrfs_data_container *inodes = ctx;
3828	const size_t c = 3 * sizeof(u64);
3829
3830	if (inodes->bytes_left >= c) {
3831		inodes->bytes_left -= c;
3832		inodes->val[inodes->elem_cnt] = inum;
3833		inodes->val[inodes->elem_cnt + 1] = offset;
3834		inodes->val[inodes->elem_cnt + 2] = root;
3835		inodes->elem_cnt += 3;
3836	} else {
3837		inodes->bytes_missing += c - inodes->bytes_left;
3838		inodes->bytes_left = 0;
3839		inodes->elem_missed += 3;
3840	}
3841
3842	return 0;
3843}
3844
3845static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3846					void __user *arg, int version)
3847{
3848	int ret = 0;
3849	int size;
3850	struct btrfs_ioctl_logical_ino_args *loi;
3851	struct btrfs_data_container *inodes = NULL;
3852	struct btrfs_path *path = NULL;
3853	bool ignore_offset;
3854
3855	if (!capable(CAP_SYS_ADMIN))
3856		return -EPERM;
3857
3858	loi = memdup_user(arg, sizeof(*loi));
3859	if (IS_ERR(loi))
3860		return PTR_ERR(loi);
3861
3862	if (version == 1) {
3863		ignore_offset = false;
3864		size = min_t(u32, loi->size, SZ_64K);
3865	} else {
3866		/* All reserved bits must be 0 for now */
3867		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3868			ret = -EINVAL;
3869			goto out_loi;
3870		}
3871		/* Only accept flags we have defined so far */
3872		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3873			ret = -EINVAL;
3874			goto out_loi;
3875		}
3876		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3877		size = min_t(u32, loi->size, SZ_16M);
3878	}
3879
 
 
 
 
 
 
3880	path = btrfs_alloc_path();
3881	if (!path) {
3882		ret = -ENOMEM;
3883		goto out;
3884	}
3885
3886	inodes = init_data_container(size);
3887	if (IS_ERR(inodes)) {
3888		ret = PTR_ERR(inodes);
3889		inodes = NULL;
3890		goto out;
3891	}
3892
3893	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3894					  build_ino_list, inodes, ignore_offset);
 
3895	if (ret == -EINVAL)
3896		ret = -ENOENT;
3897	if (ret < 0)
3898		goto out;
3899
3900	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3901			   size);
3902	if (ret)
3903		ret = -EFAULT;
3904
3905out:
3906	btrfs_free_path(path);
3907	kvfree(inodes);
3908out_loi:
3909	kfree(loi);
3910
3911	return ret;
3912}
3913
3914void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3915			       struct btrfs_ioctl_balance_args *bargs)
3916{
3917	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3918
3919	bargs->flags = bctl->flags;
3920
3921	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3922		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3923	if (atomic_read(&fs_info->balance_pause_req))
3924		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3925	if (atomic_read(&fs_info->balance_cancel_req))
3926		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3927
3928	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3929	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3930	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3931
3932	spin_lock(&fs_info->balance_lock);
3933	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3934	spin_unlock(&fs_info->balance_lock);
3935}
3936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3937static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3938{
3939	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3940	struct btrfs_fs_info *fs_info = root->fs_info;
3941	struct btrfs_ioctl_balance_args *bargs;
3942	struct btrfs_balance_control *bctl;
3943	bool need_unlock; /* for mut. excl. ops lock */
3944	int ret;
3945
3946	if (!capable(CAP_SYS_ADMIN))
3947		return -EPERM;
3948
3949	ret = mnt_want_write_file(file);
3950	if (ret)
3951		return ret;
3952
3953again:
3954	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3955		mutex_lock(&fs_info->balance_mutex);
3956		need_unlock = true;
3957		goto locked;
3958	}
3959
3960	/*
3961	 * mut. excl. ops lock is locked.  Three possibilities:
3962	 *   (1) some other op is running
3963	 *   (2) balance is running
3964	 *   (3) balance is paused -- special case (think resume)
3965	 */
3966	mutex_lock(&fs_info->balance_mutex);
3967	if (fs_info->balance_ctl) {
3968		/* this is either (2) or (3) */
3969		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3970			mutex_unlock(&fs_info->balance_mutex);
3971			/*
3972			 * Lock released to allow other waiters to continue,
3973			 * we'll reexamine the status again.
3974			 */
3975			mutex_lock(&fs_info->balance_mutex);
3976
3977			if (fs_info->balance_ctl &&
3978			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3979				/* this is (3) */
3980				need_unlock = false;
3981				goto locked;
3982			}
3983
3984			mutex_unlock(&fs_info->balance_mutex);
3985			goto again;
3986		} else {
3987			/* this is (2) */
3988			mutex_unlock(&fs_info->balance_mutex);
3989			ret = -EINPROGRESS;
3990			goto out;
3991		}
3992	} else {
3993		/* this is (1) */
3994		mutex_unlock(&fs_info->balance_mutex);
3995		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3996		goto out;
3997	}
3998
3999locked:
4000	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4001
4002	if (arg) {
4003		bargs = memdup_user(arg, sizeof(*bargs));
4004		if (IS_ERR(bargs)) {
4005			ret = PTR_ERR(bargs);
4006			goto out_unlock;
4007		}
4008
4009		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4010			if (!fs_info->balance_ctl) {
4011				ret = -ENOTCONN;
4012				goto out_bargs;
4013			}
4014
4015			bctl = fs_info->balance_ctl;
4016			spin_lock(&fs_info->balance_lock);
4017			bctl->flags |= BTRFS_BALANCE_RESUME;
4018			spin_unlock(&fs_info->balance_lock);
4019
4020			goto do_balance;
4021		}
4022	} else {
4023		bargs = NULL;
4024	}
4025
4026	if (fs_info->balance_ctl) {
4027		ret = -EINPROGRESS;
4028		goto out_bargs;
4029	}
4030
4031	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4032	if (!bctl) {
4033		ret = -ENOMEM;
4034		goto out_bargs;
4035	}
4036
4037	if (arg) {
4038		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4039		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4040		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4041
4042		bctl->flags = bargs->flags;
4043	} else {
4044		/* balance everything - no filters */
4045		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4046	}
4047
4048	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4049		ret = -EINVAL;
4050		goto out_bctl;
4051	}
4052
 
4053do_balance:
4054	/*
4055	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4056	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4057	 * restriper was paused all the way until unmount, in free_fs_info.
4058	 * The flag should be cleared after reset_balance_state.
4059	 */
4060	need_unlock = false;
4061
4062	ret = btrfs_balance(fs_info, bctl, bargs);
4063	bctl = NULL;
4064
4065	if ((ret == 0 || ret == -ECANCELED) && arg) {
4066		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4067			ret = -EFAULT;
4068	}
4069
4070out_bctl:
4071	kfree(bctl);
4072out_bargs:
4073	kfree(bargs);
4074out_unlock:
4075	mutex_unlock(&fs_info->balance_mutex);
4076	if (need_unlock)
4077		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4078out:
4079	mnt_drop_write_file(file);
 
4080	return ret;
4081}
4082
4083static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4084{
4085	if (!capable(CAP_SYS_ADMIN))
4086		return -EPERM;
4087
4088	switch (cmd) {
4089	case BTRFS_BALANCE_CTL_PAUSE:
4090		return btrfs_pause_balance(fs_info);
4091	case BTRFS_BALANCE_CTL_CANCEL:
4092		return btrfs_cancel_balance(fs_info);
4093	}
4094
4095	return -EINVAL;
4096}
4097
4098static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4099					 void __user *arg)
4100{
4101	struct btrfs_ioctl_balance_args *bargs;
4102	int ret = 0;
4103
4104	if (!capable(CAP_SYS_ADMIN))
4105		return -EPERM;
4106
4107	mutex_lock(&fs_info->balance_mutex);
4108	if (!fs_info->balance_ctl) {
4109		ret = -ENOTCONN;
4110		goto out;
4111	}
4112
4113	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4114	if (!bargs) {
4115		ret = -ENOMEM;
4116		goto out;
4117	}
4118
4119	btrfs_update_ioctl_balance_args(fs_info, bargs);
4120
4121	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4122		ret = -EFAULT;
4123
4124	kfree(bargs);
4125out:
4126	mutex_unlock(&fs_info->balance_mutex);
4127	return ret;
4128}
4129
4130static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4131{
4132	struct inode *inode = file_inode(file);
4133	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4134	struct btrfs_ioctl_quota_ctl_args *sa;
4135	int ret;
4136
4137	if (!capable(CAP_SYS_ADMIN))
4138		return -EPERM;
4139
4140	ret = mnt_want_write_file(file);
4141	if (ret)
4142		return ret;
4143
4144	sa = memdup_user(arg, sizeof(*sa));
4145	if (IS_ERR(sa)) {
4146		ret = PTR_ERR(sa);
4147		goto drop_write;
4148	}
4149
4150	down_write(&fs_info->subvol_sem);
4151
4152	switch (sa->cmd) {
4153	case BTRFS_QUOTA_CTL_ENABLE:
4154		ret = btrfs_quota_enable(fs_info);
 
 
 
4155		break;
4156	case BTRFS_QUOTA_CTL_DISABLE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4157		ret = btrfs_quota_disable(fs_info);
 
 
4158		break;
4159	default:
4160		ret = -EINVAL;
4161		break;
4162	}
4163
4164	kfree(sa);
4165	up_write(&fs_info->subvol_sem);
4166drop_write:
4167	mnt_drop_write_file(file);
4168	return ret;
4169}
4170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4171static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4172{
4173	struct inode *inode = file_inode(file);
4174	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4175	struct btrfs_root *root = BTRFS_I(inode)->root;
4176	struct btrfs_ioctl_qgroup_assign_args *sa;
 
4177	struct btrfs_trans_handle *trans;
4178	int ret;
4179	int err;
4180
4181	if (!capable(CAP_SYS_ADMIN))
4182		return -EPERM;
4183
 
 
 
4184	ret = mnt_want_write_file(file);
4185	if (ret)
4186		return ret;
4187
4188	sa = memdup_user(arg, sizeof(*sa));
4189	if (IS_ERR(sa)) {
4190		ret = PTR_ERR(sa);
4191		goto drop_write;
4192	}
4193
 
 
 
 
 
 
 
 
4194	trans = btrfs_join_transaction(root);
4195	if (IS_ERR(trans)) {
4196		ret = PTR_ERR(trans);
4197		goto out;
4198	}
4199
 
 
 
 
4200	if (sa->assign) {
4201		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
 
4202	} else {
4203		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4204	}
4205
4206	/* update qgroup status and info */
 
4207	err = btrfs_run_qgroups(trans);
 
4208	if (err < 0)
4209		btrfs_handle_fs_error(fs_info, err,
4210				      "failed to update qgroup status and info");
 
4211	err = btrfs_end_transaction(trans);
4212	if (err && !ret)
4213		ret = err;
4214
4215out:
 
4216	kfree(sa);
4217drop_write:
4218	mnt_drop_write_file(file);
4219	return ret;
4220}
4221
4222static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4223{
4224	struct inode *inode = file_inode(file);
4225	struct btrfs_root *root = BTRFS_I(inode)->root;
4226	struct btrfs_ioctl_qgroup_create_args *sa;
4227	struct btrfs_trans_handle *trans;
4228	int ret;
4229	int err;
4230
4231	if (!capable(CAP_SYS_ADMIN))
4232		return -EPERM;
4233
 
 
 
4234	ret = mnt_want_write_file(file);
4235	if (ret)
4236		return ret;
4237
4238	sa = memdup_user(arg, sizeof(*sa));
4239	if (IS_ERR(sa)) {
4240		ret = PTR_ERR(sa);
4241		goto drop_write;
4242	}
4243
4244	if (!sa->qgroupid) {
4245		ret = -EINVAL;
4246		goto out;
4247	}
4248
 
 
 
 
 
4249	trans = btrfs_join_transaction(root);
4250	if (IS_ERR(trans)) {
4251		ret = PTR_ERR(trans);
4252		goto out;
4253	}
4254
4255	if (sa->create) {
4256		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4257	} else {
4258		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4259	}
4260
4261	err = btrfs_end_transaction(trans);
4262	if (err && !ret)
4263		ret = err;
4264
4265out:
4266	kfree(sa);
4267drop_write:
4268	mnt_drop_write_file(file);
4269	return ret;
4270}
4271
4272static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4273{
4274	struct inode *inode = file_inode(file);
4275	struct btrfs_root *root = BTRFS_I(inode)->root;
4276	struct btrfs_ioctl_qgroup_limit_args *sa;
4277	struct btrfs_trans_handle *trans;
4278	int ret;
4279	int err;
4280	u64 qgroupid;
4281
4282	if (!capable(CAP_SYS_ADMIN))
4283		return -EPERM;
4284
 
 
 
4285	ret = mnt_want_write_file(file);
4286	if (ret)
4287		return ret;
4288
4289	sa = memdup_user(arg, sizeof(*sa));
4290	if (IS_ERR(sa)) {
4291		ret = PTR_ERR(sa);
4292		goto drop_write;
4293	}
4294
4295	trans = btrfs_join_transaction(root);
4296	if (IS_ERR(trans)) {
4297		ret = PTR_ERR(trans);
4298		goto out;
4299	}
4300
4301	qgroupid = sa->qgroupid;
4302	if (!qgroupid) {
4303		/* take the current subvol as qgroup */
4304		qgroupid = root->root_key.objectid;
4305	}
4306
4307	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4308
4309	err = btrfs_end_transaction(trans);
4310	if (err && !ret)
4311		ret = err;
4312
4313out:
4314	kfree(sa);
4315drop_write:
4316	mnt_drop_write_file(file);
4317	return ret;
4318}
4319
4320static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4321{
4322	struct inode *inode = file_inode(file);
4323	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4324	struct btrfs_ioctl_quota_rescan_args *qsa;
4325	int ret;
4326
4327	if (!capable(CAP_SYS_ADMIN))
4328		return -EPERM;
4329
 
 
 
4330	ret = mnt_want_write_file(file);
4331	if (ret)
4332		return ret;
4333
4334	qsa = memdup_user(arg, sizeof(*qsa));
4335	if (IS_ERR(qsa)) {
4336		ret = PTR_ERR(qsa);
4337		goto drop_write;
4338	}
4339
4340	if (qsa->flags) {
4341		ret = -EINVAL;
4342		goto out;
4343	}
4344
4345	ret = btrfs_qgroup_rescan(fs_info);
4346
4347out:
4348	kfree(qsa);
4349drop_write:
4350	mnt_drop_write_file(file);
4351	return ret;
4352}
4353
4354static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4355						void __user *arg)
4356{
4357	struct btrfs_ioctl_quota_rescan_args *qsa;
4358	int ret = 0;
4359
4360	if (!capable(CAP_SYS_ADMIN))
4361		return -EPERM;
4362
4363	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4364	if (!qsa)
4365		return -ENOMEM;
4366
4367	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4368		qsa->flags = 1;
4369		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4370	}
4371
4372	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4373		ret = -EFAULT;
4374
4375	kfree(qsa);
4376	return ret;
4377}
4378
4379static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4380						void __user *arg)
4381{
4382	if (!capable(CAP_SYS_ADMIN))
4383		return -EPERM;
4384
4385	return btrfs_qgroup_wait_for_completion(fs_info, true);
4386}
4387
4388static long _btrfs_ioctl_set_received_subvol(struct file *file,
 
4389					    struct btrfs_ioctl_received_subvol_args *sa)
4390{
4391	struct inode *inode = file_inode(file);
4392	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4393	struct btrfs_root *root = BTRFS_I(inode)->root;
4394	struct btrfs_root_item *root_item = &root->root_item;
4395	struct btrfs_trans_handle *trans;
4396	struct timespec64 ct = current_time(inode);
4397	int ret = 0;
4398	int received_uuid_changed;
4399
4400	if (!inode_owner_or_capable(inode))
4401		return -EPERM;
4402
4403	ret = mnt_want_write_file(file);
4404	if (ret < 0)
4405		return ret;
4406
4407	down_write(&fs_info->subvol_sem);
4408
4409	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4410		ret = -EINVAL;
4411		goto out;
4412	}
4413
4414	if (btrfs_root_readonly(root)) {
4415		ret = -EROFS;
4416		goto out;
4417	}
4418
4419	/*
4420	 * 1 - root item
4421	 * 2 - uuid items (received uuid + subvol uuid)
4422	 */
4423	trans = btrfs_start_transaction(root, 3);
4424	if (IS_ERR(trans)) {
4425		ret = PTR_ERR(trans);
4426		trans = NULL;
4427		goto out;
4428	}
4429
4430	sa->rtransid = trans->transid;
4431	sa->rtime.sec = ct.tv_sec;
4432	sa->rtime.nsec = ct.tv_nsec;
4433
4434	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4435				       BTRFS_UUID_SIZE);
4436	if (received_uuid_changed &&
4437	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4438		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4439					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4440					  root->root_key.objectid);
4441		if (ret && ret != -ENOENT) {
4442		        btrfs_abort_transaction(trans, ret);
4443		        btrfs_end_transaction(trans);
4444		        goto out;
4445		}
4446	}
4447	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4448	btrfs_set_root_stransid(root_item, sa->stransid);
4449	btrfs_set_root_rtransid(root_item, sa->rtransid);
4450	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4451	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4452	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4453	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4454
4455	ret = btrfs_update_root(trans, fs_info->tree_root,
4456				&root->root_key, &root->root_item);
4457	if (ret < 0) {
4458		btrfs_end_transaction(trans);
4459		goto out;
4460	}
4461	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4462		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4463					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4464					  root->root_key.objectid);
4465		if (ret < 0 && ret != -EEXIST) {
4466			btrfs_abort_transaction(trans, ret);
4467			btrfs_end_transaction(trans);
4468			goto out;
4469		}
4470	}
4471	ret = btrfs_commit_transaction(trans);
4472out:
4473	up_write(&fs_info->subvol_sem);
4474	mnt_drop_write_file(file);
4475	return ret;
4476}
4477
4478#ifdef CONFIG_64BIT
4479static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4480						void __user *arg)
4481{
4482	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4483	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4484	int ret = 0;
4485
4486	args32 = memdup_user(arg, sizeof(*args32));
4487	if (IS_ERR(args32))
4488		return PTR_ERR(args32);
4489
4490	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4491	if (!args64) {
4492		ret = -ENOMEM;
4493		goto out;
4494	}
4495
4496	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4497	args64->stransid = args32->stransid;
4498	args64->rtransid = args32->rtransid;
4499	args64->stime.sec = args32->stime.sec;
4500	args64->stime.nsec = args32->stime.nsec;
4501	args64->rtime.sec = args32->rtime.sec;
4502	args64->rtime.nsec = args32->rtime.nsec;
4503	args64->flags = args32->flags;
4504
4505	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4506	if (ret)
4507		goto out;
4508
4509	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4510	args32->stransid = args64->stransid;
4511	args32->rtransid = args64->rtransid;
4512	args32->stime.sec = args64->stime.sec;
4513	args32->stime.nsec = args64->stime.nsec;
4514	args32->rtime.sec = args64->rtime.sec;
4515	args32->rtime.nsec = args64->rtime.nsec;
4516	args32->flags = args64->flags;
4517
4518	ret = copy_to_user(arg, args32, sizeof(*args32));
4519	if (ret)
4520		ret = -EFAULT;
4521
4522out:
4523	kfree(args32);
4524	kfree(args64);
4525	return ret;
4526}
4527#endif
4528
4529static long btrfs_ioctl_set_received_subvol(struct file *file,
4530					    void __user *arg)
4531{
4532	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4533	int ret = 0;
4534
4535	sa = memdup_user(arg, sizeof(*sa));
4536	if (IS_ERR(sa))
4537		return PTR_ERR(sa);
4538
4539	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4540
4541	if (ret)
4542		goto out;
4543
4544	ret = copy_to_user(arg, sa, sizeof(*sa));
4545	if (ret)
4546		ret = -EFAULT;
4547
4548out:
4549	kfree(sa);
4550	return ret;
4551}
4552
4553static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4554					void __user *arg)
4555{
4556	size_t len;
4557	int ret;
4558	char label[BTRFS_LABEL_SIZE];
4559
4560	spin_lock(&fs_info->super_lock);
4561	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4562	spin_unlock(&fs_info->super_lock);
4563
4564	len = strnlen(label, BTRFS_LABEL_SIZE);
4565
4566	if (len == BTRFS_LABEL_SIZE) {
4567		btrfs_warn(fs_info,
4568			   "label is too long, return the first %zu bytes",
4569			   --len);
4570	}
4571
4572	ret = copy_to_user(arg, label, len);
4573
4574	return ret ? -EFAULT : 0;
4575}
4576
4577static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4578{
4579	struct inode *inode = file_inode(file);
4580	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4581	struct btrfs_root *root = BTRFS_I(inode)->root;
4582	struct btrfs_super_block *super_block = fs_info->super_copy;
4583	struct btrfs_trans_handle *trans;
4584	char label[BTRFS_LABEL_SIZE];
4585	int ret;
4586
4587	if (!capable(CAP_SYS_ADMIN))
4588		return -EPERM;
4589
4590	if (copy_from_user(label, arg, sizeof(label)))
4591		return -EFAULT;
4592
4593	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4594		btrfs_err(fs_info,
4595			  "unable to set label with more than %d bytes",
4596			  BTRFS_LABEL_SIZE - 1);
4597		return -EINVAL;
4598	}
4599
4600	ret = mnt_want_write_file(file);
4601	if (ret)
4602		return ret;
4603
4604	trans = btrfs_start_transaction(root, 0);
4605	if (IS_ERR(trans)) {
4606		ret = PTR_ERR(trans);
4607		goto out_unlock;
4608	}
4609
4610	spin_lock(&fs_info->super_lock);
4611	strcpy(super_block->label, label);
4612	spin_unlock(&fs_info->super_lock);
4613	ret = btrfs_commit_transaction(trans);
4614
4615out_unlock:
4616	mnt_drop_write_file(file);
4617	return ret;
4618}
4619
4620#define INIT_FEATURE_FLAGS(suffix) \
4621	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4622	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4623	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4624
4625int btrfs_ioctl_get_supported_features(void __user *arg)
4626{
4627	static const struct btrfs_ioctl_feature_flags features[3] = {
4628		INIT_FEATURE_FLAGS(SUPP),
4629		INIT_FEATURE_FLAGS(SAFE_SET),
4630		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4631	};
4632
4633	if (copy_to_user(arg, &features, sizeof(features)))
4634		return -EFAULT;
4635
4636	return 0;
4637}
4638
4639static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4640					void __user *arg)
4641{
4642	struct btrfs_super_block *super_block = fs_info->super_copy;
4643	struct btrfs_ioctl_feature_flags features;
4644
4645	features.compat_flags = btrfs_super_compat_flags(super_block);
4646	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4647	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4648
4649	if (copy_to_user(arg, &features, sizeof(features)))
4650		return -EFAULT;
4651
4652	return 0;
4653}
4654
4655static int check_feature_bits(struct btrfs_fs_info *fs_info,
4656			      enum btrfs_feature_set set,
4657			      u64 change_mask, u64 flags, u64 supported_flags,
4658			      u64 safe_set, u64 safe_clear)
4659{
4660	const char *type = btrfs_feature_set_name(set);
4661	char *names;
4662	u64 disallowed, unsupported;
4663	u64 set_mask = flags & change_mask;
4664	u64 clear_mask = ~flags & change_mask;
4665
4666	unsupported = set_mask & ~supported_flags;
4667	if (unsupported) {
4668		names = btrfs_printable_features(set, unsupported);
4669		if (names) {
4670			btrfs_warn(fs_info,
4671				   "this kernel does not support the %s feature bit%s",
4672				   names, strchr(names, ',') ? "s" : "");
4673			kfree(names);
4674		} else
4675			btrfs_warn(fs_info,
4676				   "this kernel does not support %s bits 0x%llx",
4677				   type, unsupported);
4678		return -EOPNOTSUPP;
4679	}
4680
4681	disallowed = set_mask & ~safe_set;
4682	if (disallowed) {
4683		names = btrfs_printable_features(set, disallowed);
4684		if (names) {
4685			btrfs_warn(fs_info,
4686				   "can't set the %s feature bit%s while mounted",
4687				   names, strchr(names, ',') ? "s" : "");
4688			kfree(names);
4689		} else
4690			btrfs_warn(fs_info,
4691				   "can't set %s bits 0x%llx while mounted",
4692				   type, disallowed);
4693		return -EPERM;
4694	}
4695
4696	disallowed = clear_mask & ~safe_clear;
4697	if (disallowed) {
4698		names = btrfs_printable_features(set, disallowed);
4699		if (names) {
4700			btrfs_warn(fs_info,
4701				   "can't clear the %s feature bit%s while mounted",
4702				   names, strchr(names, ',') ? "s" : "");
4703			kfree(names);
4704		} else
4705			btrfs_warn(fs_info,
4706				   "can't clear %s bits 0x%llx while mounted",
4707				   type, disallowed);
4708		return -EPERM;
4709	}
4710
4711	return 0;
4712}
4713
4714#define check_feature(fs_info, change_mask, flags, mask_base)	\
4715check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4716		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4717		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4718		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4719
4720static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4721{
4722	struct inode *inode = file_inode(file);
4723	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4724	struct btrfs_root *root = BTRFS_I(inode)->root;
4725	struct btrfs_super_block *super_block = fs_info->super_copy;
4726	struct btrfs_ioctl_feature_flags flags[2];
4727	struct btrfs_trans_handle *trans;
4728	u64 newflags;
4729	int ret;
4730
4731	if (!capable(CAP_SYS_ADMIN))
4732		return -EPERM;
4733
4734	if (copy_from_user(flags, arg, sizeof(flags)))
4735		return -EFAULT;
4736
4737	/* Nothing to do */
4738	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4739	    !flags[0].incompat_flags)
4740		return 0;
4741
4742	ret = check_feature(fs_info, flags[0].compat_flags,
4743			    flags[1].compat_flags, COMPAT);
4744	if (ret)
4745		return ret;
4746
4747	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4748			    flags[1].compat_ro_flags, COMPAT_RO);
4749	if (ret)
4750		return ret;
4751
4752	ret = check_feature(fs_info, flags[0].incompat_flags,
4753			    flags[1].incompat_flags, INCOMPAT);
4754	if (ret)
4755		return ret;
4756
4757	ret = mnt_want_write_file(file);
4758	if (ret)
4759		return ret;
4760
4761	trans = btrfs_start_transaction(root, 0);
4762	if (IS_ERR(trans)) {
4763		ret = PTR_ERR(trans);
4764		goto out_drop_write;
4765	}
4766
4767	spin_lock(&fs_info->super_lock);
4768	newflags = btrfs_super_compat_flags(super_block);
4769	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4770	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4771	btrfs_set_super_compat_flags(super_block, newflags);
4772
4773	newflags = btrfs_super_compat_ro_flags(super_block);
4774	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4775	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4776	btrfs_set_super_compat_ro_flags(super_block, newflags);
4777
4778	newflags = btrfs_super_incompat_flags(super_block);
4779	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4780	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4781	btrfs_set_super_incompat_flags(super_block, newflags);
4782	spin_unlock(&fs_info->super_lock);
4783
4784	ret = btrfs_commit_transaction(trans);
4785out_drop_write:
4786	mnt_drop_write_file(file);
4787
4788	return ret;
4789}
4790
4791static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4792{
4793	struct btrfs_ioctl_send_args *arg;
4794	int ret;
4795
4796	if (compat) {
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798		struct btrfs_ioctl_send_args_32 args32;
4799
4800		ret = copy_from_user(&args32, argp, sizeof(args32));
4801		if (ret)
4802			return -EFAULT;
4803		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4804		if (!arg)
4805			return -ENOMEM;
4806		arg->send_fd = args32.send_fd;
4807		arg->clone_sources_count = args32.clone_sources_count;
4808		arg->clone_sources = compat_ptr(args32.clone_sources);
4809		arg->parent_root = args32.parent_root;
4810		arg->flags = args32.flags;
 
4811		memcpy(arg->reserved, args32.reserved,
4812		       sizeof(args32.reserved));
4813#else
4814		return -ENOTTY;
4815#endif
4816	} else {
4817		arg = memdup_user(argp, sizeof(*arg));
4818		if (IS_ERR(arg))
4819			return PTR_ERR(arg);
4820	}
4821	ret = btrfs_ioctl_send(file, arg);
4822	kfree(arg);
4823	return ret;
4824}
4825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826long btrfs_ioctl(struct file *file, unsigned int
4827		cmd, unsigned long arg)
4828{
4829	struct inode *inode = file_inode(file);
4830	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4831	struct btrfs_root *root = BTRFS_I(inode)->root;
4832	void __user *argp = (void __user *)arg;
4833
4834	switch (cmd) {
4835	case FS_IOC_GETFLAGS:
4836		return btrfs_ioctl_getflags(file, argp);
4837	case FS_IOC_SETFLAGS:
4838		return btrfs_ioctl_setflags(file, argp);
4839	case FS_IOC_GETVERSION:
4840		return btrfs_ioctl_getversion(file, argp);
4841	case FS_IOC_GETFSLABEL:
4842		return btrfs_ioctl_get_fslabel(fs_info, argp);
4843	case FS_IOC_SETFSLABEL:
4844		return btrfs_ioctl_set_fslabel(file, argp);
4845	case FITRIM:
4846		return btrfs_ioctl_fitrim(fs_info, argp);
4847	case BTRFS_IOC_SNAP_CREATE:
4848		return btrfs_ioctl_snap_create(file, argp, 0);
4849	case BTRFS_IOC_SNAP_CREATE_V2:
4850		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4851	case BTRFS_IOC_SUBVOL_CREATE:
4852		return btrfs_ioctl_snap_create(file, argp, 1);
4853	case BTRFS_IOC_SUBVOL_CREATE_V2:
4854		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4855	case BTRFS_IOC_SNAP_DESTROY:
4856		return btrfs_ioctl_snap_destroy(file, argp, false);
4857	case BTRFS_IOC_SNAP_DESTROY_V2:
4858		return btrfs_ioctl_snap_destroy(file, argp, true);
4859	case BTRFS_IOC_SUBVOL_GETFLAGS:
4860		return btrfs_ioctl_subvol_getflags(file, argp);
4861	case BTRFS_IOC_SUBVOL_SETFLAGS:
4862		return btrfs_ioctl_subvol_setflags(file, argp);
4863	case BTRFS_IOC_DEFAULT_SUBVOL:
4864		return btrfs_ioctl_default_subvol(file, argp);
4865	case BTRFS_IOC_DEFRAG:
4866		return btrfs_ioctl_defrag(file, NULL);
4867	case BTRFS_IOC_DEFRAG_RANGE:
4868		return btrfs_ioctl_defrag(file, argp);
4869	case BTRFS_IOC_RESIZE:
4870		return btrfs_ioctl_resize(file, argp);
4871	case BTRFS_IOC_ADD_DEV:
4872		return btrfs_ioctl_add_dev(fs_info, argp);
4873	case BTRFS_IOC_RM_DEV:
4874		return btrfs_ioctl_rm_dev(file, argp);
4875	case BTRFS_IOC_RM_DEV_V2:
4876		return btrfs_ioctl_rm_dev_v2(file, argp);
4877	case BTRFS_IOC_FS_INFO:
4878		return btrfs_ioctl_fs_info(fs_info, argp);
4879	case BTRFS_IOC_DEV_INFO:
4880		return btrfs_ioctl_dev_info(fs_info, argp);
4881	case BTRFS_IOC_BALANCE:
4882		return btrfs_ioctl_balance(file, NULL);
4883	case BTRFS_IOC_TREE_SEARCH:
4884		return btrfs_ioctl_tree_search(file, argp);
4885	case BTRFS_IOC_TREE_SEARCH_V2:
4886		return btrfs_ioctl_tree_search_v2(file, argp);
4887	case BTRFS_IOC_INO_LOOKUP:
4888		return btrfs_ioctl_ino_lookup(file, argp);
4889	case BTRFS_IOC_INO_PATHS:
4890		return btrfs_ioctl_ino_to_path(root, argp);
4891	case BTRFS_IOC_LOGICAL_INO:
4892		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4893	case BTRFS_IOC_LOGICAL_INO_V2:
4894		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4895	case BTRFS_IOC_SPACE_INFO:
4896		return btrfs_ioctl_space_info(fs_info, argp);
4897	case BTRFS_IOC_SYNC: {
4898		int ret;
4899
4900		ret = btrfs_start_delalloc_roots(fs_info, -1);
4901		if (ret)
4902			return ret;
4903		ret = btrfs_sync_fs(inode->i_sb, 1);
4904		/*
4905		 * The transaction thread may want to do more work,
4906		 * namely it pokes the cleaner kthread that will start
4907		 * processing uncleaned subvols.
4908		 */
4909		wake_up_process(fs_info->transaction_kthread);
4910		return ret;
4911	}
4912	case BTRFS_IOC_START_SYNC:
4913		return btrfs_ioctl_start_sync(root, argp);
4914	case BTRFS_IOC_WAIT_SYNC:
4915		return btrfs_ioctl_wait_sync(fs_info, argp);
4916	case BTRFS_IOC_SCRUB:
4917		return btrfs_ioctl_scrub(file, argp);
4918	case BTRFS_IOC_SCRUB_CANCEL:
4919		return btrfs_ioctl_scrub_cancel(fs_info);
4920	case BTRFS_IOC_SCRUB_PROGRESS:
4921		return btrfs_ioctl_scrub_progress(fs_info, argp);
4922	case BTRFS_IOC_BALANCE_V2:
4923		return btrfs_ioctl_balance(file, argp);
4924	case BTRFS_IOC_BALANCE_CTL:
4925		return btrfs_ioctl_balance_ctl(fs_info, arg);
4926	case BTRFS_IOC_BALANCE_PROGRESS:
4927		return btrfs_ioctl_balance_progress(fs_info, argp);
4928	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4929		return btrfs_ioctl_set_received_subvol(file, argp);
4930#ifdef CONFIG_64BIT
4931	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4932		return btrfs_ioctl_set_received_subvol_32(file, argp);
4933#endif
4934	case BTRFS_IOC_SEND:
4935		return _btrfs_ioctl_send(file, argp, false);
4936#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4937	case BTRFS_IOC_SEND_32:
4938		return _btrfs_ioctl_send(file, argp, true);
4939#endif
4940	case BTRFS_IOC_GET_DEV_STATS:
4941		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4942	case BTRFS_IOC_QUOTA_CTL:
4943		return btrfs_ioctl_quota_ctl(file, argp);
4944	case BTRFS_IOC_QGROUP_ASSIGN:
4945		return btrfs_ioctl_qgroup_assign(file, argp);
4946	case BTRFS_IOC_QGROUP_CREATE:
4947		return btrfs_ioctl_qgroup_create(file, argp);
4948	case BTRFS_IOC_QGROUP_LIMIT:
4949		return btrfs_ioctl_qgroup_limit(file, argp);
4950	case BTRFS_IOC_QUOTA_RESCAN:
4951		return btrfs_ioctl_quota_rescan(file, argp);
4952	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4953		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4954	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4955		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4956	case BTRFS_IOC_DEV_REPLACE:
4957		return btrfs_ioctl_dev_replace(fs_info, argp);
4958	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4959		return btrfs_ioctl_get_supported_features(argp);
4960	case BTRFS_IOC_GET_FEATURES:
4961		return btrfs_ioctl_get_features(fs_info, argp);
4962	case BTRFS_IOC_SET_FEATURES:
4963		return btrfs_ioctl_set_features(file, argp);
4964	case FS_IOC_FSGETXATTR:
4965		return btrfs_ioctl_fsgetxattr(file, argp);
4966	case FS_IOC_FSSETXATTR:
4967		return btrfs_ioctl_fssetxattr(file, argp);
4968	case BTRFS_IOC_GET_SUBVOL_INFO:
4969		return btrfs_ioctl_get_subvol_info(file, argp);
4970	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4971		return btrfs_ioctl_get_subvol_rootref(file, argp);
4972	case BTRFS_IOC_INO_LOOKUP_USER:
4973		return btrfs_ioctl_ino_lookup_user(file, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4974	}
4975
4976	return -ENOTTY;
4977}
4978
4979#ifdef CONFIG_COMPAT
4980long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4981{
4982	/*
4983	 * These all access 32-bit values anyway so no further
4984	 * handling is necessary.
4985	 */
4986	switch (cmd) {
4987	case FS_IOC32_GETFLAGS:
4988		cmd = FS_IOC_GETFLAGS;
4989		break;
4990	case FS_IOC32_SETFLAGS:
4991		cmd = FS_IOC_SETFLAGS;
4992		break;
4993	case FS_IOC32_GETVERSION:
4994		cmd = FS_IOC_GETVERSION;
4995		break;
4996	}
4997
4998	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4999}
5000#endif