Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
 
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
  17#include <linux/namei.h>
 
  18#include <linux/writeback.h>
 
  19#include <linux/compat.h>
 
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include <linux/sched/xacct.h>
  32#include <linux/io_uring/cmd.h>
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "export.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
 
  38#include "volumes.h"
  39#include "locking.h"
 
  40#include "backref.h"
 
  41#include "send.h"
  42#include "dev-replace.h"
  43#include "props.h"
  44#include "sysfs.h"
  45#include "qgroup.h"
  46#include "tree-log.h"
  47#include "compression.h"
  48#include "space-info.h"
  49#include "block-group.h"
  50#include "fs.h"
  51#include "accessors.h"
  52#include "extent-tree.h"
  53#include "root-tree.h"
  54#include "defrag.h"
  55#include "dir-item.h"
  56#include "uuid-tree.h"
  57#include "ioctl.h"
  58#include "file.h"
  59#include "scrub.h"
  60#include "super.h"
  61
  62#ifdef CONFIG_64BIT
  63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  64 * structures are incorrect, as the timespec structure from userspace
  65 * is 4 bytes too small. We define these alternatives here to teach
  66 * the kernel about the 32-bit struct packing.
  67 */
  68struct btrfs_ioctl_timespec_32 {
  69	__u64 sec;
  70	__u32 nsec;
  71} __attribute__ ((__packed__));
  72
  73struct btrfs_ioctl_received_subvol_args_32 {
  74	char	uuid[BTRFS_UUID_SIZE];	/* in */
  75	__u64	stransid;		/* in */
  76	__u64	rtransid;		/* out */
  77	struct btrfs_ioctl_timespec_32 stime; /* in */
  78	struct btrfs_ioctl_timespec_32 rtime; /* out */
  79	__u64	flags;			/* in */
  80	__u64	reserved[16];		/* in */
  81} __attribute__ ((__packed__));
  82
  83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  84				struct btrfs_ioctl_received_subvol_args_32)
  85#endif
  86
  87#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  88struct btrfs_ioctl_send_args_32 {
  89	__s64 send_fd;			/* in */
  90	__u64 clone_sources_count;	/* in */
  91	compat_uptr_t clone_sources;	/* in */
  92	__u64 parent_root;		/* in */
  93	__u64 flags;			/* in */
  94	__u32 version;			/* in */
  95	__u8  reserved[28];		/* in */
  96} __attribute__ ((__packed__));
  97
  98#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  99			       struct btrfs_ioctl_send_args_32)
 100
 101struct btrfs_ioctl_encoded_io_args_32 {
 102	compat_uptr_t iov;
 103	compat_ulong_t iovcnt;
 104	__s64 offset;
 105	__u64 flags;
 106	__u64 len;
 107	__u64 unencoded_len;
 108	__u64 unencoded_offset;
 109	__u32 compression;
 110	__u32 encryption;
 111	__u8 reserved[64];
 112};
 113
 114#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
 115				       struct btrfs_ioctl_encoded_io_args_32)
 116#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
 117					struct btrfs_ioctl_encoded_io_args_32)
 118#endif
 119
 120/* Mask out flags that are inappropriate for the given type of inode. */
 121static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
 122		unsigned int flags)
 123{
 124	if (S_ISDIR(inode->i_mode))
 125		return flags;
 126	else if (S_ISREG(inode->i_mode))
 127		return flags & ~FS_DIRSYNC_FL;
 128	else
 129		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 130}
 131
 132/*
 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 134 * ioctl.
 135 */
 136static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 137{
 138	unsigned int iflags = 0;
 139	u32 flags = binode->flags;
 140	u32 ro_flags = binode->ro_flags;
 141
 142	if (flags & BTRFS_INODE_SYNC)
 143		iflags |= FS_SYNC_FL;
 144	if (flags & BTRFS_INODE_IMMUTABLE)
 145		iflags |= FS_IMMUTABLE_FL;
 146	if (flags & BTRFS_INODE_APPEND)
 147		iflags |= FS_APPEND_FL;
 148	if (flags & BTRFS_INODE_NODUMP)
 149		iflags |= FS_NODUMP_FL;
 150	if (flags & BTRFS_INODE_NOATIME)
 151		iflags |= FS_NOATIME_FL;
 152	if (flags & BTRFS_INODE_DIRSYNC)
 153		iflags |= FS_DIRSYNC_FL;
 154	if (flags & BTRFS_INODE_NODATACOW)
 155		iflags |= FS_NOCOW_FL;
 156	if (ro_flags & BTRFS_INODE_RO_VERITY)
 157		iflags |= FS_VERITY_FL;
 158
 159	if (flags & BTRFS_INODE_NOCOMPRESS)
 160		iflags |= FS_NOCOMP_FL;
 161	else if (flags & BTRFS_INODE_COMPRESS)
 162		iflags |= FS_COMPR_FL;
 
 
 163
 164	return iflags;
 165}
 166
 167/*
 168 * Update inode->i_flags based on the btrfs internal flags.
 169 */
 170void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 171{
 172	struct btrfs_inode *binode = BTRFS_I(inode);
 173	unsigned int new_fl = 0;
 174
 175	if (binode->flags & BTRFS_INODE_SYNC)
 176		new_fl |= S_SYNC;
 177	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 178		new_fl |= S_IMMUTABLE;
 179	if (binode->flags & BTRFS_INODE_APPEND)
 180		new_fl |= S_APPEND;
 181	if (binode->flags & BTRFS_INODE_NOATIME)
 182		new_fl |= S_NOATIME;
 183	if (binode->flags & BTRFS_INODE_DIRSYNC)
 184		new_fl |= S_DIRSYNC;
 185	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 186		new_fl |= S_VERITY;
 187
 188	set_mask_bits(&inode->i_flags,
 189		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 190		      S_VERITY, new_fl);
 191}
 192
 193/*
 194 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 195 * the old and new flags are not conflicting
 
 196 */
 197static int check_fsflags(unsigned int old_flags, unsigned int flags)
 198{
 199	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 200		      FS_NOATIME_FL | FS_NODUMP_FL | \
 201		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 202		      FS_NOCOMP_FL | FS_COMPR_FL |
 203		      FS_NOCOW_FL))
 204		return -EOPNOTSUPP;
 205
 206	/* COMPR and NOCOMP on new/old are valid */
 207	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 208		return -EINVAL;
 209
 210	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 211		return -EINVAL;
 212
 213	/* NOCOW and compression options are mutually exclusive */
 214	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 215		return -EINVAL;
 216	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 217		return -EINVAL;
 218
 219	return 0;
 220}
 
 
 
 
 
 221
 222static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 223				    unsigned int flags)
 224{
 225	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 226		return -EPERM;
 227
 228	return 0;
 229}
 230
 231int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
 232{
 233	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
 234		return -ENAMETOOLONG;
 235	return 0;
 236}
 237
 238static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
 239{
 240	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
 241		return -ENAMETOOLONG;
 242	return 0;
 243}
 244
 245/*
 246 * Set flags/xflags from the internal inode flags. The remaining items of
 247 * fsxattr are zeroed.
 248 */
 249int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 250{
 251	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 
 
 
 
 
 
 
 
 252
 253	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 254	return 0;
 255}
 256
 257int btrfs_fileattr_set(struct mnt_idmap *idmap,
 258		       struct dentry *dentry, struct fileattr *fa)
 259{
 260	struct inode *inode = d_inode(dentry);
 261	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 262	struct btrfs_inode *binode = BTRFS_I(inode);
 263	struct btrfs_root *root = binode->root;
 264	struct btrfs_trans_handle *trans;
 265	unsigned int fsflags, old_fsflags;
 266	int ret;
 267	const char *comp = NULL;
 268	u32 binode_flags;
 
 
 
 
 269
 270	if (btrfs_root_readonly(root))
 271		return -EROFS;
 272
 273	if (fileattr_has_fsx(fa))
 274		return -EOPNOTSUPP;
 275
 276	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 277	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 278	ret = check_fsflags(old_fsflags, fsflags);
 279	if (ret)
 280		return ret;
 281
 282	ret = check_fsflags_compatible(fs_info, fsflags);
 283	if (ret)
 284		return ret;
 285
 286	binode_flags = binode->flags;
 287	if (fsflags & FS_SYNC_FL)
 288		binode_flags |= BTRFS_INODE_SYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	else
 290		binode_flags &= ~BTRFS_INODE_SYNC;
 291	if (fsflags & FS_IMMUTABLE_FL)
 292		binode_flags |= BTRFS_INODE_IMMUTABLE;
 293	else
 294		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 295	if (fsflags & FS_APPEND_FL)
 296		binode_flags |= BTRFS_INODE_APPEND;
 297	else
 298		binode_flags &= ~BTRFS_INODE_APPEND;
 299	if (fsflags & FS_NODUMP_FL)
 300		binode_flags |= BTRFS_INODE_NODUMP;
 301	else
 302		binode_flags &= ~BTRFS_INODE_NODUMP;
 303	if (fsflags & FS_NOATIME_FL)
 304		binode_flags |= BTRFS_INODE_NOATIME;
 305	else
 306		binode_flags &= ~BTRFS_INODE_NOATIME;
 307
 308	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 309	if (!fa->flags_valid) {
 310		/* 1 item for the inode */
 311		trans = btrfs_start_transaction(root, 1);
 312		if (IS_ERR(trans))
 313			return PTR_ERR(trans);
 314		goto update_flags;
 315	}
 316
 317	if (fsflags & FS_DIRSYNC_FL)
 318		binode_flags |= BTRFS_INODE_DIRSYNC;
 319	else
 320		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 321	if (fsflags & FS_NOCOW_FL) {
 322		if (S_ISREG(inode->i_mode)) {
 323			/*
 324			 * It's safe to turn csums off here, no extents exist.
 325			 * Otherwise we want the flag to reflect the real COW
 326			 * status of the file and will not set it.
 327			 */
 328			if (inode->i_size == 0)
 329				binode_flags |= BTRFS_INODE_NODATACOW |
 330						BTRFS_INODE_NODATASUM;
 331		} else {
 332			binode_flags |= BTRFS_INODE_NODATACOW;
 333		}
 334	} else {
 335		/*
 336		 * Revert back under same assumptions as above
 337		 */
 338		if (S_ISREG(inode->i_mode)) {
 339			if (inode->i_size == 0)
 340				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 341						  BTRFS_INODE_NODATASUM);
 342		} else {
 343			binode_flags &= ~BTRFS_INODE_NODATACOW;
 344		}
 345	}
 346
 347	/*
 348	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 349	 * flag may be changed automatically if compression code won't make
 350	 * things smaller.
 351	 */
 352	if (fsflags & FS_NOCOMP_FL) {
 353		binode_flags &= ~BTRFS_INODE_COMPRESS;
 354		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 355	} else if (fsflags & FS_COMPR_FL) {
 356
 357		if (IS_SWAPFILE(inode))
 358			return -ETXTBSY;
 359
 360		binode_flags |= BTRFS_INODE_COMPRESS;
 361		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 362
 363		comp = btrfs_compress_type2str(fs_info->compress_type);
 364		if (!comp || comp[0] == 0)
 365			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 366	} else {
 367		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 368	}
 369
 370	/*
 371	 * 1 for inode item
 372	 * 2 for properties
 373	 */
 374	trans = btrfs_start_transaction(root, 3);
 375	if (IS_ERR(trans))
 376		return PTR_ERR(trans);
 377
 378	if (comp) {
 379		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
 
 
 
 380				     comp, strlen(comp), 0);
 381		if (ret) {
 382			btrfs_abort_transaction(trans, ret);
 383			goto out_end_trans;
 384		}
 385	} else {
 386		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
 387				     NULL, 0, 0);
 388		if (ret && ret != -ENODATA) {
 389			btrfs_abort_transaction(trans, ret);
 390			goto out_end_trans;
 391		}
 392	}
 393
 394update_flags:
 395	binode->flags = binode_flags;
 396	btrfs_sync_inode_flags_to_i_flags(inode);
 397	inode_inc_iversion(inode);
 398	inode_set_ctime_current(inode);
 399	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 400
 401 out_end_trans:
 402	btrfs_end_transaction(trans);
 403	return ret;
 404}
 405
 406/*
 407 * Start exclusive operation @type, return true on success
 408 */
 409bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 410			enum btrfs_exclusive_operation type)
 411{
 412	bool ret = false;
 413
 414	spin_lock(&fs_info->super_lock);
 415	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 416		fs_info->exclusive_operation = type;
 417		ret = true;
 
 418	}
 419	spin_unlock(&fs_info->super_lock);
 420
 
 
 
 421	return ret;
 422}
 423
 424/*
 425 * Conditionally allow to enter the exclusive operation in case it's compatible
 426 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 427 * btrfs_exclop_finish.
 428 *
 429 * Compatibility:
 430 * - the same type is already running
 431 * - when trying to add a device and balance has been paused
 432 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 433 *   must check the condition first that would allow none -> @type
 434 */
 435bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 436				 enum btrfs_exclusive_operation type)
 437{
 438	spin_lock(&fs_info->super_lock);
 439	if (fs_info->exclusive_operation == type ||
 440	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
 441	     type == BTRFS_EXCLOP_DEV_ADD))
 442		return true;
 443
 444	spin_unlock(&fs_info->super_lock);
 445	return false;
 446}
 447
 448void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 449{
 450	spin_unlock(&fs_info->super_lock);
 451}
 452
 453void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 454{
 455	spin_lock(&fs_info->super_lock);
 456	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 457	spin_unlock(&fs_info->super_lock);
 458	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 459}
 460
 461void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
 462			  enum btrfs_exclusive_operation op)
 463{
 464	switch (op) {
 465	case BTRFS_EXCLOP_BALANCE_PAUSED:
 466		spin_lock(&fs_info->super_lock);
 467		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
 468		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
 469		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
 470		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 471		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
 472		spin_unlock(&fs_info->super_lock);
 473		break;
 474	case BTRFS_EXCLOP_BALANCE:
 475		spin_lock(&fs_info->super_lock);
 476		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 477		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
 478		spin_unlock(&fs_info->super_lock);
 479		break;
 480	default:
 481		btrfs_warn(fs_info,
 482			"invalid exclop balance operation %d requested", op);
 483	}
 484}
 485
 486static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
 487{
 488	return put_user(inode->i_generation, arg);
 489}
 490
 491static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 492					void __user *arg)
 493{
 
 494	struct btrfs_device *device;
 
 495	struct fstrim_range range;
 496	u64 minlen = ULLONG_MAX;
 497	u64 num_devices = 0;
 
 498	int ret;
 499
 500	if (!capable(CAP_SYS_ADMIN))
 501		return -EPERM;
 502
 503	/*
 504	 * btrfs_trim_block_group() depends on space cache, which is not
 505	 * available in zoned filesystem. So, disallow fitrim on a zoned
 506	 * filesystem for now.
 507	 */
 508	if (btrfs_is_zoned(fs_info))
 509		return -EOPNOTSUPP;
 510
 511	/*
 512	 * If the fs is mounted with nologreplay, which requires it to be
 513	 * mounted in RO mode as well, we can not allow discard on free space
 514	 * inside block groups, because log trees refer to extents that are not
 515	 * pinned in a block group's free space cache (pinning the extents is
 516	 * precisely the first phase of replaying a log tree).
 517	 */
 518	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 519		return -EROFS;
 520
 521	rcu_read_lock();
 522	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 523				dev_list) {
 524		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
 525			continue;
 526		num_devices++;
 527		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
 528				    minlen);
 
 
 
 529	}
 530	rcu_read_unlock();
 531
 532	if (!num_devices)
 533		return -EOPNOTSUPP;
 534	if (copy_from_user(&range, arg, sizeof(range)))
 535		return -EFAULT;
 536
 537	/*
 538	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 539	 * block group is in the logical address space, which can be any
 540	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 541	 */
 542	if (range.len < fs_info->sectorsize)
 543		return -EINVAL;
 544
 
 545	range.minlen = max(range.minlen, minlen);
 546	ret = btrfs_trim_fs(fs_info, &range);
 
 
 547
 548	if (copy_to_user(arg, &range, sizeof(range)))
 549		return -EFAULT;
 550
 551	return ret;
 552}
 553
 554int __pure btrfs_is_empty_uuid(const u8 *uuid)
 555{
 556	int i;
 557
 558	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 559		if (uuid[i])
 560			return 0;
 561	}
 562	return 1;
 563}
 564
 565/*
 566 * Calculate the number of transaction items to reserve for creating a subvolume
 567 * or snapshot, not including the inode, directory entries, or parent directory.
 568 */
 569static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
 570{
 571	/*
 572	 * 1 to add root block
 573	 * 1 to add root item
 574	 * 1 to add root ref
 575	 * 1 to add root backref
 576	 * 1 to add UUID item
 577	 * 1 to add qgroup info
 578	 * 1 to add qgroup limit
 579	 *
 580	 * Ideally the last two would only be accounted if qgroups are enabled,
 581	 * but that can change between now and the time we would insert them.
 582	 */
 583	unsigned int num_items = 7;
 584
 585	if (inherit) {
 586		/* 2 to add qgroup relations for each inherited qgroup */
 587		num_items += 2 * inherit->num_qgroups;
 588	}
 589	return num_items;
 590}
 591
 592static noinline int create_subvol(struct mnt_idmap *idmap,
 593				  struct inode *dir, struct dentry *dentry,
 594				  struct btrfs_qgroup_inherit *inherit)
 595{
 596	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 597	struct btrfs_trans_handle *trans;
 598	struct btrfs_key key;
 599	struct btrfs_root_item *root_item;
 600	struct btrfs_inode_item *inode_item;
 601	struct extent_buffer *leaf;
 602	struct btrfs_root *root = BTRFS_I(dir)->root;
 603	struct btrfs_root *new_root;
 604	struct btrfs_block_rsv block_rsv;
 605	struct timespec64 cur_time = current_time(dir);
 606	struct btrfs_new_inode_args new_inode_args = {
 607		.dir = dir,
 608		.dentry = dentry,
 609		.subvol = true,
 610	};
 611	unsigned int trans_num_items;
 612	int ret;
 613	dev_t anon_dev;
 614	u64 objectid;
 615	u64 qgroup_reserved = 0;
 616
 617	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 618	if (!root_item)
 619		return -ENOMEM;
 620
 621	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 622	if (ret)
 623		goto out_root_item;
 624
 625	/*
 626	 * Don't create subvolume whose level is not zero. Or qgroup will be
 627	 * screwed up since it assumes subvolume qgroup's level to be 0.
 628	 */
 629	if (btrfs_qgroup_level(objectid)) {
 630		ret = -ENOSPC;
 631		goto out_root_item;
 632	}
 633
 634	ret = get_anon_bdev(&anon_dev);
 635	if (ret < 0)
 636		goto out_root_item;
 637
 638	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
 639	if (!new_inode_args.inode) {
 640		ret = -ENOMEM;
 641		goto out_anon_dev;
 642	}
 643	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 644	if (ret)
 645		goto out_inode;
 646	trans_num_items += create_subvol_num_items(inherit);
 647
 648	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 
 
 
 
 649	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 650					       trans_num_items, false);
 651	if (ret)
 652		goto out_new_inode_args;
 653	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
 654
 655	trans = btrfs_start_transaction(root, 0);
 656	if (IS_ERR(trans)) {
 657		ret = PTR_ERR(trans);
 658		goto out_release_rsv;
 
 
 659	}
 660	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 661	qgroup_reserved = 0;
 662	trans->block_rsv = &block_rsv;
 663	trans->bytes_reserved = block_rsv.size;
 664
 665	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
 666	if (ret)
 667		goto out;
 668
 669	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 670				      0, BTRFS_NESTING_NORMAL);
 671	if (IS_ERR(leaf)) {
 672		ret = PTR_ERR(leaf);
 673		goto out;
 674	}
 675
 676	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678	inode_item = &root_item->inode;
 679	btrfs_set_stack_inode_generation(inode_item, 1);
 680	btrfs_set_stack_inode_size(inode_item, 3);
 681	btrfs_set_stack_inode_nlink(inode_item, 1);
 682	btrfs_set_stack_inode_nbytes(inode_item,
 683				     fs_info->nodesize);
 684	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 685
 686	btrfs_set_root_flags(root_item, 0);
 687	btrfs_set_root_limit(root_item, 0);
 688	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 689
 690	btrfs_set_root_bytenr(root_item, leaf->start);
 691	btrfs_set_root_generation(root_item, trans->transid);
 692	btrfs_set_root_level(root_item, 0);
 693	btrfs_set_root_refs(root_item, 1);
 694	btrfs_set_root_used(root_item, leaf->len);
 695	btrfs_set_root_last_snapshot(root_item, 0);
 696
 697	btrfs_set_root_generation_v2(root_item,
 698			btrfs_root_generation(root_item));
 699	generate_random_guid(root_item->uuid);
 700	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 701	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 702	root_item->ctime = root_item->otime;
 703	btrfs_set_root_ctransid(root_item, trans->transid);
 704	btrfs_set_root_otransid(root_item, trans->transid);
 
 705
 706	btrfs_tree_unlock(leaf);
 
 
 707
 708	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 709
 710	key.objectid = objectid;
 711	key.offset = 0;
 712	key.type = BTRFS_ROOT_ITEM_KEY;
 713	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 714				root_item);
 715	if (ret) {
 716		int ret2;
 717
 718		/*
 719		 * Since we don't abort the transaction in this case, free the
 720		 * tree block so that we don't leak space and leave the
 721		 * filesystem in an inconsistent state (an extent item in the
 722		 * extent tree with a backreference for a root that does not
 723		 * exists).
 724		 */
 725		btrfs_tree_lock(leaf);
 726		btrfs_clear_buffer_dirty(trans, leaf);
 727		btrfs_tree_unlock(leaf);
 728		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 729		if (ret2 < 0)
 730			btrfs_abort_transaction(trans, ret2);
 731		free_extent_buffer(leaf);
 732		goto out;
 733	}
 734
 735	free_extent_buffer(leaf);
 736	leaf = NULL;
 737
 738	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
 
 739	if (IS_ERR(new_root)) {
 740		ret = PTR_ERR(new_root);
 741		btrfs_abort_transaction(trans, ret);
 742		goto out;
 743	}
 744	/* anon_dev is owned by new_root now. */
 745	anon_dev = 0;
 746	BTRFS_I(new_inode_args.inode)->root = new_root;
 747	/* ... and new_root is owned by new_inode_args.inode now. */
 748
 749	ret = btrfs_record_root_in_trans(trans, new_root);
 
 
 750	if (ret) {
 751		btrfs_abort_transaction(trans, ret);
 752		goto out;
 
 753	}
 754
 755	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 756				  BTRFS_UUID_KEY_SUBVOL, objectid);
 
 
 
 
 
 
 757	if (ret) {
 758		btrfs_abort_transaction(trans, ret);
 759		goto out;
 760	}
 761
 762	ret = btrfs_create_new_inode(trans, &new_inode_args);
 
 
 763	if (ret) {
 764		btrfs_abort_transaction(trans, ret);
 765		goto out;
 766	}
 767
 768	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
 769
 770	d_instantiate_new(dentry, new_inode_args.inode);
 771	new_inode_args.inode = NULL;
 
 
 
 
 
 
 
 
 
 
 772
 773out:
 774	trans->block_rsv = NULL;
 775	trans->bytes_reserved = 0;
 776	btrfs_end_transaction(trans);
 777out_release_rsv:
 778	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
 779	if (qgroup_reserved)
 780		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 781out_new_inode_args:
 782	btrfs_new_inode_args_destroy(&new_inode_args);
 783out_inode:
 784	iput(new_inode_args.inode);
 785out_anon_dev:
 786	if (anon_dev)
 787		free_anon_bdev(anon_dev);
 788out_root_item:
 789	kfree(root_item);
 
 
 
 
 
 790	return ret;
 791}
 792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 794			   struct dentry *dentry, bool readonly,
 
 795			   struct btrfs_qgroup_inherit *inherit)
 796{
 797	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 798	struct inode *inode;
 799	struct btrfs_pending_snapshot *pending_snapshot;
 800	unsigned int trans_num_items;
 801	struct btrfs_trans_handle *trans;
 802	struct btrfs_block_rsv *block_rsv;
 803	u64 qgroup_reserved = 0;
 804	int ret;
 805
 806	/* We do not support snapshotting right now. */
 807	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 808		btrfs_warn(fs_info,
 809			   "extent tree v2 doesn't support snapshotting yet");
 810		return -EOPNOTSUPP;
 811	}
 812
 813	if (btrfs_root_refs(&root->root_item) == 0)
 814		return -ENOENT;
 815
 816	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 817		return -EINVAL;
 818
 819	if (atomic_read(&root->nr_swapfiles)) {
 820		btrfs_warn(fs_info,
 821			   "cannot snapshot subvolume with active swapfile");
 822		return -ETXTBSY;
 823	}
 824
 825	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 826	if (!pending_snapshot)
 827		return -ENOMEM;
 828
 829	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 830	if (ret < 0)
 831		goto free_pending;
 832	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 833			GFP_KERNEL);
 834	pending_snapshot->path = btrfs_alloc_path();
 835	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 836		ret = -ENOMEM;
 837		goto free_pending;
 838	}
 839
 840	block_rsv = &pending_snapshot->block_rsv;
 841	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
 
 
 
 
 
 
 
 
 
 
 842	/*
 843	 * 1 to add dir item
 844	 * 1 to add dir index
 845	 * 1 to update parent inode item
 
 
 
 846	 */
 847	trans_num_items = create_subvol_num_items(inherit) + 3;
 848	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
 849					       trans_num_items, false);
 
 850	if (ret)
 851		goto free_pending;
 852	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
 853
 854	pending_snapshot->dentry = dentry;
 855	pending_snapshot->root = root;
 856	pending_snapshot->readonly = readonly;
 857	pending_snapshot->dir = BTRFS_I(dir);
 858	pending_snapshot->inherit = inherit;
 859
 860	trans = btrfs_start_transaction(root, 0);
 861	if (IS_ERR(trans)) {
 862		ret = PTR_ERR(trans);
 863		goto fail;
 864	}
 865	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
 866	if (ret) {
 867		btrfs_end_transaction(trans);
 868		goto fail;
 869	}
 870	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 871	qgroup_reserved = 0;
 872
 873	trans->pending_snapshot = pending_snapshot;
 874
 875	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 876	if (ret)
 877		goto fail;
 878
 879	ret = pending_snapshot->error;
 880	if (ret)
 881		goto fail;
 882
 883	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 884	if (ret)
 885		goto fail;
 886
 887	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 888	if (IS_ERR(inode)) {
 889		ret = PTR_ERR(inode);
 890		goto fail;
 891	}
 892
 893	d_instantiate(dentry, inode);
 894	ret = 0;
 895	pending_snapshot->anon_dev = 0;
 896fail:
 897	/* Prevent double freeing of anon_dev */
 898	if (ret && pending_snapshot->snap)
 899		pending_snapshot->snap->anon_dev = 0;
 900	btrfs_put_root(pending_snapshot->snap);
 901	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
 902	if (qgroup_reserved)
 903		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 904free_pending:
 905	if (pending_snapshot->anon_dev)
 906		free_anon_bdev(pending_snapshot->anon_dev);
 907	kfree(pending_snapshot->root_item);
 908	btrfs_free_path(pending_snapshot->path);
 909	kfree(pending_snapshot);
 910
 911	return ret;
 912}
 913
 914/*  copy of may_delete in fs/namei.c()
 915 *	Check whether we can remove a link victim from directory dir, check
 916 *  whether the type of victim is right.
 917 *  1. We can't do it if dir is read-only (done in permission())
 918 *  2. We should have write and exec permissions on dir
 919 *  3. We can't remove anything from append-only dir
 920 *  4. We can't do anything with immutable dir (done in permission())
 921 *  5. If the sticky bit on dir is set we should either
 922 *	a. be owner of dir, or
 923 *	b. be owner of victim, or
 924 *	c. have CAP_FOWNER capability
 925 *  6. If the victim is append-only or immutable we can't do anything with
 926 *     links pointing to it.
 927 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 928 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 929 *  9. We can't remove a root or mountpoint.
 930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 931 *     nfs_async_unlink().
 932 */
 933
 934static int btrfs_may_delete(struct mnt_idmap *idmap,
 935			    struct inode *dir, struct dentry *victim, int isdir)
 936{
 937	int error;
 938
 939	if (d_really_is_negative(victim))
 940		return -ENOENT;
 941
 942	/* The @victim is not inside @dir. */
 943	if (d_inode(victim->d_parent) != dir)
 944		return -EINVAL;
 945	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 946
 947	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 948	if (error)
 949		return error;
 950	if (IS_APPEND(dir))
 951		return -EPERM;
 952	if (check_sticky(idmap, dir, d_inode(victim)) ||
 953	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 954	    IS_SWAPFILE(d_inode(victim)))
 955		return -EPERM;
 956	if (isdir) {
 957		if (!d_is_dir(victim))
 958			return -ENOTDIR;
 959		if (IS_ROOT(victim))
 960			return -EBUSY;
 961	} else if (d_is_dir(victim))
 962		return -EISDIR;
 963	if (IS_DEADDIR(dir))
 964		return -ENOENT;
 965	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 966		return -EBUSY;
 967	return 0;
 968}
 969
 970/* copy of may_create in fs/namei.c() */
 971static inline int btrfs_may_create(struct mnt_idmap *idmap,
 972				   struct inode *dir, struct dentry *child)
 973{
 974	if (d_really_is_positive(child))
 975		return -EEXIST;
 976	if (IS_DEADDIR(dir))
 977		return -ENOENT;
 978	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
 979		return -EOVERFLOW;
 980	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 981}
 982
 983/*
 984 * Create a new subvolume below @parent.  This is largely modeled after
 985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 986 * inside this filesystem so it's quite a bit simpler.
 987 */
 988static noinline int btrfs_mksubvol(const struct path *parent,
 989				   struct mnt_idmap *idmap,
 990				   const char *name, int namelen,
 991				   struct btrfs_root *snap_src,
 992				   bool readonly,
 993				   struct btrfs_qgroup_inherit *inherit)
 994{
 995	struct inode *dir = d_inode(parent->dentry);
 996	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 997	struct dentry *dentry;
 998	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
 999	int error;
1000
1001	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002	if (error == -EINTR)
1003		return error;
1004
1005	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006	error = PTR_ERR(dentry);
1007	if (IS_ERR(dentry))
1008		goto out_unlock;
1009
1010	error = btrfs_may_create(idmap, dir, dentry);
1011	if (error)
1012		goto out_dput;
1013
1014	/*
1015	 * even if this name doesn't exist, we may get hash collisions.
1016	 * check for them now when we can safely fail
1017	 */
1018	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019					       dir->i_ino, &name_str);
 
1020	if (error)
1021		goto out_dput;
1022
1023	down_read(&fs_info->subvol_sem);
1024
1025	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026		goto out_up_read;
1027
1028	if (snap_src)
1029		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030	else
1031		error = create_subvol(idmap, dir, dentry, inherit);
1032
 
 
1033	if (!error)
1034		fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036	up_read(&fs_info->subvol_sem);
1037out_dput:
1038	dput(dentry);
1039out_unlock:
1040	btrfs_inode_unlock(BTRFS_I(dir), 0);
1041	return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045				   struct mnt_idmap *idmap,
1046				   const char *name, int namelen,
1047				   struct btrfs_root *root,
1048				   bool readonly,
1049				   struct btrfs_qgroup_inherit *inherit)
 
 
1050{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	/*
1054	 * Force new buffered writes to reserve space even when NOCOW is
1055	 * possible. This is to avoid later writeback (running dealloc) to
1056	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057	 */
1058	btrfs_drew_read_lock(&root->snapshot_lock);
 
 
1059
1060	ret = btrfs_start_delalloc_snapshot(root, false);
1061	if (ret)
1062		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	/*
1065	 * All previous writes have started writeback in NOCOW mode, so now
1066	 * we force future writes to fallback to COW mode during snapshot
1067	 * creation.
1068	 */
1069	atomic_inc(&root->snapshot_force_cow);
 
 
 
1070
1071	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
 
 
1072
1073	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1074			     root, readonly, inherit);
1075	atomic_dec(&root->snapshot_force_cow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076out:
1077	btrfs_drew_read_unlock(&root->snapshot_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	return ret;
1079}
1080
1081/*
1082 * Try to start exclusive operation @type or cancel it if it's running.
 
 
1083 *
1084 * Return:
1085 *   0        - normal mode, newly claimed op started
1086 *  >0        - normal mode, something else is running,
1087 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1088 * ECANCELED  - cancel mode, successful cancel
1089 * ENOTCONN   - cancel mode, operation not running anymore
1090 */
1091static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1092			enum btrfs_exclusive_operation type, bool cancel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093{
1094	if (!cancel) {
1095		/* Start normal op */
1096		if (!btrfs_exclop_start(fs_info, type))
1097			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1098		/* Exclusive operation is now claimed */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099		return 0;
 
 
 
 
 
 
 
 
 
1100	}
1101
1102	/* Cancel running op */
1103	if (btrfs_exclop_start_try_lock(fs_info, type)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104		/*
1105		 * This blocks any exclop finish from setting it to NONE, so we
1106		 * request cancellation. Either it runs and we will wait for it,
1107		 * or it has finished and no waiting will happen.
1108		 */
1109		atomic_inc(&fs_info->reloc_cancel_req);
1110		btrfs_exclop_start_unlock(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111
1112		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1113			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1114				    TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
1115
1116		return -ECANCELED;
 
1117	}
1118
1119	/* Something else is running or none */
1120	return -ENOTCONN;
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123static noinline int btrfs_ioctl_resize(struct file *file,
1124					void __user *arg)
1125{
1126	BTRFS_DEV_LOOKUP_ARGS(args);
1127	struct inode *inode = file_inode(file);
1128	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1129	u64 new_size;
1130	u64 old_size;
1131	u64 devid = 1;
1132	struct btrfs_root *root = BTRFS_I(inode)->root;
1133	struct btrfs_ioctl_vol_args *vol_args;
1134	struct btrfs_trans_handle *trans;
1135	struct btrfs_device *device = NULL;
1136	char *sizestr;
1137	char *retptr;
1138	char *devstr = NULL;
1139	int ret = 0;
1140	int mod = 0;
1141	bool cancel;
1142
1143	if (!capable(CAP_SYS_ADMIN))
1144		return -EPERM;
1145
1146	ret = mnt_want_write_file(file);
1147	if (ret)
1148		return ret;
1149
1150	/*
1151	 * Read the arguments before checking exclusivity to be able to
1152	 * distinguish regular resize and cancel
1153	 */
 
 
 
1154	vol_args = memdup_user(arg, sizeof(*vol_args));
1155	if (IS_ERR(vol_args)) {
1156		ret = PTR_ERR(vol_args);
1157		goto out_drop;
1158	}
1159	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1160	if (ret < 0)
1161		goto out_free;
1162
1163	sizestr = vol_args->name;
1164	cancel = (strcmp("cancel", sizestr) == 0);
1165	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1166	if (ret)
1167		goto out_free;
1168	/* Exclusive operation is now claimed */
1169
 
1170	devstr = strchr(sizestr, ':');
1171	if (devstr) {
1172		sizestr = devstr + 1;
1173		*devstr = '\0';
1174		devstr = vol_args->name;
1175		ret = kstrtoull(devstr, 10, &devid);
1176		if (ret)
1177			goto out_finish;
1178		if (!devid) {
1179			ret = -EINVAL;
1180			goto out_finish;
1181		}
1182		btrfs_info(fs_info, "resizing devid %llu", devid);
1183	}
1184
1185	args.devid = devid;
1186	device = btrfs_find_device(fs_info->fs_devices, &args);
1187	if (!device) {
1188		btrfs_info(fs_info, "resizer unable to find device %llu",
1189			   devid);
1190		ret = -ENODEV;
1191		goto out_finish;
1192	}
1193
1194	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1195		btrfs_info(fs_info,
1196			   "resizer unable to apply on readonly device %llu",
1197		       devid);
1198		ret = -EPERM;
1199		goto out_finish;
1200	}
1201
1202	if (!strcmp(sizestr, "max"))
1203		new_size = bdev_nr_bytes(device->bdev);
1204	else {
1205		if (sizestr[0] == '-') {
1206			mod = -1;
1207			sizestr++;
1208		} else if (sizestr[0] == '+') {
1209			mod = 1;
1210			sizestr++;
1211		}
1212		new_size = memparse(sizestr, &retptr);
1213		if (*retptr != '\0' || new_size == 0) {
1214			ret = -EINVAL;
1215			goto out_finish;
1216		}
1217	}
1218
1219	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1220		ret = -EPERM;
1221		goto out_finish;
1222	}
1223
1224	old_size = btrfs_device_get_total_bytes(device);
1225
1226	if (mod < 0) {
1227		if (new_size > old_size) {
1228			ret = -EINVAL;
1229			goto out_finish;
1230		}
1231		new_size = old_size - new_size;
1232	} else if (mod > 0) {
1233		if (new_size > ULLONG_MAX - old_size) {
1234			ret = -ERANGE;
1235			goto out_finish;
1236		}
1237		new_size = old_size + new_size;
1238	}
1239
1240	if (new_size < SZ_256M) {
1241		ret = -EINVAL;
1242		goto out_finish;
1243	}
1244	if (new_size > bdev_nr_bytes(device->bdev)) {
1245		ret = -EFBIG;
1246		goto out_finish;
1247	}
1248
1249	new_size = round_down(new_size, fs_info->sectorsize);
 
 
 
 
1250
1251	if (new_size > old_size) {
1252		trans = btrfs_start_transaction(root, 0);
1253		if (IS_ERR(trans)) {
1254			ret = PTR_ERR(trans);
1255			goto out_finish;
1256		}
1257		ret = btrfs_grow_device(trans, device, new_size);
1258		btrfs_commit_transaction(trans);
1259	} else if (new_size < old_size) {
1260		ret = btrfs_shrink_device(device, new_size);
1261	} /* equal, nothing need to do */
1262
1263	if (ret == 0 && new_size != old_size)
1264		btrfs_info_in_rcu(fs_info,
1265			"resize device %s (devid %llu) from %llu to %llu",
1266			btrfs_dev_name(device), device->devid,
1267			old_size, new_size);
1268out_finish:
1269	btrfs_exclop_finish(fs_info);
1270out_free:
1271	kfree(vol_args);
1272out_drop:
 
 
1273	mnt_drop_write_file(file);
1274	return ret;
1275}
1276
1277static noinline int __btrfs_ioctl_snap_create(struct file *file,
1278				struct mnt_idmap *idmap,
1279				const char *name, unsigned long fd, int subvol,
1280				bool readonly,
1281				struct btrfs_qgroup_inherit *inherit)
1282{
1283	int namelen;
1284	int ret = 0;
1285
1286	if (!S_ISDIR(file_inode(file)->i_mode))
1287		return -ENOTDIR;
1288
1289	ret = mnt_want_write_file(file);
1290	if (ret)
1291		goto out;
1292
1293	namelen = strlen(name);
1294	if (strchr(name, '/')) {
1295		ret = -EINVAL;
1296		goto out_drop_write;
1297	}
1298
1299	if (name[0] == '.' &&
1300	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1301		ret = -EEXIST;
1302		goto out_drop_write;
1303	}
1304
1305	if (subvol) {
1306		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1307				     namelen, NULL, readonly, inherit);
1308	} else {
1309		CLASS(fd, src)(fd);
1310		struct inode *src_inode;
1311		if (fd_empty(src)) {
1312			ret = -EINVAL;
1313			goto out_drop_write;
1314		}
1315
1316		src_inode = file_inode(fd_file(src));
1317		if (src_inode->i_sb != file_inode(file)->i_sb) {
1318			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1319				   "Snapshot src from another FS");
1320			ret = -EXDEV;
1321		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1322			/*
1323			 * Subvolume creation is not restricted, but snapshots
1324			 * are limited to own subvolumes only
1325			 */
1326			ret = -EPERM;
1327		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1328			/*
1329			 * Snapshots must be made with the src_inode referring
1330			 * to the subvolume inode, otherwise the permission
1331			 * checking above is useless because we may have
1332			 * permission on a lower directory but not the subvol
1333			 * itself.
1334			 */
1335			ret = -EINVAL;
1336		} else {
1337			ret = btrfs_mksnapshot(&file->f_path, idmap,
1338					       name, namelen,
1339					       BTRFS_I(src_inode)->root,
1340					       readonly, inherit);
1341		}
 
1342	}
1343out_drop_write:
1344	mnt_drop_write_file(file);
1345out:
1346	return ret;
1347}
1348
1349static noinline int btrfs_ioctl_snap_create(struct file *file,
1350					    void __user *arg, int subvol)
1351{
1352	struct btrfs_ioctl_vol_args *vol_args;
1353	int ret;
1354
1355	if (!S_ISDIR(file_inode(file)->i_mode))
1356		return -ENOTDIR;
1357
1358	vol_args = memdup_user(arg, sizeof(*vol_args));
1359	if (IS_ERR(vol_args))
1360		return PTR_ERR(vol_args);
1361	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1362	if (ret < 0)
1363		goto out;
1364
1365	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1366					vol_args->name, vol_args->fd, subvol,
1367					false, NULL);
1368
1369out:
1370	kfree(vol_args);
1371	return ret;
1372}
1373
1374static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1375					       void __user *arg, int subvol)
1376{
1377	struct btrfs_ioctl_vol_args_v2 *vol_args;
1378	int ret;
 
 
1379	bool readonly = false;
1380	struct btrfs_qgroup_inherit *inherit = NULL;
1381
1382	if (!S_ISDIR(file_inode(file)->i_mode))
1383		return -ENOTDIR;
1384
1385	vol_args = memdup_user(arg, sizeof(*vol_args));
1386	if (IS_ERR(vol_args))
1387		return PTR_ERR(vol_args);
1388	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1389	if (ret < 0)
1390		goto free_args;
1391
1392	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
 
 
1393		ret = -EOPNOTSUPP;
1394		goto free_args;
1395	}
1396
 
 
1397	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1398		readonly = true;
1399	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1400		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1401
1402		if (vol_args->size < sizeof(*inherit) ||
1403		    vol_args->size > PAGE_SIZE) {
1404			ret = -EINVAL;
1405			goto free_args;
1406		}
1407		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1408		if (IS_ERR(inherit)) {
1409			ret = PTR_ERR(inherit);
1410			goto free_args;
1411		}
1412
1413		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1414		if (ret < 0)
1415			goto free_inherit;
1416	}
1417
1418	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1419					vol_args->name, vol_args->fd, subvol,
1420					readonly, inherit);
1421	if (ret)
1422		goto free_inherit;
 
 
 
 
 
 
 
1423free_inherit:
1424	kfree(inherit);
1425free_args:
1426	kfree(vol_args);
1427	return ret;
1428}
1429
1430static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1431						void __user *arg)
1432{
1433	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1434	struct btrfs_root *root = BTRFS_I(inode)->root;
1435	int ret = 0;
1436	u64 flags = 0;
1437
1438	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1439		return -EINVAL;
1440
1441	down_read(&fs_info->subvol_sem);
1442	if (btrfs_root_readonly(root))
1443		flags |= BTRFS_SUBVOL_RDONLY;
1444	up_read(&fs_info->subvol_sem);
1445
1446	if (copy_to_user(arg, &flags, sizeof(flags)))
1447		ret = -EFAULT;
1448
1449	return ret;
1450}
1451
1452static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1453					      void __user *arg)
1454{
1455	struct inode *inode = file_inode(file);
1456	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1457	struct btrfs_root *root = BTRFS_I(inode)->root;
1458	struct btrfs_trans_handle *trans;
1459	u64 root_flags;
1460	u64 flags;
1461	int ret = 0;
1462
1463	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1464		return -EPERM;
1465
1466	ret = mnt_want_write_file(file);
1467	if (ret)
1468		goto out;
1469
1470	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1471		ret = -EINVAL;
1472		goto out_drop_write;
1473	}
1474
1475	if (copy_from_user(&flags, arg, sizeof(flags))) {
1476		ret = -EFAULT;
1477		goto out_drop_write;
1478	}
1479
 
 
 
 
 
1480	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1481		ret = -EOPNOTSUPP;
1482		goto out_drop_write;
1483	}
1484
1485	down_write(&fs_info->subvol_sem);
1486
1487	/* nothing to do */
1488	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1489		goto out_drop_sem;
1490
1491	root_flags = btrfs_root_flags(&root->root_item);
1492	if (flags & BTRFS_SUBVOL_RDONLY) {
1493		btrfs_set_root_flags(&root->root_item,
1494				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1495	} else {
1496		/*
1497		 * Block RO -> RW transition if this subvolume is involved in
1498		 * send
1499		 */
1500		spin_lock(&root->root_item_lock);
1501		if (root->send_in_progress == 0) {
1502			btrfs_set_root_flags(&root->root_item,
1503				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1504			spin_unlock(&root->root_item_lock);
1505		} else {
1506			spin_unlock(&root->root_item_lock);
1507			btrfs_warn(fs_info,
1508				   "Attempt to set subvolume %llu read-write during send",
1509				   btrfs_root_id(root));
1510			ret = -EPERM;
1511			goto out_drop_sem;
1512		}
1513	}
1514
1515	trans = btrfs_start_transaction(root, 1);
1516	if (IS_ERR(trans)) {
1517		ret = PTR_ERR(trans);
1518		goto out_reset;
1519	}
1520
1521	ret = btrfs_update_root(trans, fs_info->tree_root,
1522				&root->root_key, &root->root_item);
1523	if (ret < 0) {
1524		btrfs_end_transaction(trans);
1525		goto out_reset;
1526	}
1527
1528	ret = btrfs_commit_transaction(trans);
1529
 
1530out_reset:
1531	if (ret)
1532		btrfs_set_root_flags(&root->root_item, root_flags);
1533out_drop_sem:
1534	up_write(&fs_info->subvol_sem);
1535out_drop_write:
1536	mnt_drop_write_file(file);
1537out:
1538	return ret;
1539}
1540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541static noinline int key_in_sk(struct btrfs_key *key,
1542			      struct btrfs_ioctl_search_key *sk)
1543{
1544	struct btrfs_key test;
1545	int ret;
1546
1547	test.objectid = sk->min_objectid;
1548	test.type = sk->min_type;
1549	test.offset = sk->min_offset;
1550
1551	ret = btrfs_comp_cpu_keys(key, &test);
1552	if (ret < 0)
1553		return 0;
1554
1555	test.objectid = sk->max_objectid;
1556	test.type = sk->max_type;
1557	test.offset = sk->max_offset;
1558
1559	ret = btrfs_comp_cpu_keys(key, &test);
1560	if (ret > 0)
1561		return 0;
1562	return 1;
1563}
1564
1565static noinline int copy_to_sk(struct btrfs_path *path,
 
1566			       struct btrfs_key *key,
1567			       struct btrfs_ioctl_search_key *sk,
1568			       u64 *buf_size,
1569			       char __user *ubuf,
1570			       unsigned long *sk_offset,
1571			       int *num_found)
1572{
1573	u64 found_transid;
1574	struct extent_buffer *leaf;
1575	struct btrfs_ioctl_search_header sh;
1576	struct btrfs_key test;
1577	unsigned long item_off;
1578	unsigned long item_len;
1579	int nritems;
1580	int i;
1581	int slot;
1582	int ret = 0;
1583
1584	leaf = path->nodes[0];
1585	slot = path->slots[0];
1586	nritems = btrfs_header_nritems(leaf);
1587
1588	if (btrfs_header_generation(leaf) > sk->max_transid) {
1589		i = nritems;
1590		goto advance_key;
1591	}
1592	found_transid = btrfs_header_generation(leaf);
1593
1594	for (i = slot; i < nritems; i++) {
1595		item_off = btrfs_item_ptr_offset(leaf, i);
1596		item_len = btrfs_item_size(leaf, i);
1597
1598		btrfs_item_key_to_cpu(leaf, key, i);
1599		if (!key_in_sk(key, sk))
1600			continue;
1601
1602		if (sizeof(sh) + item_len > *buf_size) {
1603			if (*num_found) {
1604				ret = 1;
1605				goto out;
1606			}
1607
1608			/*
1609			 * return one empty item back for v1, which does not
1610			 * handle -EOVERFLOW
1611			 */
1612
1613			*buf_size = sizeof(sh) + item_len;
1614			item_len = 0;
1615			ret = -EOVERFLOW;
1616		}
1617
1618		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1619			ret = 1;
1620			goto out;
1621		}
1622
1623		sh.objectid = key->objectid;
1624		sh.offset = key->offset;
1625		sh.type = key->type;
1626		sh.len = item_len;
1627		sh.transid = found_transid;
1628
1629		/*
1630		 * Copy search result header. If we fault then loop again so we
1631		 * can fault in the pages and -EFAULT there if there's a
1632		 * problem. Otherwise we'll fault and then copy the buffer in
1633		 * properly this next time through
1634		 */
1635		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1636			ret = 0;
1637			goto out;
1638		}
1639
1640		*sk_offset += sizeof(sh);
1641
1642		if (item_len) {
1643			char __user *up = ubuf + *sk_offset;
1644			/*
1645			 * Copy the item, same behavior as above, but reset the
1646			 * * sk_offset so we copy the full thing again.
1647			 */
1648			if (read_extent_buffer_to_user_nofault(leaf, up,
1649						item_off, item_len)) {
1650				ret = 0;
1651				*sk_offset -= sizeof(sh);
1652				goto out;
1653			}
1654
1655			*sk_offset += item_len;
1656		}
1657		(*num_found)++;
1658
1659		if (ret) /* -EOVERFLOW from above */
1660			goto out;
1661
1662		if (*num_found >= sk->nr_items) {
1663			ret = 1;
1664			goto out;
1665		}
1666	}
1667advance_key:
1668	ret = 0;
1669	test.objectid = sk->max_objectid;
1670	test.type = sk->max_type;
1671	test.offset = sk->max_offset;
1672	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1673		ret = 1;
1674	else if (key->offset < (u64)-1)
1675		key->offset++;
1676	else if (key->type < (u8)-1) {
1677		key->offset = 0;
1678		key->type++;
1679	} else if (key->objectid < (u64)-1) {
1680		key->offset = 0;
1681		key->type = 0;
1682		key->objectid++;
1683	} else
1684		ret = 1;
1685out:
1686	/*
1687	 *  0: all items from this leaf copied, continue with next
1688	 *  1: * more items can be copied, but unused buffer is too small
1689	 *     * all items were found
1690	 *     Either way, it will stops the loop which iterates to the next
1691	 *     leaf
1692	 *  -EOVERFLOW: item was to large for buffer
1693	 *  -EFAULT: could not copy extent buffer back to userspace
1694	 */
1695	return ret;
1696}
1697
1698static noinline int search_ioctl(struct inode *inode,
1699				 struct btrfs_ioctl_search_key *sk,
1700				 u64 *buf_size,
1701				 char __user *ubuf)
1702{
1703	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1704	struct btrfs_root *root;
1705	struct btrfs_key key;
1706	struct btrfs_path *path;
 
1707	int ret;
1708	int num_found = 0;
1709	unsigned long sk_offset = 0;
1710
1711	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1712		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1713		return -EOVERFLOW;
1714	}
1715
1716	path = btrfs_alloc_path();
1717	if (!path)
1718		return -ENOMEM;
1719
1720	if (sk->tree_id == 0) {
1721		/* search the root of the inode that was passed */
1722		root = btrfs_grab_root(BTRFS_I(inode)->root);
1723	} else {
1724		root = btrfs_get_fs_root(info, sk->tree_id, true);
 
 
 
1725		if (IS_ERR(root)) {
1726			btrfs_free_path(path);
1727			return PTR_ERR(root);
1728		}
1729	}
1730
1731	key.objectid = sk->min_objectid;
1732	key.type = sk->min_type;
1733	key.offset = sk->min_offset;
1734
1735	while (1) {
1736		ret = -EFAULT;
1737		/*
1738		 * Ensure that the whole user buffer is faulted in at sub-page
1739		 * granularity, otherwise the loop may live-lock.
1740		 */
1741		if (fault_in_subpage_writeable(ubuf + sk_offset,
1742					       *buf_size - sk_offset))
1743			break;
1744
1745		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1746		if (ret != 0) {
1747			if (ret > 0)
1748				ret = 0;
1749			goto err;
1750		}
1751		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1752				 &sk_offset, &num_found);
1753		btrfs_release_path(path);
1754		if (ret)
1755			break;
1756
1757	}
1758	if (ret > 0)
1759		ret = 0;
1760err:
1761	sk->nr_items = num_found;
1762	btrfs_put_root(root);
1763	btrfs_free_path(path);
1764	return ret;
1765}
1766
1767static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1768					    void __user *argp)
1769{
1770	struct btrfs_ioctl_search_args __user *uargs = argp;
1771	struct btrfs_ioctl_search_key sk;
 
1772	int ret;
1773	u64 buf_size;
1774
1775	if (!capable(CAP_SYS_ADMIN))
1776		return -EPERM;
1777
 
 
1778	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1779		return -EFAULT;
1780
1781	buf_size = sizeof(uargs->buf);
1782
 
1783	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1784
1785	/*
1786	 * In the origin implementation an overflow is handled by returning a
1787	 * search header with a len of zero, so reset ret.
1788	 */
1789	if (ret == -EOVERFLOW)
1790		ret = 0;
1791
1792	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1793		ret = -EFAULT;
1794	return ret;
1795}
1796
1797static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1798					       void __user *argp)
1799{
1800	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1801	struct btrfs_ioctl_search_args_v2 args;
 
1802	int ret;
1803	u64 buf_size;
1804	const u64 buf_limit = SZ_16M;
1805
1806	if (!capable(CAP_SYS_ADMIN))
1807		return -EPERM;
1808
1809	/* copy search header and buffer size */
 
1810	if (copy_from_user(&args, uarg, sizeof(args)))
1811		return -EFAULT;
1812
1813	buf_size = args.buf_size;
1814
 
 
 
1815	/* limit result size to 16MB */
1816	if (buf_size > buf_limit)
1817		buf_size = buf_limit;
1818
 
1819	ret = search_ioctl(inode, &args.key, &buf_size,
1820			   (char __user *)(&uarg->buf[0]));
1821	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1822		ret = -EFAULT;
1823	else if (ret == -EOVERFLOW &&
1824		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1825		ret = -EFAULT;
1826
1827	return ret;
1828}
1829
1830/*
1831 * Search INODE_REFs to identify path name of 'dirid' directory
1832 * in a 'tree_id' tree. and sets path name to 'name'.
1833 */
1834static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1835				u64 tree_id, u64 dirid, char *name)
1836{
1837	struct btrfs_root *root;
1838	struct btrfs_key key;
1839	char *ptr;
1840	int ret = -1;
1841	int slot;
1842	int len;
1843	int total_len = 0;
1844	struct btrfs_inode_ref *iref;
1845	struct extent_buffer *l;
1846	struct btrfs_path *path;
1847
1848	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1849		name[0]='\0';
1850		return 0;
1851	}
1852
1853	path = btrfs_alloc_path();
1854	if (!path)
1855		return -ENOMEM;
1856
1857	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1858
1859	root = btrfs_get_fs_root(info, tree_id, true);
 
 
 
1860	if (IS_ERR(root)) {
1861		ret = PTR_ERR(root);
1862		root = NULL;
1863		goto out;
1864	}
1865
1866	key.objectid = dirid;
1867	key.type = BTRFS_INODE_REF_KEY;
1868	key.offset = (u64)-1;
1869
1870	while (1) {
1871		ret = btrfs_search_backwards(root, &key, path);
1872		if (ret < 0)
1873			goto out;
1874		else if (ret > 0) {
1875			ret = -ENOENT;
1876			goto out;
 
 
 
 
 
 
1877		}
1878
1879		l = path->nodes[0];
1880		slot = path->slots[0];
 
1881
1882		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1883		len = btrfs_inode_ref_name_len(l, iref);
1884		ptr -= len + 1;
1885		total_len += len + 1;
1886		if (ptr < name) {
1887			ret = -ENAMETOOLONG;
1888			goto out;
1889		}
1890
1891		*(ptr + len) = '/';
1892		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1893
1894		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1895			break;
1896
1897		btrfs_release_path(path);
1898		key.objectid = key.offset;
1899		key.offset = (u64)-1;
1900		dirid = key.objectid;
1901	}
1902	memmove(name, ptr, total_len);
1903	name[total_len] = '\0';
1904	ret = 0;
1905out:
1906	btrfs_put_root(root);
1907	btrfs_free_path(path);
1908	return ret;
1909}
1910
1911static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1912				struct inode *inode,
1913				struct btrfs_ioctl_ino_lookup_user_args *args)
1914{
1915	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1916	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1917	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1918	u64 dirid = args->dirid;
1919	unsigned long item_off;
1920	unsigned long item_len;
1921	struct btrfs_inode_ref *iref;
1922	struct btrfs_root_ref *rref;
1923	struct btrfs_root *root = NULL;
1924	struct btrfs_path *path;
1925	struct btrfs_key key, key2;
1926	struct extent_buffer *leaf;
1927	struct inode *temp_inode;
1928	char *ptr;
1929	int slot;
1930	int len;
1931	int total_len = 0;
1932	int ret;
1933
1934	path = btrfs_alloc_path();
1935	if (!path)
1936		return -ENOMEM;
1937
1938	/*
1939	 * If the bottom subvolume does not exist directly under upper_limit,
1940	 * construct the path in from the bottom up.
1941	 */
1942	if (dirid != upper_limit) {
1943		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1944
1945		root = btrfs_get_fs_root(fs_info, treeid, true);
1946		if (IS_ERR(root)) {
1947			ret = PTR_ERR(root);
1948			goto out;
1949		}
1950
1951		key.objectid = dirid;
1952		key.type = BTRFS_INODE_REF_KEY;
1953		key.offset = (u64)-1;
1954		while (1) {
1955			ret = btrfs_search_backwards(root, &key, path);
1956			if (ret < 0)
1957				goto out_put;
1958			else if (ret > 0) {
1959				ret = -ENOENT;
1960				goto out_put;
1961			}
1962
1963			leaf = path->nodes[0];
1964			slot = path->slots[0];
1965
1966			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1967			len = btrfs_inode_ref_name_len(leaf, iref);
1968			ptr -= len + 1;
1969			total_len += len + 1;
1970			if (ptr < args->path) {
1971				ret = -ENAMETOOLONG;
1972				goto out_put;
1973			}
1974
1975			*(ptr + len) = '/';
1976			read_extent_buffer(leaf, ptr,
1977					(unsigned long)(iref + 1), len);
1978
1979			/* Check the read+exec permission of this directory */
1980			ret = btrfs_previous_item(root, path, dirid,
1981						  BTRFS_INODE_ITEM_KEY);
1982			if (ret < 0) {
1983				goto out_put;
1984			} else if (ret > 0) {
1985				ret = -ENOENT;
1986				goto out_put;
1987			}
1988
1989			leaf = path->nodes[0];
1990			slot = path->slots[0];
1991			btrfs_item_key_to_cpu(leaf, &key2, slot);
1992			if (key2.objectid != dirid) {
1993				ret = -ENOENT;
1994				goto out_put;
1995			}
1996
1997			/*
1998			 * We don't need the path anymore, so release it and
1999			 * avoid deadlocks and lockdep warnings in case
2000			 * btrfs_iget() needs to lookup the inode from its root
2001			 * btree and lock the same leaf.
2002			 */
2003			btrfs_release_path(path);
2004			temp_inode = btrfs_iget(key2.objectid, root);
2005			if (IS_ERR(temp_inode)) {
2006				ret = PTR_ERR(temp_inode);
2007				goto out_put;
2008			}
2009			ret = inode_permission(idmap, temp_inode,
2010					       MAY_READ | MAY_EXEC);
2011			iput(temp_inode);
2012			if (ret) {
2013				ret = -EACCES;
2014				goto out_put;
2015			}
2016
2017			if (key.offset == upper_limit)
2018				break;
2019			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2020				ret = -EACCES;
2021				goto out_put;
2022			}
2023
2024			key.objectid = key.offset;
2025			key.offset = (u64)-1;
2026			dirid = key.objectid;
2027		}
2028
2029		memmove(args->path, ptr, total_len);
2030		args->path[total_len] = '\0';
2031		btrfs_put_root(root);
2032		root = NULL;
2033		btrfs_release_path(path);
2034	}
2035
2036	/* Get the bottom subvolume's name from ROOT_REF */
2037	key.objectid = treeid;
2038	key.type = BTRFS_ROOT_REF_KEY;
2039	key.offset = args->treeid;
2040	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2041	if (ret < 0) {
2042		goto out;
2043	} else if (ret > 0) {
2044		ret = -ENOENT;
2045		goto out;
2046	}
2047
2048	leaf = path->nodes[0];
2049	slot = path->slots[0];
2050	btrfs_item_key_to_cpu(leaf, &key, slot);
2051
2052	item_off = btrfs_item_ptr_offset(leaf, slot);
2053	item_len = btrfs_item_size(leaf, slot);
2054	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2055	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2056	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2057		ret = -EINVAL;
2058		goto out;
2059	}
2060
2061	/* Copy subvolume's name */
2062	item_off += sizeof(struct btrfs_root_ref);
2063	item_len -= sizeof(struct btrfs_root_ref);
2064	read_extent_buffer(leaf, args->name, item_off, item_len);
2065	args->name[item_len] = 0;
2066
2067out_put:
2068	btrfs_put_root(root);
2069out:
2070	btrfs_free_path(path);
2071	return ret;
2072}
2073
2074static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2075					   void __user *argp)
2076{
2077	struct btrfs_ioctl_ino_lookup_args *args;
 
2078	int ret = 0;
2079
2080	args = memdup_user(argp, sizeof(*args));
2081	if (IS_ERR(args))
2082		return PTR_ERR(args);
2083
 
 
2084	/*
2085	 * Unprivileged query to obtain the containing subvolume root id. The
2086	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2087	 */
2088	if (args->treeid == 0)
2089		args->treeid = btrfs_root_id(root);
2090
2091	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2092		args->name[0] = 0;
2093		goto out;
2094	}
2095
2096	if (!capable(CAP_SYS_ADMIN)) {
2097		ret = -EPERM;
2098		goto out;
2099	}
2100
2101	ret = btrfs_search_path_in_tree(root->fs_info,
2102					args->treeid, args->objectid,
2103					args->name);
2104
2105out:
2106	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107		ret = -EFAULT;
2108
2109	kfree(args);
2110	return ret;
2111}
2112
2113/*
2114 * Version of ino_lookup ioctl (unprivileged)
2115 *
2116 * The main differences from ino_lookup ioctl are:
2117 *
2118 *   1. Read + Exec permission will be checked using inode_permission() during
2119 *      path construction. -EACCES will be returned in case of failure.
2120 *   2. Path construction will be stopped at the inode number which corresponds
2121 *      to the fd with which this ioctl is called. If constructed path does not
2122 *      exist under fd's inode, -EACCES will be returned.
2123 *   3. The name of bottom subvolume is also searched and filled.
2124 */
2125static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2126{
2127	struct btrfs_ioctl_ino_lookup_user_args *args;
2128	struct inode *inode;
2129	int ret;
2130
2131	args = memdup_user(argp, sizeof(*args));
2132	if (IS_ERR(args))
2133		return PTR_ERR(args);
2134
2135	inode = file_inode(file);
2136
2137	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2138	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2139		/*
2140		 * The subvolume does not exist under fd with which this is
2141		 * called
2142		 */
2143		kfree(args);
2144		return -EACCES;
2145	}
2146
2147	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2148
2149	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2150		ret = -EFAULT;
2151
2152	kfree(args);
2153	return ret;
2154}
2155
2156/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2157static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2158{
2159	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2160	struct btrfs_fs_info *fs_info;
2161	struct btrfs_root *root;
2162	struct btrfs_path *path;
2163	struct btrfs_key key;
2164	struct btrfs_root_item *root_item;
2165	struct btrfs_root_ref *rref;
2166	struct extent_buffer *leaf;
2167	unsigned long item_off;
2168	unsigned long item_len;
2169	int slot;
2170	int ret = 0;
2171
2172	path = btrfs_alloc_path();
2173	if (!path)
2174		return -ENOMEM;
2175
2176	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2177	if (!subvol_info) {
2178		btrfs_free_path(path);
2179		return -ENOMEM;
2180	}
2181
2182	fs_info = BTRFS_I(inode)->root->fs_info;
2183
2184	/* Get root_item of inode's subvolume */
2185	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2186	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2187	if (IS_ERR(root)) {
2188		ret = PTR_ERR(root);
2189		goto out_free;
2190	}
2191	root_item = &root->root_item;
2192
2193	subvol_info->treeid = key.objectid;
2194
2195	subvol_info->generation = btrfs_root_generation(root_item);
2196	subvol_info->flags = btrfs_root_flags(root_item);
2197
2198	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2199	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2200						    BTRFS_UUID_SIZE);
2201	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2202						    BTRFS_UUID_SIZE);
2203
2204	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2205	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2206	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2207
2208	subvol_info->otransid = btrfs_root_otransid(root_item);
2209	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2210	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2211
2212	subvol_info->stransid = btrfs_root_stransid(root_item);
2213	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2214	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2215
2216	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2217	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2218	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2219
2220	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2221		/* Search root tree for ROOT_BACKREF of this subvolume */
2222		key.type = BTRFS_ROOT_BACKREF_KEY;
2223		key.offset = 0;
2224		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2225		if (ret < 0) {
2226			goto out;
2227		} else if (path->slots[0] >=
2228			   btrfs_header_nritems(path->nodes[0])) {
2229			ret = btrfs_next_leaf(fs_info->tree_root, path);
2230			if (ret < 0) {
2231				goto out;
2232			} else if (ret > 0) {
2233				ret = -EUCLEAN;
2234				goto out;
2235			}
2236		}
2237
2238		leaf = path->nodes[0];
2239		slot = path->slots[0];
2240		btrfs_item_key_to_cpu(leaf, &key, slot);
2241		if (key.objectid == subvol_info->treeid &&
2242		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2243			subvol_info->parent_id = key.offset;
2244
2245			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2246			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2247
2248			item_off = btrfs_item_ptr_offset(leaf, slot)
2249					+ sizeof(struct btrfs_root_ref);
2250			item_len = btrfs_item_size(leaf, slot)
2251					- sizeof(struct btrfs_root_ref);
2252			read_extent_buffer(leaf, subvol_info->name,
2253					   item_off, item_len);
2254		} else {
2255			ret = -ENOENT;
2256			goto out;
2257		}
2258	}
2259
2260	btrfs_free_path(path);
2261	path = NULL;
2262	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2263		ret = -EFAULT;
2264
2265out:
2266	btrfs_put_root(root);
2267out_free:
2268	btrfs_free_path(path);
2269	kfree(subvol_info);
2270	return ret;
2271}
2272
2273/*
2274 * Return ROOT_REF information of the subvolume containing this inode
2275 * except the subvolume name.
2276 */
2277static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2278					  void __user *argp)
2279{
2280	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2281	struct btrfs_root_ref *rref;
2282	struct btrfs_path *path;
2283	struct btrfs_key key;
2284	struct extent_buffer *leaf;
2285	u64 objectid;
2286	int slot;
2287	int ret;
2288	u8 found;
2289
2290	path = btrfs_alloc_path();
2291	if (!path)
2292		return -ENOMEM;
2293
2294	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2295	if (IS_ERR(rootrefs)) {
2296		btrfs_free_path(path);
2297		return PTR_ERR(rootrefs);
2298	}
2299
2300	objectid = btrfs_root_id(root);
2301	key.objectid = objectid;
2302	key.type = BTRFS_ROOT_REF_KEY;
2303	key.offset = rootrefs->min_treeid;
2304	found = 0;
2305
2306	root = root->fs_info->tree_root;
2307	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308	if (ret < 0) {
2309		goto out;
2310	} else if (path->slots[0] >=
2311		   btrfs_header_nritems(path->nodes[0])) {
2312		ret = btrfs_next_leaf(root, path);
2313		if (ret < 0) {
2314			goto out;
2315		} else if (ret > 0) {
2316			ret = -EUCLEAN;
2317			goto out;
2318		}
2319	}
2320	while (1) {
2321		leaf = path->nodes[0];
2322		slot = path->slots[0];
2323
2324		btrfs_item_key_to_cpu(leaf, &key, slot);
2325		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2326			ret = 0;
2327			goto out;
2328		}
2329
2330		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2331			ret = -EOVERFLOW;
2332			goto out;
2333		}
2334
2335		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2336		rootrefs->rootref[found].treeid = key.offset;
2337		rootrefs->rootref[found].dirid =
2338				  btrfs_root_ref_dirid(leaf, rref);
2339		found++;
2340
2341		ret = btrfs_next_item(root, path);
2342		if (ret < 0) {
2343			goto out;
2344		} else if (ret > 0) {
2345			ret = -EUCLEAN;
2346			goto out;
2347		}
2348	}
2349
2350out:
2351	btrfs_free_path(path);
2352
2353	if (!ret || ret == -EOVERFLOW) {
2354		rootrefs->num_items = found;
2355		/* update min_treeid for next search */
2356		if (found)
2357			rootrefs->min_treeid =
2358				rootrefs->rootref[found - 1].treeid + 1;
2359		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2360			ret = -EFAULT;
2361	}
2362
2363	kfree(rootrefs);
2364
2365	return ret;
2366}
2367
2368static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2369					     void __user *arg,
2370					     bool destroy_v2)
2371{
2372	struct dentry *parent = file->f_path.dentry;
2373	struct dentry *dentry;
2374	struct inode *dir = d_inode(parent);
2375	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2376	struct inode *inode;
2377	struct btrfs_root *root = BTRFS_I(dir)->root;
2378	struct btrfs_root *dest = NULL;
2379	struct btrfs_ioctl_vol_args *vol_args = NULL;
2380	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2381	struct mnt_idmap *idmap = file_mnt_idmap(file);
2382	char *subvol_name, *subvol_name_ptr = NULL;
2383	int subvol_namelen;
2384	int ret = 0;
2385	bool destroy_parent = false;
2386
2387	/* We don't support snapshots with extent tree v2 yet. */
2388	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2389		btrfs_err(fs_info,
2390			  "extent tree v2 doesn't support snapshot deletion yet");
2391		return -EOPNOTSUPP;
2392	}
2393
2394	if (destroy_v2) {
2395		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2396		if (IS_ERR(vol_args2))
2397			return PTR_ERR(vol_args2);
2398
2399		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2400			ret = -EOPNOTSUPP;
2401			goto out;
2402		}
2403
2404		/*
2405		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2406		 * name, same as v1 currently does.
2407		 */
2408		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2409			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2410			if (ret < 0)
2411				goto out;
2412			subvol_name = vol_args2->name;
2413
2414			ret = mnt_want_write_file(file);
2415			if (ret)
2416				goto out;
2417		} else {
2418			struct inode *old_dir;
2419
2420			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2421				ret = -EINVAL;
2422				goto out;
2423			}
2424
2425			ret = mnt_want_write_file(file);
2426			if (ret)
2427				goto out;
2428
2429			dentry = btrfs_get_dentry(fs_info->sb,
2430					BTRFS_FIRST_FREE_OBJECTID,
2431					vol_args2->subvolid, 0);
2432			if (IS_ERR(dentry)) {
2433				ret = PTR_ERR(dentry);
2434				goto out_drop_write;
2435			}
2436
2437			/*
2438			 * Change the default parent since the subvolume being
2439			 * deleted can be outside of the current mount point.
2440			 */
2441			parent = btrfs_get_parent(dentry);
2442
2443			/*
2444			 * At this point dentry->d_name can point to '/' if the
2445			 * subvolume we want to destroy is outsite of the
2446			 * current mount point, so we need to release the
2447			 * current dentry and execute the lookup to return a new
2448			 * one with ->d_name pointing to the
2449			 * <mount point>/subvol_name.
2450			 */
2451			dput(dentry);
2452			if (IS_ERR(parent)) {
2453				ret = PTR_ERR(parent);
2454				goto out_drop_write;
2455			}
2456			old_dir = dir;
2457			dir = d_inode(parent);
2458
2459			/*
2460			 * If v2 was used with SPEC_BY_ID, a new parent was
2461			 * allocated since the subvolume can be outside of the
2462			 * current mount point. Later on we need to release this
2463			 * new parent dentry.
2464			 */
2465			destroy_parent = true;
2466
2467			/*
2468			 * On idmapped mounts, deletion via subvolid is
2469			 * restricted to subvolumes that are immediate
2470			 * ancestors of the inode referenced by the file
2471			 * descriptor in the ioctl. Otherwise the idmapping
2472			 * could potentially be abused to delete subvolumes
2473			 * anywhere in the filesystem the user wouldn't be able
2474			 * to delete without an idmapped mount.
2475			 */
2476			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2477				ret = -EOPNOTSUPP;
2478				goto free_parent;
2479			}
2480
2481			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2482						fs_info, vol_args2->subvolid);
2483			if (IS_ERR(subvol_name_ptr)) {
2484				ret = PTR_ERR(subvol_name_ptr);
2485				goto free_parent;
2486			}
2487			/* subvol_name_ptr is already nul terminated */
2488			subvol_name = (char *)kbasename(subvol_name_ptr);
2489		}
2490	} else {
2491		vol_args = memdup_user(arg, sizeof(*vol_args));
2492		if (IS_ERR(vol_args))
2493			return PTR_ERR(vol_args);
2494
2495		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2496		if (ret < 0)
2497			goto out;
2498
2499		subvol_name = vol_args->name;
 
 
2500
2501		ret = mnt_want_write_file(file);
2502		if (ret)
2503			goto out;
 
 
 
2504	}
2505
2506	subvol_namelen = strlen(subvol_name);
 
 
2507
2508	if (strchr(subvol_name, '/') ||
2509	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2510		ret = -EINVAL;
2511		goto free_subvol_name;
2512	}
2513
2514	if (!S_ISDIR(dir->i_mode)) {
2515		ret = -ENOTDIR;
2516		goto free_subvol_name;
2517	}
2518
2519	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2520	if (ret == -EINTR)
2521		goto free_subvol_name;
2522	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2523	if (IS_ERR(dentry)) {
2524		ret = PTR_ERR(dentry);
2525		goto out_unlock_dir;
2526	}
2527
2528	if (d_really_is_negative(dentry)) {
2529		ret = -ENOENT;
2530		goto out_dput;
2531	}
2532
2533	inode = d_inode(dentry);
2534	dest = BTRFS_I(inode)->root;
2535	if (!capable(CAP_SYS_ADMIN)) {
2536		/*
2537		 * Regular user.  Only allow this with a special mount
2538		 * option, when the user has write+exec access to the
2539		 * subvol root, and when rmdir(2) would have been
2540		 * allowed.
2541		 *
2542		 * Note that this is _not_ check that the subvol is
2543		 * empty or doesn't contain data that we wouldn't
2544		 * otherwise be able to delete.
2545		 *
2546		 * Users who want to delete empty subvols should try
2547		 * rmdir(2).
2548		 */
2549		ret = -EPERM;
2550		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2551			goto out_dput;
2552
2553		/*
2554		 * Do not allow deletion if the parent dir is the same
2555		 * as the dir to be deleted.  That means the ioctl
2556		 * must be called on the dentry referencing the root
2557		 * of the subvol, not a random directory contained
2558		 * within it.
2559		 */
2560		ret = -EINVAL;
2561		if (root == dest)
2562			goto out_dput;
2563
2564		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2565		if (ret)
2566			goto out_dput;
2567	}
2568
2569	/* check if subvolume may be deleted by a user */
2570	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2571	if (ret)
2572		goto out_dput;
2573
2574	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2575		ret = -EINVAL;
2576		goto out_dput;
2577	}
2578
2579	btrfs_inode_lock(BTRFS_I(inode), 0);
2580	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2581	btrfs_inode_unlock(BTRFS_I(inode), 0);
2582	if (!ret)
2583		d_delete_notify(dir, dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585out_dput:
2586	dput(dentry);
2587out_unlock_dir:
2588	btrfs_inode_unlock(BTRFS_I(dir), 0);
2589free_subvol_name:
2590	kfree(subvol_name_ptr);
2591free_parent:
2592	if (destroy_parent)
2593		dput(parent);
2594out_drop_write:
2595	mnt_drop_write_file(file);
2596out:
2597	kfree(vol_args2);
2598	kfree(vol_args);
2599	return ret;
2600}
2601
2602static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2603{
2604	struct inode *inode = file_inode(file);
2605	struct btrfs_root *root = BTRFS_I(inode)->root;
2606	struct btrfs_ioctl_defrag_range_args range = {0};
2607	int ret;
2608
2609	ret = mnt_want_write_file(file);
2610	if (ret)
2611		return ret;
2612
2613	if (btrfs_root_readonly(root)) {
2614		ret = -EROFS;
2615		goto out;
2616	}
2617
2618	switch (inode->i_mode & S_IFMT) {
2619	case S_IFDIR:
2620		if (!capable(CAP_SYS_ADMIN)) {
2621			ret = -EPERM;
2622			goto out;
2623		}
2624		ret = btrfs_defrag_root(root);
 
 
 
2625		break;
2626	case S_IFREG:
2627		/*
2628		 * Note that this does not check the file descriptor for write
2629		 * access. This prevents defragmenting executables that are
2630		 * running and allows defrag on files open in read-only mode.
2631		 */
2632		if (!capable(CAP_SYS_ADMIN) &&
2633		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2634			ret = -EPERM;
2635			goto out;
2636		}
2637
2638		if (argp) {
2639			if (copy_from_user(&range, argp, sizeof(range))) {
 
2640				ret = -EFAULT;
2641				goto out;
2642			}
2643			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2644				ret = -EOPNOTSUPP;
2645				goto out;
2646			}
2647			/* compression requires us to start the IO */
2648			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2649				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2650				range.extent_thresh = (u32)-1;
2651			}
2652		} else {
2653			/* the rest are all set to zero by kzalloc */
2654			range.len = (u64)-1;
2655		}
2656		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2657					&range, BTRFS_OLDEST_GENERATION, 0);
2658		if (ret > 0)
2659			ret = 0;
 
2660		break;
2661	default:
2662		ret = -EINVAL;
2663	}
2664out:
2665	mnt_drop_write_file(file);
2666	return ret;
2667}
2668
2669static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2670{
2671	struct btrfs_ioctl_vol_args *vol_args;
2672	bool restore_op = false;
2673	int ret;
2674
2675	if (!capable(CAP_SYS_ADMIN))
2676		return -EPERM;
2677
2678	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2679		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2680		return -EINVAL;
2681	}
2682
2683	if (fs_info->fs_devices->temp_fsid) {
2684		btrfs_err(fs_info,
2685			  "device add not supported on cloned temp-fsid mount");
2686		return -EINVAL;
2687	}
2688
2689	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2690		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2691			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2692
2693		/*
2694		 * We can do the device add because we have a paused balanced,
2695		 * change the exclusive op type and remember we should bring
2696		 * back the paused balance
2697		 */
2698		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2699		btrfs_exclop_start_unlock(fs_info);
2700		restore_op = true;
2701	}
2702
 
2703	vol_args = memdup_user(arg, sizeof(*vol_args));
2704	if (IS_ERR(vol_args)) {
2705		ret = PTR_ERR(vol_args);
2706		goto out;
2707	}
2708
2709	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2710	if (ret < 0)
2711		goto out_free;
2712
2713	ret = btrfs_init_new_device(fs_info, vol_args->name);
2714
2715	if (!ret)
2716		btrfs_info(fs_info, "disk added %s", vol_args->name);
2717
2718out_free:
2719	kfree(vol_args);
2720out:
2721	if (restore_op)
2722		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2723	else
2724		btrfs_exclop_finish(fs_info);
2725	return ret;
2726}
2727
2728static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2729{
2730	BTRFS_DEV_LOOKUP_ARGS(args);
2731	struct inode *inode = file_inode(file);
2732	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2733	struct btrfs_ioctl_vol_args_v2 *vol_args;
2734	struct file *bdev_file = NULL;
2735	int ret;
2736	bool cancel = false;
2737
2738	if (!capable(CAP_SYS_ADMIN))
2739		return -EPERM;
2740
2741	vol_args = memdup_user(arg, sizeof(*vol_args));
2742	if (IS_ERR(vol_args))
2743		return PTR_ERR(vol_args);
2744
2745	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2746		ret = -EOPNOTSUPP;
2747		goto out;
2748	}
2749
2750	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2751	if (ret < 0)
2752		goto out;
2753
2754	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2755		args.devid = vol_args->devid;
2756	} else if (!strcmp("cancel", vol_args->name)) {
2757		cancel = true;
2758	} else {
2759		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2760		if (ret)
2761			goto out;
2762	}
2763
2764	ret = mnt_want_write_file(file);
2765	if (ret)
2766		goto out;
2767
2768	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2769					   cancel);
2770	if (ret)
2771		goto err_drop;
2772
2773	/* Exclusive operation is now claimed */
2774	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2775
2776	btrfs_exclop_finish(fs_info);
2777
2778	if (!ret) {
2779		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2780			btrfs_info(fs_info, "device deleted: id %llu",
2781					vol_args->devid);
2782		else
2783			btrfs_info(fs_info, "device deleted: %s",
2784					vol_args->name);
2785	}
2786err_drop:
2787	mnt_drop_write_file(file);
2788	if (bdev_file)
2789		fput(bdev_file);
2790out:
2791	btrfs_put_dev_args_from_path(&args);
2792	kfree(vol_args);
2793	return ret;
2794}
2795
2796static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2797{
2798	BTRFS_DEV_LOOKUP_ARGS(args);
2799	struct inode *inode = file_inode(file);
2800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2801	struct btrfs_ioctl_vol_args *vol_args;
2802	struct file *bdev_file = NULL;
2803	int ret;
2804	bool cancel = false;
2805
2806	if (!capable(CAP_SYS_ADMIN))
2807		return -EPERM;
2808
2809	vol_args = memdup_user(arg, sizeof(*vol_args));
2810	if (IS_ERR(vol_args))
2811		return PTR_ERR(vol_args);
2812
2813	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2814	if (ret < 0)
2815		goto out_free;
2816
2817	if (!strcmp("cancel", vol_args->name)) {
2818		cancel = true;
2819	} else {
2820		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2821		if (ret)
2822			goto out;
2823	}
2824
2825	ret = mnt_want_write_file(file);
2826	if (ret)
2827		goto out;
 
2828
2829	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2830					   cancel);
2831	if (ret == 0) {
2832		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2833		if (!ret)
2834			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2835		btrfs_exclop_finish(fs_info);
2836	}
2837
2838	mnt_drop_write_file(file);
2839	if (bdev_file)
2840		fput(bdev_file);
2841out:
2842	btrfs_put_dev_args_from_path(&args);
2843out_free:
2844	kfree(vol_args);
 
 
2845	return ret;
2846}
2847
2848static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2849				void __user *arg)
2850{
2851	struct btrfs_ioctl_fs_info_args *fi_args;
2852	struct btrfs_device *device;
2853	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2854	u64 flags_in;
2855	int ret = 0;
2856
2857	fi_args = memdup_user(arg, sizeof(*fi_args));
2858	if (IS_ERR(fi_args))
2859		return PTR_ERR(fi_args);
2860
2861	flags_in = fi_args->flags;
2862	memset(fi_args, 0, sizeof(*fi_args));
2863
2864	rcu_read_lock();
2865	fi_args->num_devices = fs_devices->num_devices;
 
2866
2867	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2868		if (device->devid > fi_args->max_id)
2869			fi_args->max_id = device->devid;
2870	}
2871	rcu_read_unlock();
2872
2873	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2874	fi_args->nodesize = fs_info->nodesize;
2875	fi_args->sectorsize = fs_info->sectorsize;
2876	fi_args->clone_alignment = fs_info->sectorsize;
2877
2878	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2879		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2880		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2881		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2882	}
2883
2884	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2885		fi_args->generation = btrfs_get_fs_generation(fs_info);
2886		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2887	}
2888
2889	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2890		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2891		       sizeof(fi_args->metadata_uuid));
2892		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2893	}
2894
2895	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2896		ret = -EFAULT;
2897
2898	kfree(fi_args);
2899	return ret;
2900}
2901
2902static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2903				 void __user *arg)
2904{
2905	BTRFS_DEV_LOOKUP_ARGS(args);
2906	struct btrfs_ioctl_dev_info_args *di_args;
2907	struct btrfs_device *dev;
 
2908	int ret = 0;
 
2909
2910	di_args = memdup_user(arg, sizeof(*di_args));
2911	if (IS_ERR(di_args))
2912		return PTR_ERR(di_args);
2913
2914	args.devid = di_args->devid;
2915	if (!btrfs_is_empty_uuid(di_args->uuid))
2916		args.uuid = di_args->uuid;
 
 
 
2917
2918	rcu_read_lock();
2919	dev = btrfs_find_device(fs_info->fs_devices, &args);
2920	if (!dev) {
2921		ret = -ENODEV;
2922		goto out;
2923	}
2924
2925	di_args->devid = dev->devid;
2926	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2927	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2928	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2929	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2930	if (dev->name)
2931		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2932	else
 
 
 
 
 
2933		di_args->path[0] = '\0';
 
2934
2935out:
2936	rcu_read_unlock();
2937	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2938		ret = -EFAULT;
2939
2940	kfree(di_args);
2941	return ret;
2942}
2943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2944static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2945{
2946	struct inode *inode = file_inode(file);
2947	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2948	struct btrfs_root *root = BTRFS_I(inode)->root;
2949	struct btrfs_root *new_root;
2950	struct btrfs_dir_item *di;
2951	struct btrfs_trans_handle *trans;
2952	struct btrfs_path *path = NULL;
 
2953	struct btrfs_disk_key disk_key;
2954	struct fscrypt_str name = FSTR_INIT("default", 7);
2955	u64 objectid = 0;
2956	u64 dir_id;
2957	int ret;
2958
2959	if (!capable(CAP_SYS_ADMIN))
2960		return -EPERM;
2961
2962	ret = mnt_want_write_file(file);
2963	if (ret)
2964		return ret;
2965
2966	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2967		ret = -EFAULT;
2968		goto out;
2969	}
2970
2971	if (!objectid)
2972		objectid = BTRFS_FS_TREE_OBJECTID;
2973
2974	new_root = btrfs_get_fs_root(fs_info, objectid, true);
 
 
 
 
2975	if (IS_ERR(new_root)) {
2976		ret = PTR_ERR(new_root);
2977		goto out;
2978	}
2979	if (!is_fstree(btrfs_root_id(new_root))) {
2980		ret = -ENOENT;
2981		goto out_free;
2982	}
2983
2984	path = btrfs_alloc_path();
2985	if (!path) {
2986		ret = -ENOMEM;
2987		goto out_free;
2988	}
 
2989
2990	trans = btrfs_start_transaction(root, 1);
2991	if (IS_ERR(trans)) {
 
2992		ret = PTR_ERR(trans);
2993		goto out_free;
2994	}
2995
2996	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2997	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2998				   dir_id, &name, 1);
2999	if (IS_ERR_OR_NULL(di)) {
3000		btrfs_release_path(path);
3001		btrfs_end_transaction(trans);
3002		btrfs_err(fs_info,
3003			  "Umm, you don't have the default diritem, this isn't going to work");
3004		ret = -ENOENT;
3005		goto out_free;
3006	}
3007
3008	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3009	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3010	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3011	btrfs_release_path(path);
3012
3013	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3014	btrfs_end_transaction(trans);
3015out_free:
3016	btrfs_put_root(new_root);
3017	btrfs_free_path(path);
 
 
 
3018out:
3019	mnt_drop_write_file(file);
3020	return ret;
3021}
3022
3023static void get_block_group_info(struct list_head *groups_list,
3024				 struct btrfs_ioctl_space_info *space)
3025{
3026	struct btrfs_block_group *block_group;
3027
3028	space->total_bytes = 0;
3029	space->used_bytes = 0;
3030	space->flags = 0;
3031	list_for_each_entry(block_group, groups_list, list) {
3032		space->flags = block_group->flags;
3033		space->total_bytes += block_group->length;
3034		space->used_bytes += block_group->used;
 
3035	}
3036}
3037
3038static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3039				   void __user *arg)
3040{
3041	struct btrfs_ioctl_space_args space_args = { 0 };
3042	struct btrfs_ioctl_space_info space;
3043	struct btrfs_ioctl_space_info *dest;
3044	struct btrfs_ioctl_space_info *dest_orig;
3045	struct btrfs_ioctl_space_info __user *user_dest;
3046	struct btrfs_space_info *info;
3047	static const u64 types[] = {
3048		BTRFS_BLOCK_GROUP_DATA,
3049		BTRFS_BLOCK_GROUP_SYSTEM,
3050		BTRFS_BLOCK_GROUP_METADATA,
3051		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3052	};
3053	int num_types = 4;
3054	int alloc_size;
3055	int ret = 0;
3056	u64 slot_count = 0;
3057	int i, c;
3058
3059	if (copy_from_user(&space_args,
3060			   (struct btrfs_ioctl_space_args __user *)arg,
3061			   sizeof(space_args)))
3062		return -EFAULT;
3063
3064	for (i = 0; i < num_types; i++) {
3065		struct btrfs_space_info *tmp;
3066
3067		info = NULL;
3068		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3069			if (tmp->flags == types[i]) {
3070				info = tmp;
3071				break;
3072			}
3073		}
 
3074
3075		if (!info)
3076			continue;
3077
3078		down_read(&info->groups_sem);
3079		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3080			if (!list_empty(&info->block_groups[c]))
3081				slot_count++;
3082		}
3083		up_read(&info->groups_sem);
3084	}
3085
3086	/*
3087	 * Global block reserve, exported as a space_info
3088	 */
3089	slot_count++;
3090
3091	/* space_slots == 0 means they are asking for a count */
3092	if (space_args.space_slots == 0) {
3093		space_args.total_spaces = slot_count;
3094		goto out;
3095	}
3096
3097	slot_count = min_t(u64, space_args.space_slots, slot_count);
3098
3099	alloc_size = sizeof(*dest) * slot_count;
3100
3101	/* we generally have at most 6 or so space infos, one for each raid
3102	 * level.  So, a whole page should be more than enough for everyone
3103	 */
3104	if (alloc_size > PAGE_SIZE)
3105		return -ENOMEM;
3106
3107	space_args.total_spaces = 0;
3108	dest = kmalloc(alloc_size, GFP_KERNEL);
3109	if (!dest)
3110		return -ENOMEM;
3111	dest_orig = dest;
3112
3113	/* now we have a buffer to copy into */
3114	for (i = 0; i < num_types; i++) {
3115		struct btrfs_space_info *tmp;
3116
3117		if (!slot_count)
3118			break;
3119
3120		info = NULL;
3121		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3122			if (tmp->flags == types[i]) {
3123				info = tmp;
3124				break;
3125			}
3126		}
 
3127
3128		if (!info)
3129			continue;
3130		down_read(&info->groups_sem);
3131		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3132			if (!list_empty(&info->block_groups[c])) {
3133				get_block_group_info(&info->block_groups[c],
3134						     &space);
3135				memcpy(dest, &space, sizeof(space));
3136				dest++;
3137				space_args.total_spaces++;
3138				slot_count--;
3139			}
3140			if (!slot_count)
3141				break;
3142		}
3143		up_read(&info->groups_sem);
3144	}
3145
3146	/*
3147	 * Add global block reserve
3148	 */
3149	if (slot_count) {
3150		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3151
3152		spin_lock(&block_rsv->lock);
3153		space.total_bytes = block_rsv->size;
3154		space.used_bytes = block_rsv->size - block_rsv->reserved;
3155		spin_unlock(&block_rsv->lock);
3156		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3157		memcpy(dest, &space, sizeof(space));
3158		space_args.total_spaces++;
3159	}
3160
3161	user_dest = (struct btrfs_ioctl_space_info __user *)
3162		(arg + sizeof(struct btrfs_ioctl_space_args));
3163
3164	if (copy_to_user(user_dest, dest_orig, alloc_size))
3165		ret = -EFAULT;
3166
3167	kfree(dest_orig);
3168out:
3169	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3170		ret = -EFAULT;
3171
3172	return ret;
3173}
3174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3175static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3176					    void __user *argp)
3177{
3178	struct btrfs_trans_handle *trans;
3179	u64 transid;
3180
3181	/*
3182	 * Start orphan cleanup here for the given root in case it hasn't been
3183	 * started already by other means. Errors are handled in the other
3184	 * functions during transaction commit.
3185	 */
3186	btrfs_orphan_cleanup(root);
3187
3188	trans = btrfs_attach_transaction_barrier(root);
3189	if (IS_ERR(trans)) {
3190		if (PTR_ERR(trans) != -ENOENT)
3191			return PTR_ERR(trans);
3192
3193		/* No running transaction, don't bother */
3194		transid = btrfs_get_last_trans_committed(root->fs_info);
3195		goto out;
3196	}
3197	transid = trans->transid;
3198	btrfs_commit_transaction_async(trans);
 
 
 
 
3199out:
3200	if (argp)
3201		if (copy_to_user(argp, &transid, sizeof(transid)))
3202			return -EFAULT;
3203	return 0;
3204}
3205
3206static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3207					   void __user *argp)
3208{
3209	/* By default wait for the current transaction. */
3210	u64 transid = 0;
3211
3212	if (argp)
3213		if (copy_from_user(&transid, argp, sizeof(transid)))
3214			return -EFAULT;
3215
3216	return btrfs_wait_for_commit(fs_info, transid);
 
 
3217}
3218
3219static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3220{
3221	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3222	struct btrfs_ioctl_scrub_args *sa;
3223	int ret;
3224
3225	if (!capable(CAP_SYS_ADMIN))
3226		return -EPERM;
3227
3228	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3229		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3230		return -EINVAL;
3231	}
3232
3233	sa = memdup_user(arg, sizeof(*sa));
3234	if (IS_ERR(sa))
3235		return PTR_ERR(sa);
3236
3237	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3238		ret = -EOPNOTSUPP;
3239		goto out;
3240	}
3241
3242	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3243		ret = mnt_want_write_file(file);
3244		if (ret)
3245			goto out;
3246	}
3247
3248	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3249			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3250			      0);
3251
3252	/*
3253	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3254	 * error. This is important as it allows user space to know how much
3255	 * progress scrub has done. For example, if scrub is canceled we get
3256	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3257	 * space. Later user space can inspect the progress from the structure
3258	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3259	 * previously (btrfs-progs does this).
3260	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3261	 * then return -EFAULT to signal the structure was not copied or it may
3262	 * be corrupt and unreliable due to a partial copy.
3263	 */
3264	if (copy_to_user(arg, sa, sizeof(*sa)))
3265		ret = -EFAULT;
3266
3267	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3268		mnt_drop_write_file(file);
3269out:
3270	kfree(sa);
3271	return ret;
3272}
3273
3274static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3275{
3276	if (!capable(CAP_SYS_ADMIN))
3277		return -EPERM;
3278
3279	return btrfs_scrub_cancel(fs_info);
3280}
3281
3282static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3283				       void __user *arg)
3284{
3285	struct btrfs_ioctl_scrub_args *sa;
3286	int ret;
3287
3288	if (!capable(CAP_SYS_ADMIN))
3289		return -EPERM;
3290
3291	sa = memdup_user(arg, sizeof(*sa));
3292	if (IS_ERR(sa))
3293		return PTR_ERR(sa);
3294
3295	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3296
3297	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3298		ret = -EFAULT;
3299
3300	kfree(sa);
3301	return ret;
3302}
3303
3304static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3305				      void __user *arg)
3306{
3307	struct btrfs_ioctl_get_dev_stats *sa;
3308	int ret;
3309
3310	sa = memdup_user(arg, sizeof(*sa));
3311	if (IS_ERR(sa))
3312		return PTR_ERR(sa);
3313
3314	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3315		kfree(sa);
3316		return -EPERM;
3317	}
3318
3319	ret = btrfs_get_dev_stats(fs_info, sa);
3320
3321	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3322		ret = -EFAULT;
3323
3324	kfree(sa);
3325	return ret;
3326}
3327
3328static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3329				    void __user *arg)
3330{
3331	struct btrfs_ioctl_dev_replace_args *p;
3332	int ret;
3333
3334	if (!capable(CAP_SYS_ADMIN))
3335		return -EPERM;
3336
3337	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3338		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3339		return -EINVAL;
3340	}
3341
3342	p = memdup_user(arg, sizeof(*p));
3343	if (IS_ERR(p))
3344		return PTR_ERR(p);
3345
3346	switch (p->cmd) {
3347	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3348		if (sb_rdonly(fs_info->sb)) {
3349			ret = -EROFS;
3350			goto out;
3351		}
3352		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
 
 
3353			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3354		} else {
3355			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3356			btrfs_exclop_finish(fs_info);
 
 
3357		}
3358		break;
3359	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3360		btrfs_dev_replace_status(fs_info, p);
3361		ret = 0;
3362		break;
3363	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3364		p->result = btrfs_dev_replace_cancel(fs_info);
3365		ret = 0;
3366		break;
3367	default:
3368		ret = -EINVAL;
3369		break;
3370	}
3371
3372	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3373		ret = -EFAULT;
3374out:
3375	kfree(p);
3376	return ret;
3377}
3378
3379static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3380{
3381	int ret = 0;
3382	int i;
3383	u64 rel_ptr;
3384	int size;
3385	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3386	struct inode_fs_paths *ipath = NULL;
3387	struct btrfs_path *path;
3388
3389	if (!capable(CAP_DAC_READ_SEARCH))
3390		return -EPERM;
3391
3392	path = btrfs_alloc_path();
3393	if (!path) {
3394		ret = -ENOMEM;
3395		goto out;
3396	}
3397
3398	ipa = memdup_user(arg, sizeof(*ipa));
3399	if (IS_ERR(ipa)) {
3400		ret = PTR_ERR(ipa);
3401		ipa = NULL;
3402		goto out;
3403	}
3404
3405	size = min_t(u32, ipa->size, 4096);
3406	ipath = init_ipath(size, root, path);
3407	if (IS_ERR(ipath)) {
3408		ret = PTR_ERR(ipath);
3409		ipath = NULL;
3410		goto out;
3411	}
3412
3413	ret = paths_from_inode(ipa->inum, ipath);
3414	if (ret < 0)
3415		goto out;
3416
3417	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3418		rel_ptr = ipath->fspath->val[i] -
3419			  (u64)(unsigned long)ipath->fspath->val;
3420		ipath->fspath->val[i] = rel_ptr;
3421	}
3422
3423	btrfs_free_path(path);
3424	path = NULL;
3425	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3426			   ipath->fspath, size);
3427	if (ret) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432out:
3433	btrfs_free_path(path);
3434	free_ipath(ipath);
3435	kfree(ipa);
3436
3437	return ret;
3438}
3439
3440static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3441					void __user *arg, int version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442{
3443	int ret = 0;
3444	int size;
3445	struct btrfs_ioctl_logical_ino_args *loi;
3446	struct btrfs_data_container *inodes = NULL;
3447	struct btrfs_path *path = NULL;
3448	bool ignore_offset;
3449
3450	if (!capable(CAP_SYS_ADMIN))
3451		return -EPERM;
3452
3453	loi = memdup_user(arg, sizeof(*loi));
3454	if (IS_ERR(loi))
3455		return PTR_ERR(loi);
 
 
 
3456
3457	if (version == 1) {
3458		ignore_offset = false;
3459		size = min_t(u32, loi->size, SZ_64K);
3460	} else {
3461		/* All reserved bits must be 0 for now */
3462		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3463			ret = -EINVAL;
3464			goto out_loi;
3465		}
3466		/* Only accept flags we have defined so far */
3467		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3468			ret = -EINVAL;
3469			goto out_loi;
3470		}
3471		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3472		size = min_t(u32, loi->size, SZ_16M);
3473	}
3474
 
3475	inodes = init_data_container(size);
3476	if (IS_ERR(inodes)) {
3477		ret = PTR_ERR(inodes);
3478		goto out_loi;
3479	}
3480
3481	path = btrfs_alloc_path();
3482	if (!path) {
3483		ret = -ENOMEM;
3484		goto out;
3485	}
3486	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3487					  inodes, ignore_offset);
3488	btrfs_free_path(path);
3489	if (ret == -EINVAL)
3490		ret = -ENOENT;
3491	if (ret < 0)
3492		goto out;
3493
3494	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3495			   size);
3496	if (ret)
3497		ret = -EFAULT;
3498
3499out:
3500	kvfree(inodes);
3501out_loi:
3502	kfree(loi);
3503
3504	return ret;
3505}
3506
3507void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3508			       struct btrfs_ioctl_balance_args *bargs)
3509{
3510	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3511
3512	bargs->flags = bctl->flags;
3513
3514	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3515		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3516	if (atomic_read(&fs_info->balance_pause_req))
3517		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3518	if (atomic_read(&fs_info->balance_cancel_req))
3519		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3520
3521	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3522	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3523	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3524
3525	spin_lock(&fs_info->balance_lock);
3526	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3527	spin_unlock(&fs_info->balance_lock);
3528}
3529
3530/*
3531 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3532 * required.
3533 *
3534 * @fs_info:       the filesystem
3535 * @excl_acquired: ptr to boolean value which is set to false in case balance
3536 *                 is being resumed
3537 *
3538 * Return 0 on success in which case both fs_info::balance is acquired as well
3539 * as exclusive ops are blocked. In case of failure return an error code.
3540 */
3541static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3542{
3543	int ret;
3544
3545	/*
3546	 * Exclusive operation is locked. Three possibilities:
3547	 *   (1) some other op is running
3548	 *   (2) balance is running
3549	 *   (3) balance is paused -- special case (think resume)
3550	 */
3551	while (1) {
3552		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3553			*excl_acquired = true;
3554			mutex_lock(&fs_info->balance_mutex);
3555			return 0;
3556		}
3557
3558		mutex_lock(&fs_info->balance_mutex);
3559		if (fs_info->balance_ctl) {
3560			/* This is either (2) or (3) */
3561			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3562				/* This is (2) */
3563				ret = -EINPROGRESS;
3564				goto out_failure;
3565
3566			} else {
3567				mutex_unlock(&fs_info->balance_mutex);
3568				/*
3569				 * Lock released to allow other waiters to
3570				 * continue, we'll reexamine the status again.
3571				 */
3572				mutex_lock(&fs_info->balance_mutex);
3573
3574				if (fs_info->balance_ctl &&
3575				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3576					/* This is (3) */
3577					*excl_acquired = false;
3578					return 0;
3579				}
3580			}
3581		} else {
3582			/* This is (1) */
3583			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3584			goto out_failure;
3585		}
3586
3587		mutex_unlock(&fs_info->balance_mutex);
3588	}
3589
3590out_failure:
3591	mutex_unlock(&fs_info->balance_mutex);
3592	*excl_acquired = false;
3593	return ret;
3594}
3595
3596static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3597{
3598	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3599	struct btrfs_fs_info *fs_info = root->fs_info;
3600	struct btrfs_ioctl_balance_args *bargs;
3601	struct btrfs_balance_control *bctl;
3602	bool need_unlock = true;
3603	int ret;
3604
3605	if (!capable(CAP_SYS_ADMIN))
3606		return -EPERM;
3607
3608	ret = mnt_want_write_file(file);
3609	if (ret)
3610		return ret;
3611
3612	bargs = memdup_user(arg, sizeof(*bargs));
3613	if (IS_ERR(bargs)) {
3614		ret = PTR_ERR(bargs);
3615		bargs = NULL;
3616		goto out;
 
3617	}
3618
3619	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3620	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621		goto out;
 
3622
3623	lockdep_assert_held(&fs_info->balance_mutex);
 
3624
3625	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3626		if (!fs_info->balance_ctl) {
3627			ret = -ENOTCONN;
 
3628			goto out_unlock;
3629		}
3630
3631		bctl = fs_info->balance_ctl;
3632		spin_lock(&fs_info->balance_lock);
3633		bctl->flags |= BTRFS_BALANCE_RESUME;
3634		spin_unlock(&fs_info->balance_lock);
3635		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3636
3637		goto do_balance;
3638	}
 
 
3639
3640	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3641		ret = -EINVAL;
3642		goto out_unlock;
 
3643	}
3644
3645	if (fs_info->balance_ctl) {
3646		ret = -EINPROGRESS;
3647		goto out_unlock;
3648	}
3649
3650	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3651	if (!bctl) {
3652		ret = -ENOMEM;
3653		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
3654	}
3655
3656	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3657	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3658	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
 
3659
3660	bctl->flags = bargs->flags;
3661do_balance:
3662	/*
3663	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3664	 * bctl is freed in reset_balance_state, or, if restriper was paused
3665	 * all the way until unmount, in free_fs_info.  The flag should be
3666	 * cleared after reset_balance_state.
 
3667	 */
3668	need_unlock = false;
3669
3670	ret = btrfs_balance(fs_info, bctl, bargs);
3671	bctl = NULL;
3672
3673	if (ret == 0 || ret == -ECANCELED) {
3674		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3675			ret = -EFAULT;
3676	}
3677
 
3678	kfree(bctl);
 
 
3679out_unlock:
3680	mutex_unlock(&fs_info->balance_mutex);
 
3681	if (need_unlock)
3682		btrfs_exclop_finish(fs_info);
3683out:
3684	mnt_drop_write_file(file);
3685	kfree(bargs);
3686	return ret;
3687}
3688
3689static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3690{
3691	if (!capable(CAP_SYS_ADMIN))
3692		return -EPERM;
3693
3694	switch (cmd) {
3695	case BTRFS_BALANCE_CTL_PAUSE:
3696		return btrfs_pause_balance(fs_info);
3697	case BTRFS_BALANCE_CTL_CANCEL:
3698		return btrfs_cancel_balance(fs_info);
3699	}
3700
3701	return -EINVAL;
3702}
3703
3704static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3705					 void __user *arg)
3706{
 
3707	struct btrfs_ioctl_balance_args *bargs;
3708	int ret = 0;
3709
3710	if (!capable(CAP_SYS_ADMIN))
3711		return -EPERM;
3712
3713	mutex_lock(&fs_info->balance_mutex);
3714	if (!fs_info->balance_ctl) {
3715		ret = -ENOTCONN;
3716		goto out;
3717	}
3718
3719	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3720	if (!bargs) {
3721		ret = -ENOMEM;
3722		goto out;
3723	}
3724
3725	btrfs_update_ioctl_balance_args(fs_info, bargs);
3726
3727	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3728		ret = -EFAULT;
3729
3730	kfree(bargs);
3731out:
3732	mutex_unlock(&fs_info->balance_mutex);
3733	return ret;
3734}
3735
3736static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3737{
3738	struct inode *inode = file_inode(file);
3739	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3740	struct btrfs_ioctl_quota_ctl_args *sa;
 
3741	int ret;
 
3742
3743	if (!capable(CAP_SYS_ADMIN))
3744		return -EPERM;
3745
3746	ret = mnt_want_write_file(file);
3747	if (ret)
3748		return ret;
3749
3750	sa = memdup_user(arg, sizeof(*sa));
3751	if (IS_ERR(sa)) {
3752		ret = PTR_ERR(sa);
3753		goto drop_write;
3754	}
3755
 
 
 
 
 
 
 
3756	switch (sa->cmd) {
3757	case BTRFS_QUOTA_CTL_ENABLE:
3758	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3759		down_write(&fs_info->subvol_sem);
3760		ret = btrfs_quota_enable(fs_info, sa);
3761		up_write(&fs_info->subvol_sem);
3762		break;
3763	case BTRFS_QUOTA_CTL_DISABLE:
3764		/*
3765		 * Lock the cleaner mutex to prevent races with concurrent
3766		 * relocation, because relocation may be building backrefs for
3767		 * blocks of the quota root while we are deleting the root. This
3768		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3769		 * need the same protection.
3770		 *
3771		 * This also prevents races between concurrent tasks trying to
3772		 * disable quotas, because we will unlock and relock
3773		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3774		 *
3775		 * We take this here because we have the dependency of
3776		 *
3777		 * inode_lock -> subvol_sem
3778		 *
3779		 * because of rename.  With relocation we can prealloc extents,
3780		 * so that makes the dependency chain
3781		 *
3782		 * cleaner_mutex -> inode_lock -> subvol_sem
3783		 *
3784		 * so we must take the cleaner_mutex here before we take the
3785		 * subvol_sem.  The deadlock can't actually happen, but this
3786		 * quiets lockdep.
3787		 */
3788		mutex_lock(&fs_info->cleaner_mutex);
3789		down_write(&fs_info->subvol_sem);
3790		ret = btrfs_quota_disable(fs_info);
3791		up_write(&fs_info->subvol_sem);
3792		mutex_unlock(&fs_info->cleaner_mutex);
3793		break;
3794	default:
3795		ret = -EINVAL;
3796		break;
3797	}
3798
 
 
 
 
3799	kfree(sa);
 
3800drop_write:
3801	mnt_drop_write_file(file);
3802	return ret;
3803}
3804
3805/*
3806 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3807 * done before any operations.
3808 */
3809static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3810{
3811	bool ret = true;
3812
3813	mutex_lock(&fs_info->qgroup_ioctl_lock);
3814	if (!fs_info->quota_root)
3815		ret = false;
3816	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3817
3818	return ret;
3819}
3820
3821static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3822{
3823	struct inode *inode = file_inode(file);
3824	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3825	struct btrfs_root *root = BTRFS_I(inode)->root;
3826	struct btrfs_ioctl_qgroup_assign_args *sa;
3827	struct btrfs_qgroup_list *prealloc = NULL;
3828	struct btrfs_trans_handle *trans;
3829	int ret;
3830	int err;
3831
3832	if (!capable(CAP_SYS_ADMIN))
3833		return -EPERM;
3834
3835	if (!qgroup_enabled(root->fs_info))
3836		return -ENOTCONN;
3837
3838	ret = mnt_want_write_file(file);
3839	if (ret)
3840		return ret;
3841
3842	sa = memdup_user(arg, sizeof(*sa));
3843	if (IS_ERR(sa)) {
3844		ret = PTR_ERR(sa);
3845		goto drop_write;
3846	}
3847
3848	if (sa->assign) {
3849		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3850		if (!prealloc) {
3851			ret = -ENOMEM;
3852			goto drop_write;
3853		}
3854	}
3855
3856	trans = btrfs_join_transaction(root);
3857	if (IS_ERR(trans)) {
3858		ret = PTR_ERR(trans);
3859		goto out;
3860	}
3861
3862	/*
3863	 * Prealloc ownership is moved to the relation handler, there it's used
3864	 * or freed on error.
3865	 */
3866	if (sa->assign) {
3867		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3868		prealloc = NULL;
3869	} else {
3870		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
 
3871	}
3872
3873	/* update qgroup status and info */
3874	mutex_lock(&fs_info->qgroup_ioctl_lock);
3875	err = btrfs_run_qgroups(trans);
3876	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3877	if (err < 0)
3878		btrfs_warn(fs_info,
3879			   "qgroup status update failed after %s relation, marked as inconsistent",
3880			   sa->assign ? "adding" : "deleting");
3881	err = btrfs_end_transaction(trans);
3882	if (err && !ret)
3883		ret = err;
3884
3885out:
3886	kfree(prealloc);
3887	kfree(sa);
3888drop_write:
3889	mnt_drop_write_file(file);
3890	return ret;
3891}
3892
3893static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3894{
3895	struct inode *inode = file_inode(file);
3896	struct btrfs_root *root = BTRFS_I(inode)->root;
3897	struct btrfs_ioctl_qgroup_create_args *sa;
3898	struct btrfs_trans_handle *trans;
3899	int ret;
3900	int err;
3901
3902	if (!capable(CAP_SYS_ADMIN))
3903		return -EPERM;
3904
3905	if (!qgroup_enabled(root->fs_info))
3906		return -ENOTCONN;
3907
3908	ret = mnt_want_write_file(file);
3909	if (ret)
3910		return ret;
3911
3912	sa = memdup_user(arg, sizeof(*sa));
3913	if (IS_ERR(sa)) {
3914		ret = PTR_ERR(sa);
3915		goto drop_write;
3916	}
3917
3918	if (!sa->qgroupid) {
3919		ret = -EINVAL;
3920		goto out;
3921	}
3922
3923	if (sa->create && is_fstree(sa->qgroupid)) {
3924		ret = -EINVAL;
3925		goto out;
3926	}
3927
3928	trans = btrfs_join_transaction(root);
3929	if (IS_ERR(trans)) {
3930		ret = PTR_ERR(trans);
3931		goto out;
3932	}
3933
 
3934	if (sa->create) {
3935		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3936	} else {
3937		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3938	}
3939
3940	err = btrfs_end_transaction(trans);
3941	if (err && !ret)
3942		ret = err;
3943
3944out:
3945	kfree(sa);
3946drop_write:
3947	mnt_drop_write_file(file);
3948	return ret;
3949}
3950
3951static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3952{
3953	struct inode *inode = file_inode(file);
3954	struct btrfs_root *root = BTRFS_I(inode)->root;
3955	struct btrfs_ioctl_qgroup_limit_args *sa;
3956	struct btrfs_trans_handle *trans;
3957	int ret;
3958	int err;
3959	u64 qgroupid;
3960
3961	if (!capable(CAP_SYS_ADMIN))
3962		return -EPERM;
3963
3964	if (!qgroup_enabled(root->fs_info))
3965		return -ENOTCONN;
3966
3967	ret = mnt_want_write_file(file);
3968	if (ret)
3969		return ret;
3970
3971	sa = memdup_user(arg, sizeof(*sa));
3972	if (IS_ERR(sa)) {
3973		ret = PTR_ERR(sa);
3974		goto drop_write;
3975	}
3976
3977	trans = btrfs_join_transaction(root);
3978	if (IS_ERR(trans)) {
3979		ret = PTR_ERR(trans);
3980		goto out;
3981	}
3982
3983	qgroupid = sa->qgroupid;
3984	if (!qgroupid) {
3985		/* take the current subvol as qgroup */
3986		qgroupid = btrfs_root_id(root);
3987	}
3988
3989	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
 
3990
3991	err = btrfs_end_transaction(trans);
3992	if (err && !ret)
3993		ret = err;
3994
3995out:
3996	kfree(sa);
3997drop_write:
3998	mnt_drop_write_file(file);
3999	return ret;
4000}
4001
4002static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4003{
4004	struct inode *inode = file_inode(file);
4005	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4006	struct btrfs_ioctl_quota_rescan_args *qsa;
4007	int ret;
4008
4009	if (!capable(CAP_SYS_ADMIN))
4010		return -EPERM;
4011
4012	if (!qgroup_enabled(fs_info))
4013		return -ENOTCONN;
4014
4015	ret = mnt_want_write_file(file);
4016	if (ret)
4017		return ret;
4018
4019	qsa = memdup_user(arg, sizeof(*qsa));
4020	if (IS_ERR(qsa)) {
4021		ret = PTR_ERR(qsa);
4022		goto drop_write;
4023	}
4024
4025	if (qsa->flags) {
4026		ret = -EINVAL;
4027		goto out;
4028	}
4029
4030	ret = btrfs_qgroup_rescan(fs_info);
4031
4032out:
4033	kfree(qsa);
4034drop_write:
4035	mnt_drop_write_file(file);
4036	return ret;
4037}
4038
4039static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4040						void __user *arg)
4041{
4042	struct btrfs_ioctl_quota_rescan_args qsa = {0};
 
 
4043
4044	if (!capable(CAP_SYS_ADMIN))
4045		return -EPERM;
4046
4047	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4048		qsa.flags = 1;
4049		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
 
 
 
 
4050	}
4051
4052	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4053		return -EFAULT;
4054
4055	return 0;
 
4056}
4057
4058static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
4059{
 
 
4060	if (!capable(CAP_SYS_ADMIN))
4061		return -EPERM;
4062
4063	return btrfs_qgroup_wait_for_completion(fs_info, true);
4064}
4065
4066static long _btrfs_ioctl_set_received_subvol(struct file *file,
4067					    struct mnt_idmap *idmap,
4068					    struct btrfs_ioctl_received_subvol_args *sa)
4069{
4070	struct inode *inode = file_inode(file);
4071	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4072	struct btrfs_root *root = BTRFS_I(inode)->root;
4073	struct btrfs_root_item *root_item = &root->root_item;
4074	struct btrfs_trans_handle *trans;
4075	struct timespec64 ct = current_time(inode);
4076	int ret = 0;
4077	int received_uuid_changed;
4078
4079	if (!inode_owner_or_capable(idmap, inode))
4080		return -EPERM;
4081
4082	ret = mnt_want_write_file(file);
4083	if (ret < 0)
4084		return ret;
4085
4086	down_write(&fs_info->subvol_sem);
4087
4088	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4089		ret = -EINVAL;
4090		goto out;
4091	}
4092
4093	if (btrfs_root_readonly(root)) {
4094		ret = -EROFS;
4095		goto out;
4096	}
4097
4098	/*
4099	 * 1 - root item
4100	 * 2 - uuid items (received uuid + subvol uuid)
4101	 */
4102	trans = btrfs_start_transaction(root, 3);
4103	if (IS_ERR(trans)) {
4104		ret = PTR_ERR(trans);
4105		trans = NULL;
4106		goto out;
4107	}
4108
4109	sa->rtransid = trans->transid;
4110	sa->rtime.sec = ct.tv_sec;
4111	sa->rtime.nsec = ct.tv_nsec;
4112
4113	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4114				       BTRFS_UUID_SIZE);
4115	if (received_uuid_changed &&
4116	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4117		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4118					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4119					  btrfs_root_id(root));
4120		if (ret && ret != -ENOENT) {
4121		        btrfs_abort_transaction(trans, ret);
4122		        btrfs_end_transaction(trans);
4123		        goto out;
4124		}
4125	}
4126	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4127	btrfs_set_root_stransid(root_item, sa->stransid);
4128	btrfs_set_root_rtransid(root_item, sa->rtransid);
4129	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4130	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4131	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4132	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4133
4134	ret = btrfs_update_root(trans, fs_info->tree_root,
4135				&root->root_key, &root->root_item);
4136	if (ret < 0) {
4137		btrfs_end_transaction(trans);
4138		goto out;
4139	}
4140	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4141		ret = btrfs_uuid_tree_add(trans, sa->uuid,
 
4142					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143					  btrfs_root_id(root));
4144		if (ret < 0 && ret != -EEXIST) {
4145			btrfs_abort_transaction(trans, ret);
4146			btrfs_end_transaction(trans);
4147			goto out;
4148		}
4149	}
4150	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
4151out:
4152	up_write(&fs_info->subvol_sem);
4153	mnt_drop_write_file(file);
4154	return ret;
4155}
4156
4157#ifdef CONFIG_64BIT
4158static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4159						void __user *arg)
4160{
4161	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4162	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4163	int ret = 0;
4164
4165	args32 = memdup_user(arg, sizeof(*args32));
4166	if (IS_ERR(args32))
4167		return PTR_ERR(args32);
 
 
 
4168
4169	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4170	if (!args64) {
4171		ret = -ENOMEM;
4172		goto out;
4173	}
4174
4175	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4176	args64->stransid = args32->stransid;
4177	args64->rtransid = args32->rtransid;
4178	args64->stime.sec = args32->stime.sec;
4179	args64->stime.nsec = args32->stime.nsec;
4180	args64->rtime.sec = args32->rtime.sec;
4181	args64->rtime.nsec = args32->rtime.nsec;
4182	args64->flags = args32->flags;
4183
4184	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4185	if (ret)
4186		goto out;
4187
4188	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4189	args32->stransid = args64->stransid;
4190	args32->rtransid = args64->rtransid;
4191	args32->stime.sec = args64->stime.sec;
4192	args32->stime.nsec = args64->stime.nsec;
4193	args32->rtime.sec = args64->rtime.sec;
4194	args32->rtime.nsec = args64->rtime.nsec;
4195	args32->flags = args64->flags;
4196
4197	ret = copy_to_user(arg, args32, sizeof(*args32));
4198	if (ret)
4199		ret = -EFAULT;
4200
4201out:
4202	kfree(args32);
4203	kfree(args64);
4204	return ret;
4205}
4206#endif
4207
4208static long btrfs_ioctl_set_received_subvol(struct file *file,
4209					    void __user *arg)
4210{
4211	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4212	int ret = 0;
4213
4214	sa = memdup_user(arg, sizeof(*sa));
4215	if (IS_ERR(sa))
4216		return PTR_ERR(sa);
 
 
 
4217
4218	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4219
4220	if (ret)
4221		goto out;
4222
4223	ret = copy_to_user(arg, sa, sizeof(*sa));
4224	if (ret)
4225		ret = -EFAULT;
4226
4227out:
4228	kfree(sa);
4229	return ret;
4230}
4231
4232static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4233					void __user *arg)
4234{
 
4235	size_t len;
4236	int ret;
4237	char label[BTRFS_LABEL_SIZE];
4238
4239	spin_lock(&fs_info->super_lock);
4240	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4241	spin_unlock(&fs_info->super_lock);
4242
4243	len = strnlen(label, BTRFS_LABEL_SIZE);
4244
4245	if (len == BTRFS_LABEL_SIZE) {
4246		btrfs_warn(fs_info,
4247			   "label is too long, return the first %zu bytes",
4248			   --len);
4249	}
4250
4251	ret = copy_to_user(arg, label, len);
4252
4253	return ret ? -EFAULT : 0;
4254}
4255
4256static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4257{
4258	struct inode *inode = file_inode(file);
4259	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4260	struct btrfs_root *root = BTRFS_I(inode)->root;
4261	struct btrfs_super_block *super_block = fs_info->super_copy;
4262	struct btrfs_trans_handle *trans;
4263	char label[BTRFS_LABEL_SIZE];
4264	int ret;
4265
4266	if (!capable(CAP_SYS_ADMIN))
4267		return -EPERM;
4268
4269	if (copy_from_user(label, arg, sizeof(label)))
4270		return -EFAULT;
4271
4272	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4273		btrfs_err(fs_info,
4274			  "unable to set label with more than %d bytes",
4275			  BTRFS_LABEL_SIZE - 1);
4276		return -EINVAL;
4277	}
4278
4279	ret = mnt_want_write_file(file);
4280	if (ret)
4281		return ret;
4282
4283	trans = btrfs_start_transaction(root, 0);
4284	if (IS_ERR(trans)) {
4285		ret = PTR_ERR(trans);
4286		goto out_unlock;
4287	}
4288
4289	spin_lock(&fs_info->super_lock);
4290	strcpy(super_block->label, label);
4291	spin_unlock(&fs_info->super_lock);
4292	ret = btrfs_commit_transaction(trans);
4293
4294out_unlock:
4295	mnt_drop_write_file(file);
4296	return ret;
4297}
4298
4299#define INIT_FEATURE_FLAGS(suffix) \
4300	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4301	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4302	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4303
4304int btrfs_ioctl_get_supported_features(void __user *arg)
4305{
4306	static const struct btrfs_ioctl_feature_flags features[3] = {
4307		INIT_FEATURE_FLAGS(SUPP),
4308		INIT_FEATURE_FLAGS(SAFE_SET),
4309		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4310	};
4311
4312	if (copy_to_user(arg, &features, sizeof(features)))
4313		return -EFAULT;
4314
4315	return 0;
4316}
4317
4318static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4319					void __user *arg)
4320{
4321	struct btrfs_super_block *super_block = fs_info->super_copy;
 
4322	struct btrfs_ioctl_feature_flags features;
4323
4324	features.compat_flags = btrfs_super_compat_flags(super_block);
4325	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4326	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4327
4328	if (copy_to_user(arg, &features, sizeof(features)))
4329		return -EFAULT;
4330
4331	return 0;
4332}
4333
4334static int check_feature_bits(struct btrfs_fs_info *fs_info,
4335			      enum btrfs_feature_set set,
4336			      u64 change_mask, u64 flags, u64 supported_flags,
4337			      u64 safe_set, u64 safe_clear)
4338{
4339	const char *type = btrfs_feature_set_name(set);
4340	char *names;
4341	u64 disallowed, unsupported;
4342	u64 set_mask = flags & change_mask;
4343	u64 clear_mask = ~flags & change_mask;
4344
4345	unsupported = set_mask & ~supported_flags;
4346	if (unsupported) {
4347		names = btrfs_printable_features(set, unsupported);
4348		if (names) {
4349			btrfs_warn(fs_info,
4350				   "this kernel does not support the %s feature bit%s",
4351				   names, strchr(names, ',') ? "s" : "");
4352			kfree(names);
4353		} else
4354			btrfs_warn(fs_info,
4355				   "this kernel does not support %s bits 0x%llx",
4356				   type, unsupported);
4357		return -EOPNOTSUPP;
4358	}
4359
4360	disallowed = set_mask & ~safe_set;
4361	if (disallowed) {
4362		names = btrfs_printable_features(set, disallowed);
4363		if (names) {
4364			btrfs_warn(fs_info,
4365				   "can't set the %s feature bit%s while mounted",
4366				   names, strchr(names, ',') ? "s" : "");
4367			kfree(names);
4368		} else
4369			btrfs_warn(fs_info,
4370				   "can't set %s bits 0x%llx while mounted",
4371				   type, disallowed);
4372		return -EPERM;
4373	}
4374
4375	disallowed = clear_mask & ~safe_clear;
4376	if (disallowed) {
4377		names = btrfs_printable_features(set, disallowed);
4378		if (names) {
4379			btrfs_warn(fs_info,
4380				   "can't clear the %s feature bit%s while mounted",
4381				   names, strchr(names, ',') ? "s" : "");
4382			kfree(names);
4383		} else
4384			btrfs_warn(fs_info,
4385				   "can't clear %s bits 0x%llx while mounted",
4386				   type, disallowed);
4387		return -EPERM;
4388	}
4389
4390	return 0;
4391}
4392
4393#define check_feature(fs_info, change_mask, flags, mask_base)	\
4394check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4395		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4396		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4397		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4398
4399static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4400{
4401	struct inode *inode = file_inode(file);
4402	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4403	struct btrfs_root *root = BTRFS_I(inode)->root;
4404	struct btrfs_super_block *super_block = fs_info->super_copy;
4405	struct btrfs_ioctl_feature_flags flags[2];
4406	struct btrfs_trans_handle *trans;
4407	u64 newflags;
4408	int ret;
4409
4410	if (!capable(CAP_SYS_ADMIN))
4411		return -EPERM;
4412
4413	if (copy_from_user(flags, arg, sizeof(flags)))
4414		return -EFAULT;
4415
4416	/* Nothing to do */
4417	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4418	    !flags[0].incompat_flags)
4419		return 0;
4420
4421	ret = check_feature(fs_info, flags[0].compat_flags,
4422			    flags[1].compat_flags, COMPAT);
4423	if (ret)
4424		return ret;
4425
4426	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4427			    flags[1].compat_ro_flags, COMPAT_RO);
4428	if (ret)
4429		return ret;
4430
4431	ret = check_feature(fs_info, flags[0].incompat_flags,
4432			    flags[1].incompat_flags, INCOMPAT);
4433	if (ret)
4434		return ret;
4435
4436	ret = mnt_want_write_file(file);
4437	if (ret)
4438		return ret;
4439
4440	trans = btrfs_start_transaction(root, 0);
4441	if (IS_ERR(trans)) {
4442		ret = PTR_ERR(trans);
4443		goto out_drop_write;
4444	}
4445
4446	spin_lock(&fs_info->super_lock);
4447	newflags = btrfs_super_compat_flags(super_block);
4448	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4449	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4450	btrfs_set_super_compat_flags(super_block, newflags);
4451
4452	newflags = btrfs_super_compat_ro_flags(super_block);
4453	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4454	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4455	btrfs_set_super_compat_ro_flags(super_block, newflags);
4456
4457	newflags = btrfs_super_incompat_flags(super_block);
4458	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4459	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4460	btrfs_set_super_incompat_flags(super_block, newflags);
4461	spin_unlock(&fs_info->super_lock);
4462
4463	ret = btrfs_commit_transaction(trans);
4464out_drop_write:
4465	mnt_drop_write_file(file);
4466
4467	return ret;
4468}
4469
4470static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4471{
4472	struct btrfs_ioctl_send_args *arg;
4473	int ret;
4474
4475	if (compat) {
4476#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4477		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4478
4479		ret = copy_from_user(&args32, argp, sizeof(args32));
4480		if (ret)
4481			return -EFAULT;
4482		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4483		if (!arg)
4484			return -ENOMEM;
4485		arg->send_fd = args32.send_fd;
4486		arg->clone_sources_count = args32.clone_sources_count;
4487		arg->clone_sources = compat_ptr(args32.clone_sources);
4488		arg->parent_root = args32.parent_root;
4489		arg->flags = args32.flags;
4490		arg->version = args32.version;
4491		memcpy(arg->reserved, args32.reserved,
4492		       sizeof(args32.reserved));
4493#else
4494		return -ENOTTY;
4495#endif
4496	} else {
4497		arg = memdup_user(argp, sizeof(*arg));
4498		if (IS_ERR(arg))
4499			return PTR_ERR(arg);
4500	}
4501	ret = btrfs_ioctl_send(inode, arg);
4502	kfree(arg);
4503	return ret;
4504}
4505
4506static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4507				    bool compat)
4508{
4509	struct btrfs_ioctl_encoded_io_args args = { 0 };
4510	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4511					     flags);
4512	size_t copy_end;
4513	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4514	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4515	struct extent_io_tree *io_tree = &inode->io_tree;
4516	struct iovec iovstack[UIO_FASTIOV];
4517	struct iovec *iov = iovstack;
4518	struct iov_iter iter;
4519	loff_t pos;
4520	struct kiocb kiocb;
4521	ssize_t ret;
4522	u64 disk_bytenr, disk_io_size;
4523	struct extent_state *cached_state = NULL;
4524
4525	if (!capable(CAP_SYS_ADMIN)) {
4526		ret = -EPERM;
4527		goto out_acct;
4528	}
4529
4530	if (compat) {
4531#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4532		struct btrfs_ioctl_encoded_io_args_32 args32;
4533
4534		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4535				       flags);
4536		if (copy_from_user(&args32, argp, copy_end)) {
4537			ret = -EFAULT;
4538			goto out_acct;
4539		}
4540		args.iov = compat_ptr(args32.iov);
4541		args.iovcnt = args32.iovcnt;
4542		args.offset = args32.offset;
4543		args.flags = args32.flags;
4544#else
4545		return -ENOTTY;
4546#endif
4547	} else {
4548		copy_end = copy_end_kernel;
4549		if (copy_from_user(&args, argp, copy_end)) {
4550			ret = -EFAULT;
4551			goto out_acct;
4552		}
4553	}
4554	if (args.flags != 0) {
4555		ret = -EINVAL;
4556		goto out_acct;
4557	}
4558
4559	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4560			   &iov, &iter);
4561	if (ret < 0)
4562		goto out_acct;
4563
4564	if (iov_iter_count(&iter) == 0) {
4565		ret = 0;
4566		goto out_iov;
4567	}
4568	pos = args.offset;
4569	ret = rw_verify_area(READ, file, &pos, args.len);
4570	if (ret < 0)
4571		goto out_iov;
4572
4573	init_sync_kiocb(&kiocb, file);
4574	kiocb.ki_pos = pos;
4575
4576	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4577				 &disk_bytenr, &disk_io_size);
4578
4579	if (ret == -EIOCBQUEUED) {
4580		bool unlocked = false;
4581		u64 start, lockend, count;
4582
4583		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4584		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4585
4586		if (args.compression)
4587			count = disk_io_size;
4588		else
4589			count = args.len;
4590
4591		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4592						 &cached_state, disk_bytenr,
4593						 disk_io_size, count,
4594						 args.compression, &unlocked);
4595
4596		if (!unlocked) {
4597			unlock_extent(io_tree, start, lockend, &cached_state);
4598			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4599		}
4600	}
4601
4602	if (ret >= 0) {
4603		fsnotify_access(file);
4604		if (copy_to_user(argp + copy_end,
4605				 (char *)&args + copy_end_kernel,
4606				 sizeof(args) - copy_end_kernel))
4607			ret = -EFAULT;
4608	}
4609
4610out_iov:
4611	kfree(iov);
4612out_acct:
4613	if (ret > 0)
4614		add_rchar(current, ret);
4615	inc_syscr(current);
4616	return ret;
4617}
4618
4619static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4620{
4621	struct btrfs_ioctl_encoded_io_args args;
4622	struct iovec iovstack[UIO_FASTIOV];
4623	struct iovec *iov = iovstack;
4624	struct iov_iter iter;
4625	loff_t pos;
4626	struct kiocb kiocb;
4627	ssize_t ret;
4628
4629	if (!capable(CAP_SYS_ADMIN)) {
4630		ret = -EPERM;
4631		goto out_acct;
4632	}
4633
4634	if (!(file->f_mode & FMODE_WRITE)) {
4635		ret = -EBADF;
4636		goto out_acct;
4637	}
4638
4639	if (compat) {
4640#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4641		struct btrfs_ioctl_encoded_io_args_32 args32;
4642
4643		if (copy_from_user(&args32, argp, sizeof(args32))) {
4644			ret = -EFAULT;
4645			goto out_acct;
4646		}
4647		args.iov = compat_ptr(args32.iov);
4648		args.iovcnt = args32.iovcnt;
4649		args.offset = args32.offset;
4650		args.flags = args32.flags;
4651		args.len = args32.len;
4652		args.unencoded_len = args32.unencoded_len;
4653		args.unencoded_offset = args32.unencoded_offset;
4654		args.compression = args32.compression;
4655		args.encryption = args32.encryption;
4656		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4657#else
4658		return -ENOTTY;
4659#endif
4660	} else {
4661		if (copy_from_user(&args, argp, sizeof(args))) {
4662			ret = -EFAULT;
4663			goto out_acct;
4664		}
4665	}
4666
4667	ret = -EINVAL;
4668	if (args.flags != 0)
4669		goto out_acct;
4670	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4671		goto out_acct;
4672	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4673	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4674		goto out_acct;
4675	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4676	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4677		goto out_acct;
4678	if (args.unencoded_offset > args.unencoded_len)
4679		goto out_acct;
4680	if (args.len > args.unencoded_len - args.unencoded_offset)
4681		goto out_acct;
4682
4683	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4684			   &iov, &iter);
4685	if (ret < 0)
4686		goto out_acct;
4687
4688	if (iov_iter_count(&iter) == 0) {
4689		ret = 0;
4690		goto out_iov;
4691	}
4692	pos = args.offset;
4693	ret = rw_verify_area(WRITE, file, &pos, args.len);
4694	if (ret < 0)
4695		goto out_iov;
4696
4697	init_sync_kiocb(&kiocb, file);
4698	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4699	if (ret)
4700		goto out_iov;
4701	kiocb.ki_pos = pos;
4702
4703	file_start_write(file);
4704
4705	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4706	if (ret > 0)
4707		fsnotify_modify(file);
4708
4709	file_end_write(file);
4710out_iov:
4711	kfree(iov);
4712out_acct:
4713	if (ret > 0)
4714		add_wchar(current, ret);
4715	inc_syscw(current);
4716	return ret;
4717}
4718
4719/*
4720 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4721 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4722 * off and cleanup the I/O in btrfs_uring_read_finished.
4723 */
4724struct btrfs_uring_priv {
4725	struct io_uring_cmd *cmd;
4726	struct page **pages;
4727	unsigned long nr_pages;
4728	struct kiocb iocb;
4729	struct iovec *iov;
4730	struct iov_iter iter;
4731	struct extent_state *cached_state;
4732	u64 count;
4733	u64 start;
4734	u64 lockend;
4735	int err;
4736	bool compressed;
4737};
4738
4739struct io_btrfs_cmd {
4740	struct btrfs_uring_priv *priv;
4741};
4742
4743static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4744{
4745	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4746	struct btrfs_uring_priv *priv = bc->priv;
4747	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4748	struct extent_io_tree *io_tree = &inode->io_tree;
4749	unsigned long index;
4750	u64 cur;
4751	size_t page_offset;
4752	ssize_t ret;
4753
4754	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4755	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4756
4757	if (priv->err) {
4758		ret = priv->err;
4759		goto out;
4760	}
4761
4762	if (priv->compressed) {
4763		index = 0;
4764		page_offset = 0;
4765	} else {
4766		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4767		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4768	}
4769	cur = 0;
4770	while (cur < priv->count) {
4771		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4772
4773		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4774				      &priv->iter) != bytes) {
4775			ret = -EFAULT;
4776			goto out;
4777		}
4778
4779		index++;
4780		cur += bytes;
4781		page_offset = 0;
4782	}
4783	ret = priv->count;
4784
4785out:
4786	unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4787	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4788
4789	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4790	add_rchar(current, ret);
4791
4792	for (index = 0; index < priv->nr_pages; index++)
4793		__free_page(priv->pages[index]);
4794
4795	kfree(priv->pages);
4796	kfree(priv->iov);
4797	kfree(priv);
4798}
4799
4800void btrfs_uring_read_extent_endio(void *ctx, int err)
4801{
4802	struct btrfs_uring_priv *priv = ctx;
4803	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4804
4805	priv->err = err;
4806	bc->priv = priv;
4807
4808	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4809}
4810
4811static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4812				   u64 start, u64 lockend,
4813				   struct extent_state *cached_state,
4814				   u64 disk_bytenr, u64 disk_io_size,
4815				   size_t count, bool compressed,
4816				   struct iovec *iov, struct io_uring_cmd *cmd)
4817{
4818	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4819	struct extent_io_tree *io_tree = &inode->io_tree;
4820	struct page **pages;
4821	struct btrfs_uring_priv *priv = NULL;
4822	unsigned long nr_pages;
4823	int ret;
4824
4825	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4826	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4827	if (!pages)
4828		return -ENOMEM;
4829	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4830	if (ret) {
4831		ret = -ENOMEM;
4832		goto out_fail;
4833	}
4834
4835	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4836	if (!priv) {
4837		ret = -ENOMEM;
4838		goto out_fail;
4839	}
4840
4841	priv->iocb = *iocb;
4842	priv->iov = iov;
4843	priv->iter = *iter;
4844	priv->count = count;
4845	priv->cmd = cmd;
4846	priv->cached_state = cached_state;
4847	priv->compressed = compressed;
4848	priv->nr_pages = nr_pages;
4849	priv->pages = pages;
4850	priv->start = start;
4851	priv->lockend = lockend;
4852	priv->err = 0;
4853
4854	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4855						    disk_io_size, pages, priv);
4856	if (ret && ret != -EIOCBQUEUED)
4857		goto out_fail;
4858
4859	/*
4860	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4861	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4862	 * and inode and freeing the allocations.
4863	 */
4864
4865	/*
4866	 * We're returning to userspace with the inode lock held, and that's
4867	 * okay - it'll get unlocked in a worker thread.  Call
4868	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4869	 */
4870	btrfs_lockdep_inode_release(inode, i_rwsem);
4871
4872	return -EIOCBQUEUED;
4873
4874out_fail:
4875	unlock_extent(io_tree, start, lockend, &cached_state);
4876	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4877	kfree(priv);
4878	return ret;
4879}
4880
4881struct btrfs_uring_encoded_data {
4882	struct btrfs_ioctl_encoded_io_args args;
4883	struct iovec iovstack[UIO_FASTIOV];
4884	struct iovec *iov;
4885	struct iov_iter iter;
4886};
4887
4888static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4889{
4890	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4891	size_t copy_end;
4892	int ret;
4893	u64 disk_bytenr, disk_io_size;
4894	struct file *file;
4895	struct btrfs_inode *inode;
4896	struct btrfs_fs_info *fs_info;
4897	struct extent_io_tree *io_tree;
4898	loff_t pos;
4899	struct kiocb kiocb;
4900	struct extent_state *cached_state = NULL;
4901	u64 start, lockend;
4902	void __user *sqe_addr;
4903	struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4904
4905	if (!capable(CAP_SYS_ADMIN)) {
4906		ret = -EPERM;
4907		goto out_acct;
4908	}
4909	file = cmd->file;
4910	inode = BTRFS_I(file->f_inode);
4911	fs_info = inode->root->fs_info;
4912	io_tree = &inode->io_tree;
4913	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4914
4915	if (issue_flags & IO_URING_F_COMPAT) {
4916#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4917		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4918#else
4919		return -ENOTTY;
4920#endif
4921	} else {
4922		copy_end = copy_end_kernel;
4923	}
4924
4925	if (!data) {
4926		data = kzalloc(sizeof(*data), GFP_NOFS);
4927		if (!data) {
4928			ret = -ENOMEM;
4929			goto out_acct;
4930		}
4931
4932		io_uring_cmd_get_async_data(cmd)->op_data = data;
4933
4934		if (issue_flags & IO_URING_F_COMPAT) {
4935#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4936			struct btrfs_ioctl_encoded_io_args_32 args32;
4937
4938			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4939				ret = -EFAULT;
4940				goto out_acct;
4941			}
4942
4943			data->args.iov = compat_ptr(args32.iov);
4944			data->args.iovcnt = args32.iovcnt;
4945			data->args.offset = args32.offset;
4946			data->args.flags = args32.flags;
4947#endif
4948		} else {
4949			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4950				ret = -EFAULT;
4951				goto out_acct;
4952			}
4953		}
4954
4955		if (data->args.flags != 0) {
4956			ret = -EINVAL;
4957			goto out_acct;
4958		}
4959
4960		data->iov = data->iovstack;
4961		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4962				   ARRAY_SIZE(data->iovstack), &data->iov,
4963				   &data->iter);
4964		if (ret < 0)
4965			goto out_acct;
4966
4967		if (iov_iter_count(&data->iter) == 0) {
4968			ret = 0;
4969			goto out_free;
4970		}
4971	}
4972
4973	pos = data->args.offset;
4974	ret = rw_verify_area(READ, file, &pos, data->args.len);
4975	if (ret < 0)
4976		goto out_free;
4977
4978	init_sync_kiocb(&kiocb, file);
4979	kiocb.ki_pos = pos;
4980
4981	if (issue_flags & IO_URING_F_NONBLOCK)
4982		kiocb.ki_flags |= IOCB_NOWAIT;
4983
4984	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4985	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4986
4987	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4988				 &disk_bytenr, &disk_io_size);
4989	if (ret < 0 && ret != -EIOCBQUEUED)
4990		goto out_free;
4991
4992	file_accessed(file);
4993
4994	if (copy_to_user(sqe_addr + copy_end,
4995			 (const char *)&data->args + copy_end_kernel,
4996			 sizeof(data->args) - copy_end_kernel)) {
4997		if (ret == -EIOCBQUEUED) {
4998			unlock_extent(io_tree, start, lockend, &cached_state);
4999			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
5000		}
5001		ret = -EFAULT;
5002		goto out_free;
5003	}
5004
5005	if (ret == -EIOCBQUEUED) {
5006		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
5007
5008		/* Match ioctl by not returning past EOF if uncompressed. */
5009		if (!data->args.compression)
5010			count = min_t(u64, count, data->args.len);
5011
5012		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
5013					      cached_state, disk_bytenr, disk_io_size,
5014					      count, data->args.compression,
5015					      data->iov, cmd);
5016
5017		goto out_acct;
5018	}
5019
5020out_free:
5021	kfree(data->iov);
5022
5023out_acct:
5024	if (ret > 0)
5025		add_rchar(current, ret);
5026	inc_syscr(current);
5027
5028	return ret;
5029}
5030
5031int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5032{
5033	switch (cmd->cmd_op) {
5034	case BTRFS_IOC_ENCODED_READ:
5035#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5036	case BTRFS_IOC_ENCODED_READ_32:
5037#endif
5038		return btrfs_uring_encoded_read(cmd, issue_flags);
5039	}
5040
5041	return -EINVAL;
5042}
5043
5044static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5045{
5046	struct btrfs_root *root;
5047	struct btrfs_ioctl_subvol_wait args = { 0 };
5048	signed long sched_ret;
5049	int refs;
5050	u64 root_flags;
5051	bool wait_for_deletion = false;
5052	bool found = false;
5053
5054	if (copy_from_user(&args, argp, sizeof(args)))
5055		return -EFAULT;
5056
5057	switch (args.mode) {
5058	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5059		/*
5060		 * Wait for the first one deleted that waits until all previous
5061		 * are cleaned.
5062		 */
5063		spin_lock(&fs_info->trans_lock);
5064		if (!list_empty(&fs_info->dead_roots)) {
5065			root = list_last_entry(&fs_info->dead_roots,
5066					       struct btrfs_root, root_list);
5067			args.subvolid = btrfs_root_id(root);
5068			found = true;
5069		}
5070		spin_unlock(&fs_info->trans_lock);
5071		if (!found)
5072			return -ENOENT;
5073
5074		fallthrough;
5075	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5076		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5077		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5078			return -EINVAL;
5079		break;
5080	case BTRFS_SUBVOL_SYNC_COUNT:
5081		spin_lock(&fs_info->trans_lock);
5082		args.count = list_count_nodes(&fs_info->dead_roots);
5083		spin_unlock(&fs_info->trans_lock);
5084		if (copy_to_user(argp, &args, sizeof(args)))
5085			return -EFAULT;
5086		return 0;
5087	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5088		spin_lock(&fs_info->trans_lock);
5089		/* Last in the list was deleted first. */
5090		if (!list_empty(&fs_info->dead_roots)) {
5091			root = list_last_entry(&fs_info->dead_roots,
5092					       struct btrfs_root, root_list);
5093			args.subvolid = btrfs_root_id(root);
5094		} else {
5095			args.subvolid = 0;
5096		}
5097		spin_unlock(&fs_info->trans_lock);
5098		if (copy_to_user(argp, &args, sizeof(args)))
5099			return -EFAULT;
5100		return 0;
5101	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5102		spin_lock(&fs_info->trans_lock);
5103		/* First in the list was deleted last. */
5104		if (!list_empty(&fs_info->dead_roots)) {
5105			root = list_first_entry(&fs_info->dead_roots,
5106						struct btrfs_root, root_list);
5107			args.subvolid = btrfs_root_id(root);
5108		} else {
5109			args.subvolid = 0;
5110		}
5111		spin_unlock(&fs_info->trans_lock);
5112		if (copy_to_user(argp, &args, sizeof(args)))
5113			return -EFAULT;
5114		return 0;
5115	default:
5116		return -EINVAL;
5117	}
5118
5119	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5120	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5121		return -EOVERFLOW;
5122
5123	while (1) {
5124		/* Wait for the specific one. */
5125		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5126			return -EINTR;
5127		refs = -1;
5128		spin_lock(&fs_info->fs_roots_radix_lock);
5129		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5130					 (unsigned long)args.subvolid);
5131		if (root) {
5132			spin_lock(&root->root_item_lock);
5133			refs = btrfs_root_refs(&root->root_item);
5134			root_flags = btrfs_root_flags(&root->root_item);
5135			spin_unlock(&root->root_item_lock);
5136		}
5137		spin_unlock(&fs_info->fs_roots_radix_lock);
5138		up_read(&fs_info->subvol_sem);
5139
5140		/* Subvolume does not exist. */
5141		if (!root)
5142			return -ENOENT;
5143
5144		/* Subvolume not deleted at all. */
5145		if (refs > 0)
5146			return -EEXIST;
5147		/* We've waited and now the subvolume is gone. */
5148		if (wait_for_deletion && refs == -1) {
5149			/* Return the one we waited for as the last one. */
5150			if (copy_to_user(argp, &args, sizeof(args)))
5151				return -EFAULT;
5152			return 0;
5153		}
5154
5155		/* Subvolume not found on the first try (deleted or never existed). */
5156		if (refs == -1)
5157			return -ENOENT;
5158
5159		wait_for_deletion = true;
5160		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5161		sched_ret = schedule_timeout_interruptible(HZ);
5162		/* Early wake up or error. */
5163		if (sched_ret != 0)
5164			return -EINTR;
5165	}
5166
5167	return 0;
5168}
5169
5170long btrfs_ioctl(struct file *file, unsigned int
5171		cmd, unsigned long arg)
5172{
5173	struct inode *inode = file_inode(file);
5174	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5175	struct btrfs_root *root = BTRFS_I(inode)->root;
5176	void __user *argp = (void __user *)arg;
5177
5178	switch (cmd) {
 
 
 
 
5179	case FS_IOC_GETVERSION:
5180		return btrfs_ioctl_getversion(inode, argp);
5181	case FS_IOC_GETFSLABEL:
5182		return btrfs_ioctl_get_fslabel(fs_info, argp);
5183	case FS_IOC_SETFSLABEL:
5184		return btrfs_ioctl_set_fslabel(file, argp);
5185	case FITRIM:
5186		return btrfs_ioctl_fitrim(fs_info, argp);
5187	case BTRFS_IOC_SNAP_CREATE:
5188		return btrfs_ioctl_snap_create(file, argp, 0);
5189	case BTRFS_IOC_SNAP_CREATE_V2:
5190		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5191	case BTRFS_IOC_SUBVOL_CREATE:
5192		return btrfs_ioctl_snap_create(file, argp, 1);
5193	case BTRFS_IOC_SUBVOL_CREATE_V2:
5194		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5195	case BTRFS_IOC_SNAP_DESTROY:
5196		return btrfs_ioctl_snap_destroy(file, argp, false);
5197	case BTRFS_IOC_SNAP_DESTROY_V2:
5198		return btrfs_ioctl_snap_destroy(file, argp, true);
5199	case BTRFS_IOC_SUBVOL_GETFLAGS:
5200		return btrfs_ioctl_subvol_getflags(inode, argp);
5201	case BTRFS_IOC_SUBVOL_SETFLAGS:
5202		return btrfs_ioctl_subvol_setflags(file, argp);
5203	case BTRFS_IOC_DEFAULT_SUBVOL:
5204		return btrfs_ioctl_default_subvol(file, argp);
5205	case BTRFS_IOC_DEFRAG:
5206		return btrfs_ioctl_defrag(file, NULL);
5207	case BTRFS_IOC_DEFRAG_RANGE:
5208		return btrfs_ioctl_defrag(file, argp);
5209	case BTRFS_IOC_RESIZE:
5210		return btrfs_ioctl_resize(file, argp);
5211	case BTRFS_IOC_ADD_DEV:
5212		return btrfs_ioctl_add_dev(fs_info, argp);
5213	case BTRFS_IOC_RM_DEV:
5214		return btrfs_ioctl_rm_dev(file, argp);
5215	case BTRFS_IOC_RM_DEV_V2:
5216		return btrfs_ioctl_rm_dev_v2(file, argp);
5217	case BTRFS_IOC_FS_INFO:
5218		return btrfs_ioctl_fs_info(fs_info, argp);
5219	case BTRFS_IOC_DEV_INFO:
5220		return btrfs_ioctl_dev_info(fs_info, argp);
 
 
 
 
 
 
5221	case BTRFS_IOC_TREE_SEARCH:
5222		return btrfs_ioctl_tree_search(inode, argp);
5223	case BTRFS_IOC_TREE_SEARCH_V2:
5224		return btrfs_ioctl_tree_search_v2(inode, argp);
5225	case BTRFS_IOC_INO_LOOKUP:
5226		return btrfs_ioctl_ino_lookup(root, argp);
5227	case BTRFS_IOC_INO_PATHS:
5228		return btrfs_ioctl_ino_to_path(root, argp);
5229	case BTRFS_IOC_LOGICAL_INO:
5230		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5231	case BTRFS_IOC_LOGICAL_INO_V2:
5232		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5233	case BTRFS_IOC_SPACE_INFO:
5234		return btrfs_ioctl_space_info(fs_info, argp);
5235	case BTRFS_IOC_SYNC: {
5236		int ret;
5237
5238		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5239		if (ret)
5240			return ret;
5241		ret = btrfs_sync_fs(inode->i_sb, 1);
5242		/*
5243		 * There may be work for the cleaner kthread to do (subvolume
5244		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
 
5245		 */
5246		wake_up_process(fs_info->cleaner_kthread);
5247		return ret;
5248	}
5249	case BTRFS_IOC_START_SYNC:
5250		return btrfs_ioctl_start_sync(root, argp);
5251	case BTRFS_IOC_WAIT_SYNC:
5252		return btrfs_ioctl_wait_sync(fs_info, argp);
5253	case BTRFS_IOC_SCRUB:
5254		return btrfs_ioctl_scrub(file, argp);
5255	case BTRFS_IOC_SCRUB_CANCEL:
5256		return btrfs_ioctl_scrub_cancel(fs_info);
5257	case BTRFS_IOC_SCRUB_PROGRESS:
5258		return btrfs_ioctl_scrub_progress(fs_info, argp);
5259	case BTRFS_IOC_BALANCE_V2:
5260		return btrfs_ioctl_balance(file, argp);
5261	case BTRFS_IOC_BALANCE_CTL:
5262		return btrfs_ioctl_balance_ctl(fs_info, arg);
5263	case BTRFS_IOC_BALANCE_PROGRESS:
5264		return btrfs_ioctl_balance_progress(fs_info, argp);
5265	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5266		return btrfs_ioctl_set_received_subvol(file, argp);
5267#ifdef CONFIG_64BIT
5268	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5269		return btrfs_ioctl_set_received_subvol_32(file, argp);
5270#endif
5271	case BTRFS_IOC_SEND:
5272		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5273#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5274	case BTRFS_IOC_SEND_32:
5275		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5276#endif
5277	case BTRFS_IOC_GET_DEV_STATS:
5278		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5279	case BTRFS_IOC_QUOTA_CTL:
5280		return btrfs_ioctl_quota_ctl(file, argp);
5281	case BTRFS_IOC_QGROUP_ASSIGN:
5282		return btrfs_ioctl_qgroup_assign(file, argp);
5283	case BTRFS_IOC_QGROUP_CREATE:
5284		return btrfs_ioctl_qgroup_create(file, argp);
5285	case BTRFS_IOC_QGROUP_LIMIT:
5286		return btrfs_ioctl_qgroup_limit(file, argp);
5287	case BTRFS_IOC_QUOTA_RESCAN:
5288		return btrfs_ioctl_quota_rescan(file, argp);
5289	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5290		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5291	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5292		return btrfs_ioctl_quota_rescan_wait(fs_info);
5293	case BTRFS_IOC_DEV_REPLACE:
5294		return btrfs_ioctl_dev_replace(fs_info, argp);
 
 
 
 
5295	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5296		return btrfs_ioctl_get_supported_features(argp);
5297	case BTRFS_IOC_GET_FEATURES:
5298		return btrfs_ioctl_get_features(fs_info, argp);
5299	case BTRFS_IOC_SET_FEATURES:
5300		return btrfs_ioctl_set_features(file, argp);
5301	case BTRFS_IOC_GET_SUBVOL_INFO:
5302		return btrfs_ioctl_get_subvol_info(inode, argp);
5303	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5304		return btrfs_ioctl_get_subvol_rootref(root, argp);
5305	case BTRFS_IOC_INO_LOOKUP_USER:
5306		return btrfs_ioctl_ino_lookup_user(file, argp);
5307	case FS_IOC_ENABLE_VERITY:
5308		return fsverity_ioctl_enable(file, (const void __user *)argp);
5309	case FS_IOC_MEASURE_VERITY:
5310		return fsverity_ioctl_measure(file, argp);
5311	case BTRFS_IOC_ENCODED_READ:
5312		return btrfs_ioctl_encoded_read(file, argp, false);
5313	case BTRFS_IOC_ENCODED_WRITE:
5314		return btrfs_ioctl_encoded_write(file, argp, false);
5315#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5316	case BTRFS_IOC_ENCODED_READ_32:
5317		return btrfs_ioctl_encoded_read(file, argp, true);
5318	case BTRFS_IOC_ENCODED_WRITE_32:
5319		return btrfs_ioctl_encoded_write(file, argp, true);
5320#endif
5321	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5322		return btrfs_ioctl_subvol_sync(fs_info, argp);
5323	}
5324
5325	return -ENOTTY;
5326}
5327
5328#ifdef CONFIG_COMPAT
5329long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5330{
5331	/*
5332	 * These all access 32-bit values anyway so no further
5333	 * handling is necessary.
5334	 */
5335	switch (cmd) {
5336	case FS_IOC32_GETVERSION:
5337		cmd = FS_IOC_GETVERSION;
5338		break;
5339	}
5340
5341	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5342}
5343#endif
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include <linux/uuid.h>
  45#include <linux/btrfs.h>
  46#include <linux/uaccess.h>
 
 
 
 
 
  47#include "ctree.h"
  48#include "disk-io.h"
 
  49#include "transaction.h"
  50#include "btrfs_inode.h"
  51#include "print-tree.h"
  52#include "volumes.h"
  53#include "locking.h"
  54#include "inode-map.h"
  55#include "backref.h"
  56#include "rcu-string.h"
  57#include "send.h"
  58#include "dev-replace.h"
  59#include "props.h"
  60#include "sysfs.h"
  61#include "qgroup.h"
  62#include "tree-log.h"
  63#include "compression.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#ifdef CONFIG_64BIT
  66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  67 * structures are incorrect, as the timespec structure from userspace
  68 * is 4 bytes too small. We define these alternatives here to teach
  69 * the kernel about the 32-bit struct packing.
  70 */
  71struct btrfs_ioctl_timespec_32 {
  72	__u64 sec;
  73	__u32 nsec;
  74} __attribute__ ((__packed__));
  75
  76struct btrfs_ioctl_received_subvol_args_32 {
  77	char	uuid[BTRFS_UUID_SIZE];	/* in */
  78	__u64	stransid;		/* in */
  79	__u64	rtransid;		/* out */
  80	struct btrfs_ioctl_timespec_32 stime; /* in */
  81	struct btrfs_ioctl_timespec_32 rtime; /* out */
  82	__u64	flags;			/* in */
  83	__u64	reserved[16];		/* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  87				struct btrfs_ioctl_received_subvol_args_32)
  88#endif
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
  91static int btrfs_clone(struct inode *src, struct inode *inode,
  92		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
  93		       int no_time_update);
 
 
  94
  95/* Mask out flags that are inappropriate for the given type of inode. */
  96static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
 
  97{
  98	if (S_ISDIR(mode))
  99		return flags;
 100	else if (S_ISREG(mode))
 101		return flags & ~FS_DIRSYNC_FL;
 102	else
 103		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 104}
 105
 106/*
 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
 
 108 */
 109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
 110{
 111	unsigned int iflags = 0;
 
 
 112
 113	if (flags & BTRFS_INODE_SYNC)
 114		iflags |= FS_SYNC_FL;
 115	if (flags & BTRFS_INODE_IMMUTABLE)
 116		iflags |= FS_IMMUTABLE_FL;
 117	if (flags & BTRFS_INODE_APPEND)
 118		iflags |= FS_APPEND_FL;
 119	if (flags & BTRFS_INODE_NODUMP)
 120		iflags |= FS_NODUMP_FL;
 121	if (flags & BTRFS_INODE_NOATIME)
 122		iflags |= FS_NOATIME_FL;
 123	if (flags & BTRFS_INODE_DIRSYNC)
 124		iflags |= FS_DIRSYNC_FL;
 125	if (flags & BTRFS_INODE_NODATACOW)
 126		iflags |= FS_NOCOW_FL;
 
 
 127
 128	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
 
 
 129		iflags |= FS_COMPR_FL;
 130	else if (flags & BTRFS_INODE_NOCOMPRESS)
 131		iflags |= FS_NOCOMP_FL;
 132
 133	return iflags;
 134}
 135
 136/*
 137 * Update inode->i_flags based on the btrfs internal flags.
 138 */
 139void btrfs_update_iflags(struct inode *inode)
 140{
 141	struct btrfs_inode *ip = BTRFS_I(inode);
 142	unsigned int new_fl = 0;
 143
 144	if (ip->flags & BTRFS_INODE_SYNC)
 145		new_fl |= S_SYNC;
 146	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 147		new_fl |= S_IMMUTABLE;
 148	if (ip->flags & BTRFS_INODE_APPEND)
 149		new_fl |= S_APPEND;
 150	if (ip->flags & BTRFS_INODE_NOATIME)
 151		new_fl |= S_NOATIME;
 152	if (ip->flags & BTRFS_INODE_DIRSYNC)
 153		new_fl |= S_DIRSYNC;
 
 
 154
 155	set_mask_bits(&inode->i_flags,
 156		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 157		      new_fl);
 158}
 159
 160/*
 161 * Inherit flags from the parent inode.
 162 *
 163 * Currently only the compression flags and the cow flags are inherited.
 164 */
 165void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 166{
 167	unsigned int flags;
 
 
 
 
 
 
 
 
 
 168
 169	if (!dir)
 170		return;
 171
 172	flags = BTRFS_I(dir)->flags;
 
 
 
 
 173
 174	if (flags & BTRFS_INODE_NOCOMPRESS) {
 175		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
 176		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 177	} else if (flags & BTRFS_INODE_COMPRESS) {
 178		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
 179		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
 180	}
 181
 182	if (flags & BTRFS_INODE_NODATACOW) {
 183		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
 184		if (S_ISREG(inode->i_mode))
 185			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 186	}
 187
 188	btrfs_update_iflags(inode);
 189}
 190
 191static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 192{
 193	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
 194	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 
 
 195
 196	if (copy_to_user(arg, &flags, sizeof(flags)))
 197		return -EFAULT;
 
 
 198	return 0;
 199}
 200
 201static int check_flags(unsigned int flags)
 
 
 
 
 202{
 203	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 204		      FS_NOATIME_FL | FS_NODUMP_FL | \
 205		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 206		      FS_NOCOMP_FL | FS_COMPR_FL |
 207		      FS_NOCOW_FL))
 208		return -EOPNOTSUPP;
 209
 210	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 211		return -EINVAL;
 212
 
 213	return 0;
 214}
 215
 216static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 
 217{
 218	struct inode *inode = file_inode(file);
 219	struct btrfs_inode *ip = BTRFS_I(inode);
 220	struct btrfs_root *root = ip->root;
 
 221	struct btrfs_trans_handle *trans;
 222	unsigned int flags, oldflags;
 223	int ret;
 224	u64 ip_oldflags;
 225	unsigned int i_oldflags;
 226	umode_t mode;
 227
 228	if (!inode_owner_or_capable(inode))
 229		return -EPERM;
 230
 231	if (btrfs_root_readonly(root))
 232		return -EROFS;
 233
 234	if (copy_from_user(&flags, arg, sizeof(flags)))
 235		return -EFAULT;
 236
 237	ret = check_flags(flags);
 
 
 238	if (ret)
 239		return ret;
 240
 241	ret = mnt_want_write_file(file);
 242	if (ret)
 243		return ret;
 244
 245	inode_lock(inode);
 246
 247	ip_oldflags = ip->flags;
 248	i_oldflags = inode->i_flags;
 249	mode = inode->i_mode;
 250
 251	flags = btrfs_mask_flags(inode->i_mode, flags);
 252	oldflags = btrfs_flags_to_ioctl(ip->flags);
 253	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 254		if (!capable(CAP_LINUX_IMMUTABLE)) {
 255			ret = -EPERM;
 256			goto out_unlock;
 257		}
 258	}
 259
 260	if (flags & FS_SYNC_FL)
 261		ip->flags |= BTRFS_INODE_SYNC;
 262	else
 263		ip->flags &= ~BTRFS_INODE_SYNC;
 264	if (flags & FS_IMMUTABLE_FL)
 265		ip->flags |= BTRFS_INODE_IMMUTABLE;
 266	else
 267		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 268	if (flags & FS_APPEND_FL)
 269		ip->flags |= BTRFS_INODE_APPEND;
 270	else
 271		ip->flags &= ~BTRFS_INODE_APPEND;
 272	if (flags & FS_NODUMP_FL)
 273		ip->flags |= BTRFS_INODE_NODUMP;
 274	else
 275		ip->flags &= ~BTRFS_INODE_NODUMP;
 276	if (flags & FS_NOATIME_FL)
 277		ip->flags |= BTRFS_INODE_NOATIME;
 278	else
 279		ip->flags &= ~BTRFS_INODE_NOATIME;
 280	if (flags & FS_DIRSYNC_FL)
 281		ip->flags |= BTRFS_INODE_DIRSYNC;
 
 
 
 
 
 
 
 
 
 
 282	else
 283		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 284	if (flags & FS_NOCOW_FL) {
 285		if (S_ISREG(mode)) {
 286			/*
 287			 * It's safe to turn csums off here, no extents exist.
 288			 * Otherwise we want the flag to reflect the real COW
 289			 * status of the file and will not set it.
 290			 */
 291			if (inode->i_size == 0)
 292				ip->flags |= BTRFS_INODE_NODATACOW
 293					   | BTRFS_INODE_NODATASUM;
 294		} else {
 295			ip->flags |= BTRFS_INODE_NODATACOW;
 296		}
 297	} else {
 298		/*
 299		 * Revert back under same assuptions as above
 300		 */
 301		if (S_ISREG(mode)) {
 302			if (inode->i_size == 0)
 303				ip->flags &= ~(BTRFS_INODE_NODATACOW
 304				             | BTRFS_INODE_NODATASUM);
 305		} else {
 306			ip->flags &= ~BTRFS_INODE_NODATACOW;
 307		}
 308	}
 309
 310	/*
 311	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 312	 * flag may be changed automatically if compression code won't make
 313	 * things smaller.
 314	 */
 315	if (flags & FS_NOCOMP_FL) {
 316		ip->flags &= ~BTRFS_INODE_COMPRESS;
 317		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 318
 319		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 320		if (ret && ret != -ENODATA)
 321			goto out_drop;
 322	} else if (flags & FS_COMPR_FL) {
 323		const char *comp;
 
 
 
 
 
 
 
 
 324
 325		ip->flags |= BTRFS_INODE_COMPRESS;
 326		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 
 
 
 
 
 327
 328		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
 329			comp = "lzo";
 330		else
 331			comp = "zlib";
 332		ret = btrfs_set_prop(inode, "btrfs.compression",
 333				     comp, strlen(comp), 0);
 334		if (ret)
 335			goto out_drop;
 336
 
 337	} else {
 338		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 339		if (ret && ret != -ENODATA)
 340			goto out_drop;
 341		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 
 
 342	}
 343
 344	trans = btrfs_start_transaction(root, 1);
 345	if (IS_ERR(trans)) {
 346		ret = PTR_ERR(trans);
 347		goto out_drop;
 348	}
 
 
 
 
 
 
 349
 350	btrfs_update_iflags(inode);
 351	inode_inc_iversion(inode);
 352	inode->i_ctime = current_fs_time(inode->i_sb);
 353	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 354
 355	btrfs_end_transaction(trans, root);
 356 out_drop:
 357	if (ret) {
 358		ip->flags = ip_oldflags;
 359		inode->i_flags = i_oldflags;
 360	}
 
 361
 362 out_unlock:
 363	inode_unlock(inode);
 364	mnt_drop_write_file(file);
 365	return ret;
 366}
 367
 368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369{
 370	struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371
 
 
 372	return put_user(inode->i_generation, arg);
 373}
 374
 375static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 
 376{
 377	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
 378	struct btrfs_device *device;
 379	struct request_queue *q;
 380	struct fstrim_range range;
 381	u64 minlen = ULLONG_MAX;
 382	u64 num_devices = 0;
 383	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 384	int ret;
 385
 386	if (!capable(CAP_SYS_ADMIN))
 387		return -EPERM;
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389	rcu_read_lock();
 390	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 391				dev_list) {
 392		if (!device->bdev)
 393			continue;
 394		q = bdev_get_queue(device->bdev);
 395		if (blk_queue_discard(q)) {
 396			num_devices++;
 397			minlen = min((u64)q->limits.discard_granularity,
 398				     minlen);
 399		}
 400	}
 401	rcu_read_unlock();
 402
 403	if (!num_devices)
 404		return -EOPNOTSUPP;
 405	if (copy_from_user(&range, arg, sizeof(range)))
 406		return -EFAULT;
 407	if (range.start > total_bytes ||
 408	    range.len < fs_info->sb->s_blocksize)
 
 
 
 
 
 409		return -EINVAL;
 410
 411	range.len = min(range.len, total_bytes - range.start);
 412	range.minlen = max(range.minlen, minlen);
 413	ret = btrfs_trim_fs(fs_info->tree_root, &range);
 414	if (ret < 0)
 415		return ret;
 416
 417	if (copy_to_user(arg, &range, sizeof(range)))
 418		return -EFAULT;
 419
 420	return 0;
 421}
 422
 423int btrfs_is_empty_uuid(u8 *uuid)
 424{
 425	int i;
 426
 427	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 428		if (uuid[i])
 429			return 0;
 430	}
 431	return 1;
 432}
 433
 434static noinline int create_subvol(struct inode *dir,
 435				  struct dentry *dentry,
 436				  char *name, int namelen,
 437				  u64 *async_transid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438				  struct btrfs_qgroup_inherit *inherit)
 439{
 
 440	struct btrfs_trans_handle *trans;
 441	struct btrfs_key key;
 442	struct btrfs_root_item root_item;
 443	struct btrfs_inode_item *inode_item;
 444	struct extent_buffer *leaf;
 445	struct btrfs_root *root = BTRFS_I(dir)->root;
 446	struct btrfs_root *new_root;
 447	struct btrfs_block_rsv block_rsv;
 448	struct timespec cur_time = current_fs_time(dir->i_sb);
 449	struct inode *inode;
 
 
 
 
 
 450	int ret;
 451	int err;
 452	u64 objectid;
 453	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 454	u64 index = 0;
 455	u64 qgroup_reserved;
 456	uuid_le new_uuid;
 
 457
 458	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 459	if (ret)
 460		return ret;
 461
 462	/*
 463	 * Don't create subvolume whose level is not zero. Or qgroup will be
 464	 * screwed up since it assume subvolme qgroup's level to be 0.
 465	 */
 466	if (btrfs_qgroup_level(objectid))
 467		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468
 469	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 470	/*
 471	 * The same as the snapshot creation, please see the comment
 472	 * of create_snapshot().
 473	 */
 474	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 475					       8, &qgroup_reserved, false);
 476	if (ret)
 477		return ret;
 
 478
 479	trans = btrfs_start_transaction(root, 0);
 480	if (IS_ERR(trans)) {
 481		ret = PTR_ERR(trans);
 482		btrfs_subvolume_release_metadata(root, &block_rsv,
 483						 qgroup_reserved);
 484		return ret;
 485	}
 
 
 486	trans->block_rsv = &block_rsv;
 487	trans->bytes_reserved = block_rsv.size;
 488
 489	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
 490	if (ret)
 491		goto fail;
 492
 493	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
 494	if (IS_ERR(leaf)) {
 495		ret = PTR_ERR(leaf);
 496		goto fail;
 497	}
 498
 499	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 500	btrfs_set_header_bytenr(leaf, leaf->start);
 501	btrfs_set_header_generation(leaf, trans->transid);
 502	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 503	btrfs_set_header_owner(leaf, objectid);
 504
 505	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
 506			    BTRFS_FSID_SIZE);
 507	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 508			    btrfs_header_chunk_tree_uuid(leaf),
 509			    BTRFS_UUID_SIZE);
 510	btrfs_mark_buffer_dirty(leaf);
 511
 512	memset(&root_item, 0, sizeof(root_item));
 513
 514	inode_item = &root_item.inode;
 515	btrfs_set_stack_inode_generation(inode_item, 1);
 516	btrfs_set_stack_inode_size(inode_item, 3);
 517	btrfs_set_stack_inode_nlink(inode_item, 1);
 518	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
 
 519	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 520
 521	btrfs_set_root_flags(&root_item, 0);
 522	btrfs_set_root_limit(&root_item, 0);
 523	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 524
 525	btrfs_set_root_bytenr(&root_item, leaf->start);
 526	btrfs_set_root_generation(&root_item, trans->transid);
 527	btrfs_set_root_level(&root_item, 0);
 528	btrfs_set_root_refs(&root_item, 1);
 529	btrfs_set_root_used(&root_item, leaf->len);
 530	btrfs_set_root_last_snapshot(&root_item, 0);
 531
 532	btrfs_set_root_generation_v2(&root_item,
 533			btrfs_root_generation(&root_item));
 534	uuid_le_gen(&new_uuid);
 535	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
 536	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
 537	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
 538	root_item.ctime = root_item.otime;
 539	btrfs_set_root_ctransid(&root_item, trans->transid);
 540	btrfs_set_root_otransid(&root_item, trans->transid);
 541
 542	btrfs_tree_unlock(leaf);
 543	free_extent_buffer(leaf);
 544	leaf = NULL;
 545
 546	btrfs_set_root_dirid(&root_item, new_dirid);
 547
 548	key.objectid = objectid;
 549	key.offset = 0;
 550	key.type = BTRFS_ROOT_ITEM_KEY;
 551	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 552				&root_item);
 553	if (ret)
 554		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	key.offset = (u64)-1;
 557	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 558	if (IS_ERR(new_root)) {
 559		ret = PTR_ERR(new_root);
 560		btrfs_abort_transaction(trans, root, ret);
 561		goto fail;
 562	}
 
 
 
 
 563
 564	btrfs_record_root_in_trans(trans, new_root);
 565
 566	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 567	if (ret) {
 568		/* We potentially lose an unused inode item here */
 569		btrfs_abort_transaction(trans, root, ret);
 570		goto fail;
 571	}
 572
 573	mutex_lock(&new_root->objectid_mutex);
 574	new_root->highest_objectid = new_dirid;
 575	mutex_unlock(&new_root->objectid_mutex);
 576
 577	/*
 578	 * insert the directory item
 579	 */
 580	ret = btrfs_set_inode_index(dir, &index);
 581	if (ret) {
 582		btrfs_abort_transaction(trans, root, ret);
 583		goto fail;
 584	}
 585
 586	ret = btrfs_insert_dir_item(trans, root,
 587				    name, namelen, dir, &key,
 588				    BTRFS_FT_DIR, index);
 589	if (ret) {
 590		btrfs_abort_transaction(trans, root, ret);
 591		goto fail;
 592	}
 593
 594	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 595	ret = btrfs_update_inode(trans, root, dir);
 596	BUG_ON(ret);
 597
 598	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 599				 objectid, root->root_key.objectid,
 600				 btrfs_ino(dir), index, name, namelen);
 601	BUG_ON(ret);
 602
 603	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
 604				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
 605				  objectid);
 606	if (ret)
 607		btrfs_abort_transaction(trans, root, ret);
 608
 609fail:
 610	trans->block_rsv = NULL;
 611	trans->bytes_reserved = 0;
 612	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
 613
 614	if (async_transid) {
 615		*async_transid = trans->transid;
 616		err = btrfs_commit_transaction_async(trans, root, 1);
 617		if (err)
 618			err = btrfs_commit_transaction(trans, root);
 619	} else {
 620		err = btrfs_commit_transaction(trans, root);
 621	}
 622	if (err && !ret)
 623		ret = err;
 624
 625	if (!ret) {
 626		inode = btrfs_lookup_dentry(dir, dentry);
 627		if (IS_ERR(inode))
 628			return PTR_ERR(inode);
 629		d_instantiate(dentry, inode);
 630	}
 631	return ret;
 632}
 633
 634static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
 635{
 636	s64 writers;
 637	DEFINE_WAIT(wait);
 638
 639	do {
 640		prepare_to_wait(&root->subv_writers->wait, &wait,
 641				TASK_UNINTERRUPTIBLE);
 642
 643		writers = percpu_counter_sum(&root->subv_writers->counter);
 644		if (writers)
 645			schedule();
 646
 647		finish_wait(&root->subv_writers->wait, &wait);
 648	} while (writers);
 649}
 650
 651static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 652			   struct dentry *dentry, char *name, int namelen,
 653			   u64 *async_transid, bool readonly,
 654			   struct btrfs_qgroup_inherit *inherit)
 655{
 
 656	struct inode *inode;
 657	struct btrfs_pending_snapshot *pending_snapshot;
 
 658	struct btrfs_trans_handle *trans;
 
 
 659	int ret;
 660
 661	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 
 
 
 
 
 
 
 
 
 
 662		return -EINVAL;
 663
 664	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 
 
 
 
 
 
 665	if (!pending_snapshot)
 666		return -ENOMEM;
 667
 
 
 
 668	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 669			GFP_NOFS);
 670	pending_snapshot->path = btrfs_alloc_path();
 671	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 672		ret = -ENOMEM;
 673		goto free_pending;
 674	}
 675
 676	atomic_inc(&root->will_be_snapshoted);
 677	smp_mb__after_atomic();
 678	btrfs_wait_for_no_snapshoting_writes(root);
 679
 680	ret = btrfs_start_delalloc_inodes(root, 0);
 681	if (ret)
 682		goto dec_and_free;
 683
 684	btrfs_wait_ordered_extents(root, -1);
 685
 686	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 687			     BTRFS_BLOCK_RSV_TEMP);
 688	/*
 689	 * 1 - parent dir inode
 690	 * 2 - dir entries
 691	 * 1 - root item
 692	 * 2 - root ref/backref
 693	 * 1 - root of snapshot
 694	 * 1 - UUID item
 695	 */
 696	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 697					&pending_snapshot->block_rsv, 8,
 698					&pending_snapshot->qgroup_reserved,
 699					false);
 700	if (ret)
 701		goto dec_and_free;
 
 702
 703	pending_snapshot->dentry = dentry;
 704	pending_snapshot->root = root;
 705	pending_snapshot->readonly = readonly;
 706	pending_snapshot->dir = dir;
 707	pending_snapshot->inherit = inherit;
 708
 709	trans = btrfs_start_transaction(root, 0);
 710	if (IS_ERR(trans)) {
 711		ret = PTR_ERR(trans);
 712		goto fail;
 713	}
 
 
 
 
 
 
 
 714
 715	spin_lock(&root->fs_info->trans_lock);
 716	list_add(&pending_snapshot->list,
 717		 &trans->transaction->pending_snapshots);
 718	spin_unlock(&root->fs_info->trans_lock);
 719	if (async_transid) {
 720		*async_transid = trans->transid;
 721		ret = btrfs_commit_transaction_async(trans,
 722				     root->fs_info->extent_root, 1);
 723		if (ret)
 724			ret = btrfs_commit_transaction(trans, root);
 725	} else {
 726		ret = btrfs_commit_transaction(trans,
 727					       root->fs_info->extent_root);
 728	}
 729	if (ret)
 730		goto fail;
 731
 732	ret = pending_snapshot->error;
 733	if (ret)
 734		goto fail;
 735
 736	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 737	if (ret)
 738		goto fail;
 739
 740	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 741	if (IS_ERR(inode)) {
 742		ret = PTR_ERR(inode);
 743		goto fail;
 744	}
 745
 746	d_instantiate(dentry, inode);
 747	ret = 0;
 
 748fail:
 749	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
 750					 &pending_snapshot->block_rsv,
 751					 pending_snapshot->qgroup_reserved);
 752dec_and_free:
 753	if (atomic_dec_and_test(&root->will_be_snapshoted))
 754		wake_up_atomic_t(&root->will_be_snapshoted);
 
 755free_pending:
 
 
 756	kfree(pending_snapshot->root_item);
 757	btrfs_free_path(pending_snapshot->path);
 758	kfree(pending_snapshot);
 759
 760	return ret;
 761}
 762
 763/*  copy of may_delete in fs/namei.c()
 764 *	Check whether we can remove a link victim from directory dir, check
 765 *  whether the type of victim is right.
 766 *  1. We can't do it if dir is read-only (done in permission())
 767 *  2. We should have write and exec permissions on dir
 768 *  3. We can't remove anything from append-only dir
 769 *  4. We can't do anything with immutable dir (done in permission())
 770 *  5. If the sticky bit on dir is set we should either
 771 *	a. be owner of dir, or
 772 *	b. be owner of victim, or
 773 *	c. have CAP_FOWNER capability
 774 *  6. If the victim is append-only or immutable we can't do antyhing with
 775 *     links pointing to it.
 776 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 777 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 778 *  9. We can't remove a root or mountpoint.
 779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 780 *     nfs_async_unlink().
 781 */
 782
 783static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 
 784{
 785	int error;
 786
 787	if (d_really_is_negative(victim))
 788		return -ENOENT;
 789
 790	BUG_ON(d_inode(victim->d_parent) != dir);
 
 
 791	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 792
 793	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 794	if (error)
 795		return error;
 796	if (IS_APPEND(dir))
 797		return -EPERM;
 798	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
 799	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
 
 800		return -EPERM;
 801	if (isdir) {
 802		if (!d_is_dir(victim))
 803			return -ENOTDIR;
 804		if (IS_ROOT(victim))
 805			return -EBUSY;
 806	} else if (d_is_dir(victim))
 807		return -EISDIR;
 808	if (IS_DEADDIR(dir))
 809		return -ENOENT;
 810	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 811		return -EBUSY;
 812	return 0;
 813}
 814
 815/* copy of may_create in fs/namei.c() */
 816static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 
 817{
 818	if (d_really_is_positive(child))
 819		return -EEXIST;
 820	if (IS_DEADDIR(dir))
 821		return -ENOENT;
 822	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 
 
 823}
 824
 825/*
 826 * Create a new subvolume below @parent.  This is largely modeled after
 827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 828 * inside this filesystem so it's quite a bit simpler.
 829 */
 830static noinline int btrfs_mksubvol(struct path *parent,
 831				   char *name, int namelen,
 
 832				   struct btrfs_root *snap_src,
 833				   u64 *async_transid, bool readonly,
 834				   struct btrfs_qgroup_inherit *inherit)
 835{
 836	struct inode *dir  = d_inode(parent->dentry);
 
 837	struct dentry *dentry;
 
 838	int error;
 839
 840	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
 841	if (error == -EINTR)
 842		return error;
 843
 844	dentry = lookup_one_len(name, parent->dentry, namelen);
 845	error = PTR_ERR(dentry);
 846	if (IS_ERR(dentry))
 847		goto out_unlock;
 848
 849	error = btrfs_may_create(dir, dentry);
 850	if (error)
 851		goto out_dput;
 852
 853	/*
 854	 * even if this name doesn't exist, we may get hash collisions.
 855	 * check for them now when we can safely fail
 856	 */
 857	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 858					       dir->i_ino, name,
 859					       namelen);
 860	if (error)
 861		goto out_dput;
 862
 863	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 864
 865	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 866		goto out_up_read;
 867
 868	if (snap_src) {
 869		error = create_snapshot(snap_src, dir, dentry, name, namelen,
 870					async_transid, readonly, inherit);
 871	} else {
 872		error = create_subvol(dir, dentry, name, namelen,
 873				      async_transid, inherit);
 874	}
 875	if (!error)
 876		fsnotify_mkdir(dir, dentry);
 877out_up_read:
 878	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 879out_dput:
 880	dput(dentry);
 881out_unlock:
 882	inode_unlock(dir);
 883	return error;
 884}
 885
 886/*
 887 * When we're defragging a range, we don't want to kick it off again
 888 * if it is really just waiting for delalloc to send it down.
 889 * If we find a nice big extent or delalloc range for the bytes in the
 890 * file you want to defrag, we return 0 to let you know to skip this
 891 * part of the file
 892 */
 893static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 894{
 895	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 896	struct extent_map *em = NULL;
 897	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 898	u64 end;
 899
 900	read_lock(&em_tree->lock);
 901	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
 902	read_unlock(&em_tree->lock);
 903
 904	if (em) {
 905		end = extent_map_end(em);
 906		free_extent_map(em);
 907		if (end - offset > thresh)
 908			return 0;
 909	}
 910	/* if we already have a nice delalloc here, just stop */
 911	thresh /= 2;
 912	end = count_range_bits(io_tree, &offset, offset + thresh,
 913			       thresh, EXTENT_DELALLOC, 1);
 914	if (end >= thresh)
 915		return 0;
 916	return 1;
 917}
 918
 919/*
 920 * helper function to walk through a file and find extents
 921 * newer than a specific transid, and smaller than thresh.
 922 *
 923 * This is used by the defragging code to find new and small
 924 * extents
 925 */
 926static int find_new_extents(struct btrfs_root *root,
 927			    struct inode *inode, u64 newer_than,
 928			    u64 *off, u32 thresh)
 929{
 930	struct btrfs_path *path;
 931	struct btrfs_key min_key;
 932	struct extent_buffer *leaf;
 933	struct btrfs_file_extent_item *extent;
 934	int type;
 935	int ret;
 936	u64 ino = btrfs_ino(inode);
 937
 938	path = btrfs_alloc_path();
 939	if (!path)
 940		return -ENOMEM;
 941
 942	min_key.objectid = ino;
 943	min_key.type = BTRFS_EXTENT_DATA_KEY;
 944	min_key.offset = *off;
 945
 946	while (1) {
 947		ret = btrfs_search_forward(root, &min_key, path, newer_than);
 948		if (ret != 0)
 949			goto none;
 950process_slot:
 951		if (min_key.objectid != ino)
 952			goto none;
 953		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 954			goto none;
 955
 956		leaf = path->nodes[0];
 957		extent = btrfs_item_ptr(leaf, path->slots[0],
 958					struct btrfs_file_extent_item);
 959
 960		type = btrfs_file_extent_type(leaf, extent);
 961		if (type == BTRFS_FILE_EXTENT_REG &&
 962		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 963		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 964			*off = min_key.offset;
 965			btrfs_free_path(path);
 966			return 0;
 967		}
 968
 969		path->slots[0]++;
 970		if (path->slots[0] < btrfs_header_nritems(leaf)) {
 971			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
 972			goto process_slot;
 973		}
 974
 975		if (min_key.offset == (u64)-1)
 976			goto none;
 977
 978		min_key.offset++;
 979		btrfs_release_path(path);
 980	}
 981none:
 982	btrfs_free_path(path);
 983	return -ENOENT;
 984}
 985
 986static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
 987{
 988	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 989	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 990	struct extent_map *em;
 991	u64 len = PAGE_SIZE;
 992
 993	/*
 994	 * hopefully we have this extent in the tree already, try without
 995	 * the full extent lock
 
 996	 */
 997	read_lock(&em_tree->lock);
 998	em = lookup_extent_mapping(em_tree, start, len);
 999	read_unlock(&em_tree->lock);
1000
1001	if (!em) {
1002		struct extent_state *cached = NULL;
1003		u64 end = start + len - 1;
1004
1005		/* get the big lock and read metadata off disk */
1006		lock_extent_bits(io_tree, start, end, &cached);
1007		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009
1010		if (IS_ERR(em))
1011			return NULL;
1012	}
1013
1014	return em;
1015}
1016
1017static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018{
1019	struct extent_map *next;
1020	bool ret = true;
1021
1022	/* this is the last extent */
1023	if (em->start + em->len >= i_size_read(inode))
1024		return false;
1025
1026	next = defrag_lookup_extent(inode, em->start + em->len);
1027	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028		ret = false;
1029	else if ((em->block_start + em->block_len == next->block_start) &&
1030		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031		ret = false;
1032
1033	free_extent_map(next);
1034	return ret;
1035}
1036
1037static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038			       u64 *last_len, u64 *skip, u64 *defrag_end,
1039			       int compress)
1040{
1041	struct extent_map *em;
1042	int ret = 1;
1043	bool next_mergeable = true;
1044	bool prev_mergeable = true;
1045
1046	/*
1047	 * make sure that once we start defragging an extent, we keep on
1048	 * defragging it
 
1049	 */
1050	if (start < *defrag_end)
1051		return 1;
1052
1053	*skip = 0;
1054
1055	em = defrag_lookup_extent(inode, start);
1056	if (!em)
1057		return 0;
1058
1059	/* this will cover holes, and inline extents */
1060	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061		ret = 0;
1062		goto out;
1063	}
1064
1065	if (!*defrag_end)
1066		prev_mergeable = false;
1067
1068	next_mergeable = defrag_check_next_extent(inode, em);
1069	/*
1070	 * we hit a real extent, if it is big or the next extent is not a
1071	 * real extent, don't bother defragging it
1072	 */
1073	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075		ret = 0;
1076out:
1077	/*
1078	 * last_len ends up being a counter of how many bytes we've defragged.
1079	 * every time we choose not to defrag an extent, we reset *last_len
1080	 * so that the next tiny extent will force a defrag.
1081	 *
1082	 * The end result of this is that tiny extents before a single big
1083	 * extent will force at least part of that big extent to be defragged.
1084	 */
1085	if (ret) {
1086		*defrag_end = extent_map_end(em);
1087	} else {
1088		*last_len = 0;
1089		*skip = extent_map_end(em);
1090		*defrag_end = 0;
1091	}
1092
1093	free_extent_map(em);
1094	return ret;
1095}
1096
1097/*
1098 * it doesn't do much good to defrag one or two pages
1099 * at a time.  This pulls in a nice chunk of pages
1100 * to COW and defrag.
1101 *
1102 * It also makes sure the delalloc code has enough
1103 * dirty data to avoid making new small extents as part
1104 * of the defrag
1105 *
1106 * It's a good idea to start RA on this range
1107 * before calling this.
1108 */
1109static int cluster_pages_for_defrag(struct inode *inode,
1110				    struct page **pages,
1111				    unsigned long start_index,
1112				    unsigned long num_pages)
1113{
1114	unsigned long file_end;
1115	u64 isize = i_size_read(inode);
1116	u64 page_start;
1117	u64 page_end;
1118	u64 page_cnt;
1119	int ret;
1120	int i;
1121	int i_done;
1122	struct btrfs_ordered_extent *ordered;
1123	struct extent_state *cached_state = NULL;
1124	struct extent_io_tree *tree;
1125	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126
1127	file_end = (isize - 1) >> PAGE_SHIFT;
1128	if (!isize || start_index > file_end)
1129		return 0;
1130
1131	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132
1133	ret = btrfs_delalloc_reserve_space(inode,
1134			start_index << PAGE_SHIFT,
1135			page_cnt << PAGE_SHIFT);
1136	if (ret)
1137		return ret;
1138	i_done = 0;
1139	tree = &BTRFS_I(inode)->io_tree;
1140
1141	/* step one, lock all the pages */
1142	for (i = 0; i < page_cnt; i++) {
1143		struct page *page;
1144again:
1145		page = find_or_create_page(inode->i_mapping,
1146					   start_index + i, mask);
1147		if (!page)
1148			break;
1149
1150		page_start = page_offset(page);
1151		page_end = page_start + PAGE_SIZE - 1;
1152		while (1) {
1153			lock_extent_bits(tree, page_start, page_end,
1154					 &cached_state);
1155			ordered = btrfs_lookup_ordered_extent(inode,
1156							      page_start);
1157			unlock_extent_cached(tree, page_start, page_end,
1158					     &cached_state, GFP_NOFS);
1159			if (!ordered)
1160				break;
1161
1162			unlock_page(page);
1163			btrfs_start_ordered_extent(inode, ordered, 1);
1164			btrfs_put_ordered_extent(ordered);
1165			lock_page(page);
1166			/*
1167			 * we unlocked the page above, so we need check if
1168			 * it was released or not.
1169			 */
1170			if (page->mapping != inode->i_mapping) {
1171				unlock_page(page);
1172				put_page(page);
1173				goto again;
1174			}
1175		}
1176
1177		if (!PageUptodate(page)) {
1178			btrfs_readpage(NULL, page);
1179			lock_page(page);
1180			if (!PageUptodate(page)) {
1181				unlock_page(page);
1182				put_page(page);
1183				ret = -EIO;
1184				break;
1185			}
1186		}
1187
1188		if (page->mapping != inode->i_mapping) {
1189			unlock_page(page);
1190			put_page(page);
1191			goto again;
1192		}
1193
1194		pages[i] = page;
1195		i_done++;
1196	}
1197	if (!i_done || ret)
1198		goto out;
1199
1200	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201		goto out;
1202
1203	/*
1204	 * so now we have a nice long stream of locked
1205	 * and up to date pages, lets wait on them
1206	 */
1207	for (i = 0; i < i_done; i++)
1208		wait_on_page_writeback(pages[i]);
1209
1210	page_start = page_offset(pages[0]);
1211	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212
1213	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214			 page_start, page_end - 1, &cached_state);
1215	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218			  &cached_state, GFP_NOFS);
1219
1220	if (i_done != page_cnt) {
1221		spin_lock(&BTRFS_I(inode)->lock);
1222		BTRFS_I(inode)->outstanding_extents++;
1223		spin_unlock(&BTRFS_I(inode)->lock);
1224		btrfs_delalloc_release_space(inode,
1225				start_index << PAGE_SHIFT,
1226				(page_cnt - i_done) << PAGE_SHIFT);
1227	}
1228
1229
1230	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231			  &cached_state, GFP_NOFS);
1232
1233	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234			     page_start, page_end - 1, &cached_state,
1235			     GFP_NOFS);
1236
1237	for (i = 0; i < i_done; i++) {
1238		clear_page_dirty_for_io(pages[i]);
1239		ClearPageChecked(pages[i]);
1240		set_page_extent_mapped(pages[i]);
1241		set_page_dirty(pages[i]);
1242		unlock_page(pages[i]);
1243		put_page(pages[i]);
1244	}
1245	return i_done;
1246out:
1247	for (i = 0; i < i_done; i++) {
1248		unlock_page(pages[i]);
1249		put_page(pages[i]);
1250	}
1251	btrfs_delalloc_release_space(inode,
1252			start_index << PAGE_SHIFT,
1253			page_cnt << PAGE_SHIFT);
1254	return ret;
1255
1256}
1257
1258int btrfs_defrag_file(struct inode *inode, struct file *file,
1259		      struct btrfs_ioctl_defrag_range_args *range,
1260		      u64 newer_than, unsigned long max_to_defrag)
1261{
1262	struct btrfs_root *root = BTRFS_I(inode)->root;
1263	struct file_ra_state *ra = NULL;
1264	unsigned long last_index;
1265	u64 isize = i_size_read(inode);
1266	u64 last_len = 0;
1267	u64 skip = 0;
1268	u64 defrag_end = 0;
1269	u64 newer_off = range->start;
1270	unsigned long i;
1271	unsigned long ra_index = 0;
1272	int ret;
1273	int defrag_count = 0;
1274	int compress_type = BTRFS_COMPRESS_ZLIB;
1275	u32 extent_thresh = range->extent_thresh;
1276	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277	unsigned long cluster = max_cluster;
1278	u64 new_align = ~((u64)SZ_128K - 1);
1279	struct page **pages = NULL;
1280
1281	if (isize == 0)
1282		return 0;
1283
1284	if (range->start >= isize)
1285		return -EINVAL;
1286
1287	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289			return -EINVAL;
1290		if (range->compress_type)
1291			compress_type = range->compress_type;
1292	}
1293
1294	if (extent_thresh == 0)
1295		extent_thresh = SZ_256K;
1296
1297	/*
1298	 * if we were not given a file, allocate a readahead
1299	 * context
1300	 */
1301	if (!file) {
1302		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303		if (!ra)
1304			return -ENOMEM;
1305		file_ra_state_init(ra, inode->i_mapping);
1306	} else {
1307		ra = &file->f_ra;
1308	}
1309
1310	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311			GFP_NOFS);
1312	if (!pages) {
1313		ret = -ENOMEM;
1314		goto out_ra;
1315	}
1316
1317	/* find the last page to defrag */
1318	if (range->start + range->len > range->start) {
1319		last_index = min_t(u64, isize - 1,
1320			 range->start + range->len - 1) >> PAGE_SHIFT;
1321	} else {
1322		last_index = (isize - 1) >> PAGE_SHIFT;
1323	}
1324
1325	if (newer_than) {
1326		ret = find_new_extents(root, inode, newer_than,
1327				       &newer_off, SZ_64K);
1328		if (!ret) {
1329			range->start = newer_off;
1330			/*
1331			 * we always align our defrag to help keep
1332			 * the extents in the file evenly spaced
1333			 */
1334			i = (newer_off & new_align) >> PAGE_SHIFT;
1335		} else
1336			goto out_ra;
1337	} else {
1338		i = range->start >> PAGE_SHIFT;
1339	}
1340	if (!max_to_defrag)
1341		max_to_defrag = last_index - i + 1;
1342
1343	/*
1344	 * make writeback starts from i, so the defrag range can be
1345	 * written sequentially.
1346	 */
1347	if (i < inode->i_mapping->writeback_index)
1348		inode->i_mapping->writeback_index = i;
1349
1350	while (i <= last_index && defrag_count < max_to_defrag &&
1351	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352		/*
1353		 * make sure we stop running if someone unmounts
1354		 * the FS
 
1355		 */
1356		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357			break;
1358
1359		if (btrfs_defrag_cancelled(root->fs_info)) {
1360			btrfs_debug(root->fs_info, "defrag_file cancelled");
1361			ret = -EAGAIN;
1362			break;
1363		}
1364
1365		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366					 extent_thresh, &last_len, &skip,
1367					 &defrag_end, range->flags &
1368					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369			unsigned long next;
1370			/*
1371			 * the should_defrag function tells us how much to skip
1372			 * bump our counter by the suggested amount
1373			 */
1374			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375			i = max(i + 1, next);
1376			continue;
1377		}
1378
1379		if (!newer_than) {
1380			cluster = (PAGE_ALIGN(defrag_end) >>
1381				   PAGE_SHIFT) - i;
1382			cluster = min(cluster, max_cluster);
1383		} else {
1384			cluster = max_cluster;
1385		}
1386
1387		if (i + cluster > ra_index) {
1388			ra_index = max(i, ra_index);
1389			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390				       cluster);
1391			ra_index += cluster;
1392		}
1393
1394		inode_lock(inode);
1395		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396			BTRFS_I(inode)->force_compress = compress_type;
1397		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398		if (ret < 0) {
1399			inode_unlock(inode);
1400			goto out_ra;
1401		}
1402
1403		defrag_count += ret;
1404		balance_dirty_pages_ratelimited(inode->i_mapping);
1405		inode_unlock(inode);
1406
1407		if (newer_than) {
1408			if (newer_off == (u64)-1)
1409				break;
1410
1411			if (ret > 0)
1412				i += ret;
1413
1414			newer_off = max(newer_off + 1,
1415					(u64)i << PAGE_SHIFT);
1416
1417			ret = find_new_extents(root, inode, newer_than,
1418					       &newer_off, SZ_64K);
1419			if (!ret) {
1420				range->start = newer_off;
1421				i = (newer_off & new_align) >> PAGE_SHIFT;
1422			} else {
1423				break;
1424			}
1425		} else {
1426			if (ret > 0) {
1427				i += ret;
1428				last_len += ret << PAGE_SHIFT;
1429			} else {
1430				i++;
1431				last_len = 0;
1432			}
1433		}
1434	}
1435
1436	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437		filemap_flush(inode->i_mapping);
1438		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439			     &BTRFS_I(inode)->runtime_flags))
1440			filemap_flush(inode->i_mapping);
1441	}
1442
1443	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444		/* the filemap_flush will queue IO into the worker threads, but
1445		 * we have to make sure the IO is actually started and that
1446		 * ordered extents get created before we return
1447		 */
1448		atomic_inc(&root->fs_info->async_submit_draining);
1449		while (atomic_read(&root->fs_info->nr_async_submits) ||
1450		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1451			wait_event(root->fs_info->async_submit_wait,
1452			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454		}
1455		atomic_dec(&root->fs_info->async_submit_draining);
1456	}
1457
1458	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460	}
1461
1462	ret = defrag_count;
1463
1464out_ra:
1465	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466		inode_lock(inode);
1467		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468		inode_unlock(inode);
1469	}
1470	if (!file)
1471		kfree(ra);
1472	kfree(pages);
1473	return ret;
1474}
1475
1476static noinline int btrfs_ioctl_resize(struct file *file,
1477					void __user *arg)
1478{
 
 
 
1479	u64 new_size;
1480	u64 old_size;
1481	u64 devid = 1;
1482	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483	struct btrfs_ioctl_vol_args *vol_args;
1484	struct btrfs_trans_handle *trans;
1485	struct btrfs_device *device = NULL;
1486	char *sizestr;
1487	char *retptr;
1488	char *devstr = NULL;
1489	int ret = 0;
1490	int mod = 0;
 
1491
1492	if (!capable(CAP_SYS_ADMIN))
1493		return -EPERM;
1494
1495	ret = mnt_want_write_file(file);
1496	if (ret)
1497		return ret;
1498
1499	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500			1)) {
1501		mnt_drop_write_file(file);
1502		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503	}
1504
1505	mutex_lock(&root->fs_info->volume_mutex);
1506	vol_args = memdup_user(arg, sizeof(*vol_args));
1507	if (IS_ERR(vol_args)) {
1508		ret = PTR_ERR(vol_args);
1509		goto out;
1510	}
 
 
 
1511
1512	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
1513
1514	sizestr = vol_args->name;
1515	devstr = strchr(sizestr, ':');
1516	if (devstr) {
1517		sizestr = devstr + 1;
1518		*devstr = '\0';
1519		devstr = vol_args->name;
1520		ret = kstrtoull(devstr, 10, &devid);
1521		if (ret)
1522			goto out_free;
1523		if (!devid) {
1524			ret = -EINVAL;
1525			goto out_free;
1526		}
1527		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528	}
1529
1530	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
 
1531	if (!device) {
1532		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533		       devid);
1534		ret = -ENODEV;
1535		goto out_free;
1536	}
1537
1538	if (!device->writeable) {
1539		btrfs_info(root->fs_info,
1540			   "resizer unable to apply on readonly device %llu",
1541		       devid);
1542		ret = -EPERM;
1543		goto out_free;
1544	}
1545
1546	if (!strcmp(sizestr, "max"))
1547		new_size = device->bdev->bd_inode->i_size;
1548	else {
1549		if (sizestr[0] == '-') {
1550			mod = -1;
1551			sizestr++;
1552		} else if (sizestr[0] == '+') {
1553			mod = 1;
1554			sizestr++;
1555		}
1556		new_size = memparse(sizestr, &retptr);
1557		if (*retptr != '\0' || new_size == 0) {
1558			ret = -EINVAL;
1559			goto out_free;
1560		}
1561	}
1562
1563	if (device->is_tgtdev_for_dev_replace) {
1564		ret = -EPERM;
1565		goto out_free;
1566	}
1567
1568	old_size = btrfs_device_get_total_bytes(device);
1569
1570	if (mod < 0) {
1571		if (new_size > old_size) {
1572			ret = -EINVAL;
1573			goto out_free;
1574		}
1575		new_size = old_size - new_size;
1576	} else if (mod > 0) {
1577		if (new_size > ULLONG_MAX - old_size) {
1578			ret = -ERANGE;
1579			goto out_free;
1580		}
1581		new_size = old_size + new_size;
1582	}
1583
1584	if (new_size < SZ_256M) {
1585		ret = -EINVAL;
1586		goto out_free;
1587	}
1588	if (new_size > device->bdev->bd_inode->i_size) {
1589		ret = -EFBIG;
1590		goto out_free;
1591	}
1592
1593	new_size = div_u64(new_size, root->sectorsize);
1594	new_size *= root->sectorsize;
1595
1596	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597		      rcu_str_deref(device->name), new_size);
1598
1599	if (new_size > old_size) {
1600		trans = btrfs_start_transaction(root, 0);
1601		if (IS_ERR(trans)) {
1602			ret = PTR_ERR(trans);
1603			goto out_free;
1604		}
1605		ret = btrfs_grow_device(trans, device, new_size);
1606		btrfs_commit_transaction(trans, root);
1607	} else if (new_size < old_size) {
1608		ret = btrfs_shrink_device(device, new_size);
1609	} /* equal, nothing need to do */
1610
 
 
 
 
 
 
 
1611out_free:
1612	kfree(vol_args);
1613out:
1614	mutex_unlock(&root->fs_info->volume_mutex);
1615	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616	mnt_drop_write_file(file);
1617	return ret;
1618}
1619
1620static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621				char *name, unsigned long fd, int subvol,
1622				u64 *transid, bool readonly,
 
1623				struct btrfs_qgroup_inherit *inherit)
1624{
1625	int namelen;
1626	int ret = 0;
1627
 
 
 
1628	ret = mnt_want_write_file(file);
1629	if (ret)
1630		goto out;
1631
1632	namelen = strlen(name);
1633	if (strchr(name, '/')) {
1634		ret = -EINVAL;
1635		goto out_drop_write;
1636	}
1637
1638	if (name[0] == '.' &&
1639	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640		ret = -EEXIST;
1641		goto out_drop_write;
1642	}
1643
1644	if (subvol) {
1645		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646				     NULL, transid, readonly, inherit);
1647	} else {
1648		struct fd src = fdget(fd);
1649		struct inode *src_inode;
1650		if (!src.file) {
1651			ret = -EINVAL;
1652			goto out_drop_write;
1653		}
1654
1655		src_inode = file_inode(src.file);
1656		if (src_inode->i_sb != file_inode(file)->i_sb) {
1657			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658				   "Snapshot src from another FS");
1659			ret = -EXDEV;
1660		} else if (!inode_owner_or_capable(src_inode)) {
1661			/*
1662			 * Subvolume creation is not restricted, but snapshots
1663			 * are limited to own subvolumes only
1664			 */
1665			ret = -EPERM;
 
 
 
 
 
 
 
 
 
1666		} else {
1667			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668					     BTRFS_I(src_inode)->root,
1669					     transid, readonly, inherit);
 
1670		}
1671		fdput(src);
1672	}
1673out_drop_write:
1674	mnt_drop_write_file(file);
1675out:
1676	return ret;
1677}
1678
1679static noinline int btrfs_ioctl_snap_create(struct file *file,
1680					    void __user *arg, int subvol)
1681{
1682	struct btrfs_ioctl_vol_args *vol_args;
1683	int ret;
1684
 
 
 
1685	vol_args = memdup_user(arg, sizeof(*vol_args));
1686	if (IS_ERR(vol_args))
1687		return PTR_ERR(vol_args);
1688	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
1689
1690	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691					      vol_args->fd, subvol,
1692					      NULL, false, NULL);
1693
 
1694	kfree(vol_args);
1695	return ret;
1696}
1697
1698static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699					       void __user *arg, int subvol)
1700{
1701	struct btrfs_ioctl_vol_args_v2 *vol_args;
1702	int ret;
1703	u64 transid = 0;
1704	u64 *ptr = NULL;
1705	bool readonly = false;
1706	struct btrfs_qgroup_inherit *inherit = NULL;
1707
 
 
 
1708	vol_args = memdup_user(arg, sizeof(*vol_args));
1709	if (IS_ERR(vol_args))
1710		return PTR_ERR(vol_args);
1711	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
 
 
1712
1713	if (vol_args->flags &
1714	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716		ret = -EOPNOTSUPP;
1717		goto free_args;
1718	}
1719
1720	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721		ptr = &transid;
1722	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723		readonly = true;
1724	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725		if (vol_args->size > PAGE_SIZE) {
 
 
 
1726			ret = -EINVAL;
1727			goto free_args;
1728		}
1729		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730		if (IS_ERR(inherit)) {
1731			ret = PTR_ERR(inherit);
1732			goto free_args;
1733		}
 
 
 
 
1734	}
1735
1736	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737					      vol_args->fd, subvol, ptr,
1738					      readonly, inherit);
1739	if (ret)
1740		goto free_inherit;
1741
1742	if (ptr && copy_to_user(arg +
1743				offsetof(struct btrfs_ioctl_vol_args_v2,
1744					transid),
1745				ptr, sizeof(*ptr)))
1746		ret = -EFAULT;
1747
1748free_inherit:
1749	kfree(inherit);
1750free_args:
1751	kfree(vol_args);
1752	return ret;
1753}
1754
1755static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756						void __user *arg)
1757{
1758	struct inode *inode = file_inode(file);
1759	struct btrfs_root *root = BTRFS_I(inode)->root;
1760	int ret = 0;
1761	u64 flags = 0;
1762
1763	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764		return -EINVAL;
1765
1766	down_read(&root->fs_info->subvol_sem);
1767	if (btrfs_root_readonly(root))
1768		flags |= BTRFS_SUBVOL_RDONLY;
1769	up_read(&root->fs_info->subvol_sem);
1770
1771	if (copy_to_user(arg, &flags, sizeof(flags)))
1772		ret = -EFAULT;
1773
1774	return ret;
1775}
1776
1777static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778					      void __user *arg)
1779{
1780	struct inode *inode = file_inode(file);
 
1781	struct btrfs_root *root = BTRFS_I(inode)->root;
1782	struct btrfs_trans_handle *trans;
1783	u64 root_flags;
1784	u64 flags;
1785	int ret = 0;
1786
1787	if (!inode_owner_or_capable(inode))
1788		return -EPERM;
1789
1790	ret = mnt_want_write_file(file);
1791	if (ret)
1792		goto out;
1793
1794	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795		ret = -EINVAL;
1796		goto out_drop_write;
1797	}
1798
1799	if (copy_from_user(&flags, arg, sizeof(flags))) {
1800		ret = -EFAULT;
1801		goto out_drop_write;
1802	}
1803
1804	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805		ret = -EINVAL;
1806		goto out_drop_write;
1807	}
1808
1809	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810		ret = -EOPNOTSUPP;
1811		goto out_drop_write;
1812	}
1813
1814	down_write(&root->fs_info->subvol_sem);
1815
1816	/* nothing to do */
1817	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818		goto out_drop_sem;
1819
1820	root_flags = btrfs_root_flags(&root->root_item);
1821	if (flags & BTRFS_SUBVOL_RDONLY) {
1822		btrfs_set_root_flags(&root->root_item,
1823				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824	} else {
1825		/*
1826		 * Block RO -> RW transition if this subvolume is involved in
1827		 * send
1828		 */
1829		spin_lock(&root->root_item_lock);
1830		if (root->send_in_progress == 0) {
1831			btrfs_set_root_flags(&root->root_item,
1832				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833			spin_unlock(&root->root_item_lock);
1834		} else {
1835			spin_unlock(&root->root_item_lock);
1836			btrfs_warn(root->fs_info,
1837			"Attempt to set subvolume %llu read-write during send",
1838					root->root_key.objectid);
1839			ret = -EPERM;
1840			goto out_drop_sem;
1841		}
1842	}
1843
1844	trans = btrfs_start_transaction(root, 1);
1845	if (IS_ERR(trans)) {
1846		ret = PTR_ERR(trans);
1847		goto out_reset;
1848	}
1849
1850	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851				&root->root_key, &root->root_item);
 
 
 
 
 
 
1852
1853	btrfs_commit_transaction(trans, root);
1854out_reset:
1855	if (ret)
1856		btrfs_set_root_flags(&root->root_item, root_flags);
1857out_drop_sem:
1858	up_write(&root->fs_info->subvol_sem);
1859out_drop_write:
1860	mnt_drop_write_file(file);
1861out:
1862	return ret;
1863}
1864
1865/*
1866 * helper to check if the subvolume references other subvolumes
1867 */
1868static noinline int may_destroy_subvol(struct btrfs_root *root)
1869{
1870	struct btrfs_path *path;
1871	struct btrfs_dir_item *di;
1872	struct btrfs_key key;
1873	u64 dir_id;
1874	int ret;
1875
1876	path = btrfs_alloc_path();
1877	if (!path)
1878		return -ENOMEM;
1879
1880	/* Make sure this root isn't set as the default subvol */
1881	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883				   dir_id, "default", 7, 0);
1884	if (di && !IS_ERR(di)) {
1885		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886		if (key.objectid == root->root_key.objectid) {
1887			ret = -EPERM;
1888			btrfs_err(root->fs_info, "deleting default subvolume "
1889				  "%llu is not allowed", key.objectid);
1890			goto out;
1891		}
1892		btrfs_release_path(path);
1893	}
1894
1895	key.objectid = root->root_key.objectid;
1896	key.type = BTRFS_ROOT_REF_KEY;
1897	key.offset = (u64)-1;
1898
1899	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900				&key, path, 0, 0);
1901	if (ret < 0)
1902		goto out;
1903	BUG_ON(ret == 0);
1904
1905	ret = 0;
1906	if (path->slots[0] > 0) {
1907		path->slots[0]--;
1908		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909		if (key.objectid == root->root_key.objectid &&
1910		    key.type == BTRFS_ROOT_REF_KEY)
1911			ret = -ENOTEMPTY;
1912	}
1913out:
1914	btrfs_free_path(path);
1915	return ret;
1916}
1917
1918static noinline int key_in_sk(struct btrfs_key *key,
1919			      struct btrfs_ioctl_search_key *sk)
1920{
1921	struct btrfs_key test;
1922	int ret;
1923
1924	test.objectid = sk->min_objectid;
1925	test.type = sk->min_type;
1926	test.offset = sk->min_offset;
1927
1928	ret = btrfs_comp_cpu_keys(key, &test);
1929	if (ret < 0)
1930		return 0;
1931
1932	test.objectid = sk->max_objectid;
1933	test.type = sk->max_type;
1934	test.offset = sk->max_offset;
1935
1936	ret = btrfs_comp_cpu_keys(key, &test);
1937	if (ret > 0)
1938		return 0;
1939	return 1;
1940}
1941
1942static noinline int copy_to_sk(struct btrfs_root *root,
1943			       struct btrfs_path *path,
1944			       struct btrfs_key *key,
1945			       struct btrfs_ioctl_search_key *sk,
1946			       size_t *buf_size,
1947			       char __user *ubuf,
1948			       unsigned long *sk_offset,
1949			       int *num_found)
1950{
1951	u64 found_transid;
1952	struct extent_buffer *leaf;
1953	struct btrfs_ioctl_search_header sh;
1954	struct btrfs_key test;
1955	unsigned long item_off;
1956	unsigned long item_len;
1957	int nritems;
1958	int i;
1959	int slot;
1960	int ret = 0;
1961
1962	leaf = path->nodes[0];
1963	slot = path->slots[0];
1964	nritems = btrfs_header_nritems(leaf);
1965
1966	if (btrfs_header_generation(leaf) > sk->max_transid) {
1967		i = nritems;
1968		goto advance_key;
1969	}
1970	found_transid = btrfs_header_generation(leaf);
1971
1972	for (i = slot; i < nritems; i++) {
1973		item_off = btrfs_item_ptr_offset(leaf, i);
1974		item_len = btrfs_item_size_nr(leaf, i);
1975
1976		btrfs_item_key_to_cpu(leaf, key, i);
1977		if (!key_in_sk(key, sk))
1978			continue;
1979
1980		if (sizeof(sh) + item_len > *buf_size) {
1981			if (*num_found) {
1982				ret = 1;
1983				goto out;
1984			}
1985
1986			/*
1987			 * return one empty item back for v1, which does not
1988			 * handle -EOVERFLOW
1989			 */
1990
1991			*buf_size = sizeof(sh) + item_len;
1992			item_len = 0;
1993			ret = -EOVERFLOW;
1994		}
1995
1996		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997			ret = 1;
1998			goto out;
1999		}
2000
2001		sh.objectid = key->objectid;
2002		sh.offset = key->offset;
2003		sh.type = key->type;
2004		sh.len = item_len;
2005		sh.transid = found_transid;
2006
2007		/* copy search result header */
2008		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009			ret = -EFAULT;
 
 
 
 
 
2010			goto out;
2011		}
2012
2013		*sk_offset += sizeof(sh);
2014
2015		if (item_len) {
2016			char __user *up = ubuf + *sk_offset;
2017			/* copy the item */
2018			if (read_extent_buffer_to_user(leaf, up,
2019						       item_off, item_len)) {
2020				ret = -EFAULT;
 
 
 
 
2021				goto out;
2022			}
2023
2024			*sk_offset += item_len;
2025		}
2026		(*num_found)++;
2027
2028		if (ret) /* -EOVERFLOW from above */
2029			goto out;
2030
2031		if (*num_found >= sk->nr_items) {
2032			ret = 1;
2033			goto out;
2034		}
2035	}
2036advance_key:
2037	ret = 0;
2038	test.objectid = sk->max_objectid;
2039	test.type = sk->max_type;
2040	test.offset = sk->max_offset;
2041	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042		ret = 1;
2043	else if (key->offset < (u64)-1)
2044		key->offset++;
2045	else if (key->type < (u8)-1) {
2046		key->offset = 0;
2047		key->type++;
2048	} else if (key->objectid < (u64)-1) {
2049		key->offset = 0;
2050		key->type = 0;
2051		key->objectid++;
2052	} else
2053		ret = 1;
2054out:
2055	/*
2056	 *  0: all items from this leaf copied, continue with next
2057	 *  1: * more items can be copied, but unused buffer is too small
2058	 *     * all items were found
2059	 *     Either way, it will stops the loop which iterates to the next
2060	 *     leaf
2061	 *  -EOVERFLOW: item was to large for buffer
2062	 *  -EFAULT: could not copy extent buffer back to userspace
2063	 */
2064	return ret;
2065}
2066
2067static noinline int search_ioctl(struct inode *inode,
2068				 struct btrfs_ioctl_search_key *sk,
2069				 size_t *buf_size,
2070				 char __user *ubuf)
2071{
 
2072	struct btrfs_root *root;
2073	struct btrfs_key key;
2074	struct btrfs_path *path;
2075	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076	int ret;
2077	int num_found = 0;
2078	unsigned long sk_offset = 0;
2079
2080	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2082		return -EOVERFLOW;
2083	}
2084
2085	path = btrfs_alloc_path();
2086	if (!path)
2087		return -ENOMEM;
2088
2089	if (sk->tree_id == 0) {
2090		/* search the root of the inode that was passed */
2091		root = BTRFS_I(inode)->root;
2092	} else {
2093		key.objectid = sk->tree_id;
2094		key.type = BTRFS_ROOT_ITEM_KEY;
2095		key.offset = (u64)-1;
2096		root = btrfs_read_fs_root_no_name(info, &key);
2097		if (IS_ERR(root)) {
2098			btrfs_free_path(path);
2099			return -ENOENT;
2100		}
2101	}
2102
2103	key.objectid = sk->min_objectid;
2104	key.type = sk->min_type;
2105	key.offset = sk->min_offset;
2106
2107	while (1) {
 
 
 
 
 
 
 
 
 
2108		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109		if (ret != 0) {
2110			if (ret > 0)
2111				ret = 0;
2112			goto err;
2113		}
2114		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115				 &sk_offset, &num_found);
2116		btrfs_release_path(path);
2117		if (ret)
2118			break;
2119
2120	}
2121	if (ret > 0)
2122		ret = 0;
2123err:
2124	sk->nr_items = num_found;
 
2125	btrfs_free_path(path);
2126	return ret;
2127}
2128
2129static noinline int btrfs_ioctl_tree_search(struct file *file,
2130					   void __user *argp)
2131{
2132	struct btrfs_ioctl_search_args __user *uargs;
2133	struct btrfs_ioctl_search_key sk;
2134	struct inode *inode;
2135	int ret;
2136	size_t buf_size;
2137
2138	if (!capable(CAP_SYS_ADMIN))
2139		return -EPERM;
2140
2141	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142
2143	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144		return -EFAULT;
2145
2146	buf_size = sizeof(uargs->buf);
2147
2148	inode = file_inode(file);
2149	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150
2151	/*
2152	 * In the origin implementation an overflow is handled by returning a
2153	 * search header with a len of zero, so reset ret.
2154	 */
2155	if (ret == -EOVERFLOW)
2156		ret = 0;
2157
2158	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159		ret = -EFAULT;
2160	return ret;
2161}
2162
2163static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164					       void __user *argp)
2165{
2166	struct btrfs_ioctl_search_args_v2 __user *uarg;
2167	struct btrfs_ioctl_search_args_v2 args;
2168	struct inode *inode;
2169	int ret;
2170	size_t buf_size;
2171	const size_t buf_limit = SZ_16M;
2172
2173	if (!capable(CAP_SYS_ADMIN))
2174		return -EPERM;
2175
2176	/* copy search header and buffer size */
2177	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178	if (copy_from_user(&args, uarg, sizeof(args)))
2179		return -EFAULT;
2180
2181	buf_size = args.buf_size;
2182
2183	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184		return -EOVERFLOW;
2185
2186	/* limit result size to 16MB */
2187	if (buf_size > buf_limit)
2188		buf_size = buf_limit;
2189
2190	inode = file_inode(file);
2191	ret = search_ioctl(inode, &args.key, &buf_size,
2192			   (char *)(&uarg->buf[0]));
2193	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194		ret = -EFAULT;
2195	else if (ret == -EOVERFLOW &&
2196		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197		ret = -EFAULT;
2198
2199	return ret;
2200}
2201
2202/*
2203 * Search INODE_REFs to identify path name of 'dirid' directory
2204 * in a 'tree_id' tree. and sets path name to 'name'.
2205 */
2206static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207				u64 tree_id, u64 dirid, char *name)
2208{
2209	struct btrfs_root *root;
2210	struct btrfs_key key;
2211	char *ptr;
2212	int ret = -1;
2213	int slot;
2214	int len;
2215	int total_len = 0;
2216	struct btrfs_inode_ref *iref;
2217	struct extent_buffer *l;
2218	struct btrfs_path *path;
2219
2220	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221		name[0]='\0';
2222		return 0;
2223	}
2224
2225	path = btrfs_alloc_path();
2226	if (!path)
2227		return -ENOMEM;
2228
2229	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230
2231	key.objectid = tree_id;
2232	key.type = BTRFS_ROOT_ITEM_KEY;
2233	key.offset = (u64)-1;
2234	root = btrfs_read_fs_root_no_name(info, &key);
2235	if (IS_ERR(root)) {
2236		btrfs_err(info, "could not find root %llu", tree_id);
2237		ret = -ENOENT;
2238		goto out;
2239	}
2240
2241	key.objectid = dirid;
2242	key.type = BTRFS_INODE_REF_KEY;
2243	key.offset = (u64)-1;
2244
2245	while (1) {
2246		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247		if (ret < 0)
2248			goto out;
2249		else if (ret > 0) {
2250			ret = btrfs_previous_item(root, path, dirid,
2251						  BTRFS_INODE_REF_KEY);
2252			if (ret < 0)
2253				goto out;
2254			else if (ret > 0) {
2255				ret = -ENOENT;
2256				goto out;
2257			}
2258		}
2259
2260		l = path->nodes[0];
2261		slot = path->slots[0];
2262		btrfs_item_key_to_cpu(l, &key, slot);
2263
2264		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265		len = btrfs_inode_ref_name_len(l, iref);
2266		ptr -= len + 1;
2267		total_len += len + 1;
2268		if (ptr < name) {
2269			ret = -ENAMETOOLONG;
2270			goto out;
2271		}
2272
2273		*(ptr + len) = '/';
2274		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275
2276		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277			break;
2278
2279		btrfs_release_path(path);
2280		key.objectid = key.offset;
2281		key.offset = (u64)-1;
2282		dirid = key.objectid;
2283	}
2284	memmove(name, ptr, total_len);
2285	name[total_len] = '\0';
2286	ret = 0;
2287out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288	btrfs_free_path(path);
2289	return ret;
2290}
2291
2292static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293					   void __user *argp)
2294{
2295	 struct btrfs_ioctl_ino_lookup_args *args;
2296	 struct inode *inode;
2297	int ret = 0;
2298
2299	args = memdup_user(argp, sizeof(*args));
2300	if (IS_ERR(args))
2301		return PTR_ERR(args);
2302
2303	inode = file_inode(file);
2304
2305	/*
2306	 * Unprivileged query to obtain the containing subvolume root id. The
2307	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308	 */
2309	if (args->treeid == 0)
2310		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311
2312	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313		args->name[0] = 0;
2314		goto out;
2315	}
2316
2317	if (!capable(CAP_SYS_ADMIN)) {
2318		ret = -EPERM;
2319		goto out;
2320	}
2321
2322	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323					args->treeid, args->objectid,
2324					args->name);
2325
2326out:
2327	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328		ret = -EFAULT;
2329
2330	kfree(args);
2331	return ret;
2332}
2333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335					     void __user *arg)
 
2336{
2337	struct dentry *parent = file->f_path.dentry;
2338	struct dentry *dentry;
2339	struct inode *dir = d_inode(parent);
 
2340	struct inode *inode;
2341	struct btrfs_root *root = BTRFS_I(dir)->root;
2342	struct btrfs_root *dest = NULL;
2343	struct btrfs_ioctl_vol_args *vol_args;
2344	struct btrfs_trans_handle *trans;
2345	struct btrfs_block_rsv block_rsv;
2346	u64 root_flags;
2347	u64 qgroup_reserved;
2348	int namelen;
2349	int ret;
2350	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351
2352	vol_args = memdup_user(arg, sizeof(*vol_args));
2353	if (IS_ERR(vol_args))
2354		return PTR_ERR(vol_args);
2355
2356	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357	namelen = strlen(vol_args->name);
2358	if (strchr(vol_args->name, '/') ||
2359	    strncmp(vol_args->name, "..", namelen) == 0) {
2360		err = -EINVAL;
2361		goto out;
2362	}
2363
2364	err = mnt_want_write_file(file);
2365	if (err)
2366		goto out;
2367
 
 
 
 
 
2368
2369	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370	if (err == -EINTR)
2371		goto out_drop_write;
2372	dentry = lookup_one_len(vol_args->name, parent, namelen);
 
 
 
 
 
2373	if (IS_ERR(dentry)) {
2374		err = PTR_ERR(dentry);
2375		goto out_unlock_dir;
2376	}
2377
2378	if (d_really_is_negative(dentry)) {
2379		err = -ENOENT;
2380		goto out_dput;
2381	}
2382
2383	inode = d_inode(dentry);
2384	dest = BTRFS_I(inode)->root;
2385	if (!capable(CAP_SYS_ADMIN)) {
2386		/*
2387		 * Regular user.  Only allow this with a special mount
2388		 * option, when the user has write+exec access to the
2389		 * subvol root, and when rmdir(2) would have been
2390		 * allowed.
2391		 *
2392		 * Note that this is _not_ check that the subvol is
2393		 * empty or doesn't contain data that we wouldn't
2394		 * otherwise be able to delete.
2395		 *
2396		 * Users who want to delete empty subvols should try
2397		 * rmdir(2).
2398		 */
2399		err = -EPERM;
2400		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401			goto out_dput;
2402
2403		/*
2404		 * Do not allow deletion if the parent dir is the same
2405		 * as the dir to be deleted.  That means the ioctl
2406		 * must be called on the dentry referencing the root
2407		 * of the subvol, not a random directory contained
2408		 * within it.
2409		 */
2410		err = -EINVAL;
2411		if (root == dest)
2412			goto out_dput;
2413
2414		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415		if (err)
2416			goto out_dput;
2417	}
2418
2419	/* check if subvolume may be deleted by a user */
2420	err = btrfs_may_delete(dir, dentry, 1);
2421	if (err)
2422		goto out_dput;
2423
2424	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425		err = -EINVAL;
2426		goto out_dput;
2427	}
2428
2429	inode_lock(inode);
2430
2431	/*
2432	 * Don't allow to delete a subvolume with send in progress. This is
2433	 * inside the i_mutex so the error handling that has to drop the bit
2434	 * again is not run concurrently.
2435	 */
2436	spin_lock(&dest->root_item_lock);
2437	root_flags = btrfs_root_flags(&dest->root_item);
2438	if (dest->send_in_progress == 0) {
2439		btrfs_set_root_flags(&dest->root_item,
2440				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441		spin_unlock(&dest->root_item_lock);
2442	} else {
2443		spin_unlock(&dest->root_item_lock);
2444		btrfs_warn(root->fs_info,
2445			"Attempt to delete subvolume %llu during send",
2446			dest->root_key.objectid);
2447		err = -EPERM;
2448		goto out_unlock_inode;
2449	}
2450
2451	down_write(&root->fs_info->subvol_sem);
2452
2453	err = may_destroy_subvol(dest);
2454	if (err)
2455		goto out_up_write;
2456
2457	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458	/*
2459	 * One for dir inode, two for dir entries, two for root
2460	 * ref/backref.
2461	 */
2462	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463					       5, &qgroup_reserved, true);
2464	if (err)
2465		goto out_up_write;
2466
2467	trans = btrfs_start_transaction(root, 0);
2468	if (IS_ERR(trans)) {
2469		err = PTR_ERR(trans);
2470		goto out_release;
2471	}
2472	trans->block_rsv = &block_rsv;
2473	trans->bytes_reserved = block_rsv.size;
2474
2475	btrfs_record_snapshot_destroy(trans, dir);
2476
2477	ret = btrfs_unlink_subvol(trans, root, dir,
2478				dest->root_key.objectid,
2479				dentry->d_name.name,
2480				dentry->d_name.len);
2481	if (ret) {
2482		err = ret;
2483		btrfs_abort_transaction(trans, root, ret);
2484		goto out_end_trans;
2485	}
2486
2487	btrfs_record_root_in_trans(trans, dest);
2488
2489	memset(&dest->root_item.drop_progress, 0,
2490		sizeof(dest->root_item.drop_progress));
2491	dest->root_item.drop_level = 0;
2492	btrfs_set_root_refs(&dest->root_item, 0);
2493
2494	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495		ret = btrfs_insert_orphan_item(trans,
2496					root->fs_info->tree_root,
2497					dest->root_key.objectid);
2498		if (ret) {
2499			btrfs_abort_transaction(trans, root, ret);
2500			err = ret;
2501			goto out_end_trans;
2502		}
2503	}
2504
2505	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507				  dest->root_key.objectid);
2508	if (ret && ret != -ENOENT) {
2509		btrfs_abort_transaction(trans, root, ret);
2510		err = ret;
2511		goto out_end_trans;
2512	}
2513	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515					  dest->root_item.received_uuid,
2516					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517					  dest->root_key.objectid);
2518		if (ret && ret != -ENOENT) {
2519			btrfs_abort_transaction(trans, root, ret);
2520			err = ret;
2521			goto out_end_trans;
2522		}
2523	}
2524
2525out_end_trans:
2526	trans->block_rsv = NULL;
2527	trans->bytes_reserved = 0;
2528	ret = btrfs_end_transaction(trans, root);
2529	if (ret && !err)
2530		err = ret;
2531	inode->i_flags |= S_DEAD;
2532out_release:
2533	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534out_up_write:
2535	up_write(&root->fs_info->subvol_sem);
2536	if (err) {
2537		spin_lock(&dest->root_item_lock);
2538		root_flags = btrfs_root_flags(&dest->root_item);
2539		btrfs_set_root_flags(&dest->root_item,
2540				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541		spin_unlock(&dest->root_item_lock);
2542	}
2543out_unlock_inode:
2544	inode_unlock(inode);
2545	if (!err) {
2546		d_invalidate(dentry);
2547		btrfs_invalidate_inodes(dest);
2548		d_delete(dentry);
2549		ASSERT(dest->send_in_progress == 0);
2550
2551		/* the last ref */
2552		if (dest->ino_cache_inode) {
2553			iput(dest->ino_cache_inode);
2554			dest->ino_cache_inode = NULL;
2555		}
2556	}
2557out_dput:
2558	dput(dentry);
2559out_unlock_dir:
2560	inode_unlock(dir);
 
 
 
 
 
2561out_drop_write:
2562	mnt_drop_write_file(file);
2563out:
 
2564	kfree(vol_args);
2565	return err;
2566}
2567
2568static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569{
2570	struct inode *inode = file_inode(file);
2571	struct btrfs_root *root = BTRFS_I(inode)->root;
2572	struct btrfs_ioctl_defrag_range_args *range;
2573	int ret;
2574
2575	ret = mnt_want_write_file(file);
2576	if (ret)
2577		return ret;
2578
2579	if (btrfs_root_readonly(root)) {
2580		ret = -EROFS;
2581		goto out;
2582	}
2583
2584	switch (inode->i_mode & S_IFMT) {
2585	case S_IFDIR:
2586		if (!capable(CAP_SYS_ADMIN)) {
2587			ret = -EPERM;
2588			goto out;
2589		}
2590		ret = btrfs_defrag_root(root);
2591		if (ret)
2592			goto out;
2593		ret = btrfs_defrag_root(root->fs_info->extent_root);
2594		break;
2595	case S_IFREG:
2596		if (!(file->f_mode & FMODE_WRITE)) {
2597			ret = -EINVAL;
2598			goto out;
2599		}
2600
2601		range = kzalloc(sizeof(*range), GFP_KERNEL);
2602		if (!range) {
2603			ret = -ENOMEM;
2604			goto out;
2605		}
2606
2607		if (argp) {
2608			if (copy_from_user(range, argp,
2609					   sizeof(*range))) {
2610				ret = -EFAULT;
2611				kfree(range);
 
 
 
2612				goto out;
2613			}
2614			/* compression requires us to start the IO */
2615			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617				range->extent_thresh = (u32)-1;
2618			}
2619		} else {
2620			/* the rest are all set to zero by kzalloc */
2621			range->len = (u64)-1;
2622		}
2623		ret = btrfs_defrag_file(file_inode(file), file,
2624					range, 0, 0);
2625		if (ret > 0)
2626			ret = 0;
2627		kfree(range);
2628		break;
2629	default:
2630		ret = -EINVAL;
2631	}
2632out:
2633	mnt_drop_write_file(file);
2634	return ret;
2635}
2636
2637static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638{
2639	struct btrfs_ioctl_vol_args *vol_args;
 
2640	int ret;
2641
2642	if (!capable(CAP_SYS_ADMIN))
2643		return -EPERM;
2644
2645	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646			1)) {
2647		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648	}
2649
2650	mutex_lock(&root->fs_info->volume_mutex);
2651	vol_args = memdup_user(arg, sizeof(*vol_args));
2652	if (IS_ERR(vol_args)) {
2653		ret = PTR_ERR(vol_args);
2654		goto out;
2655	}
2656
2657	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658	ret = btrfs_init_new_device(root, vol_args->name);
 
 
 
2659
2660	if (!ret)
2661		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662
 
2663	kfree(vol_args);
2664out:
2665	mutex_unlock(&root->fs_info->volume_mutex);
2666	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
 
 
2667	return ret;
2668}
2669
2670static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671{
2672	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673	struct btrfs_ioctl_vol_args *vol_args;
 
 
 
2674	int ret;
 
2675
2676	if (!capable(CAP_SYS_ADMIN))
2677		return -EPERM;
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	ret = mnt_want_write_file(file);
2680	if (ret)
2681		return ret;
2682
2683	vol_args = memdup_user(arg, sizeof(*vol_args));
2684	if (IS_ERR(vol_args)) {
2685		ret = PTR_ERR(vol_args);
2686		goto err_drop;
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
 
 
 
 
 
 
 
 
 
2688
2689	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690
2691	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692			1)) {
2693		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694		goto out;
 
 
2695	}
2696
2697	mutex_lock(&root->fs_info->volume_mutex);
2698	ret = btrfs_rm_device(root, vol_args->name);
2699	mutex_unlock(&root->fs_info->volume_mutex);
2700	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701
2702	if (!ret)
2703		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
 
 
 
 
 
 
2704
 
 
 
2705out:
 
 
2706	kfree(vol_args);
2707err_drop:
2708	mnt_drop_write_file(file);
2709	return ret;
2710}
2711
2712static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
 
2713{
2714	struct btrfs_ioctl_fs_info_args *fi_args;
2715	struct btrfs_device *device;
2716	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
2717	int ret = 0;
2718
2719	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720	if (!fi_args)
2721		return -ENOMEM;
 
 
 
2722
2723	mutex_lock(&fs_devices->device_list_mutex);
2724	fi_args->num_devices = fs_devices->num_devices;
2725	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726
2727	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728		if (device->devid > fi_args->max_id)
2729			fi_args->max_id = device->devid;
2730	}
2731	mutex_unlock(&fs_devices->device_list_mutex);
2732
2733	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736
2737	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738		ret = -EFAULT;
2739
2740	kfree(fi_args);
2741	return ret;
2742}
2743
2744static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
 
2745{
 
2746	struct btrfs_ioctl_dev_info_args *di_args;
2747	struct btrfs_device *dev;
2748	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749	int ret = 0;
2750	char *s_uuid = NULL;
2751
2752	di_args = memdup_user(arg, sizeof(*di_args));
2753	if (IS_ERR(di_args))
2754		return PTR_ERR(di_args);
2755
 
2756	if (!btrfs_is_empty_uuid(di_args->uuid))
2757		s_uuid = di_args->uuid;
2758
2759	mutex_lock(&fs_devices->device_list_mutex);
2760	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761
 
 
2762	if (!dev) {
2763		ret = -ENODEV;
2764		goto out;
2765	}
2766
2767	di_args->devid = dev->devid;
2768	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771	if (dev->name) {
2772		struct rcu_string *name;
2773
2774		rcu_read_lock();
2775		name = rcu_dereference(dev->name);
2776		strncpy(di_args->path, name->str, sizeof(di_args->path));
2777		rcu_read_unlock();
2778		di_args->path[sizeof(di_args->path) - 1] = 0;
2779	} else {
2780		di_args->path[0] = '\0';
2781	}
2782
2783out:
2784	mutex_unlock(&fs_devices->device_list_mutex);
2785	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786		ret = -EFAULT;
2787
2788	kfree(di_args);
2789	return ret;
2790}
2791
2792static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793{
2794	struct page *page;
2795
2796	page = grab_cache_page(inode->i_mapping, index);
2797	if (!page)
2798		return ERR_PTR(-ENOMEM);
2799
2800	if (!PageUptodate(page)) {
2801		int ret;
2802
2803		ret = btrfs_readpage(NULL, page);
2804		if (ret)
2805			return ERR_PTR(ret);
2806		lock_page(page);
2807		if (!PageUptodate(page)) {
2808			unlock_page(page);
2809			put_page(page);
2810			return ERR_PTR(-EIO);
2811		}
2812		if (page->mapping != inode->i_mapping) {
2813			unlock_page(page);
2814			put_page(page);
2815			return ERR_PTR(-EAGAIN);
2816		}
2817	}
2818
2819	return page;
2820}
2821
2822static int gather_extent_pages(struct inode *inode, struct page **pages,
2823			       int num_pages, u64 off)
2824{
2825	int i;
2826	pgoff_t index = off >> PAGE_SHIFT;
2827
2828	for (i = 0; i < num_pages; i++) {
2829again:
2830		pages[i] = extent_same_get_page(inode, index + i);
2831		if (IS_ERR(pages[i])) {
2832			int err = PTR_ERR(pages[i]);
2833
2834			if (err == -EAGAIN)
2835				goto again;
2836			pages[i] = NULL;
2837			return err;
2838		}
2839	}
2840	return 0;
2841}
2842
2843static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844			     bool retry_range_locking)
2845{
2846	/*
2847	 * Do any pending delalloc/csum calculations on inode, one way or
2848	 * another, and lock file content.
2849	 * The locking order is:
2850	 *
2851	 *   1) pages
2852	 *   2) range in the inode's io tree
2853	 */
2854	while (1) {
2855		struct btrfs_ordered_extent *ordered;
2856		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857		ordered = btrfs_lookup_first_ordered_extent(inode,
2858							    off + len - 1);
2859		if ((!ordered ||
2860		     ordered->file_offset + ordered->len <= off ||
2861		     ordered->file_offset >= off + len) &&
2862		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864			if (ordered)
2865				btrfs_put_ordered_extent(ordered);
2866			break;
2867		}
2868		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869		if (ordered)
2870			btrfs_put_ordered_extent(ordered);
2871		if (!retry_range_locking)
2872			return -EAGAIN;
2873		btrfs_wait_ordered_range(inode, off, len);
2874	}
2875	return 0;
2876}
2877
2878static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879{
2880	inode_unlock(inode1);
2881	inode_unlock(inode2);
2882}
2883
2884static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885{
2886	if (inode1 < inode2)
2887		swap(inode1, inode2);
2888
2889	inode_lock_nested(inode1, I_MUTEX_PARENT);
2890	inode_lock_nested(inode2, I_MUTEX_CHILD);
2891}
2892
2893static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894				      struct inode *inode2, u64 loff2, u64 len)
2895{
2896	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898}
2899
2900static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901				    struct inode *inode2, u64 loff2, u64 len,
2902				    bool retry_range_locking)
2903{
2904	int ret;
2905
2906	if (inode1 < inode2) {
2907		swap(inode1, inode2);
2908		swap(loff1, loff2);
2909	}
2910	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911	if (ret)
2912		return ret;
2913	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914	if (ret)
2915		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916			      loff1 + len - 1);
2917	return ret;
2918}
2919
2920struct cmp_pages {
2921	int		num_pages;
2922	struct page	**src_pages;
2923	struct page	**dst_pages;
2924};
2925
2926static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927{
2928	int i;
2929	struct page *pg;
2930
2931	for (i = 0; i < cmp->num_pages; i++) {
2932		pg = cmp->src_pages[i];
2933		if (pg) {
2934			unlock_page(pg);
2935			put_page(pg);
2936		}
2937		pg = cmp->dst_pages[i];
2938		if (pg) {
2939			unlock_page(pg);
2940			put_page(pg);
2941		}
2942	}
2943	kfree(cmp->src_pages);
2944	kfree(cmp->dst_pages);
2945}
2946
2947static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948				  struct inode *dst, u64 dst_loff,
2949				  u64 len, struct cmp_pages *cmp)
2950{
2951	int ret;
2952	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953	struct page **src_pgarr, **dst_pgarr;
2954
2955	/*
2956	 * We must gather up all the pages before we initiate our
2957	 * extent locking. We use an array for the page pointers. Size
2958	 * of the array is bounded by len, which is in turn bounded by
2959	 * BTRFS_MAX_DEDUPE_LEN.
2960	 */
2961	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963	if (!src_pgarr || !dst_pgarr) {
2964		kfree(src_pgarr);
2965		kfree(dst_pgarr);
2966		return -ENOMEM;
2967	}
2968	cmp->num_pages = num_pages;
2969	cmp->src_pages = src_pgarr;
2970	cmp->dst_pages = dst_pgarr;
2971
2972	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973	if (ret)
2974		goto out;
2975
2976	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977
2978out:
2979	if (ret)
2980		btrfs_cmp_data_free(cmp);
2981	return 0;
2982}
2983
2984static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986{
2987	int ret = 0;
2988	int i;
2989	struct page *src_page, *dst_page;
2990	unsigned int cmp_len = PAGE_SIZE;
2991	void *addr, *dst_addr;
2992
2993	i = 0;
2994	while (len) {
2995		if (len < PAGE_SIZE)
2996			cmp_len = len;
2997
2998		BUG_ON(i >= cmp->num_pages);
2999
3000		src_page = cmp->src_pages[i];
3001		dst_page = cmp->dst_pages[i];
3002		ASSERT(PageLocked(src_page));
3003		ASSERT(PageLocked(dst_page));
3004
3005		addr = kmap_atomic(src_page);
3006		dst_addr = kmap_atomic(dst_page);
3007
3008		flush_dcache_page(src_page);
3009		flush_dcache_page(dst_page);
3010
3011		if (memcmp(addr, dst_addr, cmp_len))
3012			ret = -EBADE;
3013
3014		kunmap_atomic(addr);
3015		kunmap_atomic(dst_addr);
3016
3017		if (ret)
3018			break;
3019
3020		len -= cmp_len;
3021		i++;
3022	}
3023
3024	return ret;
3025}
3026
3027static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028				     u64 olen)
3029{
3030	u64 len = *plen;
3031	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032
3033	if (off + olen > inode->i_size || off + olen < off)
3034		return -EINVAL;
3035
3036	/* if we extend to eof, continue to block boundary */
3037	if (off + len == inode->i_size)
3038		*plen = len = ALIGN(inode->i_size, bs) - off;
3039
3040	/* Check that we are block aligned - btrfs_clone() requires this */
3041	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042		return -EINVAL;
3043
3044	return 0;
3045}
3046
3047static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048			     struct inode *dst, u64 dst_loff)
3049{
3050	int ret;
3051	u64 len = olen;
3052	struct cmp_pages cmp;
3053	int same_inode = 0;
3054	u64 same_lock_start = 0;
3055	u64 same_lock_len = 0;
3056
3057	if (src == dst)
3058		same_inode = 1;
3059
3060	if (len == 0)
3061		return 0;
3062
3063	if (same_inode) {
3064		inode_lock(src);
3065
3066		ret = extent_same_check_offsets(src, loff, &len, olen);
3067		if (ret)
3068			goto out_unlock;
3069		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070		if (ret)
3071			goto out_unlock;
3072
3073		/*
3074		 * Single inode case wants the same checks, except we
3075		 * don't want our length pushed out past i_size as
3076		 * comparing that data range makes no sense.
3077		 *
3078		 * extent_same_check_offsets() will do this for an
3079		 * unaligned length at i_size, so catch it here and
3080		 * reject the request.
3081		 *
3082		 * This effectively means we require aligned extents
3083		 * for the single-inode case, whereas the other cases
3084		 * allow an unaligned length so long as it ends at
3085		 * i_size.
3086		 */
3087		if (len != olen) {
3088			ret = -EINVAL;
3089			goto out_unlock;
3090		}
3091
3092		/* Check for overlapping ranges */
3093		if (dst_loff + len > loff && dst_loff < loff + len) {
3094			ret = -EINVAL;
3095			goto out_unlock;
3096		}
3097
3098		same_lock_start = min_t(u64, loff, dst_loff);
3099		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100	} else {
3101		btrfs_double_inode_lock(src, dst);
3102
3103		ret = extent_same_check_offsets(src, loff, &len, olen);
3104		if (ret)
3105			goto out_unlock;
3106
3107		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108		if (ret)
3109			goto out_unlock;
3110	}
3111
3112	/* don't make the dst file partly checksummed */
3113	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115		ret = -EINVAL;
3116		goto out_unlock;
3117	}
3118
3119again:
3120	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121	if (ret)
3122		goto out_unlock;
3123
3124	if (same_inode)
3125		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126					false);
3127	else
3128		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129					       false);
3130	/*
3131	 * If one of the inodes has dirty pages in the respective range or
3132	 * ordered extents, we need to flush dellaloc and wait for all ordered
3133	 * extents in the range. We must unlock the pages and the ranges in the
3134	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135	 * pages) and when waiting for ordered extents to complete (they require
3136	 * range locking).
3137	 */
3138	if (ret == -EAGAIN) {
3139		/*
3140		 * Ranges in the io trees already unlocked. Now unlock all
3141		 * pages before waiting for all IO to complete.
3142		 */
3143		btrfs_cmp_data_free(&cmp);
3144		if (same_inode) {
3145			btrfs_wait_ordered_range(src, same_lock_start,
3146						 same_lock_len);
3147		} else {
3148			btrfs_wait_ordered_range(src, loff, len);
3149			btrfs_wait_ordered_range(dst, dst_loff, len);
3150		}
3151		goto again;
3152	}
3153	ASSERT(ret == 0);
3154	if (WARN_ON(ret)) {
3155		/* ranges in the io trees already unlocked */
3156		btrfs_cmp_data_free(&cmp);
3157		return ret;
3158	}
3159
3160	/* pass original length for comparison so we stay within i_size */
3161	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162	if (ret == 0)
3163		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164
3165	if (same_inode)
3166		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167			      same_lock_start + same_lock_len - 1);
3168	else
3169		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170
3171	btrfs_cmp_data_free(&cmp);
3172out_unlock:
3173	if (same_inode)
3174		inode_unlock(src);
3175	else
3176		btrfs_double_inode_unlock(src, dst);
3177
3178	return ret;
3179}
3180
3181#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3182
3183ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184				struct file *dst_file, u64 dst_loff)
3185{
3186	struct inode *src = file_inode(src_file);
3187	struct inode *dst = file_inode(dst_file);
3188	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189	ssize_t res;
3190
3191	if (olen > BTRFS_MAX_DEDUPE_LEN)
3192		olen = BTRFS_MAX_DEDUPE_LEN;
3193
3194	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195		/*
3196		 * Btrfs does not support blocksize < page_size. As a
3197		 * result, btrfs_cmp_data() won't correctly handle
3198		 * this situation without an update.
3199		 */
3200		return -EINVAL;
3201	}
3202
3203	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204	if (res)
3205		return res;
3206	return olen;
3207}
3208
3209static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210				     struct inode *inode,
3211				     u64 endoff,
3212				     const u64 destoff,
3213				     const u64 olen,
3214				     int no_time_update)
3215{
3216	struct btrfs_root *root = BTRFS_I(inode)->root;
3217	int ret;
3218
3219	inode_inc_iversion(inode);
3220	if (!no_time_update)
3221		inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222	/*
3223	 * We round up to the block size at eof when determining which
3224	 * extents to clone above, but shouldn't round up the file size.
3225	 */
3226	if (endoff > destoff + olen)
3227		endoff = destoff + olen;
3228	if (endoff > inode->i_size)
3229		btrfs_i_size_write(inode, endoff);
3230
3231	ret = btrfs_update_inode(trans, root, inode);
3232	if (ret) {
3233		btrfs_abort_transaction(trans, root, ret);
3234		btrfs_end_transaction(trans, root);
3235		goto out;
3236	}
3237	ret = btrfs_end_transaction(trans, root);
3238out:
3239	return ret;
3240}
3241
3242static void clone_update_extent_map(struct inode *inode,
3243				    const struct btrfs_trans_handle *trans,
3244				    const struct btrfs_path *path,
3245				    const u64 hole_offset,
3246				    const u64 hole_len)
3247{
3248	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249	struct extent_map *em;
3250	int ret;
3251
3252	em = alloc_extent_map();
3253	if (!em) {
3254		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255			&BTRFS_I(inode)->runtime_flags);
3256		return;
3257	}
3258
3259	if (path) {
3260		struct btrfs_file_extent_item *fi;
3261
3262		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263				    struct btrfs_file_extent_item);
3264		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265		em->generation = -1;
3266		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267		    BTRFS_FILE_EXTENT_INLINE)
3268			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269				&BTRFS_I(inode)->runtime_flags);
3270	} else {
3271		em->start = hole_offset;
3272		em->len = hole_len;
3273		em->ram_bytes = em->len;
3274		em->orig_start = hole_offset;
3275		em->block_start = EXTENT_MAP_HOLE;
3276		em->block_len = 0;
3277		em->orig_block_len = 0;
3278		em->compress_type = BTRFS_COMPRESS_NONE;
3279		em->generation = trans->transid;
3280	}
3281
3282	while (1) {
3283		write_lock(&em_tree->lock);
3284		ret = add_extent_mapping(em_tree, em, 1);
3285		write_unlock(&em_tree->lock);
3286		if (ret != -EEXIST) {
3287			free_extent_map(em);
3288			break;
3289		}
3290		btrfs_drop_extent_cache(inode, em->start,
3291					em->start + em->len - 1, 0);
3292	}
3293
3294	if (ret)
3295		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296			&BTRFS_I(inode)->runtime_flags);
3297}
3298
3299/*
3300 * Make sure we do not end up inserting an inline extent into a file that has
3301 * already other (non-inline) extents. If a file has an inline extent it can
3302 * not have any other extents and the (single) inline extent must start at the
3303 * file offset 0. Failing to respect these rules will lead to file corruption,
3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305 *
3306 * We can have extents that have been already written to disk or we can have
3307 * dirty ranges still in delalloc, in which case the extent maps and items are
3308 * created only when we run delalloc, and the delalloc ranges might fall outside
3309 * the range we are currently locking in the inode's io tree. So we check the
3310 * inode's i_size because of that (i_size updates are done while holding the
3311 * i_mutex, which we are holding here).
3312 * We also check to see if the inode has a size not greater than "datal" but has
3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314 * protected against such concurrent fallocate calls by the i_mutex).
3315 *
3316 * If the file has no extents but a size greater than datal, do not allow the
3317 * copy because we would need turn the inline extent into a non-inline one (even
3318 * with NO_HOLES enabled). If we find our destination inode only has one inline
3319 * extent, just overwrite it with the source inline extent if its size is less
3320 * than the source extent's size, or we could copy the source inline extent's
3321 * data into the destination inode's inline extent if the later is greater then
3322 * the former.
3323 */
3324static int clone_copy_inline_extent(struct inode *src,
3325				    struct inode *dst,
3326				    struct btrfs_trans_handle *trans,
3327				    struct btrfs_path *path,
3328				    struct btrfs_key *new_key,
3329				    const u64 drop_start,
3330				    const u64 datal,
3331				    const u64 skip,
3332				    const u64 size,
3333				    char *inline_data)
3334{
3335	struct btrfs_root *root = BTRFS_I(dst)->root;
3336	const u64 aligned_end = ALIGN(new_key->offset + datal,
3337				      root->sectorsize);
3338	int ret;
3339	struct btrfs_key key;
3340
3341	if (new_key->offset > 0)
3342		return -EOPNOTSUPP;
3343
3344	key.objectid = btrfs_ino(dst);
3345	key.type = BTRFS_EXTENT_DATA_KEY;
3346	key.offset = 0;
3347	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348	if (ret < 0) {
3349		return ret;
3350	} else if (ret > 0) {
3351		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352			ret = btrfs_next_leaf(root, path);
3353			if (ret < 0)
3354				return ret;
3355			else if (ret > 0)
3356				goto copy_inline_extent;
3357		}
3358		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359		if (key.objectid == btrfs_ino(dst) &&
3360		    key.type == BTRFS_EXTENT_DATA_KEY) {
3361			ASSERT(key.offset > 0);
3362			return -EOPNOTSUPP;
3363		}
3364	} else if (i_size_read(dst) <= datal) {
3365		struct btrfs_file_extent_item *ei;
3366		u64 ext_len;
3367
3368		/*
3369		 * If the file size is <= datal, make sure there are no other
3370		 * extents following (can happen do to an fallocate call with
3371		 * the flag FALLOC_FL_KEEP_SIZE).
3372		 */
3373		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374				    struct btrfs_file_extent_item);
3375		/*
3376		 * If it's an inline extent, it can not have other extents
3377		 * following it.
3378		 */
3379		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380		    BTRFS_FILE_EXTENT_INLINE)
3381			goto copy_inline_extent;
3382
3383		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384		if (ext_len > aligned_end)
3385			return -EOPNOTSUPP;
3386
3387		ret = btrfs_next_item(root, path);
3388		if (ret < 0) {
3389			return ret;
3390		} else if (ret == 0) {
3391			btrfs_item_key_to_cpu(path->nodes[0], &key,
3392					      path->slots[0]);
3393			if (key.objectid == btrfs_ino(dst) &&
3394			    key.type == BTRFS_EXTENT_DATA_KEY)
3395				return -EOPNOTSUPP;
3396		}
3397	}
3398
3399copy_inline_extent:
3400	/*
3401	 * We have no extent items, or we have an extent at offset 0 which may
3402	 * or may not be inlined. All these cases are dealt the same way.
3403	 */
3404	if (i_size_read(dst) > datal) {
3405		/*
3406		 * If the destination inode has an inline extent...
3407		 * This would require copying the data from the source inline
3408		 * extent into the beginning of the destination's inline extent.
3409		 * But this is really complex, both extents can be compressed
3410		 * or just one of them, which would require decompressing and
3411		 * re-compressing data (which could increase the new compressed
3412		 * size, not allowing the compressed data to fit anymore in an
3413		 * inline extent).
3414		 * So just don't support this case for now (it should be rare,
3415		 * we are not really saving space when cloning inline extents).
3416		 */
3417		return -EOPNOTSUPP;
3418	}
3419
3420	btrfs_release_path(path);
3421	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422	if (ret)
3423		return ret;
3424	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425	if (ret)
3426		return ret;
3427
3428	if (skip) {
3429		const u32 start = btrfs_file_extent_calc_inline_size(0);
3430
3431		memmove(inline_data + start, inline_data + start + skip, datal);
3432	}
3433
3434	write_extent_buffer(path->nodes[0], inline_data,
3435			    btrfs_item_ptr_offset(path->nodes[0],
3436						  path->slots[0]),
3437			    size);
3438	inode_add_bytes(dst, datal);
3439
3440	return 0;
3441}
3442
3443/**
3444 * btrfs_clone() - clone a range from inode file to another
3445 *
3446 * @src: Inode to clone from
3447 * @inode: Inode to clone to
3448 * @off: Offset within source to start clone from
3449 * @olen: Original length, passed by user, of range to clone
3450 * @olen_aligned: Block-aligned value of olen
3451 * @destoff: Offset within @inode to start clone
3452 * @no_time_update: Whether to update mtime/ctime on the target inode
3453 */
3454static int btrfs_clone(struct inode *src, struct inode *inode,
3455		       const u64 off, const u64 olen, const u64 olen_aligned,
3456		       const u64 destoff, int no_time_update)
3457{
3458	struct btrfs_root *root = BTRFS_I(inode)->root;
3459	struct btrfs_path *path = NULL;
3460	struct extent_buffer *leaf;
3461	struct btrfs_trans_handle *trans;
3462	char *buf = NULL;
3463	struct btrfs_key key;
3464	u32 nritems;
3465	int slot;
3466	int ret;
3467	const u64 len = olen_aligned;
3468	u64 last_dest_end = destoff;
3469
3470	ret = -ENOMEM;
3471	buf = vmalloc(root->nodesize);
3472	if (!buf)
3473		return ret;
3474
3475	path = btrfs_alloc_path();
3476	if (!path) {
3477		vfree(buf);
3478		return ret;
3479	}
3480
3481	path->reada = READA_FORWARD;
3482	/* clone data */
3483	key.objectid = btrfs_ino(src);
3484	key.type = BTRFS_EXTENT_DATA_KEY;
3485	key.offset = off;
3486
3487	while (1) {
3488		u64 next_key_min_offset = key.offset + 1;
3489
3490		/*
3491		 * note the key will change type as we walk through the
3492		 * tree.
3493		 */
3494		path->leave_spinning = 1;
3495		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496				0, 0);
3497		if (ret < 0)
3498			goto out;
3499		/*
3500		 * First search, if no extent item that starts at offset off was
3501		 * found but the previous item is an extent item, it's possible
3502		 * it might overlap our target range, therefore process it.
3503		 */
3504		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505			btrfs_item_key_to_cpu(path->nodes[0], &key,
3506					      path->slots[0] - 1);
3507			if (key.type == BTRFS_EXTENT_DATA_KEY)
3508				path->slots[0]--;
3509		}
3510
3511		nritems = btrfs_header_nritems(path->nodes[0]);
3512process_slot:
3513		if (path->slots[0] >= nritems) {
3514			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515			if (ret < 0)
3516				goto out;
3517			if (ret > 0)
3518				break;
3519			nritems = btrfs_header_nritems(path->nodes[0]);
3520		}
3521		leaf = path->nodes[0];
3522		slot = path->slots[0];
3523
3524		btrfs_item_key_to_cpu(leaf, &key, slot);
3525		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526		    key.objectid != btrfs_ino(src))
3527			break;
3528
3529		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530			struct btrfs_file_extent_item *extent;
3531			int type;
3532			u32 size;
3533			struct btrfs_key new_key;
3534			u64 disko = 0, diskl = 0;
3535			u64 datao = 0, datal = 0;
3536			u8 comp;
3537			u64 drop_start;
3538
3539			extent = btrfs_item_ptr(leaf, slot,
3540						struct btrfs_file_extent_item);
3541			comp = btrfs_file_extent_compression(leaf, extent);
3542			type = btrfs_file_extent_type(leaf, extent);
3543			if (type == BTRFS_FILE_EXTENT_REG ||
3544			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3545				disko = btrfs_file_extent_disk_bytenr(leaf,
3546								      extent);
3547				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548								 extent);
3549				datao = btrfs_file_extent_offset(leaf, extent);
3550				datal = btrfs_file_extent_num_bytes(leaf,
3551								    extent);
3552			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553				/* take upper bound, may be compressed */
3554				datal = btrfs_file_extent_ram_bytes(leaf,
3555								    extent);
3556			}
3557
3558			/*
3559			 * The first search might have left us at an extent
3560			 * item that ends before our target range's start, can
3561			 * happen if we have holes and NO_HOLES feature enabled.
3562			 */
3563			if (key.offset + datal <= off) {
3564				path->slots[0]++;
3565				goto process_slot;
3566			} else if (key.offset >= off + len) {
3567				break;
3568			}
3569			next_key_min_offset = key.offset + datal;
3570			size = btrfs_item_size_nr(leaf, slot);
3571			read_extent_buffer(leaf, buf,
3572					   btrfs_item_ptr_offset(leaf, slot),
3573					   size);
3574
3575			btrfs_release_path(path);
3576			path->leave_spinning = 0;
3577
3578			memcpy(&new_key, &key, sizeof(new_key));
3579			new_key.objectid = btrfs_ino(inode);
3580			if (off <= key.offset)
3581				new_key.offset = key.offset + destoff - off;
3582			else
3583				new_key.offset = destoff;
3584
3585			/*
3586			 * Deal with a hole that doesn't have an extent item
3587			 * that represents it (NO_HOLES feature enabled).
3588			 * This hole is either in the middle of the cloning
3589			 * range or at the beginning (fully overlaps it or
3590			 * partially overlaps it).
3591			 */
3592			if (new_key.offset != last_dest_end)
3593				drop_start = last_dest_end;
3594			else
3595				drop_start = new_key.offset;
3596
3597			/*
3598			 * 1 - adjusting old extent (we may have to split it)
3599			 * 1 - add new extent
3600			 * 1 - inode update
3601			 */
3602			trans = btrfs_start_transaction(root, 3);
3603			if (IS_ERR(trans)) {
3604				ret = PTR_ERR(trans);
3605				goto out;
3606			}
3607
3608			if (type == BTRFS_FILE_EXTENT_REG ||
3609			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3610				/*
3611				 *    a  | --- range to clone ---|  b
3612				 * | ------------- extent ------------- |
3613				 */
3614
3615				/* subtract range b */
3616				if (key.offset + datal > off + len)
3617					datal = off + len - key.offset;
3618
3619				/* subtract range a */
3620				if (off > key.offset) {
3621					datao += off - key.offset;
3622					datal -= off - key.offset;
3623				}
3624
3625				ret = btrfs_drop_extents(trans, root, inode,
3626							 drop_start,
3627							 new_key.offset + datal,
3628							 1);
3629				if (ret) {
3630					if (ret != -EOPNOTSUPP)
3631						btrfs_abort_transaction(trans,
3632								root, ret);
3633					btrfs_end_transaction(trans, root);
3634					goto out;
3635				}
3636
3637				ret = btrfs_insert_empty_item(trans, root, path,
3638							      &new_key, size);
3639				if (ret) {
3640					btrfs_abort_transaction(trans, root,
3641								ret);
3642					btrfs_end_transaction(trans, root);
3643					goto out;
3644				}
3645
3646				leaf = path->nodes[0];
3647				slot = path->slots[0];
3648				write_extent_buffer(leaf, buf,
3649					    btrfs_item_ptr_offset(leaf, slot),
3650					    size);
3651
3652				extent = btrfs_item_ptr(leaf, slot,
3653						struct btrfs_file_extent_item);
3654
3655				/* disko == 0 means it's a hole */
3656				if (!disko)
3657					datao = 0;
3658
3659				btrfs_set_file_extent_offset(leaf, extent,
3660							     datao);
3661				btrfs_set_file_extent_num_bytes(leaf, extent,
3662								datal);
3663
3664				if (disko) {
3665					inode_add_bytes(inode, datal);
3666					ret = btrfs_inc_extent_ref(trans, root,
3667							disko, diskl, 0,
3668							root->root_key.objectid,
3669							btrfs_ino(inode),
3670							new_key.offset - datao);
3671					if (ret) {
3672						btrfs_abort_transaction(trans,
3673									root,
3674									ret);
3675						btrfs_end_transaction(trans,
3676								      root);
3677						goto out;
3678
3679					}
3680				}
3681			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682				u64 skip = 0;
3683				u64 trim = 0;
3684
3685				if (off > key.offset) {
3686					skip = off - key.offset;
3687					new_key.offset += skip;
3688				}
3689
3690				if (key.offset + datal > off + len)
3691					trim = key.offset + datal - (off + len);
3692
3693				if (comp && (skip || trim)) {
3694					ret = -EINVAL;
3695					btrfs_end_transaction(trans, root);
3696					goto out;
3697				}
3698				size -= skip + trim;
3699				datal -= skip + trim;
3700
3701				ret = clone_copy_inline_extent(src, inode,
3702							       trans, path,
3703							       &new_key,
3704							       drop_start,
3705							       datal,
3706							       skip, size, buf);
3707				if (ret) {
3708					if (ret != -EOPNOTSUPP)
3709						btrfs_abort_transaction(trans,
3710									root,
3711									ret);
3712					btrfs_end_transaction(trans, root);
3713					goto out;
3714				}
3715				leaf = path->nodes[0];
3716				slot = path->slots[0];
3717			}
3718
3719			/* If we have an implicit hole (NO_HOLES feature). */
3720			if (drop_start < new_key.offset)
3721				clone_update_extent_map(inode, trans,
3722						NULL, drop_start,
3723						new_key.offset - drop_start);
3724
3725			clone_update_extent_map(inode, trans, path, 0, 0);
3726
3727			btrfs_mark_buffer_dirty(leaf);
3728			btrfs_release_path(path);
3729
3730			last_dest_end = ALIGN(new_key.offset + datal,
3731					      root->sectorsize);
3732			ret = clone_finish_inode_update(trans, inode,
3733							last_dest_end,
3734							destoff, olen,
3735							no_time_update);
3736			if (ret)
3737				goto out;
3738			if (new_key.offset + datal >= destoff + len)
3739				break;
3740		}
3741		btrfs_release_path(path);
3742		key.offset = next_key_min_offset;
3743	}
3744	ret = 0;
3745
3746	if (last_dest_end < destoff + len) {
3747		/*
3748		 * We have an implicit hole (NO_HOLES feature is enabled) that
3749		 * fully or partially overlaps our cloning range at its end.
3750		 */
3751		btrfs_release_path(path);
3752
3753		/*
3754		 * 1 - remove extent(s)
3755		 * 1 - inode update
3756		 */
3757		trans = btrfs_start_transaction(root, 2);
3758		if (IS_ERR(trans)) {
3759			ret = PTR_ERR(trans);
3760			goto out;
3761		}
3762		ret = btrfs_drop_extents(trans, root, inode,
3763					 last_dest_end, destoff + len, 1);
3764		if (ret) {
3765			if (ret != -EOPNOTSUPP)
3766				btrfs_abort_transaction(trans, root, ret);
3767			btrfs_end_transaction(trans, root);
3768			goto out;
3769		}
3770		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771					destoff + len - last_dest_end);
3772		ret = clone_finish_inode_update(trans, inode, destoff + len,
3773						destoff, olen, no_time_update);
3774	}
3775
3776out:
3777	btrfs_free_path(path);
3778	vfree(buf);
3779	return ret;
3780}
3781
3782static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3783					u64 off, u64 olen, u64 destoff)
3784{
3785	struct inode *inode = file_inode(file);
3786	struct inode *src = file_inode(file_src);
3787	struct btrfs_root *root = BTRFS_I(inode)->root;
3788	int ret;
3789	u64 len = olen;
3790	u64 bs = root->fs_info->sb->s_blocksize;
3791	int same_inode = src == inode;
3792
3793	/*
3794	 * TODO:
3795	 * - split compressed inline extents.  annoying: we need to
3796	 *   decompress into destination's address_space (the file offset
3797	 *   may change, so source mapping won't do), then recompress (or
3798	 *   otherwise reinsert) a subrange.
3799	 *
3800	 * - split destination inode's inline extents.  The inline extents can
3801	 *   be either compressed or non-compressed.
3802	 */
3803
3804	if (btrfs_root_readonly(root))
3805		return -EROFS;
3806
3807	if (file_src->f_path.mnt != file->f_path.mnt ||
3808	    src->i_sb != inode->i_sb)
3809		return -EXDEV;
3810
3811	/* don't make the dst file partly checksummed */
3812	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3813	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3814		return -EINVAL;
3815
3816	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3817		return -EISDIR;
3818
3819	if (!same_inode) {
3820		btrfs_double_inode_lock(src, inode);
3821	} else {
3822		inode_lock(src);
3823	}
3824
3825	/* determine range to clone */
3826	ret = -EINVAL;
3827	if (off + len > src->i_size || off + len < off)
3828		goto out_unlock;
3829	if (len == 0)
3830		olen = len = src->i_size - off;
3831	/* if we extend to eof, continue to block boundary */
3832	if (off + len == src->i_size)
3833		len = ALIGN(src->i_size, bs) - off;
3834
3835	if (len == 0) {
3836		ret = 0;
3837		goto out_unlock;
3838	}
3839
3840	/* verify the end result is block aligned */
3841	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3842	    !IS_ALIGNED(destoff, bs))
3843		goto out_unlock;
3844
3845	/* verify if ranges are overlapped within the same file */
3846	if (same_inode) {
3847		if (destoff + len > off && destoff < off + len)
3848			goto out_unlock;
3849	}
3850
3851	if (destoff > inode->i_size) {
3852		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3853		if (ret)
3854			goto out_unlock;
3855	}
3856
3857	/*
3858	 * Lock the target range too. Right after we replace the file extent
3859	 * items in the fs tree (which now point to the cloned data), we might
3860	 * have a worker replace them with extent items relative to a write
3861	 * operation that was issued before this clone operation (i.e. confront
3862	 * with inode.c:btrfs_finish_ordered_io).
3863	 */
3864	if (same_inode) {
3865		u64 lock_start = min_t(u64, off, destoff);
3866		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3867
3868		ret = lock_extent_range(src, lock_start, lock_len, true);
3869	} else {
3870		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3871					       true);
3872	}
3873	ASSERT(ret == 0);
3874	if (WARN_ON(ret)) {
3875		/* ranges in the io trees already unlocked */
3876		goto out_unlock;
3877	}
3878
3879	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3880
3881	if (same_inode) {
3882		u64 lock_start = min_t(u64, off, destoff);
3883		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3884
3885		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3886	} else {
3887		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3888	}
3889	/*
3890	 * Truncate page cache pages so that future reads will see the cloned
3891	 * data immediately and not the previous data.
3892	 */
3893	truncate_inode_pages_range(&inode->i_data,
3894				round_down(destoff, PAGE_SIZE),
3895				round_up(destoff + len, PAGE_SIZE) - 1);
3896out_unlock:
3897	if (!same_inode)
3898		btrfs_double_inode_unlock(src, inode);
3899	else
3900		inode_unlock(src);
3901	return ret;
3902}
3903
3904ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3905			      struct file *file_out, loff_t pos_out,
3906			      size_t len, unsigned int flags)
3907{
3908	ssize_t ret;
3909
3910	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3911	if (ret == 0)
3912		ret = len;
3913	return ret;
3914}
3915
3916int btrfs_clone_file_range(struct file *src_file, loff_t off,
3917		struct file *dst_file, loff_t destoff, u64 len)
3918{
3919	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3920}
3921
3922/*
3923 * there are many ways the trans_start and trans_end ioctls can lead
3924 * to deadlocks.  They should only be used by applications that
3925 * basically own the machine, and have a very in depth understanding
3926 * of all the possible deadlocks and enospc problems.
3927 */
3928static long btrfs_ioctl_trans_start(struct file *file)
3929{
3930	struct inode *inode = file_inode(file);
3931	struct btrfs_root *root = BTRFS_I(inode)->root;
3932	struct btrfs_trans_handle *trans;
3933	int ret;
3934
3935	ret = -EPERM;
3936	if (!capable(CAP_SYS_ADMIN))
3937		goto out;
3938
3939	ret = -EINPROGRESS;
3940	if (file->private_data)
3941		goto out;
3942
3943	ret = -EROFS;
3944	if (btrfs_root_readonly(root))
3945		goto out;
3946
3947	ret = mnt_want_write_file(file);
3948	if (ret)
3949		goto out;
3950
3951	atomic_inc(&root->fs_info->open_ioctl_trans);
3952
3953	ret = -ENOMEM;
3954	trans = btrfs_start_ioctl_transaction(root);
3955	if (IS_ERR(trans))
3956		goto out_drop;
3957
3958	file->private_data = trans;
3959	return 0;
3960
3961out_drop:
3962	atomic_dec(&root->fs_info->open_ioctl_trans);
3963	mnt_drop_write_file(file);
3964out:
3965	return ret;
3966}
3967
3968static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3969{
3970	struct inode *inode = file_inode(file);
 
3971	struct btrfs_root *root = BTRFS_I(inode)->root;
3972	struct btrfs_root *new_root;
3973	struct btrfs_dir_item *di;
3974	struct btrfs_trans_handle *trans;
3975	struct btrfs_path *path;
3976	struct btrfs_key location;
3977	struct btrfs_disk_key disk_key;
 
3978	u64 objectid = 0;
3979	u64 dir_id;
3980	int ret;
3981
3982	if (!capable(CAP_SYS_ADMIN))
3983		return -EPERM;
3984
3985	ret = mnt_want_write_file(file);
3986	if (ret)
3987		return ret;
3988
3989	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3990		ret = -EFAULT;
3991		goto out;
3992	}
3993
3994	if (!objectid)
3995		objectid = BTRFS_FS_TREE_OBJECTID;
3996
3997	location.objectid = objectid;
3998	location.type = BTRFS_ROOT_ITEM_KEY;
3999	location.offset = (u64)-1;
4000
4001	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4002	if (IS_ERR(new_root)) {
4003		ret = PTR_ERR(new_root);
4004		goto out;
4005	}
 
 
 
 
4006
4007	path = btrfs_alloc_path();
4008	if (!path) {
4009		ret = -ENOMEM;
4010		goto out;
4011	}
4012	path->leave_spinning = 1;
4013
4014	trans = btrfs_start_transaction(root, 1);
4015	if (IS_ERR(trans)) {
4016		btrfs_free_path(path);
4017		ret = PTR_ERR(trans);
4018		goto out;
4019	}
4020
4021	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4022	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4023				   dir_id, "default", 7, 1);
4024	if (IS_ERR_OR_NULL(di)) {
4025		btrfs_free_path(path);
4026		btrfs_end_transaction(trans, root);
4027		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4028			   "item, this isn't going to work");
4029		ret = -ENOENT;
4030		goto out;
4031	}
4032
4033	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4034	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4035	btrfs_mark_buffer_dirty(path->nodes[0]);
 
 
 
 
 
 
4036	btrfs_free_path(path);
4037
4038	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4039	btrfs_end_transaction(trans, root);
4040out:
4041	mnt_drop_write_file(file);
4042	return ret;
4043}
4044
4045void btrfs_get_block_group_info(struct list_head *groups_list,
4046				struct btrfs_ioctl_space_info *space)
4047{
4048	struct btrfs_block_group_cache *block_group;
4049
4050	space->total_bytes = 0;
4051	space->used_bytes = 0;
4052	space->flags = 0;
4053	list_for_each_entry(block_group, groups_list, list) {
4054		space->flags = block_group->flags;
4055		space->total_bytes += block_group->key.offset;
4056		space->used_bytes +=
4057			btrfs_block_group_used(&block_group->item);
4058	}
4059}
4060
4061static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
 
4062{
4063	struct btrfs_ioctl_space_args space_args;
4064	struct btrfs_ioctl_space_info space;
4065	struct btrfs_ioctl_space_info *dest;
4066	struct btrfs_ioctl_space_info *dest_orig;
4067	struct btrfs_ioctl_space_info __user *user_dest;
4068	struct btrfs_space_info *info;
4069	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4070		       BTRFS_BLOCK_GROUP_SYSTEM,
4071		       BTRFS_BLOCK_GROUP_METADATA,
4072		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
 
 
4073	int num_types = 4;
4074	int alloc_size;
4075	int ret = 0;
4076	u64 slot_count = 0;
4077	int i, c;
4078
4079	if (copy_from_user(&space_args,
4080			   (struct btrfs_ioctl_space_args __user *)arg,
4081			   sizeof(space_args)))
4082		return -EFAULT;
4083
4084	for (i = 0; i < num_types; i++) {
4085		struct btrfs_space_info *tmp;
4086
4087		info = NULL;
4088		rcu_read_lock();
4089		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4090					list) {
4091			if (tmp->flags == types[i]) {
4092				info = tmp;
4093				break;
4094			}
4095		}
4096		rcu_read_unlock();
4097
4098		if (!info)
4099			continue;
4100
4101		down_read(&info->groups_sem);
4102		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4103			if (!list_empty(&info->block_groups[c]))
4104				slot_count++;
4105		}
4106		up_read(&info->groups_sem);
4107	}
4108
4109	/*
4110	 * Global block reserve, exported as a space_info
4111	 */
4112	slot_count++;
4113
4114	/* space_slots == 0 means they are asking for a count */
4115	if (space_args.space_slots == 0) {
4116		space_args.total_spaces = slot_count;
4117		goto out;
4118	}
4119
4120	slot_count = min_t(u64, space_args.space_slots, slot_count);
4121
4122	alloc_size = sizeof(*dest) * slot_count;
4123
4124	/* we generally have at most 6 or so space infos, one for each raid
4125	 * level.  So, a whole page should be more than enough for everyone
4126	 */
4127	if (alloc_size > PAGE_SIZE)
4128		return -ENOMEM;
4129
4130	space_args.total_spaces = 0;
4131	dest = kmalloc(alloc_size, GFP_KERNEL);
4132	if (!dest)
4133		return -ENOMEM;
4134	dest_orig = dest;
4135
4136	/* now we have a buffer to copy into */
4137	for (i = 0; i < num_types; i++) {
4138		struct btrfs_space_info *tmp;
4139
4140		if (!slot_count)
4141			break;
4142
4143		info = NULL;
4144		rcu_read_lock();
4145		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4146					list) {
4147			if (tmp->flags == types[i]) {
4148				info = tmp;
4149				break;
4150			}
4151		}
4152		rcu_read_unlock();
4153
4154		if (!info)
4155			continue;
4156		down_read(&info->groups_sem);
4157		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158			if (!list_empty(&info->block_groups[c])) {
4159				btrfs_get_block_group_info(
4160					&info->block_groups[c], &space);
4161				memcpy(dest, &space, sizeof(space));
4162				dest++;
4163				space_args.total_spaces++;
4164				slot_count--;
4165			}
4166			if (!slot_count)
4167				break;
4168		}
4169		up_read(&info->groups_sem);
4170	}
4171
4172	/*
4173	 * Add global block reserve
4174	 */
4175	if (slot_count) {
4176		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4177
4178		spin_lock(&block_rsv->lock);
4179		space.total_bytes = block_rsv->size;
4180		space.used_bytes = block_rsv->size - block_rsv->reserved;
4181		spin_unlock(&block_rsv->lock);
4182		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4183		memcpy(dest, &space, sizeof(space));
4184		space_args.total_spaces++;
4185	}
4186
4187	user_dest = (struct btrfs_ioctl_space_info __user *)
4188		(arg + sizeof(struct btrfs_ioctl_space_args));
4189
4190	if (copy_to_user(user_dest, dest_orig, alloc_size))
4191		ret = -EFAULT;
4192
4193	kfree(dest_orig);
4194out:
4195	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4196		ret = -EFAULT;
4197
4198	return ret;
4199}
4200
4201/*
4202 * there are many ways the trans_start and trans_end ioctls can lead
4203 * to deadlocks.  They should only be used by applications that
4204 * basically own the machine, and have a very in depth understanding
4205 * of all the possible deadlocks and enospc problems.
4206 */
4207long btrfs_ioctl_trans_end(struct file *file)
4208{
4209	struct inode *inode = file_inode(file);
4210	struct btrfs_root *root = BTRFS_I(inode)->root;
4211	struct btrfs_trans_handle *trans;
4212
4213	trans = file->private_data;
4214	if (!trans)
4215		return -EINVAL;
4216	file->private_data = NULL;
4217
4218	btrfs_end_transaction(trans, root);
4219
4220	atomic_dec(&root->fs_info->open_ioctl_trans);
4221
4222	mnt_drop_write_file(file);
4223	return 0;
4224}
4225
4226static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4227					    void __user *argp)
4228{
4229	struct btrfs_trans_handle *trans;
4230	u64 transid;
4231	int ret;
 
 
 
 
 
 
4232
4233	trans = btrfs_attach_transaction_barrier(root);
4234	if (IS_ERR(trans)) {
4235		if (PTR_ERR(trans) != -ENOENT)
4236			return PTR_ERR(trans);
4237
4238		/* No running transaction, don't bother */
4239		transid = root->fs_info->last_trans_committed;
4240		goto out;
4241	}
4242	transid = trans->transid;
4243	ret = btrfs_commit_transaction_async(trans, root, 0);
4244	if (ret) {
4245		btrfs_end_transaction(trans, root);
4246		return ret;
4247	}
4248out:
4249	if (argp)
4250		if (copy_to_user(argp, &transid, sizeof(transid)))
4251			return -EFAULT;
4252	return 0;
4253}
4254
4255static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4256					   void __user *argp)
4257{
4258	u64 transid;
 
4259
4260	if (argp) {
4261		if (copy_from_user(&transid, argp, sizeof(transid)))
4262			return -EFAULT;
4263	} else {
4264		transid = 0;  /* current trans */
4265	}
4266	return btrfs_wait_for_commit(root, transid);
4267}
4268
4269static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4270{
4271	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4272	struct btrfs_ioctl_scrub_args *sa;
4273	int ret;
4274
4275	if (!capable(CAP_SYS_ADMIN))
4276		return -EPERM;
4277
 
 
 
 
 
4278	sa = memdup_user(arg, sizeof(*sa));
4279	if (IS_ERR(sa))
4280		return PTR_ERR(sa);
4281
 
 
 
 
 
4282	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4283		ret = mnt_want_write_file(file);
4284		if (ret)
4285			goto out;
4286	}
4287
4288	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4289			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4290			      0);
4291
 
 
 
 
 
 
 
 
 
 
 
 
4292	if (copy_to_user(arg, sa, sizeof(*sa)))
4293		ret = -EFAULT;
4294
4295	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4296		mnt_drop_write_file(file);
4297out:
4298	kfree(sa);
4299	return ret;
4300}
4301
4302static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4303{
4304	if (!capable(CAP_SYS_ADMIN))
4305		return -EPERM;
4306
4307	return btrfs_scrub_cancel(root->fs_info);
4308}
4309
4310static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4311				       void __user *arg)
4312{
4313	struct btrfs_ioctl_scrub_args *sa;
4314	int ret;
4315
4316	if (!capable(CAP_SYS_ADMIN))
4317		return -EPERM;
4318
4319	sa = memdup_user(arg, sizeof(*sa));
4320	if (IS_ERR(sa))
4321		return PTR_ERR(sa);
4322
4323	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4324
4325	if (copy_to_user(arg, sa, sizeof(*sa)))
4326		ret = -EFAULT;
4327
4328	kfree(sa);
4329	return ret;
4330}
4331
4332static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4333				      void __user *arg)
4334{
4335	struct btrfs_ioctl_get_dev_stats *sa;
4336	int ret;
4337
4338	sa = memdup_user(arg, sizeof(*sa));
4339	if (IS_ERR(sa))
4340		return PTR_ERR(sa);
4341
4342	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4343		kfree(sa);
4344		return -EPERM;
4345	}
4346
4347	ret = btrfs_get_dev_stats(root, sa);
4348
4349	if (copy_to_user(arg, sa, sizeof(*sa)))
4350		ret = -EFAULT;
4351
4352	kfree(sa);
4353	return ret;
4354}
4355
4356static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
 
4357{
4358	struct btrfs_ioctl_dev_replace_args *p;
4359	int ret;
4360
4361	if (!capable(CAP_SYS_ADMIN))
4362		return -EPERM;
4363
 
 
 
 
 
4364	p = memdup_user(arg, sizeof(*p));
4365	if (IS_ERR(p))
4366		return PTR_ERR(p);
4367
4368	switch (p->cmd) {
4369	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4370		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4371			ret = -EROFS;
4372			goto out;
4373		}
4374		if (atomic_xchg(
4375			&root->fs_info->mutually_exclusive_operation_running,
4376			1)) {
4377			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4378		} else {
4379			ret = btrfs_dev_replace_start(root, p);
4380			atomic_set(
4381			 &root->fs_info->mutually_exclusive_operation_running,
4382			 0);
4383		}
4384		break;
4385	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4386		btrfs_dev_replace_status(root->fs_info, p);
4387		ret = 0;
4388		break;
4389	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4390		ret = btrfs_dev_replace_cancel(root->fs_info, p);
 
4391		break;
4392	default:
4393		ret = -EINVAL;
4394		break;
4395	}
4396
4397	if (copy_to_user(arg, p, sizeof(*p)))
4398		ret = -EFAULT;
4399out:
4400	kfree(p);
4401	return ret;
4402}
4403
4404static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4405{
4406	int ret = 0;
4407	int i;
4408	u64 rel_ptr;
4409	int size;
4410	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4411	struct inode_fs_paths *ipath = NULL;
4412	struct btrfs_path *path;
4413
4414	if (!capable(CAP_DAC_READ_SEARCH))
4415		return -EPERM;
4416
4417	path = btrfs_alloc_path();
4418	if (!path) {
4419		ret = -ENOMEM;
4420		goto out;
4421	}
4422
4423	ipa = memdup_user(arg, sizeof(*ipa));
4424	if (IS_ERR(ipa)) {
4425		ret = PTR_ERR(ipa);
4426		ipa = NULL;
4427		goto out;
4428	}
4429
4430	size = min_t(u32, ipa->size, 4096);
4431	ipath = init_ipath(size, root, path);
4432	if (IS_ERR(ipath)) {
4433		ret = PTR_ERR(ipath);
4434		ipath = NULL;
4435		goto out;
4436	}
4437
4438	ret = paths_from_inode(ipa->inum, ipath);
4439	if (ret < 0)
4440		goto out;
4441
4442	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4443		rel_ptr = ipath->fspath->val[i] -
4444			  (u64)(unsigned long)ipath->fspath->val;
4445		ipath->fspath->val[i] = rel_ptr;
4446	}
4447
4448	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4449			   (void *)(unsigned long)ipath->fspath, size);
 
 
4450	if (ret) {
4451		ret = -EFAULT;
4452		goto out;
4453	}
4454
4455out:
4456	btrfs_free_path(path);
4457	free_ipath(ipath);
4458	kfree(ipa);
4459
4460	return ret;
4461}
4462
4463static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4464{
4465	struct btrfs_data_container *inodes = ctx;
4466	const size_t c = 3 * sizeof(u64);
4467
4468	if (inodes->bytes_left >= c) {
4469		inodes->bytes_left -= c;
4470		inodes->val[inodes->elem_cnt] = inum;
4471		inodes->val[inodes->elem_cnt + 1] = offset;
4472		inodes->val[inodes->elem_cnt + 2] = root;
4473		inodes->elem_cnt += 3;
4474	} else {
4475		inodes->bytes_missing += c - inodes->bytes_left;
4476		inodes->bytes_left = 0;
4477		inodes->elem_missed += 3;
4478	}
4479
4480	return 0;
4481}
4482
4483static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4484					void __user *arg)
4485{
4486	int ret = 0;
4487	int size;
4488	struct btrfs_ioctl_logical_ino_args *loi;
4489	struct btrfs_data_container *inodes = NULL;
4490	struct btrfs_path *path = NULL;
 
4491
4492	if (!capable(CAP_SYS_ADMIN))
4493		return -EPERM;
4494
4495	loi = memdup_user(arg, sizeof(*loi));
4496	if (IS_ERR(loi)) {
4497		ret = PTR_ERR(loi);
4498		loi = NULL;
4499		goto out;
4500	}
4501
4502	path = btrfs_alloc_path();
4503	if (!path) {
4504		ret = -ENOMEM;
4505		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
4506	}
4507
4508	size = min_t(u32, loi->size, SZ_64K);
4509	inodes = init_data_container(size);
4510	if (IS_ERR(inodes)) {
4511		ret = PTR_ERR(inodes);
4512		inodes = NULL;
 
 
 
 
 
4513		goto out;
4514	}
4515
4516	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4517					  build_ino_list, inodes);
4518	if (ret == -EINVAL)
4519		ret = -ENOENT;
4520	if (ret < 0)
4521		goto out;
4522
4523	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4524			   (void *)(unsigned long)inodes, size);
4525	if (ret)
4526		ret = -EFAULT;
4527
4528out:
4529	btrfs_free_path(path);
4530	vfree(inodes);
4531	kfree(loi);
4532
4533	return ret;
4534}
4535
4536void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4537			       struct btrfs_ioctl_balance_args *bargs)
4538{
4539	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4540
4541	bargs->flags = bctl->flags;
4542
4543	if (atomic_read(&fs_info->balance_running))
4544		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4545	if (atomic_read(&fs_info->balance_pause_req))
4546		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4547	if (atomic_read(&fs_info->balance_cancel_req))
4548		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4549
4550	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4551	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4552	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4553
4554	if (lock) {
4555		spin_lock(&fs_info->balance_lock);
4556		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4557		spin_unlock(&fs_info->balance_lock);
4558	} else {
4559		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4560	}
 
 
 
 
 
4561}
4562
4563static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4564{
4565	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4566	struct btrfs_fs_info *fs_info = root->fs_info;
4567	struct btrfs_ioctl_balance_args *bargs;
4568	struct btrfs_balance_control *bctl;
4569	bool need_unlock; /* for mut. excl. ops lock */
4570	int ret;
4571
4572	if (!capable(CAP_SYS_ADMIN))
4573		return -EPERM;
4574
4575	ret = mnt_want_write_file(file);
4576	if (ret)
4577		return ret;
4578
4579again:
4580	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4581		mutex_lock(&fs_info->volume_mutex);
4582		mutex_lock(&fs_info->balance_mutex);
4583		need_unlock = true;
4584		goto locked;
4585	}
4586
4587	/*
4588	 * mut. excl. ops lock is locked.  Three possibilites:
4589	 *   (1) some other op is running
4590	 *   (2) balance is running
4591	 *   (3) balance is paused -- special case (think resume)
4592	 */
4593	mutex_lock(&fs_info->balance_mutex);
4594	if (fs_info->balance_ctl) {
4595		/* this is either (2) or (3) */
4596		if (!atomic_read(&fs_info->balance_running)) {
4597			mutex_unlock(&fs_info->balance_mutex);
4598			if (!mutex_trylock(&fs_info->volume_mutex))
4599				goto again;
4600			mutex_lock(&fs_info->balance_mutex);
4601
4602			if (fs_info->balance_ctl &&
4603			    !atomic_read(&fs_info->balance_running)) {
4604				/* this is (3) */
4605				need_unlock = false;
4606				goto locked;
4607			}
4608
4609			mutex_unlock(&fs_info->balance_mutex);
4610			mutex_unlock(&fs_info->volume_mutex);
4611			goto again;
4612		} else {
4613			/* this is (2) */
4614			mutex_unlock(&fs_info->balance_mutex);
4615			ret = -EINPROGRESS;
4616			goto out;
4617		}
4618	} else {
4619		/* this is (1) */
4620		mutex_unlock(&fs_info->balance_mutex);
4621		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4622		goto out;
4623	}
4624
4625locked:
4626	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4627
4628	if (arg) {
4629		bargs = memdup_user(arg, sizeof(*bargs));
4630		if (IS_ERR(bargs)) {
4631			ret = PTR_ERR(bargs);
4632			goto out_unlock;
4633		}
4634
4635		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4636			if (!fs_info->balance_ctl) {
4637				ret = -ENOTCONN;
4638				goto out_bargs;
4639			}
4640
4641			bctl = fs_info->balance_ctl;
4642			spin_lock(&fs_info->balance_lock);
4643			bctl->flags |= BTRFS_BALANCE_RESUME;
4644			spin_unlock(&fs_info->balance_lock);
4645
4646			goto do_balance;
4647		}
4648	} else {
4649		bargs = NULL;
4650	}
4651
4652	if (fs_info->balance_ctl) {
4653		ret = -EINPROGRESS;
4654		goto out_bargs;
4655	}
4656
4657	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4658	if (!bctl) {
4659		ret = -ENOMEM;
4660		goto out_bargs;
4661	}
4662
4663	bctl->fs_info = fs_info;
4664	if (arg) {
4665		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4666		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4667		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4668
4669		bctl->flags = bargs->flags;
4670	} else {
4671		/* balance everything - no filters */
4672		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4673	}
4674
4675	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4676		ret = -EINVAL;
4677		goto out_bctl;
4678	}
4679
 
4680do_balance:
4681	/*
4682	 * Ownership of bctl and mutually_exclusive_operation_running
4683	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4684	 * or, if restriper was paused all the way until unmount, in
4685	 * free_fs_info.  mutually_exclusive_operation_running is
4686	 * cleared in __cancel_balance.
4687	 */
4688	need_unlock = false;
4689
4690	ret = btrfs_balance(bctl, bargs);
4691	bctl = NULL;
4692
4693	if (arg) {
4694		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4695			ret = -EFAULT;
4696	}
4697
4698out_bctl:
4699	kfree(bctl);
4700out_bargs:
4701	kfree(bargs);
4702out_unlock:
4703	mutex_unlock(&fs_info->balance_mutex);
4704	mutex_unlock(&fs_info->volume_mutex);
4705	if (need_unlock)
4706		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4707out:
4708	mnt_drop_write_file(file);
 
4709	return ret;
4710}
4711
4712static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4713{
4714	if (!capable(CAP_SYS_ADMIN))
4715		return -EPERM;
4716
4717	switch (cmd) {
4718	case BTRFS_BALANCE_CTL_PAUSE:
4719		return btrfs_pause_balance(root->fs_info);
4720	case BTRFS_BALANCE_CTL_CANCEL:
4721		return btrfs_cancel_balance(root->fs_info);
4722	}
4723
4724	return -EINVAL;
4725}
4726
4727static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4728					 void __user *arg)
4729{
4730	struct btrfs_fs_info *fs_info = root->fs_info;
4731	struct btrfs_ioctl_balance_args *bargs;
4732	int ret = 0;
4733
4734	if (!capable(CAP_SYS_ADMIN))
4735		return -EPERM;
4736
4737	mutex_lock(&fs_info->balance_mutex);
4738	if (!fs_info->balance_ctl) {
4739		ret = -ENOTCONN;
4740		goto out;
4741	}
4742
4743	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4744	if (!bargs) {
4745		ret = -ENOMEM;
4746		goto out;
4747	}
4748
4749	update_ioctl_balance_args(fs_info, 1, bargs);
4750
4751	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752		ret = -EFAULT;
4753
4754	kfree(bargs);
4755out:
4756	mutex_unlock(&fs_info->balance_mutex);
4757	return ret;
4758}
4759
4760static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4761{
4762	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4763	struct btrfs_ioctl_quota_ctl_args *sa;
4764	struct btrfs_trans_handle *trans = NULL;
4765	int ret;
4766	int err;
4767
4768	if (!capable(CAP_SYS_ADMIN))
4769		return -EPERM;
4770
4771	ret = mnt_want_write_file(file);
4772	if (ret)
4773		return ret;
4774
4775	sa = memdup_user(arg, sizeof(*sa));
4776	if (IS_ERR(sa)) {
4777		ret = PTR_ERR(sa);
4778		goto drop_write;
4779	}
4780
4781	down_write(&root->fs_info->subvol_sem);
4782	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4783	if (IS_ERR(trans)) {
4784		ret = PTR_ERR(trans);
4785		goto out;
4786	}
4787
4788	switch (sa->cmd) {
4789	case BTRFS_QUOTA_CTL_ENABLE:
4790		ret = btrfs_quota_enable(trans, root->fs_info);
 
 
 
4791		break;
4792	case BTRFS_QUOTA_CTL_DISABLE:
4793		ret = btrfs_quota_disable(trans, root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4794		break;
4795	default:
4796		ret = -EINVAL;
4797		break;
4798	}
4799
4800	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4801	if (err && !ret)
4802		ret = err;
4803out:
4804	kfree(sa);
4805	up_write(&root->fs_info->subvol_sem);
4806drop_write:
4807	mnt_drop_write_file(file);
4808	return ret;
4809}
4810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4812{
4813	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
4814	struct btrfs_ioctl_qgroup_assign_args *sa;
 
4815	struct btrfs_trans_handle *trans;
4816	int ret;
4817	int err;
4818
4819	if (!capable(CAP_SYS_ADMIN))
4820		return -EPERM;
4821
 
 
 
4822	ret = mnt_want_write_file(file);
4823	if (ret)
4824		return ret;
4825
4826	sa = memdup_user(arg, sizeof(*sa));
4827	if (IS_ERR(sa)) {
4828		ret = PTR_ERR(sa);
4829		goto drop_write;
4830	}
4831
 
 
 
 
 
 
 
 
4832	trans = btrfs_join_transaction(root);
4833	if (IS_ERR(trans)) {
4834		ret = PTR_ERR(trans);
4835		goto out;
4836	}
4837
4838	/* FIXME: check if the IDs really exist */
 
 
 
4839	if (sa->assign) {
4840		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4841						sa->src, sa->dst);
4842	} else {
4843		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4844						sa->src, sa->dst);
4845	}
4846
4847	/* update qgroup status and info */
4848	err = btrfs_run_qgroups(trans, root->fs_info);
 
 
4849	if (err < 0)
4850		btrfs_std_error(root->fs_info, ret,
4851			    "failed to update qgroup status and info\n");
4852	err = btrfs_end_transaction(trans, root);
 
4853	if (err && !ret)
4854		ret = err;
4855
4856out:
 
4857	kfree(sa);
4858drop_write:
4859	mnt_drop_write_file(file);
4860	return ret;
4861}
4862
4863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4864{
4865	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4866	struct btrfs_ioctl_qgroup_create_args *sa;
4867	struct btrfs_trans_handle *trans;
4868	int ret;
4869	int err;
4870
4871	if (!capable(CAP_SYS_ADMIN))
4872		return -EPERM;
4873
 
 
 
4874	ret = mnt_want_write_file(file);
4875	if (ret)
4876		return ret;
4877
4878	sa = memdup_user(arg, sizeof(*sa));
4879	if (IS_ERR(sa)) {
4880		ret = PTR_ERR(sa);
4881		goto drop_write;
4882	}
4883
4884	if (!sa->qgroupid) {
4885		ret = -EINVAL;
4886		goto out;
4887	}
4888
 
 
 
 
 
4889	trans = btrfs_join_transaction(root);
4890	if (IS_ERR(trans)) {
4891		ret = PTR_ERR(trans);
4892		goto out;
4893	}
4894
4895	/* FIXME: check if the IDs really exist */
4896	if (sa->create) {
4897		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4898	} else {
4899		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4900	}
4901
4902	err = btrfs_end_transaction(trans, root);
4903	if (err && !ret)
4904		ret = err;
4905
4906out:
4907	kfree(sa);
4908drop_write:
4909	mnt_drop_write_file(file);
4910	return ret;
4911}
4912
4913static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4914{
4915	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4916	struct btrfs_ioctl_qgroup_limit_args *sa;
4917	struct btrfs_trans_handle *trans;
4918	int ret;
4919	int err;
4920	u64 qgroupid;
4921
4922	if (!capable(CAP_SYS_ADMIN))
4923		return -EPERM;
4924
 
 
 
4925	ret = mnt_want_write_file(file);
4926	if (ret)
4927		return ret;
4928
4929	sa = memdup_user(arg, sizeof(*sa));
4930	if (IS_ERR(sa)) {
4931		ret = PTR_ERR(sa);
4932		goto drop_write;
4933	}
4934
4935	trans = btrfs_join_transaction(root);
4936	if (IS_ERR(trans)) {
4937		ret = PTR_ERR(trans);
4938		goto out;
4939	}
4940
4941	qgroupid = sa->qgroupid;
4942	if (!qgroupid) {
4943		/* take the current subvol as qgroup */
4944		qgroupid = root->root_key.objectid;
4945	}
4946
4947	/* FIXME: check if the IDs really exist */
4948	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4949
4950	err = btrfs_end_transaction(trans, root);
4951	if (err && !ret)
4952		ret = err;
4953
4954out:
4955	kfree(sa);
4956drop_write:
4957	mnt_drop_write_file(file);
4958	return ret;
4959}
4960
4961static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4962{
4963	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4964	struct btrfs_ioctl_quota_rescan_args *qsa;
4965	int ret;
4966
4967	if (!capable(CAP_SYS_ADMIN))
4968		return -EPERM;
4969
 
 
 
4970	ret = mnt_want_write_file(file);
4971	if (ret)
4972		return ret;
4973
4974	qsa = memdup_user(arg, sizeof(*qsa));
4975	if (IS_ERR(qsa)) {
4976		ret = PTR_ERR(qsa);
4977		goto drop_write;
4978	}
4979
4980	if (qsa->flags) {
4981		ret = -EINVAL;
4982		goto out;
4983	}
4984
4985	ret = btrfs_qgroup_rescan(root->fs_info);
4986
4987out:
4988	kfree(qsa);
4989drop_write:
4990	mnt_drop_write_file(file);
4991	return ret;
4992}
4993
4994static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
 
4995{
4996	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4997	struct btrfs_ioctl_quota_rescan_args *qsa;
4998	int ret = 0;
4999
5000	if (!capable(CAP_SYS_ADMIN))
5001		return -EPERM;
5002
5003	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5004	if (!qsa)
5005		return -ENOMEM;
5006
5007	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5008		qsa->flags = 1;
5009		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5010	}
5011
5012	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5013		ret = -EFAULT;
5014
5015	kfree(qsa);
5016	return ret;
5017}
5018
5019static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5020{
5021	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022
5023	if (!capable(CAP_SYS_ADMIN))
5024		return -EPERM;
5025
5026	return btrfs_qgroup_wait_for_completion(root->fs_info);
5027}
5028
5029static long _btrfs_ioctl_set_received_subvol(struct file *file,
 
5030					    struct btrfs_ioctl_received_subvol_args *sa)
5031{
5032	struct inode *inode = file_inode(file);
 
5033	struct btrfs_root *root = BTRFS_I(inode)->root;
5034	struct btrfs_root_item *root_item = &root->root_item;
5035	struct btrfs_trans_handle *trans;
5036	struct timespec ct = current_fs_time(inode->i_sb);
5037	int ret = 0;
5038	int received_uuid_changed;
5039
5040	if (!inode_owner_or_capable(inode))
5041		return -EPERM;
5042
5043	ret = mnt_want_write_file(file);
5044	if (ret < 0)
5045		return ret;
5046
5047	down_write(&root->fs_info->subvol_sem);
5048
5049	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5050		ret = -EINVAL;
5051		goto out;
5052	}
5053
5054	if (btrfs_root_readonly(root)) {
5055		ret = -EROFS;
5056		goto out;
5057	}
5058
5059	/*
5060	 * 1 - root item
5061	 * 2 - uuid items (received uuid + subvol uuid)
5062	 */
5063	trans = btrfs_start_transaction(root, 3);
5064	if (IS_ERR(trans)) {
5065		ret = PTR_ERR(trans);
5066		trans = NULL;
5067		goto out;
5068	}
5069
5070	sa->rtransid = trans->transid;
5071	sa->rtime.sec = ct.tv_sec;
5072	sa->rtime.nsec = ct.tv_nsec;
5073
5074	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5075				       BTRFS_UUID_SIZE);
5076	if (received_uuid_changed &&
5077	    !btrfs_is_empty_uuid(root_item->received_uuid))
5078		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5079				    root_item->received_uuid,
5080				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081				    root->root_key.objectid);
 
 
 
 
 
5082	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5083	btrfs_set_root_stransid(root_item, sa->stransid);
5084	btrfs_set_root_rtransid(root_item, sa->rtransid);
5085	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5086	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5087	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5088	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5089
5090	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5091				&root->root_key, &root->root_item);
5092	if (ret < 0) {
5093		btrfs_end_transaction(trans, root);
5094		goto out;
5095	}
5096	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5097		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5098					  sa->uuid,
5099					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100					  root->root_key.objectid);
5101		if (ret < 0 && ret != -EEXIST) {
5102			btrfs_abort_transaction(trans, root, ret);
 
5103			goto out;
5104		}
5105	}
5106	ret = btrfs_commit_transaction(trans, root);
5107	if (ret < 0) {
5108		btrfs_abort_transaction(trans, root, ret);
5109		goto out;
5110	}
5111
5112out:
5113	up_write(&root->fs_info->subvol_sem);
5114	mnt_drop_write_file(file);
5115	return ret;
5116}
5117
5118#ifdef CONFIG_64BIT
5119static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5120						void __user *arg)
5121{
5122	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5123	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5124	int ret = 0;
5125
5126	args32 = memdup_user(arg, sizeof(*args32));
5127	if (IS_ERR(args32)) {
5128		ret = PTR_ERR(args32);
5129		args32 = NULL;
5130		goto out;
5131	}
5132
5133	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5134	if (!args64) {
5135		ret = -ENOMEM;
5136		goto out;
5137	}
5138
5139	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5140	args64->stransid = args32->stransid;
5141	args64->rtransid = args32->rtransid;
5142	args64->stime.sec = args32->stime.sec;
5143	args64->stime.nsec = args32->stime.nsec;
5144	args64->rtime.sec = args32->rtime.sec;
5145	args64->rtime.nsec = args32->rtime.nsec;
5146	args64->flags = args32->flags;
5147
5148	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5149	if (ret)
5150		goto out;
5151
5152	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5153	args32->stransid = args64->stransid;
5154	args32->rtransid = args64->rtransid;
5155	args32->stime.sec = args64->stime.sec;
5156	args32->stime.nsec = args64->stime.nsec;
5157	args32->rtime.sec = args64->rtime.sec;
5158	args32->rtime.nsec = args64->rtime.nsec;
5159	args32->flags = args64->flags;
5160
5161	ret = copy_to_user(arg, args32, sizeof(*args32));
5162	if (ret)
5163		ret = -EFAULT;
5164
5165out:
5166	kfree(args32);
5167	kfree(args64);
5168	return ret;
5169}
5170#endif
5171
5172static long btrfs_ioctl_set_received_subvol(struct file *file,
5173					    void __user *arg)
5174{
5175	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5176	int ret = 0;
5177
5178	sa = memdup_user(arg, sizeof(*sa));
5179	if (IS_ERR(sa)) {
5180		ret = PTR_ERR(sa);
5181		sa = NULL;
5182		goto out;
5183	}
5184
5185	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5186
5187	if (ret)
5188		goto out;
5189
5190	ret = copy_to_user(arg, sa, sizeof(*sa));
5191	if (ret)
5192		ret = -EFAULT;
5193
5194out:
5195	kfree(sa);
5196	return ret;
5197}
5198
5199static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
 
5200{
5201	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202	size_t len;
5203	int ret;
5204	char label[BTRFS_LABEL_SIZE];
5205
5206	spin_lock(&root->fs_info->super_lock);
5207	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5208	spin_unlock(&root->fs_info->super_lock);
5209
5210	len = strnlen(label, BTRFS_LABEL_SIZE);
5211
5212	if (len == BTRFS_LABEL_SIZE) {
5213		btrfs_warn(root->fs_info,
5214			"label is too long, return the first %zu bytes", --len);
 
5215	}
5216
5217	ret = copy_to_user(arg, label, len);
5218
5219	return ret ? -EFAULT : 0;
5220}
5221
5222static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5223{
5224	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5225	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
5226	struct btrfs_trans_handle *trans;
5227	char label[BTRFS_LABEL_SIZE];
5228	int ret;
5229
5230	if (!capable(CAP_SYS_ADMIN))
5231		return -EPERM;
5232
5233	if (copy_from_user(label, arg, sizeof(label)))
5234		return -EFAULT;
5235
5236	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5237		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5238		       BTRFS_LABEL_SIZE - 1);
 
5239		return -EINVAL;
5240	}
5241
5242	ret = mnt_want_write_file(file);
5243	if (ret)
5244		return ret;
5245
5246	trans = btrfs_start_transaction(root, 0);
5247	if (IS_ERR(trans)) {
5248		ret = PTR_ERR(trans);
5249		goto out_unlock;
5250	}
5251
5252	spin_lock(&root->fs_info->super_lock);
5253	strcpy(super_block->label, label);
5254	spin_unlock(&root->fs_info->super_lock);
5255	ret = btrfs_commit_transaction(trans, root);
5256
5257out_unlock:
5258	mnt_drop_write_file(file);
5259	return ret;
5260}
5261
5262#define INIT_FEATURE_FLAGS(suffix) \
5263	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5264	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5265	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5266
5267int btrfs_ioctl_get_supported_features(void __user *arg)
5268{
5269	static const struct btrfs_ioctl_feature_flags features[3] = {
5270		INIT_FEATURE_FLAGS(SUPP),
5271		INIT_FEATURE_FLAGS(SAFE_SET),
5272		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5273	};
5274
5275	if (copy_to_user(arg, &features, sizeof(features)))
5276		return -EFAULT;
5277
5278	return 0;
5279}
5280
5281static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
 
5282{
5283	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5284	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5285	struct btrfs_ioctl_feature_flags features;
5286
5287	features.compat_flags = btrfs_super_compat_flags(super_block);
5288	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5289	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5290
5291	if (copy_to_user(arg, &features, sizeof(features)))
5292		return -EFAULT;
5293
5294	return 0;
5295}
5296
5297static int check_feature_bits(struct btrfs_root *root,
5298			      enum btrfs_feature_set set,
5299			      u64 change_mask, u64 flags, u64 supported_flags,
5300			      u64 safe_set, u64 safe_clear)
5301{
5302	const char *type = btrfs_feature_set_names[set];
5303	char *names;
5304	u64 disallowed, unsupported;
5305	u64 set_mask = flags & change_mask;
5306	u64 clear_mask = ~flags & change_mask;
5307
5308	unsupported = set_mask & ~supported_flags;
5309	if (unsupported) {
5310		names = btrfs_printable_features(set, unsupported);
5311		if (names) {
5312			btrfs_warn(root->fs_info,
5313			   "this kernel does not support the %s feature bit%s",
5314			   names, strchr(names, ',') ? "s" : "");
5315			kfree(names);
5316		} else
5317			btrfs_warn(root->fs_info,
5318			   "this kernel does not support %s bits 0x%llx",
5319			   type, unsupported);
5320		return -EOPNOTSUPP;
5321	}
5322
5323	disallowed = set_mask & ~safe_set;
5324	if (disallowed) {
5325		names = btrfs_printable_features(set, disallowed);
5326		if (names) {
5327			btrfs_warn(root->fs_info,
5328			   "can't set the %s feature bit%s while mounted",
5329			   names, strchr(names, ',') ? "s" : "");
5330			kfree(names);
5331		} else
5332			btrfs_warn(root->fs_info,
5333			   "can't set %s bits 0x%llx while mounted",
5334			   type, disallowed);
5335		return -EPERM;
5336	}
5337
5338	disallowed = clear_mask & ~safe_clear;
5339	if (disallowed) {
5340		names = btrfs_printable_features(set, disallowed);
5341		if (names) {
5342			btrfs_warn(root->fs_info,
5343			   "can't clear the %s feature bit%s while mounted",
5344			   names, strchr(names, ',') ? "s" : "");
5345			kfree(names);
5346		} else
5347			btrfs_warn(root->fs_info,
5348			   "can't clear %s bits 0x%llx while mounted",
5349			   type, disallowed);
5350		return -EPERM;
5351	}
5352
5353	return 0;
5354}
5355
5356#define check_feature(root, change_mask, flags, mask_base)	\
5357check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5358		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5359		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5360		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5361
5362static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5363{
5364	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5365	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
5366	struct btrfs_ioctl_feature_flags flags[2];
5367	struct btrfs_trans_handle *trans;
5368	u64 newflags;
5369	int ret;
5370
5371	if (!capable(CAP_SYS_ADMIN))
5372		return -EPERM;
5373
5374	if (copy_from_user(flags, arg, sizeof(flags)))
5375		return -EFAULT;
5376
5377	/* Nothing to do */
5378	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5379	    !flags[0].incompat_flags)
5380		return 0;
5381
5382	ret = check_feature(root, flags[0].compat_flags,
5383			    flags[1].compat_flags, COMPAT);
5384	if (ret)
5385		return ret;
5386
5387	ret = check_feature(root, flags[0].compat_ro_flags,
5388			    flags[1].compat_ro_flags, COMPAT_RO);
5389	if (ret)
5390		return ret;
5391
5392	ret = check_feature(root, flags[0].incompat_flags,
5393			    flags[1].incompat_flags, INCOMPAT);
5394	if (ret)
5395		return ret;
5396
 
 
 
 
5397	trans = btrfs_start_transaction(root, 0);
5398	if (IS_ERR(trans))
5399		return PTR_ERR(trans);
 
 
5400
5401	spin_lock(&root->fs_info->super_lock);
5402	newflags = btrfs_super_compat_flags(super_block);
5403	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5404	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5405	btrfs_set_super_compat_flags(super_block, newflags);
5406
5407	newflags = btrfs_super_compat_ro_flags(super_block);
5408	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5409	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5410	btrfs_set_super_compat_ro_flags(super_block, newflags);
5411
5412	newflags = btrfs_super_incompat_flags(super_block);
5413	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5414	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5415	btrfs_set_super_incompat_flags(super_block, newflags);
5416	spin_unlock(&root->fs_info->super_lock);
 
 
 
 
 
 
 
 
 
 
 
 
5417
5418	return btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5419}
5420
5421long btrfs_ioctl(struct file *file, unsigned int
5422		cmd, unsigned long arg)
5423{
5424	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
5425	void __user *argp = (void __user *)arg;
5426
5427	switch (cmd) {
5428	case FS_IOC_GETFLAGS:
5429		return btrfs_ioctl_getflags(file, argp);
5430	case FS_IOC_SETFLAGS:
5431		return btrfs_ioctl_setflags(file, argp);
5432	case FS_IOC_GETVERSION:
5433		return btrfs_ioctl_getversion(file, argp);
 
 
 
 
5434	case FITRIM:
5435		return btrfs_ioctl_fitrim(file, argp);
5436	case BTRFS_IOC_SNAP_CREATE:
5437		return btrfs_ioctl_snap_create(file, argp, 0);
5438	case BTRFS_IOC_SNAP_CREATE_V2:
5439		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5440	case BTRFS_IOC_SUBVOL_CREATE:
5441		return btrfs_ioctl_snap_create(file, argp, 1);
5442	case BTRFS_IOC_SUBVOL_CREATE_V2:
5443		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5444	case BTRFS_IOC_SNAP_DESTROY:
5445		return btrfs_ioctl_snap_destroy(file, argp);
 
 
5446	case BTRFS_IOC_SUBVOL_GETFLAGS:
5447		return btrfs_ioctl_subvol_getflags(file, argp);
5448	case BTRFS_IOC_SUBVOL_SETFLAGS:
5449		return btrfs_ioctl_subvol_setflags(file, argp);
5450	case BTRFS_IOC_DEFAULT_SUBVOL:
5451		return btrfs_ioctl_default_subvol(file, argp);
5452	case BTRFS_IOC_DEFRAG:
5453		return btrfs_ioctl_defrag(file, NULL);
5454	case BTRFS_IOC_DEFRAG_RANGE:
5455		return btrfs_ioctl_defrag(file, argp);
5456	case BTRFS_IOC_RESIZE:
5457		return btrfs_ioctl_resize(file, argp);
5458	case BTRFS_IOC_ADD_DEV:
5459		return btrfs_ioctl_add_dev(root, argp);
5460	case BTRFS_IOC_RM_DEV:
5461		return btrfs_ioctl_rm_dev(file, argp);
 
 
5462	case BTRFS_IOC_FS_INFO:
5463		return btrfs_ioctl_fs_info(root, argp);
5464	case BTRFS_IOC_DEV_INFO:
5465		return btrfs_ioctl_dev_info(root, argp);
5466	case BTRFS_IOC_BALANCE:
5467		return btrfs_ioctl_balance(file, NULL);
5468	case BTRFS_IOC_TRANS_START:
5469		return btrfs_ioctl_trans_start(file);
5470	case BTRFS_IOC_TRANS_END:
5471		return btrfs_ioctl_trans_end(file);
5472	case BTRFS_IOC_TREE_SEARCH:
5473		return btrfs_ioctl_tree_search(file, argp);
5474	case BTRFS_IOC_TREE_SEARCH_V2:
5475		return btrfs_ioctl_tree_search_v2(file, argp);
5476	case BTRFS_IOC_INO_LOOKUP:
5477		return btrfs_ioctl_ino_lookup(file, argp);
5478	case BTRFS_IOC_INO_PATHS:
5479		return btrfs_ioctl_ino_to_path(root, argp);
5480	case BTRFS_IOC_LOGICAL_INO:
5481		return btrfs_ioctl_logical_to_ino(root, argp);
 
 
5482	case BTRFS_IOC_SPACE_INFO:
5483		return btrfs_ioctl_space_info(root, argp);
5484	case BTRFS_IOC_SYNC: {
5485		int ret;
5486
5487		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5488		if (ret)
5489			return ret;
5490		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5491		/*
5492		 * The transaction thread may want to do more work,
5493		 * namely it pokes the cleaner ktread that will start
5494		 * processing uncleaned subvols.
5495		 */
5496		wake_up_process(root->fs_info->transaction_kthread);
5497		return ret;
5498	}
5499	case BTRFS_IOC_START_SYNC:
5500		return btrfs_ioctl_start_sync(root, argp);
5501	case BTRFS_IOC_WAIT_SYNC:
5502		return btrfs_ioctl_wait_sync(root, argp);
5503	case BTRFS_IOC_SCRUB:
5504		return btrfs_ioctl_scrub(file, argp);
5505	case BTRFS_IOC_SCRUB_CANCEL:
5506		return btrfs_ioctl_scrub_cancel(root, argp);
5507	case BTRFS_IOC_SCRUB_PROGRESS:
5508		return btrfs_ioctl_scrub_progress(root, argp);
5509	case BTRFS_IOC_BALANCE_V2:
5510		return btrfs_ioctl_balance(file, argp);
5511	case BTRFS_IOC_BALANCE_CTL:
5512		return btrfs_ioctl_balance_ctl(root, arg);
5513	case BTRFS_IOC_BALANCE_PROGRESS:
5514		return btrfs_ioctl_balance_progress(root, argp);
5515	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5516		return btrfs_ioctl_set_received_subvol(file, argp);
5517#ifdef CONFIG_64BIT
5518	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5519		return btrfs_ioctl_set_received_subvol_32(file, argp);
5520#endif
5521	case BTRFS_IOC_SEND:
5522		return btrfs_ioctl_send(file, argp);
 
 
 
 
5523	case BTRFS_IOC_GET_DEV_STATS:
5524		return btrfs_ioctl_get_dev_stats(root, argp);
5525	case BTRFS_IOC_QUOTA_CTL:
5526		return btrfs_ioctl_quota_ctl(file, argp);
5527	case BTRFS_IOC_QGROUP_ASSIGN:
5528		return btrfs_ioctl_qgroup_assign(file, argp);
5529	case BTRFS_IOC_QGROUP_CREATE:
5530		return btrfs_ioctl_qgroup_create(file, argp);
5531	case BTRFS_IOC_QGROUP_LIMIT:
5532		return btrfs_ioctl_qgroup_limit(file, argp);
5533	case BTRFS_IOC_QUOTA_RESCAN:
5534		return btrfs_ioctl_quota_rescan(file, argp);
5535	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5536		return btrfs_ioctl_quota_rescan_status(file, argp);
5537	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5538		return btrfs_ioctl_quota_rescan_wait(file, argp);
5539	case BTRFS_IOC_DEV_REPLACE:
5540		return btrfs_ioctl_dev_replace(root, argp);
5541	case BTRFS_IOC_GET_FSLABEL:
5542		return btrfs_ioctl_get_fslabel(file, argp);
5543	case BTRFS_IOC_SET_FSLABEL:
5544		return btrfs_ioctl_set_fslabel(file, argp);
5545	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5546		return btrfs_ioctl_get_supported_features(argp);
5547	case BTRFS_IOC_GET_FEATURES:
5548		return btrfs_ioctl_get_features(file, argp);
5549	case BTRFS_IOC_SET_FEATURES:
5550		return btrfs_ioctl_set_features(file, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5551	}
5552
5553	return -ENOTTY;
5554}