Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include <linux/io_uring/cmd.h>
33#include "ctree.h"
34#include "disk-io.h"
35#include "export.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "send.h"
42#include "dev-replace.h"
43#include "props.h"
44#include "sysfs.h"
45#include "qgroup.h"
46#include "tree-log.h"
47#include "compression.h"
48#include "space-info.h"
49#include "block-group.h"
50#include "fs.h"
51#include "accessors.h"
52#include "extent-tree.h"
53#include "root-tree.h"
54#include "defrag.h"
55#include "dir-item.h"
56#include "uuid-tree.h"
57#include "ioctl.h"
58#include "file.h"
59#include "scrub.h"
60#include "super.h"
61
62#ifdef CONFIG_64BIT
63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71} __attribute__ ((__packed__));
72
73struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81} __attribute__ ((__packed__));
82
83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85#endif
86
87#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88struct btrfs_ioctl_send_args_32 {
89 __s64 send_fd; /* in */
90 __u64 clone_sources_count; /* in */
91 compat_uptr_t clone_sources; /* in */
92 __u64 parent_root; /* in */
93 __u64 flags; /* in */
94 __u32 version; /* in */
95 __u8 reserved[28]; /* in */
96} __attribute__ ((__packed__));
97
98#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 struct btrfs_ioctl_send_args_32)
100
101struct btrfs_ioctl_encoded_io_args_32 {
102 compat_uptr_t iov;
103 compat_ulong_t iovcnt;
104 __s64 offset;
105 __u64 flags;
106 __u64 len;
107 __u64 unencoded_len;
108 __u64 unencoded_offset;
109 __u32 compression;
110 __u32 encryption;
111 __u8 reserved[64];
112};
113
114#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 struct btrfs_ioctl_encoded_io_args_32)
116#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 struct btrfs_ioctl_encoded_io_args_32)
118#endif
119
120/* Mask out flags that are inappropriate for the given type of inode. */
121static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
122 unsigned int flags)
123{
124 if (S_ISDIR(inode->i_mode))
125 return flags;
126 else if (S_ISREG(inode->i_mode))
127 return flags & ~FS_DIRSYNC_FL;
128 else
129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130}
131
132/*
133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134 * ioctl.
135 */
136static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137{
138 unsigned int iflags = 0;
139 u32 flags = binode->flags;
140 u32 ro_flags = binode->ro_flags;
141
142 if (flags & BTRFS_INODE_SYNC)
143 iflags |= FS_SYNC_FL;
144 if (flags & BTRFS_INODE_IMMUTABLE)
145 iflags |= FS_IMMUTABLE_FL;
146 if (flags & BTRFS_INODE_APPEND)
147 iflags |= FS_APPEND_FL;
148 if (flags & BTRFS_INODE_NODUMP)
149 iflags |= FS_NODUMP_FL;
150 if (flags & BTRFS_INODE_NOATIME)
151 iflags |= FS_NOATIME_FL;
152 if (flags & BTRFS_INODE_DIRSYNC)
153 iflags |= FS_DIRSYNC_FL;
154 if (flags & BTRFS_INODE_NODATACOW)
155 iflags |= FS_NOCOW_FL;
156 if (ro_flags & BTRFS_INODE_RO_VERITY)
157 iflags |= FS_VERITY_FL;
158
159 if (flags & BTRFS_INODE_NOCOMPRESS)
160 iflags |= FS_NOCOMP_FL;
161 else if (flags & BTRFS_INODE_COMPRESS)
162 iflags |= FS_COMPR_FL;
163
164 return iflags;
165}
166
167/*
168 * Update inode->i_flags based on the btrfs internal flags.
169 */
170void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171{
172 struct btrfs_inode *binode = BTRFS_I(inode);
173 unsigned int new_fl = 0;
174
175 if (binode->flags & BTRFS_INODE_SYNC)
176 new_fl |= S_SYNC;
177 if (binode->flags & BTRFS_INODE_IMMUTABLE)
178 new_fl |= S_IMMUTABLE;
179 if (binode->flags & BTRFS_INODE_APPEND)
180 new_fl |= S_APPEND;
181 if (binode->flags & BTRFS_INODE_NOATIME)
182 new_fl |= S_NOATIME;
183 if (binode->flags & BTRFS_INODE_DIRSYNC)
184 new_fl |= S_DIRSYNC;
185 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
186 new_fl |= S_VERITY;
187
188 set_mask_bits(&inode->i_flags,
189 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
190 S_VERITY, new_fl);
191}
192
193/*
194 * Check if @flags are a supported and valid set of FS_*_FL flags and that
195 * the old and new flags are not conflicting
196 */
197static int check_fsflags(unsigned int old_flags, unsigned int flags)
198{
199 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
200 FS_NOATIME_FL | FS_NODUMP_FL | \
201 FS_SYNC_FL | FS_DIRSYNC_FL | \
202 FS_NOCOMP_FL | FS_COMPR_FL |
203 FS_NOCOW_FL))
204 return -EOPNOTSUPP;
205
206 /* COMPR and NOCOMP on new/old are valid */
207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 return -EINVAL;
209
210 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
211 return -EINVAL;
212
213 /* NOCOW and compression options are mutually exclusive */
214 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 return -EINVAL;
216 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
217 return -EINVAL;
218
219 return 0;
220}
221
222static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
223 unsigned int flags)
224{
225 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
226 return -EPERM;
227
228 return 0;
229}
230
231int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232{
233 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
234 return -ENAMETOOLONG;
235 return 0;
236}
237
238static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239{
240 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
241 return -ENAMETOOLONG;
242 return 0;
243}
244
245/*
246 * Set flags/xflags from the internal inode flags. The remaining items of
247 * fsxattr are zeroed.
248 */
249int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250{
251 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252
253 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
254 return 0;
255}
256
257int btrfs_fileattr_set(struct mnt_idmap *idmap,
258 struct dentry *dentry, struct fileattr *fa)
259{
260 struct inode *inode = d_inode(dentry);
261 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
262 struct btrfs_inode *binode = BTRFS_I(inode);
263 struct btrfs_root *root = binode->root;
264 struct btrfs_trans_handle *trans;
265 unsigned int fsflags, old_fsflags;
266 int ret;
267 const char *comp = NULL;
268 u32 binode_flags;
269
270 if (btrfs_root_readonly(root))
271 return -EROFS;
272
273 if (fileattr_has_fsx(fa))
274 return -EOPNOTSUPP;
275
276 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
277 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
278 ret = check_fsflags(old_fsflags, fsflags);
279 if (ret)
280 return ret;
281
282 ret = check_fsflags_compatible(fs_info, fsflags);
283 if (ret)
284 return ret;
285
286 binode_flags = binode->flags;
287 if (fsflags & FS_SYNC_FL)
288 binode_flags |= BTRFS_INODE_SYNC;
289 else
290 binode_flags &= ~BTRFS_INODE_SYNC;
291 if (fsflags & FS_IMMUTABLE_FL)
292 binode_flags |= BTRFS_INODE_IMMUTABLE;
293 else
294 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
295 if (fsflags & FS_APPEND_FL)
296 binode_flags |= BTRFS_INODE_APPEND;
297 else
298 binode_flags &= ~BTRFS_INODE_APPEND;
299 if (fsflags & FS_NODUMP_FL)
300 binode_flags |= BTRFS_INODE_NODUMP;
301 else
302 binode_flags &= ~BTRFS_INODE_NODUMP;
303 if (fsflags & FS_NOATIME_FL)
304 binode_flags |= BTRFS_INODE_NOATIME;
305 else
306 binode_flags &= ~BTRFS_INODE_NOATIME;
307
308 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
309 if (!fa->flags_valid) {
310 /* 1 item for the inode */
311 trans = btrfs_start_transaction(root, 1);
312 if (IS_ERR(trans))
313 return PTR_ERR(trans);
314 goto update_flags;
315 }
316
317 if (fsflags & FS_DIRSYNC_FL)
318 binode_flags |= BTRFS_INODE_DIRSYNC;
319 else
320 binode_flags &= ~BTRFS_INODE_DIRSYNC;
321 if (fsflags & FS_NOCOW_FL) {
322 if (S_ISREG(inode->i_mode)) {
323 /*
324 * It's safe to turn csums off here, no extents exist.
325 * Otherwise we want the flag to reflect the real COW
326 * status of the file and will not set it.
327 */
328 if (inode->i_size == 0)
329 binode_flags |= BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM;
331 } else {
332 binode_flags |= BTRFS_INODE_NODATACOW;
333 }
334 } else {
335 /*
336 * Revert back under same assumptions as above
337 */
338 if (S_ISREG(inode->i_mode)) {
339 if (inode->i_size == 0)
340 binode_flags &= ~(BTRFS_INODE_NODATACOW |
341 BTRFS_INODE_NODATASUM);
342 } else {
343 binode_flags &= ~BTRFS_INODE_NODATACOW;
344 }
345 }
346
347 /*
348 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
349 * flag may be changed automatically if compression code won't make
350 * things smaller.
351 */
352 if (fsflags & FS_NOCOMP_FL) {
353 binode_flags &= ~BTRFS_INODE_COMPRESS;
354 binode_flags |= BTRFS_INODE_NOCOMPRESS;
355 } else if (fsflags & FS_COMPR_FL) {
356
357 if (IS_SWAPFILE(inode))
358 return -ETXTBSY;
359
360 binode_flags |= BTRFS_INODE_COMPRESS;
361 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362
363 comp = btrfs_compress_type2str(fs_info->compress_type);
364 if (!comp || comp[0] == 0)
365 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 } else {
367 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
368 }
369
370 /*
371 * 1 for inode item
372 * 2 for properties
373 */
374 trans = btrfs_start_transaction(root, 3);
375 if (IS_ERR(trans))
376 return PTR_ERR(trans);
377
378 if (comp) {
379 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
380 comp, strlen(comp), 0);
381 if (ret) {
382 btrfs_abort_transaction(trans, ret);
383 goto out_end_trans;
384 }
385 } else {
386 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 NULL, 0, 0);
388 if (ret && ret != -ENODATA) {
389 btrfs_abort_transaction(trans, ret);
390 goto out_end_trans;
391 }
392 }
393
394update_flags:
395 binode->flags = binode_flags;
396 btrfs_sync_inode_flags_to_i_flags(inode);
397 inode_inc_iversion(inode);
398 inode_set_ctime_current(inode);
399 ret = btrfs_update_inode(trans, BTRFS_I(inode));
400
401 out_end_trans:
402 btrfs_end_transaction(trans);
403 return ret;
404}
405
406/*
407 * Start exclusive operation @type, return true on success
408 */
409bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
410 enum btrfs_exclusive_operation type)
411{
412 bool ret = false;
413
414 spin_lock(&fs_info->super_lock);
415 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
416 fs_info->exclusive_operation = type;
417 ret = true;
418 }
419 spin_unlock(&fs_info->super_lock);
420
421 return ret;
422}
423
424/*
425 * Conditionally allow to enter the exclusive operation in case it's compatible
426 * with the running one. This must be paired with btrfs_exclop_start_unlock and
427 * btrfs_exclop_finish.
428 *
429 * Compatibility:
430 * - the same type is already running
431 * - when trying to add a device and balance has been paused
432 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
433 * must check the condition first that would allow none -> @type
434 */
435bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
436 enum btrfs_exclusive_operation type)
437{
438 spin_lock(&fs_info->super_lock);
439 if (fs_info->exclusive_operation == type ||
440 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
441 type == BTRFS_EXCLOP_DEV_ADD))
442 return true;
443
444 spin_unlock(&fs_info->super_lock);
445 return false;
446}
447
448void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
449{
450 spin_unlock(&fs_info->super_lock);
451}
452
453void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
454{
455 spin_lock(&fs_info->super_lock);
456 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
457 spin_unlock(&fs_info->super_lock);
458 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
459}
460
461void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
462 enum btrfs_exclusive_operation op)
463{
464 switch (op) {
465 case BTRFS_EXCLOP_BALANCE_PAUSED:
466 spin_lock(&fs_info->super_lock);
467 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
470 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
471 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
472 spin_unlock(&fs_info->super_lock);
473 break;
474 case BTRFS_EXCLOP_BALANCE:
475 spin_lock(&fs_info->super_lock);
476 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
477 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
478 spin_unlock(&fs_info->super_lock);
479 break;
480 default:
481 btrfs_warn(fs_info,
482 "invalid exclop balance operation %d requested", op);
483 }
484}
485
486static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
487{
488 return put_user(inode->i_generation, arg);
489}
490
491static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
492 void __user *arg)
493{
494 struct btrfs_device *device;
495 struct fstrim_range range;
496 u64 minlen = ULLONG_MAX;
497 u64 num_devices = 0;
498 int ret;
499
500 if (!capable(CAP_SYS_ADMIN))
501 return -EPERM;
502
503 /*
504 * btrfs_trim_block_group() depends on space cache, which is not
505 * available in zoned filesystem. So, disallow fitrim on a zoned
506 * filesystem for now.
507 */
508 if (btrfs_is_zoned(fs_info))
509 return -EOPNOTSUPP;
510
511 /*
512 * If the fs is mounted with nologreplay, which requires it to be
513 * mounted in RO mode as well, we can not allow discard on free space
514 * inside block groups, because log trees refer to extents that are not
515 * pinned in a block group's free space cache (pinning the extents is
516 * precisely the first phase of replaying a log tree).
517 */
518 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
519 return -EROFS;
520
521 rcu_read_lock();
522 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
523 dev_list) {
524 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
525 continue;
526 num_devices++;
527 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
528 minlen);
529 }
530 rcu_read_unlock();
531
532 if (!num_devices)
533 return -EOPNOTSUPP;
534 if (copy_from_user(&range, arg, sizeof(range)))
535 return -EFAULT;
536
537 /*
538 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
539 * block group is in the logical address space, which can be any
540 * sectorsize aligned bytenr in the range [0, U64_MAX].
541 */
542 if (range.len < fs_info->sectorsize)
543 return -EINVAL;
544
545 range.minlen = max(range.minlen, minlen);
546 ret = btrfs_trim_fs(fs_info, &range);
547
548 if (copy_to_user(arg, &range, sizeof(range)))
549 return -EFAULT;
550
551 return ret;
552}
553
554int __pure btrfs_is_empty_uuid(const u8 *uuid)
555{
556 int i;
557
558 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
559 if (uuid[i])
560 return 0;
561 }
562 return 1;
563}
564
565/*
566 * Calculate the number of transaction items to reserve for creating a subvolume
567 * or snapshot, not including the inode, directory entries, or parent directory.
568 */
569static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
570{
571 /*
572 * 1 to add root block
573 * 1 to add root item
574 * 1 to add root ref
575 * 1 to add root backref
576 * 1 to add UUID item
577 * 1 to add qgroup info
578 * 1 to add qgroup limit
579 *
580 * Ideally the last two would only be accounted if qgroups are enabled,
581 * but that can change between now and the time we would insert them.
582 */
583 unsigned int num_items = 7;
584
585 if (inherit) {
586 /* 2 to add qgroup relations for each inherited qgroup */
587 num_items += 2 * inherit->num_qgroups;
588 }
589 return num_items;
590}
591
592static noinline int create_subvol(struct mnt_idmap *idmap,
593 struct inode *dir, struct dentry *dentry,
594 struct btrfs_qgroup_inherit *inherit)
595{
596 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
597 struct btrfs_trans_handle *trans;
598 struct btrfs_key key;
599 struct btrfs_root_item *root_item;
600 struct btrfs_inode_item *inode_item;
601 struct extent_buffer *leaf;
602 struct btrfs_root *root = BTRFS_I(dir)->root;
603 struct btrfs_root *new_root;
604 struct btrfs_block_rsv block_rsv;
605 struct timespec64 cur_time = current_time(dir);
606 struct btrfs_new_inode_args new_inode_args = {
607 .dir = dir,
608 .dentry = dentry,
609 .subvol = true,
610 };
611 unsigned int trans_num_items;
612 int ret;
613 dev_t anon_dev;
614 u64 objectid;
615 u64 qgroup_reserved = 0;
616
617 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
618 if (!root_item)
619 return -ENOMEM;
620
621 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
622 if (ret)
623 goto out_root_item;
624
625 /*
626 * Don't create subvolume whose level is not zero. Or qgroup will be
627 * screwed up since it assumes subvolume qgroup's level to be 0.
628 */
629 if (btrfs_qgroup_level(objectid)) {
630 ret = -ENOSPC;
631 goto out_root_item;
632 }
633
634 ret = get_anon_bdev(&anon_dev);
635 if (ret < 0)
636 goto out_root_item;
637
638 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
639 if (!new_inode_args.inode) {
640 ret = -ENOMEM;
641 goto out_anon_dev;
642 }
643 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
644 if (ret)
645 goto out_inode;
646 trans_num_items += create_subvol_num_items(inherit);
647
648 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
649 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
650 trans_num_items, false);
651 if (ret)
652 goto out_new_inode_args;
653 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
654
655 trans = btrfs_start_transaction(root, 0);
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 goto out_release_rsv;
659 }
660 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
661 qgroup_reserved = 0;
662 trans->block_rsv = &block_rsv;
663 trans->bytes_reserved = block_rsv.size;
664
665 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
666 if (ret)
667 goto out;
668
669 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
670 0, BTRFS_NESTING_NORMAL);
671 if (IS_ERR(leaf)) {
672 ret = PTR_ERR(leaf);
673 goto out;
674 }
675
676 btrfs_mark_buffer_dirty(trans, leaf);
677
678 inode_item = &root_item->inode;
679 btrfs_set_stack_inode_generation(inode_item, 1);
680 btrfs_set_stack_inode_size(inode_item, 3);
681 btrfs_set_stack_inode_nlink(inode_item, 1);
682 btrfs_set_stack_inode_nbytes(inode_item,
683 fs_info->nodesize);
684 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
685
686 btrfs_set_root_flags(root_item, 0);
687 btrfs_set_root_limit(root_item, 0);
688 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
689
690 btrfs_set_root_bytenr(root_item, leaf->start);
691 btrfs_set_root_generation(root_item, trans->transid);
692 btrfs_set_root_level(root_item, 0);
693 btrfs_set_root_refs(root_item, 1);
694 btrfs_set_root_used(root_item, leaf->len);
695 btrfs_set_root_last_snapshot(root_item, 0);
696
697 btrfs_set_root_generation_v2(root_item,
698 btrfs_root_generation(root_item));
699 generate_random_guid(root_item->uuid);
700 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
701 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
702 root_item->ctime = root_item->otime;
703 btrfs_set_root_ctransid(root_item, trans->transid);
704 btrfs_set_root_otransid(root_item, trans->transid);
705
706 btrfs_tree_unlock(leaf);
707
708 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
709
710 key.objectid = objectid;
711 key.offset = 0;
712 key.type = BTRFS_ROOT_ITEM_KEY;
713 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
714 root_item);
715 if (ret) {
716 int ret2;
717
718 /*
719 * Since we don't abort the transaction in this case, free the
720 * tree block so that we don't leak space and leave the
721 * filesystem in an inconsistent state (an extent item in the
722 * extent tree with a backreference for a root that does not
723 * exists).
724 */
725 btrfs_tree_lock(leaf);
726 btrfs_clear_buffer_dirty(trans, leaf);
727 btrfs_tree_unlock(leaf);
728 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
729 if (ret2 < 0)
730 btrfs_abort_transaction(trans, ret2);
731 free_extent_buffer(leaf);
732 goto out;
733 }
734
735 free_extent_buffer(leaf);
736 leaf = NULL;
737
738 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
739 if (IS_ERR(new_root)) {
740 ret = PTR_ERR(new_root);
741 btrfs_abort_transaction(trans, ret);
742 goto out;
743 }
744 /* anon_dev is owned by new_root now. */
745 anon_dev = 0;
746 BTRFS_I(new_inode_args.inode)->root = new_root;
747 /* ... and new_root is owned by new_inode_args.inode now. */
748
749 ret = btrfs_record_root_in_trans(trans, new_root);
750 if (ret) {
751 btrfs_abort_transaction(trans, ret);
752 goto out;
753 }
754
755 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
756 BTRFS_UUID_KEY_SUBVOL, objectid);
757 if (ret) {
758 btrfs_abort_transaction(trans, ret);
759 goto out;
760 }
761
762 ret = btrfs_create_new_inode(trans, &new_inode_args);
763 if (ret) {
764 btrfs_abort_transaction(trans, ret);
765 goto out;
766 }
767
768 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
769
770 d_instantiate_new(dentry, new_inode_args.inode);
771 new_inode_args.inode = NULL;
772
773out:
774 trans->block_rsv = NULL;
775 trans->bytes_reserved = 0;
776 btrfs_end_transaction(trans);
777out_release_rsv:
778 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 if (qgroup_reserved)
780 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781out_new_inode_args:
782 btrfs_new_inode_args_destroy(&new_inode_args);
783out_inode:
784 iput(new_inode_args.inode);
785out_anon_dev:
786 if (anon_dev)
787 free_anon_bdev(anon_dev);
788out_root_item:
789 kfree(root_item);
790 return ret;
791}
792
793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 struct dentry *dentry, bool readonly,
795 struct btrfs_qgroup_inherit *inherit)
796{
797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 struct inode *inode;
799 struct btrfs_pending_snapshot *pending_snapshot;
800 unsigned int trans_num_items;
801 struct btrfs_trans_handle *trans;
802 struct btrfs_block_rsv *block_rsv;
803 u64 qgroup_reserved = 0;
804 int ret;
805
806 /* We do not support snapshotting right now. */
807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 btrfs_warn(fs_info,
809 "extent tree v2 doesn't support snapshotting yet");
810 return -EOPNOTSUPP;
811 }
812
813 if (btrfs_root_refs(&root->root_item) == 0)
814 return -ENOENT;
815
816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 return -EINVAL;
818
819 if (atomic_read(&root->nr_swapfiles)) {
820 btrfs_warn(fs_info,
821 "cannot snapshot subvolume with active swapfile");
822 return -ETXTBSY;
823 }
824
825 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
826 if (!pending_snapshot)
827 return -ENOMEM;
828
829 ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 if (ret < 0)
831 goto free_pending;
832 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 GFP_KERNEL);
834 pending_snapshot->path = btrfs_alloc_path();
835 if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 ret = -ENOMEM;
837 goto free_pending;
838 }
839
840 block_rsv = &pending_snapshot->block_rsv;
841 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
842 /*
843 * 1 to add dir item
844 * 1 to add dir index
845 * 1 to update parent inode item
846 */
847 trans_num_items = create_subvol_num_items(inherit) + 3;
848 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
849 trans_num_items, false);
850 if (ret)
851 goto free_pending;
852 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853
854 pending_snapshot->dentry = dentry;
855 pending_snapshot->root = root;
856 pending_snapshot->readonly = readonly;
857 pending_snapshot->dir = BTRFS_I(dir);
858 pending_snapshot->inherit = inherit;
859
860 trans = btrfs_start_transaction(root, 0);
861 if (IS_ERR(trans)) {
862 ret = PTR_ERR(trans);
863 goto fail;
864 }
865 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 if (ret) {
867 btrfs_end_transaction(trans);
868 goto fail;
869 }
870 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
871 qgroup_reserved = 0;
872
873 trans->pending_snapshot = pending_snapshot;
874
875 ret = btrfs_commit_transaction(trans);
876 if (ret)
877 goto fail;
878
879 ret = pending_snapshot->error;
880 if (ret)
881 goto fail;
882
883 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
884 if (ret)
885 goto fail;
886
887 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 if (IS_ERR(inode)) {
889 ret = PTR_ERR(inode);
890 goto fail;
891 }
892
893 d_instantiate(dentry, inode);
894 ret = 0;
895 pending_snapshot->anon_dev = 0;
896fail:
897 /* Prevent double freeing of anon_dev */
898 if (ret && pending_snapshot->snap)
899 pending_snapshot->snap->anon_dev = 0;
900 btrfs_put_root(pending_snapshot->snap);
901 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 if (qgroup_reserved)
903 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904free_pending:
905 if (pending_snapshot->anon_dev)
906 free_anon_bdev(pending_snapshot->anon_dev);
907 kfree(pending_snapshot->root_item);
908 btrfs_free_path(pending_snapshot->path);
909 kfree(pending_snapshot);
910
911 return ret;
912}
913
914/* copy of may_delete in fs/namei.c()
915 * Check whether we can remove a link victim from directory dir, check
916 * whether the type of victim is right.
917 * 1. We can't do it if dir is read-only (done in permission())
918 * 2. We should have write and exec permissions on dir
919 * 3. We can't remove anything from append-only dir
920 * 4. We can't do anything with immutable dir (done in permission())
921 * 5. If the sticky bit on dir is set we should either
922 * a. be owner of dir, or
923 * b. be owner of victim, or
924 * c. have CAP_FOWNER capability
925 * 6. If the victim is append-only or immutable we can't do anything with
926 * links pointing to it.
927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929 * 9. We can't remove a root or mountpoint.
930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931 * nfs_async_unlink().
932 */
933
934static int btrfs_may_delete(struct mnt_idmap *idmap,
935 struct inode *dir, struct dentry *victim, int isdir)
936{
937 int error;
938
939 if (d_really_is_negative(victim))
940 return -ENOENT;
941
942 /* The @victim is not inside @dir. */
943 if (d_inode(victim->d_parent) != dir)
944 return -EINVAL;
945 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946
947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 if (error)
949 return error;
950 if (IS_APPEND(dir))
951 return -EPERM;
952 if (check_sticky(idmap, dir, d_inode(victim)) ||
953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 IS_SWAPFILE(d_inode(victim)))
955 return -EPERM;
956 if (isdir) {
957 if (!d_is_dir(victim))
958 return -ENOTDIR;
959 if (IS_ROOT(victim))
960 return -EBUSY;
961 } else if (d_is_dir(victim))
962 return -EISDIR;
963 if (IS_DEADDIR(dir))
964 return -ENOENT;
965 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 return -EBUSY;
967 return 0;
968}
969
970/* copy of may_create in fs/namei.c() */
971static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 struct inode *dir, struct dentry *child)
973{
974 if (d_really_is_positive(child))
975 return -EEXIST;
976 if (IS_DEADDIR(dir))
977 return -ENOENT;
978 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 return -EOVERFLOW;
980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981}
982
983/*
984 * Create a new subvolume below @parent. This is largely modeled after
985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986 * inside this filesystem so it's quite a bit simpler.
987 */
988static noinline int btrfs_mksubvol(const struct path *parent,
989 struct mnt_idmap *idmap,
990 const char *name, int namelen,
991 struct btrfs_root *snap_src,
992 bool readonly,
993 struct btrfs_qgroup_inherit *inherit)
994{
995 struct inode *dir = d_inode(parent->dentry);
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 struct dentry *dentry;
998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 int error;
1000
1001 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002 if (error == -EINTR)
1003 return error;
1004
1005 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 error = PTR_ERR(dentry);
1007 if (IS_ERR(dentry))
1008 goto out_unlock;
1009
1010 error = btrfs_may_create(idmap, dir, dentry);
1011 if (error)
1012 goto out_dput;
1013
1014 /*
1015 * even if this name doesn't exist, we may get hash collisions.
1016 * check for them now when we can safely fail
1017 */
1018 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019 dir->i_ino, &name_str);
1020 if (error)
1021 goto out_dput;
1022
1023 down_read(&fs_info->subvol_sem);
1024
1025 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026 goto out_up_read;
1027
1028 if (snap_src)
1029 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 else
1031 error = create_subvol(idmap, dir, dentry, inherit);
1032
1033 if (!error)
1034 fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036 up_read(&fs_info->subvol_sem);
1037out_dput:
1038 dput(dentry);
1039out_unlock:
1040 btrfs_inode_unlock(BTRFS_I(dir), 0);
1041 return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045 struct mnt_idmap *idmap,
1046 const char *name, int namelen,
1047 struct btrfs_root *root,
1048 bool readonly,
1049 struct btrfs_qgroup_inherit *inherit)
1050{
1051 int ret;
1052
1053 /*
1054 * Force new buffered writes to reserve space even when NOCOW is
1055 * possible. This is to avoid later writeback (running dealloc) to
1056 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057 */
1058 btrfs_drew_read_lock(&root->snapshot_lock);
1059
1060 ret = btrfs_start_delalloc_snapshot(root, false);
1061 if (ret)
1062 goto out;
1063
1064 /*
1065 * All previous writes have started writeback in NOCOW mode, so now
1066 * we force future writes to fallback to COW mode during snapshot
1067 * creation.
1068 */
1069 atomic_inc(&root->snapshot_force_cow);
1070
1071 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1072
1073 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1074 root, readonly, inherit);
1075 atomic_dec(&root->snapshot_force_cow);
1076out:
1077 btrfs_drew_read_unlock(&root->snapshot_lock);
1078 return ret;
1079}
1080
1081/*
1082 * Try to start exclusive operation @type or cancel it if it's running.
1083 *
1084 * Return:
1085 * 0 - normal mode, newly claimed op started
1086 * >0 - normal mode, something else is running,
1087 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1088 * ECANCELED - cancel mode, successful cancel
1089 * ENOTCONN - cancel mode, operation not running anymore
1090 */
1091static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1092 enum btrfs_exclusive_operation type, bool cancel)
1093{
1094 if (!cancel) {
1095 /* Start normal op */
1096 if (!btrfs_exclop_start(fs_info, type))
1097 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1098 /* Exclusive operation is now claimed */
1099 return 0;
1100 }
1101
1102 /* Cancel running op */
1103 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1104 /*
1105 * This blocks any exclop finish from setting it to NONE, so we
1106 * request cancellation. Either it runs and we will wait for it,
1107 * or it has finished and no waiting will happen.
1108 */
1109 atomic_inc(&fs_info->reloc_cancel_req);
1110 btrfs_exclop_start_unlock(fs_info);
1111
1112 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1113 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1114 TASK_INTERRUPTIBLE);
1115
1116 return -ECANCELED;
1117 }
1118
1119 /* Something else is running or none */
1120 return -ENOTCONN;
1121}
1122
1123static noinline int btrfs_ioctl_resize(struct file *file,
1124 void __user *arg)
1125{
1126 BTRFS_DEV_LOOKUP_ARGS(args);
1127 struct inode *inode = file_inode(file);
1128 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1129 u64 new_size;
1130 u64 old_size;
1131 u64 devid = 1;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 struct btrfs_ioctl_vol_args *vol_args;
1134 struct btrfs_trans_handle *trans;
1135 struct btrfs_device *device = NULL;
1136 char *sizestr;
1137 char *retptr;
1138 char *devstr = NULL;
1139 int ret = 0;
1140 int mod = 0;
1141 bool cancel;
1142
1143 if (!capable(CAP_SYS_ADMIN))
1144 return -EPERM;
1145
1146 ret = mnt_want_write_file(file);
1147 if (ret)
1148 return ret;
1149
1150 /*
1151 * Read the arguments before checking exclusivity to be able to
1152 * distinguish regular resize and cancel
1153 */
1154 vol_args = memdup_user(arg, sizeof(*vol_args));
1155 if (IS_ERR(vol_args)) {
1156 ret = PTR_ERR(vol_args);
1157 goto out_drop;
1158 }
1159 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1160 if (ret < 0)
1161 goto out_free;
1162
1163 sizestr = vol_args->name;
1164 cancel = (strcmp("cancel", sizestr) == 0);
1165 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1166 if (ret)
1167 goto out_free;
1168 /* Exclusive operation is now claimed */
1169
1170 devstr = strchr(sizestr, ':');
1171 if (devstr) {
1172 sizestr = devstr + 1;
1173 *devstr = '\0';
1174 devstr = vol_args->name;
1175 ret = kstrtoull(devstr, 10, &devid);
1176 if (ret)
1177 goto out_finish;
1178 if (!devid) {
1179 ret = -EINVAL;
1180 goto out_finish;
1181 }
1182 btrfs_info(fs_info, "resizing devid %llu", devid);
1183 }
1184
1185 args.devid = devid;
1186 device = btrfs_find_device(fs_info->fs_devices, &args);
1187 if (!device) {
1188 btrfs_info(fs_info, "resizer unable to find device %llu",
1189 devid);
1190 ret = -ENODEV;
1191 goto out_finish;
1192 }
1193
1194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1195 btrfs_info(fs_info,
1196 "resizer unable to apply on readonly device %llu",
1197 devid);
1198 ret = -EPERM;
1199 goto out_finish;
1200 }
1201
1202 if (!strcmp(sizestr, "max"))
1203 new_size = bdev_nr_bytes(device->bdev);
1204 else {
1205 if (sizestr[0] == '-') {
1206 mod = -1;
1207 sizestr++;
1208 } else if (sizestr[0] == '+') {
1209 mod = 1;
1210 sizestr++;
1211 }
1212 new_size = memparse(sizestr, &retptr);
1213 if (*retptr != '\0' || new_size == 0) {
1214 ret = -EINVAL;
1215 goto out_finish;
1216 }
1217 }
1218
1219 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1220 ret = -EPERM;
1221 goto out_finish;
1222 }
1223
1224 old_size = btrfs_device_get_total_bytes(device);
1225
1226 if (mod < 0) {
1227 if (new_size > old_size) {
1228 ret = -EINVAL;
1229 goto out_finish;
1230 }
1231 new_size = old_size - new_size;
1232 } else if (mod > 0) {
1233 if (new_size > ULLONG_MAX - old_size) {
1234 ret = -ERANGE;
1235 goto out_finish;
1236 }
1237 new_size = old_size + new_size;
1238 }
1239
1240 if (new_size < SZ_256M) {
1241 ret = -EINVAL;
1242 goto out_finish;
1243 }
1244 if (new_size > bdev_nr_bytes(device->bdev)) {
1245 ret = -EFBIG;
1246 goto out_finish;
1247 }
1248
1249 new_size = round_down(new_size, fs_info->sectorsize);
1250
1251 if (new_size > old_size) {
1252 trans = btrfs_start_transaction(root, 0);
1253 if (IS_ERR(trans)) {
1254 ret = PTR_ERR(trans);
1255 goto out_finish;
1256 }
1257 ret = btrfs_grow_device(trans, device, new_size);
1258 btrfs_commit_transaction(trans);
1259 } else if (new_size < old_size) {
1260 ret = btrfs_shrink_device(device, new_size);
1261 } /* equal, nothing need to do */
1262
1263 if (ret == 0 && new_size != old_size)
1264 btrfs_info_in_rcu(fs_info,
1265 "resize device %s (devid %llu) from %llu to %llu",
1266 btrfs_dev_name(device), device->devid,
1267 old_size, new_size);
1268out_finish:
1269 btrfs_exclop_finish(fs_info);
1270out_free:
1271 kfree(vol_args);
1272out_drop:
1273 mnt_drop_write_file(file);
1274 return ret;
1275}
1276
1277static noinline int __btrfs_ioctl_snap_create(struct file *file,
1278 struct mnt_idmap *idmap,
1279 const char *name, unsigned long fd, int subvol,
1280 bool readonly,
1281 struct btrfs_qgroup_inherit *inherit)
1282{
1283 int namelen;
1284 int ret = 0;
1285
1286 if (!S_ISDIR(file_inode(file)->i_mode))
1287 return -ENOTDIR;
1288
1289 ret = mnt_want_write_file(file);
1290 if (ret)
1291 goto out;
1292
1293 namelen = strlen(name);
1294 if (strchr(name, '/')) {
1295 ret = -EINVAL;
1296 goto out_drop_write;
1297 }
1298
1299 if (name[0] == '.' &&
1300 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1301 ret = -EEXIST;
1302 goto out_drop_write;
1303 }
1304
1305 if (subvol) {
1306 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1307 namelen, NULL, readonly, inherit);
1308 } else {
1309 CLASS(fd, src)(fd);
1310 struct inode *src_inode;
1311 if (fd_empty(src)) {
1312 ret = -EINVAL;
1313 goto out_drop_write;
1314 }
1315
1316 src_inode = file_inode(fd_file(src));
1317 if (src_inode->i_sb != file_inode(file)->i_sb) {
1318 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1319 "Snapshot src from another FS");
1320 ret = -EXDEV;
1321 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1322 /*
1323 * Subvolume creation is not restricted, but snapshots
1324 * are limited to own subvolumes only
1325 */
1326 ret = -EPERM;
1327 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1328 /*
1329 * Snapshots must be made with the src_inode referring
1330 * to the subvolume inode, otherwise the permission
1331 * checking above is useless because we may have
1332 * permission on a lower directory but not the subvol
1333 * itself.
1334 */
1335 ret = -EINVAL;
1336 } else {
1337 ret = btrfs_mksnapshot(&file->f_path, idmap,
1338 name, namelen,
1339 BTRFS_I(src_inode)->root,
1340 readonly, inherit);
1341 }
1342 }
1343out_drop_write:
1344 mnt_drop_write_file(file);
1345out:
1346 return ret;
1347}
1348
1349static noinline int btrfs_ioctl_snap_create(struct file *file,
1350 void __user *arg, int subvol)
1351{
1352 struct btrfs_ioctl_vol_args *vol_args;
1353 int ret;
1354
1355 if (!S_ISDIR(file_inode(file)->i_mode))
1356 return -ENOTDIR;
1357
1358 vol_args = memdup_user(arg, sizeof(*vol_args));
1359 if (IS_ERR(vol_args))
1360 return PTR_ERR(vol_args);
1361 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1362 if (ret < 0)
1363 goto out;
1364
1365 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1366 vol_args->name, vol_args->fd, subvol,
1367 false, NULL);
1368
1369out:
1370 kfree(vol_args);
1371 return ret;
1372}
1373
1374static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1375 void __user *arg, int subvol)
1376{
1377 struct btrfs_ioctl_vol_args_v2 *vol_args;
1378 int ret;
1379 bool readonly = false;
1380 struct btrfs_qgroup_inherit *inherit = NULL;
1381
1382 if (!S_ISDIR(file_inode(file)->i_mode))
1383 return -ENOTDIR;
1384
1385 vol_args = memdup_user(arg, sizeof(*vol_args));
1386 if (IS_ERR(vol_args))
1387 return PTR_ERR(vol_args);
1388 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1389 if (ret < 0)
1390 goto free_args;
1391
1392 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1393 ret = -EOPNOTSUPP;
1394 goto free_args;
1395 }
1396
1397 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1398 readonly = true;
1399 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1400 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1401
1402 if (vol_args->size < sizeof(*inherit) ||
1403 vol_args->size > PAGE_SIZE) {
1404 ret = -EINVAL;
1405 goto free_args;
1406 }
1407 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1408 if (IS_ERR(inherit)) {
1409 ret = PTR_ERR(inherit);
1410 goto free_args;
1411 }
1412
1413 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1414 if (ret < 0)
1415 goto free_inherit;
1416 }
1417
1418 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1419 vol_args->name, vol_args->fd, subvol,
1420 readonly, inherit);
1421 if (ret)
1422 goto free_inherit;
1423free_inherit:
1424 kfree(inherit);
1425free_args:
1426 kfree(vol_args);
1427 return ret;
1428}
1429
1430static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1431 void __user *arg)
1432{
1433 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1434 struct btrfs_root *root = BTRFS_I(inode)->root;
1435 int ret = 0;
1436 u64 flags = 0;
1437
1438 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1439 return -EINVAL;
1440
1441 down_read(&fs_info->subvol_sem);
1442 if (btrfs_root_readonly(root))
1443 flags |= BTRFS_SUBVOL_RDONLY;
1444 up_read(&fs_info->subvol_sem);
1445
1446 if (copy_to_user(arg, &flags, sizeof(flags)))
1447 ret = -EFAULT;
1448
1449 return ret;
1450}
1451
1452static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1453 void __user *arg)
1454{
1455 struct inode *inode = file_inode(file);
1456 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1457 struct btrfs_root *root = BTRFS_I(inode)->root;
1458 struct btrfs_trans_handle *trans;
1459 u64 root_flags;
1460 u64 flags;
1461 int ret = 0;
1462
1463 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1464 return -EPERM;
1465
1466 ret = mnt_want_write_file(file);
1467 if (ret)
1468 goto out;
1469
1470 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1471 ret = -EINVAL;
1472 goto out_drop_write;
1473 }
1474
1475 if (copy_from_user(&flags, arg, sizeof(flags))) {
1476 ret = -EFAULT;
1477 goto out_drop_write;
1478 }
1479
1480 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1481 ret = -EOPNOTSUPP;
1482 goto out_drop_write;
1483 }
1484
1485 down_write(&fs_info->subvol_sem);
1486
1487 /* nothing to do */
1488 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1489 goto out_drop_sem;
1490
1491 root_flags = btrfs_root_flags(&root->root_item);
1492 if (flags & BTRFS_SUBVOL_RDONLY) {
1493 btrfs_set_root_flags(&root->root_item,
1494 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1495 } else {
1496 /*
1497 * Block RO -> RW transition if this subvolume is involved in
1498 * send
1499 */
1500 spin_lock(&root->root_item_lock);
1501 if (root->send_in_progress == 0) {
1502 btrfs_set_root_flags(&root->root_item,
1503 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1504 spin_unlock(&root->root_item_lock);
1505 } else {
1506 spin_unlock(&root->root_item_lock);
1507 btrfs_warn(fs_info,
1508 "Attempt to set subvolume %llu read-write during send",
1509 btrfs_root_id(root));
1510 ret = -EPERM;
1511 goto out_drop_sem;
1512 }
1513 }
1514
1515 trans = btrfs_start_transaction(root, 1);
1516 if (IS_ERR(trans)) {
1517 ret = PTR_ERR(trans);
1518 goto out_reset;
1519 }
1520
1521 ret = btrfs_update_root(trans, fs_info->tree_root,
1522 &root->root_key, &root->root_item);
1523 if (ret < 0) {
1524 btrfs_end_transaction(trans);
1525 goto out_reset;
1526 }
1527
1528 ret = btrfs_commit_transaction(trans);
1529
1530out_reset:
1531 if (ret)
1532 btrfs_set_root_flags(&root->root_item, root_flags);
1533out_drop_sem:
1534 up_write(&fs_info->subvol_sem);
1535out_drop_write:
1536 mnt_drop_write_file(file);
1537out:
1538 return ret;
1539}
1540
1541static noinline int key_in_sk(struct btrfs_key *key,
1542 struct btrfs_ioctl_search_key *sk)
1543{
1544 struct btrfs_key test;
1545 int ret;
1546
1547 test.objectid = sk->min_objectid;
1548 test.type = sk->min_type;
1549 test.offset = sk->min_offset;
1550
1551 ret = btrfs_comp_cpu_keys(key, &test);
1552 if (ret < 0)
1553 return 0;
1554
1555 test.objectid = sk->max_objectid;
1556 test.type = sk->max_type;
1557 test.offset = sk->max_offset;
1558
1559 ret = btrfs_comp_cpu_keys(key, &test);
1560 if (ret > 0)
1561 return 0;
1562 return 1;
1563}
1564
1565static noinline int copy_to_sk(struct btrfs_path *path,
1566 struct btrfs_key *key,
1567 struct btrfs_ioctl_search_key *sk,
1568 u64 *buf_size,
1569 char __user *ubuf,
1570 unsigned long *sk_offset,
1571 int *num_found)
1572{
1573 u64 found_transid;
1574 struct extent_buffer *leaf;
1575 struct btrfs_ioctl_search_header sh;
1576 struct btrfs_key test;
1577 unsigned long item_off;
1578 unsigned long item_len;
1579 int nritems;
1580 int i;
1581 int slot;
1582 int ret = 0;
1583
1584 leaf = path->nodes[0];
1585 slot = path->slots[0];
1586 nritems = btrfs_header_nritems(leaf);
1587
1588 if (btrfs_header_generation(leaf) > sk->max_transid) {
1589 i = nritems;
1590 goto advance_key;
1591 }
1592 found_transid = btrfs_header_generation(leaf);
1593
1594 for (i = slot; i < nritems; i++) {
1595 item_off = btrfs_item_ptr_offset(leaf, i);
1596 item_len = btrfs_item_size(leaf, i);
1597
1598 btrfs_item_key_to_cpu(leaf, key, i);
1599 if (!key_in_sk(key, sk))
1600 continue;
1601
1602 if (sizeof(sh) + item_len > *buf_size) {
1603 if (*num_found) {
1604 ret = 1;
1605 goto out;
1606 }
1607
1608 /*
1609 * return one empty item back for v1, which does not
1610 * handle -EOVERFLOW
1611 */
1612
1613 *buf_size = sizeof(sh) + item_len;
1614 item_len = 0;
1615 ret = -EOVERFLOW;
1616 }
1617
1618 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1619 ret = 1;
1620 goto out;
1621 }
1622
1623 sh.objectid = key->objectid;
1624 sh.offset = key->offset;
1625 sh.type = key->type;
1626 sh.len = item_len;
1627 sh.transid = found_transid;
1628
1629 /*
1630 * Copy search result header. If we fault then loop again so we
1631 * can fault in the pages and -EFAULT there if there's a
1632 * problem. Otherwise we'll fault and then copy the buffer in
1633 * properly this next time through
1634 */
1635 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1636 ret = 0;
1637 goto out;
1638 }
1639
1640 *sk_offset += sizeof(sh);
1641
1642 if (item_len) {
1643 char __user *up = ubuf + *sk_offset;
1644 /*
1645 * Copy the item, same behavior as above, but reset the
1646 * * sk_offset so we copy the full thing again.
1647 */
1648 if (read_extent_buffer_to_user_nofault(leaf, up,
1649 item_off, item_len)) {
1650 ret = 0;
1651 *sk_offset -= sizeof(sh);
1652 goto out;
1653 }
1654
1655 *sk_offset += item_len;
1656 }
1657 (*num_found)++;
1658
1659 if (ret) /* -EOVERFLOW from above */
1660 goto out;
1661
1662 if (*num_found >= sk->nr_items) {
1663 ret = 1;
1664 goto out;
1665 }
1666 }
1667advance_key:
1668 ret = 0;
1669 test.objectid = sk->max_objectid;
1670 test.type = sk->max_type;
1671 test.offset = sk->max_offset;
1672 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1673 ret = 1;
1674 else if (key->offset < (u64)-1)
1675 key->offset++;
1676 else if (key->type < (u8)-1) {
1677 key->offset = 0;
1678 key->type++;
1679 } else if (key->objectid < (u64)-1) {
1680 key->offset = 0;
1681 key->type = 0;
1682 key->objectid++;
1683 } else
1684 ret = 1;
1685out:
1686 /*
1687 * 0: all items from this leaf copied, continue with next
1688 * 1: * more items can be copied, but unused buffer is too small
1689 * * all items were found
1690 * Either way, it will stops the loop which iterates to the next
1691 * leaf
1692 * -EOVERFLOW: item was to large for buffer
1693 * -EFAULT: could not copy extent buffer back to userspace
1694 */
1695 return ret;
1696}
1697
1698static noinline int search_ioctl(struct inode *inode,
1699 struct btrfs_ioctl_search_key *sk,
1700 u64 *buf_size,
1701 char __user *ubuf)
1702{
1703 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1704 struct btrfs_root *root;
1705 struct btrfs_key key;
1706 struct btrfs_path *path;
1707 int ret;
1708 int num_found = 0;
1709 unsigned long sk_offset = 0;
1710
1711 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1712 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1713 return -EOVERFLOW;
1714 }
1715
1716 path = btrfs_alloc_path();
1717 if (!path)
1718 return -ENOMEM;
1719
1720 if (sk->tree_id == 0) {
1721 /* search the root of the inode that was passed */
1722 root = btrfs_grab_root(BTRFS_I(inode)->root);
1723 } else {
1724 root = btrfs_get_fs_root(info, sk->tree_id, true);
1725 if (IS_ERR(root)) {
1726 btrfs_free_path(path);
1727 return PTR_ERR(root);
1728 }
1729 }
1730
1731 key.objectid = sk->min_objectid;
1732 key.type = sk->min_type;
1733 key.offset = sk->min_offset;
1734
1735 while (1) {
1736 ret = -EFAULT;
1737 /*
1738 * Ensure that the whole user buffer is faulted in at sub-page
1739 * granularity, otherwise the loop may live-lock.
1740 */
1741 if (fault_in_subpage_writeable(ubuf + sk_offset,
1742 *buf_size - sk_offset))
1743 break;
1744
1745 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1746 if (ret != 0) {
1747 if (ret > 0)
1748 ret = 0;
1749 goto err;
1750 }
1751 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1752 &sk_offset, &num_found);
1753 btrfs_release_path(path);
1754 if (ret)
1755 break;
1756
1757 }
1758 if (ret > 0)
1759 ret = 0;
1760err:
1761 sk->nr_items = num_found;
1762 btrfs_put_root(root);
1763 btrfs_free_path(path);
1764 return ret;
1765}
1766
1767static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1768 void __user *argp)
1769{
1770 struct btrfs_ioctl_search_args __user *uargs = argp;
1771 struct btrfs_ioctl_search_key sk;
1772 int ret;
1773 u64 buf_size;
1774
1775 if (!capable(CAP_SYS_ADMIN))
1776 return -EPERM;
1777
1778 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1779 return -EFAULT;
1780
1781 buf_size = sizeof(uargs->buf);
1782
1783 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1784
1785 /*
1786 * In the origin implementation an overflow is handled by returning a
1787 * search header with a len of zero, so reset ret.
1788 */
1789 if (ret == -EOVERFLOW)
1790 ret = 0;
1791
1792 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1793 ret = -EFAULT;
1794 return ret;
1795}
1796
1797static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1798 void __user *argp)
1799{
1800 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1801 struct btrfs_ioctl_search_args_v2 args;
1802 int ret;
1803 u64 buf_size;
1804 const u64 buf_limit = SZ_16M;
1805
1806 if (!capable(CAP_SYS_ADMIN))
1807 return -EPERM;
1808
1809 /* copy search header and buffer size */
1810 if (copy_from_user(&args, uarg, sizeof(args)))
1811 return -EFAULT;
1812
1813 buf_size = args.buf_size;
1814
1815 /* limit result size to 16MB */
1816 if (buf_size > buf_limit)
1817 buf_size = buf_limit;
1818
1819 ret = search_ioctl(inode, &args.key, &buf_size,
1820 (char __user *)(&uarg->buf[0]));
1821 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1822 ret = -EFAULT;
1823 else if (ret == -EOVERFLOW &&
1824 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1825 ret = -EFAULT;
1826
1827 return ret;
1828}
1829
1830/*
1831 * Search INODE_REFs to identify path name of 'dirid' directory
1832 * in a 'tree_id' tree. and sets path name to 'name'.
1833 */
1834static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1835 u64 tree_id, u64 dirid, char *name)
1836{
1837 struct btrfs_root *root;
1838 struct btrfs_key key;
1839 char *ptr;
1840 int ret = -1;
1841 int slot;
1842 int len;
1843 int total_len = 0;
1844 struct btrfs_inode_ref *iref;
1845 struct extent_buffer *l;
1846 struct btrfs_path *path;
1847
1848 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1849 name[0]='\0';
1850 return 0;
1851 }
1852
1853 path = btrfs_alloc_path();
1854 if (!path)
1855 return -ENOMEM;
1856
1857 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1858
1859 root = btrfs_get_fs_root(info, tree_id, true);
1860 if (IS_ERR(root)) {
1861 ret = PTR_ERR(root);
1862 root = NULL;
1863 goto out;
1864 }
1865
1866 key.objectid = dirid;
1867 key.type = BTRFS_INODE_REF_KEY;
1868 key.offset = (u64)-1;
1869
1870 while (1) {
1871 ret = btrfs_search_backwards(root, &key, path);
1872 if (ret < 0)
1873 goto out;
1874 else if (ret > 0) {
1875 ret = -ENOENT;
1876 goto out;
1877 }
1878
1879 l = path->nodes[0];
1880 slot = path->slots[0];
1881
1882 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1883 len = btrfs_inode_ref_name_len(l, iref);
1884 ptr -= len + 1;
1885 total_len += len + 1;
1886 if (ptr < name) {
1887 ret = -ENAMETOOLONG;
1888 goto out;
1889 }
1890
1891 *(ptr + len) = '/';
1892 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1893
1894 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1895 break;
1896
1897 btrfs_release_path(path);
1898 key.objectid = key.offset;
1899 key.offset = (u64)-1;
1900 dirid = key.objectid;
1901 }
1902 memmove(name, ptr, total_len);
1903 name[total_len] = '\0';
1904 ret = 0;
1905out:
1906 btrfs_put_root(root);
1907 btrfs_free_path(path);
1908 return ret;
1909}
1910
1911static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1912 struct inode *inode,
1913 struct btrfs_ioctl_ino_lookup_user_args *args)
1914{
1915 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1916 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1917 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1918 u64 dirid = args->dirid;
1919 unsigned long item_off;
1920 unsigned long item_len;
1921 struct btrfs_inode_ref *iref;
1922 struct btrfs_root_ref *rref;
1923 struct btrfs_root *root = NULL;
1924 struct btrfs_path *path;
1925 struct btrfs_key key, key2;
1926 struct extent_buffer *leaf;
1927 struct inode *temp_inode;
1928 char *ptr;
1929 int slot;
1930 int len;
1931 int total_len = 0;
1932 int ret;
1933
1934 path = btrfs_alloc_path();
1935 if (!path)
1936 return -ENOMEM;
1937
1938 /*
1939 * If the bottom subvolume does not exist directly under upper_limit,
1940 * construct the path in from the bottom up.
1941 */
1942 if (dirid != upper_limit) {
1943 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1944
1945 root = btrfs_get_fs_root(fs_info, treeid, true);
1946 if (IS_ERR(root)) {
1947 ret = PTR_ERR(root);
1948 goto out;
1949 }
1950
1951 key.objectid = dirid;
1952 key.type = BTRFS_INODE_REF_KEY;
1953 key.offset = (u64)-1;
1954 while (1) {
1955 ret = btrfs_search_backwards(root, &key, path);
1956 if (ret < 0)
1957 goto out_put;
1958 else if (ret > 0) {
1959 ret = -ENOENT;
1960 goto out_put;
1961 }
1962
1963 leaf = path->nodes[0];
1964 slot = path->slots[0];
1965
1966 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1967 len = btrfs_inode_ref_name_len(leaf, iref);
1968 ptr -= len + 1;
1969 total_len += len + 1;
1970 if (ptr < args->path) {
1971 ret = -ENAMETOOLONG;
1972 goto out_put;
1973 }
1974
1975 *(ptr + len) = '/';
1976 read_extent_buffer(leaf, ptr,
1977 (unsigned long)(iref + 1), len);
1978
1979 /* Check the read+exec permission of this directory */
1980 ret = btrfs_previous_item(root, path, dirid,
1981 BTRFS_INODE_ITEM_KEY);
1982 if (ret < 0) {
1983 goto out_put;
1984 } else if (ret > 0) {
1985 ret = -ENOENT;
1986 goto out_put;
1987 }
1988
1989 leaf = path->nodes[0];
1990 slot = path->slots[0];
1991 btrfs_item_key_to_cpu(leaf, &key2, slot);
1992 if (key2.objectid != dirid) {
1993 ret = -ENOENT;
1994 goto out_put;
1995 }
1996
1997 /*
1998 * We don't need the path anymore, so release it and
1999 * avoid deadlocks and lockdep warnings in case
2000 * btrfs_iget() needs to lookup the inode from its root
2001 * btree and lock the same leaf.
2002 */
2003 btrfs_release_path(path);
2004 temp_inode = btrfs_iget(key2.objectid, root);
2005 if (IS_ERR(temp_inode)) {
2006 ret = PTR_ERR(temp_inode);
2007 goto out_put;
2008 }
2009 ret = inode_permission(idmap, temp_inode,
2010 MAY_READ | MAY_EXEC);
2011 iput(temp_inode);
2012 if (ret) {
2013 ret = -EACCES;
2014 goto out_put;
2015 }
2016
2017 if (key.offset == upper_limit)
2018 break;
2019 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2020 ret = -EACCES;
2021 goto out_put;
2022 }
2023
2024 key.objectid = key.offset;
2025 key.offset = (u64)-1;
2026 dirid = key.objectid;
2027 }
2028
2029 memmove(args->path, ptr, total_len);
2030 args->path[total_len] = '\0';
2031 btrfs_put_root(root);
2032 root = NULL;
2033 btrfs_release_path(path);
2034 }
2035
2036 /* Get the bottom subvolume's name from ROOT_REF */
2037 key.objectid = treeid;
2038 key.type = BTRFS_ROOT_REF_KEY;
2039 key.offset = args->treeid;
2040 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2041 if (ret < 0) {
2042 goto out;
2043 } else if (ret > 0) {
2044 ret = -ENOENT;
2045 goto out;
2046 }
2047
2048 leaf = path->nodes[0];
2049 slot = path->slots[0];
2050 btrfs_item_key_to_cpu(leaf, &key, slot);
2051
2052 item_off = btrfs_item_ptr_offset(leaf, slot);
2053 item_len = btrfs_item_size(leaf, slot);
2054 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2055 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2056 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2057 ret = -EINVAL;
2058 goto out;
2059 }
2060
2061 /* Copy subvolume's name */
2062 item_off += sizeof(struct btrfs_root_ref);
2063 item_len -= sizeof(struct btrfs_root_ref);
2064 read_extent_buffer(leaf, args->name, item_off, item_len);
2065 args->name[item_len] = 0;
2066
2067out_put:
2068 btrfs_put_root(root);
2069out:
2070 btrfs_free_path(path);
2071 return ret;
2072}
2073
2074static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2075 void __user *argp)
2076{
2077 struct btrfs_ioctl_ino_lookup_args *args;
2078 int ret = 0;
2079
2080 args = memdup_user(argp, sizeof(*args));
2081 if (IS_ERR(args))
2082 return PTR_ERR(args);
2083
2084 /*
2085 * Unprivileged query to obtain the containing subvolume root id. The
2086 * path is reset so it's consistent with btrfs_search_path_in_tree.
2087 */
2088 if (args->treeid == 0)
2089 args->treeid = btrfs_root_id(root);
2090
2091 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2092 args->name[0] = 0;
2093 goto out;
2094 }
2095
2096 if (!capable(CAP_SYS_ADMIN)) {
2097 ret = -EPERM;
2098 goto out;
2099 }
2100
2101 ret = btrfs_search_path_in_tree(root->fs_info,
2102 args->treeid, args->objectid,
2103 args->name);
2104
2105out:
2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107 ret = -EFAULT;
2108
2109 kfree(args);
2110 return ret;
2111}
2112
2113/*
2114 * Version of ino_lookup ioctl (unprivileged)
2115 *
2116 * The main differences from ino_lookup ioctl are:
2117 *
2118 * 1. Read + Exec permission will be checked using inode_permission() during
2119 * path construction. -EACCES will be returned in case of failure.
2120 * 2. Path construction will be stopped at the inode number which corresponds
2121 * to the fd with which this ioctl is called. If constructed path does not
2122 * exist under fd's inode, -EACCES will be returned.
2123 * 3. The name of bottom subvolume is also searched and filled.
2124 */
2125static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2126{
2127 struct btrfs_ioctl_ino_lookup_user_args *args;
2128 struct inode *inode;
2129 int ret;
2130
2131 args = memdup_user(argp, sizeof(*args));
2132 if (IS_ERR(args))
2133 return PTR_ERR(args);
2134
2135 inode = file_inode(file);
2136
2137 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2138 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2139 /*
2140 * The subvolume does not exist under fd with which this is
2141 * called
2142 */
2143 kfree(args);
2144 return -EACCES;
2145 }
2146
2147 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2148
2149 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2150 ret = -EFAULT;
2151
2152 kfree(args);
2153 return ret;
2154}
2155
2156/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2157static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2158{
2159 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2160 struct btrfs_fs_info *fs_info;
2161 struct btrfs_root *root;
2162 struct btrfs_path *path;
2163 struct btrfs_key key;
2164 struct btrfs_root_item *root_item;
2165 struct btrfs_root_ref *rref;
2166 struct extent_buffer *leaf;
2167 unsigned long item_off;
2168 unsigned long item_len;
2169 int slot;
2170 int ret = 0;
2171
2172 path = btrfs_alloc_path();
2173 if (!path)
2174 return -ENOMEM;
2175
2176 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2177 if (!subvol_info) {
2178 btrfs_free_path(path);
2179 return -ENOMEM;
2180 }
2181
2182 fs_info = BTRFS_I(inode)->root->fs_info;
2183
2184 /* Get root_item of inode's subvolume */
2185 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2186 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2187 if (IS_ERR(root)) {
2188 ret = PTR_ERR(root);
2189 goto out_free;
2190 }
2191 root_item = &root->root_item;
2192
2193 subvol_info->treeid = key.objectid;
2194
2195 subvol_info->generation = btrfs_root_generation(root_item);
2196 subvol_info->flags = btrfs_root_flags(root_item);
2197
2198 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2199 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2200 BTRFS_UUID_SIZE);
2201 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2202 BTRFS_UUID_SIZE);
2203
2204 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2205 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2206 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2207
2208 subvol_info->otransid = btrfs_root_otransid(root_item);
2209 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2210 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2211
2212 subvol_info->stransid = btrfs_root_stransid(root_item);
2213 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2214 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2215
2216 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2217 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2218 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2219
2220 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2221 /* Search root tree for ROOT_BACKREF of this subvolume */
2222 key.type = BTRFS_ROOT_BACKREF_KEY;
2223 key.offset = 0;
2224 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2225 if (ret < 0) {
2226 goto out;
2227 } else if (path->slots[0] >=
2228 btrfs_header_nritems(path->nodes[0])) {
2229 ret = btrfs_next_leaf(fs_info->tree_root, path);
2230 if (ret < 0) {
2231 goto out;
2232 } else if (ret > 0) {
2233 ret = -EUCLEAN;
2234 goto out;
2235 }
2236 }
2237
2238 leaf = path->nodes[0];
2239 slot = path->slots[0];
2240 btrfs_item_key_to_cpu(leaf, &key, slot);
2241 if (key.objectid == subvol_info->treeid &&
2242 key.type == BTRFS_ROOT_BACKREF_KEY) {
2243 subvol_info->parent_id = key.offset;
2244
2245 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2246 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2247
2248 item_off = btrfs_item_ptr_offset(leaf, slot)
2249 + sizeof(struct btrfs_root_ref);
2250 item_len = btrfs_item_size(leaf, slot)
2251 - sizeof(struct btrfs_root_ref);
2252 read_extent_buffer(leaf, subvol_info->name,
2253 item_off, item_len);
2254 } else {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258 }
2259
2260 btrfs_free_path(path);
2261 path = NULL;
2262 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2263 ret = -EFAULT;
2264
2265out:
2266 btrfs_put_root(root);
2267out_free:
2268 btrfs_free_path(path);
2269 kfree(subvol_info);
2270 return ret;
2271}
2272
2273/*
2274 * Return ROOT_REF information of the subvolume containing this inode
2275 * except the subvolume name.
2276 */
2277static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2278 void __user *argp)
2279{
2280 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2281 struct btrfs_root_ref *rref;
2282 struct btrfs_path *path;
2283 struct btrfs_key key;
2284 struct extent_buffer *leaf;
2285 u64 objectid;
2286 int slot;
2287 int ret;
2288 u8 found;
2289
2290 path = btrfs_alloc_path();
2291 if (!path)
2292 return -ENOMEM;
2293
2294 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2295 if (IS_ERR(rootrefs)) {
2296 btrfs_free_path(path);
2297 return PTR_ERR(rootrefs);
2298 }
2299
2300 objectid = btrfs_root_id(root);
2301 key.objectid = objectid;
2302 key.type = BTRFS_ROOT_REF_KEY;
2303 key.offset = rootrefs->min_treeid;
2304 found = 0;
2305
2306 root = root->fs_info->tree_root;
2307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308 if (ret < 0) {
2309 goto out;
2310 } else if (path->slots[0] >=
2311 btrfs_header_nritems(path->nodes[0])) {
2312 ret = btrfs_next_leaf(root, path);
2313 if (ret < 0) {
2314 goto out;
2315 } else if (ret > 0) {
2316 ret = -EUCLEAN;
2317 goto out;
2318 }
2319 }
2320 while (1) {
2321 leaf = path->nodes[0];
2322 slot = path->slots[0];
2323
2324 btrfs_item_key_to_cpu(leaf, &key, slot);
2325 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2326 ret = 0;
2327 goto out;
2328 }
2329
2330 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2331 ret = -EOVERFLOW;
2332 goto out;
2333 }
2334
2335 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2336 rootrefs->rootref[found].treeid = key.offset;
2337 rootrefs->rootref[found].dirid =
2338 btrfs_root_ref_dirid(leaf, rref);
2339 found++;
2340
2341 ret = btrfs_next_item(root, path);
2342 if (ret < 0) {
2343 goto out;
2344 } else if (ret > 0) {
2345 ret = -EUCLEAN;
2346 goto out;
2347 }
2348 }
2349
2350out:
2351 btrfs_free_path(path);
2352
2353 if (!ret || ret == -EOVERFLOW) {
2354 rootrefs->num_items = found;
2355 /* update min_treeid for next search */
2356 if (found)
2357 rootrefs->min_treeid =
2358 rootrefs->rootref[found - 1].treeid + 1;
2359 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2360 ret = -EFAULT;
2361 }
2362
2363 kfree(rootrefs);
2364
2365 return ret;
2366}
2367
2368static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2369 void __user *arg,
2370 bool destroy_v2)
2371{
2372 struct dentry *parent = file->f_path.dentry;
2373 struct dentry *dentry;
2374 struct inode *dir = d_inode(parent);
2375 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2376 struct inode *inode;
2377 struct btrfs_root *root = BTRFS_I(dir)->root;
2378 struct btrfs_root *dest = NULL;
2379 struct btrfs_ioctl_vol_args *vol_args = NULL;
2380 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2381 struct mnt_idmap *idmap = file_mnt_idmap(file);
2382 char *subvol_name, *subvol_name_ptr = NULL;
2383 int subvol_namelen;
2384 int ret = 0;
2385 bool destroy_parent = false;
2386
2387 /* We don't support snapshots with extent tree v2 yet. */
2388 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2389 btrfs_err(fs_info,
2390 "extent tree v2 doesn't support snapshot deletion yet");
2391 return -EOPNOTSUPP;
2392 }
2393
2394 if (destroy_v2) {
2395 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2396 if (IS_ERR(vol_args2))
2397 return PTR_ERR(vol_args2);
2398
2399 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2400 ret = -EOPNOTSUPP;
2401 goto out;
2402 }
2403
2404 /*
2405 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2406 * name, same as v1 currently does.
2407 */
2408 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2409 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2410 if (ret < 0)
2411 goto out;
2412 subvol_name = vol_args2->name;
2413
2414 ret = mnt_want_write_file(file);
2415 if (ret)
2416 goto out;
2417 } else {
2418 struct inode *old_dir;
2419
2420 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2421 ret = -EINVAL;
2422 goto out;
2423 }
2424
2425 ret = mnt_want_write_file(file);
2426 if (ret)
2427 goto out;
2428
2429 dentry = btrfs_get_dentry(fs_info->sb,
2430 BTRFS_FIRST_FREE_OBJECTID,
2431 vol_args2->subvolid, 0);
2432 if (IS_ERR(dentry)) {
2433 ret = PTR_ERR(dentry);
2434 goto out_drop_write;
2435 }
2436
2437 /*
2438 * Change the default parent since the subvolume being
2439 * deleted can be outside of the current mount point.
2440 */
2441 parent = btrfs_get_parent(dentry);
2442
2443 /*
2444 * At this point dentry->d_name can point to '/' if the
2445 * subvolume we want to destroy is outsite of the
2446 * current mount point, so we need to release the
2447 * current dentry and execute the lookup to return a new
2448 * one with ->d_name pointing to the
2449 * <mount point>/subvol_name.
2450 */
2451 dput(dentry);
2452 if (IS_ERR(parent)) {
2453 ret = PTR_ERR(parent);
2454 goto out_drop_write;
2455 }
2456 old_dir = dir;
2457 dir = d_inode(parent);
2458
2459 /*
2460 * If v2 was used with SPEC_BY_ID, a new parent was
2461 * allocated since the subvolume can be outside of the
2462 * current mount point. Later on we need to release this
2463 * new parent dentry.
2464 */
2465 destroy_parent = true;
2466
2467 /*
2468 * On idmapped mounts, deletion via subvolid is
2469 * restricted to subvolumes that are immediate
2470 * ancestors of the inode referenced by the file
2471 * descriptor in the ioctl. Otherwise the idmapping
2472 * could potentially be abused to delete subvolumes
2473 * anywhere in the filesystem the user wouldn't be able
2474 * to delete without an idmapped mount.
2475 */
2476 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2477 ret = -EOPNOTSUPP;
2478 goto free_parent;
2479 }
2480
2481 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2482 fs_info, vol_args2->subvolid);
2483 if (IS_ERR(subvol_name_ptr)) {
2484 ret = PTR_ERR(subvol_name_ptr);
2485 goto free_parent;
2486 }
2487 /* subvol_name_ptr is already nul terminated */
2488 subvol_name = (char *)kbasename(subvol_name_ptr);
2489 }
2490 } else {
2491 vol_args = memdup_user(arg, sizeof(*vol_args));
2492 if (IS_ERR(vol_args))
2493 return PTR_ERR(vol_args);
2494
2495 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2496 if (ret < 0)
2497 goto out;
2498
2499 subvol_name = vol_args->name;
2500
2501 ret = mnt_want_write_file(file);
2502 if (ret)
2503 goto out;
2504 }
2505
2506 subvol_namelen = strlen(subvol_name);
2507
2508 if (strchr(subvol_name, '/') ||
2509 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2510 ret = -EINVAL;
2511 goto free_subvol_name;
2512 }
2513
2514 if (!S_ISDIR(dir->i_mode)) {
2515 ret = -ENOTDIR;
2516 goto free_subvol_name;
2517 }
2518
2519 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2520 if (ret == -EINTR)
2521 goto free_subvol_name;
2522 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2523 if (IS_ERR(dentry)) {
2524 ret = PTR_ERR(dentry);
2525 goto out_unlock_dir;
2526 }
2527
2528 if (d_really_is_negative(dentry)) {
2529 ret = -ENOENT;
2530 goto out_dput;
2531 }
2532
2533 inode = d_inode(dentry);
2534 dest = BTRFS_I(inode)->root;
2535 if (!capable(CAP_SYS_ADMIN)) {
2536 /*
2537 * Regular user. Only allow this with a special mount
2538 * option, when the user has write+exec access to the
2539 * subvol root, and when rmdir(2) would have been
2540 * allowed.
2541 *
2542 * Note that this is _not_ check that the subvol is
2543 * empty or doesn't contain data that we wouldn't
2544 * otherwise be able to delete.
2545 *
2546 * Users who want to delete empty subvols should try
2547 * rmdir(2).
2548 */
2549 ret = -EPERM;
2550 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2551 goto out_dput;
2552
2553 /*
2554 * Do not allow deletion if the parent dir is the same
2555 * as the dir to be deleted. That means the ioctl
2556 * must be called on the dentry referencing the root
2557 * of the subvol, not a random directory contained
2558 * within it.
2559 */
2560 ret = -EINVAL;
2561 if (root == dest)
2562 goto out_dput;
2563
2564 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2565 if (ret)
2566 goto out_dput;
2567 }
2568
2569 /* check if subvolume may be deleted by a user */
2570 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2571 if (ret)
2572 goto out_dput;
2573
2574 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2575 ret = -EINVAL;
2576 goto out_dput;
2577 }
2578
2579 btrfs_inode_lock(BTRFS_I(inode), 0);
2580 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2581 btrfs_inode_unlock(BTRFS_I(inode), 0);
2582 if (!ret)
2583 d_delete_notify(dir, dentry);
2584
2585out_dput:
2586 dput(dentry);
2587out_unlock_dir:
2588 btrfs_inode_unlock(BTRFS_I(dir), 0);
2589free_subvol_name:
2590 kfree(subvol_name_ptr);
2591free_parent:
2592 if (destroy_parent)
2593 dput(parent);
2594out_drop_write:
2595 mnt_drop_write_file(file);
2596out:
2597 kfree(vol_args2);
2598 kfree(vol_args);
2599 return ret;
2600}
2601
2602static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2603{
2604 struct inode *inode = file_inode(file);
2605 struct btrfs_root *root = BTRFS_I(inode)->root;
2606 struct btrfs_ioctl_defrag_range_args range = {0};
2607 int ret;
2608
2609 ret = mnt_want_write_file(file);
2610 if (ret)
2611 return ret;
2612
2613 if (btrfs_root_readonly(root)) {
2614 ret = -EROFS;
2615 goto out;
2616 }
2617
2618 switch (inode->i_mode & S_IFMT) {
2619 case S_IFDIR:
2620 if (!capable(CAP_SYS_ADMIN)) {
2621 ret = -EPERM;
2622 goto out;
2623 }
2624 ret = btrfs_defrag_root(root);
2625 break;
2626 case S_IFREG:
2627 /*
2628 * Note that this does not check the file descriptor for write
2629 * access. This prevents defragmenting executables that are
2630 * running and allows defrag on files open in read-only mode.
2631 */
2632 if (!capable(CAP_SYS_ADMIN) &&
2633 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2634 ret = -EPERM;
2635 goto out;
2636 }
2637
2638 if (argp) {
2639 if (copy_from_user(&range, argp, sizeof(range))) {
2640 ret = -EFAULT;
2641 goto out;
2642 }
2643 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2644 ret = -EOPNOTSUPP;
2645 goto out;
2646 }
2647 /* compression requires us to start the IO */
2648 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2649 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2650 range.extent_thresh = (u32)-1;
2651 }
2652 } else {
2653 /* the rest are all set to zero by kzalloc */
2654 range.len = (u64)-1;
2655 }
2656 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2657 &range, BTRFS_OLDEST_GENERATION, 0);
2658 if (ret > 0)
2659 ret = 0;
2660 break;
2661 default:
2662 ret = -EINVAL;
2663 }
2664out:
2665 mnt_drop_write_file(file);
2666 return ret;
2667}
2668
2669static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2670{
2671 struct btrfs_ioctl_vol_args *vol_args;
2672 bool restore_op = false;
2673 int ret;
2674
2675 if (!capable(CAP_SYS_ADMIN))
2676 return -EPERM;
2677
2678 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2679 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2680 return -EINVAL;
2681 }
2682
2683 if (fs_info->fs_devices->temp_fsid) {
2684 btrfs_err(fs_info,
2685 "device add not supported on cloned temp-fsid mount");
2686 return -EINVAL;
2687 }
2688
2689 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2690 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2691 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2692
2693 /*
2694 * We can do the device add because we have a paused balanced,
2695 * change the exclusive op type and remember we should bring
2696 * back the paused balance
2697 */
2698 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2699 btrfs_exclop_start_unlock(fs_info);
2700 restore_op = true;
2701 }
2702
2703 vol_args = memdup_user(arg, sizeof(*vol_args));
2704 if (IS_ERR(vol_args)) {
2705 ret = PTR_ERR(vol_args);
2706 goto out;
2707 }
2708
2709 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2710 if (ret < 0)
2711 goto out_free;
2712
2713 ret = btrfs_init_new_device(fs_info, vol_args->name);
2714
2715 if (!ret)
2716 btrfs_info(fs_info, "disk added %s", vol_args->name);
2717
2718out_free:
2719 kfree(vol_args);
2720out:
2721 if (restore_op)
2722 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2723 else
2724 btrfs_exclop_finish(fs_info);
2725 return ret;
2726}
2727
2728static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2729{
2730 BTRFS_DEV_LOOKUP_ARGS(args);
2731 struct inode *inode = file_inode(file);
2732 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2733 struct btrfs_ioctl_vol_args_v2 *vol_args;
2734 struct file *bdev_file = NULL;
2735 int ret;
2736 bool cancel = false;
2737
2738 if (!capable(CAP_SYS_ADMIN))
2739 return -EPERM;
2740
2741 vol_args = memdup_user(arg, sizeof(*vol_args));
2742 if (IS_ERR(vol_args))
2743 return PTR_ERR(vol_args);
2744
2745 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2746 ret = -EOPNOTSUPP;
2747 goto out;
2748 }
2749
2750 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2751 if (ret < 0)
2752 goto out;
2753
2754 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2755 args.devid = vol_args->devid;
2756 } else if (!strcmp("cancel", vol_args->name)) {
2757 cancel = true;
2758 } else {
2759 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2760 if (ret)
2761 goto out;
2762 }
2763
2764 ret = mnt_want_write_file(file);
2765 if (ret)
2766 goto out;
2767
2768 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2769 cancel);
2770 if (ret)
2771 goto err_drop;
2772
2773 /* Exclusive operation is now claimed */
2774 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2775
2776 btrfs_exclop_finish(fs_info);
2777
2778 if (!ret) {
2779 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2780 btrfs_info(fs_info, "device deleted: id %llu",
2781 vol_args->devid);
2782 else
2783 btrfs_info(fs_info, "device deleted: %s",
2784 vol_args->name);
2785 }
2786err_drop:
2787 mnt_drop_write_file(file);
2788 if (bdev_file)
2789 fput(bdev_file);
2790out:
2791 btrfs_put_dev_args_from_path(&args);
2792 kfree(vol_args);
2793 return ret;
2794}
2795
2796static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2797{
2798 BTRFS_DEV_LOOKUP_ARGS(args);
2799 struct inode *inode = file_inode(file);
2800 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2801 struct btrfs_ioctl_vol_args *vol_args;
2802 struct file *bdev_file = NULL;
2803 int ret;
2804 bool cancel = false;
2805
2806 if (!capable(CAP_SYS_ADMIN))
2807 return -EPERM;
2808
2809 vol_args = memdup_user(arg, sizeof(*vol_args));
2810 if (IS_ERR(vol_args))
2811 return PTR_ERR(vol_args);
2812
2813 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2814 if (ret < 0)
2815 goto out_free;
2816
2817 if (!strcmp("cancel", vol_args->name)) {
2818 cancel = true;
2819 } else {
2820 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2821 if (ret)
2822 goto out;
2823 }
2824
2825 ret = mnt_want_write_file(file);
2826 if (ret)
2827 goto out;
2828
2829 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2830 cancel);
2831 if (ret == 0) {
2832 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2833 if (!ret)
2834 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2835 btrfs_exclop_finish(fs_info);
2836 }
2837
2838 mnt_drop_write_file(file);
2839 if (bdev_file)
2840 fput(bdev_file);
2841out:
2842 btrfs_put_dev_args_from_path(&args);
2843out_free:
2844 kfree(vol_args);
2845 return ret;
2846}
2847
2848static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2849 void __user *arg)
2850{
2851 struct btrfs_ioctl_fs_info_args *fi_args;
2852 struct btrfs_device *device;
2853 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2854 u64 flags_in;
2855 int ret = 0;
2856
2857 fi_args = memdup_user(arg, sizeof(*fi_args));
2858 if (IS_ERR(fi_args))
2859 return PTR_ERR(fi_args);
2860
2861 flags_in = fi_args->flags;
2862 memset(fi_args, 0, sizeof(*fi_args));
2863
2864 rcu_read_lock();
2865 fi_args->num_devices = fs_devices->num_devices;
2866
2867 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2868 if (device->devid > fi_args->max_id)
2869 fi_args->max_id = device->devid;
2870 }
2871 rcu_read_unlock();
2872
2873 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2874 fi_args->nodesize = fs_info->nodesize;
2875 fi_args->sectorsize = fs_info->sectorsize;
2876 fi_args->clone_alignment = fs_info->sectorsize;
2877
2878 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2879 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2880 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2881 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2882 }
2883
2884 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2885 fi_args->generation = btrfs_get_fs_generation(fs_info);
2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2887 }
2888
2889 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2890 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2891 sizeof(fi_args->metadata_uuid));
2892 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2893 }
2894
2895 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2896 ret = -EFAULT;
2897
2898 kfree(fi_args);
2899 return ret;
2900}
2901
2902static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2903 void __user *arg)
2904{
2905 BTRFS_DEV_LOOKUP_ARGS(args);
2906 struct btrfs_ioctl_dev_info_args *di_args;
2907 struct btrfs_device *dev;
2908 int ret = 0;
2909
2910 di_args = memdup_user(arg, sizeof(*di_args));
2911 if (IS_ERR(di_args))
2912 return PTR_ERR(di_args);
2913
2914 args.devid = di_args->devid;
2915 if (!btrfs_is_empty_uuid(di_args->uuid))
2916 args.uuid = di_args->uuid;
2917
2918 rcu_read_lock();
2919 dev = btrfs_find_device(fs_info->fs_devices, &args);
2920 if (!dev) {
2921 ret = -ENODEV;
2922 goto out;
2923 }
2924
2925 di_args->devid = dev->devid;
2926 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2927 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2928 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2929 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2930 if (dev->name)
2931 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2932 else
2933 di_args->path[0] = '\0';
2934
2935out:
2936 rcu_read_unlock();
2937 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2938 ret = -EFAULT;
2939
2940 kfree(di_args);
2941 return ret;
2942}
2943
2944static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2945{
2946 struct inode *inode = file_inode(file);
2947 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2948 struct btrfs_root *root = BTRFS_I(inode)->root;
2949 struct btrfs_root *new_root;
2950 struct btrfs_dir_item *di;
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_path *path = NULL;
2953 struct btrfs_disk_key disk_key;
2954 struct fscrypt_str name = FSTR_INIT("default", 7);
2955 u64 objectid = 0;
2956 u64 dir_id;
2957 int ret;
2958
2959 if (!capable(CAP_SYS_ADMIN))
2960 return -EPERM;
2961
2962 ret = mnt_want_write_file(file);
2963 if (ret)
2964 return ret;
2965
2966 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2967 ret = -EFAULT;
2968 goto out;
2969 }
2970
2971 if (!objectid)
2972 objectid = BTRFS_FS_TREE_OBJECTID;
2973
2974 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2975 if (IS_ERR(new_root)) {
2976 ret = PTR_ERR(new_root);
2977 goto out;
2978 }
2979 if (!is_fstree(btrfs_root_id(new_root))) {
2980 ret = -ENOENT;
2981 goto out_free;
2982 }
2983
2984 path = btrfs_alloc_path();
2985 if (!path) {
2986 ret = -ENOMEM;
2987 goto out_free;
2988 }
2989
2990 trans = btrfs_start_transaction(root, 1);
2991 if (IS_ERR(trans)) {
2992 ret = PTR_ERR(trans);
2993 goto out_free;
2994 }
2995
2996 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2997 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2998 dir_id, &name, 1);
2999 if (IS_ERR_OR_NULL(di)) {
3000 btrfs_release_path(path);
3001 btrfs_end_transaction(trans);
3002 btrfs_err(fs_info,
3003 "Umm, you don't have the default diritem, this isn't going to work");
3004 ret = -ENOENT;
3005 goto out_free;
3006 }
3007
3008 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3009 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3010 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3011 btrfs_release_path(path);
3012
3013 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3014 btrfs_end_transaction(trans);
3015out_free:
3016 btrfs_put_root(new_root);
3017 btrfs_free_path(path);
3018out:
3019 mnt_drop_write_file(file);
3020 return ret;
3021}
3022
3023static void get_block_group_info(struct list_head *groups_list,
3024 struct btrfs_ioctl_space_info *space)
3025{
3026 struct btrfs_block_group *block_group;
3027
3028 space->total_bytes = 0;
3029 space->used_bytes = 0;
3030 space->flags = 0;
3031 list_for_each_entry(block_group, groups_list, list) {
3032 space->flags = block_group->flags;
3033 space->total_bytes += block_group->length;
3034 space->used_bytes += block_group->used;
3035 }
3036}
3037
3038static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3039 void __user *arg)
3040{
3041 struct btrfs_ioctl_space_args space_args = { 0 };
3042 struct btrfs_ioctl_space_info space;
3043 struct btrfs_ioctl_space_info *dest;
3044 struct btrfs_ioctl_space_info *dest_orig;
3045 struct btrfs_ioctl_space_info __user *user_dest;
3046 struct btrfs_space_info *info;
3047 static const u64 types[] = {
3048 BTRFS_BLOCK_GROUP_DATA,
3049 BTRFS_BLOCK_GROUP_SYSTEM,
3050 BTRFS_BLOCK_GROUP_METADATA,
3051 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3052 };
3053 int num_types = 4;
3054 int alloc_size;
3055 int ret = 0;
3056 u64 slot_count = 0;
3057 int i, c;
3058
3059 if (copy_from_user(&space_args,
3060 (struct btrfs_ioctl_space_args __user *)arg,
3061 sizeof(space_args)))
3062 return -EFAULT;
3063
3064 for (i = 0; i < num_types; i++) {
3065 struct btrfs_space_info *tmp;
3066
3067 info = NULL;
3068 list_for_each_entry(tmp, &fs_info->space_info, list) {
3069 if (tmp->flags == types[i]) {
3070 info = tmp;
3071 break;
3072 }
3073 }
3074
3075 if (!info)
3076 continue;
3077
3078 down_read(&info->groups_sem);
3079 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3080 if (!list_empty(&info->block_groups[c]))
3081 slot_count++;
3082 }
3083 up_read(&info->groups_sem);
3084 }
3085
3086 /*
3087 * Global block reserve, exported as a space_info
3088 */
3089 slot_count++;
3090
3091 /* space_slots == 0 means they are asking for a count */
3092 if (space_args.space_slots == 0) {
3093 space_args.total_spaces = slot_count;
3094 goto out;
3095 }
3096
3097 slot_count = min_t(u64, space_args.space_slots, slot_count);
3098
3099 alloc_size = sizeof(*dest) * slot_count;
3100
3101 /* we generally have at most 6 or so space infos, one for each raid
3102 * level. So, a whole page should be more than enough for everyone
3103 */
3104 if (alloc_size > PAGE_SIZE)
3105 return -ENOMEM;
3106
3107 space_args.total_spaces = 0;
3108 dest = kmalloc(alloc_size, GFP_KERNEL);
3109 if (!dest)
3110 return -ENOMEM;
3111 dest_orig = dest;
3112
3113 /* now we have a buffer to copy into */
3114 for (i = 0; i < num_types; i++) {
3115 struct btrfs_space_info *tmp;
3116
3117 if (!slot_count)
3118 break;
3119
3120 info = NULL;
3121 list_for_each_entry(tmp, &fs_info->space_info, list) {
3122 if (tmp->flags == types[i]) {
3123 info = tmp;
3124 break;
3125 }
3126 }
3127
3128 if (!info)
3129 continue;
3130 down_read(&info->groups_sem);
3131 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3132 if (!list_empty(&info->block_groups[c])) {
3133 get_block_group_info(&info->block_groups[c],
3134 &space);
3135 memcpy(dest, &space, sizeof(space));
3136 dest++;
3137 space_args.total_spaces++;
3138 slot_count--;
3139 }
3140 if (!slot_count)
3141 break;
3142 }
3143 up_read(&info->groups_sem);
3144 }
3145
3146 /*
3147 * Add global block reserve
3148 */
3149 if (slot_count) {
3150 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3151
3152 spin_lock(&block_rsv->lock);
3153 space.total_bytes = block_rsv->size;
3154 space.used_bytes = block_rsv->size - block_rsv->reserved;
3155 spin_unlock(&block_rsv->lock);
3156 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3157 memcpy(dest, &space, sizeof(space));
3158 space_args.total_spaces++;
3159 }
3160
3161 user_dest = (struct btrfs_ioctl_space_info __user *)
3162 (arg + sizeof(struct btrfs_ioctl_space_args));
3163
3164 if (copy_to_user(user_dest, dest_orig, alloc_size))
3165 ret = -EFAULT;
3166
3167 kfree(dest_orig);
3168out:
3169 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3170 ret = -EFAULT;
3171
3172 return ret;
3173}
3174
3175static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3176 void __user *argp)
3177{
3178 struct btrfs_trans_handle *trans;
3179 u64 transid;
3180
3181 /*
3182 * Start orphan cleanup here for the given root in case it hasn't been
3183 * started already by other means. Errors are handled in the other
3184 * functions during transaction commit.
3185 */
3186 btrfs_orphan_cleanup(root);
3187
3188 trans = btrfs_attach_transaction_barrier(root);
3189 if (IS_ERR(trans)) {
3190 if (PTR_ERR(trans) != -ENOENT)
3191 return PTR_ERR(trans);
3192
3193 /* No running transaction, don't bother */
3194 transid = btrfs_get_last_trans_committed(root->fs_info);
3195 goto out;
3196 }
3197 transid = trans->transid;
3198 btrfs_commit_transaction_async(trans);
3199out:
3200 if (argp)
3201 if (copy_to_user(argp, &transid, sizeof(transid)))
3202 return -EFAULT;
3203 return 0;
3204}
3205
3206static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3207 void __user *argp)
3208{
3209 /* By default wait for the current transaction. */
3210 u64 transid = 0;
3211
3212 if (argp)
3213 if (copy_from_user(&transid, argp, sizeof(transid)))
3214 return -EFAULT;
3215
3216 return btrfs_wait_for_commit(fs_info, transid);
3217}
3218
3219static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3220{
3221 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3222 struct btrfs_ioctl_scrub_args *sa;
3223 int ret;
3224
3225 if (!capable(CAP_SYS_ADMIN))
3226 return -EPERM;
3227
3228 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3229 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3230 return -EINVAL;
3231 }
3232
3233 sa = memdup_user(arg, sizeof(*sa));
3234 if (IS_ERR(sa))
3235 return PTR_ERR(sa);
3236
3237 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3238 ret = -EOPNOTSUPP;
3239 goto out;
3240 }
3241
3242 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3243 ret = mnt_want_write_file(file);
3244 if (ret)
3245 goto out;
3246 }
3247
3248 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3249 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3250 0);
3251
3252 /*
3253 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3254 * error. This is important as it allows user space to know how much
3255 * progress scrub has done. For example, if scrub is canceled we get
3256 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3257 * space. Later user space can inspect the progress from the structure
3258 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3259 * previously (btrfs-progs does this).
3260 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3261 * then return -EFAULT to signal the structure was not copied or it may
3262 * be corrupt and unreliable due to a partial copy.
3263 */
3264 if (copy_to_user(arg, sa, sizeof(*sa)))
3265 ret = -EFAULT;
3266
3267 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3268 mnt_drop_write_file(file);
3269out:
3270 kfree(sa);
3271 return ret;
3272}
3273
3274static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3275{
3276 if (!capable(CAP_SYS_ADMIN))
3277 return -EPERM;
3278
3279 return btrfs_scrub_cancel(fs_info);
3280}
3281
3282static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3283 void __user *arg)
3284{
3285 struct btrfs_ioctl_scrub_args *sa;
3286 int ret;
3287
3288 if (!capable(CAP_SYS_ADMIN))
3289 return -EPERM;
3290
3291 sa = memdup_user(arg, sizeof(*sa));
3292 if (IS_ERR(sa))
3293 return PTR_ERR(sa);
3294
3295 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3296
3297 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3298 ret = -EFAULT;
3299
3300 kfree(sa);
3301 return ret;
3302}
3303
3304static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3305 void __user *arg)
3306{
3307 struct btrfs_ioctl_get_dev_stats *sa;
3308 int ret;
3309
3310 sa = memdup_user(arg, sizeof(*sa));
3311 if (IS_ERR(sa))
3312 return PTR_ERR(sa);
3313
3314 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3315 kfree(sa);
3316 return -EPERM;
3317 }
3318
3319 ret = btrfs_get_dev_stats(fs_info, sa);
3320
3321 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3322 ret = -EFAULT;
3323
3324 kfree(sa);
3325 return ret;
3326}
3327
3328static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3329 void __user *arg)
3330{
3331 struct btrfs_ioctl_dev_replace_args *p;
3332 int ret;
3333
3334 if (!capable(CAP_SYS_ADMIN))
3335 return -EPERM;
3336
3337 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3338 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3339 return -EINVAL;
3340 }
3341
3342 p = memdup_user(arg, sizeof(*p));
3343 if (IS_ERR(p))
3344 return PTR_ERR(p);
3345
3346 switch (p->cmd) {
3347 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3348 if (sb_rdonly(fs_info->sb)) {
3349 ret = -EROFS;
3350 goto out;
3351 }
3352 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3353 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3354 } else {
3355 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3356 btrfs_exclop_finish(fs_info);
3357 }
3358 break;
3359 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3360 btrfs_dev_replace_status(fs_info, p);
3361 ret = 0;
3362 break;
3363 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3364 p->result = btrfs_dev_replace_cancel(fs_info);
3365 ret = 0;
3366 break;
3367 default:
3368 ret = -EINVAL;
3369 break;
3370 }
3371
3372 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3373 ret = -EFAULT;
3374out:
3375 kfree(p);
3376 return ret;
3377}
3378
3379static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3380{
3381 int ret = 0;
3382 int i;
3383 u64 rel_ptr;
3384 int size;
3385 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3386 struct inode_fs_paths *ipath = NULL;
3387 struct btrfs_path *path;
3388
3389 if (!capable(CAP_DAC_READ_SEARCH))
3390 return -EPERM;
3391
3392 path = btrfs_alloc_path();
3393 if (!path) {
3394 ret = -ENOMEM;
3395 goto out;
3396 }
3397
3398 ipa = memdup_user(arg, sizeof(*ipa));
3399 if (IS_ERR(ipa)) {
3400 ret = PTR_ERR(ipa);
3401 ipa = NULL;
3402 goto out;
3403 }
3404
3405 size = min_t(u32, ipa->size, 4096);
3406 ipath = init_ipath(size, root, path);
3407 if (IS_ERR(ipath)) {
3408 ret = PTR_ERR(ipath);
3409 ipath = NULL;
3410 goto out;
3411 }
3412
3413 ret = paths_from_inode(ipa->inum, ipath);
3414 if (ret < 0)
3415 goto out;
3416
3417 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3418 rel_ptr = ipath->fspath->val[i] -
3419 (u64)(unsigned long)ipath->fspath->val;
3420 ipath->fspath->val[i] = rel_ptr;
3421 }
3422
3423 btrfs_free_path(path);
3424 path = NULL;
3425 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3426 ipath->fspath, size);
3427 if (ret) {
3428 ret = -EFAULT;
3429 goto out;
3430 }
3431
3432out:
3433 btrfs_free_path(path);
3434 free_ipath(ipath);
3435 kfree(ipa);
3436
3437 return ret;
3438}
3439
3440static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3441 void __user *arg, int version)
3442{
3443 int ret = 0;
3444 int size;
3445 struct btrfs_ioctl_logical_ino_args *loi;
3446 struct btrfs_data_container *inodes = NULL;
3447 struct btrfs_path *path = NULL;
3448 bool ignore_offset;
3449
3450 if (!capable(CAP_SYS_ADMIN))
3451 return -EPERM;
3452
3453 loi = memdup_user(arg, sizeof(*loi));
3454 if (IS_ERR(loi))
3455 return PTR_ERR(loi);
3456
3457 if (version == 1) {
3458 ignore_offset = false;
3459 size = min_t(u32, loi->size, SZ_64K);
3460 } else {
3461 /* All reserved bits must be 0 for now */
3462 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3463 ret = -EINVAL;
3464 goto out_loi;
3465 }
3466 /* Only accept flags we have defined so far */
3467 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3468 ret = -EINVAL;
3469 goto out_loi;
3470 }
3471 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3472 size = min_t(u32, loi->size, SZ_16M);
3473 }
3474
3475 inodes = init_data_container(size);
3476 if (IS_ERR(inodes)) {
3477 ret = PTR_ERR(inodes);
3478 goto out_loi;
3479 }
3480
3481 path = btrfs_alloc_path();
3482 if (!path) {
3483 ret = -ENOMEM;
3484 goto out;
3485 }
3486 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3487 inodes, ignore_offset);
3488 btrfs_free_path(path);
3489 if (ret == -EINVAL)
3490 ret = -ENOENT;
3491 if (ret < 0)
3492 goto out;
3493
3494 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3495 size);
3496 if (ret)
3497 ret = -EFAULT;
3498
3499out:
3500 kvfree(inodes);
3501out_loi:
3502 kfree(loi);
3503
3504 return ret;
3505}
3506
3507void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3508 struct btrfs_ioctl_balance_args *bargs)
3509{
3510 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3511
3512 bargs->flags = bctl->flags;
3513
3514 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3515 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3516 if (atomic_read(&fs_info->balance_pause_req))
3517 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3518 if (atomic_read(&fs_info->balance_cancel_req))
3519 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3520
3521 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3522 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3523 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3524
3525 spin_lock(&fs_info->balance_lock);
3526 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3527 spin_unlock(&fs_info->balance_lock);
3528}
3529
3530/*
3531 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3532 * required.
3533 *
3534 * @fs_info: the filesystem
3535 * @excl_acquired: ptr to boolean value which is set to false in case balance
3536 * is being resumed
3537 *
3538 * Return 0 on success in which case both fs_info::balance is acquired as well
3539 * as exclusive ops are blocked. In case of failure return an error code.
3540 */
3541static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3542{
3543 int ret;
3544
3545 /*
3546 * Exclusive operation is locked. Three possibilities:
3547 * (1) some other op is running
3548 * (2) balance is running
3549 * (3) balance is paused -- special case (think resume)
3550 */
3551 while (1) {
3552 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3553 *excl_acquired = true;
3554 mutex_lock(&fs_info->balance_mutex);
3555 return 0;
3556 }
3557
3558 mutex_lock(&fs_info->balance_mutex);
3559 if (fs_info->balance_ctl) {
3560 /* This is either (2) or (3) */
3561 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3562 /* This is (2) */
3563 ret = -EINPROGRESS;
3564 goto out_failure;
3565
3566 } else {
3567 mutex_unlock(&fs_info->balance_mutex);
3568 /*
3569 * Lock released to allow other waiters to
3570 * continue, we'll reexamine the status again.
3571 */
3572 mutex_lock(&fs_info->balance_mutex);
3573
3574 if (fs_info->balance_ctl &&
3575 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3576 /* This is (3) */
3577 *excl_acquired = false;
3578 return 0;
3579 }
3580 }
3581 } else {
3582 /* This is (1) */
3583 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3584 goto out_failure;
3585 }
3586
3587 mutex_unlock(&fs_info->balance_mutex);
3588 }
3589
3590out_failure:
3591 mutex_unlock(&fs_info->balance_mutex);
3592 *excl_acquired = false;
3593 return ret;
3594}
3595
3596static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3597{
3598 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3599 struct btrfs_fs_info *fs_info = root->fs_info;
3600 struct btrfs_ioctl_balance_args *bargs;
3601 struct btrfs_balance_control *bctl;
3602 bool need_unlock = true;
3603 int ret;
3604
3605 if (!capable(CAP_SYS_ADMIN))
3606 return -EPERM;
3607
3608 ret = mnt_want_write_file(file);
3609 if (ret)
3610 return ret;
3611
3612 bargs = memdup_user(arg, sizeof(*bargs));
3613 if (IS_ERR(bargs)) {
3614 ret = PTR_ERR(bargs);
3615 bargs = NULL;
3616 goto out;
3617 }
3618
3619 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3620 if (ret)
3621 goto out;
3622
3623 lockdep_assert_held(&fs_info->balance_mutex);
3624
3625 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3626 if (!fs_info->balance_ctl) {
3627 ret = -ENOTCONN;
3628 goto out_unlock;
3629 }
3630
3631 bctl = fs_info->balance_ctl;
3632 spin_lock(&fs_info->balance_lock);
3633 bctl->flags |= BTRFS_BALANCE_RESUME;
3634 spin_unlock(&fs_info->balance_lock);
3635 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3636
3637 goto do_balance;
3638 }
3639
3640 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3641 ret = -EINVAL;
3642 goto out_unlock;
3643 }
3644
3645 if (fs_info->balance_ctl) {
3646 ret = -EINPROGRESS;
3647 goto out_unlock;
3648 }
3649
3650 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3651 if (!bctl) {
3652 ret = -ENOMEM;
3653 goto out_unlock;
3654 }
3655
3656 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3657 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3658 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3659
3660 bctl->flags = bargs->flags;
3661do_balance:
3662 /*
3663 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3664 * bctl is freed in reset_balance_state, or, if restriper was paused
3665 * all the way until unmount, in free_fs_info. The flag should be
3666 * cleared after reset_balance_state.
3667 */
3668 need_unlock = false;
3669
3670 ret = btrfs_balance(fs_info, bctl, bargs);
3671 bctl = NULL;
3672
3673 if (ret == 0 || ret == -ECANCELED) {
3674 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3675 ret = -EFAULT;
3676 }
3677
3678 kfree(bctl);
3679out_unlock:
3680 mutex_unlock(&fs_info->balance_mutex);
3681 if (need_unlock)
3682 btrfs_exclop_finish(fs_info);
3683out:
3684 mnt_drop_write_file(file);
3685 kfree(bargs);
3686 return ret;
3687}
3688
3689static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3690{
3691 if (!capable(CAP_SYS_ADMIN))
3692 return -EPERM;
3693
3694 switch (cmd) {
3695 case BTRFS_BALANCE_CTL_PAUSE:
3696 return btrfs_pause_balance(fs_info);
3697 case BTRFS_BALANCE_CTL_CANCEL:
3698 return btrfs_cancel_balance(fs_info);
3699 }
3700
3701 return -EINVAL;
3702}
3703
3704static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3705 void __user *arg)
3706{
3707 struct btrfs_ioctl_balance_args *bargs;
3708 int ret = 0;
3709
3710 if (!capable(CAP_SYS_ADMIN))
3711 return -EPERM;
3712
3713 mutex_lock(&fs_info->balance_mutex);
3714 if (!fs_info->balance_ctl) {
3715 ret = -ENOTCONN;
3716 goto out;
3717 }
3718
3719 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3720 if (!bargs) {
3721 ret = -ENOMEM;
3722 goto out;
3723 }
3724
3725 btrfs_update_ioctl_balance_args(fs_info, bargs);
3726
3727 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3728 ret = -EFAULT;
3729
3730 kfree(bargs);
3731out:
3732 mutex_unlock(&fs_info->balance_mutex);
3733 return ret;
3734}
3735
3736static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3737{
3738 struct inode *inode = file_inode(file);
3739 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3740 struct btrfs_ioctl_quota_ctl_args *sa;
3741 int ret;
3742
3743 if (!capable(CAP_SYS_ADMIN))
3744 return -EPERM;
3745
3746 ret = mnt_want_write_file(file);
3747 if (ret)
3748 return ret;
3749
3750 sa = memdup_user(arg, sizeof(*sa));
3751 if (IS_ERR(sa)) {
3752 ret = PTR_ERR(sa);
3753 goto drop_write;
3754 }
3755
3756 switch (sa->cmd) {
3757 case BTRFS_QUOTA_CTL_ENABLE:
3758 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3759 down_write(&fs_info->subvol_sem);
3760 ret = btrfs_quota_enable(fs_info, sa);
3761 up_write(&fs_info->subvol_sem);
3762 break;
3763 case BTRFS_QUOTA_CTL_DISABLE:
3764 /*
3765 * Lock the cleaner mutex to prevent races with concurrent
3766 * relocation, because relocation may be building backrefs for
3767 * blocks of the quota root while we are deleting the root. This
3768 * is like dropping fs roots of deleted snapshots/subvolumes, we
3769 * need the same protection.
3770 *
3771 * This also prevents races between concurrent tasks trying to
3772 * disable quotas, because we will unlock and relock
3773 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3774 *
3775 * We take this here because we have the dependency of
3776 *
3777 * inode_lock -> subvol_sem
3778 *
3779 * because of rename. With relocation we can prealloc extents,
3780 * so that makes the dependency chain
3781 *
3782 * cleaner_mutex -> inode_lock -> subvol_sem
3783 *
3784 * so we must take the cleaner_mutex here before we take the
3785 * subvol_sem. The deadlock can't actually happen, but this
3786 * quiets lockdep.
3787 */
3788 mutex_lock(&fs_info->cleaner_mutex);
3789 down_write(&fs_info->subvol_sem);
3790 ret = btrfs_quota_disable(fs_info);
3791 up_write(&fs_info->subvol_sem);
3792 mutex_unlock(&fs_info->cleaner_mutex);
3793 break;
3794 default:
3795 ret = -EINVAL;
3796 break;
3797 }
3798
3799 kfree(sa);
3800drop_write:
3801 mnt_drop_write_file(file);
3802 return ret;
3803}
3804
3805/*
3806 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3807 * done before any operations.
3808 */
3809static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3810{
3811 bool ret = true;
3812
3813 mutex_lock(&fs_info->qgroup_ioctl_lock);
3814 if (!fs_info->quota_root)
3815 ret = false;
3816 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3817
3818 return ret;
3819}
3820
3821static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3822{
3823 struct inode *inode = file_inode(file);
3824 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3825 struct btrfs_root *root = BTRFS_I(inode)->root;
3826 struct btrfs_ioctl_qgroup_assign_args *sa;
3827 struct btrfs_qgroup_list *prealloc = NULL;
3828 struct btrfs_trans_handle *trans;
3829 int ret;
3830 int err;
3831
3832 if (!capable(CAP_SYS_ADMIN))
3833 return -EPERM;
3834
3835 if (!qgroup_enabled(root->fs_info))
3836 return -ENOTCONN;
3837
3838 ret = mnt_want_write_file(file);
3839 if (ret)
3840 return ret;
3841
3842 sa = memdup_user(arg, sizeof(*sa));
3843 if (IS_ERR(sa)) {
3844 ret = PTR_ERR(sa);
3845 goto drop_write;
3846 }
3847
3848 if (sa->assign) {
3849 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3850 if (!prealloc) {
3851 ret = -ENOMEM;
3852 goto drop_write;
3853 }
3854 }
3855
3856 trans = btrfs_join_transaction(root);
3857 if (IS_ERR(trans)) {
3858 ret = PTR_ERR(trans);
3859 goto out;
3860 }
3861
3862 /*
3863 * Prealloc ownership is moved to the relation handler, there it's used
3864 * or freed on error.
3865 */
3866 if (sa->assign) {
3867 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3868 prealloc = NULL;
3869 } else {
3870 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3871 }
3872
3873 /* update qgroup status and info */
3874 mutex_lock(&fs_info->qgroup_ioctl_lock);
3875 err = btrfs_run_qgroups(trans);
3876 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3877 if (err < 0)
3878 btrfs_warn(fs_info,
3879 "qgroup status update failed after %s relation, marked as inconsistent",
3880 sa->assign ? "adding" : "deleting");
3881 err = btrfs_end_transaction(trans);
3882 if (err && !ret)
3883 ret = err;
3884
3885out:
3886 kfree(prealloc);
3887 kfree(sa);
3888drop_write:
3889 mnt_drop_write_file(file);
3890 return ret;
3891}
3892
3893static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3894{
3895 struct inode *inode = file_inode(file);
3896 struct btrfs_root *root = BTRFS_I(inode)->root;
3897 struct btrfs_ioctl_qgroup_create_args *sa;
3898 struct btrfs_trans_handle *trans;
3899 int ret;
3900 int err;
3901
3902 if (!capable(CAP_SYS_ADMIN))
3903 return -EPERM;
3904
3905 if (!qgroup_enabled(root->fs_info))
3906 return -ENOTCONN;
3907
3908 ret = mnt_want_write_file(file);
3909 if (ret)
3910 return ret;
3911
3912 sa = memdup_user(arg, sizeof(*sa));
3913 if (IS_ERR(sa)) {
3914 ret = PTR_ERR(sa);
3915 goto drop_write;
3916 }
3917
3918 if (!sa->qgroupid) {
3919 ret = -EINVAL;
3920 goto out;
3921 }
3922
3923 if (sa->create && is_fstree(sa->qgroupid)) {
3924 ret = -EINVAL;
3925 goto out;
3926 }
3927
3928 trans = btrfs_join_transaction(root);
3929 if (IS_ERR(trans)) {
3930 ret = PTR_ERR(trans);
3931 goto out;
3932 }
3933
3934 if (sa->create) {
3935 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3936 } else {
3937 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3938 }
3939
3940 err = btrfs_end_transaction(trans);
3941 if (err && !ret)
3942 ret = err;
3943
3944out:
3945 kfree(sa);
3946drop_write:
3947 mnt_drop_write_file(file);
3948 return ret;
3949}
3950
3951static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3952{
3953 struct inode *inode = file_inode(file);
3954 struct btrfs_root *root = BTRFS_I(inode)->root;
3955 struct btrfs_ioctl_qgroup_limit_args *sa;
3956 struct btrfs_trans_handle *trans;
3957 int ret;
3958 int err;
3959 u64 qgroupid;
3960
3961 if (!capable(CAP_SYS_ADMIN))
3962 return -EPERM;
3963
3964 if (!qgroup_enabled(root->fs_info))
3965 return -ENOTCONN;
3966
3967 ret = mnt_want_write_file(file);
3968 if (ret)
3969 return ret;
3970
3971 sa = memdup_user(arg, sizeof(*sa));
3972 if (IS_ERR(sa)) {
3973 ret = PTR_ERR(sa);
3974 goto drop_write;
3975 }
3976
3977 trans = btrfs_join_transaction(root);
3978 if (IS_ERR(trans)) {
3979 ret = PTR_ERR(trans);
3980 goto out;
3981 }
3982
3983 qgroupid = sa->qgroupid;
3984 if (!qgroupid) {
3985 /* take the current subvol as qgroup */
3986 qgroupid = btrfs_root_id(root);
3987 }
3988
3989 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3990
3991 err = btrfs_end_transaction(trans);
3992 if (err && !ret)
3993 ret = err;
3994
3995out:
3996 kfree(sa);
3997drop_write:
3998 mnt_drop_write_file(file);
3999 return ret;
4000}
4001
4002static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4003{
4004 struct inode *inode = file_inode(file);
4005 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4006 struct btrfs_ioctl_quota_rescan_args *qsa;
4007 int ret;
4008
4009 if (!capable(CAP_SYS_ADMIN))
4010 return -EPERM;
4011
4012 if (!qgroup_enabled(fs_info))
4013 return -ENOTCONN;
4014
4015 ret = mnt_want_write_file(file);
4016 if (ret)
4017 return ret;
4018
4019 qsa = memdup_user(arg, sizeof(*qsa));
4020 if (IS_ERR(qsa)) {
4021 ret = PTR_ERR(qsa);
4022 goto drop_write;
4023 }
4024
4025 if (qsa->flags) {
4026 ret = -EINVAL;
4027 goto out;
4028 }
4029
4030 ret = btrfs_qgroup_rescan(fs_info);
4031
4032out:
4033 kfree(qsa);
4034drop_write:
4035 mnt_drop_write_file(file);
4036 return ret;
4037}
4038
4039static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4040 void __user *arg)
4041{
4042 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4043
4044 if (!capable(CAP_SYS_ADMIN))
4045 return -EPERM;
4046
4047 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4048 qsa.flags = 1;
4049 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4050 }
4051
4052 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4053 return -EFAULT;
4054
4055 return 0;
4056}
4057
4058static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
4059{
4060 if (!capable(CAP_SYS_ADMIN))
4061 return -EPERM;
4062
4063 return btrfs_qgroup_wait_for_completion(fs_info, true);
4064}
4065
4066static long _btrfs_ioctl_set_received_subvol(struct file *file,
4067 struct mnt_idmap *idmap,
4068 struct btrfs_ioctl_received_subvol_args *sa)
4069{
4070 struct inode *inode = file_inode(file);
4071 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4072 struct btrfs_root *root = BTRFS_I(inode)->root;
4073 struct btrfs_root_item *root_item = &root->root_item;
4074 struct btrfs_trans_handle *trans;
4075 struct timespec64 ct = current_time(inode);
4076 int ret = 0;
4077 int received_uuid_changed;
4078
4079 if (!inode_owner_or_capable(idmap, inode))
4080 return -EPERM;
4081
4082 ret = mnt_want_write_file(file);
4083 if (ret < 0)
4084 return ret;
4085
4086 down_write(&fs_info->subvol_sem);
4087
4088 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4089 ret = -EINVAL;
4090 goto out;
4091 }
4092
4093 if (btrfs_root_readonly(root)) {
4094 ret = -EROFS;
4095 goto out;
4096 }
4097
4098 /*
4099 * 1 - root item
4100 * 2 - uuid items (received uuid + subvol uuid)
4101 */
4102 trans = btrfs_start_transaction(root, 3);
4103 if (IS_ERR(trans)) {
4104 ret = PTR_ERR(trans);
4105 trans = NULL;
4106 goto out;
4107 }
4108
4109 sa->rtransid = trans->transid;
4110 sa->rtime.sec = ct.tv_sec;
4111 sa->rtime.nsec = ct.tv_nsec;
4112
4113 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4114 BTRFS_UUID_SIZE);
4115 if (received_uuid_changed &&
4116 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4117 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4118 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4119 btrfs_root_id(root));
4120 if (ret && ret != -ENOENT) {
4121 btrfs_abort_transaction(trans, ret);
4122 btrfs_end_transaction(trans);
4123 goto out;
4124 }
4125 }
4126 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4127 btrfs_set_root_stransid(root_item, sa->stransid);
4128 btrfs_set_root_rtransid(root_item, sa->rtransid);
4129 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4130 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4131 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4132 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4133
4134 ret = btrfs_update_root(trans, fs_info->tree_root,
4135 &root->root_key, &root->root_item);
4136 if (ret < 0) {
4137 btrfs_end_transaction(trans);
4138 goto out;
4139 }
4140 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4141 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4142 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143 btrfs_root_id(root));
4144 if (ret < 0 && ret != -EEXIST) {
4145 btrfs_abort_transaction(trans, ret);
4146 btrfs_end_transaction(trans);
4147 goto out;
4148 }
4149 }
4150 ret = btrfs_commit_transaction(trans);
4151out:
4152 up_write(&fs_info->subvol_sem);
4153 mnt_drop_write_file(file);
4154 return ret;
4155}
4156
4157#ifdef CONFIG_64BIT
4158static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4159 void __user *arg)
4160{
4161 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4162 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4163 int ret = 0;
4164
4165 args32 = memdup_user(arg, sizeof(*args32));
4166 if (IS_ERR(args32))
4167 return PTR_ERR(args32);
4168
4169 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4170 if (!args64) {
4171 ret = -ENOMEM;
4172 goto out;
4173 }
4174
4175 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4176 args64->stransid = args32->stransid;
4177 args64->rtransid = args32->rtransid;
4178 args64->stime.sec = args32->stime.sec;
4179 args64->stime.nsec = args32->stime.nsec;
4180 args64->rtime.sec = args32->rtime.sec;
4181 args64->rtime.nsec = args32->rtime.nsec;
4182 args64->flags = args32->flags;
4183
4184 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4185 if (ret)
4186 goto out;
4187
4188 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4189 args32->stransid = args64->stransid;
4190 args32->rtransid = args64->rtransid;
4191 args32->stime.sec = args64->stime.sec;
4192 args32->stime.nsec = args64->stime.nsec;
4193 args32->rtime.sec = args64->rtime.sec;
4194 args32->rtime.nsec = args64->rtime.nsec;
4195 args32->flags = args64->flags;
4196
4197 ret = copy_to_user(arg, args32, sizeof(*args32));
4198 if (ret)
4199 ret = -EFAULT;
4200
4201out:
4202 kfree(args32);
4203 kfree(args64);
4204 return ret;
4205}
4206#endif
4207
4208static long btrfs_ioctl_set_received_subvol(struct file *file,
4209 void __user *arg)
4210{
4211 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4212 int ret = 0;
4213
4214 sa = memdup_user(arg, sizeof(*sa));
4215 if (IS_ERR(sa))
4216 return PTR_ERR(sa);
4217
4218 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4219
4220 if (ret)
4221 goto out;
4222
4223 ret = copy_to_user(arg, sa, sizeof(*sa));
4224 if (ret)
4225 ret = -EFAULT;
4226
4227out:
4228 kfree(sa);
4229 return ret;
4230}
4231
4232static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4233 void __user *arg)
4234{
4235 size_t len;
4236 int ret;
4237 char label[BTRFS_LABEL_SIZE];
4238
4239 spin_lock(&fs_info->super_lock);
4240 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4241 spin_unlock(&fs_info->super_lock);
4242
4243 len = strnlen(label, BTRFS_LABEL_SIZE);
4244
4245 if (len == BTRFS_LABEL_SIZE) {
4246 btrfs_warn(fs_info,
4247 "label is too long, return the first %zu bytes",
4248 --len);
4249 }
4250
4251 ret = copy_to_user(arg, label, len);
4252
4253 return ret ? -EFAULT : 0;
4254}
4255
4256static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4257{
4258 struct inode *inode = file_inode(file);
4259 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4260 struct btrfs_root *root = BTRFS_I(inode)->root;
4261 struct btrfs_super_block *super_block = fs_info->super_copy;
4262 struct btrfs_trans_handle *trans;
4263 char label[BTRFS_LABEL_SIZE];
4264 int ret;
4265
4266 if (!capable(CAP_SYS_ADMIN))
4267 return -EPERM;
4268
4269 if (copy_from_user(label, arg, sizeof(label)))
4270 return -EFAULT;
4271
4272 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4273 btrfs_err(fs_info,
4274 "unable to set label with more than %d bytes",
4275 BTRFS_LABEL_SIZE - 1);
4276 return -EINVAL;
4277 }
4278
4279 ret = mnt_want_write_file(file);
4280 if (ret)
4281 return ret;
4282
4283 trans = btrfs_start_transaction(root, 0);
4284 if (IS_ERR(trans)) {
4285 ret = PTR_ERR(trans);
4286 goto out_unlock;
4287 }
4288
4289 spin_lock(&fs_info->super_lock);
4290 strcpy(super_block->label, label);
4291 spin_unlock(&fs_info->super_lock);
4292 ret = btrfs_commit_transaction(trans);
4293
4294out_unlock:
4295 mnt_drop_write_file(file);
4296 return ret;
4297}
4298
4299#define INIT_FEATURE_FLAGS(suffix) \
4300 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4301 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4302 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4303
4304int btrfs_ioctl_get_supported_features(void __user *arg)
4305{
4306 static const struct btrfs_ioctl_feature_flags features[3] = {
4307 INIT_FEATURE_FLAGS(SUPP),
4308 INIT_FEATURE_FLAGS(SAFE_SET),
4309 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4310 };
4311
4312 if (copy_to_user(arg, &features, sizeof(features)))
4313 return -EFAULT;
4314
4315 return 0;
4316}
4317
4318static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4319 void __user *arg)
4320{
4321 struct btrfs_super_block *super_block = fs_info->super_copy;
4322 struct btrfs_ioctl_feature_flags features;
4323
4324 features.compat_flags = btrfs_super_compat_flags(super_block);
4325 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4326 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4327
4328 if (copy_to_user(arg, &features, sizeof(features)))
4329 return -EFAULT;
4330
4331 return 0;
4332}
4333
4334static int check_feature_bits(struct btrfs_fs_info *fs_info,
4335 enum btrfs_feature_set set,
4336 u64 change_mask, u64 flags, u64 supported_flags,
4337 u64 safe_set, u64 safe_clear)
4338{
4339 const char *type = btrfs_feature_set_name(set);
4340 char *names;
4341 u64 disallowed, unsupported;
4342 u64 set_mask = flags & change_mask;
4343 u64 clear_mask = ~flags & change_mask;
4344
4345 unsupported = set_mask & ~supported_flags;
4346 if (unsupported) {
4347 names = btrfs_printable_features(set, unsupported);
4348 if (names) {
4349 btrfs_warn(fs_info,
4350 "this kernel does not support the %s feature bit%s",
4351 names, strchr(names, ',') ? "s" : "");
4352 kfree(names);
4353 } else
4354 btrfs_warn(fs_info,
4355 "this kernel does not support %s bits 0x%llx",
4356 type, unsupported);
4357 return -EOPNOTSUPP;
4358 }
4359
4360 disallowed = set_mask & ~safe_set;
4361 if (disallowed) {
4362 names = btrfs_printable_features(set, disallowed);
4363 if (names) {
4364 btrfs_warn(fs_info,
4365 "can't set the %s feature bit%s while mounted",
4366 names, strchr(names, ',') ? "s" : "");
4367 kfree(names);
4368 } else
4369 btrfs_warn(fs_info,
4370 "can't set %s bits 0x%llx while mounted",
4371 type, disallowed);
4372 return -EPERM;
4373 }
4374
4375 disallowed = clear_mask & ~safe_clear;
4376 if (disallowed) {
4377 names = btrfs_printable_features(set, disallowed);
4378 if (names) {
4379 btrfs_warn(fs_info,
4380 "can't clear the %s feature bit%s while mounted",
4381 names, strchr(names, ',') ? "s" : "");
4382 kfree(names);
4383 } else
4384 btrfs_warn(fs_info,
4385 "can't clear %s bits 0x%llx while mounted",
4386 type, disallowed);
4387 return -EPERM;
4388 }
4389
4390 return 0;
4391}
4392
4393#define check_feature(fs_info, change_mask, flags, mask_base) \
4394check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4395 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4396 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4397 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4398
4399static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4400{
4401 struct inode *inode = file_inode(file);
4402 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4403 struct btrfs_root *root = BTRFS_I(inode)->root;
4404 struct btrfs_super_block *super_block = fs_info->super_copy;
4405 struct btrfs_ioctl_feature_flags flags[2];
4406 struct btrfs_trans_handle *trans;
4407 u64 newflags;
4408 int ret;
4409
4410 if (!capable(CAP_SYS_ADMIN))
4411 return -EPERM;
4412
4413 if (copy_from_user(flags, arg, sizeof(flags)))
4414 return -EFAULT;
4415
4416 /* Nothing to do */
4417 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4418 !flags[0].incompat_flags)
4419 return 0;
4420
4421 ret = check_feature(fs_info, flags[0].compat_flags,
4422 flags[1].compat_flags, COMPAT);
4423 if (ret)
4424 return ret;
4425
4426 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4427 flags[1].compat_ro_flags, COMPAT_RO);
4428 if (ret)
4429 return ret;
4430
4431 ret = check_feature(fs_info, flags[0].incompat_flags,
4432 flags[1].incompat_flags, INCOMPAT);
4433 if (ret)
4434 return ret;
4435
4436 ret = mnt_want_write_file(file);
4437 if (ret)
4438 return ret;
4439
4440 trans = btrfs_start_transaction(root, 0);
4441 if (IS_ERR(trans)) {
4442 ret = PTR_ERR(trans);
4443 goto out_drop_write;
4444 }
4445
4446 spin_lock(&fs_info->super_lock);
4447 newflags = btrfs_super_compat_flags(super_block);
4448 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4449 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4450 btrfs_set_super_compat_flags(super_block, newflags);
4451
4452 newflags = btrfs_super_compat_ro_flags(super_block);
4453 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4454 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4455 btrfs_set_super_compat_ro_flags(super_block, newflags);
4456
4457 newflags = btrfs_super_incompat_flags(super_block);
4458 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4459 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4460 btrfs_set_super_incompat_flags(super_block, newflags);
4461 spin_unlock(&fs_info->super_lock);
4462
4463 ret = btrfs_commit_transaction(trans);
4464out_drop_write:
4465 mnt_drop_write_file(file);
4466
4467 return ret;
4468}
4469
4470static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4471{
4472 struct btrfs_ioctl_send_args *arg;
4473 int ret;
4474
4475 if (compat) {
4476#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4477 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4478
4479 ret = copy_from_user(&args32, argp, sizeof(args32));
4480 if (ret)
4481 return -EFAULT;
4482 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4483 if (!arg)
4484 return -ENOMEM;
4485 arg->send_fd = args32.send_fd;
4486 arg->clone_sources_count = args32.clone_sources_count;
4487 arg->clone_sources = compat_ptr(args32.clone_sources);
4488 arg->parent_root = args32.parent_root;
4489 arg->flags = args32.flags;
4490 arg->version = args32.version;
4491 memcpy(arg->reserved, args32.reserved,
4492 sizeof(args32.reserved));
4493#else
4494 return -ENOTTY;
4495#endif
4496 } else {
4497 arg = memdup_user(argp, sizeof(*arg));
4498 if (IS_ERR(arg))
4499 return PTR_ERR(arg);
4500 }
4501 ret = btrfs_ioctl_send(inode, arg);
4502 kfree(arg);
4503 return ret;
4504}
4505
4506static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4507 bool compat)
4508{
4509 struct btrfs_ioctl_encoded_io_args args = { 0 };
4510 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4511 flags);
4512 size_t copy_end;
4513 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4514 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4515 struct extent_io_tree *io_tree = &inode->io_tree;
4516 struct iovec iovstack[UIO_FASTIOV];
4517 struct iovec *iov = iovstack;
4518 struct iov_iter iter;
4519 loff_t pos;
4520 struct kiocb kiocb;
4521 ssize_t ret;
4522 u64 disk_bytenr, disk_io_size;
4523 struct extent_state *cached_state = NULL;
4524
4525 if (!capable(CAP_SYS_ADMIN)) {
4526 ret = -EPERM;
4527 goto out_acct;
4528 }
4529
4530 if (compat) {
4531#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4532 struct btrfs_ioctl_encoded_io_args_32 args32;
4533
4534 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4535 flags);
4536 if (copy_from_user(&args32, argp, copy_end)) {
4537 ret = -EFAULT;
4538 goto out_acct;
4539 }
4540 args.iov = compat_ptr(args32.iov);
4541 args.iovcnt = args32.iovcnt;
4542 args.offset = args32.offset;
4543 args.flags = args32.flags;
4544#else
4545 return -ENOTTY;
4546#endif
4547 } else {
4548 copy_end = copy_end_kernel;
4549 if (copy_from_user(&args, argp, copy_end)) {
4550 ret = -EFAULT;
4551 goto out_acct;
4552 }
4553 }
4554 if (args.flags != 0) {
4555 ret = -EINVAL;
4556 goto out_acct;
4557 }
4558
4559 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4560 &iov, &iter);
4561 if (ret < 0)
4562 goto out_acct;
4563
4564 if (iov_iter_count(&iter) == 0) {
4565 ret = 0;
4566 goto out_iov;
4567 }
4568 pos = args.offset;
4569 ret = rw_verify_area(READ, file, &pos, args.len);
4570 if (ret < 0)
4571 goto out_iov;
4572
4573 init_sync_kiocb(&kiocb, file);
4574 kiocb.ki_pos = pos;
4575
4576 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4577 &disk_bytenr, &disk_io_size);
4578
4579 if (ret == -EIOCBQUEUED) {
4580 bool unlocked = false;
4581 u64 start, lockend, count;
4582
4583 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4584 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4585
4586 if (args.compression)
4587 count = disk_io_size;
4588 else
4589 count = args.len;
4590
4591 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4592 &cached_state, disk_bytenr,
4593 disk_io_size, count,
4594 args.compression, &unlocked);
4595
4596 if (!unlocked) {
4597 unlock_extent(io_tree, start, lockend, &cached_state);
4598 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4599 }
4600 }
4601
4602 if (ret >= 0) {
4603 fsnotify_access(file);
4604 if (copy_to_user(argp + copy_end,
4605 (char *)&args + copy_end_kernel,
4606 sizeof(args) - copy_end_kernel))
4607 ret = -EFAULT;
4608 }
4609
4610out_iov:
4611 kfree(iov);
4612out_acct:
4613 if (ret > 0)
4614 add_rchar(current, ret);
4615 inc_syscr(current);
4616 return ret;
4617}
4618
4619static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4620{
4621 struct btrfs_ioctl_encoded_io_args args;
4622 struct iovec iovstack[UIO_FASTIOV];
4623 struct iovec *iov = iovstack;
4624 struct iov_iter iter;
4625 loff_t pos;
4626 struct kiocb kiocb;
4627 ssize_t ret;
4628
4629 if (!capable(CAP_SYS_ADMIN)) {
4630 ret = -EPERM;
4631 goto out_acct;
4632 }
4633
4634 if (!(file->f_mode & FMODE_WRITE)) {
4635 ret = -EBADF;
4636 goto out_acct;
4637 }
4638
4639 if (compat) {
4640#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4641 struct btrfs_ioctl_encoded_io_args_32 args32;
4642
4643 if (copy_from_user(&args32, argp, sizeof(args32))) {
4644 ret = -EFAULT;
4645 goto out_acct;
4646 }
4647 args.iov = compat_ptr(args32.iov);
4648 args.iovcnt = args32.iovcnt;
4649 args.offset = args32.offset;
4650 args.flags = args32.flags;
4651 args.len = args32.len;
4652 args.unencoded_len = args32.unencoded_len;
4653 args.unencoded_offset = args32.unencoded_offset;
4654 args.compression = args32.compression;
4655 args.encryption = args32.encryption;
4656 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4657#else
4658 return -ENOTTY;
4659#endif
4660 } else {
4661 if (copy_from_user(&args, argp, sizeof(args))) {
4662 ret = -EFAULT;
4663 goto out_acct;
4664 }
4665 }
4666
4667 ret = -EINVAL;
4668 if (args.flags != 0)
4669 goto out_acct;
4670 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4671 goto out_acct;
4672 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4673 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4674 goto out_acct;
4675 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4676 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4677 goto out_acct;
4678 if (args.unencoded_offset > args.unencoded_len)
4679 goto out_acct;
4680 if (args.len > args.unencoded_len - args.unencoded_offset)
4681 goto out_acct;
4682
4683 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4684 &iov, &iter);
4685 if (ret < 0)
4686 goto out_acct;
4687
4688 if (iov_iter_count(&iter) == 0) {
4689 ret = 0;
4690 goto out_iov;
4691 }
4692 pos = args.offset;
4693 ret = rw_verify_area(WRITE, file, &pos, args.len);
4694 if (ret < 0)
4695 goto out_iov;
4696
4697 init_sync_kiocb(&kiocb, file);
4698 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4699 if (ret)
4700 goto out_iov;
4701 kiocb.ki_pos = pos;
4702
4703 file_start_write(file);
4704
4705 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4706 if (ret > 0)
4707 fsnotify_modify(file);
4708
4709 file_end_write(file);
4710out_iov:
4711 kfree(iov);
4712out_acct:
4713 if (ret > 0)
4714 add_wchar(current, ret);
4715 inc_syscw(current);
4716 return ret;
4717}
4718
4719/*
4720 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4721 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4722 * off and cleanup the I/O in btrfs_uring_read_finished.
4723 */
4724struct btrfs_uring_priv {
4725 struct io_uring_cmd *cmd;
4726 struct page **pages;
4727 unsigned long nr_pages;
4728 struct kiocb iocb;
4729 struct iovec *iov;
4730 struct iov_iter iter;
4731 struct extent_state *cached_state;
4732 u64 count;
4733 u64 start;
4734 u64 lockend;
4735 int err;
4736 bool compressed;
4737};
4738
4739struct io_btrfs_cmd {
4740 struct btrfs_uring_priv *priv;
4741};
4742
4743static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4744{
4745 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4746 struct btrfs_uring_priv *priv = bc->priv;
4747 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4748 struct extent_io_tree *io_tree = &inode->io_tree;
4749 unsigned long index;
4750 u64 cur;
4751 size_t page_offset;
4752 ssize_t ret;
4753
4754 /* The inode lock has already been acquired in btrfs_uring_read_extent. */
4755 btrfs_lockdep_inode_acquire(inode, i_rwsem);
4756
4757 if (priv->err) {
4758 ret = priv->err;
4759 goto out;
4760 }
4761
4762 if (priv->compressed) {
4763 index = 0;
4764 page_offset = 0;
4765 } else {
4766 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4767 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4768 }
4769 cur = 0;
4770 while (cur < priv->count) {
4771 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4772
4773 if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4774 &priv->iter) != bytes) {
4775 ret = -EFAULT;
4776 goto out;
4777 }
4778
4779 index++;
4780 cur += bytes;
4781 page_offset = 0;
4782 }
4783 ret = priv->count;
4784
4785out:
4786 unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4787 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4788
4789 io_uring_cmd_done(cmd, ret, 0, issue_flags);
4790 add_rchar(current, ret);
4791
4792 for (index = 0; index < priv->nr_pages; index++)
4793 __free_page(priv->pages[index]);
4794
4795 kfree(priv->pages);
4796 kfree(priv->iov);
4797 kfree(priv);
4798}
4799
4800void btrfs_uring_read_extent_endio(void *ctx, int err)
4801{
4802 struct btrfs_uring_priv *priv = ctx;
4803 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4804
4805 priv->err = err;
4806 bc->priv = priv;
4807
4808 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4809}
4810
4811static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4812 u64 start, u64 lockend,
4813 struct extent_state *cached_state,
4814 u64 disk_bytenr, u64 disk_io_size,
4815 size_t count, bool compressed,
4816 struct iovec *iov, struct io_uring_cmd *cmd)
4817{
4818 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4819 struct extent_io_tree *io_tree = &inode->io_tree;
4820 struct page **pages;
4821 struct btrfs_uring_priv *priv = NULL;
4822 unsigned long nr_pages;
4823 int ret;
4824
4825 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4826 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4827 if (!pages)
4828 return -ENOMEM;
4829 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4830 if (ret) {
4831 ret = -ENOMEM;
4832 goto out_fail;
4833 }
4834
4835 priv = kmalloc(sizeof(*priv), GFP_NOFS);
4836 if (!priv) {
4837 ret = -ENOMEM;
4838 goto out_fail;
4839 }
4840
4841 priv->iocb = *iocb;
4842 priv->iov = iov;
4843 priv->iter = *iter;
4844 priv->count = count;
4845 priv->cmd = cmd;
4846 priv->cached_state = cached_state;
4847 priv->compressed = compressed;
4848 priv->nr_pages = nr_pages;
4849 priv->pages = pages;
4850 priv->start = start;
4851 priv->lockend = lockend;
4852 priv->err = 0;
4853
4854 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4855 disk_io_size, pages, priv);
4856 if (ret && ret != -EIOCBQUEUED)
4857 goto out_fail;
4858
4859 /*
4860 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4861 * btrfs_uring_read_finished(), which will handle unlocking the extent
4862 * and inode and freeing the allocations.
4863 */
4864
4865 /*
4866 * We're returning to userspace with the inode lock held, and that's
4867 * okay - it'll get unlocked in a worker thread. Call
4868 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4869 */
4870 btrfs_lockdep_inode_release(inode, i_rwsem);
4871
4872 return -EIOCBQUEUED;
4873
4874out_fail:
4875 unlock_extent(io_tree, start, lockend, &cached_state);
4876 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4877 kfree(priv);
4878 return ret;
4879}
4880
4881struct btrfs_uring_encoded_data {
4882 struct btrfs_ioctl_encoded_io_args args;
4883 struct iovec iovstack[UIO_FASTIOV];
4884 struct iovec *iov;
4885 struct iov_iter iter;
4886};
4887
4888static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4889{
4890 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4891 size_t copy_end;
4892 int ret;
4893 u64 disk_bytenr, disk_io_size;
4894 struct file *file;
4895 struct btrfs_inode *inode;
4896 struct btrfs_fs_info *fs_info;
4897 struct extent_io_tree *io_tree;
4898 loff_t pos;
4899 struct kiocb kiocb;
4900 struct extent_state *cached_state = NULL;
4901 u64 start, lockend;
4902 void __user *sqe_addr;
4903 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4904
4905 if (!capable(CAP_SYS_ADMIN)) {
4906 ret = -EPERM;
4907 goto out_acct;
4908 }
4909 file = cmd->file;
4910 inode = BTRFS_I(file->f_inode);
4911 fs_info = inode->root->fs_info;
4912 io_tree = &inode->io_tree;
4913 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4914
4915 if (issue_flags & IO_URING_F_COMPAT) {
4916#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4917 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4918#else
4919 return -ENOTTY;
4920#endif
4921 } else {
4922 copy_end = copy_end_kernel;
4923 }
4924
4925 if (!data) {
4926 data = kzalloc(sizeof(*data), GFP_NOFS);
4927 if (!data) {
4928 ret = -ENOMEM;
4929 goto out_acct;
4930 }
4931
4932 io_uring_cmd_get_async_data(cmd)->op_data = data;
4933
4934 if (issue_flags & IO_URING_F_COMPAT) {
4935#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4936 struct btrfs_ioctl_encoded_io_args_32 args32;
4937
4938 if (copy_from_user(&args32, sqe_addr, copy_end)) {
4939 ret = -EFAULT;
4940 goto out_acct;
4941 }
4942
4943 data->args.iov = compat_ptr(args32.iov);
4944 data->args.iovcnt = args32.iovcnt;
4945 data->args.offset = args32.offset;
4946 data->args.flags = args32.flags;
4947#endif
4948 } else {
4949 if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4950 ret = -EFAULT;
4951 goto out_acct;
4952 }
4953 }
4954
4955 if (data->args.flags != 0) {
4956 ret = -EINVAL;
4957 goto out_acct;
4958 }
4959
4960 data->iov = data->iovstack;
4961 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4962 ARRAY_SIZE(data->iovstack), &data->iov,
4963 &data->iter);
4964 if (ret < 0)
4965 goto out_acct;
4966
4967 if (iov_iter_count(&data->iter) == 0) {
4968 ret = 0;
4969 goto out_free;
4970 }
4971 }
4972
4973 pos = data->args.offset;
4974 ret = rw_verify_area(READ, file, &pos, data->args.len);
4975 if (ret < 0)
4976 goto out_free;
4977
4978 init_sync_kiocb(&kiocb, file);
4979 kiocb.ki_pos = pos;
4980
4981 if (issue_flags & IO_URING_F_NONBLOCK)
4982 kiocb.ki_flags |= IOCB_NOWAIT;
4983
4984 start = ALIGN_DOWN(pos, fs_info->sectorsize);
4985 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4986
4987 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4988 &disk_bytenr, &disk_io_size);
4989 if (ret < 0 && ret != -EIOCBQUEUED)
4990 goto out_free;
4991
4992 file_accessed(file);
4993
4994 if (copy_to_user(sqe_addr + copy_end,
4995 (const char *)&data->args + copy_end_kernel,
4996 sizeof(data->args) - copy_end_kernel)) {
4997 if (ret == -EIOCBQUEUED) {
4998 unlock_extent(io_tree, start, lockend, &cached_state);
4999 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
5000 }
5001 ret = -EFAULT;
5002 goto out_free;
5003 }
5004
5005 if (ret == -EIOCBQUEUED) {
5006 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
5007
5008 /* Match ioctl by not returning past EOF if uncompressed. */
5009 if (!data->args.compression)
5010 count = min_t(u64, count, data->args.len);
5011
5012 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
5013 cached_state, disk_bytenr, disk_io_size,
5014 count, data->args.compression,
5015 data->iov, cmd);
5016
5017 goto out_acct;
5018 }
5019
5020out_free:
5021 kfree(data->iov);
5022
5023out_acct:
5024 if (ret > 0)
5025 add_rchar(current, ret);
5026 inc_syscr(current);
5027
5028 return ret;
5029}
5030
5031int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5032{
5033 switch (cmd->cmd_op) {
5034 case BTRFS_IOC_ENCODED_READ:
5035#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5036 case BTRFS_IOC_ENCODED_READ_32:
5037#endif
5038 return btrfs_uring_encoded_read(cmd, issue_flags);
5039 }
5040
5041 return -EINVAL;
5042}
5043
5044static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5045{
5046 struct btrfs_root *root;
5047 struct btrfs_ioctl_subvol_wait args = { 0 };
5048 signed long sched_ret;
5049 int refs;
5050 u64 root_flags;
5051 bool wait_for_deletion = false;
5052 bool found = false;
5053
5054 if (copy_from_user(&args, argp, sizeof(args)))
5055 return -EFAULT;
5056
5057 switch (args.mode) {
5058 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5059 /*
5060 * Wait for the first one deleted that waits until all previous
5061 * are cleaned.
5062 */
5063 spin_lock(&fs_info->trans_lock);
5064 if (!list_empty(&fs_info->dead_roots)) {
5065 root = list_last_entry(&fs_info->dead_roots,
5066 struct btrfs_root, root_list);
5067 args.subvolid = btrfs_root_id(root);
5068 found = true;
5069 }
5070 spin_unlock(&fs_info->trans_lock);
5071 if (!found)
5072 return -ENOENT;
5073
5074 fallthrough;
5075 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5076 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5077 BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5078 return -EINVAL;
5079 break;
5080 case BTRFS_SUBVOL_SYNC_COUNT:
5081 spin_lock(&fs_info->trans_lock);
5082 args.count = list_count_nodes(&fs_info->dead_roots);
5083 spin_unlock(&fs_info->trans_lock);
5084 if (copy_to_user(argp, &args, sizeof(args)))
5085 return -EFAULT;
5086 return 0;
5087 case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5088 spin_lock(&fs_info->trans_lock);
5089 /* Last in the list was deleted first. */
5090 if (!list_empty(&fs_info->dead_roots)) {
5091 root = list_last_entry(&fs_info->dead_roots,
5092 struct btrfs_root, root_list);
5093 args.subvolid = btrfs_root_id(root);
5094 } else {
5095 args.subvolid = 0;
5096 }
5097 spin_unlock(&fs_info->trans_lock);
5098 if (copy_to_user(argp, &args, sizeof(args)))
5099 return -EFAULT;
5100 return 0;
5101 case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5102 spin_lock(&fs_info->trans_lock);
5103 /* First in the list was deleted last. */
5104 if (!list_empty(&fs_info->dead_roots)) {
5105 root = list_first_entry(&fs_info->dead_roots,
5106 struct btrfs_root, root_list);
5107 args.subvolid = btrfs_root_id(root);
5108 } else {
5109 args.subvolid = 0;
5110 }
5111 spin_unlock(&fs_info->trans_lock);
5112 if (copy_to_user(argp, &args, sizeof(args)))
5113 return -EFAULT;
5114 return 0;
5115 default:
5116 return -EINVAL;
5117 }
5118
5119 /* 32bit limitation: fs_roots_radix key is not wide enough. */
5120 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5121 return -EOVERFLOW;
5122
5123 while (1) {
5124 /* Wait for the specific one. */
5125 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5126 return -EINTR;
5127 refs = -1;
5128 spin_lock(&fs_info->fs_roots_radix_lock);
5129 root = radix_tree_lookup(&fs_info->fs_roots_radix,
5130 (unsigned long)args.subvolid);
5131 if (root) {
5132 spin_lock(&root->root_item_lock);
5133 refs = btrfs_root_refs(&root->root_item);
5134 root_flags = btrfs_root_flags(&root->root_item);
5135 spin_unlock(&root->root_item_lock);
5136 }
5137 spin_unlock(&fs_info->fs_roots_radix_lock);
5138 up_read(&fs_info->subvol_sem);
5139
5140 /* Subvolume does not exist. */
5141 if (!root)
5142 return -ENOENT;
5143
5144 /* Subvolume not deleted at all. */
5145 if (refs > 0)
5146 return -EEXIST;
5147 /* We've waited and now the subvolume is gone. */
5148 if (wait_for_deletion && refs == -1) {
5149 /* Return the one we waited for as the last one. */
5150 if (copy_to_user(argp, &args, sizeof(args)))
5151 return -EFAULT;
5152 return 0;
5153 }
5154
5155 /* Subvolume not found on the first try (deleted or never existed). */
5156 if (refs == -1)
5157 return -ENOENT;
5158
5159 wait_for_deletion = true;
5160 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5161 sched_ret = schedule_timeout_interruptible(HZ);
5162 /* Early wake up or error. */
5163 if (sched_ret != 0)
5164 return -EINTR;
5165 }
5166
5167 return 0;
5168}
5169
5170long btrfs_ioctl(struct file *file, unsigned int
5171 cmd, unsigned long arg)
5172{
5173 struct inode *inode = file_inode(file);
5174 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5175 struct btrfs_root *root = BTRFS_I(inode)->root;
5176 void __user *argp = (void __user *)arg;
5177
5178 switch (cmd) {
5179 case FS_IOC_GETVERSION:
5180 return btrfs_ioctl_getversion(inode, argp);
5181 case FS_IOC_GETFSLABEL:
5182 return btrfs_ioctl_get_fslabel(fs_info, argp);
5183 case FS_IOC_SETFSLABEL:
5184 return btrfs_ioctl_set_fslabel(file, argp);
5185 case FITRIM:
5186 return btrfs_ioctl_fitrim(fs_info, argp);
5187 case BTRFS_IOC_SNAP_CREATE:
5188 return btrfs_ioctl_snap_create(file, argp, 0);
5189 case BTRFS_IOC_SNAP_CREATE_V2:
5190 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5191 case BTRFS_IOC_SUBVOL_CREATE:
5192 return btrfs_ioctl_snap_create(file, argp, 1);
5193 case BTRFS_IOC_SUBVOL_CREATE_V2:
5194 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5195 case BTRFS_IOC_SNAP_DESTROY:
5196 return btrfs_ioctl_snap_destroy(file, argp, false);
5197 case BTRFS_IOC_SNAP_DESTROY_V2:
5198 return btrfs_ioctl_snap_destroy(file, argp, true);
5199 case BTRFS_IOC_SUBVOL_GETFLAGS:
5200 return btrfs_ioctl_subvol_getflags(inode, argp);
5201 case BTRFS_IOC_SUBVOL_SETFLAGS:
5202 return btrfs_ioctl_subvol_setflags(file, argp);
5203 case BTRFS_IOC_DEFAULT_SUBVOL:
5204 return btrfs_ioctl_default_subvol(file, argp);
5205 case BTRFS_IOC_DEFRAG:
5206 return btrfs_ioctl_defrag(file, NULL);
5207 case BTRFS_IOC_DEFRAG_RANGE:
5208 return btrfs_ioctl_defrag(file, argp);
5209 case BTRFS_IOC_RESIZE:
5210 return btrfs_ioctl_resize(file, argp);
5211 case BTRFS_IOC_ADD_DEV:
5212 return btrfs_ioctl_add_dev(fs_info, argp);
5213 case BTRFS_IOC_RM_DEV:
5214 return btrfs_ioctl_rm_dev(file, argp);
5215 case BTRFS_IOC_RM_DEV_V2:
5216 return btrfs_ioctl_rm_dev_v2(file, argp);
5217 case BTRFS_IOC_FS_INFO:
5218 return btrfs_ioctl_fs_info(fs_info, argp);
5219 case BTRFS_IOC_DEV_INFO:
5220 return btrfs_ioctl_dev_info(fs_info, argp);
5221 case BTRFS_IOC_TREE_SEARCH:
5222 return btrfs_ioctl_tree_search(inode, argp);
5223 case BTRFS_IOC_TREE_SEARCH_V2:
5224 return btrfs_ioctl_tree_search_v2(inode, argp);
5225 case BTRFS_IOC_INO_LOOKUP:
5226 return btrfs_ioctl_ino_lookup(root, argp);
5227 case BTRFS_IOC_INO_PATHS:
5228 return btrfs_ioctl_ino_to_path(root, argp);
5229 case BTRFS_IOC_LOGICAL_INO:
5230 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5231 case BTRFS_IOC_LOGICAL_INO_V2:
5232 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5233 case BTRFS_IOC_SPACE_INFO:
5234 return btrfs_ioctl_space_info(fs_info, argp);
5235 case BTRFS_IOC_SYNC: {
5236 int ret;
5237
5238 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5239 if (ret)
5240 return ret;
5241 ret = btrfs_sync_fs(inode->i_sb, 1);
5242 /*
5243 * There may be work for the cleaner kthread to do (subvolume
5244 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5245 */
5246 wake_up_process(fs_info->cleaner_kthread);
5247 return ret;
5248 }
5249 case BTRFS_IOC_START_SYNC:
5250 return btrfs_ioctl_start_sync(root, argp);
5251 case BTRFS_IOC_WAIT_SYNC:
5252 return btrfs_ioctl_wait_sync(fs_info, argp);
5253 case BTRFS_IOC_SCRUB:
5254 return btrfs_ioctl_scrub(file, argp);
5255 case BTRFS_IOC_SCRUB_CANCEL:
5256 return btrfs_ioctl_scrub_cancel(fs_info);
5257 case BTRFS_IOC_SCRUB_PROGRESS:
5258 return btrfs_ioctl_scrub_progress(fs_info, argp);
5259 case BTRFS_IOC_BALANCE_V2:
5260 return btrfs_ioctl_balance(file, argp);
5261 case BTRFS_IOC_BALANCE_CTL:
5262 return btrfs_ioctl_balance_ctl(fs_info, arg);
5263 case BTRFS_IOC_BALANCE_PROGRESS:
5264 return btrfs_ioctl_balance_progress(fs_info, argp);
5265 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5266 return btrfs_ioctl_set_received_subvol(file, argp);
5267#ifdef CONFIG_64BIT
5268 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5269 return btrfs_ioctl_set_received_subvol_32(file, argp);
5270#endif
5271 case BTRFS_IOC_SEND:
5272 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5273#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5274 case BTRFS_IOC_SEND_32:
5275 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5276#endif
5277 case BTRFS_IOC_GET_DEV_STATS:
5278 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5279 case BTRFS_IOC_QUOTA_CTL:
5280 return btrfs_ioctl_quota_ctl(file, argp);
5281 case BTRFS_IOC_QGROUP_ASSIGN:
5282 return btrfs_ioctl_qgroup_assign(file, argp);
5283 case BTRFS_IOC_QGROUP_CREATE:
5284 return btrfs_ioctl_qgroup_create(file, argp);
5285 case BTRFS_IOC_QGROUP_LIMIT:
5286 return btrfs_ioctl_qgroup_limit(file, argp);
5287 case BTRFS_IOC_QUOTA_RESCAN:
5288 return btrfs_ioctl_quota_rescan(file, argp);
5289 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5290 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5291 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5292 return btrfs_ioctl_quota_rescan_wait(fs_info);
5293 case BTRFS_IOC_DEV_REPLACE:
5294 return btrfs_ioctl_dev_replace(fs_info, argp);
5295 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5296 return btrfs_ioctl_get_supported_features(argp);
5297 case BTRFS_IOC_GET_FEATURES:
5298 return btrfs_ioctl_get_features(fs_info, argp);
5299 case BTRFS_IOC_SET_FEATURES:
5300 return btrfs_ioctl_set_features(file, argp);
5301 case BTRFS_IOC_GET_SUBVOL_INFO:
5302 return btrfs_ioctl_get_subvol_info(inode, argp);
5303 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5304 return btrfs_ioctl_get_subvol_rootref(root, argp);
5305 case BTRFS_IOC_INO_LOOKUP_USER:
5306 return btrfs_ioctl_ino_lookup_user(file, argp);
5307 case FS_IOC_ENABLE_VERITY:
5308 return fsverity_ioctl_enable(file, (const void __user *)argp);
5309 case FS_IOC_MEASURE_VERITY:
5310 return fsverity_ioctl_measure(file, argp);
5311 case BTRFS_IOC_ENCODED_READ:
5312 return btrfs_ioctl_encoded_read(file, argp, false);
5313 case BTRFS_IOC_ENCODED_WRITE:
5314 return btrfs_ioctl_encoded_write(file, argp, false);
5315#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5316 case BTRFS_IOC_ENCODED_READ_32:
5317 return btrfs_ioctl_encoded_read(file, argp, true);
5318 case BTRFS_IOC_ENCODED_WRITE_32:
5319 return btrfs_ioctl_encoded_write(file, argp, true);
5320#endif
5321 case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5322 return btrfs_ioctl_subvol_sync(fs_info, argp);
5323 }
5324
5325 return -ENOTTY;
5326}
5327
5328#ifdef CONFIG_COMPAT
5329long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5330{
5331 /*
5332 * These all access 32-bit values anyway so no further
5333 * handling is necessary.
5334 */
5335 switch (cmd) {
5336 case FS_IOC32_GETVERSION:
5337 cmd = FS_IOC_GETVERSION;
5338 break;
5339 }
5340
5341 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5342}
5343#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/compat.h>
37#include <linux/bit_spinlock.h>
38#include <linux/security.h>
39#include <linux/xattr.h>
40#include <linux/vmalloc.h>
41#include <linux/slab.h>
42#include <linux/blkdev.h>
43#include <linux/uuid.h>
44#include <linux/btrfs.h>
45#include <linux/uaccess.h>
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "volumes.h"
52#include "locking.h"
53#include "inode-map.h"
54#include "backref.h"
55#include "rcu-string.h"
56#include "send.h"
57#include "dev-replace.h"
58#include "props.h"
59#include "sysfs.h"
60#include "qgroup.h"
61#include "tree-log.h"
62#include "compression.h"
63
64#ifdef CONFIG_64BIT
65/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73} __attribute__ ((__packed__));
74
75struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83} __attribute__ ((__packed__));
84
85#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87#endif
88
89
90static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94/* Mask out flags that are inappropriate for the given type of inode. */
95static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96{
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103}
104
105/*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
108static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109{
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133}
134
135/*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
138void btrfs_update_iflags(struct inode *inode)
139{
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157}
158
159/*
160 * Inherit flags from the parent inode.
161 *
162 * Currently only the compression flags and the cow flags are inherited.
163 */
164void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165{
166 unsigned int flags;
167
168 if (!dir)
169 return;
170
171 flags = BTRFS_I(dir)->flags;
172
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179 }
180
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185 }
186
187 btrfs_update_iflags(inode);
188}
189
190static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191{
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194
195 if (copy_to_user(arg, &flags, sizeof(flags)))
196 return -EFAULT;
197 return 0;
198}
199
200static int check_flags(unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210 return -EINVAL;
211
212 return 0;
213}
214
215static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216{
217 struct inode *inode = file_inode(file);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assumptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366}
367
368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369{
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373}
374
375static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376{
377 struct inode *inode = file_inode(file);
378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 struct btrfs_device *device;
380 struct request_queue *q;
381 struct fstrim_range range;
382 u64 minlen = ULLONG_MAX;
383 u64 num_devices = 0;
384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
385 int ret;
386
387 if (!capable(CAP_SYS_ADMIN))
388 return -EPERM;
389
390 rcu_read_lock();
391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
392 dev_list) {
393 if (!device->bdev)
394 continue;
395 q = bdev_get_queue(device->bdev);
396 if (blk_queue_discard(q)) {
397 num_devices++;
398 minlen = min((u64)q->limits.discard_granularity,
399 minlen);
400 }
401 }
402 rcu_read_unlock();
403
404 if (!num_devices)
405 return -EOPNOTSUPP;
406 if (copy_from_user(&range, arg, sizeof(range)))
407 return -EFAULT;
408 if (range.start > total_bytes ||
409 range.len < fs_info->sb->s_blocksize)
410 return -EINVAL;
411
412 range.len = min(range.len, total_bytes - range.start);
413 range.minlen = max(range.minlen, minlen);
414 ret = btrfs_trim_fs(fs_info, &range);
415 if (ret < 0)
416 return ret;
417
418 if (copy_to_user(arg, &range, sizeof(range)))
419 return -EFAULT;
420
421 return 0;
422}
423
424int btrfs_is_empty_uuid(u8 *uuid)
425{
426 int i;
427
428 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
429 if (uuid[i])
430 return 0;
431 }
432 return 1;
433}
434
435static noinline int create_subvol(struct inode *dir,
436 struct dentry *dentry,
437 char *name, int namelen,
438 u64 *async_transid,
439 struct btrfs_qgroup_inherit *inherit)
440{
441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item *root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = current_time(dir);
451 struct inode *inode;
452 int ret;
453 int err;
454 u64 objectid;
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 u64 index = 0;
457 u64 qgroup_reserved;
458 uuid_le new_uuid;
459
460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
461 if (!root_item)
462 return -ENOMEM;
463
464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
465 if (ret)
466 goto fail_free;
467
468 /*
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
471 */
472 if (btrfs_qgroup_level(objectid)) {
473 ret = -ENOSPC;
474 goto fail_free;
475 }
476
477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
478 /*
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
481 */
482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 8, &qgroup_reserved, false);
484 if (ret)
485 goto fail_free;
486
487 trans = btrfs_start_transaction(root, 0);
488 if (IS_ERR(trans)) {
489 ret = PTR_ERR(trans);
490 btrfs_subvolume_release_metadata(fs_info, &block_rsv,
491 qgroup_reserved);
492 goto fail_free;
493 }
494 trans->block_rsv = &block_rsv;
495 trans->bytes_reserved = block_rsv.size;
496
497 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
498 if (ret)
499 goto fail;
500
501 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
502 if (IS_ERR(leaf)) {
503 ret = PTR_ERR(leaf);
504 goto fail;
505 }
506
507 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
508 btrfs_set_header_bytenr(leaf, leaf->start);
509 btrfs_set_header_generation(leaf, trans->transid);
510 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
511 btrfs_set_header_owner(leaf, objectid);
512
513 write_extent_buffer_fsid(leaf, fs_info->fsid);
514 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
515 btrfs_mark_buffer_dirty(leaf);
516
517 inode_item = &root_item->inode;
518 btrfs_set_stack_inode_generation(inode_item, 1);
519 btrfs_set_stack_inode_size(inode_item, 3);
520 btrfs_set_stack_inode_nlink(inode_item, 1);
521 btrfs_set_stack_inode_nbytes(inode_item,
522 fs_info->nodesize);
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
535
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
545
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
548 leaf = NULL;
549
550 btrfs_set_root_dirid(root_item, new_dirid);
551
552 key.objectid = objectid;
553 key.offset = 0;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
556 root_item);
557 if (ret)
558 goto fail;
559
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, ret);
565 goto fail;
566 }
567
568 btrfs_record_root_in_trans(trans, new_root);
569
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 if (ret) {
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, ret);
574 goto fail;
575 }
576
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
580
581 /*
582 * insert the directory item
583 */
584 ret = btrfs_set_inode_index(dir, &index);
585 if (ret) {
586 btrfs_abort_transaction(trans, ret);
587 goto fail;
588 }
589
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
593 if (ret) {
594 btrfs_abort_transaction(trans, ret);
595 goto fail;
596 }
597
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
600 BUG_ON(ret);
601
602 ret = btrfs_add_root_ref(trans, fs_info,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
605 BUG_ON(ret);
606
607 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
608 BTRFS_UUID_KEY_SUBVOL, objectid);
609 if (ret)
610 btrfs_abort_transaction(trans, ret);
611
612fail:
613 kfree(root_item);
614 trans->block_rsv = NULL;
615 trans->bytes_reserved = 0;
616 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved);
617
618 if (async_transid) {
619 *async_transid = trans->transid;
620 err = btrfs_commit_transaction_async(trans, 1);
621 if (err)
622 err = btrfs_commit_transaction(trans);
623 } else {
624 err = btrfs_commit_transaction(trans);
625 }
626 if (err && !ret)
627 ret = err;
628
629 if (!ret) {
630 inode = btrfs_lookup_dentry(dir, dentry);
631 if (IS_ERR(inode))
632 return PTR_ERR(inode);
633 d_instantiate(dentry, inode);
634 }
635 return ret;
636
637fail_free:
638 kfree(root_item);
639 return ret;
640}
641
642static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
643{
644 s64 writers;
645 DEFINE_WAIT(wait);
646
647 do {
648 prepare_to_wait(&root->subv_writers->wait, &wait,
649 TASK_UNINTERRUPTIBLE);
650
651 writers = percpu_counter_sum(&root->subv_writers->counter);
652 if (writers)
653 schedule();
654
655 finish_wait(&root->subv_writers->wait, &wait);
656 } while (writers);
657}
658
659static int create_snapshot(struct btrfs_root *root, struct inode *dir,
660 struct dentry *dentry, char *name, int namelen,
661 u64 *async_transid, bool readonly,
662 struct btrfs_qgroup_inherit *inherit)
663{
664 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
665 struct inode *inode;
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
668 int ret;
669
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 return -EINVAL;
672
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
675 return -ENOMEM;
676
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 GFP_NOFS);
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 ret = -ENOMEM;
682 goto free_pending;
683 }
684
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
688
689 ret = btrfs_start_delalloc_inodes(root, 0);
690 if (ret)
691 goto dec_and_free;
692
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
697 /*
698 * 1 - parent dir inode
699 * 2 - dir entries
700 * 1 - root item
701 * 2 - root ref/backref
702 * 1 - root of snapshot
703 * 1 - UUID item
704 */
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
708 false);
709 if (ret)
710 goto dec_and_free;
711
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
717
718 trans = btrfs_start_transaction(root, 0);
719 if (IS_ERR(trans)) {
720 ret = PTR_ERR(trans);
721 goto fail;
722 }
723
724 spin_lock(&fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&fs_info->trans_lock);
728 if (async_transid) {
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans, 1);
731 if (ret)
732 ret = btrfs_commit_transaction(trans);
733 } else {
734 ret = btrfs_commit_transaction(trans);
735 }
736 if (ret)
737 goto fail;
738
739 ret = pending_snapshot->error;
740 if (ret)
741 goto fail;
742
743 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
744 if (ret)
745 goto fail;
746
747 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
748 if (IS_ERR(inode)) {
749 ret = PTR_ERR(inode);
750 goto fail;
751 }
752
753 d_instantiate(dentry, inode);
754 ret = 0;
755fail:
756 btrfs_subvolume_release_metadata(fs_info,
757 &pending_snapshot->block_rsv,
758 pending_snapshot->qgroup_reserved);
759dec_and_free:
760 if (atomic_dec_and_test(&root->will_be_snapshoted))
761 wake_up_atomic_t(&root->will_be_snapshoted);
762free_pending:
763 kfree(pending_snapshot->root_item);
764 btrfs_free_path(pending_snapshot->path);
765 kfree(pending_snapshot);
766
767 return ret;
768}
769
770/* copy of may_delete in fs/namei.c()
771 * Check whether we can remove a link victim from directory dir, check
772 * whether the type of victim is right.
773 * 1. We can't do it if dir is read-only (done in permission())
774 * 2. We should have write and exec permissions on dir
775 * 3. We can't remove anything from append-only dir
776 * 4. We can't do anything with immutable dir (done in permission())
777 * 5. If the sticky bit on dir is set we should either
778 * a. be owner of dir, or
779 * b. be owner of victim, or
780 * c. have CAP_FOWNER capability
781 * 6. If the victim is append-only or immutable we can't do anything with
782 * links pointing to it.
783 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
784 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
785 * 9. We can't remove a root or mountpoint.
786 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
787 * nfs_async_unlink().
788 */
789
790static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
791{
792 int error;
793
794 if (d_really_is_negative(victim))
795 return -ENOENT;
796
797 BUG_ON(d_inode(victim->d_parent) != dir);
798 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
799
800 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
801 if (error)
802 return error;
803 if (IS_APPEND(dir))
804 return -EPERM;
805 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
806 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
807 return -EPERM;
808 if (isdir) {
809 if (!d_is_dir(victim))
810 return -ENOTDIR;
811 if (IS_ROOT(victim))
812 return -EBUSY;
813 } else if (d_is_dir(victim))
814 return -EISDIR;
815 if (IS_DEADDIR(dir))
816 return -ENOENT;
817 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
818 return -EBUSY;
819 return 0;
820}
821
822/* copy of may_create in fs/namei.c() */
823static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
824{
825 if (d_really_is_positive(child))
826 return -EEXIST;
827 if (IS_DEADDIR(dir))
828 return -ENOENT;
829 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
830}
831
832/*
833 * Create a new subvolume below @parent. This is largely modeled after
834 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
835 * inside this filesystem so it's quite a bit simpler.
836 */
837static noinline int btrfs_mksubvol(const struct path *parent,
838 char *name, int namelen,
839 struct btrfs_root *snap_src,
840 u64 *async_transid, bool readonly,
841 struct btrfs_qgroup_inherit *inherit)
842{
843 struct inode *dir = d_inode(parent->dentry);
844 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
845 struct dentry *dentry;
846 int error;
847
848 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
849 if (error == -EINTR)
850 return error;
851
852 dentry = lookup_one_len(name, parent->dentry, namelen);
853 error = PTR_ERR(dentry);
854 if (IS_ERR(dentry))
855 goto out_unlock;
856
857 error = btrfs_may_create(dir, dentry);
858 if (error)
859 goto out_dput;
860
861 /*
862 * even if this name doesn't exist, we may get hash collisions.
863 * check for them now when we can safely fail
864 */
865 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
866 dir->i_ino, name,
867 namelen);
868 if (error)
869 goto out_dput;
870
871 down_read(&fs_info->subvol_sem);
872
873 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
874 goto out_up_read;
875
876 if (snap_src) {
877 error = create_snapshot(snap_src, dir, dentry, name, namelen,
878 async_transid, readonly, inherit);
879 } else {
880 error = create_subvol(dir, dentry, name, namelen,
881 async_transid, inherit);
882 }
883 if (!error)
884 fsnotify_mkdir(dir, dentry);
885out_up_read:
886 up_read(&fs_info->subvol_sem);
887out_dput:
888 dput(dentry);
889out_unlock:
890 inode_unlock(dir);
891 return error;
892}
893
894/*
895 * When we're defragging a range, we don't want to kick it off again
896 * if it is really just waiting for delalloc to send it down.
897 * If we find a nice big extent or delalloc range for the bytes in the
898 * file you want to defrag, we return 0 to let you know to skip this
899 * part of the file
900 */
901static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
902{
903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
904 struct extent_map *em = NULL;
905 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
906 u64 end;
907
908 read_lock(&em_tree->lock);
909 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
910 read_unlock(&em_tree->lock);
911
912 if (em) {
913 end = extent_map_end(em);
914 free_extent_map(em);
915 if (end - offset > thresh)
916 return 0;
917 }
918 /* if we already have a nice delalloc here, just stop */
919 thresh /= 2;
920 end = count_range_bits(io_tree, &offset, offset + thresh,
921 thresh, EXTENT_DELALLOC, 1);
922 if (end >= thresh)
923 return 0;
924 return 1;
925}
926
927/*
928 * helper function to walk through a file and find extents
929 * newer than a specific transid, and smaller than thresh.
930 *
931 * This is used by the defragging code to find new and small
932 * extents
933 */
934static int find_new_extents(struct btrfs_root *root,
935 struct inode *inode, u64 newer_than,
936 u64 *off, u32 thresh)
937{
938 struct btrfs_path *path;
939 struct btrfs_key min_key;
940 struct extent_buffer *leaf;
941 struct btrfs_file_extent_item *extent;
942 int type;
943 int ret;
944 u64 ino = btrfs_ino(inode);
945
946 path = btrfs_alloc_path();
947 if (!path)
948 return -ENOMEM;
949
950 min_key.objectid = ino;
951 min_key.type = BTRFS_EXTENT_DATA_KEY;
952 min_key.offset = *off;
953
954 while (1) {
955 ret = btrfs_search_forward(root, &min_key, path, newer_than);
956 if (ret != 0)
957 goto none;
958process_slot:
959 if (min_key.objectid != ino)
960 goto none;
961 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
962 goto none;
963
964 leaf = path->nodes[0];
965 extent = btrfs_item_ptr(leaf, path->slots[0],
966 struct btrfs_file_extent_item);
967
968 type = btrfs_file_extent_type(leaf, extent);
969 if (type == BTRFS_FILE_EXTENT_REG &&
970 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
971 check_defrag_in_cache(inode, min_key.offset, thresh)) {
972 *off = min_key.offset;
973 btrfs_free_path(path);
974 return 0;
975 }
976
977 path->slots[0]++;
978 if (path->slots[0] < btrfs_header_nritems(leaf)) {
979 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
980 goto process_slot;
981 }
982
983 if (min_key.offset == (u64)-1)
984 goto none;
985
986 min_key.offset++;
987 btrfs_release_path(path);
988 }
989none:
990 btrfs_free_path(path);
991 return -ENOENT;
992}
993
994static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
995{
996 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
998 struct extent_map *em;
999 u64 len = PAGE_SIZE;
1000
1001 /*
1002 * hopefully we have this extent in the tree already, try without
1003 * the full extent lock
1004 */
1005 read_lock(&em_tree->lock);
1006 em = lookup_extent_mapping(em_tree, start, len);
1007 read_unlock(&em_tree->lock);
1008
1009 if (!em) {
1010 struct extent_state *cached = NULL;
1011 u64 end = start + len - 1;
1012
1013 /* get the big lock and read metadata off disk */
1014 lock_extent_bits(io_tree, start, end, &cached);
1015 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1016 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1017
1018 if (IS_ERR(em))
1019 return NULL;
1020 }
1021
1022 return em;
1023}
1024
1025static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1026{
1027 struct extent_map *next;
1028 bool ret = true;
1029
1030 /* this is the last extent */
1031 if (em->start + em->len >= i_size_read(inode))
1032 return false;
1033
1034 next = defrag_lookup_extent(inode, em->start + em->len);
1035 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1036 ret = false;
1037 else if ((em->block_start + em->block_len == next->block_start) &&
1038 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1039 ret = false;
1040
1041 free_extent_map(next);
1042 return ret;
1043}
1044
1045static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1046 u64 *last_len, u64 *skip, u64 *defrag_end,
1047 int compress)
1048{
1049 struct extent_map *em;
1050 int ret = 1;
1051 bool next_mergeable = true;
1052 bool prev_mergeable = true;
1053
1054 /*
1055 * make sure that once we start defragging an extent, we keep on
1056 * defragging it
1057 */
1058 if (start < *defrag_end)
1059 return 1;
1060
1061 *skip = 0;
1062
1063 em = defrag_lookup_extent(inode, start);
1064 if (!em)
1065 return 0;
1066
1067 /* this will cover holes, and inline extents */
1068 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1069 ret = 0;
1070 goto out;
1071 }
1072
1073 if (!*defrag_end)
1074 prev_mergeable = false;
1075
1076 next_mergeable = defrag_check_next_extent(inode, em);
1077 /*
1078 * we hit a real extent, if it is big or the next extent is not a
1079 * real extent, don't bother defragging it
1080 */
1081 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1082 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1083 ret = 0;
1084out:
1085 /*
1086 * last_len ends up being a counter of how many bytes we've defragged.
1087 * every time we choose not to defrag an extent, we reset *last_len
1088 * so that the next tiny extent will force a defrag.
1089 *
1090 * The end result of this is that tiny extents before a single big
1091 * extent will force at least part of that big extent to be defragged.
1092 */
1093 if (ret) {
1094 *defrag_end = extent_map_end(em);
1095 } else {
1096 *last_len = 0;
1097 *skip = extent_map_end(em);
1098 *defrag_end = 0;
1099 }
1100
1101 free_extent_map(em);
1102 return ret;
1103}
1104
1105/*
1106 * it doesn't do much good to defrag one or two pages
1107 * at a time. This pulls in a nice chunk of pages
1108 * to COW and defrag.
1109 *
1110 * It also makes sure the delalloc code has enough
1111 * dirty data to avoid making new small extents as part
1112 * of the defrag
1113 *
1114 * It's a good idea to start RA on this range
1115 * before calling this.
1116 */
1117static int cluster_pages_for_defrag(struct inode *inode,
1118 struct page **pages,
1119 unsigned long start_index,
1120 unsigned long num_pages)
1121{
1122 unsigned long file_end;
1123 u64 isize = i_size_read(inode);
1124 u64 page_start;
1125 u64 page_end;
1126 u64 page_cnt;
1127 int ret;
1128 int i;
1129 int i_done;
1130 struct btrfs_ordered_extent *ordered;
1131 struct extent_state *cached_state = NULL;
1132 struct extent_io_tree *tree;
1133 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1134
1135 file_end = (isize - 1) >> PAGE_SHIFT;
1136 if (!isize || start_index > file_end)
1137 return 0;
1138
1139 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1140
1141 ret = btrfs_delalloc_reserve_space(inode,
1142 start_index << PAGE_SHIFT,
1143 page_cnt << PAGE_SHIFT);
1144 if (ret)
1145 return ret;
1146 i_done = 0;
1147 tree = &BTRFS_I(inode)->io_tree;
1148
1149 /* step one, lock all the pages */
1150 for (i = 0; i < page_cnt; i++) {
1151 struct page *page;
1152again:
1153 page = find_or_create_page(inode->i_mapping,
1154 start_index + i, mask);
1155 if (!page)
1156 break;
1157
1158 page_start = page_offset(page);
1159 page_end = page_start + PAGE_SIZE - 1;
1160 while (1) {
1161 lock_extent_bits(tree, page_start, page_end,
1162 &cached_state);
1163 ordered = btrfs_lookup_ordered_extent(inode,
1164 page_start);
1165 unlock_extent_cached(tree, page_start, page_end,
1166 &cached_state, GFP_NOFS);
1167 if (!ordered)
1168 break;
1169
1170 unlock_page(page);
1171 btrfs_start_ordered_extent(inode, ordered, 1);
1172 btrfs_put_ordered_extent(ordered);
1173 lock_page(page);
1174 /*
1175 * we unlocked the page above, so we need check if
1176 * it was released or not.
1177 */
1178 if (page->mapping != inode->i_mapping) {
1179 unlock_page(page);
1180 put_page(page);
1181 goto again;
1182 }
1183 }
1184
1185 if (!PageUptodate(page)) {
1186 btrfs_readpage(NULL, page);
1187 lock_page(page);
1188 if (!PageUptodate(page)) {
1189 unlock_page(page);
1190 put_page(page);
1191 ret = -EIO;
1192 break;
1193 }
1194 }
1195
1196 if (page->mapping != inode->i_mapping) {
1197 unlock_page(page);
1198 put_page(page);
1199 goto again;
1200 }
1201
1202 pages[i] = page;
1203 i_done++;
1204 }
1205 if (!i_done || ret)
1206 goto out;
1207
1208 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1209 goto out;
1210
1211 /*
1212 * so now we have a nice long stream of locked
1213 * and up to date pages, lets wait on them
1214 */
1215 for (i = 0; i < i_done; i++)
1216 wait_on_page_writeback(pages[i]);
1217
1218 page_start = page_offset(pages[0]);
1219 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1220
1221 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1222 page_start, page_end - 1, &cached_state);
1223 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1224 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1225 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1226 &cached_state, GFP_NOFS);
1227
1228 if (i_done != page_cnt) {
1229 spin_lock(&BTRFS_I(inode)->lock);
1230 BTRFS_I(inode)->outstanding_extents++;
1231 spin_unlock(&BTRFS_I(inode)->lock);
1232 btrfs_delalloc_release_space(inode,
1233 start_index << PAGE_SHIFT,
1234 (page_cnt - i_done) << PAGE_SHIFT);
1235 }
1236
1237
1238 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1239 &cached_state);
1240
1241 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1242 page_start, page_end - 1, &cached_state,
1243 GFP_NOFS);
1244
1245 for (i = 0; i < i_done; i++) {
1246 clear_page_dirty_for_io(pages[i]);
1247 ClearPageChecked(pages[i]);
1248 set_page_extent_mapped(pages[i]);
1249 set_page_dirty(pages[i]);
1250 unlock_page(pages[i]);
1251 put_page(pages[i]);
1252 }
1253 return i_done;
1254out:
1255 for (i = 0; i < i_done; i++) {
1256 unlock_page(pages[i]);
1257 put_page(pages[i]);
1258 }
1259 btrfs_delalloc_release_space(inode,
1260 start_index << PAGE_SHIFT,
1261 page_cnt << PAGE_SHIFT);
1262 return ret;
1263
1264}
1265
1266int btrfs_defrag_file(struct inode *inode, struct file *file,
1267 struct btrfs_ioctl_defrag_range_args *range,
1268 u64 newer_than, unsigned long max_to_defrag)
1269{
1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1275 u64 last_len = 0;
1276 u64 skip = 0;
1277 u64 defrag_end = 0;
1278 u64 newer_off = range->start;
1279 unsigned long i;
1280 unsigned long ra_index = 0;
1281 int ret;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1289
1290 if (isize == 0)
1291 return 0;
1292
1293 if (range->start >= isize)
1294 return -EINVAL;
1295
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 return -EINVAL;
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1301 }
1302
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1305
1306 /*
1307 * if we were not given a file, allocate a readahead
1308 * context
1309 */
1310 if (!file) {
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 if (!ra)
1313 return -ENOMEM;
1314 file_ra_state_init(ra, inode->i_mapping);
1315 } else {
1316 ra = &file->f_ra;
1317 }
1318
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 GFP_NOFS);
1321 if (!pages) {
1322 ret = -ENOMEM;
1323 goto out_ra;
1324 }
1325
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1330 } else {
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1332 }
1333
1334 if (newer_than) {
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1337 if (!ret) {
1338 range->start = newer_off;
1339 /*
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1342 */
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 } else
1345 goto out_ra;
1346 } else {
1347 i = range->start >> PAGE_SHIFT;
1348 }
1349 if (!max_to_defrag)
1350 max_to_defrag = last_index - i + 1;
1351
1352 /*
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1355 */
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1358
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 /*
1362 * make sure we stop running if someone unmounts
1363 * the FS
1364 */
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 break;
1367
1368 if (btrfs_defrag_cancelled(fs_info)) {
1369 btrfs_debug(fs_info, "defrag_file cancelled");
1370 ret = -EAGAIN;
1371 break;
1372 }
1373
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 unsigned long next;
1379 /*
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1382 */
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1385 continue;
1386 }
1387
1388 if (!newer_than) {
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1390 PAGE_SHIFT) - i;
1391 cluster = min(cluster, max_cluster);
1392 } else {
1393 cluster = max_cluster;
1394 }
1395
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 cluster);
1400 ra_index += cluster;
1401 }
1402
1403 inode_lock(inode);
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 if (ret < 0) {
1408 inode_unlock(inode);
1409 goto out_ra;
1410 }
1411
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1415
1416 if (newer_than) {
1417 if (newer_off == (u64)-1)
1418 break;
1419
1420 if (ret > 0)
1421 i += ret;
1422
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1425
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1428 if (!ret) {
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1431 } else {
1432 break;
1433 }
1434 } else {
1435 if (ret > 0) {
1436 i += ret;
1437 last_len += ret << PAGE_SHIFT;
1438 } else {
1439 i++;
1440 last_len = 0;
1441 }
1442 }
1443 }
1444
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1450 }
1451
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1456 */
1457 atomic_inc(&fs_info->async_submit_draining);
1458 while (atomic_read(&fs_info->nr_async_submits) ||
1459 atomic_read(&fs_info->async_delalloc_pages)) {
1460 wait_event(fs_info->async_submit_wait,
1461 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&fs_info->async_delalloc_pages) == 0));
1463 }
1464 atomic_dec(&fs_info->async_submit_draining);
1465 }
1466
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1469 }
1470
1471 ret = defrag_count;
1472
1473out_ra:
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 inode_lock(inode);
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1478 }
1479 if (!file)
1480 kfree(ra);
1481 kfree(pages);
1482 return ret;
1483}
1484
1485static noinline int btrfs_ioctl_resize(struct file *file,
1486 void __user *arg)
1487{
1488 struct inode *inode = file_inode(file);
1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 u64 new_size;
1491 u64 old_size;
1492 u64 devid = 1;
1493 struct btrfs_root *root = BTRFS_I(inode)->root;
1494 struct btrfs_ioctl_vol_args *vol_args;
1495 struct btrfs_trans_handle *trans;
1496 struct btrfs_device *device = NULL;
1497 char *sizestr;
1498 char *retptr;
1499 char *devstr = NULL;
1500 int ret = 0;
1501 int mod = 0;
1502
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505
1506 ret = mnt_want_write_file(file);
1507 if (ret)
1508 return ret;
1509
1510 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
1511 mnt_drop_write_file(file);
1512 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1513 }
1514
1515 mutex_lock(&fs_info->volume_mutex);
1516 vol_args = memdup_user(arg, sizeof(*vol_args));
1517 if (IS_ERR(vol_args)) {
1518 ret = PTR_ERR(vol_args);
1519 goto out;
1520 }
1521
1522 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1523
1524 sizestr = vol_args->name;
1525 devstr = strchr(sizestr, ':');
1526 if (devstr) {
1527 sizestr = devstr + 1;
1528 *devstr = '\0';
1529 devstr = vol_args->name;
1530 ret = kstrtoull(devstr, 10, &devid);
1531 if (ret)
1532 goto out_free;
1533 if (!devid) {
1534 ret = -EINVAL;
1535 goto out_free;
1536 }
1537 btrfs_info(fs_info, "resizing devid %llu", devid);
1538 }
1539
1540 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1541 if (!device) {
1542 btrfs_info(fs_info, "resizer unable to find device %llu",
1543 devid);
1544 ret = -ENODEV;
1545 goto out_free;
1546 }
1547
1548 if (!device->writeable) {
1549 btrfs_info(fs_info,
1550 "resizer unable to apply on readonly device %llu",
1551 devid);
1552 ret = -EPERM;
1553 goto out_free;
1554 }
1555
1556 if (!strcmp(sizestr, "max"))
1557 new_size = device->bdev->bd_inode->i_size;
1558 else {
1559 if (sizestr[0] == '-') {
1560 mod = -1;
1561 sizestr++;
1562 } else if (sizestr[0] == '+') {
1563 mod = 1;
1564 sizestr++;
1565 }
1566 new_size = memparse(sizestr, &retptr);
1567 if (*retptr != '\0' || new_size == 0) {
1568 ret = -EINVAL;
1569 goto out_free;
1570 }
1571 }
1572
1573 if (device->is_tgtdev_for_dev_replace) {
1574 ret = -EPERM;
1575 goto out_free;
1576 }
1577
1578 old_size = btrfs_device_get_total_bytes(device);
1579
1580 if (mod < 0) {
1581 if (new_size > old_size) {
1582 ret = -EINVAL;
1583 goto out_free;
1584 }
1585 new_size = old_size - new_size;
1586 } else if (mod > 0) {
1587 if (new_size > ULLONG_MAX - old_size) {
1588 ret = -ERANGE;
1589 goto out_free;
1590 }
1591 new_size = old_size + new_size;
1592 }
1593
1594 if (new_size < SZ_256M) {
1595 ret = -EINVAL;
1596 goto out_free;
1597 }
1598 if (new_size > device->bdev->bd_inode->i_size) {
1599 ret = -EFBIG;
1600 goto out_free;
1601 }
1602
1603 new_size = div_u64(new_size, fs_info->sectorsize);
1604 new_size *= fs_info->sectorsize;
1605
1606 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1607 rcu_str_deref(device->name), new_size);
1608
1609 if (new_size > old_size) {
1610 trans = btrfs_start_transaction(root, 0);
1611 if (IS_ERR(trans)) {
1612 ret = PTR_ERR(trans);
1613 goto out_free;
1614 }
1615 ret = btrfs_grow_device(trans, device, new_size);
1616 btrfs_commit_transaction(trans);
1617 } else if (new_size < old_size) {
1618 ret = btrfs_shrink_device(device, new_size);
1619 } /* equal, nothing need to do */
1620
1621out_free:
1622 kfree(vol_args);
1623out:
1624 mutex_unlock(&fs_info->volume_mutex);
1625 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
1626 mnt_drop_write_file(file);
1627 return ret;
1628}
1629
1630static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1631 char *name, unsigned long fd, int subvol,
1632 u64 *transid, bool readonly,
1633 struct btrfs_qgroup_inherit *inherit)
1634{
1635 int namelen;
1636 int ret = 0;
1637
1638 if (!S_ISDIR(file_inode(file)->i_mode))
1639 return -ENOTDIR;
1640
1641 ret = mnt_want_write_file(file);
1642 if (ret)
1643 goto out;
1644
1645 namelen = strlen(name);
1646 if (strchr(name, '/')) {
1647 ret = -EINVAL;
1648 goto out_drop_write;
1649 }
1650
1651 if (name[0] == '.' &&
1652 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1653 ret = -EEXIST;
1654 goto out_drop_write;
1655 }
1656
1657 if (subvol) {
1658 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1659 NULL, transid, readonly, inherit);
1660 } else {
1661 struct fd src = fdget(fd);
1662 struct inode *src_inode;
1663 if (!src.file) {
1664 ret = -EINVAL;
1665 goto out_drop_write;
1666 }
1667
1668 src_inode = file_inode(src.file);
1669 if (src_inode->i_sb != file_inode(file)->i_sb) {
1670 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1671 "Snapshot src from another FS");
1672 ret = -EXDEV;
1673 } else if (!inode_owner_or_capable(src_inode)) {
1674 /*
1675 * Subvolume creation is not restricted, but snapshots
1676 * are limited to own subvolumes only
1677 */
1678 ret = -EPERM;
1679 } else {
1680 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1681 BTRFS_I(src_inode)->root,
1682 transid, readonly, inherit);
1683 }
1684 fdput(src);
1685 }
1686out_drop_write:
1687 mnt_drop_write_file(file);
1688out:
1689 return ret;
1690}
1691
1692static noinline int btrfs_ioctl_snap_create(struct file *file,
1693 void __user *arg, int subvol)
1694{
1695 struct btrfs_ioctl_vol_args *vol_args;
1696 int ret;
1697
1698 if (!S_ISDIR(file_inode(file)->i_mode))
1699 return -ENOTDIR;
1700
1701 vol_args = memdup_user(arg, sizeof(*vol_args));
1702 if (IS_ERR(vol_args))
1703 return PTR_ERR(vol_args);
1704 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1705
1706 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1707 vol_args->fd, subvol,
1708 NULL, false, NULL);
1709
1710 kfree(vol_args);
1711 return ret;
1712}
1713
1714static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1715 void __user *arg, int subvol)
1716{
1717 struct btrfs_ioctl_vol_args_v2 *vol_args;
1718 int ret;
1719 u64 transid = 0;
1720 u64 *ptr = NULL;
1721 bool readonly = false;
1722 struct btrfs_qgroup_inherit *inherit = NULL;
1723
1724 if (!S_ISDIR(file_inode(file)->i_mode))
1725 return -ENOTDIR;
1726
1727 vol_args = memdup_user(arg, sizeof(*vol_args));
1728 if (IS_ERR(vol_args))
1729 return PTR_ERR(vol_args);
1730 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1731
1732 if (vol_args->flags &
1733 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1734 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1735 ret = -EOPNOTSUPP;
1736 goto free_args;
1737 }
1738
1739 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1740 ptr = &transid;
1741 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1742 readonly = true;
1743 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1744 if (vol_args->size > PAGE_SIZE) {
1745 ret = -EINVAL;
1746 goto free_args;
1747 }
1748 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1749 if (IS_ERR(inherit)) {
1750 ret = PTR_ERR(inherit);
1751 goto free_args;
1752 }
1753 }
1754
1755 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1756 vol_args->fd, subvol, ptr,
1757 readonly, inherit);
1758 if (ret)
1759 goto free_inherit;
1760
1761 if (ptr && copy_to_user(arg +
1762 offsetof(struct btrfs_ioctl_vol_args_v2,
1763 transid),
1764 ptr, sizeof(*ptr)))
1765 ret = -EFAULT;
1766
1767free_inherit:
1768 kfree(inherit);
1769free_args:
1770 kfree(vol_args);
1771 return ret;
1772}
1773
1774static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1775 void __user *arg)
1776{
1777 struct inode *inode = file_inode(file);
1778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1779 struct btrfs_root *root = BTRFS_I(inode)->root;
1780 int ret = 0;
1781 u64 flags = 0;
1782
1783 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1784 return -EINVAL;
1785
1786 down_read(&fs_info->subvol_sem);
1787 if (btrfs_root_readonly(root))
1788 flags |= BTRFS_SUBVOL_RDONLY;
1789 up_read(&fs_info->subvol_sem);
1790
1791 if (copy_to_user(arg, &flags, sizeof(flags)))
1792 ret = -EFAULT;
1793
1794 return ret;
1795}
1796
1797static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1798 void __user *arg)
1799{
1800 struct inode *inode = file_inode(file);
1801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1802 struct btrfs_root *root = BTRFS_I(inode)->root;
1803 struct btrfs_trans_handle *trans;
1804 u64 root_flags;
1805 u64 flags;
1806 int ret = 0;
1807
1808 if (!inode_owner_or_capable(inode))
1809 return -EPERM;
1810
1811 ret = mnt_want_write_file(file);
1812 if (ret)
1813 goto out;
1814
1815 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1816 ret = -EINVAL;
1817 goto out_drop_write;
1818 }
1819
1820 if (copy_from_user(&flags, arg, sizeof(flags))) {
1821 ret = -EFAULT;
1822 goto out_drop_write;
1823 }
1824
1825 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1826 ret = -EINVAL;
1827 goto out_drop_write;
1828 }
1829
1830 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1831 ret = -EOPNOTSUPP;
1832 goto out_drop_write;
1833 }
1834
1835 down_write(&fs_info->subvol_sem);
1836
1837 /* nothing to do */
1838 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1839 goto out_drop_sem;
1840
1841 root_flags = btrfs_root_flags(&root->root_item);
1842 if (flags & BTRFS_SUBVOL_RDONLY) {
1843 btrfs_set_root_flags(&root->root_item,
1844 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1845 } else {
1846 /*
1847 * Block RO -> RW transition if this subvolume is involved in
1848 * send
1849 */
1850 spin_lock(&root->root_item_lock);
1851 if (root->send_in_progress == 0) {
1852 btrfs_set_root_flags(&root->root_item,
1853 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1854 spin_unlock(&root->root_item_lock);
1855 } else {
1856 spin_unlock(&root->root_item_lock);
1857 btrfs_warn(fs_info,
1858 "Attempt to set subvolume %llu read-write during send",
1859 root->root_key.objectid);
1860 ret = -EPERM;
1861 goto out_drop_sem;
1862 }
1863 }
1864
1865 trans = btrfs_start_transaction(root, 1);
1866 if (IS_ERR(trans)) {
1867 ret = PTR_ERR(trans);
1868 goto out_reset;
1869 }
1870
1871 ret = btrfs_update_root(trans, fs_info->tree_root,
1872 &root->root_key, &root->root_item);
1873
1874 btrfs_commit_transaction(trans);
1875out_reset:
1876 if (ret)
1877 btrfs_set_root_flags(&root->root_item, root_flags);
1878out_drop_sem:
1879 up_write(&fs_info->subvol_sem);
1880out_drop_write:
1881 mnt_drop_write_file(file);
1882out:
1883 return ret;
1884}
1885
1886/*
1887 * helper to check if the subvolume references other subvolumes
1888 */
1889static noinline int may_destroy_subvol(struct btrfs_root *root)
1890{
1891 struct btrfs_fs_info *fs_info = root->fs_info;
1892 struct btrfs_path *path;
1893 struct btrfs_dir_item *di;
1894 struct btrfs_key key;
1895 u64 dir_id;
1896 int ret;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 /* Make sure this root isn't set as the default subvol */
1903 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1904 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1905 dir_id, "default", 7, 0);
1906 if (di && !IS_ERR(di)) {
1907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1908 if (key.objectid == root->root_key.objectid) {
1909 ret = -EPERM;
1910 btrfs_err(fs_info,
1911 "deleting default subvolume %llu is not allowed",
1912 key.objectid);
1913 goto out;
1914 }
1915 btrfs_release_path(path);
1916 }
1917
1918 key.objectid = root->root_key.objectid;
1919 key.type = BTRFS_ROOT_REF_KEY;
1920 key.offset = (u64)-1;
1921
1922 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1923 if (ret < 0)
1924 goto out;
1925 BUG_ON(ret == 0);
1926
1927 ret = 0;
1928 if (path->slots[0] > 0) {
1929 path->slots[0]--;
1930 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1931 if (key.objectid == root->root_key.objectid &&
1932 key.type == BTRFS_ROOT_REF_KEY)
1933 ret = -ENOTEMPTY;
1934 }
1935out:
1936 btrfs_free_path(path);
1937 return ret;
1938}
1939
1940static noinline int key_in_sk(struct btrfs_key *key,
1941 struct btrfs_ioctl_search_key *sk)
1942{
1943 struct btrfs_key test;
1944 int ret;
1945
1946 test.objectid = sk->min_objectid;
1947 test.type = sk->min_type;
1948 test.offset = sk->min_offset;
1949
1950 ret = btrfs_comp_cpu_keys(key, &test);
1951 if (ret < 0)
1952 return 0;
1953
1954 test.objectid = sk->max_objectid;
1955 test.type = sk->max_type;
1956 test.offset = sk->max_offset;
1957
1958 ret = btrfs_comp_cpu_keys(key, &test);
1959 if (ret > 0)
1960 return 0;
1961 return 1;
1962}
1963
1964static noinline int copy_to_sk(struct btrfs_path *path,
1965 struct btrfs_key *key,
1966 struct btrfs_ioctl_search_key *sk,
1967 size_t *buf_size,
1968 char __user *ubuf,
1969 unsigned long *sk_offset,
1970 int *num_found)
1971{
1972 u64 found_transid;
1973 struct extent_buffer *leaf;
1974 struct btrfs_ioctl_search_header sh;
1975 struct btrfs_key test;
1976 unsigned long item_off;
1977 unsigned long item_len;
1978 int nritems;
1979 int i;
1980 int slot;
1981 int ret = 0;
1982
1983 leaf = path->nodes[0];
1984 slot = path->slots[0];
1985 nritems = btrfs_header_nritems(leaf);
1986
1987 if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 i = nritems;
1989 goto advance_key;
1990 }
1991 found_transid = btrfs_header_generation(leaf);
1992
1993 for (i = slot; i < nritems; i++) {
1994 item_off = btrfs_item_ptr_offset(leaf, i);
1995 item_len = btrfs_item_size_nr(leaf, i);
1996
1997 btrfs_item_key_to_cpu(leaf, key, i);
1998 if (!key_in_sk(key, sk))
1999 continue;
2000
2001 if (sizeof(sh) + item_len > *buf_size) {
2002 if (*num_found) {
2003 ret = 1;
2004 goto out;
2005 }
2006
2007 /*
2008 * return one empty item back for v1, which does not
2009 * handle -EOVERFLOW
2010 */
2011
2012 *buf_size = sizeof(sh) + item_len;
2013 item_len = 0;
2014 ret = -EOVERFLOW;
2015 }
2016
2017 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2018 ret = 1;
2019 goto out;
2020 }
2021
2022 sh.objectid = key->objectid;
2023 sh.offset = key->offset;
2024 sh.type = key->type;
2025 sh.len = item_len;
2026 sh.transid = found_transid;
2027
2028 /* copy search result header */
2029 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2030 ret = -EFAULT;
2031 goto out;
2032 }
2033
2034 *sk_offset += sizeof(sh);
2035
2036 if (item_len) {
2037 char __user *up = ubuf + *sk_offset;
2038 /* copy the item */
2039 if (read_extent_buffer_to_user(leaf, up,
2040 item_off, item_len)) {
2041 ret = -EFAULT;
2042 goto out;
2043 }
2044
2045 *sk_offset += item_len;
2046 }
2047 (*num_found)++;
2048
2049 if (ret) /* -EOVERFLOW from above */
2050 goto out;
2051
2052 if (*num_found >= sk->nr_items) {
2053 ret = 1;
2054 goto out;
2055 }
2056 }
2057advance_key:
2058 ret = 0;
2059 test.objectid = sk->max_objectid;
2060 test.type = sk->max_type;
2061 test.offset = sk->max_offset;
2062 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2063 ret = 1;
2064 else if (key->offset < (u64)-1)
2065 key->offset++;
2066 else if (key->type < (u8)-1) {
2067 key->offset = 0;
2068 key->type++;
2069 } else if (key->objectid < (u64)-1) {
2070 key->offset = 0;
2071 key->type = 0;
2072 key->objectid++;
2073 } else
2074 ret = 1;
2075out:
2076 /*
2077 * 0: all items from this leaf copied, continue with next
2078 * 1: * more items can be copied, but unused buffer is too small
2079 * * all items were found
2080 * Either way, it will stops the loop which iterates to the next
2081 * leaf
2082 * -EOVERFLOW: item was to large for buffer
2083 * -EFAULT: could not copy extent buffer back to userspace
2084 */
2085 return ret;
2086}
2087
2088static noinline int search_ioctl(struct inode *inode,
2089 struct btrfs_ioctl_search_key *sk,
2090 size_t *buf_size,
2091 char __user *ubuf)
2092{
2093 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2094 struct btrfs_root *root;
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 int ret;
2098 int num_found = 0;
2099 unsigned long sk_offset = 0;
2100
2101 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2102 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 return -EOVERFLOW;
2104 }
2105
2106 path = btrfs_alloc_path();
2107 if (!path)
2108 return -ENOMEM;
2109
2110 if (sk->tree_id == 0) {
2111 /* search the root of the inode that was passed */
2112 root = BTRFS_I(inode)->root;
2113 } else {
2114 key.objectid = sk->tree_id;
2115 key.type = BTRFS_ROOT_ITEM_KEY;
2116 key.offset = (u64)-1;
2117 root = btrfs_read_fs_root_no_name(info, &key);
2118 if (IS_ERR(root)) {
2119 btrfs_free_path(path);
2120 return -ENOENT;
2121 }
2122 }
2123
2124 key.objectid = sk->min_objectid;
2125 key.type = sk->min_type;
2126 key.offset = sk->min_offset;
2127
2128 while (1) {
2129 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2130 if (ret != 0) {
2131 if (ret > 0)
2132 ret = 0;
2133 goto err;
2134 }
2135 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2136 &sk_offset, &num_found);
2137 btrfs_release_path(path);
2138 if (ret)
2139 break;
2140
2141 }
2142 if (ret > 0)
2143 ret = 0;
2144err:
2145 sk->nr_items = num_found;
2146 btrfs_free_path(path);
2147 return ret;
2148}
2149
2150static noinline int btrfs_ioctl_tree_search(struct file *file,
2151 void __user *argp)
2152{
2153 struct btrfs_ioctl_search_args __user *uargs;
2154 struct btrfs_ioctl_search_key sk;
2155 struct inode *inode;
2156 int ret;
2157 size_t buf_size;
2158
2159 if (!capable(CAP_SYS_ADMIN))
2160 return -EPERM;
2161
2162 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2163
2164 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2165 return -EFAULT;
2166
2167 buf_size = sizeof(uargs->buf);
2168
2169 inode = file_inode(file);
2170 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2171
2172 /*
2173 * In the origin implementation an overflow is handled by returning a
2174 * search header with a len of zero, so reset ret.
2175 */
2176 if (ret == -EOVERFLOW)
2177 ret = 0;
2178
2179 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2180 ret = -EFAULT;
2181 return ret;
2182}
2183
2184static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2185 void __user *argp)
2186{
2187 struct btrfs_ioctl_search_args_v2 __user *uarg;
2188 struct btrfs_ioctl_search_args_v2 args;
2189 struct inode *inode;
2190 int ret;
2191 size_t buf_size;
2192 const size_t buf_limit = SZ_16M;
2193
2194 if (!capable(CAP_SYS_ADMIN))
2195 return -EPERM;
2196
2197 /* copy search header and buffer size */
2198 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2199 if (copy_from_user(&args, uarg, sizeof(args)))
2200 return -EFAULT;
2201
2202 buf_size = args.buf_size;
2203
2204 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2205 return -EOVERFLOW;
2206
2207 /* limit result size to 16MB */
2208 if (buf_size > buf_limit)
2209 buf_size = buf_limit;
2210
2211 inode = file_inode(file);
2212 ret = search_ioctl(inode, &args.key, &buf_size,
2213 (char *)(&uarg->buf[0]));
2214 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2215 ret = -EFAULT;
2216 else if (ret == -EOVERFLOW &&
2217 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2218 ret = -EFAULT;
2219
2220 return ret;
2221}
2222
2223/*
2224 * Search INODE_REFs to identify path name of 'dirid' directory
2225 * in a 'tree_id' tree. and sets path name to 'name'.
2226 */
2227static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2228 u64 tree_id, u64 dirid, char *name)
2229{
2230 struct btrfs_root *root;
2231 struct btrfs_key key;
2232 char *ptr;
2233 int ret = -1;
2234 int slot;
2235 int len;
2236 int total_len = 0;
2237 struct btrfs_inode_ref *iref;
2238 struct extent_buffer *l;
2239 struct btrfs_path *path;
2240
2241 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2242 name[0]='\0';
2243 return 0;
2244 }
2245
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
2250 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2251
2252 key.objectid = tree_id;
2253 key.type = BTRFS_ROOT_ITEM_KEY;
2254 key.offset = (u64)-1;
2255 root = btrfs_read_fs_root_no_name(info, &key);
2256 if (IS_ERR(root)) {
2257 btrfs_err(info, "could not find root %llu", tree_id);
2258 ret = -ENOENT;
2259 goto out;
2260 }
2261
2262 key.objectid = dirid;
2263 key.type = BTRFS_INODE_REF_KEY;
2264 key.offset = (u64)-1;
2265
2266 while (1) {
2267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 if (ret < 0)
2269 goto out;
2270 else if (ret > 0) {
2271 ret = btrfs_previous_item(root, path, dirid,
2272 BTRFS_INODE_REF_KEY);
2273 if (ret < 0)
2274 goto out;
2275 else if (ret > 0) {
2276 ret = -ENOENT;
2277 goto out;
2278 }
2279 }
2280
2281 l = path->nodes[0];
2282 slot = path->slots[0];
2283 btrfs_item_key_to_cpu(l, &key, slot);
2284
2285 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2286 len = btrfs_inode_ref_name_len(l, iref);
2287 ptr -= len + 1;
2288 total_len += len + 1;
2289 if (ptr < name) {
2290 ret = -ENAMETOOLONG;
2291 goto out;
2292 }
2293
2294 *(ptr + len) = '/';
2295 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2296
2297 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2298 break;
2299
2300 btrfs_release_path(path);
2301 key.objectid = key.offset;
2302 key.offset = (u64)-1;
2303 dirid = key.objectid;
2304 }
2305 memmove(name, ptr, total_len);
2306 name[total_len] = '\0';
2307 ret = 0;
2308out:
2309 btrfs_free_path(path);
2310 return ret;
2311}
2312
2313static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2314 void __user *argp)
2315{
2316 struct btrfs_ioctl_ino_lookup_args *args;
2317 struct inode *inode;
2318 int ret = 0;
2319
2320 args = memdup_user(argp, sizeof(*args));
2321 if (IS_ERR(args))
2322 return PTR_ERR(args);
2323
2324 inode = file_inode(file);
2325
2326 /*
2327 * Unprivileged query to obtain the containing subvolume root id. The
2328 * path is reset so it's consistent with btrfs_search_path_in_tree.
2329 */
2330 if (args->treeid == 0)
2331 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2332
2333 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2334 args->name[0] = 0;
2335 goto out;
2336 }
2337
2338 if (!capable(CAP_SYS_ADMIN)) {
2339 ret = -EPERM;
2340 goto out;
2341 }
2342
2343 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2344 args->treeid, args->objectid,
2345 args->name);
2346
2347out:
2348 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2349 ret = -EFAULT;
2350
2351 kfree(args);
2352 return ret;
2353}
2354
2355static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2356 void __user *arg)
2357{
2358 struct dentry *parent = file->f_path.dentry;
2359 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2360 struct dentry *dentry;
2361 struct inode *dir = d_inode(parent);
2362 struct inode *inode;
2363 struct btrfs_root *root = BTRFS_I(dir)->root;
2364 struct btrfs_root *dest = NULL;
2365 struct btrfs_ioctl_vol_args *vol_args;
2366 struct btrfs_trans_handle *trans;
2367 struct btrfs_block_rsv block_rsv;
2368 u64 root_flags;
2369 u64 qgroup_reserved;
2370 int namelen;
2371 int ret;
2372 int err = 0;
2373
2374 if (!S_ISDIR(dir->i_mode))
2375 return -ENOTDIR;
2376
2377 vol_args = memdup_user(arg, sizeof(*vol_args));
2378 if (IS_ERR(vol_args))
2379 return PTR_ERR(vol_args);
2380
2381 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2382 namelen = strlen(vol_args->name);
2383 if (strchr(vol_args->name, '/') ||
2384 strncmp(vol_args->name, "..", namelen) == 0) {
2385 err = -EINVAL;
2386 goto out;
2387 }
2388
2389 err = mnt_want_write_file(file);
2390 if (err)
2391 goto out;
2392
2393
2394 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2395 if (err == -EINTR)
2396 goto out_drop_write;
2397 dentry = lookup_one_len(vol_args->name, parent, namelen);
2398 if (IS_ERR(dentry)) {
2399 err = PTR_ERR(dentry);
2400 goto out_unlock_dir;
2401 }
2402
2403 if (d_really_is_negative(dentry)) {
2404 err = -ENOENT;
2405 goto out_dput;
2406 }
2407
2408 inode = d_inode(dentry);
2409 dest = BTRFS_I(inode)->root;
2410 if (!capable(CAP_SYS_ADMIN)) {
2411 /*
2412 * Regular user. Only allow this with a special mount
2413 * option, when the user has write+exec access to the
2414 * subvol root, and when rmdir(2) would have been
2415 * allowed.
2416 *
2417 * Note that this is _not_ check that the subvol is
2418 * empty or doesn't contain data that we wouldn't
2419 * otherwise be able to delete.
2420 *
2421 * Users who want to delete empty subvols should try
2422 * rmdir(2).
2423 */
2424 err = -EPERM;
2425 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2426 goto out_dput;
2427
2428 /*
2429 * Do not allow deletion if the parent dir is the same
2430 * as the dir to be deleted. That means the ioctl
2431 * must be called on the dentry referencing the root
2432 * of the subvol, not a random directory contained
2433 * within it.
2434 */
2435 err = -EINVAL;
2436 if (root == dest)
2437 goto out_dput;
2438
2439 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2440 if (err)
2441 goto out_dput;
2442 }
2443
2444 /* check if subvolume may be deleted by a user */
2445 err = btrfs_may_delete(dir, dentry, 1);
2446 if (err)
2447 goto out_dput;
2448
2449 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2450 err = -EINVAL;
2451 goto out_dput;
2452 }
2453
2454 inode_lock(inode);
2455
2456 /*
2457 * Don't allow to delete a subvolume with send in progress. This is
2458 * inside the i_mutex so the error handling that has to drop the bit
2459 * again is not run concurrently.
2460 */
2461 spin_lock(&dest->root_item_lock);
2462 root_flags = btrfs_root_flags(&dest->root_item);
2463 if (dest->send_in_progress == 0) {
2464 btrfs_set_root_flags(&dest->root_item,
2465 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2466 spin_unlock(&dest->root_item_lock);
2467 } else {
2468 spin_unlock(&dest->root_item_lock);
2469 btrfs_warn(fs_info,
2470 "Attempt to delete subvolume %llu during send",
2471 dest->root_key.objectid);
2472 err = -EPERM;
2473 goto out_unlock_inode;
2474 }
2475
2476 down_write(&fs_info->subvol_sem);
2477
2478 err = may_destroy_subvol(dest);
2479 if (err)
2480 goto out_up_write;
2481
2482 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2483 /*
2484 * One for dir inode, two for dir entries, two for root
2485 * ref/backref.
2486 */
2487 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2488 5, &qgroup_reserved, true);
2489 if (err)
2490 goto out_up_write;
2491
2492 trans = btrfs_start_transaction(root, 0);
2493 if (IS_ERR(trans)) {
2494 err = PTR_ERR(trans);
2495 goto out_release;
2496 }
2497 trans->block_rsv = &block_rsv;
2498 trans->bytes_reserved = block_rsv.size;
2499
2500 btrfs_record_snapshot_destroy(trans, dir);
2501
2502 ret = btrfs_unlink_subvol(trans, root, dir,
2503 dest->root_key.objectid,
2504 dentry->d_name.name,
2505 dentry->d_name.len);
2506 if (ret) {
2507 err = ret;
2508 btrfs_abort_transaction(trans, ret);
2509 goto out_end_trans;
2510 }
2511
2512 btrfs_record_root_in_trans(trans, dest);
2513
2514 memset(&dest->root_item.drop_progress, 0,
2515 sizeof(dest->root_item.drop_progress));
2516 dest->root_item.drop_level = 0;
2517 btrfs_set_root_refs(&dest->root_item, 0);
2518
2519 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2520 ret = btrfs_insert_orphan_item(trans,
2521 fs_info->tree_root,
2522 dest->root_key.objectid);
2523 if (ret) {
2524 btrfs_abort_transaction(trans, ret);
2525 err = ret;
2526 goto out_end_trans;
2527 }
2528 }
2529
2530 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2531 BTRFS_UUID_KEY_SUBVOL,
2532 dest->root_key.objectid);
2533 if (ret && ret != -ENOENT) {
2534 btrfs_abort_transaction(trans, ret);
2535 err = ret;
2536 goto out_end_trans;
2537 }
2538 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2539 ret = btrfs_uuid_tree_rem(trans, fs_info,
2540 dest->root_item.received_uuid,
2541 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2542 dest->root_key.objectid);
2543 if (ret && ret != -ENOENT) {
2544 btrfs_abort_transaction(trans, ret);
2545 err = ret;
2546 goto out_end_trans;
2547 }
2548 }
2549
2550out_end_trans:
2551 trans->block_rsv = NULL;
2552 trans->bytes_reserved = 0;
2553 ret = btrfs_end_transaction(trans);
2554 if (ret && !err)
2555 err = ret;
2556 inode->i_flags |= S_DEAD;
2557out_release:
2558 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved);
2559out_up_write:
2560 up_write(&fs_info->subvol_sem);
2561 if (err) {
2562 spin_lock(&dest->root_item_lock);
2563 root_flags = btrfs_root_flags(&dest->root_item);
2564 btrfs_set_root_flags(&dest->root_item,
2565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2566 spin_unlock(&dest->root_item_lock);
2567 }
2568out_unlock_inode:
2569 inode_unlock(inode);
2570 if (!err) {
2571 d_invalidate(dentry);
2572 btrfs_invalidate_inodes(dest);
2573 d_delete(dentry);
2574 ASSERT(dest->send_in_progress == 0);
2575
2576 /* the last ref */
2577 if (dest->ino_cache_inode) {
2578 iput(dest->ino_cache_inode);
2579 dest->ino_cache_inode = NULL;
2580 }
2581 }
2582out_dput:
2583 dput(dentry);
2584out_unlock_dir:
2585 inode_unlock(dir);
2586out_drop_write:
2587 mnt_drop_write_file(file);
2588out:
2589 kfree(vol_args);
2590 return err;
2591}
2592
2593static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2594{
2595 struct inode *inode = file_inode(file);
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct btrfs_ioctl_defrag_range_args *range;
2598 int ret;
2599
2600 ret = mnt_want_write_file(file);
2601 if (ret)
2602 return ret;
2603
2604 if (btrfs_root_readonly(root)) {
2605 ret = -EROFS;
2606 goto out;
2607 }
2608
2609 switch (inode->i_mode & S_IFMT) {
2610 case S_IFDIR:
2611 if (!capable(CAP_SYS_ADMIN)) {
2612 ret = -EPERM;
2613 goto out;
2614 }
2615 ret = btrfs_defrag_root(root);
2616 if (ret)
2617 goto out;
2618 ret = btrfs_defrag_root(root->fs_info->extent_root);
2619 break;
2620 case S_IFREG:
2621 if (!(file->f_mode & FMODE_WRITE)) {
2622 ret = -EINVAL;
2623 goto out;
2624 }
2625
2626 range = kzalloc(sizeof(*range), GFP_KERNEL);
2627 if (!range) {
2628 ret = -ENOMEM;
2629 goto out;
2630 }
2631
2632 if (argp) {
2633 if (copy_from_user(range, argp,
2634 sizeof(*range))) {
2635 ret = -EFAULT;
2636 kfree(range);
2637 goto out;
2638 }
2639 /* compression requires us to start the IO */
2640 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2641 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2642 range->extent_thresh = (u32)-1;
2643 }
2644 } else {
2645 /* the rest are all set to zero by kzalloc */
2646 range->len = (u64)-1;
2647 }
2648 ret = btrfs_defrag_file(file_inode(file), file,
2649 range, 0, 0);
2650 if (ret > 0)
2651 ret = 0;
2652 kfree(range);
2653 break;
2654 default:
2655 ret = -EINVAL;
2656 }
2657out:
2658 mnt_drop_write_file(file);
2659 return ret;
2660}
2661
2662static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2663{
2664 struct btrfs_ioctl_vol_args *vol_args;
2665 int ret;
2666
2667 if (!capable(CAP_SYS_ADMIN))
2668 return -EPERM;
2669
2670 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1))
2671 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2672
2673 mutex_lock(&fs_info->volume_mutex);
2674 vol_args = memdup_user(arg, sizeof(*vol_args));
2675 if (IS_ERR(vol_args)) {
2676 ret = PTR_ERR(vol_args);
2677 goto out;
2678 }
2679
2680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2681 ret = btrfs_init_new_device(fs_info, vol_args->name);
2682
2683 if (!ret)
2684 btrfs_info(fs_info, "disk added %s", vol_args->name);
2685
2686 kfree(vol_args);
2687out:
2688 mutex_unlock(&fs_info->volume_mutex);
2689 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2690 return ret;
2691}
2692
2693static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2694{
2695 struct inode *inode = file_inode(file);
2696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2697 struct btrfs_ioctl_vol_args_v2 *vol_args;
2698 int ret;
2699
2700 if (!capable(CAP_SYS_ADMIN))
2701 return -EPERM;
2702
2703 ret = mnt_want_write_file(file);
2704 if (ret)
2705 return ret;
2706
2707 vol_args = memdup_user(arg, sizeof(*vol_args));
2708 if (IS_ERR(vol_args)) {
2709 ret = PTR_ERR(vol_args);
2710 goto err_drop;
2711 }
2712
2713 /* Check for compatibility reject unknown flags */
2714 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2715 return -EOPNOTSUPP;
2716
2717 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2718 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2719 goto out;
2720 }
2721
2722 mutex_lock(&fs_info->volume_mutex);
2723 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2724 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2725 } else {
2726 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2727 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2728 }
2729 mutex_unlock(&fs_info->volume_mutex);
2730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2731
2732 if (!ret) {
2733 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2734 btrfs_info(fs_info, "device deleted: id %llu",
2735 vol_args->devid);
2736 else
2737 btrfs_info(fs_info, "device deleted: %s",
2738 vol_args->name);
2739 }
2740out:
2741 kfree(vol_args);
2742err_drop:
2743 mnt_drop_write_file(file);
2744 return ret;
2745}
2746
2747static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2748{
2749 struct inode *inode = file_inode(file);
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 struct btrfs_ioctl_vol_args *vol_args;
2752 int ret;
2753
2754 if (!capable(CAP_SYS_ADMIN))
2755 return -EPERM;
2756
2757 ret = mnt_want_write_file(file);
2758 if (ret)
2759 return ret;
2760
2761 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2762 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2763 goto out_drop_write;
2764 }
2765
2766 vol_args = memdup_user(arg, sizeof(*vol_args));
2767 if (IS_ERR(vol_args)) {
2768 ret = PTR_ERR(vol_args);
2769 goto out;
2770 }
2771
2772 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2773 mutex_lock(&fs_info->volume_mutex);
2774 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2775 mutex_unlock(&fs_info->volume_mutex);
2776
2777 if (!ret)
2778 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2779 kfree(vol_args);
2780out:
2781 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2782out_drop_write:
2783 mnt_drop_write_file(file);
2784
2785 return ret;
2786}
2787
2788static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2789 void __user *arg)
2790{
2791 struct btrfs_ioctl_fs_info_args *fi_args;
2792 struct btrfs_device *device;
2793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2794 int ret = 0;
2795
2796 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2797 if (!fi_args)
2798 return -ENOMEM;
2799
2800 mutex_lock(&fs_devices->device_list_mutex);
2801 fi_args->num_devices = fs_devices->num_devices;
2802 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2803
2804 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2805 if (device->devid > fi_args->max_id)
2806 fi_args->max_id = device->devid;
2807 }
2808 mutex_unlock(&fs_devices->device_list_mutex);
2809
2810 fi_args->nodesize = fs_info->super_copy->nodesize;
2811 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2812 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2813
2814 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2815 ret = -EFAULT;
2816
2817 kfree(fi_args);
2818 return ret;
2819}
2820
2821static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2822 void __user *arg)
2823{
2824 struct btrfs_ioctl_dev_info_args *di_args;
2825 struct btrfs_device *dev;
2826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2827 int ret = 0;
2828 char *s_uuid = NULL;
2829
2830 di_args = memdup_user(arg, sizeof(*di_args));
2831 if (IS_ERR(di_args))
2832 return PTR_ERR(di_args);
2833
2834 if (!btrfs_is_empty_uuid(di_args->uuid))
2835 s_uuid = di_args->uuid;
2836
2837 mutex_lock(&fs_devices->device_list_mutex);
2838 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2839
2840 if (!dev) {
2841 ret = -ENODEV;
2842 goto out;
2843 }
2844
2845 di_args->devid = dev->devid;
2846 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2847 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2848 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2849 if (dev->name) {
2850 struct rcu_string *name;
2851
2852 rcu_read_lock();
2853 name = rcu_dereference(dev->name);
2854 strncpy(di_args->path, name->str, sizeof(di_args->path));
2855 rcu_read_unlock();
2856 di_args->path[sizeof(di_args->path) - 1] = 0;
2857 } else {
2858 di_args->path[0] = '\0';
2859 }
2860
2861out:
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2864 ret = -EFAULT;
2865
2866 kfree(di_args);
2867 return ret;
2868}
2869
2870static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2871{
2872 struct page *page;
2873
2874 page = grab_cache_page(inode->i_mapping, index);
2875 if (!page)
2876 return ERR_PTR(-ENOMEM);
2877
2878 if (!PageUptodate(page)) {
2879 int ret;
2880
2881 ret = btrfs_readpage(NULL, page);
2882 if (ret)
2883 return ERR_PTR(ret);
2884 lock_page(page);
2885 if (!PageUptodate(page)) {
2886 unlock_page(page);
2887 put_page(page);
2888 return ERR_PTR(-EIO);
2889 }
2890 if (page->mapping != inode->i_mapping) {
2891 unlock_page(page);
2892 put_page(page);
2893 return ERR_PTR(-EAGAIN);
2894 }
2895 }
2896
2897 return page;
2898}
2899
2900static int gather_extent_pages(struct inode *inode, struct page **pages,
2901 int num_pages, u64 off)
2902{
2903 int i;
2904 pgoff_t index = off >> PAGE_SHIFT;
2905
2906 for (i = 0; i < num_pages; i++) {
2907again:
2908 pages[i] = extent_same_get_page(inode, index + i);
2909 if (IS_ERR(pages[i])) {
2910 int err = PTR_ERR(pages[i]);
2911
2912 if (err == -EAGAIN)
2913 goto again;
2914 pages[i] = NULL;
2915 return err;
2916 }
2917 }
2918 return 0;
2919}
2920
2921static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2922 bool retry_range_locking)
2923{
2924 /*
2925 * Do any pending delalloc/csum calculations on inode, one way or
2926 * another, and lock file content.
2927 * The locking order is:
2928 *
2929 * 1) pages
2930 * 2) range in the inode's io tree
2931 */
2932 while (1) {
2933 struct btrfs_ordered_extent *ordered;
2934 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2935 ordered = btrfs_lookup_first_ordered_extent(inode,
2936 off + len - 1);
2937 if ((!ordered ||
2938 ordered->file_offset + ordered->len <= off ||
2939 ordered->file_offset >= off + len) &&
2940 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2941 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2942 if (ordered)
2943 btrfs_put_ordered_extent(ordered);
2944 break;
2945 }
2946 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2947 if (ordered)
2948 btrfs_put_ordered_extent(ordered);
2949 if (!retry_range_locking)
2950 return -EAGAIN;
2951 btrfs_wait_ordered_range(inode, off, len);
2952 }
2953 return 0;
2954}
2955
2956static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2957{
2958 inode_unlock(inode1);
2959 inode_unlock(inode2);
2960}
2961
2962static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2963{
2964 if (inode1 < inode2)
2965 swap(inode1, inode2);
2966
2967 inode_lock_nested(inode1, I_MUTEX_PARENT);
2968 inode_lock_nested(inode2, I_MUTEX_CHILD);
2969}
2970
2971static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2972 struct inode *inode2, u64 loff2, u64 len)
2973{
2974 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2975 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2976}
2977
2978static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2979 struct inode *inode2, u64 loff2, u64 len,
2980 bool retry_range_locking)
2981{
2982 int ret;
2983
2984 if (inode1 < inode2) {
2985 swap(inode1, inode2);
2986 swap(loff1, loff2);
2987 }
2988 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2989 if (ret)
2990 return ret;
2991 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2992 if (ret)
2993 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2994 loff1 + len - 1);
2995 return ret;
2996}
2997
2998struct cmp_pages {
2999 int num_pages;
3000 struct page **src_pages;
3001 struct page **dst_pages;
3002};
3003
3004static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3005{
3006 int i;
3007 struct page *pg;
3008
3009 for (i = 0; i < cmp->num_pages; i++) {
3010 pg = cmp->src_pages[i];
3011 if (pg) {
3012 unlock_page(pg);
3013 put_page(pg);
3014 }
3015 pg = cmp->dst_pages[i];
3016 if (pg) {
3017 unlock_page(pg);
3018 put_page(pg);
3019 }
3020 }
3021 kfree(cmp->src_pages);
3022 kfree(cmp->dst_pages);
3023}
3024
3025static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3026 struct inode *dst, u64 dst_loff,
3027 u64 len, struct cmp_pages *cmp)
3028{
3029 int ret;
3030 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3031 struct page **src_pgarr, **dst_pgarr;
3032
3033 /*
3034 * We must gather up all the pages before we initiate our
3035 * extent locking. We use an array for the page pointers. Size
3036 * of the array is bounded by len, which is in turn bounded by
3037 * BTRFS_MAX_DEDUPE_LEN.
3038 */
3039 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3040 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3041 if (!src_pgarr || !dst_pgarr) {
3042 kfree(src_pgarr);
3043 kfree(dst_pgarr);
3044 return -ENOMEM;
3045 }
3046 cmp->num_pages = num_pages;
3047 cmp->src_pages = src_pgarr;
3048 cmp->dst_pages = dst_pgarr;
3049
3050 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3051 if (ret)
3052 goto out;
3053
3054 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3055
3056out:
3057 if (ret)
3058 btrfs_cmp_data_free(cmp);
3059 return 0;
3060}
3061
3062static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3063 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3064{
3065 int ret = 0;
3066 int i;
3067 struct page *src_page, *dst_page;
3068 unsigned int cmp_len = PAGE_SIZE;
3069 void *addr, *dst_addr;
3070
3071 i = 0;
3072 while (len) {
3073 if (len < PAGE_SIZE)
3074 cmp_len = len;
3075
3076 BUG_ON(i >= cmp->num_pages);
3077
3078 src_page = cmp->src_pages[i];
3079 dst_page = cmp->dst_pages[i];
3080 ASSERT(PageLocked(src_page));
3081 ASSERT(PageLocked(dst_page));
3082
3083 addr = kmap_atomic(src_page);
3084 dst_addr = kmap_atomic(dst_page);
3085
3086 flush_dcache_page(src_page);
3087 flush_dcache_page(dst_page);
3088
3089 if (memcmp(addr, dst_addr, cmp_len))
3090 ret = -EBADE;
3091
3092 kunmap_atomic(addr);
3093 kunmap_atomic(dst_addr);
3094
3095 if (ret)
3096 break;
3097
3098 len -= cmp_len;
3099 i++;
3100 }
3101
3102 return ret;
3103}
3104
3105static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3106 u64 olen)
3107{
3108 u64 len = *plen;
3109 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3110
3111 if (off + olen > inode->i_size || off + olen < off)
3112 return -EINVAL;
3113
3114 /* if we extend to eof, continue to block boundary */
3115 if (off + len == inode->i_size)
3116 *plen = len = ALIGN(inode->i_size, bs) - off;
3117
3118 /* Check that we are block aligned - btrfs_clone() requires this */
3119 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3120 return -EINVAL;
3121
3122 return 0;
3123}
3124
3125static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3126 struct inode *dst, u64 dst_loff)
3127{
3128 int ret;
3129 u64 len = olen;
3130 struct cmp_pages cmp;
3131 int same_inode = 0;
3132 u64 same_lock_start = 0;
3133 u64 same_lock_len = 0;
3134
3135 if (src == dst)
3136 same_inode = 1;
3137
3138 if (len == 0)
3139 return 0;
3140
3141 if (same_inode) {
3142 inode_lock(src);
3143
3144 ret = extent_same_check_offsets(src, loff, &len, olen);
3145 if (ret)
3146 goto out_unlock;
3147 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3148 if (ret)
3149 goto out_unlock;
3150
3151 /*
3152 * Single inode case wants the same checks, except we
3153 * don't want our length pushed out past i_size as
3154 * comparing that data range makes no sense.
3155 *
3156 * extent_same_check_offsets() will do this for an
3157 * unaligned length at i_size, so catch it here and
3158 * reject the request.
3159 *
3160 * This effectively means we require aligned extents
3161 * for the single-inode case, whereas the other cases
3162 * allow an unaligned length so long as it ends at
3163 * i_size.
3164 */
3165 if (len != olen) {
3166 ret = -EINVAL;
3167 goto out_unlock;
3168 }
3169
3170 /* Check for overlapping ranges */
3171 if (dst_loff + len > loff && dst_loff < loff + len) {
3172 ret = -EINVAL;
3173 goto out_unlock;
3174 }
3175
3176 same_lock_start = min_t(u64, loff, dst_loff);
3177 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3178 } else {
3179 btrfs_double_inode_lock(src, dst);
3180
3181 ret = extent_same_check_offsets(src, loff, &len, olen);
3182 if (ret)
3183 goto out_unlock;
3184
3185 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3186 if (ret)
3187 goto out_unlock;
3188 }
3189
3190 /* don't make the dst file partly checksummed */
3191 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3192 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3193 ret = -EINVAL;
3194 goto out_unlock;
3195 }
3196
3197again:
3198 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3199 if (ret)
3200 goto out_unlock;
3201
3202 if (same_inode)
3203 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3204 false);
3205 else
3206 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3207 false);
3208 /*
3209 * If one of the inodes has dirty pages in the respective range or
3210 * ordered extents, we need to flush dellaloc and wait for all ordered
3211 * extents in the range. We must unlock the pages and the ranges in the
3212 * io trees to avoid deadlocks when flushing delalloc (requires locking
3213 * pages) and when waiting for ordered extents to complete (they require
3214 * range locking).
3215 */
3216 if (ret == -EAGAIN) {
3217 /*
3218 * Ranges in the io trees already unlocked. Now unlock all
3219 * pages before waiting for all IO to complete.
3220 */
3221 btrfs_cmp_data_free(&cmp);
3222 if (same_inode) {
3223 btrfs_wait_ordered_range(src, same_lock_start,
3224 same_lock_len);
3225 } else {
3226 btrfs_wait_ordered_range(src, loff, len);
3227 btrfs_wait_ordered_range(dst, dst_loff, len);
3228 }
3229 goto again;
3230 }
3231 ASSERT(ret == 0);
3232 if (WARN_ON(ret)) {
3233 /* ranges in the io trees already unlocked */
3234 btrfs_cmp_data_free(&cmp);
3235 return ret;
3236 }
3237
3238 /* pass original length for comparison so we stay within i_size */
3239 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3240 if (ret == 0)
3241 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3242
3243 if (same_inode)
3244 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3245 same_lock_start + same_lock_len - 1);
3246 else
3247 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3248
3249 btrfs_cmp_data_free(&cmp);
3250out_unlock:
3251 if (same_inode)
3252 inode_unlock(src);
3253 else
3254 btrfs_double_inode_unlock(src, dst);
3255
3256 return ret;
3257}
3258
3259#define BTRFS_MAX_DEDUPE_LEN SZ_16M
3260
3261ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3262 struct file *dst_file, u64 dst_loff)
3263{
3264 struct inode *src = file_inode(src_file);
3265 struct inode *dst = file_inode(dst_file);
3266 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3267 ssize_t res;
3268
3269 if (olen > BTRFS_MAX_DEDUPE_LEN)
3270 olen = BTRFS_MAX_DEDUPE_LEN;
3271
3272 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3273 /*
3274 * Btrfs does not support blocksize < page_size. As a
3275 * result, btrfs_cmp_data() won't correctly handle
3276 * this situation without an update.
3277 */
3278 return -EINVAL;
3279 }
3280
3281 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3282 if (res)
3283 return res;
3284 return olen;
3285}
3286
3287static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3288 struct inode *inode,
3289 u64 endoff,
3290 const u64 destoff,
3291 const u64 olen,
3292 int no_time_update)
3293{
3294 struct btrfs_root *root = BTRFS_I(inode)->root;
3295 int ret;
3296
3297 inode_inc_iversion(inode);
3298 if (!no_time_update)
3299 inode->i_mtime = inode->i_ctime = current_time(inode);
3300 /*
3301 * We round up to the block size at eof when determining which
3302 * extents to clone above, but shouldn't round up the file size.
3303 */
3304 if (endoff > destoff + olen)
3305 endoff = destoff + olen;
3306 if (endoff > inode->i_size)
3307 btrfs_i_size_write(inode, endoff);
3308
3309 ret = btrfs_update_inode(trans, root, inode);
3310 if (ret) {
3311 btrfs_abort_transaction(trans, ret);
3312 btrfs_end_transaction(trans);
3313 goto out;
3314 }
3315 ret = btrfs_end_transaction(trans);
3316out:
3317 return ret;
3318}
3319
3320static void clone_update_extent_map(struct inode *inode,
3321 const struct btrfs_trans_handle *trans,
3322 const struct btrfs_path *path,
3323 const u64 hole_offset,
3324 const u64 hole_len)
3325{
3326 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3327 struct extent_map *em;
3328 int ret;
3329
3330 em = alloc_extent_map();
3331 if (!em) {
3332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3333 &BTRFS_I(inode)->runtime_flags);
3334 return;
3335 }
3336
3337 if (path) {
3338 struct btrfs_file_extent_item *fi;
3339
3340 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3341 struct btrfs_file_extent_item);
3342 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3343 em->generation = -1;
3344 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3345 BTRFS_FILE_EXTENT_INLINE)
3346 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3347 &BTRFS_I(inode)->runtime_flags);
3348 } else {
3349 em->start = hole_offset;
3350 em->len = hole_len;
3351 em->ram_bytes = em->len;
3352 em->orig_start = hole_offset;
3353 em->block_start = EXTENT_MAP_HOLE;
3354 em->block_len = 0;
3355 em->orig_block_len = 0;
3356 em->compress_type = BTRFS_COMPRESS_NONE;
3357 em->generation = trans->transid;
3358 }
3359
3360 while (1) {
3361 write_lock(&em_tree->lock);
3362 ret = add_extent_mapping(em_tree, em, 1);
3363 write_unlock(&em_tree->lock);
3364 if (ret != -EEXIST) {
3365 free_extent_map(em);
3366 break;
3367 }
3368 btrfs_drop_extent_cache(inode, em->start,
3369 em->start + em->len - 1, 0);
3370 }
3371
3372 if (ret)
3373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3374 &BTRFS_I(inode)->runtime_flags);
3375}
3376
3377/*
3378 * Make sure we do not end up inserting an inline extent into a file that has
3379 * already other (non-inline) extents. If a file has an inline extent it can
3380 * not have any other extents and the (single) inline extent must start at the
3381 * file offset 0. Failing to respect these rules will lead to file corruption,
3382 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3383 *
3384 * We can have extents that have been already written to disk or we can have
3385 * dirty ranges still in delalloc, in which case the extent maps and items are
3386 * created only when we run delalloc, and the delalloc ranges might fall outside
3387 * the range we are currently locking in the inode's io tree. So we check the
3388 * inode's i_size because of that (i_size updates are done while holding the
3389 * i_mutex, which we are holding here).
3390 * We also check to see if the inode has a size not greater than "datal" but has
3391 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3392 * protected against such concurrent fallocate calls by the i_mutex).
3393 *
3394 * If the file has no extents but a size greater than datal, do not allow the
3395 * copy because we would need turn the inline extent into a non-inline one (even
3396 * with NO_HOLES enabled). If we find our destination inode only has one inline
3397 * extent, just overwrite it with the source inline extent if its size is less
3398 * than the source extent's size, or we could copy the source inline extent's
3399 * data into the destination inode's inline extent if the later is greater then
3400 * the former.
3401 */
3402static int clone_copy_inline_extent(struct inode *src,
3403 struct inode *dst,
3404 struct btrfs_trans_handle *trans,
3405 struct btrfs_path *path,
3406 struct btrfs_key *new_key,
3407 const u64 drop_start,
3408 const u64 datal,
3409 const u64 skip,
3410 const u64 size,
3411 char *inline_data)
3412{
3413 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3414 struct btrfs_root *root = BTRFS_I(dst)->root;
3415 const u64 aligned_end = ALIGN(new_key->offset + datal,
3416 fs_info->sectorsize);
3417 int ret;
3418 struct btrfs_key key;
3419
3420 if (new_key->offset > 0)
3421 return -EOPNOTSUPP;
3422
3423 key.objectid = btrfs_ino(dst);
3424 key.type = BTRFS_EXTENT_DATA_KEY;
3425 key.offset = 0;
3426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3427 if (ret < 0) {
3428 return ret;
3429 } else if (ret > 0) {
3430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3431 ret = btrfs_next_leaf(root, path);
3432 if (ret < 0)
3433 return ret;
3434 else if (ret > 0)
3435 goto copy_inline_extent;
3436 }
3437 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3438 if (key.objectid == btrfs_ino(dst) &&
3439 key.type == BTRFS_EXTENT_DATA_KEY) {
3440 ASSERT(key.offset > 0);
3441 return -EOPNOTSUPP;
3442 }
3443 } else if (i_size_read(dst) <= datal) {
3444 struct btrfs_file_extent_item *ei;
3445 u64 ext_len;
3446
3447 /*
3448 * If the file size is <= datal, make sure there are no other
3449 * extents following (can happen do to an fallocate call with
3450 * the flag FALLOC_FL_KEEP_SIZE).
3451 */
3452 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3453 struct btrfs_file_extent_item);
3454 /*
3455 * If it's an inline extent, it can not have other extents
3456 * following it.
3457 */
3458 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3459 BTRFS_FILE_EXTENT_INLINE)
3460 goto copy_inline_extent;
3461
3462 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3463 if (ext_len > aligned_end)
3464 return -EOPNOTSUPP;
3465
3466 ret = btrfs_next_item(root, path);
3467 if (ret < 0) {
3468 return ret;
3469 } else if (ret == 0) {
3470 btrfs_item_key_to_cpu(path->nodes[0], &key,
3471 path->slots[0]);
3472 if (key.objectid == btrfs_ino(dst) &&
3473 key.type == BTRFS_EXTENT_DATA_KEY)
3474 return -EOPNOTSUPP;
3475 }
3476 }
3477
3478copy_inline_extent:
3479 /*
3480 * We have no extent items, or we have an extent at offset 0 which may
3481 * or may not be inlined. All these cases are dealt the same way.
3482 */
3483 if (i_size_read(dst) > datal) {
3484 /*
3485 * If the destination inode has an inline extent...
3486 * This would require copying the data from the source inline
3487 * extent into the beginning of the destination's inline extent.
3488 * But this is really complex, both extents can be compressed
3489 * or just one of them, which would require decompressing and
3490 * re-compressing data (which could increase the new compressed
3491 * size, not allowing the compressed data to fit anymore in an
3492 * inline extent).
3493 * So just don't support this case for now (it should be rare,
3494 * we are not really saving space when cloning inline extents).
3495 */
3496 return -EOPNOTSUPP;
3497 }
3498
3499 btrfs_release_path(path);
3500 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3501 if (ret)
3502 return ret;
3503 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3504 if (ret)
3505 return ret;
3506
3507 if (skip) {
3508 const u32 start = btrfs_file_extent_calc_inline_size(0);
3509
3510 memmove(inline_data + start, inline_data + start + skip, datal);
3511 }
3512
3513 write_extent_buffer(path->nodes[0], inline_data,
3514 btrfs_item_ptr_offset(path->nodes[0],
3515 path->slots[0]),
3516 size);
3517 inode_add_bytes(dst, datal);
3518
3519 return 0;
3520}
3521
3522/**
3523 * btrfs_clone() - clone a range from inode file to another
3524 *
3525 * @src: Inode to clone from
3526 * @inode: Inode to clone to
3527 * @off: Offset within source to start clone from
3528 * @olen: Original length, passed by user, of range to clone
3529 * @olen_aligned: Block-aligned value of olen
3530 * @destoff: Offset within @inode to start clone
3531 * @no_time_update: Whether to update mtime/ctime on the target inode
3532 */
3533static int btrfs_clone(struct inode *src, struct inode *inode,
3534 const u64 off, const u64 olen, const u64 olen_aligned,
3535 const u64 destoff, int no_time_update)
3536{
3537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3538 struct btrfs_root *root = BTRFS_I(inode)->root;
3539 struct btrfs_path *path = NULL;
3540 struct extent_buffer *leaf;
3541 struct btrfs_trans_handle *trans;
3542 char *buf = NULL;
3543 struct btrfs_key key;
3544 u32 nritems;
3545 int slot;
3546 int ret;
3547 const u64 len = olen_aligned;
3548 u64 last_dest_end = destoff;
3549
3550 ret = -ENOMEM;
3551 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
3552 if (!buf) {
3553 buf = vmalloc(fs_info->nodesize);
3554 if (!buf)
3555 return ret;
3556 }
3557
3558 path = btrfs_alloc_path();
3559 if (!path) {
3560 kvfree(buf);
3561 return ret;
3562 }
3563
3564 path->reada = READA_FORWARD;
3565 /* clone data */
3566 key.objectid = btrfs_ino(src);
3567 key.type = BTRFS_EXTENT_DATA_KEY;
3568 key.offset = off;
3569
3570 while (1) {
3571 u64 next_key_min_offset = key.offset + 1;
3572
3573 /*
3574 * note the key will change type as we walk through the
3575 * tree.
3576 */
3577 path->leave_spinning = 1;
3578 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3579 0, 0);
3580 if (ret < 0)
3581 goto out;
3582 /*
3583 * First search, if no extent item that starts at offset off was
3584 * found but the previous item is an extent item, it's possible
3585 * it might overlap our target range, therefore process it.
3586 */
3587 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3588 btrfs_item_key_to_cpu(path->nodes[0], &key,
3589 path->slots[0] - 1);
3590 if (key.type == BTRFS_EXTENT_DATA_KEY)
3591 path->slots[0]--;
3592 }
3593
3594 nritems = btrfs_header_nritems(path->nodes[0]);
3595process_slot:
3596 if (path->slots[0] >= nritems) {
3597 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3598 if (ret < 0)
3599 goto out;
3600 if (ret > 0)
3601 break;
3602 nritems = btrfs_header_nritems(path->nodes[0]);
3603 }
3604 leaf = path->nodes[0];
3605 slot = path->slots[0];
3606
3607 btrfs_item_key_to_cpu(leaf, &key, slot);
3608 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3609 key.objectid != btrfs_ino(src))
3610 break;
3611
3612 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3613 struct btrfs_file_extent_item *extent;
3614 int type;
3615 u32 size;
3616 struct btrfs_key new_key;
3617 u64 disko = 0, diskl = 0;
3618 u64 datao = 0, datal = 0;
3619 u8 comp;
3620 u64 drop_start;
3621
3622 extent = btrfs_item_ptr(leaf, slot,
3623 struct btrfs_file_extent_item);
3624 comp = btrfs_file_extent_compression(leaf, extent);
3625 type = btrfs_file_extent_type(leaf, extent);
3626 if (type == BTRFS_FILE_EXTENT_REG ||
3627 type == BTRFS_FILE_EXTENT_PREALLOC) {
3628 disko = btrfs_file_extent_disk_bytenr(leaf,
3629 extent);
3630 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3631 extent);
3632 datao = btrfs_file_extent_offset(leaf, extent);
3633 datal = btrfs_file_extent_num_bytes(leaf,
3634 extent);
3635 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3636 /* take upper bound, may be compressed */
3637 datal = btrfs_file_extent_ram_bytes(leaf,
3638 extent);
3639 }
3640
3641 /*
3642 * The first search might have left us at an extent
3643 * item that ends before our target range's start, can
3644 * happen if we have holes and NO_HOLES feature enabled.
3645 */
3646 if (key.offset + datal <= off) {
3647 path->slots[0]++;
3648 goto process_slot;
3649 } else if (key.offset >= off + len) {
3650 break;
3651 }
3652 next_key_min_offset = key.offset + datal;
3653 size = btrfs_item_size_nr(leaf, slot);
3654 read_extent_buffer(leaf, buf,
3655 btrfs_item_ptr_offset(leaf, slot),
3656 size);
3657
3658 btrfs_release_path(path);
3659 path->leave_spinning = 0;
3660
3661 memcpy(&new_key, &key, sizeof(new_key));
3662 new_key.objectid = btrfs_ino(inode);
3663 if (off <= key.offset)
3664 new_key.offset = key.offset + destoff - off;
3665 else
3666 new_key.offset = destoff;
3667
3668 /*
3669 * Deal with a hole that doesn't have an extent item
3670 * that represents it (NO_HOLES feature enabled).
3671 * This hole is either in the middle of the cloning
3672 * range or at the beginning (fully overlaps it or
3673 * partially overlaps it).
3674 */
3675 if (new_key.offset != last_dest_end)
3676 drop_start = last_dest_end;
3677 else
3678 drop_start = new_key.offset;
3679
3680 /*
3681 * 1 - adjusting old extent (we may have to split it)
3682 * 1 - add new extent
3683 * 1 - inode update
3684 */
3685 trans = btrfs_start_transaction(root, 3);
3686 if (IS_ERR(trans)) {
3687 ret = PTR_ERR(trans);
3688 goto out;
3689 }
3690
3691 if (type == BTRFS_FILE_EXTENT_REG ||
3692 type == BTRFS_FILE_EXTENT_PREALLOC) {
3693 /*
3694 * a | --- range to clone ---| b
3695 * | ------------- extent ------------- |
3696 */
3697
3698 /* subtract range b */
3699 if (key.offset + datal > off + len)
3700 datal = off + len - key.offset;
3701
3702 /* subtract range a */
3703 if (off > key.offset) {
3704 datao += off - key.offset;
3705 datal -= off - key.offset;
3706 }
3707
3708 ret = btrfs_drop_extents(trans, root, inode,
3709 drop_start,
3710 new_key.offset + datal,
3711 1);
3712 if (ret) {
3713 if (ret != -EOPNOTSUPP)
3714 btrfs_abort_transaction(trans,
3715 ret);
3716 btrfs_end_transaction(trans);
3717 goto out;
3718 }
3719
3720 ret = btrfs_insert_empty_item(trans, root, path,
3721 &new_key, size);
3722 if (ret) {
3723 btrfs_abort_transaction(trans, ret);
3724 btrfs_end_transaction(trans);
3725 goto out;
3726 }
3727
3728 leaf = path->nodes[0];
3729 slot = path->slots[0];
3730 write_extent_buffer(leaf, buf,
3731 btrfs_item_ptr_offset(leaf, slot),
3732 size);
3733
3734 extent = btrfs_item_ptr(leaf, slot,
3735 struct btrfs_file_extent_item);
3736
3737 /* disko == 0 means it's a hole */
3738 if (!disko)
3739 datao = 0;
3740
3741 btrfs_set_file_extent_offset(leaf, extent,
3742 datao);
3743 btrfs_set_file_extent_num_bytes(leaf, extent,
3744 datal);
3745
3746 if (disko) {
3747 inode_add_bytes(inode, datal);
3748 ret = btrfs_inc_extent_ref(trans,
3749 fs_info,
3750 disko, diskl, 0,
3751 root->root_key.objectid,
3752 btrfs_ino(inode),
3753 new_key.offset - datao);
3754 if (ret) {
3755 btrfs_abort_transaction(trans,
3756 ret);
3757 btrfs_end_transaction(trans);
3758 goto out;
3759
3760 }
3761 }
3762 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3763 u64 skip = 0;
3764 u64 trim = 0;
3765
3766 if (off > key.offset) {
3767 skip = off - key.offset;
3768 new_key.offset += skip;
3769 }
3770
3771 if (key.offset + datal > off + len)
3772 trim = key.offset + datal - (off + len);
3773
3774 if (comp && (skip || trim)) {
3775 ret = -EINVAL;
3776 btrfs_end_transaction(trans);
3777 goto out;
3778 }
3779 size -= skip + trim;
3780 datal -= skip + trim;
3781
3782 ret = clone_copy_inline_extent(src, inode,
3783 trans, path,
3784 &new_key,
3785 drop_start,
3786 datal,
3787 skip, size, buf);
3788 if (ret) {
3789 if (ret != -EOPNOTSUPP)
3790 btrfs_abort_transaction(trans,
3791 ret);
3792 btrfs_end_transaction(trans);
3793 goto out;
3794 }
3795 leaf = path->nodes[0];
3796 slot = path->slots[0];
3797 }
3798
3799 /* If we have an implicit hole (NO_HOLES feature). */
3800 if (drop_start < new_key.offset)
3801 clone_update_extent_map(inode, trans,
3802 NULL, drop_start,
3803 new_key.offset - drop_start);
3804
3805 clone_update_extent_map(inode, trans, path, 0, 0);
3806
3807 btrfs_mark_buffer_dirty(leaf);
3808 btrfs_release_path(path);
3809
3810 last_dest_end = ALIGN(new_key.offset + datal,
3811 fs_info->sectorsize);
3812 ret = clone_finish_inode_update(trans, inode,
3813 last_dest_end,
3814 destoff, olen,
3815 no_time_update);
3816 if (ret)
3817 goto out;
3818 if (new_key.offset + datal >= destoff + len)
3819 break;
3820 }
3821 btrfs_release_path(path);
3822 key.offset = next_key_min_offset;
3823
3824 if (fatal_signal_pending(current)) {
3825 ret = -EINTR;
3826 goto out;
3827 }
3828 }
3829 ret = 0;
3830
3831 if (last_dest_end < destoff + len) {
3832 /*
3833 * We have an implicit hole (NO_HOLES feature is enabled) that
3834 * fully or partially overlaps our cloning range at its end.
3835 */
3836 btrfs_release_path(path);
3837
3838 /*
3839 * 1 - remove extent(s)
3840 * 1 - inode update
3841 */
3842 trans = btrfs_start_transaction(root, 2);
3843 if (IS_ERR(trans)) {
3844 ret = PTR_ERR(trans);
3845 goto out;
3846 }
3847 ret = btrfs_drop_extents(trans, root, inode,
3848 last_dest_end, destoff + len, 1);
3849 if (ret) {
3850 if (ret != -EOPNOTSUPP)
3851 btrfs_abort_transaction(trans, ret);
3852 btrfs_end_transaction(trans);
3853 goto out;
3854 }
3855 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3856 destoff + len - last_dest_end);
3857 ret = clone_finish_inode_update(trans, inode, destoff + len,
3858 destoff, olen, no_time_update);
3859 }
3860
3861out:
3862 btrfs_free_path(path);
3863 kvfree(buf);
3864 return ret;
3865}
3866
3867static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3868 u64 off, u64 olen, u64 destoff)
3869{
3870 struct inode *inode = file_inode(file);
3871 struct inode *src = file_inode(file_src);
3872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3873 struct btrfs_root *root = BTRFS_I(inode)->root;
3874 int ret;
3875 u64 len = olen;
3876 u64 bs = fs_info->sb->s_blocksize;
3877 int same_inode = src == inode;
3878
3879 /*
3880 * TODO:
3881 * - split compressed inline extents. annoying: we need to
3882 * decompress into destination's address_space (the file offset
3883 * may change, so source mapping won't do), then recompress (or
3884 * otherwise reinsert) a subrange.
3885 *
3886 * - split destination inode's inline extents. The inline extents can
3887 * be either compressed or non-compressed.
3888 */
3889
3890 if (btrfs_root_readonly(root))
3891 return -EROFS;
3892
3893 if (file_src->f_path.mnt != file->f_path.mnt ||
3894 src->i_sb != inode->i_sb)
3895 return -EXDEV;
3896
3897 /* don't make the dst file partly checksummed */
3898 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3899 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3900 return -EINVAL;
3901
3902 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3903 return -EISDIR;
3904
3905 if (!same_inode) {
3906 btrfs_double_inode_lock(src, inode);
3907 } else {
3908 inode_lock(src);
3909 }
3910
3911 /* determine range to clone */
3912 ret = -EINVAL;
3913 if (off + len > src->i_size || off + len < off)
3914 goto out_unlock;
3915 if (len == 0)
3916 olen = len = src->i_size - off;
3917 /* if we extend to eof, continue to block boundary */
3918 if (off + len == src->i_size)
3919 len = ALIGN(src->i_size, bs) - off;
3920
3921 if (len == 0) {
3922 ret = 0;
3923 goto out_unlock;
3924 }
3925
3926 /* verify the end result is block aligned */
3927 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3928 !IS_ALIGNED(destoff, bs))
3929 goto out_unlock;
3930
3931 /* verify if ranges are overlapped within the same file */
3932 if (same_inode) {
3933 if (destoff + len > off && destoff < off + len)
3934 goto out_unlock;
3935 }
3936
3937 if (destoff > inode->i_size) {
3938 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3939 if (ret)
3940 goto out_unlock;
3941 }
3942
3943 /*
3944 * Lock the target range too. Right after we replace the file extent
3945 * items in the fs tree (which now point to the cloned data), we might
3946 * have a worker replace them with extent items relative to a write
3947 * operation that was issued before this clone operation (i.e. confront
3948 * with inode.c:btrfs_finish_ordered_io).
3949 */
3950 if (same_inode) {
3951 u64 lock_start = min_t(u64, off, destoff);
3952 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3953
3954 ret = lock_extent_range(src, lock_start, lock_len, true);
3955 } else {
3956 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3957 true);
3958 }
3959 ASSERT(ret == 0);
3960 if (WARN_ON(ret)) {
3961 /* ranges in the io trees already unlocked */
3962 goto out_unlock;
3963 }
3964
3965 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3966
3967 if (same_inode) {
3968 u64 lock_start = min_t(u64, off, destoff);
3969 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3970
3971 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3972 } else {
3973 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3974 }
3975 /*
3976 * Truncate page cache pages so that future reads will see the cloned
3977 * data immediately and not the previous data.
3978 */
3979 truncate_inode_pages_range(&inode->i_data,
3980 round_down(destoff, PAGE_SIZE),
3981 round_up(destoff + len, PAGE_SIZE) - 1);
3982out_unlock:
3983 if (!same_inode)
3984 btrfs_double_inode_unlock(src, inode);
3985 else
3986 inode_unlock(src);
3987 return ret;
3988}
3989
3990int btrfs_clone_file_range(struct file *src_file, loff_t off,
3991 struct file *dst_file, loff_t destoff, u64 len)
3992{
3993 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3994}
3995
3996/*
3997 * there are many ways the trans_start and trans_end ioctls can lead
3998 * to deadlocks. They should only be used by applications that
3999 * basically own the machine, and have a very in depth understanding
4000 * of all the possible deadlocks and enospc problems.
4001 */
4002static long btrfs_ioctl_trans_start(struct file *file)
4003{
4004 struct inode *inode = file_inode(file);
4005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4006 struct btrfs_root *root = BTRFS_I(inode)->root;
4007 struct btrfs_trans_handle *trans;
4008 int ret;
4009
4010 ret = -EPERM;
4011 if (!capable(CAP_SYS_ADMIN))
4012 goto out;
4013
4014 ret = -EINPROGRESS;
4015 if (file->private_data)
4016 goto out;
4017
4018 ret = -EROFS;
4019 if (btrfs_root_readonly(root))
4020 goto out;
4021
4022 ret = mnt_want_write_file(file);
4023 if (ret)
4024 goto out;
4025
4026 atomic_inc(&fs_info->open_ioctl_trans);
4027
4028 ret = -ENOMEM;
4029 trans = btrfs_start_ioctl_transaction(root);
4030 if (IS_ERR(trans))
4031 goto out_drop;
4032
4033 file->private_data = trans;
4034 return 0;
4035
4036out_drop:
4037 atomic_dec(&fs_info->open_ioctl_trans);
4038 mnt_drop_write_file(file);
4039out:
4040 return ret;
4041}
4042
4043static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4044{
4045 struct inode *inode = file_inode(file);
4046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4047 struct btrfs_root *root = BTRFS_I(inode)->root;
4048 struct btrfs_root *new_root;
4049 struct btrfs_dir_item *di;
4050 struct btrfs_trans_handle *trans;
4051 struct btrfs_path *path;
4052 struct btrfs_key location;
4053 struct btrfs_disk_key disk_key;
4054 u64 objectid = 0;
4055 u64 dir_id;
4056 int ret;
4057
4058 if (!capable(CAP_SYS_ADMIN))
4059 return -EPERM;
4060
4061 ret = mnt_want_write_file(file);
4062 if (ret)
4063 return ret;
4064
4065 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4066 ret = -EFAULT;
4067 goto out;
4068 }
4069
4070 if (!objectid)
4071 objectid = BTRFS_FS_TREE_OBJECTID;
4072
4073 location.objectid = objectid;
4074 location.type = BTRFS_ROOT_ITEM_KEY;
4075 location.offset = (u64)-1;
4076
4077 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4078 if (IS_ERR(new_root)) {
4079 ret = PTR_ERR(new_root);
4080 goto out;
4081 }
4082
4083 path = btrfs_alloc_path();
4084 if (!path) {
4085 ret = -ENOMEM;
4086 goto out;
4087 }
4088 path->leave_spinning = 1;
4089
4090 trans = btrfs_start_transaction(root, 1);
4091 if (IS_ERR(trans)) {
4092 btrfs_free_path(path);
4093 ret = PTR_ERR(trans);
4094 goto out;
4095 }
4096
4097 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4098 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4099 dir_id, "default", 7, 1);
4100 if (IS_ERR_OR_NULL(di)) {
4101 btrfs_free_path(path);
4102 btrfs_end_transaction(trans);
4103 btrfs_err(fs_info,
4104 "Umm, you don't have the default diritem, this isn't going to work");
4105 ret = -ENOENT;
4106 goto out;
4107 }
4108
4109 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4110 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4111 btrfs_mark_buffer_dirty(path->nodes[0]);
4112 btrfs_free_path(path);
4113
4114 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4115 btrfs_end_transaction(trans);
4116out:
4117 mnt_drop_write_file(file);
4118 return ret;
4119}
4120
4121void btrfs_get_block_group_info(struct list_head *groups_list,
4122 struct btrfs_ioctl_space_info *space)
4123{
4124 struct btrfs_block_group_cache *block_group;
4125
4126 space->total_bytes = 0;
4127 space->used_bytes = 0;
4128 space->flags = 0;
4129 list_for_each_entry(block_group, groups_list, list) {
4130 space->flags = block_group->flags;
4131 space->total_bytes += block_group->key.offset;
4132 space->used_bytes +=
4133 btrfs_block_group_used(&block_group->item);
4134 }
4135}
4136
4137static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4138 void __user *arg)
4139{
4140 struct btrfs_ioctl_space_args space_args;
4141 struct btrfs_ioctl_space_info space;
4142 struct btrfs_ioctl_space_info *dest;
4143 struct btrfs_ioctl_space_info *dest_orig;
4144 struct btrfs_ioctl_space_info __user *user_dest;
4145 struct btrfs_space_info *info;
4146 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4147 BTRFS_BLOCK_GROUP_SYSTEM,
4148 BTRFS_BLOCK_GROUP_METADATA,
4149 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4150 int num_types = 4;
4151 int alloc_size;
4152 int ret = 0;
4153 u64 slot_count = 0;
4154 int i, c;
4155
4156 if (copy_from_user(&space_args,
4157 (struct btrfs_ioctl_space_args __user *)arg,
4158 sizeof(space_args)))
4159 return -EFAULT;
4160
4161 for (i = 0; i < num_types; i++) {
4162 struct btrfs_space_info *tmp;
4163
4164 info = NULL;
4165 rcu_read_lock();
4166 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4167 list) {
4168 if (tmp->flags == types[i]) {
4169 info = tmp;
4170 break;
4171 }
4172 }
4173 rcu_read_unlock();
4174
4175 if (!info)
4176 continue;
4177
4178 down_read(&info->groups_sem);
4179 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4180 if (!list_empty(&info->block_groups[c]))
4181 slot_count++;
4182 }
4183 up_read(&info->groups_sem);
4184 }
4185
4186 /*
4187 * Global block reserve, exported as a space_info
4188 */
4189 slot_count++;
4190
4191 /* space_slots == 0 means they are asking for a count */
4192 if (space_args.space_slots == 0) {
4193 space_args.total_spaces = slot_count;
4194 goto out;
4195 }
4196
4197 slot_count = min_t(u64, space_args.space_slots, slot_count);
4198
4199 alloc_size = sizeof(*dest) * slot_count;
4200
4201 /* we generally have at most 6 or so space infos, one for each raid
4202 * level. So, a whole page should be more than enough for everyone
4203 */
4204 if (alloc_size > PAGE_SIZE)
4205 return -ENOMEM;
4206
4207 space_args.total_spaces = 0;
4208 dest = kmalloc(alloc_size, GFP_KERNEL);
4209 if (!dest)
4210 return -ENOMEM;
4211 dest_orig = dest;
4212
4213 /* now we have a buffer to copy into */
4214 for (i = 0; i < num_types; i++) {
4215 struct btrfs_space_info *tmp;
4216
4217 if (!slot_count)
4218 break;
4219
4220 info = NULL;
4221 rcu_read_lock();
4222 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4223 list) {
4224 if (tmp->flags == types[i]) {
4225 info = tmp;
4226 break;
4227 }
4228 }
4229 rcu_read_unlock();
4230
4231 if (!info)
4232 continue;
4233 down_read(&info->groups_sem);
4234 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4235 if (!list_empty(&info->block_groups[c])) {
4236 btrfs_get_block_group_info(
4237 &info->block_groups[c], &space);
4238 memcpy(dest, &space, sizeof(space));
4239 dest++;
4240 space_args.total_spaces++;
4241 slot_count--;
4242 }
4243 if (!slot_count)
4244 break;
4245 }
4246 up_read(&info->groups_sem);
4247 }
4248
4249 /*
4250 * Add global block reserve
4251 */
4252 if (slot_count) {
4253 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4254
4255 spin_lock(&block_rsv->lock);
4256 space.total_bytes = block_rsv->size;
4257 space.used_bytes = block_rsv->size - block_rsv->reserved;
4258 spin_unlock(&block_rsv->lock);
4259 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4260 memcpy(dest, &space, sizeof(space));
4261 space_args.total_spaces++;
4262 }
4263
4264 user_dest = (struct btrfs_ioctl_space_info __user *)
4265 (arg + sizeof(struct btrfs_ioctl_space_args));
4266
4267 if (copy_to_user(user_dest, dest_orig, alloc_size))
4268 ret = -EFAULT;
4269
4270 kfree(dest_orig);
4271out:
4272 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4273 ret = -EFAULT;
4274
4275 return ret;
4276}
4277
4278/*
4279 * there are many ways the trans_start and trans_end ioctls can lead
4280 * to deadlocks. They should only be used by applications that
4281 * basically own the machine, and have a very in depth understanding
4282 * of all the possible deadlocks and enospc problems.
4283 */
4284long btrfs_ioctl_trans_end(struct file *file)
4285{
4286 struct inode *inode = file_inode(file);
4287 struct btrfs_root *root = BTRFS_I(inode)->root;
4288 struct btrfs_trans_handle *trans;
4289
4290 trans = file->private_data;
4291 if (!trans)
4292 return -EINVAL;
4293 file->private_data = NULL;
4294
4295 btrfs_end_transaction(trans);
4296
4297 atomic_dec(&root->fs_info->open_ioctl_trans);
4298
4299 mnt_drop_write_file(file);
4300 return 0;
4301}
4302
4303static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4304 void __user *argp)
4305{
4306 struct btrfs_trans_handle *trans;
4307 u64 transid;
4308 int ret;
4309
4310 trans = btrfs_attach_transaction_barrier(root);
4311 if (IS_ERR(trans)) {
4312 if (PTR_ERR(trans) != -ENOENT)
4313 return PTR_ERR(trans);
4314
4315 /* No running transaction, don't bother */
4316 transid = root->fs_info->last_trans_committed;
4317 goto out;
4318 }
4319 transid = trans->transid;
4320 ret = btrfs_commit_transaction_async(trans, 0);
4321 if (ret) {
4322 btrfs_end_transaction(trans);
4323 return ret;
4324 }
4325out:
4326 if (argp)
4327 if (copy_to_user(argp, &transid, sizeof(transid)))
4328 return -EFAULT;
4329 return 0;
4330}
4331
4332static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4333 void __user *argp)
4334{
4335 u64 transid;
4336
4337 if (argp) {
4338 if (copy_from_user(&transid, argp, sizeof(transid)))
4339 return -EFAULT;
4340 } else {
4341 transid = 0; /* current trans */
4342 }
4343 return btrfs_wait_for_commit(fs_info, transid);
4344}
4345
4346static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4347{
4348 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4349 struct btrfs_ioctl_scrub_args *sa;
4350 int ret;
4351
4352 if (!capable(CAP_SYS_ADMIN))
4353 return -EPERM;
4354
4355 sa = memdup_user(arg, sizeof(*sa));
4356 if (IS_ERR(sa))
4357 return PTR_ERR(sa);
4358
4359 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4360 ret = mnt_want_write_file(file);
4361 if (ret)
4362 goto out;
4363 }
4364
4365 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4366 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4367 0);
4368
4369 if (copy_to_user(arg, sa, sizeof(*sa)))
4370 ret = -EFAULT;
4371
4372 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4373 mnt_drop_write_file(file);
4374out:
4375 kfree(sa);
4376 return ret;
4377}
4378
4379static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4380{
4381 if (!capable(CAP_SYS_ADMIN))
4382 return -EPERM;
4383
4384 return btrfs_scrub_cancel(fs_info);
4385}
4386
4387static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4388 void __user *arg)
4389{
4390 struct btrfs_ioctl_scrub_args *sa;
4391 int ret;
4392
4393 if (!capable(CAP_SYS_ADMIN))
4394 return -EPERM;
4395
4396 sa = memdup_user(arg, sizeof(*sa));
4397 if (IS_ERR(sa))
4398 return PTR_ERR(sa);
4399
4400 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4401
4402 if (copy_to_user(arg, sa, sizeof(*sa)))
4403 ret = -EFAULT;
4404
4405 kfree(sa);
4406 return ret;
4407}
4408
4409static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4410 void __user *arg)
4411{
4412 struct btrfs_ioctl_get_dev_stats *sa;
4413 int ret;
4414
4415 sa = memdup_user(arg, sizeof(*sa));
4416 if (IS_ERR(sa))
4417 return PTR_ERR(sa);
4418
4419 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4420 kfree(sa);
4421 return -EPERM;
4422 }
4423
4424 ret = btrfs_get_dev_stats(fs_info, sa);
4425
4426 if (copy_to_user(arg, sa, sizeof(*sa)))
4427 ret = -EFAULT;
4428
4429 kfree(sa);
4430 return ret;
4431}
4432
4433static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4434 void __user *arg)
4435{
4436 struct btrfs_ioctl_dev_replace_args *p;
4437 int ret;
4438
4439 if (!capable(CAP_SYS_ADMIN))
4440 return -EPERM;
4441
4442 p = memdup_user(arg, sizeof(*p));
4443 if (IS_ERR(p))
4444 return PTR_ERR(p);
4445
4446 switch (p->cmd) {
4447 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4448 if (fs_info->sb->s_flags & MS_RDONLY) {
4449 ret = -EROFS;
4450 goto out;
4451 }
4452 if (atomic_xchg(
4453 &fs_info->mutually_exclusive_operation_running, 1)) {
4454 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4455 } else {
4456 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4457 atomic_set(
4458 &fs_info->mutually_exclusive_operation_running, 0);
4459 }
4460 break;
4461 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4462 btrfs_dev_replace_status(fs_info, p);
4463 ret = 0;
4464 break;
4465 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4466 ret = btrfs_dev_replace_cancel(fs_info, p);
4467 break;
4468 default:
4469 ret = -EINVAL;
4470 break;
4471 }
4472
4473 if (copy_to_user(arg, p, sizeof(*p)))
4474 ret = -EFAULT;
4475out:
4476 kfree(p);
4477 return ret;
4478}
4479
4480static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4481{
4482 int ret = 0;
4483 int i;
4484 u64 rel_ptr;
4485 int size;
4486 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4487 struct inode_fs_paths *ipath = NULL;
4488 struct btrfs_path *path;
4489
4490 if (!capable(CAP_DAC_READ_SEARCH))
4491 return -EPERM;
4492
4493 path = btrfs_alloc_path();
4494 if (!path) {
4495 ret = -ENOMEM;
4496 goto out;
4497 }
4498
4499 ipa = memdup_user(arg, sizeof(*ipa));
4500 if (IS_ERR(ipa)) {
4501 ret = PTR_ERR(ipa);
4502 ipa = NULL;
4503 goto out;
4504 }
4505
4506 size = min_t(u32, ipa->size, 4096);
4507 ipath = init_ipath(size, root, path);
4508 if (IS_ERR(ipath)) {
4509 ret = PTR_ERR(ipath);
4510 ipath = NULL;
4511 goto out;
4512 }
4513
4514 ret = paths_from_inode(ipa->inum, ipath);
4515 if (ret < 0)
4516 goto out;
4517
4518 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4519 rel_ptr = ipath->fspath->val[i] -
4520 (u64)(unsigned long)ipath->fspath->val;
4521 ipath->fspath->val[i] = rel_ptr;
4522 }
4523
4524 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4525 (void *)(unsigned long)ipath->fspath, size);
4526 if (ret) {
4527 ret = -EFAULT;
4528 goto out;
4529 }
4530
4531out:
4532 btrfs_free_path(path);
4533 free_ipath(ipath);
4534 kfree(ipa);
4535
4536 return ret;
4537}
4538
4539static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4540{
4541 struct btrfs_data_container *inodes = ctx;
4542 const size_t c = 3 * sizeof(u64);
4543
4544 if (inodes->bytes_left >= c) {
4545 inodes->bytes_left -= c;
4546 inodes->val[inodes->elem_cnt] = inum;
4547 inodes->val[inodes->elem_cnt + 1] = offset;
4548 inodes->val[inodes->elem_cnt + 2] = root;
4549 inodes->elem_cnt += 3;
4550 } else {
4551 inodes->bytes_missing += c - inodes->bytes_left;
4552 inodes->bytes_left = 0;
4553 inodes->elem_missed += 3;
4554 }
4555
4556 return 0;
4557}
4558
4559static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4560 void __user *arg)
4561{
4562 int ret = 0;
4563 int size;
4564 struct btrfs_ioctl_logical_ino_args *loi;
4565 struct btrfs_data_container *inodes = NULL;
4566 struct btrfs_path *path = NULL;
4567
4568 if (!capable(CAP_SYS_ADMIN))
4569 return -EPERM;
4570
4571 loi = memdup_user(arg, sizeof(*loi));
4572 if (IS_ERR(loi))
4573 return PTR_ERR(loi);
4574
4575 path = btrfs_alloc_path();
4576 if (!path) {
4577 ret = -ENOMEM;
4578 goto out;
4579 }
4580
4581 size = min_t(u32, loi->size, SZ_64K);
4582 inodes = init_data_container(size);
4583 if (IS_ERR(inodes)) {
4584 ret = PTR_ERR(inodes);
4585 inodes = NULL;
4586 goto out;
4587 }
4588
4589 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4590 build_ino_list, inodes);
4591 if (ret == -EINVAL)
4592 ret = -ENOENT;
4593 if (ret < 0)
4594 goto out;
4595
4596 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4597 (void *)(unsigned long)inodes, size);
4598 if (ret)
4599 ret = -EFAULT;
4600
4601out:
4602 btrfs_free_path(path);
4603 vfree(inodes);
4604 kfree(loi);
4605
4606 return ret;
4607}
4608
4609void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4610 struct btrfs_ioctl_balance_args *bargs)
4611{
4612 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4613
4614 bargs->flags = bctl->flags;
4615
4616 if (atomic_read(&fs_info->balance_running))
4617 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4618 if (atomic_read(&fs_info->balance_pause_req))
4619 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4620 if (atomic_read(&fs_info->balance_cancel_req))
4621 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4622
4623 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4624 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4625 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4626
4627 if (lock) {
4628 spin_lock(&fs_info->balance_lock);
4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4630 spin_unlock(&fs_info->balance_lock);
4631 } else {
4632 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4633 }
4634}
4635
4636static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4637{
4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4639 struct btrfs_fs_info *fs_info = root->fs_info;
4640 struct btrfs_ioctl_balance_args *bargs;
4641 struct btrfs_balance_control *bctl;
4642 bool need_unlock; /* for mut. excl. ops lock */
4643 int ret;
4644
4645 if (!capable(CAP_SYS_ADMIN))
4646 return -EPERM;
4647
4648 ret = mnt_want_write_file(file);
4649 if (ret)
4650 return ret;
4651
4652again:
4653 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4654 mutex_lock(&fs_info->volume_mutex);
4655 mutex_lock(&fs_info->balance_mutex);
4656 need_unlock = true;
4657 goto locked;
4658 }
4659
4660 /*
4661 * mut. excl. ops lock is locked. Three possibilities:
4662 * (1) some other op is running
4663 * (2) balance is running
4664 * (3) balance is paused -- special case (think resume)
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667 if (fs_info->balance_ctl) {
4668 /* this is either (2) or (3) */
4669 if (!atomic_read(&fs_info->balance_running)) {
4670 mutex_unlock(&fs_info->balance_mutex);
4671 if (!mutex_trylock(&fs_info->volume_mutex))
4672 goto again;
4673 mutex_lock(&fs_info->balance_mutex);
4674
4675 if (fs_info->balance_ctl &&
4676 !atomic_read(&fs_info->balance_running)) {
4677 /* this is (3) */
4678 need_unlock = false;
4679 goto locked;
4680 }
4681
4682 mutex_unlock(&fs_info->balance_mutex);
4683 mutex_unlock(&fs_info->volume_mutex);
4684 goto again;
4685 } else {
4686 /* this is (2) */
4687 mutex_unlock(&fs_info->balance_mutex);
4688 ret = -EINPROGRESS;
4689 goto out;
4690 }
4691 } else {
4692 /* this is (1) */
4693 mutex_unlock(&fs_info->balance_mutex);
4694 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4695 goto out;
4696 }
4697
4698locked:
4699 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4700
4701 if (arg) {
4702 bargs = memdup_user(arg, sizeof(*bargs));
4703 if (IS_ERR(bargs)) {
4704 ret = PTR_ERR(bargs);
4705 goto out_unlock;
4706 }
4707
4708 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4709 if (!fs_info->balance_ctl) {
4710 ret = -ENOTCONN;
4711 goto out_bargs;
4712 }
4713
4714 bctl = fs_info->balance_ctl;
4715 spin_lock(&fs_info->balance_lock);
4716 bctl->flags |= BTRFS_BALANCE_RESUME;
4717 spin_unlock(&fs_info->balance_lock);
4718
4719 goto do_balance;
4720 }
4721 } else {
4722 bargs = NULL;
4723 }
4724
4725 if (fs_info->balance_ctl) {
4726 ret = -EINPROGRESS;
4727 goto out_bargs;
4728 }
4729
4730 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4731 if (!bctl) {
4732 ret = -ENOMEM;
4733 goto out_bargs;
4734 }
4735
4736 bctl->fs_info = fs_info;
4737 if (arg) {
4738 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4739 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4740 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4741
4742 bctl->flags = bargs->flags;
4743 } else {
4744 /* balance everything - no filters */
4745 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4746 }
4747
4748 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4749 ret = -EINVAL;
4750 goto out_bctl;
4751 }
4752
4753do_balance:
4754 /*
4755 * Ownership of bctl and mutually_exclusive_operation_running
4756 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4757 * or, if restriper was paused all the way until unmount, in
4758 * free_fs_info. mutually_exclusive_operation_running is
4759 * cleared in __cancel_balance.
4760 */
4761 need_unlock = false;
4762
4763 ret = btrfs_balance(bctl, bargs);
4764 bctl = NULL;
4765
4766 if (arg) {
4767 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4768 ret = -EFAULT;
4769 }
4770
4771out_bctl:
4772 kfree(bctl);
4773out_bargs:
4774 kfree(bargs);
4775out_unlock:
4776 mutex_unlock(&fs_info->balance_mutex);
4777 mutex_unlock(&fs_info->volume_mutex);
4778 if (need_unlock)
4779 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4780out:
4781 mnt_drop_write_file(file);
4782 return ret;
4783}
4784
4785static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4786{
4787 if (!capable(CAP_SYS_ADMIN))
4788 return -EPERM;
4789
4790 switch (cmd) {
4791 case BTRFS_BALANCE_CTL_PAUSE:
4792 return btrfs_pause_balance(fs_info);
4793 case BTRFS_BALANCE_CTL_CANCEL:
4794 return btrfs_cancel_balance(fs_info);
4795 }
4796
4797 return -EINVAL;
4798}
4799
4800static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4801 void __user *arg)
4802{
4803 struct btrfs_ioctl_balance_args *bargs;
4804 int ret = 0;
4805
4806 if (!capable(CAP_SYS_ADMIN))
4807 return -EPERM;
4808
4809 mutex_lock(&fs_info->balance_mutex);
4810 if (!fs_info->balance_ctl) {
4811 ret = -ENOTCONN;
4812 goto out;
4813 }
4814
4815 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4816 if (!bargs) {
4817 ret = -ENOMEM;
4818 goto out;
4819 }
4820
4821 update_ioctl_balance_args(fs_info, 1, bargs);
4822
4823 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4824 ret = -EFAULT;
4825
4826 kfree(bargs);
4827out:
4828 mutex_unlock(&fs_info->balance_mutex);
4829 return ret;
4830}
4831
4832static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4833{
4834 struct inode *inode = file_inode(file);
4835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4836 struct btrfs_ioctl_quota_ctl_args *sa;
4837 struct btrfs_trans_handle *trans = NULL;
4838 int ret;
4839 int err;
4840
4841 if (!capable(CAP_SYS_ADMIN))
4842 return -EPERM;
4843
4844 ret = mnt_want_write_file(file);
4845 if (ret)
4846 return ret;
4847
4848 sa = memdup_user(arg, sizeof(*sa));
4849 if (IS_ERR(sa)) {
4850 ret = PTR_ERR(sa);
4851 goto drop_write;
4852 }
4853
4854 down_write(&fs_info->subvol_sem);
4855 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4856 if (IS_ERR(trans)) {
4857 ret = PTR_ERR(trans);
4858 goto out;
4859 }
4860
4861 switch (sa->cmd) {
4862 case BTRFS_QUOTA_CTL_ENABLE:
4863 ret = btrfs_quota_enable(trans, fs_info);
4864 break;
4865 case BTRFS_QUOTA_CTL_DISABLE:
4866 ret = btrfs_quota_disable(trans, fs_info);
4867 break;
4868 default:
4869 ret = -EINVAL;
4870 break;
4871 }
4872
4873 err = btrfs_commit_transaction(trans);
4874 if (err && !ret)
4875 ret = err;
4876out:
4877 kfree(sa);
4878 up_write(&fs_info->subvol_sem);
4879drop_write:
4880 mnt_drop_write_file(file);
4881 return ret;
4882}
4883
4884static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4885{
4886 struct inode *inode = file_inode(file);
4887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888 struct btrfs_root *root = BTRFS_I(inode)->root;
4889 struct btrfs_ioctl_qgroup_assign_args *sa;
4890 struct btrfs_trans_handle *trans;
4891 int ret;
4892 int err;
4893
4894 if (!capable(CAP_SYS_ADMIN))
4895 return -EPERM;
4896
4897 ret = mnt_want_write_file(file);
4898 if (ret)
4899 return ret;
4900
4901 sa = memdup_user(arg, sizeof(*sa));
4902 if (IS_ERR(sa)) {
4903 ret = PTR_ERR(sa);
4904 goto drop_write;
4905 }
4906
4907 trans = btrfs_join_transaction(root);
4908 if (IS_ERR(trans)) {
4909 ret = PTR_ERR(trans);
4910 goto out;
4911 }
4912
4913 /* FIXME: check if the IDs really exist */
4914 if (sa->assign) {
4915 ret = btrfs_add_qgroup_relation(trans, fs_info,
4916 sa->src, sa->dst);
4917 } else {
4918 ret = btrfs_del_qgroup_relation(trans, fs_info,
4919 sa->src, sa->dst);
4920 }
4921
4922 /* update qgroup status and info */
4923 err = btrfs_run_qgroups(trans, fs_info);
4924 if (err < 0)
4925 btrfs_handle_fs_error(fs_info, err,
4926 "failed to update qgroup status and info");
4927 err = btrfs_end_transaction(trans);
4928 if (err && !ret)
4929 ret = err;
4930
4931out:
4932 kfree(sa);
4933drop_write:
4934 mnt_drop_write_file(file);
4935 return ret;
4936}
4937
4938static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4939{
4940 struct inode *inode = file_inode(file);
4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4942 struct btrfs_root *root = BTRFS_I(inode)->root;
4943 struct btrfs_ioctl_qgroup_create_args *sa;
4944 struct btrfs_trans_handle *trans;
4945 int ret;
4946 int err;
4947
4948 if (!capable(CAP_SYS_ADMIN))
4949 return -EPERM;
4950
4951 ret = mnt_want_write_file(file);
4952 if (ret)
4953 return ret;
4954
4955 sa = memdup_user(arg, sizeof(*sa));
4956 if (IS_ERR(sa)) {
4957 ret = PTR_ERR(sa);
4958 goto drop_write;
4959 }
4960
4961 if (!sa->qgroupid) {
4962 ret = -EINVAL;
4963 goto out;
4964 }
4965
4966 trans = btrfs_join_transaction(root);
4967 if (IS_ERR(trans)) {
4968 ret = PTR_ERR(trans);
4969 goto out;
4970 }
4971
4972 /* FIXME: check if the IDs really exist */
4973 if (sa->create) {
4974 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4975 } else {
4976 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4977 }
4978
4979 err = btrfs_end_transaction(trans);
4980 if (err && !ret)
4981 ret = err;
4982
4983out:
4984 kfree(sa);
4985drop_write:
4986 mnt_drop_write_file(file);
4987 return ret;
4988}
4989
4990static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4991{
4992 struct inode *inode = file_inode(file);
4993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4994 struct btrfs_root *root = BTRFS_I(inode)->root;
4995 struct btrfs_ioctl_qgroup_limit_args *sa;
4996 struct btrfs_trans_handle *trans;
4997 int ret;
4998 int err;
4999 u64 qgroupid;
5000
5001 if (!capable(CAP_SYS_ADMIN))
5002 return -EPERM;
5003
5004 ret = mnt_want_write_file(file);
5005 if (ret)
5006 return ret;
5007
5008 sa = memdup_user(arg, sizeof(*sa));
5009 if (IS_ERR(sa)) {
5010 ret = PTR_ERR(sa);
5011 goto drop_write;
5012 }
5013
5014 trans = btrfs_join_transaction(root);
5015 if (IS_ERR(trans)) {
5016 ret = PTR_ERR(trans);
5017 goto out;
5018 }
5019
5020 qgroupid = sa->qgroupid;
5021 if (!qgroupid) {
5022 /* take the current subvol as qgroup */
5023 qgroupid = root->root_key.objectid;
5024 }
5025
5026 /* FIXME: check if the IDs really exist */
5027 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5028
5029 err = btrfs_end_transaction(trans);
5030 if (err && !ret)
5031 ret = err;
5032
5033out:
5034 kfree(sa);
5035drop_write:
5036 mnt_drop_write_file(file);
5037 return ret;
5038}
5039
5040static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5041{
5042 struct inode *inode = file_inode(file);
5043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5044 struct btrfs_ioctl_quota_rescan_args *qsa;
5045 int ret;
5046
5047 if (!capable(CAP_SYS_ADMIN))
5048 return -EPERM;
5049
5050 ret = mnt_want_write_file(file);
5051 if (ret)
5052 return ret;
5053
5054 qsa = memdup_user(arg, sizeof(*qsa));
5055 if (IS_ERR(qsa)) {
5056 ret = PTR_ERR(qsa);
5057 goto drop_write;
5058 }
5059
5060 if (qsa->flags) {
5061 ret = -EINVAL;
5062 goto out;
5063 }
5064
5065 ret = btrfs_qgroup_rescan(fs_info);
5066
5067out:
5068 kfree(qsa);
5069drop_write:
5070 mnt_drop_write_file(file);
5071 return ret;
5072}
5073
5074static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5075{
5076 struct inode *inode = file_inode(file);
5077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5078 struct btrfs_ioctl_quota_rescan_args *qsa;
5079 int ret = 0;
5080
5081 if (!capable(CAP_SYS_ADMIN))
5082 return -EPERM;
5083
5084 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5085 if (!qsa)
5086 return -ENOMEM;
5087
5088 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5089 qsa->flags = 1;
5090 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5091 }
5092
5093 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5094 ret = -EFAULT;
5095
5096 kfree(qsa);
5097 return ret;
5098}
5099
5100static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5101{
5102 struct inode *inode = file_inode(file);
5103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5104
5105 if (!capable(CAP_SYS_ADMIN))
5106 return -EPERM;
5107
5108 return btrfs_qgroup_wait_for_completion(fs_info, true);
5109}
5110
5111static long _btrfs_ioctl_set_received_subvol(struct file *file,
5112 struct btrfs_ioctl_received_subvol_args *sa)
5113{
5114 struct inode *inode = file_inode(file);
5115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5116 struct btrfs_root *root = BTRFS_I(inode)->root;
5117 struct btrfs_root_item *root_item = &root->root_item;
5118 struct btrfs_trans_handle *trans;
5119 struct timespec ct = current_time(inode);
5120 int ret = 0;
5121 int received_uuid_changed;
5122
5123 if (!inode_owner_or_capable(inode))
5124 return -EPERM;
5125
5126 ret = mnt_want_write_file(file);
5127 if (ret < 0)
5128 return ret;
5129
5130 down_write(&fs_info->subvol_sem);
5131
5132 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5133 ret = -EINVAL;
5134 goto out;
5135 }
5136
5137 if (btrfs_root_readonly(root)) {
5138 ret = -EROFS;
5139 goto out;
5140 }
5141
5142 /*
5143 * 1 - root item
5144 * 2 - uuid items (received uuid + subvol uuid)
5145 */
5146 trans = btrfs_start_transaction(root, 3);
5147 if (IS_ERR(trans)) {
5148 ret = PTR_ERR(trans);
5149 trans = NULL;
5150 goto out;
5151 }
5152
5153 sa->rtransid = trans->transid;
5154 sa->rtime.sec = ct.tv_sec;
5155 sa->rtime.nsec = ct.tv_nsec;
5156
5157 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5158 BTRFS_UUID_SIZE);
5159 if (received_uuid_changed &&
5160 !btrfs_is_empty_uuid(root_item->received_uuid))
5161 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5162 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5163 root->root_key.objectid);
5164 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5165 btrfs_set_root_stransid(root_item, sa->stransid);
5166 btrfs_set_root_rtransid(root_item, sa->rtransid);
5167 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5168 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5169 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5170 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5171
5172 ret = btrfs_update_root(trans, fs_info->tree_root,
5173 &root->root_key, &root->root_item);
5174 if (ret < 0) {
5175 btrfs_end_transaction(trans);
5176 goto out;
5177 }
5178 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5179 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5180 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5181 root->root_key.objectid);
5182 if (ret < 0 && ret != -EEXIST) {
5183 btrfs_abort_transaction(trans, ret);
5184 goto out;
5185 }
5186 }
5187 ret = btrfs_commit_transaction(trans);
5188 if (ret < 0) {
5189 btrfs_abort_transaction(trans, ret);
5190 goto out;
5191 }
5192
5193out:
5194 up_write(&fs_info->subvol_sem);
5195 mnt_drop_write_file(file);
5196 return ret;
5197}
5198
5199#ifdef CONFIG_64BIT
5200static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5201 void __user *arg)
5202{
5203 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5204 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5205 int ret = 0;
5206
5207 args32 = memdup_user(arg, sizeof(*args32));
5208 if (IS_ERR(args32))
5209 return PTR_ERR(args32);
5210
5211 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5212 if (!args64) {
5213 ret = -ENOMEM;
5214 goto out;
5215 }
5216
5217 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5218 args64->stransid = args32->stransid;
5219 args64->rtransid = args32->rtransid;
5220 args64->stime.sec = args32->stime.sec;
5221 args64->stime.nsec = args32->stime.nsec;
5222 args64->rtime.sec = args32->rtime.sec;
5223 args64->rtime.nsec = args32->rtime.nsec;
5224 args64->flags = args32->flags;
5225
5226 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5227 if (ret)
5228 goto out;
5229
5230 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5231 args32->stransid = args64->stransid;
5232 args32->rtransid = args64->rtransid;
5233 args32->stime.sec = args64->stime.sec;
5234 args32->stime.nsec = args64->stime.nsec;
5235 args32->rtime.sec = args64->rtime.sec;
5236 args32->rtime.nsec = args64->rtime.nsec;
5237 args32->flags = args64->flags;
5238
5239 ret = copy_to_user(arg, args32, sizeof(*args32));
5240 if (ret)
5241 ret = -EFAULT;
5242
5243out:
5244 kfree(args32);
5245 kfree(args64);
5246 return ret;
5247}
5248#endif
5249
5250static long btrfs_ioctl_set_received_subvol(struct file *file,
5251 void __user *arg)
5252{
5253 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5254 int ret = 0;
5255
5256 sa = memdup_user(arg, sizeof(*sa));
5257 if (IS_ERR(sa))
5258 return PTR_ERR(sa);
5259
5260 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5261
5262 if (ret)
5263 goto out;
5264
5265 ret = copy_to_user(arg, sa, sizeof(*sa));
5266 if (ret)
5267 ret = -EFAULT;
5268
5269out:
5270 kfree(sa);
5271 return ret;
5272}
5273
5274static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5275{
5276 struct inode *inode = file_inode(file);
5277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5278 size_t len;
5279 int ret;
5280 char label[BTRFS_LABEL_SIZE];
5281
5282 spin_lock(&fs_info->super_lock);
5283 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5284 spin_unlock(&fs_info->super_lock);
5285
5286 len = strnlen(label, BTRFS_LABEL_SIZE);
5287
5288 if (len == BTRFS_LABEL_SIZE) {
5289 btrfs_warn(fs_info,
5290 "label is too long, return the first %zu bytes",
5291 --len);
5292 }
5293
5294 ret = copy_to_user(arg, label, len);
5295
5296 return ret ? -EFAULT : 0;
5297}
5298
5299static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5300{
5301 struct inode *inode = file_inode(file);
5302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5303 struct btrfs_root *root = BTRFS_I(inode)->root;
5304 struct btrfs_super_block *super_block = fs_info->super_copy;
5305 struct btrfs_trans_handle *trans;
5306 char label[BTRFS_LABEL_SIZE];
5307 int ret;
5308
5309 if (!capable(CAP_SYS_ADMIN))
5310 return -EPERM;
5311
5312 if (copy_from_user(label, arg, sizeof(label)))
5313 return -EFAULT;
5314
5315 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5316 btrfs_err(fs_info,
5317 "unable to set label with more than %d bytes",
5318 BTRFS_LABEL_SIZE - 1);
5319 return -EINVAL;
5320 }
5321
5322 ret = mnt_want_write_file(file);
5323 if (ret)
5324 return ret;
5325
5326 trans = btrfs_start_transaction(root, 0);
5327 if (IS_ERR(trans)) {
5328 ret = PTR_ERR(trans);
5329 goto out_unlock;
5330 }
5331
5332 spin_lock(&fs_info->super_lock);
5333 strcpy(super_block->label, label);
5334 spin_unlock(&fs_info->super_lock);
5335 ret = btrfs_commit_transaction(trans);
5336
5337out_unlock:
5338 mnt_drop_write_file(file);
5339 return ret;
5340}
5341
5342#define INIT_FEATURE_FLAGS(suffix) \
5343 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5344 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5345 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5346
5347int btrfs_ioctl_get_supported_features(void __user *arg)
5348{
5349 static const struct btrfs_ioctl_feature_flags features[3] = {
5350 INIT_FEATURE_FLAGS(SUPP),
5351 INIT_FEATURE_FLAGS(SAFE_SET),
5352 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5353 };
5354
5355 if (copy_to_user(arg, &features, sizeof(features)))
5356 return -EFAULT;
5357
5358 return 0;
5359}
5360
5361static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5362{
5363 struct inode *inode = file_inode(file);
5364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5365 struct btrfs_super_block *super_block = fs_info->super_copy;
5366 struct btrfs_ioctl_feature_flags features;
5367
5368 features.compat_flags = btrfs_super_compat_flags(super_block);
5369 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5370 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5371
5372 if (copy_to_user(arg, &features, sizeof(features)))
5373 return -EFAULT;
5374
5375 return 0;
5376}
5377
5378static int check_feature_bits(struct btrfs_fs_info *fs_info,
5379 enum btrfs_feature_set set,
5380 u64 change_mask, u64 flags, u64 supported_flags,
5381 u64 safe_set, u64 safe_clear)
5382{
5383 const char *type = btrfs_feature_set_names[set];
5384 char *names;
5385 u64 disallowed, unsupported;
5386 u64 set_mask = flags & change_mask;
5387 u64 clear_mask = ~flags & change_mask;
5388
5389 unsupported = set_mask & ~supported_flags;
5390 if (unsupported) {
5391 names = btrfs_printable_features(set, unsupported);
5392 if (names) {
5393 btrfs_warn(fs_info,
5394 "this kernel does not support the %s feature bit%s",
5395 names, strchr(names, ',') ? "s" : "");
5396 kfree(names);
5397 } else
5398 btrfs_warn(fs_info,
5399 "this kernel does not support %s bits 0x%llx",
5400 type, unsupported);
5401 return -EOPNOTSUPP;
5402 }
5403
5404 disallowed = set_mask & ~safe_set;
5405 if (disallowed) {
5406 names = btrfs_printable_features(set, disallowed);
5407 if (names) {
5408 btrfs_warn(fs_info,
5409 "can't set the %s feature bit%s while mounted",
5410 names, strchr(names, ',') ? "s" : "");
5411 kfree(names);
5412 } else
5413 btrfs_warn(fs_info,
5414 "can't set %s bits 0x%llx while mounted",
5415 type, disallowed);
5416 return -EPERM;
5417 }
5418
5419 disallowed = clear_mask & ~safe_clear;
5420 if (disallowed) {
5421 names = btrfs_printable_features(set, disallowed);
5422 if (names) {
5423 btrfs_warn(fs_info,
5424 "can't clear the %s feature bit%s while mounted",
5425 names, strchr(names, ',') ? "s" : "");
5426 kfree(names);
5427 } else
5428 btrfs_warn(fs_info,
5429 "can't clear %s bits 0x%llx while mounted",
5430 type, disallowed);
5431 return -EPERM;
5432 }
5433
5434 return 0;
5435}
5436
5437#define check_feature(fs_info, change_mask, flags, mask_base) \
5438check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5439 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5440 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5441 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5442
5443static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5444{
5445 struct inode *inode = file_inode(file);
5446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 struct btrfs_super_block *super_block = fs_info->super_copy;
5449 struct btrfs_ioctl_feature_flags flags[2];
5450 struct btrfs_trans_handle *trans;
5451 u64 newflags;
5452 int ret;
5453
5454 if (!capable(CAP_SYS_ADMIN))
5455 return -EPERM;
5456
5457 if (copy_from_user(flags, arg, sizeof(flags)))
5458 return -EFAULT;
5459
5460 /* Nothing to do */
5461 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5462 !flags[0].incompat_flags)
5463 return 0;
5464
5465 ret = check_feature(fs_info, flags[0].compat_flags,
5466 flags[1].compat_flags, COMPAT);
5467 if (ret)
5468 return ret;
5469
5470 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5471 flags[1].compat_ro_flags, COMPAT_RO);
5472 if (ret)
5473 return ret;
5474
5475 ret = check_feature(fs_info, flags[0].incompat_flags,
5476 flags[1].incompat_flags, INCOMPAT);
5477 if (ret)
5478 return ret;
5479
5480 ret = mnt_want_write_file(file);
5481 if (ret)
5482 return ret;
5483
5484 trans = btrfs_start_transaction(root, 0);
5485 if (IS_ERR(trans)) {
5486 ret = PTR_ERR(trans);
5487 goto out_drop_write;
5488 }
5489
5490 spin_lock(&fs_info->super_lock);
5491 newflags = btrfs_super_compat_flags(super_block);
5492 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5493 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5494 btrfs_set_super_compat_flags(super_block, newflags);
5495
5496 newflags = btrfs_super_compat_ro_flags(super_block);
5497 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5498 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5499 btrfs_set_super_compat_ro_flags(super_block, newflags);
5500
5501 newflags = btrfs_super_incompat_flags(super_block);
5502 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5503 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5504 btrfs_set_super_incompat_flags(super_block, newflags);
5505 spin_unlock(&fs_info->super_lock);
5506
5507 ret = btrfs_commit_transaction(trans);
5508out_drop_write:
5509 mnt_drop_write_file(file);
5510
5511 return ret;
5512}
5513
5514long btrfs_ioctl(struct file *file, unsigned int
5515 cmd, unsigned long arg)
5516{
5517 struct inode *inode = file_inode(file);
5518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5519 struct btrfs_root *root = BTRFS_I(inode)->root;
5520 void __user *argp = (void __user *)arg;
5521
5522 switch (cmd) {
5523 case FS_IOC_GETFLAGS:
5524 return btrfs_ioctl_getflags(file, argp);
5525 case FS_IOC_SETFLAGS:
5526 return btrfs_ioctl_setflags(file, argp);
5527 case FS_IOC_GETVERSION:
5528 return btrfs_ioctl_getversion(file, argp);
5529 case FITRIM:
5530 return btrfs_ioctl_fitrim(file, argp);
5531 case BTRFS_IOC_SNAP_CREATE:
5532 return btrfs_ioctl_snap_create(file, argp, 0);
5533 case BTRFS_IOC_SNAP_CREATE_V2:
5534 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5535 case BTRFS_IOC_SUBVOL_CREATE:
5536 return btrfs_ioctl_snap_create(file, argp, 1);
5537 case BTRFS_IOC_SUBVOL_CREATE_V2:
5538 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5539 case BTRFS_IOC_SNAP_DESTROY:
5540 return btrfs_ioctl_snap_destroy(file, argp);
5541 case BTRFS_IOC_SUBVOL_GETFLAGS:
5542 return btrfs_ioctl_subvol_getflags(file, argp);
5543 case BTRFS_IOC_SUBVOL_SETFLAGS:
5544 return btrfs_ioctl_subvol_setflags(file, argp);
5545 case BTRFS_IOC_DEFAULT_SUBVOL:
5546 return btrfs_ioctl_default_subvol(file, argp);
5547 case BTRFS_IOC_DEFRAG:
5548 return btrfs_ioctl_defrag(file, NULL);
5549 case BTRFS_IOC_DEFRAG_RANGE:
5550 return btrfs_ioctl_defrag(file, argp);
5551 case BTRFS_IOC_RESIZE:
5552 return btrfs_ioctl_resize(file, argp);
5553 case BTRFS_IOC_ADD_DEV:
5554 return btrfs_ioctl_add_dev(fs_info, argp);
5555 case BTRFS_IOC_RM_DEV:
5556 return btrfs_ioctl_rm_dev(file, argp);
5557 case BTRFS_IOC_RM_DEV_V2:
5558 return btrfs_ioctl_rm_dev_v2(file, argp);
5559 case BTRFS_IOC_FS_INFO:
5560 return btrfs_ioctl_fs_info(fs_info, argp);
5561 case BTRFS_IOC_DEV_INFO:
5562 return btrfs_ioctl_dev_info(fs_info, argp);
5563 case BTRFS_IOC_BALANCE:
5564 return btrfs_ioctl_balance(file, NULL);
5565 case BTRFS_IOC_TRANS_START:
5566 return btrfs_ioctl_trans_start(file);
5567 case BTRFS_IOC_TRANS_END:
5568 return btrfs_ioctl_trans_end(file);
5569 case BTRFS_IOC_TREE_SEARCH:
5570 return btrfs_ioctl_tree_search(file, argp);
5571 case BTRFS_IOC_TREE_SEARCH_V2:
5572 return btrfs_ioctl_tree_search_v2(file, argp);
5573 case BTRFS_IOC_INO_LOOKUP:
5574 return btrfs_ioctl_ino_lookup(file, argp);
5575 case BTRFS_IOC_INO_PATHS:
5576 return btrfs_ioctl_ino_to_path(root, argp);
5577 case BTRFS_IOC_LOGICAL_INO:
5578 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5579 case BTRFS_IOC_SPACE_INFO:
5580 return btrfs_ioctl_space_info(fs_info, argp);
5581 case BTRFS_IOC_SYNC: {
5582 int ret;
5583
5584 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5585 if (ret)
5586 return ret;
5587 ret = btrfs_sync_fs(inode->i_sb, 1);
5588 /*
5589 * The transaction thread may want to do more work,
5590 * namely it pokes the cleaner kthread that will start
5591 * processing uncleaned subvols.
5592 */
5593 wake_up_process(fs_info->transaction_kthread);
5594 return ret;
5595 }
5596 case BTRFS_IOC_START_SYNC:
5597 return btrfs_ioctl_start_sync(root, argp);
5598 case BTRFS_IOC_WAIT_SYNC:
5599 return btrfs_ioctl_wait_sync(fs_info, argp);
5600 case BTRFS_IOC_SCRUB:
5601 return btrfs_ioctl_scrub(file, argp);
5602 case BTRFS_IOC_SCRUB_CANCEL:
5603 return btrfs_ioctl_scrub_cancel(fs_info);
5604 case BTRFS_IOC_SCRUB_PROGRESS:
5605 return btrfs_ioctl_scrub_progress(fs_info, argp);
5606 case BTRFS_IOC_BALANCE_V2:
5607 return btrfs_ioctl_balance(file, argp);
5608 case BTRFS_IOC_BALANCE_CTL:
5609 return btrfs_ioctl_balance_ctl(fs_info, arg);
5610 case BTRFS_IOC_BALANCE_PROGRESS:
5611 return btrfs_ioctl_balance_progress(fs_info, argp);
5612 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5613 return btrfs_ioctl_set_received_subvol(file, argp);
5614#ifdef CONFIG_64BIT
5615 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5616 return btrfs_ioctl_set_received_subvol_32(file, argp);
5617#endif
5618 case BTRFS_IOC_SEND:
5619 return btrfs_ioctl_send(file, argp);
5620 case BTRFS_IOC_GET_DEV_STATS:
5621 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5622 case BTRFS_IOC_QUOTA_CTL:
5623 return btrfs_ioctl_quota_ctl(file, argp);
5624 case BTRFS_IOC_QGROUP_ASSIGN:
5625 return btrfs_ioctl_qgroup_assign(file, argp);
5626 case BTRFS_IOC_QGROUP_CREATE:
5627 return btrfs_ioctl_qgroup_create(file, argp);
5628 case BTRFS_IOC_QGROUP_LIMIT:
5629 return btrfs_ioctl_qgroup_limit(file, argp);
5630 case BTRFS_IOC_QUOTA_RESCAN:
5631 return btrfs_ioctl_quota_rescan(file, argp);
5632 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5633 return btrfs_ioctl_quota_rescan_status(file, argp);
5634 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5635 return btrfs_ioctl_quota_rescan_wait(file, argp);
5636 case BTRFS_IOC_DEV_REPLACE:
5637 return btrfs_ioctl_dev_replace(fs_info, argp);
5638 case BTRFS_IOC_GET_FSLABEL:
5639 return btrfs_ioctl_get_fslabel(file, argp);
5640 case BTRFS_IOC_SET_FSLABEL:
5641 return btrfs_ioctl_set_fslabel(file, argp);
5642 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5643 return btrfs_ioctl_get_supported_features(argp);
5644 case BTRFS_IOC_GET_FEATURES:
5645 return btrfs_ioctl_get_features(file, argp);
5646 case BTRFS_IOC_SET_FEATURES:
5647 return btrfs_ioctl_set_features(file, argp);
5648 }
5649
5650 return -ENOTTY;
5651}
5652
5653#ifdef CONFIG_COMPAT
5654long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5655{
5656 /*
5657 * These all access 32-bit values anyway so no further
5658 * handling is necessary.
5659 */
5660 switch (cmd) {
5661 case FS_IOC32_GETFLAGS:
5662 cmd = FS_IOC_GETFLAGS;
5663 break;
5664 case FS_IOC32_SETFLAGS:
5665 cmd = FS_IOC_SETFLAGS;
5666 break;
5667 case FS_IOC32_GETVERSION:
5668 cmd = FS_IOC_GETVERSION;
5669 break;
5670 }
5671
5672 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5673}
5674#endif