Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include <linux/string_choices.h>
  15#include "ctree.h"
  16#include "fs.h"
  17#include "messages.h"
  18#include "misc.h"
  19#include "free-space-cache.h"
  20#include "transaction.h"
  21#include "disk-io.h"
  22#include "extent_io.h"
 
 
  23#include "space-info.h"
 
  24#include "block-group.h"
  25#include "discard.h"
  26#include "subpage.h"
  27#include "inode-item.h"
  28#include "accessors.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "super.h"
  32
  33#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  34#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  35#define FORCE_EXTENT_THRESHOLD	SZ_1M
  36
  37static struct kmem_cache *btrfs_free_space_cachep;
  38static struct kmem_cache *btrfs_free_space_bitmap_cachep;
  39
  40struct btrfs_trim_range {
  41	u64 start;
  42	u64 bytes;
  43	struct list_head list;
  44};
  45
 
 
  46static int link_free_space(struct btrfs_free_space_ctl *ctl,
  47			   struct btrfs_free_space *info);
  48static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  49			      struct btrfs_free_space *info, bool update_stat);
  50static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  51			 struct btrfs_free_space *bitmap_info, u64 *offset,
  52			 u64 *bytes, bool for_alloc);
  53static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  54			struct btrfs_free_space *bitmap_info);
  55static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  56			      struct btrfs_free_space *info, u64 offset,
  57			      u64 bytes, bool update_stats);
  58
  59static void btrfs_crc32c_final(u32 crc, u8 *result)
  60{
  61	put_unaligned_le32(~crc, result);
  62}
  63
  64static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  65{
  66	struct btrfs_free_space *info;
  67	struct rb_node *node;
  68
  69	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  70		info = rb_entry(node, struct btrfs_free_space, offset_index);
  71		if (!info->bitmap) {
  72			unlink_free_space(ctl, info, true);
  73			kmem_cache_free(btrfs_free_space_cachep, info);
  74		} else {
  75			free_bitmap(ctl, info);
  76		}
  77
  78		cond_resched_lock(&ctl->tree_lock);
  79	}
  80}
  81
  82static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  83					       struct btrfs_path *path,
  84					       u64 offset)
  85{
 
  86	struct btrfs_key key;
  87	struct btrfs_key location;
  88	struct btrfs_disk_key disk_key;
  89	struct btrfs_free_space_header *header;
  90	struct extent_buffer *leaf;
  91	struct inode *inode = NULL;
  92	unsigned nofs_flag;
  93	int ret;
  94
  95	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  96	key.offset = offset;
  97	key.type = 0;
  98
  99	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 100	if (ret < 0)
 101		return ERR_PTR(ret);
 102	if (ret > 0) {
 103		btrfs_release_path(path);
 104		return ERR_PTR(-ENOENT);
 105	}
 106
 107	leaf = path->nodes[0];
 108	header = btrfs_item_ptr(leaf, path->slots[0],
 109				struct btrfs_free_space_header);
 110	btrfs_free_space_key(leaf, header, &disk_key);
 111	btrfs_disk_key_to_cpu(&location, &disk_key);
 112	btrfs_release_path(path);
 113
 114	/*
 115	 * We are often under a trans handle at this point, so we need to make
 116	 * sure NOFS is set to keep us from deadlocking.
 117	 */
 118	nofs_flag = memalloc_nofs_save();
 119	inode = btrfs_iget_path(location.objectid, root, path);
 120	btrfs_release_path(path);
 121	memalloc_nofs_restore(nofs_flag);
 122	if (IS_ERR(inode))
 123		return inode;
 124
 125	mapping_set_gfp_mask(inode->i_mapping,
 126			mapping_gfp_constraint(inode->i_mapping,
 127			~(__GFP_FS | __GFP_HIGHMEM)));
 128
 129	return inode;
 130}
 131
 132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 133		struct btrfs_path *path)
 134{
 135	struct btrfs_fs_info *fs_info = block_group->fs_info;
 136	struct inode *inode = NULL;
 137	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 138
 139	spin_lock(&block_group->lock);
 140	if (block_group->inode)
 141		inode = igrab(&block_group->inode->vfs_inode);
 142	spin_unlock(&block_group->lock);
 143	if (inode)
 144		return inode;
 145
 146	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 147					  block_group->start);
 148	if (IS_ERR(inode))
 149		return inode;
 150
 151	spin_lock(&block_group->lock);
 152	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 153		btrfs_info(fs_info, "Old style space inode found, converting.");
 154		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 155			BTRFS_INODE_NODATACOW;
 156		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 157	}
 158
 159	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 160		block_group->inode = BTRFS_I(igrab(inode));
 
 
 161	spin_unlock(&block_group->lock);
 162
 163	return inode;
 164}
 165
 166static int __create_free_space_inode(struct btrfs_root *root,
 167				     struct btrfs_trans_handle *trans,
 168				     struct btrfs_path *path,
 169				     u64 ino, u64 offset)
 170{
 171	struct btrfs_key key;
 172	struct btrfs_disk_key disk_key;
 173	struct btrfs_free_space_header *header;
 174	struct btrfs_inode_item *inode_item;
 175	struct extent_buffer *leaf;
 176	/* We inline CRCs for the free disk space cache */
 177	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 178			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 179	int ret;
 180
 181	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 182	if (ret)
 183		return ret;
 184
 
 
 
 
 185	leaf = path->nodes[0];
 186	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 187				    struct btrfs_inode_item);
 188	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 189	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 190			     sizeof(*inode_item));
 191	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 192	btrfs_set_inode_size(leaf, inode_item, 0);
 193	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 194	btrfs_set_inode_uid(leaf, inode_item, 0);
 195	btrfs_set_inode_gid(leaf, inode_item, 0);
 196	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 197	btrfs_set_inode_flags(leaf, inode_item, flags);
 198	btrfs_set_inode_nlink(leaf, inode_item, 1);
 199	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 200	btrfs_set_inode_block_group(leaf, inode_item, offset);
 201	btrfs_mark_buffer_dirty(trans, leaf);
 202	btrfs_release_path(path);
 203
 204	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 205	key.offset = offset;
 206	key.type = 0;
 207	ret = btrfs_insert_empty_item(trans, root, path, &key,
 208				      sizeof(struct btrfs_free_space_header));
 209	if (ret < 0) {
 210		btrfs_release_path(path);
 211		return ret;
 212	}
 213
 214	leaf = path->nodes[0];
 215	header = btrfs_item_ptr(leaf, path->slots[0],
 216				struct btrfs_free_space_header);
 217	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 218	btrfs_set_free_space_key(leaf, header, &disk_key);
 219	btrfs_mark_buffer_dirty(trans, leaf);
 220	btrfs_release_path(path);
 221
 222	return 0;
 223}
 224
 225int create_free_space_inode(struct btrfs_trans_handle *trans,
 226			    struct btrfs_block_group *block_group,
 227			    struct btrfs_path *path)
 228{
 229	int ret;
 230	u64 ino;
 231
 232	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 233	if (ret < 0)
 234		return ret;
 235
 236	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 237					 ino, block_group->start);
 238}
 239
 240/*
 241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 242 * handles lookup, otherwise it takes ownership and iputs the inode.
 243 * Don't reuse an inode pointer after passing it into this function.
 244 */
 245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 246				  struct inode *inode,
 247				  struct btrfs_block_group *block_group)
 248{
 249	struct btrfs_path *path;
 250	struct btrfs_key key;
 251	int ret = 0;
 252
 253	path = btrfs_alloc_path();
 254	if (!path)
 255		return -ENOMEM;
 256
 257	if (!inode)
 258		inode = lookup_free_space_inode(block_group, path);
 259	if (IS_ERR(inode)) {
 260		if (PTR_ERR(inode) != -ENOENT)
 261			ret = PTR_ERR(inode);
 262		goto out;
 263	}
 264	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 265	if (ret) {
 266		btrfs_add_delayed_iput(BTRFS_I(inode));
 267		goto out;
 268	}
 269	clear_nlink(inode);
 270	/* One for the block groups ref */
 271	spin_lock(&block_group->lock);
 272	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 273		block_group->inode = NULL;
 274		spin_unlock(&block_group->lock);
 275		iput(inode);
 276	} else {
 277		spin_unlock(&block_group->lock);
 278	}
 279	/* One for the lookup ref */
 280	btrfs_add_delayed_iput(BTRFS_I(inode));
 281
 282	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 283	key.type = 0;
 284	key.offset = block_group->start;
 285	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 286				-1, 1);
 287	if (ret) {
 288		if (ret > 0)
 289			ret = 0;
 290		goto out;
 291	}
 292	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 293out:
 294	btrfs_free_path(path);
 295	return ret;
 296}
 297
 298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 299				    struct btrfs_block_group *block_group,
 300				    struct inode *vfs_inode)
 301{
 302	struct btrfs_truncate_control control = {
 303		.inode = BTRFS_I(vfs_inode),
 304		.new_size = 0,
 305		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 306		.min_type = BTRFS_EXTENT_DATA_KEY,
 307		.clear_extent_range = true,
 308	};
 309	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 310	struct btrfs_root *root = inode->root;
 311	struct extent_state *cached_state = NULL;
 312	int ret = 0;
 313	bool locked = false;
 314
 315	if (block_group) {
 316		struct btrfs_path *path = btrfs_alloc_path();
 317
 318		if (!path) {
 319			ret = -ENOMEM;
 320			goto fail;
 321		}
 322		locked = true;
 323		mutex_lock(&trans->transaction->cache_write_mutex);
 324		if (!list_empty(&block_group->io_list)) {
 325			list_del_init(&block_group->io_list);
 326
 327			btrfs_wait_cache_io(trans, block_group, path);
 328			btrfs_put_block_group(block_group);
 329		}
 330
 331		/*
 332		 * now that we've truncated the cache away, its no longer
 333		 * setup or written
 334		 */
 335		spin_lock(&block_group->lock);
 336		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 337		spin_unlock(&block_group->lock);
 338		btrfs_free_path(path);
 339	}
 340
 341	btrfs_i_size_write(inode, 0);
 342	truncate_pagecache(vfs_inode, 0);
 343
 344	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 345	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 346
 347	/*
 348	 * We skip the throttling logic for free space cache inodes, so we don't
 349	 * need to check for -EAGAIN.
 350	 */
 351	ret = btrfs_truncate_inode_items(trans, root, &control);
 352
 353	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 354	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 355
 356	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 357	if (ret)
 358		goto fail;
 359
 360	ret = btrfs_update_inode(trans, inode);
 361
 362fail:
 363	if (locked)
 364		mutex_unlock(&trans->transaction->cache_write_mutex);
 365	if (ret)
 366		btrfs_abort_transaction(trans, ret);
 367
 368	return ret;
 369}
 370
 371static void readahead_cache(struct inode *inode)
 372{
 373	struct file_ra_state ra;
 374	unsigned long last_index;
 375
 376	file_ra_state_init(&ra, inode->i_mapping);
 
 
 
 
 377	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 378
 379	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 
 
 380}
 381
 382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 383		       int write)
 384{
 385	int num_pages;
 
 386
 387	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 388
 
 
 
 389	/* Make sure we can fit our crcs and generation into the first page */
 390	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 391		return -ENOSPC;
 392
 393	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 394
 395	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 396	if (!io_ctl->pages)
 397		return -ENOMEM;
 398
 399	io_ctl->num_pages = num_pages;
 400	io_ctl->fs_info = inode_to_fs_info(inode);
 
 401	io_ctl->inode = inode;
 402
 403	return 0;
 404}
 405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 406
 407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 408{
 409	kfree(io_ctl->pages);
 410	io_ctl->pages = NULL;
 411}
 412
 413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 414{
 415	if (io_ctl->cur) {
 416		io_ctl->cur = NULL;
 417		io_ctl->orig = NULL;
 418	}
 419}
 420
 421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 422{
 423	ASSERT(io_ctl->index < io_ctl->num_pages);
 424	io_ctl->page = io_ctl->pages[io_ctl->index++];
 425	io_ctl->cur = page_address(io_ctl->page);
 426	io_ctl->orig = io_ctl->cur;
 427	io_ctl->size = PAGE_SIZE;
 428	if (clear)
 429		clear_page(io_ctl->cur);
 430}
 431
 432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 433{
 434	int i;
 435
 436	io_ctl_unmap_page(io_ctl);
 437
 438	for (i = 0; i < io_ctl->num_pages; i++) {
 439		if (io_ctl->pages[i]) {
 440			btrfs_folio_clear_checked(io_ctl->fs_info,
 441					page_folio(io_ctl->pages[i]),
 442					page_offset(io_ctl->pages[i]),
 443					PAGE_SIZE);
 444			unlock_page(io_ctl->pages[i]);
 445			put_page(io_ctl->pages[i]);
 446		}
 447	}
 448}
 449
 450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 451{
 452	struct page *page;
 453	struct inode *inode = io_ctl->inode;
 454	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 455	int i;
 456
 457	for (i = 0; i < io_ctl->num_pages; i++) {
 458		int ret;
 459
 460		page = find_or_create_page(inode->i_mapping, i, mask);
 461		if (!page) {
 462			io_ctl_drop_pages(io_ctl);
 463			return -ENOMEM;
 464		}
 465
 466		ret = set_page_extent_mapped(page);
 467		if (ret < 0) {
 468			unlock_page(page);
 469			put_page(page);
 470			io_ctl_drop_pages(io_ctl);
 471			return ret;
 472		}
 473
 474		io_ctl->pages[i] = page;
 475		if (uptodate && !PageUptodate(page)) {
 476			btrfs_read_folio(NULL, page_folio(page));
 477			lock_page(page);
 478			if (page->mapping != inode->i_mapping) {
 479				btrfs_err(BTRFS_I(inode)->root->fs_info,
 480					  "free space cache page truncated");
 481				io_ctl_drop_pages(io_ctl);
 482				return -EIO;
 483			}
 484			if (!PageUptodate(page)) {
 485				btrfs_err(BTRFS_I(inode)->root->fs_info,
 486					   "error reading free space cache");
 487				io_ctl_drop_pages(io_ctl);
 488				return -EIO;
 489			}
 490		}
 491	}
 492
 493	for (i = 0; i < io_ctl->num_pages; i++)
 494		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 495
 496	return 0;
 497}
 498
 499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 500{
 
 
 501	io_ctl_map_page(io_ctl, 1);
 502
 503	/*
 504	 * Skip the csum areas.  If we don't check crcs then we just have a
 505	 * 64bit chunk at the front of the first page.
 506	 */
 507	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 508	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 509
 510	put_unaligned_le64(generation, io_ctl->cur);
 
 511	io_ctl->cur += sizeof(u64);
 512}
 513
 514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 515{
 516	u64 cache_gen;
 517
 518	/*
 519	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 520	 * chunk at the front of the first page.
 521	 */
 522	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 523	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 524
 525	cache_gen = get_unaligned_le64(io_ctl->cur);
 526	if (cache_gen != generation) {
 527		btrfs_err_rl(io_ctl->fs_info,
 528			"space cache generation (%llu) does not match inode (%llu)",
 529				cache_gen, generation);
 530		io_ctl_unmap_page(io_ctl);
 531		return -EIO;
 532	}
 533	io_ctl->cur += sizeof(u64);
 534	return 0;
 535}
 536
 537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 538{
 539	u32 *tmp;
 540	u32 crc = ~(u32)0;
 541	unsigned offset = 0;
 542
 
 
 
 
 
 543	if (index == 0)
 544		offset = sizeof(u32) * io_ctl->num_pages;
 545
 546	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 547	btrfs_crc32c_final(crc, (u8 *)&crc);
 548	io_ctl_unmap_page(io_ctl);
 549	tmp = page_address(io_ctl->pages[0]);
 550	tmp += index;
 551	*tmp = crc;
 552}
 553
 554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 555{
 556	u32 *tmp, val;
 557	u32 crc = ~(u32)0;
 558	unsigned offset = 0;
 559
 
 
 
 
 
 560	if (index == 0)
 561		offset = sizeof(u32) * io_ctl->num_pages;
 562
 563	tmp = page_address(io_ctl->pages[0]);
 564	tmp += index;
 565	val = *tmp;
 566
 567	io_ctl_map_page(io_ctl, 0);
 568	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 569	btrfs_crc32c_final(crc, (u8 *)&crc);
 570	if (val != crc) {
 571		btrfs_err_rl(io_ctl->fs_info,
 572			"csum mismatch on free space cache");
 573		io_ctl_unmap_page(io_ctl);
 574		return -EIO;
 575	}
 576
 577	return 0;
 578}
 579
 580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 581			    void *bitmap)
 582{
 583	struct btrfs_free_space_entry *entry;
 584
 585	if (!io_ctl->cur)
 586		return -ENOSPC;
 587
 588	entry = io_ctl->cur;
 589	put_unaligned_le64(offset, &entry->offset);
 590	put_unaligned_le64(bytes, &entry->bytes);
 591	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 592		BTRFS_FREE_SPACE_EXTENT;
 593	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 594	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 595
 596	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 597		return 0;
 598
 599	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 600
 601	/* No more pages to map */
 602	if (io_ctl->index >= io_ctl->num_pages)
 603		return 0;
 604
 605	/* map the next page */
 606	io_ctl_map_page(io_ctl, 1);
 607	return 0;
 608}
 609
 610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 611{
 612	if (!io_ctl->cur)
 613		return -ENOSPC;
 614
 615	/*
 616	 * If we aren't at the start of the current page, unmap this one and
 617	 * map the next one if there is any left.
 618	 */
 619	if (io_ctl->cur != io_ctl->orig) {
 620		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 621		if (io_ctl->index >= io_ctl->num_pages)
 622			return -ENOSPC;
 623		io_ctl_map_page(io_ctl, 0);
 624	}
 625
 626	copy_page(io_ctl->cur, bitmap);
 627	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 628	if (io_ctl->index < io_ctl->num_pages)
 629		io_ctl_map_page(io_ctl, 0);
 630	return 0;
 631}
 632
 633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 634{
 635	/*
 636	 * If we're not on the boundary we know we've modified the page and we
 637	 * need to crc the page.
 638	 */
 639	if (io_ctl->cur != io_ctl->orig)
 640		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 641	else
 642		io_ctl_unmap_page(io_ctl);
 643
 644	while (io_ctl->index < io_ctl->num_pages) {
 645		io_ctl_map_page(io_ctl, 1);
 646		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 647	}
 648}
 649
 650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 651			    struct btrfs_free_space *entry, u8 *type)
 652{
 653	struct btrfs_free_space_entry *e;
 654	int ret;
 655
 656	if (!io_ctl->cur) {
 657		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 658		if (ret)
 659			return ret;
 660	}
 661
 662	e = io_ctl->cur;
 663	entry->offset = get_unaligned_le64(&e->offset);
 664	entry->bytes = get_unaligned_le64(&e->bytes);
 665	*type = e->type;
 666	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 667	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 668
 669	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 670		return 0;
 671
 672	io_ctl_unmap_page(io_ctl);
 673
 674	return 0;
 675}
 676
 677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 678			      struct btrfs_free_space *entry)
 679{
 680	int ret;
 681
 682	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 683	if (ret)
 684		return ret;
 685
 686	copy_page(entry->bitmap, io_ctl->cur);
 687	io_ctl_unmap_page(io_ctl);
 688
 689	return 0;
 690}
 691
 692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 693{
 694	struct btrfs_block_group *block_group = ctl->block_group;
 695	u64 max_bytes;
 696	u64 bitmap_bytes;
 697	u64 extent_bytes;
 698	u64 size = block_group->length;
 699	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 700	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 701
 702	max_bitmaps = max_t(u64, max_bitmaps, 1);
 703
 704	if (ctl->total_bitmaps > max_bitmaps)
 705		btrfs_err(block_group->fs_info,
 706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 707			  block_group->start, block_group->length,
 708			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 709			  bytes_per_bg);
 710	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 711
 712	/*
 713	 * We are trying to keep the total amount of memory used per 1GiB of
 714	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 715	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 716	 * bitmaps, we may end up using more memory than this.
 717	 */
 718	if (size < SZ_1G)
 719		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 720	else
 721		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 722
 723	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 724
 725	/*
 726	 * we want the extent entry threshold to always be at most 1/2 the max
 727	 * bytes we can have, or whatever is less than that.
 728	 */
 729	extent_bytes = max_bytes - bitmap_bytes;
 730	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 731
 732	ctl->extents_thresh =
 733		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734}
 735
 736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 737				   struct btrfs_free_space_ctl *ctl,
 738				   struct btrfs_path *path, u64 offset)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct btrfs_free_space_header *header;
 742	struct extent_buffer *leaf;
 743	struct btrfs_io_ctl io_ctl;
 744	struct btrfs_key key;
 745	struct btrfs_free_space *e, *n;
 746	LIST_HEAD(bitmaps);
 747	u64 num_entries;
 748	u64 num_bitmaps;
 749	u64 generation;
 750	u8 type;
 751	int ret = 0;
 752
 753	/* Nothing in the space cache, goodbye */
 754	if (!i_size_read(inode))
 755		return 0;
 756
 757	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 758	key.offset = offset;
 759	key.type = 0;
 760
 761	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 762	if (ret < 0)
 763		return 0;
 764	else if (ret > 0) {
 765		btrfs_release_path(path);
 766		return 0;
 767	}
 768
 769	ret = -1;
 770
 771	leaf = path->nodes[0];
 772	header = btrfs_item_ptr(leaf, path->slots[0],
 773				struct btrfs_free_space_header);
 774	num_entries = btrfs_free_space_entries(leaf, header);
 775	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 776	generation = btrfs_free_space_generation(leaf, header);
 777	btrfs_release_path(path);
 778
 779	if (!BTRFS_I(inode)->generation) {
 780		btrfs_info(fs_info,
 781			   "the free space cache file (%llu) is invalid, skip it",
 782			   offset);
 783		return 0;
 784	}
 785
 786	if (BTRFS_I(inode)->generation != generation) {
 787		btrfs_err(fs_info,
 788			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 789			  BTRFS_I(inode)->generation, generation);
 790		return 0;
 791	}
 792
 793	if (!num_entries)
 794		return 0;
 795
 796	ret = io_ctl_init(&io_ctl, inode, 0);
 797	if (ret)
 798		return ret;
 799
 800	readahead_cache(inode);
 801
 802	ret = io_ctl_prepare_pages(&io_ctl, true);
 803	if (ret)
 804		goto out;
 805
 806	ret = io_ctl_check_crc(&io_ctl, 0);
 807	if (ret)
 808		goto free_cache;
 809
 810	ret = io_ctl_check_generation(&io_ctl, generation);
 811	if (ret)
 812		goto free_cache;
 813
 814	while (num_entries) {
 815		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 816				      GFP_NOFS);
 817		if (!e) {
 818			ret = -ENOMEM;
 819			goto free_cache;
 820		}
 821
 822		ret = io_ctl_read_entry(&io_ctl, e, &type);
 823		if (ret) {
 824			kmem_cache_free(btrfs_free_space_cachep, e);
 825			goto free_cache;
 826		}
 827
 
 
 
 
 
 
 
 
 
 
 828		if (!e->bytes) {
 829			ret = -1;
 830			kmem_cache_free(btrfs_free_space_cachep, e);
 831			goto free_cache;
 832		}
 833
 834		if (type == BTRFS_FREE_SPACE_EXTENT) {
 835			spin_lock(&ctl->tree_lock);
 836			ret = link_free_space(ctl, e);
 837			spin_unlock(&ctl->tree_lock);
 838			if (ret) {
 839				btrfs_err(fs_info,
 840					"Duplicate entries in free space cache, dumping");
 841				kmem_cache_free(btrfs_free_space_cachep, e);
 842				goto free_cache;
 843			}
 844		} else {
 845			ASSERT(num_bitmaps);
 846			num_bitmaps--;
 847			e->bitmap = kmem_cache_zalloc(
 848					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 849			if (!e->bitmap) {
 850				ret = -ENOMEM;
 851				kmem_cache_free(
 852					btrfs_free_space_cachep, e);
 853				goto free_cache;
 854			}
 855			spin_lock(&ctl->tree_lock);
 856			ret = link_free_space(ctl, e);
 
 
 
 857			if (ret) {
 858				spin_unlock(&ctl->tree_lock);
 859				btrfs_err(fs_info,
 860					"Duplicate entries in free space cache, dumping");
 861				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
 862				kmem_cache_free(btrfs_free_space_cachep, e);
 863				goto free_cache;
 864			}
 865			ctl->total_bitmaps++;
 866			recalculate_thresholds(ctl);
 867			spin_unlock(&ctl->tree_lock);
 868			list_add_tail(&e->list, &bitmaps);
 869		}
 870
 871		num_entries--;
 872	}
 873
 874	io_ctl_unmap_page(&io_ctl);
 875
 876	/*
 877	 * We add the bitmaps at the end of the entries in order that
 878	 * the bitmap entries are added to the cache.
 879	 */
 880	list_for_each_entry_safe(e, n, &bitmaps, list) {
 881		list_del_init(&e->list);
 882		ret = io_ctl_read_bitmap(&io_ctl, e);
 883		if (ret)
 884			goto free_cache;
 
 
 
 
 
 
 885	}
 886
 887	io_ctl_drop_pages(&io_ctl);
 
 888	ret = 1;
 889out:
 
 890	io_ctl_free(&io_ctl);
 891	return ret;
 892free_cache:
 893	io_ctl_drop_pages(&io_ctl);
 894
 895	spin_lock(&ctl->tree_lock);
 896	__btrfs_remove_free_space_cache(ctl);
 897	spin_unlock(&ctl->tree_lock);
 898	goto out;
 899}
 900
 901static int copy_free_space_cache(struct btrfs_block_group *block_group,
 902				 struct btrfs_free_space_ctl *ctl)
 903{
 904	struct btrfs_free_space *info;
 905	struct rb_node *n;
 906	int ret = 0;
 907
 908	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 909		info = rb_entry(n, struct btrfs_free_space, offset_index);
 910		if (!info->bitmap) {
 911			const u64 offset = info->offset;
 912			const u64 bytes = info->bytes;
 913
 914			unlink_free_space(ctl, info, true);
 915			spin_unlock(&ctl->tree_lock);
 916			kmem_cache_free(btrfs_free_space_cachep, info);
 917			ret = btrfs_add_free_space(block_group, offset, bytes);
 918			spin_lock(&ctl->tree_lock);
 919		} else {
 920			u64 offset = info->offset;
 921			u64 bytes = ctl->unit;
 922
 923			ret = search_bitmap(ctl, info, &offset, &bytes, false);
 924			if (ret == 0) {
 925				bitmap_clear_bits(ctl, info, offset, bytes, true);
 926				spin_unlock(&ctl->tree_lock);
 927				ret = btrfs_add_free_space(block_group, offset,
 928							   bytes);
 929				spin_lock(&ctl->tree_lock);
 930			} else {
 931				free_bitmap(ctl, info);
 932				ret = 0;
 933			}
 934		}
 935		cond_resched_lock(&ctl->tree_lock);
 936	}
 937	return ret;
 938}
 939
 940static struct lock_class_key btrfs_free_space_inode_key;
 941
 942int load_free_space_cache(struct btrfs_block_group *block_group)
 943{
 944	struct btrfs_fs_info *fs_info = block_group->fs_info;
 945	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 946	struct btrfs_free_space_ctl tmp_ctl = {};
 947	struct inode *inode;
 948	struct btrfs_path *path;
 949	int ret = 0;
 950	bool matched;
 951	u64 used = block_group->used;
 952
 953	/*
 954	 * Because we could potentially discard our loaded free space, we want
 955	 * to load everything into a temporary structure first, and then if it's
 956	 * valid copy it all into the actual free space ctl.
 957	 */
 958	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 959
 960	/*
 961	 * If this block group has been marked to be cleared for one reason or
 962	 * another then we can't trust the on disk cache, so just return.
 963	 */
 964	spin_lock(&block_group->lock);
 965	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 966		spin_unlock(&block_group->lock);
 967		return 0;
 968	}
 969	spin_unlock(&block_group->lock);
 970
 971	path = btrfs_alloc_path();
 972	if (!path)
 973		return 0;
 974	path->search_commit_root = 1;
 975	path->skip_locking = 1;
 976
 977	/*
 978	 * We must pass a path with search_commit_root set to btrfs_iget in
 979	 * order to avoid a deadlock when allocating extents for the tree root.
 980	 *
 981	 * When we are COWing an extent buffer from the tree root, when looking
 982	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 983	 * block group without its free space cache loaded. When we find one
 984	 * we must load its space cache which requires reading its free space
 985	 * cache's inode item from the root tree. If this inode item is located
 986	 * in the same leaf that we started COWing before, then we end up in
 987	 * deadlock on the extent buffer (trying to read lock it when we
 988	 * previously write locked it).
 989	 *
 990	 * It's safe to read the inode item using the commit root because
 991	 * block groups, once loaded, stay in memory forever (until they are
 992	 * removed) as well as their space caches once loaded. New block groups
 993	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 994	 * we will never try to read their inode item while the fs is mounted.
 995	 */
 996	inode = lookup_free_space_inode(block_group, path);
 997	if (IS_ERR(inode)) {
 998		btrfs_free_path(path);
 999		return 0;
1000	}
1001
1002	/* We may have converted the inode and made the cache invalid. */
1003	spin_lock(&block_group->lock);
1004	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005		spin_unlock(&block_group->lock);
1006		btrfs_free_path(path);
1007		goto out;
1008	}
1009	spin_unlock(&block_group->lock);
1010
1011	/*
1012	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013	 * free space inodes to prevent false positives related to locks for normal
1014	 * inodes.
1015	 */
1016	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017			  &btrfs_free_space_inode_key);
1018
1019	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020				      path, block_group->start);
1021	btrfs_free_path(path);
1022	if (ret <= 0)
1023		goto out;
1024
1025	matched = (tmp_ctl.free_space == (block_group->length - used -
1026					  block_group->bytes_super));
 
 
1027
1028	if (matched) {
1029		spin_lock(&tmp_ctl.tree_lock);
1030		ret = copy_free_space_cache(block_group, &tmp_ctl);
1031		spin_unlock(&tmp_ctl.tree_lock);
1032		/*
1033		 * ret == 1 means we successfully loaded the free space cache,
1034		 * so we need to re-set it here.
1035		 */
1036		if (ret == 0)
1037			ret = 1;
1038	} else {
1039		/*
1040		 * We need to call the _locked variant so we don't try to update
1041		 * the discard counters.
1042		 */
1043		spin_lock(&tmp_ctl.tree_lock);
1044		__btrfs_remove_free_space_cache(&tmp_ctl);
1045		spin_unlock(&tmp_ctl.tree_lock);
1046		btrfs_warn(fs_info,
1047			   "block group %llu has wrong amount of free space",
1048			   block_group->start);
1049		ret = -1;
1050	}
1051out:
1052	if (ret < 0) {
1053		/* This cache is bogus, make sure it gets cleared */
1054		spin_lock(&block_group->lock);
1055		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056		spin_unlock(&block_group->lock);
1057		ret = 0;
1058
1059		btrfs_warn(fs_info,
1060			   "failed to load free space cache for block group %llu, rebuilding it now",
1061			   block_group->start);
1062	}
1063
1064	spin_lock(&ctl->tree_lock);
1065	btrfs_discard_update_discardable(block_group);
1066	spin_unlock(&ctl->tree_lock);
1067	iput(inode);
1068	return ret;
1069}
1070
1071static noinline_for_stack
1072int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073			      struct btrfs_free_space_ctl *ctl,
1074			      struct btrfs_block_group *block_group,
1075			      int *entries, int *bitmaps,
1076			      struct list_head *bitmap_list)
1077{
1078	int ret;
1079	struct btrfs_free_cluster *cluster = NULL;
1080	struct btrfs_free_cluster *cluster_locked = NULL;
1081	struct rb_node *node = rb_first(&ctl->free_space_offset);
1082	struct btrfs_trim_range *trim_entry;
1083
1084	/* Get the cluster for this block_group if it exists */
1085	if (block_group && !list_empty(&block_group->cluster_list)) {
1086		cluster = list_entry(block_group->cluster_list.next,
1087				     struct btrfs_free_cluster,
1088				     block_group_list);
1089	}
1090
1091	if (!node && cluster) {
1092		cluster_locked = cluster;
1093		spin_lock(&cluster_locked->lock);
1094		node = rb_first(&cluster->root);
1095		cluster = NULL;
1096	}
1097
1098	/* Write out the extent entries */
1099	while (node) {
1100		struct btrfs_free_space *e;
1101
1102		e = rb_entry(node, struct btrfs_free_space, offset_index);
1103		*entries += 1;
1104
1105		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106				       e->bitmap);
1107		if (ret)
1108			goto fail;
1109
1110		if (e->bitmap) {
1111			list_add_tail(&e->list, bitmap_list);
1112			*bitmaps += 1;
1113		}
1114		node = rb_next(node);
1115		if (!node && cluster) {
1116			node = rb_first(&cluster->root);
1117			cluster_locked = cluster;
1118			spin_lock(&cluster_locked->lock);
1119			cluster = NULL;
1120		}
1121	}
1122	if (cluster_locked) {
1123		spin_unlock(&cluster_locked->lock);
1124		cluster_locked = NULL;
1125	}
1126
1127	/*
1128	 * Make sure we don't miss any range that was removed from our rbtree
1129	 * because trimming is running. Otherwise after a umount+mount (or crash
1130	 * after committing the transaction) we would leak free space and get
1131	 * an inconsistent free space cache report from fsck.
1132	 */
1133	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135				       trim_entry->bytes, NULL);
1136		if (ret)
1137			goto fail;
1138		*entries += 1;
1139	}
1140
1141	return 0;
1142fail:
1143	if (cluster_locked)
1144		spin_unlock(&cluster_locked->lock);
1145	return -ENOSPC;
1146}
1147
1148static noinline_for_stack int
1149update_cache_item(struct btrfs_trans_handle *trans,
1150		  struct btrfs_root *root,
1151		  struct inode *inode,
1152		  struct btrfs_path *path, u64 offset,
1153		  int entries, int bitmaps)
1154{
1155	struct btrfs_key key;
1156	struct btrfs_free_space_header *header;
1157	struct extent_buffer *leaf;
1158	int ret;
1159
1160	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161	key.offset = offset;
1162	key.type = 0;
1163
1164	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165	if (ret < 0) {
1166		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167				 EXTENT_DELALLOC, NULL);
1168		goto fail;
1169	}
1170	leaf = path->nodes[0];
1171	if (ret > 0) {
1172		struct btrfs_key found_key;
1173		ASSERT(path->slots[0]);
1174		path->slots[0]--;
1175		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177		    found_key.offset != offset) {
1178			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179					 inode->i_size - 1, EXTENT_DELALLOC,
1180					 NULL);
1181			btrfs_release_path(path);
1182			goto fail;
1183		}
1184	}
1185
1186	BTRFS_I(inode)->generation = trans->transid;
1187	header = btrfs_item_ptr(leaf, path->slots[0],
1188				struct btrfs_free_space_header);
1189	btrfs_set_free_space_entries(leaf, header, entries);
1190	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191	btrfs_set_free_space_generation(leaf, header, trans->transid);
1192	btrfs_mark_buffer_dirty(trans, leaf);
1193	btrfs_release_path(path);
1194
1195	return 0;
1196
1197fail:
1198	return -1;
1199}
1200
1201static noinline_for_stack int write_pinned_extent_entries(
1202			    struct btrfs_trans_handle *trans,
1203			    struct btrfs_block_group *block_group,
1204			    struct btrfs_io_ctl *io_ctl,
1205			    int *entries)
1206{
1207	u64 start, extent_start, extent_end, len;
1208	struct extent_io_tree *unpin = NULL;
1209	int ret;
1210
1211	if (!block_group)
1212		return 0;
1213
1214	/*
1215	 * We want to add any pinned extents to our free space cache
1216	 * so we don't leak the space
1217	 *
1218	 * We shouldn't have switched the pinned extents yet so this is the
1219	 * right one
1220	 */
1221	unpin = &trans->transaction->pinned_extents;
1222
1223	start = block_group->start;
1224
1225	while (start < block_group->start + block_group->length) {
1226		if (!find_first_extent_bit(unpin, start,
1227					   &extent_start, &extent_end,
1228					   EXTENT_DIRTY, NULL))
 
1229			return 0;
1230
1231		/* This pinned extent is out of our range */
1232		if (extent_start >= block_group->start + block_group->length)
1233			return 0;
1234
1235		extent_start = max(extent_start, start);
1236		extent_end = min(block_group->start + block_group->length,
1237				 extent_end + 1);
1238		len = extent_end - extent_start;
1239
1240		*entries += 1;
1241		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242		if (ret)
1243			return -ENOSPC;
1244
1245		start = extent_end;
1246	}
1247
1248	return 0;
1249}
1250
1251static noinline_for_stack int
1252write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253{
1254	struct btrfs_free_space *entry, *next;
1255	int ret;
1256
1257	/* Write out the bitmaps */
1258	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260		if (ret)
1261			return -ENOSPC;
1262		list_del_init(&entry->list);
1263	}
1264
1265	return 0;
1266}
1267
1268static int flush_dirty_cache(struct inode *inode)
1269{
1270	int ret;
1271
1272	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273	if (ret)
1274		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275				 EXTENT_DELALLOC, NULL);
1276
1277	return ret;
1278}
1279
1280static void noinline_for_stack
1281cleanup_bitmap_list(struct list_head *bitmap_list)
1282{
1283	struct btrfs_free_space *entry, *next;
1284
1285	list_for_each_entry_safe(entry, next, bitmap_list, list)
1286		list_del_init(&entry->list);
1287}
1288
1289static void noinline_for_stack
1290cleanup_write_cache_enospc(struct inode *inode,
1291			   struct btrfs_io_ctl *io_ctl,
1292			   struct extent_state **cached_state)
1293{
1294	io_ctl_drop_pages(io_ctl);
1295	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296		      cached_state);
1297}
1298
1299static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300				 struct btrfs_trans_handle *trans,
1301				 struct btrfs_block_group *block_group,
1302				 struct btrfs_io_ctl *io_ctl,
1303				 struct btrfs_path *path, u64 offset)
1304{
1305	int ret;
1306	struct inode *inode = io_ctl->inode;
1307
1308	if (!inode)
1309		return 0;
1310
1311	/* Flush the dirty pages in the cache file. */
1312	ret = flush_dirty_cache(inode);
1313	if (ret)
1314		goto out;
1315
1316	/* Update the cache item to tell everyone this cache file is valid. */
1317	ret = update_cache_item(trans, root, inode, path, offset,
1318				io_ctl->entries, io_ctl->bitmaps);
1319out:
1320	if (ret) {
1321		invalidate_inode_pages2(inode->i_mapping);
1322		BTRFS_I(inode)->generation = 0;
1323		if (block_group)
1324			btrfs_debug(root->fs_info,
1325	  "failed to write free space cache for block group %llu error %d",
1326				  block_group->start, ret);
1327	}
1328	btrfs_update_inode(trans, BTRFS_I(inode));
1329
1330	if (block_group) {
1331		/* the dirty list is protected by the dirty_bgs_lock */
1332		spin_lock(&trans->transaction->dirty_bgs_lock);
1333
1334		/* the disk_cache_state is protected by the block group lock */
1335		spin_lock(&block_group->lock);
1336
1337		/*
1338		 * only mark this as written if we didn't get put back on
1339		 * the dirty list while waiting for IO.   Otherwise our
1340		 * cache state won't be right, and we won't get written again
1341		 */
1342		if (!ret && list_empty(&block_group->dirty_list))
1343			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344		else if (ret)
1345			block_group->disk_cache_state = BTRFS_DC_ERROR;
1346
1347		spin_unlock(&block_group->lock);
1348		spin_unlock(&trans->transaction->dirty_bgs_lock);
1349		io_ctl->inode = NULL;
1350		iput(inode);
1351	}
1352
1353	return ret;
1354
1355}
1356
 
 
 
 
 
 
 
 
1357int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358			struct btrfs_block_group *block_group,
1359			struct btrfs_path *path)
1360{
1361	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362				     block_group, &block_group->io_ctl,
1363				     path, block_group->start);
1364}
1365
1366/*
1367 * Write out cached info to an inode.
1368 *
1369 * @inode:       freespace inode we are writing out
1370 * @ctl:         free space cache we are going to write out
1371 * @block_group: block_group for this cache if it belongs to a block_group
1372 * @io_ctl:      holds context for the io
1373 * @trans:       the trans handle
1374 *
1375 * This function writes out a free space cache struct to disk for quick recovery
1376 * on mount.  This will return 0 if it was successful in writing the cache out,
1377 * or an errno if it was not.
1378 */
1379static int __btrfs_write_out_cache(struct inode *inode,
1380				   struct btrfs_free_space_ctl *ctl,
1381				   struct btrfs_block_group *block_group,
1382				   struct btrfs_io_ctl *io_ctl,
1383				   struct btrfs_trans_handle *trans)
1384{
1385	struct extent_state *cached_state = NULL;
1386	LIST_HEAD(bitmap_list);
1387	int entries = 0;
1388	int bitmaps = 0;
1389	int ret;
1390	int must_iput = 0;
1391	int i_size;
1392
1393	if (!i_size_read(inode))
1394		return -EIO;
1395
1396	WARN_ON(io_ctl->pages);
1397	ret = io_ctl_init(io_ctl, inode, 1);
1398	if (ret)
1399		return ret;
1400
1401	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402		down_write(&block_group->data_rwsem);
1403		spin_lock(&block_group->lock);
1404		if (block_group->delalloc_bytes) {
1405			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406			spin_unlock(&block_group->lock);
1407			up_write(&block_group->data_rwsem);
1408			BTRFS_I(inode)->generation = 0;
1409			ret = 0;
1410			must_iput = 1;
1411			goto out;
1412		}
1413		spin_unlock(&block_group->lock);
1414	}
1415
1416	/* Lock all pages first so we can lock the extent safely. */
1417	ret = io_ctl_prepare_pages(io_ctl, false);
1418	if (ret)
1419		goto out_unlock;
1420
1421	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422		    &cached_state);
1423
1424	io_ctl_set_generation(io_ctl, trans->transid);
1425
1426	mutex_lock(&ctl->cache_writeout_mutex);
1427	/* Write out the extent entries in the free space cache */
1428	spin_lock(&ctl->tree_lock);
1429	ret = write_cache_extent_entries(io_ctl, ctl,
1430					 block_group, &entries, &bitmaps,
1431					 &bitmap_list);
1432	if (ret)
1433		goto out_nospc_locked;
1434
1435	/*
1436	 * Some spaces that are freed in the current transaction are pinned,
1437	 * they will be added into free space cache after the transaction is
1438	 * committed, we shouldn't lose them.
1439	 *
1440	 * If this changes while we are working we'll get added back to
1441	 * the dirty list and redo it.  No locking needed
1442	 */
1443	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444	if (ret)
1445		goto out_nospc_locked;
1446
1447	/*
1448	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449	 * locked while doing it because a concurrent trim can be manipulating
1450	 * or freeing the bitmap.
1451	 */
1452	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453	spin_unlock(&ctl->tree_lock);
1454	mutex_unlock(&ctl->cache_writeout_mutex);
1455	if (ret)
1456		goto out_nospc;
1457
1458	/* Zero out the rest of the pages just to make sure */
1459	io_ctl_zero_remaining_pages(io_ctl);
1460
1461	/* Everything is written out, now we dirty the pages in the file. */
1462	i_size = i_size_read(inode);
1463	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464		u64 dirty_start = i * PAGE_SIZE;
1465		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1466
1467		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468					dirty_start, dirty_len, &cached_state, false);
1469		if (ret < 0)
1470			goto out_nospc;
1471	}
1472
1473	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474		up_write(&block_group->data_rwsem);
1475	/*
1476	 * Release the pages and unlock the extent, we will flush
1477	 * them out later
1478	 */
1479	io_ctl_drop_pages(io_ctl);
1480	io_ctl_free(io_ctl);
1481
1482	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483		      &cached_state);
1484
1485	/*
1486	 * at this point the pages are under IO and we're happy,
1487	 * The caller is responsible for waiting on them and updating
1488	 * the cache and the inode
1489	 */
1490	io_ctl->entries = entries;
1491	io_ctl->bitmaps = bitmaps;
1492
1493	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494	if (ret)
1495		goto out;
1496
1497	return 0;
1498
1499out_nospc_locked:
1500	cleanup_bitmap_list(&bitmap_list);
1501	spin_unlock(&ctl->tree_lock);
1502	mutex_unlock(&ctl->cache_writeout_mutex);
1503
1504out_nospc:
1505	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1506
1507out_unlock:
1508	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509		up_write(&block_group->data_rwsem);
1510
1511out:
1512	io_ctl->inode = NULL;
1513	io_ctl_free(io_ctl);
1514	if (ret) {
1515		invalidate_inode_pages2(inode->i_mapping);
1516		BTRFS_I(inode)->generation = 0;
1517	}
1518	btrfs_update_inode(trans, BTRFS_I(inode));
1519	if (must_iput)
1520		iput(inode);
1521	return ret;
1522}
1523
1524int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525			  struct btrfs_block_group *block_group,
1526			  struct btrfs_path *path)
1527{
1528	struct btrfs_fs_info *fs_info = trans->fs_info;
1529	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530	struct inode *inode;
1531	int ret = 0;
1532
1533	spin_lock(&block_group->lock);
1534	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535		spin_unlock(&block_group->lock);
1536		return 0;
1537	}
1538	spin_unlock(&block_group->lock);
1539
1540	inode = lookup_free_space_inode(block_group, path);
1541	if (IS_ERR(inode))
1542		return 0;
1543
1544	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545				      &block_group->io_ctl, trans);
1546	if (ret) {
1547		btrfs_debug(fs_info,
1548	  "failed to write free space cache for block group %llu error %d",
1549			  block_group->start, ret);
1550		spin_lock(&block_group->lock);
1551		block_group->disk_cache_state = BTRFS_DC_ERROR;
1552		spin_unlock(&block_group->lock);
1553
1554		block_group->io_ctl.inode = NULL;
1555		iput(inode);
1556	}
1557
1558	/*
1559	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560	 * to wait for IO and put the inode
1561	 */
1562
1563	return ret;
1564}
1565
1566static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567					  u64 offset)
1568{
1569	ASSERT(offset >= bitmap_start);
1570	offset -= bitmap_start;
1571	return (unsigned long)(div_u64(offset, unit));
1572}
1573
1574static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1575{
1576	return (unsigned long)(div_u64(bytes, unit));
1577}
1578
1579static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580				   u64 offset)
1581{
1582	u64 bitmap_start;
1583	u64 bytes_per_bitmap;
1584
1585	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586	bitmap_start = offset - ctl->start;
1587	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588	bitmap_start *= bytes_per_bitmap;
1589	bitmap_start += ctl->start;
1590
1591	return bitmap_start;
1592}
1593
1594static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595			      struct btrfs_free_cluster *cluster,
1596			      struct btrfs_free_space *new_entry)
1597{
1598	struct rb_root *root;
1599	struct rb_node **p;
1600	struct rb_node *parent = NULL;
1601
1602	lockdep_assert_held(&ctl->tree_lock);
1603
1604	if (cluster) {
1605		lockdep_assert_held(&cluster->lock);
1606		root = &cluster->root;
1607	} else {
1608		root = &ctl->free_space_offset;
1609	}
1610
1611	p = &root->rb_node;
1612
1613	while (*p) {
1614		struct btrfs_free_space *info;
1615
1616		parent = *p;
1617		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1618
1619		if (new_entry->offset < info->offset) {
1620			p = &(*p)->rb_left;
1621		} else if (new_entry->offset > info->offset) {
1622			p = &(*p)->rb_right;
1623		} else {
1624			/*
1625			 * we could have a bitmap entry and an extent entry
1626			 * share the same offset.  If this is the case, we want
1627			 * the extent entry to always be found first if we do a
1628			 * linear search through the tree, since we want to have
1629			 * the quickest allocation time, and allocating from an
1630			 * extent is faster than allocating from a bitmap.  So
1631			 * if we're inserting a bitmap and we find an entry at
1632			 * this offset, we want to go right, or after this entry
1633			 * logically.  If we are inserting an extent and we've
1634			 * found a bitmap, we want to go left, or before
1635			 * logically.
1636			 */
1637			if (new_entry->bitmap) {
1638				if (info->bitmap) {
1639					WARN_ON_ONCE(1);
1640					return -EEXIST;
1641				}
1642				p = &(*p)->rb_right;
1643			} else {
1644				if (!info->bitmap) {
1645					WARN_ON_ONCE(1);
1646					return -EEXIST;
1647				}
1648				p = &(*p)->rb_left;
1649			}
1650		}
1651	}
1652
1653	rb_link_node(&new_entry->offset_index, parent, p);
1654	rb_insert_color(&new_entry->offset_index, root);
1655
1656	return 0;
1657}
1658
1659/*
1660 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1661 * searched through the bitmap and figured out the largest ->max_extent_size,
1662 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1663 * allocator the wrong thing, we want to use the actual real max_extent_size
1664 * we've found already if it's larger, or we want to use ->bytes.
1665 *
1666 * This matters because find_free_space() will skip entries who's ->bytes is
1667 * less than the required bytes.  So if we didn't search down this bitmap, we
1668 * may pick some previous entry that has a smaller ->max_extent_size than we
1669 * have.  For example, assume we have two entries, one that has
1670 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1671 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1672 *  call into find_free_space(), and return with max_extent_size == 4K, because
1673 *  that first bitmap entry had ->max_extent_size set, but the second one did
1674 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1675 *  8K contiguous range.
1676 *
1677 *  Consider the other case, we have 2 8K chunks in that second entry and still
1678 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1679 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1680 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1681 *  right allocation the next loop through.
1682 */
1683static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1684{
1685	if (entry->bitmap && entry->max_extent_size)
1686		return entry->max_extent_size;
1687	return entry->bytes;
1688}
1689
1690/*
1691 * We want the largest entry to be leftmost, so this is inverted from what you'd
1692 * normally expect.
1693 */
1694static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1695{
1696	const struct btrfs_free_space *entry, *exist;
1697
1698	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700	return get_max_extent_size(exist) < get_max_extent_size(entry);
1701}
1702
1703/*
1704 * searches the tree for the given offset.
1705 *
1706 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707 * want a section that has at least bytes size and comes at or after the given
1708 * offset.
1709 */
1710static struct btrfs_free_space *
1711tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712		   u64 offset, int bitmap_only, int fuzzy)
1713{
1714	struct rb_node *n = ctl->free_space_offset.rb_node;
1715	struct btrfs_free_space *entry = NULL, *prev = NULL;
1716
1717	lockdep_assert_held(&ctl->tree_lock);
1718
1719	/* find entry that is closest to the 'offset' */
1720	while (n) {
 
 
 
 
 
1721		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722		prev = entry;
1723
1724		if (offset < entry->offset)
1725			n = n->rb_left;
1726		else if (offset > entry->offset)
1727			n = n->rb_right;
1728		else
1729			break;
1730
1731		entry = NULL;
1732	}
1733
1734	if (bitmap_only) {
1735		if (!entry)
1736			return NULL;
1737		if (entry->bitmap)
1738			return entry;
1739
1740		/*
1741		 * bitmap entry and extent entry may share same offset,
1742		 * in that case, bitmap entry comes after extent entry.
1743		 */
1744		n = rb_next(n);
1745		if (!n)
1746			return NULL;
1747		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748		if (entry->offset != offset)
1749			return NULL;
1750
1751		WARN_ON(!entry->bitmap);
1752		return entry;
1753	} else if (entry) {
1754		if (entry->bitmap) {
1755			/*
1756			 * if previous extent entry covers the offset,
1757			 * we should return it instead of the bitmap entry
1758			 */
1759			n = rb_prev(&entry->offset_index);
1760			if (n) {
1761				prev = rb_entry(n, struct btrfs_free_space,
1762						offset_index);
1763				if (!prev->bitmap &&
1764				    prev->offset + prev->bytes > offset)
1765					entry = prev;
1766			}
1767		}
1768		return entry;
1769	}
1770
1771	if (!prev)
1772		return NULL;
1773
1774	/* find last entry before the 'offset' */
1775	entry = prev;
1776	if (entry->offset > offset) {
1777		n = rb_prev(&entry->offset_index);
1778		if (n) {
1779			entry = rb_entry(n, struct btrfs_free_space,
1780					offset_index);
1781			ASSERT(entry->offset <= offset);
1782		} else {
1783			if (fuzzy)
1784				return entry;
1785			else
1786				return NULL;
1787		}
1788	}
1789
1790	if (entry->bitmap) {
1791		n = rb_prev(&entry->offset_index);
1792		if (n) {
1793			prev = rb_entry(n, struct btrfs_free_space,
1794					offset_index);
1795			if (!prev->bitmap &&
1796			    prev->offset + prev->bytes > offset)
1797				return prev;
1798		}
1799		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800			return entry;
1801	} else if (entry->offset + entry->bytes > offset)
1802		return entry;
1803
1804	if (!fuzzy)
1805		return NULL;
1806
1807	while (1) {
1808		n = rb_next(&entry->offset_index);
1809		if (!n)
1810			return NULL;
1811		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812		if (entry->bitmap) {
1813			if (entry->offset + BITS_PER_BITMAP *
1814			    ctl->unit > offset)
1815				break;
1816		} else {
1817			if (entry->offset + entry->bytes > offset)
1818				break;
1819		}
 
 
 
 
 
1820	}
1821	return entry;
1822}
1823
1824static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825				     struct btrfs_free_space *info,
1826				     bool update_stat)
1827{
1828	lockdep_assert_held(&ctl->tree_lock);
1829
1830	rb_erase(&info->offset_index, &ctl->free_space_offset);
1831	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832	ctl->free_extents--;
1833
1834	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1837	}
 
1838
1839	if (update_stat)
1840		ctl->free_space -= info->bytes;
 
 
 
1841}
1842
1843static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844			   struct btrfs_free_space *info)
1845{
1846	int ret = 0;
1847
1848	lockdep_assert_held(&ctl->tree_lock);
1849
1850	ASSERT(info->bytes || info->bitmap);
1851	ret = tree_insert_offset(ctl, NULL, info);
 
1852	if (ret)
1853		return ret;
1854
1855	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1856
1857	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1860	}
1861
1862	ctl->free_space += info->bytes;
1863	ctl->free_extents++;
1864	return ret;
1865}
1866
1867static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868				struct btrfs_free_space *info)
1869{
1870	ASSERT(info->bitmap);
 
 
 
 
 
 
 
 
 
 
1871
1872	/*
1873	 * If our entry is empty it's because we're on a cluster and we don't
1874	 * want to re-link it into our ctl bytes index.
 
 
1875	 */
1876	if (RB_EMPTY_NODE(&info->bytes_index))
1877		return;
 
 
1878
1879	lockdep_assert_held(&ctl->tree_lock);
1880
1881	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
 
 
 
 
 
 
 
1883}
1884
1885static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886				     struct btrfs_free_space *info,
1887				     u64 offset, u64 bytes, bool update_stat)
1888{
1889	unsigned long start, count, end;
1890	int extent_delta = -1;
1891
1892	start = offset_to_bit(info->offset, ctl->unit, offset);
1893	count = bytes_to_bits(bytes, ctl->unit);
1894	end = start + count;
1895	ASSERT(end <= BITS_PER_BITMAP);
1896
1897	bitmap_clear(info->bitmap, start, count);
1898
1899	info->bytes -= bytes;
1900	if (info->max_extent_size > ctl->unit)
1901		info->max_extent_size = 0;
1902
1903	relink_bitmap_entry(ctl, info);
1904
1905	if (start && test_bit(start - 1, info->bitmap))
1906		extent_delta++;
1907
1908	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909		extent_delta++;
1910
1911	info->bitmap_extents += extent_delta;
1912	if (!btrfs_free_space_trimmed(info)) {
1913		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1915	}
 
1916
1917	if (update_stat)
1918		ctl->free_space -= bytes;
 
 
 
 
1919}
1920
1921static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922				  struct btrfs_free_space *info, u64 offset,
1923				  u64 bytes)
1924{
1925	unsigned long start, count, end;
1926	int extent_delta = 1;
1927
1928	start = offset_to_bit(info->offset, ctl->unit, offset);
1929	count = bytes_to_bits(bytes, ctl->unit);
1930	end = start + count;
1931	ASSERT(end <= BITS_PER_BITMAP);
1932
1933	bitmap_set(info->bitmap, start, count);
1934
1935	/*
1936	 * We set some bytes, we have no idea what the max extent size is
1937	 * anymore.
1938	 */
1939	info->max_extent_size = 0;
1940	info->bytes += bytes;
1941	ctl->free_space += bytes;
1942
1943	relink_bitmap_entry(ctl, info);
1944
1945	if (start && test_bit(start - 1, info->bitmap))
1946		extent_delta--;
1947
1948	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949		extent_delta--;
1950
1951	info->bitmap_extents += extent_delta;
1952	if (!btrfs_free_space_trimmed(info)) {
1953		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1955	}
1956}
1957
1958/*
1959 * If we can not find suitable extent, we will use bytes to record
1960 * the size of the max extent.
1961 */
1962static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963			 struct btrfs_free_space *bitmap_info, u64 *offset,
1964			 u64 *bytes, bool for_alloc)
1965{
1966	unsigned long found_bits = 0;
1967	unsigned long max_bits = 0;
1968	unsigned long bits, i;
1969	unsigned long next_zero;
1970	unsigned long extent_bits;
1971
1972	/*
1973	 * Skip searching the bitmap if we don't have a contiguous section that
1974	 * is large enough for this allocation.
1975	 */
1976	if (for_alloc &&
1977	    bitmap_info->max_extent_size &&
1978	    bitmap_info->max_extent_size < *bytes) {
1979		*bytes = bitmap_info->max_extent_size;
1980		return -1;
1981	}
1982
1983	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984			  max_t(u64, *offset, bitmap_info->offset));
1985	bits = bytes_to_bits(*bytes, ctl->unit);
1986
1987	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988		if (for_alloc && bits == 1) {
1989			found_bits = 1;
1990			break;
1991		}
1992		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993					       BITS_PER_BITMAP, i);
1994		extent_bits = next_zero - i;
1995		if (extent_bits >= bits) {
1996			found_bits = extent_bits;
1997			break;
1998		} else if (extent_bits > max_bits) {
1999			max_bits = extent_bits;
2000		}
2001		i = next_zero;
2002	}
2003
2004	if (found_bits) {
2005		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006		*bytes = (u64)(found_bits) * ctl->unit;
2007		return 0;
2008	}
2009
2010	*bytes = (u64)(max_bits) * ctl->unit;
2011	bitmap_info->max_extent_size = *bytes;
2012	relink_bitmap_entry(ctl, bitmap_info);
2013	return -1;
2014}
2015
 
 
 
 
 
 
 
2016/* Cache the size of the max extent in bytes */
2017static struct btrfs_free_space *
2018find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2020{
2021	struct btrfs_free_space *entry;
2022	struct rb_node *node;
2023	u64 tmp;
2024	u64 align_off;
2025	int ret;
2026
2027	if (!ctl->free_space_offset.rb_node)
2028		goto out;
2029again:
2030	if (use_bytes_index) {
2031		node = rb_first_cached(&ctl->free_space_bytes);
2032	} else {
2033		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034					   0, 1);
2035		if (!entry)
2036			goto out;
2037		node = &entry->offset_index;
2038	}
2039
2040	for (; node; node = rb_next(node)) {
2041		if (use_bytes_index)
2042			entry = rb_entry(node, struct btrfs_free_space,
2043					 bytes_index);
2044		else
2045			entry = rb_entry(node, struct btrfs_free_space,
2046					 offset_index);
2047
2048		/*
2049		 * If we are using the bytes index then all subsequent entries
2050		 * in this tree are going to be < bytes, so simply set the max
2051		 * extent size and exit the loop.
2052		 *
2053		 * If we're using the offset index then we need to keep going
2054		 * through the rest of the tree.
2055		 */
2056		if (entry->bytes < *bytes) {
2057			*max_extent_size = max(get_max_extent_size(entry),
2058					       *max_extent_size);
2059			if (use_bytes_index)
2060				break;
2061			continue;
2062		}
2063
2064		/* make sure the space returned is big enough
2065		 * to match our requested alignment
2066		 */
2067		if (*bytes >= align) {
2068			tmp = entry->offset - ctl->start + align - 1;
2069			tmp = div64_u64(tmp, align);
2070			tmp = tmp * align + ctl->start;
2071			align_off = tmp - entry->offset;
2072		} else {
2073			align_off = 0;
2074			tmp = entry->offset;
2075		}
2076
2077		/*
2078		 * We don't break here if we're using the bytes index because we
2079		 * may have another entry that has the correct alignment that is
2080		 * the right size, so we don't want to miss that possibility.
2081		 * At worst this adds another loop through the logic, but if we
2082		 * broke here we could prematurely ENOSPC.
2083		 */
2084		if (entry->bytes < *bytes + align_off) {
2085			*max_extent_size = max(get_max_extent_size(entry),
2086					       *max_extent_size);
2087			continue;
2088		}
2089
2090		if (entry->bitmap) {
2091			struct rb_node *old_next = rb_next(node);
2092			u64 size = *bytes;
2093
2094			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095			if (!ret) {
2096				*offset = tmp;
2097				*bytes = size;
2098				return entry;
2099			} else {
2100				*max_extent_size =
2101					max(get_max_extent_size(entry),
2102					    *max_extent_size);
2103			}
2104
2105			/*
2106			 * The bitmap may have gotten re-arranged in the space
2107			 * index here because the max_extent_size may have been
2108			 * updated.  Start from the beginning again if this
2109			 * happened.
2110			 */
2111			if (use_bytes_index && old_next != rb_next(node))
2112				goto again;
2113			continue;
2114		}
2115
2116		*offset = tmp;
2117		*bytes = entry->bytes - align_off;
2118		return entry;
2119	}
2120out:
2121	return NULL;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125			   struct btrfs_free_space *info, u64 offset)
2126{
2127	info->offset = offset_to_bitmap(ctl, offset);
2128	info->bytes = 0;
2129	info->bitmap_extents = 0;
2130	INIT_LIST_HEAD(&info->list);
2131	link_free_space(ctl, info);
2132	ctl->total_bitmaps++;
2133	recalculate_thresholds(ctl);
 
2134}
2135
2136static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137			struct btrfs_free_space *bitmap_info)
2138{
2139	/*
2140	 * Normally when this is called, the bitmap is completely empty. However,
2141	 * if we are blowing up the free space cache for one reason or another
2142	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143	 * we may leave stats on the table.
2144	 */
2145	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147			bitmap_info->bitmap_extents;
2148		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2149
2150	}
2151	unlink_free_space(ctl, bitmap_info, true);
2152	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154	ctl->total_bitmaps--;
2155	recalculate_thresholds(ctl);
2156}
2157
2158static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159			      struct btrfs_free_space *bitmap_info,
2160			      u64 *offset, u64 *bytes)
2161{
2162	u64 end;
2163	u64 search_start, search_bytes;
2164	int ret;
2165
2166again:
2167	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2168
2169	/*
2170	 * We need to search for bits in this bitmap.  We could only cover some
2171	 * of the extent in this bitmap thanks to how we add space, so we need
2172	 * to search for as much as it as we can and clear that amount, and then
2173	 * go searching for the next bit.
2174	 */
2175	search_start = *offset;
2176	search_bytes = ctl->unit;
2177	search_bytes = min(search_bytes, end - search_start + 1);
2178	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179			    false);
2180	if (ret < 0 || search_start != *offset)
2181		return -EINVAL;
2182
2183	/* We may have found more bits than what we need */
2184	search_bytes = min(search_bytes, *bytes);
2185
2186	/* Cannot clear past the end of the bitmap */
2187	search_bytes = min(search_bytes, end - search_start + 1);
2188
2189	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190	*offset += search_bytes;
2191	*bytes -= search_bytes;
2192
2193	if (*bytes) {
2194		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195		if (!bitmap_info->bytes)
2196			free_bitmap(ctl, bitmap_info);
2197
2198		/*
2199		 * no entry after this bitmap, but we still have bytes to
2200		 * remove, so something has gone wrong.
2201		 */
2202		if (!next)
2203			return -EINVAL;
2204
2205		bitmap_info = rb_entry(next, struct btrfs_free_space,
2206				       offset_index);
2207
2208		/*
2209		 * if the next entry isn't a bitmap we need to return to let the
2210		 * extent stuff do its work.
2211		 */
2212		if (!bitmap_info->bitmap)
2213			return -EAGAIN;
2214
2215		/*
2216		 * Ok the next item is a bitmap, but it may not actually hold
2217		 * the information for the rest of this free space stuff, so
2218		 * look for it, and if we don't find it return so we can try
2219		 * everything over again.
2220		 */
2221		search_start = *offset;
2222		search_bytes = ctl->unit;
2223		ret = search_bitmap(ctl, bitmap_info, &search_start,
2224				    &search_bytes, false);
2225		if (ret < 0 || search_start != *offset)
2226			return -EAGAIN;
2227
2228		goto again;
2229	} else if (!bitmap_info->bytes)
2230		free_bitmap(ctl, bitmap_info);
2231
2232	return 0;
2233}
2234
2235static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236			       struct btrfs_free_space *info, u64 offset,
2237			       u64 bytes, enum btrfs_trim_state trim_state)
2238{
2239	u64 bytes_to_set = 0;
2240	u64 end;
2241
2242	/*
2243	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2244	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2245	 */
2246	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247		if (btrfs_free_space_trimmed(info)) {
2248			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249				info->bitmap_extents;
2250			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2251		}
2252		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2253	}
2254
2255	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2256
2257	bytes_to_set = min(end - offset, bytes);
2258
2259	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
 
 
 
 
 
 
2260
2261	return bytes_to_set;
2262
2263}
2264
2265static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266		      struct btrfs_free_space *info)
2267{
2268	struct btrfs_block_group *block_group = ctl->block_group;
2269	struct btrfs_fs_info *fs_info = block_group->fs_info;
2270	bool forced = false;
2271
2272#ifdef CONFIG_BTRFS_DEBUG
2273	if (btrfs_should_fragment_free_space(block_group))
2274		forced = true;
2275#endif
2276
2277	/* This is a way to reclaim large regions from the bitmaps. */
2278	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279		return false;
2280
2281	/*
2282	 * If we are below the extents threshold then we can add this as an
2283	 * extent, and don't have to deal with the bitmap
2284	 */
2285	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2286		/*
2287		 * If this block group has some small extents we don't want to
2288		 * use up all of our free slots in the cache with them, we want
2289		 * to reserve them to larger extents, however if we have plenty
2290		 * of cache left then go ahead an dadd them, no sense in adding
2291		 * the overhead of a bitmap if we don't have to.
2292		 */
2293		if (info->bytes <= fs_info->sectorsize * 8) {
2294			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295				return false;
2296		} else {
2297			return false;
2298		}
2299	}
2300
2301	/*
2302	 * The original block groups from mkfs can be really small, like 8
2303	 * megabytes, so don't bother with a bitmap for those entries.  However
2304	 * some block groups can be smaller than what a bitmap would cover but
2305	 * are still large enough that they could overflow the 32k memory limit,
2306	 * so allow those block groups to still be allowed to have a bitmap
2307	 * entry.
2308	 */
2309	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310		return false;
2311
2312	return true;
2313}
2314
2315static const struct btrfs_free_space_op free_space_op = {
 
2316	.use_bitmap		= use_bitmap,
2317};
2318
2319static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320			      struct btrfs_free_space *info)
2321{
2322	struct btrfs_free_space *bitmap_info;
2323	struct btrfs_block_group *block_group = NULL;
2324	int added = 0;
2325	u64 bytes, offset, bytes_added;
2326	enum btrfs_trim_state trim_state;
2327	int ret;
2328
2329	bytes = info->bytes;
2330	offset = info->offset;
2331	trim_state = info->trim_state;
2332
2333	if (!ctl->op->use_bitmap(ctl, info))
2334		return 0;
2335
2336	if (ctl->op == &free_space_op)
2337		block_group = ctl->block_group;
2338again:
2339	/*
2340	 * Since we link bitmaps right into the cluster we need to see if we
2341	 * have a cluster here, and if so and it has our bitmap we need to add
2342	 * the free space to that bitmap.
2343	 */
2344	if (block_group && !list_empty(&block_group->cluster_list)) {
2345		struct btrfs_free_cluster *cluster;
2346		struct rb_node *node;
2347		struct btrfs_free_space *entry;
2348
2349		cluster = list_entry(block_group->cluster_list.next,
2350				     struct btrfs_free_cluster,
2351				     block_group_list);
2352		spin_lock(&cluster->lock);
2353		node = rb_first(&cluster->root);
2354		if (!node) {
2355			spin_unlock(&cluster->lock);
2356			goto no_cluster_bitmap;
2357		}
2358
2359		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360		if (!entry->bitmap) {
2361			spin_unlock(&cluster->lock);
2362			goto no_cluster_bitmap;
2363		}
2364
2365		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367							  bytes, trim_state);
2368			bytes -= bytes_added;
2369			offset += bytes_added;
2370		}
2371		spin_unlock(&cluster->lock);
2372		if (!bytes) {
2373			ret = 1;
2374			goto out;
2375		}
2376	}
2377
2378no_cluster_bitmap:
2379	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380					 1, 0);
2381	if (!bitmap_info) {
2382		ASSERT(added == 0);
2383		goto new_bitmap;
2384	}
2385
2386	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387					  trim_state);
2388	bytes -= bytes_added;
2389	offset += bytes_added;
2390	added = 0;
2391
2392	if (!bytes) {
2393		ret = 1;
2394		goto out;
2395	} else
2396		goto again;
2397
2398new_bitmap:
2399	if (info && info->bitmap) {
2400		add_new_bitmap(ctl, info, offset);
2401		added = 1;
2402		info = NULL;
2403		goto again;
2404	} else {
2405		spin_unlock(&ctl->tree_lock);
2406
2407		/* no pre-allocated info, allocate a new one */
2408		if (!info) {
2409			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410						 GFP_NOFS);
2411			if (!info) {
2412				spin_lock(&ctl->tree_lock);
2413				ret = -ENOMEM;
2414				goto out;
2415			}
2416		}
2417
2418		/* allocate the bitmap */
2419		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420						 GFP_NOFS);
2421		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422		spin_lock(&ctl->tree_lock);
2423		if (!info->bitmap) {
2424			ret = -ENOMEM;
2425			goto out;
2426		}
2427		goto again;
2428	}
2429
2430out:
2431	if (info) {
2432		if (info->bitmap)
2433			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434					info->bitmap);
2435		kmem_cache_free(btrfs_free_space_cachep, info);
2436	}
2437
2438	return ret;
2439}
2440
2441/*
2442 * Free space merging rules:
2443 *  1) Merge trimmed areas together
2444 *  2) Let untrimmed areas coalesce with trimmed areas
2445 *  3) Always pull neighboring regions from bitmaps
2446 *
2447 * The above rules are for when we merge free space based on btrfs_trim_state.
2448 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449 * same reason: to promote larger extent regions which makes life easier for
2450 * find_free_extent().  Rule 2 enables coalescing based on the common path
2451 * being returning free space from btrfs_finish_extent_commit().  So when free
2452 * space is trimmed, it will prevent aggregating trimmed new region and
2453 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2454 * and provide find_free_extent() with the largest extents possible hoping for
2455 * the reuse path.
2456 */
2457static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458			  struct btrfs_free_space *info, bool update_stat)
2459{
2460	struct btrfs_free_space *left_info = NULL;
2461	struct btrfs_free_space *right_info;
2462	bool merged = false;
2463	u64 offset = info->offset;
2464	u64 bytes = info->bytes;
2465	const bool is_trimmed = btrfs_free_space_trimmed(info);
2466	struct rb_node *right_prev = NULL;
2467
2468	/*
2469	 * first we want to see if there is free space adjacent to the range we
2470	 * are adding, if there is remove that struct and add a new one to
2471	 * cover the entire range
2472	 */
2473	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474	if (right_info)
2475		right_prev = rb_prev(&right_info->offset_index);
2476
2477	if (right_prev)
2478		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479	else if (!right_info)
2480		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2481
2482	/* See try_merge_free_space() comment. */
2483	if (right_info && !right_info->bitmap &&
2484	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485		unlink_free_space(ctl, right_info, update_stat);
 
 
 
2486		info->bytes += right_info->bytes;
2487		kmem_cache_free(btrfs_free_space_cachep, right_info);
2488		merged = true;
2489	}
2490
2491	/* See try_merge_free_space() comment. */
2492	if (left_info && !left_info->bitmap &&
2493	    left_info->offset + left_info->bytes == offset &&
2494	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495		unlink_free_space(ctl, left_info, update_stat);
 
 
 
2496		info->offset = left_info->offset;
2497		info->bytes += left_info->bytes;
2498		kmem_cache_free(btrfs_free_space_cachep, left_info);
2499		merged = true;
2500	}
2501
2502	return merged;
2503}
2504
2505static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506				     struct btrfs_free_space *info,
2507				     bool update_stat)
2508{
2509	struct btrfs_free_space *bitmap;
2510	unsigned long i;
2511	unsigned long j;
2512	const u64 end = info->offset + info->bytes;
2513	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514	u64 bytes;
2515
2516	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517	if (!bitmap)
2518		return false;
2519
2520	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522	if (j == i)
2523		return false;
2524	bytes = (j - i) * ctl->unit;
2525	info->bytes += bytes;
2526
2527	/* See try_merge_free_space() comment. */
2528	if (!btrfs_free_space_trimmed(bitmap))
2529		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2530
2531	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
 
 
 
2532
2533	if (!bitmap->bytes)
2534		free_bitmap(ctl, bitmap);
2535
2536	return true;
2537}
2538
2539static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540				       struct btrfs_free_space *info,
2541				       bool update_stat)
2542{
2543	struct btrfs_free_space *bitmap;
2544	u64 bitmap_offset;
2545	unsigned long i;
2546	unsigned long j;
2547	unsigned long prev_j;
2548	u64 bytes;
2549
2550	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551	/* If we're on a boundary, try the previous logical bitmap. */
2552	if (bitmap_offset == info->offset) {
2553		if (info->offset == 0)
2554			return false;
2555		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2556	}
2557
2558	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559	if (!bitmap)
2560		return false;
2561
2562	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563	j = 0;
2564	prev_j = (unsigned long)-1;
2565	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566		if (j > i)
2567			break;
2568		prev_j = j;
2569	}
2570	if (prev_j == i)
2571		return false;
2572
2573	if (prev_j == (unsigned long)-1)
2574		bytes = (i + 1) * ctl->unit;
2575	else
2576		bytes = (i - prev_j) * ctl->unit;
2577
2578	info->offset -= bytes;
2579	info->bytes += bytes;
2580
2581	/* See try_merge_free_space() comment. */
2582	if (!btrfs_free_space_trimmed(bitmap))
2583		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584
2585	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
 
 
 
2586
2587	if (!bitmap->bytes)
2588		free_bitmap(ctl, bitmap);
2589
2590	return true;
2591}
2592
2593/*
2594 * We prefer always to allocate from extent entries, both for clustered and
2595 * non-clustered allocation requests. So when attempting to add a new extent
2596 * entry, try to see if there's adjacent free space in bitmap entries, and if
2597 * there is, migrate that space from the bitmaps to the extent.
2598 * Like this we get better chances of satisfying space allocation requests
2599 * because we attempt to satisfy them based on a single cache entry, and never
2600 * on 2 or more entries - even if the entries represent a contiguous free space
2601 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602 * ends).
2603 */
2604static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605			      struct btrfs_free_space *info,
2606			      bool update_stat)
2607{
2608	/*
2609	 * Only work with disconnected entries, as we can change their offset,
2610	 * and must be extent entries.
2611	 */
2612	ASSERT(!info->bitmap);
2613	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2614
2615	if (ctl->total_bitmaps > 0) {
2616		bool stole_end;
2617		bool stole_front = false;
2618
2619		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620		if (ctl->total_bitmaps > 0)
2621			stole_front = steal_from_bitmap_to_front(ctl, info,
2622								 update_stat);
2623
2624		if (stole_end || stole_front)
2625			try_merge_free_space(ctl, info, update_stat);
2626	}
2627}
2628
2629static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
 
2630			   u64 offset, u64 bytes,
2631			   enum btrfs_trim_state trim_state)
2632{
2633	struct btrfs_fs_info *fs_info = block_group->fs_info;
2634	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635	struct btrfs_free_space *info;
2636	int ret = 0;
2637	u64 filter_bytes = bytes;
2638
2639	ASSERT(!btrfs_is_zoned(fs_info));
2640
2641	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642	if (!info)
2643		return -ENOMEM;
2644
2645	info->offset = offset;
2646	info->bytes = bytes;
2647	info->trim_state = trim_state;
2648	RB_CLEAR_NODE(&info->offset_index);
2649	RB_CLEAR_NODE(&info->bytes_index);
2650
2651	spin_lock(&ctl->tree_lock);
2652
2653	if (try_merge_free_space(ctl, info, true))
2654		goto link;
2655
2656	/*
2657	 * There was no extent directly to the left or right of this new
2658	 * extent then we know we're going to have to allocate a new extent, so
2659	 * before we do that see if we need to drop this into a bitmap
2660	 */
2661	ret = insert_into_bitmap(ctl, info);
2662	if (ret < 0) {
2663		goto out;
2664	} else if (ret) {
2665		ret = 0;
2666		goto out;
2667	}
2668link:
2669	/*
2670	 * Only steal free space from adjacent bitmaps if we're sure we're not
2671	 * going to add the new free space to existing bitmap entries - because
2672	 * that would mean unnecessary work that would be reverted. Therefore
2673	 * attempt to steal space from bitmaps if we're adding an extent entry.
2674	 */
2675	steal_from_bitmap(ctl, info, true);
2676
2677	filter_bytes = max(filter_bytes, info->bytes);
2678
2679	ret = link_free_space(ctl, info);
2680	if (ret)
2681		kmem_cache_free(btrfs_free_space_cachep, info);
2682out:
2683	btrfs_discard_update_discardable(block_group);
2684	spin_unlock(&ctl->tree_lock);
2685
2686	if (ret) {
2687		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688		ASSERT(ret != -EEXIST);
2689	}
2690
2691	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692		btrfs_discard_check_filter(block_group, filter_bytes);
2693		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694	}
2695
2696	return ret;
2697}
2698
2699static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700					u64 bytenr, u64 size, bool used)
2701{
2702	struct btrfs_space_info *sinfo = block_group->space_info;
2703	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704	u64 offset = bytenr - block_group->start;
2705	u64 to_free, to_unusable;
2706	int bg_reclaim_threshold = 0;
2707	bool initial;
2708	u64 reclaimable_unusable;
2709
2710	spin_lock(&block_group->lock);
2711
2712	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714	if (!initial)
2715		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2716
2717	if (!used)
2718		to_free = size;
2719	else if (initial)
2720		to_free = block_group->zone_capacity;
2721	else if (offset >= block_group->alloc_offset)
2722		to_free = size;
2723	else if (offset + size <= block_group->alloc_offset)
2724		to_free = 0;
2725	else
2726		to_free = offset + size - block_group->alloc_offset;
2727	to_unusable = size - to_free;
2728
2729	spin_lock(&ctl->tree_lock);
2730	ctl->free_space += to_free;
2731	spin_unlock(&ctl->tree_lock);
2732	/*
2733	 * If the block group is read-only, we should account freed space into
2734	 * bytes_readonly.
2735	 */
2736	if (!block_group->ro) {
2737		block_group->zone_unusable += to_unusable;
2738		WARN_ON(block_group->zone_unusable > block_group->length);
2739	}
2740	if (!used) {
2741		block_group->alloc_offset -= size;
2742	}
2743
2744	reclaimable_unusable = block_group->zone_unusable -
2745			       (block_group->length - block_group->zone_capacity);
2746	/* All the region is now unusable. Mark it as unused and reclaim */
2747	if (block_group->zone_unusable == block_group->length) {
2748		btrfs_mark_bg_unused(block_group);
2749	} else if (bg_reclaim_threshold &&
2750		   reclaimable_unusable >=
2751		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752		btrfs_mark_bg_to_reclaim(block_group);
2753	}
2754
2755	spin_unlock(&block_group->lock);
2756
2757	return 0;
2758}
2759
2760int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761			 u64 bytenr, u64 size)
2762{
2763	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2764
2765	if (btrfs_is_zoned(block_group->fs_info))
2766		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767						    true);
2768
2769	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771
2772	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773}
2774
2775int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776				u64 bytenr, u64 size)
2777{
2778	if (btrfs_is_zoned(block_group->fs_info))
2779		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780						    false);
2781
2782	return btrfs_add_free_space(block_group, bytenr, size);
2783}
2784
2785/*
2786 * This is a subtle distinction because when adding free space back in general,
2787 * we want it to be added as untrimmed for async. But in the case where we add
2788 * it on loading of a block group, we want to consider it trimmed.
2789 */
2790int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791				       u64 bytenr, u64 size)
2792{
2793	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2794
2795	if (btrfs_is_zoned(block_group->fs_info))
2796		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797						    true);
2798
2799	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2802
2803	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
 
 
2804}
2805
2806int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807			    u64 offset, u64 bytes)
2808{
2809	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810	struct btrfs_free_space *info;
2811	int ret;
2812	bool re_search = false;
2813
2814	if (btrfs_is_zoned(block_group->fs_info)) {
2815		/*
2816		 * This can happen with conventional zones when replaying log.
2817		 * Since the allocation info of tree-log nodes are not recorded
2818		 * to the extent-tree, calculate_alloc_pointer() failed to
2819		 * advance the allocation pointer after last allocated tree log
2820		 * node blocks.
2821		 *
2822		 * This function is called from
2823		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824		 * Advance the pointer not to overwrite the tree-log nodes.
2825		 */
2826		if (block_group->start + block_group->alloc_offset <
2827		    offset + bytes) {
2828			block_group->alloc_offset =
2829				offset + bytes - block_group->start;
2830		}
2831		return 0;
2832	}
2833
2834	spin_lock(&ctl->tree_lock);
2835
2836again:
2837	ret = 0;
2838	if (!bytes)
2839		goto out_lock;
2840
2841	info = tree_search_offset(ctl, offset, 0, 0);
2842	if (!info) {
2843		/*
2844		 * oops didn't find an extent that matched the space we wanted
2845		 * to remove, look for a bitmap instead
2846		 */
2847		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848					  1, 0);
2849		if (!info) {
2850			/*
2851			 * If we found a partial bit of our free space in a
2852			 * bitmap but then couldn't find the other part this may
2853			 * be a problem, so WARN about it.
2854			 */
2855			WARN_ON(re_search);
2856			goto out_lock;
2857		}
2858	}
2859
2860	re_search = false;
2861	if (!info->bitmap) {
2862		unlink_free_space(ctl, info, true);
2863		if (offset == info->offset) {
2864			u64 to_free = min(bytes, info->bytes);
2865
2866			info->bytes -= to_free;
2867			info->offset += to_free;
2868			if (info->bytes) {
2869				ret = link_free_space(ctl, info);
2870				WARN_ON(ret);
2871			} else {
2872				kmem_cache_free(btrfs_free_space_cachep, info);
2873			}
2874
2875			offset += to_free;
2876			bytes -= to_free;
2877			goto again;
2878		} else {
2879			u64 old_end = info->bytes + info->offset;
2880
2881			info->bytes = offset - info->offset;
2882			ret = link_free_space(ctl, info);
2883			WARN_ON(ret);
2884			if (ret)
2885				goto out_lock;
2886
2887			/* Not enough bytes in this entry to satisfy us */
2888			if (old_end < offset + bytes) {
2889				bytes -= old_end - offset;
2890				offset = old_end;
2891				goto again;
2892			} else if (old_end == offset + bytes) {
2893				/* all done */
2894				goto out_lock;
2895			}
2896			spin_unlock(&ctl->tree_lock);
2897
2898			ret = __btrfs_add_free_space(block_group,
2899						     offset + bytes,
2900						     old_end - (offset + bytes),
2901						     info->trim_state);
2902			WARN_ON(ret);
2903			goto out;
2904		}
2905	}
2906
2907	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908	if (ret == -EAGAIN) {
2909		re_search = true;
2910		goto again;
2911	}
2912out_lock:
2913	btrfs_discard_update_discardable(block_group);
2914	spin_unlock(&ctl->tree_lock);
2915out:
2916	return ret;
2917}
2918
2919void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920			   u64 bytes)
2921{
2922	struct btrfs_fs_info *fs_info = block_group->fs_info;
2923	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924	struct btrfs_free_space *info;
2925	struct rb_node *n;
2926	int count = 0;
2927
2928	/*
2929	 * Zoned btrfs does not use free space tree and cluster. Just print
2930	 * out the free space after the allocation offset.
2931	 */
2932	if (btrfs_is_zoned(fs_info)) {
2933		btrfs_info(fs_info, "free space %llu active %d",
2934			   block_group->zone_capacity - block_group->alloc_offset,
2935			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936				    &block_group->runtime_flags));
2937		return;
2938	}
2939
2940	spin_lock(&ctl->tree_lock);
2941	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942		info = rb_entry(n, struct btrfs_free_space, offset_index);
2943		if (info->bytes >= bytes && !block_group->ro)
2944			count++;
2945		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946			   info->offset, info->bytes, str_yes_no(info->bitmap));
 
2947	}
2948	spin_unlock(&ctl->tree_lock);
2949	btrfs_info(fs_info, "block group has cluster?: %s",
2950	       str_no_yes(list_empty(&block_group->cluster_list)));
2951	btrfs_info(fs_info,
2952		   "%d free space entries at or bigger than %llu bytes",
2953		   count, bytes);
2954}
2955
2956void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957			       struct btrfs_free_space_ctl *ctl)
2958{
2959	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2960
2961	spin_lock_init(&ctl->tree_lock);
2962	ctl->unit = fs_info->sectorsize;
2963	ctl->start = block_group->start;
2964	ctl->block_group = block_group;
2965	ctl->op = &free_space_op;
2966	ctl->free_space_bytes = RB_ROOT_CACHED;
2967	INIT_LIST_HEAD(&ctl->trimming_ranges);
2968	mutex_init(&ctl->cache_writeout_mutex);
2969
2970	/*
2971	 * we only want to have 32k of ram per block group for keeping
2972	 * track of free space, and if we pass 1/2 of that we want to
2973	 * start converting things over to using bitmaps
2974	 */
2975	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2976}
2977
2978/*
2979 * for a given cluster, put all of its extents back into the free
2980 * space cache.  If the block group passed doesn't match the block group
2981 * pointed to by the cluster, someone else raced in and freed the
2982 * cluster already.  In that case, we just return without changing anything
2983 */
2984static void __btrfs_return_cluster_to_free_space(
2985			     struct btrfs_block_group *block_group,
2986			     struct btrfs_free_cluster *cluster)
2987{
2988	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
2989	struct rb_node *node;
2990
2991	lockdep_assert_held(&ctl->tree_lock);
2992
2993	spin_lock(&cluster->lock);
2994	if (cluster->block_group != block_group) {
2995		spin_unlock(&cluster->lock);
2996		return;
2997	}
2998
2999	cluster->block_group = NULL;
3000	cluster->window_start = 0;
3001	list_del_init(&cluster->block_group_list);
3002
3003	node = rb_first(&cluster->root);
3004	while (node) {
3005		struct btrfs_free_space *entry;
3006
3007		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008		node = rb_next(&entry->offset_index);
3009		rb_erase(&entry->offset_index, &cluster->root);
3010		RB_CLEAR_NODE(&entry->offset_index);
3011
3012		if (!entry->bitmap) {
 
3013			/* Merging treats extents as if they were new */
3014			if (!btrfs_free_space_trimmed(entry)) {
3015				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017					entry->bytes;
3018			}
3019
3020			try_merge_free_space(ctl, entry, false);
3021			steal_from_bitmap(ctl, entry, false);
3022
3023			/* As we insert directly, update these statistics */
3024			if (!btrfs_free_space_trimmed(entry)) {
3025				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027					entry->bytes;
3028			}
3029		}
3030		tree_insert_offset(ctl, NULL, entry);
3031		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032			      entry_less);
3033	}
3034	cluster->root = RB_ROOT;
 
 
3035	spin_unlock(&cluster->lock);
3036	btrfs_put_block_group(block_group);
3037}
3038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3040{
3041	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042	struct btrfs_free_cluster *cluster;
3043	struct list_head *head;
3044
3045	spin_lock(&ctl->tree_lock);
3046	while ((head = block_group->cluster_list.next) !=
3047	       &block_group->cluster_list) {
3048		cluster = list_entry(head, struct btrfs_free_cluster,
3049				     block_group_list);
3050
3051		WARN_ON(cluster->block_group != block_group);
3052		__btrfs_return_cluster_to_free_space(block_group, cluster);
3053
3054		cond_resched_lock(&ctl->tree_lock);
3055	}
3056	__btrfs_remove_free_space_cache(ctl);
3057	btrfs_discard_update_discardable(block_group);
3058	spin_unlock(&ctl->tree_lock);
3059
3060}
3061
3062/*
 
 
 
3063 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3064 */
3065bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3066{
3067	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068	struct btrfs_free_space *info;
3069	struct rb_node *node;
3070	bool ret = true;
3071
3072	spin_lock(&ctl->tree_lock);
3073	node = rb_first(&ctl->free_space_offset);
3074
3075	while (node) {
3076		info = rb_entry(node, struct btrfs_free_space, offset_index);
3077
3078		if (!btrfs_free_space_trimmed(info)) {
3079			ret = false;
3080			break;
3081		}
3082
3083		node = rb_next(node);
3084	}
3085
3086	spin_unlock(&ctl->tree_lock);
3087	return ret;
3088}
3089
3090u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091			       u64 offset, u64 bytes, u64 empty_size,
3092			       u64 *max_extent_size)
3093{
3094	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095	struct btrfs_discard_ctl *discard_ctl =
3096					&block_group->fs_info->discard_ctl;
3097	struct btrfs_free_space *entry = NULL;
3098	u64 bytes_search = bytes + empty_size;
3099	u64 ret = 0;
3100	u64 align_gap = 0;
3101	u64 align_gap_len = 0;
3102	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103	bool use_bytes_index = (offset == block_group->start);
3104
3105	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3106
3107	spin_lock(&ctl->tree_lock);
3108	entry = find_free_space(ctl, &offset, &bytes_search,
3109				block_group->full_stripe_len, max_extent_size,
3110				use_bytes_index);
3111	if (!entry)
3112		goto out;
3113
3114	ret = offset;
3115	if (entry->bitmap) {
3116		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3117
3118		if (!btrfs_free_space_trimmed(entry))
3119			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3120
3121		if (!entry->bytes)
3122			free_bitmap(ctl, entry);
3123	} else {
3124		unlink_free_space(ctl, entry, true);
3125		align_gap_len = offset - entry->offset;
3126		align_gap = entry->offset;
3127		align_gap_trim_state = entry->trim_state;
3128
3129		if (!btrfs_free_space_trimmed(entry))
3130			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3131
3132		entry->offset = offset + bytes;
3133		WARN_ON(entry->bytes < bytes + align_gap_len);
3134
3135		entry->bytes -= bytes + align_gap_len;
3136		if (!entry->bytes)
3137			kmem_cache_free(btrfs_free_space_cachep, entry);
3138		else
3139			link_free_space(ctl, entry);
3140	}
3141out:
3142	btrfs_discard_update_discardable(block_group);
3143	spin_unlock(&ctl->tree_lock);
3144
3145	if (align_gap_len)
3146		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
 
3147				       align_gap_trim_state);
3148	return ret;
3149}
3150
3151/*
3152 * given a cluster, put all of its extents back into the free space
3153 * cache.  If a block group is passed, this function will only free
3154 * a cluster that belongs to the passed block group.
3155 *
3156 * Otherwise, it'll get a reference on the block group pointed to by the
3157 * cluster and remove the cluster from it.
3158 */
3159void btrfs_return_cluster_to_free_space(
3160			       struct btrfs_block_group *block_group,
3161			       struct btrfs_free_cluster *cluster)
3162{
3163	struct btrfs_free_space_ctl *ctl;
3164
3165	/* first, get a safe pointer to the block group */
3166	spin_lock(&cluster->lock);
3167	if (!block_group) {
3168		block_group = cluster->block_group;
3169		if (!block_group) {
3170			spin_unlock(&cluster->lock);
3171			return;
3172		}
3173	} else if (cluster->block_group != block_group) {
3174		/* someone else has already freed it don't redo their work */
3175		spin_unlock(&cluster->lock);
3176		return;
3177	}
3178	btrfs_get_block_group(block_group);
3179	spin_unlock(&cluster->lock);
3180
3181	ctl = block_group->free_space_ctl;
3182
3183	/* now return any extents the cluster had on it */
3184	spin_lock(&ctl->tree_lock);
3185	__btrfs_return_cluster_to_free_space(block_group, cluster);
3186	spin_unlock(&ctl->tree_lock);
3187
3188	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3189
3190	/* finally drop our ref */
3191	btrfs_put_block_group(block_group);
3192}
3193
3194static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195				   struct btrfs_free_cluster *cluster,
3196				   struct btrfs_free_space *entry,
3197				   u64 bytes, u64 min_start,
3198				   u64 *max_extent_size)
3199{
3200	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201	int err;
3202	u64 search_start = cluster->window_start;
3203	u64 search_bytes = bytes;
3204	u64 ret = 0;
3205
3206	search_start = min_start;
3207	search_bytes = bytes;
3208
3209	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210	if (err) {
3211		*max_extent_size = max(get_max_extent_size(entry),
3212				       *max_extent_size);
3213		return 0;
3214	}
3215
3216	ret = search_start;
3217	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3218
3219	return ret;
3220}
3221
3222/*
3223 * given a cluster, try to allocate 'bytes' from it, returns 0
3224 * if it couldn't find anything suitably large, or a logical disk offset
3225 * if things worked out
3226 */
3227u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228			     struct btrfs_free_cluster *cluster, u64 bytes,
3229			     u64 min_start, u64 *max_extent_size)
3230{
3231	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232	struct btrfs_discard_ctl *discard_ctl =
3233					&block_group->fs_info->discard_ctl;
3234	struct btrfs_free_space *entry = NULL;
3235	struct rb_node *node;
3236	u64 ret = 0;
3237
3238	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3239
3240	spin_lock(&cluster->lock);
3241	if (bytes > cluster->max_size)
3242		goto out;
3243
3244	if (cluster->block_group != block_group)
3245		goto out;
3246
3247	node = rb_first(&cluster->root);
3248	if (!node)
3249		goto out;
3250
3251	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252	while (1) {
3253		if (entry->bytes < bytes)
3254			*max_extent_size = max(get_max_extent_size(entry),
3255					       *max_extent_size);
3256
3257		if (entry->bytes < bytes ||
3258		    (!entry->bitmap && entry->offset < min_start)) {
3259			node = rb_next(&entry->offset_index);
3260			if (!node)
3261				break;
3262			entry = rb_entry(node, struct btrfs_free_space,
3263					 offset_index);
3264			continue;
3265		}
3266
3267		if (entry->bitmap) {
3268			ret = btrfs_alloc_from_bitmap(block_group,
3269						      cluster, entry, bytes,
3270						      cluster->window_start,
3271						      max_extent_size);
3272			if (ret == 0) {
3273				node = rb_next(&entry->offset_index);
3274				if (!node)
3275					break;
3276				entry = rb_entry(node, struct btrfs_free_space,
3277						 offset_index);
3278				continue;
3279			}
3280			cluster->window_start += bytes;
3281		} else {
3282			ret = entry->offset;
3283
3284			entry->offset += bytes;
3285			entry->bytes -= bytes;
3286		}
3287
 
 
3288		break;
3289	}
3290out:
3291	spin_unlock(&cluster->lock);
3292
3293	if (!ret)
3294		return 0;
3295
3296	spin_lock(&ctl->tree_lock);
3297
3298	if (!btrfs_free_space_trimmed(entry))
3299		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3300
3301	ctl->free_space -= bytes;
3302	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3304
3305	spin_lock(&cluster->lock);
3306	if (entry->bytes == 0) {
3307		rb_erase(&entry->offset_index, &cluster->root);
3308		ctl->free_extents--;
3309		if (entry->bitmap) {
3310			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311					entry->bitmap);
3312			ctl->total_bitmaps--;
3313			recalculate_thresholds(ctl);
3314		} else if (!btrfs_free_space_trimmed(entry)) {
3315			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3316		}
3317		kmem_cache_free(btrfs_free_space_cachep, entry);
3318	}
3319
3320	spin_unlock(&cluster->lock);
3321	spin_unlock(&ctl->tree_lock);
3322
3323	return ret;
3324}
3325
3326static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327				struct btrfs_free_space *entry,
3328				struct btrfs_free_cluster *cluster,
3329				u64 offset, u64 bytes,
3330				u64 cont1_bytes, u64 min_bytes)
3331{
3332	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333	unsigned long next_zero;
3334	unsigned long i;
3335	unsigned long want_bits;
3336	unsigned long min_bits;
3337	unsigned long found_bits;
3338	unsigned long max_bits = 0;
3339	unsigned long start = 0;
3340	unsigned long total_found = 0;
3341	int ret;
3342
3343	lockdep_assert_held(&ctl->tree_lock);
3344
3345	i = offset_to_bit(entry->offset, ctl->unit,
3346			  max_t(u64, offset, entry->offset));
3347	want_bits = bytes_to_bits(bytes, ctl->unit);
3348	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3349
3350	/*
3351	 * Don't bother looking for a cluster in this bitmap if it's heavily
3352	 * fragmented.
3353	 */
3354	if (entry->max_extent_size &&
3355	    entry->max_extent_size < cont1_bytes)
3356		return -ENOSPC;
3357again:
3358	found_bits = 0;
3359	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3360		next_zero = find_next_zero_bit(entry->bitmap,
3361					       BITS_PER_BITMAP, i);
3362		if (next_zero - i >= min_bits) {
3363			found_bits = next_zero - i;
3364			if (found_bits > max_bits)
3365				max_bits = found_bits;
3366			break;
3367		}
3368		if (next_zero - i > max_bits)
3369			max_bits = next_zero - i;
3370		i = next_zero;
3371	}
3372
3373	if (!found_bits) {
3374		entry->max_extent_size = (u64)max_bits * ctl->unit;
3375		return -ENOSPC;
3376	}
3377
3378	if (!total_found) {
3379		start = i;
3380		cluster->max_size = 0;
3381	}
3382
3383	total_found += found_bits;
3384
3385	if (cluster->max_size < found_bits * ctl->unit)
3386		cluster->max_size = found_bits * ctl->unit;
3387
3388	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389		i = next_zero + 1;
3390		goto again;
3391	}
3392
3393	cluster->window_start = start * ctl->unit + entry->offset;
3394	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3396
3397	/*
3398	 * We need to know if we're currently on the normal space index when we
3399	 * manipulate the bitmap so that we know we need to remove and re-insert
3400	 * it into the space_index tree.  Clear the bytes_index node here so the
3401	 * bitmap manipulation helpers know not to mess with the space_index
3402	 * until this bitmap entry is added back into the normal cache.
3403	 */
3404	RB_CLEAR_NODE(&entry->bytes_index);
3405
3406	ret = tree_insert_offset(ctl, cluster, entry);
3407	ASSERT(!ret); /* -EEXIST; Logic error */
3408
3409	trace_btrfs_setup_cluster(block_group, cluster,
3410				  total_found * ctl->unit, 1);
3411	return 0;
3412}
3413
3414/*
3415 * This searches the block group for just extents to fill the cluster with.
3416 * Try to find a cluster with at least bytes total bytes, at least one
3417 * extent of cont1_bytes, and other clusters of at least min_bytes.
3418 */
3419static noinline int
3420setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421			struct btrfs_free_cluster *cluster,
3422			struct list_head *bitmaps, u64 offset, u64 bytes,
3423			u64 cont1_bytes, u64 min_bytes)
3424{
3425	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426	struct btrfs_free_space *first = NULL;
3427	struct btrfs_free_space *entry = NULL;
3428	struct btrfs_free_space *last;
3429	struct rb_node *node;
3430	u64 window_free;
3431	u64 max_extent;
3432	u64 total_size = 0;
3433
3434	lockdep_assert_held(&ctl->tree_lock);
3435
3436	entry = tree_search_offset(ctl, offset, 0, 1);
3437	if (!entry)
3438		return -ENOSPC;
3439
3440	/*
3441	 * We don't want bitmaps, so just move along until we find a normal
3442	 * extent entry.
3443	 */
3444	while (entry->bitmap || entry->bytes < min_bytes) {
3445		if (entry->bitmap && list_empty(&entry->list))
3446			list_add_tail(&entry->list, bitmaps);
3447		node = rb_next(&entry->offset_index);
3448		if (!node)
3449			return -ENOSPC;
3450		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451	}
3452
3453	window_free = entry->bytes;
3454	max_extent = entry->bytes;
3455	first = entry;
3456	last = entry;
3457
3458	for (node = rb_next(&entry->offset_index); node;
3459	     node = rb_next(&entry->offset_index)) {
3460		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3461
3462		if (entry->bitmap) {
3463			if (list_empty(&entry->list))
3464				list_add_tail(&entry->list, bitmaps);
3465			continue;
3466		}
3467
3468		if (entry->bytes < min_bytes)
3469			continue;
3470
3471		last = entry;
3472		window_free += entry->bytes;
3473		if (entry->bytes > max_extent)
3474			max_extent = entry->bytes;
3475	}
3476
3477	if (window_free < bytes || max_extent < cont1_bytes)
3478		return -ENOSPC;
3479
3480	cluster->window_start = first->offset;
3481
3482	node = &first->offset_index;
3483
3484	/*
3485	 * now we've found our entries, pull them out of the free space
3486	 * cache and put them into the cluster rbtree
3487	 */
3488	do {
3489		int ret;
3490
3491		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492		node = rb_next(&entry->offset_index);
3493		if (entry->bitmap || entry->bytes < min_bytes)
3494			continue;
3495
3496		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498		ret = tree_insert_offset(ctl, cluster, entry);
3499		total_size += entry->bytes;
3500		ASSERT(!ret); /* -EEXIST; Logic error */
3501	} while (node && entry != last);
3502
3503	cluster->max_size = max_extent;
3504	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505	return 0;
3506}
3507
3508/*
3509 * This specifically looks for bitmaps that may work in the cluster, we assume
3510 * that we have already failed to find extents that will work.
3511 */
3512static noinline int
3513setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514		     struct btrfs_free_cluster *cluster,
3515		     struct list_head *bitmaps, u64 offset, u64 bytes,
3516		     u64 cont1_bytes, u64 min_bytes)
3517{
3518	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519	struct btrfs_free_space *entry = NULL;
3520	int ret = -ENOSPC;
3521	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3522
3523	if (ctl->total_bitmaps == 0)
3524		return -ENOSPC;
3525
3526	/*
3527	 * The bitmap that covers offset won't be in the list unless offset
3528	 * is just its start offset.
3529	 */
3530	if (!list_empty(bitmaps))
3531		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3532
3533	if (!entry || entry->offset != bitmap_offset) {
3534		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535		if (entry && list_empty(&entry->list))
3536			list_add(&entry->list, bitmaps);
3537	}
3538
3539	list_for_each_entry(entry, bitmaps, list) {
3540		if (entry->bytes < bytes)
3541			continue;
3542		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543					   bytes, cont1_bytes, min_bytes);
3544		if (!ret)
3545			return 0;
3546	}
3547
3548	/*
3549	 * The bitmaps list has all the bitmaps that record free space
3550	 * starting after offset, so no more search is required.
3551	 */
3552	return -ENOSPC;
3553}
3554
3555/*
3556 * here we try to find a cluster of blocks in a block group.  The goal
3557 * is to find at least bytes+empty_size.
3558 * We might not find them all in one contiguous area.
3559 *
3560 * returns zero and sets up cluster if things worked out, otherwise
3561 * it returns -enospc
3562 */
3563int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3564			     struct btrfs_free_cluster *cluster,
3565			     u64 offset, u64 bytes, u64 empty_size)
3566{
3567	struct btrfs_fs_info *fs_info = block_group->fs_info;
3568	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3569	struct btrfs_free_space *entry, *tmp;
3570	LIST_HEAD(bitmaps);
3571	u64 min_bytes;
3572	u64 cont1_bytes;
3573	int ret;
3574
3575	/*
3576	 * Choose the minimum extent size we'll require for this
3577	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3578	 * For metadata, allow allocates with smaller extents.  For
3579	 * data, keep it dense.
3580	 */
3581	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582		cont1_bytes = bytes + empty_size;
3583		min_bytes = cont1_bytes;
3584	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585		cont1_bytes = bytes;
3586		min_bytes = fs_info->sectorsize;
3587	} else {
3588		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589		min_bytes = fs_info->sectorsize;
3590	}
3591
3592	spin_lock(&ctl->tree_lock);
3593
3594	/*
3595	 * If we know we don't have enough space to make a cluster don't even
3596	 * bother doing all the work to try and find one.
3597	 */
3598	if (ctl->free_space < bytes) {
3599		spin_unlock(&ctl->tree_lock);
3600		return -ENOSPC;
3601	}
3602
3603	spin_lock(&cluster->lock);
3604
3605	/* someone already found a cluster, hooray */
3606	if (cluster->block_group) {
3607		ret = 0;
3608		goto out;
3609	}
3610
3611	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612				 min_bytes);
3613
3614	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615				      bytes + empty_size,
3616				      cont1_bytes, min_bytes);
3617	if (ret)
3618		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619					   offset, bytes + empty_size,
3620					   cont1_bytes, min_bytes);
3621
3622	/* Clear our temporary list */
3623	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624		list_del_init(&entry->list);
3625
3626	if (!ret) {
3627		btrfs_get_block_group(block_group);
3628		list_add_tail(&cluster->block_group_list,
3629			      &block_group->cluster_list);
3630		cluster->block_group = block_group;
3631	} else {
3632		trace_btrfs_failed_cluster_setup(block_group);
3633	}
3634out:
3635	spin_unlock(&cluster->lock);
3636	spin_unlock(&ctl->tree_lock);
3637
3638	return ret;
3639}
3640
3641/*
3642 * simple code to zero out a cluster
3643 */
3644void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3645{
3646	spin_lock_init(&cluster->lock);
3647	spin_lock_init(&cluster->refill_lock);
3648	cluster->root = RB_ROOT;
3649	cluster->max_size = 0;
3650	cluster->fragmented = false;
3651	INIT_LIST_HEAD(&cluster->block_group_list);
3652	cluster->block_group = NULL;
3653}
3654
3655static int do_trimming(struct btrfs_block_group *block_group,
3656		       u64 *total_trimmed, u64 start, u64 bytes,
3657		       u64 reserved_start, u64 reserved_bytes,
3658		       enum btrfs_trim_state reserved_trim_state,
3659		       struct btrfs_trim_range *trim_entry)
3660{
3661	struct btrfs_space_info *space_info = block_group->space_info;
3662	struct btrfs_fs_info *fs_info = block_group->fs_info;
3663	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664	int ret;
3665	int update = 0;
3666	const u64 end = start + bytes;
3667	const u64 reserved_end = reserved_start + reserved_bytes;
3668	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669	u64 trimmed = 0;
3670
3671	spin_lock(&space_info->lock);
3672	spin_lock(&block_group->lock);
3673	if (!block_group->ro) {
3674		block_group->reserved += reserved_bytes;
3675		space_info->bytes_reserved += reserved_bytes;
3676		update = 1;
3677	}
3678	spin_unlock(&block_group->lock);
3679	spin_unlock(&space_info->lock);
3680
3681	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682	if (!ret) {
3683		*total_trimmed += trimmed;
3684		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3685	}
3686
3687	mutex_lock(&ctl->cache_writeout_mutex);
3688	if (reserved_start < start)
3689		__btrfs_add_free_space(block_group, reserved_start,
3690				       start - reserved_start,
3691				       reserved_trim_state);
3692	if (end < reserved_end)
3693		__btrfs_add_free_space(block_group, end, reserved_end - end,
3694				       reserved_trim_state);
3695	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3696	list_del(&trim_entry->list);
3697	mutex_unlock(&ctl->cache_writeout_mutex);
3698
3699	if (update) {
3700		spin_lock(&space_info->lock);
3701		spin_lock(&block_group->lock);
3702		if (block_group->ro)
3703			space_info->bytes_readonly += reserved_bytes;
3704		block_group->reserved -= reserved_bytes;
3705		space_info->bytes_reserved -= reserved_bytes;
3706		spin_unlock(&block_group->lock);
3707		spin_unlock(&space_info->lock);
3708	}
3709
3710	return ret;
3711}
3712
3713/*
3714 * If @async is set, then we will trim 1 region and return.
3715 */
3716static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718			  bool async)
3719{
3720	struct btrfs_discard_ctl *discard_ctl =
3721					&block_group->fs_info->discard_ctl;
3722	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723	struct btrfs_free_space *entry;
3724	struct rb_node *node;
3725	int ret = 0;
3726	u64 extent_start;
3727	u64 extent_bytes;
3728	enum btrfs_trim_state extent_trim_state;
3729	u64 bytes;
3730	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3731
3732	while (start < end) {
3733		struct btrfs_trim_range trim_entry;
3734
3735		mutex_lock(&ctl->cache_writeout_mutex);
3736		spin_lock(&ctl->tree_lock);
3737
3738		if (ctl->free_space < minlen)
3739			goto out_unlock;
3740
3741		entry = tree_search_offset(ctl, start, 0, 1);
3742		if (!entry)
3743			goto out_unlock;
3744
3745		/* Skip bitmaps and if async, already trimmed entries */
3746		while (entry->bitmap ||
3747		       (async && btrfs_free_space_trimmed(entry))) {
3748			node = rb_next(&entry->offset_index);
3749			if (!node)
3750				goto out_unlock;
3751			entry = rb_entry(node, struct btrfs_free_space,
3752					 offset_index);
3753		}
3754
3755		if (entry->offset >= end)
3756			goto out_unlock;
3757
3758		extent_start = entry->offset;
3759		extent_bytes = entry->bytes;
3760		extent_trim_state = entry->trim_state;
3761		if (async) {
3762			start = entry->offset;
3763			bytes = entry->bytes;
3764			if (bytes < minlen) {
3765				spin_unlock(&ctl->tree_lock);
3766				mutex_unlock(&ctl->cache_writeout_mutex);
3767				goto next;
3768			}
3769			unlink_free_space(ctl, entry, true);
3770			/*
3771			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773			 * X when we come back around.  So trim it now.
3774			 */
3775			if (max_discard_size &&
3776			    bytes >= (max_discard_size +
3777				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778				bytes = max_discard_size;
3779				extent_bytes = max_discard_size;
3780				entry->offset += max_discard_size;
3781				entry->bytes -= max_discard_size;
3782				link_free_space(ctl, entry);
3783			} else {
3784				kmem_cache_free(btrfs_free_space_cachep, entry);
3785			}
3786		} else {
3787			start = max(start, extent_start);
3788			bytes = min(extent_start + extent_bytes, end) - start;
3789			if (bytes < minlen) {
3790				spin_unlock(&ctl->tree_lock);
3791				mutex_unlock(&ctl->cache_writeout_mutex);
3792				goto next;
3793			}
3794
3795			unlink_free_space(ctl, entry, true);
3796			kmem_cache_free(btrfs_free_space_cachep, entry);
3797		}
3798
3799		spin_unlock(&ctl->tree_lock);
3800		trim_entry.start = extent_start;
3801		trim_entry.bytes = extent_bytes;
3802		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803		mutex_unlock(&ctl->cache_writeout_mutex);
3804
3805		ret = do_trimming(block_group, total_trimmed, start, bytes,
3806				  extent_start, extent_bytes, extent_trim_state,
3807				  &trim_entry);
3808		if (ret) {
3809			block_group->discard_cursor = start + bytes;
3810			break;
3811		}
3812next:
3813		start += bytes;
3814		block_group->discard_cursor = start;
3815		if (async && *total_trimmed)
3816			break;
3817
3818		if (btrfs_trim_interrupted()) {
3819			ret = -ERESTARTSYS;
3820			break;
3821		}
3822
3823		cond_resched();
3824	}
3825
3826	return ret;
3827
3828out_unlock:
3829	block_group->discard_cursor = btrfs_block_group_end(block_group);
3830	spin_unlock(&ctl->tree_lock);
3831	mutex_unlock(&ctl->cache_writeout_mutex);
3832
3833	return ret;
3834}
3835
3836/*
3837 * If we break out of trimming a bitmap prematurely, we should reset the
3838 * trimming bit.  In a rather contrieved case, it's possible to race here so
3839 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3840 *
3841 * start = start of bitmap
3842 * end = near end of bitmap
3843 *
3844 * Thread 1:			Thread 2:
3845 * trim_bitmaps(start)
3846 *				trim_bitmaps(end)
3847 *				end_trimming_bitmap()
3848 * reset_trimming_bitmap()
3849 */
3850static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3851{
3852	struct btrfs_free_space *entry;
3853
3854	spin_lock(&ctl->tree_lock);
3855	entry = tree_search_offset(ctl, offset, 1, 0);
3856	if (entry) {
3857		if (btrfs_free_space_trimmed(entry)) {
3858			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859				entry->bitmap_extents;
3860			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3861		}
3862		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3863	}
3864
3865	spin_unlock(&ctl->tree_lock);
3866}
3867
3868static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869				struct btrfs_free_space *entry)
3870{
3871	if (btrfs_free_space_trimming_bitmap(entry)) {
3872		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874			entry->bitmap_extents;
3875		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3876	}
3877}
3878
3879/*
3880 * If @async is set, then we will trim 1 region and return.
3881 */
3882static int trim_bitmaps(struct btrfs_block_group *block_group,
3883			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884			u64 maxlen, bool async)
3885{
3886	struct btrfs_discard_ctl *discard_ctl =
3887					&block_group->fs_info->discard_ctl;
3888	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889	struct btrfs_free_space *entry;
3890	int ret = 0;
3891	int ret2;
3892	u64 bytes;
3893	u64 offset = offset_to_bitmap(ctl, start);
3894	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3895
3896	while (offset < end) {
3897		bool next_bitmap = false;
3898		struct btrfs_trim_range trim_entry;
3899
3900		mutex_lock(&ctl->cache_writeout_mutex);
3901		spin_lock(&ctl->tree_lock);
3902
3903		if (ctl->free_space < minlen) {
3904			block_group->discard_cursor =
3905				btrfs_block_group_end(block_group);
3906			spin_unlock(&ctl->tree_lock);
3907			mutex_unlock(&ctl->cache_writeout_mutex);
3908			break;
3909		}
3910
3911		entry = tree_search_offset(ctl, offset, 1, 0);
3912		/*
3913		 * Bitmaps are marked trimmed lossily now to prevent constant
3914		 * discarding of the same bitmap (the reason why we are bound
3915		 * by the filters).  So, retrim the block group bitmaps when we
3916		 * are preparing to punt to the unused_bgs list.  This uses
3917		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918		 * which is the only discard index which sets minlen to 0.
3919		 */
3920		if (!entry || (async && minlen && start == offset &&
3921			       btrfs_free_space_trimmed(entry))) {
3922			spin_unlock(&ctl->tree_lock);
3923			mutex_unlock(&ctl->cache_writeout_mutex);
3924			next_bitmap = true;
3925			goto next;
3926		}
3927
3928		/*
3929		 * Async discard bitmap trimming begins at by setting the start
3930		 * to be key.objectid and the offset_to_bitmap() aligns to the
3931		 * start of the bitmap.  This lets us know we are fully
3932		 * scanning the bitmap rather than only some portion of it.
3933		 */
3934		if (start == offset)
3935			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3936
3937		bytes = minlen;
3938		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939		if (ret2 || start >= end) {
3940			/*
3941			 * We lossily consider a bitmap trimmed if we only skip
3942			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3943			 */
3944			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945				end_trimming_bitmap(ctl, entry);
3946			else
3947				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948			spin_unlock(&ctl->tree_lock);
3949			mutex_unlock(&ctl->cache_writeout_mutex);
3950			next_bitmap = true;
3951			goto next;
3952		}
3953
3954		/*
3955		 * We already trimmed a region, but are using the locking above
3956		 * to reset the trim_state.
3957		 */
3958		if (async && *total_trimmed) {
3959			spin_unlock(&ctl->tree_lock);
3960			mutex_unlock(&ctl->cache_writeout_mutex);
3961			goto out;
3962		}
3963
3964		bytes = min(bytes, end - start);
3965		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966			spin_unlock(&ctl->tree_lock);
3967			mutex_unlock(&ctl->cache_writeout_mutex);
3968			goto next;
3969		}
3970
3971		/*
3972		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973		 * If X < @minlen, we won't trim X when we come back around.
3974		 * So trim it now.  We differ here from trimming extents as we
3975		 * don't keep individual state per bit.
3976		 */
3977		if (async &&
3978		    max_discard_size &&
3979		    bytes > (max_discard_size + minlen))
3980			bytes = max_discard_size;
3981
3982		bitmap_clear_bits(ctl, entry, start, bytes, true);
3983		if (entry->bytes == 0)
3984			free_bitmap(ctl, entry);
3985
3986		spin_unlock(&ctl->tree_lock);
3987		trim_entry.start = start;
3988		trim_entry.bytes = bytes;
3989		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990		mutex_unlock(&ctl->cache_writeout_mutex);
3991
3992		ret = do_trimming(block_group, total_trimmed, start, bytes,
3993				  start, bytes, 0, &trim_entry);
3994		if (ret) {
3995			reset_trimming_bitmap(ctl, offset);
3996			block_group->discard_cursor =
3997				btrfs_block_group_end(block_group);
3998			break;
3999		}
4000next:
4001		if (next_bitmap) {
4002			offset += BITS_PER_BITMAP * ctl->unit;
4003			start = offset;
4004		} else {
4005			start += bytes;
4006		}
4007		block_group->discard_cursor = start;
4008
4009		if (btrfs_trim_interrupted()) {
4010			if (start != offset)
4011				reset_trimming_bitmap(ctl, offset);
4012			ret = -ERESTARTSYS;
4013			break;
4014		}
4015
4016		cond_resched();
4017	}
4018
4019	if (offset >= end)
4020		block_group->discard_cursor = end;
4021
4022out:
4023	return ret;
4024}
4025
4026int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4028{
4029	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030	int ret;
4031	u64 rem = 0;
4032
4033	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4034
4035	*trimmed = 0;
4036
4037	spin_lock(&block_group->lock);
4038	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039		spin_unlock(&block_group->lock);
4040		return 0;
4041	}
4042	btrfs_freeze_block_group(block_group);
4043	spin_unlock(&block_group->lock);
4044
4045	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046	if (ret)
4047		goto out;
4048
4049	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051	/* If we ended in the middle of a bitmap, reset the trimming flag */
4052	if (rem)
4053		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054out:
4055	btrfs_unfreeze_block_group(block_group);
4056	return ret;
4057}
4058
4059int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4061				   bool async)
4062{
4063	int ret;
4064
4065	*trimmed = 0;
4066
4067	spin_lock(&block_group->lock);
4068	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069		spin_unlock(&block_group->lock);
4070		return 0;
4071	}
4072	btrfs_freeze_block_group(block_group);
4073	spin_unlock(&block_group->lock);
4074
4075	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076	btrfs_unfreeze_block_group(block_group);
4077
4078	return ret;
4079}
4080
4081int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4083				   u64 maxlen, bool async)
4084{
4085	int ret;
4086
4087	*trimmed = 0;
4088
4089	spin_lock(&block_group->lock);
4090	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091		spin_unlock(&block_group->lock);
4092		return 0;
4093	}
4094	btrfs_freeze_block_group(block_group);
4095	spin_unlock(&block_group->lock);
4096
4097	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098			   async);
4099
4100	btrfs_unfreeze_block_group(block_group);
4101
4102	return ret;
4103}
4104
4105bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
4106{
4107	return btrfs_super_cache_generation(fs_info->super_copy);
4108}
 
4109
4110static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111				       struct btrfs_trans_handle *trans)
4112{
4113	struct btrfs_block_group *block_group;
4114	struct rb_node *node;
4115	int ret = 0;
4116
4117	btrfs_info(fs_info, "cleaning free space cache v1");
 
4118
4119	node = rb_first_cached(&fs_info->block_group_cache_tree);
4120	while (node) {
4121		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123		if (ret)
4124			goto out;
4125		node = rb_next(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4126	}
4127out:
4128	return ret;
 
 
4129}
4130
4131int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
 
4132{
4133	struct btrfs_trans_handle *trans;
4134	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4135
4136	/*
4137	 * update_super_roots will appropriately set or unset
4138	 * super_copy->cache_generation based on SPACE_CACHE and
4139	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140	 * transaction commit whether we are enabling space cache v1 and don't
4141	 * have any other work to do, or are disabling it and removing free
4142	 * space inodes.
4143	 */
4144	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145	if (IS_ERR(trans))
4146		return PTR_ERR(trans);
4147
4148	if (!active) {
4149		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150		ret = cleanup_free_space_cache_v1(fs_info, trans);
4151		if (ret) {
4152			btrfs_abort_transaction(trans, ret);
4153			btrfs_end_transaction(trans);
4154			goto out;
4155		}
4156	}
4157
4158	ret = btrfs_commit_transaction(trans);
4159out:
4160	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 
 
 
 
4161
 
 
 
 
 
 
 
 
 
 
 
 
 
4162	return ret;
4163}
4164
4165int __init btrfs_free_space_init(void)
 
 
 
4166{
4167	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168	if (!btrfs_free_space_cachep)
4169		return -ENOMEM;
 
 
4170
4171	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172							PAGE_SIZE, PAGE_SIZE,
4173							0, NULL);
4174	if (!btrfs_free_space_bitmap_cachep) {
4175		kmem_cache_destroy(btrfs_free_space_cachep);
4176		return -ENOMEM;
 
 
 
 
 
 
 
 
4177	}
4178
4179	return 0;
4180}
 
 
 
 
 
 
4181
4182void __cold btrfs_free_space_exit(void)
4183{
4184	kmem_cache_destroy(btrfs_free_space_cachep);
4185	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4186}
4187
4188#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4189/*
4190 * Use this if you need to make a bitmap or extent entry specifically, it
4191 * doesn't do any of the merging that add_free_space does, this acts a lot like
4192 * how the free space cache loading stuff works, so you can get really weird
4193 * configurations.
4194 */
4195int test_add_free_space_entry(struct btrfs_block_group *cache,
4196			      u64 offset, u64 bytes, bool bitmap)
4197{
4198	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199	struct btrfs_free_space *info = NULL, *bitmap_info;
4200	void *map = NULL;
4201	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202	u64 bytes_added;
4203	int ret;
4204
4205again:
4206	if (!info) {
4207		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208		if (!info)
4209			return -ENOMEM;
4210	}
4211
4212	if (!bitmap) {
4213		spin_lock(&ctl->tree_lock);
4214		info->offset = offset;
4215		info->bytes = bytes;
4216		info->max_extent_size = 0;
4217		ret = link_free_space(ctl, info);
4218		spin_unlock(&ctl->tree_lock);
4219		if (ret)
4220			kmem_cache_free(btrfs_free_space_cachep, info);
4221		return ret;
4222	}
4223
4224	if (!map) {
4225		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226		if (!map) {
4227			kmem_cache_free(btrfs_free_space_cachep, info);
4228			return -ENOMEM;
4229		}
4230	}
4231
4232	spin_lock(&ctl->tree_lock);
4233	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234					 1, 0);
4235	if (!bitmap_info) {
4236		info->bitmap = map;
4237		map = NULL;
4238		add_new_bitmap(ctl, info, offset);
4239		bitmap_info = info;
4240		info = NULL;
4241	}
4242
4243	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244					  trim_state);
4245
4246	bytes -= bytes_added;
4247	offset += bytes_added;
4248	spin_unlock(&ctl->tree_lock);
4249
4250	if (bytes)
4251		goto again;
4252
4253	if (info)
4254		kmem_cache_free(btrfs_free_space_cachep, info);
4255	if (map)
4256		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257	return 0;
4258}
4259
4260/*
4261 * Checks to see if the given range is in the free space cache.  This is really
4262 * just used to check the absence of space, so if there is free space in the
4263 * range at all we will return 1.
4264 */
4265int test_check_exists(struct btrfs_block_group *cache,
4266		      u64 offset, u64 bytes)
4267{
4268	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269	struct btrfs_free_space *info;
4270	int ret = 0;
4271
4272	spin_lock(&ctl->tree_lock);
4273	info = tree_search_offset(ctl, offset, 0, 0);
4274	if (!info) {
4275		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276					  1, 0);
4277		if (!info)
4278			goto out;
4279	}
4280
4281have_info:
4282	if (info->bitmap) {
4283		u64 bit_off, bit_bytes;
4284		struct rb_node *n;
4285		struct btrfs_free_space *tmp;
4286
4287		bit_off = offset;
4288		bit_bytes = ctl->unit;
4289		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290		if (!ret) {
4291			if (bit_off == offset) {
4292				ret = 1;
4293				goto out;
4294			} else if (bit_off > offset &&
4295				   offset + bytes > bit_off) {
4296				ret = 1;
4297				goto out;
4298			}
4299		}
4300
4301		n = rb_prev(&info->offset_index);
4302		while (n) {
4303			tmp = rb_entry(n, struct btrfs_free_space,
4304				       offset_index);
4305			if (tmp->offset + tmp->bytes < offset)
4306				break;
4307			if (offset + bytes < tmp->offset) {
4308				n = rb_prev(&tmp->offset_index);
4309				continue;
4310			}
4311			info = tmp;
4312			goto have_info;
4313		}
4314
4315		n = rb_next(&info->offset_index);
4316		while (n) {
4317			tmp = rb_entry(n, struct btrfs_free_space,
4318				       offset_index);
4319			if (offset + bytes < tmp->offset)
4320				break;
4321			if (tmp->offset + tmp->bytes < offset) {
4322				n = rb_next(&tmp->offset_index);
4323				continue;
4324			}
4325			info = tmp;
4326			goto have_info;
4327		}
4328
4329		ret = 0;
4330		goto out;
4331	}
4332
4333	if (info->offset == offset) {
4334		ret = 1;
4335		goto out;
4336	}
4337
4338	if (offset > info->offset && offset < info->offset + info->bytes)
4339		ret = 1;
4340out:
4341	spin_unlock(&ctl->tree_lock);
4342	return ret;
4343}
4344#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
 
  14#include "ctree.h"
 
 
 
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
 
 
 
 
 
 
  25
  26#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  28#define FORCE_EXTENT_THRESHOLD	SZ_1M
  29
 
 
 
  30struct btrfs_trim_range {
  31	u64 start;
  32	u64 bytes;
  33	struct list_head list;
  34};
  35
  36static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
  37				struct btrfs_free_space *bitmap_info);
  38static int link_free_space(struct btrfs_free_space_ctl *ctl,
  39			   struct btrfs_free_space *info);
  40static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  41			      struct btrfs_free_space *info);
  42static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  43			     struct btrfs_trans_handle *trans,
  44			     struct btrfs_io_ctl *io_ctl,
  45			     struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  48					       struct btrfs_path *path,
  49					       u64 offset)
  50{
  51	struct btrfs_fs_info *fs_info = root->fs_info;
  52	struct btrfs_key key;
  53	struct btrfs_key location;
  54	struct btrfs_disk_key disk_key;
  55	struct btrfs_free_space_header *header;
  56	struct extent_buffer *leaf;
  57	struct inode *inode = NULL;
  58	unsigned nofs_flag;
  59	int ret;
  60
  61	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  62	key.offset = offset;
  63	key.type = 0;
  64
  65	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  66	if (ret < 0)
  67		return ERR_PTR(ret);
  68	if (ret > 0) {
  69		btrfs_release_path(path);
  70		return ERR_PTR(-ENOENT);
  71	}
  72
  73	leaf = path->nodes[0];
  74	header = btrfs_item_ptr(leaf, path->slots[0],
  75				struct btrfs_free_space_header);
  76	btrfs_free_space_key(leaf, header, &disk_key);
  77	btrfs_disk_key_to_cpu(&location, &disk_key);
  78	btrfs_release_path(path);
  79
  80	/*
  81	 * We are often under a trans handle at this point, so we need to make
  82	 * sure NOFS is set to keep us from deadlocking.
  83	 */
  84	nofs_flag = memalloc_nofs_save();
  85	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  86	btrfs_release_path(path);
  87	memalloc_nofs_restore(nofs_flag);
  88	if (IS_ERR(inode))
  89		return inode;
  90
  91	mapping_set_gfp_mask(inode->i_mapping,
  92			mapping_gfp_constraint(inode->i_mapping,
  93			~(__GFP_FS | __GFP_HIGHMEM)));
  94
  95	return inode;
  96}
  97
  98struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
  99		struct btrfs_path *path)
 100{
 101	struct btrfs_fs_info *fs_info = block_group->fs_info;
 102	struct inode *inode = NULL;
 103	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 104
 105	spin_lock(&block_group->lock);
 106	if (block_group->inode)
 107		inode = igrab(block_group->inode);
 108	spin_unlock(&block_group->lock);
 109	if (inode)
 110		return inode;
 111
 112	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 113					  block_group->start);
 114	if (IS_ERR(inode))
 115		return inode;
 116
 117	spin_lock(&block_group->lock);
 118	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 119		btrfs_info(fs_info, "Old style space inode found, converting.");
 120		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 121			BTRFS_INODE_NODATACOW;
 122		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 123	}
 124
 125	if (!block_group->iref) {
 126		block_group->inode = igrab(inode);
 127		block_group->iref = 1;
 128	}
 129	spin_unlock(&block_group->lock);
 130
 131	return inode;
 132}
 133
 134static int __create_free_space_inode(struct btrfs_root *root,
 135				     struct btrfs_trans_handle *trans,
 136				     struct btrfs_path *path,
 137				     u64 ino, u64 offset)
 138{
 139	struct btrfs_key key;
 140	struct btrfs_disk_key disk_key;
 141	struct btrfs_free_space_header *header;
 142	struct btrfs_inode_item *inode_item;
 143	struct extent_buffer *leaf;
 144	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 145	int ret;
 146
 147	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 148	if (ret)
 149		return ret;
 150
 151	/* We inline crc's for the free disk space cache */
 152	if (ino != BTRFS_FREE_INO_OBJECTID)
 153		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 154
 155	leaf = path->nodes[0];
 156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157				    struct btrfs_inode_item);
 158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160			     sizeof(*inode_item));
 161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162	btrfs_set_inode_size(leaf, inode_item, 0);
 163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164	btrfs_set_inode_uid(leaf, inode_item, 0);
 165	btrfs_set_inode_gid(leaf, inode_item, 0);
 166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167	btrfs_set_inode_flags(leaf, inode_item, flags);
 168	btrfs_set_inode_nlink(leaf, inode_item, 1);
 169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170	btrfs_set_inode_block_group(leaf, inode_item, offset);
 171	btrfs_mark_buffer_dirty(leaf);
 172	btrfs_release_path(path);
 173
 174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175	key.offset = offset;
 176	key.type = 0;
 177	ret = btrfs_insert_empty_item(trans, root, path, &key,
 178				      sizeof(struct btrfs_free_space_header));
 179	if (ret < 0) {
 180		btrfs_release_path(path);
 181		return ret;
 182	}
 183
 184	leaf = path->nodes[0];
 185	header = btrfs_item_ptr(leaf, path->slots[0],
 186				struct btrfs_free_space_header);
 187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188	btrfs_set_free_space_key(leaf, header, &disk_key);
 189	btrfs_mark_buffer_dirty(leaf);
 190	btrfs_release_path(path);
 191
 192	return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196			    struct btrfs_block_group *block_group,
 197			    struct btrfs_path *path)
 198{
 199	int ret;
 200	u64 ino;
 201
 202	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 203	if (ret < 0)
 204		return ret;
 205
 206	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207					 ino, block_group->start);
 208}
 209
 210int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 211				       struct btrfs_block_rsv *rsv)
 
 
 
 
 
 
 212{
 213	u64 needed_bytes;
 214	int ret;
 
 215
 216	/* 1 for slack space, 1 for updating the inode */
 217	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 218		btrfs_calc_metadata_size(fs_info, 1);
 219
 220	spin_lock(&rsv->lock);
 221	if (rsv->reserved < needed_bytes)
 222		ret = -ENOSPC;
 223	else
 224		ret = 0;
 225	spin_unlock(&rsv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226	return ret;
 227}
 228
 229int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 230				    struct btrfs_block_group *block_group,
 231				    struct inode *inode)
 232{
 233	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 234	int ret = 0;
 235	bool locked = false;
 236
 237	if (block_group) {
 238		struct btrfs_path *path = btrfs_alloc_path();
 239
 240		if (!path) {
 241			ret = -ENOMEM;
 242			goto fail;
 243		}
 244		locked = true;
 245		mutex_lock(&trans->transaction->cache_write_mutex);
 246		if (!list_empty(&block_group->io_list)) {
 247			list_del_init(&block_group->io_list);
 248
 249			btrfs_wait_cache_io(trans, block_group, path);
 250			btrfs_put_block_group(block_group);
 251		}
 252
 253		/*
 254		 * now that we've truncated the cache away, its no longer
 255		 * setup or written
 256		 */
 257		spin_lock(&block_group->lock);
 258		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 259		spin_unlock(&block_group->lock);
 260		btrfs_free_path(path);
 261	}
 262
 263	btrfs_i_size_write(BTRFS_I(inode), 0);
 264	truncate_pagecache(inode, 0);
 
 
 
 265
 266	/*
 267	 * We skip the throttling logic for free space cache inodes, so we don't
 268	 * need to check for -EAGAIN.
 269	 */
 270	ret = btrfs_truncate_inode_items(trans, root, inode,
 271					 0, BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 272	if (ret)
 273		goto fail;
 274
 275	ret = btrfs_update_inode(trans, root, inode);
 276
 277fail:
 278	if (locked)
 279		mutex_unlock(&trans->transaction->cache_write_mutex);
 280	if (ret)
 281		btrfs_abort_transaction(trans, ret);
 282
 283	return ret;
 284}
 285
 286static void readahead_cache(struct inode *inode)
 287{
 288	struct file_ra_state *ra;
 289	unsigned long last_index;
 290
 291	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 292	if (!ra)
 293		return;
 294
 295	file_ra_state_init(ra, inode->i_mapping);
 296	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 297
 298	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 299
 300	kfree(ra);
 301}
 302
 303static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 304		       int write)
 305{
 306	int num_pages;
 307	int check_crcs = 0;
 308
 309	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 310
 311	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 312		check_crcs = 1;
 313
 314	/* Make sure we can fit our crcs and generation into the first page */
 315	if (write && check_crcs &&
 316	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 317		return -ENOSPC;
 318
 319	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 320
 321	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 322	if (!io_ctl->pages)
 323		return -ENOMEM;
 324
 325	io_ctl->num_pages = num_pages;
 326	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 327	io_ctl->check_crcs = check_crcs;
 328	io_ctl->inode = inode;
 329
 330	return 0;
 331}
 332ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 333
 334static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 335{
 336	kfree(io_ctl->pages);
 337	io_ctl->pages = NULL;
 338}
 339
 340static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 341{
 342	if (io_ctl->cur) {
 343		io_ctl->cur = NULL;
 344		io_ctl->orig = NULL;
 345	}
 346}
 347
 348static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 349{
 350	ASSERT(io_ctl->index < io_ctl->num_pages);
 351	io_ctl->page = io_ctl->pages[io_ctl->index++];
 352	io_ctl->cur = page_address(io_ctl->page);
 353	io_ctl->orig = io_ctl->cur;
 354	io_ctl->size = PAGE_SIZE;
 355	if (clear)
 356		clear_page(io_ctl->cur);
 357}
 358
 359static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 360{
 361	int i;
 362
 363	io_ctl_unmap_page(io_ctl);
 364
 365	for (i = 0; i < io_ctl->num_pages; i++) {
 366		if (io_ctl->pages[i]) {
 367			ClearPageChecked(io_ctl->pages[i]);
 
 
 
 368			unlock_page(io_ctl->pages[i]);
 369			put_page(io_ctl->pages[i]);
 370		}
 371	}
 372}
 373
 374static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 375{
 376	struct page *page;
 377	struct inode *inode = io_ctl->inode;
 378	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 379	int i;
 380
 381	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 382		page = find_or_create_page(inode->i_mapping, i, mask);
 383		if (!page) {
 384			io_ctl_drop_pages(io_ctl);
 385			return -ENOMEM;
 386		}
 
 
 
 
 
 
 
 
 
 387		io_ctl->pages[i] = page;
 388		if (uptodate && !PageUptodate(page)) {
 389			btrfs_readpage(NULL, page);
 390			lock_page(page);
 391			if (page->mapping != inode->i_mapping) {
 392				btrfs_err(BTRFS_I(inode)->root->fs_info,
 393					  "free space cache page truncated");
 394				io_ctl_drop_pages(io_ctl);
 395				return -EIO;
 396			}
 397			if (!PageUptodate(page)) {
 398				btrfs_err(BTRFS_I(inode)->root->fs_info,
 399					   "error reading free space cache");
 400				io_ctl_drop_pages(io_ctl);
 401				return -EIO;
 402			}
 403		}
 404	}
 405
 406	for (i = 0; i < io_ctl->num_pages; i++) {
 407		clear_page_dirty_for_io(io_ctl->pages[i]);
 408		set_page_extent_mapped(io_ctl->pages[i]);
 409	}
 410
 411	return 0;
 412}
 413
 414static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 415{
 416	__le64 *val;
 417
 418	io_ctl_map_page(io_ctl, 1);
 419
 420	/*
 421	 * Skip the csum areas.  If we don't check crcs then we just have a
 422	 * 64bit chunk at the front of the first page.
 423	 */
 424	if (io_ctl->check_crcs) {
 425		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 426		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 427	} else {
 428		io_ctl->cur += sizeof(u64);
 429		io_ctl->size -= sizeof(u64) * 2;
 430	}
 431
 432	val = io_ctl->cur;
 433	*val = cpu_to_le64(generation);
 434	io_ctl->cur += sizeof(u64);
 435}
 436
 437static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 438{
 439	__le64 *gen;
 440
 441	/*
 442	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 443	 * chunk at the front of the first page.
 444	 */
 445	if (io_ctl->check_crcs) {
 446		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 447		io_ctl->size -= sizeof(u64) +
 448			(sizeof(u32) * io_ctl->num_pages);
 449	} else {
 450		io_ctl->cur += sizeof(u64);
 451		io_ctl->size -= sizeof(u64) * 2;
 452	}
 453
 454	gen = io_ctl->cur;
 455	if (le64_to_cpu(*gen) != generation) {
 456		btrfs_err_rl(io_ctl->fs_info,
 457			"space cache generation (%llu) does not match inode (%llu)",
 458				*gen, generation);
 459		io_ctl_unmap_page(io_ctl);
 460		return -EIO;
 461	}
 462	io_ctl->cur += sizeof(u64);
 463	return 0;
 464}
 465
 466static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 467{
 468	u32 *tmp;
 469	u32 crc = ~(u32)0;
 470	unsigned offset = 0;
 471
 472	if (!io_ctl->check_crcs) {
 473		io_ctl_unmap_page(io_ctl);
 474		return;
 475	}
 476
 477	if (index == 0)
 478		offset = sizeof(u32) * io_ctl->num_pages;
 479
 480	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 481	btrfs_crc32c_final(crc, (u8 *)&crc);
 482	io_ctl_unmap_page(io_ctl);
 483	tmp = page_address(io_ctl->pages[0]);
 484	tmp += index;
 485	*tmp = crc;
 486}
 487
 488static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 489{
 490	u32 *tmp, val;
 491	u32 crc = ~(u32)0;
 492	unsigned offset = 0;
 493
 494	if (!io_ctl->check_crcs) {
 495		io_ctl_map_page(io_ctl, 0);
 496		return 0;
 497	}
 498
 499	if (index == 0)
 500		offset = sizeof(u32) * io_ctl->num_pages;
 501
 502	tmp = page_address(io_ctl->pages[0]);
 503	tmp += index;
 504	val = *tmp;
 505
 506	io_ctl_map_page(io_ctl, 0);
 507	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 508	btrfs_crc32c_final(crc, (u8 *)&crc);
 509	if (val != crc) {
 510		btrfs_err_rl(io_ctl->fs_info,
 511			"csum mismatch on free space cache");
 512		io_ctl_unmap_page(io_ctl);
 513		return -EIO;
 514	}
 515
 516	return 0;
 517}
 518
 519static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 520			    void *bitmap)
 521{
 522	struct btrfs_free_space_entry *entry;
 523
 524	if (!io_ctl->cur)
 525		return -ENOSPC;
 526
 527	entry = io_ctl->cur;
 528	entry->offset = cpu_to_le64(offset);
 529	entry->bytes = cpu_to_le64(bytes);
 530	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 531		BTRFS_FREE_SPACE_EXTENT;
 532	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 533	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 534
 535	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 536		return 0;
 537
 538	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 539
 540	/* No more pages to map */
 541	if (io_ctl->index >= io_ctl->num_pages)
 542		return 0;
 543
 544	/* map the next page */
 545	io_ctl_map_page(io_ctl, 1);
 546	return 0;
 547}
 548
 549static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 550{
 551	if (!io_ctl->cur)
 552		return -ENOSPC;
 553
 554	/*
 555	 * If we aren't at the start of the current page, unmap this one and
 556	 * map the next one if there is any left.
 557	 */
 558	if (io_ctl->cur != io_ctl->orig) {
 559		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 560		if (io_ctl->index >= io_ctl->num_pages)
 561			return -ENOSPC;
 562		io_ctl_map_page(io_ctl, 0);
 563	}
 564
 565	copy_page(io_ctl->cur, bitmap);
 566	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567	if (io_ctl->index < io_ctl->num_pages)
 568		io_ctl_map_page(io_ctl, 0);
 569	return 0;
 570}
 571
 572static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 573{
 574	/*
 575	 * If we're not on the boundary we know we've modified the page and we
 576	 * need to crc the page.
 577	 */
 578	if (io_ctl->cur != io_ctl->orig)
 579		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 580	else
 581		io_ctl_unmap_page(io_ctl);
 582
 583	while (io_ctl->index < io_ctl->num_pages) {
 584		io_ctl_map_page(io_ctl, 1);
 585		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 586	}
 587}
 588
 589static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 590			    struct btrfs_free_space *entry, u8 *type)
 591{
 592	struct btrfs_free_space_entry *e;
 593	int ret;
 594
 595	if (!io_ctl->cur) {
 596		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 597		if (ret)
 598			return ret;
 599	}
 600
 601	e = io_ctl->cur;
 602	entry->offset = le64_to_cpu(e->offset);
 603	entry->bytes = le64_to_cpu(e->bytes);
 604	*type = e->type;
 605	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 606	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 607
 608	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 609		return 0;
 610
 611	io_ctl_unmap_page(io_ctl);
 612
 613	return 0;
 614}
 615
 616static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 617			      struct btrfs_free_space *entry)
 618{
 619	int ret;
 620
 621	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 622	if (ret)
 623		return ret;
 624
 625	copy_page(entry->bitmap, io_ctl->cur);
 626	io_ctl_unmap_page(io_ctl);
 627
 628	return 0;
 629}
 630
 631/*
 632 * Since we attach pinned extents after the fact we can have contiguous sections
 633 * of free space that are split up in entries.  This poses a problem with the
 634 * tree logging stuff since it could have allocated across what appears to be 2
 635 * entries since we would have merged the entries when adding the pinned extents
 636 * back to the free space cache.  So run through the space cache that we just
 637 * loaded and merge contiguous entries.  This will make the log replay stuff not
 638 * blow up and it will make for nicer allocator behavior.
 639 */
 640static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 641{
 642	struct btrfs_free_space *e, *prev = NULL;
 643	struct rb_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645again:
 646	spin_lock(&ctl->tree_lock);
 647	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 648		e = rb_entry(n, struct btrfs_free_space, offset_index);
 649		if (!prev)
 650			goto next;
 651		if (e->bitmap || prev->bitmap)
 652			goto next;
 653		if (prev->offset + prev->bytes == e->offset) {
 654			unlink_free_space(ctl, prev);
 655			unlink_free_space(ctl, e);
 656			prev->bytes += e->bytes;
 657			kmem_cache_free(btrfs_free_space_cachep, e);
 658			link_free_space(ctl, prev);
 659			prev = NULL;
 660			spin_unlock(&ctl->tree_lock);
 661			goto again;
 662		}
 663next:
 664		prev = e;
 665	}
 666	spin_unlock(&ctl->tree_lock);
 667}
 668
 669static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 670				   struct btrfs_free_space_ctl *ctl,
 671				   struct btrfs_path *path, u64 offset)
 672{
 673	struct btrfs_fs_info *fs_info = root->fs_info;
 674	struct btrfs_free_space_header *header;
 675	struct extent_buffer *leaf;
 676	struct btrfs_io_ctl io_ctl;
 677	struct btrfs_key key;
 678	struct btrfs_free_space *e, *n;
 679	LIST_HEAD(bitmaps);
 680	u64 num_entries;
 681	u64 num_bitmaps;
 682	u64 generation;
 683	u8 type;
 684	int ret = 0;
 685
 686	/* Nothing in the space cache, goodbye */
 687	if (!i_size_read(inode))
 688		return 0;
 689
 690	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 691	key.offset = offset;
 692	key.type = 0;
 693
 694	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 695	if (ret < 0)
 696		return 0;
 697	else if (ret > 0) {
 698		btrfs_release_path(path);
 699		return 0;
 700	}
 701
 702	ret = -1;
 703
 704	leaf = path->nodes[0];
 705	header = btrfs_item_ptr(leaf, path->slots[0],
 706				struct btrfs_free_space_header);
 707	num_entries = btrfs_free_space_entries(leaf, header);
 708	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 709	generation = btrfs_free_space_generation(leaf, header);
 710	btrfs_release_path(path);
 711
 712	if (!BTRFS_I(inode)->generation) {
 713		btrfs_info(fs_info,
 714			   "the free space cache file (%llu) is invalid, skip it",
 715			   offset);
 716		return 0;
 717	}
 718
 719	if (BTRFS_I(inode)->generation != generation) {
 720		btrfs_err(fs_info,
 721			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 722			  BTRFS_I(inode)->generation, generation);
 723		return 0;
 724	}
 725
 726	if (!num_entries)
 727		return 0;
 728
 729	ret = io_ctl_init(&io_ctl, inode, 0);
 730	if (ret)
 731		return ret;
 732
 733	readahead_cache(inode);
 734
 735	ret = io_ctl_prepare_pages(&io_ctl, true);
 736	if (ret)
 737		goto out;
 738
 739	ret = io_ctl_check_crc(&io_ctl, 0);
 740	if (ret)
 741		goto free_cache;
 742
 743	ret = io_ctl_check_generation(&io_ctl, generation);
 744	if (ret)
 745		goto free_cache;
 746
 747	while (num_entries) {
 748		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 749				      GFP_NOFS);
 750		if (!e)
 
 751			goto free_cache;
 
 752
 753		ret = io_ctl_read_entry(&io_ctl, e, &type);
 754		if (ret) {
 755			kmem_cache_free(btrfs_free_space_cachep, e);
 756			goto free_cache;
 757		}
 758
 759		/*
 760		 * Sync discard ensures that the free space cache is always
 761		 * trimmed.  So when reading this in, the state should reflect
 762		 * that.  We also do this for async as a stop gap for lack of
 763		 * persistence.
 764		 */
 765		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 766		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
 767			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
 768
 769		if (!e->bytes) {
 
 770			kmem_cache_free(btrfs_free_space_cachep, e);
 771			goto free_cache;
 772		}
 773
 774		if (type == BTRFS_FREE_SPACE_EXTENT) {
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			spin_unlock(&ctl->tree_lock);
 778			if (ret) {
 779				btrfs_err(fs_info,
 780					"Duplicate entries in free space cache, dumping");
 781				kmem_cache_free(btrfs_free_space_cachep, e);
 782				goto free_cache;
 783			}
 784		} else {
 785			ASSERT(num_bitmaps);
 786			num_bitmaps--;
 787			e->bitmap = kmem_cache_zalloc(
 788					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 789			if (!e->bitmap) {
 
 790				kmem_cache_free(
 791					btrfs_free_space_cachep, e);
 792				goto free_cache;
 793			}
 794			spin_lock(&ctl->tree_lock);
 795			ret = link_free_space(ctl, e);
 796			ctl->total_bitmaps++;
 797			ctl->op->recalc_thresholds(ctl);
 798			spin_unlock(&ctl->tree_lock);
 799			if (ret) {
 
 800				btrfs_err(fs_info,
 801					"Duplicate entries in free space cache, dumping");
 
 802				kmem_cache_free(btrfs_free_space_cachep, e);
 803				goto free_cache;
 804			}
 
 
 
 805			list_add_tail(&e->list, &bitmaps);
 806		}
 807
 808		num_entries--;
 809	}
 810
 811	io_ctl_unmap_page(&io_ctl);
 812
 813	/*
 814	 * We add the bitmaps at the end of the entries in order that
 815	 * the bitmap entries are added to the cache.
 816	 */
 817	list_for_each_entry_safe(e, n, &bitmaps, list) {
 818		list_del_init(&e->list);
 819		ret = io_ctl_read_bitmap(&io_ctl, e);
 820		if (ret)
 821			goto free_cache;
 822		e->bitmap_extents = count_bitmap_extents(ctl, e);
 823		if (!btrfs_free_space_trimmed(e)) {
 824			ctl->discardable_extents[BTRFS_STAT_CURR] +=
 825				e->bitmap_extents;
 826			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
 827		}
 828	}
 829
 830	io_ctl_drop_pages(&io_ctl);
 831	merge_space_tree(ctl);
 832	ret = 1;
 833out:
 834	btrfs_discard_update_discardable(ctl->private, ctl);
 835	io_ctl_free(&io_ctl);
 836	return ret;
 837free_cache:
 838	io_ctl_drop_pages(&io_ctl);
 
 
 839	__btrfs_remove_free_space_cache(ctl);
 
 840	goto out;
 841}
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843int load_free_space_cache(struct btrfs_block_group *block_group)
 844{
 845	struct btrfs_fs_info *fs_info = block_group->fs_info;
 846	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 847	struct inode *inode;
 848	struct btrfs_path *path;
 849	int ret = 0;
 850	bool matched;
 851	u64 used = block_group->used;
 852
 853	/*
 
 
 
 
 
 
 
 854	 * If this block group has been marked to be cleared for one reason or
 855	 * another then we can't trust the on disk cache, so just return.
 856	 */
 857	spin_lock(&block_group->lock);
 858	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 859		spin_unlock(&block_group->lock);
 860		return 0;
 861	}
 862	spin_unlock(&block_group->lock);
 863
 864	path = btrfs_alloc_path();
 865	if (!path)
 866		return 0;
 867	path->search_commit_root = 1;
 868	path->skip_locking = 1;
 869
 870	/*
 871	 * We must pass a path with search_commit_root set to btrfs_iget in
 872	 * order to avoid a deadlock when allocating extents for the tree root.
 873	 *
 874	 * When we are COWing an extent buffer from the tree root, when looking
 875	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 876	 * block group without its free space cache loaded. When we find one
 877	 * we must load its space cache which requires reading its free space
 878	 * cache's inode item from the root tree. If this inode item is located
 879	 * in the same leaf that we started COWing before, then we end up in
 880	 * deadlock on the extent buffer (trying to read lock it when we
 881	 * previously write locked it).
 882	 *
 883	 * It's safe to read the inode item using the commit root because
 884	 * block groups, once loaded, stay in memory forever (until they are
 885	 * removed) as well as their space caches once loaded. New block groups
 886	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 887	 * we will never try to read their inode item while the fs is mounted.
 888	 */
 889	inode = lookup_free_space_inode(block_group, path);
 890	if (IS_ERR(inode)) {
 891		btrfs_free_path(path);
 892		return 0;
 893	}
 894
 895	/* We may have converted the inode and made the cache invalid. */
 896	spin_lock(&block_group->lock);
 897	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 898		spin_unlock(&block_group->lock);
 899		btrfs_free_path(path);
 900		goto out;
 901	}
 902	spin_unlock(&block_group->lock);
 903
 904	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 
 
 
 
 
 
 
 
 905				      path, block_group->start);
 906	btrfs_free_path(path);
 907	if (ret <= 0)
 908		goto out;
 909
 910	spin_lock(&ctl->tree_lock);
 911	matched = (ctl->free_space == (block_group->length - used -
 912				       block_group->bytes_super));
 913	spin_unlock(&ctl->tree_lock);
 914
 915	if (!matched) {
 916		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917		btrfs_warn(fs_info,
 918			   "block group %llu has wrong amount of free space",
 919			   block_group->start);
 920		ret = -1;
 921	}
 922out:
 923	if (ret < 0) {
 924		/* This cache is bogus, make sure it gets cleared */
 925		spin_lock(&block_group->lock);
 926		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 927		spin_unlock(&block_group->lock);
 928		ret = 0;
 929
 930		btrfs_warn(fs_info,
 931			   "failed to load free space cache for block group %llu, rebuilding it now",
 932			   block_group->start);
 933	}
 934
 
 
 
 935	iput(inode);
 936	return ret;
 937}
 938
 939static noinline_for_stack
 940int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 941			      struct btrfs_free_space_ctl *ctl,
 942			      struct btrfs_block_group *block_group,
 943			      int *entries, int *bitmaps,
 944			      struct list_head *bitmap_list)
 945{
 946	int ret;
 947	struct btrfs_free_cluster *cluster = NULL;
 948	struct btrfs_free_cluster *cluster_locked = NULL;
 949	struct rb_node *node = rb_first(&ctl->free_space_offset);
 950	struct btrfs_trim_range *trim_entry;
 951
 952	/* Get the cluster for this block_group if it exists */
 953	if (block_group && !list_empty(&block_group->cluster_list)) {
 954		cluster = list_entry(block_group->cluster_list.next,
 955				     struct btrfs_free_cluster,
 956				     block_group_list);
 957	}
 958
 959	if (!node && cluster) {
 960		cluster_locked = cluster;
 961		spin_lock(&cluster_locked->lock);
 962		node = rb_first(&cluster->root);
 963		cluster = NULL;
 964	}
 965
 966	/* Write out the extent entries */
 967	while (node) {
 968		struct btrfs_free_space *e;
 969
 970		e = rb_entry(node, struct btrfs_free_space, offset_index);
 971		*entries += 1;
 972
 973		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 974				       e->bitmap);
 975		if (ret)
 976			goto fail;
 977
 978		if (e->bitmap) {
 979			list_add_tail(&e->list, bitmap_list);
 980			*bitmaps += 1;
 981		}
 982		node = rb_next(node);
 983		if (!node && cluster) {
 984			node = rb_first(&cluster->root);
 985			cluster_locked = cluster;
 986			spin_lock(&cluster_locked->lock);
 987			cluster = NULL;
 988		}
 989	}
 990	if (cluster_locked) {
 991		spin_unlock(&cluster_locked->lock);
 992		cluster_locked = NULL;
 993	}
 994
 995	/*
 996	 * Make sure we don't miss any range that was removed from our rbtree
 997	 * because trimming is running. Otherwise after a umount+mount (or crash
 998	 * after committing the transaction) we would leak free space and get
 999	 * an inconsistent free space cache report from fsck.
1000	 */
1001	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003				       trim_entry->bytes, NULL);
1004		if (ret)
1005			goto fail;
1006		*entries += 1;
1007	}
1008
1009	return 0;
1010fail:
1011	if (cluster_locked)
1012		spin_unlock(&cluster_locked->lock);
1013	return -ENOSPC;
1014}
1015
1016static noinline_for_stack int
1017update_cache_item(struct btrfs_trans_handle *trans,
1018		  struct btrfs_root *root,
1019		  struct inode *inode,
1020		  struct btrfs_path *path, u64 offset,
1021		  int entries, int bitmaps)
1022{
1023	struct btrfs_key key;
1024	struct btrfs_free_space_header *header;
1025	struct extent_buffer *leaf;
1026	int ret;
1027
1028	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029	key.offset = offset;
1030	key.type = 0;
1031
1032	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033	if (ret < 0) {
1034		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035				 EXTENT_DELALLOC, 0, 0, NULL);
1036		goto fail;
1037	}
1038	leaf = path->nodes[0];
1039	if (ret > 0) {
1040		struct btrfs_key found_key;
1041		ASSERT(path->slots[0]);
1042		path->slots[0]--;
1043		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045		    found_key.offset != offset) {
1046			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048					 0, NULL);
1049			btrfs_release_path(path);
1050			goto fail;
1051		}
1052	}
1053
1054	BTRFS_I(inode)->generation = trans->transid;
1055	header = btrfs_item_ptr(leaf, path->slots[0],
1056				struct btrfs_free_space_header);
1057	btrfs_set_free_space_entries(leaf, header, entries);
1058	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060	btrfs_mark_buffer_dirty(leaf);
1061	btrfs_release_path(path);
1062
1063	return 0;
1064
1065fail:
1066	return -1;
1067}
1068
1069static noinline_for_stack int write_pinned_extent_entries(
1070			    struct btrfs_trans_handle *trans,
1071			    struct btrfs_block_group *block_group,
1072			    struct btrfs_io_ctl *io_ctl,
1073			    int *entries)
1074{
1075	u64 start, extent_start, extent_end, len;
1076	struct extent_io_tree *unpin = NULL;
1077	int ret;
1078
1079	if (!block_group)
1080		return 0;
1081
1082	/*
1083	 * We want to add any pinned extents to our free space cache
1084	 * so we don't leak the space
1085	 *
1086	 * We shouldn't have switched the pinned extents yet so this is the
1087	 * right one
1088	 */
1089	unpin = &trans->transaction->pinned_extents;
1090
1091	start = block_group->start;
1092
1093	while (start < block_group->start + block_group->length) {
1094		ret = find_first_extent_bit(unpin, start,
1095					    &extent_start, &extent_end,
1096					    EXTENT_DIRTY, NULL);
1097		if (ret)
1098			return 0;
1099
1100		/* This pinned extent is out of our range */
1101		if (extent_start >= block_group->start + block_group->length)
1102			return 0;
1103
1104		extent_start = max(extent_start, start);
1105		extent_end = min(block_group->start + block_group->length,
1106				 extent_end + 1);
1107		len = extent_end - extent_start;
1108
1109		*entries += 1;
1110		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111		if (ret)
1112			return -ENOSPC;
1113
1114		start = extent_end;
1115	}
1116
1117	return 0;
1118}
1119
1120static noinline_for_stack int
1121write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122{
1123	struct btrfs_free_space *entry, *next;
1124	int ret;
1125
1126	/* Write out the bitmaps */
1127	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129		if (ret)
1130			return -ENOSPC;
1131		list_del_init(&entry->list);
1132	}
1133
1134	return 0;
1135}
1136
1137static int flush_dirty_cache(struct inode *inode)
1138{
1139	int ret;
1140
1141	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142	if (ret)
1143		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144				 EXTENT_DELALLOC, 0, 0, NULL);
1145
1146	return ret;
1147}
1148
1149static void noinline_for_stack
1150cleanup_bitmap_list(struct list_head *bitmap_list)
1151{
1152	struct btrfs_free_space *entry, *next;
1153
1154	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155		list_del_init(&entry->list);
1156}
1157
1158static void noinline_for_stack
1159cleanup_write_cache_enospc(struct inode *inode,
1160			   struct btrfs_io_ctl *io_ctl,
1161			   struct extent_state **cached_state)
1162{
1163	io_ctl_drop_pages(io_ctl);
1164	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165			     i_size_read(inode) - 1, cached_state);
1166}
1167
1168static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169				 struct btrfs_trans_handle *trans,
1170				 struct btrfs_block_group *block_group,
1171				 struct btrfs_io_ctl *io_ctl,
1172				 struct btrfs_path *path, u64 offset)
1173{
1174	int ret;
1175	struct inode *inode = io_ctl->inode;
1176
1177	if (!inode)
1178		return 0;
1179
1180	/* Flush the dirty pages in the cache file. */
1181	ret = flush_dirty_cache(inode);
1182	if (ret)
1183		goto out;
1184
1185	/* Update the cache item to tell everyone this cache file is valid. */
1186	ret = update_cache_item(trans, root, inode, path, offset,
1187				io_ctl->entries, io_ctl->bitmaps);
1188out:
1189	if (ret) {
1190		invalidate_inode_pages2(inode->i_mapping);
1191		BTRFS_I(inode)->generation = 0;
1192		if (block_group)
1193			btrfs_debug(root->fs_info,
1194	  "failed to write free space cache for block group %llu error %d",
1195				  block_group->start, ret);
1196	}
1197	btrfs_update_inode(trans, root, inode);
1198
1199	if (block_group) {
1200		/* the dirty list is protected by the dirty_bgs_lock */
1201		spin_lock(&trans->transaction->dirty_bgs_lock);
1202
1203		/* the disk_cache_state is protected by the block group lock */
1204		spin_lock(&block_group->lock);
1205
1206		/*
1207		 * only mark this as written if we didn't get put back on
1208		 * the dirty list while waiting for IO.   Otherwise our
1209		 * cache state won't be right, and we won't get written again
1210		 */
1211		if (!ret && list_empty(&block_group->dirty_list))
1212			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1213		else if (ret)
1214			block_group->disk_cache_state = BTRFS_DC_ERROR;
1215
1216		spin_unlock(&block_group->lock);
1217		spin_unlock(&trans->transaction->dirty_bgs_lock);
1218		io_ctl->inode = NULL;
1219		iput(inode);
1220	}
1221
1222	return ret;
1223
1224}
1225
1226static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1227				    struct btrfs_trans_handle *trans,
1228				    struct btrfs_io_ctl *io_ctl,
1229				    struct btrfs_path *path)
1230{
1231	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1232}
1233
1234int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1235			struct btrfs_block_group *block_group,
1236			struct btrfs_path *path)
1237{
1238	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1239				     block_group, &block_group->io_ctl,
1240				     path, block_group->start);
1241}
1242
1243/**
1244 * __btrfs_write_out_cache - write out cached info to an inode
1245 * @root - the root the inode belongs to
1246 * @ctl - the free space cache we are going to write out
1247 * @block_group - the block_group for this cache if it belongs to a block_group
1248 * @trans - the trans handle
 
 
1249 *
1250 * This function writes out a free space cache struct to disk for quick recovery
1251 * on mount.  This will return 0 if it was successful in writing the cache out,
1252 * or an errno if it was not.
1253 */
1254static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1255				   struct btrfs_free_space_ctl *ctl,
1256				   struct btrfs_block_group *block_group,
1257				   struct btrfs_io_ctl *io_ctl,
1258				   struct btrfs_trans_handle *trans)
1259{
1260	struct extent_state *cached_state = NULL;
1261	LIST_HEAD(bitmap_list);
1262	int entries = 0;
1263	int bitmaps = 0;
1264	int ret;
1265	int must_iput = 0;
 
1266
1267	if (!i_size_read(inode))
1268		return -EIO;
1269
1270	WARN_ON(io_ctl->pages);
1271	ret = io_ctl_init(io_ctl, inode, 1);
1272	if (ret)
1273		return ret;
1274
1275	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1276		down_write(&block_group->data_rwsem);
1277		spin_lock(&block_group->lock);
1278		if (block_group->delalloc_bytes) {
1279			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1280			spin_unlock(&block_group->lock);
1281			up_write(&block_group->data_rwsem);
1282			BTRFS_I(inode)->generation = 0;
1283			ret = 0;
1284			must_iput = 1;
1285			goto out;
1286		}
1287		spin_unlock(&block_group->lock);
1288	}
1289
1290	/* Lock all pages first so we can lock the extent safely. */
1291	ret = io_ctl_prepare_pages(io_ctl, false);
1292	if (ret)
1293		goto out_unlock;
1294
1295	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296			 &cached_state);
1297
1298	io_ctl_set_generation(io_ctl, trans->transid);
1299
1300	mutex_lock(&ctl->cache_writeout_mutex);
1301	/* Write out the extent entries in the free space cache */
1302	spin_lock(&ctl->tree_lock);
1303	ret = write_cache_extent_entries(io_ctl, ctl,
1304					 block_group, &entries, &bitmaps,
1305					 &bitmap_list);
1306	if (ret)
1307		goto out_nospc_locked;
1308
1309	/*
1310	 * Some spaces that are freed in the current transaction are pinned,
1311	 * they will be added into free space cache after the transaction is
1312	 * committed, we shouldn't lose them.
1313	 *
1314	 * If this changes while we are working we'll get added back to
1315	 * the dirty list and redo it.  No locking needed
1316	 */
1317	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1318	if (ret)
1319		goto out_nospc_locked;
1320
1321	/*
1322	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1323	 * locked while doing it because a concurrent trim can be manipulating
1324	 * or freeing the bitmap.
1325	 */
1326	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1327	spin_unlock(&ctl->tree_lock);
1328	mutex_unlock(&ctl->cache_writeout_mutex);
1329	if (ret)
1330		goto out_nospc;
1331
1332	/* Zero out the rest of the pages just to make sure */
1333	io_ctl_zero_remaining_pages(io_ctl);
1334
1335	/* Everything is written out, now we dirty the pages in the file. */
1336	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1337				io_ctl->num_pages, 0, i_size_read(inode),
1338				&cached_state);
1339	if (ret)
1340		goto out_nospc;
 
 
 
 
 
1341
1342	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1343		up_write(&block_group->data_rwsem);
1344	/*
1345	 * Release the pages and unlock the extent, we will flush
1346	 * them out later
1347	 */
1348	io_ctl_drop_pages(io_ctl);
1349	io_ctl_free(io_ctl);
1350
1351	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1352			     i_size_read(inode) - 1, &cached_state);
1353
1354	/*
1355	 * at this point the pages are under IO and we're happy,
1356	 * The caller is responsible for waiting on them and updating the
1357	 * the cache and the inode
1358	 */
1359	io_ctl->entries = entries;
1360	io_ctl->bitmaps = bitmaps;
1361
1362	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1363	if (ret)
1364		goto out;
1365
1366	return 0;
1367
1368out_nospc_locked:
1369	cleanup_bitmap_list(&bitmap_list);
1370	spin_unlock(&ctl->tree_lock);
1371	mutex_unlock(&ctl->cache_writeout_mutex);
1372
1373out_nospc:
1374	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1375
1376out_unlock:
1377	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1378		up_write(&block_group->data_rwsem);
1379
1380out:
1381	io_ctl->inode = NULL;
1382	io_ctl_free(io_ctl);
1383	if (ret) {
1384		invalidate_inode_pages2(inode->i_mapping);
1385		BTRFS_I(inode)->generation = 0;
1386	}
1387	btrfs_update_inode(trans, root, inode);
1388	if (must_iput)
1389		iput(inode);
1390	return ret;
1391}
1392
1393int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1394			  struct btrfs_block_group *block_group,
1395			  struct btrfs_path *path)
1396{
1397	struct btrfs_fs_info *fs_info = trans->fs_info;
1398	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1399	struct inode *inode;
1400	int ret = 0;
1401
1402	spin_lock(&block_group->lock);
1403	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1404		spin_unlock(&block_group->lock);
1405		return 0;
1406	}
1407	spin_unlock(&block_group->lock);
1408
1409	inode = lookup_free_space_inode(block_group, path);
1410	if (IS_ERR(inode))
1411		return 0;
1412
1413	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1414				block_group, &block_group->io_ctl, trans);
1415	if (ret) {
1416		btrfs_debug(fs_info,
1417	  "failed to write free space cache for block group %llu error %d",
1418			  block_group->start, ret);
1419		spin_lock(&block_group->lock);
1420		block_group->disk_cache_state = BTRFS_DC_ERROR;
1421		spin_unlock(&block_group->lock);
1422
1423		block_group->io_ctl.inode = NULL;
1424		iput(inode);
1425	}
1426
1427	/*
1428	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1429	 * to wait for IO and put the inode
1430	 */
1431
1432	return ret;
1433}
1434
1435static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1436					  u64 offset)
1437{
1438	ASSERT(offset >= bitmap_start);
1439	offset -= bitmap_start;
1440	return (unsigned long)(div_u64(offset, unit));
1441}
1442
1443static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1444{
1445	return (unsigned long)(div_u64(bytes, unit));
1446}
1447
1448static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1449				   u64 offset)
1450{
1451	u64 bitmap_start;
1452	u64 bytes_per_bitmap;
1453
1454	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1455	bitmap_start = offset - ctl->start;
1456	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1457	bitmap_start *= bytes_per_bitmap;
1458	bitmap_start += ctl->start;
1459
1460	return bitmap_start;
1461}
1462
1463static int tree_insert_offset(struct rb_root *root, u64 offset,
1464			      struct rb_node *node, int bitmap)
 
1465{
1466	struct rb_node **p = &root->rb_node;
 
1467	struct rb_node *parent = NULL;
1468	struct btrfs_free_space *info;
 
 
 
 
 
 
 
 
 
 
1469
1470	while (*p) {
 
 
1471		parent = *p;
1472		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1473
1474		if (offset < info->offset) {
1475			p = &(*p)->rb_left;
1476		} else if (offset > info->offset) {
1477			p = &(*p)->rb_right;
1478		} else {
1479			/*
1480			 * we could have a bitmap entry and an extent entry
1481			 * share the same offset.  If this is the case, we want
1482			 * the extent entry to always be found first if we do a
1483			 * linear search through the tree, since we want to have
1484			 * the quickest allocation time, and allocating from an
1485			 * extent is faster than allocating from a bitmap.  So
1486			 * if we're inserting a bitmap and we find an entry at
1487			 * this offset, we want to go right, or after this entry
1488			 * logically.  If we are inserting an extent and we've
1489			 * found a bitmap, we want to go left, or before
1490			 * logically.
1491			 */
1492			if (bitmap) {
1493				if (info->bitmap) {
1494					WARN_ON_ONCE(1);
1495					return -EEXIST;
1496				}
1497				p = &(*p)->rb_right;
1498			} else {
1499				if (!info->bitmap) {
1500					WARN_ON_ONCE(1);
1501					return -EEXIST;
1502				}
1503				p = &(*p)->rb_left;
1504			}
1505		}
1506	}
1507
1508	rb_link_node(node, parent, p);
1509	rb_insert_color(node, root);
1510
1511	return 0;
1512}
1513
1514/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515 * searches the tree for the given offset.
1516 *
1517 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1518 * want a section that has at least bytes size and comes at or after the given
1519 * offset.
1520 */
1521static struct btrfs_free_space *
1522tree_search_offset(struct btrfs_free_space_ctl *ctl,
1523		   u64 offset, int bitmap_only, int fuzzy)
1524{
1525	struct rb_node *n = ctl->free_space_offset.rb_node;
1526	struct btrfs_free_space *entry, *prev = NULL;
 
 
1527
1528	/* find entry that is closest to the 'offset' */
1529	while (1) {
1530		if (!n) {
1531			entry = NULL;
1532			break;
1533		}
1534
1535		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1536		prev = entry;
1537
1538		if (offset < entry->offset)
1539			n = n->rb_left;
1540		else if (offset > entry->offset)
1541			n = n->rb_right;
1542		else
1543			break;
 
 
1544	}
1545
1546	if (bitmap_only) {
1547		if (!entry)
1548			return NULL;
1549		if (entry->bitmap)
1550			return entry;
1551
1552		/*
1553		 * bitmap entry and extent entry may share same offset,
1554		 * in that case, bitmap entry comes after extent entry.
1555		 */
1556		n = rb_next(n);
1557		if (!n)
1558			return NULL;
1559		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1560		if (entry->offset != offset)
1561			return NULL;
1562
1563		WARN_ON(!entry->bitmap);
1564		return entry;
1565	} else if (entry) {
1566		if (entry->bitmap) {
1567			/*
1568			 * if previous extent entry covers the offset,
1569			 * we should return it instead of the bitmap entry
1570			 */
1571			n = rb_prev(&entry->offset_index);
1572			if (n) {
1573				prev = rb_entry(n, struct btrfs_free_space,
1574						offset_index);
1575				if (!prev->bitmap &&
1576				    prev->offset + prev->bytes > offset)
1577					entry = prev;
1578			}
1579		}
1580		return entry;
1581	}
1582
1583	if (!prev)
1584		return NULL;
1585
1586	/* find last entry before the 'offset' */
1587	entry = prev;
1588	if (entry->offset > offset) {
1589		n = rb_prev(&entry->offset_index);
1590		if (n) {
1591			entry = rb_entry(n, struct btrfs_free_space,
1592					offset_index);
1593			ASSERT(entry->offset <= offset);
1594		} else {
1595			if (fuzzy)
1596				return entry;
1597			else
1598				return NULL;
1599		}
1600	}
1601
1602	if (entry->bitmap) {
1603		n = rb_prev(&entry->offset_index);
1604		if (n) {
1605			prev = rb_entry(n, struct btrfs_free_space,
1606					offset_index);
1607			if (!prev->bitmap &&
1608			    prev->offset + prev->bytes > offset)
1609				return prev;
1610		}
1611		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1612			return entry;
1613	} else if (entry->offset + entry->bytes > offset)
1614		return entry;
1615
1616	if (!fuzzy)
1617		return NULL;
1618
1619	while (1) {
 
 
 
 
1620		if (entry->bitmap) {
1621			if (entry->offset + BITS_PER_BITMAP *
1622			    ctl->unit > offset)
1623				break;
1624		} else {
1625			if (entry->offset + entry->bytes > offset)
1626				break;
1627		}
1628
1629		n = rb_next(&entry->offset_index);
1630		if (!n)
1631			return NULL;
1632		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1633	}
1634	return entry;
1635}
1636
1637static inline void
1638__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1639		    struct btrfs_free_space *info)
1640{
 
 
1641	rb_erase(&info->offset_index, &ctl->free_space_offset);
 
1642	ctl->free_extents--;
1643
1644	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1645		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1646		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1647	}
1648}
1649
1650static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1651			      struct btrfs_free_space *info)
1652{
1653	__unlink_free_space(ctl, info);
1654	ctl->free_space -= info->bytes;
1655}
1656
1657static int link_free_space(struct btrfs_free_space_ctl *ctl,
1658			   struct btrfs_free_space *info)
1659{
1660	int ret = 0;
1661
 
 
1662	ASSERT(info->bytes || info->bitmap);
1663	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1664				 &info->offset_index, (info->bitmap != NULL));
1665	if (ret)
1666		return ret;
1667
 
 
1668	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1669		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1670		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1671	}
1672
1673	ctl->free_space += info->bytes;
1674	ctl->free_extents++;
1675	return ret;
1676}
1677
1678static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
1679{
1680	struct btrfs_block_group *block_group = ctl->private;
1681	u64 max_bytes;
1682	u64 bitmap_bytes;
1683	u64 extent_bytes;
1684	u64 size = block_group->length;
1685	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1686	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1687
1688	max_bitmaps = max_t(u64, max_bitmaps, 1);
1689
1690	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1691
1692	/*
1693	 * We are trying to keep the total amount of memory used per 1GiB of
1694	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1695	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1696	 * bitmaps, we may end up using more memory than this.
1697	 */
1698	if (size < SZ_1G)
1699		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1700	else
1701		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1702
1703	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1704
1705	/*
1706	 * we want the extent entry threshold to always be at most 1/2 the max
1707	 * bytes we can have, or whatever is less than that.
1708	 */
1709	extent_bytes = max_bytes - bitmap_bytes;
1710	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1711
1712	ctl->extents_thresh =
1713		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1714}
1715
1716static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717				       struct btrfs_free_space *info,
1718				       u64 offset, u64 bytes)
1719{
1720	unsigned long start, count, end;
1721	int extent_delta = -1;
1722
1723	start = offset_to_bit(info->offset, ctl->unit, offset);
1724	count = bytes_to_bits(bytes, ctl->unit);
1725	end = start + count;
1726	ASSERT(end <= BITS_PER_BITMAP);
1727
1728	bitmap_clear(info->bitmap, start, count);
1729
1730	info->bytes -= bytes;
1731	if (info->max_extent_size > ctl->unit)
1732		info->max_extent_size = 0;
1733
 
 
1734	if (start && test_bit(start - 1, info->bitmap))
1735		extent_delta++;
1736
1737	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1738		extent_delta++;
1739
1740	info->bitmap_extents += extent_delta;
1741	if (!btrfs_free_space_trimmed(info)) {
1742		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1743		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1744	}
1745}
1746
1747static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1748			      struct btrfs_free_space *info, u64 offset,
1749			      u64 bytes)
1750{
1751	__bitmap_clear_bits(ctl, info, offset, bytes);
1752	ctl->free_space -= bytes;
1753}
1754
1755static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1756			    struct btrfs_free_space *info, u64 offset,
1757			    u64 bytes)
1758{
1759	unsigned long start, count, end;
1760	int extent_delta = 1;
1761
1762	start = offset_to_bit(info->offset, ctl->unit, offset);
1763	count = bytes_to_bits(bytes, ctl->unit);
1764	end = start + count;
1765	ASSERT(end <= BITS_PER_BITMAP);
1766
1767	bitmap_set(info->bitmap, start, count);
1768
 
 
 
 
 
1769	info->bytes += bytes;
1770	ctl->free_space += bytes;
1771
 
 
1772	if (start && test_bit(start - 1, info->bitmap))
1773		extent_delta--;
1774
1775	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1776		extent_delta--;
1777
1778	info->bitmap_extents += extent_delta;
1779	if (!btrfs_free_space_trimmed(info)) {
1780		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1781		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1782	}
1783}
1784
1785/*
1786 * If we can not find suitable extent, we will use bytes to record
1787 * the size of the max extent.
1788 */
1789static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1790			 struct btrfs_free_space *bitmap_info, u64 *offset,
1791			 u64 *bytes, bool for_alloc)
1792{
1793	unsigned long found_bits = 0;
1794	unsigned long max_bits = 0;
1795	unsigned long bits, i;
1796	unsigned long next_zero;
1797	unsigned long extent_bits;
1798
1799	/*
1800	 * Skip searching the bitmap if we don't have a contiguous section that
1801	 * is large enough for this allocation.
1802	 */
1803	if (for_alloc &&
1804	    bitmap_info->max_extent_size &&
1805	    bitmap_info->max_extent_size < *bytes) {
1806		*bytes = bitmap_info->max_extent_size;
1807		return -1;
1808	}
1809
1810	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1811			  max_t(u64, *offset, bitmap_info->offset));
1812	bits = bytes_to_bits(*bytes, ctl->unit);
1813
1814	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1815		if (for_alloc && bits == 1) {
1816			found_bits = 1;
1817			break;
1818		}
1819		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1820					       BITS_PER_BITMAP, i);
1821		extent_bits = next_zero - i;
1822		if (extent_bits >= bits) {
1823			found_bits = extent_bits;
1824			break;
1825		} else if (extent_bits > max_bits) {
1826			max_bits = extent_bits;
1827		}
1828		i = next_zero;
1829	}
1830
1831	if (found_bits) {
1832		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1833		*bytes = (u64)(found_bits) * ctl->unit;
1834		return 0;
1835	}
1836
1837	*bytes = (u64)(max_bits) * ctl->unit;
1838	bitmap_info->max_extent_size = *bytes;
 
1839	return -1;
1840}
1841
1842static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1843{
1844	if (entry->bitmap)
1845		return entry->max_extent_size;
1846	return entry->bytes;
1847}
1848
1849/* Cache the size of the max extent in bytes */
1850static struct btrfs_free_space *
1851find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1852		unsigned long align, u64 *max_extent_size)
1853{
1854	struct btrfs_free_space *entry;
1855	struct rb_node *node;
1856	u64 tmp;
1857	u64 align_off;
1858	int ret;
1859
1860	if (!ctl->free_space_offset.rb_node)
1861		goto out;
 
 
 
 
 
 
 
 
 
 
1862
1863	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1864	if (!entry)
1865		goto out;
 
 
 
 
1866
1867	for (node = &entry->offset_index; node; node = rb_next(node)) {
1868		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 
 
 
 
 
 
1869		if (entry->bytes < *bytes) {
1870			*max_extent_size = max(get_max_extent_size(entry),
1871					       *max_extent_size);
 
 
1872			continue;
1873		}
1874
1875		/* make sure the space returned is big enough
1876		 * to match our requested alignment
1877		 */
1878		if (*bytes >= align) {
1879			tmp = entry->offset - ctl->start + align - 1;
1880			tmp = div64_u64(tmp, align);
1881			tmp = tmp * align + ctl->start;
1882			align_off = tmp - entry->offset;
1883		} else {
1884			align_off = 0;
1885			tmp = entry->offset;
1886		}
1887
 
 
 
 
 
 
 
1888		if (entry->bytes < *bytes + align_off) {
1889			*max_extent_size = max(get_max_extent_size(entry),
1890					       *max_extent_size);
1891			continue;
1892		}
1893
1894		if (entry->bitmap) {
 
1895			u64 size = *bytes;
1896
1897			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1898			if (!ret) {
1899				*offset = tmp;
1900				*bytes = size;
1901				return entry;
1902			} else {
1903				*max_extent_size =
1904					max(get_max_extent_size(entry),
1905					    *max_extent_size);
1906			}
 
 
 
 
 
 
 
 
 
1907			continue;
1908		}
1909
1910		*offset = tmp;
1911		*bytes = entry->bytes - align_off;
1912		return entry;
1913	}
1914out:
1915	return NULL;
1916}
1917
1918static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1919				struct btrfs_free_space *bitmap_info)
1920{
1921	struct btrfs_block_group *block_group = ctl->private;
1922	u64 bytes = bitmap_info->bytes;
1923	unsigned int rs, re;
1924	int count = 0;
1925
1926	if (!block_group || !bytes)
1927		return count;
1928
1929	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1930				   BITS_PER_BITMAP) {
1931		bytes -= (rs - re) * ctl->unit;
1932		count++;
1933
1934		if (!bytes)
1935			break;
1936	}
1937
1938	return count;
1939}
1940
1941static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1942			   struct btrfs_free_space *info, u64 offset)
1943{
1944	info->offset = offset_to_bitmap(ctl, offset);
1945	info->bytes = 0;
1946	info->bitmap_extents = 0;
1947	INIT_LIST_HEAD(&info->list);
1948	link_free_space(ctl, info);
1949	ctl->total_bitmaps++;
1950
1951	ctl->op->recalc_thresholds(ctl);
1952}
1953
1954static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1955			struct btrfs_free_space *bitmap_info)
1956{
1957	/*
1958	 * Normally when this is called, the bitmap is completely empty. However,
1959	 * if we are blowing up the free space cache for one reason or another
1960	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1961	 * we may leave stats on the table.
1962	 */
1963	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1964		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1965			bitmap_info->bitmap_extents;
1966		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1967
1968	}
1969	unlink_free_space(ctl, bitmap_info);
1970	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1971	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1972	ctl->total_bitmaps--;
1973	ctl->op->recalc_thresholds(ctl);
1974}
1975
1976static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1977			      struct btrfs_free_space *bitmap_info,
1978			      u64 *offset, u64 *bytes)
1979{
1980	u64 end;
1981	u64 search_start, search_bytes;
1982	int ret;
1983
1984again:
1985	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1986
1987	/*
1988	 * We need to search for bits in this bitmap.  We could only cover some
1989	 * of the extent in this bitmap thanks to how we add space, so we need
1990	 * to search for as much as it as we can and clear that amount, and then
1991	 * go searching for the next bit.
1992	 */
1993	search_start = *offset;
1994	search_bytes = ctl->unit;
1995	search_bytes = min(search_bytes, end - search_start + 1);
1996	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1997			    false);
1998	if (ret < 0 || search_start != *offset)
1999		return -EINVAL;
2000
2001	/* We may have found more bits than what we need */
2002	search_bytes = min(search_bytes, *bytes);
2003
2004	/* Cannot clear past the end of the bitmap */
2005	search_bytes = min(search_bytes, end - search_start + 1);
2006
2007	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2008	*offset += search_bytes;
2009	*bytes -= search_bytes;
2010
2011	if (*bytes) {
2012		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2013		if (!bitmap_info->bytes)
2014			free_bitmap(ctl, bitmap_info);
2015
2016		/*
2017		 * no entry after this bitmap, but we still have bytes to
2018		 * remove, so something has gone wrong.
2019		 */
2020		if (!next)
2021			return -EINVAL;
2022
2023		bitmap_info = rb_entry(next, struct btrfs_free_space,
2024				       offset_index);
2025
2026		/*
2027		 * if the next entry isn't a bitmap we need to return to let the
2028		 * extent stuff do its work.
2029		 */
2030		if (!bitmap_info->bitmap)
2031			return -EAGAIN;
2032
2033		/*
2034		 * Ok the next item is a bitmap, but it may not actually hold
2035		 * the information for the rest of this free space stuff, so
2036		 * look for it, and if we don't find it return so we can try
2037		 * everything over again.
2038		 */
2039		search_start = *offset;
2040		search_bytes = ctl->unit;
2041		ret = search_bitmap(ctl, bitmap_info, &search_start,
2042				    &search_bytes, false);
2043		if (ret < 0 || search_start != *offset)
2044			return -EAGAIN;
2045
2046		goto again;
2047	} else if (!bitmap_info->bytes)
2048		free_bitmap(ctl, bitmap_info);
2049
2050	return 0;
2051}
2052
2053static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2054			       struct btrfs_free_space *info, u64 offset,
2055			       u64 bytes, enum btrfs_trim_state trim_state)
2056{
2057	u64 bytes_to_set = 0;
2058	u64 end;
2059
2060	/*
2061	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2062	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2063	 */
2064	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2065		if (btrfs_free_space_trimmed(info)) {
2066			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2067				info->bitmap_extents;
2068			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2069		}
2070		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2071	}
2072
2073	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2074
2075	bytes_to_set = min(end - offset, bytes);
2076
2077	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2078
2079	/*
2080	 * We set some bytes, we have no idea what the max extent size is
2081	 * anymore.
2082	 */
2083	info->max_extent_size = 0;
2084
2085	return bytes_to_set;
2086
2087}
2088
2089static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2090		      struct btrfs_free_space *info)
2091{
2092	struct btrfs_block_group *block_group = ctl->private;
2093	struct btrfs_fs_info *fs_info = block_group->fs_info;
2094	bool forced = false;
2095
2096#ifdef CONFIG_BTRFS_DEBUG
2097	if (btrfs_should_fragment_free_space(block_group))
2098		forced = true;
2099#endif
2100
2101	/* This is a way to reclaim large regions from the bitmaps. */
2102	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2103		return false;
2104
2105	/*
2106	 * If we are below the extents threshold then we can add this as an
2107	 * extent, and don't have to deal with the bitmap
2108	 */
2109	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2110		/*
2111		 * If this block group has some small extents we don't want to
2112		 * use up all of our free slots in the cache with them, we want
2113		 * to reserve them to larger extents, however if we have plenty
2114		 * of cache left then go ahead an dadd them, no sense in adding
2115		 * the overhead of a bitmap if we don't have to.
2116		 */
2117		if (info->bytes <= fs_info->sectorsize * 8) {
2118			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2119				return false;
2120		} else {
2121			return false;
2122		}
2123	}
2124
2125	/*
2126	 * The original block groups from mkfs can be really small, like 8
2127	 * megabytes, so don't bother with a bitmap for those entries.  However
2128	 * some block groups can be smaller than what a bitmap would cover but
2129	 * are still large enough that they could overflow the 32k memory limit,
2130	 * so allow those block groups to still be allowed to have a bitmap
2131	 * entry.
2132	 */
2133	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2134		return false;
2135
2136	return true;
2137}
2138
2139static const struct btrfs_free_space_op free_space_op = {
2140	.recalc_thresholds	= recalculate_thresholds,
2141	.use_bitmap		= use_bitmap,
2142};
2143
2144static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2145			      struct btrfs_free_space *info)
2146{
2147	struct btrfs_free_space *bitmap_info;
2148	struct btrfs_block_group *block_group = NULL;
2149	int added = 0;
2150	u64 bytes, offset, bytes_added;
2151	enum btrfs_trim_state trim_state;
2152	int ret;
2153
2154	bytes = info->bytes;
2155	offset = info->offset;
2156	trim_state = info->trim_state;
2157
2158	if (!ctl->op->use_bitmap(ctl, info))
2159		return 0;
2160
2161	if (ctl->op == &free_space_op)
2162		block_group = ctl->private;
2163again:
2164	/*
2165	 * Since we link bitmaps right into the cluster we need to see if we
2166	 * have a cluster here, and if so and it has our bitmap we need to add
2167	 * the free space to that bitmap.
2168	 */
2169	if (block_group && !list_empty(&block_group->cluster_list)) {
2170		struct btrfs_free_cluster *cluster;
2171		struct rb_node *node;
2172		struct btrfs_free_space *entry;
2173
2174		cluster = list_entry(block_group->cluster_list.next,
2175				     struct btrfs_free_cluster,
2176				     block_group_list);
2177		spin_lock(&cluster->lock);
2178		node = rb_first(&cluster->root);
2179		if (!node) {
2180			spin_unlock(&cluster->lock);
2181			goto no_cluster_bitmap;
2182		}
2183
2184		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2185		if (!entry->bitmap) {
2186			spin_unlock(&cluster->lock);
2187			goto no_cluster_bitmap;
2188		}
2189
2190		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2191			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2192							  bytes, trim_state);
2193			bytes -= bytes_added;
2194			offset += bytes_added;
2195		}
2196		spin_unlock(&cluster->lock);
2197		if (!bytes) {
2198			ret = 1;
2199			goto out;
2200		}
2201	}
2202
2203no_cluster_bitmap:
2204	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2205					 1, 0);
2206	if (!bitmap_info) {
2207		ASSERT(added == 0);
2208		goto new_bitmap;
2209	}
2210
2211	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2212					  trim_state);
2213	bytes -= bytes_added;
2214	offset += bytes_added;
2215	added = 0;
2216
2217	if (!bytes) {
2218		ret = 1;
2219		goto out;
2220	} else
2221		goto again;
2222
2223new_bitmap:
2224	if (info && info->bitmap) {
2225		add_new_bitmap(ctl, info, offset);
2226		added = 1;
2227		info = NULL;
2228		goto again;
2229	} else {
2230		spin_unlock(&ctl->tree_lock);
2231
2232		/* no pre-allocated info, allocate a new one */
2233		if (!info) {
2234			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2235						 GFP_NOFS);
2236			if (!info) {
2237				spin_lock(&ctl->tree_lock);
2238				ret = -ENOMEM;
2239				goto out;
2240			}
2241		}
2242
2243		/* allocate the bitmap */
2244		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2245						 GFP_NOFS);
2246		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2247		spin_lock(&ctl->tree_lock);
2248		if (!info->bitmap) {
2249			ret = -ENOMEM;
2250			goto out;
2251		}
2252		goto again;
2253	}
2254
2255out:
2256	if (info) {
2257		if (info->bitmap)
2258			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2259					info->bitmap);
2260		kmem_cache_free(btrfs_free_space_cachep, info);
2261	}
2262
2263	return ret;
2264}
2265
2266/*
2267 * Free space merging rules:
2268 *  1) Merge trimmed areas together
2269 *  2) Let untrimmed areas coalesce with trimmed areas
2270 *  3) Always pull neighboring regions from bitmaps
2271 *
2272 * The above rules are for when we merge free space based on btrfs_trim_state.
2273 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2274 * same reason: to promote larger extent regions which makes life easier for
2275 * find_free_extent().  Rule 2 enables coalescing based on the common path
2276 * being returning free space from btrfs_finish_extent_commit().  So when free
2277 * space is trimmed, it will prevent aggregating trimmed new region and
2278 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2279 * and provide find_free_extent() with the largest extents possible hoping for
2280 * the reuse path.
2281 */
2282static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2283			  struct btrfs_free_space *info, bool update_stat)
2284{
2285	struct btrfs_free_space *left_info = NULL;
2286	struct btrfs_free_space *right_info;
2287	bool merged = false;
2288	u64 offset = info->offset;
2289	u64 bytes = info->bytes;
2290	const bool is_trimmed = btrfs_free_space_trimmed(info);
 
2291
2292	/*
2293	 * first we want to see if there is free space adjacent to the range we
2294	 * are adding, if there is remove that struct and add a new one to
2295	 * cover the entire range
2296	 */
2297	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2298	if (right_info && rb_prev(&right_info->offset_index))
2299		left_info = rb_entry(rb_prev(&right_info->offset_index),
2300				     struct btrfs_free_space, offset_index);
 
 
2301	else if (!right_info)
2302		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2303
2304	/* See try_merge_free_space() comment. */
2305	if (right_info && !right_info->bitmap &&
2306	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2307		if (update_stat)
2308			unlink_free_space(ctl, right_info);
2309		else
2310			__unlink_free_space(ctl, right_info);
2311		info->bytes += right_info->bytes;
2312		kmem_cache_free(btrfs_free_space_cachep, right_info);
2313		merged = true;
2314	}
2315
2316	/* See try_merge_free_space() comment. */
2317	if (left_info && !left_info->bitmap &&
2318	    left_info->offset + left_info->bytes == offset &&
2319	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2320		if (update_stat)
2321			unlink_free_space(ctl, left_info);
2322		else
2323			__unlink_free_space(ctl, left_info);
2324		info->offset = left_info->offset;
2325		info->bytes += left_info->bytes;
2326		kmem_cache_free(btrfs_free_space_cachep, left_info);
2327		merged = true;
2328	}
2329
2330	return merged;
2331}
2332
2333static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2334				     struct btrfs_free_space *info,
2335				     bool update_stat)
2336{
2337	struct btrfs_free_space *bitmap;
2338	unsigned long i;
2339	unsigned long j;
2340	const u64 end = info->offset + info->bytes;
2341	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2342	u64 bytes;
2343
2344	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2345	if (!bitmap)
2346		return false;
2347
2348	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2349	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2350	if (j == i)
2351		return false;
2352	bytes = (j - i) * ctl->unit;
2353	info->bytes += bytes;
2354
2355	/* See try_merge_free_space() comment. */
2356	if (!btrfs_free_space_trimmed(bitmap))
2357		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2358
2359	if (update_stat)
2360		bitmap_clear_bits(ctl, bitmap, end, bytes);
2361	else
2362		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2363
2364	if (!bitmap->bytes)
2365		free_bitmap(ctl, bitmap);
2366
2367	return true;
2368}
2369
2370static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2371				       struct btrfs_free_space *info,
2372				       bool update_stat)
2373{
2374	struct btrfs_free_space *bitmap;
2375	u64 bitmap_offset;
2376	unsigned long i;
2377	unsigned long j;
2378	unsigned long prev_j;
2379	u64 bytes;
2380
2381	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2382	/* If we're on a boundary, try the previous logical bitmap. */
2383	if (bitmap_offset == info->offset) {
2384		if (info->offset == 0)
2385			return false;
2386		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2387	}
2388
2389	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2390	if (!bitmap)
2391		return false;
2392
2393	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2394	j = 0;
2395	prev_j = (unsigned long)-1;
2396	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2397		if (j > i)
2398			break;
2399		prev_j = j;
2400	}
2401	if (prev_j == i)
2402		return false;
2403
2404	if (prev_j == (unsigned long)-1)
2405		bytes = (i + 1) * ctl->unit;
2406	else
2407		bytes = (i - prev_j) * ctl->unit;
2408
2409	info->offset -= bytes;
2410	info->bytes += bytes;
2411
2412	/* See try_merge_free_space() comment. */
2413	if (!btrfs_free_space_trimmed(bitmap))
2414		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2415
2416	if (update_stat)
2417		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2418	else
2419		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2420
2421	if (!bitmap->bytes)
2422		free_bitmap(ctl, bitmap);
2423
2424	return true;
2425}
2426
2427/*
2428 * We prefer always to allocate from extent entries, both for clustered and
2429 * non-clustered allocation requests. So when attempting to add a new extent
2430 * entry, try to see if there's adjacent free space in bitmap entries, and if
2431 * there is, migrate that space from the bitmaps to the extent.
2432 * Like this we get better chances of satisfying space allocation requests
2433 * because we attempt to satisfy them based on a single cache entry, and never
2434 * on 2 or more entries - even if the entries represent a contiguous free space
2435 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2436 * ends).
2437 */
2438static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2439			      struct btrfs_free_space *info,
2440			      bool update_stat)
2441{
2442	/*
2443	 * Only work with disconnected entries, as we can change their offset,
2444	 * and must be extent entries.
2445	 */
2446	ASSERT(!info->bitmap);
2447	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2448
2449	if (ctl->total_bitmaps > 0) {
2450		bool stole_end;
2451		bool stole_front = false;
2452
2453		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2454		if (ctl->total_bitmaps > 0)
2455			stole_front = steal_from_bitmap_to_front(ctl, info,
2456								 update_stat);
2457
2458		if (stole_end || stole_front)
2459			try_merge_free_space(ctl, info, update_stat);
2460	}
2461}
2462
2463int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2464			   struct btrfs_free_space_ctl *ctl,
2465			   u64 offset, u64 bytes,
2466			   enum btrfs_trim_state trim_state)
2467{
2468	struct btrfs_block_group *block_group = ctl->private;
 
2469	struct btrfs_free_space *info;
2470	int ret = 0;
2471	u64 filter_bytes = bytes;
2472
 
 
2473	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2474	if (!info)
2475		return -ENOMEM;
2476
2477	info->offset = offset;
2478	info->bytes = bytes;
2479	info->trim_state = trim_state;
2480	RB_CLEAR_NODE(&info->offset_index);
 
2481
2482	spin_lock(&ctl->tree_lock);
2483
2484	if (try_merge_free_space(ctl, info, true))
2485		goto link;
2486
2487	/*
2488	 * There was no extent directly to the left or right of this new
2489	 * extent then we know we're going to have to allocate a new extent, so
2490	 * before we do that see if we need to drop this into a bitmap
2491	 */
2492	ret = insert_into_bitmap(ctl, info);
2493	if (ret < 0) {
2494		goto out;
2495	} else if (ret) {
2496		ret = 0;
2497		goto out;
2498	}
2499link:
2500	/*
2501	 * Only steal free space from adjacent bitmaps if we're sure we're not
2502	 * going to add the new free space to existing bitmap entries - because
2503	 * that would mean unnecessary work that would be reverted. Therefore
2504	 * attempt to steal space from bitmaps if we're adding an extent entry.
2505	 */
2506	steal_from_bitmap(ctl, info, true);
2507
2508	filter_bytes = max(filter_bytes, info->bytes);
2509
2510	ret = link_free_space(ctl, info);
2511	if (ret)
2512		kmem_cache_free(btrfs_free_space_cachep, info);
2513out:
2514	btrfs_discard_update_discardable(block_group, ctl);
2515	spin_unlock(&ctl->tree_lock);
2516
2517	if (ret) {
2518		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2519		ASSERT(ret != -EEXIST);
2520	}
2521
2522	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2523		btrfs_discard_check_filter(block_group, filter_bytes);
2524		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2525	}
2526
2527	return ret;
2528}
2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530int btrfs_add_free_space(struct btrfs_block_group *block_group,
2531			 u64 bytenr, u64 size)
2532{
2533	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2534
 
 
 
 
2535	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2536		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2537
2538	return __btrfs_add_free_space(block_group->fs_info,
2539				      block_group->free_space_ctl,
2540				      bytenr, size, trim_state);
 
 
 
 
 
 
 
 
2541}
2542
2543/*
2544 * This is a subtle distinction because when adding free space back in general,
2545 * we want it to be added as untrimmed for async. But in the case where we add
2546 * it on loading of a block group, we want to consider it trimmed.
2547 */
2548int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2549				       u64 bytenr, u64 size)
2550{
2551	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2552
 
 
 
 
2553	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2554	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2555		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2556
2557	return __btrfs_add_free_space(block_group->fs_info,
2558				      block_group->free_space_ctl,
2559				      bytenr, size, trim_state);
2560}
2561
2562int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2563			    u64 offset, u64 bytes)
2564{
2565	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2566	struct btrfs_free_space *info;
2567	int ret;
2568	bool re_search = false;
2569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570	spin_lock(&ctl->tree_lock);
2571
2572again:
2573	ret = 0;
2574	if (!bytes)
2575		goto out_lock;
2576
2577	info = tree_search_offset(ctl, offset, 0, 0);
2578	if (!info) {
2579		/*
2580		 * oops didn't find an extent that matched the space we wanted
2581		 * to remove, look for a bitmap instead
2582		 */
2583		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2584					  1, 0);
2585		if (!info) {
2586			/*
2587			 * If we found a partial bit of our free space in a
2588			 * bitmap but then couldn't find the other part this may
2589			 * be a problem, so WARN about it.
2590			 */
2591			WARN_ON(re_search);
2592			goto out_lock;
2593		}
2594	}
2595
2596	re_search = false;
2597	if (!info->bitmap) {
2598		unlink_free_space(ctl, info);
2599		if (offset == info->offset) {
2600			u64 to_free = min(bytes, info->bytes);
2601
2602			info->bytes -= to_free;
2603			info->offset += to_free;
2604			if (info->bytes) {
2605				ret = link_free_space(ctl, info);
2606				WARN_ON(ret);
2607			} else {
2608				kmem_cache_free(btrfs_free_space_cachep, info);
2609			}
2610
2611			offset += to_free;
2612			bytes -= to_free;
2613			goto again;
2614		} else {
2615			u64 old_end = info->bytes + info->offset;
2616
2617			info->bytes = offset - info->offset;
2618			ret = link_free_space(ctl, info);
2619			WARN_ON(ret);
2620			if (ret)
2621				goto out_lock;
2622
2623			/* Not enough bytes in this entry to satisfy us */
2624			if (old_end < offset + bytes) {
2625				bytes -= old_end - offset;
2626				offset = old_end;
2627				goto again;
2628			} else if (old_end == offset + bytes) {
2629				/* all done */
2630				goto out_lock;
2631			}
2632			spin_unlock(&ctl->tree_lock);
2633
2634			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2635						     offset + bytes,
2636						     old_end - (offset + bytes),
2637						     info->trim_state);
2638			WARN_ON(ret);
2639			goto out;
2640		}
2641	}
2642
2643	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2644	if (ret == -EAGAIN) {
2645		re_search = true;
2646		goto again;
2647	}
2648out_lock:
2649	btrfs_discard_update_discardable(block_group, ctl);
2650	spin_unlock(&ctl->tree_lock);
2651out:
2652	return ret;
2653}
2654
2655void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2656			   u64 bytes)
2657{
2658	struct btrfs_fs_info *fs_info = block_group->fs_info;
2659	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2660	struct btrfs_free_space *info;
2661	struct rb_node *n;
2662	int count = 0;
2663
 
 
 
 
 
 
 
 
 
 
 
 
2664	spin_lock(&ctl->tree_lock);
2665	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2666		info = rb_entry(n, struct btrfs_free_space, offset_index);
2667		if (info->bytes >= bytes && !block_group->ro)
2668			count++;
2669		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2670			   info->offset, info->bytes,
2671		       (info->bitmap) ? "yes" : "no");
2672	}
2673	spin_unlock(&ctl->tree_lock);
2674	btrfs_info(fs_info, "block group has cluster?: %s",
2675	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2676	btrfs_info(fs_info,
2677		   "%d blocks of free space at or bigger than bytes is", count);
 
2678}
2679
2680void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
 
2681{
2682	struct btrfs_fs_info *fs_info = block_group->fs_info;
2683	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684
2685	spin_lock_init(&ctl->tree_lock);
2686	ctl->unit = fs_info->sectorsize;
2687	ctl->start = block_group->start;
2688	ctl->private = block_group;
2689	ctl->op = &free_space_op;
 
2690	INIT_LIST_HEAD(&ctl->trimming_ranges);
2691	mutex_init(&ctl->cache_writeout_mutex);
2692
2693	/*
2694	 * we only want to have 32k of ram per block group for keeping
2695	 * track of free space, and if we pass 1/2 of that we want to
2696	 * start converting things over to using bitmaps
2697	 */
2698	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2699}
2700
2701/*
2702 * for a given cluster, put all of its extents back into the free
2703 * space cache.  If the block group passed doesn't match the block group
2704 * pointed to by the cluster, someone else raced in and freed the
2705 * cluster already.  In that case, we just return without changing anything
2706 */
2707static void __btrfs_return_cluster_to_free_space(
2708			     struct btrfs_block_group *block_group,
2709			     struct btrfs_free_cluster *cluster)
2710{
2711	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712	struct btrfs_free_space *entry;
2713	struct rb_node *node;
2714
 
 
2715	spin_lock(&cluster->lock);
2716	if (cluster->block_group != block_group)
2717		goto out;
 
 
2718
2719	cluster->block_group = NULL;
2720	cluster->window_start = 0;
2721	list_del_init(&cluster->block_group_list);
2722
2723	node = rb_first(&cluster->root);
2724	while (node) {
2725		bool bitmap;
2726
2727		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728		node = rb_next(&entry->offset_index);
2729		rb_erase(&entry->offset_index, &cluster->root);
2730		RB_CLEAR_NODE(&entry->offset_index);
2731
2732		bitmap = (entry->bitmap != NULL);
2733		if (!bitmap) {
2734			/* Merging treats extents as if they were new */
2735			if (!btrfs_free_space_trimmed(entry)) {
2736				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2737				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2738					entry->bytes;
2739			}
2740
2741			try_merge_free_space(ctl, entry, false);
2742			steal_from_bitmap(ctl, entry, false);
2743
2744			/* As we insert directly, update these statistics */
2745			if (!btrfs_free_space_trimmed(entry)) {
2746				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2747				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2748					entry->bytes;
2749			}
2750		}
2751		tree_insert_offset(&ctl->free_space_offset,
2752				   entry->offset, &entry->offset_index, bitmap);
 
2753	}
2754	cluster->root = RB_ROOT;
2755
2756out:
2757	spin_unlock(&cluster->lock);
2758	btrfs_put_block_group(block_group);
2759}
2760
2761static void __btrfs_remove_free_space_cache_locked(
2762				struct btrfs_free_space_ctl *ctl)
2763{
2764	struct btrfs_free_space *info;
2765	struct rb_node *node;
2766
2767	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2768		info = rb_entry(node, struct btrfs_free_space, offset_index);
2769		if (!info->bitmap) {
2770			unlink_free_space(ctl, info);
2771			kmem_cache_free(btrfs_free_space_cachep, info);
2772		} else {
2773			free_bitmap(ctl, info);
2774		}
2775
2776		cond_resched_lock(&ctl->tree_lock);
2777	}
2778}
2779
2780void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2781{
2782	spin_lock(&ctl->tree_lock);
2783	__btrfs_remove_free_space_cache_locked(ctl);
2784	if (ctl->private)
2785		btrfs_discard_update_discardable(ctl->private, ctl);
2786	spin_unlock(&ctl->tree_lock);
2787}
2788
2789void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2790{
2791	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2792	struct btrfs_free_cluster *cluster;
2793	struct list_head *head;
2794
2795	spin_lock(&ctl->tree_lock);
2796	while ((head = block_group->cluster_list.next) !=
2797	       &block_group->cluster_list) {
2798		cluster = list_entry(head, struct btrfs_free_cluster,
2799				     block_group_list);
2800
2801		WARN_ON(cluster->block_group != block_group);
2802		__btrfs_return_cluster_to_free_space(block_group, cluster);
2803
2804		cond_resched_lock(&ctl->tree_lock);
2805	}
2806	__btrfs_remove_free_space_cache_locked(ctl);
2807	btrfs_discard_update_discardable(block_group, ctl);
2808	spin_unlock(&ctl->tree_lock);
2809
2810}
2811
2812/**
2813 * btrfs_is_free_space_trimmed - see if everything is trimmed
2814 * @block_group: block_group of interest
2815 *
2816 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2817 */
2818bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2819{
2820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2821	struct btrfs_free_space *info;
2822	struct rb_node *node;
2823	bool ret = true;
2824
2825	spin_lock(&ctl->tree_lock);
2826	node = rb_first(&ctl->free_space_offset);
2827
2828	while (node) {
2829		info = rb_entry(node, struct btrfs_free_space, offset_index);
2830
2831		if (!btrfs_free_space_trimmed(info)) {
2832			ret = false;
2833			break;
2834		}
2835
2836		node = rb_next(node);
2837	}
2838
2839	spin_unlock(&ctl->tree_lock);
2840	return ret;
2841}
2842
2843u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2844			       u64 offset, u64 bytes, u64 empty_size,
2845			       u64 *max_extent_size)
2846{
2847	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2848	struct btrfs_discard_ctl *discard_ctl =
2849					&block_group->fs_info->discard_ctl;
2850	struct btrfs_free_space *entry = NULL;
2851	u64 bytes_search = bytes + empty_size;
2852	u64 ret = 0;
2853	u64 align_gap = 0;
2854	u64 align_gap_len = 0;
2855	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 
 
 
2856
2857	spin_lock(&ctl->tree_lock);
2858	entry = find_free_space(ctl, &offset, &bytes_search,
2859				block_group->full_stripe_len, max_extent_size);
 
2860	if (!entry)
2861		goto out;
2862
2863	ret = offset;
2864	if (entry->bitmap) {
2865		bitmap_clear_bits(ctl, entry, offset, bytes);
2866
2867		if (!btrfs_free_space_trimmed(entry))
2868			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2869
2870		if (!entry->bytes)
2871			free_bitmap(ctl, entry);
2872	} else {
2873		unlink_free_space(ctl, entry);
2874		align_gap_len = offset - entry->offset;
2875		align_gap = entry->offset;
2876		align_gap_trim_state = entry->trim_state;
2877
2878		if (!btrfs_free_space_trimmed(entry))
2879			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2880
2881		entry->offset = offset + bytes;
2882		WARN_ON(entry->bytes < bytes + align_gap_len);
2883
2884		entry->bytes -= bytes + align_gap_len;
2885		if (!entry->bytes)
2886			kmem_cache_free(btrfs_free_space_cachep, entry);
2887		else
2888			link_free_space(ctl, entry);
2889	}
2890out:
2891	btrfs_discard_update_discardable(block_group, ctl);
2892	spin_unlock(&ctl->tree_lock);
2893
2894	if (align_gap_len)
2895		__btrfs_add_free_space(block_group->fs_info, ctl,
2896				       align_gap, align_gap_len,
2897				       align_gap_trim_state);
2898	return ret;
2899}
2900
2901/*
2902 * given a cluster, put all of its extents back into the free space
2903 * cache.  If a block group is passed, this function will only free
2904 * a cluster that belongs to the passed block group.
2905 *
2906 * Otherwise, it'll get a reference on the block group pointed to by the
2907 * cluster and remove the cluster from it.
2908 */
2909void btrfs_return_cluster_to_free_space(
2910			       struct btrfs_block_group *block_group,
2911			       struct btrfs_free_cluster *cluster)
2912{
2913	struct btrfs_free_space_ctl *ctl;
2914
2915	/* first, get a safe pointer to the block group */
2916	spin_lock(&cluster->lock);
2917	if (!block_group) {
2918		block_group = cluster->block_group;
2919		if (!block_group) {
2920			spin_unlock(&cluster->lock);
2921			return;
2922		}
2923	} else if (cluster->block_group != block_group) {
2924		/* someone else has already freed it don't redo their work */
2925		spin_unlock(&cluster->lock);
2926		return;
2927	}
2928	btrfs_get_block_group(block_group);
2929	spin_unlock(&cluster->lock);
2930
2931	ctl = block_group->free_space_ctl;
2932
2933	/* now return any extents the cluster had on it */
2934	spin_lock(&ctl->tree_lock);
2935	__btrfs_return_cluster_to_free_space(block_group, cluster);
2936	spin_unlock(&ctl->tree_lock);
2937
2938	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2939
2940	/* finally drop our ref */
2941	btrfs_put_block_group(block_group);
2942}
2943
2944static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2945				   struct btrfs_free_cluster *cluster,
2946				   struct btrfs_free_space *entry,
2947				   u64 bytes, u64 min_start,
2948				   u64 *max_extent_size)
2949{
2950	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2951	int err;
2952	u64 search_start = cluster->window_start;
2953	u64 search_bytes = bytes;
2954	u64 ret = 0;
2955
2956	search_start = min_start;
2957	search_bytes = bytes;
2958
2959	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2960	if (err) {
2961		*max_extent_size = max(get_max_extent_size(entry),
2962				       *max_extent_size);
2963		return 0;
2964	}
2965
2966	ret = search_start;
2967	__bitmap_clear_bits(ctl, entry, ret, bytes);
2968
2969	return ret;
2970}
2971
2972/*
2973 * given a cluster, try to allocate 'bytes' from it, returns 0
2974 * if it couldn't find anything suitably large, or a logical disk offset
2975 * if things worked out
2976 */
2977u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2978			     struct btrfs_free_cluster *cluster, u64 bytes,
2979			     u64 min_start, u64 *max_extent_size)
2980{
2981	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2982	struct btrfs_discard_ctl *discard_ctl =
2983					&block_group->fs_info->discard_ctl;
2984	struct btrfs_free_space *entry = NULL;
2985	struct rb_node *node;
2986	u64 ret = 0;
2987
 
 
2988	spin_lock(&cluster->lock);
2989	if (bytes > cluster->max_size)
2990		goto out;
2991
2992	if (cluster->block_group != block_group)
2993		goto out;
2994
2995	node = rb_first(&cluster->root);
2996	if (!node)
2997		goto out;
2998
2999	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000	while (1) {
3001		if (entry->bytes < bytes)
3002			*max_extent_size = max(get_max_extent_size(entry),
3003					       *max_extent_size);
3004
3005		if (entry->bytes < bytes ||
3006		    (!entry->bitmap && entry->offset < min_start)) {
3007			node = rb_next(&entry->offset_index);
3008			if (!node)
3009				break;
3010			entry = rb_entry(node, struct btrfs_free_space,
3011					 offset_index);
3012			continue;
3013		}
3014
3015		if (entry->bitmap) {
3016			ret = btrfs_alloc_from_bitmap(block_group,
3017						      cluster, entry, bytes,
3018						      cluster->window_start,
3019						      max_extent_size);
3020			if (ret == 0) {
3021				node = rb_next(&entry->offset_index);
3022				if (!node)
3023					break;
3024				entry = rb_entry(node, struct btrfs_free_space,
3025						 offset_index);
3026				continue;
3027			}
3028			cluster->window_start += bytes;
3029		} else {
3030			ret = entry->offset;
3031
3032			entry->offset += bytes;
3033			entry->bytes -= bytes;
3034		}
3035
3036		if (entry->bytes == 0)
3037			rb_erase(&entry->offset_index, &cluster->root);
3038		break;
3039	}
3040out:
3041	spin_unlock(&cluster->lock);
3042
3043	if (!ret)
3044		return 0;
3045
3046	spin_lock(&ctl->tree_lock);
3047
3048	if (!btrfs_free_space_trimmed(entry))
3049		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3050
3051	ctl->free_space -= bytes;
3052	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3053		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
 
 
3054	if (entry->bytes == 0) {
 
3055		ctl->free_extents--;
3056		if (entry->bitmap) {
3057			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3058					entry->bitmap);
3059			ctl->total_bitmaps--;
3060			ctl->op->recalc_thresholds(ctl);
3061		} else if (!btrfs_free_space_trimmed(entry)) {
3062			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3063		}
3064		kmem_cache_free(btrfs_free_space_cachep, entry);
3065	}
3066
 
3067	spin_unlock(&ctl->tree_lock);
3068
3069	return ret;
3070}
3071
3072static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3073				struct btrfs_free_space *entry,
3074				struct btrfs_free_cluster *cluster,
3075				u64 offset, u64 bytes,
3076				u64 cont1_bytes, u64 min_bytes)
3077{
3078	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3079	unsigned long next_zero;
3080	unsigned long i;
3081	unsigned long want_bits;
3082	unsigned long min_bits;
3083	unsigned long found_bits;
3084	unsigned long max_bits = 0;
3085	unsigned long start = 0;
3086	unsigned long total_found = 0;
3087	int ret;
3088
 
 
3089	i = offset_to_bit(entry->offset, ctl->unit,
3090			  max_t(u64, offset, entry->offset));
3091	want_bits = bytes_to_bits(bytes, ctl->unit);
3092	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3093
3094	/*
3095	 * Don't bother looking for a cluster in this bitmap if it's heavily
3096	 * fragmented.
3097	 */
3098	if (entry->max_extent_size &&
3099	    entry->max_extent_size < cont1_bytes)
3100		return -ENOSPC;
3101again:
3102	found_bits = 0;
3103	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3104		next_zero = find_next_zero_bit(entry->bitmap,
3105					       BITS_PER_BITMAP, i);
3106		if (next_zero - i >= min_bits) {
3107			found_bits = next_zero - i;
3108			if (found_bits > max_bits)
3109				max_bits = found_bits;
3110			break;
3111		}
3112		if (next_zero - i > max_bits)
3113			max_bits = next_zero - i;
3114		i = next_zero;
3115	}
3116
3117	if (!found_bits) {
3118		entry->max_extent_size = (u64)max_bits * ctl->unit;
3119		return -ENOSPC;
3120	}
3121
3122	if (!total_found) {
3123		start = i;
3124		cluster->max_size = 0;
3125	}
3126
3127	total_found += found_bits;
3128
3129	if (cluster->max_size < found_bits * ctl->unit)
3130		cluster->max_size = found_bits * ctl->unit;
3131
3132	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3133		i = next_zero + 1;
3134		goto again;
3135	}
3136
3137	cluster->window_start = start * ctl->unit + entry->offset;
3138	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3139	ret = tree_insert_offset(&cluster->root, entry->offset,
3140				 &entry->offset_index, 1);
 
 
 
 
 
 
 
 
 
 
3141	ASSERT(!ret); /* -EEXIST; Logic error */
3142
3143	trace_btrfs_setup_cluster(block_group, cluster,
3144				  total_found * ctl->unit, 1);
3145	return 0;
3146}
3147
3148/*
3149 * This searches the block group for just extents to fill the cluster with.
3150 * Try to find a cluster with at least bytes total bytes, at least one
3151 * extent of cont1_bytes, and other clusters of at least min_bytes.
3152 */
3153static noinline int
3154setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3155			struct btrfs_free_cluster *cluster,
3156			struct list_head *bitmaps, u64 offset, u64 bytes,
3157			u64 cont1_bytes, u64 min_bytes)
3158{
3159	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3160	struct btrfs_free_space *first = NULL;
3161	struct btrfs_free_space *entry = NULL;
3162	struct btrfs_free_space *last;
3163	struct rb_node *node;
3164	u64 window_free;
3165	u64 max_extent;
3166	u64 total_size = 0;
3167
 
 
3168	entry = tree_search_offset(ctl, offset, 0, 1);
3169	if (!entry)
3170		return -ENOSPC;
3171
3172	/*
3173	 * We don't want bitmaps, so just move along until we find a normal
3174	 * extent entry.
3175	 */
3176	while (entry->bitmap || entry->bytes < min_bytes) {
3177		if (entry->bitmap && list_empty(&entry->list))
3178			list_add_tail(&entry->list, bitmaps);
3179		node = rb_next(&entry->offset_index);
3180		if (!node)
3181			return -ENOSPC;
3182		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3183	}
3184
3185	window_free = entry->bytes;
3186	max_extent = entry->bytes;
3187	first = entry;
3188	last = entry;
3189
3190	for (node = rb_next(&entry->offset_index); node;
3191	     node = rb_next(&entry->offset_index)) {
3192		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3193
3194		if (entry->bitmap) {
3195			if (list_empty(&entry->list))
3196				list_add_tail(&entry->list, bitmaps);
3197			continue;
3198		}
3199
3200		if (entry->bytes < min_bytes)
3201			continue;
3202
3203		last = entry;
3204		window_free += entry->bytes;
3205		if (entry->bytes > max_extent)
3206			max_extent = entry->bytes;
3207	}
3208
3209	if (window_free < bytes || max_extent < cont1_bytes)
3210		return -ENOSPC;
3211
3212	cluster->window_start = first->offset;
3213
3214	node = &first->offset_index;
3215
3216	/*
3217	 * now we've found our entries, pull them out of the free space
3218	 * cache and put them into the cluster rbtree
3219	 */
3220	do {
3221		int ret;
3222
3223		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3224		node = rb_next(&entry->offset_index);
3225		if (entry->bitmap || entry->bytes < min_bytes)
3226			continue;
3227
3228		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3229		ret = tree_insert_offset(&cluster->root, entry->offset,
3230					 &entry->offset_index, 0);
3231		total_size += entry->bytes;
3232		ASSERT(!ret); /* -EEXIST; Logic error */
3233	} while (node && entry != last);
3234
3235	cluster->max_size = max_extent;
3236	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3237	return 0;
3238}
3239
3240/*
3241 * This specifically looks for bitmaps that may work in the cluster, we assume
3242 * that we have already failed to find extents that will work.
3243 */
3244static noinline int
3245setup_cluster_bitmap(struct btrfs_block_group *block_group,
3246		     struct btrfs_free_cluster *cluster,
3247		     struct list_head *bitmaps, u64 offset, u64 bytes,
3248		     u64 cont1_bytes, u64 min_bytes)
3249{
3250	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3251	struct btrfs_free_space *entry = NULL;
3252	int ret = -ENOSPC;
3253	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3254
3255	if (ctl->total_bitmaps == 0)
3256		return -ENOSPC;
3257
3258	/*
3259	 * The bitmap that covers offset won't be in the list unless offset
3260	 * is just its start offset.
3261	 */
3262	if (!list_empty(bitmaps))
3263		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3264
3265	if (!entry || entry->offset != bitmap_offset) {
3266		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3267		if (entry && list_empty(&entry->list))
3268			list_add(&entry->list, bitmaps);
3269	}
3270
3271	list_for_each_entry(entry, bitmaps, list) {
3272		if (entry->bytes < bytes)
3273			continue;
3274		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3275					   bytes, cont1_bytes, min_bytes);
3276		if (!ret)
3277			return 0;
3278	}
3279
3280	/*
3281	 * The bitmaps list has all the bitmaps that record free space
3282	 * starting after offset, so no more search is required.
3283	 */
3284	return -ENOSPC;
3285}
3286
3287/*
3288 * here we try to find a cluster of blocks in a block group.  The goal
3289 * is to find at least bytes+empty_size.
3290 * We might not find them all in one contiguous area.
3291 *
3292 * returns zero and sets up cluster if things worked out, otherwise
3293 * it returns -enospc
3294 */
3295int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3296			     struct btrfs_free_cluster *cluster,
3297			     u64 offset, u64 bytes, u64 empty_size)
3298{
3299	struct btrfs_fs_info *fs_info = block_group->fs_info;
3300	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3301	struct btrfs_free_space *entry, *tmp;
3302	LIST_HEAD(bitmaps);
3303	u64 min_bytes;
3304	u64 cont1_bytes;
3305	int ret;
3306
3307	/*
3308	 * Choose the minimum extent size we'll require for this
3309	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3310	 * For metadata, allow allocates with smaller extents.  For
3311	 * data, keep it dense.
3312	 */
3313	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3314		cont1_bytes = min_bytes = bytes + empty_size;
 
3315	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3316		cont1_bytes = bytes;
3317		min_bytes = fs_info->sectorsize;
3318	} else {
3319		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3320		min_bytes = fs_info->sectorsize;
3321	}
3322
3323	spin_lock(&ctl->tree_lock);
3324
3325	/*
3326	 * If we know we don't have enough space to make a cluster don't even
3327	 * bother doing all the work to try and find one.
3328	 */
3329	if (ctl->free_space < bytes) {
3330		spin_unlock(&ctl->tree_lock);
3331		return -ENOSPC;
3332	}
3333
3334	spin_lock(&cluster->lock);
3335
3336	/* someone already found a cluster, hooray */
3337	if (cluster->block_group) {
3338		ret = 0;
3339		goto out;
3340	}
3341
3342	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3343				 min_bytes);
3344
3345	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3346				      bytes + empty_size,
3347				      cont1_bytes, min_bytes);
3348	if (ret)
3349		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3350					   offset, bytes + empty_size,
3351					   cont1_bytes, min_bytes);
3352
3353	/* Clear our temporary list */
3354	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3355		list_del_init(&entry->list);
3356
3357	if (!ret) {
3358		btrfs_get_block_group(block_group);
3359		list_add_tail(&cluster->block_group_list,
3360			      &block_group->cluster_list);
3361		cluster->block_group = block_group;
3362	} else {
3363		trace_btrfs_failed_cluster_setup(block_group);
3364	}
3365out:
3366	spin_unlock(&cluster->lock);
3367	spin_unlock(&ctl->tree_lock);
3368
3369	return ret;
3370}
3371
3372/*
3373 * simple code to zero out a cluster
3374 */
3375void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3376{
3377	spin_lock_init(&cluster->lock);
3378	spin_lock_init(&cluster->refill_lock);
3379	cluster->root = RB_ROOT;
3380	cluster->max_size = 0;
3381	cluster->fragmented = false;
3382	INIT_LIST_HEAD(&cluster->block_group_list);
3383	cluster->block_group = NULL;
3384}
3385
3386static int do_trimming(struct btrfs_block_group *block_group,
3387		       u64 *total_trimmed, u64 start, u64 bytes,
3388		       u64 reserved_start, u64 reserved_bytes,
3389		       enum btrfs_trim_state reserved_trim_state,
3390		       struct btrfs_trim_range *trim_entry)
3391{
3392	struct btrfs_space_info *space_info = block_group->space_info;
3393	struct btrfs_fs_info *fs_info = block_group->fs_info;
3394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3395	int ret;
3396	int update = 0;
3397	const u64 end = start + bytes;
3398	const u64 reserved_end = reserved_start + reserved_bytes;
3399	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3400	u64 trimmed = 0;
3401
3402	spin_lock(&space_info->lock);
3403	spin_lock(&block_group->lock);
3404	if (!block_group->ro) {
3405		block_group->reserved += reserved_bytes;
3406		space_info->bytes_reserved += reserved_bytes;
3407		update = 1;
3408	}
3409	spin_unlock(&block_group->lock);
3410	spin_unlock(&space_info->lock);
3411
3412	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3413	if (!ret) {
3414		*total_trimmed += trimmed;
3415		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3416	}
3417
3418	mutex_lock(&ctl->cache_writeout_mutex);
3419	if (reserved_start < start)
3420		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3421				       start - reserved_start,
3422				       reserved_trim_state);
3423	if (start + bytes < reserved_start + reserved_bytes)
3424		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3425				       reserved_trim_state);
3426	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3427	list_del(&trim_entry->list);
3428	mutex_unlock(&ctl->cache_writeout_mutex);
3429
3430	if (update) {
3431		spin_lock(&space_info->lock);
3432		spin_lock(&block_group->lock);
3433		if (block_group->ro)
3434			space_info->bytes_readonly += reserved_bytes;
3435		block_group->reserved -= reserved_bytes;
3436		space_info->bytes_reserved -= reserved_bytes;
3437		spin_unlock(&block_group->lock);
3438		spin_unlock(&space_info->lock);
3439	}
3440
3441	return ret;
3442}
3443
3444/*
3445 * If @async is set, then we will trim 1 region and return.
3446 */
3447static int trim_no_bitmap(struct btrfs_block_group *block_group,
3448			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3449			  bool async)
3450{
3451	struct btrfs_discard_ctl *discard_ctl =
3452					&block_group->fs_info->discard_ctl;
3453	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3454	struct btrfs_free_space *entry;
3455	struct rb_node *node;
3456	int ret = 0;
3457	u64 extent_start;
3458	u64 extent_bytes;
3459	enum btrfs_trim_state extent_trim_state;
3460	u64 bytes;
3461	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3462
3463	while (start < end) {
3464		struct btrfs_trim_range trim_entry;
3465
3466		mutex_lock(&ctl->cache_writeout_mutex);
3467		spin_lock(&ctl->tree_lock);
3468
3469		if (ctl->free_space < minlen)
3470			goto out_unlock;
3471
3472		entry = tree_search_offset(ctl, start, 0, 1);
3473		if (!entry)
3474			goto out_unlock;
3475
3476		/* Skip bitmaps and if async, already trimmed entries */
3477		while (entry->bitmap ||
3478		       (async && btrfs_free_space_trimmed(entry))) {
3479			node = rb_next(&entry->offset_index);
3480			if (!node)
3481				goto out_unlock;
3482			entry = rb_entry(node, struct btrfs_free_space,
3483					 offset_index);
3484		}
3485
3486		if (entry->offset >= end)
3487			goto out_unlock;
3488
3489		extent_start = entry->offset;
3490		extent_bytes = entry->bytes;
3491		extent_trim_state = entry->trim_state;
3492		if (async) {
3493			start = entry->offset;
3494			bytes = entry->bytes;
3495			if (bytes < minlen) {
3496				spin_unlock(&ctl->tree_lock);
3497				mutex_unlock(&ctl->cache_writeout_mutex);
3498				goto next;
3499			}
3500			unlink_free_space(ctl, entry);
3501			/*
3502			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3503			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3504			 * X when we come back around.  So trim it now.
3505			 */
3506			if (max_discard_size &&
3507			    bytes >= (max_discard_size +
3508				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3509				bytes = max_discard_size;
3510				extent_bytes = max_discard_size;
3511				entry->offset += max_discard_size;
3512				entry->bytes -= max_discard_size;
3513				link_free_space(ctl, entry);
3514			} else {
3515				kmem_cache_free(btrfs_free_space_cachep, entry);
3516			}
3517		} else {
3518			start = max(start, extent_start);
3519			bytes = min(extent_start + extent_bytes, end) - start;
3520			if (bytes < minlen) {
3521				spin_unlock(&ctl->tree_lock);
3522				mutex_unlock(&ctl->cache_writeout_mutex);
3523				goto next;
3524			}
3525
3526			unlink_free_space(ctl, entry);
3527			kmem_cache_free(btrfs_free_space_cachep, entry);
3528		}
3529
3530		spin_unlock(&ctl->tree_lock);
3531		trim_entry.start = extent_start;
3532		trim_entry.bytes = extent_bytes;
3533		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3534		mutex_unlock(&ctl->cache_writeout_mutex);
3535
3536		ret = do_trimming(block_group, total_trimmed, start, bytes,
3537				  extent_start, extent_bytes, extent_trim_state,
3538				  &trim_entry);
3539		if (ret) {
3540			block_group->discard_cursor = start + bytes;
3541			break;
3542		}
3543next:
3544		start += bytes;
3545		block_group->discard_cursor = start;
3546		if (async && *total_trimmed)
3547			break;
3548
3549		if (fatal_signal_pending(current)) {
3550			ret = -ERESTARTSYS;
3551			break;
3552		}
3553
3554		cond_resched();
3555	}
3556
3557	return ret;
3558
3559out_unlock:
3560	block_group->discard_cursor = btrfs_block_group_end(block_group);
3561	spin_unlock(&ctl->tree_lock);
3562	mutex_unlock(&ctl->cache_writeout_mutex);
3563
3564	return ret;
3565}
3566
3567/*
3568 * If we break out of trimming a bitmap prematurely, we should reset the
3569 * trimming bit.  In a rather contrieved case, it's possible to race here so
3570 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3571 *
3572 * start = start of bitmap
3573 * end = near end of bitmap
3574 *
3575 * Thread 1:			Thread 2:
3576 * trim_bitmaps(start)
3577 *				trim_bitmaps(end)
3578 *				end_trimming_bitmap()
3579 * reset_trimming_bitmap()
3580 */
3581static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3582{
3583	struct btrfs_free_space *entry;
3584
3585	spin_lock(&ctl->tree_lock);
3586	entry = tree_search_offset(ctl, offset, 1, 0);
3587	if (entry) {
3588		if (btrfs_free_space_trimmed(entry)) {
3589			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3590				entry->bitmap_extents;
3591			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3592		}
3593		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3594	}
3595
3596	spin_unlock(&ctl->tree_lock);
3597}
3598
3599static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3600				struct btrfs_free_space *entry)
3601{
3602	if (btrfs_free_space_trimming_bitmap(entry)) {
3603		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3604		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3605			entry->bitmap_extents;
3606		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3607	}
3608}
3609
3610/*
3611 * If @async is set, then we will trim 1 region and return.
3612 */
3613static int trim_bitmaps(struct btrfs_block_group *block_group,
3614			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3615			u64 maxlen, bool async)
3616{
3617	struct btrfs_discard_ctl *discard_ctl =
3618					&block_group->fs_info->discard_ctl;
3619	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3620	struct btrfs_free_space *entry;
3621	int ret = 0;
3622	int ret2;
3623	u64 bytes;
3624	u64 offset = offset_to_bitmap(ctl, start);
3625	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3626
3627	while (offset < end) {
3628		bool next_bitmap = false;
3629		struct btrfs_trim_range trim_entry;
3630
3631		mutex_lock(&ctl->cache_writeout_mutex);
3632		spin_lock(&ctl->tree_lock);
3633
3634		if (ctl->free_space < minlen) {
3635			block_group->discard_cursor =
3636				btrfs_block_group_end(block_group);
3637			spin_unlock(&ctl->tree_lock);
3638			mutex_unlock(&ctl->cache_writeout_mutex);
3639			break;
3640		}
3641
3642		entry = tree_search_offset(ctl, offset, 1, 0);
3643		/*
3644		 * Bitmaps are marked trimmed lossily now to prevent constant
3645		 * discarding of the same bitmap (the reason why we are bound
3646		 * by the filters).  So, retrim the block group bitmaps when we
3647		 * are preparing to punt to the unused_bgs list.  This uses
3648		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3649		 * which is the only discard index which sets minlen to 0.
3650		 */
3651		if (!entry || (async && minlen && start == offset &&
3652			       btrfs_free_space_trimmed(entry))) {
3653			spin_unlock(&ctl->tree_lock);
3654			mutex_unlock(&ctl->cache_writeout_mutex);
3655			next_bitmap = true;
3656			goto next;
3657		}
3658
3659		/*
3660		 * Async discard bitmap trimming begins at by setting the start
3661		 * to be key.objectid and the offset_to_bitmap() aligns to the
3662		 * start of the bitmap.  This lets us know we are fully
3663		 * scanning the bitmap rather than only some portion of it.
3664		 */
3665		if (start == offset)
3666			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3667
3668		bytes = minlen;
3669		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3670		if (ret2 || start >= end) {
3671			/*
3672			 * We lossily consider a bitmap trimmed if we only skip
3673			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3674			 */
3675			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3676				end_trimming_bitmap(ctl, entry);
3677			else
3678				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3679			spin_unlock(&ctl->tree_lock);
3680			mutex_unlock(&ctl->cache_writeout_mutex);
3681			next_bitmap = true;
3682			goto next;
3683		}
3684
3685		/*
3686		 * We already trimmed a region, but are using the locking above
3687		 * to reset the trim_state.
3688		 */
3689		if (async && *total_trimmed) {
3690			spin_unlock(&ctl->tree_lock);
3691			mutex_unlock(&ctl->cache_writeout_mutex);
3692			goto out;
3693		}
3694
3695		bytes = min(bytes, end - start);
3696		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3697			spin_unlock(&ctl->tree_lock);
3698			mutex_unlock(&ctl->cache_writeout_mutex);
3699			goto next;
3700		}
3701
3702		/*
3703		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3704		 * If X < @minlen, we won't trim X when we come back around.
3705		 * So trim it now.  We differ here from trimming extents as we
3706		 * don't keep individual state per bit.
3707		 */
3708		if (async &&
3709		    max_discard_size &&
3710		    bytes > (max_discard_size + minlen))
3711			bytes = max_discard_size;
3712
3713		bitmap_clear_bits(ctl, entry, start, bytes);
3714		if (entry->bytes == 0)
3715			free_bitmap(ctl, entry);
3716
3717		spin_unlock(&ctl->tree_lock);
3718		trim_entry.start = start;
3719		trim_entry.bytes = bytes;
3720		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3721		mutex_unlock(&ctl->cache_writeout_mutex);
3722
3723		ret = do_trimming(block_group, total_trimmed, start, bytes,
3724				  start, bytes, 0, &trim_entry);
3725		if (ret) {
3726			reset_trimming_bitmap(ctl, offset);
3727			block_group->discard_cursor =
3728				btrfs_block_group_end(block_group);
3729			break;
3730		}
3731next:
3732		if (next_bitmap) {
3733			offset += BITS_PER_BITMAP * ctl->unit;
3734			start = offset;
3735		} else {
3736			start += bytes;
3737		}
3738		block_group->discard_cursor = start;
3739
3740		if (fatal_signal_pending(current)) {
3741			if (start != offset)
3742				reset_trimming_bitmap(ctl, offset);
3743			ret = -ERESTARTSYS;
3744			break;
3745		}
3746
3747		cond_resched();
3748	}
3749
3750	if (offset >= end)
3751		block_group->discard_cursor = end;
3752
3753out:
3754	return ret;
3755}
3756
3757int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3758			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3759{
3760	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3761	int ret;
3762	u64 rem = 0;
3763
 
 
3764	*trimmed = 0;
3765
3766	spin_lock(&block_group->lock);
3767	if (block_group->removed) {
3768		spin_unlock(&block_group->lock);
3769		return 0;
3770	}
3771	btrfs_freeze_block_group(block_group);
3772	spin_unlock(&block_group->lock);
3773
3774	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3775	if (ret)
3776		goto out;
3777
3778	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3779	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3780	/* If we ended in the middle of a bitmap, reset the trimming flag */
3781	if (rem)
3782		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3783out:
3784	btrfs_unfreeze_block_group(block_group);
3785	return ret;
3786}
3787
3788int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3789				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3790				   bool async)
3791{
3792	int ret;
3793
3794	*trimmed = 0;
3795
3796	spin_lock(&block_group->lock);
3797	if (block_group->removed) {
3798		spin_unlock(&block_group->lock);
3799		return 0;
3800	}
3801	btrfs_freeze_block_group(block_group);
3802	spin_unlock(&block_group->lock);
3803
3804	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3805	btrfs_unfreeze_block_group(block_group);
3806
3807	return ret;
3808}
3809
3810int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3811				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3812				   u64 maxlen, bool async)
3813{
3814	int ret;
3815
3816	*trimmed = 0;
3817
3818	spin_lock(&block_group->lock);
3819	if (block_group->removed) {
3820		spin_unlock(&block_group->lock);
3821		return 0;
3822	}
3823	btrfs_freeze_block_group(block_group);
3824	spin_unlock(&block_group->lock);
3825
3826	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3827			   async);
3828
3829	btrfs_unfreeze_block_group(block_group);
3830
3831	return ret;
3832}
3833
3834/*
3835 * Find the left-most item in the cache tree, and then return the
3836 * smallest inode number in the item.
3837 *
3838 * Note: the returned inode number may not be the smallest one in
3839 * the tree, if the left-most item is a bitmap.
3840 */
3841u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3842{
3843	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3844	struct btrfs_free_space *entry = NULL;
3845	u64 ino = 0;
3846
3847	spin_lock(&ctl->tree_lock);
 
 
 
 
 
3848
3849	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3850		goto out;
3851
3852	entry = rb_entry(rb_first(&ctl->free_space_offset),
3853			 struct btrfs_free_space, offset_index);
3854
3855	if (!entry->bitmap) {
3856		ino = entry->offset;
3857
3858		unlink_free_space(ctl, entry);
3859		entry->offset++;
3860		entry->bytes--;
3861		if (!entry->bytes)
3862			kmem_cache_free(btrfs_free_space_cachep, entry);
3863		else
3864			link_free_space(ctl, entry);
3865	} else {
3866		u64 offset = 0;
3867		u64 count = 1;
3868		int ret;
3869
3870		ret = search_bitmap(ctl, entry, &offset, &count, true);
3871		/* Logic error; Should be empty if it can't find anything */
3872		ASSERT(!ret);
3873
3874		ino = offset;
3875		bitmap_clear_bits(ctl, entry, offset, 1);
3876		if (entry->bytes == 0)
3877			free_bitmap(ctl, entry);
3878	}
3879out:
3880	spin_unlock(&ctl->tree_lock);
3881
3882	return ino;
3883}
3884
3885struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3886				    struct btrfs_path *path)
3887{
3888	struct inode *inode = NULL;
3889
3890	spin_lock(&root->ino_cache_lock);
3891	if (root->ino_cache_inode)
3892		inode = igrab(root->ino_cache_inode);
3893	spin_unlock(&root->ino_cache_lock);
3894	if (inode)
3895		return inode;
3896
3897	inode = __lookup_free_space_inode(root, path, 0);
3898	if (IS_ERR(inode))
3899		return inode;
3900
3901	spin_lock(&root->ino_cache_lock);
3902	if (!btrfs_fs_closing(root->fs_info))
3903		root->ino_cache_inode = igrab(inode);
3904	spin_unlock(&root->ino_cache_lock);
3905
3906	return inode;
3907}
3908
3909int create_free_ino_inode(struct btrfs_root *root,
3910			  struct btrfs_trans_handle *trans,
3911			  struct btrfs_path *path)
3912{
3913	return __create_free_space_inode(root, trans, path,
3914					 BTRFS_FREE_INO_OBJECTID, 0);
3915}
3916
3917int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3918{
3919	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3920	struct btrfs_path *path;
3921	struct inode *inode;
3922	int ret = 0;
3923	u64 root_gen = btrfs_root_generation(&root->root_item);
3924
3925	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3926		return 0;
3927
3928	/*
3929	 * If we're unmounting then just return, since this does a search on the
3930	 * normal root and not the commit root and we could deadlock.
 
 
 
 
3931	 */
3932	if (btrfs_fs_closing(fs_info))
3933		return 0;
 
 
 
 
 
 
 
 
 
 
 
3934
3935	path = btrfs_alloc_path();
3936	if (!path)
3937		return 0;
3938
3939	inode = lookup_free_ino_inode(root, path);
3940	if (IS_ERR(inode))
3941		goto out;
3942
3943	if (root_gen != BTRFS_I(inode)->generation)
3944		goto out_put;
3945
3946	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3947
3948	if (ret < 0)
3949		btrfs_err(fs_info,
3950			"failed to load free ino cache for root %llu",
3951			root->root_key.objectid);
3952out_put:
3953	iput(inode);
3954out:
3955	btrfs_free_path(path);
3956	return ret;
3957}
3958
3959int btrfs_write_out_ino_cache(struct btrfs_root *root,
3960			      struct btrfs_trans_handle *trans,
3961			      struct btrfs_path *path,
3962			      struct inode *inode)
3963{
3964	struct btrfs_fs_info *fs_info = root->fs_info;
3965	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3966	int ret;
3967	struct btrfs_io_ctl io_ctl;
3968	bool release_metadata = true;
3969
3970	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3971		return 0;
3972
3973	memset(&io_ctl, 0, sizeof(io_ctl));
3974	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3975	if (!ret) {
3976		/*
3977		 * At this point writepages() didn't error out, so our metadata
3978		 * reservation is released when the writeback finishes, at
3979		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3980		 * with or without an error.
3981		 */
3982		release_metadata = false;
3983		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3984	}
3985
3986	if (ret) {
3987		if (release_metadata)
3988			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3989					inode->i_size, true);
3990		btrfs_debug(fs_info,
3991			  "failed to write free ino cache for root %llu error %d",
3992			  root->root_key.objectid, ret);
3993	}
3994
3995	return ret;
 
 
 
3996}
3997
3998#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3999/*
4000 * Use this if you need to make a bitmap or extent entry specifically, it
4001 * doesn't do any of the merging that add_free_space does, this acts a lot like
4002 * how the free space cache loading stuff works, so you can get really weird
4003 * configurations.
4004 */
4005int test_add_free_space_entry(struct btrfs_block_group *cache,
4006			      u64 offset, u64 bytes, bool bitmap)
4007{
4008	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4009	struct btrfs_free_space *info = NULL, *bitmap_info;
4010	void *map = NULL;
4011	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4012	u64 bytes_added;
4013	int ret;
4014
4015again:
4016	if (!info) {
4017		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4018		if (!info)
4019			return -ENOMEM;
4020	}
4021
4022	if (!bitmap) {
4023		spin_lock(&ctl->tree_lock);
4024		info->offset = offset;
4025		info->bytes = bytes;
4026		info->max_extent_size = 0;
4027		ret = link_free_space(ctl, info);
4028		spin_unlock(&ctl->tree_lock);
4029		if (ret)
4030			kmem_cache_free(btrfs_free_space_cachep, info);
4031		return ret;
4032	}
4033
4034	if (!map) {
4035		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4036		if (!map) {
4037			kmem_cache_free(btrfs_free_space_cachep, info);
4038			return -ENOMEM;
4039		}
4040	}
4041
4042	spin_lock(&ctl->tree_lock);
4043	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4044					 1, 0);
4045	if (!bitmap_info) {
4046		info->bitmap = map;
4047		map = NULL;
4048		add_new_bitmap(ctl, info, offset);
4049		bitmap_info = info;
4050		info = NULL;
4051	}
4052
4053	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4054					  trim_state);
4055
4056	bytes -= bytes_added;
4057	offset += bytes_added;
4058	spin_unlock(&ctl->tree_lock);
4059
4060	if (bytes)
4061		goto again;
4062
4063	if (info)
4064		kmem_cache_free(btrfs_free_space_cachep, info);
4065	if (map)
4066		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4067	return 0;
4068}
4069
4070/*
4071 * Checks to see if the given range is in the free space cache.  This is really
4072 * just used to check the absence of space, so if there is free space in the
4073 * range at all we will return 1.
4074 */
4075int test_check_exists(struct btrfs_block_group *cache,
4076		      u64 offset, u64 bytes)
4077{
4078	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4079	struct btrfs_free_space *info;
4080	int ret = 0;
4081
4082	spin_lock(&ctl->tree_lock);
4083	info = tree_search_offset(ctl, offset, 0, 0);
4084	if (!info) {
4085		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4086					  1, 0);
4087		if (!info)
4088			goto out;
4089	}
4090
4091have_info:
4092	if (info->bitmap) {
4093		u64 bit_off, bit_bytes;
4094		struct rb_node *n;
4095		struct btrfs_free_space *tmp;
4096
4097		bit_off = offset;
4098		bit_bytes = ctl->unit;
4099		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4100		if (!ret) {
4101			if (bit_off == offset) {
4102				ret = 1;
4103				goto out;
4104			} else if (bit_off > offset &&
4105				   offset + bytes > bit_off) {
4106				ret = 1;
4107				goto out;
4108			}
4109		}
4110
4111		n = rb_prev(&info->offset_index);
4112		while (n) {
4113			tmp = rb_entry(n, struct btrfs_free_space,
4114				       offset_index);
4115			if (tmp->offset + tmp->bytes < offset)
4116				break;
4117			if (offset + bytes < tmp->offset) {
4118				n = rb_prev(&tmp->offset_index);
4119				continue;
4120			}
4121			info = tmp;
4122			goto have_info;
4123		}
4124
4125		n = rb_next(&info->offset_index);
4126		while (n) {
4127			tmp = rb_entry(n, struct btrfs_free_space,
4128				       offset_index);
4129			if (offset + bytes < tmp->offset)
4130				break;
4131			if (tmp->offset + tmp->bytes < offset) {
4132				n = rb_next(&tmp->offset_index);
4133				continue;
4134			}
4135			info = tmp;
4136			goto have_info;
4137		}
4138
4139		ret = 0;
4140		goto out;
4141	}
4142
4143	if (info->offset == offset) {
4144		ret = 1;
4145		goto out;
4146	}
4147
4148	if (offset > info->offset && offset < info->offset + info->bytes)
4149		ret = 1;
4150out:
4151	spin_unlock(&ctl->tree_lock);
4152	return ret;
4153}
4154#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */