Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include <linux/string_choices.h>
  15#include "ctree.h"
  16#include "fs.h"
  17#include "messages.h"
  18#include "misc.h"
  19#include "free-space-cache.h"
  20#include "transaction.h"
  21#include "disk-io.h"
  22#include "extent_io.h"
  23#include "space-info.h"
  24#include "block-group.h"
  25#include "discard.h"
  26#include "subpage.h"
  27#include "inode-item.h"
  28#include "accessors.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "super.h"
  32
  33#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  34#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  35#define FORCE_EXTENT_THRESHOLD	SZ_1M
  36
  37static struct kmem_cache *btrfs_free_space_cachep;
  38static struct kmem_cache *btrfs_free_space_bitmap_cachep;
  39
  40struct btrfs_trim_range {
  41	u64 start;
  42	u64 bytes;
  43	struct list_head list;
  44};
  45
  46static int link_free_space(struct btrfs_free_space_ctl *ctl,
  47			   struct btrfs_free_space *info);
  48static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  49			      struct btrfs_free_space *info, bool update_stat);
  50static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  51			 struct btrfs_free_space *bitmap_info, u64 *offset,
  52			 u64 *bytes, bool for_alloc);
  53static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  54			struct btrfs_free_space *bitmap_info);
  55static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  56			      struct btrfs_free_space *info, u64 offset,
  57			      u64 bytes, bool update_stats);
  58
  59static void btrfs_crc32c_final(u32 crc, u8 *result)
  60{
  61	put_unaligned_le32(~crc, result);
  62}
  63
  64static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  65{
  66	struct btrfs_free_space *info;
  67	struct rb_node *node;
  68
  69	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  70		info = rb_entry(node, struct btrfs_free_space, offset_index);
  71		if (!info->bitmap) {
  72			unlink_free_space(ctl, info, true);
  73			kmem_cache_free(btrfs_free_space_cachep, info);
  74		} else {
  75			free_bitmap(ctl, info);
  76		}
  77
  78		cond_resched_lock(&ctl->tree_lock);
  79	}
  80}
  81
  82static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  83					       struct btrfs_path *path,
  84					       u64 offset)
  85{
  86	struct btrfs_key key;
  87	struct btrfs_key location;
  88	struct btrfs_disk_key disk_key;
  89	struct btrfs_free_space_header *header;
  90	struct extent_buffer *leaf;
  91	struct inode *inode = NULL;
  92	unsigned nofs_flag;
  93	int ret;
  94
  95	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  96	key.offset = offset;
  97	key.type = 0;
  98
  99	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 100	if (ret < 0)
 101		return ERR_PTR(ret);
 102	if (ret > 0) {
 103		btrfs_release_path(path);
 104		return ERR_PTR(-ENOENT);
 105	}
 106
 107	leaf = path->nodes[0];
 108	header = btrfs_item_ptr(leaf, path->slots[0],
 109				struct btrfs_free_space_header);
 110	btrfs_free_space_key(leaf, header, &disk_key);
 111	btrfs_disk_key_to_cpu(&location, &disk_key);
 112	btrfs_release_path(path);
 113
 114	/*
 115	 * We are often under a trans handle at this point, so we need to make
 116	 * sure NOFS is set to keep us from deadlocking.
 117	 */
 118	nofs_flag = memalloc_nofs_save();
 119	inode = btrfs_iget_path(location.objectid, root, path);
 120	btrfs_release_path(path);
 121	memalloc_nofs_restore(nofs_flag);
 122	if (IS_ERR(inode))
 123		return inode;
 
 
 
 
 124
 125	mapping_set_gfp_mask(inode->i_mapping,
 126			mapping_gfp_constraint(inode->i_mapping,
 127			~(__GFP_FS | __GFP_HIGHMEM)));
 128
 129	return inode;
 130}
 131
 132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 133		struct btrfs_path *path)
 
 134{
 135	struct btrfs_fs_info *fs_info = block_group->fs_info;
 136	struct inode *inode = NULL;
 137	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 138
 139	spin_lock(&block_group->lock);
 140	if (block_group->inode)
 141		inode = igrab(&block_group->inode->vfs_inode);
 142	spin_unlock(&block_group->lock);
 143	if (inode)
 144		return inode;
 145
 146	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 147					  block_group->start);
 148	if (IS_ERR(inode))
 149		return inode;
 150
 151	spin_lock(&block_group->lock);
 152	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 153		btrfs_info(fs_info, "Old style space inode found, converting.");
 154		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 155			BTRFS_INODE_NODATACOW;
 156		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 157	}
 158
 159	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 160		block_group->inode = BTRFS_I(igrab(inode));
 
 
 161	spin_unlock(&block_group->lock);
 162
 163	return inode;
 164}
 165
 166static int __create_free_space_inode(struct btrfs_root *root,
 167				     struct btrfs_trans_handle *trans,
 168				     struct btrfs_path *path,
 169				     u64 ino, u64 offset)
 170{
 171	struct btrfs_key key;
 172	struct btrfs_disk_key disk_key;
 173	struct btrfs_free_space_header *header;
 174	struct btrfs_inode_item *inode_item;
 175	struct extent_buffer *leaf;
 176	/* We inline CRCs for the free disk space cache */
 177	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 178			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 179	int ret;
 180
 181	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 182	if (ret)
 183		return ret;
 184
 185	leaf = path->nodes[0];
 186	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 187				    struct btrfs_inode_item);
 188	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 189	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 190			     sizeof(*inode_item));
 191	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 192	btrfs_set_inode_size(leaf, inode_item, 0);
 193	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 194	btrfs_set_inode_uid(leaf, inode_item, 0);
 195	btrfs_set_inode_gid(leaf, inode_item, 0);
 196	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 197	btrfs_set_inode_flags(leaf, inode_item, flags);
 
 198	btrfs_set_inode_nlink(leaf, inode_item, 1);
 199	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 200	btrfs_set_inode_block_group(leaf, inode_item, offset);
 201	btrfs_mark_buffer_dirty(trans, leaf);
 202	btrfs_release_path(path);
 203
 204	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 205	key.offset = offset;
 206	key.type = 0;
 
 207	ret = btrfs_insert_empty_item(trans, root, path, &key,
 208				      sizeof(struct btrfs_free_space_header));
 209	if (ret < 0) {
 210		btrfs_release_path(path);
 211		return ret;
 212	}
 213
 214	leaf = path->nodes[0];
 215	header = btrfs_item_ptr(leaf, path->slots[0],
 216				struct btrfs_free_space_header);
 217	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 218	btrfs_set_free_space_key(leaf, header, &disk_key);
 219	btrfs_mark_buffer_dirty(trans, leaf);
 220	btrfs_release_path(path);
 221
 222	return 0;
 223}
 224
 225int create_free_space_inode(struct btrfs_trans_handle *trans,
 226			    struct btrfs_block_group *block_group,
 
 227			    struct btrfs_path *path)
 228{
 229	int ret;
 230	u64 ino;
 231
 232	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 233	if (ret < 0)
 234		return ret;
 235
 236	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 237					 ino, block_group->start);
 238}
 239
 240/*
 241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 242 * handles lookup, otherwise it takes ownership and iputs the inode.
 243 * Don't reuse an inode pointer after passing it into this function.
 244 */
 245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 246				  struct inode *inode,
 247				  struct btrfs_block_group *block_group)
 248{
 249	struct btrfs_path *path;
 250	struct btrfs_key key;
 251	int ret = 0;
 252
 253	path = btrfs_alloc_path();
 254	if (!path)
 255		return -ENOMEM;
 256
 257	if (!inode)
 258		inode = lookup_free_space_inode(block_group, path);
 259	if (IS_ERR(inode)) {
 260		if (PTR_ERR(inode) != -ENOENT)
 261			ret = PTR_ERR(inode);
 262		goto out;
 263	}
 264	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 265	if (ret) {
 266		btrfs_add_delayed_iput(BTRFS_I(inode));
 267		goto out;
 268	}
 269	clear_nlink(inode);
 270	/* One for the block groups ref */
 271	spin_lock(&block_group->lock);
 272	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 273		block_group->inode = NULL;
 274		spin_unlock(&block_group->lock);
 275		iput(inode);
 276	} else {
 277		spin_unlock(&block_group->lock);
 278	}
 279	/* One for the lookup ref */
 280	btrfs_add_delayed_iput(BTRFS_I(inode));
 281
 282	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 283	key.type = 0;
 284	key.offset = block_group->start;
 285	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 286				-1, 1);
 287	if (ret) {
 288		if (ret > 0)
 289			ret = 0;
 290		goto out;
 291	}
 292	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 293out:
 294	btrfs_free_path(path);
 295	return ret;
 296}
 297
 298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 299				    struct btrfs_block_group *block_group,
 300				    struct inode *vfs_inode)
 301{
 302	struct btrfs_truncate_control control = {
 303		.inode = BTRFS_I(vfs_inode),
 304		.new_size = 0,
 305		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 306		.min_type = BTRFS_EXTENT_DATA_KEY,
 307		.clear_extent_range = true,
 308	};
 309	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 310	struct btrfs_root *root = inode->root;
 311	struct extent_state *cached_state = NULL;
 312	int ret = 0;
 313	bool locked = false;
 314
 315	if (block_group) {
 316		struct btrfs_path *path = btrfs_alloc_path();
 317
 318		if (!path) {
 319			ret = -ENOMEM;
 320			goto fail;
 321		}
 322		locked = true;
 323		mutex_lock(&trans->transaction->cache_write_mutex);
 324		if (!list_empty(&block_group->io_list)) {
 325			list_del_init(&block_group->io_list);
 326
 327			btrfs_wait_cache_io(trans, block_group, path);
 328			btrfs_put_block_group(block_group);
 329		}
 330
 331		/*
 332		 * now that we've truncated the cache away, its no longer
 333		 * setup or written
 334		 */
 335		spin_lock(&block_group->lock);
 336		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 337		spin_unlock(&block_group->lock);
 338		btrfs_free_path(path);
 339	}
 340
 
 341	btrfs_i_size_write(inode, 0);
 342	truncate_pagecache(vfs_inode, 0);
 343
 344	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 345	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 346
 347	/*
 348	 * We skip the throttling logic for free space cache inodes, so we don't
 349	 * need to check for -EAGAIN.
 350	 */
 351	ret = btrfs_truncate_inode_items(trans, root, &control);
 352
 353	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 354	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 355
 356	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 357	if (ret)
 358		goto fail;
 359
 360	ret = btrfs_update_inode(trans, inode);
 361
 362fail:
 363	if (locked)
 364		mutex_unlock(&trans->transaction->cache_write_mutex);
 365	if (ret)
 366		btrfs_abort_transaction(trans, ret);
 367
 
 368	return ret;
 369}
 370
 371static void readahead_cache(struct inode *inode)
 372{
 373	struct file_ra_state ra;
 374	unsigned long last_index;
 375
 376	file_ra_state_init(&ra, inode->i_mapping);
 377	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 378
 379	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 380}
 381
 382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 383		       int write)
 384{
 385	int num_pages;
 386
 387	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 388
 389	/* Make sure we can fit our crcs and generation into the first page */
 390	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 391		return -ENOSPC;
 392
 393	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 394
 395	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 396	if (!io_ctl->pages)
 397		return -ENOMEM;
 398
 399	io_ctl->num_pages = num_pages;
 400	io_ctl->fs_info = inode_to_fs_info(inode);
 401	io_ctl->inode = inode;
 402
 403	return 0;
 404}
 405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 406
 407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 408{
 409	kfree(io_ctl->pages);
 410	io_ctl->pages = NULL;
 411}
 412
 413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 414{
 415	if (io_ctl->cur) {
 416		io_ctl->cur = NULL;
 417		io_ctl->orig = NULL;
 418	}
 419}
 420
 421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 422{
 423	ASSERT(io_ctl->index < io_ctl->num_pages);
 424	io_ctl->page = io_ctl->pages[io_ctl->index++];
 425	io_ctl->cur = page_address(io_ctl->page);
 426	io_ctl->orig = io_ctl->cur;
 427	io_ctl->size = PAGE_SIZE;
 428	if (clear)
 429		clear_page(io_ctl->cur);
 430}
 431
 432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 433{
 434	int i;
 435
 436	io_ctl_unmap_page(io_ctl);
 437
 438	for (i = 0; i < io_ctl->num_pages; i++) {
 439		if (io_ctl->pages[i]) {
 440			btrfs_folio_clear_checked(io_ctl->fs_info,
 441					page_folio(io_ctl->pages[i]),
 442					page_offset(io_ctl->pages[i]),
 443					PAGE_SIZE);
 444			unlock_page(io_ctl->pages[i]);
 445			put_page(io_ctl->pages[i]);
 446		}
 447	}
 448}
 449
 450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 451{
 452	struct page *page;
 453	struct inode *inode = io_ctl->inode;
 454	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 455	int i;
 456
 457	for (i = 0; i < io_ctl->num_pages; i++) {
 458		int ret;
 459
 460		page = find_or_create_page(inode->i_mapping, i, mask);
 461		if (!page) {
 462			io_ctl_drop_pages(io_ctl);
 463			return -ENOMEM;
 464		}
 465
 466		ret = set_page_extent_mapped(page);
 467		if (ret < 0) {
 468			unlock_page(page);
 469			put_page(page);
 470			io_ctl_drop_pages(io_ctl);
 471			return ret;
 472		}
 473
 474		io_ctl->pages[i] = page;
 475		if (uptodate && !PageUptodate(page)) {
 476			btrfs_read_folio(NULL, page_folio(page));
 477			lock_page(page);
 478			if (page->mapping != inode->i_mapping) {
 479				btrfs_err(BTRFS_I(inode)->root->fs_info,
 480					  "free space cache page truncated");
 481				io_ctl_drop_pages(io_ctl);
 482				return -EIO;
 483			}
 484			if (!PageUptodate(page)) {
 485				btrfs_err(BTRFS_I(inode)->root->fs_info,
 486					   "error reading free space cache");
 487				io_ctl_drop_pages(io_ctl);
 488				return -EIO;
 489			}
 490		}
 491	}
 492
 493	for (i = 0; i < io_ctl->num_pages; i++)
 494		clear_page_dirty_for_io(io_ctl->pages[i]);
 495
 496	return 0;
 497}
 498
 499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 500{
 501	io_ctl_map_page(io_ctl, 1);
 502
 503	/*
 504	 * Skip the csum areas.  If we don't check crcs then we just have a
 505	 * 64bit chunk at the front of the first page.
 506	 */
 507	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 508	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 509
 510	put_unaligned_le64(generation, io_ctl->cur);
 511	io_ctl->cur += sizeof(u64);
 512}
 513
 514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 515{
 516	u64 cache_gen;
 517
 518	/*
 519	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 520	 * chunk at the front of the first page.
 521	 */
 522	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 523	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 524
 525	cache_gen = get_unaligned_le64(io_ctl->cur);
 526	if (cache_gen != generation) {
 527		btrfs_err_rl(io_ctl->fs_info,
 528			"space cache generation (%llu) does not match inode (%llu)",
 529				cache_gen, generation);
 530		io_ctl_unmap_page(io_ctl);
 531		return -EIO;
 532	}
 533	io_ctl->cur += sizeof(u64);
 534	return 0;
 535}
 536
 537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 538{
 539	u32 *tmp;
 540	u32 crc = ~(u32)0;
 541	unsigned offset = 0;
 542
 543	if (index == 0)
 544		offset = sizeof(u32) * io_ctl->num_pages;
 545
 546	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 547	btrfs_crc32c_final(crc, (u8 *)&crc);
 548	io_ctl_unmap_page(io_ctl);
 549	tmp = page_address(io_ctl->pages[0]);
 550	tmp += index;
 551	*tmp = crc;
 552}
 553
 554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 555{
 556	u32 *tmp, val;
 557	u32 crc = ~(u32)0;
 558	unsigned offset = 0;
 559
 560	if (index == 0)
 561		offset = sizeof(u32) * io_ctl->num_pages;
 562
 563	tmp = page_address(io_ctl->pages[0]);
 564	tmp += index;
 565	val = *tmp;
 566
 567	io_ctl_map_page(io_ctl, 0);
 568	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 569	btrfs_crc32c_final(crc, (u8 *)&crc);
 570	if (val != crc) {
 571		btrfs_err_rl(io_ctl->fs_info,
 572			"csum mismatch on free space cache");
 573		io_ctl_unmap_page(io_ctl);
 574		return -EIO;
 575	}
 576
 577	return 0;
 578}
 579
 580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 581			    void *bitmap)
 582{
 583	struct btrfs_free_space_entry *entry;
 584
 585	if (!io_ctl->cur)
 586		return -ENOSPC;
 587
 588	entry = io_ctl->cur;
 589	put_unaligned_le64(offset, &entry->offset);
 590	put_unaligned_le64(bytes, &entry->bytes);
 591	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 592		BTRFS_FREE_SPACE_EXTENT;
 593	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 594	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 595
 596	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 597		return 0;
 598
 599	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 600
 601	/* No more pages to map */
 602	if (io_ctl->index >= io_ctl->num_pages)
 603		return 0;
 604
 605	/* map the next page */
 606	io_ctl_map_page(io_ctl, 1);
 607	return 0;
 608}
 609
 610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 611{
 612	if (!io_ctl->cur)
 613		return -ENOSPC;
 614
 615	/*
 616	 * If we aren't at the start of the current page, unmap this one and
 617	 * map the next one if there is any left.
 618	 */
 619	if (io_ctl->cur != io_ctl->orig) {
 620		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 621		if (io_ctl->index >= io_ctl->num_pages)
 622			return -ENOSPC;
 623		io_ctl_map_page(io_ctl, 0);
 624	}
 625
 626	copy_page(io_ctl->cur, bitmap);
 627	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 628	if (io_ctl->index < io_ctl->num_pages)
 629		io_ctl_map_page(io_ctl, 0);
 630	return 0;
 631}
 632
 633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 634{
 635	/*
 636	 * If we're not on the boundary we know we've modified the page and we
 637	 * need to crc the page.
 638	 */
 639	if (io_ctl->cur != io_ctl->orig)
 640		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 641	else
 642		io_ctl_unmap_page(io_ctl);
 643
 644	while (io_ctl->index < io_ctl->num_pages) {
 645		io_ctl_map_page(io_ctl, 1);
 646		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 647	}
 648}
 649
 650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 651			    struct btrfs_free_space *entry, u8 *type)
 652{
 653	struct btrfs_free_space_entry *e;
 654	int ret;
 655
 656	if (!io_ctl->cur) {
 657		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 658		if (ret)
 659			return ret;
 660	}
 661
 662	e = io_ctl->cur;
 663	entry->offset = get_unaligned_le64(&e->offset);
 664	entry->bytes = get_unaligned_le64(&e->bytes);
 665	*type = e->type;
 666	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 667	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 668
 669	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 670		return 0;
 671
 672	io_ctl_unmap_page(io_ctl);
 673
 674	return 0;
 675}
 676
 677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 678			      struct btrfs_free_space *entry)
 679{
 680	int ret;
 681
 682	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 683	if (ret)
 684		return ret;
 685
 686	copy_page(entry->bitmap, io_ctl->cur);
 687	io_ctl_unmap_page(io_ctl);
 688
 689	return 0;
 690}
 691
 692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 693{
 694	struct btrfs_block_group *block_group = ctl->block_group;
 695	u64 max_bytes;
 696	u64 bitmap_bytes;
 697	u64 extent_bytes;
 698	u64 size = block_group->length;
 699	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 700	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 701
 702	max_bitmaps = max_t(u64, max_bitmaps, 1);
 703
 704	if (ctl->total_bitmaps > max_bitmaps)
 705		btrfs_err(block_group->fs_info,
 706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 707			  block_group->start, block_group->length,
 708			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 709			  bytes_per_bg);
 710	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 711
 712	/*
 713	 * We are trying to keep the total amount of memory used per 1GiB of
 714	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 715	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 716	 * bitmaps, we may end up using more memory than this.
 717	 */
 718	if (size < SZ_1G)
 719		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 720	else
 721		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 722
 723	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 724
 725	/*
 726	 * we want the extent entry threshold to always be at most 1/2 the max
 727	 * bytes we can have, or whatever is less than that.
 728	 */
 729	extent_bytes = max_bytes - bitmap_bytes;
 730	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 731
 732	ctl->extents_thresh =
 733		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 734}
 735
 736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 737				   struct btrfs_free_space_ctl *ctl,
 738				   struct btrfs_path *path, u64 offset)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct btrfs_free_space_header *header;
 742	struct extent_buffer *leaf;
 743	struct btrfs_io_ctl io_ctl;
 744	struct btrfs_key key;
 745	struct btrfs_free_space *e, *n;
 746	LIST_HEAD(bitmaps);
 747	u64 num_entries;
 748	u64 num_bitmaps;
 749	u64 generation;
 750	u8 type;
 751	int ret = 0;
 752
 
 
 753	/* Nothing in the space cache, goodbye */
 754	if (!i_size_read(inode))
 755		return 0;
 756
 757	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 758	key.offset = offset;
 759	key.type = 0;
 760
 761	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 762	if (ret < 0)
 763		return 0;
 764	else if (ret > 0) {
 765		btrfs_release_path(path);
 766		return 0;
 
 767	}
 768
 769	ret = -1;
 770
 771	leaf = path->nodes[0];
 772	header = btrfs_item_ptr(leaf, path->slots[0],
 773				struct btrfs_free_space_header);
 774	num_entries = btrfs_free_space_entries(leaf, header);
 775	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 776	generation = btrfs_free_space_generation(leaf, header);
 777	btrfs_release_path(path);
 778
 779	if (!BTRFS_I(inode)->generation) {
 780		btrfs_info(fs_info,
 781			   "the free space cache file (%llu) is invalid, skip it",
 782			   offset);
 783		return 0;
 784	}
 785
 786	if (BTRFS_I(inode)->generation != generation) {
 787		btrfs_err(fs_info,
 788			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 789			  BTRFS_I(inode)->generation, generation);
 790		return 0;
 
 791	}
 792
 793	if (!num_entries)
 794		return 0;
 795
 796	ret = io_ctl_init(&io_ctl, inode, 0);
 797	if (ret)
 798		return ret;
 799
 800	readahead_cache(inode);
 801
 802	ret = io_ctl_prepare_pages(&io_ctl, true);
 803	if (ret)
 804		goto out;
 805
 806	ret = io_ctl_check_crc(&io_ctl, 0);
 807	if (ret)
 808		goto free_cache;
 
 
 
 809
 810	ret = io_ctl_check_generation(&io_ctl, generation);
 811	if (ret)
 812		goto free_cache;
 813
 814	while (num_entries) {
 815		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 816				      GFP_NOFS);
 817		if (!e) {
 818			ret = -ENOMEM;
 819			goto free_cache;
 820		}
 821
 822		ret = io_ctl_read_entry(&io_ctl, e, &type);
 823		if (ret) {
 824			kmem_cache_free(btrfs_free_space_cachep, e);
 825			goto free_cache;
 
 
 
 
 
 
 826		}
 
 827
 828		if (!e->bytes) {
 829			ret = -1;
 830			kmem_cache_free(btrfs_free_space_cachep, e);
 831			goto free_cache;
 832		}
 833
 834		if (type == BTRFS_FREE_SPACE_EXTENT) {
 835			spin_lock(&ctl->tree_lock);
 836			ret = link_free_space(ctl, e);
 837			spin_unlock(&ctl->tree_lock);
 838			if (ret) {
 839				btrfs_err(fs_info,
 840					"Duplicate entries in free space cache, dumping");
 841				kmem_cache_free(btrfs_free_space_cachep, e);
 
 
 
 
 
 
 
 
 
 
 842				goto free_cache;
 843			}
 844		} else {
 845			ASSERT(num_bitmaps);
 846			num_bitmaps--;
 847			e->bitmap = kmem_cache_zalloc(
 848					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 849			if (!e->bitmap) {
 850				ret = -ENOMEM;
 851				kmem_cache_free(
 852					btrfs_free_space_cachep, e);
 
 
 
 
 
 
 
 853				goto free_cache;
 854			}
 855			spin_lock(&ctl->tree_lock);
 856			ret = link_free_space(ctl, e);
 857			if (ret) {
 858				spin_unlock(&ctl->tree_lock);
 859				btrfs_err(fs_info,
 860					"Duplicate entries in free space cache, dumping");
 861				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
 862				kmem_cache_free(btrfs_free_space_cachep, e);
 
 
 863				goto free_cache;
 864			}
 865			ctl->total_bitmaps++;
 866			recalculate_thresholds(ctl);
 867			spin_unlock(&ctl->tree_lock);
 868			list_add_tail(&e->list, &bitmaps);
 869		}
 870
 871		num_entries--;
 872	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874	io_ctl_unmap_page(&io_ctl);
 
 
 
 
 
 
 875
 876	/*
 877	 * We add the bitmaps at the end of the entries in order that
 878	 * the bitmap entries are added to the cache.
 879	 */
 880	list_for_each_entry_safe(e, n, &bitmaps, list) {
 
 
 
 
 
 
 
 
 
 881		list_del_init(&e->list);
 882		ret = io_ctl_read_bitmap(&io_ctl, e);
 883		if (ret)
 884			goto free_cache;
 
 
 
 
 885	}
 886
 887	io_ctl_drop_pages(&io_ctl);
 888	ret = 1;
 889out:
 890	io_ctl_free(&io_ctl);
 891	return ret;
 892free_cache:
 893	io_ctl_drop_pages(&io_ctl);
 894
 895	spin_lock(&ctl->tree_lock);
 896	__btrfs_remove_free_space_cache(ctl);
 897	spin_unlock(&ctl->tree_lock);
 898	goto out;
 899}
 900
 901static int copy_free_space_cache(struct btrfs_block_group *block_group,
 902				 struct btrfs_free_space_ctl *ctl)
 903{
 904	struct btrfs_free_space *info;
 905	struct rb_node *n;
 906	int ret = 0;
 907
 908	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 909		info = rb_entry(n, struct btrfs_free_space, offset_index);
 910		if (!info->bitmap) {
 911			const u64 offset = info->offset;
 912			const u64 bytes = info->bytes;
 913
 914			unlink_free_space(ctl, info, true);
 915			spin_unlock(&ctl->tree_lock);
 916			kmem_cache_free(btrfs_free_space_cachep, info);
 917			ret = btrfs_add_free_space(block_group, offset, bytes);
 918			spin_lock(&ctl->tree_lock);
 919		} else {
 920			u64 offset = info->offset;
 921			u64 bytes = ctl->unit;
 922
 923			ret = search_bitmap(ctl, info, &offset, &bytes, false);
 924			if (ret == 0) {
 925				bitmap_clear_bits(ctl, info, offset, bytes, true);
 926				spin_unlock(&ctl->tree_lock);
 927				ret = btrfs_add_free_space(block_group, offset,
 928							   bytes);
 929				spin_lock(&ctl->tree_lock);
 930			} else {
 931				free_bitmap(ctl, info);
 932				ret = 0;
 933			}
 934		}
 935		cond_resched_lock(&ctl->tree_lock);
 936	}
 937	return ret;
 938}
 939
 940static struct lock_class_key btrfs_free_space_inode_key;
 941
 942int load_free_space_cache(struct btrfs_block_group *block_group)
 943{
 944	struct btrfs_fs_info *fs_info = block_group->fs_info;
 945	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 946	struct btrfs_free_space_ctl tmp_ctl = {};
 947	struct inode *inode;
 948	struct btrfs_path *path;
 949	int ret = 0;
 950	bool matched;
 951	u64 used = block_group->used;
 952
 953	/*
 954	 * Because we could potentially discard our loaded free space, we want
 955	 * to load everything into a temporary structure first, and then if it's
 956	 * valid copy it all into the actual free space ctl.
 957	 */
 958	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 
 959
 960	/*
 961	 * If this block group has been marked to be cleared for one reason or
 962	 * another then we can't trust the on disk cache, so just return.
 963	 */
 964	spin_lock(&block_group->lock);
 965	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 966		spin_unlock(&block_group->lock);
 967		return 0;
 968	}
 969	spin_unlock(&block_group->lock);
 970
 971	path = btrfs_alloc_path();
 972	if (!path)
 973		return 0;
 974	path->search_commit_root = 1;
 975	path->skip_locking = 1;
 976
 977	/*
 978	 * We must pass a path with search_commit_root set to btrfs_iget in
 979	 * order to avoid a deadlock when allocating extents for the tree root.
 980	 *
 981	 * When we are COWing an extent buffer from the tree root, when looking
 982	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 983	 * block group without its free space cache loaded. When we find one
 984	 * we must load its space cache which requires reading its free space
 985	 * cache's inode item from the root tree. If this inode item is located
 986	 * in the same leaf that we started COWing before, then we end up in
 987	 * deadlock on the extent buffer (trying to read lock it when we
 988	 * previously write locked it).
 989	 *
 990	 * It's safe to read the inode item using the commit root because
 991	 * block groups, once loaded, stay in memory forever (until they are
 992	 * removed) as well as their space caches once loaded. New block groups
 993	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 994	 * we will never try to read their inode item while the fs is mounted.
 995	 */
 996	inode = lookup_free_space_inode(block_group, path);
 997	if (IS_ERR(inode)) {
 998		btrfs_free_path(path);
 999		return 0;
1000	}
1001
1002	/* We may have converted the inode and made the cache invalid. */
1003	spin_lock(&block_group->lock);
1004	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005		spin_unlock(&block_group->lock);
1006		btrfs_free_path(path);
1007		goto out;
1008	}
1009	spin_unlock(&block_group->lock);
1010
1011	/*
1012	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013	 * free space inodes to prevent false positives related to locks for normal
1014	 * inodes.
1015	 */
1016	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017			  &btrfs_free_space_inode_key);
1018
1019	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020				      path, block_group->start);
1021	btrfs_free_path(path);
1022	if (ret <= 0)
1023		goto out;
1024
1025	matched = (tmp_ctl.free_space == (block_group->length - used -
1026					  block_group->bytes_super));
 
 
1027
1028	if (matched) {
1029		spin_lock(&tmp_ctl.tree_lock);
1030		ret = copy_free_space_cache(block_group, &tmp_ctl);
1031		spin_unlock(&tmp_ctl.tree_lock);
1032		/*
1033		 * ret == 1 means we successfully loaded the free space cache,
1034		 * so we need to re-set it here.
1035		 */
1036		if (ret == 0)
1037			ret = 1;
1038	} else {
1039		/*
1040		 * We need to call the _locked variant so we don't try to update
1041		 * the discard counters.
1042		 */
1043		spin_lock(&tmp_ctl.tree_lock);
1044		__btrfs_remove_free_space_cache(&tmp_ctl);
1045		spin_unlock(&tmp_ctl.tree_lock);
1046		btrfs_warn(fs_info,
1047			   "block group %llu has wrong amount of free space",
1048			   block_group->start);
1049		ret = -1;
1050	}
1051out:
1052	if (ret < 0) {
1053		/* This cache is bogus, make sure it gets cleared */
1054		spin_lock(&block_group->lock);
1055		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056		spin_unlock(&block_group->lock);
1057		ret = 0;
1058
1059		btrfs_warn(fs_info,
1060			   "failed to load free space cache for block group %llu, rebuilding it now",
1061			   block_group->start);
1062	}
1063
1064	spin_lock(&ctl->tree_lock);
1065	btrfs_discard_update_discardable(block_group);
1066	spin_unlock(&ctl->tree_lock);
1067	iput(inode);
1068	return ret;
1069}
1070
1071static noinline_for_stack
1072int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073			      struct btrfs_free_space_ctl *ctl,
1074			      struct btrfs_block_group *block_group,
1075			      int *entries, int *bitmaps,
1076			      struct list_head *bitmap_list)
1077{
1078	int ret;
1079	struct btrfs_free_cluster *cluster = NULL;
1080	struct btrfs_free_cluster *cluster_locked = NULL;
1081	struct rb_node *node = rb_first(&ctl->free_space_offset);
1082	struct btrfs_trim_range *trim_entry;
1083
1084	/* Get the cluster for this block_group if it exists */
1085	if (block_group && !list_empty(&block_group->cluster_list)) {
1086		cluster = list_entry(block_group->cluster_list.next,
1087				     struct btrfs_free_cluster,
1088				     block_group_list);
1089	}
1090
1091	if (!node && cluster) {
1092		cluster_locked = cluster;
1093		spin_lock(&cluster_locked->lock);
1094		node = rb_first(&cluster->root);
1095		cluster = NULL;
1096	}
1097
1098	/* Write out the extent entries */
1099	while (node) {
1100		struct btrfs_free_space *e;
1101
1102		e = rb_entry(node, struct btrfs_free_space, offset_index);
1103		*entries += 1;
1104
1105		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106				       e->bitmap);
1107		if (ret)
1108			goto fail;
1109
1110		if (e->bitmap) {
1111			list_add_tail(&e->list, bitmap_list);
1112			*bitmaps += 1;
1113		}
1114		node = rb_next(node);
1115		if (!node && cluster) {
1116			node = rb_first(&cluster->root);
1117			cluster_locked = cluster;
1118			spin_lock(&cluster_locked->lock);
1119			cluster = NULL;
1120		}
1121	}
1122	if (cluster_locked) {
1123		spin_unlock(&cluster_locked->lock);
1124		cluster_locked = NULL;
1125	}
1126
1127	/*
1128	 * Make sure we don't miss any range that was removed from our rbtree
1129	 * because trimming is running. Otherwise after a umount+mount (or crash
1130	 * after committing the transaction) we would leak free space and get
1131	 * an inconsistent free space cache report from fsck.
1132	 */
1133	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135				       trim_entry->bytes, NULL);
1136		if (ret)
1137			goto fail;
1138		*entries += 1;
1139	}
1140
1141	return 0;
1142fail:
1143	if (cluster_locked)
1144		spin_unlock(&cluster_locked->lock);
1145	return -ENOSPC;
1146}
1147
1148static noinline_for_stack int
1149update_cache_item(struct btrfs_trans_handle *trans,
1150		  struct btrfs_root *root,
1151		  struct inode *inode,
1152		  struct btrfs_path *path, u64 offset,
1153		  int entries, int bitmaps)
1154{
1155	struct btrfs_key key;
1156	struct btrfs_free_space_header *header;
1157	struct extent_buffer *leaf;
1158	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161	key.offset = offset;
1162	key.type = 0;
1163
1164	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165	if (ret < 0) {
1166		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167				 EXTENT_DELALLOC, NULL);
1168		goto fail;
1169	}
1170	leaf = path->nodes[0];
1171	if (ret > 0) {
1172		struct btrfs_key found_key;
1173		ASSERT(path->slots[0]);
1174		path->slots[0]--;
1175		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177		    found_key.offset != offset) {
1178			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179					 inode->i_size - 1, EXTENT_DELALLOC,
1180					 NULL);
1181			btrfs_release_path(path);
1182			goto fail;
1183		}
1184	}
1185
1186	BTRFS_I(inode)->generation = trans->transid;
1187	header = btrfs_item_ptr(leaf, path->slots[0],
1188				struct btrfs_free_space_header);
1189	btrfs_set_free_space_entries(leaf, header, entries);
1190	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191	btrfs_set_free_space_generation(leaf, header, trans->transid);
1192	btrfs_mark_buffer_dirty(trans, leaf);
1193	btrfs_release_path(path);
1194
1195	return 0;
 
1196
1197fail:
1198	return -1;
1199}
1200
1201static noinline_for_stack int write_pinned_extent_entries(
1202			    struct btrfs_trans_handle *trans,
1203			    struct btrfs_block_group *block_group,
1204			    struct btrfs_io_ctl *io_ctl,
1205			    int *entries)
1206{
1207	u64 start, extent_start, extent_end, len;
1208	struct extent_io_tree *unpin = NULL;
1209	int ret;
1210
1211	if (!block_group)
1212		return 0;
 
 
 
1213
1214	/*
1215	 * We want to add any pinned extents to our free space cache
1216	 * so we don't leak the space
1217	 *
1218	 * We shouldn't have switched the pinned extents yet so this is the
1219	 * right one
1220	 */
1221	unpin = &trans->transaction->pinned_extents;
1222
1223	start = block_group->start;
1224
1225	while (start < block_group->start + block_group->length) {
1226		if (!find_first_extent_bit(unpin, start,
1227					   &extent_start, &extent_end,
1228					   EXTENT_DIRTY, NULL))
1229			return 0;
1230
1231		/* This pinned extent is out of our range */
1232		if (extent_start >= block_group->start + block_group->length)
1233			return 0;
1234
1235		extent_start = max(extent_start, start);
1236		extent_end = min(block_group->start + block_group->length,
1237				 extent_end + 1);
1238		len = extent_end - extent_start;
1239
1240		*entries += 1;
1241		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242		if (ret)
1243			return -ENOSPC;
1244
1245		start = extent_end;
1246	}
1247
1248	return 0;
1249}
1250
1251static noinline_for_stack int
1252write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253{
1254	struct btrfs_free_space *entry, *next;
1255	int ret;
 
1256
1257	/* Write out the bitmaps */
1258	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260		if (ret)
1261			return -ENOSPC;
1262		list_del_init(&entry->list);
 
 
1263	}
1264
1265	return 0;
1266}
1267
1268static int flush_dirty_cache(struct inode *inode)
1269{
1270	int ret;
1271
1272	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273	if (ret)
1274		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275				 EXTENT_DELALLOC, NULL);
1276
1277	return ret;
1278}
1279
1280static void noinline_for_stack
1281cleanup_bitmap_list(struct list_head *bitmap_list)
1282{
1283	struct btrfs_free_space *entry, *next;
 
 
1284
1285	list_for_each_entry_safe(entry, next, bitmap_list, list)
1286		list_del_init(&entry->list);
1287}
 
 
1288
1289static void noinline_for_stack
1290cleanup_write_cache_enospc(struct inode *inode,
1291			   struct btrfs_io_ctl *io_ctl,
1292			   struct extent_state **cached_state)
1293{
1294	io_ctl_drop_pages(io_ctl);
1295	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296		      cached_state);
1297}
1298
1299static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300				 struct btrfs_trans_handle *trans,
1301				 struct btrfs_block_group *block_group,
1302				 struct btrfs_io_ctl *io_ctl,
1303				 struct btrfs_path *path, u64 offset)
1304{
1305	int ret;
1306	struct inode *inode = io_ctl->inode;
1307
1308	if (!inode)
1309		return 0;
1310
1311	/* Flush the dirty pages in the cache file. */
1312	ret = flush_dirty_cache(inode);
1313	if (ret)
1314		goto out;
1315
1316	/* Update the cache item to tell everyone this cache file is valid. */
1317	ret = update_cache_item(trans, root, inode, path, offset,
1318				io_ctl->entries, io_ctl->bitmaps);
1319out:
1320	if (ret) {
1321		invalidate_inode_pages2(inode->i_mapping);
1322		BTRFS_I(inode)->generation = 0;
1323		if (block_group)
1324			btrfs_debug(root->fs_info,
1325	  "failed to write free space cache for block group %llu error %d",
1326				  block_group->start, ret);
1327	}
1328	btrfs_update_inode(trans, BTRFS_I(inode));
1329
1330	if (block_group) {
1331		/* the dirty list is protected by the dirty_bgs_lock */
1332		spin_lock(&trans->transaction->dirty_bgs_lock);
1333
1334		/* the disk_cache_state is protected by the block group lock */
1335		spin_lock(&block_group->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
1337		/*
1338		 * only mark this as written if we didn't get put back on
1339		 * the dirty list while waiting for IO.   Otherwise our
1340		 * cache state won't be right, and we won't get written again
1341		 */
1342		if (!ret && list_empty(&block_group->dirty_list))
1343			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344		else if (ret)
1345			block_group->disk_cache_state = BTRFS_DC_ERROR;
1346
1347		spin_unlock(&block_group->lock);
1348		spin_unlock(&trans->transaction->dirty_bgs_lock);
1349		io_ctl->inode = NULL;
1350		iput(inode);
1351	}
1352
1353	return ret;
 
 
 
1354
1355}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358			struct btrfs_block_group *block_group,
1359			struct btrfs_path *path)
1360{
1361	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362				     block_group, &block_group->io_ctl,
1363				     path, block_group->start);
1364}
1365
1366/*
1367 * Write out cached info to an inode.
1368 *
1369 * @inode:       freespace inode we are writing out
1370 * @ctl:         free space cache we are going to write out
1371 * @block_group: block_group for this cache if it belongs to a block_group
1372 * @io_ctl:      holds context for the io
1373 * @trans:       the trans handle
1374 *
1375 * This function writes out a free space cache struct to disk for quick recovery
1376 * on mount.  This will return 0 if it was successful in writing the cache out,
1377 * or an errno if it was not.
1378 */
1379static int __btrfs_write_out_cache(struct inode *inode,
1380				   struct btrfs_free_space_ctl *ctl,
1381				   struct btrfs_block_group *block_group,
1382				   struct btrfs_io_ctl *io_ctl,
1383				   struct btrfs_trans_handle *trans)
1384{
1385	struct extent_state *cached_state = NULL;
1386	LIST_HEAD(bitmap_list);
1387	int entries = 0;
1388	int bitmaps = 0;
1389	int ret;
1390	int must_iput = 0;
1391	int i_size;
1392
1393	if (!i_size_read(inode))
1394		return -EIO;
1395
1396	WARN_ON(io_ctl->pages);
1397	ret = io_ctl_init(io_ctl, inode, 1);
1398	if (ret)
1399		return ret;
 
1400
1401	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402		down_write(&block_group->data_rwsem);
1403		spin_lock(&block_group->lock);
1404		if (block_group->delalloc_bytes) {
1405			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406			spin_unlock(&block_group->lock);
1407			up_write(&block_group->data_rwsem);
1408			BTRFS_I(inode)->generation = 0;
1409			ret = 0;
1410			must_iput = 1;
1411			goto out;
1412		}
1413		spin_unlock(&block_group->lock);
1414	}
1415
1416	/* Lock all pages first so we can lock the extent safely. */
1417	ret = io_ctl_prepare_pages(io_ctl, false);
1418	if (ret)
1419		goto out_unlock;
1420
1421	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422		    &cached_state);
1423
1424	io_ctl_set_generation(io_ctl, trans->transid);
1425
1426	mutex_lock(&ctl->cache_writeout_mutex);
1427	/* Write out the extent entries in the free space cache */
1428	spin_lock(&ctl->tree_lock);
1429	ret = write_cache_extent_entries(io_ctl, ctl,
1430					 block_group, &entries, &bitmaps,
1431					 &bitmap_list);
1432	if (ret)
1433		goto out_nospc_locked;
1434
1435	/*
1436	 * Some spaces that are freed in the current transaction are pinned,
1437	 * they will be added into free space cache after the transaction is
1438	 * committed, we shouldn't lose them.
1439	 *
1440	 * If this changes while we are working we'll get added back to
1441	 * the dirty list and redo it.  No locking needed
1442	 */
1443	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444	if (ret)
1445		goto out_nospc_locked;
1446
1447	/*
1448	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449	 * locked while doing it because a concurrent trim can be manipulating
1450	 * or freeing the bitmap.
1451	 */
1452	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453	spin_unlock(&ctl->tree_lock);
1454	mutex_unlock(&ctl->cache_writeout_mutex);
1455	if (ret)
1456		goto out_nospc;
1457
1458	/* Zero out the rest of the pages just to make sure */
1459	io_ctl_zero_remaining_pages(io_ctl);
 
1460
1461	/* Everything is written out, now we dirty the pages in the file. */
1462	i_size = i_size_read(inode);
1463	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464		u64 dirty_start = i * PAGE_SIZE;
1465		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1466
1467		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468					dirty_start, dirty_len, &cached_state, false);
1469		if (ret < 0)
1470			goto out_nospc;
 
 
 
 
 
 
 
1471	}
1472
1473	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474		up_write(&block_group->data_rwsem);
1475	/*
1476	 * Release the pages and unlock the extent, we will flush
1477	 * them out later
1478	 */
1479	io_ctl_drop_pages(io_ctl);
1480	io_ctl_free(io_ctl);
1481
1482	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483		      &cached_state);
1484
1485	/*
1486	 * at this point the pages are under IO and we're happy,
1487	 * The caller is responsible for waiting on them and updating
1488	 * the cache and the inode
1489	 */
1490	io_ctl->entries = entries;
1491	io_ctl->bitmaps = bitmaps;
1492
1493	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494	if (ret)
 
 
 
 
1495		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496
1497	return 0;
1498
1499out_nospc_locked:
1500	cleanup_bitmap_list(&bitmap_list);
1501	spin_unlock(&ctl->tree_lock);
1502	mutex_unlock(&ctl->cache_writeout_mutex);
1503
1504out_nospc:
1505	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1506
1507out_unlock:
1508	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509		up_write(&block_group->data_rwsem);
1510
1511out:
1512	io_ctl->inode = NULL;
1513	io_ctl_free(io_ctl);
1514	if (ret) {
1515		invalidate_inode_pages2(inode->i_mapping);
1516		BTRFS_I(inode)->generation = 0;
1517	}
1518	btrfs_update_inode(trans, BTRFS_I(inode));
1519	if (must_iput)
1520		iput(inode);
1521	return ret;
1522}
1523
1524int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525			  struct btrfs_block_group *block_group,
 
1526			  struct btrfs_path *path)
1527{
1528	struct btrfs_fs_info *fs_info = trans->fs_info;
1529	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530	struct inode *inode;
1531	int ret = 0;
1532
 
 
1533	spin_lock(&block_group->lock);
1534	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535		spin_unlock(&block_group->lock);
1536		return 0;
1537	}
1538	spin_unlock(&block_group->lock);
1539
1540	inode = lookup_free_space_inode(block_group, path);
1541	if (IS_ERR(inode))
1542		return 0;
1543
1544	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545				      &block_group->io_ctl, trans);
1546	if (ret) {
1547		btrfs_debug(fs_info,
1548	  "failed to write free space cache for block group %llu error %d",
1549			  block_group->start, ret);
1550		spin_lock(&block_group->lock);
1551		block_group->disk_cache_state = BTRFS_DC_ERROR;
1552		spin_unlock(&block_group->lock);
 
1553
1554		block_group->io_ctl.inode = NULL;
1555		iput(inode);
1556	}
1557
1558	/*
1559	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560	 * to wait for IO and put the inode
1561	 */
1562
1563	return ret;
1564}
1565
1566static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567					  u64 offset)
1568{
1569	ASSERT(offset >= bitmap_start);
1570	offset -= bitmap_start;
1571	return (unsigned long)(div_u64(offset, unit));
1572}
1573
1574static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1575{
1576	return (unsigned long)(div_u64(bytes, unit));
1577}
1578
1579static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580				   u64 offset)
1581{
1582	u64 bitmap_start;
1583	u64 bytes_per_bitmap;
1584
1585	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586	bitmap_start = offset - ctl->start;
1587	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588	bitmap_start *= bytes_per_bitmap;
1589	bitmap_start += ctl->start;
1590
1591	return bitmap_start;
1592}
1593
1594static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595			      struct btrfs_free_cluster *cluster,
1596			      struct btrfs_free_space *new_entry)
1597{
1598	struct rb_root *root;
1599	struct rb_node **p;
1600	struct rb_node *parent = NULL;
1601
1602	lockdep_assert_held(&ctl->tree_lock);
1603
1604	if (cluster) {
1605		lockdep_assert_held(&cluster->lock);
1606		root = &cluster->root;
1607	} else {
1608		root = &ctl->free_space_offset;
1609	}
1610
1611	p = &root->rb_node;
1612
1613	while (*p) {
1614		struct btrfs_free_space *info;
1615
1616		parent = *p;
1617		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1618
1619		if (new_entry->offset < info->offset) {
1620			p = &(*p)->rb_left;
1621		} else if (new_entry->offset > info->offset) {
1622			p = &(*p)->rb_right;
1623		} else {
1624			/*
1625			 * we could have a bitmap entry and an extent entry
1626			 * share the same offset.  If this is the case, we want
1627			 * the extent entry to always be found first if we do a
1628			 * linear search through the tree, since we want to have
1629			 * the quickest allocation time, and allocating from an
1630			 * extent is faster than allocating from a bitmap.  So
1631			 * if we're inserting a bitmap and we find an entry at
1632			 * this offset, we want to go right, or after this entry
1633			 * logically.  If we are inserting an extent and we've
1634			 * found a bitmap, we want to go left, or before
1635			 * logically.
1636			 */
1637			if (new_entry->bitmap) {
1638				if (info->bitmap) {
1639					WARN_ON_ONCE(1);
1640					return -EEXIST;
1641				}
1642				p = &(*p)->rb_right;
1643			} else {
1644				if (!info->bitmap) {
1645					WARN_ON_ONCE(1);
1646					return -EEXIST;
1647				}
1648				p = &(*p)->rb_left;
1649			}
1650		}
1651	}
1652
1653	rb_link_node(&new_entry->offset_index, parent, p);
1654	rb_insert_color(&new_entry->offset_index, root);
1655
1656	return 0;
1657}
1658
1659/*
1660 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1661 * searched through the bitmap and figured out the largest ->max_extent_size,
1662 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1663 * allocator the wrong thing, we want to use the actual real max_extent_size
1664 * we've found already if it's larger, or we want to use ->bytes.
1665 *
1666 * This matters because find_free_space() will skip entries who's ->bytes is
1667 * less than the required bytes.  So if we didn't search down this bitmap, we
1668 * may pick some previous entry that has a smaller ->max_extent_size than we
1669 * have.  For example, assume we have two entries, one that has
1670 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1671 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1672 *  call into find_free_space(), and return with max_extent_size == 4K, because
1673 *  that first bitmap entry had ->max_extent_size set, but the second one did
1674 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1675 *  8K contiguous range.
1676 *
1677 *  Consider the other case, we have 2 8K chunks in that second entry and still
1678 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1679 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1680 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1681 *  right allocation the next loop through.
1682 */
1683static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1684{
1685	if (entry->bitmap && entry->max_extent_size)
1686		return entry->max_extent_size;
1687	return entry->bytes;
1688}
1689
1690/*
1691 * We want the largest entry to be leftmost, so this is inverted from what you'd
1692 * normally expect.
1693 */
1694static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1695{
1696	const struct btrfs_free_space *entry, *exist;
1697
1698	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700	return get_max_extent_size(exist) < get_max_extent_size(entry);
1701}
1702
1703/*
1704 * searches the tree for the given offset.
1705 *
1706 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707 * want a section that has at least bytes size and comes at or after the given
1708 * offset.
1709 */
1710static struct btrfs_free_space *
1711tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712		   u64 offset, int bitmap_only, int fuzzy)
1713{
1714	struct rb_node *n = ctl->free_space_offset.rb_node;
1715	struct btrfs_free_space *entry = NULL, *prev = NULL;
1716
1717	lockdep_assert_held(&ctl->tree_lock);
1718
1719	/* find entry that is closest to the 'offset' */
1720	while (n) {
 
 
 
 
 
1721		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722		prev = entry;
1723
1724		if (offset < entry->offset)
1725			n = n->rb_left;
1726		else if (offset > entry->offset)
1727			n = n->rb_right;
1728		else
1729			break;
1730
1731		entry = NULL;
1732	}
1733
1734	if (bitmap_only) {
1735		if (!entry)
1736			return NULL;
1737		if (entry->bitmap)
1738			return entry;
1739
1740		/*
1741		 * bitmap entry and extent entry may share same offset,
1742		 * in that case, bitmap entry comes after extent entry.
1743		 */
1744		n = rb_next(n);
1745		if (!n)
1746			return NULL;
1747		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748		if (entry->offset != offset)
1749			return NULL;
1750
1751		WARN_ON(!entry->bitmap);
1752		return entry;
1753	} else if (entry) {
1754		if (entry->bitmap) {
1755			/*
1756			 * if previous extent entry covers the offset,
1757			 * we should return it instead of the bitmap entry
1758			 */
1759			n = rb_prev(&entry->offset_index);
1760			if (n) {
 
 
 
1761				prev = rb_entry(n, struct btrfs_free_space,
1762						offset_index);
1763				if (!prev->bitmap &&
1764				    prev->offset + prev->bytes > offset)
1765					entry = prev;
 
 
1766			}
1767		}
1768		return entry;
1769	}
1770
1771	if (!prev)
1772		return NULL;
1773
1774	/* find last entry before the 'offset' */
1775	entry = prev;
1776	if (entry->offset > offset) {
1777		n = rb_prev(&entry->offset_index);
1778		if (n) {
1779			entry = rb_entry(n, struct btrfs_free_space,
1780					offset_index);
1781			ASSERT(entry->offset <= offset);
1782		} else {
1783			if (fuzzy)
1784				return entry;
1785			else
1786				return NULL;
1787		}
1788	}
1789
1790	if (entry->bitmap) {
1791		n = rb_prev(&entry->offset_index);
1792		if (n) {
 
 
 
1793			prev = rb_entry(n, struct btrfs_free_space,
1794					offset_index);
1795			if (!prev->bitmap &&
1796			    prev->offset + prev->bytes > offset)
1797				return prev;
 
 
1798		}
1799		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800			return entry;
1801	} else if (entry->offset + entry->bytes > offset)
1802		return entry;
1803
1804	if (!fuzzy)
1805		return NULL;
1806
1807	while (1) {
1808		n = rb_next(&entry->offset_index);
1809		if (!n)
1810			return NULL;
1811		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812		if (entry->bitmap) {
1813			if (entry->offset + BITS_PER_BITMAP *
1814			    ctl->unit > offset)
1815				break;
1816		} else {
1817			if (entry->offset + entry->bytes > offset)
1818				break;
1819		}
 
 
 
 
 
1820	}
1821	return entry;
1822}
1823
1824static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825				     struct btrfs_free_space *info,
1826				     bool update_stat)
1827{
1828	lockdep_assert_held(&ctl->tree_lock);
1829
1830	rb_erase(&info->offset_index, &ctl->free_space_offset);
1831	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832	ctl->free_extents--;
 
1833
1834	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1837	}
1838
1839	if (update_stat)
1840		ctl->free_space -= info->bytes;
1841}
1842
1843static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844			   struct btrfs_free_space *info)
1845{
1846	int ret = 0;
1847
1848	lockdep_assert_held(&ctl->tree_lock);
1849
1850	ASSERT(info->bytes || info->bitmap);
1851	ret = tree_insert_offset(ctl, NULL, info);
1852	if (ret)
1853		return ret;
1854
1855	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1856
1857	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1860	}
1861
1862	ctl->free_space += info->bytes;
1863	ctl->free_extents++;
1864	return ret;
1865}
1866
1867static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868				struct btrfs_free_space *info)
1869{
1870	ASSERT(info->bitmap);
 
 
 
 
 
 
 
 
1871
1872	/*
1873	 * If our entry is empty it's because we're on a cluster and we don't
1874	 * want to re-link it into our ctl bytes index.
 
1875	 */
1876	if (RB_EMPTY_NODE(&info->bytes_index))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877		return;
 
1878
1879	lockdep_assert_held(&ctl->tree_lock);
 
 
 
 
 
1880
1881	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1883}
1884
1885static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886				     struct btrfs_free_space *info,
1887				     u64 offset, u64 bytes, bool update_stat)
1888{
1889	unsigned long start, count, end;
1890	int extent_delta = -1;
1891
1892	start = offset_to_bit(info->offset, ctl->unit, offset);
1893	count = bytes_to_bits(bytes, ctl->unit);
1894	end = start + count;
1895	ASSERT(end <= BITS_PER_BITMAP);
1896
1897	bitmap_clear(info->bitmap, start, count);
1898
1899	info->bytes -= bytes;
1900	if (info->max_extent_size > ctl->unit)
1901		info->max_extent_size = 0;
1902
1903	relink_bitmap_entry(ctl, info);
1904
1905	if (start && test_bit(start - 1, info->bitmap))
1906		extent_delta++;
1907
1908	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909		extent_delta++;
1910
1911	info->bitmap_extents += extent_delta;
1912	if (!btrfs_free_space_trimmed(info)) {
1913		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1915	}
1916
1917	if (update_stat)
1918		ctl->free_space -= bytes;
 
 
 
 
1919}
1920
1921static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922				  struct btrfs_free_space *info, u64 offset,
1923				  u64 bytes)
1924{
1925	unsigned long start, count, end;
1926	int extent_delta = 1;
1927
1928	start = offset_to_bit(info->offset, ctl->unit, offset);
1929	count = bytes_to_bits(bytes, ctl->unit);
1930	end = start + count;
1931	ASSERT(end <= BITS_PER_BITMAP);
1932
1933	bitmap_set(info->bitmap, start, count);
1934
1935	/*
1936	 * We set some bytes, we have no idea what the max extent size is
1937	 * anymore.
1938	 */
1939	info->max_extent_size = 0;
1940	info->bytes += bytes;
1941	ctl->free_space += bytes;
1942
1943	relink_bitmap_entry(ctl, info);
1944
1945	if (start && test_bit(start - 1, info->bitmap))
1946		extent_delta--;
1947
1948	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949		extent_delta--;
1950
1951	info->bitmap_extents += extent_delta;
1952	if (!btrfs_free_space_trimmed(info)) {
1953		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1955	}
1956}
1957
1958/*
1959 * If we can not find suitable extent, we will use bytes to record
1960 * the size of the max extent.
1961 */
1962static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963			 struct btrfs_free_space *bitmap_info, u64 *offset,
1964			 u64 *bytes, bool for_alloc)
1965{
1966	unsigned long found_bits = 0;
1967	unsigned long max_bits = 0;
1968	unsigned long bits, i;
1969	unsigned long next_zero;
1970	unsigned long extent_bits;
1971
1972	/*
1973	 * Skip searching the bitmap if we don't have a contiguous section that
1974	 * is large enough for this allocation.
1975	 */
1976	if (for_alloc &&
1977	    bitmap_info->max_extent_size &&
1978	    bitmap_info->max_extent_size < *bytes) {
1979		*bytes = bitmap_info->max_extent_size;
1980		return -1;
1981	}
1982
1983	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984			  max_t(u64, *offset, bitmap_info->offset));
1985	bits = bytes_to_bits(*bytes, ctl->unit);
1986
1987	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988		if (for_alloc && bits == 1) {
1989			found_bits = 1;
1990			break;
1991		}
1992		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993					       BITS_PER_BITMAP, i);
1994		extent_bits = next_zero - i;
1995		if (extent_bits >= bits) {
1996			found_bits = extent_bits;
1997			break;
1998		} else if (extent_bits > max_bits) {
1999			max_bits = extent_bits;
2000		}
2001		i = next_zero;
2002	}
2003
2004	if (found_bits) {
2005		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006		*bytes = (u64)(found_bits) * ctl->unit;
2007		return 0;
2008	}
2009
2010	*bytes = (u64)(max_bits) * ctl->unit;
2011	bitmap_info->max_extent_size = *bytes;
2012	relink_bitmap_entry(ctl, bitmap_info);
2013	return -1;
2014}
2015
2016/* Cache the size of the max extent in bytes */
2017static struct btrfs_free_space *
2018find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2020{
2021	struct btrfs_free_space *entry;
2022	struct rb_node *node;
2023	u64 tmp;
2024	u64 align_off;
2025	int ret;
2026
2027	if (!ctl->free_space_offset.rb_node)
2028		goto out;
2029again:
2030	if (use_bytes_index) {
2031		node = rb_first_cached(&ctl->free_space_bytes);
2032	} else {
2033		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034					   0, 1);
2035		if (!entry)
2036			goto out;
2037		node = &entry->offset_index;
2038	}
2039
2040	for (; node; node = rb_next(node)) {
2041		if (use_bytes_index)
2042			entry = rb_entry(node, struct btrfs_free_space,
2043					 bytes_index);
2044		else
2045			entry = rb_entry(node, struct btrfs_free_space,
2046					 offset_index);
2047
2048		/*
2049		 * If we are using the bytes index then all subsequent entries
2050		 * in this tree are going to be < bytes, so simply set the max
2051		 * extent size and exit the loop.
2052		 *
2053		 * If we're using the offset index then we need to keep going
2054		 * through the rest of the tree.
2055		 */
2056		if (entry->bytes < *bytes) {
2057			*max_extent_size = max(get_max_extent_size(entry),
2058					       *max_extent_size);
2059			if (use_bytes_index)
2060				break;
2061			continue;
2062		}
2063
2064		/* make sure the space returned is big enough
2065		 * to match our requested alignment
2066		 */
2067		if (*bytes >= align) {
2068			tmp = entry->offset - ctl->start + align - 1;
2069			tmp = div64_u64(tmp, align);
2070			tmp = tmp * align + ctl->start;
2071			align_off = tmp - entry->offset;
2072		} else {
2073			align_off = 0;
2074			tmp = entry->offset;
2075		}
2076
2077		/*
2078		 * We don't break here if we're using the bytes index because we
2079		 * may have another entry that has the correct alignment that is
2080		 * the right size, so we don't want to miss that possibility.
2081		 * At worst this adds another loop through the logic, but if we
2082		 * broke here we could prematurely ENOSPC.
2083		 */
2084		if (entry->bytes < *bytes + align_off) {
2085			*max_extent_size = max(get_max_extent_size(entry),
2086					       *max_extent_size);
2087			continue;
2088		}
2089
2090		if (entry->bitmap) {
2091			struct rb_node *old_next = rb_next(node);
2092			u64 size = *bytes;
2093
2094			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095			if (!ret) {
2096				*offset = tmp;
2097				*bytes = size;
2098				return entry;
2099			} else {
2100				*max_extent_size =
2101					max(get_max_extent_size(entry),
2102					    *max_extent_size);
2103			}
2104
2105			/*
2106			 * The bitmap may have gotten re-arranged in the space
2107			 * index here because the max_extent_size may have been
2108			 * updated.  Start from the beginning again if this
2109			 * happened.
2110			 */
2111			if (use_bytes_index && old_next != rb_next(node))
2112				goto again;
2113			continue;
2114		}
2115
2116		*offset = tmp;
2117		*bytes = entry->bytes - align_off;
2118		return entry;
2119	}
2120out:
2121	return NULL;
2122}
2123
2124static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125			   struct btrfs_free_space *info, u64 offset)
2126{
2127	info->offset = offset_to_bitmap(ctl, offset);
2128	info->bytes = 0;
2129	info->bitmap_extents = 0;
2130	INIT_LIST_HEAD(&info->list);
2131	link_free_space(ctl, info);
2132	ctl->total_bitmaps++;
2133	recalculate_thresholds(ctl);
 
2134}
2135
2136static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137			struct btrfs_free_space *bitmap_info)
2138{
2139	/*
2140	 * Normally when this is called, the bitmap is completely empty. However,
2141	 * if we are blowing up the free space cache for one reason or another
2142	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143	 * we may leave stats on the table.
2144	 */
2145	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147			bitmap_info->bitmap_extents;
2148		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2149
2150	}
2151	unlink_free_space(ctl, bitmap_info, true);
2152	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154	ctl->total_bitmaps--;
2155	recalculate_thresholds(ctl);
2156}
2157
2158static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159			      struct btrfs_free_space *bitmap_info,
2160			      u64 *offset, u64 *bytes)
2161{
2162	u64 end;
2163	u64 search_start, search_bytes;
2164	int ret;
2165
2166again:
2167	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2168
2169	/*
2170	 * We need to search for bits in this bitmap.  We could only cover some
2171	 * of the extent in this bitmap thanks to how we add space, so we need
2172	 * to search for as much as it as we can and clear that amount, and then
2173	 * go searching for the next bit.
 
 
 
 
2174	 */
2175	search_start = *offset;
2176	search_bytes = ctl->unit;
2177	search_bytes = min(search_bytes, end - search_start + 1);
2178	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179			    false);
2180	if (ret < 0 || search_start != *offset)
2181		return -EINVAL;
2182
2183	/* We may have found more bits than what we need */
2184	search_bytes = min(search_bytes, *bytes);
2185
2186	/* Cannot clear past the end of the bitmap */
2187	search_bytes = min(search_bytes, end - search_start + 1);
 
 
2188
2189	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190	*offset += search_bytes;
2191	*bytes -= search_bytes;
 
 
 
 
 
2192
2193	if (*bytes) {
2194		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195		if (!bitmap_info->bytes)
2196			free_bitmap(ctl, bitmap_info);
2197
2198		/*
2199		 * no entry after this bitmap, but we still have bytes to
2200		 * remove, so something has gone wrong.
2201		 */
2202		if (!next)
2203			return -EINVAL;
2204
2205		bitmap_info = rb_entry(next, struct btrfs_free_space,
2206				       offset_index);
2207
2208		/*
2209		 * if the next entry isn't a bitmap we need to return to let the
2210		 * extent stuff do its work.
2211		 */
2212		if (!bitmap_info->bitmap)
2213			return -EAGAIN;
2214
2215		/*
2216		 * Ok the next item is a bitmap, but it may not actually hold
2217		 * the information for the rest of this free space stuff, so
2218		 * look for it, and if we don't find it return so we can try
2219		 * everything over again.
2220		 */
2221		search_start = *offset;
2222		search_bytes = ctl->unit;
2223		ret = search_bitmap(ctl, bitmap_info, &search_start,
2224				    &search_bytes, false);
2225		if (ret < 0 || search_start != *offset)
2226			return -EAGAIN;
2227
2228		goto again;
2229	} else if (!bitmap_info->bytes)
2230		free_bitmap(ctl, bitmap_info);
2231
2232	return 0;
2233}
2234
2235static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236			       struct btrfs_free_space *info, u64 offset,
2237			       u64 bytes, enum btrfs_trim_state trim_state)
2238{
2239	u64 bytes_to_set = 0;
2240	u64 end;
2241
2242	/*
2243	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2244	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2245	 */
2246	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247		if (btrfs_free_space_trimmed(info)) {
2248			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249				info->bitmap_extents;
2250			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2251		}
2252		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2253	}
2254
2255	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2256
2257	bytes_to_set = min(end - offset, bytes);
2258
2259	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2260
2261	return bytes_to_set;
2262
2263}
2264
2265static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266		      struct btrfs_free_space *info)
2267{
2268	struct btrfs_block_group *block_group = ctl->block_group;
2269	struct btrfs_fs_info *fs_info = block_group->fs_info;
2270	bool forced = false;
2271
2272#ifdef CONFIG_BTRFS_DEBUG
2273	if (btrfs_should_fragment_free_space(block_group))
2274		forced = true;
2275#endif
2276
2277	/* This is a way to reclaim large regions from the bitmaps. */
2278	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279		return false;
2280
2281	/*
2282	 * If we are below the extents threshold then we can add this as an
2283	 * extent, and don't have to deal with the bitmap
2284	 */
2285	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2286		/*
2287		 * If this block group has some small extents we don't want to
2288		 * use up all of our free slots in the cache with them, we want
2289		 * to reserve them to larger extents, however if we have plenty
2290		 * of cache left then go ahead an dadd them, no sense in adding
2291		 * the overhead of a bitmap if we don't have to.
2292		 */
2293		if (info->bytes <= fs_info->sectorsize * 8) {
2294			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295				return false;
2296		} else {
2297			return false;
2298		}
2299	}
2300
2301	/*
2302	 * The original block groups from mkfs can be really small, like 8
2303	 * megabytes, so don't bother with a bitmap for those entries.  However
2304	 * some block groups can be smaller than what a bitmap would cover but
2305	 * are still large enough that they could overflow the 32k memory limit,
2306	 * so allow those block groups to still be allowed to have a bitmap
2307	 * entry.
2308	 */
2309	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
 
2310		return false;
2311
2312	return true;
2313}
2314
2315static const struct btrfs_free_space_op free_space_op = {
 
2316	.use_bitmap		= use_bitmap,
2317};
2318
2319static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320			      struct btrfs_free_space *info)
2321{
2322	struct btrfs_free_space *bitmap_info;
2323	struct btrfs_block_group *block_group = NULL;
2324	int added = 0;
2325	u64 bytes, offset, bytes_added;
2326	enum btrfs_trim_state trim_state;
2327	int ret;
2328
2329	bytes = info->bytes;
2330	offset = info->offset;
2331	trim_state = info->trim_state;
2332
2333	if (!ctl->op->use_bitmap(ctl, info))
2334		return 0;
2335
2336	if (ctl->op == &free_space_op)
2337		block_group = ctl->block_group;
2338again:
2339	/*
2340	 * Since we link bitmaps right into the cluster we need to see if we
2341	 * have a cluster here, and if so and it has our bitmap we need to add
2342	 * the free space to that bitmap.
2343	 */
2344	if (block_group && !list_empty(&block_group->cluster_list)) {
2345		struct btrfs_free_cluster *cluster;
2346		struct rb_node *node;
2347		struct btrfs_free_space *entry;
2348
2349		cluster = list_entry(block_group->cluster_list.next,
2350				     struct btrfs_free_cluster,
2351				     block_group_list);
2352		spin_lock(&cluster->lock);
2353		node = rb_first(&cluster->root);
2354		if (!node) {
2355			spin_unlock(&cluster->lock);
2356			goto no_cluster_bitmap;
2357		}
2358
2359		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360		if (!entry->bitmap) {
2361			spin_unlock(&cluster->lock);
2362			goto no_cluster_bitmap;
2363		}
2364
2365		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367							  bytes, trim_state);
2368			bytes -= bytes_added;
2369			offset += bytes_added;
2370		}
2371		spin_unlock(&cluster->lock);
2372		if (!bytes) {
2373			ret = 1;
2374			goto out;
2375		}
2376	}
2377
2378no_cluster_bitmap:
2379	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380					 1, 0);
2381	if (!bitmap_info) {
2382		ASSERT(added == 0);
2383		goto new_bitmap;
2384	}
2385
2386	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387					  trim_state);
2388	bytes -= bytes_added;
2389	offset += bytes_added;
2390	added = 0;
2391
2392	if (!bytes) {
2393		ret = 1;
2394		goto out;
2395	} else
2396		goto again;
2397
2398new_bitmap:
2399	if (info && info->bitmap) {
2400		add_new_bitmap(ctl, info, offset);
2401		added = 1;
2402		info = NULL;
2403		goto again;
2404	} else {
2405		spin_unlock(&ctl->tree_lock);
2406
2407		/* no pre-allocated info, allocate a new one */
2408		if (!info) {
2409			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410						 GFP_NOFS);
2411			if (!info) {
2412				spin_lock(&ctl->tree_lock);
2413				ret = -ENOMEM;
2414				goto out;
2415			}
2416		}
2417
2418		/* allocate the bitmap */
2419		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420						 GFP_NOFS);
2421		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422		spin_lock(&ctl->tree_lock);
2423		if (!info->bitmap) {
2424			ret = -ENOMEM;
2425			goto out;
2426		}
2427		goto again;
2428	}
2429
2430out:
2431	if (info) {
2432		if (info->bitmap)
2433			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434					info->bitmap);
2435		kmem_cache_free(btrfs_free_space_cachep, info);
2436	}
2437
2438	return ret;
2439}
2440
2441/*
2442 * Free space merging rules:
2443 *  1) Merge trimmed areas together
2444 *  2) Let untrimmed areas coalesce with trimmed areas
2445 *  3) Always pull neighboring regions from bitmaps
2446 *
2447 * The above rules are for when we merge free space based on btrfs_trim_state.
2448 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449 * same reason: to promote larger extent regions which makes life easier for
2450 * find_free_extent().  Rule 2 enables coalescing based on the common path
2451 * being returning free space from btrfs_finish_extent_commit().  So when free
2452 * space is trimmed, it will prevent aggregating trimmed new region and
2453 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2454 * and provide find_free_extent() with the largest extents possible hoping for
2455 * the reuse path.
2456 */
2457static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458			  struct btrfs_free_space *info, bool update_stat)
2459{
2460	struct btrfs_free_space *left_info = NULL;
2461	struct btrfs_free_space *right_info;
2462	bool merged = false;
2463	u64 offset = info->offset;
2464	u64 bytes = info->bytes;
2465	const bool is_trimmed = btrfs_free_space_trimmed(info);
2466	struct rb_node *right_prev = NULL;
2467
2468	/*
2469	 * first we want to see if there is free space adjacent to the range we
2470	 * are adding, if there is remove that struct and add a new one to
2471	 * cover the entire range
2472	 */
2473	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474	if (right_info)
2475		right_prev = rb_prev(&right_info->offset_index);
2476
2477	if (right_prev)
2478		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479	else if (!right_info)
2480		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2481
2482	/* See try_merge_free_space() comment. */
2483	if (right_info && !right_info->bitmap &&
2484	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485		unlink_free_space(ctl, right_info, update_stat);
 
2486		info->bytes += right_info->bytes;
2487		kmem_cache_free(btrfs_free_space_cachep, right_info);
2488		merged = true;
2489	}
2490
2491	/* See try_merge_free_space() comment. */
2492	if (left_info && !left_info->bitmap &&
2493	    left_info->offset + left_info->bytes == offset &&
2494	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495		unlink_free_space(ctl, left_info, update_stat);
 
 
2496		info->offset = left_info->offset;
2497		info->bytes += left_info->bytes;
2498		kmem_cache_free(btrfs_free_space_cachep, left_info);
2499		merged = true;
2500	}
2501
2502	return merged;
2503}
2504
2505static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506				     struct btrfs_free_space *info,
2507				     bool update_stat)
2508{
2509	struct btrfs_free_space *bitmap;
2510	unsigned long i;
2511	unsigned long j;
2512	const u64 end = info->offset + info->bytes;
2513	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514	u64 bytes;
2515
2516	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517	if (!bitmap)
2518		return false;
2519
2520	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522	if (j == i)
2523		return false;
2524	bytes = (j - i) * ctl->unit;
2525	info->bytes += bytes;
2526
2527	/* See try_merge_free_space() comment. */
2528	if (!btrfs_free_space_trimmed(bitmap))
2529		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2530
2531	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2532
2533	if (!bitmap->bytes)
2534		free_bitmap(ctl, bitmap);
2535
2536	return true;
2537}
2538
2539static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540				       struct btrfs_free_space *info,
2541				       bool update_stat)
2542{
2543	struct btrfs_free_space *bitmap;
2544	u64 bitmap_offset;
2545	unsigned long i;
2546	unsigned long j;
2547	unsigned long prev_j;
2548	u64 bytes;
2549
2550	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551	/* If we're on a boundary, try the previous logical bitmap. */
2552	if (bitmap_offset == info->offset) {
2553		if (info->offset == 0)
2554			return false;
2555		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2556	}
2557
2558	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559	if (!bitmap)
2560		return false;
2561
2562	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563	j = 0;
2564	prev_j = (unsigned long)-1;
2565	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566		if (j > i)
2567			break;
2568		prev_j = j;
2569	}
2570	if (prev_j == i)
2571		return false;
2572
2573	if (prev_j == (unsigned long)-1)
2574		bytes = (i + 1) * ctl->unit;
2575	else
2576		bytes = (i - prev_j) * ctl->unit;
2577
2578	info->offset -= bytes;
2579	info->bytes += bytes;
2580
2581	/* See try_merge_free_space() comment. */
2582	if (!btrfs_free_space_trimmed(bitmap))
2583		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584
2585	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2586
2587	if (!bitmap->bytes)
2588		free_bitmap(ctl, bitmap);
2589
2590	return true;
2591}
2592
2593/*
2594 * We prefer always to allocate from extent entries, both for clustered and
2595 * non-clustered allocation requests. So when attempting to add a new extent
2596 * entry, try to see if there's adjacent free space in bitmap entries, and if
2597 * there is, migrate that space from the bitmaps to the extent.
2598 * Like this we get better chances of satisfying space allocation requests
2599 * because we attempt to satisfy them based on a single cache entry, and never
2600 * on 2 or more entries - even if the entries represent a contiguous free space
2601 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602 * ends).
2603 */
2604static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605			      struct btrfs_free_space *info,
2606			      bool update_stat)
2607{
2608	/*
2609	 * Only work with disconnected entries, as we can change their offset,
2610	 * and must be extent entries.
2611	 */
2612	ASSERT(!info->bitmap);
2613	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2614
2615	if (ctl->total_bitmaps > 0) {
2616		bool stole_end;
2617		bool stole_front = false;
2618
2619		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620		if (ctl->total_bitmaps > 0)
2621			stole_front = steal_from_bitmap_to_front(ctl, info,
2622								 update_stat);
2623
2624		if (stole_end || stole_front)
2625			try_merge_free_space(ctl, info, update_stat);
2626	}
2627}
2628
2629static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2630			   u64 offset, u64 bytes,
2631			   enum btrfs_trim_state trim_state)
2632{
2633	struct btrfs_fs_info *fs_info = block_group->fs_info;
2634	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635	struct btrfs_free_space *info;
2636	int ret = 0;
2637	u64 filter_bytes = bytes;
2638
2639	ASSERT(!btrfs_is_zoned(fs_info));
2640
2641	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642	if (!info)
2643		return -ENOMEM;
2644
2645	info->offset = offset;
2646	info->bytes = bytes;
2647	info->trim_state = trim_state;
2648	RB_CLEAR_NODE(&info->offset_index);
2649	RB_CLEAR_NODE(&info->bytes_index);
2650
2651	spin_lock(&ctl->tree_lock);
2652
2653	if (try_merge_free_space(ctl, info, true))
2654		goto link;
2655
2656	/*
2657	 * There was no extent directly to the left or right of this new
2658	 * extent then we know we're going to have to allocate a new extent, so
2659	 * before we do that see if we need to drop this into a bitmap
2660	 */
2661	ret = insert_into_bitmap(ctl, info);
2662	if (ret < 0) {
2663		goto out;
2664	} else if (ret) {
2665		ret = 0;
2666		goto out;
2667	}
2668link:
2669	/*
2670	 * Only steal free space from adjacent bitmaps if we're sure we're not
2671	 * going to add the new free space to existing bitmap entries - because
2672	 * that would mean unnecessary work that would be reverted. Therefore
2673	 * attempt to steal space from bitmaps if we're adding an extent entry.
2674	 */
2675	steal_from_bitmap(ctl, info, true);
2676
2677	filter_bytes = max(filter_bytes, info->bytes);
2678
2679	ret = link_free_space(ctl, info);
2680	if (ret)
2681		kmem_cache_free(btrfs_free_space_cachep, info);
2682out:
2683	btrfs_discard_update_discardable(block_group);
2684	spin_unlock(&ctl->tree_lock);
2685
2686	if (ret) {
2687		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688		ASSERT(ret != -EEXIST);
2689	}
2690
2691	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692		btrfs_discard_check_filter(block_group, filter_bytes);
2693		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694	}
2695
2696	return ret;
2697}
2698
2699static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700					u64 bytenr, u64 size, bool used)
2701{
2702	struct btrfs_space_info *sinfo = block_group->space_info;
2703	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704	u64 offset = bytenr - block_group->start;
2705	u64 to_free, to_unusable;
2706	int bg_reclaim_threshold = 0;
2707	bool initial;
2708	u64 reclaimable_unusable;
2709
2710	spin_lock(&block_group->lock);
2711
2712	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714	if (!initial)
2715		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2716
2717	if (!used)
2718		to_free = size;
2719	else if (initial)
2720		to_free = block_group->zone_capacity;
2721	else if (offset >= block_group->alloc_offset)
2722		to_free = size;
2723	else if (offset + size <= block_group->alloc_offset)
2724		to_free = 0;
2725	else
2726		to_free = offset + size - block_group->alloc_offset;
2727	to_unusable = size - to_free;
2728
2729	spin_lock(&ctl->tree_lock);
2730	ctl->free_space += to_free;
2731	spin_unlock(&ctl->tree_lock);
2732	/*
2733	 * If the block group is read-only, we should account freed space into
2734	 * bytes_readonly.
2735	 */
2736	if (!block_group->ro) {
2737		block_group->zone_unusable += to_unusable;
2738		WARN_ON(block_group->zone_unusable > block_group->length);
2739	}
2740	if (!used) {
2741		block_group->alloc_offset -= size;
2742	}
2743
2744	reclaimable_unusable = block_group->zone_unusable -
2745			       (block_group->length - block_group->zone_capacity);
2746	/* All the region is now unusable. Mark it as unused and reclaim */
2747	if (block_group->zone_unusable == block_group->length) {
2748		btrfs_mark_bg_unused(block_group);
2749	} else if (bg_reclaim_threshold &&
2750		   reclaimable_unusable >=
2751		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752		btrfs_mark_bg_to_reclaim(block_group);
2753	}
2754
2755	spin_unlock(&block_group->lock);
2756
2757	return 0;
2758}
2759
2760int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761			 u64 bytenr, u64 size)
2762{
2763	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2764
2765	if (btrfs_is_zoned(block_group->fs_info))
2766		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767						    true);
2768
2769	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771
2772	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773}
2774
2775int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776				u64 bytenr, u64 size)
2777{
2778	if (btrfs_is_zoned(block_group->fs_info))
2779		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780						    false);
2781
2782	return btrfs_add_free_space(block_group, bytenr, size);
2783}
2784
2785/*
2786 * This is a subtle distinction because when adding free space back in general,
2787 * we want it to be added as untrimmed for async. But in the case where we add
2788 * it on loading of a block group, we want to consider it trimmed.
2789 */
2790int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791				       u64 bytenr, u64 size)
2792{
2793	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2794
2795	if (btrfs_is_zoned(block_group->fs_info))
2796		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797						    true);
2798
2799	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2802
2803	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2804}
2805
2806int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807			    u64 offset, u64 bytes)
2808{
2809	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810	struct btrfs_free_space *info;
2811	int ret;
2812	bool re_search = false;
2813
2814	if (btrfs_is_zoned(block_group->fs_info)) {
2815		/*
2816		 * This can happen with conventional zones when replaying log.
2817		 * Since the allocation info of tree-log nodes are not recorded
2818		 * to the extent-tree, calculate_alloc_pointer() failed to
2819		 * advance the allocation pointer after last allocated tree log
2820		 * node blocks.
2821		 *
2822		 * This function is called from
2823		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824		 * Advance the pointer not to overwrite the tree-log nodes.
2825		 */
2826		if (block_group->start + block_group->alloc_offset <
2827		    offset + bytes) {
2828			block_group->alloc_offset =
2829				offset + bytes - block_group->start;
2830		}
2831		return 0;
2832	}
2833
2834	spin_lock(&ctl->tree_lock);
2835
2836again:
2837	ret = 0;
2838	if (!bytes)
2839		goto out_lock;
2840
2841	info = tree_search_offset(ctl, offset, 0, 0);
2842	if (!info) {
2843		/*
2844		 * oops didn't find an extent that matched the space we wanted
2845		 * to remove, look for a bitmap instead
2846		 */
2847		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848					  1, 0);
2849		if (!info) {
2850			/*
2851			 * If we found a partial bit of our free space in a
2852			 * bitmap but then couldn't find the other part this may
2853			 * be a problem, so WARN about it.
2854			 */
2855			WARN_ON(re_search);
2856			goto out_lock;
2857		}
2858	}
2859
2860	re_search = false;
2861	if (!info->bitmap) {
2862		unlink_free_space(ctl, info, true);
2863		if (offset == info->offset) {
2864			u64 to_free = min(bytes, info->bytes);
2865
2866			info->bytes -= to_free;
2867			info->offset += to_free;
2868			if (info->bytes) {
2869				ret = link_free_space(ctl, info);
2870				WARN_ON(ret);
2871			} else {
2872				kmem_cache_free(btrfs_free_space_cachep, info);
2873			}
2874
2875			offset += to_free;
2876			bytes -= to_free;
2877			goto again;
2878		} else {
2879			u64 old_end = info->bytes + info->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880
2881			info->bytes = offset - info->offset;
 
2882			ret = link_free_space(ctl, info);
2883			WARN_ON(ret);
2884			if (ret)
2885				goto out_lock;
2886
2887			/* Not enough bytes in this entry to satisfy us */
2888			if (old_end < offset + bytes) {
2889				bytes -= old_end - offset;
2890				offset = old_end;
2891				goto again;
2892			} else if (old_end == offset + bytes) {
2893				/* all done */
2894				goto out_lock;
2895			}
2896			spin_unlock(&ctl->tree_lock);
2897
2898			ret = __btrfs_add_free_space(block_group,
2899						     offset + bytes,
2900						     old_end - (offset + bytes),
2901						     info->trim_state);
2902			WARN_ON(ret);
2903			goto out;
2904		}
 
 
 
 
 
 
 
 
 
2905	}
2906
2907	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908	if (ret == -EAGAIN) {
2909		re_search = true;
2910		goto again;
2911	}
2912out_lock:
2913	btrfs_discard_update_discardable(block_group);
2914	spin_unlock(&ctl->tree_lock);
2915out:
2916	return ret;
2917}
2918
2919void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920			   u64 bytes)
2921{
2922	struct btrfs_fs_info *fs_info = block_group->fs_info;
2923	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924	struct btrfs_free_space *info;
2925	struct rb_node *n;
2926	int count = 0;
2927
2928	/*
2929	 * Zoned btrfs does not use free space tree and cluster. Just print
2930	 * out the free space after the allocation offset.
2931	 */
2932	if (btrfs_is_zoned(fs_info)) {
2933		btrfs_info(fs_info, "free space %llu active %d",
2934			   block_group->zone_capacity - block_group->alloc_offset,
2935			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936				    &block_group->runtime_flags));
2937		return;
2938	}
2939
2940	spin_lock(&ctl->tree_lock);
2941	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942		info = rb_entry(n, struct btrfs_free_space, offset_index);
2943		if (info->bytes >= bytes && !block_group->ro)
2944			count++;
2945		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946			   info->offset, info->bytes, str_yes_no(info->bitmap));
2947	}
2948	spin_unlock(&ctl->tree_lock);
2949	btrfs_info(fs_info, "block group has cluster?: %s",
2950	       str_no_yes(list_empty(&block_group->cluster_list)));
2951	btrfs_info(fs_info,
2952		   "%d free space entries at or bigger than %llu bytes",
2953		   count, bytes);
2954}
2955
2956void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957			       struct btrfs_free_space_ctl *ctl)
2958{
2959	struct btrfs_fs_info *fs_info = block_group->fs_info;
2960
2961	spin_lock_init(&ctl->tree_lock);
2962	ctl->unit = fs_info->sectorsize;
2963	ctl->start = block_group->start;
2964	ctl->block_group = block_group;
2965	ctl->op = &free_space_op;
2966	ctl->free_space_bytes = RB_ROOT_CACHED;
2967	INIT_LIST_HEAD(&ctl->trimming_ranges);
2968	mutex_init(&ctl->cache_writeout_mutex);
2969
2970	/*
2971	 * we only want to have 32k of ram per block group for keeping
2972	 * track of free space, and if we pass 1/2 of that we want to
2973	 * start converting things over to using bitmaps
2974	 */
2975	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
 
2976}
2977
2978/*
2979 * for a given cluster, put all of its extents back into the free
2980 * space cache.  If the block group passed doesn't match the block group
2981 * pointed to by the cluster, someone else raced in and freed the
2982 * cluster already.  In that case, we just return without changing anything
2983 */
2984static void __btrfs_return_cluster_to_free_space(
2985			     struct btrfs_block_group *block_group,
 
2986			     struct btrfs_free_cluster *cluster)
2987{
2988	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
2989	struct rb_node *node;
2990
2991	lockdep_assert_held(&ctl->tree_lock);
2992
2993	spin_lock(&cluster->lock);
2994	if (cluster->block_group != block_group) {
2995		spin_unlock(&cluster->lock);
2996		return;
2997	}
2998
2999	cluster->block_group = NULL;
3000	cluster->window_start = 0;
3001	list_del_init(&cluster->block_group_list);
3002
3003	node = rb_first(&cluster->root);
3004	while (node) {
3005		struct btrfs_free_space *entry;
3006
3007		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008		node = rb_next(&entry->offset_index);
3009		rb_erase(&entry->offset_index, &cluster->root);
3010		RB_CLEAR_NODE(&entry->offset_index);
3011
3012		if (!entry->bitmap) {
3013			/* Merging treats extents as if they were new */
3014			if (!btrfs_free_space_trimmed(entry)) {
3015				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017					entry->bytes;
3018			}
3019
 
 
3020			try_merge_free_space(ctl, entry, false);
3021			steal_from_bitmap(ctl, entry, false);
3022
3023			/* As we insert directly, update these statistics */
3024			if (!btrfs_free_space_trimmed(entry)) {
3025				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027					entry->bytes;
3028			}
3029		}
3030		tree_insert_offset(ctl, NULL, entry);
3031		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032			      entry_less);
3033	}
3034	cluster->root = RB_ROOT;
 
 
3035	spin_unlock(&cluster->lock);
3036	btrfs_put_block_group(block_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037}
3038
3039void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3040{
3041	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042	struct btrfs_free_cluster *cluster;
3043	struct list_head *head;
3044
3045	spin_lock(&ctl->tree_lock);
3046	while ((head = block_group->cluster_list.next) !=
3047	       &block_group->cluster_list) {
3048		cluster = list_entry(head, struct btrfs_free_cluster,
3049				     block_group_list);
3050
3051		WARN_ON(cluster->block_group != block_group);
3052		__btrfs_return_cluster_to_free_space(block_group, cluster);
3053
3054		cond_resched_lock(&ctl->tree_lock);
3055	}
3056	__btrfs_remove_free_space_cache(ctl);
3057	btrfs_discard_update_discardable(block_group);
3058	spin_unlock(&ctl->tree_lock);
3059
3060}
3061
3062/*
3063 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3064 */
3065bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3066{
3067	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068	struct btrfs_free_space *info;
3069	struct rb_node *node;
3070	bool ret = true;
3071
3072	spin_lock(&ctl->tree_lock);
3073	node = rb_first(&ctl->free_space_offset);
3074
3075	while (node) {
3076		info = rb_entry(node, struct btrfs_free_space, offset_index);
3077
3078		if (!btrfs_free_space_trimmed(info)) {
3079			ret = false;
3080			break;
3081		}
3082
3083		node = rb_next(node);
3084	}
3085
3086	spin_unlock(&ctl->tree_lock);
3087	return ret;
3088}
3089
3090u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091			       u64 offset, u64 bytes, u64 empty_size,
3092			       u64 *max_extent_size)
3093{
3094	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095	struct btrfs_discard_ctl *discard_ctl =
3096					&block_group->fs_info->discard_ctl;
3097	struct btrfs_free_space *entry = NULL;
3098	u64 bytes_search = bytes + empty_size;
3099	u64 ret = 0;
3100	u64 align_gap = 0;
3101	u64 align_gap_len = 0;
3102	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103	bool use_bytes_index = (offset == block_group->start);
3104
3105	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3106
3107	spin_lock(&ctl->tree_lock);
3108	entry = find_free_space(ctl, &offset, &bytes_search,
3109				block_group->full_stripe_len, max_extent_size,
3110				use_bytes_index);
3111	if (!entry)
3112		goto out;
3113
3114	ret = offset;
3115	if (entry->bitmap) {
3116		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3117
3118		if (!btrfs_free_space_trimmed(entry))
3119			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3120
3121		if (!entry->bytes)
3122			free_bitmap(ctl, entry);
3123	} else {
3124		unlink_free_space(ctl, entry, true);
3125		align_gap_len = offset - entry->offset;
3126		align_gap = entry->offset;
3127		align_gap_trim_state = entry->trim_state;
3128
3129		if (!btrfs_free_space_trimmed(entry))
3130			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3131
3132		entry->offset = offset + bytes;
3133		WARN_ON(entry->bytes < bytes + align_gap_len);
3134
3135		entry->bytes -= bytes + align_gap_len;
3136		if (!entry->bytes)
3137			kmem_cache_free(btrfs_free_space_cachep, entry);
3138		else
3139			link_free_space(ctl, entry);
3140	}
 
3141out:
3142	btrfs_discard_update_discardable(block_group);
3143	spin_unlock(&ctl->tree_lock);
3144
3145	if (align_gap_len)
3146		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3147				       align_gap_trim_state);
3148	return ret;
3149}
3150
3151/*
3152 * given a cluster, put all of its extents back into the free space
3153 * cache.  If a block group is passed, this function will only free
3154 * a cluster that belongs to the passed block group.
3155 *
3156 * Otherwise, it'll get a reference on the block group pointed to by the
3157 * cluster and remove the cluster from it.
3158 */
3159void btrfs_return_cluster_to_free_space(
3160			       struct btrfs_block_group *block_group,
3161			       struct btrfs_free_cluster *cluster)
3162{
3163	struct btrfs_free_space_ctl *ctl;
 
3164
3165	/* first, get a safe pointer to the block group */
3166	spin_lock(&cluster->lock);
3167	if (!block_group) {
3168		block_group = cluster->block_group;
3169		if (!block_group) {
3170			spin_unlock(&cluster->lock);
3171			return;
3172		}
3173	} else if (cluster->block_group != block_group) {
3174		/* someone else has already freed it don't redo their work */
3175		spin_unlock(&cluster->lock);
3176		return;
3177	}
3178	btrfs_get_block_group(block_group);
3179	spin_unlock(&cluster->lock);
3180
3181	ctl = block_group->free_space_ctl;
3182
3183	/* now return any extents the cluster had on it */
3184	spin_lock(&ctl->tree_lock);
3185	__btrfs_return_cluster_to_free_space(block_group, cluster);
3186	spin_unlock(&ctl->tree_lock);
3187
3188	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3189
3190	/* finally drop our ref */
3191	btrfs_put_block_group(block_group);
 
3192}
3193
3194static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195				   struct btrfs_free_cluster *cluster,
3196				   struct btrfs_free_space *entry,
3197				   u64 bytes, u64 min_start,
3198				   u64 *max_extent_size)
3199{
3200	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201	int err;
3202	u64 search_start = cluster->window_start;
3203	u64 search_bytes = bytes;
3204	u64 ret = 0;
3205
3206	search_start = min_start;
3207	search_bytes = bytes;
3208
3209	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210	if (err) {
3211		*max_extent_size = max(get_max_extent_size(entry),
3212				       *max_extent_size);
3213		return 0;
3214	}
3215
3216	ret = search_start;
3217	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3218
3219	return ret;
3220}
3221
3222/*
3223 * given a cluster, try to allocate 'bytes' from it, returns 0
3224 * if it couldn't find anything suitably large, or a logical disk offset
3225 * if things worked out
3226 */
3227u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228			     struct btrfs_free_cluster *cluster, u64 bytes,
3229			     u64 min_start, u64 *max_extent_size)
3230{
3231	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232	struct btrfs_discard_ctl *discard_ctl =
3233					&block_group->fs_info->discard_ctl;
3234	struct btrfs_free_space *entry = NULL;
3235	struct rb_node *node;
3236	u64 ret = 0;
3237
3238	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3239
3240	spin_lock(&cluster->lock);
3241	if (bytes > cluster->max_size)
3242		goto out;
3243
3244	if (cluster->block_group != block_group)
3245		goto out;
3246
3247	node = rb_first(&cluster->root);
3248	if (!node)
3249		goto out;
3250
3251	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252	while (1) {
3253		if (entry->bytes < bytes)
3254			*max_extent_size = max(get_max_extent_size(entry),
3255					       *max_extent_size);
3256
3257		if (entry->bytes < bytes ||
3258		    (!entry->bitmap && entry->offset < min_start)) {
3259			node = rb_next(&entry->offset_index);
3260			if (!node)
3261				break;
3262			entry = rb_entry(node, struct btrfs_free_space,
3263					 offset_index);
3264			continue;
3265		}
3266
3267		if (entry->bitmap) {
3268			ret = btrfs_alloc_from_bitmap(block_group,
3269						      cluster, entry, bytes,
3270						      cluster->window_start,
3271						      max_extent_size);
3272			if (ret == 0) {
3273				node = rb_next(&entry->offset_index);
3274				if (!node)
3275					break;
3276				entry = rb_entry(node, struct btrfs_free_space,
3277						 offset_index);
3278				continue;
3279			}
3280			cluster->window_start += bytes;
3281		} else {
3282			ret = entry->offset;
3283
3284			entry->offset += bytes;
3285			entry->bytes -= bytes;
3286		}
3287
 
 
3288		break;
3289	}
3290out:
3291	spin_unlock(&cluster->lock);
3292
3293	if (!ret)
3294		return 0;
3295
3296	spin_lock(&ctl->tree_lock);
3297
3298	if (!btrfs_free_space_trimmed(entry))
3299		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3300
3301	ctl->free_space -= bytes;
3302	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3304
3305	spin_lock(&cluster->lock);
3306	if (entry->bytes == 0) {
3307		rb_erase(&entry->offset_index, &cluster->root);
3308		ctl->free_extents--;
3309		if (entry->bitmap) {
3310			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311					entry->bitmap);
3312			ctl->total_bitmaps--;
3313			recalculate_thresholds(ctl);
3314		} else if (!btrfs_free_space_trimmed(entry)) {
3315			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3316		}
3317		kmem_cache_free(btrfs_free_space_cachep, entry);
3318	}
3319
3320	spin_unlock(&cluster->lock);
3321	spin_unlock(&ctl->tree_lock);
3322
3323	return ret;
3324}
3325
3326static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327				struct btrfs_free_space *entry,
3328				struct btrfs_free_cluster *cluster,
3329				u64 offset, u64 bytes,
3330				u64 cont1_bytes, u64 min_bytes)
3331{
3332	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333	unsigned long next_zero;
3334	unsigned long i;
3335	unsigned long want_bits;
3336	unsigned long min_bits;
3337	unsigned long found_bits;
3338	unsigned long max_bits = 0;
3339	unsigned long start = 0;
3340	unsigned long total_found = 0;
3341	int ret;
 
3342
3343	lockdep_assert_held(&ctl->tree_lock);
3344
3345	i = offset_to_bit(entry->offset, ctl->unit,
3346			  max_t(u64, offset, entry->offset));
3347	want_bits = bytes_to_bits(bytes, ctl->unit);
3348	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3349
3350	/*
3351	 * Don't bother looking for a cluster in this bitmap if it's heavily
3352	 * fragmented.
3353	 */
3354	if (entry->max_extent_size &&
3355	    entry->max_extent_size < cont1_bytes)
3356		return -ENOSPC;
3357again:
3358	found_bits = 0;
3359	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
 
 
3360		next_zero = find_next_zero_bit(entry->bitmap,
3361					       BITS_PER_BITMAP, i);
3362		if (next_zero - i >= min_bits) {
3363			found_bits = next_zero - i;
3364			if (found_bits > max_bits)
3365				max_bits = found_bits;
3366			break;
3367		}
3368		if (next_zero - i > max_bits)
3369			max_bits = next_zero - i;
3370		i = next_zero;
3371	}
3372
3373	if (!found_bits) {
3374		entry->max_extent_size = (u64)max_bits * ctl->unit;
3375		return -ENOSPC;
3376	}
3377
3378	if (!total_found) {
3379		start = i;
3380		cluster->max_size = 0;
3381	}
3382
3383	total_found += found_bits;
3384
3385	if (cluster->max_size < found_bits * ctl->unit)
3386		cluster->max_size = found_bits * ctl->unit;
3387
3388	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389		i = next_zero + 1;
 
 
 
 
 
3390		goto again;
3391	}
3392
3393	cluster->window_start = start * ctl->unit + entry->offset;
 
3394	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3396
3397	/*
3398	 * We need to know if we're currently on the normal space index when we
3399	 * manipulate the bitmap so that we know we need to remove and re-insert
3400	 * it into the space_index tree.  Clear the bytes_index node here so the
3401	 * bitmap manipulation helpers know not to mess with the space_index
3402	 * until this bitmap entry is added back into the normal cache.
3403	 */
3404	RB_CLEAR_NODE(&entry->bytes_index);
3405
3406	ret = tree_insert_offset(ctl, cluster, entry);
3407	ASSERT(!ret); /* -EEXIST; Logic error */
3408
3409	trace_btrfs_setup_cluster(block_group, cluster,
3410				  total_found * ctl->unit, 1);
3411	return 0;
3412}
3413
3414/*
3415 * This searches the block group for just extents to fill the cluster with.
3416 * Try to find a cluster with at least bytes total bytes, at least one
3417 * extent of cont1_bytes, and other clusters of at least min_bytes.
3418 */
3419static noinline int
3420setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421			struct btrfs_free_cluster *cluster,
3422			struct list_head *bitmaps, u64 offset, u64 bytes,
3423			u64 cont1_bytes, u64 min_bytes)
3424{
3425	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426	struct btrfs_free_space *first = NULL;
3427	struct btrfs_free_space *entry = NULL;
 
3428	struct btrfs_free_space *last;
3429	struct rb_node *node;
 
3430	u64 window_free;
3431	u64 max_extent;
3432	u64 total_size = 0;
3433
3434	lockdep_assert_held(&ctl->tree_lock);
3435
3436	entry = tree_search_offset(ctl, offset, 0, 1);
3437	if (!entry)
3438		return -ENOSPC;
3439
3440	/*
3441	 * We don't want bitmaps, so just move along until we find a normal
3442	 * extent entry.
3443	 */
3444	while (entry->bitmap || entry->bytes < min_bytes) {
3445		if (entry->bitmap && list_empty(&entry->list))
3446			list_add_tail(&entry->list, bitmaps);
3447		node = rb_next(&entry->offset_index);
3448		if (!node)
3449			return -ENOSPC;
3450		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451	}
3452
 
3453	window_free = entry->bytes;
3454	max_extent = entry->bytes;
3455	first = entry;
3456	last = entry;
 
3457
3458	for (node = rb_next(&entry->offset_index); node;
3459	     node = rb_next(&entry->offset_index)) {
 
 
3460		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3461
3462		if (entry->bitmap) {
3463			if (list_empty(&entry->list))
3464				list_add_tail(&entry->list, bitmaps);
3465			continue;
3466		}
3467
3468		if (entry->bytes < min_bytes)
3469			continue;
3470
3471		last = entry;
3472		window_free += entry->bytes;
3473		if (entry->bytes > max_extent)
 
 
 
 
3474			max_extent = entry->bytes;
 
 
 
 
 
 
 
3475	}
3476
3477	if (window_free < bytes || max_extent < cont1_bytes)
3478		return -ENOSPC;
3479
3480	cluster->window_start = first->offset;
3481
3482	node = &first->offset_index;
3483
3484	/*
3485	 * now we've found our entries, pull them out of the free space
3486	 * cache and put them into the cluster rbtree
3487	 */
3488	do {
3489		int ret;
3490
3491		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492		node = rb_next(&entry->offset_index);
3493		if (entry->bitmap || entry->bytes < min_bytes)
3494			continue;
3495
3496		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498		ret = tree_insert_offset(ctl, cluster, entry);
3499		total_size += entry->bytes;
3500		ASSERT(!ret); /* -EEXIST; Logic error */
3501	} while (node && entry != last);
3502
3503	cluster->max_size = max_extent;
3504	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505	return 0;
3506}
3507
3508/*
3509 * This specifically looks for bitmaps that may work in the cluster, we assume
3510 * that we have already failed to find extents that will work.
3511 */
3512static noinline int
3513setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514		     struct btrfs_free_cluster *cluster,
3515		     struct list_head *bitmaps, u64 offset, u64 bytes,
3516		     u64 cont1_bytes, u64 min_bytes)
3517{
3518	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519	struct btrfs_free_space *entry = NULL;
 
3520	int ret = -ENOSPC;
3521	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3522
3523	if (ctl->total_bitmaps == 0)
3524		return -ENOSPC;
3525
3526	/*
3527	 * The bitmap that covers offset won't be in the list unless offset
3528	 * is just its start offset.
3529	 */
3530	if (!list_empty(bitmaps))
3531		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3532
3533	if (!entry || entry->offset != bitmap_offset) {
3534		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535		if (entry && list_empty(&entry->list))
3536			list_add(&entry->list, bitmaps);
3537	}
3538
3539	list_for_each_entry(entry, bitmaps, list) {
3540		if (entry->bytes < bytes)
3541			continue;
3542		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543					   bytes, cont1_bytes, min_bytes);
3544		if (!ret)
3545			return 0;
3546	}
3547
3548	/*
3549	 * The bitmaps list has all the bitmaps that record free space
3550	 * starting after offset, so no more search is required.
3551	 */
3552	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553}
3554
3555/*
3556 * here we try to find a cluster of blocks in a block group.  The goal
3557 * is to find at least bytes+empty_size.
3558 * We might not find them all in one contiguous area.
3559 *
3560 * returns zero and sets up cluster if things worked out, otherwise
3561 * it returns -enospc
3562 */
3563int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
 
 
3564			     struct btrfs_free_cluster *cluster,
3565			     u64 offset, u64 bytes, u64 empty_size)
3566{
3567	struct btrfs_fs_info *fs_info = block_group->fs_info;
3568	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
3569	struct btrfs_free_space *entry, *tmp;
3570	LIST_HEAD(bitmaps);
3571	u64 min_bytes;
3572	u64 cont1_bytes;
3573	int ret;
3574
3575	/*
3576	 * Choose the minimum extent size we'll require for this
3577	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3578	 * For metadata, allow allocates with smaller extents.  For
3579	 * data, keep it dense.
3580	 */
3581	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582		cont1_bytes = bytes + empty_size;
3583		min_bytes = cont1_bytes;
3584	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585		cont1_bytes = bytes;
3586		min_bytes = fs_info->sectorsize;
3587	} else {
3588		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589		min_bytes = fs_info->sectorsize;
3590	}
 
 
 
 
 
3591
3592	spin_lock(&ctl->tree_lock);
3593
3594	/*
3595	 * If we know we don't have enough space to make a cluster don't even
3596	 * bother doing all the work to try and find one.
3597	 */
3598	if (ctl->free_space < bytes) {
3599		spin_unlock(&ctl->tree_lock);
3600		return -ENOSPC;
3601	}
3602
3603	spin_lock(&cluster->lock);
3604
3605	/* someone already found a cluster, hooray */
3606	if (cluster->block_group) {
3607		ret = 0;
3608		goto out;
3609	}
3610
3611	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612				 min_bytes);
3613
3614	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615				      bytes + empty_size,
3616				      cont1_bytes, min_bytes);
3617	if (ret)
3618		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619					   offset, bytes + empty_size,
3620					   cont1_bytes, min_bytes);
3621
3622	/* Clear our temporary list */
3623	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624		list_del_init(&entry->list);
3625
3626	if (!ret) {
3627		btrfs_get_block_group(block_group);
3628		list_add_tail(&cluster->block_group_list,
3629			      &block_group->cluster_list);
3630		cluster->block_group = block_group;
3631	} else {
3632		trace_btrfs_failed_cluster_setup(block_group);
3633	}
3634out:
3635	spin_unlock(&cluster->lock);
3636	spin_unlock(&ctl->tree_lock);
3637
3638	return ret;
3639}
3640
3641/*
3642 * simple code to zero out a cluster
3643 */
3644void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3645{
3646	spin_lock_init(&cluster->lock);
3647	spin_lock_init(&cluster->refill_lock);
3648	cluster->root = RB_ROOT;
3649	cluster->max_size = 0;
3650	cluster->fragmented = false;
3651	INIT_LIST_HEAD(&cluster->block_group_list);
3652	cluster->block_group = NULL;
3653}
3654
3655static int do_trimming(struct btrfs_block_group *block_group,
3656		       u64 *total_trimmed, u64 start, u64 bytes,
3657		       u64 reserved_start, u64 reserved_bytes,
3658		       enum btrfs_trim_state reserved_trim_state,
3659		       struct btrfs_trim_range *trim_entry)
3660{
3661	struct btrfs_space_info *space_info = block_group->space_info;
3662	struct btrfs_fs_info *fs_info = block_group->fs_info;
3663	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664	int ret;
3665	int update = 0;
3666	const u64 end = start + bytes;
3667	const u64 reserved_end = reserved_start + reserved_bytes;
3668	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669	u64 trimmed = 0;
3670
3671	spin_lock(&space_info->lock);
3672	spin_lock(&block_group->lock);
3673	if (!block_group->ro) {
3674		block_group->reserved += reserved_bytes;
3675		space_info->bytes_reserved += reserved_bytes;
3676		update = 1;
3677	}
3678	spin_unlock(&block_group->lock);
3679	spin_unlock(&space_info->lock);
3680
3681	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682	if (!ret) {
3683		*total_trimmed += trimmed;
3684		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3685	}
3686
3687	mutex_lock(&ctl->cache_writeout_mutex);
3688	if (reserved_start < start)
3689		__btrfs_add_free_space(block_group, reserved_start,
3690				       start - reserved_start,
3691				       reserved_trim_state);
3692	if (end < reserved_end)
3693		__btrfs_add_free_space(block_group, end, reserved_end - end,
3694				       reserved_trim_state);
3695	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3696	list_del(&trim_entry->list);
3697	mutex_unlock(&ctl->cache_writeout_mutex);
3698
3699	if (update) {
3700		spin_lock(&space_info->lock);
3701		spin_lock(&block_group->lock);
3702		if (block_group->ro)
3703			space_info->bytes_readonly += reserved_bytes;
3704		block_group->reserved -= reserved_bytes;
3705		space_info->bytes_reserved -= reserved_bytes;
3706		spin_unlock(&block_group->lock);
3707		spin_unlock(&space_info->lock);
3708	}
3709
3710	return ret;
3711}
3712
3713/*
3714 * If @async is set, then we will trim 1 region and return.
3715 */
3716static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718			  bool async)
3719{
3720	struct btrfs_discard_ctl *discard_ctl =
3721					&block_group->fs_info->discard_ctl;
3722	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723	struct btrfs_free_space *entry;
3724	struct rb_node *node;
 
 
3725	int ret = 0;
3726	u64 extent_start;
3727	u64 extent_bytes;
3728	enum btrfs_trim_state extent_trim_state;
3729	u64 bytes;
3730	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3731
3732	while (start < end) {
3733		struct btrfs_trim_range trim_entry;
3734
3735		mutex_lock(&ctl->cache_writeout_mutex);
3736		spin_lock(&ctl->tree_lock);
3737
3738		if (ctl->free_space < minlen)
3739			goto out_unlock;
 
 
3740
3741		entry = tree_search_offset(ctl, start, 0, 1);
3742		if (!entry)
3743			goto out_unlock;
 
 
3744
3745		/* Skip bitmaps and if async, already trimmed entries */
3746		while (entry->bitmap ||
3747		       (async && btrfs_free_space_trimmed(entry))) {
3748			node = rb_next(&entry->offset_index);
3749			if (!node)
3750				goto out_unlock;
3751			entry = rb_entry(node, struct btrfs_free_space,
3752					 offset_index);
3753		}
3754
3755		if (entry->offset >= end)
3756			goto out_unlock;
3757
3758		extent_start = entry->offset;
3759		extent_bytes = entry->bytes;
3760		extent_trim_state = entry->trim_state;
3761		if (async) {
3762			start = entry->offset;
3763			bytes = entry->bytes;
3764			if (bytes < minlen) {
3765				spin_unlock(&ctl->tree_lock);
3766				mutex_unlock(&ctl->cache_writeout_mutex);
3767				goto next;
3768			}
3769			unlink_free_space(ctl, entry, true);
3770			/*
3771			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773			 * X when we come back around.  So trim it now.
3774			 */
3775			if (max_discard_size &&
3776			    bytes >= (max_discard_size +
3777				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778				bytes = max_discard_size;
3779				extent_bytes = max_discard_size;
3780				entry->offset += max_discard_size;
3781				entry->bytes -= max_discard_size;
3782				link_free_space(ctl, entry);
3783			} else {
3784				kmem_cache_free(btrfs_free_space_cachep, entry);
3785			}
3786		} else {
3787			start = max(start, extent_start);
3788			bytes = min(extent_start + extent_bytes, end) - start;
3789			if (bytes < minlen) {
3790				spin_unlock(&ctl->tree_lock);
3791				mutex_unlock(&ctl->cache_writeout_mutex);
3792				goto next;
3793			}
3794
3795			unlink_free_space(ctl, entry, true);
 
 
3796			kmem_cache_free(btrfs_free_space_cachep, entry);
3797		}
3798
3799		spin_unlock(&ctl->tree_lock);
3800		trim_entry.start = extent_start;
3801		trim_entry.bytes = extent_bytes;
3802		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803		mutex_unlock(&ctl->cache_writeout_mutex);
3804
3805		ret = do_trimming(block_group, total_trimmed, start, bytes,
3806				  extent_start, extent_bytes, extent_trim_state,
3807				  &trim_entry);
3808		if (ret) {
3809			block_group->discard_cursor = start + bytes;
3810			break;
 
 
 
 
 
 
 
 
3811		}
3812next:
3813		start += bytes;
3814		block_group->discard_cursor = start;
3815		if (async && *total_trimmed)
3816			break;
3817
3818		if (btrfs_trim_interrupted()) {
3819			ret = -ERESTARTSYS;
3820			break;
3821		}
3822
3823		cond_resched();
3824	}
3825
3826	return ret;
3827
3828out_unlock:
3829	block_group->discard_cursor = btrfs_block_group_end(block_group);
3830	spin_unlock(&ctl->tree_lock);
3831	mutex_unlock(&ctl->cache_writeout_mutex);
3832
3833	return ret;
3834}
3835
3836/*
3837 * If we break out of trimming a bitmap prematurely, we should reset the
3838 * trimming bit.  In a rather contrieved case, it's possible to race here so
3839 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3840 *
3841 * start = start of bitmap
3842 * end = near end of bitmap
3843 *
3844 * Thread 1:			Thread 2:
3845 * trim_bitmaps(start)
3846 *				trim_bitmaps(end)
3847 *				end_trimming_bitmap()
3848 * reset_trimming_bitmap()
3849 */
3850static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3851{
3852	struct btrfs_free_space *entry;
 
 
3853
3854	spin_lock(&ctl->tree_lock);
3855	entry = tree_search_offset(ctl, offset, 1, 0);
3856	if (entry) {
3857		if (btrfs_free_space_trimmed(entry)) {
3858			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859				entry->bitmap_extents;
3860			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3861		}
3862		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3863	}
3864
3865	spin_unlock(&ctl->tree_lock);
3866}
3867
3868static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869				struct btrfs_free_space *entry)
3870{
3871	if (btrfs_free_space_trimming_bitmap(entry)) {
3872		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874			entry->bitmap_extents;
3875		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3876	}
3877}
3878
3879/*
3880 * If @async is set, then we will trim 1 region and return.
3881 */
3882static int trim_bitmaps(struct btrfs_block_group *block_group,
3883			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884			u64 maxlen, bool async)
3885{
3886	struct btrfs_discard_ctl *discard_ctl =
3887					&block_group->fs_info->discard_ctl;
3888	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889	struct btrfs_free_space *entry;
3890	int ret = 0;
3891	int ret2;
3892	u64 bytes;
3893	u64 offset = offset_to_bitmap(ctl, start);
3894	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3895
3896	while (offset < end) {
3897		bool next_bitmap = false;
3898		struct btrfs_trim_range trim_entry;
3899
3900		mutex_lock(&ctl->cache_writeout_mutex);
3901		spin_lock(&ctl->tree_lock);
3902
3903		if (ctl->free_space < minlen) {
3904			block_group->discard_cursor =
3905				btrfs_block_group_end(block_group);
3906			spin_unlock(&ctl->tree_lock);
3907			mutex_unlock(&ctl->cache_writeout_mutex);
3908			break;
3909		}
3910
3911		entry = tree_search_offset(ctl, offset, 1, 0);
3912		/*
3913		 * Bitmaps are marked trimmed lossily now to prevent constant
3914		 * discarding of the same bitmap (the reason why we are bound
3915		 * by the filters).  So, retrim the block group bitmaps when we
3916		 * are preparing to punt to the unused_bgs list.  This uses
3917		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918		 * which is the only discard index which sets minlen to 0.
3919		 */
3920		if (!entry || (async && minlen && start == offset &&
3921			       btrfs_free_space_trimmed(entry))) {
3922			spin_unlock(&ctl->tree_lock);
3923			mutex_unlock(&ctl->cache_writeout_mutex);
3924			next_bitmap = true;
3925			goto next;
3926		}
3927
3928		/*
3929		 * Async discard bitmap trimming begins at by setting the start
3930		 * to be key.objectid and the offset_to_bitmap() aligns to the
3931		 * start of the bitmap.  This lets us know we are fully
3932		 * scanning the bitmap rather than only some portion of it.
3933		 */
3934		if (start == offset)
3935			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3936
3937		bytes = minlen;
3938		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939		if (ret2 || start >= end) {
3940			/*
3941			 * We lossily consider a bitmap trimmed if we only skip
3942			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3943			 */
3944			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945				end_trimming_bitmap(ctl, entry);
3946			else
3947				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948			spin_unlock(&ctl->tree_lock);
3949			mutex_unlock(&ctl->cache_writeout_mutex);
3950			next_bitmap = true;
3951			goto next;
3952		}
3953
3954		/*
3955		 * We already trimmed a region, but are using the locking above
3956		 * to reset the trim_state.
3957		 */
3958		if (async && *total_trimmed) {
3959			spin_unlock(&ctl->tree_lock);
3960			mutex_unlock(&ctl->cache_writeout_mutex);
3961			goto out;
3962		}
3963
3964		bytes = min(bytes, end - start);
3965		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966			spin_unlock(&ctl->tree_lock);
3967			mutex_unlock(&ctl->cache_writeout_mutex);
3968			goto next;
3969		}
 
 
 
 
 
3970
3971		/*
3972		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973		 * If X < @minlen, we won't trim X when we come back around.
3974		 * So trim it now.  We differ here from trimming extents as we
3975		 * don't keep individual state per bit.
3976		 */
3977		if (async &&
3978		    max_discard_size &&
3979		    bytes > (max_discard_size + minlen))
3980			bytes = max_discard_size;
3981
3982		bitmap_clear_bits(ctl, entry, start, bytes, true);
 
3983		if (entry->bytes == 0)
3984			free_bitmap(ctl, entry);
3985
3986		spin_unlock(&ctl->tree_lock);
3987		trim_entry.start = start;
3988		trim_entry.bytes = bytes;
3989		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990		mutex_unlock(&ctl->cache_writeout_mutex);
3991
3992		ret = do_trimming(block_group, total_trimmed, start, bytes,
3993				  start, bytes, 0, &trim_entry);
3994		if (ret) {
3995			reset_trimming_bitmap(ctl, offset);
3996			block_group->discard_cursor =
3997				btrfs_block_group_end(block_group);
3998			break;
3999		}
4000next:
4001		if (next_bitmap) {
4002			offset += BITS_PER_BITMAP * ctl->unit;
4003			start = offset;
4004		} else {
4005			start += bytes;
4006		}
4007		block_group->discard_cursor = start;
4008
4009		if (btrfs_trim_interrupted()) {
4010			if (start != offset)
4011				reset_trimming_bitmap(ctl, offset);
4012			ret = -ERESTARTSYS;
4013			break;
4014		}
4015
4016		cond_resched();
4017	}
4018
4019	if (offset >= end)
4020		block_group->discard_cursor = end;
4021
4022out:
4023	return ret;
4024}
4025
4026int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4028{
4029	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030	int ret;
4031	u64 rem = 0;
4032
4033	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4034
4035	*trimmed = 0;
4036
4037	spin_lock(&block_group->lock);
4038	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039		spin_unlock(&block_group->lock);
4040		return 0;
4041	}
4042	btrfs_freeze_block_group(block_group);
4043	spin_unlock(&block_group->lock);
4044
4045	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046	if (ret)
4047		goto out;
4048
4049	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051	/* If we ended in the middle of a bitmap, reset the trimming flag */
4052	if (rem)
4053		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054out:
4055	btrfs_unfreeze_block_group(block_group);
4056	return ret;
4057}
4058
4059int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4061				   bool async)
4062{
4063	int ret;
4064
4065	*trimmed = 0;
4066
4067	spin_lock(&block_group->lock);
4068	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069		spin_unlock(&block_group->lock);
4070		return 0;
4071	}
4072	btrfs_freeze_block_group(block_group);
4073	spin_unlock(&block_group->lock);
4074
4075	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076	btrfs_unfreeze_block_group(block_group);
4077
4078	return ret;
4079}
4080
4081int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4083				   u64 maxlen, bool async)
4084{
4085	int ret;
4086
4087	*trimmed = 0;
4088
4089	spin_lock(&block_group->lock);
4090	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091		spin_unlock(&block_group->lock);
4092		return 0;
4093	}
4094	btrfs_freeze_block_group(block_group);
4095	spin_unlock(&block_group->lock);
4096
4097	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098			   async);
 
4099
4100	btrfs_unfreeze_block_group(block_group);
 
 
 
4101
4102	return ret;
4103}
4104
4105bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
4106{
4107	return btrfs_super_cache_generation(fs_info->super_copy);
 
4108}
4109
4110static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111				       struct btrfs_trans_handle *trans)
4112{
4113	struct btrfs_block_group *block_group;
4114	struct rb_node *node;
 
4115	int ret = 0;
 
4116
4117	btrfs_info(fs_info, "cleaning free space cache v1");
4118
4119	node = rb_first_cached(&fs_info->block_group_cache_tree);
4120	while (node) {
4121		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123		if (ret)
4124			goto out;
4125		node = rb_next(node);
4126	}
4127out:
4128	return ret;
4129}
4130
4131int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4132{
4133	struct btrfs_trans_handle *trans;
4134	int ret;
4135
4136	/*
4137	 * update_super_roots will appropriately set or unset
4138	 * super_copy->cache_generation based on SPACE_CACHE and
4139	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140	 * transaction commit whether we are enabling space cache v1 and don't
4141	 * have any other work to do, or are disabling it and removing free
4142	 * space inodes.
4143	 */
4144	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145	if (IS_ERR(trans))
4146		return PTR_ERR(trans);
4147
4148	if (!active) {
4149		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150		ret = cleanup_free_space_cache_v1(fs_info, trans);
4151		if (ret) {
4152			btrfs_abort_transaction(trans, ret);
4153			btrfs_end_transaction(trans);
4154			goto out;
4155		}
4156	}
4157
4158	ret = btrfs_commit_transaction(trans);
4159out:
4160	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4161
4162	return ret;
4163}
 
4164
4165int __init btrfs_free_space_init(void)
4166{
4167	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168	if (!btrfs_free_space_cachep)
4169		return -ENOMEM;
4170
4171	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172							PAGE_SIZE, PAGE_SIZE,
4173							0, NULL);
4174	if (!btrfs_free_space_bitmap_cachep) {
4175		kmem_cache_destroy(btrfs_free_space_cachep);
4176		return -ENOMEM;
4177	}
4178
4179	return 0;
4180}
4181
4182void __cold btrfs_free_space_exit(void)
4183{
4184	kmem_cache_destroy(btrfs_free_space_cachep);
4185	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
 
4186}
4187
4188#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4189/*
4190 * Use this if you need to make a bitmap or extent entry specifically, it
4191 * doesn't do any of the merging that add_free_space does, this acts a lot like
4192 * how the free space cache loading stuff works, so you can get really weird
4193 * configurations.
4194 */
4195int test_add_free_space_entry(struct btrfs_block_group *cache,
4196			      u64 offset, u64 bytes, bool bitmap)
4197{
4198	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199	struct btrfs_free_space *info = NULL, *bitmap_info;
4200	void *map = NULL;
4201	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202	u64 bytes_added;
4203	int ret;
4204
4205again:
4206	if (!info) {
4207		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208		if (!info)
4209			return -ENOMEM;
4210	}
4211
4212	if (!bitmap) {
4213		spin_lock(&ctl->tree_lock);
4214		info->offset = offset;
4215		info->bytes = bytes;
4216		info->max_extent_size = 0;
4217		ret = link_free_space(ctl, info);
4218		spin_unlock(&ctl->tree_lock);
4219		if (ret)
4220			kmem_cache_free(btrfs_free_space_cachep, info);
4221		return ret;
4222	}
4223
4224	if (!map) {
4225		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226		if (!map) {
4227			kmem_cache_free(btrfs_free_space_cachep, info);
4228			return -ENOMEM;
4229		}
4230	}
4231
4232	spin_lock(&ctl->tree_lock);
4233	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234					 1, 0);
4235	if (!bitmap_info) {
4236		info->bitmap = map;
4237		map = NULL;
4238		add_new_bitmap(ctl, info, offset);
4239		bitmap_info = info;
4240		info = NULL;
4241	}
4242
4243	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244					  trim_state);
4245
4246	bytes -= bytes_added;
4247	offset += bytes_added;
4248	spin_unlock(&ctl->tree_lock);
4249
4250	if (bytes)
4251		goto again;
4252
4253	if (info)
4254		kmem_cache_free(btrfs_free_space_cachep, info);
4255	if (map)
4256		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257	return 0;
4258}
4259
4260/*
4261 * Checks to see if the given range is in the free space cache.  This is really
4262 * just used to check the absence of space, so if there is free space in the
4263 * range at all we will return 1.
4264 */
4265int test_check_exists(struct btrfs_block_group *cache,
4266		      u64 offset, u64 bytes)
4267{
4268	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269	struct btrfs_free_space *info;
4270	int ret = 0;
4271
4272	spin_lock(&ctl->tree_lock);
4273	info = tree_search_offset(ctl, offset, 0, 0);
4274	if (!info) {
4275		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276					  1, 0);
4277		if (!info)
4278			goto out;
4279	}
4280
4281have_info:
4282	if (info->bitmap) {
4283		u64 bit_off, bit_bytes;
4284		struct rb_node *n;
4285		struct btrfs_free_space *tmp;
4286
4287		bit_off = offset;
4288		bit_bytes = ctl->unit;
4289		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290		if (!ret) {
4291			if (bit_off == offset) {
4292				ret = 1;
4293				goto out;
4294			} else if (bit_off > offset &&
4295				   offset + bytes > bit_off) {
4296				ret = 1;
4297				goto out;
4298			}
4299		}
4300
4301		n = rb_prev(&info->offset_index);
4302		while (n) {
4303			tmp = rb_entry(n, struct btrfs_free_space,
4304				       offset_index);
4305			if (tmp->offset + tmp->bytes < offset)
4306				break;
4307			if (offset + bytes < tmp->offset) {
4308				n = rb_prev(&tmp->offset_index);
4309				continue;
4310			}
4311			info = tmp;
4312			goto have_info;
4313		}
4314
4315		n = rb_next(&info->offset_index);
4316		while (n) {
4317			tmp = rb_entry(n, struct btrfs_free_space,
4318				       offset_index);
4319			if (offset + bytes < tmp->offset)
4320				break;
4321			if (tmp->offset + tmp->bytes < offset) {
4322				n = rb_next(&tmp->offset_index);
4323				continue;
4324			}
4325			info = tmp;
4326			goto have_info;
4327		}
4328
4329		ret = 0;
4330		goto out;
4331	}
4332
4333	if (info->offset == offset) {
4334		ret = 1;
4335		goto out;
4336	}
4337
4338	if (offset > info->offset && offset < info->offset + info->bytes)
4339		ret = 1;
4340out:
4341	spin_unlock(&ctl->tree_lock);
4342	return ret;
4343}
4344#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v3.1
 
   1/*
   2 * Copyright (C) 2008 Red Hat.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/pagemap.h>
  20#include <linux/sched.h>
 
  21#include <linux/slab.h>
  22#include <linux/math64.h>
 
 
 
 
  23#include "ctree.h"
 
 
 
  24#include "free-space-cache.h"
  25#include "transaction.h"
  26#include "disk-io.h"
  27#include "extent_io.h"
  28#include "inode-map.h"
  29
  30#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
  31#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33static int link_free_space(struct btrfs_free_space_ctl *ctl,
  34			   struct btrfs_free_space *info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  37					       struct btrfs_path *path,
  38					       u64 offset)
  39{
  40	struct btrfs_key key;
  41	struct btrfs_key location;
  42	struct btrfs_disk_key disk_key;
  43	struct btrfs_free_space_header *header;
  44	struct extent_buffer *leaf;
  45	struct inode *inode = NULL;
 
  46	int ret;
  47
  48	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  49	key.offset = offset;
  50	key.type = 0;
  51
  52	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  53	if (ret < 0)
  54		return ERR_PTR(ret);
  55	if (ret > 0) {
  56		btrfs_release_path(path);
  57		return ERR_PTR(-ENOENT);
  58	}
  59
  60	leaf = path->nodes[0];
  61	header = btrfs_item_ptr(leaf, path->slots[0],
  62				struct btrfs_free_space_header);
  63	btrfs_free_space_key(leaf, header, &disk_key);
  64	btrfs_disk_key_to_cpu(&location, &disk_key);
  65	btrfs_release_path(path);
  66
  67	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  68	if (!inode)
  69		return ERR_PTR(-ENOENT);
 
 
 
 
 
  70	if (IS_ERR(inode))
  71		return inode;
  72	if (is_bad_inode(inode)) {
  73		iput(inode);
  74		return ERR_PTR(-ENOENT);
  75	}
  76
  77	inode->i_mapping->flags &= ~__GFP_FS;
 
 
  78
  79	return inode;
  80}
  81
  82struct inode *lookup_free_space_inode(struct btrfs_root *root,
  83				      struct btrfs_block_group_cache
  84				      *block_group, struct btrfs_path *path)
  85{
 
  86	struct inode *inode = NULL;
 
  87
  88	spin_lock(&block_group->lock);
  89	if (block_group->inode)
  90		inode = igrab(block_group->inode);
  91	spin_unlock(&block_group->lock);
  92	if (inode)
  93		return inode;
  94
  95	inode = __lookup_free_space_inode(root, path,
  96					  block_group->key.objectid);
  97	if (IS_ERR(inode))
  98		return inode;
  99
 100	spin_lock(&block_group->lock);
 101	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) {
 102		printk(KERN_INFO "Old style space inode found, converting.\n");
 103		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NODATASUM;
 
 104		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 105	}
 106
 107	if (!btrfs_fs_closing(root->fs_info)) {
 108		block_group->inode = igrab(inode);
 109		block_group->iref = 1;
 110	}
 111	spin_unlock(&block_group->lock);
 112
 113	return inode;
 114}
 115
 116int __create_free_space_inode(struct btrfs_root *root,
 117			      struct btrfs_trans_handle *trans,
 118			      struct btrfs_path *path, u64 ino, u64 offset)
 
 119{
 120	struct btrfs_key key;
 121	struct btrfs_disk_key disk_key;
 122	struct btrfs_free_space_header *header;
 123	struct btrfs_inode_item *inode_item;
 124	struct extent_buffer *leaf;
 
 
 
 125	int ret;
 126
 127	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 128	if (ret)
 129		return ret;
 130
 131	leaf = path->nodes[0];
 132	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 133				    struct btrfs_inode_item);
 134	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 135	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
 136			     sizeof(*inode_item));
 137	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 138	btrfs_set_inode_size(leaf, inode_item, 0);
 139	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 140	btrfs_set_inode_uid(leaf, inode_item, 0);
 141	btrfs_set_inode_gid(leaf, inode_item, 0);
 142	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 143	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
 144			      BTRFS_INODE_PREALLOC);
 145	btrfs_set_inode_nlink(leaf, inode_item, 1);
 146	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 147	btrfs_set_inode_block_group(leaf, inode_item, offset);
 148	btrfs_mark_buffer_dirty(leaf);
 149	btrfs_release_path(path);
 150
 151	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 152	key.offset = offset;
 153	key.type = 0;
 154
 155	ret = btrfs_insert_empty_item(trans, root, path, &key,
 156				      sizeof(struct btrfs_free_space_header));
 157	if (ret < 0) {
 158		btrfs_release_path(path);
 159		return ret;
 160	}
 
 161	leaf = path->nodes[0];
 162	header = btrfs_item_ptr(leaf, path->slots[0],
 163				struct btrfs_free_space_header);
 164	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
 165	btrfs_set_free_space_key(leaf, header, &disk_key);
 166	btrfs_mark_buffer_dirty(leaf);
 167	btrfs_release_path(path);
 168
 169	return 0;
 170}
 171
 172int create_free_space_inode(struct btrfs_root *root,
 173			    struct btrfs_trans_handle *trans,
 174			    struct btrfs_block_group_cache *block_group,
 175			    struct btrfs_path *path)
 176{
 177	int ret;
 178	u64 ino;
 179
 180	ret = btrfs_find_free_objectid(root, &ino);
 181	if (ret < 0)
 182		return ret;
 183
 184	return __create_free_space_inode(root, trans, path, ino,
 185					 block_group->key.objectid);
 186}
 187
 188int btrfs_truncate_free_space_cache(struct btrfs_root *root,
 189				    struct btrfs_trans_handle *trans,
 190				    struct btrfs_path *path,
 191				    struct inode *inode)
 
 
 
 
 192{
 193	struct btrfs_block_rsv *rsv;
 194	loff_t oldsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195	int ret = 0;
 
 196
 197	rsv = trans->block_rsv;
 198	trans->block_rsv = root->orphan_block_rsv;
 199	ret = btrfs_block_rsv_check(trans, root,
 200				    root->orphan_block_rsv,
 201				    0, 5);
 202	if (ret)
 203		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204
 205	oldsize = i_size_read(inode);
 206	btrfs_i_size_write(inode, 0);
 207	truncate_pagecache(inode, oldsize, 0);
 
 
 
 208
 209	/*
 210	 * We don't need an orphan item because truncating the free space cache
 211	 * will never be split across transactions.
 212	 */
 213	ret = btrfs_truncate_inode_items(trans, root, inode,
 214					 0, BTRFS_EXTENT_DATA_KEY);
 
 
 215
 216	trans->block_rsv = rsv;
 217	if (ret) {
 218		WARN_ON(1);
 219		return ret;
 220	}
 
 
 
 
 
 
 221
 222	ret = btrfs_update_inode(trans, root, inode);
 223	return ret;
 224}
 225
 226static int readahead_cache(struct inode *inode)
 227{
 228	struct file_ra_state *ra;
 229	unsigned long last_index;
 230
 231	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 232	if (!ra)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233		return -ENOMEM;
 234
 235	file_ra_state_init(ra, inode->i_mapping);
 236	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237
 238	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239
 240	kfree(ra);
 
 241
 242	return 0;
 243}
 244
 245int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 246			    struct btrfs_free_space_ctl *ctl,
 247			    struct btrfs_path *path, u64 offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248{
 
 249	struct btrfs_free_space_header *header;
 250	struct extent_buffer *leaf;
 251	struct page *page;
 252	struct btrfs_key key;
 253	struct list_head bitmaps;
 
 254	u64 num_entries;
 255	u64 num_bitmaps;
 256	u64 generation;
 257	pgoff_t index = 0;
 258	int ret = 0;
 259
 260	INIT_LIST_HEAD(&bitmaps);
 261
 262	/* Nothing in the space cache, goodbye */
 263	if (!i_size_read(inode))
 264		goto out;
 265
 266	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 267	key.offset = offset;
 268	key.type = 0;
 269
 270	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 271	if (ret < 0)
 272		goto out;
 273	else if (ret > 0) {
 274		btrfs_release_path(path);
 275		ret = 0;
 276		goto out;
 277	}
 278
 279	ret = -1;
 280
 281	leaf = path->nodes[0];
 282	header = btrfs_item_ptr(leaf, path->slots[0],
 283				struct btrfs_free_space_header);
 284	num_entries = btrfs_free_space_entries(leaf, header);
 285	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 286	generation = btrfs_free_space_generation(leaf, header);
 287	btrfs_release_path(path);
 288
 
 
 
 
 
 
 
 289	if (BTRFS_I(inode)->generation != generation) {
 290		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
 291		       " not match free space cache generation (%llu)\n",
 292		       (unsigned long long)BTRFS_I(inode)->generation,
 293		       (unsigned long long)generation);
 294		goto out;
 295	}
 296
 297	if (!num_entries)
 298		goto out;
 
 
 
 
 
 
 299
 300	ret = readahead_cache(inode);
 301	if (ret)
 302		goto out;
 303
 304	while (1) {
 305		struct btrfs_free_space_entry *entry;
 306		struct btrfs_free_space *e;
 307		void *addr;
 308		unsigned long offset = 0;
 309		int need_loop = 0;
 310
 311		if (!num_entries && !num_bitmaps)
 312			break;
 
 313
 314		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 315		if (!page)
 
 
 
 316			goto free_cache;
 
 317
 318		if (!PageUptodate(page)) {
 319			btrfs_readpage(NULL, page);
 320			lock_page(page);
 321			if (!PageUptodate(page)) {
 322				unlock_page(page);
 323				page_cache_release(page);
 324				printk(KERN_ERR "btrfs: error reading free "
 325				       "space cache\n");
 326				goto free_cache;
 327			}
 328		}
 329		addr = kmap(page);
 330
 331		if (index == 0) {
 332			u64 *gen;
 
 
 
 333
 334			/*
 335			 * We put a bogus crc in the front of the first page in
 336			 * case old kernels try to mount a fs with the new
 337			 * format to make sure they discard the cache.
 338			 */
 339			addr += sizeof(u64);
 340			offset += sizeof(u64);
 341
 342			gen = addr;
 343			if (*gen != BTRFS_I(inode)->generation) {
 344				printk(KERN_ERR "btrfs: space cache generation"
 345				       " (%llu) does not match inode (%llu)\n",
 346				       (unsigned long long)*gen,
 347				       (unsigned long long)
 348				       BTRFS_I(inode)->generation);
 349				kunmap(page);
 350				unlock_page(page);
 351				page_cache_release(page);
 352				goto free_cache;
 353			}
 354			addr += sizeof(u64);
 355			offset += sizeof(u64);
 356		}
 357		entry = addr;
 358
 359		while (1) {
 360			if (!num_entries)
 361				break;
 362
 363			need_loop = 1;
 364			e = kmem_cache_zalloc(btrfs_free_space_cachep,
 365					      GFP_NOFS);
 366			if (!e) {
 367				kunmap(page);
 368				unlock_page(page);
 369				page_cache_release(page);
 370				goto free_cache;
 371			}
 372
 373			e->offset = le64_to_cpu(entry->offset);
 374			e->bytes = le64_to_cpu(entry->bytes);
 375			if (!e->bytes) {
 376				kunmap(page);
 
 
 377				kmem_cache_free(btrfs_free_space_cachep, e);
 378				unlock_page(page);
 379				page_cache_release(page);
 380				goto free_cache;
 381			}
 
 
 
 
 
 382
 383			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
 384				spin_lock(&ctl->tree_lock);
 385				ret = link_free_space(ctl, e);
 386				spin_unlock(&ctl->tree_lock);
 387				if (ret) {
 388					printk(KERN_ERR "Duplicate entries in "
 389					       "free space cache, dumping\n");
 390					kunmap(page);
 391					unlock_page(page);
 392					page_cache_release(page);
 393					goto free_cache;
 394				}
 395			} else {
 396				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
 397				if (!e->bitmap) {
 398					kunmap(page);
 399					kmem_cache_free(
 400						btrfs_free_space_cachep, e);
 401					unlock_page(page);
 402					page_cache_release(page);
 403					goto free_cache;
 404				}
 405				spin_lock(&ctl->tree_lock);
 406				ret = link_free_space(ctl, e);
 407				ctl->total_bitmaps++;
 408				ctl->op->recalc_thresholds(ctl);
 409				spin_unlock(&ctl->tree_lock);
 410				if (ret) {
 411					printk(KERN_ERR "Duplicate entries in "
 412					       "free space cache, dumping\n");
 413					kunmap(page);
 414					unlock_page(page);
 415					page_cache_release(page);
 416					goto free_cache;
 417				}
 418				list_add_tail(&e->list, &bitmaps);
 419			}
 420
 421			num_entries--;
 422			offset += sizeof(struct btrfs_free_space_entry);
 423			if (offset + sizeof(struct btrfs_free_space_entry) >=
 424			    PAGE_CACHE_SIZE)
 425				break;
 426			entry++;
 427		}
 428
 429		/*
 430		 * We read an entry out of this page, we need to move on to the
 431		 * next page.
 432		 */
 433		if (need_loop) {
 434			kunmap(page);
 435			goto next;
 436		}
 437
 438		/*
 439		 * We add the bitmaps at the end of the entries in order that
 440		 * the bitmap entries are added to the cache.
 441		 */
 442		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
 443		list_del_init(&e->list);
 444		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
 445		kunmap(page);
 446		num_bitmaps--;
 447next:
 448		unlock_page(page);
 449		page_cache_release(page);
 450		index++;
 451	}
 452
 
 453	ret = 1;
 454out:
 
 455	return ret;
 456free_cache:
 
 
 
 457	__btrfs_remove_free_space_cache(ctl);
 
 458	goto out;
 459}
 460
 461int load_free_space_cache(struct btrfs_fs_info *fs_info,
 462			  struct btrfs_block_group_cache *block_group)
 463{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 465	struct btrfs_root *root = fs_info->tree_root;
 466	struct inode *inode;
 467	struct btrfs_path *path;
 468	int ret;
 469	bool matched;
 470	u64 used = btrfs_block_group_used(&block_group->item);
 471
 472	/*
 473	 * If we're unmounting then just return, since this does a search on the
 474	 * normal root and not the commit root and we could deadlock.
 
 475	 */
 476	if (btrfs_fs_closing(fs_info))
 477		return 0;
 478
 479	/*
 480	 * If this block group has been marked to be cleared for one reason or
 481	 * another then we can't trust the on disk cache, so just return.
 482	 */
 483	spin_lock(&block_group->lock);
 484	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 485		spin_unlock(&block_group->lock);
 486		return 0;
 487	}
 488	spin_unlock(&block_group->lock);
 489
 490	path = btrfs_alloc_path();
 491	if (!path)
 492		return 0;
 
 
 493
 494	inode = lookup_free_space_inode(root, block_group, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495	if (IS_ERR(inode)) {
 496		btrfs_free_path(path);
 497		return 0;
 498	}
 499
 500	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 501				      path, block_group->key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502	btrfs_free_path(path);
 503	if (ret <= 0)
 504		goto out;
 505
 506	spin_lock(&ctl->tree_lock);
 507	matched = (ctl->free_space == (block_group->key.offset - used -
 508				       block_group->bytes_super));
 509	spin_unlock(&ctl->tree_lock);
 510
 511	if (!matched) {
 512		__btrfs_remove_free_space_cache(ctl);
 513		printk(KERN_ERR "block group %llu has an wrong amount of free "
 514		       "space\n", block_group->key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515		ret = -1;
 516	}
 517out:
 518	if (ret < 0) {
 519		/* This cache is bogus, make sure it gets cleared */
 520		spin_lock(&block_group->lock);
 521		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 522		spin_unlock(&block_group->lock);
 523		ret = 0;
 524
 525		printk(KERN_ERR "btrfs: failed to load free space cache "
 526		       "for block group %llu\n", block_group->key.objectid);
 
 527	}
 528
 
 
 
 529	iput(inode);
 530	return ret;
 531}
 532
 533int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
 534			    struct btrfs_free_space_ctl *ctl,
 535			    struct btrfs_block_group_cache *block_group,
 536			    struct btrfs_trans_handle *trans,
 537			    struct btrfs_path *path, u64 offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538{
 
 539	struct btrfs_free_space_header *header;
 540	struct extent_buffer *leaf;
 541	struct rb_node *node;
 542	struct list_head *pos, *n;
 543	struct page **pages;
 544	struct page *page;
 545	struct extent_state *cached_state = NULL;
 546	struct btrfs_free_cluster *cluster = NULL;
 547	struct extent_io_tree *unpin = NULL;
 548	struct list_head bitmap_list;
 549	struct btrfs_key key;
 550	u64 start, end, len;
 551	u64 bytes = 0;
 552	u32 crc = ~(u32)0;
 553	int index = 0, num_pages = 0;
 554	int entries = 0;
 555	int bitmaps = 0;
 556	int ret = -1;
 557	bool next_page = false;
 558	bool out_of_space = false;
 559
 560	INIT_LIST_HEAD(&bitmap_list);
 
 
 561
 562	node = rb_first(&ctl->free_space_offset);
 563	if (!node)
 564		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	if (!i_size_read(inode))
 567		return -1;
 
 
 
 
 
 
 568
 569	num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
 570		PAGE_CACHE_SHIFT;
 571
 572	filemap_write_and_wait(inode->i_mapping);
 573	btrfs_wait_ordered_range(inode, inode->i_size &
 574				 ~(root->sectorsize - 1), (u64)-1);
 575
 576	pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
 577	if (!pages)
 578		return -1;
 
 
 
 
 
 
 579
 580	/* Get the cluster for this block_group if it exists */
 581	if (block_group && !list_empty(&block_group->cluster_list))
 582		cluster = list_entry(block_group->cluster_list.next,
 583				     struct btrfs_free_cluster,
 584				     block_group_list);
 585
 586	/*
 
 
 
 587	 * We shouldn't have switched the pinned extents yet so this is the
 588	 * right one
 589	 */
 590	unpin = root->fs_info->pinned_extents;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591
 592	/*
 593	 * Lock all pages first so we can lock the extent safely.
 594	 *
 595	 * NOTE: Because we hold the ref the entire time we're going to write to
 596	 * the page find_get_page should never fail, so we don't do a check
 597	 * after find_get_page at this point.  Just putting this here so people
 598	 * know and don't freak out.
 599	 */
 600	while (index < num_pages) {
 601		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 602		if (!page) {
 603			int i;
 604
 605			for (i = 0; i < num_pages; i++) {
 606				unlock_page(pages[i]);
 607				page_cache_release(pages[i]);
 608			}
 609			goto out;
 610		}
 611		pages[index] = page;
 612		index++;
 613	}
 614
 615	index = 0;
 616	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 617			 0, &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 618
 619	/*
 620	 * When searching for pinned extents, we need to start at our start
 621	 * offset.
 622	 */
 623	if (block_group)
 624		start = block_group->key.objectid;
 625
 626	/* Write out the extent entries */
 627	do {
 628		struct btrfs_free_space_entry *entry;
 629		void *addr, *orig;
 630		unsigned long offset = 0;
 631
 632		next_page = false;
 
 
 
 
 
 
 
 
 633
 634		if (index >= num_pages) {
 635			out_of_space = true;
 636			break;
 637		}
 
 
 
 
 638
 639		page = pages[index];
 
 640
 641		orig = addr = kmap(page);
 642		if (index == 0) {
 643			u64 *gen;
 
 644
 645			/*
 646			 * We're going to put in a bogus crc for this page to
 647			 * make sure that old kernels who aren't aware of this
 648			 * format will be sure to discard the cache.
 649			 */
 650			addr += sizeof(u64);
 651			offset += sizeof(u64);
 
 
 
 
 
 
 
 
 
 
 652
 653			gen = addr;
 654			*gen = trans->transid;
 655			addr += sizeof(u64);
 656			offset += sizeof(u64);
 657		}
 658		entry = addr;
 659
 660		memset(addr, 0, PAGE_CACHE_SIZE - offset);
 661		while (node && !next_page) {
 662			struct btrfs_free_space *e;
 663
 664			e = rb_entry(node, struct btrfs_free_space, offset_index);
 665			entries++;
 666
 667			entry->offset = cpu_to_le64(e->offset);
 668			entry->bytes = cpu_to_le64(e->bytes);
 669			if (e->bitmap) {
 670				entry->type = BTRFS_FREE_SPACE_BITMAP;
 671				list_add_tail(&e->list, &bitmap_list);
 672				bitmaps++;
 673			} else {
 674				entry->type = BTRFS_FREE_SPACE_EXTENT;
 675			}
 676			node = rb_next(node);
 677			if (!node && cluster) {
 678				node = rb_first(&cluster->root);
 679				cluster = NULL;
 680			}
 681			offset += sizeof(struct btrfs_free_space_entry);
 682			if (offset + sizeof(struct btrfs_free_space_entry) >=
 683			    PAGE_CACHE_SIZE)
 684				next_page = true;
 685			entry++;
 686		}
 687
 688		/*
 689		 * We want to add any pinned extents to our free space cache
 690		 * so we don't leak the space
 
 691		 */
 692		while (block_group && !next_page &&
 693		       (start < block_group->key.objectid +
 694			block_group->key.offset)) {
 695			ret = find_first_extent_bit(unpin, start, &start, &end,
 696						    EXTENT_DIRTY);
 697			if (ret) {
 698				ret = 0;
 699				break;
 700			}
 
 701
 702			/* This pinned extent is out of our range */
 703			if (start >= block_group->key.objectid +
 704			    block_group->key.offset)
 705				break;
 706
 707			len = block_group->key.objectid +
 708				block_group->key.offset - start;
 709			len = min(len, end + 1 - start);
 710
 711			entries++;
 712			entry->offset = cpu_to_le64(start);
 713			entry->bytes = cpu_to_le64(len);
 714			entry->type = BTRFS_FREE_SPACE_EXTENT;
 715
 716			start = end + 1;
 717			offset += sizeof(struct btrfs_free_space_entry);
 718			if (offset + sizeof(struct btrfs_free_space_entry) >=
 719			    PAGE_CACHE_SIZE)
 720				next_page = true;
 721			entry++;
 722		}
 723
 724		/* Generate bogus crc value */
 725		if (index == 0) {
 726			u32 *tmp;
 727			crc = btrfs_csum_data(root, orig + sizeof(u64), crc,
 728					      PAGE_CACHE_SIZE - sizeof(u64));
 729			btrfs_csum_final(crc, (char *)&crc);
 730			crc++;
 731			tmp = orig;
 732			*tmp = crc;
 733		}
 734
 735		kunmap(page);
 
 
 
 
 
 
 
 736
 737		bytes += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739		index++;
 740	} while (node || next_page);
 741
 742	/* Write out the bitmaps */
 743	list_for_each_safe(pos, n, &bitmap_list) {
 744		void *addr;
 745		struct btrfs_free_space *entry =
 746			list_entry(pos, struct btrfs_free_space, list);
 747
 748		if (index >= num_pages) {
 749			out_of_space = true;
 750			break;
 
 
 
 
 
 
 
 
 751		}
 752		page = pages[index];
 
 753
 754		addr = kmap(page);
 755		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
 756		kunmap(page);
 757		bytes += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758
 759		list_del_init(&entry->list);
 760		index++;
 761	}
 
 
 
 
 
 
 
 
 762
 763	if (out_of_space) {
 764		btrfs_drop_pages(pages, num_pages);
 765		unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
 766				     i_size_read(inode) - 1, &cached_state,
 767				     GFP_NOFS);
 768		ret = 0;
 769		goto out;
 770	}
 
 
 771
 772	/* Zero out the rest of the pages just to make sure */
 773	while (index < num_pages) {
 774		void *addr;
 775
 776		page = pages[index];
 777		addr = kmap(page);
 778		memset(addr, 0, PAGE_CACHE_SIZE);
 779		kunmap(page);
 780		bytes += PAGE_CACHE_SIZE;
 781		index++;
 782	}
 783
 784	ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
 785					    bytes, &cached_state);
 786	btrfs_drop_pages(pages, num_pages);
 787	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
 788			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
 789
 790	if (ret) {
 791		ret = 0;
 792		goto out;
 793	}
 794
 795	BTRFS_I(inode)->generation = trans->transid;
 
 
 
 
 
 
 
 796
 797	filemap_write_and_wait(inode->i_mapping);
 
 798
 799	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 800	key.offset = offset;
 801	key.type = 0;
 
 
 
 
 802
 803	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
 804	if (ret < 0) {
 805		ret = -1;
 806		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
 807				 EXTENT_DIRTY | EXTENT_DELALLOC |
 808				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
 809		goto out;
 810	}
 811	leaf = path->nodes[0];
 812	if (ret > 0) {
 813		struct btrfs_key found_key;
 814		BUG_ON(!path->slots[0]);
 815		path->slots[0]--;
 816		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 817		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
 818		    found_key.offset != offset) {
 819			ret = -1;
 820			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
 821					 EXTENT_DIRTY | EXTENT_DELALLOC |
 822					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
 823					 GFP_NOFS);
 824			btrfs_release_path(path);
 825			goto out;
 826		}
 827	}
 828	header = btrfs_item_ptr(leaf, path->slots[0],
 829				struct btrfs_free_space_header);
 830	btrfs_set_free_space_entries(leaf, header, entries);
 831	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
 832	btrfs_set_free_space_generation(leaf, header, trans->transid);
 833	btrfs_mark_buffer_dirty(leaf);
 834	btrfs_release_path(path);
 835
 836	ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838out:
 839	kfree(pages);
 840	if (ret != 1) {
 841		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
 
 842		BTRFS_I(inode)->generation = 0;
 843	}
 844	btrfs_update_inode(trans, root, inode);
 
 
 845	return ret;
 846}
 847
 848int btrfs_write_out_cache(struct btrfs_root *root,
 849			  struct btrfs_trans_handle *trans,
 850			  struct btrfs_block_group_cache *block_group,
 851			  struct btrfs_path *path)
 852{
 
 853	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 854	struct inode *inode;
 855	int ret = 0;
 856
 857	root = root->fs_info->tree_root;
 858
 859	spin_lock(&block_group->lock);
 860	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
 861		spin_unlock(&block_group->lock);
 862		return 0;
 863	}
 864	spin_unlock(&block_group->lock);
 865
 866	inode = lookup_free_space_inode(root, block_group, path);
 867	if (IS_ERR(inode))
 868		return 0;
 869
 870	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
 871				      path, block_group->key.objectid);
 872	if (ret < 0) {
 
 
 
 873		spin_lock(&block_group->lock);
 874		block_group->disk_cache_state = BTRFS_DC_ERROR;
 875		spin_unlock(&block_group->lock);
 876		ret = 0;
 877
 878		printk(KERN_ERR "btrfs: failed to write free space cace "
 879		       "for block group %llu\n", block_group->key.objectid);
 880	}
 881
 882	iput(inode);
 
 
 
 
 883	return ret;
 884}
 885
 886static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
 887					  u64 offset)
 888{
 889	BUG_ON(offset < bitmap_start);
 890	offset -= bitmap_start;
 891	return (unsigned long)(div_u64(offset, unit));
 892}
 893
 894static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
 895{
 896	return (unsigned long)(div_u64(bytes, unit));
 897}
 898
 899static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
 900				   u64 offset)
 901{
 902	u64 bitmap_start;
 903	u64 bytes_per_bitmap;
 904
 905	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
 906	bitmap_start = offset - ctl->start;
 907	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
 908	bitmap_start *= bytes_per_bitmap;
 909	bitmap_start += ctl->start;
 910
 911	return bitmap_start;
 912}
 913
 914static int tree_insert_offset(struct rb_root *root, u64 offset,
 915			      struct rb_node *node, int bitmap)
 
 916{
 917	struct rb_node **p = &root->rb_node;
 
 918	struct rb_node *parent = NULL;
 919	struct btrfs_free_space *info;
 
 
 
 
 
 
 
 
 
 
 920
 921	while (*p) {
 
 
 922		parent = *p;
 923		info = rb_entry(parent, struct btrfs_free_space, offset_index);
 924
 925		if (offset < info->offset) {
 926			p = &(*p)->rb_left;
 927		} else if (offset > info->offset) {
 928			p = &(*p)->rb_right;
 929		} else {
 930			/*
 931			 * we could have a bitmap entry and an extent entry
 932			 * share the same offset.  If this is the case, we want
 933			 * the extent entry to always be found first if we do a
 934			 * linear search through the tree, since we want to have
 935			 * the quickest allocation time, and allocating from an
 936			 * extent is faster than allocating from a bitmap.  So
 937			 * if we're inserting a bitmap and we find an entry at
 938			 * this offset, we want to go right, or after this entry
 939			 * logically.  If we are inserting an extent and we've
 940			 * found a bitmap, we want to go left, or before
 941			 * logically.
 942			 */
 943			if (bitmap) {
 944				if (info->bitmap) {
 945					WARN_ON_ONCE(1);
 946					return -EEXIST;
 947				}
 948				p = &(*p)->rb_right;
 949			} else {
 950				if (!info->bitmap) {
 951					WARN_ON_ONCE(1);
 952					return -EEXIST;
 953				}
 954				p = &(*p)->rb_left;
 955			}
 956		}
 957	}
 958
 959	rb_link_node(node, parent, p);
 960	rb_insert_color(node, root);
 961
 962	return 0;
 963}
 964
 965/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966 * searches the tree for the given offset.
 967 *
 968 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 969 * want a section that has at least bytes size and comes at or after the given
 970 * offset.
 971 */
 972static struct btrfs_free_space *
 973tree_search_offset(struct btrfs_free_space_ctl *ctl,
 974		   u64 offset, int bitmap_only, int fuzzy)
 975{
 976	struct rb_node *n = ctl->free_space_offset.rb_node;
 977	struct btrfs_free_space *entry, *prev = NULL;
 
 
 978
 979	/* find entry that is closest to the 'offset' */
 980	while (1) {
 981		if (!n) {
 982			entry = NULL;
 983			break;
 984		}
 985
 986		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 987		prev = entry;
 988
 989		if (offset < entry->offset)
 990			n = n->rb_left;
 991		else if (offset > entry->offset)
 992			n = n->rb_right;
 993		else
 994			break;
 
 
 995	}
 996
 997	if (bitmap_only) {
 998		if (!entry)
 999			return NULL;
1000		if (entry->bitmap)
1001			return entry;
1002
1003		/*
1004		 * bitmap entry and extent entry may share same offset,
1005		 * in that case, bitmap entry comes after extent entry.
1006		 */
1007		n = rb_next(n);
1008		if (!n)
1009			return NULL;
1010		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1011		if (entry->offset != offset)
1012			return NULL;
1013
1014		WARN_ON(!entry->bitmap);
1015		return entry;
1016	} else if (entry) {
1017		if (entry->bitmap) {
1018			/*
1019			 * if previous extent entry covers the offset,
1020			 * we should return it instead of the bitmap entry
1021			 */
1022			n = &entry->offset_index;
1023			while (1) {
1024				n = rb_prev(n);
1025				if (!n)
1026					break;
1027				prev = rb_entry(n, struct btrfs_free_space,
1028						offset_index);
1029				if (!prev->bitmap) {
1030					if (prev->offset + prev->bytes > offset)
1031						entry = prev;
1032					break;
1033				}
1034			}
1035		}
1036		return entry;
1037	}
1038
1039	if (!prev)
1040		return NULL;
1041
1042	/* find last entry before the 'offset' */
1043	entry = prev;
1044	if (entry->offset > offset) {
1045		n = rb_prev(&entry->offset_index);
1046		if (n) {
1047			entry = rb_entry(n, struct btrfs_free_space,
1048					offset_index);
1049			BUG_ON(entry->offset > offset);
1050		} else {
1051			if (fuzzy)
1052				return entry;
1053			else
1054				return NULL;
1055		}
1056	}
1057
1058	if (entry->bitmap) {
1059		n = &entry->offset_index;
1060		while (1) {
1061			n = rb_prev(n);
1062			if (!n)
1063				break;
1064			prev = rb_entry(n, struct btrfs_free_space,
1065					offset_index);
1066			if (!prev->bitmap) {
1067				if (prev->offset + prev->bytes > offset)
1068					return prev;
1069				break;
1070			}
1071		}
1072		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1073			return entry;
1074	} else if (entry->offset + entry->bytes > offset)
1075		return entry;
1076
1077	if (!fuzzy)
1078		return NULL;
1079
1080	while (1) {
 
 
 
 
1081		if (entry->bitmap) {
1082			if (entry->offset + BITS_PER_BITMAP *
1083			    ctl->unit > offset)
1084				break;
1085		} else {
1086			if (entry->offset + entry->bytes > offset)
1087				break;
1088		}
1089
1090		n = rb_next(&entry->offset_index);
1091		if (!n)
1092			return NULL;
1093		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1094	}
1095	return entry;
1096}
1097
1098static inline void
1099__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1100		    struct btrfs_free_space *info)
1101{
 
 
1102	rb_erase(&info->offset_index, &ctl->free_space_offset);
 
1103	ctl->free_extents--;
1104}
1105
1106static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1107			      struct btrfs_free_space *info)
1108{
1109	__unlink_free_space(ctl, info);
1110	ctl->free_space -= info->bytes;
 
 
1111}
1112
1113static int link_free_space(struct btrfs_free_space_ctl *ctl,
1114			   struct btrfs_free_space *info)
1115{
1116	int ret = 0;
1117
1118	BUG_ON(!info->bitmap && !info->bytes);
1119	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1120				 &info->offset_index, (info->bitmap != NULL));
 
1121	if (ret)
1122		return ret;
1123
 
 
 
 
 
 
 
1124	ctl->free_space += info->bytes;
1125	ctl->free_extents++;
1126	return ret;
1127}
1128
1129static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
1130{
1131	struct btrfs_block_group_cache *block_group = ctl->private;
1132	u64 max_bytes;
1133	u64 bitmap_bytes;
1134	u64 extent_bytes;
1135	u64 size = block_group->key.offset;
1136	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1137	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1138
1139	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1140
1141	/*
1142	 * The goal is to keep the total amount of memory used per 1gb of space
1143	 * at or below 32k, so we need to adjust how much memory we allow to be
1144	 * used by extent based free space tracking
1145	 */
1146	if (size < 1024 * 1024 * 1024)
1147		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1148	else
1149		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1150			div64_u64(size, 1024 * 1024 * 1024);
1151
1152	/*
1153	 * we want to account for 1 more bitmap than what we have so we can make
1154	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1155	 * we add more bitmaps.
1156	 */
1157	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1158
1159	if (bitmap_bytes >= max_bytes) {
1160		ctl->extents_thresh = 0;
1161		return;
1162	}
1163
1164	/*
1165	 * we want the extent entry threshold to always be at most 1/2 the maxw
1166	 * bytes we can have, or whatever is less than that.
1167	 */
1168	extent_bytes = max_bytes - bitmap_bytes;
1169	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1170
1171	ctl->extents_thresh =
1172		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1173}
1174
1175static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1176				       struct btrfs_free_space *info,
1177				       u64 offset, u64 bytes)
1178{
1179	unsigned long start, count;
 
1180
1181	start = offset_to_bit(info->offset, ctl->unit, offset);
1182	count = bytes_to_bits(bytes, ctl->unit);
1183	BUG_ON(start + count > BITS_PER_BITMAP);
 
1184
1185	bitmap_clear(info->bitmap, start, count);
1186
1187	info->bytes -= bytes;
1188}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
1190static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1191			      struct btrfs_free_space *info, u64 offset,
1192			      u64 bytes)
1193{
1194	__bitmap_clear_bits(ctl, info, offset, bytes);
1195	ctl->free_space -= bytes;
1196}
1197
1198static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1199			    struct btrfs_free_space *info, u64 offset,
1200			    u64 bytes)
1201{
1202	unsigned long start, count;
 
1203
1204	start = offset_to_bit(info->offset, ctl->unit, offset);
1205	count = bytes_to_bits(bytes, ctl->unit);
1206	BUG_ON(start + count > BITS_PER_BITMAP);
 
1207
1208	bitmap_set(info->bitmap, start, count);
1209
 
 
 
 
 
1210	info->bytes += bytes;
1211	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212}
1213
 
 
 
 
1214static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1215			 struct btrfs_free_space *bitmap_info, u64 *offset,
1216			 u64 *bytes)
1217{
1218	unsigned long found_bits = 0;
 
1219	unsigned long bits, i;
1220	unsigned long next_zero;
 
 
 
 
 
 
 
 
 
 
 
 
1221
1222	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1223			  max_t(u64, *offset, bitmap_info->offset));
1224	bits = bytes_to_bits(*bytes, ctl->unit);
1225
1226	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1227	     i < BITS_PER_BITMAP;
1228	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
 
 
1229		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1230					       BITS_PER_BITMAP, i);
1231		if ((next_zero - i) >= bits) {
1232			found_bits = next_zero - i;
 
1233			break;
 
 
1234		}
1235		i = next_zero;
1236	}
1237
1238	if (found_bits) {
1239		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1240		*bytes = (u64)(found_bits) * ctl->unit;
1241		return 0;
1242	}
1243
 
 
 
1244	return -1;
1245}
1246
 
1247static struct btrfs_free_space *
1248find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
 
1249{
1250	struct btrfs_free_space *entry;
1251	struct rb_node *node;
 
 
1252	int ret;
1253
1254	if (!ctl->free_space_offset.rb_node)
1255		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1258	if (!entry)
1259		return NULL;
 
 
 
 
 
 
 
 
 
1260
1261	for (node = &entry->offset_index; node; node = rb_next(node)) {
1262		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1263		if (entry->bytes < *bytes)
 
 
 
 
 
 
 
1264			continue;
 
1265
1266		if (entry->bitmap) {
1267			ret = search_bitmap(ctl, entry, offset, bytes);
1268			if (!ret)
 
 
 
 
 
1269				return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270			continue;
1271		}
1272
1273		*offset = entry->offset;
1274		*bytes = entry->bytes;
1275		return entry;
1276	}
1277
1278	return NULL;
1279}
1280
1281static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1282			   struct btrfs_free_space *info, u64 offset)
1283{
1284	info->offset = offset_to_bitmap(ctl, offset);
1285	info->bytes = 0;
 
 
1286	link_free_space(ctl, info);
1287	ctl->total_bitmaps++;
1288
1289	ctl->op->recalc_thresholds(ctl);
1290}
1291
1292static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1293			struct btrfs_free_space *bitmap_info)
1294{
1295	unlink_free_space(ctl, bitmap_info);
1296	kfree(bitmap_info->bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
1297	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1298	ctl->total_bitmaps--;
1299	ctl->op->recalc_thresholds(ctl);
1300}
1301
1302static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1303			      struct btrfs_free_space *bitmap_info,
1304			      u64 *offset, u64 *bytes)
1305{
1306	u64 end;
1307	u64 search_start, search_bytes;
1308	int ret;
1309
1310again:
1311	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1312
1313	/*
1314	 * XXX - this can go away after a few releases.
1315	 *
1316	 * since the only user of btrfs_remove_free_space is the tree logging
1317	 * stuff, and the only way to test that is under crash conditions, we
1318	 * want to have this debug stuff here just in case somethings not
1319	 * working.  Search the bitmap for the space we are trying to use to
1320	 * make sure its actually there.  If its not there then we need to stop
1321	 * because something has gone wrong.
1322	 */
1323	search_start = *offset;
1324	search_bytes = *bytes;
 
 
 
 
 
 
 
 
 
 
1325	search_bytes = min(search_bytes, end - search_start + 1);
1326	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1327	BUG_ON(ret < 0 || search_start != *offset);
1328
1329	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1330		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1331		*bytes -= end - *offset + 1;
1332		*offset = end + 1;
1333	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1334		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1335		*bytes = 0;
1336	}
1337
1338	if (*bytes) {
1339		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1340		if (!bitmap_info->bytes)
1341			free_bitmap(ctl, bitmap_info);
1342
1343		/*
1344		 * no entry after this bitmap, but we still have bytes to
1345		 * remove, so something has gone wrong.
1346		 */
1347		if (!next)
1348			return -EINVAL;
1349
1350		bitmap_info = rb_entry(next, struct btrfs_free_space,
1351				       offset_index);
1352
1353		/*
1354		 * if the next entry isn't a bitmap we need to return to let the
1355		 * extent stuff do its work.
1356		 */
1357		if (!bitmap_info->bitmap)
1358			return -EAGAIN;
1359
1360		/*
1361		 * Ok the next item is a bitmap, but it may not actually hold
1362		 * the information for the rest of this free space stuff, so
1363		 * look for it, and if we don't find it return so we can try
1364		 * everything over again.
1365		 */
1366		search_start = *offset;
1367		search_bytes = *bytes;
1368		ret = search_bitmap(ctl, bitmap_info, &search_start,
1369				    &search_bytes);
1370		if (ret < 0 || search_start != *offset)
1371			return -EAGAIN;
1372
1373		goto again;
1374	} else if (!bitmap_info->bytes)
1375		free_bitmap(ctl, bitmap_info);
1376
1377	return 0;
1378}
1379
1380static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1381			       struct btrfs_free_space *info, u64 offset,
1382			       u64 bytes)
1383{
1384	u64 bytes_to_set = 0;
1385	u64 end;
1386
 
 
 
 
 
 
 
 
 
 
 
 
 
1387	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1388
1389	bytes_to_set = min(end - offset, bytes);
1390
1391	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1392
1393	return bytes_to_set;
1394
1395}
1396
1397static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1398		      struct btrfs_free_space *info)
1399{
1400	struct btrfs_block_group_cache *block_group = ctl->private;
 
 
 
 
 
 
 
 
 
 
 
1401
1402	/*
1403	 * If we are below the extents threshold then we can add this as an
1404	 * extent, and don't have to deal with the bitmap
1405	 */
1406	if (ctl->free_extents < ctl->extents_thresh) {
1407		/*
1408		 * If this block group has some small extents we don't want to
1409		 * use up all of our free slots in the cache with them, we want
1410		 * to reserve them to larger extents, however if we have plent
1411		 * of cache left then go ahead an dadd them, no sense in adding
1412		 * the overhead of a bitmap if we don't have to.
1413		 */
1414		if (info->bytes <= block_group->sectorsize * 4) {
1415			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1416				return false;
1417		} else {
1418			return false;
1419		}
1420	}
1421
1422	/*
1423	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1424	 * don't even bother to create a bitmap for this
 
 
 
 
1425	 */
1426	if (BITS_PER_BITMAP * block_group->sectorsize >
1427	    block_group->key.offset)
1428		return false;
1429
1430	return true;
1431}
1432
1433static struct btrfs_free_space_op free_space_op = {
1434	.recalc_thresholds	= recalculate_thresholds,
1435	.use_bitmap		= use_bitmap,
1436};
1437
1438static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1439			      struct btrfs_free_space *info)
1440{
1441	struct btrfs_free_space *bitmap_info;
1442	struct btrfs_block_group_cache *block_group = NULL;
1443	int added = 0;
1444	u64 bytes, offset, bytes_added;
 
1445	int ret;
1446
1447	bytes = info->bytes;
1448	offset = info->offset;
 
1449
1450	if (!ctl->op->use_bitmap(ctl, info))
1451		return 0;
1452
1453	if (ctl->op == &free_space_op)
1454		block_group = ctl->private;
1455again:
1456	/*
1457	 * Since we link bitmaps right into the cluster we need to see if we
1458	 * have a cluster here, and if so and it has our bitmap we need to add
1459	 * the free space to that bitmap.
1460	 */
1461	if (block_group && !list_empty(&block_group->cluster_list)) {
1462		struct btrfs_free_cluster *cluster;
1463		struct rb_node *node;
1464		struct btrfs_free_space *entry;
1465
1466		cluster = list_entry(block_group->cluster_list.next,
1467				     struct btrfs_free_cluster,
1468				     block_group_list);
1469		spin_lock(&cluster->lock);
1470		node = rb_first(&cluster->root);
1471		if (!node) {
1472			spin_unlock(&cluster->lock);
1473			goto no_cluster_bitmap;
1474		}
1475
1476		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1477		if (!entry->bitmap) {
1478			spin_unlock(&cluster->lock);
1479			goto no_cluster_bitmap;
1480		}
1481
1482		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1483			bytes_added = add_bytes_to_bitmap(ctl, entry,
1484							  offset, bytes);
1485			bytes -= bytes_added;
1486			offset += bytes_added;
1487		}
1488		spin_unlock(&cluster->lock);
1489		if (!bytes) {
1490			ret = 1;
1491			goto out;
1492		}
1493	}
1494
1495no_cluster_bitmap:
1496	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1497					 1, 0);
1498	if (!bitmap_info) {
1499		BUG_ON(added);
1500		goto new_bitmap;
1501	}
1502
1503	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
1504	bytes -= bytes_added;
1505	offset += bytes_added;
1506	added = 0;
1507
1508	if (!bytes) {
1509		ret = 1;
1510		goto out;
1511	} else
1512		goto again;
1513
1514new_bitmap:
1515	if (info && info->bitmap) {
1516		add_new_bitmap(ctl, info, offset);
1517		added = 1;
1518		info = NULL;
1519		goto again;
1520	} else {
1521		spin_unlock(&ctl->tree_lock);
1522
1523		/* no pre-allocated info, allocate a new one */
1524		if (!info) {
1525			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1526						 GFP_NOFS);
1527			if (!info) {
1528				spin_lock(&ctl->tree_lock);
1529				ret = -ENOMEM;
1530				goto out;
1531			}
1532		}
1533
1534		/* allocate the bitmap */
1535		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
 
 
1536		spin_lock(&ctl->tree_lock);
1537		if (!info->bitmap) {
1538			ret = -ENOMEM;
1539			goto out;
1540		}
1541		goto again;
1542	}
1543
1544out:
1545	if (info) {
1546		if (info->bitmap)
1547			kfree(info->bitmap);
 
1548		kmem_cache_free(btrfs_free_space_cachep, info);
1549	}
1550
1551	return ret;
1552}
1553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1555			  struct btrfs_free_space *info, bool update_stat)
1556{
1557	struct btrfs_free_space *left_info;
1558	struct btrfs_free_space *right_info;
1559	bool merged = false;
1560	u64 offset = info->offset;
1561	u64 bytes = info->bytes;
 
 
1562
1563	/*
1564	 * first we want to see if there is free space adjacent to the range we
1565	 * are adding, if there is remove that struct and add a new one to
1566	 * cover the entire range
1567	 */
1568	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1569	if (right_info && rb_prev(&right_info->offset_index))
1570		left_info = rb_entry(rb_prev(&right_info->offset_index),
1571				     struct btrfs_free_space, offset_index);
1572	else
 
 
1573		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1574
1575	if (right_info && !right_info->bitmap) {
1576		if (update_stat)
1577			unlink_free_space(ctl, right_info);
1578		else
1579			__unlink_free_space(ctl, right_info);
1580		info->bytes += right_info->bytes;
1581		kmem_cache_free(btrfs_free_space_cachep, right_info);
1582		merged = true;
1583	}
1584
 
1585	if (left_info && !left_info->bitmap &&
1586	    left_info->offset + left_info->bytes == offset) {
1587		if (update_stat)
1588			unlink_free_space(ctl, left_info);
1589		else
1590			__unlink_free_space(ctl, left_info);
1591		info->offset = left_info->offset;
1592		info->bytes += left_info->bytes;
1593		kmem_cache_free(btrfs_free_space_cachep, left_info);
1594		merged = true;
1595	}
1596
1597	return merged;
1598}
1599
1600int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1601			   u64 offset, u64 bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602{
 
 
1603	struct btrfs_free_space *info;
1604	int ret = 0;
 
 
 
1605
1606	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1607	if (!info)
1608		return -ENOMEM;
1609
1610	info->offset = offset;
1611	info->bytes = bytes;
 
 
 
1612
1613	spin_lock(&ctl->tree_lock);
1614
1615	if (try_merge_free_space(ctl, info, true))
1616		goto link;
1617
1618	/*
1619	 * There was no extent directly to the left or right of this new
1620	 * extent then we know we're going to have to allocate a new extent, so
1621	 * before we do that see if we need to drop this into a bitmap
1622	 */
1623	ret = insert_into_bitmap(ctl, info);
1624	if (ret < 0) {
1625		goto out;
1626	} else if (ret) {
1627		ret = 0;
1628		goto out;
1629	}
1630link:
 
 
 
 
 
 
 
 
 
 
1631	ret = link_free_space(ctl, info);
1632	if (ret)
1633		kmem_cache_free(btrfs_free_space_cachep, info);
1634out:
 
1635	spin_unlock(&ctl->tree_lock);
1636
1637	if (ret) {
1638		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1639		BUG_ON(ret == -EEXIST);
 
 
 
 
 
1640	}
1641
1642	return ret;
1643}
1644
1645int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646			    u64 offset, u64 bytes)
1647{
1648	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1649	struct btrfs_free_space *info;
1650	struct btrfs_free_space *next_info = NULL;
1651	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652
1653	spin_lock(&ctl->tree_lock);
1654
1655again:
 
 
 
 
1656	info = tree_search_offset(ctl, offset, 0, 0);
1657	if (!info) {
1658		/*
1659		 * oops didn't find an extent that matched the space we wanted
1660		 * to remove, look for a bitmap instead
1661		 */
1662		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1663					  1, 0);
1664		if (!info) {
1665			WARN_ON(1);
 
 
 
 
 
1666			goto out_lock;
1667		}
1668	}
1669
1670	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1671		u64 end;
1672		next_info = rb_entry(rb_next(&info->offset_index),
1673					     struct btrfs_free_space,
1674					     offset_index);
1675
1676		if (next_info->bitmap)
1677			end = next_info->offset +
1678			      BITS_PER_BITMAP * ctl->unit - 1;
1679		else
1680			end = next_info->offset + next_info->bytes;
 
 
 
1681
1682		if (next_info->bytes < bytes ||
1683		    next_info->offset > offset || offset > end) {
1684			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1685			      " trying to use %llu\n",
1686			      (unsigned long long)info->offset,
1687			      (unsigned long long)info->bytes,
1688			      (unsigned long long)bytes);
1689			WARN_ON(1);
1690			ret = -EINVAL;
1691			goto out_lock;
1692		}
1693
1694		info = next_info;
1695	}
1696
1697	if (info->bytes == bytes) {
1698		unlink_free_space(ctl, info);
1699		if (info->bitmap) {
1700			kfree(info->bitmap);
1701			ctl->total_bitmaps--;
1702		}
1703		kmem_cache_free(btrfs_free_space_cachep, info);
1704		goto out_lock;
1705	}
1706
1707	if (!info->bitmap && info->offset == offset) {
1708		unlink_free_space(ctl, info);
1709		info->offset += bytes;
1710		info->bytes -= bytes;
1711		link_free_space(ctl, info);
1712		goto out_lock;
1713	}
1714
1715	if (!info->bitmap && info->offset <= offset &&
1716	    info->offset + info->bytes >= offset + bytes) {
1717		u64 old_start = info->offset;
1718		/*
1719		 * we're freeing space in the middle of the info,
1720		 * this can happen during tree log replay
1721		 *
1722		 * first unlink the old info and then
1723		 * insert it again after the hole we're creating
1724		 */
1725		unlink_free_space(ctl, info);
1726		if (offset + bytes < info->offset + info->bytes) {
1727			u64 old_end = info->offset + info->bytes;
1728
1729			info->offset = offset + bytes;
1730			info->bytes = old_end - info->offset;
1731			ret = link_free_space(ctl, info);
1732			WARN_ON(ret);
1733			if (ret)
1734				goto out_lock;
1735		} else {
1736			/* the hole we're creating ends at the end
1737			 * of the info struct, just free the info
1738			 */
1739			kmem_cache_free(btrfs_free_space_cachep, info);
 
 
 
 
 
 
 
 
 
 
 
 
 
1740		}
1741		spin_unlock(&ctl->tree_lock);
1742
1743		/* step two, insert a new info struct to cover
1744		 * anything before the hole
1745		 */
1746		ret = btrfs_add_free_space(block_group, old_start,
1747					   offset - old_start);
1748		WARN_ON(ret);
1749		goto out;
1750	}
1751
1752	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1753	if (ret == -EAGAIN)
 
1754		goto again;
1755	BUG_ON(ret);
1756out_lock:
 
1757	spin_unlock(&ctl->tree_lock);
1758out:
1759	return ret;
1760}
1761
1762void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1763			   u64 bytes)
1764{
 
1765	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1766	struct btrfs_free_space *info;
1767	struct rb_node *n;
1768	int count = 0;
1769
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1771		info = rb_entry(n, struct btrfs_free_space, offset_index);
1772		if (info->bytes >= bytes)
1773			count++;
1774		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1775		       (unsigned long long)info->offset,
1776		       (unsigned long long)info->bytes,
1777		       (info->bitmap) ? "yes" : "no");
1778	}
1779	printk(KERN_INFO "block group has cluster?: %s\n",
1780	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1781	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1782	       "\n", count);
1783}
1784
1785void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
1786{
1787	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1788
1789	spin_lock_init(&ctl->tree_lock);
1790	ctl->unit = block_group->sectorsize;
1791	ctl->start = block_group->key.objectid;
1792	ctl->private = block_group;
1793	ctl->op = &free_space_op;
 
 
 
1794
1795	/*
1796	 * we only want to have 32k of ram per block group for keeping
1797	 * track of free space, and if we pass 1/2 of that we want to
1798	 * start converting things over to using bitmaps
1799	 */
1800	ctl->extents_thresh = ((1024 * 32) / 2) /
1801				sizeof(struct btrfs_free_space);
1802}
1803
1804/*
1805 * for a given cluster, put all of its extents back into the free
1806 * space cache.  If the block group passed doesn't match the block group
1807 * pointed to by the cluster, someone else raced in and freed the
1808 * cluster already.  In that case, we just return without changing anything
1809 */
1810static int
1811__btrfs_return_cluster_to_free_space(
1812			     struct btrfs_block_group_cache *block_group,
1813			     struct btrfs_free_cluster *cluster)
1814{
1815	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1816	struct btrfs_free_space *entry;
1817	struct rb_node *node;
1818
 
 
1819	spin_lock(&cluster->lock);
1820	if (cluster->block_group != block_group)
1821		goto out;
 
 
1822
1823	cluster->block_group = NULL;
1824	cluster->window_start = 0;
1825	list_del_init(&cluster->block_group_list);
1826
1827	node = rb_first(&cluster->root);
1828	while (node) {
1829		bool bitmap;
1830
1831		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1832		node = rb_next(&entry->offset_index);
1833		rb_erase(&entry->offset_index, &cluster->root);
 
 
 
 
 
 
 
 
 
1834
1835		bitmap = (entry->bitmap != NULL);
1836		if (!bitmap)
1837			try_merge_free_space(ctl, entry, false);
1838		tree_insert_offset(&ctl->free_space_offset,
1839				   entry->offset, &entry->offset_index, bitmap);
 
 
 
 
 
 
 
 
 
 
1840	}
1841	cluster->root = RB_ROOT;
1842
1843out:
1844	spin_unlock(&cluster->lock);
1845	btrfs_put_block_group(block_group);
1846	return 0;
1847}
1848
1849void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
1850{
1851	struct btrfs_free_space *info;
1852	struct rb_node *node;
1853
1854	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1855		info = rb_entry(node, struct btrfs_free_space, offset_index);
1856		if (!info->bitmap) {
1857			unlink_free_space(ctl, info);
1858			kmem_cache_free(btrfs_free_space_cachep, info);
1859		} else {
1860			free_bitmap(ctl, info);
1861		}
1862		if (need_resched()) {
1863			spin_unlock(&ctl->tree_lock);
1864			cond_resched();
1865			spin_lock(&ctl->tree_lock);
1866		}
1867	}
1868}
1869
1870void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1871{
1872	spin_lock(&ctl->tree_lock);
1873	__btrfs_remove_free_space_cache_locked(ctl);
1874	spin_unlock(&ctl->tree_lock);
1875}
1876
1877void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1878{
1879	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1880	struct btrfs_free_cluster *cluster;
1881	struct list_head *head;
1882
1883	spin_lock(&ctl->tree_lock);
1884	while ((head = block_group->cluster_list.next) !=
1885	       &block_group->cluster_list) {
1886		cluster = list_entry(head, struct btrfs_free_cluster,
1887				     block_group_list);
1888
1889		WARN_ON(cluster->block_group != block_group);
1890		__btrfs_return_cluster_to_free_space(block_group, cluster);
1891		if (need_resched()) {
1892			spin_unlock(&ctl->tree_lock);
1893			cond_resched();
1894			spin_lock(&ctl->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895		}
 
 
1896	}
1897	__btrfs_remove_free_space_cache_locked(ctl);
1898	spin_unlock(&ctl->tree_lock);
1899
1900}
1901
1902u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1903			       u64 offset, u64 bytes, u64 empty_size)
 
1904{
1905	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
1906	struct btrfs_free_space *entry = NULL;
1907	u64 bytes_search = bytes + empty_size;
1908	u64 ret = 0;
 
 
 
 
 
 
1909
1910	spin_lock(&ctl->tree_lock);
1911	entry = find_free_space(ctl, &offset, &bytes_search);
 
 
1912	if (!entry)
1913		goto out;
1914
1915	ret = offset;
1916	if (entry->bitmap) {
1917		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
1918		if (!entry->bytes)
1919			free_bitmap(ctl, entry);
1920	} else {
1921		unlink_free_space(ctl, entry);
1922		entry->offset += bytes;
1923		entry->bytes -= bytes;
 
 
 
 
 
 
 
 
 
1924		if (!entry->bytes)
1925			kmem_cache_free(btrfs_free_space_cachep, entry);
1926		else
1927			link_free_space(ctl, entry);
1928	}
1929
1930out:
 
1931	spin_unlock(&ctl->tree_lock);
1932
 
 
 
1933	return ret;
1934}
1935
1936/*
1937 * given a cluster, put all of its extents back into the free space
1938 * cache.  If a block group is passed, this function will only free
1939 * a cluster that belongs to the passed block group.
1940 *
1941 * Otherwise, it'll get a reference on the block group pointed to by the
1942 * cluster and remove the cluster from it.
1943 */
1944int btrfs_return_cluster_to_free_space(
1945			       struct btrfs_block_group_cache *block_group,
1946			       struct btrfs_free_cluster *cluster)
1947{
1948	struct btrfs_free_space_ctl *ctl;
1949	int ret;
1950
1951	/* first, get a safe pointer to the block group */
1952	spin_lock(&cluster->lock);
1953	if (!block_group) {
1954		block_group = cluster->block_group;
1955		if (!block_group) {
1956			spin_unlock(&cluster->lock);
1957			return 0;
1958		}
1959	} else if (cluster->block_group != block_group) {
1960		/* someone else has already freed it don't redo their work */
1961		spin_unlock(&cluster->lock);
1962		return 0;
1963	}
1964	atomic_inc(&block_group->count);
1965	spin_unlock(&cluster->lock);
1966
1967	ctl = block_group->free_space_ctl;
1968
1969	/* now return any extents the cluster had on it */
1970	spin_lock(&ctl->tree_lock);
1971	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1972	spin_unlock(&ctl->tree_lock);
1973
 
 
1974	/* finally drop our ref */
1975	btrfs_put_block_group(block_group);
1976	return ret;
1977}
1978
1979static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1980				   struct btrfs_free_cluster *cluster,
1981				   struct btrfs_free_space *entry,
1982				   u64 bytes, u64 min_start)
 
1983{
1984	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1985	int err;
1986	u64 search_start = cluster->window_start;
1987	u64 search_bytes = bytes;
1988	u64 ret = 0;
1989
1990	search_start = min_start;
1991	search_bytes = bytes;
1992
1993	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
1994	if (err)
 
 
1995		return 0;
 
1996
1997	ret = search_start;
1998	__bitmap_clear_bits(ctl, entry, ret, bytes);
1999
2000	return ret;
2001}
2002
2003/*
2004 * given a cluster, try to allocate 'bytes' from it, returns 0
2005 * if it couldn't find anything suitably large, or a logical disk offset
2006 * if things worked out
2007 */
2008u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2009			     struct btrfs_free_cluster *cluster, u64 bytes,
2010			     u64 min_start)
2011{
2012	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2013	struct btrfs_free_space *entry = NULL;
2014	struct rb_node *node;
2015	u64 ret = 0;
2016
 
 
2017	spin_lock(&cluster->lock);
2018	if (bytes > cluster->max_size)
2019		goto out;
2020
2021	if (cluster->block_group != block_group)
2022		goto out;
2023
2024	node = rb_first(&cluster->root);
2025	if (!node)
2026		goto out;
2027
2028	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2029	while(1) {
 
 
 
 
2030		if (entry->bytes < bytes ||
2031		    (!entry->bitmap && entry->offset < min_start)) {
2032			node = rb_next(&entry->offset_index);
2033			if (!node)
2034				break;
2035			entry = rb_entry(node, struct btrfs_free_space,
2036					 offset_index);
2037			continue;
2038		}
2039
2040		if (entry->bitmap) {
2041			ret = btrfs_alloc_from_bitmap(block_group,
2042						      cluster, entry, bytes,
2043						      min_start);
 
2044			if (ret == 0) {
2045				node = rb_next(&entry->offset_index);
2046				if (!node)
2047					break;
2048				entry = rb_entry(node, struct btrfs_free_space,
2049						 offset_index);
2050				continue;
2051			}
 
2052		} else {
2053			ret = entry->offset;
2054
2055			entry->offset += bytes;
2056			entry->bytes -= bytes;
2057		}
2058
2059		if (entry->bytes == 0)
2060			rb_erase(&entry->offset_index, &cluster->root);
2061		break;
2062	}
2063out:
2064	spin_unlock(&cluster->lock);
2065
2066	if (!ret)
2067		return 0;
2068
2069	spin_lock(&ctl->tree_lock);
2070
 
 
 
2071	ctl->free_space -= bytes;
 
 
 
 
2072	if (entry->bytes == 0) {
 
2073		ctl->free_extents--;
2074		if (entry->bitmap) {
2075			kfree(entry->bitmap);
 
2076			ctl->total_bitmaps--;
2077			ctl->op->recalc_thresholds(ctl);
 
 
2078		}
2079		kmem_cache_free(btrfs_free_space_cachep, entry);
2080	}
2081
 
2082	spin_unlock(&ctl->tree_lock);
2083
2084	return ret;
2085}
2086
2087static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2088				struct btrfs_free_space *entry,
2089				struct btrfs_free_cluster *cluster,
2090				u64 offset, u64 bytes, u64 min_bytes)
 
2091{
2092	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2093	unsigned long next_zero;
2094	unsigned long i;
2095	unsigned long search_bits;
2096	unsigned long total_bits;
2097	unsigned long found_bits;
 
2098	unsigned long start = 0;
2099	unsigned long total_found = 0;
2100	int ret;
2101	bool found = false;
2102
2103	i = offset_to_bit(entry->offset, block_group->sectorsize,
 
 
2104			  max_t(u64, offset, entry->offset));
2105	search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2106	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2107
 
 
 
 
 
 
 
2108again:
2109	found_bits = 0;
2110	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2111	     i < BITS_PER_BITMAP;
2112	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2113		next_zero = find_next_zero_bit(entry->bitmap,
2114					       BITS_PER_BITMAP, i);
2115		if (next_zero - i >= search_bits) {
2116			found_bits = next_zero - i;
 
 
2117			break;
2118		}
 
 
2119		i = next_zero;
2120	}
2121
2122	if (!found_bits)
 
2123		return -ENOSPC;
 
2124
2125	if (!found) {
2126		start = i;
2127		found = true;
2128	}
2129
2130	total_found += found_bits;
2131
2132	if (cluster->max_size < found_bits * block_group->sectorsize)
2133		cluster->max_size = found_bits * block_group->sectorsize;
2134
2135	if (total_found < total_bits) {
2136		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2137		if (i - start > total_bits * 2) {
2138			total_found = 0;
2139			cluster->max_size = 0;
2140			found = false;
2141		}
2142		goto again;
2143	}
2144
2145	cluster->window_start = start * block_group->sectorsize +
2146		entry->offset;
2147	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2148	ret = tree_insert_offset(&cluster->root, entry->offset,
2149				 &entry->offset_index, 1);
2150	BUG_ON(ret);
 
 
 
 
 
 
 
2151
 
 
 
 
 
2152	return 0;
2153}
2154
2155/*
2156 * This searches the block group for just extents to fill the cluster with.
 
 
2157 */
2158static noinline int
2159setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2160			struct btrfs_free_cluster *cluster,
2161			struct list_head *bitmaps, u64 offset, u64 bytes,
2162			u64 min_bytes)
2163{
2164	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2165	struct btrfs_free_space *first = NULL;
2166	struct btrfs_free_space *entry = NULL;
2167	struct btrfs_free_space *prev = NULL;
2168	struct btrfs_free_space *last;
2169	struct rb_node *node;
2170	u64 window_start;
2171	u64 window_free;
2172	u64 max_extent;
2173	u64 max_gap = 128 * 1024;
 
 
2174
2175	entry = tree_search_offset(ctl, offset, 0, 1);
2176	if (!entry)
2177		return -ENOSPC;
2178
2179	/*
2180	 * We don't want bitmaps, so just move along until we find a normal
2181	 * extent entry.
2182	 */
2183	while (entry->bitmap) {
2184		if (list_empty(&entry->list))
2185			list_add_tail(&entry->list, bitmaps);
2186		node = rb_next(&entry->offset_index);
2187		if (!node)
2188			return -ENOSPC;
2189		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2190	}
2191
2192	window_start = entry->offset;
2193	window_free = entry->bytes;
2194	max_extent = entry->bytes;
2195	first = entry;
2196	last = entry;
2197	prev = entry;
2198
2199	while (window_free <= min_bytes) {
2200		node = rb_next(&entry->offset_index);
2201		if (!node)
2202			return -ENOSPC;
2203		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2204
2205		if (entry->bitmap) {
2206			if (list_empty(&entry->list))
2207				list_add_tail(&entry->list, bitmaps);
2208			continue;
2209		}
2210
2211		/*
2212		 * we haven't filled the empty size and the window is
2213		 * very large.  reset and try again
2214		 */
2215		if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2216		    entry->offset - window_start > (min_bytes * 2)) {
2217			first = entry;
2218			window_start = entry->offset;
2219			window_free = entry->bytes;
2220			last = entry;
2221			max_extent = entry->bytes;
2222		} else {
2223			last = entry;
2224			window_free += entry->bytes;
2225			if (entry->bytes > max_extent)
2226				max_extent = entry->bytes;
2227		}
2228		prev = entry;
2229	}
2230
 
 
 
2231	cluster->window_start = first->offset;
2232
2233	node = &first->offset_index;
2234
2235	/*
2236	 * now we've found our entries, pull them out of the free space
2237	 * cache and put them into the cluster rbtree
2238	 */
2239	do {
2240		int ret;
2241
2242		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2243		node = rb_next(&entry->offset_index);
2244		if (entry->bitmap)
2245			continue;
2246
2247		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2248		ret = tree_insert_offset(&cluster->root, entry->offset,
2249					 &entry->offset_index, 0);
2250		BUG_ON(ret);
 
2251	} while (node && entry != last);
2252
2253	cluster->max_size = max_extent;
2254
2255	return 0;
2256}
2257
2258/*
2259 * This specifically looks for bitmaps that may work in the cluster, we assume
2260 * that we have already failed to find extents that will work.
2261 */
2262static noinline int
2263setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2264		     struct btrfs_free_cluster *cluster,
2265		     struct list_head *bitmaps, u64 offset, u64 bytes,
2266		     u64 min_bytes)
2267{
2268	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2269	struct btrfs_free_space *entry;
2270	struct rb_node *node;
2271	int ret = -ENOSPC;
 
2272
2273	if (ctl->total_bitmaps == 0)
2274		return -ENOSPC;
2275
2276	/*
2277	 * First check our cached list of bitmaps and see if there is an entry
2278	 * here that will work.
2279	 */
 
 
 
 
 
 
 
 
 
2280	list_for_each_entry(entry, bitmaps, list) {
2281		if (entry->bytes < min_bytes)
2282			continue;
2283		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2284					   bytes, min_bytes);
2285		if (!ret)
2286			return 0;
2287	}
2288
2289	/*
2290	 * If we do have entries on our list and we are here then we didn't find
2291	 * anything, so go ahead and get the next entry after the last entry in
2292	 * this list and start the search from there.
2293	 */
2294	if (!list_empty(bitmaps)) {
2295		entry = list_entry(bitmaps->prev, struct btrfs_free_space,
2296				   list);
2297		node = rb_next(&entry->offset_index);
2298		if (!node)
2299			return -ENOSPC;
2300		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2301		goto search;
2302	}
2303
2304	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
2305	if (!entry)
2306		return -ENOSPC;
2307
2308search:
2309	node = &entry->offset_index;
2310	do {
2311		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2312		node = rb_next(&entry->offset_index);
2313		if (!entry->bitmap)
2314			continue;
2315		if (entry->bytes < min_bytes)
2316			continue;
2317		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2318					   bytes, min_bytes);
2319	} while (ret && node);
2320
2321	return ret;
2322}
2323
2324/*
2325 * here we try to find a cluster of blocks in a block group.  The goal
2326 * is to find at least bytes free and up to empty_size + bytes free.
2327 * We might not find them all in one contiguous area.
2328 *
2329 * returns zero and sets up cluster if things worked out, otherwise
2330 * it returns -enospc
2331 */
2332int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2333			     struct btrfs_root *root,
2334			     struct btrfs_block_group_cache *block_group,
2335			     struct btrfs_free_cluster *cluster,
2336			     u64 offset, u64 bytes, u64 empty_size)
2337{
 
2338	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2339	struct list_head bitmaps;
2340	struct btrfs_free_space *entry, *tmp;
 
2341	u64 min_bytes;
 
2342	int ret;
2343
2344	/* for metadata, allow allocates with more holes */
2345	if (btrfs_test_opt(root, SSD_SPREAD)) {
2346		min_bytes = bytes + empty_size;
 
 
 
 
 
 
2347	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2348		/*
2349		 * we want to do larger allocations when we are
2350		 * flushing out the delayed refs, it helps prevent
2351		 * making more work as we go along.
2352		 */
2353		if (trans->transaction->delayed_refs.flushing)
2354			min_bytes = max(bytes, (bytes + empty_size) >> 1);
2355		else
2356			min_bytes = max(bytes, (bytes + empty_size) >> 4);
2357	} else
2358		min_bytes = max(bytes, (bytes + empty_size) >> 2);
2359
2360	spin_lock(&ctl->tree_lock);
2361
2362	/*
2363	 * If we know we don't have enough space to make a cluster don't even
2364	 * bother doing all the work to try and find one.
2365	 */
2366	if (ctl->free_space < min_bytes) {
2367		spin_unlock(&ctl->tree_lock);
2368		return -ENOSPC;
2369	}
2370
2371	spin_lock(&cluster->lock);
2372
2373	/* someone already found a cluster, hooray */
2374	if (cluster->block_group) {
2375		ret = 0;
2376		goto out;
2377	}
2378
2379	INIT_LIST_HEAD(&bitmaps);
 
 
2380	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2381				      bytes, min_bytes);
 
2382	if (ret)
2383		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2384					   offset, bytes, min_bytes);
 
2385
2386	/* Clear our temporary list */
2387	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2388		list_del_init(&entry->list);
2389
2390	if (!ret) {
2391		atomic_inc(&block_group->count);
2392		list_add_tail(&cluster->block_group_list,
2393			      &block_group->cluster_list);
2394		cluster->block_group = block_group;
 
 
2395	}
2396out:
2397	spin_unlock(&cluster->lock);
2398	spin_unlock(&ctl->tree_lock);
2399
2400	return ret;
2401}
2402
2403/*
2404 * simple code to zero out a cluster
2405 */
2406void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2407{
2408	spin_lock_init(&cluster->lock);
2409	spin_lock_init(&cluster->refill_lock);
2410	cluster->root = RB_ROOT;
2411	cluster->max_size = 0;
 
2412	INIT_LIST_HEAD(&cluster->block_group_list);
2413	cluster->block_group = NULL;
2414}
2415
2416int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2417			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418{
 
 
2419	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2420	struct btrfs_free_space *entry = NULL;
2421	struct btrfs_fs_info *fs_info = block_group->fs_info;
2422	u64 bytes = 0;
2423	u64 actually_trimmed;
2424	int ret = 0;
 
 
 
 
 
2425
2426	*trimmed = 0;
 
2427
2428	while (start < end) {
2429		spin_lock(&ctl->tree_lock);
2430
2431		if (ctl->free_space < minlen) {
2432			spin_unlock(&ctl->tree_lock);
2433			break;
2434		}
2435
2436		entry = tree_search_offset(ctl, start, 0, 1);
2437		if (!entry)
2438			entry = tree_search_offset(ctl,
2439						   offset_to_bitmap(ctl, start),
2440						   1, 1);
2441
2442		if (!entry || entry->offset >= end) {
2443			spin_unlock(&ctl->tree_lock);
2444			break;
 
 
 
 
 
2445		}
2446
2447		if (entry->bitmap) {
2448			ret = search_bitmap(ctl, entry, &start, &bytes);
2449			if (!ret) {
2450				if (start >= end) {
2451					spin_unlock(&ctl->tree_lock);
2452					break;
2453				}
2454				bytes = min(bytes, end - start);
2455				bitmap_clear_bits(ctl, entry, start, bytes);
2456				if (entry->bytes == 0)
2457					free_bitmap(ctl, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458			} else {
2459				start = entry->offset + BITS_PER_BITMAP *
2460					block_group->sectorsize;
 
 
 
 
2461				spin_unlock(&ctl->tree_lock);
2462				ret = 0;
2463				continue;
2464			}
2465		} else {
2466			start = entry->offset;
2467			bytes = min(entry->bytes, end - start);
2468			unlink_free_space(ctl, entry);
2469			kmem_cache_free(btrfs_free_space_cachep, entry);
2470		}
2471
2472		spin_unlock(&ctl->tree_lock);
2473
2474		if (bytes >= minlen) {
2475			int update_ret;
2476			update_ret = btrfs_update_reserved_bytes(block_group,
2477								 bytes, 1, 1);
2478
2479			ret = btrfs_error_discard_extent(fs_info->extent_root,
2480							 start,
2481							 bytes,
2482							 &actually_trimmed);
2483
2484			btrfs_add_free_space(block_group, start, bytes);
2485			if (!update_ret)
2486				btrfs_update_reserved_bytes(block_group,
2487							    bytes, 0, 1);
2488
2489			if (ret)
2490				break;
2491			*trimmed += actually_trimmed;
2492		}
 
2493		start += bytes;
2494		bytes = 0;
 
 
2495
2496		if (fatal_signal_pending(current)) {
2497			ret = -ERESTARTSYS;
2498			break;
2499		}
2500
2501		cond_resched();
2502	}
2503
2504	return ret;
 
 
 
 
 
 
 
2505}
2506
2507/*
2508 * Find the left-most item in the cache tree, and then return the
2509 * smallest inode number in the item.
 
 
 
 
2510 *
2511 * Note: the returned inode number may not be the smallest one in
2512 * the tree, if the left-most item is a bitmap.
 
 
 
2513 */
2514u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2515{
2516	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2517	struct btrfs_free_space *entry = NULL;
2518	u64 ino = 0;
2519
2520	spin_lock(&ctl->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521
2522	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2523		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2524
2525	entry = rb_entry(rb_first(&ctl->free_space_offset),
2526			 struct btrfs_free_space, offset_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528	if (!entry->bitmap) {
2529		ino = entry->offset;
 
 
 
 
 
 
 
2530
2531		unlink_free_space(ctl, entry);
2532		entry->offset++;
2533		entry->bytes--;
2534		if (!entry->bytes)
2535			kmem_cache_free(btrfs_free_space_cachep, entry);
2536		else
2537			link_free_space(ctl, entry);
2538	} else {
2539		u64 offset = 0;
2540		u64 count = 1;
2541		int ret;
2542
2543		ret = search_bitmap(ctl, entry, &offset, &count);
2544		BUG_ON(ret);
 
 
 
 
 
 
 
 
2545
2546		ino = offset;
2547		bitmap_clear_bits(ctl, entry, offset, 1);
2548		if (entry->bytes == 0)
2549			free_bitmap(ctl, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
 
 
 
 
 
 
 
 
 
 
 
 
2551out:
2552	spin_unlock(&ctl->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554	return ino;
2555}
2556
2557struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2558				    struct btrfs_path *path)
 
2559{
2560	struct inode *inode = NULL;
 
 
2561
2562	spin_lock(&root->cache_lock);
2563	if (root->cache_inode)
2564		inode = igrab(root->cache_inode);
2565	spin_unlock(&root->cache_lock);
2566	if (inode)
2567		return inode;
 
2568
2569	inode = __lookup_free_space_inode(root, path, 0);
2570	if (IS_ERR(inode))
2571		return inode;
2572
2573	spin_lock(&root->cache_lock);
2574	if (!btrfs_fs_closing(root->fs_info))
2575		root->cache_inode = igrab(inode);
2576	spin_unlock(&root->cache_lock);
2577
2578	return inode;
2579}
2580
2581int create_free_ino_inode(struct btrfs_root *root,
2582			  struct btrfs_trans_handle *trans,
2583			  struct btrfs_path *path)
2584{
2585	return __create_free_space_inode(root, trans, path,
2586					 BTRFS_FREE_INO_OBJECTID, 0);
2587}
2588
2589int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
2590{
2591	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2592	struct btrfs_path *path;
2593	struct inode *inode;
2594	int ret = 0;
2595	u64 root_gen = btrfs_root_generation(&root->root_item);
2596
2597	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2598		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599
2600	/*
2601	 * If we're unmounting then just return, since this does a search on the
2602	 * normal root and not the commit root and we could deadlock.
 
 
 
 
2603	 */
2604	if (btrfs_fs_closing(fs_info))
2605		return 0;
 
 
 
 
 
 
 
 
 
 
 
2606
2607	path = btrfs_alloc_path();
2608	if (!path)
2609		return 0;
2610
2611	inode = lookup_free_ino_inode(root, path);
2612	if (IS_ERR(inode))
2613		goto out;
2614
2615	if (root_gen != BTRFS_I(inode)->generation)
2616		goto out_put;
 
 
 
2617
2618	ret = __load_free_space_cache(root, inode, ctl, path, 0);
 
 
 
 
 
 
2619
2620	if (ret < 0)
2621		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2622		       "root %llu\n", root->root_key.objectid);
2623out_put:
2624	iput(inode);
2625out:
2626	btrfs_free_path(path);
2627	return ret;
2628}
2629
2630int btrfs_write_out_ino_cache(struct btrfs_root *root,
2631			      struct btrfs_trans_handle *trans,
2632			      struct btrfs_path *path)
 
 
 
 
 
 
2633{
2634	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2635	struct inode *inode;
 
 
 
2636	int ret;
2637
2638	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2639		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640
2641	inode = lookup_free_ino_inode(root, path);
2642	if (IS_ERR(inode))
2643		return 0;
2644
2645	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2646	if (ret < 0)
2647		printk(KERN_ERR "btrfs: failed to write free ino cache "
2648		       "for root %llu\n", root->root_key.objectid);
2649
2650	iput(inode);
 
 
 
2651	return ret;
2652}