Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include <linux/string_choices.h>
  15#include "ctree.h"
  16#include "fs.h"
  17#include "messages.h"
  18#include "misc.h"
  19#include "free-space-cache.h"
  20#include "transaction.h"
  21#include "disk-io.h"
  22#include "extent_io.h"
  23#include "space-info.h"
  24#include "block-group.h"
  25#include "discard.h"
  26#include "subpage.h"
  27#include "inode-item.h"
  28#include "accessors.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "super.h"
  32
  33#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  34#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  35#define FORCE_EXTENT_THRESHOLD	SZ_1M
  36
  37static struct kmem_cache *btrfs_free_space_cachep;
  38static struct kmem_cache *btrfs_free_space_bitmap_cachep;
  39
  40struct btrfs_trim_range {
  41	u64 start;
  42	u64 bytes;
  43	struct list_head list;
  44};
  45
  46static int link_free_space(struct btrfs_free_space_ctl *ctl,
  47			   struct btrfs_free_space *info);
  48static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  49			      struct btrfs_free_space *info, bool update_stat);
  50static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  51			 struct btrfs_free_space *bitmap_info, u64 *offset,
  52			 u64 *bytes, bool for_alloc);
  53static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  54			struct btrfs_free_space *bitmap_info);
  55static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  56			      struct btrfs_free_space *info, u64 offset,
  57			      u64 bytes, bool update_stats);
  58
  59static void btrfs_crc32c_final(u32 crc, u8 *result)
  60{
  61	put_unaligned_le32(~crc, result);
  62}
  63
  64static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  65{
  66	struct btrfs_free_space *info;
  67	struct rb_node *node;
  68
  69	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  70		info = rb_entry(node, struct btrfs_free_space, offset_index);
  71		if (!info->bitmap) {
  72			unlink_free_space(ctl, info, true);
  73			kmem_cache_free(btrfs_free_space_cachep, info);
  74		} else {
  75			free_bitmap(ctl, info);
  76		}
  77
  78		cond_resched_lock(&ctl->tree_lock);
  79	}
  80}
  81
  82static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  83					       struct btrfs_path *path,
  84					       u64 offset)
  85{
 
  86	struct btrfs_key key;
  87	struct btrfs_key location;
  88	struct btrfs_disk_key disk_key;
  89	struct btrfs_free_space_header *header;
  90	struct extent_buffer *leaf;
  91	struct inode *inode = NULL;
  92	unsigned nofs_flag;
  93	int ret;
  94
  95	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  96	key.offset = offset;
  97	key.type = 0;
  98
  99	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 100	if (ret < 0)
 101		return ERR_PTR(ret);
 102	if (ret > 0) {
 103		btrfs_release_path(path);
 104		return ERR_PTR(-ENOENT);
 105	}
 106
 107	leaf = path->nodes[0];
 108	header = btrfs_item_ptr(leaf, path->slots[0],
 109				struct btrfs_free_space_header);
 110	btrfs_free_space_key(leaf, header, &disk_key);
 111	btrfs_disk_key_to_cpu(&location, &disk_key);
 112	btrfs_release_path(path);
 113
 114	/*
 115	 * We are often under a trans handle at this point, so we need to make
 116	 * sure NOFS is set to keep us from deadlocking.
 117	 */
 118	nofs_flag = memalloc_nofs_save();
 119	inode = btrfs_iget_path(location.objectid, root, path);
 120	btrfs_release_path(path);
 121	memalloc_nofs_restore(nofs_flag);
 122	if (IS_ERR(inode))
 123		return inode;
 
 
 
 
 124
 125	mapping_set_gfp_mask(inode->i_mapping,
 126			mapping_gfp_constraint(inode->i_mapping,
 127			~(__GFP_FS | __GFP_HIGHMEM)));
 128
 129	return inode;
 130}
 131
 132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 133		struct btrfs_path *path)
 
 134{
 135	struct btrfs_fs_info *fs_info = block_group->fs_info;
 136	struct inode *inode = NULL;
 137	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 138
 139	spin_lock(&block_group->lock);
 140	if (block_group->inode)
 141		inode = igrab(&block_group->inode->vfs_inode);
 142	spin_unlock(&block_group->lock);
 143	if (inode)
 144		return inode;
 145
 146	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 147					  block_group->start);
 148	if (IS_ERR(inode))
 149		return inode;
 150
 151	spin_lock(&block_group->lock);
 152	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 153		btrfs_info(fs_info, "Old style space inode found, converting.");
 154		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 155			BTRFS_INODE_NODATACOW;
 156		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 157	}
 158
 159	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 160		block_group->inode = BTRFS_I(igrab(inode));
 
 
 161	spin_unlock(&block_group->lock);
 162
 163	return inode;
 164}
 165
 166static int __create_free_space_inode(struct btrfs_root *root,
 167				     struct btrfs_trans_handle *trans,
 168				     struct btrfs_path *path,
 169				     u64 ino, u64 offset)
 170{
 171	struct btrfs_key key;
 172	struct btrfs_disk_key disk_key;
 173	struct btrfs_free_space_header *header;
 174	struct btrfs_inode_item *inode_item;
 175	struct extent_buffer *leaf;
 176	/* We inline CRCs for the free disk space cache */
 177	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 178			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 179	int ret;
 180
 181	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 182	if (ret)
 183		return ret;
 184
 
 
 
 
 185	leaf = path->nodes[0];
 186	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 187				    struct btrfs_inode_item);
 188	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 189	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 190			     sizeof(*inode_item));
 191	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 192	btrfs_set_inode_size(leaf, inode_item, 0);
 193	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 194	btrfs_set_inode_uid(leaf, inode_item, 0);
 195	btrfs_set_inode_gid(leaf, inode_item, 0);
 196	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 197	btrfs_set_inode_flags(leaf, inode_item, flags);
 198	btrfs_set_inode_nlink(leaf, inode_item, 1);
 199	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 200	btrfs_set_inode_block_group(leaf, inode_item, offset);
 201	btrfs_mark_buffer_dirty(trans, leaf);
 202	btrfs_release_path(path);
 203
 204	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 205	key.offset = offset;
 206	key.type = 0;
 207	ret = btrfs_insert_empty_item(trans, root, path, &key,
 208				      sizeof(struct btrfs_free_space_header));
 209	if (ret < 0) {
 210		btrfs_release_path(path);
 211		return ret;
 212	}
 213
 214	leaf = path->nodes[0];
 215	header = btrfs_item_ptr(leaf, path->slots[0],
 216				struct btrfs_free_space_header);
 217	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 218	btrfs_set_free_space_key(leaf, header, &disk_key);
 219	btrfs_mark_buffer_dirty(trans, leaf);
 220	btrfs_release_path(path);
 221
 222	return 0;
 223}
 224
 225int create_free_space_inode(struct btrfs_trans_handle *trans,
 226			    struct btrfs_block_group *block_group,
 
 227			    struct btrfs_path *path)
 228{
 229	int ret;
 230	u64 ino;
 231
 232	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 233	if (ret < 0)
 234		return ret;
 235
 236	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 237					 ino, block_group->start);
 238}
 239
 240/*
 241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 242 * handles lookup, otherwise it takes ownership and iputs the inode.
 243 * Don't reuse an inode pointer after passing it into this function.
 244 */
 245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 246				  struct inode *inode,
 247				  struct btrfs_block_group *block_group)
 248{
 249	struct btrfs_path *path;
 250	struct btrfs_key key;
 251	int ret = 0;
 252
 253	path = btrfs_alloc_path();
 254	if (!path)
 255		return -ENOMEM;
 256
 257	if (!inode)
 258		inode = lookup_free_space_inode(block_group, path);
 259	if (IS_ERR(inode)) {
 260		if (PTR_ERR(inode) != -ENOENT)
 261			ret = PTR_ERR(inode);
 262		goto out;
 263	}
 264	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 265	if (ret) {
 266		btrfs_add_delayed_iput(BTRFS_I(inode));
 267		goto out;
 268	}
 269	clear_nlink(inode);
 270	/* One for the block groups ref */
 271	spin_lock(&block_group->lock);
 272	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 273		block_group->inode = NULL;
 274		spin_unlock(&block_group->lock);
 275		iput(inode);
 276	} else {
 277		spin_unlock(&block_group->lock);
 278	}
 279	/* One for the lookup ref */
 280	btrfs_add_delayed_iput(BTRFS_I(inode));
 281
 282	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 283	key.type = 0;
 284	key.offset = block_group->start;
 285	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 286				-1, 1);
 287	if (ret) {
 288		if (ret > 0)
 289			ret = 0;
 290		goto out;
 291	}
 292	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 293out:
 294	btrfs_free_path(path);
 295	return ret;
 296}
 297
 298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 299				    struct btrfs_block_group *block_group,
 300				    struct inode *vfs_inode)
 301{
 302	struct btrfs_truncate_control control = {
 303		.inode = BTRFS_I(vfs_inode),
 304		.new_size = 0,
 305		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 306		.min_type = BTRFS_EXTENT_DATA_KEY,
 307		.clear_extent_range = true,
 308	};
 309	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 310	struct btrfs_root *root = inode->root;
 311	struct extent_state *cached_state = NULL;
 312	int ret = 0;
 313	bool locked = false;
 314
 315	if (block_group) {
 316		struct btrfs_path *path = btrfs_alloc_path();
 317
 318		if (!path) {
 319			ret = -ENOMEM;
 320			goto fail;
 321		}
 322		locked = true;
 323		mutex_lock(&trans->transaction->cache_write_mutex);
 324		if (!list_empty(&block_group->io_list)) {
 325			list_del_init(&block_group->io_list);
 326
 327			btrfs_wait_cache_io(trans, block_group, path);
 328			btrfs_put_block_group(block_group);
 329		}
 330
 331		/*
 332		 * now that we've truncated the cache away, its no longer
 333		 * setup or written
 334		 */
 335		spin_lock(&block_group->lock);
 336		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 337		spin_unlock(&block_group->lock);
 338		btrfs_free_path(path);
 339	}
 340
 341	btrfs_i_size_write(inode, 0);
 342	truncate_pagecache(vfs_inode, 0);
 343
 344	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 345	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 346
 347	/*
 348	 * We skip the throttling logic for free space cache inodes, so we don't
 349	 * need to check for -EAGAIN.
 
 
 350	 */
 351	ret = btrfs_truncate_inode_items(trans, root, &control);
 352
 353	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 354	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 355
 356	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 357	if (ret)
 358		goto fail;
 359
 360	ret = btrfs_update_inode(trans, inode);
 361
 362fail:
 363	if (locked)
 364		mutex_unlock(&trans->transaction->cache_write_mutex);
 365	if (ret)
 366		btrfs_abort_transaction(trans, ret);
 367
 368	return ret;
 369}
 370
 371static void readahead_cache(struct inode *inode)
 372{
 373	struct file_ra_state ra;
 374	unsigned long last_index;
 375
 376	file_ra_state_init(&ra, inode->i_mapping);
 
 
 
 
 377	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 378
 379	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 
 
 380}
 381
 382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 383		       int write)
 384{
 385	int num_pages;
 
 386
 387	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 388
 389	/* Make sure we can fit our crcs and generation into the first page */
 390	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 
 
 
 391		return -ENOSPC;
 392
 393	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 394
 395	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 396	if (!io_ctl->pages)
 397		return -ENOMEM;
 398
 399	io_ctl->num_pages = num_pages;
 400	io_ctl->fs_info = inode_to_fs_info(inode);
 
 401	io_ctl->inode = inode;
 402
 403	return 0;
 404}
 405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 406
 407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 408{
 409	kfree(io_ctl->pages);
 410	io_ctl->pages = NULL;
 411}
 412
 413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 414{
 415	if (io_ctl->cur) {
 416		io_ctl->cur = NULL;
 417		io_ctl->orig = NULL;
 418	}
 419}
 420
 421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 422{
 423	ASSERT(io_ctl->index < io_ctl->num_pages);
 424	io_ctl->page = io_ctl->pages[io_ctl->index++];
 425	io_ctl->cur = page_address(io_ctl->page);
 426	io_ctl->orig = io_ctl->cur;
 427	io_ctl->size = PAGE_SIZE;
 428	if (clear)
 429		clear_page(io_ctl->cur);
 430}
 431
 432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 433{
 434	int i;
 435
 436	io_ctl_unmap_page(io_ctl);
 437
 438	for (i = 0; i < io_ctl->num_pages; i++) {
 439		if (io_ctl->pages[i]) {
 440			btrfs_folio_clear_checked(io_ctl->fs_info,
 441					page_folio(io_ctl->pages[i]),
 442					page_offset(io_ctl->pages[i]),
 443					PAGE_SIZE);
 444			unlock_page(io_ctl->pages[i]);
 445			put_page(io_ctl->pages[i]);
 446		}
 447	}
 448}
 449
 450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 451{
 452	struct page *page;
 453	struct inode *inode = io_ctl->inode;
 454	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 455	int i;
 456
 457	for (i = 0; i < io_ctl->num_pages; i++) {
 458		int ret;
 459
 460		page = find_or_create_page(inode->i_mapping, i, mask);
 461		if (!page) {
 462			io_ctl_drop_pages(io_ctl);
 463			return -ENOMEM;
 464		}
 465
 466		ret = set_page_extent_mapped(page);
 467		if (ret < 0) {
 468			unlock_page(page);
 469			put_page(page);
 470			io_ctl_drop_pages(io_ctl);
 471			return ret;
 472		}
 473
 474		io_ctl->pages[i] = page;
 475		if (uptodate && !PageUptodate(page)) {
 476			btrfs_read_folio(NULL, page_folio(page));
 477			lock_page(page);
 478			if (page->mapping != inode->i_mapping) {
 479				btrfs_err(BTRFS_I(inode)->root->fs_info,
 480					  "free space cache page truncated");
 481				io_ctl_drop_pages(io_ctl);
 482				return -EIO;
 483			}
 484			if (!PageUptodate(page)) {
 485				btrfs_err(BTRFS_I(inode)->root->fs_info,
 486					   "error reading free space cache");
 487				io_ctl_drop_pages(io_ctl);
 488				return -EIO;
 489			}
 490		}
 491	}
 492
 493	for (i = 0; i < io_ctl->num_pages; i++)
 494		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 495
 496	return 0;
 497}
 498
 499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 500{
 
 
 501	io_ctl_map_page(io_ctl, 1);
 502
 503	/*
 504	 * Skip the csum areas.  If we don't check crcs then we just have a
 505	 * 64bit chunk at the front of the first page.
 506	 */
 507	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 508	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 509
 510	put_unaligned_le64(generation, io_ctl->cur);
 
 511	io_ctl->cur += sizeof(u64);
 512}
 513
 514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 515{
 516	u64 cache_gen;
 517
 518	/*
 519	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 520	 * chunk at the front of the first page.
 521	 */
 522	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 523	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 524
 525	cache_gen = get_unaligned_le64(io_ctl->cur);
 526	if (cache_gen != generation) {
 527		btrfs_err_rl(io_ctl->fs_info,
 528			"space cache generation (%llu) does not match inode (%llu)",
 529				cache_gen, generation);
 530		io_ctl_unmap_page(io_ctl);
 531		return -EIO;
 532	}
 533	io_ctl->cur += sizeof(u64);
 534	return 0;
 535}
 536
 537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 538{
 539	u32 *tmp;
 540	u32 crc = ~(u32)0;
 541	unsigned offset = 0;
 542
 
 
 
 
 
 543	if (index == 0)
 544		offset = sizeof(u32) * io_ctl->num_pages;
 545
 546	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 547	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 548	io_ctl_unmap_page(io_ctl);
 549	tmp = page_address(io_ctl->pages[0]);
 550	tmp += index;
 551	*tmp = crc;
 552}
 553
 554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 555{
 556	u32 *tmp, val;
 557	u32 crc = ~(u32)0;
 558	unsigned offset = 0;
 559
 
 
 
 
 
 560	if (index == 0)
 561		offset = sizeof(u32) * io_ctl->num_pages;
 562
 563	tmp = page_address(io_ctl->pages[0]);
 564	tmp += index;
 565	val = *tmp;
 566
 567	io_ctl_map_page(io_ctl, 0);
 568	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 569	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 570	if (val != crc) {
 571		btrfs_err_rl(io_ctl->fs_info,
 572			"csum mismatch on free space cache");
 573		io_ctl_unmap_page(io_ctl);
 574		return -EIO;
 575	}
 576
 577	return 0;
 578}
 579
 580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 581			    void *bitmap)
 582{
 583	struct btrfs_free_space_entry *entry;
 584
 585	if (!io_ctl->cur)
 586		return -ENOSPC;
 587
 588	entry = io_ctl->cur;
 589	put_unaligned_le64(offset, &entry->offset);
 590	put_unaligned_le64(bytes, &entry->bytes);
 591	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 592		BTRFS_FREE_SPACE_EXTENT;
 593	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 594	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 595
 596	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 597		return 0;
 598
 599	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 600
 601	/* No more pages to map */
 602	if (io_ctl->index >= io_ctl->num_pages)
 603		return 0;
 604
 605	/* map the next page */
 606	io_ctl_map_page(io_ctl, 1);
 607	return 0;
 608}
 609
 610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 611{
 612	if (!io_ctl->cur)
 613		return -ENOSPC;
 614
 615	/*
 616	 * If we aren't at the start of the current page, unmap this one and
 617	 * map the next one if there is any left.
 618	 */
 619	if (io_ctl->cur != io_ctl->orig) {
 620		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 621		if (io_ctl->index >= io_ctl->num_pages)
 622			return -ENOSPC;
 623		io_ctl_map_page(io_ctl, 0);
 624	}
 625
 626	copy_page(io_ctl->cur, bitmap);
 627	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 628	if (io_ctl->index < io_ctl->num_pages)
 629		io_ctl_map_page(io_ctl, 0);
 630	return 0;
 631}
 632
 633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 634{
 635	/*
 636	 * If we're not on the boundary we know we've modified the page and we
 637	 * need to crc the page.
 638	 */
 639	if (io_ctl->cur != io_ctl->orig)
 640		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 641	else
 642		io_ctl_unmap_page(io_ctl);
 643
 644	while (io_ctl->index < io_ctl->num_pages) {
 645		io_ctl_map_page(io_ctl, 1);
 646		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 647	}
 648}
 649
 650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 651			    struct btrfs_free_space *entry, u8 *type)
 652{
 653	struct btrfs_free_space_entry *e;
 654	int ret;
 655
 656	if (!io_ctl->cur) {
 657		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 658		if (ret)
 659			return ret;
 660	}
 661
 662	e = io_ctl->cur;
 663	entry->offset = get_unaligned_le64(&e->offset);
 664	entry->bytes = get_unaligned_le64(&e->bytes);
 665	*type = e->type;
 666	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 667	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 668
 669	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 670		return 0;
 671
 672	io_ctl_unmap_page(io_ctl);
 673
 674	return 0;
 675}
 676
 677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 678			      struct btrfs_free_space *entry)
 679{
 680	int ret;
 681
 682	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 683	if (ret)
 684		return ret;
 685
 686	copy_page(entry->bitmap, io_ctl->cur);
 687	io_ctl_unmap_page(io_ctl);
 688
 689	return 0;
 690}
 691
 692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 693{
 694	struct btrfs_block_group *block_group = ctl->block_group;
 695	u64 max_bytes;
 696	u64 bitmap_bytes;
 697	u64 extent_bytes;
 698	u64 size = block_group->length;
 699	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 700	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 701
 702	max_bitmaps = max_t(u64, max_bitmaps, 1);
 703
 704	if (ctl->total_bitmaps > max_bitmaps)
 705		btrfs_err(block_group->fs_info,
 706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 707			  block_group->start, block_group->length,
 708			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 709			  bytes_per_bg);
 710	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 711
 712	/*
 713	 * We are trying to keep the total amount of memory used per 1GiB of
 714	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 715	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 716	 * bitmaps, we may end up using more memory than this.
 717	 */
 718	if (size < SZ_1G)
 719		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 720	else
 721		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 722
 723	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 724
 725	/*
 726	 * we want the extent entry threshold to always be at most 1/2 the max
 727	 * bytes we can have, or whatever is less than that.
 728	 */
 729	extent_bytes = max_bytes - bitmap_bytes;
 730	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 731
 732	ctl->extents_thresh =
 733		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734}
 735
 736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 737				   struct btrfs_free_space_ctl *ctl,
 738				   struct btrfs_path *path, u64 offset)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct btrfs_free_space_header *header;
 742	struct extent_buffer *leaf;
 743	struct btrfs_io_ctl io_ctl;
 744	struct btrfs_key key;
 745	struct btrfs_free_space *e, *n;
 746	LIST_HEAD(bitmaps);
 747	u64 num_entries;
 748	u64 num_bitmaps;
 749	u64 generation;
 750	u8 type;
 751	int ret = 0;
 752
 753	/* Nothing in the space cache, goodbye */
 754	if (!i_size_read(inode))
 755		return 0;
 756
 757	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 758	key.offset = offset;
 759	key.type = 0;
 760
 761	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 762	if (ret < 0)
 763		return 0;
 764	else if (ret > 0) {
 765		btrfs_release_path(path);
 766		return 0;
 767	}
 768
 769	ret = -1;
 770
 771	leaf = path->nodes[0];
 772	header = btrfs_item_ptr(leaf, path->slots[0],
 773				struct btrfs_free_space_header);
 774	num_entries = btrfs_free_space_entries(leaf, header);
 775	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 776	generation = btrfs_free_space_generation(leaf, header);
 777	btrfs_release_path(path);
 778
 779	if (!BTRFS_I(inode)->generation) {
 780		btrfs_info(fs_info,
 781			   "the free space cache file (%llu) is invalid, skip it",
 782			   offset);
 783		return 0;
 784	}
 785
 786	if (BTRFS_I(inode)->generation != generation) {
 787		btrfs_err(fs_info,
 788			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 789			  BTRFS_I(inode)->generation, generation);
 790		return 0;
 791	}
 792
 793	if (!num_entries)
 794		return 0;
 795
 796	ret = io_ctl_init(&io_ctl, inode, 0);
 797	if (ret)
 798		return ret;
 799
 800	readahead_cache(inode);
 801
 802	ret = io_ctl_prepare_pages(&io_ctl, true);
 803	if (ret)
 804		goto out;
 805
 806	ret = io_ctl_check_crc(&io_ctl, 0);
 807	if (ret)
 808		goto free_cache;
 809
 810	ret = io_ctl_check_generation(&io_ctl, generation);
 811	if (ret)
 812		goto free_cache;
 813
 814	while (num_entries) {
 815		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 816				      GFP_NOFS);
 817		if (!e) {
 818			ret = -ENOMEM;
 819			goto free_cache;
 820		}
 821
 822		ret = io_ctl_read_entry(&io_ctl, e, &type);
 823		if (ret) {
 824			kmem_cache_free(btrfs_free_space_cachep, e);
 825			goto free_cache;
 826		}
 827
 828		if (!e->bytes) {
 829			ret = -1;
 830			kmem_cache_free(btrfs_free_space_cachep, e);
 831			goto free_cache;
 832		}
 833
 834		if (type == BTRFS_FREE_SPACE_EXTENT) {
 835			spin_lock(&ctl->tree_lock);
 836			ret = link_free_space(ctl, e);
 837			spin_unlock(&ctl->tree_lock);
 838			if (ret) {
 839				btrfs_err(fs_info,
 840					"Duplicate entries in free space cache, dumping");
 841				kmem_cache_free(btrfs_free_space_cachep, e);
 842				goto free_cache;
 843			}
 844		} else {
 845			ASSERT(num_bitmaps);
 846			num_bitmaps--;
 847			e->bitmap = kmem_cache_zalloc(
 848					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 849			if (!e->bitmap) {
 850				ret = -ENOMEM;
 851				kmem_cache_free(
 852					btrfs_free_space_cachep, e);
 853				goto free_cache;
 854			}
 855			spin_lock(&ctl->tree_lock);
 856			ret = link_free_space(ctl, e);
 
 
 
 857			if (ret) {
 858				spin_unlock(&ctl->tree_lock);
 859				btrfs_err(fs_info,
 860					"Duplicate entries in free space cache, dumping");
 861				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
 862				kmem_cache_free(btrfs_free_space_cachep, e);
 863				goto free_cache;
 864			}
 865			ctl->total_bitmaps++;
 866			recalculate_thresholds(ctl);
 867			spin_unlock(&ctl->tree_lock);
 868			list_add_tail(&e->list, &bitmaps);
 869		}
 870
 871		num_entries--;
 872	}
 873
 874	io_ctl_unmap_page(&io_ctl);
 875
 876	/*
 877	 * We add the bitmaps at the end of the entries in order that
 878	 * the bitmap entries are added to the cache.
 879	 */
 880	list_for_each_entry_safe(e, n, &bitmaps, list) {
 881		list_del_init(&e->list);
 882		ret = io_ctl_read_bitmap(&io_ctl, e);
 883		if (ret)
 884			goto free_cache;
 885	}
 886
 887	io_ctl_drop_pages(&io_ctl);
 
 888	ret = 1;
 889out:
 890	io_ctl_free(&io_ctl);
 891	return ret;
 892free_cache:
 893	io_ctl_drop_pages(&io_ctl);
 894
 895	spin_lock(&ctl->tree_lock);
 896	__btrfs_remove_free_space_cache(ctl);
 897	spin_unlock(&ctl->tree_lock);
 898	goto out;
 899}
 900
 901static int copy_free_space_cache(struct btrfs_block_group *block_group,
 902				 struct btrfs_free_space_ctl *ctl)
 903{
 904	struct btrfs_free_space *info;
 905	struct rb_node *n;
 906	int ret = 0;
 907
 908	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 909		info = rb_entry(n, struct btrfs_free_space, offset_index);
 910		if (!info->bitmap) {
 911			const u64 offset = info->offset;
 912			const u64 bytes = info->bytes;
 913
 914			unlink_free_space(ctl, info, true);
 915			spin_unlock(&ctl->tree_lock);
 916			kmem_cache_free(btrfs_free_space_cachep, info);
 917			ret = btrfs_add_free_space(block_group, offset, bytes);
 918			spin_lock(&ctl->tree_lock);
 919		} else {
 920			u64 offset = info->offset;
 921			u64 bytes = ctl->unit;
 922
 923			ret = search_bitmap(ctl, info, &offset, &bytes, false);
 924			if (ret == 0) {
 925				bitmap_clear_bits(ctl, info, offset, bytes, true);
 926				spin_unlock(&ctl->tree_lock);
 927				ret = btrfs_add_free_space(block_group, offset,
 928							   bytes);
 929				spin_lock(&ctl->tree_lock);
 930			} else {
 931				free_bitmap(ctl, info);
 932				ret = 0;
 933			}
 934		}
 935		cond_resched_lock(&ctl->tree_lock);
 936	}
 937	return ret;
 938}
 939
 940static struct lock_class_key btrfs_free_space_inode_key;
 941
 942int load_free_space_cache(struct btrfs_block_group *block_group)
 943{
 944	struct btrfs_fs_info *fs_info = block_group->fs_info;
 945	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 946	struct btrfs_free_space_ctl tmp_ctl = {};
 947	struct inode *inode;
 948	struct btrfs_path *path;
 949	int ret = 0;
 950	bool matched;
 951	u64 used = block_group->used;
 952
 953	/*
 954	 * Because we could potentially discard our loaded free space, we want
 955	 * to load everything into a temporary structure first, and then if it's
 956	 * valid copy it all into the actual free space ctl.
 957	 */
 958	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 959
 960	/*
 961	 * If this block group has been marked to be cleared for one reason or
 962	 * another then we can't trust the on disk cache, so just return.
 963	 */
 964	spin_lock(&block_group->lock);
 965	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 966		spin_unlock(&block_group->lock);
 967		return 0;
 968	}
 969	spin_unlock(&block_group->lock);
 970
 971	path = btrfs_alloc_path();
 972	if (!path)
 973		return 0;
 974	path->search_commit_root = 1;
 975	path->skip_locking = 1;
 976
 977	/*
 978	 * We must pass a path with search_commit_root set to btrfs_iget in
 979	 * order to avoid a deadlock when allocating extents for the tree root.
 980	 *
 981	 * When we are COWing an extent buffer from the tree root, when looking
 982	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 983	 * block group without its free space cache loaded. When we find one
 984	 * we must load its space cache which requires reading its free space
 985	 * cache's inode item from the root tree. If this inode item is located
 986	 * in the same leaf that we started COWing before, then we end up in
 987	 * deadlock on the extent buffer (trying to read lock it when we
 988	 * previously write locked it).
 989	 *
 990	 * It's safe to read the inode item using the commit root because
 991	 * block groups, once loaded, stay in memory forever (until they are
 992	 * removed) as well as their space caches once loaded. New block groups
 993	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 994	 * we will never try to read their inode item while the fs is mounted.
 995	 */
 996	inode = lookup_free_space_inode(block_group, path);
 997	if (IS_ERR(inode)) {
 998		btrfs_free_path(path);
 999		return 0;
1000	}
1001
1002	/* We may have converted the inode and made the cache invalid. */
1003	spin_lock(&block_group->lock);
1004	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005		spin_unlock(&block_group->lock);
1006		btrfs_free_path(path);
1007		goto out;
1008	}
1009	spin_unlock(&block_group->lock);
1010
1011	/*
1012	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013	 * free space inodes to prevent false positives related to locks for normal
1014	 * inodes.
1015	 */
1016	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017			  &btrfs_free_space_inode_key);
1018
1019	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020				      path, block_group->start);
1021	btrfs_free_path(path);
1022	if (ret <= 0)
1023		goto out;
1024
1025	matched = (tmp_ctl.free_space == (block_group->length - used -
1026					  block_group->bytes_super));
 
 
1027
1028	if (matched) {
1029		spin_lock(&tmp_ctl.tree_lock);
1030		ret = copy_free_space_cache(block_group, &tmp_ctl);
1031		spin_unlock(&tmp_ctl.tree_lock);
1032		/*
1033		 * ret == 1 means we successfully loaded the free space cache,
1034		 * so we need to re-set it here.
1035		 */
1036		if (ret == 0)
1037			ret = 1;
1038	} else {
1039		/*
1040		 * We need to call the _locked variant so we don't try to update
1041		 * the discard counters.
1042		 */
1043		spin_lock(&tmp_ctl.tree_lock);
1044		__btrfs_remove_free_space_cache(&tmp_ctl);
1045		spin_unlock(&tmp_ctl.tree_lock);
1046		btrfs_warn(fs_info,
1047			   "block group %llu has wrong amount of free space",
1048			   block_group->start);
1049		ret = -1;
1050	}
1051out:
1052	if (ret < 0) {
1053		/* This cache is bogus, make sure it gets cleared */
1054		spin_lock(&block_group->lock);
1055		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056		spin_unlock(&block_group->lock);
1057		ret = 0;
1058
1059		btrfs_warn(fs_info,
1060			   "failed to load free space cache for block group %llu, rebuilding it now",
1061			   block_group->start);
1062	}
1063
1064	spin_lock(&ctl->tree_lock);
1065	btrfs_discard_update_discardable(block_group);
1066	spin_unlock(&ctl->tree_lock);
1067	iput(inode);
1068	return ret;
1069}
1070
1071static noinline_for_stack
1072int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073			      struct btrfs_free_space_ctl *ctl,
1074			      struct btrfs_block_group *block_group,
1075			      int *entries, int *bitmaps,
1076			      struct list_head *bitmap_list)
1077{
1078	int ret;
1079	struct btrfs_free_cluster *cluster = NULL;
1080	struct btrfs_free_cluster *cluster_locked = NULL;
1081	struct rb_node *node = rb_first(&ctl->free_space_offset);
1082	struct btrfs_trim_range *trim_entry;
1083
1084	/* Get the cluster for this block_group if it exists */
1085	if (block_group && !list_empty(&block_group->cluster_list)) {
1086		cluster = list_entry(block_group->cluster_list.next,
1087				     struct btrfs_free_cluster,
1088				     block_group_list);
1089	}
1090
1091	if (!node && cluster) {
1092		cluster_locked = cluster;
1093		spin_lock(&cluster_locked->lock);
1094		node = rb_first(&cluster->root);
1095		cluster = NULL;
1096	}
1097
1098	/* Write out the extent entries */
1099	while (node) {
1100		struct btrfs_free_space *e;
1101
1102		e = rb_entry(node, struct btrfs_free_space, offset_index);
1103		*entries += 1;
1104
1105		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106				       e->bitmap);
1107		if (ret)
1108			goto fail;
1109
1110		if (e->bitmap) {
1111			list_add_tail(&e->list, bitmap_list);
1112			*bitmaps += 1;
1113		}
1114		node = rb_next(node);
1115		if (!node && cluster) {
1116			node = rb_first(&cluster->root);
1117			cluster_locked = cluster;
1118			spin_lock(&cluster_locked->lock);
1119			cluster = NULL;
1120		}
1121	}
1122	if (cluster_locked) {
1123		spin_unlock(&cluster_locked->lock);
1124		cluster_locked = NULL;
1125	}
1126
1127	/*
1128	 * Make sure we don't miss any range that was removed from our rbtree
1129	 * because trimming is running. Otherwise after a umount+mount (or crash
1130	 * after committing the transaction) we would leak free space and get
1131	 * an inconsistent free space cache report from fsck.
1132	 */
1133	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135				       trim_entry->bytes, NULL);
1136		if (ret)
1137			goto fail;
1138		*entries += 1;
1139	}
1140
1141	return 0;
1142fail:
1143	if (cluster_locked)
1144		spin_unlock(&cluster_locked->lock);
1145	return -ENOSPC;
1146}
1147
1148static noinline_for_stack int
1149update_cache_item(struct btrfs_trans_handle *trans,
1150		  struct btrfs_root *root,
1151		  struct inode *inode,
1152		  struct btrfs_path *path, u64 offset,
1153		  int entries, int bitmaps)
1154{
1155	struct btrfs_key key;
1156	struct btrfs_free_space_header *header;
1157	struct extent_buffer *leaf;
1158	int ret;
1159
1160	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161	key.offset = offset;
1162	key.type = 0;
1163
1164	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165	if (ret < 0) {
1166		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167				 EXTENT_DELALLOC, NULL);
1168		goto fail;
1169	}
1170	leaf = path->nodes[0];
1171	if (ret > 0) {
1172		struct btrfs_key found_key;
1173		ASSERT(path->slots[0]);
1174		path->slots[0]--;
1175		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177		    found_key.offset != offset) {
1178			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179					 inode->i_size - 1, EXTENT_DELALLOC,
 
1180					 NULL);
1181			btrfs_release_path(path);
1182			goto fail;
1183		}
1184	}
1185
1186	BTRFS_I(inode)->generation = trans->transid;
1187	header = btrfs_item_ptr(leaf, path->slots[0],
1188				struct btrfs_free_space_header);
1189	btrfs_set_free_space_entries(leaf, header, entries);
1190	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191	btrfs_set_free_space_generation(leaf, header, trans->transid);
1192	btrfs_mark_buffer_dirty(trans, leaf);
1193	btrfs_release_path(path);
1194
1195	return 0;
1196
1197fail:
1198	return -1;
1199}
1200
1201static noinline_for_stack int write_pinned_extent_entries(
1202			    struct btrfs_trans_handle *trans,
1203			    struct btrfs_block_group *block_group,
1204			    struct btrfs_io_ctl *io_ctl,
1205			    int *entries)
1206{
1207	u64 start, extent_start, extent_end, len;
1208	struct extent_io_tree *unpin = NULL;
1209	int ret;
1210
1211	if (!block_group)
1212		return 0;
1213
1214	/*
1215	 * We want to add any pinned extents to our free space cache
1216	 * so we don't leak the space
1217	 *
1218	 * We shouldn't have switched the pinned extents yet so this is the
1219	 * right one
1220	 */
1221	unpin = &trans->transaction->pinned_extents;
1222
1223	start = block_group->start;
1224
1225	while (start < block_group->start + block_group->length) {
1226		if (!find_first_extent_bit(unpin, start,
1227					   &extent_start, &extent_end,
1228					   EXTENT_DIRTY, NULL))
 
1229			return 0;
1230
1231		/* This pinned extent is out of our range */
1232		if (extent_start >= block_group->start + block_group->length)
 
1233			return 0;
1234
1235		extent_start = max(extent_start, start);
1236		extent_end = min(block_group->start + block_group->length,
1237				 extent_end + 1);
1238		len = extent_end - extent_start;
1239
1240		*entries += 1;
1241		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242		if (ret)
1243			return -ENOSPC;
1244
1245		start = extent_end;
1246	}
1247
1248	return 0;
1249}
1250
1251static noinline_for_stack int
1252write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253{
1254	struct btrfs_free_space *entry, *next;
1255	int ret;
1256
1257	/* Write out the bitmaps */
1258	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260		if (ret)
1261			return -ENOSPC;
1262		list_del_init(&entry->list);
1263	}
1264
1265	return 0;
1266}
1267
1268static int flush_dirty_cache(struct inode *inode)
1269{
1270	int ret;
1271
1272	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273	if (ret)
1274		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275				 EXTENT_DELALLOC, NULL);
1276
1277	return ret;
1278}
1279
1280static void noinline_for_stack
1281cleanup_bitmap_list(struct list_head *bitmap_list)
1282{
1283	struct btrfs_free_space *entry, *next;
1284
1285	list_for_each_entry_safe(entry, next, bitmap_list, list)
1286		list_del_init(&entry->list);
1287}
1288
1289static void noinline_for_stack
1290cleanup_write_cache_enospc(struct inode *inode,
1291			   struct btrfs_io_ctl *io_ctl,
1292			   struct extent_state **cached_state)
1293{
1294	io_ctl_drop_pages(io_ctl);
1295	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296		      cached_state);
1297}
1298
1299static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300				 struct btrfs_trans_handle *trans,
1301				 struct btrfs_block_group *block_group,
1302				 struct btrfs_io_ctl *io_ctl,
1303				 struct btrfs_path *path, u64 offset)
1304{
1305	int ret;
1306	struct inode *inode = io_ctl->inode;
 
1307
1308	if (!inode)
1309		return 0;
1310
 
 
1311	/* Flush the dirty pages in the cache file. */
1312	ret = flush_dirty_cache(inode);
1313	if (ret)
1314		goto out;
1315
1316	/* Update the cache item to tell everyone this cache file is valid. */
1317	ret = update_cache_item(trans, root, inode, path, offset,
1318				io_ctl->entries, io_ctl->bitmaps);
1319out:
 
1320	if (ret) {
1321		invalidate_inode_pages2(inode->i_mapping);
1322		BTRFS_I(inode)->generation = 0;
1323		if (block_group)
1324			btrfs_debug(root->fs_info,
1325	  "failed to write free space cache for block group %llu error %d",
1326				  block_group->start, ret);
 
 
 
1327	}
1328	btrfs_update_inode(trans, BTRFS_I(inode));
1329
1330	if (block_group) {
1331		/* the dirty list is protected by the dirty_bgs_lock */
1332		spin_lock(&trans->transaction->dirty_bgs_lock);
1333
1334		/* the disk_cache_state is protected by the block group lock */
1335		spin_lock(&block_group->lock);
1336
1337		/*
1338		 * only mark this as written if we didn't get put back on
1339		 * the dirty list while waiting for IO.   Otherwise our
1340		 * cache state won't be right, and we won't get written again
1341		 */
1342		if (!ret && list_empty(&block_group->dirty_list))
1343			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344		else if (ret)
1345			block_group->disk_cache_state = BTRFS_DC_ERROR;
1346
1347		spin_unlock(&block_group->lock);
1348		spin_unlock(&trans->transaction->dirty_bgs_lock);
1349		io_ctl->inode = NULL;
1350		iput(inode);
1351	}
1352
1353	return ret;
1354
1355}
1356
 
 
 
 
 
 
 
 
1357int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358			struct btrfs_block_group *block_group,
1359			struct btrfs_path *path)
1360{
1361	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362				     block_group, &block_group->io_ctl,
1363				     path, block_group->start);
1364}
1365
1366/*
1367 * Write out cached info to an inode.
1368 *
1369 * @inode:       freespace inode we are writing out
1370 * @ctl:         free space cache we are going to write out
1371 * @block_group: block_group for this cache if it belongs to a block_group
1372 * @io_ctl:      holds context for the io
1373 * @trans:       the trans handle
1374 *
1375 * This function writes out a free space cache struct to disk for quick recovery
1376 * on mount.  This will return 0 if it was successful in writing the cache out,
1377 * or an errno if it was not.
1378 */
1379static int __btrfs_write_out_cache(struct inode *inode,
1380				   struct btrfs_free_space_ctl *ctl,
1381				   struct btrfs_block_group *block_group,
1382				   struct btrfs_io_ctl *io_ctl,
1383				   struct btrfs_trans_handle *trans)
1384{
 
1385	struct extent_state *cached_state = NULL;
1386	LIST_HEAD(bitmap_list);
1387	int entries = 0;
1388	int bitmaps = 0;
1389	int ret;
1390	int must_iput = 0;
1391	int i_size;
1392
1393	if (!i_size_read(inode))
1394		return -EIO;
1395
1396	WARN_ON(io_ctl->pages);
1397	ret = io_ctl_init(io_ctl, inode, 1);
1398	if (ret)
1399		return ret;
1400
1401	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402		down_write(&block_group->data_rwsem);
1403		spin_lock(&block_group->lock);
1404		if (block_group->delalloc_bytes) {
1405			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406			spin_unlock(&block_group->lock);
1407			up_write(&block_group->data_rwsem);
1408			BTRFS_I(inode)->generation = 0;
1409			ret = 0;
1410			must_iput = 1;
1411			goto out;
1412		}
1413		spin_unlock(&block_group->lock);
1414	}
1415
1416	/* Lock all pages first so we can lock the extent safely. */
1417	ret = io_ctl_prepare_pages(io_ctl, false);
1418	if (ret)
1419		goto out_unlock;
1420
1421	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422		    &cached_state);
1423
1424	io_ctl_set_generation(io_ctl, trans->transid);
1425
1426	mutex_lock(&ctl->cache_writeout_mutex);
1427	/* Write out the extent entries in the free space cache */
1428	spin_lock(&ctl->tree_lock);
1429	ret = write_cache_extent_entries(io_ctl, ctl,
1430					 block_group, &entries, &bitmaps,
1431					 &bitmap_list);
1432	if (ret)
1433		goto out_nospc_locked;
1434
1435	/*
1436	 * Some spaces that are freed in the current transaction are pinned,
1437	 * they will be added into free space cache after the transaction is
1438	 * committed, we shouldn't lose them.
1439	 *
1440	 * If this changes while we are working we'll get added back to
1441	 * the dirty list and redo it.  No locking needed
1442	 */
1443	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
 
1444	if (ret)
1445		goto out_nospc_locked;
1446
1447	/*
1448	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449	 * locked while doing it because a concurrent trim can be manipulating
1450	 * or freeing the bitmap.
1451	 */
1452	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453	spin_unlock(&ctl->tree_lock);
1454	mutex_unlock(&ctl->cache_writeout_mutex);
1455	if (ret)
1456		goto out_nospc;
1457
1458	/* Zero out the rest of the pages just to make sure */
1459	io_ctl_zero_remaining_pages(io_ctl);
1460
1461	/* Everything is written out, now we dirty the pages in the file. */
1462	i_size = i_size_read(inode);
1463	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464		u64 dirty_start = i * PAGE_SIZE;
1465		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1466
1467		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468					dirty_start, dirty_len, &cached_state, false);
1469		if (ret < 0)
1470			goto out_nospc;
1471	}
1472
1473	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474		up_write(&block_group->data_rwsem);
1475	/*
1476	 * Release the pages and unlock the extent, we will flush
1477	 * them out later
1478	 */
1479	io_ctl_drop_pages(io_ctl);
1480	io_ctl_free(io_ctl);
1481
1482	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483		      &cached_state);
1484
1485	/*
1486	 * at this point the pages are under IO and we're happy,
1487	 * The caller is responsible for waiting on them and updating
1488	 * the cache and the inode
1489	 */
1490	io_ctl->entries = entries;
1491	io_ctl->bitmaps = bitmaps;
1492
1493	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494	if (ret)
1495		goto out;
1496
1497	return 0;
1498
 
 
 
 
 
 
 
 
 
 
 
 
1499out_nospc_locked:
1500	cleanup_bitmap_list(&bitmap_list);
1501	spin_unlock(&ctl->tree_lock);
1502	mutex_unlock(&ctl->cache_writeout_mutex);
1503
1504out_nospc:
1505	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1506
1507out_unlock:
1508	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509		up_write(&block_group->data_rwsem);
1510
1511out:
1512	io_ctl->inode = NULL;
1513	io_ctl_free(io_ctl);
1514	if (ret) {
1515		invalidate_inode_pages2(inode->i_mapping);
1516		BTRFS_I(inode)->generation = 0;
1517	}
1518	btrfs_update_inode(trans, BTRFS_I(inode));
1519	if (must_iput)
1520		iput(inode);
1521	return ret;
1522}
1523
1524int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525			  struct btrfs_block_group *block_group,
 
1526			  struct btrfs_path *path)
1527{
1528	struct btrfs_fs_info *fs_info = trans->fs_info;
1529	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530	struct inode *inode;
1531	int ret = 0;
1532
1533	spin_lock(&block_group->lock);
1534	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535		spin_unlock(&block_group->lock);
1536		return 0;
1537	}
1538	spin_unlock(&block_group->lock);
1539
1540	inode = lookup_free_space_inode(block_group, path);
1541	if (IS_ERR(inode))
1542		return 0;
1543
1544	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545				      &block_group->io_ctl, trans);
1546	if (ret) {
1547		btrfs_debug(fs_info,
1548	  "failed to write free space cache for block group %llu error %d",
1549			  block_group->start, ret);
 
 
1550		spin_lock(&block_group->lock);
1551		block_group->disk_cache_state = BTRFS_DC_ERROR;
1552		spin_unlock(&block_group->lock);
1553
1554		block_group->io_ctl.inode = NULL;
1555		iput(inode);
1556	}
1557
1558	/*
1559	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560	 * to wait for IO and put the inode
1561	 */
1562
1563	return ret;
1564}
1565
1566static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567					  u64 offset)
1568{
1569	ASSERT(offset >= bitmap_start);
1570	offset -= bitmap_start;
1571	return (unsigned long)(div_u64(offset, unit));
1572}
1573
1574static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1575{
1576	return (unsigned long)(div_u64(bytes, unit));
1577}
1578
1579static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580				   u64 offset)
1581{
1582	u64 bitmap_start;
1583	u64 bytes_per_bitmap;
1584
1585	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586	bitmap_start = offset - ctl->start;
1587	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588	bitmap_start *= bytes_per_bitmap;
1589	bitmap_start += ctl->start;
1590
1591	return bitmap_start;
1592}
1593
1594static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595			      struct btrfs_free_cluster *cluster,
1596			      struct btrfs_free_space *new_entry)
1597{
1598	struct rb_root *root;
1599	struct rb_node **p;
1600	struct rb_node *parent = NULL;
1601
1602	lockdep_assert_held(&ctl->tree_lock);
1603
1604	if (cluster) {
1605		lockdep_assert_held(&cluster->lock);
1606		root = &cluster->root;
1607	} else {
1608		root = &ctl->free_space_offset;
1609	}
1610
1611	p = &root->rb_node;
1612
1613	while (*p) {
1614		struct btrfs_free_space *info;
1615
1616		parent = *p;
1617		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1618
1619		if (new_entry->offset < info->offset) {
1620			p = &(*p)->rb_left;
1621		} else if (new_entry->offset > info->offset) {
1622			p = &(*p)->rb_right;
1623		} else {
1624			/*
1625			 * we could have a bitmap entry and an extent entry
1626			 * share the same offset.  If this is the case, we want
1627			 * the extent entry to always be found first if we do a
1628			 * linear search through the tree, since we want to have
1629			 * the quickest allocation time, and allocating from an
1630			 * extent is faster than allocating from a bitmap.  So
1631			 * if we're inserting a bitmap and we find an entry at
1632			 * this offset, we want to go right, or after this entry
1633			 * logically.  If we are inserting an extent and we've
1634			 * found a bitmap, we want to go left, or before
1635			 * logically.
1636			 */
1637			if (new_entry->bitmap) {
1638				if (info->bitmap) {
1639					WARN_ON_ONCE(1);
1640					return -EEXIST;
1641				}
1642				p = &(*p)->rb_right;
1643			} else {
1644				if (!info->bitmap) {
1645					WARN_ON_ONCE(1);
1646					return -EEXIST;
1647				}
1648				p = &(*p)->rb_left;
1649			}
1650		}
1651	}
1652
1653	rb_link_node(&new_entry->offset_index, parent, p);
1654	rb_insert_color(&new_entry->offset_index, root);
1655
1656	return 0;
1657}
1658
1659/*
1660 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1661 * searched through the bitmap and figured out the largest ->max_extent_size,
1662 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1663 * allocator the wrong thing, we want to use the actual real max_extent_size
1664 * we've found already if it's larger, or we want to use ->bytes.
1665 *
1666 * This matters because find_free_space() will skip entries who's ->bytes is
1667 * less than the required bytes.  So if we didn't search down this bitmap, we
1668 * may pick some previous entry that has a smaller ->max_extent_size than we
1669 * have.  For example, assume we have two entries, one that has
1670 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1671 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1672 *  call into find_free_space(), and return with max_extent_size == 4K, because
1673 *  that first bitmap entry had ->max_extent_size set, but the second one did
1674 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1675 *  8K contiguous range.
1676 *
1677 *  Consider the other case, we have 2 8K chunks in that second entry and still
1678 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1679 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1680 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1681 *  right allocation the next loop through.
1682 */
1683static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1684{
1685	if (entry->bitmap && entry->max_extent_size)
1686		return entry->max_extent_size;
1687	return entry->bytes;
1688}
1689
1690/*
1691 * We want the largest entry to be leftmost, so this is inverted from what you'd
1692 * normally expect.
1693 */
1694static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1695{
1696	const struct btrfs_free_space *entry, *exist;
1697
1698	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700	return get_max_extent_size(exist) < get_max_extent_size(entry);
1701}
1702
1703/*
1704 * searches the tree for the given offset.
1705 *
1706 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707 * want a section that has at least bytes size and comes at or after the given
1708 * offset.
1709 */
1710static struct btrfs_free_space *
1711tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712		   u64 offset, int bitmap_only, int fuzzy)
1713{
1714	struct rb_node *n = ctl->free_space_offset.rb_node;
1715	struct btrfs_free_space *entry = NULL, *prev = NULL;
1716
1717	lockdep_assert_held(&ctl->tree_lock);
1718
1719	/* find entry that is closest to the 'offset' */
1720	while (n) {
 
 
 
 
 
1721		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722		prev = entry;
1723
1724		if (offset < entry->offset)
1725			n = n->rb_left;
1726		else if (offset > entry->offset)
1727			n = n->rb_right;
1728		else
1729			break;
1730
1731		entry = NULL;
1732	}
1733
1734	if (bitmap_only) {
1735		if (!entry)
1736			return NULL;
1737		if (entry->bitmap)
1738			return entry;
1739
1740		/*
1741		 * bitmap entry and extent entry may share same offset,
1742		 * in that case, bitmap entry comes after extent entry.
1743		 */
1744		n = rb_next(n);
1745		if (!n)
1746			return NULL;
1747		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748		if (entry->offset != offset)
1749			return NULL;
1750
1751		WARN_ON(!entry->bitmap);
1752		return entry;
1753	} else if (entry) {
1754		if (entry->bitmap) {
1755			/*
1756			 * if previous extent entry covers the offset,
1757			 * we should return it instead of the bitmap entry
1758			 */
1759			n = rb_prev(&entry->offset_index);
1760			if (n) {
1761				prev = rb_entry(n, struct btrfs_free_space,
1762						offset_index);
1763				if (!prev->bitmap &&
1764				    prev->offset + prev->bytes > offset)
1765					entry = prev;
1766			}
1767		}
1768		return entry;
1769	}
1770
1771	if (!prev)
1772		return NULL;
1773
1774	/* find last entry before the 'offset' */
1775	entry = prev;
1776	if (entry->offset > offset) {
1777		n = rb_prev(&entry->offset_index);
1778		if (n) {
1779			entry = rb_entry(n, struct btrfs_free_space,
1780					offset_index);
1781			ASSERT(entry->offset <= offset);
1782		} else {
1783			if (fuzzy)
1784				return entry;
1785			else
1786				return NULL;
1787		}
1788	}
1789
1790	if (entry->bitmap) {
1791		n = rb_prev(&entry->offset_index);
1792		if (n) {
1793			prev = rb_entry(n, struct btrfs_free_space,
1794					offset_index);
1795			if (!prev->bitmap &&
1796			    prev->offset + prev->bytes > offset)
1797				return prev;
1798		}
1799		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800			return entry;
1801	} else if (entry->offset + entry->bytes > offset)
1802		return entry;
1803
1804	if (!fuzzy)
1805		return NULL;
1806
1807	while (1) {
1808		n = rb_next(&entry->offset_index);
1809		if (!n)
1810			return NULL;
1811		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812		if (entry->bitmap) {
1813			if (entry->offset + BITS_PER_BITMAP *
1814			    ctl->unit > offset)
1815				break;
1816		} else {
1817			if (entry->offset + entry->bytes > offset)
1818				break;
1819		}
 
 
 
 
 
1820	}
1821	return entry;
1822}
1823
1824static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825				     struct btrfs_free_space *info,
1826				     bool update_stat)
1827{
1828	lockdep_assert_held(&ctl->tree_lock);
1829
1830	rb_erase(&info->offset_index, &ctl->free_space_offset);
1831	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832	ctl->free_extents--;
 
1833
1834	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1837	}
1838
1839	if (update_stat)
1840		ctl->free_space -= info->bytes;
1841}
1842
1843static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844			   struct btrfs_free_space *info)
1845{
1846	int ret = 0;
1847
1848	lockdep_assert_held(&ctl->tree_lock);
1849
1850	ASSERT(info->bytes || info->bitmap);
1851	ret = tree_insert_offset(ctl, NULL, info);
 
1852	if (ret)
1853		return ret;
1854
1855	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1856
1857	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1860	}
1861
1862	ctl->free_space += info->bytes;
1863	ctl->free_extents++;
1864	return ret;
1865}
1866
1867static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868				struct btrfs_free_space *info)
1869{
1870	ASSERT(info->bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871
1872	/*
1873	 * If our entry is empty it's because we're on a cluster and we don't
1874	 * want to re-link it into our ctl bytes index.
 
1875	 */
1876	if (RB_EMPTY_NODE(&info->bytes_index))
 
 
 
1877		return;
 
1878
1879	lockdep_assert_held(&ctl->tree_lock);
 
 
 
 
 
1880
1881	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1883}
1884
1885static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886				     struct btrfs_free_space *info,
1887				     u64 offset, u64 bytes, bool update_stat)
1888{
1889	unsigned long start, count, end;
1890	int extent_delta = -1;
1891
1892	start = offset_to_bit(info->offset, ctl->unit, offset);
1893	count = bytes_to_bits(bytes, ctl->unit);
1894	end = start + count;
1895	ASSERT(end <= BITS_PER_BITMAP);
1896
1897	bitmap_clear(info->bitmap, start, count);
1898
1899	info->bytes -= bytes;
1900	if (info->max_extent_size > ctl->unit)
1901		info->max_extent_size = 0;
1902
1903	relink_bitmap_entry(ctl, info);
1904
1905	if (start && test_bit(start - 1, info->bitmap))
1906		extent_delta++;
1907
1908	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909		extent_delta++;
1910
1911	info->bitmap_extents += extent_delta;
1912	if (!btrfs_free_space_trimmed(info)) {
1913		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1915	}
1916
1917	if (update_stat)
1918		ctl->free_space -= bytes;
 
 
 
 
1919}
1920
1921static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922				  struct btrfs_free_space *info, u64 offset,
1923				  u64 bytes)
1924{
1925	unsigned long start, count, end;
1926	int extent_delta = 1;
1927
1928	start = offset_to_bit(info->offset, ctl->unit, offset);
1929	count = bytes_to_bits(bytes, ctl->unit);
1930	end = start + count;
1931	ASSERT(end <= BITS_PER_BITMAP);
1932
1933	bitmap_set(info->bitmap, start, count);
1934
1935	/*
1936	 * We set some bytes, we have no idea what the max extent size is
1937	 * anymore.
1938	 */
1939	info->max_extent_size = 0;
1940	info->bytes += bytes;
1941	ctl->free_space += bytes;
1942
1943	relink_bitmap_entry(ctl, info);
1944
1945	if (start && test_bit(start - 1, info->bitmap))
1946		extent_delta--;
1947
1948	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949		extent_delta--;
1950
1951	info->bitmap_extents += extent_delta;
1952	if (!btrfs_free_space_trimmed(info)) {
1953		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1955	}
1956}
1957
1958/*
1959 * If we can not find suitable extent, we will use bytes to record
1960 * the size of the max extent.
1961 */
1962static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963			 struct btrfs_free_space *bitmap_info, u64 *offset,
1964			 u64 *bytes, bool for_alloc)
1965{
1966	unsigned long found_bits = 0;
1967	unsigned long max_bits = 0;
1968	unsigned long bits, i;
1969	unsigned long next_zero;
1970	unsigned long extent_bits;
1971
1972	/*
1973	 * Skip searching the bitmap if we don't have a contiguous section that
1974	 * is large enough for this allocation.
1975	 */
1976	if (for_alloc &&
1977	    bitmap_info->max_extent_size &&
1978	    bitmap_info->max_extent_size < *bytes) {
1979		*bytes = bitmap_info->max_extent_size;
1980		return -1;
1981	}
1982
1983	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984			  max_t(u64, *offset, bitmap_info->offset));
1985	bits = bytes_to_bits(*bytes, ctl->unit);
1986
1987	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988		if (for_alloc && bits == 1) {
1989			found_bits = 1;
1990			break;
1991		}
1992		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993					       BITS_PER_BITMAP, i);
1994		extent_bits = next_zero - i;
1995		if (extent_bits >= bits) {
1996			found_bits = extent_bits;
1997			break;
1998		} else if (extent_bits > max_bits) {
1999			max_bits = extent_bits;
2000		}
2001		i = next_zero;
2002	}
2003
2004	if (found_bits) {
2005		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006		*bytes = (u64)(found_bits) * ctl->unit;
2007		return 0;
2008	}
2009
2010	*bytes = (u64)(max_bits) * ctl->unit;
2011	bitmap_info->max_extent_size = *bytes;
2012	relink_bitmap_entry(ctl, bitmap_info);
2013	return -1;
2014}
2015
2016/* Cache the size of the max extent in bytes */
2017static struct btrfs_free_space *
2018find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2020{
2021	struct btrfs_free_space *entry;
2022	struct rb_node *node;
2023	u64 tmp;
2024	u64 align_off;
2025	int ret;
2026
2027	if (!ctl->free_space_offset.rb_node)
2028		goto out;
2029again:
2030	if (use_bytes_index) {
2031		node = rb_first_cached(&ctl->free_space_bytes);
2032	} else {
2033		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034					   0, 1);
2035		if (!entry)
2036			goto out;
2037		node = &entry->offset_index;
2038	}
2039
2040	for (; node; node = rb_next(node)) {
2041		if (use_bytes_index)
2042			entry = rb_entry(node, struct btrfs_free_space,
2043					 bytes_index);
2044		else
2045			entry = rb_entry(node, struct btrfs_free_space,
2046					 offset_index);
2047
2048		/*
2049		 * If we are using the bytes index then all subsequent entries
2050		 * in this tree are going to be < bytes, so simply set the max
2051		 * extent size and exit the loop.
2052		 *
2053		 * If we're using the offset index then we need to keep going
2054		 * through the rest of the tree.
2055		 */
2056		if (entry->bytes < *bytes) {
2057			*max_extent_size = max(get_max_extent_size(entry),
2058					       *max_extent_size);
2059			if (use_bytes_index)
2060				break;
2061			continue;
2062		}
2063
2064		/* make sure the space returned is big enough
2065		 * to match our requested alignment
2066		 */
2067		if (*bytes >= align) {
2068			tmp = entry->offset - ctl->start + align - 1;
2069			tmp = div64_u64(tmp, align);
2070			tmp = tmp * align + ctl->start;
2071			align_off = tmp - entry->offset;
2072		} else {
2073			align_off = 0;
2074			tmp = entry->offset;
2075		}
2076
2077		/*
2078		 * We don't break here if we're using the bytes index because we
2079		 * may have another entry that has the correct alignment that is
2080		 * the right size, so we don't want to miss that possibility.
2081		 * At worst this adds another loop through the logic, but if we
2082		 * broke here we could prematurely ENOSPC.
2083		 */
2084		if (entry->bytes < *bytes + align_off) {
2085			*max_extent_size = max(get_max_extent_size(entry),
2086					       *max_extent_size);
2087			continue;
2088		}
2089
2090		if (entry->bitmap) {
2091			struct rb_node *old_next = rb_next(node);
2092			u64 size = *bytes;
2093
2094			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095			if (!ret) {
2096				*offset = tmp;
2097				*bytes = size;
2098				return entry;
2099			} else {
2100				*max_extent_size =
2101					max(get_max_extent_size(entry),
2102					    *max_extent_size);
2103			}
2104
2105			/*
2106			 * The bitmap may have gotten re-arranged in the space
2107			 * index here because the max_extent_size may have been
2108			 * updated.  Start from the beginning again if this
2109			 * happened.
2110			 */
2111			if (use_bytes_index && old_next != rb_next(node))
2112				goto again;
2113			continue;
2114		}
2115
2116		*offset = tmp;
2117		*bytes = entry->bytes - align_off;
2118		return entry;
2119	}
2120out:
2121	return NULL;
2122}
2123
2124static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125			   struct btrfs_free_space *info, u64 offset)
2126{
2127	info->offset = offset_to_bitmap(ctl, offset);
2128	info->bytes = 0;
2129	info->bitmap_extents = 0;
2130	INIT_LIST_HEAD(&info->list);
2131	link_free_space(ctl, info);
2132	ctl->total_bitmaps++;
2133	recalculate_thresholds(ctl);
 
2134}
2135
2136static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137			struct btrfs_free_space *bitmap_info)
2138{
2139	/*
2140	 * Normally when this is called, the bitmap is completely empty. However,
2141	 * if we are blowing up the free space cache for one reason or another
2142	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143	 * we may leave stats on the table.
2144	 */
2145	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147			bitmap_info->bitmap_extents;
2148		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2149
2150	}
2151	unlink_free_space(ctl, bitmap_info, true);
2152	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154	ctl->total_bitmaps--;
2155	recalculate_thresholds(ctl);
2156}
2157
2158static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159			      struct btrfs_free_space *bitmap_info,
2160			      u64 *offset, u64 *bytes)
2161{
2162	u64 end;
2163	u64 search_start, search_bytes;
2164	int ret;
2165
2166again:
2167	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2168
2169	/*
2170	 * We need to search for bits in this bitmap.  We could only cover some
2171	 * of the extent in this bitmap thanks to how we add space, so we need
2172	 * to search for as much as it as we can and clear that amount, and then
2173	 * go searching for the next bit.
2174	 */
2175	search_start = *offset;
2176	search_bytes = ctl->unit;
2177	search_bytes = min(search_bytes, end - search_start + 1);
2178	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179			    false);
2180	if (ret < 0 || search_start != *offset)
2181		return -EINVAL;
2182
2183	/* We may have found more bits than what we need */
2184	search_bytes = min(search_bytes, *bytes);
2185
2186	/* Cannot clear past the end of the bitmap */
2187	search_bytes = min(search_bytes, end - search_start + 1);
2188
2189	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190	*offset += search_bytes;
2191	*bytes -= search_bytes;
2192
2193	if (*bytes) {
2194		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195		if (!bitmap_info->bytes)
2196			free_bitmap(ctl, bitmap_info);
2197
2198		/*
2199		 * no entry after this bitmap, but we still have bytes to
2200		 * remove, so something has gone wrong.
2201		 */
2202		if (!next)
2203			return -EINVAL;
2204
2205		bitmap_info = rb_entry(next, struct btrfs_free_space,
2206				       offset_index);
2207
2208		/*
2209		 * if the next entry isn't a bitmap we need to return to let the
2210		 * extent stuff do its work.
2211		 */
2212		if (!bitmap_info->bitmap)
2213			return -EAGAIN;
2214
2215		/*
2216		 * Ok the next item is a bitmap, but it may not actually hold
2217		 * the information for the rest of this free space stuff, so
2218		 * look for it, and if we don't find it return so we can try
2219		 * everything over again.
2220		 */
2221		search_start = *offset;
2222		search_bytes = ctl->unit;
2223		ret = search_bitmap(ctl, bitmap_info, &search_start,
2224				    &search_bytes, false);
2225		if (ret < 0 || search_start != *offset)
2226			return -EAGAIN;
2227
2228		goto again;
2229	} else if (!bitmap_info->bytes)
2230		free_bitmap(ctl, bitmap_info);
2231
2232	return 0;
2233}
2234
2235static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236			       struct btrfs_free_space *info, u64 offset,
2237			       u64 bytes, enum btrfs_trim_state trim_state)
2238{
2239	u64 bytes_to_set = 0;
2240	u64 end;
2241
2242	/*
2243	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2244	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2245	 */
2246	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247		if (btrfs_free_space_trimmed(info)) {
2248			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249				info->bitmap_extents;
2250			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2251		}
2252		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2253	}
2254
2255	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2256
2257	bytes_to_set = min(end - offset, bytes);
2258
2259	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
 
 
 
 
 
 
2260
2261	return bytes_to_set;
2262
2263}
2264
2265static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266		      struct btrfs_free_space *info)
2267{
2268	struct btrfs_block_group *block_group = ctl->block_group;
2269	struct btrfs_fs_info *fs_info = block_group->fs_info;
2270	bool forced = false;
2271
2272#ifdef CONFIG_BTRFS_DEBUG
2273	if (btrfs_should_fragment_free_space(block_group))
2274		forced = true;
2275#endif
2276
2277	/* This is a way to reclaim large regions from the bitmaps. */
2278	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279		return false;
2280
2281	/*
2282	 * If we are below the extents threshold then we can add this as an
2283	 * extent, and don't have to deal with the bitmap
2284	 */
2285	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2286		/*
2287		 * If this block group has some small extents we don't want to
2288		 * use up all of our free slots in the cache with them, we want
2289		 * to reserve them to larger extents, however if we have plenty
2290		 * of cache left then go ahead an dadd them, no sense in adding
2291		 * the overhead of a bitmap if we don't have to.
2292		 */
2293		if (info->bytes <= fs_info->sectorsize * 8) {
2294			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295				return false;
2296		} else {
2297			return false;
2298		}
2299	}
2300
2301	/*
2302	 * The original block groups from mkfs can be really small, like 8
2303	 * megabytes, so don't bother with a bitmap for those entries.  However
2304	 * some block groups can be smaller than what a bitmap would cover but
2305	 * are still large enough that they could overflow the 32k memory limit,
2306	 * so allow those block groups to still be allowed to have a bitmap
2307	 * entry.
2308	 */
2309	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310		return false;
2311
2312	return true;
2313}
2314
2315static const struct btrfs_free_space_op free_space_op = {
 
2316	.use_bitmap		= use_bitmap,
2317};
2318
2319static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320			      struct btrfs_free_space *info)
2321{
2322	struct btrfs_free_space *bitmap_info;
2323	struct btrfs_block_group *block_group = NULL;
2324	int added = 0;
2325	u64 bytes, offset, bytes_added;
2326	enum btrfs_trim_state trim_state;
2327	int ret;
2328
2329	bytes = info->bytes;
2330	offset = info->offset;
2331	trim_state = info->trim_state;
2332
2333	if (!ctl->op->use_bitmap(ctl, info))
2334		return 0;
2335
2336	if (ctl->op == &free_space_op)
2337		block_group = ctl->block_group;
2338again:
2339	/*
2340	 * Since we link bitmaps right into the cluster we need to see if we
2341	 * have a cluster here, and if so and it has our bitmap we need to add
2342	 * the free space to that bitmap.
2343	 */
2344	if (block_group && !list_empty(&block_group->cluster_list)) {
2345		struct btrfs_free_cluster *cluster;
2346		struct rb_node *node;
2347		struct btrfs_free_space *entry;
2348
2349		cluster = list_entry(block_group->cluster_list.next,
2350				     struct btrfs_free_cluster,
2351				     block_group_list);
2352		spin_lock(&cluster->lock);
2353		node = rb_first(&cluster->root);
2354		if (!node) {
2355			spin_unlock(&cluster->lock);
2356			goto no_cluster_bitmap;
2357		}
2358
2359		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360		if (!entry->bitmap) {
2361			spin_unlock(&cluster->lock);
2362			goto no_cluster_bitmap;
2363		}
2364
2365		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367							  bytes, trim_state);
2368			bytes -= bytes_added;
2369			offset += bytes_added;
2370		}
2371		spin_unlock(&cluster->lock);
2372		if (!bytes) {
2373			ret = 1;
2374			goto out;
2375		}
2376	}
2377
2378no_cluster_bitmap:
2379	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380					 1, 0);
2381	if (!bitmap_info) {
2382		ASSERT(added == 0);
2383		goto new_bitmap;
2384	}
2385
2386	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387					  trim_state);
2388	bytes -= bytes_added;
2389	offset += bytes_added;
2390	added = 0;
2391
2392	if (!bytes) {
2393		ret = 1;
2394		goto out;
2395	} else
2396		goto again;
2397
2398new_bitmap:
2399	if (info && info->bitmap) {
2400		add_new_bitmap(ctl, info, offset);
2401		added = 1;
2402		info = NULL;
2403		goto again;
2404	} else {
2405		spin_unlock(&ctl->tree_lock);
2406
2407		/* no pre-allocated info, allocate a new one */
2408		if (!info) {
2409			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410						 GFP_NOFS);
2411			if (!info) {
2412				spin_lock(&ctl->tree_lock);
2413				ret = -ENOMEM;
2414				goto out;
2415			}
2416		}
2417
2418		/* allocate the bitmap */
2419		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420						 GFP_NOFS);
2421		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422		spin_lock(&ctl->tree_lock);
2423		if (!info->bitmap) {
2424			ret = -ENOMEM;
2425			goto out;
2426		}
2427		goto again;
2428	}
2429
2430out:
2431	if (info) {
2432		if (info->bitmap)
2433			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434					info->bitmap);
2435		kmem_cache_free(btrfs_free_space_cachep, info);
2436	}
2437
2438	return ret;
2439}
2440
2441/*
2442 * Free space merging rules:
2443 *  1) Merge trimmed areas together
2444 *  2) Let untrimmed areas coalesce with trimmed areas
2445 *  3) Always pull neighboring regions from bitmaps
2446 *
2447 * The above rules are for when we merge free space based on btrfs_trim_state.
2448 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449 * same reason: to promote larger extent regions which makes life easier for
2450 * find_free_extent().  Rule 2 enables coalescing based on the common path
2451 * being returning free space from btrfs_finish_extent_commit().  So when free
2452 * space is trimmed, it will prevent aggregating trimmed new region and
2453 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2454 * and provide find_free_extent() with the largest extents possible hoping for
2455 * the reuse path.
2456 */
2457static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458			  struct btrfs_free_space *info, bool update_stat)
2459{
2460	struct btrfs_free_space *left_info = NULL;
2461	struct btrfs_free_space *right_info;
2462	bool merged = false;
2463	u64 offset = info->offset;
2464	u64 bytes = info->bytes;
2465	const bool is_trimmed = btrfs_free_space_trimmed(info);
2466	struct rb_node *right_prev = NULL;
2467
2468	/*
2469	 * first we want to see if there is free space adjacent to the range we
2470	 * are adding, if there is remove that struct and add a new one to
2471	 * cover the entire range
2472	 */
2473	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474	if (right_info)
2475		right_prev = rb_prev(&right_info->offset_index);
2476
2477	if (right_prev)
2478		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479	else if (!right_info)
2480		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2481
2482	/* See try_merge_free_space() comment. */
2483	if (right_info && !right_info->bitmap &&
2484	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485		unlink_free_space(ctl, right_info, update_stat);
 
2486		info->bytes += right_info->bytes;
2487		kmem_cache_free(btrfs_free_space_cachep, right_info);
2488		merged = true;
2489	}
2490
2491	/* See try_merge_free_space() comment. */
2492	if (left_info && !left_info->bitmap &&
2493	    left_info->offset + left_info->bytes == offset &&
2494	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495		unlink_free_space(ctl, left_info, update_stat);
 
 
2496		info->offset = left_info->offset;
2497		info->bytes += left_info->bytes;
2498		kmem_cache_free(btrfs_free_space_cachep, left_info);
2499		merged = true;
2500	}
2501
2502	return merged;
2503}
2504
2505static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506				     struct btrfs_free_space *info,
2507				     bool update_stat)
2508{
2509	struct btrfs_free_space *bitmap;
2510	unsigned long i;
2511	unsigned long j;
2512	const u64 end = info->offset + info->bytes;
2513	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514	u64 bytes;
2515
2516	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517	if (!bitmap)
2518		return false;
2519
2520	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522	if (j == i)
2523		return false;
2524	bytes = (j - i) * ctl->unit;
2525	info->bytes += bytes;
2526
2527	/* See try_merge_free_space() comment. */
2528	if (!btrfs_free_space_trimmed(bitmap))
2529		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2530
2531	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2532
2533	if (!bitmap->bytes)
2534		free_bitmap(ctl, bitmap);
2535
2536	return true;
2537}
2538
2539static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540				       struct btrfs_free_space *info,
2541				       bool update_stat)
2542{
2543	struct btrfs_free_space *bitmap;
2544	u64 bitmap_offset;
2545	unsigned long i;
2546	unsigned long j;
2547	unsigned long prev_j;
2548	u64 bytes;
2549
2550	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551	/* If we're on a boundary, try the previous logical bitmap. */
2552	if (bitmap_offset == info->offset) {
2553		if (info->offset == 0)
2554			return false;
2555		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2556	}
2557
2558	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559	if (!bitmap)
2560		return false;
2561
2562	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563	j = 0;
2564	prev_j = (unsigned long)-1;
2565	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566		if (j > i)
2567			break;
2568		prev_j = j;
2569	}
2570	if (prev_j == i)
2571		return false;
2572
2573	if (prev_j == (unsigned long)-1)
2574		bytes = (i + 1) * ctl->unit;
2575	else
2576		bytes = (i - prev_j) * ctl->unit;
2577
2578	info->offset -= bytes;
2579	info->bytes += bytes;
2580
2581	/* See try_merge_free_space() comment. */
2582	if (!btrfs_free_space_trimmed(bitmap))
2583		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584
2585	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2586
2587	if (!bitmap->bytes)
2588		free_bitmap(ctl, bitmap);
2589
2590	return true;
2591}
2592
2593/*
2594 * We prefer always to allocate from extent entries, both for clustered and
2595 * non-clustered allocation requests. So when attempting to add a new extent
2596 * entry, try to see if there's adjacent free space in bitmap entries, and if
2597 * there is, migrate that space from the bitmaps to the extent.
2598 * Like this we get better chances of satisfying space allocation requests
2599 * because we attempt to satisfy them based on a single cache entry, and never
2600 * on 2 or more entries - even if the entries represent a contiguous free space
2601 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602 * ends).
2603 */
2604static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605			      struct btrfs_free_space *info,
2606			      bool update_stat)
2607{
2608	/*
2609	 * Only work with disconnected entries, as we can change their offset,
2610	 * and must be extent entries.
2611	 */
2612	ASSERT(!info->bitmap);
2613	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2614
2615	if (ctl->total_bitmaps > 0) {
2616		bool stole_end;
2617		bool stole_front = false;
2618
2619		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620		if (ctl->total_bitmaps > 0)
2621			stole_front = steal_from_bitmap_to_front(ctl, info,
2622								 update_stat);
2623
2624		if (stole_end || stole_front)
2625			try_merge_free_space(ctl, info, update_stat);
2626	}
2627}
2628
2629static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2630			   u64 offset, u64 bytes,
2631			   enum btrfs_trim_state trim_state)
2632{
2633	struct btrfs_fs_info *fs_info = block_group->fs_info;
2634	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635	struct btrfs_free_space *info;
2636	int ret = 0;
2637	u64 filter_bytes = bytes;
2638
2639	ASSERT(!btrfs_is_zoned(fs_info));
2640
2641	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642	if (!info)
2643		return -ENOMEM;
2644
2645	info->offset = offset;
2646	info->bytes = bytes;
2647	info->trim_state = trim_state;
2648	RB_CLEAR_NODE(&info->offset_index);
2649	RB_CLEAR_NODE(&info->bytes_index);
2650
2651	spin_lock(&ctl->tree_lock);
2652
2653	if (try_merge_free_space(ctl, info, true))
2654		goto link;
2655
2656	/*
2657	 * There was no extent directly to the left or right of this new
2658	 * extent then we know we're going to have to allocate a new extent, so
2659	 * before we do that see if we need to drop this into a bitmap
2660	 */
2661	ret = insert_into_bitmap(ctl, info);
2662	if (ret < 0) {
2663		goto out;
2664	} else if (ret) {
2665		ret = 0;
2666		goto out;
2667	}
2668link:
2669	/*
2670	 * Only steal free space from adjacent bitmaps if we're sure we're not
2671	 * going to add the new free space to existing bitmap entries - because
2672	 * that would mean unnecessary work that would be reverted. Therefore
2673	 * attempt to steal space from bitmaps if we're adding an extent entry.
2674	 */
2675	steal_from_bitmap(ctl, info, true);
2676
2677	filter_bytes = max(filter_bytes, info->bytes);
2678
2679	ret = link_free_space(ctl, info);
2680	if (ret)
2681		kmem_cache_free(btrfs_free_space_cachep, info);
2682out:
2683	btrfs_discard_update_discardable(block_group);
2684	spin_unlock(&ctl->tree_lock);
2685
2686	if (ret) {
2687		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688		ASSERT(ret != -EEXIST);
2689	}
2690
2691	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692		btrfs_discard_check_filter(block_group, filter_bytes);
2693		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694	}
2695
2696	return ret;
2697}
2698
2699static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700					u64 bytenr, u64 size, bool used)
2701{
2702	struct btrfs_space_info *sinfo = block_group->space_info;
2703	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704	u64 offset = bytenr - block_group->start;
2705	u64 to_free, to_unusable;
2706	int bg_reclaim_threshold = 0;
2707	bool initial;
2708	u64 reclaimable_unusable;
2709
2710	spin_lock(&block_group->lock);
2711
2712	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714	if (!initial)
2715		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2716
2717	if (!used)
2718		to_free = size;
2719	else if (initial)
2720		to_free = block_group->zone_capacity;
2721	else if (offset >= block_group->alloc_offset)
2722		to_free = size;
2723	else if (offset + size <= block_group->alloc_offset)
2724		to_free = 0;
2725	else
2726		to_free = offset + size - block_group->alloc_offset;
2727	to_unusable = size - to_free;
2728
2729	spin_lock(&ctl->tree_lock);
2730	ctl->free_space += to_free;
2731	spin_unlock(&ctl->tree_lock);
2732	/*
2733	 * If the block group is read-only, we should account freed space into
2734	 * bytes_readonly.
2735	 */
2736	if (!block_group->ro) {
2737		block_group->zone_unusable += to_unusable;
2738		WARN_ON(block_group->zone_unusable > block_group->length);
2739	}
2740	if (!used) {
2741		block_group->alloc_offset -= size;
2742	}
2743
2744	reclaimable_unusable = block_group->zone_unusable -
2745			       (block_group->length - block_group->zone_capacity);
2746	/* All the region is now unusable. Mark it as unused and reclaim */
2747	if (block_group->zone_unusable == block_group->length) {
2748		btrfs_mark_bg_unused(block_group);
2749	} else if (bg_reclaim_threshold &&
2750		   reclaimable_unusable >=
2751		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752		btrfs_mark_bg_to_reclaim(block_group);
2753	}
2754
2755	spin_unlock(&block_group->lock);
2756
2757	return 0;
2758}
2759
2760int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761			 u64 bytenr, u64 size)
2762{
2763	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2764
2765	if (btrfs_is_zoned(block_group->fs_info))
2766		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767						    true);
2768
2769	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771
2772	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773}
2774
2775int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776				u64 bytenr, u64 size)
2777{
2778	if (btrfs_is_zoned(block_group->fs_info))
2779		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780						    false);
2781
2782	return btrfs_add_free_space(block_group, bytenr, size);
2783}
2784
2785/*
2786 * This is a subtle distinction because when adding free space back in general,
2787 * we want it to be added as untrimmed for async. But in the case where we add
2788 * it on loading of a block group, we want to consider it trimmed.
2789 */
2790int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791				       u64 bytenr, u64 size)
2792{
2793	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2794
2795	if (btrfs_is_zoned(block_group->fs_info))
2796		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797						    true);
2798
2799	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2802
2803	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2804}
2805
2806int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807			    u64 offset, u64 bytes)
2808{
2809	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810	struct btrfs_free_space *info;
2811	int ret;
2812	bool re_search = false;
2813
2814	if (btrfs_is_zoned(block_group->fs_info)) {
2815		/*
2816		 * This can happen with conventional zones when replaying log.
2817		 * Since the allocation info of tree-log nodes are not recorded
2818		 * to the extent-tree, calculate_alloc_pointer() failed to
2819		 * advance the allocation pointer after last allocated tree log
2820		 * node blocks.
2821		 *
2822		 * This function is called from
2823		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824		 * Advance the pointer not to overwrite the tree-log nodes.
2825		 */
2826		if (block_group->start + block_group->alloc_offset <
2827		    offset + bytes) {
2828			block_group->alloc_offset =
2829				offset + bytes - block_group->start;
2830		}
2831		return 0;
2832	}
2833
2834	spin_lock(&ctl->tree_lock);
2835
2836again:
2837	ret = 0;
2838	if (!bytes)
2839		goto out_lock;
2840
2841	info = tree_search_offset(ctl, offset, 0, 0);
2842	if (!info) {
2843		/*
2844		 * oops didn't find an extent that matched the space we wanted
2845		 * to remove, look for a bitmap instead
2846		 */
2847		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848					  1, 0);
2849		if (!info) {
2850			/*
2851			 * If we found a partial bit of our free space in a
2852			 * bitmap but then couldn't find the other part this may
2853			 * be a problem, so WARN about it.
2854			 */
2855			WARN_ON(re_search);
2856			goto out_lock;
2857		}
2858	}
2859
2860	re_search = false;
2861	if (!info->bitmap) {
2862		unlink_free_space(ctl, info, true);
2863		if (offset == info->offset) {
2864			u64 to_free = min(bytes, info->bytes);
2865
2866			info->bytes -= to_free;
2867			info->offset += to_free;
2868			if (info->bytes) {
2869				ret = link_free_space(ctl, info);
2870				WARN_ON(ret);
2871			} else {
2872				kmem_cache_free(btrfs_free_space_cachep, info);
2873			}
2874
2875			offset += to_free;
2876			bytes -= to_free;
2877			goto again;
2878		} else {
2879			u64 old_end = info->bytes + info->offset;
2880
2881			info->bytes = offset - info->offset;
2882			ret = link_free_space(ctl, info);
2883			WARN_ON(ret);
2884			if (ret)
2885				goto out_lock;
2886
2887			/* Not enough bytes in this entry to satisfy us */
2888			if (old_end < offset + bytes) {
2889				bytes -= old_end - offset;
2890				offset = old_end;
2891				goto again;
2892			} else if (old_end == offset + bytes) {
2893				/* all done */
2894				goto out_lock;
2895			}
2896			spin_unlock(&ctl->tree_lock);
2897
2898			ret = __btrfs_add_free_space(block_group,
2899						     offset + bytes,
2900						     old_end - (offset + bytes),
2901						     info->trim_state);
2902			WARN_ON(ret);
2903			goto out;
2904		}
2905	}
2906
2907	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908	if (ret == -EAGAIN) {
2909		re_search = true;
2910		goto again;
2911	}
2912out_lock:
2913	btrfs_discard_update_discardable(block_group);
2914	spin_unlock(&ctl->tree_lock);
2915out:
2916	return ret;
2917}
2918
2919void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920			   u64 bytes)
2921{
2922	struct btrfs_fs_info *fs_info = block_group->fs_info;
2923	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924	struct btrfs_free_space *info;
2925	struct rb_node *n;
2926	int count = 0;
2927
2928	/*
2929	 * Zoned btrfs does not use free space tree and cluster. Just print
2930	 * out the free space after the allocation offset.
2931	 */
2932	if (btrfs_is_zoned(fs_info)) {
2933		btrfs_info(fs_info, "free space %llu active %d",
2934			   block_group->zone_capacity - block_group->alloc_offset,
2935			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936				    &block_group->runtime_flags));
2937		return;
2938	}
2939
2940	spin_lock(&ctl->tree_lock);
2941	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942		info = rb_entry(n, struct btrfs_free_space, offset_index);
2943		if (info->bytes >= bytes && !block_group->ro)
2944			count++;
2945		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946			   info->offset, info->bytes, str_yes_no(info->bitmap));
 
2947	}
2948	spin_unlock(&ctl->tree_lock);
2949	btrfs_info(fs_info, "block group has cluster?: %s",
2950	       str_no_yes(list_empty(&block_group->cluster_list)));
2951	btrfs_info(fs_info,
2952		   "%d free space entries at or bigger than %llu bytes",
2953		   count, bytes);
2954}
2955
2956void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957			       struct btrfs_free_space_ctl *ctl)
2958{
2959	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2960
2961	spin_lock_init(&ctl->tree_lock);
2962	ctl->unit = fs_info->sectorsize;
2963	ctl->start = block_group->start;
2964	ctl->block_group = block_group;
2965	ctl->op = &free_space_op;
2966	ctl->free_space_bytes = RB_ROOT_CACHED;
2967	INIT_LIST_HEAD(&ctl->trimming_ranges);
2968	mutex_init(&ctl->cache_writeout_mutex);
2969
2970	/*
2971	 * we only want to have 32k of ram per block group for keeping
2972	 * track of free space, and if we pass 1/2 of that we want to
2973	 * start converting things over to using bitmaps
2974	 */
2975	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2976}
2977
2978/*
2979 * for a given cluster, put all of its extents back into the free
2980 * space cache.  If the block group passed doesn't match the block group
2981 * pointed to by the cluster, someone else raced in and freed the
2982 * cluster already.  In that case, we just return without changing anything
2983 */
2984static void __btrfs_return_cluster_to_free_space(
2985			     struct btrfs_block_group *block_group,
 
2986			     struct btrfs_free_cluster *cluster)
2987{
2988	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
2989	struct rb_node *node;
2990
2991	lockdep_assert_held(&ctl->tree_lock);
2992
2993	spin_lock(&cluster->lock);
2994	if (cluster->block_group != block_group) {
2995		spin_unlock(&cluster->lock);
2996		return;
2997	}
2998
2999	cluster->block_group = NULL;
3000	cluster->window_start = 0;
3001	list_del_init(&cluster->block_group_list);
3002
3003	node = rb_first(&cluster->root);
3004	while (node) {
3005		struct btrfs_free_space *entry;
3006
3007		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008		node = rb_next(&entry->offset_index);
3009		rb_erase(&entry->offset_index, &cluster->root);
3010		RB_CLEAR_NODE(&entry->offset_index);
3011
3012		if (!entry->bitmap) {
3013			/* Merging treats extents as if they were new */
3014			if (!btrfs_free_space_trimmed(entry)) {
3015				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017					entry->bytes;
3018			}
3019
3020			try_merge_free_space(ctl, entry, false);
3021			steal_from_bitmap(ctl, entry, false);
3022
3023			/* As we insert directly, update these statistics */
3024			if (!btrfs_free_space_trimmed(entry)) {
3025				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027					entry->bytes;
3028			}
3029		}
3030		tree_insert_offset(ctl, NULL, entry);
3031		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032			      entry_less);
3033	}
3034	cluster->root = RB_ROOT;
 
 
3035	spin_unlock(&cluster->lock);
3036	btrfs_put_block_group(block_group);
 
3037}
3038
3039void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040{
3041	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042	struct btrfs_free_cluster *cluster;
3043	struct list_head *head;
3044
3045	spin_lock(&ctl->tree_lock);
3046	while ((head = block_group->cluster_list.next) !=
3047	       &block_group->cluster_list) {
3048		cluster = list_entry(head, struct btrfs_free_cluster,
3049				     block_group_list);
3050
3051		WARN_ON(cluster->block_group != block_group);
3052		__btrfs_return_cluster_to_free_space(block_group, cluster);
3053
3054		cond_resched_lock(&ctl->tree_lock);
3055	}
3056	__btrfs_remove_free_space_cache(ctl);
3057	btrfs_discard_update_discardable(block_group);
3058	spin_unlock(&ctl->tree_lock);
3059
3060}
3061
3062/*
3063 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3064 */
3065bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3066{
3067	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068	struct btrfs_free_space *info;
3069	struct rb_node *node;
3070	bool ret = true;
3071
3072	spin_lock(&ctl->tree_lock);
3073	node = rb_first(&ctl->free_space_offset);
3074
3075	while (node) {
3076		info = rb_entry(node, struct btrfs_free_space, offset_index);
3077
3078		if (!btrfs_free_space_trimmed(info)) {
3079			ret = false;
3080			break;
3081		}
3082
3083		node = rb_next(node);
3084	}
3085
3086	spin_unlock(&ctl->tree_lock);
3087	return ret;
3088}
3089
3090u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091			       u64 offset, u64 bytes, u64 empty_size,
3092			       u64 *max_extent_size)
3093{
3094	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095	struct btrfs_discard_ctl *discard_ctl =
3096					&block_group->fs_info->discard_ctl;
3097	struct btrfs_free_space *entry = NULL;
3098	u64 bytes_search = bytes + empty_size;
3099	u64 ret = 0;
3100	u64 align_gap = 0;
3101	u64 align_gap_len = 0;
3102	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103	bool use_bytes_index = (offset == block_group->start);
3104
3105	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3106
3107	spin_lock(&ctl->tree_lock);
3108	entry = find_free_space(ctl, &offset, &bytes_search,
3109				block_group->full_stripe_len, max_extent_size,
3110				use_bytes_index);
3111	if (!entry)
3112		goto out;
3113
3114	ret = offset;
3115	if (entry->bitmap) {
3116		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3117
3118		if (!btrfs_free_space_trimmed(entry))
3119			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3120
3121		if (!entry->bytes)
3122			free_bitmap(ctl, entry);
3123	} else {
3124		unlink_free_space(ctl, entry, true);
3125		align_gap_len = offset - entry->offset;
3126		align_gap = entry->offset;
3127		align_gap_trim_state = entry->trim_state;
3128
3129		if (!btrfs_free_space_trimmed(entry))
3130			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3131
3132		entry->offset = offset + bytes;
3133		WARN_ON(entry->bytes < bytes + align_gap_len);
3134
3135		entry->bytes -= bytes + align_gap_len;
3136		if (!entry->bytes)
3137			kmem_cache_free(btrfs_free_space_cachep, entry);
3138		else
3139			link_free_space(ctl, entry);
3140	}
3141out:
3142	btrfs_discard_update_discardable(block_group);
3143	spin_unlock(&ctl->tree_lock);
3144
3145	if (align_gap_len)
3146		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3147				       align_gap_trim_state);
3148	return ret;
3149}
3150
3151/*
3152 * given a cluster, put all of its extents back into the free space
3153 * cache.  If a block group is passed, this function will only free
3154 * a cluster that belongs to the passed block group.
3155 *
3156 * Otherwise, it'll get a reference on the block group pointed to by the
3157 * cluster and remove the cluster from it.
3158 */
3159void btrfs_return_cluster_to_free_space(
3160			       struct btrfs_block_group *block_group,
3161			       struct btrfs_free_cluster *cluster)
3162{
3163	struct btrfs_free_space_ctl *ctl;
 
3164
3165	/* first, get a safe pointer to the block group */
3166	spin_lock(&cluster->lock);
3167	if (!block_group) {
3168		block_group = cluster->block_group;
3169		if (!block_group) {
3170			spin_unlock(&cluster->lock);
3171			return;
3172		}
3173	} else if (cluster->block_group != block_group) {
3174		/* someone else has already freed it don't redo their work */
3175		spin_unlock(&cluster->lock);
3176		return;
3177	}
3178	btrfs_get_block_group(block_group);
3179	spin_unlock(&cluster->lock);
3180
3181	ctl = block_group->free_space_ctl;
3182
3183	/* now return any extents the cluster had on it */
3184	spin_lock(&ctl->tree_lock);
3185	__btrfs_return_cluster_to_free_space(block_group, cluster);
3186	spin_unlock(&ctl->tree_lock);
3187
3188	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3189
3190	/* finally drop our ref */
3191	btrfs_put_block_group(block_group);
 
3192}
3193
3194static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195				   struct btrfs_free_cluster *cluster,
3196				   struct btrfs_free_space *entry,
3197				   u64 bytes, u64 min_start,
3198				   u64 *max_extent_size)
3199{
3200	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201	int err;
3202	u64 search_start = cluster->window_start;
3203	u64 search_bytes = bytes;
3204	u64 ret = 0;
3205
3206	search_start = min_start;
3207	search_bytes = bytes;
3208
3209	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210	if (err) {
3211		*max_extent_size = max(get_max_extent_size(entry),
3212				       *max_extent_size);
3213		return 0;
3214	}
3215
3216	ret = search_start;
3217	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3218
3219	return ret;
3220}
3221
3222/*
3223 * given a cluster, try to allocate 'bytes' from it, returns 0
3224 * if it couldn't find anything suitably large, or a logical disk offset
3225 * if things worked out
3226 */
3227u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228			     struct btrfs_free_cluster *cluster, u64 bytes,
3229			     u64 min_start, u64 *max_extent_size)
3230{
3231	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232	struct btrfs_discard_ctl *discard_ctl =
3233					&block_group->fs_info->discard_ctl;
3234	struct btrfs_free_space *entry = NULL;
3235	struct rb_node *node;
3236	u64 ret = 0;
3237
3238	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3239
3240	spin_lock(&cluster->lock);
3241	if (bytes > cluster->max_size)
3242		goto out;
3243
3244	if (cluster->block_group != block_group)
3245		goto out;
3246
3247	node = rb_first(&cluster->root);
3248	if (!node)
3249		goto out;
3250
3251	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252	while (1) {
3253		if (entry->bytes < bytes)
3254			*max_extent_size = max(get_max_extent_size(entry),
3255					       *max_extent_size);
3256
3257		if (entry->bytes < bytes ||
3258		    (!entry->bitmap && entry->offset < min_start)) {
3259			node = rb_next(&entry->offset_index);
3260			if (!node)
3261				break;
3262			entry = rb_entry(node, struct btrfs_free_space,
3263					 offset_index);
3264			continue;
3265		}
3266
3267		if (entry->bitmap) {
3268			ret = btrfs_alloc_from_bitmap(block_group,
3269						      cluster, entry, bytes,
3270						      cluster->window_start,
3271						      max_extent_size);
3272			if (ret == 0) {
3273				node = rb_next(&entry->offset_index);
3274				if (!node)
3275					break;
3276				entry = rb_entry(node, struct btrfs_free_space,
3277						 offset_index);
3278				continue;
3279			}
3280			cluster->window_start += bytes;
3281		} else {
3282			ret = entry->offset;
3283
3284			entry->offset += bytes;
3285			entry->bytes -= bytes;
3286		}
3287
 
 
3288		break;
3289	}
3290out:
3291	spin_unlock(&cluster->lock);
3292
3293	if (!ret)
3294		return 0;
3295
3296	spin_lock(&ctl->tree_lock);
3297
3298	if (!btrfs_free_space_trimmed(entry))
3299		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3300
3301	ctl->free_space -= bytes;
3302	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3304
3305	spin_lock(&cluster->lock);
3306	if (entry->bytes == 0) {
3307		rb_erase(&entry->offset_index, &cluster->root);
3308		ctl->free_extents--;
3309		if (entry->bitmap) {
3310			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311					entry->bitmap);
3312			ctl->total_bitmaps--;
3313			recalculate_thresholds(ctl);
3314		} else if (!btrfs_free_space_trimmed(entry)) {
3315			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3316		}
3317		kmem_cache_free(btrfs_free_space_cachep, entry);
3318	}
3319
3320	spin_unlock(&cluster->lock);
3321	spin_unlock(&ctl->tree_lock);
3322
3323	return ret;
3324}
3325
3326static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327				struct btrfs_free_space *entry,
3328				struct btrfs_free_cluster *cluster,
3329				u64 offset, u64 bytes,
3330				u64 cont1_bytes, u64 min_bytes)
3331{
3332	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333	unsigned long next_zero;
3334	unsigned long i;
3335	unsigned long want_bits;
3336	unsigned long min_bits;
3337	unsigned long found_bits;
3338	unsigned long max_bits = 0;
3339	unsigned long start = 0;
3340	unsigned long total_found = 0;
3341	int ret;
3342
3343	lockdep_assert_held(&ctl->tree_lock);
3344
3345	i = offset_to_bit(entry->offset, ctl->unit,
3346			  max_t(u64, offset, entry->offset));
3347	want_bits = bytes_to_bits(bytes, ctl->unit);
3348	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3349
3350	/*
3351	 * Don't bother looking for a cluster in this bitmap if it's heavily
3352	 * fragmented.
3353	 */
3354	if (entry->max_extent_size &&
3355	    entry->max_extent_size < cont1_bytes)
3356		return -ENOSPC;
3357again:
3358	found_bits = 0;
3359	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3360		next_zero = find_next_zero_bit(entry->bitmap,
3361					       BITS_PER_BITMAP, i);
3362		if (next_zero - i >= min_bits) {
3363			found_bits = next_zero - i;
3364			if (found_bits > max_bits)
3365				max_bits = found_bits;
3366			break;
3367		}
3368		if (next_zero - i > max_bits)
3369			max_bits = next_zero - i;
3370		i = next_zero;
3371	}
3372
3373	if (!found_bits) {
3374		entry->max_extent_size = (u64)max_bits * ctl->unit;
3375		return -ENOSPC;
3376	}
3377
3378	if (!total_found) {
3379		start = i;
3380		cluster->max_size = 0;
3381	}
3382
3383	total_found += found_bits;
3384
3385	if (cluster->max_size < found_bits * ctl->unit)
3386		cluster->max_size = found_bits * ctl->unit;
3387
3388	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389		i = next_zero + 1;
3390		goto again;
3391	}
3392
3393	cluster->window_start = start * ctl->unit + entry->offset;
3394	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3396
3397	/*
3398	 * We need to know if we're currently on the normal space index when we
3399	 * manipulate the bitmap so that we know we need to remove and re-insert
3400	 * it into the space_index tree.  Clear the bytes_index node here so the
3401	 * bitmap manipulation helpers know not to mess with the space_index
3402	 * until this bitmap entry is added back into the normal cache.
3403	 */
3404	RB_CLEAR_NODE(&entry->bytes_index);
3405
3406	ret = tree_insert_offset(ctl, cluster, entry);
3407	ASSERT(!ret); /* -EEXIST; Logic error */
3408
3409	trace_btrfs_setup_cluster(block_group, cluster,
3410				  total_found * ctl->unit, 1);
3411	return 0;
3412}
3413
3414/*
3415 * This searches the block group for just extents to fill the cluster with.
3416 * Try to find a cluster with at least bytes total bytes, at least one
3417 * extent of cont1_bytes, and other clusters of at least min_bytes.
3418 */
3419static noinline int
3420setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421			struct btrfs_free_cluster *cluster,
3422			struct list_head *bitmaps, u64 offset, u64 bytes,
3423			u64 cont1_bytes, u64 min_bytes)
3424{
3425	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426	struct btrfs_free_space *first = NULL;
3427	struct btrfs_free_space *entry = NULL;
3428	struct btrfs_free_space *last;
3429	struct rb_node *node;
3430	u64 window_free;
3431	u64 max_extent;
3432	u64 total_size = 0;
3433
3434	lockdep_assert_held(&ctl->tree_lock);
3435
3436	entry = tree_search_offset(ctl, offset, 0, 1);
3437	if (!entry)
3438		return -ENOSPC;
3439
3440	/*
3441	 * We don't want bitmaps, so just move along until we find a normal
3442	 * extent entry.
3443	 */
3444	while (entry->bitmap || entry->bytes < min_bytes) {
3445		if (entry->bitmap && list_empty(&entry->list))
3446			list_add_tail(&entry->list, bitmaps);
3447		node = rb_next(&entry->offset_index);
3448		if (!node)
3449			return -ENOSPC;
3450		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451	}
3452
3453	window_free = entry->bytes;
3454	max_extent = entry->bytes;
3455	first = entry;
3456	last = entry;
3457
3458	for (node = rb_next(&entry->offset_index); node;
3459	     node = rb_next(&entry->offset_index)) {
3460		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3461
3462		if (entry->bitmap) {
3463			if (list_empty(&entry->list))
3464				list_add_tail(&entry->list, bitmaps);
3465			continue;
3466		}
3467
3468		if (entry->bytes < min_bytes)
3469			continue;
3470
3471		last = entry;
3472		window_free += entry->bytes;
3473		if (entry->bytes > max_extent)
3474			max_extent = entry->bytes;
3475	}
3476
3477	if (window_free < bytes || max_extent < cont1_bytes)
3478		return -ENOSPC;
3479
3480	cluster->window_start = first->offset;
3481
3482	node = &first->offset_index;
3483
3484	/*
3485	 * now we've found our entries, pull them out of the free space
3486	 * cache and put them into the cluster rbtree
3487	 */
3488	do {
3489		int ret;
3490
3491		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492		node = rb_next(&entry->offset_index);
3493		if (entry->bitmap || entry->bytes < min_bytes)
3494			continue;
3495
3496		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498		ret = tree_insert_offset(ctl, cluster, entry);
3499		total_size += entry->bytes;
3500		ASSERT(!ret); /* -EEXIST; Logic error */
3501	} while (node && entry != last);
3502
3503	cluster->max_size = max_extent;
3504	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505	return 0;
3506}
3507
3508/*
3509 * This specifically looks for bitmaps that may work in the cluster, we assume
3510 * that we have already failed to find extents that will work.
3511 */
3512static noinline int
3513setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514		     struct btrfs_free_cluster *cluster,
3515		     struct list_head *bitmaps, u64 offset, u64 bytes,
3516		     u64 cont1_bytes, u64 min_bytes)
3517{
3518	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519	struct btrfs_free_space *entry = NULL;
3520	int ret = -ENOSPC;
3521	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3522
3523	if (ctl->total_bitmaps == 0)
3524		return -ENOSPC;
3525
3526	/*
3527	 * The bitmap that covers offset won't be in the list unless offset
3528	 * is just its start offset.
3529	 */
3530	if (!list_empty(bitmaps))
3531		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3532
3533	if (!entry || entry->offset != bitmap_offset) {
3534		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535		if (entry && list_empty(&entry->list))
3536			list_add(&entry->list, bitmaps);
3537	}
3538
3539	list_for_each_entry(entry, bitmaps, list) {
3540		if (entry->bytes < bytes)
3541			continue;
3542		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543					   bytes, cont1_bytes, min_bytes);
3544		if (!ret)
3545			return 0;
3546	}
3547
3548	/*
3549	 * The bitmaps list has all the bitmaps that record free space
3550	 * starting after offset, so no more search is required.
3551	 */
3552	return -ENOSPC;
3553}
3554
3555/*
3556 * here we try to find a cluster of blocks in a block group.  The goal
3557 * is to find at least bytes+empty_size.
3558 * We might not find them all in one contiguous area.
3559 *
3560 * returns zero and sets up cluster if things worked out, otherwise
3561 * it returns -enospc
3562 */
3563int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
 
3564			     struct btrfs_free_cluster *cluster,
3565			     u64 offset, u64 bytes, u64 empty_size)
3566{
3567	struct btrfs_fs_info *fs_info = block_group->fs_info;
3568	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3569	struct btrfs_free_space *entry, *tmp;
3570	LIST_HEAD(bitmaps);
3571	u64 min_bytes;
3572	u64 cont1_bytes;
3573	int ret;
3574
3575	/*
3576	 * Choose the minimum extent size we'll require for this
3577	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3578	 * For metadata, allow allocates with smaller extents.  For
3579	 * data, keep it dense.
3580	 */
3581	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582		cont1_bytes = bytes + empty_size;
3583		min_bytes = cont1_bytes;
3584	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585		cont1_bytes = bytes;
3586		min_bytes = fs_info->sectorsize;
3587	} else {
3588		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589		min_bytes = fs_info->sectorsize;
3590	}
3591
3592	spin_lock(&ctl->tree_lock);
3593
3594	/*
3595	 * If we know we don't have enough space to make a cluster don't even
3596	 * bother doing all the work to try and find one.
3597	 */
3598	if (ctl->free_space < bytes) {
3599		spin_unlock(&ctl->tree_lock);
3600		return -ENOSPC;
3601	}
3602
3603	spin_lock(&cluster->lock);
3604
3605	/* someone already found a cluster, hooray */
3606	if (cluster->block_group) {
3607		ret = 0;
3608		goto out;
3609	}
3610
3611	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612				 min_bytes);
3613
3614	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615				      bytes + empty_size,
3616				      cont1_bytes, min_bytes);
3617	if (ret)
3618		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619					   offset, bytes + empty_size,
3620					   cont1_bytes, min_bytes);
3621
3622	/* Clear our temporary list */
3623	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624		list_del_init(&entry->list);
3625
3626	if (!ret) {
3627		btrfs_get_block_group(block_group);
3628		list_add_tail(&cluster->block_group_list,
3629			      &block_group->cluster_list);
3630		cluster->block_group = block_group;
3631	} else {
3632		trace_btrfs_failed_cluster_setup(block_group);
3633	}
3634out:
3635	spin_unlock(&cluster->lock);
3636	spin_unlock(&ctl->tree_lock);
3637
3638	return ret;
3639}
3640
3641/*
3642 * simple code to zero out a cluster
3643 */
3644void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3645{
3646	spin_lock_init(&cluster->lock);
3647	spin_lock_init(&cluster->refill_lock);
3648	cluster->root = RB_ROOT;
3649	cluster->max_size = 0;
3650	cluster->fragmented = false;
3651	INIT_LIST_HEAD(&cluster->block_group_list);
3652	cluster->block_group = NULL;
3653}
3654
3655static int do_trimming(struct btrfs_block_group *block_group,
3656		       u64 *total_trimmed, u64 start, u64 bytes,
3657		       u64 reserved_start, u64 reserved_bytes,
3658		       enum btrfs_trim_state reserved_trim_state,
3659		       struct btrfs_trim_range *trim_entry)
3660{
3661	struct btrfs_space_info *space_info = block_group->space_info;
3662	struct btrfs_fs_info *fs_info = block_group->fs_info;
3663	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664	int ret;
3665	int update = 0;
3666	const u64 end = start + bytes;
3667	const u64 reserved_end = reserved_start + reserved_bytes;
3668	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669	u64 trimmed = 0;
3670
3671	spin_lock(&space_info->lock);
3672	spin_lock(&block_group->lock);
3673	if (!block_group->ro) {
3674		block_group->reserved += reserved_bytes;
3675		space_info->bytes_reserved += reserved_bytes;
3676		update = 1;
3677	}
3678	spin_unlock(&block_group->lock);
3679	spin_unlock(&space_info->lock);
3680
3681	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682	if (!ret) {
3683		*total_trimmed += trimmed;
3684		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3685	}
3686
3687	mutex_lock(&ctl->cache_writeout_mutex);
3688	if (reserved_start < start)
3689		__btrfs_add_free_space(block_group, reserved_start,
3690				       start - reserved_start,
3691				       reserved_trim_state);
3692	if (end < reserved_end)
3693		__btrfs_add_free_space(block_group, end, reserved_end - end,
3694				       reserved_trim_state);
3695	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3696	list_del(&trim_entry->list);
3697	mutex_unlock(&ctl->cache_writeout_mutex);
3698
3699	if (update) {
3700		spin_lock(&space_info->lock);
3701		spin_lock(&block_group->lock);
3702		if (block_group->ro)
3703			space_info->bytes_readonly += reserved_bytes;
3704		block_group->reserved -= reserved_bytes;
3705		space_info->bytes_reserved -= reserved_bytes;
3706		spin_unlock(&block_group->lock);
3707		spin_unlock(&space_info->lock);
 
3708	}
3709
3710	return ret;
3711}
3712
3713/*
3714 * If @async is set, then we will trim 1 region and return.
3715 */
3716static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718			  bool async)
3719{
3720	struct btrfs_discard_ctl *discard_ctl =
3721					&block_group->fs_info->discard_ctl;
3722	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723	struct btrfs_free_space *entry;
3724	struct rb_node *node;
3725	int ret = 0;
3726	u64 extent_start;
3727	u64 extent_bytes;
3728	enum btrfs_trim_state extent_trim_state;
3729	u64 bytes;
3730	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3731
3732	while (start < end) {
3733		struct btrfs_trim_range trim_entry;
3734
3735		mutex_lock(&ctl->cache_writeout_mutex);
3736		spin_lock(&ctl->tree_lock);
3737
3738		if (ctl->free_space < minlen)
3739			goto out_unlock;
 
 
 
3740
3741		entry = tree_search_offset(ctl, start, 0, 1);
3742		if (!entry)
3743			goto out_unlock;
 
 
 
3744
3745		/* Skip bitmaps and if async, already trimmed entries */
3746		while (entry->bitmap ||
3747		       (async && btrfs_free_space_trimmed(entry))) {
3748			node = rb_next(&entry->offset_index);
3749			if (!node)
3750				goto out_unlock;
 
 
 
3751			entry = rb_entry(node, struct btrfs_free_space,
3752					 offset_index);
3753		}
3754
3755		if (entry->offset >= end)
3756			goto out_unlock;
 
 
 
3757
3758		extent_start = entry->offset;
3759		extent_bytes = entry->bytes;
3760		extent_trim_state = entry->trim_state;
3761		if (async) {
3762			start = entry->offset;
3763			bytes = entry->bytes;
3764			if (bytes < minlen) {
3765				spin_unlock(&ctl->tree_lock);
3766				mutex_unlock(&ctl->cache_writeout_mutex);
3767				goto next;
3768			}
3769			unlink_free_space(ctl, entry, true);
3770			/*
3771			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773			 * X when we come back around.  So trim it now.
3774			 */
3775			if (max_discard_size &&
3776			    bytes >= (max_discard_size +
3777				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778				bytes = max_discard_size;
3779				extent_bytes = max_discard_size;
3780				entry->offset += max_discard_size;
3781				entry->bytes -= max_discard_size;
3782				link_free_space(ctl, entry);
3783			} else {
3784				kmem_cache_free(btrfs_free_space_cachep, entry);
3785			}
3786		} else {
3787			start = max(start, extent_start);
3788			bytes = min(extent_start + extent_bytes, end) - start;
3789			if (bytes < minlen) {
3790				spin_unlock(&ctl->tree_lock);
3791				mutex_unlock(&ctl->cache_writeout_mutex);
3792				goto next;
3793			}
3794
3795			unlink_free_space(ctl, entry, true);
3796			kmem_cache_free(btrfs_free_space_cachep, entry);
3797		}
3798
 
 
 
3799		spin_unlock(&ctl->tree_lock);
3800		trim_entry.start = extent_start;
3801		trim_entry.bytes = extent_bytes;
3802		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803		mutex_unlock(&ctl->cache_writeout_mutex);
3804
3805		ret = do_trimming(block_group, total_trimmed, start, bytes,
3806				  extent_start, extent_bytes, extent_trim_state,
3807				  &trim_entry);
3808		if (ret) {
3809			block_group->discard_cursor = start + bytes;
3810			break;
3811		}
3812next:
3813		start += bytes;
3814		block_group->discard_cursor = start;
3815		if (async && *total_trimmed)
3816			break;
3817
3818		if (btrfs_trim_interrupted()) {
3819			ret = -ERESTARTSYS;
3820			break;
3821		}
3822
3823		cond_resched();
3824	}
3825
3826	return ret;
3827
3828out_unlock:
3829	block_group->discard_cursor = btrfs_block_group_end(block_group);
3830	spin_unlock(&ctl->tree_lock);
3831	mutex_unlock(&ctl->cache_writeout_mutex);
3832
3833	return ret;
3834}
3835
3836/*
3837 * If we break out of trimming a bitmap prematurely, we should reset the
3838 * trimming bit.  In a rather contrieved case, it's possible to race here so
3839 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3840 *
3841 * start = start of bitmap
3842 * end = near end of bitmap
3843 *
3844 * Thread 1:			Thread 2:
3845 * trim_bitmaps(start)
3846 *				trim_bitmaps(end)
3847 *				end_trimming_bitmap()
3848 * reset_trimming_bitmap()
3849 */
3850static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3851{
3852	struct btrfs_free_space *entry;
3853
3854	spin_lock(&ctl->tree_lock);
3855	entry = tree_search_offset(ctl, offset, 1, 0);
3856	if (entry) {
3857		if (btrfs_free_space_trimmed(entry)) {
3858			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859				entry->bitmap_extents;
3860			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3861		}
3862		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3863	}
3864
3865	spin_unlock(&ctl->tree_lock);
3866}
3867
3868static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869				struct btrfs_free_space *entry)
3870{
3871	if (btrfs_free_space_trimming_bitmap(entry)) {
3872		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874			entry->bitmap_extents;
3875		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3876	}
3877}
3878
3879/*
3880 * If @async is set, then we will trim 1 region and return.
3881 */
3882static int trim_bitmaps(struct btrfs_block_group *block_group,
3883			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884			u64 maxlen, bool async)
3885{
3886	struct btrfs_discard_ctl *discard_ctl =
3887					&block_group->fs_info->discard_ctl;
3888	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889	struct btrfs_free_space *entry;
3890	int ret = 0;
3891	int ret2;
3892	u64 bytes;
3893	u64 offset = offset_to_bitmap(ctl, start);
3894	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3895
3896	while (offset < end) {
3897		bool next_bitmap = false;
3898		struct btrfs_trim_range trim_entry;
3899
3900		mutex_lock(&ctl->cache_writeout_mutex);
3901		spin_lock(&ctl->tree_lock);
3902
3903		if (ctl->free_space < minlen) {
3904			block_group->discard_cursor =
3905				btrfs_block_group_end(block_group);
3906			spin_unlock(&ctl->tree_lock);
3907			mutex_unlock(&ctl->cache_writeout_mutex);
3908			break;
3909		}
3910
3911		entry = tree_search_offset(ctl, offset, 1, 0);
3912		/*
3913		 * Bitmaps are marked trimmed lossily now to prevent constant
3914		 * discarding of the same bitmap (the reason why we are bound
3915		 * by the filters).  So, retrim the block group bitmaps when we
3916		 * are preparing to punt to the unused_bgs list.  This uses
3917		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918		 * which is the only discard index which sets minlen to 0.
3919		 */
3920		if (!entry || (async && minlen && start == offset &&
3921			       btrfs_free_space_trimmed(entry))) {
3922			spin_unlock(&ctl->tree_lock);
3923			mutex_unlock(&ctl->cache_writeout_mutex);
3924			next_bitmap = true;
3925			goto next;
3926		}
3927
3928		/*
3929		 * Async discard bitmap trimming begins at by setting the start
3930		 * to be key.objectid and the offset_to_bitmap() aligns to the
3931		 * start of the bitmap.  This lets us know we are fully
3932		 * scanning the bitmap rather than only some portion of it.
3933		 */
3934		if (start == offset)
3935			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3936
3937		bytes = minlen;
3938		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939		if (ret2 || start >= end) {
3940			/*
3941			 * We lossily consider a bitmap trimmed if we only skip
3942			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3943			 */
3944			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945				end_trimming_bitmap(ctl, entry);
3946			else
3947				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948			spin_unlock(&ctl->tree_lock);
3949			mutex_unlock(&ctl->cache_writeout_mutex);
3950			next_bitmap = true;
3951			goto next;
3952		}
3953
3954		/*
3955		 * We already trimmed a region, but are using the locking above
3956		 * to reset the trim_state.
3957		 */
3958		if (async && *total_trimmed) {
3959			spin_unlock(&ctl->tree_lock);
3960			mutex_unlock(&ctl->cache_writeout_mutex);
3961			goto out;
3962		}
3963
3964		bytes = min(bytes, end - start);
3965		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966			spin_unlock(&ctl->tree_lock);
3967			mutex_unlock(&ctl->cache_writeout_mutex);
3968			goto next;
3969		}
3970
3971		/*
3972		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973		 * If X < @minlen, we won't trim X when we come back around.
3974		 * So trim it now.  We differ here from trimming extents as we
3975		 * don't keep individual state per bit.
3976		 */
3977		if (async &&
3978		    max_discard_size &&
3979		    bytes > (max_discard_size + minlen))
3980			bytes = max_discard_size;
3981
3982		bitmap_clear_bits(ctl, entry, start, bytes, true);
3983		if (entry->bytes == 0)
3984			free_bitmap(ctl, entry);
3985
3986		spin_unlock(&ctl->tree_lock);
3987		trim_entry.start = start;
3988		trim_entry.bytes = bytes;
3989		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990		mutex_unlock(&ctl->cache_writeout_mutex);
3991
3992		ret = do_trimming(block_group, total_trimmed, start, bytes,
3993				  start, bytes, 0, &trim_entry);
3994		if (ret) {
3995			reset_trimming_bitmap(ctl, offset);
3996			block_group->discard_cursor =
3997				btrfs_block_group_end(block_group);
3998			break;
3999		}
4000next:
4001		if (next_bitmap) {
4002			offset += BITS_PER_BITMAP * ctl->unit;
4003			start = offset;
4004		} else {
4005			start += bytes;
 
 
4006		}
4007		block_group->discard_cursor = start;
4008
4009		if (btrfs_trim_interrupted()) {
4010			if (start != offset)
4011				reset_trimming_bitmap(ctl, offset);
4012			ret = -ERESTARTSYS;
4013			break;
4014		}
4015
4016		cond_resched();
4017	}
4018
4019	if (offset >= end)
4020		block_group->discard_cursor = end;
4021
4022out:
4023	return ret;
4024}
4025
4026int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4028{
4029	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030	int ret;
4031	u64 rem = 0;
4032
4033	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4034
4035	*trimmed = 0;
 
 
 
 
 
4036
4037	spin_lock(&block_group->lock);
4038	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039		spin_unlock(&block_group->lock);
4040		return 0;
4041	}
4042	btrfs_freeze_block_group(block_group);
4043	spin_unlock(&block_group->lock);
4044
4045	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046	if (ret)
4047		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4048
4049	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051	/* If we ended in the middle of a bitmap, reset the trimming flag */
4052	if (rem)
4053		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054out:
4055	btrfs_unfreeze_block_group(block_group);
4056	return ret;
4057}
4058
4059int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4061				   bool async)
4062{
4063	int ret;
4064
4065	*trimmed = 0;
4066
4067	spin_lock(&block_group->lock);
4068	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069		spin_unlock(&block_group->lock);
4070		return 0;
4071	}
4072	btrfs_freeze_block_group(block_group);
4073	spin_unlock(&block_group->lock);
4074
4075	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076	btrfs_unfreeze_block_group(block_group);
 
4077
 
 
 
4078	return ret;
4079}
4080
4081int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4083				   u64 maxlen, bool async)
 
 
 
 
 
4084{
4085	int ret;
 
 
4086
4087	*trimmed = 0;
4088
4089	spin_lock(&block_group->lock);
4090	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091		spin_unlock(&block_group->lock);
4092		return 0;
4093	}
4094	btrfs_freeze_block_group(block_group);
4095	spin_unlock(&block_group->lock);
4096
4097	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098			   async);
4099
4100	btrfs_unfreeze_block_group(block_group);
 
4101
4102	return ret;
4103}
 
 
 
 
 
 
 
 
 
4104
4105bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4106{
4107	return btrfs_super_cache_generation(fs_info->super_copy);
 
 
 
 
 
 
 
 
 
 
4108}
4109
4110static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111				       struct btrfs_trans_handle *trans)
4112{
4113	struct btrfs_block_group *block_group;
4114	struct rb_node *node;
4115	int ret = 0;
 
 
 
 
 
4116
4117	btrfs_info(fs_info, "cleaning free space cache v1");
 
 
4118
4119	node = rb_first_cached(&fs_info->block_group_cache_tree);
4120	while (node) {
4121		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123		if (ret)
4124			goto out;
4125		node = rb_next(node);
4126	}
4127out:
4128	return ret;
4129}
4130
4131int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
 
 
4132{
4133	struct btrfs_trans_handle *trans;
4134	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
4135
4136	/*
4137	 * update_super_roots will appropriately set or unset
4138	 * super_copy->cache_generation based on SPACE_CACHE and
4139	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140	 * transaction commit whether we are enabling space cache v1 and don't
4141	 * have any other work to do, or are disabling it and removing free
4142	 * space inodes.
4143	 */
4144	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145	if (IS_ERR(trans))
4146		return PTR_ERR(trans);
4147
4148	if (!active) {
4149		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150		ret = cleanup_free_space_cache_v1(fs_info, trans);
4151		if (ret) {
4152			btrfs_abort_transaction(trans, ret);
4153			btrfs_end_transaction(trans);
4154			goto out;
4155		}
4156	}
4157
4158	ret = btrfs_commit_transaction(trans);
4159out:
4160	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 
 
 
 
 
 
 
 
 
4161
 
 
 
 
 
 
 
 
4162	return ret;
4163}
4164
4165int __init btrfs_free_space_init(void)
 
 
 
4166{
4167	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168	if (!btrfs_free_space_cachep)
4169		return -ENOMEM;
 
 
4170
4171	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172							PAGE_SIZE, PAGE_SIZE,
4173							0, NULL);
4174	if (!btrfs_free_space_bitmap_cachep) {
4175		kmem_cache_destroy(btrfs_free_space_cachep);
4176		return -ENOMEM;
 
 
 
 
 
 
 
 
4177	}
4178
4179	return 0;
4180}
 
 
 
 
 
 
 
 
4181
4182void __cold btrfs_free_space_exit(void)
4183{
4184	kmem_cache_destroy(btrfs_free_space_cachep);
4185	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4186}
4187
4188#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4189/*
4190 * Use this if you need to make a bitmap or extent entry specifically, it
4191 * doesn't do any of the merging that add_free_space does, this acts a lot like
4192 * how the free space cache loading stuff works, so you can get really weird
4193 * configurations.
4194 */
4195int test_add_free_space_entry(struct btrfs_block_group *cache,
4196			      u64 offset, u64 bytes, bool bitmap)
4197{
4198	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199	struct btrfs_free_space *info = NULL, *bitmap_info;
4200	void *map = NULL;
4201	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202	u64 bytes_added;
4203	int ret;
4204
4205again:
4206	if (!info) {
4207		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208		if (!info)
4209			return -ENOMEM;
4210	}
4211
4212	if (!bitmap) {
4213		spin_lock(&ctl->tree_lock);
4214		info->offset = offset;
4215		info->bytes = bytes;
4216		info->max_extent_size = 0;
4217		ret = link_free_space(ctl, info);
4218		spin_unlock(&ctl->tree_lock);
4219		if (ret)
4220			kmem_cache_free(btrfs_free_space_cachep, info);
4221		return ret;
4222	}
4223
4224	if (!map) {
4225		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226		if (!map) {
4227			kmem_cache_free(btrfs_free_space_cachep, info);
4228			return -ENOMEM;
4229		}
4230	}
4231
4232	spin_lock(&ctl->tree_lock);
4233	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234					 1, 0);
4235	if (!bitmap_info) {
4236		info->bitmap = map;
4237		map = NULL;
4238		add_new_bitmap(ctl, info, offset);
4239		bitmap_info = info;
4240		info = NULL;
4241	}
4242
4243	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244					  trim_state);
4245
4246	bytes -= bytes_added;
4247	offset += bytes_added;
4248	spin_unlock(&ctl->tree_lock);
4249
4250	if (bytes)
4251		goto again;
4252
4253	if (info)
4254		kmem_cache_free(btrfs_free_space_cachep, info);
4255	if (map)
4256		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257	return 0;
4258}
4259
4260/*
4261 * Checks to see if the given range is in the free space cache.  This is really
4262 * just used to check the absence of space, so if there is free space in the
4263 * range at all we will return 1.
4264 */
4265int test_check_exists(struct btrfs_block_group *cache,
4266		      u64 offset, u64 bytes)
4267{
4268	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269	struct btrfs_free_space *info;
4270	int ret = 0;
4271
4272	spin_lock(&ctl->tree_lock);
4273	info = tree_search_offset(ctl, offset, 0, 0);
4274	if (!info) {
4275		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276					  1, 0);
4277		if (!info)
4278			goto out;
4279	}
4280
4281have_info:
4282	if (info->bitmap) {
4283		u64 bit_off, bit_bytes;
4284		struct rb_node *n;
4285		struct btrfs_free_space *tmp;
4286
4287		bit_off = offset;
4288		bit_bytes = ctl->unit;
4289		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290		if (!ret) {
4291			if (bit_off == offset) {
4292				ret = 1;
4293				goto out;
4294			} else if (bit_off > offset &&
4295				   offset + bytes > bit_off) {
4296				ret = 1;
4297				goto out;
4298			}
4299		}
4300
4301		n = rb_prev(&info->offset_index);
4302		while (n) {
4303			tmp = rb_entry(n, struct btrfs_free_space,
4304				       offset_index);
4305			if (tmp->offset + tmp->bytes < offset)
4306				break;
4307			if (offset + bytes < tmp->offset) {
4308				n = rb_prev(&tmp->offset_index);
4309				continue;
4310			}
4311			info = tmp;
4312			goto have_info;
4313		}
4314
4315		n = rb_next(&info->offset_index);
4316		while (n) {
4317			tmp = rb_entry(n, struct btrfs_free_space,
4318				       offset_index);
4319			if (offset + bytes < tmp->offset)
4320				break;
4321			if (tmp->offset + tmp->bytes < offset) {
4322				n = rb_next(&tmp->offset_index);
4323				continue;
4324			}
4325			info = tmp;
4326			goto have_info;
4327		}
4328
4329		ret = 0;
4330		goto out;
4331	}
4332
4333	if (info->offset == offset) {
4334		ret = 1;
4335		goto out;
4336	}
4337
4338	if (offset > info->offset && offset < info->offset + info->bytes)
4339		ret = 1;
4340out:
4341	spin_unlock(&ctl->tree_lock);
4342	return ret;
4343}
4344#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
 
 
  13#include "ctree.h"
 
 
 
  14#include "free-space-cache.h"
  15#include "transaction.h"
  16#include "disk-io.h"
  17#include "extent_io.h"
  18#include "inode-map.h"
  19#include "volumes.h"
 
 
 
 
 
 
 
  20
  21#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  22#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
 
 
 
  23
  24struct btrfs_trim_range {
  25	u64 start;
  26	u64 bytes;
  27	struct list_head list;
  28};
  29
  30static int link_free_space(struct btrfs_free_space_ctl *ctl,
  31			   struct btrfs_free_space *info);
  32static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  33			      struct btrfs_free_space *info);
  34static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  35			     struct btrfs_trans_handle *trans,
  36			     struct btrfs_io_ctl *io_ctl,
  37			     struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  40					       struct btrfs_path *path,
  41					       u64 offset)
  42{
  43	struct btrfs_fs_info *fs_info = root->fs_info;
  44	struct btrfs_key key;
  45	struct btrfs_key location;
  46	struct btrfs_disk_key disk_key;
  47	struct btrfs_free_space_header *header;
  48	struct extent_buffer *leaf;
  49	struct inode *inode = NULL;
 
  50	int ret;
  51
  52	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  53	key.offset = offset;
  54	key.type = 0;
  55
  56	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  57	if (ret < 0)
  58		return ERR_PTR(ret);
  59	if (ret > 0) {
  60		btrfs_release_path(path);
  61		return ERR_PTR(-ENOENT);
  62	}
  63
  64	leaf = path->nodes[0];
  65	header = btrfs_item_ptr(leaf, path->slots[0],
  66				struct btrfs_free_space_header);
  67	btrfs_free_space_key(leaf, header, &disk_key);
  68	btrfs_disk_key_to_cpu(&location, &disk_key);
  69	btrfs_release_path(path);
  70
  71	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
 
 
 
 
 
 
 
  72	if (IS_ERR(inode))
  73		return inode;
  74	if (is_bad_inode(inode)) {
  75		iput(inode);
  76		return ERR_PTR(-ENOENT);
  77	}
  78
  79	mapping_set_gfp_mask(inode->i_mapping,
  80			mapping_gfp_constraint(inode->i_mapping,
  81			~(__GFP_FS | __GFP_HIGHMEM)));
  82
  83	return inode;
  84}
  85
  86struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
  87				      struct btrfs_block_group_cache
  88				      *block_group, struct btrfs_path *path)
  89{
 
  90	struct inode *inode = NULL;
  91	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  92
  93	spin_lock(&block_group->lock);
  94	if (block_group->inode)
  95		inode = igrab(block_group->inode);
  96	spin_unlock(&block_group->lock);
  97	if (inode)
  98		return inode;
  99
 100	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 101					  block_group->key.objectid);
 102	if (IS_ERR(inode))
 103		return inode;
 104
 105	spin_lock(&block_group->lock);
 106	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 107		btrfs_info(fs_info, "Old style space inode found, converting.");
 108		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 109			BTRFS_INODE_NODATACOW;
 110		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 111	}
 112
 113	if (!block_group->iref) {
 114		block_group->inode = igrab(inode);
 115		block_group->iref = 1;
 116	}
 117	spin_unlock(&block_group->lock);
 118
 119	return inode;
 120}
 121
 122static int __create_free_space_inode(struct btrfs_root *root,
 123				     struct btrfs_trans_handle *trans,
 124				     struct btrfs_path *path,
 125				     u64 ino, u64 offset)
 126{
 127	struct btrfs_key key;
 128	struct btrfs_disk_key disk_key;
 129	struct btrfs_free_space_header *header;
 130	struct btrfs_inode_item *inode_item;
 131	struct extent_buffer *leaf;
 132	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 133	int ret;
 134
 135	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 136	if (ret)
 137		return ret;
 138
 139	/* We inline crc's for the free disk space cache */
 140	if (ino != BTRFS_FREE_INO_OBJECTID)
 141		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 142
 143	leaf = path->nodes[0];
 144	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 145				    struct btrfs_inode_item);
 146	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 147	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 148			     sizeof(*inode_item));
 149	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 150	btrfs_set_inode_size(leaf, inode_item, 0);
 151	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 152	btrfs_set_inode_uid(leaf, inode_item, 0);
 153	btrfs_set_inode_gid(leaf, inode_item, 0);
 154	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 155	btrfs_set_inode_flags(leaf, inode_item, flags);
 156	btrfs_set_inode_nlink(leaf, inode_item, 1);
 157	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 158	btrfs_set_inode_block_group(leaf, inode_item, offset);
 159	btrfs_mark_buffer_dirty(leaf);
 160	btrfs_release_path(path);
 161
 162	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 163	key.offset = offset;
 164	key.type = 0;
 165	ret = btrfs_insert_empty_item(trans, root, path, &key,
 166				      sizeof(struct btrfs_free_space_header));
 167	if (ret < 0) {
 168		btrfs_release_path(path);
 169		return ret;
 170	}
 171
 172	leaf = path->nodes[0];
 173	header = btrfs_item_ptr(leaf, path->slots[0],
 174				struct btrfs_free_space_header);
 175	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 176	btrfs_set_free_space_key(leaf, header, &disk_key);
 177	btrfs_mark_buffer_dirty(leaf);
 178	btrfs_release_path(path);
 179
 180	return 0;
 181}
 182
 183int create_free_space_inode(struct btrfs_fs_info *fs_info,
 184			    struct btrfs_trans_handle *trans,
 185			    struct btrfs_block_group_cache *block_group,
 186			    struct btrfs_path *path)
 187{
 188	int ret;
 189	u64 ino;
 190
 191	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
 192	if (ret < 0)
 193		return ret;
 194
 195	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
 196					 block_group->key.objectid);
 197}
 198
 199int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 200				       struct btrfs_block_rsv *rsv)
 
 
 
 
 
 
 201{
 202	u64 needed_bytes;
 203	int ret;
 
 204
 205	/* 1 for slack space, 1 for updating the inode */
 206	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
 207		btrfs_calc_trans_metadata_size(fs_info, 1);
 208
 209	spin_lock(&rsv->lock);
 210	if (rsv->reserved < needed_bytes)
 211		ret = -ENOSPC;
 212	else
 213		ret = 0;
 214	spin_unlock(&rsv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215	return ret;
 216}
 217
 218int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 219				    struct btrfs_block_group_cache *block_group,
 220				    struct inode *inode)
 221{
 222	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 223	int ret = 0;
 224	bool locked = false;
 225
 226	if (block_group) {
 227		struct btrfs_path *path = btrfs_alloc_path();
 228
 229		if (!path) {
 230			ret = -ENOMEM;
 231			goto fail;
 232		}
 233		locked = true;
 234		mutex_lock(&trans->transaction->cache_write_mutex);
 235		if (!list_empty(&block_group->io_list)) {
 236			list_del_init(&block_group->io_list);
 237
 238			btrfs_wait_cache_io(trans, block_group, path);
 239			btrfs_put_block_group(block_group);
 240		}
 241
 242		/*
 243		 * now that we've truncated the cache away, its no longer
 244		 * setup or written
 245		 */
 246		spin_lock(&block_group->lock);
 247		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 248		spin_unlock(&block_group->lock);
 249		btrfs_free_path(path);
 250	}
 251
 252	btrfs_i_size_write(BTRFS_I(inode), 0);
 253	truncate_pagecache(inode, 0);
 
 
 
 254
 255	/*
 256	 * We don't need an orphan item because truncating the free space cache
 257	 * will never be split across transactions.
 258	 * We don't need to check for -EAGAIN because we're a free space
 259	 * cache inode
 260	 */
 261	ret = btrfs_truncate_inode_items(trans, root, inode,
 262					 0, BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 263	if (ret)
 264		goto fail;
 265
 266	ret = btrfs_update_inode(trans, root, inode);
 267
 268fail:
 269	if (locked)
 270		mutex_unlock(&trans->transaction->cache_write_mutex);
 271	if (ret)
 272		btrfs_abort_transaction(trans, ret);
 273
 274	return ret;
 275}
 276
 277static void readahead_cache(struct inode *inode)
 278{
 279	struct file_ra_state *ra;
 280	unsigned long last_index;
 281
 282	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 283	if (!ra)
 284		return;
 285
 286	file_ra_state_init(ra, inode->i_mapping);
 287	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 288
 289	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 290
 291	kfree(ra);
 292}
 293
 294static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 295		       int write)
 296{
 297	int num_pages;
 298	int check_crcs = 0;
 299
 300	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 301
 302	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 303		check_crcs = 1;
 304
 305	/* Make sure we can fit our crcs into the first page */
 306	if (write && check_crcs &&
 307	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
 308		return -ENOSPC;
 309
 310	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 311
 312	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 313	if (!io_ctl->pages)
 314		return -ENOMEM;
 315
 316	io_ctl->num_pages = num_pages;
 317	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 318	io_ctl->check_crcs = check_crcs;
 319	io_ctl->inode = inode;
 320
 321	return 0;
 322}
 323ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 324
 325static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 326{
 327	kfree(io_ctl->pages);
 328	io_ctl->pages = NULL;
 329}
 330
 331static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 332{
 333	if (io_ctl->cur) {
 334		io_ctl->cur = NULL;
 335		io_ctl->orig = NULL;
 336	}
 337}
 338
 339static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 340{
 341	ASSERT(io_ctl->index < io_ctl->num_pages);
 342	io_ctl->page = io_ctl->pages[io_ctl->index++];
 343	io_ctl->cur = page_address(io_ctl->page);
 344	io_ctl->orig = io_ctl->cur;
 345	io_ctl->size = PAGE_SIZE;
 346	if (clear)
 347		clear_page(io_ctl->cur);
 348}
 349
 350static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 351{
 352	int i;
 353
 354	io_ctl_unmap_page(io_ctl);
 355
 356	for (i = 0; i < io_ctl->num_pages; i++) {
 357		if (io_ctl->pages[i]) {
 358			ClearPageChecked(io_ctl->pages[i]);
 
 
 
 359			unlock_page(io_ctl->pages[i]);
 360			put_page(io_ctl->pages[i]);
 361		}
 362	}
 363}
 364
 365static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 366				int uptodate)
 367{
 368	struct page *page;
 
 369	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 370	int i;
 371
 372	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 373		page = find_or_create_page(inode->i_mapping, i, mask);
 374		if (!page) {
 375			io_ctl_drop_pages(io_ctl);
 376			return -ENOMEM;
 377		}
 
 
 
 
 
 
 
 
 
 378		io_ctl->pages[i] = page;
 379		if (uptodate && !PageUptodate(page)) {
 380			btrfs_readpage(NULL, page);
 381			lock_page(page);
 
 
 
 
 
 
 382			if (!PageUptodate(page)) {
 383				btrfs_err(BTRFS_I(inode)->root->fs_info,
 384					   "error reading free space cache");
 385				io_ctl_drop_pages(io_ctl);
 386				return -EIO;
 387			}
 388		}
 389	}
 390
 391	for (i = 0; i < io_ctl->num_pages; i++) {
 392		clear_page_dirty_for_io(io_ctl->pages[i]);
 393		set_page_extent_mapped(io_ctl->pages[i]);
 394	}
 395
 396	return 0;
 397}
 398
 399static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 400{
 401	__le64 *val;
 402
 403	io_ctl_map_page(io_ctl, 1);
 404
 405	/*
 406	 * Skip the csum areas.  If we don't check crcs then we just have a
 407	 * 64bit chunk at the front of the first page.
 408	 */
 409	if (io_ctl->check_crcs) {
 410		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 411		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 412	} else {
 413		io_ctl->cur += sizeof(u64);
 414		io_ctl->size -= sizeof(u64) * 2;
 415	}
 416
 417	val = io_ctl->cur;
 418	*val = cpu_to_le64(generation);
 419	io_ctl->cur += sizeof(u64);
 420}
 421
 422static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 423{
 424	__le64 *gen;
 425
 426	/*
 427	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 428	 * chunk at the front of the first page.
 429	 */
 430	if (io_ctl->check_crcs) {
 431		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 432		io_ctl->size -= sizeof(u64) +
 433			(sizeof(u32) * io_ctl->num_pages);
 434	} else {
 435		io_ctl->cur += sizeof(u64);
 436		io_ctl->size -= sizeof(u64) * 2;
 437	}
 438
 439	gen = io_ctl->cur;
 440	if (le64_to_cpu(*gen) != generation) {
 441		btrfs_err_rl(io_ctl->fs_info,
 442			"space cache generation (%llu) does not match inode (%llu)",
 443				*gen, generation);
 444		io_ctl_unmap_page(io_ctl);
 445		return -EIO;
 446	}
 447	io_ctl->cur += sizeof(u64);
 448	return 0;
 449}
 450
 451static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 452{
 453	u32 *tmp;
 454	u32 crc = ~(u32)0;
 455	unsigned offset = 0;
 456
 457	if (!io_ctl->check_crcs) {
 458		io_ctl_unmap_page(io_ctl);
 459		return;
 460	}
 461
 462	if (index == 0)
 463		offset = sizeof(u32) * io_ctl->num_pages;
 464
 465	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 466			      PAGE_SIZE - offset);
 467	btrfs_csum_final(crc, (u8 *)&crc);
 468	io_ctl_unmap_page(io_ctl);
 469	tmp = page_address(io_ctl->pages[0]);
 470	tmp += index;
 471	*tmp = crc;
 472}
 473
 474static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 475{
 476	u32 *tmp, val;
 477	u32 crc = ~(u32)0;
 478	unsigned offset = 0;
 479
 480	if (!io_ctl->check_crcs) {
 481		io_ctl_map_page(io_ctl, 0);
 482		return 0;
 483	}
 484
 485	if (index == 0)
 486		offset = sizeof(u32) * io_ctl->num_pages;
 487
 488	tmp = page_address(io_ctl->pages[0]);
 489	tmp += index;
 490	val = *tmp;
 491
 492	io_ctl_map_page(io_ctl, 0);
 493	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 494			      PAGE_SIZE - offset);
 495	btrfs_csum_final(crc, (u8 *)&crc);
 496	if (val != crc) {
 497		btrfs_err_rl(io_ctl->fs_info,
 498			"csum mismatch on free space cache");
 499		io_ctl_unmap_page(io_ctl);
 500		return -EIO;
 501	}
 502
 503	return 0;
 504}
 505
 506static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 507			    void *bitmap)
 508{
 509	struct btrfs_free_space_entry *entry;
 510
 511	if (!io_ctl->cur)
 512		return -ENOSPC;
 513
 514	entry = io_ctl->cur;
 515	entry->offset = cpu_to_le64(offset);
 516	entry->bytes = cpu_to_le64(bytes);
 517	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 518		BTRFS_FREE_SPACE_EXTENT;
 519	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 520	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 521
 522	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 523		return 0;
 524
 525	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 526
 527	/* No more pages to map */
 528	if (io_ctl->index >= io_ctl->num_pages)
 529		return 0;
 530
 531	/* map the next page */
 532	io_ctl_map_page(io_ctl, 1);
 533	return 0;
 534}
 535
 536static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 537{
 538	if (!io_ctl->cur)
 539		return -ENOSPC;
 540
 541	/*
 542	 * If we aren't at the start of the current page, unmap this one and
 543	 * map the next one if there is any left.
 544	 */
 545	if (io_ctl->cur != io_ctl->orig) {
 546		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 547		if (io_ctl->index >= io_ctl->num_pages)
 548			return -ENOSPC;
 549		io_ctl_map_page(io_ctl, 0);
 550	}
 551
 552	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
 553	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 554	if (io_ctl->index < io_ctl->num_pages)
 555		io_ctl_map_page(io_ctl, 0);
 556	return 0;
 557}
 558
 559static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 560{
 561	/*
 562	 * If we're not on the boundary we know we've modified the page and we
 563	 * need to crc the page.
 564	 */
 565	if (io_ctl->cur != io_ctl->orig)
 566		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567	else
 568		io_ctl_unmap_page(io_ctl);
 569
 570	while (io_ctl->index < io_ctl->num_pages) {
 571		io_ctl_map_page(io_ctl, 1);
 572		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 573	}
 574}
 575
 576static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 577			    struct btrfs_free_space *entry, u8 *type)
 578{
 579	struct btrfs_free_space_entry *e;
 580	int ret;
 581
 582	if (!io_ctl->cur) {
 583		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 584		if (ret)
 585			return ret;
 586	}
 587
 588	e = io_ctl->cur;
 589	entry->offset = le64_to_cpu(e->offset);
 590	entry->bytes = le64_to_cpu(e->bytes);
 591	*type = e->type;
 592	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 593	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 594
 595	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 596		return 0;
 597
 598	io_ctl_unmap_page(io_ctl);
 599
 600	return 0;
 601}
 602
 603static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 604			      struct btrfs_free_space *entry)
 605{
 606	int ret;
 607
 608	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 609	if (ret)
 610		return ret;
 611
 612	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
 613	io_ctl_unmap_page(io_ctl);
 614
 615	return 0;
 616}
 617
 618/*
 619 * Since we attach pinned extents after the fact we can have contiguous sections
 620 * of free space that are split up in entries.  This poses a problem with the
 621 * tree logging stuff since it could have allocated across what appears to be 2
 622 * entries since we would have merged the entries when adding the pinned extents
 623 * back to the free space cache.  So run through the space cache that we just
 624 * loaded and merge contiguous entries.  This will make the log replay stuff not
 625 * blow up and it will make for nicer allocator behavior.
 626 */
 627static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 628{
 629	struct btrfs_free_space *e, *prev = NULL;
 630	struct rb_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631
 632again:
 633	spin_lock(&ctl->tree_lock);
 634	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 635		e = rb_entry(n, struct btrfs_free_space, offset_index);
 636		if (!prev)
 637			goto next;
 638		if (e->bitmap || prev->bitmap)
 639			goto next;
 640		if (prev->offset + prev->bytes == e->offset) {
 641			unlink_free_space(ctl, prev);
 642			unlink_free_space(ctl, e);
 643			prev->bytes += e->bytes;
 644			kmem_cache_free(btrfs_free_space_cachep, e);
 645			link_free_space(ctl, prev);
 646			prev = NULL;
 647			spin_unlock(&ctl->tree_lock);
 648			goto again;
 649		}
 650next:
 651		prev = e;
 652	}
 653	spin_unlock(&ctl->tree_lock);
 654}
 655
 656static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 657				   struct btrfs_free_space_ctl *ctl,
 658				   struct btrfs_path *path, u64 offset)
 659{
 660	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 661	struct btrfs_free_space_header *header;
 662	struct extent_buffer *leaf;
 663	struct btrfs_io_ctl io_ctl;
 664	struct btrfs_key key;
 665	struct btrfs_free_space *e, *n;
 666	LIST_HEAD(bitmaps);
 667	u64 num_entries;
 668	u64 num_bitmaps;
 669	u64 generation;
 670	u8 type;
 671	int ret = 0;
 672
 673	/* Nothing in the space cache, goodbye */
 674	if (!i_size_read(inode))
 675		return 0;
 676
 677	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 678	key.offset = offset;
 679	key.type = 0;
 680
 681	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 682	if (ret < 0)
 683		return 0;
 684	else if (ret > 0) {
 685		btrfs_release_path(path);
 686		return 0;
 687	}
 688
 689	ret = -1;
 690
 691	leaf = path->nodes[0];
 692	header = btrfs_item_ptr(leaf, path->slots[0],
 693				struct btrfs_free_space_header);
 694	num_entries = btrfs_free_space_entries(leaf, header);
 695	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 696	generation = btrfs_free_space_generation(leaf, header);
 697	btrfs_release_path(path);
 698
 699	if (!BTRFS_I(inode)->generation) {
 700		btrfs_info(fs_info,
 701			   "the free space cache file (%llu) is invalid, skip it",
 702			   offset);
 703		return 0;
 704	}
 705
 706	if (BTRFS_I(inode)->generation != generation) {
 707		btrfs_err(fs_info,
 708			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 709			  BTRFS_I(inode)->generation, generation);
 710		return 0;
 711	}
 712
 713	if (!num_entries)
 714		return 0;
 715
 716	ret = io_ctl_init(&io_ctl, inode, 0);
 717	if (ret)
 718		return ret;
 719
 720	readahead_cache(inode);
 721
 722	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 723	if (ret)
 724		goto out;
 725
 726	ret = io_ctl_check_crc(&io_ctl, 0);
 727	if (ret)
 728		goto free_cache;
 729
 730	ret = io_ctl_check_generation(&io_ctl, generation);
 731	if (ret)
 732		goto free_cache;
 733
 734	while (num_entries) {
 735		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 736				      GFP_NOFS);
 737		if (!e)
 
 738			goto free_cache;
 
 739
 740		ret = io_ctl_read_entry(&io_ctl, e, &type);
 741		if (ret) {
 742			kmem_cache_free(btrfs_free_space_cachep, e);
 743			goto free_cache;
 744		}
 745
 746		if (!e->bytes) {
 
 747			kmem_cache_free(btrfs_free_space_cachep, e);
 748			goto free_cache;
 749		}
 750
 751		if (type == BTRFS_FREE_SPACE_EXTENT) {
 752			spin_lock(&ctl->tree_lock);
 753			ret = link_free_space(ctl, e);
 754			spin_unlock(&ctl->tree_lock);
 755			if (ret) {
 756				btrfs_err(fs_info,
 757					"Duplicate entries in free space cache, dumping");
 758				kmem_cache_free(btrfs_free_space_cachep, e);
 759				goto free_cache;
 760			}
 761		} else {
 762			ASSERT(num_bitmaps);
 763			num_bitmaps--;
 764			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 
 765			if (!e->bitmap) {
 
 766				kmem_cache_free(
 767					btrfs_free_space_cachep, e);
 768				goto free_cache;
 769			}
 770			spin_lock(&ctl->tree_lock);
 771			ret = link_free_space(ctl, e);
 772			ctl->total_bitmaps++;
 773			ctl->op->recalc_thresholds(ctl);
 774			spin_unlock(&ctl->tree_lock);
 775			if (ret) {
 
 776				btrfs_err(fs_info,
 777					"Duplicate entries in free space cache, dumping");
 
 778				kmem_cache_free(btrfs_free_space_cachep, e);
 779				goto free_cache;
 780			}
 
 
 
 781			list_add_tail(&e->list, &bitmaps);
 782		}
 783
 784		num_entries--;
 785	}
 786
 787	io_ctl_unmap_page(&io_ctl);
 788
 789	/*
 790	 * We add the bitmaps at the end of the entries in order that
 791	 * the bitmap entries are added to the cache.
 792	 */
 793	list_for_each_entry_safe(e, n, &bitmaps, list) {
 794		list_del_init(&e->list);
 795		ret = io_ctl_read_bitmap(&io_ctl, e);
 796		if (ret)
 797			goto free_cache;
 798	}
 799
 800	io_ctl_drop_pages(&io_ctl);
 801	merge_space_tree(ctl);
 802	ret = 1;
 803out:
 804	io_ctl_free(&io_ctl);
 805	return ret;
 806free_cache:
 807	io_ctl_drop_pages(&io_ctl);
 
 
 808	__btrfs_remove_free_space_cache(ctl);
 
 809	goto out;
 810}
 811
 812int load_free_space_cache(struct btrfs_fs_info *fs_info,
 813			  struct btrfs_block_group_cache *block_group)
 814{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 816	struct inode *inode;
 817	struct btrfs_path *path;
 818	int ret = 0;
 819	bool matched;
 820	u64 used = btrfs_block_group_used(&block_group->item);
 
 
 
 
 
 
 
 821
 822	/*
 823	 * If this block group has been marked to be cleared for one reason or
 824	 * another then we can't trust the on disk cache, so just return.
 825	 */
 826	spin_lock(&block_group->lock);
 827	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 828		spin_unlock(&block_group->lock);
 829		return 0;
 830	}
 831	spin_unlock(&block_group->lock);
 832
 833	path = btrfs_alloc_path();
 834	if (!path)
 835		return 0;
 836	path->search_commit_root = 1;
 837	path->skip_locking = 1;
 838
 839	inode = lookup_free_space_inode(fs_info, block_group, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	if (IS_ERR(inode)) {
 841		btrfs_free_path(path);
 842		return 0;
 843	}
 844
 845	/* We may have converted the inode and made the cache invalid. */
 846	spin_lock(&block_group->lock);
 847	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 848		spin_unlock(&block_group->lock);
 849		btrfs_free_path(path);
 850		goto out;
 851	}
 852	spin_unlock(&block_group->lock);
 853
 854	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 855				      path, block_group->key.objectid);
 
 
 
 
 
 
 
 
 856	btrfs_free_path(path);
 857	if (ret <= 0)
 858		goto out;
 859
 860	spin_lock(&ctl->tree_lock);
 861	matched = (ctl->free_space == (block_group->key.offset - used -
 862				       block_group->bytes_super));
 863	spin_unlock(&ctl->tree_lock);
 864
 865	if (!matched) {
 866		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867		btrfs_warn(fs_info,
 868			   "block group %llu has wrong amount of free space",
 869			   block_group->key.objectid);
 870		ret = -1;
 871	}
 872out:
 873	if (ret < 0) {
 874		/* This cache is bogus, make sure it gets cleared */
 875		spin_lock(&block_group->lock);
 876		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 877		spin_unlock(&block_group->lock);
 878		ret = 0;
 879
 880		btrfs_warn(fs_info,
 881			   "failed to load free space cache for block group %llu, rebuilding it now",
 882			   block_group->key.objectid);
 883	}
 884
 
 
 
 885	iput(inode);
 886	return ret;
 887}
 888
 889static noinline_for_stack
 890int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 891			      struct btrfs_free_space_ctl *ctl,
 892			      struct btrfs_block_group_cache *block_group,
 893			      int *entries, int *bitmaps,
 894			      struct list_head *bitmap_list)
 895{
 896	int ret;
 897	struct btrfs_free_cluster *cluster = NULL;
 898	struct btrfs_free_cluster *cluster_locked = NULL;
 899	struct rb_node *node = rb_first(&ctl->free_space_offset);
 900	struct btrfs_trim_range *trim_entry;
 901
 902	/* Get the cluster for this block_group if it exists */
 903	if (block_group && !list_empty(&block_group->cluster_list)) {
 904		cluster = list_entry(block_group->cluster_list.next,
 905				     struct btrfs_free_cluster,
 906				     block_group_list);
 907	}
 908
 909	if (!node && cluster) {
 910		cluster_locked = cluster;
 911		spin_lock(&cluster_locked->lock);
 912		node = rb_first(&cluster->root);
 913		cluster = NULL;
 914	}
 915
 916	/* Write out the extent entries */
 917	while (node) {
 918		struct btrfs_free_space *e;
 919
 920		e = rb_entry(node, struct btrfs_free_space, offset_index);
 921		*entries += 1;
 922
 923		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 924				       e->bitmap);
 925		if (ret)
 926			goto fail;
 927
 928		if (e->bitmap) {
 929			list_add_tail(&e->list, bitmap_list);
 930			*bitmaps += 1;
 931		}
 932		node = rb_next(node);
 933		if (!node && cluster) {
 934			node = rb_first(&cluster->root);
 935			cluster_locked = cluster;
 936			spin_lock(&cluster_locked->lock);
 937			cluster = NULL;
 938		}
 939	}
 940	if (cluster_locked) {
 941		spin_unlock(&cluster_locked->lock);
 942		cluster_locked = NULL;
 943	}
 944
 945	/*
 946	 * Make sure we don't miss any range that was removed from our rbtree
 947	 * because trimming is running. Otherwise after a umount+mount (or crash
 948	 * after committing the transaction) we would leak free space and get
 949	 * an inconsistent free space cache report from fsck.
 950	 */
 951	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 952		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 953				       trim_entry->bytes, NULL);
 954		if (ret)
 955			goto fail;
 956		*entries += 1;
 957	}
 958
 959	return 0;
 960fail:
 961	if (cluster_locked)
 962		spin_unlock(&cluster_locked->lock);
 963	return -ENOSPC;
 964}
 965
 966static noinline_for_stack int
 967update_cache_item(struct btrfs_trans_handle *trans,
 968		  struct btrfs_root *root,
 969		  struct inode *inode,
 970		  struct btrfs_path *path, u64 offset,
 971		  int entries, int bitmaps)
 972{
 973	struct btrfs_key key;
 974	struct btrfs_free_space_header *header;
 975	struct extent_buffer *leaf;
 976	int ret;
 977
 978	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 979	key.offset = offset;
 980	key.type = 0;
 981
 982	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 983	if (ret < 0) {
 984		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
 985				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
 986		goto fail;
 987	}
 988	leaf = path->nodes[0];
 989	if (ret > 0) {
 990		struct btrfs_key found_key;
 991		ASSERT(path->slots[0]);
 992		path->slots[0]--;
 993		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 994		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
 995		    found_key.offset != offset) {
 996			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
 997					 inode->i_size - 1,
 998					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
 999					 NULL);
1000			btrfs_release_path(path);
1001			goto fail;
1002		}
1003	}
1004
1005	BTRFS_I(inode)->generation = trans->transid;
1006	header = btrfs_item_ptr(leaf, path->slots[0],
1007				struct btrfs_free_space_header);
1008	btrfs_set_free_space_entries(leaf, header, entries);
1009	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1010	btrfs_set_free_space_generation(leaf, header, trans->transid);
1011	btrfs_mark_buffer_dirty(leaf);
1012	btrfs_release_path(path);
1013
1014	return 0;
1015
1016fail:
1017	return -1;
1018}
1019
1020static noinline_for_stack int
1021write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1022			    struct btrfs_block_group_cache *block_group,
1023			    struct btrfs_io_ctl *io_ctl,
1024			    int *entries)
1025{
1026	u64 start, extent_start, extent_end, len;
1027	struct extent_io_tree *unpin = NULL;
1028	int ret;
1029
1030	if (!block_group)
1031		return 0;
1032
1033	/*
1034	 * We want to add any pinned extents to our free space cache
1035	 * so we don't leak the space
1036	 *
1037	 * We shouldn't have switched the pinned extents yet so this is the
1038	 * right one
1039	 */
1040	unpin = fs_info->pinned_extents;
1041
1042	start = block_group->key.objectid;
1043
1044	while (start < block_group->key.objectid + block_group->key.offset) {
1045		ret = find_first_extent_bit(unpin, start,
1046					    &extent_start, &extent_end,
1047					    EXTENT_DIRTY, NULL);
1048		if (ret)
1049			return 0;
1050
1051		/* This pinned extent is out of our range */
1052		if (extent_start >= block_group->key.objectid +
1053		    block_group->key.offset)
1054			return 0;
1055
1056		extent_start = max(extent_start, start);
1057		extent_end = min(block_group->key.objectid +
1058				 block_group->key.offset, extent_end + 1);
1059		len = extent_end - extent_start;
1060
1061		*entries += 1;
1062		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1063		if (ret)
1064			return -ENOSPC;
1065
1066		start = extent_end;
1067	}
1068
1069	return 0;
1070}
1071
1072static noinline_for_stack int
1073write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1074{
1075	struct btrfs_free_space *entry, *next;
1076	int ret;
1077
1078	/* Write out the bitmaps */
1079	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1080		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1081		if (ret)
1082			return -ENOSPC;
1083		list_del_init(&entry->list);
1084	}
1085
1086	return 0;
1087}
1088
1089static int flush_dirty_cache(struct inode *inode)
1090{
1091	int ret;
1092
1093	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1094	if (ret)
1095		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1096				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1097
1098	return ret;
1099}
1100
1101static void noinline_for_stack
1102cleanup_bitmap_list(struct list_head *bitmap_list)
1103{
1104	struct btrfs_free_space *entry, *next;
1105
1106	list_for_each_entry_safe(entry, next, bitmap_list, list)
1107		list_del_init(&entry->list);
1108}
1109
1110static void noinline_for_stack
1111cleanup_write_cache_enospc(struct inode *inode,
1112			   struct btrfs_io_ctl *io_ctl,
1113			   struct extent_state **cached_state)
1114{
1115	io_ctl_drop_pages(io_ctl);
1116	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1117			     i_size_read(inode) - 1, cached_state);
1118}
1119
1120static int __btrfs_wait_cache_io(struct btrfs_root *root,
1121				 struct btrfs_trans_handle *trans,
1122				 struct btrfs_block_group_cache *block_group,
1123				 struct btrfs_io_ctl *io_ctl,
1124				 struct btrfs_path *path, u64 offset)
1125{
1126	int ret;
1127	struct inode *inode = io_ctl->inode;
1128	struct btrfs_fs_info *fs_info;
1129
1130	if (!inode)
1131		return 0;
1132
1133	fs_info = btrfs_sb(inode->i_sb);
1134
1135	/* Flush the dirty pages in the cache file. */
1136	ret = flush_dirty_cache(inode);
1137	if (ret)
1138		goto out;
1139
1140	/* Update the cache item to tell everyone this cache file is valid. */
1141	ret = update_cache_item(trans, root, inode, path, offset,
1142				io_ctl->entries, io_ctl->bitmaps);
1143out:
1144	io_ctl_free(io_ctl);
1145	if (ret) {
1146		invalidate_inode_pages2(inode->i_mapping);
1147		BTRFS_I(inode)->generation = 0;
1148		if (block_group) {
1149#ifdef DEBUG
1150			btrfs_err(fs_info,
1151				  "failed to write free space cache for block group %llu",
1152				  block_group->key.objectid);
1153#endif
1154		}
1155	}
1156	btrfs_update_inode(trans, root, inode);
1157
1158	if (block_group) {
1159		/* the dirty list is protected by the dirty_bgs_lock */
1160		spin_lock(&trans->transaction->dirty_bgs_lock);
1161
1162		/* the disk_cache_state is protected by the block group lock */
1163		spin_lock(&block_group->lock);
1164
1165		/*
1166		 * only mark this as written if we didn't get put back on
1167		 * the dirty list while waiting for IO.   Otherwise our
1168		 * cache state won't be right, and we won't get written again
1169		 */
1170		if (!ret && list_empty(&block_group->dirty_list))
1171			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1172		else if (ret)
1173			block_group->disk_cache_state = BTRFS_DC_ERROR;
1174
1175		spin_unlock(&block_group->lock);
1176		spin_unlock(&trans->transaction->dirty_bgs_lock);
1177		io_ctl->inode = NULL;
1178		iput(inode);
1179	}
1180
1181	return ret;
1182
1183}
1184
1185static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1186				    struct btrfs_trans_handle *trans,
1187				    struct btrfs_io_ctl *io_ctl,
1188				    struct btrfs_path *path)
1189{
1190	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1191}
1192
1193int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1194			struct btrfs_block_group_cache *block_group,
1195			struct btrfs_path *path)
1196{
1197	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1198				     block_group, &block_group->io_ctl,
1199				     path, block_group->key.objectid);
1200}
1201
1202/**
1203 * __btrfs_write_out_cache - write out cached info to an inode
1204 * @root - the root the inode belongs to
1205 * @ctl - the free space cache we are going to write out
1206 * @block_group - the block_group for this cache if it belongs to a block_group
1207 * @trans - the trans handle
 
 
1208 *
1209 * This function writes out a free space cache struct to disk for quick recovery
1210 * on mount.  This will return 0 if it was successful in writing the cache out,
1211 * or an errno if it was not.
1212 */
1213static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1214				   struct btrfs_free_space_ctl *ctl,
1215				   struct btrfs_block_group_cache *block_group,
1216				   struct btrfs_io_ctl *io_ctl,
1217				   struct btrfs_trans_handle *trans)
1218{
1219	struct btrfs_fs_info *fs_info = root->fs_info;
1220	struct extent_state *cached_state = NULL;
1221	LIST_HEAD(bitmap_list);
1222	int entries = 0;
1223	int bitmaps = 0;
1224	int ret;
1225	int must_iput = 0;
 
1226
1227	if (!i_size_read(inode))
1228		return -EIO;
1229
1230	WARN_ON(io_ctl->pages);
1231	ret = io_ctl_init(io_ctl, inode, 1);
1232	if (ret)
1233		return ret;
1234
1235	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1236		down_write(&block_group->data_rwsem);
1237		spin_lock(&block_group->lock);
1238		if (block_group->delalloc_bytes) {
1239			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1240			spin_unlock(&block_group->lock);
1241			up_write(&block_group->data_rwsem);
1242			BTRFS_I(inode)->generation = 0;
1243			ret = 0;
1244			must_iput = 1;
1245			goto out;
1246		}
1247		spin_unlock(&block_group->lock);
1248	}
1249
1250	/* Lock all pages first so we can lock the extent safely. */
1251	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1252	if (ret)
1253		goto out_unlock;
1254
1255	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1256			 &cached_state);
1257
1258	io_ctl_set_generation(io_ctl, trans->transid);
1259
1260	mutex_lock(&ctl->cache_writeout_mutex);
1261	/* Write out the extent entries in the free space cache */
1262	spin_lock(&ctl->tree_lock);
1263	ret = write_cache_extent_entries(io_ctl, ctl,
1264					 block_group, &entries, &bitmaps,
1265					 &bitmap_list);
1266	if (ret)
1267		goto out_nospc_locked;
1268
1269	/*
1270	 * Some spaces that are freed in the current transaction are pinned,
1271	 * they will be added into free space cache after the transaction is
1272	 * committed, we shouldn't lose them.
1273	 *
1274	 * If this changes while we are working we'll get added back to
1275	 * the dirty list and redo it.  No locking needed
1276	 */
1277	ret = write_pinned_extent_entries(fs_info, block_group,
1278					  io_ctl, &entries);
1279	if (ret)
1280		goto out_nospc_locked;
1281
1282	/*
1283	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1284	 * locked while doing it because a concurrent trim can be manipulating
1285	 * or freeing the bitmap.
1286	 */
1287	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1288	spin_unlock(&ctl->tree_lock);
1289	mutex_unlock(&ctl->cache_writeout_mutex);
1290	if (ret)
1291		goto out_nospc;
1292
1293	/* Zero out the rest of the pages just to make sure */
1294	io_ctl_zero_remaining_pages(io_ctl);
1295
1296	/* Everything is written out, now we dirty the pages in the file. */
1297	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1298				i_size_read(inode), &cached_state);
1299	if (ret)
1300		goto out_nospc;
 
 
 
 
 
 
1301
1302	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1303		up_write(&block_group->data_rwsem);
1304	/*
1305	 * Release the pages and unlock the extent, we will flush
1306	 * them out later
1307	 */
1308	io_ctl_drop_pages(io_ctl);
 
1309
1310	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1311			     i_size_read(inode) - 1, &cached_state);
1312
1313	/*
1314	 * at this point the pages are under IO and we're happy,
1315	 * The caller is responsible for waiting on them and updating the
1316	 * the cache and the inode
1317	 */
1318	io_ctl->entries = entries;
1319	io_ctl->bitmaps = bitmaps;
1320
1321	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1322	if (ret)
1323		goto out;
1324
1325	return 0;
1326
1327out:
1328	io_ctl->inode = NULL;
1329	io_ctl_free(io_ctl);
1330	if (ret) {
1331		invalidate_inode_pages2(inode->i_mapping);
1332		BTRFS_I(inode)->generation = 0;
1333	}
1334	btrfs_update_inode(trans, root, inode);
1335	if (must_iput)
1336		iput(inode);
1337	return ret;
1338
1339out_nospc_locked:
1340	cleanup_bitmap_list(&bitmap_list);
1341	spin_unlock(&ctl->tree_lock);
1342	mutex_unlock(&ctl->cache_writeout_mutex);
1343
1344out_nospc:
1345	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1346
1347out_unlock:
1348	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1349		up_write(&block_group->data_rwsem);
1350
1351	goto out;
 
 
 
 
 
 
 
 
 
 
1352}
1353
1354int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1355			  struct btrfs_trans_handle *trans,
1356			  struct btrfs_block_group_cache *block_group,
1357			  struct btrfs_path *path)
1358{
 
1359	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1360	struct inode *inode;
1361	int ret = 0;
1362
1363	spin_lock(&block_group->lock);
1364	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1365		spin_unlock(&block_group->lock);
1366		return 0;
1367	}
1368	spin_unlock(&block_group->lock);
1369
1370	inode = lookup_free_space_inode(fs_info, block_group, path);
1371	if (IS_ERR(inode))
1372		return 0;
1373
1374	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1375				block_group, &block_group->io_ctl, trans);
1376	if (ret) {
1377#ifdef DEBUG
1378		btrfs_err(fs_info,
1379			  "failed to write free space cache for block group %llu",
1380			  block_group->key.objectid);
1381#endif
1382		spin_lock(&block_group->lock);
1383		block_group->disk_cache_state = BTRFS_DC_ERROR;
1384		spin_unlock(&block_group->lock);
1385
1386		block_group->io_ctl.inode = NULL;
1387		iput(inode);
1388	}
1389
1390	/*
1391	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1392	 * to wait for IO and put the inode
1393	 */
1394
1395	return ret;
1396}
1397
1398static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1399					  u64 offset)
1400{
1401	ASSERT(offset >= bitmap_start);
1402	offset -= bitmap_start;
1403	return (unsigned long)(div_u64(offset, unit));
1404}
1405
1406static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1407{
1408	return (unsigned long)(div_u64(bytes, unit));
1409}
1410
1411static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1412				   u64 offset)
1413{
1414	u64 bitmap_start;
1415	u64 bytes_per_bitmap;
1416
1417	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1418	bitmap_start = offset - ctl->start;
1419	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1420	bitmap_start *= bytes_per_bitmap;
1421	bitmap_start += ctl->start;
1422
1423	return bitmap_start;
1424}
1425
1426static int tree_insert_offset(struct rb_root *root, u64 offset,
1427			      struct rb_node *node, int bitmap)
 
1428{
1429	struct rb_node **p = &root->rb_node;
 
1430	struct rb_node *parent = NULL;
1431	struct btrfs_free_space *info;
 
 
 
 
 
 
 
 
 
 
1432
1433	while (*p) {
 
 
1434		parent = *p;
1435		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1436
1437		if (offset < info->offset) {
1438			p = &(*p)->rb_left;
1439		} else if (offset > info->offset) {
1440			p = &(*p)->rb_right;
1441		} else {
1442			/*
1443			 * we could have a bitmap entry and an extent entry
1444			 * share the same offset.  If this is the case, we want
1445			 * the extent entry to always be found first if we do a
1446			 * linear search through the tree, since we want to have
1447			 * the quickest allocation time, and allocating from an
1448			 * extent is faster than allocating from a bitmap.  So
1449			 * if we're inserting a bitmap and we find an entry at
1450			 * this offset, we want to go right, or after this entry
1451			 * logically.  If we are inserting an extent and we've
1452			 * found a bitmap, we want to go left, or before
1453			 * logically.
1454			 */
1455			if (bitmap) {
1456				if (info->bitmap) {
1457					WARN_ON_ONCE(1);
1458					return -EEXIST;
1459				}
1460				p = &(*p)->rb_right;
1461			} else {
1462				if (!info->bitmap) {
1463					WARN_ON_ONCE(1);
1464					return -EEXIST;
1465				}
1466				p = &(*p)->rb_left;
1467			}
1468		}
1469	}
1470
1471	rb_link_node(node, parent, p);
1472	rb_insert_color(node, root);
1473
1474	return 0;
1475}
1476
1477/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478 * searches the tree for the given offset.
1479 *
1480 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1481 * want a section that has at least bytes size and comes at or after the given
1482 * offset.
1483 */
1484static struct btrfs_free_space *
1485tree_search_offset(struct btrfs_free_space_ctl *ctl,
1486		   u64 offset, int bitmap_only, int fuzzy)
1487{
1488	struct rb_node *n = ctl->free_space_offset.rb_node;
1489	struct btrfs_free_space *entry, *prev = NULL;
 
 
1490
1491	/* find entry that is closest to the 'offset' */
1492	while (1) {
1493		if (!n) {
1494			entry = NULL;
1495			break;
1496		}
1497
1498		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1499		prev = entry;
1500
1501		if (offset < entry->offset)
1502			n = n->rb_left;
1503		else if (offset > entry->offset)
1504			n = n->rb_right;
1505		else
1506			break;
 
 
1507	}
1508
1509	if (bitmap_only) {
1510		if (!entry)
1511			return NULL;
1512		if (entry->bitmap)
1513			return entry;
1514
1515		/*
1516		 * bitmap entry and extent entry may share same offset,
1517		 * in that case, bitmap entry comes after extent entry.
1518		 */
1519		n = rb_next(n);
1520		if (!n)
1521			return NULL;
1522		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1523		if (entry->offset != offset)
1524			return NULL;
1525
1526		WARN_ON(!entry->bitmap);
1527		return entry;
1528	} else if (entry) {
1529		if (entry->bitmap) {
1530			/*
1531			 * if previous extent entry covers the offset,
1532			 * we should return it instead of the bitmap entry
1533			 */
1534			n = rb_prev(&entry->offset_index);
1535			if (n) {
1536				prev = rb_entry(n, struct btrfs_free_space,
1537						offset_index);
1538				if (!prev->bitmap &&
1539				    prev->offset + prev->bytes > offset)
1540					entry = prev;
1541			}
1542		}
1543		return entry;
1544	}
1545
1546	if (!prev)
1547		return NULL;
1548
1549	/* find last entry before the 'offset' */
1550	entry = prev;
1551	if (entry->offset > offset) {
1552		n = rb_prev(&entry->offset_index);
1553		if (n) {
1554			entry = rb_entry(n, struct btrfs_free_space,
1555					offset_index);
1556			ASSERT(entry->offset <= offset);
1557		} else {
1558			if (fuzzy)
1559				return entry;
1560			else
1561				return NULL;
1562		}
1563	}
1564
1565	if (entry->bitmap) {
1566		n = rb_prev(&entry->offset_index);
1567		if (n) {
1568			prev = rb_entry(n, struct btrfs_free_space,
1569					offset_index);
1570			if (!prev->bitmap &&
1571			    prev->offset + prev->bytes > offset)
1572				return prev;
1573		}
1574		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1575			return entry;
1576	} else if (entry->offset + entry->bytes > offset)
1577		return entry;
1578
1579	if (!fuzzy)
1580		return NULL;
1581
1582	while (1) {
 
 
 
 
1583		if (entry->bitmap) {
1584			if (entry->offset + BITS_PER_BITMAP *
1585			    ctl->unit > offset)
1586				break;
1587		} else {
1588			if (entry->offset + entry->bytes > offset)
1589				break;
1590		}
1591
1592		n = rb_next(&entry->offset_index);
1593		if (!n)
1594			return NULL;
1595		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1596	}
1597	return entry;
1598}
1599
1600static inline void
1601__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1602		    struct btrfs_free_space *info)
1603{
 
 
1604	rb_erase(&info->offset_index, &ctl->free_space_offset);
 
1605	ctl->free_extents--;
1606}
1607
1608static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1609			      struct btrfs_free_space *info)
1610{
1611	__unlink_free_space(ctl, info);
1612	ctl->free_space -= info->bytes;
 
 
1613}
1614
1615static int link_free_space(struct btrfs_free_space_ctl *ctl,
1616			   struct btrfs_free_space *info)
1617{
1618	int ret = 0;
1619
 
 
1620	ASSERT(info->bytes || info->bitmap);
1621	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1622				 &info->offset_index, (info->bitmap != NULL));
1623	if (ret)
1624		return ret;
1625
 
 
 
 
 
 
 
1626	ctl->free_space += info->bytes;
1627	ctl->free_extents++;
1628	return ret;
1629}
1630
1631static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
1632{
1633	struct btrfs_block_group_cache *block_group = ctl->private;
1634	u64 max_bytes;
1635	u64 bitmap_bytes;
1636	u64 extent_bytes;
1637	u64 size = block_group->key.offset;
1638	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1639	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1640
1641	max_bitmaps = max_t(u64, max_bitmaps, 1);
1642
1643	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1644
1645	/*
1646	 * The goal is to keep the total amount of memory used per 1gb of space
1647	 * at or below 32k, so we need to adjust how much memory we allow to be
1648	 * used by extent based free space tracking
1649	 */
1650	if (size < SZ_1G)
1651		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1652	else
1653		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1654
1655	/*
1656	 * we want to account for 1 more bitmap than what we have so we can make
1657	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1658	 * we add more bitmaps.
1659	 */
1660	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1661
1662	if (bitmap_bytes >= max_bytes) {
1663		ctl->extents_thresh = 0;
1664		return;
1665	}
1666
1667	/*
1668	 * we want the extent entry threshold to always be at most 1/2 the max
1669	 * bytes we can have, or whatever is less than that.
1670	 */
1671	extent_bytes = max_bytes - bitmap_bytes;
1672	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1673
1674	ctl->extents_thresh =
1675		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1676}
1677
1678static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1679				       struct btrfs_free_space *info,
1680				       u64 offset, u64 bytes)
1681{
1682	unsigned long start, count;
 
1683
1684	start = offset_to_bit(info->offset, ctl->unit, offset);
1685	count = bytes_to_bits(bytes, ctl->unit);
1686	ASSERT(start + count <= BITS_PER_BITMAP);
 
1687
1688	bitmap_clear(info->bitmap, start, count);
1689
1690	info->bytes -= bytes;
1691}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1694			      struct btrfs_free_space *info, u64 offset,
1695			      u64 bytes)
1696{
1697	__bitmap_clear_bits(ctl, info, offset, bytes);
1698	ctl->free_space -= bytes;
1699}
1700
1701static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1702			    struct btrfs_free_space *info, u64 offset,
1703			    u64 bytes)
1704{
1705	unsigned long start, count;
 
1706
1707	start = offset_to_bit(info->offset, ctl->unit, offset);
1708	count = bytes_to_bits(bytes, ctl->unit);
1709	ASSERT(start + count <= BITS_PER_BITMAP);
 
1710
1711	bitmap_set(info->bitmap, start, count);
1712
 
 
 
 
 
1713	info->bytes += bytes;
1714	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715}
1716
1717/*
1718 * If we can not find suitable extent, we will use bytes to record
1719 * the size of the max extent.
1720 */
1721static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1722			 struct btrfs_free_space *bitmap_info, u64 *offset,
1723			 u64 *bytes, bool for_alloc)
1724{
1725	unsigned long found_bits = 0;
1726	unsigned long max_bits = 0;
1727	unsigned long bits, i;
1728	unsigned long next_zero;
1729	unsigned long extent_bits;
1730
1731	/*
1732	 * Skip searching the bitmap if we don't have a contiguous section that
1733	 * is large enough for this allocation.
1734	 */
1735	if (for_alloc &&
1736	    bitmap_info->max_extent_size &&
1737	    bitmap_info->max_extent_size < *bytes) {
1738		*bytes = bitmap_info->max_extent_size;
1739		return -1;
1740	}
1741
1742	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1743			  max_t(u64, *offset, bitmap_info->offset));
1744	bits = bytes_to_bits(*bytes, ctl->unit);
1745
1746	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1747		if (for_alloc && bits == 1) {
1748			found_bits = 1;
1749			break;
1750		}
1751		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1752					       BITS_PER_BITMAP, i);
1753		extent_bits = next_zero - i;
1754		if (extent_bits >= bits) {
1755			found_bits = extent_bits;
1756			break;
1757		} else if (extent_bits > max_bits) {
1758			max_bits = extent_bits;
1759		}
1760		i = next_zero;
1761	}
1762
1763	if (found_bits) {
1764		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1765		*bytes = (u64)(found_bits) * ctl->unit;
1766		return 0;
1767	}
1768
1769	*bytes = (u64)(max_bits) * ctl->unit;
1770	bitmap_info->max_extent_size = *bytes;
 
1771	return -1;
1772}
1773
1774/* Cache the size of the max extent in bytes */
1775static struct btrfs_free_space *
1776find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1777		unsigned long align, u64 *max_extent_size)
1778{
1779	struct btrfs_free_space *entry;
1780	struct rb_node *node;
1781	u64 tmp;
1782	u64 align_off;
1783	int ret;
1784
1785	if (!ctl->free_space_offset.rb_node)
1786		goto out;
 
 
 
 
 
 
 
 
 
 
1787
1788	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1789	if (!entry)
1790		goto out;
 
 
 
 
1791
1792	for (node = &entry->offset_index; node; node = rb_next(node)) {
1793		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 
 
 
 
 
 
1794		if (entry->bytes < *bytes) {
1795			if (entry->bytes > *max_extent_size)
1796				*max_extent_size = entry->bytes;
 
 
1797			continue;
1798		}
1799
1800		/* make sure the space returned is big enough
1801		 * to match our requested alignment
1802		 */
1803		if (*bytes >= align) {
1804			tmp = entry->offset - ctl->start + align - 1;
1805			tmp = div64_u64(tmp, align);
1806			tmp = tmp * align + ctl->start;
1807			align_off = tmp - entry->offset;
1808		} else {
1809			align_off = 0;
1810			tmp = entry->offset;
1811		}
1812
 
 
 
 
 
 
 
1813		if (entry->bytes < *bytes + align_off) {
1814			if (entry->bytes > *max_extent_size)
1815				*max_extent_size = entry->bytes;
1816			continue;
1817		}
1818
1819		if (entry->bitmap) {
 
1820			u64 size = *bytes;
1821
1822			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1823			if (!ret) {
1824				*offset = tmp;
1825				*bytes = size;
1826				return entry;
1827			} else if (size > *max_extent_size) {
1828				*max_extent_size = size;
 
 
1829			}
 
 
 
 
 
 
 
 
 
1830			continue;
1831		}
1832
1833		*offset = tmp;
1834		*bytes = entry->bytes - align_off;
1835		return entry;
1836	}
1837out:
1838	return NULL;
1839}
1840
1841static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1842			   struct btrfs_free_space *info, u64 offset)
1843{
1844	info->offset = offset_to_bitmap(ctl, offset);
1845	info->bytes = 0;
 
1846	INIT_LIST_HEAD(&info->list);
1847	link_free_space(ctl, info);
1848	ctl->total_bitmaps++;
1849
1850	ctl->op->recalc_thresholds(ctl);
1851}
1852
1853static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1854			struct btrfs_free_space *bitmap_info)
1855{
1856	unlink_free_space(ctl, bitmap_info);
1857	kfree(bitmap_info->bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
1858	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1859	ctl->total_bitmaps--;
1860	ctl->op->recalc_thresholds(ctl);
1861}
1862
1863static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1864			      struct btrfs_free_space *bitmap_info,
1865			      u64 *offset, u64 *bytes)
1866{
1867	u64 end;
1868	u64 search_start, search_bytes;
1869	int ret;
1870
1871again:
1872	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1873
1874	/*
1875	 * We need to search for bits in this bitmap.  We could only cover some
1876	 * of the extent in this bitmap thanks to how we add space, so we need
1877	 * to search for as much as it as we can and clear that amount, and then
1878	 * go searching for the next bit.
1879	 */
1880	search_start = *offset;
1881	search_bytes = ctl->unit;
1882	search_bytes = min(search_bytes, end - search_start + 1);
1883	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1884			    false);
1885	if (ret < 0 || search_start != *offset)
1886		return -EINVAL;
1887
1888	/* We may have found more bits than what we need */
1889	search_bytes = min(search_bytes, *bytes);
1890
1891	/* Cannot clear past the end of the bitmap */
1892	search_bytes = min(search_bytes, end - search_start + 1);
1893
1894	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1895	*offset += search_bytes;
1896	*bytes -= search_bytes;
1897
1898	if (*bytes) {
1899		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1900		if (!bitmap_info->bytes)
1901			free_bitmap(ctl, bitmap_info);
1902
1903		/*
1904		 * no entry after this bitmap, but we still have bytes to
1905		 * remove, so something has gone wrong.
1906		 */
1907		if (!next)
1908			return -EINVAL;
1909
1910		bitmap_info = rb_entry(next, struct btrfs_free_space,
1911				       offset_index);
1912
1913		/*
1914		 * if the next entry isn't a bitmap we need to return to let the
1915		 * extent stuff do its work.
1916		 */
1917		if (!bitmap_info->bitmap)
1918			return -EAGAIN;
1919
1920		/*
1921		 * Ok the next item is a bitmap, but it may not actually hold
1922		 * the information for the rest of this free space stuff, so
1923		 * look for it, and if we don't find it return so we can try
1924		 * everything over again.
1925		 */
1926		search_start = *offset;
1927		search_bytes = ctl->unit;
1928		ret = search_bitmap(ctl, bitmap_info, &search_start,
1929				    &search_bytes, false);
1930		if (ret < 0 || search_start != *offset)
1931			return -EAGAIN;
1932
1933		goto again;
1934	} else if (!bitmap_info->bytes)
1935		free_bitmap(ctl, bitmap_info);
1936
1937	return 0;
1938}
1939
1940static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1941			       struct btrfs_free_space *info, u64 offset,
1942			       u64 bytes)
1943{
1944	u64 bytes_to_set = 0;
1945	u64 end;
1946
 
 
 
 
 
 
 
 
 
 
 
 
 
1947	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1948
1949	bytes_to_set = min(end - offset, bytes);
1950
1951	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1952
1953	/*
1954	 * We set some bytes, we have no idea what the max extent size is
1955	 * anymore.
1956	 */
1957	info->max_extent_size = 0;
1958
1959	return bytes_to_set;
1960
1961}
1962
1963static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1964		      struct btrfs_free_space *info)
1965{
1966	struct btrfs_block_group_cache *block_group = ctl->private;
1967	struct btrfs_fs_info *fs_info = block_group->fs_info;
1968	bool forced = false;
1969
1970#ifdef CONFIG_BTRFS_DEBUG
1971	if (btrfs_should_fragment_free_space(block_group))
1972		forced = true;
1973#endif
1974
 
 
 
 
1975	/*
1976	 * If we are below the extents threshold then we can add this as an
1977	 * extent, and don't have to deal with the bitmap
1978	 */
1979	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1980		/*
1981		 * If this block group has some small extents we don't want to
1982		 * use up all of our free slots in the cache with them, we want
1983		 * to reserve them to larger extents, however if we have plenty
1984		 * of cache left then go ahead an dadd them, no sense in adding
1985		 * the overhead of a bitmap if we don't have to.
1986		 */
1987		if (info->bytes <= fs_info->sectorsize * 4) {
1988			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1989				return false;
1990		} else {
1991			return false;
1992		}
1993	}
1994
1995	/*
1996	 * The original block groups from mkfs can be really small, like 8
1997	 * megabytes, so don't bother with a bitmap for those entries.  However
1998	 * some block groups can be smaller than what a bitmap would cover but
1999	 * are still large enough that they could overflow the 32k memory limit,
2000	 * so allow those block groups to still be allowed to have a bitmap
2001	 * entry.
2002	 */
2003	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2004		return false;
2005
2006	return true;
2007}
2008
2009static const struct btrfs_free_space_op free_space_op = {
2010	.recalc_thresholds	= recalculate_thresholds,
2011	.use_bitmap		= use_bitmap,
2012};
2013
2014static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2015			      struct btrfs_free_space *info)
2016{
2017	struct btrfs_free_space *bitmap_info;
2018	struct btrfs_block_group_cache *block_group = NULL;
2019	int added = 0;
2020	u64 bytes, offset, bytes_added;
 
2021	int ret;
2022
2023	bytes = info->bytes;
2024	offset = info->offset;
 
2025
2026	if (!ctl->op->use_bitmap(ctl, info))
2027		return 0;
2028
2029	if (ctl->op == &free_space_op)
2030		block_group = ctl->private;
2031again:
2032	/*
2033	 * Since we link bitmaps right into the cluster we need to see if we
2034	 * have a cluster here, and if so and it has our bitmap we need to add
2035	 * the free space to that bitmap.
2036	 */
2037	if (block_group && !list_empty(&block_group->cluster_list)) {
2038		struct btrfs_free_cluster *cluster;
2039		struct rb_node *node;
2040		struct btrfs_free_space *entry;
2041
2042		cluster = list_entry(block_group->cluster_list.next,
2043				     struct btrfs_free_cluster,
2044				     block_group_list);
2045		spin_lock(&cluster->lock);
2046		node = rb_first(&cluster->root);
2047		if (!node) {
2048			spin_unlock(&cluster->lock);
2049			goto no_cluster_bitmap;
2050		}
2051
2052		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2053		if (!entry->bitmap) {
2054			spin_unlock(&cluster->lock);
2055			goto no_cluster_bitmap;
2056		}
2057
2058		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2059			bytes_added = add_bytes_to_bitmap(ctl, entry,
2060							  offset, bytes);
2061			bytes -= bytes_added;
2062			offset += bytes_added;
2063		}
2064		spin_unlock(&cluster->lock);
2065		if (!bytes) {
2066			ret = 1;
2067			goto out;
2068		}
2069	}
2070
2071no_cluster_bitmap:
2072	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2073					 1, 0);
2074	if (!bitmap_info) {
2075		ASSERT(added == 0);
2076		goto new_bitmap;
2077	}
2078
2079	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2080	bytes -= bytes_added;
2081	offset += bytes_added;
2082	added = 0;
2083
2084	if (!bytes) {
2085		ret = 1;
2086		goto out;
2087	} else
2088		goto again;
2089
2090new_bitmap:
2091	if (info && info->bitmap) {
2092		add_new_bitmap(ctl, info, offset);
2093		added = 1;
2094		info = NULL;
2095		goto again;
2096	} else {
2097		spin_unlock(&ctl->tree_lock);
2098
2099		/* no pre-allocated info, allocate a new one */
2100		if (!info) {
2101			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2102						 GFP_NOFS);
2103			if (!info) {
2104				spin_lock(&ctl->tree_lock);
2105				ret = -ENOMEM;
2106				goto out;
2107			}
2108		}
2109
2110		/* allocate the bitmap */
2111		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 
 
2112		spin_lock(&ctl->tree_lock);
2113		if (!info->bitmap) {
2114			ret = -ENOMEM;
2115			goto out;
2116		}
2117		goto again;
2118	}
2119
2120out:
2121	if (info) {
2122		if (info->bitmap)
2123			kfree(info->bitmap);
 
2124		kmem_cache_free(btrfs_free_space_cachep, info);
2125	}
2126
2127	return ret;
2128}
2129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2131			  struct btrfs_free_space *info, bool update_stat)
2132{
2133	struct btrfs_free_space *left_info;
2134	struct btrfs_free_space *right_info;
2135	bool merged = false;
2136	u64 offset = info->offset;
2137	u64 bytes = info->bytes;
 
 
2138
2139	/*
2140	 * first we want to see if there is free space adjacent to the range we
2141	 * are adding, if there is remove that struct and add a new one to
2142	 * cover the entire range
2143	 */
2144	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2145	if (right_info && rb_prev(&right_info->offset_index))
2146		left_info = rb_entry(rb_prev(&right_info->offset_index),
2147				     struct btrfs_free_space, offset_index);
2148	else
 
 
2149		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2150
2151	if (right_info && !right_info->bitmap) {
2152		if (update_stat)
2153			unlink_free_space(ctl, right_info);
2154		else
2155			__unlink_free_space(ctl, right_info);
2156		info->bytes += right_info->bytes;
2157		kmem_cache_free(btrfs_free_space_cachep, right_info);
2158		merged = true;
2159	}
2160
 
2161	if (left_info && !left_info->bitmap &&
2162	    left_info->offset + left_info->bytes == offset) {
2163		if (update_stat)
2164			unlink_free_space(ctl, left_info);
2165		else
2166			__unlink_free_space(ctl, left_info);
2167		info->offset = left_info->offset;
2168		info->bytes += left_info->bytes;
2169		kmem_cache_free(btrfs_free_space_cachep, left_info);
2170		merged = true;
2171	}
2172
2173	return merged;
2174}
2175
2176static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2177				     struct btrfs_free_space *info,
2178				     bool update_stat)
2179{
2180	struct btrfs_free_space *bitmap;
2181	unsigned long i;
2182	unsigned long j;
2183	const u64 end = info->offset + info->bytes;
2184	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2185	u64 bytes;
2186
2187	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2188	if (!bitmap)
2189		return false;
2190
2191	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2192	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2193	if (j == i)
2194		return false;
2195	bytes = (j - i) * ctl->unit;
2196	info->bytes += bytes;
2197
2198	if (update_stat)
2199		bitmap_clear_bits(ctl, bitmap, end, bytes);
2200	else
2201		__bitmap_clear_bits(ctl, bitmap, end, bytes);
 
2202
2203	if (!bitmap->bytes)
2204		free_bitmap(ctl, bitmap);
2205
2206	return true;
2207}
2208
2209static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2210				       struct btrfs_free_space *info,
2211				       bool update_stat)
2212{
2213	struct btrfs_free_space *bitmap;
2214	u64 bitmap_offset;
2215	unsigned long i;
2216	unsigned long j;
2217	unsigned long prev_j;
2218	u64 bytes;
2219
2220	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2221	/* If we're on a boundary, try the previous logical bitmap. */
2222	if (bitmap_offset == info->offset) {
2223		if (info->offset == 0)
2224			return false;
2225		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2226	}
2227
2228	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2229	if (!bitmap)
2230		return false;
2231
2232	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2233	j = 0;
2234	prev_j = (unsigned long)-1;
2235	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2236		if (j > i)
2237			break;
2238		prev_j = j;
2239	}
2240	if (prev_j == i)
2241		return false;
2242
2243	if (prev_j == (unsigned long)-1)
2244		bytes = (i + 1) * ctl->unit;
2245	else
2246		bytes = (i - prev_j) * ctl->unit;
2247
2248	info->offset -= bytes;
2249	info->bytes += bytes;
2250
2251	if (update_stat)
2252		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2253	else
2254		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
 
2255
2256	if (!bitmap->bytes)
2257		free_bitmap(ctl, bitmap);
2258
2259	return true;
2260}
2261
2262/*
2263 * We prefer always to allocate from extent entries, both for clustered and
2264 * non-clustered allocation requests. So when attempting to add a new extent
2265 * entry, try to see if there's adjacent free space in bitmap entries, and if
2266 * there is, migrate that space from the bitmaps to the extent.
2267 * Like this we get better chances of satisfying space allocation requests
2268 * because we attempt to satisfy them based on a single cache entry, and never
2269 * on 2 or more entries - even if the entries represent a contiguous free space
2270 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2271 * ends).
2272 */
2273static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2274			      struct btrfs_free_space *info,
2275			      bool update_stat)
2276{
2277	/*
2278	 * Only work with disconnected entries, as we can change their offset,
2279	 * and must be extent entries.
2280	 */
2281	ASSERT(!info->bitmap);
2282	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2283
2284	if (ctl->total_bitmaps > 0) {
2285		bool stole_end;
2286		bool stole_front = false;
2287
2288		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2289		if (ctl->total_bitmaps > 0)
2290			stole_front = steal_from_bitmap_to_front(ctl, info,
2291								 update_stat);
2292
2293		if (stole_end || stole_front)
2294			try_merge_free_space(ctl, info, update_stat);
2295	}
2296}
2297
2298int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2299			   struct btrfs_free_space_ctl *ctl,
2300			   u64 offset, u64 bytes)
2301{
 
 
2302	struct btrfs_free_space *info;
2303	int ret = 0;
 
 
 
2304
2305	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2306	if (!info)
2307		return -ENOMEM;
2308
2309	info->offset = offset;
2310	info->bytes = bytes;
 
2311	RB_CLEAR_NODE(&info->offset_index);
 
2312
2313	spin_lock(&ctl->tree_lock);
2314
2315	if (try_merge_free_space(ctl, info, true))
2316		goto link;
2317
2318	/*
2319	 * There was no extent directly to the left or right of this new
2320	 * extent then we know we're going to have to allocate a new extent, so
2321	 * before we do that see if we need to drop this into a bitmap
2322	 */
2323	ret = insert_into_bitmap(ctl, info);
2324	if (ret < 0) {
2325		goto out;
2326	} else if (ret) {
2327		ret = 0;
2328		goto out;
2329	}
2330link:
2331	/*
2332	 * Only steal free space from adjacent bitmaps if we're sure we're not
2333	 * going to add the new free space to existing bitmap entries - because
2334	 * that would mean unnecessary work that would be reverted. Therefore
2335	 * attempt to steal space from bitmaps if we're adding an extent entry.
2336	 */
2337	steal_from_bitmap(ctl, info, true);
2338
 
 
2339	ret = link_free_space(ctl, info);
2340	if (ret)
2341		kmem_cache_free(btrfs_free_space_cachep, info);
2342out:
 
2343	spin_unlock(&ctl->tree_lock);
2344
2345	if (ret) {
2346		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2347		ASSERT(ret != -EEXIST);
2348	}
2349
 
 
 
 
 
2350	return ret;
2351}
2352
2353int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354			    u64 offset, u64 bytes)
2355{
2356	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2357	struct btrfs_free_space *info;
2358	int ret;
2359	bool re_search = false;
2360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361	spin_lock(&ctl->tree_lock);
2362
2363again:
2364	ret = 0;
2365	if (!bytes)
2366		goto out_lock;
2367
2368	info = tree_search_offset(ctl, offset, 0, 0);
2369	if (!info) {
2370		/*
2371		 * oops didn't find an extent that matched the space we wanted
2372		 * to remove, look for a bitmap instead
2373		 */
2374		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2375					  1, 0);
2376		if (!info) {
2377			/*
2378			 * If we found a partial bit of our free space in a
2379			 * bitmap but then couldn't find the other part this may
2380			 * be a problem, so WARN about it.
2381			 */
2382			WARN_ON(re_search);
2383			goto out_lock;
2384		}
2385	}
2386
2387	re_search = false;
2388	if (!info->bitmap) {
2389		unlink_free_space(ctl, info);
2390		if (offset == info->offset) {
2391			u64 to_free = min(bytes, info->bytes);
2392
2393			info->bytes -= to_free;
2394			info->offset += to_free;
2395			if (info->bytes) {
2396				ret = link_free_space(ctl, info);
2397				WARN_ON(ret);
2398			} else {
2399				kmem_cache_free(btrfs_free_space_cachep, info);
2400			}
2401
2402			offset += to_free;
2403			bytes -= to_free;
2404			goto again;
2405		} else {
2406			u64 old_end = info->bytes + info->offset;
2407
2408			info->bytes = offset - info->offset;
2409			ret = link_free_space(ctl, info);
2410			WARN_ON(ret);
2411			if (ret)
2412				goto out_lock;
2413
2414			/* Not enough bytes in this entry to satisfy us */
2415			if (old_end < offset + bytes) {
2416				bytes -= old_end - offset;
2417				offset = old_end;
2418				goto again;
2419			} else if (old_end == offset + bytes) {
2420				/* all done */
2421				goto out_lock;
2422			}
2423			spin_unlock(&ctl->tree_lock);
2424
2425			ret = btrfs_add_free_space(block_group, offset + bytes,
2426						   old_end - (offset + bytes));
 
 
2427			WARN_ON(ret);
2428			goto out;
2429		}
2430	}
2431
2432	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2433	if (ret == -EAGAIN) {
2434		re_search = true;
2435		goto again;
2436	}
2437out_lock:
 
2438	spin_unlock(&ctl->tree_lock);
2439out:
2440	return ret;
2441}
2442
2443void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2444			   u64 bytes)
2445{
2446	struct btrfs_fs_info *fs_info = block_group->fs_info;
2447	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2448	struct btrfs_free_space *info;
2449	struct rb_node *n;
2450	int count = 0;
2451
 
 
 
 
 
 
 
 
 
 
 
 
 
2452	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2453		info = rb_entry(n, struct btrfs_free_space, offset_index);
2454		if (info->bytes >= bytes && !block_group->ro)
2455			count++;
2456		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2457			   info->offset, info->bytes,
2458		       (info->bitmap) ? "yes" : "no");
2459	}
 
2460	btrfs_info(fs_info, "block group has cluster?: %s",
2461	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2462	btrfs_info(fs_info,
2463		   "%d blocks of free space at or bigger than bytes is", count);
 
2464}
2465
2466void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
2467{
2468	struct btrfs_fs_info *fs_info = block_group->fs_info;
2469	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2470
2471	spin_lock_init(&ctl->tree_lock);
2472	ctl->unit = fs_info->sectorsize;
2473	ctl->start = block_group->key.objectid;
2474	ctl->private = block_group;
2475	ctl->op = &free_space_op;
 
2476	INIT_LIST_HEAD(&ctl->trimming_ranges);
2477	mutex_init(&ctl->cache_writeout_mutex);
2478
2479	/*
2480	 * we only want to have 32k of ram per block group for keeping
2481	 * track of free space, and if we pass 1/2 of that we want to
2482	 * start converting things over to using bitmaps
2483	 */
2484	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2485}
2486
2487/*
2488 * for a given cluster, put all of its extents back into the free
2489 * space cache.  If the block group passed doesn't match the block group
2490 * pointed to by the cluster, someone else raced in and freed the
2491 * cluster already.  In that case, we just return without changing anything
2492 */
2493static int
2494__btrfs_return_cluster_to_free_space(
2495			     struct btrfs_block_group_cache *block_group,
2496			     struct btrfs_free_cluster *cluster)
2497{
2498	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2499	struct btrfs_free_space *entry;
2500	struct rb_node *node;
2501
 
 
2502	spin_lock(&cluster->lock);
2503	if (cluster->block_group != block_group)
2504		goto out;
 
 
2505
2506	cluster->block_group = NULL;
2507	cluster->window_start = 0;
2508	list_del_init(&cluster->block_group_list);
2509
2510	node = rb_first(&cluster->root);
2511	while (node) {
2512		bool bitmap;
2513
2514		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2515		node = rb_next(&entry->offset_index);
2516		rb_erase(&entry->offset_index, &cluster->root);
2517		RB_CLEAR_NODE(&entry->offset_index);
2518
2519		bitmap = (entry->bitmap != NULL);
2520		if (!bitmap) {
 
 
 
 
 
 
2521			try_merge_free_space(ctl, entry, false);
2522			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2523		}
2524		tree_insert_offset(&ctl->free_space_offset,
2525				   entry->offset, &entry->offset_index, bitmap);
 
2526	}
2527	cluster->root = RB_ROOT;
2528
2529out:
2530	spin_unlock(&cluster->lock);
2531	btrfs_put_block_group(block_group);
2532	return 0;
2533}
2534
2535static void __btrfs_remove_free_space_cache_locked(
2536				struct btrfs_free_space_ctl *ctl)
2537{
2538	struct btrfs_free_space *info;
2539	struct rb_node *node;
2540
2541	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2542		info = rb_entry(node, struct btrfs_free_space, offset_index);
2543		if (!info->bitmap) {
2544			unlink_free_space(ctl, info);
2545			kmem_cache_free(btrfs_free_space_cachep, info);
2546		} else {
2547			free_bitmap(ctl, info);
2548		}
2549
2550		cond_resched_lock(&ctl->tree_lock);
2551	}
2552}
2553
2554void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2555{
2556	spin_lock(&ctl->tree_lock);
2557	__btrfs_remove_free_space_cache_locked(ctl);
2558	spin_unlock(&ctl->tree_lock);
2559}
2560
2561void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2562{
2563	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2564	struct btrfs_free_cluster *cluster;
2565	struct list_head *head;
2566
2567	spin_lock(&ctl->tree_lock);
2568	while ((head = block_group->cluster_list.next) !=
2569	       &block_group->cluster_list) {
2570		cluster = list_entry(head, struct btrfs_free_cluster,
2571				     block_group_list);
2572
2573		WARN_ON(cluster->block_group != block_group);
2574		__btrfs_return_cluster_to_free_space(block_group, cluster);
2575
2576		cond_resched_lock(&ctl->tree_lock);
2577	}
2578	__btrfs_remove_free_space_cache_locked(ctl);
 
2579	spin_unlock(&ctl->tree_lock);
2580
2581}
2582
2583u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584			       u64 offset, u64 bytes, u64 empty_size,
2585			       u64 *max_extent_size)
2586{
2587	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2588	struct btrfs_free_space *entry = NULL;
2589	u64 bytes_search = bytes + empty_size;
2590	u64 ret = 0;
2591	u64 align_gap = 0;
2592	u64 align_gap_len = 0;
 
 
 
 
2593
2594	spin_lock(&ctl->tree_lock);
2595	entry = find_free_space(ctl, &offset, &bytes_search,
2596				block_group->full_stripe_len, max_extent_size);
 
2597	if (!entry)
2598		goto out;
2599
2600	ret = offset;
2601	if (entry->bitmap) {
2602		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2603		if (!entry->bytes)
2604			free_bitmap(ctl, entry);
2605	} else {
2606		unlink_free_space(ctl, entry);
2607		align_gap_len = offset - entry->offset;
2608		align_gap = entry->offset;
 
 
 
 
2609
2610		entry->offset = offset + bytes;
2611		WARN_ON(entry->bytes < bytes + align_gap_len);
2612
2613		entry->bytes -= bytes + align_gap_len;
2614		if (!entry->bytes)
2615			kmem_cache_free(btrfs_free_space_cachep, entry);
2616		else
2617			link_free_space(ctl, entry);
2618	}
2619out:
 
2620	spin_unlock(&ctl->tree_lock);
2621
2622	if (align_gap_len)
2623		__btrfs_add_free_space(block_group->fs_info, ctl,
2624				       align_gap, align_gap_len);
2625	return ret;
2626}
2627
2628/*
2629 * given a cluster, put all of its extents back into the free space
2630 * cache.  If a block group is passed, this function will only free
2631 * a cluster that belongs to the passed block group.
2632 *
2633 * Otherwise, it'll get a reference on the block group pointed to by the
2634 * cluster and remove the cluster from it.
2635 */
2636int btrfs_return_cluster_to_free_space(
2637			       struct btrfs_block_group_cache *block_group,
2638			       struct btrfs_free_cluster *cluster)
2639{
2640	struct btrfs_free_space_ctl *ctl;
2641	int ret;
2642
2643	/* first, get a safe pointer to the block group */
2644	spin_lock(&cluster->lock);
2645	if (!block_group) {
2646		block_group = cluster->block_group;
2647		if (!block_group) {
2648			spin_unlock(&cluster->lock);
2649			return 0;
2650		}
2651	} else if (cluster->block_group != block_group) {
2652		/* someone else has already freed it don't redo their work */
2653		spin_unlock(&cluster->lock);
2654		return 0;
2655	}
2656	atomic_inc(&block_group->count);
2657	spin_unlock(&cluster->lock);
2658
2659	ctl = block_group->free_space_ctl;
2660
2661	/* now return any extents the cluster had on it */
2662	spin_lock(&ctl->tree_lock);
2663	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2664	spin_unlock(&ctl->tree_lock);
2665
 
 
2666	/* finally drop our ref */
2667	btrfs_put_block_group(block_group);
2668	return ret;
2669}
2670
2671static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2672				   struct btrfs_free_cluster *cluster,
2673				   struct btrfs_free_space *entry,
2674				   u64 bytes, u64 min_start,
2675				   u64 *max_extent_size)
2676{
2677	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2678	int err;
2679	u64 search_start = cluster->window_start;
2680	u64 search_bytes = bytes;
2681	u64 ret = 0;
2682
2683	search_start = min_start;
2684	search_bytes = bytes;
2685
2686	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2687	if (err) {
2688		if (search_bytes > *max_extent_size)
2689			*max_extent_size = search_bytes;
2690		return 0;
2691	}
2692
2693	ret = search_start;
2694	__bitmap_clear_bits(ctl, entry, ret, bytes);
2695
2696	return ret;
2697}
2698
2699/*
2700 * given a cluster, try to allocate 'bytes' from it, returns 0
2701 * if it couldn't find anything suitably large, or a logical disk offset
2702 * if things worked out
2703 */
2704u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2705			     struct btrfs_free_cluster *cluster, u64 bytes,
2706			     u64 min_start, u64 *max_extent_size)
2707{
2708	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2709	struct btrfs_free_space *entry = NULL;
2710	struct rb_node *node;
2711	u64 ret = 0;
2712
 
 
2713	spin_lock(&cluster->lock);
2714	if (bytes > cluster->max_size)
2715		goto out;
2716
2717	if (cluster->block_group != block_group)
2718		goto out;
2719
2720	node = rb_first(&cluster->root);
2721	if (!node)
2722		goto out;
2723
2724	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2725	while (1) {
2726		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2727			*max_extent_size = entry->bytes;
 
2728
2729		if (entry->bytes < bytes ||
2730		    (!entry->bitmap && entry->offset < min_start)) {
2731			node = rb_next(&entry->offset_index);
2732			if (!node)
2733				break;
2734			entry = rb_entry(node, struct btrfs_free_space,
2735					 offset_index);
2736			continue;
2737		}
2738
2739		if (entry->bitmap) {
2740			ret = btrfs_alloc_from_bitmap(block_group,
2741						      cluster, entry, bytes,
2742						      cluster->window_start,
2743						      max_extent_size);
2744			if (ret == 0) {
2745				node = rb_next(&entry->offset_index);
2746				if (!node)
2747					break;
2748				entry = rb_entry(node, struct btrfs_free_space,
2749						 offset_index);
2750				continue;
2751			}
2752			cluster->window_start += bytes;
2753		} else {
2754			ret = entry->offset;
2755
2756			entry->offset += bytes;
2757			entry->bytes -= bytes;
2758		}
2759
2760		if (entry->bytes == 0)
2761			rb_erase(&entry->offset_index, &cluster->root);
2762		break;
2763	}
2764out:
2765	spin_unlock(&cluster->lock);
2766
2767	if (!ret)
2768		return 0;
2769
2770	spin_lock(&ctl->tree_lock);
2771
 
 
 
2772	ctl->free_space -= bytes;
 
 
 
 
2773	if (entry->bytes == 0) {
 
2774		ctl->free_extents--;
2775		if (entry->bitmap) {
2776			kfree(entry->bitmap);
 
2777			ctl->total_bitmaps--;
2778			ctl->op->recalc_thresholds(ctl);
 
 
2779		}
2780		kmem_cache_free(btrfs_free_space_cachep, entry);
2781	}
2782
 
2783	spin_unlock(&ctl->tree_lock);
2784
2785	return ret;
2786}
2787
2788static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2789				struct btrfs_free_space *entry,
2790				struct btrfs_free_cluster *cluster,
2791				u64 offset, u64 bytes,
2792				u64 cont1_bytes, u64 min_bytes)
2793{
2794	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2795	unsigned long next_zero;
2796	unsigned long i;
2797	unsigned long want_bits;
2798	unsigned long min_bits;
2799	unsigned long found_bits;
2800	unsigned long max_bits = 0;
2801	unsigned long start = 0;
2802	unsigned long total_found = 0;
2803	int ret;
2804
 
 
2805	i = offset_to_bit(entry->offset, ctl->unit,
2806			  max_t(u64, offset, entry->offset));
2807	want_bits = bytes_to_bits(bytes, ctl->unit);
2808	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2809
2810	/*
2811	 * Don't bother looking for a cluster in this bitmap if it's heavily
2812	 * fragmented.
2813	 */
2814	if (entry->max_extent_size &&
2815	    entry->max_extent_size < cont1_bytes)
2816		return -ENOSPC;
2817again:
2818	found_bits = 0;
2819	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2820		next_zero = find_next_zero_bit(entry->bitmap,
2821					       BITS_PER_BITMAP, i);
2822		if (next_zero - i >= min_bits) {
2823			found_bits = next_zero - i;
2824			if (found_bits > max_bits)
2825				max_bits = found_bits;
2826			break;
2827		}
2828		if (next_zero - i > max_bits)
2829			max_bits = next_zero - i;
2830		i = next_zero;
2831	}
2832
2833	if (!found_bits) {
2834		entry->max_extent_size = (u64)max_bits * ctl->unit;
2835		return -ENOSPC;
2836	}
2837
2838	if (!total_found) {
2839		start = i;
2840		cluster->max_size = 0;
2841	}
2842
2843	total_found += found_bits;
2844
2845	if (cluster->max_size < found_bits * ctl->unit)
2846		cluster->max_size = found_bits * ctl->unit;
2847
2848	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2849		i = next_zero + 1;
2850		goto again;
2851	}
2852
2853	cluster->window_start = start * ctl->unit + entry->offset;
2854	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2855	ret = tree_insert_offset(&cluster->root, entry->offset,
2856				 &entry->offset_index, 1);
 
 
 
 
 
 
 
 
 
 
2857	ASSERT(!ret); /* -EEXIST; Logic error */
2858
2859	trace_btrfs_setup_cluster(block_group, cluster,
2860				  total_found * ctl->unit, 1);
2861	return 0;
2862}
2863
2864/*
2865 * This searches the block group for just extents to fill the cluster with.
2866 * Try to find a cluster with at least bytes total bytes, at least one
2867 * extent of cont1_bytes, and other clusters of at least min_bytes.
2868 */
2869static noinline int
2870setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2871			struct btrfs_free_cluster *cluster,
2872			struct list_head *bitmaps, u64 offset, u64 bytes,
2873			u64 cont1_bytes, u64 min_bytes)
2874{
2875	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2876	struct btrfs_free_space *first = NULL;
2877	struct btrfs_free_space *entry = NULL;
2878	struct btrfs_free_space *last;
2879	struct rb_node *node;
2880	u64 window_free;
2881	u64 max_extent;
2882	u64 total_size = 0;
2883
 
 
2884	entry = tree_search_offset(ctl, offset, 0, 1);
2885	if (!entry)
2886		return -ENOSPC;
2887
2888	/*
2889	 * We don't want bitmaps, so just move along until we find a normal
2890	 * extent entry.
2891	 */
2892	while (entry->bitmap || entry->bytes < min_bytes) {
2893		if (entry->bitmap && list_empty(&entry->list))
2894			list_add_tail(&entry->list, bitmaps);
2895		node = rb_next(&entry->offset_index);
2896		if (!node)
2897			return -ENOSPC;
2898		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2899	}
2900
2901	window_free = entry->bytes;
2902	max_extent = entry->bytes;
2903	first = entry;
2904	last = entry;
2905
2906	for (node = rb_next(&entry->offset_index); node;
2907	     node = rb_next(&entry->offset_index)) {
2908		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2909
2910		if (entry->bitmap) {
2911			if (list_empty(&entry->list))
2912				list_add_tail(&entry->list, bitmaps);
2913			continue;
2914		}
2915
2916		if (entry->bytes < min_bytes)
2917			continue;
2918
2919		last = entry;
2920		window_free += entry->bytes;
2921		if (entry->bytes > max_extent)
2922			max_extent = entry->bytes;
2923	}
2924
2925	if (window_free < bytes || max_extent < cont1_bytes)
2926		return -ENOSPC;
2927
2928	cluster->window_start = first->offset;
2929
2930	node = &first->offset_index;
2931
2932	/*
2933	 * now we've found our entries, pull them out of the free space
2934	 * cache and put them into the cluster rbtree
2935	 */
2936	do {
2937		int ret;
2938
2939		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2940		node = rb_next(&entry->offset_index);
2941		if (entry->bitmap || entry->bytes < min_bytes)
2942			continue;
2943
2944		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2945		ret = tree_insert_offset(&cluster->root, entry->offset,
2946					 &entry->offset_index, 0);
2947		total_size += entry->bytes;
2948		ASSERT(!ret); /* -EEXIST; Logic error */
2949	} while (node && entry != last);
2950
2951	cluster->max_size = max_extent;
2952	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2953	return 0;
2954}
2955
2956/*
2957 * This specifically looks for bitmaps that may work in the cluster, we assume
2958 * that we have already failed to find extents that will work.
2959 */
2960static noinline int
2961setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2962		     struct btrfs_free_cluster *cluster,
2963		     struct list_head *bitmaps, u64 offset, u64 bytes,
2964		     u64 cont1_bytes, u64 min_bytes)
2965{
2966	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2967	struct btrfs_free_space *entry = NULL;
2968	int ret = -ENOSPC;
2969	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2970
2971	if (ctl->total_bitmaps == 0)
2972		return -ENOSPC;
2973
2974	/*
2975	 * The bitmap that covers offset won't be in the list unless offset
2976	 * is just its start offset.
2977	 */
2978	if (!list_empty(bitmaps))
2979		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2980
2981	if (!entry || entry->offset != bitmap_offset) {
2982		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2983		if (entry && list_empty(&entry->list))
2984			list_add(&entry->list, bitmaps);
2985	}
2986
2987	list_for_each_entry(entry, bitmaps, list) {
2988		if (entry->bytes < bytes)
2989			continue;
2990		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2991					   bytes, cont1_bytes, min_bytes);
2992		if (!ret)
2993			return 0;
2994	}
2995
2996	/*
2997	 * The bitmaps list has all the bitmaps that record free space
2998	 * starting after offset, so no more search is required.
2999	 */
3000	return -ENOSPC;
3001}
3002
3003/*
3004 * here we try to find a cluster of blocks in a block group.  The goal
3005 * is to find at least bytes+empty_size.
3006 * We might not find them all in one contiguous area.
3007 *
3008 * returns zero and sets up cluster if things worked out, otherwise
3009 * it returns -enospc
3010 */
3011int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3012			     struct btrfs_block_group_cache *block_group,
3013			     struct btrfs_free_cluster *cluster,
3014			     u64 offset, u64 bytes, u64 empty_size)
3015{
 
3016	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3017	struct btrfs_free_space *entry, *tmp;
3018	LIST_HEAD(bitmaps);
3019	u64 min_bytes;
3020	u64 cont1_bytes;
3021	int ret;
3022
3023	/*
3024	 * Choose the minimum extent size we'll require for this
3025	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3026	 * For metadata, allow allocates with smaller extents.  For
3027	 * data, keep it dense.
3028	 */
3029	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3030		cont1_bytes = min_bytes = bytes + empty_size;
 
3031	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3032		cont1_bytes = bytes;
3033		min_bytes = fs_info->sectorsize;
3034	} else {
3035		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3036		min_bytes = fs_info->sectorsize;
3037	}
3038
3039	spin_lock(&ctl->tree_lock);
3040
3041	/*
3042	 * If we know we don't have enough space to make a cluster don't even
3043	 * bother doing all the work to try and find one.
3044	 */
3045	if (ctl->free_space < bytes) {
3046		spin_unlock(&ctl->tree_lock);
3047		return -ENOSPC;
3048	}
3049
3050	spin_lock(&cluster->lock);
3051
3052	/* someone already found a cluster, hooray */
3053	if (cluster->block_group) {
3054		ret = 0;
3055		goto out;
3056	}
3057
3058	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3059				 min_bytes);
3060
3061	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3062				      bytes + empty_size,
3063				      cont1_bytes, min_bytes);
3064	if (ret)
3065		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3066					   offset, bytes + empty_size,
3067					   cont1_bytes, min_bytes);
3068
3069	/* Clear our temporary list */
3070	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3071		list_del_init(&entry->list);
3072
3073	if (!ret) {
3074		atomic_inc(&block_group->count);
3075		list_add_tail(&cluster->block_group_list,
3076			      &block_group->cluster_list);
3077		cluster->block_group = block_group;
3078	} else {
3079		trace_btrfs_failed_cluster_setup(block_group);
3080	}
3081out:
3082	spin_unlock(&cluster->lock);
3083	spin_unlock(&ctl->tree_lock);
3084
3085	return ret;
3086}
3087
3088/*
3089 * simple code to zero out a cluster
3090 */
3091void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3092{
3093	spin_lock_init(&cluster->lock);
3094	spin_lock_init(&cluster->refill_lock);
3095	cluster->root = RB_ROOT;
3096	cluster->max_size = 0;
3097	cluster->fragmented = false;
3098	INIT_LIST_HEAD(&cluster->block_group_list);
3099	cluster->block_group = NULL;
3100}
3101
3102static int do_trimming(struct btrfs_block_group_cache *block_group,
3103		       u64 *total_trimmed, u64 start, u64 bytes,
3104		       u64 reserved_start, u64 reserved_bytes,
 
3105		       struct btrfs_trim_range *trim_entry)
3106{
3107	struct btrfs_space_info *space_info = block_group->space_info;
3108	struct btrfs_fs_info *fs_info = block_group->fs_info;
3109	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3110	int ret;
3111	int update = 0;
 
 
 
3112	u64 trimmed = 0;
3113
3114	spin_lock(&space_info->lock);
3115	spin_lock(&block_group->lock);
3116	if (!block_group->ro) {
3117		block_group->reserved += reserved_bytes;
3118		space_info->bytes_reserved += reserved_bytes;
3119		update = 1;
3120	}
3121	spin_unlock(&block_group->lock);
3122	spin_unlock(&space_info->lock);
3123
3124	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3125	if (!ret)
3126		*total_trimmed += trimmed;
 
 
3127
3128	mutex_lock(&ctl->cache_writeout_mutex);
3129	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3130	list_del(&trim_entry->list);
3131	mutex_unlock(&ctl->cache_writeout_mutex);
3132
3133	if (update) {
3134		spin_lock(&space_info->lock);
3135		spin_lock(&block_group->lock);
3136		if (block_group->ro)
3137			space_info->bytes_readonly += reserved_bytes;
3138		block_group->reserved -= reserved_bytes;
3139		space_info->bytes_reserved -= reserved_bytes;
 
3140		spin_unlock(&space_info->lock);
3141		spin_unlock(&block_group->lock);
3142	}
3143
3144	return ret;
3145}
3146
3147static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3148			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3149{
 
 
3150	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3151	struct btrfs_free_space *entry;
3152	struct rb_node *node;
3153	int ret = 0;
3154	u64 extent_start;
3155	u64 extent_bytes;
 
3156	u64 bytes;
 
3157
3158	while (start < end) {
3159		struct btrfs_trim_range trim_entry;
3160
3161		mutex_lock(&ctl->cache_writeout_mutex);
3162		spin_lock(&ctl->tree_lock);
3163
3164		if (ctl->free_space < minlen) {
3165			spin_unlock(&ctl->tree_lock);
3166			mutex_unlock(&ctl->cache_writeout_mutex);
3167			break;
3168		}
3169
3170		entry = tree_search_offset(ctl, start, 0, 1);
3171		if (!entry) {
3172			spin_unlock(&ctl->tree_lock);
3173			mutex_unlock(&ctl->cache_writeout_mutex);
3174			break;
3175		}
3176
3177		/* skip bitmaps */
3178		while (entry->bitmap) {
 
3179			node = rb_next(&entry->offset_index);
3180			if (!node) {
3181				spin_unlock(&ctl->tree_lock);
3182				mutex_unlock(&ctl->cache_writeout_mutex);
3183				goto out;
3184			}
3185			entry = rb_entry(node, struct btrfs_free_space,
3186					 offset_index);
3187		}
3188
3189		if (entry->offset >= end) {
3190			spin_unlock(&ctl->tree_lock);
3191			mutex_unlock(&ctl->cache_writeout_mutex);
3192			break;
3193		}
3194
3195		extent_start = entry->offset;
3196		extent_bytes = entry->bytes;
3197		start = max(start, extent_start);
3198		bytes = min(extent_start + extent_bytes, end) - start;
3199		if (bytes < minlen) {
3200			spin_unlock(&ctl->tree_lock);
3201			mutex_unlock(&ctl->cache_writeout_mutex);
3202			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203		}
3204
3205		unlink_free_space(ctl, entry);
3206		kmem_cache_free(btrfs_free_space_cachep, entry);
3207
3208		spin_unlock(&ctl->tree_lock);
3209		trim_entry.start = extent_start;
3210		trim_entry.bytes = extent_bytes;
3211		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3212		mutex_unlock(&ctl->cache_writeout_mutex);
3213
3214		ret = do_trimming(block_group, total_trimmed, start, bytes,
3215				  extent_start, extent_bytes, &trim_entry);
3216		if (ret)
 
 
3217			break;
 
3218next:
3219		start += bytes;
 
 
 
3220
3221		if (fatal_signal_pending(current)) {
3222			ret = -ERESTARTSYS;
3223			break;
3224		}
3225
3226		cond_resched();
3227	}
3228out:
 
 
 
 
 
 
 
3229	return ret;
3230}
3231
3232static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3233			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3234{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3236	struct btrfs_free_space *entry;
3237	int ret = 0;
3238	int ret2;
3239	u64 bytes;
3240	u64 offset = offset_to_bitmap(ctl, start);
 
3241
3242	while (offset < end) {
3243		bool next_bitmap = false;
3244		struct btrfs_trim_range trim_entry;
3245
3246		mutex_lock(&ctl->cache_writeout_mutex);
3247		spin_lock(&ctl->tree_lock);
3248
3249		if (ctl->free_space < minlen) {
 
 
3250			spin_unlock(&ctl->tree_lock);
3251			mutex_unlock(&ctl->cache_writeout_mutex);
3252			break;
3253		}
3254
3255		entry = tree_search_offset(ctl, offset, 1, 0);
3256		if (!entry) {
 
 
 
 
 
 
 
 
 
3257			spin_unlock(&ctl->tree_lock);
3258			mutex_unlock(&ctl->cache_writeout_mutex);
3259			next_bitmap = true;
3260			goto next;
3261		}
3262
 
 
 
 
 
 
 
 
 
3263		bytes = minlen;
3264		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3265		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3266			spin_unlock(&ctl->tree_lock);
3267			mutex_unlock(&ctl->cache_writeout_mutex);
3268			next_bitmap = true;
3269			goto next;
3270		}
3271
 
 
 
 
 
 
 
 
 
 
3272		bytes = min(bytes, end - start);
3273		if (bytes < minlen) {
3274			spin_unlock(&ctl->tree_lock);
3275			mutex_unlock(&ctl->cache_writeout_mutex);
3276			goto next;
3277		}
3278
3279		bitmap_clear_bits(ctl, entry, start, bytes);
 
 
 
 
 
 
 
 
 
 
 
3280		if (entry->bytes == 0)
3281			free_bitmap(ctl, entry);
3282
3283		spin_unlock(&ctl->tree_lock);
3284		trim_entry.start = start;
3285		trim_entry.bytes = bytes;
3286		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3287		mutex_unlock(&ctl->cache_writeout_mutex);
3288
3289		ret = do_trimming(block_group, total_trimmed, start, bytes,
3290				  start, bytes, &trim_entry);
3291		if (ret)
 
 
 
3292			break;
 
3293next:
3294		if (next_bitmap) {
3295			offset += BITS_PER_BITMAP * ctl->unit;
 
3296		} else {
3297			start += bytes;
3298			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3299				offset += BITS_PER_BITMAP * ctl->unit;
3300		}
 
3301
3302		if (fatal_signal_pending(current)) {
 
 
3303			ret = -ERESTARTSYS;
3304			break;
3305		}
3306
3307		cond_resched();
3308	}
3309
 
 
 
 
3310	return ret;
3311}
3312
3313void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
 
3314{
3315	atomic_inc(&cache->trimming);
3316}
 
 
 
3317
3318void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3319{
3320	struct btrfs_fs_info *fs_info = block_group->fs_info;
3321	struct extent_map_tree *em_tree;
3322	struct extent_map *em;
3323	bool cleanup;
3324
3325	spin_lock(&block_group->lock);
3326	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3327		   block_group->removed);
 
 
 
3328	spin_unlock(&block_group->lock);
3329
3330	if (cleanup) {
3331		mutex_lock(&fs_info->chunk_mutex);
3332		em_tree = &fs_info->mapping_tree.map_tree;
3333		write_lock(&em_tree->lock);
3334		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3335					   1);
3336		BUG_ON(!em); /* logic error, can't happen */
3337		/*
3338		 * remove_extent_mapping() will delete us from the pinned_chunks
3339		 * list, which is protected by the chunk mutex.
3340		 */
3341		remove_extent_mapping(em_tree, em);
3342		write_unlock(&em_tree->lock);
3343		mutex_unlock(&fs_info->chunk_mutex);
3344
3345		/* once for us and once for the tree */
3346		free_extent_map(em);
3347		free_extent_map(em);
3348
3349		/*
3350		 * We've left one free space entry and other tasks trimming
3351		 * this block group have left 1 entry each one. Free them.
3352		 */
3353		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3354	}
 
 
3355}
3356
3357int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3358			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 
3359{
3360	int ret;
3361
3362	*trimmed = 0;
3363
3364	spin_lock(&block_group->lock);
3365	if (block_group->removed) {
3366		spin_unlock(&block_group->lock);
3367		return 0;
3368	}
3369	btrfs_get_block_group_trimming(block_group);
3370	spin_unlock(&block_group->lock);
3371
3372	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3373	if (ret)
3374		goto out;
3375
3376	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3377out:
3378	btrfs_put_block_group_trimming(block_group);
3379	return ret;
3380}
3381
3382/*
3383 * Find the left-most item in the cache tree, and then return the
3384 * smallest inode number in the item.
3385 *
3386 * Note: the returned inode number may not be the smallest one in
3387 * the tree, if the left-most item is a bitmap.
3388 */
3389u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3390{
3391	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3392	struct btrfs_free_space *entry = NULL;
3393	u64 ino = 0;
3394
3395	spin_lock(&ctl->tree_lock);
3396
3397	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3398		goto out;
 
 
 
 
 
3399
3400	entry = rb_entry(rb_first(&ctl->free_space_offset),
3401			 struct btrfs_free_space, offset_index);
3402
3403	if (!entry->bitmap) {
3404		ino = entry->offset;
3405
3406		unlink_free_space(ctl, entry);
3407		entry->offset++;
3408		entry->bytes--;
3409		if (!entry->bytes)
3410			kmem_cache_free(btrfs_free_space_cachep, entry);
3411		else
3412			link_free_space(ctl, entry);
3413	} else {
3414		u64 offset = 0;
3415		u64 count = 1;
3416		int ret;
3417
3418		ret = search_bitmap(ctl, entry, &offset, &count, true);
3419		/* Logic error; Should be empty if it can't find anything */
3420		ASSERT(!ret);
3421
3422		ino = offset;
3423		bitmap_clear_bits(ctl, entry, offset, 1);
3424		if (entry->bytes == 0)
3425			free_bitmap(ctl, entry);
3426	}
3427out:
3428	spin_unlock(&ctl->tree_lock);
3429
3430	return ino;
3431}
3432
3433struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3434				    struct btrfs_path *path)
3435{
3436	struct inode *inode = NULL;
3437
3438	spin_lock(&root->ino_cache_lock);
3439	if (root->ino_cache_inode)
3440		inode = igrab(root->ino_cache_inode);
3441	spin_unlock(&root->ino_cache_lock);
3442	if (inode)
3443		return inode;
3444
3445	inode = __lookup_free_space_inode(root, path, 0);
3446	if (IS_ERR(inode))
3447		return inode;
3448
3449	spin_lock(&root->ino_cache_lock);
3450	if (!btrfs_fs_closing(root->fs_info))
3451		root->ino_cache_inode = igrab(inode);
3452	spin_unlock(&root->ino_cache_lock);
3453
3454	return inode;
 
 
 
 
3455}
3456
3457int create_free_ino_inode(struct btrfs_root *root,
3458			  struct btrfs_trans_handle *trans,
3459			  struct btrfs_path *path)
3460{
3461	return __create_free_space_inode(root, trans, path,
3462					 BTRFS_FREE_INO_OBJECTID, 0);
3463}
3464
3465int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3466{
3467	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3468	struct btrfs_path *path;
3469	struct inode *inode;
3470	int ret = 0;
3471	u64 root_gen = btrfs_root_generation(&root->root_item);
3472
3473	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3474		return 0;
3475
3476	/*
3477	 * If we're unmounting then just return, since this does a search on the
3478	 * normal root and not the commit root and we could deadlock.
 
 
 
 
3479	 */
3480	if (btrfs_fs_closing(fs_info))
3481		return 0;
 
 
 
 
 
 
 
 
 
 
 
3482
3483	path = btrfs_alloc_path();
3484	if (!path)
3485		return 0;
3486
3487	inode = lookup_free_ino_inode(root, path);
3488	if (IS_ERR(inode))
3489		goto out;
3490
3491	if (root_gen != BTRFS_I(inode)->generation)
3492		goto out_put;
3493
3494	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3495
3496	if (ret < 0)
3497		btrfs_err(fs_info,
3498			"failed to load free ino cache for root %llu",
3499			root->root_key.objectid);
3500out_put:
3501	iput(inode);
3502out:
3503	btrfs_free_path(path);
3504	return ret;
3505}
3506
3507int btrfs_write_out_ino_cache(struct btrfs_root *root,
3508			      struct btrfs_trans_handle *trans,
3509			      struct btrfs_path *path,
3510			      struct inode *inode)
3511{
3512	struct btrfs_fs_info *fs_info = root->fs_info;
3513	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3514	int ret;
3515	struct btrfs_io_ctl io_ctl;
3516	bool release_metadata = true;
3517
3518	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3519		return 0;
3520
3521	memset(&io_ctl, 0, sizeof(io_ctl));
3522	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3523	if (!ret) {
3524		/*
3525		 * At this point writepages() didn't error out, so our metadata
3526		 * reservation is released when the writeback finishes, at
3527		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3528		 * with or without an error.
3529		 */
3530		release_metadata = false;
3531		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3532	}
3533
3534	if (ret) {
3535		if (release_metadata)
3536			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3537					inode->i_size, true);
3538#ifdef DEBUG
3539		btrfs_err(fs_info,
3540			  "failed to write free ino cache for root %llu",
3541			  root->root_key.objectid);
3542#endif
3543	}
3544
3545	return ret;
 
 
 
3546}
3547
3548#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3549/*
3550 * Use this if you need to make a bitmap or extent entry specifically, it
3551 * doesn't do any of the merging that add_free_space does, this acts a lot like
3552 * how the free space cache loading stuff works, so you can get really weird
3553 * configurations.
3554 */
3555int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3556			      u64 offset, u64 bytes, bool bitmap)
3557{
3558	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3559	struct btrfs_free_space *info = NULL, *bitmap_info;
3560	void *map = NULL;
 
3561	u64 bytes_added;
3562	int ret;
3563
3564again:
3565	if (!info) {
3566		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3567		if (!info)
3568			return -ENOMEM;
3569	}
3570
3571	if (!bitmap) {
3572		spin_lock(&ctl->tree_lock);
3573		info->offset = offset;
3574		info->bytes = bytes;
3575		info->max_extent_size = 0;
3576		ret = link_free_space(ctl, info);
3577		spin_unlock(&ctl->tree_lock);
3578		if (ret)
3579			kmem_cache_free(btrfs_free_space_cachep, info);
3580		return ret;
3581	}
3582
3583	if (!map) {
3584		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3585		if (!map) {
3586			kmem_cache_free(btrfs_free_space_cachep, info);
3587			return -ENOMEM;
3588		}
3589	}
3590
3591	spin_lock(&ctl->tree_lock);
3592	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3593					 1, 0);
3594	if (!bitmap_info) {
3595		info->bitmap = map;
3596		map = NULL;
3597		add_new_bitmap(ctl, info, offset);
3598		bitmap_info = info;
3599		info = NULL;
3600	}
3601
3602	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3603
3604	bytes -= bytes_added;
3605	offset += bytes_added;
3606	spin_unlock(&ctl->tree_lock);
3607
3608	if (bytes)
3609		goto again;
3610
3611	if (info)
3612		kmem_cache_free(btrfs_free_space_cachep, info);
3613	if (map)
3614		kfree(map);
3615	return 0;
3616}
3617
3618/*
3619 * Checks to see if the given range is in the free space cache.  This is really
3620 * just used to check the absence of space, so if there is free space in the
3621 * range at all we will return 1.
3622 */
3623int test_check_exists(struct btrfs_block_group_cache *cache,
3624		      u64 offset, u64 bytes)
3625{
3626	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3627	struct btrfs_free_space *info;
3628	int ret = 0;
3629
3630	spin_lock(&ctl->tree_lock);
3631	info = tree_search_offset(ctl, offset, 0, 0);
3632	if (!info) {
3633		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3634					  1, 0);
3635		if (!info)
3636			goto out;
3637	}
3638
3639have_info:
3640	if (info->bitmap) {
3641		u64 bit_off, bit_bytes;
3642		struct rb_node *n;
3643		struct btrfs_free_space *tmp;
3644
3645		bit_off = offset;
3646		bit_bytes = ctl->unit;
3647		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3648		if (!ret) {
3649			if (bit_off == offset) {
3650				ret = 1;
3651				goto out;
3652			} else if (bit_off > offset &&
3653				   offset + bytes > bit_off) {
3654				ret = 1;
3655				goto out;
3656			}
3657		}
3658
3659		n = rb_prev(&info->offset_index);
3660		while (n) {
3661			tmp = rb_entry(n, struct btrfs_free_space,
3662				       offset_index);
3663			if (tmp->offset + tmp->bytes < offset)
3664				break;
3665			if (offset + bytes < tmp->offset) {
3666				n = rb_prev(&tmp->offset_index);
3667				continue;
3668			}
3669			info = tmp;
3670			goto have_info;
3671		}
3672
3673		n = rb_next(&info->offset_index);
3674		while (n) {
3675			tmp = rb_entry(n, struct btrfs_free_space,
3676				       offset_index);
3677			if (offset + bytes < tmp->offset)
3678				break;
3679			if (tmp->offset + tmp->bytes < offset) {
3680				n = rb_next(&tmp->offset_index);
3681				continue;
3682			}
3683			info = tmp;
3684			goto have_info;
3685		}
3686
3687		ret = 0;
3688		goto out;
3689	}
3690
3691	if (info->offset == offset) {
3692		ret = 1;
3693		goto out;
3694	}
3695
3696	if (offset > info->offset && offset < info->offset + info->bytes)
3697		ret = 1;
3698out:
3699	spin_unlock(&ctl->tree_lock);
3700	return ret;
3701}
3702#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */