Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
 
 
  40
  41static const struct btrfs_csums {
  42	u16		size;
  43	const char	name[10];
  44	const char	driver[12];
  45} btrfs_csums[] = {
  46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  50				     .driver = "blake2b-256" },
  51};
  52
  53/*
  54 * The leaf data grows from end-to-front in the node.  this returns the address
  55 * of the start of the last item, which is the stop of the leaf data stack.
  56 */
  57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  58{
  59	u32 nr = btrfs_header_nritems(leaf);
  60
  61	if (nr == 0)
  62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  63	return btrfs_item_offset(leaf, nr - 1);
  64}
  65
  66/*
  67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  68 *
  69 * @leaf:	leaf that we're doing a memmove on
  70 * @dst_offset:	item data offset we're moving to
  71 * @src_offset:	item data offset were' moving from
  72 * @len:	length of the data we're moving
  73 *
  74 * Wrapper around memmove_extent_buffer() that takes into account the header on
  75 * the leaf.  The btrfs_item offset's start directly after the header, so we
  76 * have to adjust any offsets to account for the header in the leaf.  This
  77 * handles that math to simplify the callers.
  78 */
  79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  80				     unsigned long dst_offset,
  81				     unsigned long src_offset,
  82				     unsigned long len)
  83{
  84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  86}
  87
  88/*
  89 * Copy item data from @src into @dst at the given @offset.
  90 *
  91 * @dst:	destination leaf that we're copying into
  92 * @src:	source leaf that we're copying from
  93 * @dst_offset:	item data offset we're copying to
  94 * @src_offset:	item data offset were' copying from
  95 * @len:	length of the data we're copying
  96 *
  97 * Wrapper around copy_extent_buffer() that takes into account the header on
  98 * the leaf.  The btrfs_item offset's start directly after the header, so we
  99 * have to adjust any offsets to account for the header in the leaf.  This
 100 * handles that math to simplify the callers.
 101 */
 102static inline void copy_leaf_data(const struct extent_buffer *dst,
 103				  const struct extent_buffer *src,
 104				  unsigned long dst_offset,
 105				  unsigned long src_offset, unsigned long len)
 106{
 107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 109}
 110
 111/*
 112 * Move items in a @leaf (using memmove).
 113 *
 114 * @dst:	destination leaf for the items
 115 * @dst_item:	the item nr we're copying into
 116 * @src_item:	the item nr we're copying from
 117 * @nr_items:	the number of items to copy
 118 *
 119 * Wrapper around memmove_extent_buffer() that does the math to get the
 120 * appropriate offsets into the leaf from the item numbers.
 121 */
 122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 123				      int dst_item, int src_item, int nr_items)
 124{
 125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 126			      btrfs_item_nr_offset(leaf, src_item),
 127			      nr_items * sizeof(struct btrfs_item));
 128}
 129
 130/*
 131 * Copy items from @src into @dst at the given @offset.
 132 *
 133 * @dst:	destination leaf for the items
 134 * @src:	source leaf for the items
 135 * @dst_item:	the item nr we're copying into
 136 * @src_item:	the item nr we're copying from
 137 * @nr_items:	the number of items to copy
 138 *
 139 * Wrapper around copy_extent_buffer() that does the math to get the
 140 * appropriate offsets into the leaf from the item numbers.
 141 */
 142static inline void copy_leaf_items(const struct extent_buffer *dst,
 143				   const struct extent_buffer *src,
 144				   int dst_item, int src_item, int nr_items)
 145{
 146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 147			      btrfs_item_nr_offset(src, src_item),
 148			      nr_items * sizeof(struct btrfs_item));
 149}
 150
 151/* This exists for btrfs-progs usages. */
 152u16 btrfs_csum_type_size(u16 type)
 153{
 154	return btrfs_csums[type].size;
 155}
 156
 157int btrfs_super_csum_size(const struct btrfs_super_block *s)
 158{
 159	u16 t = btrfs_super_csum_type(s);
 160	/*
 161	 * csum type is validated at mount time
 162	 */
 163	return btrfs_csum_type_size(t);
 164}
 165
 166const char *btrfs_super_csum_name(u16 csum_type)
 167{
 168	/* csum type is validated at mount time */
 169	return btrfs_csums[csum_type].name;
 170}
 171
 172/*
 173 * Return driver name if defined, otherwise the name that's also a valid driver
 174 * name
 175 */
 176const char *btrfs_super_csum_driver(u16 csum_type)
 177{
 178	/* csum type is validated at mount time */
 179	return btrfs_csums[csum_type].driver[0] ?
 180		btrfs_csums[csum_type].driver :
 181		btrfs_csums[csum_type].name;
 182}
 183
 184size_t __attribute_const__ btrfs_get_num_csums(void)
 185{
 186	return ARRAY_SIZE(btrfs_csums);
 187}
 188
 189struct btrfs_path *btrfs_alloc_path(void)
 190{
 191	might_sleep();
 192
 193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 194}
 195
 196/* this also releases the path */
 197void btrfs_free_path(struct btrfs_path *p)
 198{
 199	if (!p)
 200		return;
 201	btrfs_release_path(p);
 202	kmem_cache_free(btrfs_path_cachep, p);
 203}
 204
 205/*
 206 * path release drops references on the extent buffers in the path
 207 * and it drops any locks held by this path
 208 *
 209 * It is safe to call this on paths that no locks or extent buffers held.
 210 */
 211noinline void btrfs_release_path(struct btrfs_path *p)
 212{
 213	int i;
 214
 215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 216		p->slots[i] = 0;
 217		if (!p->nodes[i])
 218			continue;
 219		if (p->locks[i]) {
 220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 221			p->locks[i] = 0;
 222		}
 223		free_extent_buffer(p->nodes[i]);
 224		p->nodes[i] = NULL;
 225	}
 226}
 227
 228/*
 229 * We want the transaction abort to print stack trace only for errors where the
 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 231 * caused by external factors.
 232 */
 233bool __cold abort_should_print_stack(int error)
 234{
 235	switch (error) {
 236	case -EIO:
 237	case -EROFS:
 238	case -ENOMEM:
 239		return false;
 240	}
 241	return true;
 242}
 243
 244/*
 245 * safely gets a reference on the root node of a tree.  A lock
 246 * is not taken, so a concurrent writer may put a different node
 247 * at the root of the tree.  See btrfs_lock_root_node for the
 248 * looping required.
 249 *
 250 * The extent buffer returned by this has a reference taken, so
 251 * it won't disappear.  It may stop being the root of the tree
 252 * at any time because there are no locks held.
 253 */
 254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 255{
 256	struct extent_buffer *eb;
 257
 258	while (1) {
 259		rcu_read_lock();
 260		eb = rcu_dereference(root->node);
 261
 262		/*
 263		 * RCU really hurts here, we could free up the root node because
 264		 * it was COWed but we may not get the new root node yet so do
 265		 * the inc_not_zero dance and if it doesn't work then
 266		 * synchronize_rcu and try again.
 267		 */
 268		if (atomic_inc_not_zero(&eb->refs)) {
 269			rcu_read_unlock();
 270			break;
 271		}
 272		rcu_read_unlock();
 273		synchronize_rcu();
 274	}
 275	return eb;
 276}
 277
 278/*
 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 280 * just get put onto a simple dirty list.  Transaction walks this list to make
 281 * sure they get properly updated on disk.
 282 */
 283static void add_root_to_dirty_list(struct btrfs_root *root)
 284{
 285	struct btrfs_fs_info *fs_info = root->fs_info;
 286
 287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 289		return;
 290
 291	spin_lock(&fs_info->trans_lock);
 292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 293		/* Want the extent tree to be the last on the list */
 294		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
 295			list_move_tail(&root->dirty_list,
 296				       &fs_info->dirty_cowonly_roots);
 297		else
 298			list_move(&root->dirty_list,
 299				  &fs_info->dirty_cowonly_roots);
 300	}
 301	spin_unlock(&fs_info->trans_lock);
 302}
 303
 304/*
 305 * used by snapshot creation to make a copy of a root for a tree with
 306 * a given objectid.  The buffer with the new root node is returned in
 307 * cow_ret, and this func returns zero on success or a negative error code.
 308 */
 309int btrfs_copy_root(struct btrfs_trans_handle *trans,
 310		      struct btrfs_root *root,
 311		      struct extent_buffer *buf,
 312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 313{
 314	struct btrfs_fs_info *fs_info = root->fs_info;
 315	struct extent_buffer *cow;
 316	int ret = 0;
 317	int level;
 318	struct btrfs_disk_key disk_key;
 319	u64 reloc_src_root = 0;
 320
 321	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 322		trans->transid != fs_info->running_transaction->transid);
 323	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 324		trans->transid != btrfs_get_root_last_trans(root));
 325
 326	level = btrfs_header_level(buf);
 327	if (level == 0)
 328		btrfs_item_key(buf, &disk_key, 0);
 329	else
 330		btrfs_node_key(buf, &disk_key, 0);
 331
 332	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 333		reloc_src_root = btrfs_header_owner(buf);
 334	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 335				     &disk_key, level, buf->start, 0,
 336				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 337	if (IS_ERR(cow))
 338		return PTR_ERR(cow);
 339
 340	copy_extent_buffer_full(cow, buf);
 341	btrfs_set_header_bytenr(cow, cow->start);
 342	btrfs_set_header_generation(cow, trans->transid);
 343	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 344	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 345				     BTRFS_HEADER_FLAG_RELOC);
 346	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 347		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 348	else
 349		btrfs_set_header_owner(cow, new_root_objectid);
 350
 351	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 352
 353	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 354	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 355		ret = btrfs_inc_ref(trans, root, cow, 1);
 356	else
 357		ret = btrfs_inc_ref(trans, root, cow, 0);
 358	if (ret) {
 359		btrfs_tree_unlock(cow);
 360		free_extent_buffer(cow);
 361		btrfs_abort_transaction(trans, ret);
 362		return ret;
 363	}
 364
 365	btrfs_mark_buffer_dirty(trans, cow);
 366	*cow_ret = cow;
 367	return 0;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370/*
 371 * check if the tree block can be shared by multiple trees
 372 */
 373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 374			       struct btrfs_root *root,
 375			       struct extent_buffer *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 376{
 377	const u64 buf_gen = btrfs_header_generation(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/*
 380	 * Tree blocks not in shareable trees and tree roots are never shared.
 381	 * If a block was allocated after the last snapshot and the block was
 382	 * not allocated by tree relocation, we know the block is not shared.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 386		return false;
 387
 388	if (buf == root->node)
 389		return false;
 
 
 
 
 
 390
 391	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 392	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 393		return false;
 
 394
 395	if (buf != root->commit_root)
 396		return true;
 397
 
 
 
 
 
 
 398	/*
 399	 * An extent buffer that used to be the commit root may still be shared
 400	 * because the tree height may have increased and it became a child of a
 401	 * higher level root. This can happen when snapshotting a subvolume
 402	 * created in the current transaction.
 403	 */
 404	if (buf_gen == trans->transid)
 405		return true;
 
 
 
 
 406
 407	return false;
 408}
 409
 410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 411				       struct btrfs_root *root,
 412				       struct extent_buffer *buf,
 413				       struct extent_buffer *cow,
 414				       int *last_ref)
 415{
 416	struct btrfs_fs_info *fs_info = root->fs_info;
 417	u64 refs;
 418	u64 owner;
 419	u64 flags;
 
 420	int ret;
 421
 422	/*
 423	 * Backrefs update rules:
 424	 *
 425	 * Always use full backrefs for extent pointers in tree block
 426	 * allocated by tree relocation.
 427	 *
 428	 * If a shared tree block is no longer referenced by its owner
 429	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 430	 * use full backrefs for extent pointers in tree block.
 431	 *
 432	 * If a tree block is been relocating
 433	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 434	 * use full backrefs for extent pointers in tree block.
 435	 * The reason for this is some operations (such as drop tree)
 436	 * are only allowed for blocks use full backrefs.
 437	 */
 438
 439	if (btrfs_block_can_be_shared(trans, root, buf)) {
 440		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 441					       btrfs_header_level(buf), 1,
 442					       &refs, &flags, NULL);
 443		if (ret)
 444			return ret;
 445		if (unlikely(refs == 0)) {
 446			btrfs_crit(fs_info,
 447		"found 0 references for tree block at bytenr %llu level %d root %llu",
 448				   buf->start, btrfs_header_level(buf),
 449				   btrfs_root_id(root));
 450			ret = -EUCLEAN;
 451			btrfs_abort_transaction(trans, ret);
 452			return ret;
 453		}
 454	} else {
 455		refs = 1;
 456		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 457		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 458			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 459		else
 460			flags = 0;
 461	}
 462
 463	owner = btrfs_header_owner(buf);
 464	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
 465		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
 466		btrfs_crit(fs_info,
 467"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
 468			   buf->start, btrfs_header_level(buf),
 469			   btrfs_root_id(root), refs, flags);
 470		ret = -EUCLEAN;
 471		btrfs_abort_transaction(trans, ret);
 472		return ret;
 473	}
 474
 475	if (refs > 1) {
 476		if ((owner == btrfs_root_id(root) ||
 477		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
 478		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 479			ret = btrfs_inc_ref(trans, root, buf, 1);
 480			if (ret)
 481				return ret;
 482
 483			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 
 484				ret = btrfs_dec_ref(trans, root, buf, 0);
 485				if (ret)
 486					return ret;
 487				ret = btrfs_inc_ref(trans, root, cow, 1);
 488				if (ret)
 489					return ret;
 490			}
 491			ret = btrfs_set_disk_extent_flags(trans, buf,
 492						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
 493			if (ret)
 494				return ret;
 495		} else {
 496
 497			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 498				ret = btrfs_inc_ref(trans, root, cow, 1);
 499			else
 500				ret = btrfs_inc_ref(trans, root, cow, 0);
 501			if (ret)
 502				return ret;
 503		}
 
 
 
 
 
 
 
 
 504	} else {
 505		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 506			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 507				ret = btrfs_inc_ref(trans, root, cow, 1);
 508			else
 509				ret = btrfs_inc_ref(trans, root, cow, 0);
 510			if (ret)
 511				return ret;
 512			ret = btrfs_dec_ref(trans, root, buf, 1);
 513			if (ret)
 514				return ret;
 515		}
 516		btrfs_clear_buffer_dirty(trans, buf);
 517		*last_ref = 1;
 518	}
 519	return 0;
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522/*
 523 * does the dirty work in cow of a single block.  The parent block (if
 524 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 525 * dirty and returned locked.  If you modify the block it needs to be marked
 526 * dirty again.
 527 *
 528 * search_start -- an allocation hint for the new block
 529 *
 530 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 531 * bytes the allocator should try to find free next to the block it returns.
 532 * This is just a hint and may be ignored by the allocator.
 533 */
 534int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 535			  struct btrfs_root *root,
 536			  struct extent_buffer *buf,
 537			  struct extent_buffer *parent, int parent_slot,
 538			  struct extent_buffer **cow_ret,
 539			  u64 search_start, u64 empty_size,
 540			  enum btrfs_lock_nesting nest)
 541{
 542	struct btrfs_fs_info *fs_info = root->fs_info;
 543	struct btrfs_disk_key disk_key;
 544	struct extent_buffer *cow;
 545	int level, ret;
 546	int last_ref = 0;
 547	int unlock_orig = 0;
 548	u64 parent_start = 0;
 549	u64 reloc_src_root = 0;
 550
 551	if (*cow_ret == buf)
 552		unlock_orig = 1;
 553
 554	btrfs_assert_tree_write_locked(buf);
 555
 556	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 557		trans->transid != fs_info->running_transaction->transid);
 558	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 559		trans->transid != btrfs_get_root_last_trans(root));
 560
 561	level = btrfs_header_level(buf);
 562
 563	if (level == 0)
 564		btrfs_item_key(buf, &disk_key, 0);
 565	else
 566		btrfs_node_key(buf, &disk_key, 0);
 567
 568	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 569		if (parent)
 570			parent_start = parent->start;
 571		reloc_src_root = btrfs_header_owner(buf);
 572	}
 573	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 574				     btrfs_root_id(root), &disk_key, level,
 575				     search_start, empty_size, reloc_src_root, nest);
 576	if (IS_ERR(cow))
 577		return PTR_ERR(cow);
 578
 579	/* cow is set to blocking by btrfs_init_new_buffer */
 580
 581	copy_extent_buffer_full(cow, buf);
 582	btrfs_set_header_bytenr(cow, cow->start);
 583	btrfs_set_header_generation(cow, trans->transid);
 584	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 585	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 586				     BTRFS_HEADER_FLAG_RELOC);
 587	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 588		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 589	else
 590		btrfs_set_header_owner(cow, btrfs_root_id(root));
 591
 592	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 593
 594	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 595	if (ret) {
 596		btrfs_abort_transaction(trans, ret);
 597		goto error_unlock_cow;
 598	}
 599
 600	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 601		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 602		if (ret) {
 603			btrfs_abort_transaction(trans, ret);
 604			goto error_unlock_cow;
 605		}
 606	}
 607
 608	if (buf == root->node) {
 609		WARN_ON(parent && parent != buf);
 610		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 611		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 612			parent_start = buf->start;
 613
 614		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 615		if (ret < 0) {
 616			btrfs_abort_transaction(trans, ret);
 617			goto error_unlock_cow;
 618		}
 619		atomic_inc(&cow->refs);
 
 
 620		rcu_assign_pointer(root->node, cow);
 621
 622		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 623					    parent_start, last_ref);
 624		free_extent_buffer(buf);
 625		add_root_to_dirty_list(root);
 626		if (ret < 0) {
 627			btrfs_abort_transaction(trans, ret);
 628			goto error_unlock_cow;
 629		}
 630	} else {
 631		WARN_ON(trans->transid != btrfs_header_generation(parent));
 632		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 633						    BTRFS_MOD_LOG_KEY_REPLACE);
 634		if (ret) {
 635			btrfs_abort_transaction(trans, ret);
 636			goto error_unlock_cow;
 637		}
 638		btrfs_set_node_blockptr(parent, parent_slot,
 639					cow->start);
 640		btrfs_set_node_ptr_generation(parent, parent_slot,
 641					      trans->transid);
 642		btrfs_mark_buffer_dirty(trans, parent);
 643		if (last_ref) {
 644			ret = btrfs_tree_mod_log_free_eb(buf);
 645			if (ret) {
 646				btrfs_abort_transaction(trans, ret);
 647				goto error_unlock_cow;
 648			}
 649		}
 650		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 651					    parent_start, last_ref);
 652		if (ret < 0) {
 653			btrfs_abort_transaction(trans, ret);
 654			goto error_unlock_cow;
 655		}
 656	}
 657
 658	trace_btrfs_cow_block(root, buf, cow);
 659	if (unlock_orig)
 660		btrfs_tree_unlock(buf);
 661	free_extent_buffer_stale(buf);
 662	btrfs_mark_buffer_dirty(trans, cow);
 663	*cow_ret = cow;
 664	return 0;
 
 665
 666error_unlock_cow:
 667	btrfs_tree_unlock(cow);
 668	free_extent_buffer(cow);
 669	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 672static inline int should_cow_block(struct btrfs_trans_handle *trans,
 673				   struct btrfs_root *root,
 674				   struct extent_buffer *buf)
 675{
 676	if (btrfs_is_testing(root->fs_info))
 677		return 0;
 678
 679	/* Ensure we can see the FORCE_COW bit */
 680	smp_mb__before_atomic();
 681
 682	/*
 683	 * We do not need to cow a block if
 684	 * 1) this block is not created or changed in this transaction;
 685	 * 2) this block does not belong to TREE_RELOC tree;
 686	 * 3) the root is not forced COW.
 687	 *
 688	 * What is forced COW:
 689	 *    when we create snapshot during committing the transaction,
 690	 *    after we've finished copying src root, we must COW the shared
 691	 *    block to ensure the metadata consistency.
 692	 */
 693	if (btrfs_header_generation(buf) == trans->transid &&
 694	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 695	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 696	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 697	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 698		return 0;
 699	return 1;
 700}
 701
 702/*
 703 * COWs a single block, see btrfs_force_cow_block() for the real work.
 704 * This version of it has extra checks so that a block isn't COWed more than
 705 * once per transaction, as long as it hasn't been written yet
 706 */
 707int btrfs_cow_block(struct btrfs_trans_handle *trans,
 708		    struct btrfs_root *root, struct extent_buffer *buf,
 709		    struct extent_buffer *parent, int parent_slot,
 710		    struct extent_buffer **cow_ret,
 711		    enum btrfs_lock_nesting nest)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	u64 search_start;
 
 715
 716	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 717		btrfs_abort_transaction(trans, -EUCLEAN);
 718		btrfs_crit(fs_info,
 719		   "attempt to COW block %llu on root %llu that is being deleted",
 720			   buf->start, btrfs_root_id(root));
 721		return -EUCLEAN;
 722	}
 723
 724	/*
 725	 * COWing must happen through a running transaction, which always
 726	 * matches the current fs generation (it's a transaction with a state
 727	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 728	 * into error state to prevent the commit of any transaction.
 729	 */
 730	if (unlikely(trans->transaction != fs_info->running_transaction ||
 731		     trans->transid != fs_info->generation)) {
 732		btrfs_abort_transaction(trans, -EUCLEAN);
 733		btrfs_crit(fs_info,
 734"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 735			   buf->start, btrfs_root_id(root), trans->transid,
 736			   fs_info->running_transaction->transid,
 737			   fs_info->generation);
 738		return -EUCLEAN;
 739	}
 740
 741	if (!should_cow_block(trans, root, buf)) {
 
 742		*cow_ret = buf;
 743		return 0;
 744	}
 745
 746	search_start = round_down(buf->start, SZ_1G);
 
 
 
 
 747
 748	/*
 749	 * Before CoWing this block for later modification, check if it's
 750	 * the subtree root and do the delayed subtree trace if needed.
 751	 *
 752	 * Also We don't care about the error, as it's handled internally.
 753	 */
 754	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 755	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 756				     cow_ret, search_start, 0, nest);
 
 
 
 
 757}
 758ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760/*
 761 * same as comp_keys only with two btrfs_key's
 762 */
 763int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 764{
 765	if (k1->objectid > k2->objectid)
 766		return 1;
 767	if (k1->objectid < k2->objectid)
 768		return -1;
 769	if (k1->type > k2->type)
 770		return 1;
 771	if (k1->type < k2->type)
 772		return -1;
 773	if (k1->offset > k2->offset)
 774		return 1;
 775	if (k1->offset < k2->offset)
 776		return -1;
 777	return 0;
 778}
 779
 780/*
 781 * Search for a key in the given extent_buffer.
 782 *
 783 * The lower boundary for the search is specified by the slot number @first_slot.
 784 * Use a value of 0 to search over the whole extent buffer. Works for both
 785 * leaves and nodes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786 *
 787 * The slot in the extent buffer is returned via @slot. If the key exists in the
 788 * extent buffer, then @slot will point to the slot where the key is, otherwise
 789 * it points to the slot where you would insert the key.
 790 *
 791 * Slot may point to the total number of items (i.e. one position beyond the last
 792 * key) if the key is bigger than the last key in the extent buffer.
 793 */
 794int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 795		     const struct btrfs_key *key, int *slot)
 
 
 796{
 797	unsigned long p;
 798	int item_size;
 799	/*
 800	 * Use unsigned types for the low and high slots, so that we get a more
 801	 * efficient division in the search loop below.
 802	 */
 803	u32 low = first_slot;
 804	u32 high = btrfs_header_nritems(eb);
 805	int ret;
 806	const int key_size = sizeof(struct btrfs_disk_key);
 807
 808	if (unlikely(low > high)) {
 809		btrfs_err(eb->fs_info,
 810		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 811			  __func__, low, high, eb->start,
 812			  btrfs_header_owner(eb), btrfs_header_level(eb));
 813		return -EINVAL;
 814	}
 815
 816	if (btrfs_header_level(eb) == 0) {
 817		p = offsetof(struct btrfs_leaf, items);
 818		item_size = sizeof(struct btrfs_item);
 819	} else {
 820		p = offsetof(struct btrfs_node, ptrs);
 821		item_size = sizeof(struct btrfs_key_ptr);
 822	}
 823
 824	while (low < high) {
 825		const int unit_size = eb->folio_size;
 826		unsigned long oil;
 827		unsigned long offset;
 828		struct btrfs_disk_key *tmp;
 829		struct btrfs_disk_key unaligned;
 830		int mid;
 831
 832		mid = (low + high) / 2;
 833		offset = p + mid * item_size;
 834		oil = get_eb_offset_in_folio(eb, offset);
 835
 836		if (oil + key_size <= unit_size) {
 837			const unsigned long idx = get_eb_folio_index(eb, offset);
 838			char *kaddr = folio_address(eb->folios[idx]);
 839
 840			oil = get_eb_offset_in_folio(eb, offset);
 841			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 842		} else {
 843			read_extent_buffer(eb, &unaligned, offset, key_size);
 844			tmp = &unaligned;
 845		}
 846
 847		ret = btrfs_comp_keys(tmp, key);
 848
 849		if (ret < 0)
 850			low = mid + 1;
 851		else if (ret > 0)
 852			high = mid;
 853		else {
 854			*slot = mid;
 855			return 0;
 856		}
 857	}
 858	*slot = low;
 859	return 1;
 860}
 861
 862static void root_add_used_bytes(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863{
 864	spin_lock(&root->accounting_lock);
 865	btrfs_set_root_used(&root->root_item,
 866		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 867	spin_unlock(&root->accounting_lock);
 868}
 869
 870static void root_sub_used_bytes(struct btrfs_root *root)
 871{
 872	spin_lock(&root->accounting_lock);
 873	btrfs_set_root_used(&root->root_item,
 874		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 875	spin_unlock(&root->accounting_lock);
 876}
 877
 878/* given a node and slot number, this reads the blocks it points to.  The
 879 * extent buffer is returned with a reference taken (but unlocked).
 880 */
 881struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 882					   int slot)
 883{
 884	int level = btrfs_header_level(parent);
 885	struct btrfs_tree_parent_check check = { 0 };
 886	struct extent_buffer *eb;
 
 887
 888	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 889		return ERR_PTR(-ENOENT);
 890
 891	ASSERT(level);
 892
 893	check.level = level - 1;
 894	check.transid = btrfs_node_ptr_generation(parent, slot);
 895	check.owner_root = btrfs_header_owner(parent);
 896	check.has_first_key = true;
 897	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 898
 
 899	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 900			     &check);
 901	if (IS_ERR(eb))
 902		return eb;
 903	if (!extent_buffer_uptodate(eb)) {
 904		free_extent_buffer(eb);
 905		return ERR_PTR(-EIO);
 906	}
 907
 908	return eb;
 909}
 910
 911/*
 912 * node level balancing, used to make sure nodes are in proper order for
 913 * item deletion.  We balance from the top down, so we have to make sure
 914 * that a deletion won't leave an node completely empty later on.
 915 */
 916static noinline int balance_level(struct btrfs_trans_handle *trans,
 917			 struct btrfs_root *root,
 918			 struct btrfs_path *path, int level)
 919{
 920	struct btrfs_fs_info *fs_info = root->fs_info;
 921	struct extent_buffer *right = NULL;
 922	struct extent_buffer *mid;
 923	struct extent_buffer *left = NULL;
 924	struct extent_buffer *parent = NULL;
 925	int ret = 0;
 926	int wret;
 927	int pslot;
 928	int orig_slot = path->slots[level];
 929	u64 orig_ptr;
 930
 931	ASSERT(level > 0);
 932
 933	mid = path->nodes[level];
 934
 935	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
 936	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 937
 938	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 939
 940	if (level < BTRFS_MAX_LEVEL - 1) {
 941		parent = path->nodes[level + 1];
 942		pslot = path->slots[level + 1];
 943	}
 944
 945	/*
 946	 * deal with the case where there is only one pointer in the root
 947	 * by promoting the node below to a root
 948	 */
 949	if (!parent) {
 950		struct extent_buffer *child;
 951
 952		if (btrfs_header_nritems(mid) != 1)
 953			return 0;
 954
 955		/* promote the child to a root */
 956		child = btrfs_read_node_slot(mid, 0);
 957		if (IS_ERR(child)) {
 958			ret = PTR_ERR(child);
 959			goto out;
 
 960		}
 961
 962		btrfs_tree_lock(child);
 963		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 964				      BTRFS_NESTING_COW);
 965		if (ret) {
 966			btrfs_tree_unlock(child);
 967			free_extent_buffer(child);
 968			goto out;
 969		}
 970
 971		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 972		if (ret < 0) {
 973			btrfs_tree_unlock(child);
 974			free_extent_buffer(child);
 975			btrfs_abort_transaction(trans, ret);
 976			goto out;
 977		}
 978		rcu_assign_pointer(root->node, child);
 979
 980		add_root_to_dirty_list(root);
 981		btrfs_tree_unlock(child);
 982
 983		path->locks[level] = 0;
 984		path->nodes[level] = NULL;
 985		btrfs_clear_buffer_dirty(trans, mid);
 986		btrfs_tree_unlock(mid);
 987		/* once for the path */
 988		free_extent_buffer(mid);
 989
 990		root_sub_used_bytes(root);
 991		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 992		/* once for the root ptr */
 993		free_extent_buffer_stale(mid);
 994		if (ret < 0) {
 995			btrfs_abort_transaction(trans, ret);
 996			goto out;
 997		}
 998		return 0;
 999	}
1000	if (btrfs_header_nritems(mid) >
1001	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002		return 0;
1003
1004	if (pslot) {
1005		left = btrfs_read_node_slot(parent, pslot - 1);
1006		if (IS_ERR(left)) {
1007			ret = PTR_ERR(left);
1008			left = NULL;
1009			goto out;
1010		}
1011
1012		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
 
1013		wret = btrfs_cow_block(trans, root, left,
1014				       parent, pslot - 1, &left,
1015				       BTRFS_NESTING_LEFT_COW);
1016		if (wret) {
1017			ret = wret;
1018			goto out;
1019		}
1020	}
1021
1022	if (pslot + 1 < btrfs_header_nritems(parent)) {
1023		right = btrfs_read_node_slot(parent, pslot + 1);
1024		if (IS_ERR(right)) {
1025			ret = PTR_ERR(right);
1026			right = NULL;
1027			goto out;
1028		}
1029
1030		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
 
1031		wret = btrfs_cow_block(trans, root, right,
1032				       parent, pslot + 1, &right,
1033				       BTRFS_NESTING_RIGHT_COW);
1034		if (wret) {
1035			ret = wret;
1036			goto out;
1037		}
1038	}
1039
1040	/* first, try to make some room in the middle buffer */
1041	if (left) {
1042		orig_slot += btrfs_header_nritems(left);
1043		wret = push_node_left(trans, left, mid, 1);
1044		if (wret < 0)
1045			ret = wret;
1046	}
1047
1048	/*
1049	 * then try to empty the right most buffer into the middle
1050	 */
1051	if (right) {
1052		wret = push_node_left(trans, mid, right, 1);
1053		if (wret < 0 && wret != -ENOSPC)
1054			ret = wret;
1055		if (btrfs_header_nritems(right) == 0) {
1056			btrfs_clear_buffer_dirty(trans, right);
1057			btrfs_tree_unlock(right);
1058			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059			if (ret < 0) {
1060				free_extent_buffer_stale(right);
1061				right = NULL;
1062				goto out;
1063			}
1064			root_sub_used_bytes(root);
1065			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066						    right, 0, 1);
1067			free_extent_buffer_stale(right);
1068			right = NULL;
1069			if (ret < 0) {
1070				btrfs_abort_transaction(trans, ret);
1071				goto out;
1072			}
1073		} else {
1074			struct btrfs_disk_key right_key;
1075			btrfs_node_key(right, &right_key, 0);
1076			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077					BTRFS_MOD_LOG_KEY_REPLACE);
1078			if (ret < 0) {
1079				btrfs_abort_transaction(trans, ret);
1080				goto out;
1081			}
1082			btrfs_set_node_key(parent, &right_key, pslot + 1);
1083			btrfs_mark_buffer_dirty(trans, parent);
1084		}
1085	}
1086	if (btrfs_header_nritems(mid) == 1) {
1087		/*
1088		 * we're not allowed to leave a node with one item in the
1089		 * tree during a delete.  A deletion from lower in the tree
1090		 * could try to delete the only pointer in this node.
1091		 * So, pull some keys from the left.
1092		 * There has to be a left pointer at this point because
1093		 * otherwise we would have pulled some pointers from the
1094		 * right
1095		 */
1096		if (unlikely(!left)) {
1097			btrfs_crit(fs_info,
1098"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099				   parent->start, btrfs_header_level(parent),
1100				   mid->start, btrfs_root_id(root));
1101			ret = -EUCLEAN;
1102			btrfs_abort_transaction(trans, ret);
1103			goto out;
1104		}
1105		wret = balance_node_right(trans, mid, left);
1106		if (wret < 0) {
1107			ret = wret;
1108			goto out;
1109		}
1110		if (wret == 1) {
1111			wret = push_node_left(trans, left, mid, 1);
1112			if (wret < 0)
1113				ret = wret;
1114		}
1115		BUG_ON(wret == 1);
1116	}
1117	if (btrfs_header_nritems(mid) == 0) {
1118		btrfs_clear_buffer_dirty(trans, mid);
1119		btrfs_tree_unlock(mid);
1120		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121		if (ret < 0) {
1122			free_extent_buffer_stale(mid);
1123			mid = NULL;
1124			goto out;
1125		}
1126		root_sub_used_bytes(root);
1127		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128		free_extent_buffer_stale(mid);
1129		mid = NULL;
1130		if (ret < 0) {
1131			btrfs_abort_transaction(trans, ret);
1132			goto out;
1133		}
1134	} else {
1135		/* update the parent key to reflect our changes */
1136		struct btrfs_disk_key mid_key;
1137		btrfs_node_key(mid, &mid_key, 0);
1138		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139						    BTRFS_MOD_LOG_KEY_REPLACE);
1140		if (ret < 0) {
1141			btrfs_abort_transaction(trans, ret);
1142			goto out;
1143		}
1144		btrfs_set_node_key(parent, &mid_key, pslot);
1145		btrfs_mark_buffer_dirty(trans, parent);
1146	}
1147
1148	/* update the path */
1149	if (left) {
1150		if (btrfs_header_nritems(left) > orig_slot) {
1151			atomic_inc(&left->refs);
1152			/* left was locked after cow */
1153			path->nodes[level] = left;
1154			path->slots[level + 1] -= 1;
1155			path->slots[level] = orig_slot;
1156			if (mid) {
1157				btrfs_tree_unlock(mid);
1158				free_extent_buffer(mid);
1159			}
1160		} else {
1161			orig_slot -= btrfs_header_nritems(left);
1162			path->slots[level] = orig_slot;
1163		}
1164	}
1165	/* double check we haven't messed things up */
1166	if (orig_ptr !=
1167	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168		BUG();
1169out:
1170	if (right) {
1171		btrfs_tree_unlock(right);
1172		free_extent_buffer(right);
1173	}
1174	if (left) {
1175		if (path->nodes[level] != left)
1176			btrfs_tree_unlock(left);
1177		free_extent_buffer(left);
1178	}
1179	return ret;
1180}
1181
1182/* Node balancing for insertion.  Here we only split or push nodes around
1183 * when they are completely full.  This is also done top down, so we
1184 * have to be pessimistic.
1185 */
1186static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187					  struct btrfs_root *root,
1188					  struct btrfs_path *path, int level)
1189{
1190	struct btrfs_fs_info *fs_info = root->fs_info;
1191	struct extent_buffer *right = NULL;
1192	struct extent_buffer *mid;
1193	struct extent_buffer *left = NULL;
1194	struct extent_buffer *parent = NULL;
1195	int ret = 0;
1196	int wret;
1197	int pslot;
1198	int orig_slot = path->slots[level];
1199
1200	if (level == 0)
1201		return 1;
1202
1203	mid = path->nodes[level];
1204	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206	if (level < BTRFS_MAX_LEVEL - 1) {
1207		parent = path->nodes[level + 1];
1208		pslot = path->slots[level + 1];
1209	}
1210
1211	if (!parent)
1212		return 1;
1213
 
 
 
 
1214	/* first, try to make some room in the middle buffer */
1215	if (pslot) {
1216		u32 left_nr;
1217
1218		left = btrfs_read_node_slot(parent, pslot - 1);
1219		if (IS_ERR(left))
1220			return PTR_ERR(left);
1221
1222		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224		left_nr = btrfs_header_nritems(left);
1225		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226			wret = 1;
1227		} else {
1228			ret = btrfs_cow_block(trans, root, left, parent,
1229					      pslot - 1, &left,
1230					      BTRFS_NESTING_LEFT_COW);
1231			if (ret)
1232				wret = 1;
1233			else {
1234				wret = push_node_left(trans, left, mid, 0);
1235			}
1236		}
1237		if (wret < 0)
1238			ret = wret;
1239		if (wret == 0) {
1240			struct btrfs_disk_key disk_key;
1241			orig_slot += left_nr;
1242			btrfs_node_key(mid, &disk_key, 0);
1243			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244					BTRFS_MOD_LOG_KEY_REPLACE);
1245			if (ret < 0) {
1246				btrfs_tree_unlock(left);
1247				free_extent_buffer(left);
1248				btrfs_abort_transaction(trans, ret);
1249				return ret;
1250			}
1251			btrfs_set_node_key(parent, &disk_key, pslot);
1252			btrfs_mark_buffer_dirty(trans, parent);
1253			if (btrfs_header_nritems(left) > orig_slot) {
1254				path->nodes[level] = left;
1255				path->slots[level + 1] -= 1;
1256				path->slots[level] = orig_slot;
1257				btrfs_tree_unlock(mid);
1258				free_extent_buffer(mid);
1259			} else {
1260				orig_slot -=
1261					btrfs_header_nritems(left);
1262				path->slots[level] = orig_slot;
1263				btrfs_tree_unlock(left);
1264				free_extent_buffer(left);
1265			}
1266			return 0;
1267		}
1268		btrfs_tree_unlock(left);
1269		free_extent_buffer(left);
1270	}
 
 
 
1271
1272	/*
1273	 * then try to empty the right most buffer into the middle
1274	 */
1275	if (pslot + 1 < btrfs_header_nritems(parent)) {
1276		u32 right_nr;
1277
1278		right = btrfs_read_node_slot(parent, pslot + 1);
1279		if (IS_ERR(right))
1280			return PTR_ERR(right);
1281
1282		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284		right_nr = btrfs_header_nritems(right);
1285		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286			wret = 1;
1287		} else {
1288			ret = btrfs_cow_block(trans, root, right,
1289					      parent, pslot + 1,
1290					      &right, BTRFS_NESTING_RIGHT_COW);
1291			if (ret)
1292				wret = 1;
1293			else {
1294				wret = balance_node_right(trans, right, mid);
1295			}
1296		}
1297		if (wret < 0)
1298			ret = wret;
1299		if (wret == 0) {
1300			struct btrfs_disk_key disk_key;
1301
1302			btrfs_node_key(right, &disk_key, 0);
1303			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304					BTRFS_MOD_LOG_KEY_REPLACE);
1305			if (ret < 0) {
1306				btrfs_tree_unlock(right);
1307				free_extent_buffer(right);
1308				btrfs_abort_transaction(trans, ret);
1309				return ret;
1310			}
1311			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312			btrfs_mark_buffer_dirty(trans, parent);
1313
1314			if (btrfs_header_nritems(mid) <= orig_slot) {
1315				path->nodes[level] = right;
1316				path->slots[level + 1] += 1;
1317				path->slots[level] = orig_slot -
1318					btrfs_header_nritems(mid);
1319				btrfs_tree_unlock(mid);
1320				free_extent_buffer(mid);
1321			} else {
1322				btrfs_tree_unlock(right);
1323				free_extent_buffer(right);
1324			}
1325			return 0;
1326		}
1327		btrfs_tree_unlock(right);
1328		free_extent_buffer(right);
1329	}
1330	return 1;
1331}
1332
1333/*
1334 * readahead one full node of leaves, finding things that are close
1335 * to the block in 'slot', and triggering ra on them.
1336 */
1337static void reada_for_search(struct btrfs_fs_info *fs_info,
1338			     struct btrfs_path *path,
1339			     int level, int slot, u64 objectid)
1340{
1341	struct extent_buffer *node;
1342	struct btrfs_disk_key disk_key;
1343	u32 nritems;
1344	u64 search;
1345	u64 target;
1346	u64 nread = 0;
1347	u64 nread_max;
1348	u32 nr;
1349	u32 blocksize;
1350	u32 nscan = 0;
1351
1352	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353		return;
1354
1355	if (!path->nodes[level])
1356		return;
1357
1358	node = path->nodes[level];
1359
1360	/*
1361	 * Since the time between visiting leaves is much shorter than the time
1362	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363	 * much IO at once (possibly random).
1364	 */
1365	if (path->reada == READA_FORWARD_ALWAYS) {
1366		if (level > 1)
1367			nread_max = node->fs_info->nodesize;
1368		else
1369			nread_max = SZ_128K;
1370	} else {
1371		nread_max = SZ_64K;
1372	}
1373
1374	search = btrfs_node_blockptr(node, slot);
1375	blocksize = fs_info->nodesize;
1376	if (path->reada != READA_FORWARD_ALWAYS) {
1377		struct extent_buffer *eb;
1378
1379		eb = find_extent_buffer(fs_info, search);
1380		if (eb) {
1381			free_extent_buffer(eb);
1382			return;
1383		}
1384	}
1385
1386	target = search;
1387
1388	nritems = btrfs_header_nritems(node);
1389	nr = slot;
1390
1391	while (1) {
1392		if (path->reada == READA_BACK) {
1393			if (nr == 0)
1394				break;
1395			nr--;
1396		} else if (path->reada == READA_FORWARD ||
1397			   path->reada == READA_FORWARD_ALWAYS) {
1398			nr++;
1399			if (nr >= nritems)
1400				break;
1401		}
1402		if (path->reada == READA_BACK && objectid) {
1403			btrfs_node_key(node, &disk_key, nr);
1404			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405				break;
1406		}
1407		search = btrfs_node_blockptr(node, nr);
1408		if (path->reada == READA_FORWARD_ALWAYS ||
1409		    (search <= target && target - search <= 65536) ||
1410		    (search > target && search - target <= 65536)) {
1411			btrfs_readahead_node_child(node, nr);
1412			nread += blocksize;
1413		}
1414		nscan++;
1415		if (nread > nread_max || nscan > 32)
1416			break;
1417	}
1418}
1419
1420static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1421{
1422	struct extent_buffer *parent;
1423	int slot;
1424	int nritems;
 
 
 
 
 
1425
1426	parent = path->nodes[level + 1];
1427	if (!parent)
1428		return;
1429
1430	nritems = btrfs_header_nritems(parent);
1431	slot = path->slots[level + 1];
1432
1433	if (slot > 0)
1434		btrfs_readahead_node_child(parent, slot - 1);
1435	if (slot + 1 < nritems)
1436		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437}
1438
1439
1440/*
1441 * when we walk down the tree, it is usually safe to unlock the higher layers
1442 * in the tree.  The exceptions are when our path goes through slot 0, because
1443 * operations on the tree might require changing key pointers higher up in the
1444 * tree.
1445 *
1446 * callers might also have set path->keep_locks, which tells this code to keep
1447 * the lock if the path points to the last slot in the block.  This is part of
1448 * walking through the tree, and selecting the next slot in the higher block.
1449 *
1450 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1451 * if lowest_unlock is 1, level 0 won't be unlocked
1452 */
1453static noinline void unlock_up(struct btrfs_path *path, int level,
1454			       int lowest_unlock, int min_write_lock_level,
1455			       int *write_lock_level)
1456{
1457	int i;
1458	int skip_level = level;
1459	bool check_skip = true;
 
1460
1461	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462		if (!path->nodes[i])
1463			break;
1464		if (!path->locks[i])
1465			break;
1466
1467		if (check_skip) {
1468			if (path->slots[i] == 0) {
 
 
 
 
 
 
1469				skip_level = i + 1;
1470				continue;
1471			}
1472
1473			if (path->keep_locks) {
1474				u32 nritems;
1475
1476				nritems = btrfs_header_nritems(path->nodes[i]);
1477				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478					skip_level = i + 1;
1479					continue;
1480				}
1481			}
1482		}
 
 
1483
 
1484		if (i >= lowest_unlock && i > skip_level) {
1485			check_skip = false;
1486			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487			path->locks[i] = 0;
1488			if (write_lock_level &&
1489			    i > min_write_lock_level &&
1490			    i <= *write_lock_level) {
1491				*write_lock_level = i - 1;
1492			}
1493		}
1494	}
1495}
1496
1497/*
1498 * Helper function for btrfs_search_slot() and other functions that do a search
1499 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501 * its pages from disk.
1502 *
1503 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504 * whole btree search, starting again from the current root node.
1505 */
1506static int
1507read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508		      struct extent_buffer **eb_ret, int slot,
1509		      const struct btrfs_key *key)
1510{
1511	struct btrfs_fs_info *fs_info = root->fs_info;
1512	struct btrfs_tree_parent_check check = { 0 };
1513	u64 blocknr;
1514	struct extent_buffer *tmp = NULL;
1515	int ret = 0;
 
 
1516	int parent_level;
1517	int err;
1518	bool read_tmp = false;
1519	bool tmp_locked = false;
1520	bool path_released = false;
1521
1522	blocknr = btrfs_node_blockptr(*eb_ret, slot);
 
1523	parent_level = btrfs_header_level(*eb_ret);
1524	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525	check.has_first_key = true;
1526	check.level = parent_level - 1;
1527	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528	check.owner_root = btrfs_root_id(root);
1529
1530	/*
1531	 * If we need to read an extent buffer from disk and we are holding locks
1532	 * on upper level nodes, we unlock all the upper nodes before reading the
1533	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1534	 * restart the search. We don't release the lock on the current level
1535	 * because we need to walk this node to figure out which blocks to read.
1536	 */
1537	tmp = find_extent_buffer(fs_info, blocknr);
1538	if (tmp) {
1539		if (p->reada == READA_FORWARD_ALWAYS)
1540			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
1542		/* first we do an atomic uptodate check */
1543		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544			/*
1545			 * Do extra check for first_key, eb can be stale due to
1546			 * being cached, read from scrub, or have multiple
1547			 * parents (shared tree blocks).
1548			 */
1549			if (btrfs_verify_level_key(tmp, &check)) {
1550				ret = -EUCLEAN;
1551				goto out;
 
1552			}
1553			*eb_ret = tmp;
1554			tmp = NULL;
1555			ret = 0;
1556			goto out;
1557		}
1558
1559		if (p->nowait) {
1560			ret = -EAGAIN;
1561			goto out;
1562		}
1563
1564		if (!p->skip_locking) {
1565			btrfs_unlock_up_safe(p, parent_level + 1);
1566			btrfs_maybe_reset_lockdep_class(root, tmp);
1567			tmp_locked = true;
1568			btrfs_tree_read_lock(tmp);
1569			btrfs_release_path(p);
1570			ret = -EAGAIN;
1571			path_released = true;
1572		}
1573
1574		/* Now we're allowed to do a blocking uptodate check. */
1575		err = btrfs_read_extent_buffer(tmp, &check);
1576		if (err) {
1577			ret = err;
1578			goto out;
1579		}
 
1580
1581		if (ret == 0) {
1582			ASSERT(!tmp_locked);
 
1583			*eb_ret = tmp;
1584			tmp = NULL;
1585		}
1586		goto out;
1587	} else if (p->nowait) {
1588		ret = -EAGAIN;
1589		goto out;
1590	}
1591
1592	if (!p->skip_locking) {
1593		btrfs_unlock_up_safe(p, parent_level + 1);
1594		ret = -EAGAIN;
1595	}
1596
1597	if (p->reada != READA_NONE)
1598		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1599
1600	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1601	if (IS_ERR(tmp)) {
1602		ret = PTR_ERR(tmp);
1603		tmp = NULL;
1604		goto out;
1605	}
1606	read_tmp = true;
1607
1608	if (!p->skip_locking) {
1609		ASSERT(ret == -EAGAIN);
1610		btrfs_maybe_reset_lockdep_class(root, tmp);
1611		tmp_locked = true;
1612		btrfs_tree_read_lock(tmp);
1613		btrfs_release_path(p);
1614		path_released = true;
1615	}
1616
1617	/* Now we're allowed to do a blocking uptodate check. */
1618	err = btrfs_read_extent_buffer(tmp, &check);
1619	if (err) {
1620		ret = err;
1621		goto out;
1622	}
1623
1624	/*
1625	 * If the read above didn't mark this buffer up to date,
1626	 * it will never end up being up to date.  Set ret to EIO now
1627	 * and give up so that our caller doesn't loop forever
1628	 * on our EAGAINs.
 
1629	 */
1630	if (!extent_buffer_uptodate(tmp)) {
1631		ret = -EIO;
1632		goto out;
1633	}
1634
1635	if (ret == 0) {
1636		ASSERT(!tmp_locked);
1637		*eb_ret = tmp;
1638		tmp = NULL;
1639	}
1640out:
1641	if (tmp) {
1642		if (tmp_locked)
1643			btrfs_tree_read_unlock(tmp);
1644		if (read_tmp && ret && ret != -EAGAIN)
1645			free_extent_buffer_stale(tmp);
1646		else
1647			free_extent_buffer(tmp);
 
 
 
 
 
1648	}
1649	if (ret && !path_released)
1650		btrfs_release_path(p);
1651
 
1652	return ret;
1653}
1654
1655/*
1656 * helper function for btrfs_search_slot.  This does all of the checks
1657 * for node-level blocks and does any balancing required based on
1658 * the ins_len.
1659 *
1660 * If no extra work was required, zero is returned.  If we had to
1661 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1662 * start over
1663 */
1664static int
1665setup_nodes_for_search(struct btrfs_trans_handle *trans,
1666		       struct btrfs_root *root, struct btrfs_path *p,
1667		       struct extent_buffer *b, int level, int ins_len,
1668		       int *write_lock_level)
1669{
1670	struct btrfs_fs_info *fs_info = root->fs_info;
1671	int ret = 0;
1672
1673	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1674	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1675
1676		if (*write_lock_level < level + 1) {
1677			*write_lock_level = level + 1;
1678			btrfs_release_path(p);
1679			return -EAGAIN;
1680		}
1681
1682		reada_for_balance(p, level);
1683		ret = split_node(trans, root, p, level);
 
1684
 
 
 
 
 
1685		b = p->nodes[level];
1686	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1687		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1688
1689		if (*write_lock_level < level + 1) {
1690			*write_lock_level = level + 1;
1691			btrfs_release_path(p);
1692			return -EAGAIN;
1693		}
1694
1695		reada_for_balance(p, level);
1696		ret = balance_level(trans, root, p, level);
1697		if (ret)
1698			return ret;
1699
 
 
 
 
1700		b = p->nodes[level];
1701		if (!b) {
1702			btrfs_release_path(p);
1703			return -EAGAIN;
1704		}
1705		BUG_ON(btrfs_header_nritems(b) == 1);
1706	}
 
 
 
 
 
1707	return ret;
1708}
1709
1710int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1711		u64 iobjectid, u64 ioff, u8 key_type,
1712		struct btrfs_key *found_key)
1713{
1714	int ret;
1715	struct btrfs_key key;
1716	struct extent_buffer *eb;
1717
1718	ASSERT(path);
1719	ASSERT(found_key);
1720
1721	key.type = key_type;
1722	key.objectid = iobjectid;
1723	key.offset = ioff;
1724
1725	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1726	if (ret < 0)
1727		return ret;
1728
1729	eb = path->nodes[0];
1730	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1731		ret = btrfs_next_leaf(fs_root, path);
1732		if (ret)
1733			return ret;
1734		eb = path->nodes[0];
1735	}
1736
1737	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1738	if (found_key->type != key.type ||
1739			found_key->objectid != key.objectid)
1740		return 1;
1741
1742	return 0;
1743}
1744
1745static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1746							struct btrfs_path *p,
1747							int write_lock_level)
1748{
 
1749	struct extent_buffer *b;
1750	int root_lock = 0;
1751	int level = 0;
1752
 
 
 
1753	if (p->search_commit_root) {
1754		b = root->commit_root;
1755		atomic_inc(&b->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756		level = btrfs_header_level(b);
1757		/*
1758		 * Ensure that all callers have set skip_locking when
1759		 * p->search_commit_root = 1.
1760		 */
1761		ASSERT(p->skip_locking == 1);
1762
1763		goto out;
1764	}
1765
1766	if (p->skip_locking) {
1767		b = btrfs_root_node(root);
1768		level = btrfs_header_level(b);
1769		goto out;
1770	}
1771
1772	/* We try very hard to do read locks on the root */
1773	root_lock = BTRFS_READ_LOCK;
1774
1775	/*
1776	 * If the level is set to maximum, we can skip trying to get the read
1777	 * lock.
1778	 */
1779	if (write_lock_level < BTRFS_MAX_LEVEL) {
1780		/*
1781		 * We don't know the level of the root node until we actually
1782		 * have it read locked
1783		 */
1784		if (p->nowait) {
1785			b = btrfs_try_read_lock_root_node(root);
1786			if (IS_ERR(b))
1787				return b;
1788		} else {
1789			b = btrfs_read_lock_root_node(root);
1790		}
1791		level = btrfs_header_level(b);
1792		if (level > write_lock_level)
1793			goto out;
1794
1795		/* Whoops, must trade for write lock */
1796		btrfs_tree_read_unlock(b);
1797		free_extent_buffer(b);
1798	}
1799
1800	b = btrfs_lock_root_node(root);
1801	root_lock = BTRFS_WRITE_LOCK;
1802
1803	/* The level might have changed, check again */
1804	level = btrfs_header_level(b);
1805
1806out:
1807	/*
1808	 * The root may have failed to write out at some point, and thus is no
1809	 * longer valid, return an error in this case.
1810	 */
1811	if (!extent_buffer_uptodate(b)) {
1812		if (root_lock)
1813			btrfs_tree_unlock_rw(b, root_lock);
1814		free_extent_buffer(b);
1815		return ERR_PTR(-EIO);
1816	}
1817
1818	p->nodes[level] = b;
1819	if (!p->skip_locking)
1820		p->locks[level] = root_lock;
1821	/*
1822	 * Callers are responsible for dropping b's references.
1823	 */
1824	return b;
1825}
1826
1827/*
1828 * Replace the extent buffer at the lowest level of the path with a cloned
1829 * version. The purpose is to be able to use it safely, after releasing the
1830 * commit root semaphore, even if relocation is happening in parallel, the
1831 * transaction used for relocation is committed and the extent buffer is
1832 * reallocated in the next transaction.
1833 *
1834 * This is used in a context where the caller does not prevent transaction
1835 * commits from happening, either by holding a transaction handle or holding
1836 * some lock, while it's doing searches through a commit root.
1837 * At the moment it's only used for send operations.
1838 */
1839static int finish_need_commit_sem_search(struct btrfs_path *path)
1840{
1841	const int i = path->lowest_level;
1842	const int slot = path->slots[i];
1843	struct extent_buffer *lowest = path->nodes[i];
1844	struct extent_buffer *clone;
1845
1846	ASSERT(path->need_commit_sem);
1847
1848	if (!lowest)
1849		return 0;
1850
1851	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1852
1853	clone = btrfs_clone_extent_buffer(lowest);
1854	if (!clone)
1855		return -ENOMEM;
1856
1857	btrfs_release_path(path);
1858	path->nodes[i] = clone;
1859	path->slots[i] = slot;
1860
1861	return 0;
1862}
1863
1864static inline int search_for_key_slot(struct extent_buffer *eb,
1865				      int search_low_slot,
1866				      const struct btrfs_key *key,
1867				      int prev_cmp,
1868				      int *slot)
1869{
1870	/*
1871	 * If a previous call to btrfs_bin_search() on a parent node returned an
1872	 * exact match (prev_cmp == 0), we can safely assume the target key will
1873	 * always be at slot 0 on lower levels, since each key pointer
1874	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1875	 * subtree it points to. Thus we can skip searching lower levels.
1876	 */
1877	if (prev_cmp == 0) {
1878		*slot = 0;
1879		return 0;
1880	}
1881
1882	return btrfs_bin_search(eb, search_low_slot, key, slot);
1883}
1884
1885static int search_leaf(struct btrfs_trans_handle *trans,
1886		       struct btrfs_root *root,
1887		       const struct btrfs_key *key,
1888		       struct btrfs_path *path,
1889		       int ins_len,
1890		       int prev_cmp)
1891{
1892	struct extent_buffer *leaf = path->nodes[0];
1893	int leaf_free_space = -1;
1894	int search_low_slot = 0;
1895	int ret;
1896	bool do_bin_search = true;
1897
1898	/*
1899	 * If we are doing an insertion, the leaf has enough free space and the
1900	 * destination slot for the key is not slot 0, then we can unlock our
1901	 * write lock on the parent, and any other upper nodes, before doing the
1902	 * binary search on the leaf (with search_for_key_slot()), allowing other
1903	 * tasks to lock the parent and any other upper nodes.
1904	 */
1905	if (ins_len > 0) {
1906		/*
1907		 * Cache the leaf free space, since we will need it later and it
1908		 * will not change until then.
1909		 */
1910		leaf_free_space = btrfs_leaf_free_space(leaf);
1911
1912		/*
1913		 * !path->locks[1] means we have a single node tree, the leaf is
1914		 * the root of the tree.
1915		 */
1916		if (path->locks[1] && leaf_free_space >= ins_len) {
1917			struct btrfs_disk_key first_key;
1918
1919			ASSERT(btrfs_header_nritems(leaf) > 0);
1920			btrfs_item_key(leaf, &first_key, 0);
1921
1922			/*
1923			 * Doing the extra comparison with the first key is cheap,
1924			 * taking into account that the first key is very likely
1925			 * already in a cache line because it immediately follows
1926			 * the extent buffer's header and we have recently accessed
1927			 * the header's level field.
1928			 */
1929			ret = btrfs_comp_keys(&first_key, key);
1930			if (ret < 0) {
1931				/*
1932				 * The first key is smaller than the key we want
1933				 * to insert, so we are safe to unlock all upper
1934				 * nodes and we have to do the binary search.
1935				 *
1936				 * We do use btrfs_unlock_up_safe() and not
1937				 * unlock_up() because the later does not unlock
1938				 * nodes with a slot of 0 - we can safely unlock
1939				 * any node even if its slot is 0 since in this
1940				 * case the key does not end up at slot 0 of the
1941				 * leaf and there's no need to split the leaf.
1942				 */
1943				btrfs_unlock_up_safe(path, 1);
1944				search_low_slot = 1;
1945			} else {
1946				/*
1947				 * The first key is >= then the key we want to
1948				 * insert, so we can skip the binary search as
1949				 * the target key will be at slot 0.
1950				 *
1951				 * We can not unlock upper nodes when the key is
1952				 * less than the first key, because we will need
1953				 * to update the key at slot 0 of the parent node
1954				 * and possibly of other upper nodes too.
1955				 * If the key matches the first key, then we can
1956				 * unlock all the upper nodes, using
1957				 * btrfs_unlock_up_safe() instead of unlock_up()
1958				 * as stated above.
1959				 */
1960				if (ret == 0)
1961					btrfs_unlock_up_safe(path, 1);
1962				/*
1963				 * ret is already 0 or 1, matching the result of
1964				 * a btrfs_bin_search() call, so there is no need
1965				 * to adjust it.
1966				 */
1967				do_bin_search = false;
1968				path->slots[0] = 0;
1969			}
1970		}
1971	}
1972
1973	if (do_bin_search) {
1974		ret = search_for_key_slot(leaf, search_low_slot, key,
1975					  prev_cmp, &path->slots[0]);
1976		if (ret < 0)
1977			return ret;
1978	}
1979
1980	if (ins_len > 0) {
1981		/*
1982		 * Item key already exists. In this case, if we are allowed to
1983		 * insert the item (for example, in dir_item case, item key
1984		 * collision is allowed), it will be merged with the original
1985		 * item. Only the item size grows, no new btrfs item will be
1986		 * added. If search_for_extension is not set, ins_len already
1987		 * accounts the size btrfs_item, deduct it here so leaf space
1988		 * check will be correct.
1989		 */
1990		if (ret == 0 && !path->search_for_extension) {
1991			ASSERT(ins_len >= sizeof(struct btrfs_item));
1992			ins_len -= sizeof(struct btrfs_item);
1993		}
1994
1995		ASSERT(leaf_free_space >= 0);
1996
1997		if (leaf_free_space < ins_len) {
1998			int err;
1999
2000			err = split_leaf(trans, root, key, path, ins_len,
2001					 (ret == 0));
2002			ASSERT(err <= 0);
2003			if (WARN_ON(err > 0))
2004				err = -EUCLEAN;
2005			if (err)
2006				ret = err;
2007		}
2008	}
2009
2010	return ret;
2011}
2012
2013/*
2014 * Look for a key in a tree and perform necessary modifications to preserve
2015 * tree invariants.
2016 *
2017 * @trans:	Handle of transaction, used when modifying the tree
2018 * @p:		Holds all btree nodes along the search path
2019 * @root:	The root node of the tree
2020 * @key:	The key we are looking for
2021 * @ins_len:	Indicates purpose of search:
2022 *              >0  for inserts it's size of item inserted (*)
2023 *              <0  for deletions
2024 *               0  for plain searches, not modifying the tree
2025 *
2026 *              (*) If size of item inserted doesn't include
2027 *              sizeof(struct btrfs_item), then p->search_for_extension must
2028 *              be set.
2029 * @cow:	boolean should CoW operations be performed. Must always be 1
2030 *		when modifying the tree.
2031 *
2032 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2033 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2034 *
2035 * If @key is found, 0 is returned and you can find the item in the leaf level
2036 * of the path (level 0)
2037 *
2038 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2039 * points to the slot where it should be inserted
2040 *
2041 * If an error is encountered while searching the tree a negative error number
2042 * is returned
2043 */
2044int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2045		      const struct btrfs_key *key, struct btrfs_path *p,
2046		      int ins_len, int cow)
2047{
2048	struct btrfs_fs_info *fs_info;
2049	struct extent_buffer *b;
2050	int slot;
2051	int ret;
2052	int err;
2053	int level;
2054	int lowest_unlock = 1;
2055	/* everything at write_lock_level or lower must be write locked */
2056	int write_lock_level = 0;
2057	u8 lowest_level = 0;
2058	int min_write_lock_level;
2059	int prev_cmp;
2060
2061	if (!root)
2062		return -EINVAL;
2063
2064	fs_info = root->fs_info;
2065	might_sleep();
2066
2067	lowest_level = p->lowest_level;
2068	WARN_ON(lowest_level && ins_len > 0);
2069	WARN_ON(p->nodes[0] != NULL);
2070	BUG_ON(!cow && ins_len);
2071
2072	/*
2073	 * For now only allow nowait for read only operations.  There's no
2074	 * strict reason why we can't, we just only need it for reads so it's
2075	 * only implemented for reads.
2076	 */
2077	ASSERT(!p->nowait || !cow);
2078
2079	if (ins_len < 0) {
2080		lowest_unlock = 2;
2081
2082		/* when we are removing items, we might have to go up to level
2083		 * two as we update tree pointers  Make sure we keep write
2084		 * for those levels as well
2085		 */
2086		write_lock_level = 2;
2087	} else if (ins_len > 0) {
2088		/*
2089		 * for inserting items, make sure we have a write lock on
2090		 * level 1 so we can update keys
2091		 */
2092		write_lock_level = 1;
2093	}
2094
2095	if (!cow)
2096		write_lock_level = -1;
2097
2098	if (cow && (p->keep_locks || p->lowest_level))
2099		write_lock_level = BTRFS_MAX_LEVEL;
2100
2101	min_write_lock_level = write_lock_level;
2102
2103	if (p->need_commit_sem) {
2104		ASSERT(p->search_commit_root);
2105		if (p->nowait) {
2106			if (!down_read_trylock(&fs_info->commit_root_sem))
2107				return -EAGAIN;
2108		} else {
2109			down_read(&fs_info->commit_root_sem);
2110		}
2111	}
2112
2113again:
2114	prev_cmp = -1;
2115	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2116	if (IS_ERR(b)) {
2117		ret = PTR_ERR(b);
2118		goto done;
2119	}
2120
2121	while (b) {
2122		int dec = 0;
2123
2124		level = btrfs_header_level(b);
2125
2126		if (cow) {
2127			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2128
2129			/*
2130			 * if we don't really need to cow this block
2131			 * then we don't want to set the path blocking,
2132			 * so we test it here
2133			 */
2134			if (!should_cow_block(trans, root, b))
 
2135				goto cow_done;
 
2136
2137			/*
2138			 * must have write locks on this node and the
2139			 * parent
2140			 */
2141			if (level > write_lock_level ||
2142			    (level + 1 > write_lock_level &&
2143			    level + 1 < BTRFS_MAX_LEVEL &&
2144			    p->nodes[level + 1])) {
2145				write_lock_level = level + 1;
2146				btrfs_release_path(p);
2147				goto again;
2148			}
2149
 
2150			if (last_level)
2151				err = btrfs_cow_block(trans, root, b, NULL, 0,
2152						      &b,
2153						      BTRFS_NESTING_COW);
2154			else
2155				err = btrfs_cow_block(trans, root, b,
2156						      p->nodes[level + 1],
2157						      p->slots[level + 1], &b,
2158						      BTRFS_NESTING_COW);
2159			if (err) {
2160				ret = err;
2161				goto done;
2162			}
2163		}
2164cow_done:
2165		p->nodes[level] = b;
 
 
 
 
2166
2167		/*
2168		 * we have a lock on b and as long as we aren't changing
2169		 * the tree, there is no way to for the items in b to change.
2170		 * It is safe to drop the lock on our parent before we
2171		 * go through the expensive btree search on b.
2172		 *
2173		 * If we're inserting or deleting (ins_len != 0), then we might
2174		 * be changing slot zero, which may require changing the parent.
2175		 * So, we can't drop the lock until after we know which slot
2176		 * we're operating on.
2177		 */
2178		if (!ins_len && !p->keep_locks) {
2179			int u = level + 1;
2180
2181			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2182				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2183				p->locks[u] = 0;
2184			}
2185		}
2186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187		if (level == 0) {
2188			if (ins_len > 0)
2189				ASSERT(write_lock_level >= 1);
 
 
 
 
 
 
2190
2191			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
 
 
 
 
 
 
 
 
 
2192			if (!p->search_for_split)
2193				unlock_up(p, level, lowest_unlock,
2194					  min_write_lock_level, NULL);
2195			goto done;
2196		}
2197
2198		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2199		if (ret < 0)
2200			goto done;
2201		prev_cmp = ret;
2202
2203		if (ret && slot > 0) {
2204			dec = 1;
2205			slot--;
2206		}
2207		p->slots[level] = slot;
2208		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2209					     &write_lock_level);
2210		if (err == -EAGAIN)
2211			goto again;
2212		if (err) {
2213			ret = err;
2214			goto done;
2215		}
2216		b = p->nodes[level];
2217		slot = p->slots[level];
2218
2219		/*
2220		 * Slot 0 is special, if we change the key we have to update
2221		 * the parent pointer which means we must have a write lock on
2222		 * the parent
2223		 */
2224		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2225			write_lock_level = level + 1;
2226			btrfs_release_path(p);
2227			goto again;
2228		}
2229
2230		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2231			  &write_lock_level);
2232
2233		if (level == lowest_level) {
2234			if (dec)
2235				p->slots[level]++;
2236			goto done;
2237		}
2238
2239		err = read_block_for_search(root, p, &b, slot, key);
2240		if (err == -EAGAIN && !p->nowait)
2241			goto again;
2242		if (err) {
2243			ret = err;
2244			goto done;
2245		}
2246
2247		if (!p->skip_locking) {
2248			level = btrfs_header_level(b);
2249
2250			btrfs_maybe_reset_lockdep_class(root, b);
2251
2252			if (level <= write_lock_level) {
2253				btrfs_tree_lock(b);
 
 
 
2254				p->locks[level] = BTRFS_WRITE_LOCK;
2255			} else {
2256				if (p->nowait) {
2257					if (!btrfs_try_tree_read_lock(b)) {
2258						free_extent_buffer(b);
2259						ret = -EAGAIN;
2260						goto done;
2261					}
2262				} else {
2263					btrfs_tree_read_lock(b);
2264				}
2265				p->locks[level] = BTRFS_READ_LOCK;
2266			}
2267			p->nodes[level] = b;
2268		}
2269	}
2270	ret = 1;
2271done:
 
 
 
 
 
 
2272	if (ret < 0 && !p->skip_release_on_error)
2273		btrfs_release_path(p);
2274
2275	if (p->need_commit_sem) {
2276		int ret2;
2277
2278		ret2 = finish_need_commit_sem_search(p);
2279		up_read(&fs_info->commit_root_sem);
2280		if (ret2)
2281			ret = ret2;
2282	}
2283
2284	return ret;
2285}
2286ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2287
2288/*
2289 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2290 * current state of the tree together with the operations recorded in the tree
2291 * modification log to search for the key in a previous version of this tree, as
2292 * denoted by the time_seq parameter.
2293 *
2294 * Naturally, there is no support for insert, delete or cow operations.
2295 *
2296 * The resulting path and return value will be set up as if we called
2297 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2298 */
2299int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2300			  struct btrfs_path *p, u64 time_seq)
2301{
2302	struct btrfs_fs_info *fs_info = root->fs_info;
2303	struct extent_buffer *b;
2304	int slot;
2305	int ret;
2306	int err;
2307	int level;
2308	int lowest_unlock = 1;
2309	u8 lowest_level = 0;
2310
2311	lowest_level = p->lowest_level;
2312	WARN_ON(p->nodes[0] != NULL);
2313	ASSERT(!p->nowait);
2314
2315	if (p->search_commit_root) {
2316		BUG_ON(time_seq);
2317		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2318	}
2319
2320again:
2321	b = btrfs_get_old_root(root, time_seq);
2322	if (!b) {
2323		ret = -EIO;
2324		goto done;
2325	}
2326	level = btrfs_header_level(b);
2327	p->locks[level] = BTRFS_READ_LOCK;
2328
2329	while (b) {
2330		int dec = 0;
2331
2332		level = btrfs_header_level(b);
2333		p->nodes[level] = b;
2334
2335		/*
2336		 * we have a lock on b and as long as we aren't changing
2337		 * the tree, there is no way to for the items in b to change.
2338		 * It is safe to drop the lock on our parent before we
2339		 * go through the expensive btree search on b.
2340		 */
2341		btrfs_unlock_up_safe(p, level + 1);
2342
2343		ret = btrfs_bin_search(b, 0, key, &slot);
2344		if (ret < 0)
2345			goto done;
2346
2347		if (level == 0) {
2348			p->slots[level] = slot;
2349			unlock_up(p, level, lowest_unlock, 0, NULL);
2350			goto done;
2351		}
2352
2353		if (ret && slot > 0) {
2354			dec = 1;
2355			slot--;
2356		}
2357		p->slots[level] = slot;
2358		unlock_up(p, level, lowest_unlock, 0, NULL);
2359
2360		if (level == lowest_level) {
2361			if (dec)
2362				p->slots[level]++;
2363			goto done;
2364		}
2365
2366		err = read_block_for_search(root, p, &b, slot, key);
2367		if (err == -EAGAIN && !p->nowait)
2368			goto again;
2369		if (err) {
2370			ret = err;
2371			goto done;
2372		}
2373
2374		level = btrfs_header_level(b);
2375		btrfs_tree_read_lock(b);
2376		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
 
 
 
2377		if (!b) {
2378			ret = -ENOMEM;
2379			goto done;
2380		}
2381		p->locks[level] = BTRFS_READ_LOCK;
2382		p->nodes[level] = b;
2383	}
2384	ret = 1;
2385done:
 
 
2386	if (ret < 0)
2387		btrfs_release_path(p);
2388
2389	return ret;
2390}
2391
2392/*
2393 * Search the tree again to find a leaf with smaller keys.
2394 * Returns 0 if it found something.
2395 * Returns 1 if there are no smaller keys.
2396 * Returns < 0 on error.
2397 *
2398 * This may release the path, and so you may lose any locks held at the
2399 * time you call it.
2400 */
2401static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2402{
2403	struct btrfs_key key;
2404	struct btrfs_key orig_key;
2405	struct btrfs_disk_key found_key;
2406	int ret;
2407
2408	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2409	orig_key = key;
2410
2411	if (key.offset > 0) {
2412		key.offset--;
2413	} else if (key.type > 0) {
2414		key.type--;
2415		key.offset = (u64)-1;
2416	} else if (key.objectid > 0) {
2417		key.objectid--;
2418		key.type = (u8)-1;
2419		key.offset = (u64)-1;
2420	} else {
2421		return 1;
2422	}
2423
2424	btrfs_release_path(path);
2425	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426	if (ret <= 0)
2427		return ret;
2428
2429	/*
2430	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2431	 * before releasing the path and calling btrfs_search_slot(), we now may
2432	 * be in a slot pointing to the same original key - this can happen if
2433	 * after we released the path, one of more items were moved from a
2434	 * sibling leaf into the front of the leaf we had due to an insertion
2435	 * (see push_leaf_right()).
2436	 * If we hit this case and our slot is > 0 and just decrement the slot
2437	 * so that the caller does not process the same key again, which may or
2438	 * may not break the caller, depending on its logic.
2439	 */
2440	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2441		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2442		ret = btrfs_comp_keys(&found_key, &orig_key);
2443		if (ret == 0) {
2444			if (path->slots[0] > 0) {
2445				path->slots[0]--;
2446				return 0;
2447			}
2448			/*
2449			 * At slot 0, same key as before, it means orig_key is
2450			 * the lowest, leftmost, key in the tree. We're done.
2451			 */
2452			return 1;
2453		}
2454	}
2455
2456	btrfs_item_key(path->nodes[0], &found_key, 0);
2457	ret = btrfs_comp_keys(&found_key, &key);
2458	/*
2459	 * We might have had an item with the previous key in the tree right
2460	 * before we released our path. And after we released our path, that
2461	 * item might have been pushed to the first slot (0) of the leaf we
2462	 * were holding due to a tree balance. Alternatively, an item with the
2463	 * previous key can exist as the only element of a leaf (big fat item).
2464	 * Therefore account for these 2 cases, so that our callers (like
2465	 * btrfs_previous_item) don't miss an existing item with a key matching
2466	 * the previous key we computed above.
2467	 */
2468	if (ret <= 0)
2469		return 0;
2470	return 1;
2471}
2472
2473/*
2474 * helper to use instead of search slot if no exact match is needed but
2475 * instead the next or previous item should be returned.
2476 * When find_higher is true, the next higher item is returned, the next lower
2477 * otherwise.
2478 * When return_any and find_higher are both true, and no higher item is found,
2479 * return the next lower instead.
2480 * When return_any is true and find_higher is false, and no lower item is found,
2481 * return the next higher instead.
2482 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2483 * < 0 on error
2484 */
2485int btrfs_search_slot_for_read(struct btrfs_root *root,
2486			       const struct btrfs_key *key,
2487			       struct btrfs_path *p, int find_higher,
2488			       int return_any)
2489{
2490	int ret;
2491	struct extent_buffer *leaf;
2492
2493again:
2494	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2495	if (ret <= 0)
2496		return ret;
2497	/*
2498	 * a return value of 1 means the path is at the position where the
2499	 * item should be inserted. Normally this is the next bigger item,
2500	 * but in case the previous item is the last in a leaf, path points
2501	 * to the first free slot in the previous leaf, i.e. at an invalid
2502	 * item.
2503	 */
2504	leaf = p->nodes[0];
2505
2506	if (find_higher) {
2507		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2508			ret = btrfs_next_leaf(root, p);
2509			if (ret <= 0)
2510				return ret;
2511			if (!return_any)
2512				return 1;
2513			/*
2514			 * no higher item found, return the next
2515			 * lower instead
2516			 */
2517			return_any = 0;
2518			find_higher = 0;
2519			btrfs_release_path(p);
2520			goto again;
2521		}
2522	} else {
2523		if (p->slots[0] == 0) {
2524			ret = btrfs_prev_leaf(root, p);
2525			if (ret < 0)
2526				return ret;
2527			if (!ret) {
2528				leaf = p->nodes[0];
2529				if (p->slots[0] == btrfs_header_nritems(leaf))
2530					p->slots[0]--;
2531				return 0;
2532			}
2533			if (!return_any)
2534				return 1;
2535			/*
2536			 * no lower item found, return the next
2537			 * higher instead
2538			 */
2539			return_any = 0;
2540			find_higher = 1;
2541			btrfs_release_path(p);
2542			goto again;
2543		} else {
2544			--p->slots[0];
2545		}
2546	}
2547	return 0;
2548}
2549
2550/*
2551 * Execute search and call btrfs_previous_item to traverse backwards if the item
2552 * was not found.
2553 *
2554 * Return 0 if found, 1 if not found and < 0 if error.
2555 */
2556int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2557			   struct btrfs_path *path)
2558{
2559	int ret;
2560
2561	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2562	if (ret > 0)
2563		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2564
2565	if (ret == 0)
2566		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2567
2568	return ret;
2569}
2570
2571/*
2572 * Search for a valid slot for the given path.
2573 *
2574 * @root:	The root node of the tree.
2575 * @key:	Will contain a valid item if found.
2576 * @path:	The starting point to validate the slot.
2577 *
2578 * Return: 0  if the item is valid
2579 *         1  if not found
2580 *         <0 if error.
2581 */
2582int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2583			      struct btrfs_path *path)
2584{
2585	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2586		int ret;
2587
2588		ret = btrfs_next_leaf(root, path);
2589		if (ret)
2590			return ret;
2591	}
2592
2593	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2594	return 0;
2595}
2596
2597/*
2598 * adjust the pointers going up the tree, starting at level
2599 * making sure the right key of each node is points to 'key'.
2600 * This is used after shifting pointers to the left, so it stops
2601 * fixing up pointers when a given leaf/node is not in slot 0 of the
2602 * higher levels
2603 *
2604 */
2605static void fixup_low_keys(struct btrfs_trans_handle *trans,
2606			   const struct btrfs_path *path,
2607			   const struct btrfs_disk_key *key, int level)
2608{
2609	int i;
2610	struct extent_buffer *t;
2611	int ret;
2612
2613	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2614		int tslot = path->slots[i];
2615
2616		if (!path->nodes[i])
2617			break;
2618		t = path->nodes[i];
2619		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2620						    BTRFS_MOD_LOG_KEY_REPLACE);
2621		BUG_ON(ret < 0);
2622		btrfs_set_node_key(t, key, tslot);
2623		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2624		if (tslot != 0)
2625			break;
2626	}
2627}
2628
2629/*
2630 * update item key.
2631 *
2632 * This function isn't completely safe. It's the caller's responsibility
2633 * that the new key won't break the order
2634 */
2635void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2636			     const struct btrfs_path *path,
2637			     const struct btrfs_key *new_key)
2638{
2639	struct btrfs_fs_info *fs_info = trans->fs_info;
2640	struct btrfs_disk_key disk_key;
2641	struct extent_buffer *eb;
2642	int slot;
2643
2644	eb = path->nodes[0];
2645	slot = path->slots[0];
2646	if (slot > 0) {
2647		btrfs_item_key(eb, &disk_key, slot - 1);
2648		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2649			btrfs_print_leaf(eb);
2650			btrfs_crit(fs_info,
2651		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2652				   slot, btrfs_disk_key_objectid(&disk_key),
2653				   btrfs_disk_key_type(&disk_key),
2654				   btrfs_disk_key_offset(&disk_key),
2655				   new_key->objectid, new_key->type,
2656				   new_key->offset);
 
2657			BUG();
2658		}
2659	}
2660	if (slot < btrfs_header_nritems(eb) - 1) {
2661		btrfs_item_key(eb, &disk_key, slot + 1);
2662		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2663			btrfs_print_leaf(eb);
2664			btrfs_crit(fs_info,
2665		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2666				   slot, btrfs_disk_key_objectid(&disk_key),
2667				   btrfs_disk_key_type(&disk_key),
2668				   btrfs_disk_key_offset(&disk_key),
2669				   new_key->objectid, new_key->type,
2670				   new_key->offset);
 
2671			BUG();
2672		}
2673	}
2674
2675	btrfs_cpu_key_to_disk(&disk_key, new_key);
2676	btrfs_set_item_key(eb, &disk_key, slot);
2677	btrfs_mark_buffer_dirty(trans, eb);
2678	if (slot == 0)
2679		fixup_low_keys(trans, path, &disk_key, 1);
2680}
2681
2682/*
2683 * Check key order of two sibling extent buffers.
2684 *
2685 * Return true if something is wrong.
2686 * Return false if everything is fine.
2687 *
2688 * Tree-checker only works inside one tree block, thus the following
2689 * corruption can not be detected by tree-checker:
2690 *
2691 * Leaf @left			| Leaf @right
2692 * --------------------------------------------------------------
2693 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2694 *
2695 * Key f6 in leaf @left itself is valid, but not valid when the next
2696 * key in leaf @right is 7.
2697 * This can only be checked at tree block merge time.
2698 * And since tree checker has ensured all key order in each tree block
2699 * is correct, we only need to bother the last key of @left and the first
2700 * key of @right.
2701 */
2702static bool check_sibling_keys(const struct extent_buffer *left,
2703			       const struct extent_buffer *right)
2704{
2705	struct btrfs_key left_last;
2706	struct btrfs_key right_first;
2707	int level = btrfs_header_level(left);
2708	int nr_left = btrfs_header_nritems(left);
2709	int nr_right = btrfs_header_nritems(right);
2710
2711	/* No key to check in one of the tree blocks */
2712	if (!nr_left || !nr_right)
2713		return false;
2714
2715	if (level) {
2716		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2717		btrfs_node_key_to_cpu(right, &right_first, 0);
2718	} else {
2719		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2720		btrfs_item_key_to_cpu(right, &right_first, 0);
2721	}
2722
2723	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2724		btrfs_crit(left->fs_info, "left extent buffer:");
2725		btrfs_print_tree(left, false);
2726		btrfs_crit(left->fs_info, "right extent buffer:");
2727		btrfs_print_tree(right, false);
2728		btrfs_crit(left->fs_info,
2729"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2730			   left_last.objectid, left_last.type,
2731			   left_last.offset, right_first.objectid,
2732			   right_first.type, right_first.offset);
2733		return true;
2734	}
2735	return false;
2736}
2737
2738/*
2739 * try to push data from one node into the next node left in the
2740 * tree.
2741 *
2742 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2743 * error, and > 0 if there was no room in the left hand block.
2744 */
2745static int push_node_left(struct btrfs_trans_handle *trans,
2746			  struct extent_buffer *dst,
2747			  struct extent_buffer *src, int empty)
2748{
2749	struct btrfs_fs_info *fs_info = trans->fs_info;
2750	int push_items = 0;
2751	int src_nritems;
2752	int dst_nritems;
2753	int ret = 0;
2754
2755	src_nritems = btrfs_header_nritems(src);
2756	dst_nritems = btrfs_header_nritems(dst);
2757	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2758	WARN_ON(btrfs_header_generation(src) != trans->transid);
2759	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2760
2761	if (!empty && src_nritems <= 8)
2762		return 1;
2763
2764	if (push_items <= 0)
2765		return 1;
2766
2767	if (empty) {
2768		push_items = min(src_nritems, push_items);
2769		if (push_items < src_nritems) {
2770			/* leave at least 8 pointers in the node if
2771			 * we aren't going to empty it
2772			 */
2773			if (src_nritems - push_items < 8) {
2774				if (push_items <= 8)
2775					return 1;
2776				push_items -= 8;
2777			}
2778		}
2779	} else
2780		push_items = min(src_nritems - 8, push_items);
2781
2782	/* dst is the left eb, src is the middle eb */
2783	if (check_sibling_keys(dst, src)) {
2784		ret = -EUCLEAN;
2785		btrfs_abort_transaction(trans, ret);
2786		return ret;
2787	}
2788	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2789	if (ret) {
2790		btrfs_abort_transaction(trans, ret);
2791		return ret;
2792	}
2793	copy_extent_buffer(dst, src,
2794			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2795			   btrfs_node_key_ptr_offset(src, 0),
2796			   push_items * sizeof(struct btrfs_key_ptr));
2797
2798	if (push_items < src_nritems) {
2799		/*
2800		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2801		 * don't need to do an explicit tree mod log operation for it.
2802		 */
2803		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2804				      btrfs_node_key_ptr_offset(src, push_items),
2805				      (src_nritems - push_items) *
2806				      sizeof(struct btrfs_key_ptr));
2807	}
2808	btrfs_set_header_nritems(src, src_nritems - push_items);
2809	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2810	btrfs_mark_buffer_dirty(trans, src);
2811	btrfs_mark_buffer_dirty(trans, dst);
2812
2813	return ret;
2814}
2815
2816/*
2817 * try to push data from one node into the next node right in the
2818 * tree.
2819 *
2820 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2821 * error, and > 0 if there was no room in the right hand block.
2822 *
2823 * this will  only push up to 1/2 the contents of the left node over
2824 */
2825static int balance_node_right(struct btrfs_trans_handle *trans,
2826			      struct extent_buffer *dst,
2827			      struct extent_buffer *src)
2828{
2829	struct btrfs_fs_info *fs_info = trans->fs_info;
2830	int push_items = 0;
2831	int max_push;
2832	int src_nritems;
2833	int dst_nritems;
2834	int ret = 0;
2835
2836	WARN_ON(btrfs_header_generation(src) != trans->transid);
2837	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2838
2839	src_nritems = btrfs_header_nritems(src);
2840	dst_nritems = btrfs_header_nritems(dst);
2841	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2842	if (push_items <= 0)
2843		return 1;
2844
2845	if (src_nritems < 4)
2846		return 1;
2847
2848	max_push = src_nritems / 2 + 1;
2849	/* don't try to empty the node */
2850	if (max_push >= src_nritems)
2851		return 1;
2852
2853	if (max_push < push_items)
2854		push_items = max_push;
2855
2856	/* dst is the right eb, src is the middle eb */
2857	if (check_sibling_keys(src, dst)) {
2858		ret = -EUCLEAN;
2859		btrfs_abort_transaction(trans, ret);
2860		return ret;
2861	}
2862
2863	/*
2864	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2865	 * need to do an explicit tree mod log operation for it.
2866	 */
2867	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2868				      btrfs_node_key_ptr_offset(dst, 0),
2869				      (dst_nritems) *
2870				      sizeof(struct btrfs_key_ptr));
2871
2872	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2873					 push_items);
2874	if (ret) {
2875		btrfs_abort_transaction(trans, ret);
2876		return ret;
2877	}
2878	copy_extent_buffer(dst, src,
2879			   btrfs_node_key_ptr_offset(dst, 0),
2880			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2881			   push_items * sizeof(struct btrfs_key_ptr));
2882
2883	btrfs_set_header_nritems(src, src_nritems - push_items);
2884	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2885
2886	btrfs_mark_buffer_dirty(trans, src);
2887	btrfs_mark_buffer_dirty(trans, dst);
2888
2889	return ret;
2890}
2891
2892/*
2893 * helper function to insert a new root level in the tree.
2894 * A new node is allocated, and a single item is inserted to
2895 * point to the existing root
2896 *
2897 * returns zero on success or < 0 on failure.
2898 */
2899static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2900			   struct btrfs_root *root,
2901			   struct btrfs_path *path, int level)
2902{
 
2903	u64 lower_gen;
2904	struct extent_buffer *lower;
2905	struct extent_buffer *c;
2906	struct extent_buffer *old;
2907	struct btrfs_disk_key lower_key;
2908	int ret;
2909
2910	BUG_ON(path->nodes[level]);
2911	BUG_ON(path->nodes[level-1] != root->node);
2912
2913	lower = path->nodes[level-1];
2914	if (level == 1)
2915		btrfs_item_key(lower, &lower_key, 0);
2916	else
2917		btrfs_node_key(lower, &lower_key, 0);
2918
2919	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2920				   &lower_key, level, root->node->start, 0,
2921				   0, BTRFS_NESTING_NEW_ROOT);
2922	if (IS_ERR(c))
2923		return PTR_ERR(c);
2924
2925	root_add_used_bytes(root);
2926
2927	btrfs_set_header_nritems(c, 1);
2928	btrfs_set_node_key(c, &lower_key, 0);
2929	btrfs_set_node_blockptr(c, 0, lower->start);
2930	lower_gen = btrfs_header_generation(lower);
2931	WARN_ON(lower_gen != trans->transid);
2932
2933	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2934
2935	btrfs_mark_buffer_dirty(trans, c);
2936
2937	old = root->node;
2938	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2939	if (ret < 0) {
2940		int ret2;
2941
2942		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2943		if (ret2 < 0)
2944			btrfs_abort_transaction(trans, ret2);
2945		btrfs_tree_unlock(c);
2946		free_extent_buffer(c);
2947		return ret;
2948	}
2949	rcu_assign_pointer(root->node, c);
2950
2951	/* the super has an extra ref to root->node */
2952	free_extent_buffer(old);
2953
2954	add_root_to_dirty_list(root);
2955	atomic_inc(&c->refs);
2956	path->nodes[level] = c;
2957	path->locks[level] = BTRFS_WRITE_LOCK;
2958	path->slots[level] = 0;
2959	return 0;
2960}
2961
2962/*
2963 * worker function to insert a single pointer in a node.
2964 * the node should have enough room for the pointer already
2965 *
2966 * slot and level indicate where you want the key to go, and
2967 * blocknr is the block the key points to.
2968 */
2969static int insert_ptr(struct btrfs_trans_handle *trans,
2970		      const struct btrfs_path *path,
2971		      const struct btrfs_disk_key *key, u64 bytenr,
2972		      int slot, int level)
2973{
2974	struct extent_buffer *lower;
2975	int nritems;
2976	int ret;
2977
2978	BUG_ON(!path->nodes[level]);
2979	btrfs_assert_tree_write_locked(path->nodes[level]);
2980	lower = path->nodes[level];
2981	nritems = btrfs_header_nritems(lower);
2982	BUG_ON(slot > nritems);
2983	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2984	if (slot != nritems) {
2985		if (level) {
2986			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2987					slot, nritems - slot);
2988			if (ret < 0) {
2989				btrfs_abort_transaction(trans, ret);
2990				return ret;
2991			}
2992		}
2993		memmove_extent_buffer(lower,
2994			      btrfs_node_key_ptr_offset(lower, slot + 1),
2995			      btrfs_node_key_ptr_offset(lower, slot),
2996			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2997	}
2998	if (level) {
2999		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3000						    BTRFS_MOD_LOG_KEY_ADD);
3001		if (ret < 0) {
3002			btrfs_abort_transaction(trans, ret);
3003			return ret;
3004		}
3005	}
3006	btrfs_set_node_key(lower, key, slot);
3007	btrfs_set_node_blockptr(lower, slot, bytenr);
3008	WARN_ON(trans->transid == 0);
3009	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3010	btrfs_set_header_nritems(lower, nritems + 1);
3011	btrfs_mark_buffer_dirty(trans, lower);
3012
3013	return 0;
3014}
3015
3016/*
3017 * split the node at the specified level in path in two.
3018 * The path is corrected to point to the appropriate node after the split
3019 *
3020 * Before splitting this tries to make some room in the node by pushing
3021 * left and right, if either one works, it returns right away.
3022 *
3023 * returns 0 on success and < 0 on failure
3024 */
3025static noinline int split_node(struct btrfs_trans_handle *trans,
3026			       struct btrfs_root *root,
3027			       struct btrfs_path *path, int level)
3028{
3029	struct btrfs_fs_info *fs_info = root->fs_info;
3030	struct extent_buffer *c;
3031	struct extent_buffer *split;
3032	struct btrfs_disk_key disk_key;
3033	int mid;
3034	int ret;
3035	u32 c_nritems;
3036
3037	c = path->nodes[level];
3038	WARN_ON(btrfs_header_generation(c) != trans->transid);
3039	if (c == root->node) {
3040		/*
3041		 * trying to split the root, lets make a new one
3042		 *
3043		 * tree mod log: We don't log_removal old root in
3044		 * insert_new_root, because that root buffer will be kept as a
3045		 * normal node. We are going to log removal of half of the
3046		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3047		 * holding a tree lock on the buffer, which is why we cannot
3048		 * race with other tree_mod_log users.
3049		 */
3050		ret = insert_new_root(trans, root, path, level + 1);
3051		if (ret)
3052			return ret;
3053	} else {
3054		ret = push_nodes_for_insert(trans, root, path, level);
3055		c = path->nodes[level];
3056		if (!ret && btrfs_header_nritems(c) <
3057		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3058			return 0;
3059		if (ret < 0)
3060			return ret;
3061	}
3062
3063	c_nritems = btrfs_header_nritems(c);
3064	mid = (c_nritems + 1) / 2;
3065	btrfs_node_key(c, &disk_key, mid);
3066
3067	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3068				       &disk_key, level, c->start, 0,
3069				       0, BTRFS_NESTING_SPLIT);
3070	if (IS_ERR(split))
3071		return PTR_ERR(split);
3072
3073	root_add_used_bytes(root);
3074	ASSERT(btrfs_header_level(c) == level);
3075
3076	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3077	if (ret) {
3078		btrfs_tree_unlock(split);
3079		free_extent_buffer(split);
3080		btrfs_abort_transaction(trans, ret);
3081		return ret;
3082	}
3083	copy_extent_buffer(split, c,
3084			   btrfs_node_key_ptr_offset(split, 0),
3085			   btrfs_node_key_ptr_offset(c, mid),
3086			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3087	btrfs_set_header_nritems(split, c_nritems - mid);
3088	btrfs_set_header_nritems(c, mid);
 
3089
3090	btrfs_mark_buffer_dirty(trans, c);
3091	btrfs_mark_buffer_dirty(trans, split);
3092
3093	ret = insert_ptr(trans, path, &disk_key, split->start,
3094			 path->slots[level + 1] + 1, level + 1);
3095	if (ret < 0) {
3096		btrfs_tree_unlock(split);
3097		free_extent_buffer(split);
3098		return ret;
3099	}
3100
3101	if (path->slots[level] >= mid) {
3102		path->slots[level] -= mid;
3103		btrfs_tree_unlock(c);
3104		free_extent_buffer(c);
3105		path->nodes[level] = split;
3106		path->slots[level + 1] += 1;
3107	} else {
3108		btrfs_tree_unlock(split);
3109		free_extent_buffer(split);
3110	}
3111	return 0;
3112}
3113
3114/*
3115 * how many bytes are required to store the items in a leaf.  start
3116 * and nr indicate which items in the leaf to check.  This totals up the
3117 * space used both by the item structs and the item data
3118 */
3119static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3120{
 
 
3121	int data_len;
3122	int nritems = btrfs_header_nritems(l);
3123	int end = min(nritems, start + nr) - 1;
3124
3125	if (!nr)
3126		return 0;
3127	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3128	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
3129	data_len += sizeof(struct btrfs_item) * nr;
3130	WARN_ON(data_len < 0);
3131	return data_len;
3132}
3133
3134/*
3135 * The space between the end of the leaf items and
3136 * the start of the leaf data.  IOW, how much room
3137 * the leaf has left for both items and data
3138 */
3139int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3140{
3141	struct btrfs_fs_info *fs_info = leaf->fs_info;
3142	int nritems = btrfs_header_nritems(leaf);
3143	int ret;
3144
3145	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3146	if (ret < 0) {
3147		btrfs_crit(fs_info,
3148			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3149			   ret,
3150			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3151			   leaf_space_used(leaf, 0, nritems), nritems);
3152	}
3153	return ret;
3154}
3155
3156/*
3157 * min slot controls the lowest index we're willing to push to the
3158 * right.  We'll push up to and including min_slot, but no lower
3159 */
3160static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3161				      struct btrfs_path *path,
3162				      int data_size, int empty,
3163				      struct extent_buffer *right,
3164				      int free_space, u32 left_nritems,
3165				      u32 min_slot)
3166{
3167	struct btrfs_fs_info *fs_info = right->fs_info;
3168	struct extent_buffer *left = path->nodes[0];
3169	struct extent_buffer *upper = path->nodes[1];
3170	struct btrfs_map_token token;
3171	struct btrfs_disk_key disk_key;
3172	int slot;
3173	u32 i;
3174	int push_space = 0;
3175	int push_items = 0;
 
3176	u32 nr;
3177	u32 right_nritems;
3178	u32 data_end;
3179	u32 this_item_size;
3180
3181	if (empty)
3182		nr = 0;
3183	else
3184		nr = max_t(u32, 1, min_slot);
3185
3186	if (path->slots[0] >= left_nritems)
3187		push_space += data_size;
3188
3189	slot = path->slots[1];
3190	i = left_nritems - 1;
3191	while (i >= nr) {
 
 
3192		if (!empty && push_items > 0) {
3193			if (path->slots[0] > i)
3194				break;
3195			if (path->slots[0] == i) {
3196				int space = btrfs_leaf_free_space(left);
3197
3198				if (space + push_space * 2 > free_space)
3199					break;
3200			}
3201		}
3202
3203		if (path->slots[0] == i)
3204			push_space += data_size;
3205
3206		this_item_size = btrfs_item_size(left, i);
3207		if (this_item_size + sizeof(struct btrfs_item) +
3208		    push_space > free_space)
3209			break;
3210
3211		push_items++;
3212		push_space += this_item_size + sizeof(struct btrfs_item);
3213		if (i == 0)
3214			break;
3215		i--;
3216	}
3217
3218	if (push_items == 0)
3219		goto out_unlock;
3220
3221	WARN_ON(!empty && push_items == left_nritems);
3222
3223	/* push left to right */
3224	right_nritems = btrfs_header_nritems(right);
3225
3226	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3227	push_space -= leaf_data_end(left);
3228
3229	/* make room in the right data area */
3230	data_end = leaf_data_end(right);
3231	memmove_leaf_data(right, data_end - push_space, data_end,
3232			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3233
3234	/* copy from the left data area */
3235	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3236		       leaf_data_end(left), push_space);
3237
3238	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3239
3240	/* copy the items from left to right */
3241	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3242
3243	/* update the item pointers */
3244	btrfs_init_map_token(&token, right);
3245	right_nritems += push_items;
3246	btrfs_set_header_nritems(right, right_nritems);
3247	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3248	for (i = 0; i < right_nritems; i++) {
3249		push_space -= btrfs_token_item_size(&token, i);
3250		btrfs_set_token_item_offset(&token, i, push_space);
 
3251	}
3252
3253	left_nritems -= push_items;
3254	btrfs_set_header_nritems(left, left_nritems);
3255
3256	if (left_nritems)
3257		btrfs_mark_buffer_dirty(trans, left);
3258	else
3259		btrfs_clear_buffer_dirty(trans, left);
3260
3261	btrfs_mark_buffer_dirty(trans, right);
3262
3263	btrfs_item_key(right, &disk_key, 0);
3264	btrfs_set_node_key(upper, &disk_key, slot + 1);
3265	btrfs_mark_buffer_dirty(trans, upper);
3266
3267	/* then fixup the leaf pointer in the path */
3268	if (path->slots[0] >= left_nritems) {
3269		path->slots[0] -= left_nritems;
3270		if (btrfs_header_nritems(path->nodes[0]) == 0)
3271			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3272		btrfs_tree_unlock(path->nodes[0]);
3273		free_extent_buffer(path->nodes[0]);
3274		path->nodes[0] = right;
3275		path->slots[1] += 1;
3276	} else {
3277		btrfs_tree_unlock(right);
3278		free_extent_buffer(right);
3279	}
3280	return 0;
3281
3282out_unlock:
3283	btrfs_tree_unlock(right);
3284	free_extent_buffer(right);
3285	return 1;
3286}
3287
3288/*
3289 * push some data in the path leaf to the right, trying to free up at
3290 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3291 *
3292 * returns 1 if the push failed because the other node didn't have enough
3293 * room, 0 if everything worked out and < 0 if there were major errors.
3294 *
3295 * this will push starting from min_slot to the end of the leaf.  It won't
3296 * push any slot lower than min_slot
3297 */
3298static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3299			   *root, struct btrfs_path *path,
3300			   int min_data_size, int data_size,
3301			   int empty, u32 min_slot)
3302{
3303	struct extent_buffer *left = path->nodes[0];
3304	struct extent_buffer *right;
3305	struct extent_buffer *upper;
3306	int slot;
3307	int free_space;
3308	u32 left_nritems;
3309	int ret;
3310
3311	if (!path->nodes[1])
3312		return 1;
3313
3314	slot = path->slots[1];
3315	upper = path->nodes[1];
3316	if (slot >= btrfs_header_nritems(upper) - 1)
3317		return 1;
3318
3319	btrfs_assert_tree_write_locked(path->nodes[1]);
3320
3321	right = btrfs_read_node_slot(upper, slot + 1);
 
 
 
 
3322	if (IS_ERR(right))
3323		return PTR_ERR(right);
3324
3325	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
3326
3327	free_space = btrfs_leaf_free_space(right);
3328	if (free_space < data_size)
3329		goto out_unlock;
3330
 
3331	ret = btrfs_cow_block(trans, root, right, upper,
3332			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3333	if (ret)
3334		goto out_unlock;
3335
 
 
 
 
3336	left_nritems = btrfs_header_nritems(left);
3337	if (left_nritems == 0)
3338		goto out_unlock;
3339
3340	if (check_sibling_keys(left, right)) {
3341		ret = -EUCLEAN;
3342		btrfs_abort_transaction(trans, ret);
3343		btrfs_tree_unlock(right);
3344		free_extent_buffer(right);
3345		return ret;
3346	}
3347	if (path->slots[0] == left_nritems && !empty) {
3348		/* Key greater than all keys in the leaf, right neighbor has
3349		 * enough room for it and we're not emptying our leaf to delete
3350		 * it, therefore use right neighbor to insert the new item and
3351		 * no need to touch/dirty our left leaf. */
3352		btrfs_tree_unlock(left);
3353		free_extent_buffer(left);
3354		path->nodes[0] = right;
3355		path->slots[0] = 0;
3356		path->slots[1]++;
3357		return 0;
3358	}
3359
3360	return __push_leaf_right(trans, path, min_data_size, empty, right,
3361				 free_space, left_nritems, min_slot);
3362out_unlock:
3363	btrfs_tree_unlock(right);
3364	free_extent_buffer(right);
3365	return 1;
3366}
3367
3368/*
3369 * push some data in the path leaf to the left, trying to free up at
3370 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3371 *
3372 * max_slot can put a limit on how far into the leaf we'll push items.  The
3373 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3374 * items
3375 */
3376static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3377				     struct btrfs_path *path, int data_size,
3378				     int empty, struct extent_buffer *left,
3379				     int free_space, u32 right_nritems,
3380				     u32 max_slot)
3381{
3382	struct btrfs_fs_info *fs_info = left->fs_info;
3383	struct btrfs_disk_key disk_key;
3384	struct extent_buffer *right = path->nodes[0];
3385	int i;
3386	int push_space = 0;
3387	int push_items = 0;
 
3388	u32 old_left_nritems;
3389	u32 nr;
3390	int ret = 0;
3391	u32 this_item_size;
3392	u32 old_left_item_size;
3393	struct btrfs_map_token token;
3394
3395	if (empty)
3396		nr = min(right_nritems, max_slot);
3397	else
3398		nr = min(right_nritems - 1, max_slot);
3399
3400	for (i = 0; i < nr; i++) {
 
 
3401		if (!empty && push_items > 0) {
3402			if (path->slots[0] < i)
3403				break;
3404			if (path->slots[0] == i) {
3405				int space = btrfs_leaf_free_space(right);
3406
3407				if (space + push_space * 2 > free_space)
3408					break;
3409			}
3410		}
3411
3412		if (path->slots[0] == i)
3413			push_space += data_size;
3414
3415		this_item_size = btrfs_item_size(right, i);
3416		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3417		    free_space)
3418			break;
3419
3420		push_items++;
3421		push_space += this_item_size + sizeof(struct btrfs_item);
3422	}
3423
3424	if (push_items == 0) {
3425		ret = 1;
3426		goto out;
3427	}
3428	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3429
3430	/* push data from right to left */
3431	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
 
 
 
3432
3433	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3434		     btrfs_item_offset(right, push_items - 1);
3435
3436	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3437		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
3438	old_left_nritems = btrfs_header_nritems(left);
3439	BUG_ON(old_left_nritems <= 0);
3440
3441	btrfs_init_map_token(&token, left);
3442	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3443	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3444		u32 ioff;
3445
3446		ioff = btrfs_token_item_offset(&token, i);
3447		btrfs_set_token_item_offset(&token, i,
 
 
3448		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3449	}
3450	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3451
3452	/* fixup right node */
3453	if (push_items > right_nritems)
3454		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3455		       right_nritems);
3456
3457	if (push_items < right_nritems) {
3458		push_space = btrfs_item_offset(right, push_items - 1) -
3459						  leaf_data_end(right);
3460		memmove_leaf_data(right,
3461				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3462				  leaf_data_end(right), push_space);
3463
3464		memmove_leaf_items(right, 0, push_items,
3465				   btrfs_header_nritems(right) - push_items);
 
 
 
3466	}
3467
3468	btrfs_init_map_token(&token, right);
3469	right_nritems -= push_items;
3470	btrfs_set_header_nritems(right, right_nritems);
3471	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3472	for (i = 0; i < right_nritems; i++) {
3473		push_space = push_space - btrfs_token_item_size(&token, i);
3474		btrfs_set_token_item_offset(&token, i, push_space);
 
 
3475	}
3476
3477	btrfs_mark_buffer_dirty(trans, left);
3478	if (right_nritems)
3479		btrfs_mark_buffer_dirty(trans, right);
3480	else
3481		btrfs_clear_buffer_dirty(trans, right);
3482
3483	btrfs_item_key(right, &disk_key, 0);
3484	fixup_low_keys(trans, path, &disk_key, 1);
3485
3486	/* then fixup the leaf pointer in the path */
3487	if (path->slots[0] < push_items) {
3488		path->slots[0] += old_left_nritems;
3489		btrfs_tree_unlock(path->nodes[0]);
3490		free_extent_buffer(path->nodes[0]);
3491		path->nodes[0] = left;
3492		path->slots[1] -= 1;
3493	} else {
3494		btrfs_tree_unlock(left);
3495		free_extent_buffer(left);
3496		path->slots[0] -= push_items;
3497	}
3498	BUG_ON(path->slots[0] < 0);
3499	return ret;
3500out:
3501	btrfs_tree_unlock(left);
3502	free_extent_buffer(left);
3503	return ret;
3504}
3505
3506/*
3507 * push some data in the path leaf to the left, trying to free up at
3508 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3509 *
3510 * max_slot can put a limit on how far into the leaf we'll push items.  The
3511 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3512 * items
3513 */
3514static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3515			  *root, struct btrfs_path *path, int min_data_size,
3516			  int data_size, int empty, u32 max_slot)
3517{
3518	struct extent_buffer *right = path->nodes[0];
3519	struct extent_buffer *left;
3520	int slot;
3521	int free_space;
3522	u32 right_nritems;
3523	int ret = 0;
3524
3525	slot = path->slots[1];
3526	if (slot == 0)
3527		return 1;
3528	if (!path->nodes[1])
3529		return 1;
3530
3531	right_nritems = btrfs_header_nritems(right);
3532	if (right_nritems == 0)
3533		return 1;
3534
3535	btrfs_assert_tree_write_locked(path->nodes[1]);
3536
3537	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
 
 
 
 
3538	if (IS_ERR(left))
3539		return PTR_ERR(left);
3540
3541	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
3542
3543	free_space = btrfs_leaf_free_space(left);
3544	if (free_space < data_size) {
3545		ret = 1;
3546		goto out;
3547	}
3548
 
3549	ret = btrfs_cow_block(trans, root, left,
3550			      path->nodes[1], slot - 1, &left,
3551			      BTRFS_NESTING_LEFT_COW);
3552	if (ret) {
3553		/* we hit -ENOSPC, but it isn't fatal here */
3554		if (ret == -ENOSPC)
3555			ret = 1;
3556		goto out;
3557	}
3558
3559	if (check_sibling_keys(left, right)) {
3560		ret = -EUCLEAN;
3561		btrfs_abort_transaction(trans, ret);
3562		goto out;
3563	}
3564	return __push_leaf_left(trans, path, min_data_size, empty, left,
3565				free_space, right_nritems, max_slot);
 
 
3566out:
3567	btrfs_tree_unlock(left);
3568	free_extent_buffer(left);
3569	return ret;
3570}
3571
3572/*
3573 * split the path's leaf in two, making sure there is at least data_size
3574 * available for the resulting leaf level of the path.
3575 */
3576static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3577				   struct btrfs_path *path,
3578				   struct extent_buffer *l,
3579				   struct extent_buffer *right,
3580				   int slot, int mid, int nritems)
3581{
3582	struct btrfs_fs_info *fs_info = trans->fs_info;
3583	int data_copy_size;
3584	int rt_data_off;
3585	int i;
3586	int ret;
3587	struct btrfs_disk_key disk_key;
3588	struct btrfs_map_token token;
3589
3590	nritems = nritems - mid;
3591	btrfs_set_header_nritems(right, nritems);
3592	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3593
3594	copy_leaf_items(right, l, 0, mid, nritems);
 
 
 
 
 
 
 
3595
3596	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3597		       leaf_data_end(l), data_copy_size);
3598
3599	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3600
3601	btrfs_init_map_token(&token, right);
3602	for (i = 0; i < nritems; i++) {
 
3603		u32 ioff;
3604
3605		ioff = btrfs_token_item_offset(&token, i);
3606		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3607	}
3608
3609	btrfs_set_header_nritems(l, mid);
3610	btrfs_item_key(right, &disk_key, 0);
3611	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3612	if (ret < 0)
3613		return ret;
3614
3615	btrfs_mark_buffer_dirty(trans, right);
3616	btrfs_mark_buffer_dirty(trans, l);
3617	BUG_ON(path->slots[0] != slot);
3618
3619	if (mid <= slot) {
3620		btrfs_tree_unlock(path->nodes[0]);
3621		free_extent_buffer(path->nodes[0]);
3622		path->nodes[0] = right;
3623		path->slots[0] -= mid;
3624		path->slots[1] += 1;
3625	} else {
3626		btrfs_tree_unlock(right);
3627		free_extent_buffer(right);
3628	}
3629
3630	BUG_ON(path->slots[0] < 0);
3631
3632	return 0;
3633}
3634
3635/*
3636 * double splits happen when we need to insert a big item in the middle
3637 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3638 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3639 *          A                 B                 C
3640 *
3641 * We avoid this by trying to push the items on either side of our target
3642 * into the adjacent leaves.  If all goes well we can avoid the double split
3643 * completely.
3644 */
3645static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3646					  struct btrfs_root *root,
3647					  struct btrfs_path *path,
3648					  int data_size)
3649{
3650	int ret;
3651	int progress = 0;
3652	int slot;
3653	u32 nritems;
3654	int space_needed = data_size;
3655
3656	slot = path->slots[0];
3657	if (slot < btrfs_header_nritems(path->nodes[0]))
3658		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3659
3660	/*
3661	 * try to push all the items after our slot into the
3662	 * right leaf
3663	 */
3664	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3665	if (ret < 0)
3666		return ret;
3667
3668	if (ret == 0)
3669		progress++;
3670
3671	nritems = btrfs_header_nritems(path->nodes[0]);
3672	/*
3673	 * our goal is to get our slot at the start or end of a leaf.  If
3674	 * we've done so we're done
3675	 */
3676	if (path->slots[0] == 0 || path->slots[0] == nritems)
3677		return 0;
3678
3679	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3680		return 0;
3681
3682	/* try to push all the items before our slot into the next leaf */
3683	slot = path->slots[0];
3684	space_needed = data_size;
3685	if (slot > 0)
3686		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3687	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3688	if (ret < 0)
3689		return ret;
3690
3691	if (ret == 0)
3692		progress++;
3693
3694	if (progress)
3695		return 0;
3696	return 1;
3697}
3698
3699/*
3700 * split the path's leaf in two, making sure there is at least data_size
3701 * available for the resulting leaf level of the path.
3702 *
3703 * returns 0 if all went well and < 0 on failure.
3704 */
3705static noinline int split_leaf(struct btrfs_trans_handle *trans,
3706			       struct btrfs_root *root,
3707			       const struct btrfs_key *ins_key,
3708			       struct btrfs_path *path, int data_size,
3709			       int extend)
3710{
3711	struct btrfs_disk_key disk_key;
3712	struct extent_buffer *l;
3713	u32 nritems;
3714	int mid;
3715	int slot;
3716	struct extent_buffer *right;
3717	struct btrfs_fs_info *fs_info = root->fs_info;
3718	int ret = 0;
3719	int wret;
3720	int split;
3721	int num_doubles = 0;
3722	int tried_avoid_double = 0;
3723
3724	l = path->nodes[0];
3725	slot = path->slots[0];
3726	if (extend && data_size + btrfs_item_size(l, slot) +
3727	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3728		return -EOVERFLOW;
3729
3730	/* first try to make some room by pushing left and right */
3731	if (data_size && path->nodes[1]) {
3732		int space_needed = data_size;
3733
3734		if (slot < btrfs_header_nritems(l))
3735			space_needed -= btrfs_leaf_free_space(l);
3736
3737		wret = push_leaf_right(trans, root, path, space_needed,
3738				       space_needed, 0, 0);
3739		if (wret < 0)
3740			return wret;
3741		if (wret) {
3742			space_needed = data_size;
3743			if (slot > 0)
3744				space_needed -= btrfs_leaf_free_space(l);
3745			wret = push_leaf_left(trans, root, path, space_needed,
3746					      space_needed, 0, (u32)-1);
3747			if (wret < 0)
3748				return wret;
3749		}
3750		l = path->nodes[0];
3751
3752		/* did the pushes work? */
3753		if (btrfs_leaf_free_space(l) >= data_size)
3754			return 0;
3755	}
3756
3757	if (!path->nodes[1]) {
3758		ret = insert_new_root(trans, root, path, 1);
3759		if (ret)
3760			return ret;
3761	}
3762again:
3763	split = 1;
3764	l = path->nodes[0];
3765	slot = path->slots[0];
3766	nritems = btrfs_header_nritems(l);
3767	mid = (nritems + 1) / 2;
3768
3769	if (mid <= slot) {
3770		if (nritems == 1 ||
3771		    leaf_space_used(l, mid, nritems - mid) + data_size >
3772			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3773			if (slot >= nritems) {
3774				split = 0;
3775			} else {
3776				mid = slot;
3777				if (mid != nritems &&
3778				    leaf_space_used(l, mid, nritems - mid) +
3779				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3780					if (data_size && !tried_avoid_double)
3781						goto push_for_double;
3782					split = 2;
3783				}
3784			}
3785		}
3786	} else {
3787		if (leaf_space_used(l, 0, mid) + data_size >
3788			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3789			if (!extend && data_size && slot == 0) {
3790				split = 0;
3791			} else if ((extend || !data_size) && slot == 0) {
3792				mid = 1;
3793			} else {
3794				mid = slot;
3795				if (mid != nritems &&
3796				    leaf_space_used(l, mid, nritems - mid) +
3797				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3798					if (data_size && !tried_avoid_double)
3799						goto push_for_double;
3800					split = 2;
3801				}
3802			}
3803		}
3804	}
3805
3806	if (split == 0)
3807		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3808	else
3809		btrfs_item_key(l, &disk_key, mid);
3810
3811	/*
3812	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3813	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3814	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3815	 * out.  In the future we could add a
3816	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3817	 * use BTRFS_NESTING_NEW_ROOT.
3818	 */
3819	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3820				       &disk_key, 0, l->start, 0, 0,
3821				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3822				       BTRFS_NESTING_SPLIT);
3823	if (IS_ERR(right))
3824		return PTR_ERR(right);
3825
3826	root_add_used_bytes(root);
3827
3828	if (split == 0) {
3829		if (mid <= slot) {
3830			btrfs_set_header_nritems(right, 0);
3831			ret = insert_ptr(trans, path, &disk_key,
3832					 right->start, path->slots[1] + 1, 1);
3833			if (ret < 0) {
3834				btrfs_tree_unlock(right);
3835				free_extent_buffer(right);
3836				return ret;
3837			}
3838			btrfs_tree_unlock(path->nodes[0]);
3839			free_extent_buffer(path->nodes[0]);
3840			path->nodes[0] = right;
3841			path->slots[0] = 0;
3842			path->slots[1] += 1;
3843		} else {
3844			btrfs_set_header_nritems(right, 0);
3845			ret = insert_ptr(trans, path, &disk_key,
3846					 right->start, path->slots[1], 1);
3847			if (ret < 0) {
3848				btrfs_tree_unlock(right);
3849				free_extent_buffer(right);
3850				return ret;
3851			}
3852			btrfs_tree_unlock(path->nodes[0]);
3853			free_extent_buffer(path->nodes[0]);
3854			path->nodes[0] = right;
3855			path->slots[0] = 0;
3856			if (path->slots[1] == 0)
3857				fixup_low_keys(trans, path, &disk_key, 1);
3858		}
3859		/*
3860		 * We create a new leaf 'right' for the required ins_len and
3861		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3862		 * the content of ins_len to 'right'.
3863		 */
3864		return ret;
3865	}
3866
3867	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3868	if (ret < 0) {
3869		btrfs_tree_unlock(right);
3870		free_extent_buffer(right);
3871		return ret;
3872	}
3873
3874	if (split == 2) {
3875		BUG_ON(num_doubles != 0);
3876		num_doubles++;
3877		goto again;
3878	}
3879
3880	return 0;
3881
3882push_for_double:
3883	push_for_double_split(trans, root, path, data_size);
3884	tried_avoid_double = 1;
3885	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3886		return 0;
3887	goto again;
3888}
3889
3890static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3891					 struct btrfs_root *root,
3892					 struct btrfs_path *path, int ins_len)
3893{
3894	struct btrfs_key key;
3895	struct extent_buffer *leaf;
3896	struct btrfs_file_extent_item *fi;
3897	u64 extent_len = 0;
3898	u32 item_size;
3899	int ret;
3900
3901	leaf = path->nodes[0];
3902	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3903
3904	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3905	       key.type != BTRFS_EXTENT_CSUM_KEY);
3906
3907	if (btrfs_leaf_free_space(leaf) >= ins_len)
3908		return 0;
3909
3910	item_size = btrfs_item_size(leaf, path->slots[0]);
3911	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3912		fi = btrfs_item_ptr(leaf, path->slots[0],
3913				    struct btrfs_file_extent_item);
3914		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3915	}
3916	btrfs_release_path(path);
3917
3918	path->keep_locks = 1;
3919	path->search_for_split = 1;
3920	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3921	path->search_for_split = 0;
3922	if (ret > 0)
3923		ret = -EAGAIN;
3924	if (ret < 0)
3925		goto err;
3926
3927	ret = -EAGAIN;
3928	leaf = path->nodes[0];
3929	/* if our item isn't there, return now */
3930	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3931		goto err;
3932
3933	/* the leaf has  changed, it now has room.  return now */
3934	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3935		goto err;
3936
3937	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3938		fi = btrfs_item_ptr(leaf, path->slots[0],
3939				    struct btrfs_file_extent_item);
3940		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3941			goto err;
3942	}
3943
 
3944	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3945	if (ret)
3946		goto err;
3947
3948	path->keep_locks = 0;
3949	btrfs_unlock_up_safe(path, 1);
3950	return 0;
3951err:
3952	path->keep_locks = 0;
3953	return ret;
3954}
3955
3956static noinline int split_item(struct btrfs_trans_handle *trans,
3957			       struct btrfs_path *path,
3958			       const struct btrfs_key *new_key,
3959			       unsigned long split_offset)
3960{
3961	struct extent_buffer *leaf;
3962	int orig_slot, slot;
 
 
3963	char *buf;
3964	u32 nritems;
3965	u32 item_size;
3966	u32 orig_offset;
3967	struct btrfs_disk_key disk_key;
3968
3969	leaf = path->nodes[0];
3970	/*
3971	 * Shouldn't happen because the caller must have previously called
3972	 * setup_leaf_for_split() to make room for the new item in the leaf.
3973	 */
3974	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3975		return -ENOSPC;
3976
3977	orig_slot = path->slots[0];
3978	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3979	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3980
3981	buf = kmalloc(item_size, GFP_NOFS);
3982	if (!buf)
3983		return -ENOMEM;
3984
3985	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986			    path->slots[0]), item_size);
3987
3988	slot = path->slots[0] + 1;
3989	nritems = btrfs_header_nritems(leaf);
3990	if (slot != nritems) {
3991		/* shift the items */
3992		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3993	}
3994
3995	btrfs_cpu_key_to_disk(&disk_key, new_key);
3996	btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998	btrfs_set_item_offset(leaf, slot, orig_offset);
3999	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
4000
4001	btrfs_set_item_offset(leaf, orig_slot,
4002				 orig_offset + item_size - split_offset);
4003	btrfs_set_item_size(leaf, orig_slot, split_offset);
4004
4005	btrfs_set_header_nritems(leaf, nritems + 1);
4006
4007	/* write the data for the start of the original item */
4008	write_extent_buffer(leaf, buf,
4009			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4010			    split_offset);
4011
4012	/* write the data for the new item */
4013	write_extent_buffer(leaf, buf + split_offset,
4014			    btrfs_item_ptr_offset(leaf, slot),
4015			    item_size - split_offset);
4016	btrfs_mark_buffer_dirty(trans, leaf);
4017
4018	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4019	kfree(buf);
4020	return 0;
4021}
4022
4023/*
4024 * This function splits a single item into two items,
4025 * giving 'new_key' to the new item and splitting the
4026 * old one at split_offset (from the start of the item).
4027 *
4028 * The path may be released by this operation.  After
4029 * the split, the path is pointing to the old item.  The
4030 * new item is going to be in the same node as the old one.
4031 *
4032 * Note, the item being split must be smaller enough to live alone on
4033 * a tree block with room for one extra struct btrfs_item
4034 *
4035 * This allows us to split the item in place, keeping a lock on the
4036 * leaf the entire time.
4037 */
4038int btrfs_split_item(struct btrfs_trans_handle *trans,
4039		     struct btrfs_root *root,
4040		     struct btrfs_path *path,
4041		     const struct btrfs_key *new_key,
4042		     unsigned long split_offset)
4043{
4044	int ret;
4045	ret = setup_leaf_for_split(trans, root, path,
4046				   sizeof(struct btrfs_item));
4047	if (ret)
4048		return ret;
4049
4050	ret = split_item(trans, path, new_key, split_offset);
4051	return ret;
4052}
4053
4054/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055 * make the item pointed to by the path smaller.  new_size indicates
4056 * how small to make it, and from_end tells us if we just chop bytes
4057 * off the end of the item or if we shift the item to chop bytes off
4058 * the front.
4059 */
4060void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4061			 const struct btrfs_path *path, u32 new_size, int from_end)
4062{
4063	int slot;
4064	struct extent_buffer *leaf;
 
4065	u32 nritems;
4066	unsigned int data_end;
4067	unsigned int old_data_start;
4068	unsigned int old_size;
4069	unsigned int size_diff;
4070	int i;
4071	struct btrfs_map_token token;
4072
4073	leaf = path->nodes[0];
4074	slot = path->slots[0];
4075
4076	old_size = btrfs_item_size(leaf, slot);
4077	if (old_size == new_size)
4078		return;
4079
4080	nritems = btrfs_header_nritems(leaf);
4081	data_end = leaf_data_end(leaf);
4082
4083	old_data_start = btrfs_item_offset(leaf, slot);
4084
4085	size_diff = old_size - new_size;
4086
4087	BUG_ON(slot < 0);
4088	BUG_ON(slot >= nritems);
4089
4090	/*
4091	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4092	 */
4093	/* first correct the data pointers */
4094	btrfs_init_map_token(&token, leaf);
4095	for (i = slot; i < nritems; i++) {
4096		u32 ioff;
 
4097
4098		ioff = btrfs_token_item_offset(&token, i);
4099		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4100	}
4101
4102	/* shift the data */
4103	if (from_end) {
4104		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4105				  old_data_start + new_size - data_end);
 
4106	} else {
4107		struct btrfs_disk_key disk_key;
4108		u64 offset;
4109
4110		btrfs_item_key(leaf, &disk_key, slot);
4111
4112		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4113			unsigned long ptr;
4114			struct btrfs_file_extent_item *fi;
4115
4116			fi = btrfs_item_ptr(leaf, slot,
4117					    struct btrfs_file_extent_item);
4118			fi = (struct btrfs_file_extent_item *)(
4119			     (unsigned long)fi - size_diff);
4120
4121			if (btrfs_file_extent_type(leaf, fi) ==
4122			    BTRFS_FILE_EXTENT_INLINE) {
4123				ptr = btrfs_item_ptr_offset(leaf, slot);
4124				memmove_extent_buffer(leaf, ptr,
4125				      (unsigned long)fi,
4126				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4127			}
4128		}
4129
4130		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4131				  old_data_start - data_end);
 
4132
4133		offset = btrfs_disk_key_offset(&disk_key);
4134		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4135		btrfs_set_item_key(leaf, &disk_key, slot);
4136		if (slot == 0)
4137			fixup_low_keys(trans, path, &disk_key, 1);
4138	}
4139
4140	btrfs_set_item_size(leaf, slot, new_size);
4141	btrfs_mark_buffer_dirty(trans, leaf);
 
4142
4143	if (btrfs_leaf_free_space(leaf) < 0) {
4144		btrfs_print_leaf(leaf);
4145		BUG();
4146	}
4147}
4148
4149/*
4150 * make the item pointed to by the path bigger, data_size is the added size.
4151 */
4152void btrfs_extend_item(struct btrfs_trans_handle *trans,
4153		       const struct btrfs_path *path, u32 data_size)
4154{
4155	int slot;
4156	struct extent_buffer *leaf;
 
4157	u32 nritems;
4158	unsigned int data_end;
4159	unsigned int old_data;
4160	unsigned int old_size;
4161	int i;
4162	struct btrfs_map_token token;
4163
4164	leaf = path->nodes[0];
4165
4166	nritems = btrfs_header_nritems(leaf);
4167	data_end = leaf_data_end(leaf);
4168
4169	if (btrfs_leaf_free_space(leaf) < data_size) {
4170		btrfs_print_leaf(leaf);
4171		BUG();
4172	}
4173	slot = path->slots[0];
4174	old_data = btrfs_item_data_end(leaf, slot);
4175
4176	BUG_ON(slot < 0);
4177	if (slot >= nritems) {
4178		btrfs_print_leaf(leaf);
4179		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4180			   slot, nritems);
4181		BUG();
4182	}
4183
4184	/*
4185	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4186	 */
4187	/* first correct the data pointers */
4188	btrfs_init_map_token(&token, leaf);
4189	for (i = slot; i < nritems; i++) {
4190		u32 ioff;
 
4191
4192		ioff = btrfs_token_item_offset(&token, i);
4193		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4194	}
4195
4196	/* shift the data */
4197	memmove_leaf_data(leaf, data_end - data_size, data_end,
4198			  old_data - data_end);
 
4199
4200	data_end = old_data;
4201	old_size = btrfs_item_size(leaf, slot);
4202	btrfs_set_item_size(leaf, slot, old_size + data_size);
4203	btrfs_mark_buffer_dirty(trans, leaf);
 
4204
4205	if (btrfs_leaf_free_space(leaf) < 0) {
4206		btrfs_print_leaf(leaf);
4207		BUG();
4208	}
4209}
4210
4211/*
4212 * Make space in the node before inserting one or more items.
4213 *
4214 * @trans:	transaction handle
4215 * @root:	root we are inserting items to
4216 * @path:	points to the leaf/slot where we are going to insert new items
4217 * @batch:      information about the batch of items to insert
4218 *
4219 * Main purpose is to save stack depth by doing the bulk of the work in a
4220 * function that doesn't call btrfs_search_slot
4221 */
4222static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4223				   struct btrfs_root *root, struct btrfs_path *path,
4224				   const struct btrfs_item_batch *batch)
4225{
4226	struct btrfs_fs_info *fs_info = root->fs_info;
 
4227	int i;
4228	u32 nritems;
4229	unsigned int data_end;
4230	struct btrfs_disk_key disk_key;
4231	struct extent_buffer *leaf;
4232	int slot;
4233	struct btrfs_map_token token;
4234	u32 total_size;
4235
4236	/*
4237	 * Before anything else, update keys in the parent and other ancestors
4238	 * if needed, then release the write locks on them, so that other tasks
4239	 * can use them while we modify the leaf.
4240	 */
4241	if (path->slots[0] == 0) {
4242		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4243		fixup_low_keys(trans, path, &disk_key, 1);
4244	}
4245	btrfs_unlock_up_safe(path, 1);
4246
4247	leaf = path->nodes[0];
4248	slot = path->slots[0];
4249
4250	nritems = btrfs_header_nritems(leaf);
4251	data_end = leaf_data_end(leaf);
4252	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4253
4254	if (btrfs_leaf_free_space(leaf) < total_size) {
4255		btrfs_print_leaf(leaf);
4256		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4257			   total_size, btrfs_leaf_free_space(leaf));
4258		BUG();
4259	}
4260
4261	btrfs_init_map_token(&token, leaf);
4262	if (slot != nritems) {
4263		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4264
4265		if (old_data < data_end) {
4266			btrfs_print_leaf(leaf);
4267			btrfs_crit(fs_info,
4268		"item at slot %d with data offset %u beyond data end of leaf %u",
4269				   slot, old_data, data_end);
4270			BUG();
4271		}
4272		/*
4273		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4274		 */
4275		/* first correct the data pointers */
4276		for (i = slot; i < nritems; i++) {
4277			u32 ioff;
4278
4279			ioff = btrfs_token_item_offset(&token, i);
4280			btrfs_set_token_item_offset(&token, i,
4281						       ioff - batch->total_data_size);
 
4282		}
4283		/* shift the items */
4284		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4285
4286		/* shift the data */
4287		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4288				  data_end, old_data - data_end);
 
4289		data_end = old_data;
4290	}
4291
4292	/* setup the item for the new data */
4293	for (i = 0; i < batch->nr; i++) {
4294		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4295		btrfs_set_item_key(leaf, &disk_key, slot + i);
4296		data_end -= batch->data_sizes[i];
4297		btrfs_set_token_item_offset(&token, slot + i, data_end);
4298		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
4299	}
4300
4301	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4302	btrfs_mark_buffer_dirty(trans, leaf);
4303
4304	if (btrfs_leaf_free_space(leaf) < 0) {
4305		btrfs_print_leaf(leaf);
4306		BUG();
4307	}
4308}
4309
4310/*
4311 * Insert a new item into a leaf.
4312 *
4313 * @trans:     Transaction handle.
4314 * @root:      The root of the btree.
4315 * @path:      A path pointing to the target leaf and slot.
4316 * @key:       The key of the new item.
4317 * @data_size: The size of the data associated with the new key.
4318 */
4319void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4320				 struct btrfs_root *root,
4321				 struct btrfs_path *path,
4322				 const struct btrfs_key *key,
4323				 u32 data_size)
4324{
4325	struct btrfs_item_batch batch;
4326
4327	batch.keys = key;
4328	batch.data_sizes = &data_size;
4329	batch.total_data_size = data_size;
4330	batch.nr = 1;
4331
4332	setup_items_for_insert(trans, root, path, &batch);
4333}
4334
4335/*
4336 * Given a key and some data, insert items into the tree.
4337 * This does all the path init required, making room in the tree if needed.
4338 *
4339 * Returns: 0        on success
4340 *          -EEXIST  if the first key already exists
4341 *          < 0      on other errors
4342 */
4343int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4344			    struct btrfs_root *root,
4345			    struct btrfs_path *path,
4346			    const struct btrfs_item_batch *batch)
 
4347{
4348	int ret = 0;
4349	int slot;
4350	u32 total_size;
 
 
4351
4352	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4353	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
 
 
 
4354	if (ret == 0)
4355		return -EEXIST;
4356	if (ret < 0)
4357		return ret;
4358
4359	slot = path->slots[0];
4360	BUG_ON(slot < 0);
4361
4362	setup_items_for_insert(trans, root, path, batch);
 
4363	return 0;
4364}
4365
4366/*
4367 * Given a key and some data, insert an item into the tree.
4368 * This does all the path init required, making room in the tree if needed.
4369 */
4370int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4371		      const struct btrfs_key *cpu_key, void *data,
4372		      u32 data_size)
4373{
4374	int ret = 0;
4375	struct btrfs_path *path;
4376	struct extent_buffer *leaf;
4377	unsigned long ptr;
4378
4379	path = btrfs_alloc_path();
4380	if (!path)
4381		return -ENOMEM;
4382	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4383	if (!ret) {
4384		leaf = path->nodes[0];
4385		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4386		write_extent_buffer(leaf, data, ptr, data_size);
4387		btrfs_mark_buffer_dirty(trans, leaf);
4388	}
4389	btrfs_free_path(path);
4390	return ret;
4391}
4392
4393/*
4394 * This function duplicates an item, giving 'new_key' to the new item.
4395 * It guarantees both items live in the same tree leaf and the new item is
4396 * contiguous with the original item.
4397 *
4398 * This allows us to split a file extent in place, keeping a lock on the leaf
4399 * the entire time.
4400 */
4401int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4402			 struct btrfs_root *root,
4403			 struct btrfs_path *path,
4404			 const struct btrfs_key *new_key)
4405{
4406	struct extent_buffer *leaf;
4407	int ret;
4408	u32 item_size;
4409
4410	leaf = path->nodes[0];
4411	item_size = btrfs_item_size(leaf, path->slots[0]);
4412	ret = setup_leaf_for_split(trans, root, path,
4413				   item_size + sizeof(struct btrfs_item));
4414	if (ret)
4415		return ret;
4416
4417	path->slots[0]++;
4418	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4419	leaf = path->nodes[0];
4420	memcpy_extent_buffer(leaf,
4421			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4422			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4423			     item_size);
4424	return 0;
4425}
4426
4427/*
4428 * delete the pointer from a given node.
4429 *
4430 * the tree should have been previously balanced so the deletion does not
4431 * empty a node.
4432 *
4433 * This is exported for use inside btrfs-progs, don't un-export it.
4434 */
4435int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4436		  struct btrfs_path *path, int level, int slot)
4437{
4438	struct extent_buffer *parent = path->nodes[level];
4439	u32 nritems;
4440	int ret;
4441
4442	nritems = btrfs_header_nritems(parent);
4443	if (slot != nritems - 1) {
4444		if (level) {
4445			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4446					slot + 1, nritems - slot - 1);
4447			if (ret < 0) {
4448				btrfs_abort_transaction(trans, ret);
4449				return ret;
4450			}
4451		}
4452		memmove_extent_buffer(parent,
4453			      btrfs_node_key_ptr_offset(parent, slot),
4454			      btrfs_node_key_ptr_offset(parent, slot + 1),
4455			      sizeof(struct btrfs_key_ptr) *
4456			      (nritems - slot - 1));
4457	} else if (level) {
4458		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4459						    BTRFS_MOD_LOG_KEY_REMOVE);
4460		if (ret < 0) {
4461			btrfs_abort_transaction(trans, ret);
4462			return ret;
4463		}
4464	}
4465
4466	nritems--;
4467	btrfs_set_header_nritems(parent, nritems);
4468	if (nritems == 0 && parent == root->node) {
4469		BUG_ON(btrfs_header_level(root->node) != 1);
4470		/* just turn the root into a leaf and break */
4471		btrfs_set_header_level(root->node, 0);
4472	} else if (slot == 0) {
4473		struct btrfs_disk_key disk_key;
4474
4475		btrfs_node_key(parent, &disk_key, 0);
4476		fixup_low_keys(trans, path, &disk_key, level + 1);
4477	}
4478	btrfs_mark_buffer_dirty(trans, parent);
4479	return 0;
4480}
4481
4482/*
4483 * a helper function to delete the leaf pointed to by path->slots[1] and
4484 * path->nodes[1].
4485 *
4486 * This deletes the pointer in path->nodes[1] and frees the leaf
4487 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4488 *
4489 * The path must have already been setup for deleting the leaf, including
4490 * all the proper balancing.  path->nodes[1] must be locked.
4491 */
4492static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4493				   struct btrfs_root *root,
4494				   struct btrfs_path *path,
4495				   struct extent_buffer *leaf)
4496{
4497	int ret;
4498
4499	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4500	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4501	if (ret < 0)
4502		return ret;
4503
4504	/*
4505	 * btrfs_free_extent is expensive, we want to make sure we
4506	 * aren't holding any locks when we call it
4507	 */
4508	btrfs_unlock_up_safe(path, 0);
4509
4510	root_sub_used_bytes(root);
4511
4512	atomic_inc(&leaf->refs);
4513	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4514	free_extent_buffer_stale(leaf);
4515	if (ret < 0)
4516		btrfs_abort_transaction(trans, ret);
4517
4518	return ret;
4519}
4520/*
4521 * delete the item at the leaf level in path.  If that empties
4522 * the leaf, remove it from the tree
4523 */
4524int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4525		    struct btrfs_path *path, int slot, int nr)
4526{
4527	struct btrfs_fs_info *fs_info = root->fs_info;
4528	struct extent_buffer *leaf;
 
 
 
4529	int ret = 0;
4530	int wret;
 
4531	u32 nritems;
4532
4533	leaf = path->nodes[0];
 
 
 
 
 
4534	nritems = btrfs_header_nritems(leaf);
4535
4536	if (slot + nr != nritems) {
4537		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4538		const int data_end = leaf_data_end(leaf);
4539		struct btrfs_map_token token;
4540		u32 dsize = 0;
4541		int i;
4542
4543		for (i = 0; i < nr; i++)
4544			dsize += btrfs_item_size(leaf, slot + i);
4545
4546		memmove_leaf_data(leaf, data_end + dsize, data_end,
4547				  last_off - data_end);
4548
4549		btrfs_init_map_token(&token, leaf);
4550		for (i = slot + nr; i < nritems; i++) {
4551			u32 ioff;
4552
4553			ioff = btrfs_token_item_offset(&token, i);
4554			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
4555		}
4556
4557		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4558	}
4559	btrfs_set_header_nritems(leaf, nritems - nr);
4560	nritems -= nr;
4561
4562	/* delete the leaf if we've emptied it */
4563	if (nritems == 0) {
4564		if (leaf == root->node) {
4565			btrfs_set_header_level(leaf, 0);
4566		} else {
4567			btrfs_clear_buffer_dirty(trans, leaf);
4568			ret = btrfs_del_leaf(trans, root, path, leaf);
4569			if (ret < 0)
4570				return ret;
4571		}
4572	} else {
4573		int used = leaf_space_used(leaf, 0, nritems);
4574		if (slot == 0) {
4575			struct btrfs_disk_key disk_key;
4576
4577			btrfs_item_key(leaf, &disk_key, 0);
4578			fixup_low_keys(trans, path, &disk_key, 1);
4579		}
4580
4581		/*
4582		 * Try to delete the leaf if it is mostly empty. We do this by
4583		 * trying to move all its items into its left and right neighbours.
4584		 * If we can't move all the items, then we don't delete it - it's
4585		 * not ideal, but future insertions might fill the leaf with more
4586		 * items, or items from other leaves might be moved later into our
4587		 * leaf due to deletions on those leaves.
4588		 */
4589		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4590			u32 min_push_space;
4591
4592			/* push_leaf_left fixes the path.
4593			 * make sure the path still points to our leaf
4594			 * for possible call to btrfs_del_ptr below
4595			 */
4596			slot = path->slots[1];
4597			atomic_inc(&leaf->refs);
4598			/*
4599			 * We want to be able to at least push one item to the
4600			 * left neighbour leaf, and that's the first item.
4601			 */
4602			min_push_space = sizeof(struct btrfs_item) +
4603				btrfs_item_size(leaf, 0);
4604			wret = push_leaf_left(trans, root, path, 0,
4605					      min_push_space, 1, (u32)-1);
4606			if (wret < 0 && wret != -ENOSPC)
4607				ret = wret;
4608
4609			if (path->nodes[0] == leaf &&
4610			    btrfs_header_nritems(leaf)) {
4611				/*
4612				 * If we were not able to push all items from our
4613				 * leaf to its left neighbour, then attempt to
4614				 * either push all the remaining items to the
4615				 * right neighbour or none. There's no advantage
4616				 * in pushing only some items, instead of all, as
4617				 * it's pointless to end up with a leaf having
4618				 * too few items while the neighbours can be full
4619				 * or nearly full.
4620				 */
4621				nritems = btrfs_header_nritems(leaf);
4622				min_push_space = leaf_space_used(leaf, 0, nritems);
4623				wret = push_leaf_right(trans, root, path, 0,
4624						       min_push_space, 1, 0);
4625				if (wret < 0 && wret != -ENOSPC)
4626					ret = wret;
4627			}
4628
4629			if (btrfs_header_nritems(leaf) == 0) {
4630				path->slots[1] = slot;
4631				ret = btrfs_del_leaf(trans, root, path, leaf);
4632				if (ret < 0)
4633					return ret;
4634				free_extent_buffer(leaf);
4635				ret = 0;
4636			} else {
4637				/* if we're still in the path, make sure
4638				 * we're dirty.  Otherwise, one of the
4639				 * push_leaf functions must have already
4640				 * dirtied this buffer
4641				 */
4642				if (path->nodes[0] == leaf)
4643					btrfs_mark_buffer_dirty(trans, leaf);
4644				free_extent_buffer(leaf);
4645			}
4646		} else {
4647			btrfs_mark_buffer_dirty(trans, leaf);
4648		}
4649	}
4650	return ret;
4651}
4652
4653/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654 * A helper function to walk down the tree starting at min_key, and looking
4655 * for nodes or leaves that are have a minimum transaction id.
4656 * This is used by the btree defrag code, and tree logging
4657 *
4658 * This does not cow, but it does stuff the starting key it finds back
4659 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4660 * key and get a writable path.
4661 *
4662 * This honors path->lowest_level to prevent descent past a given level
4663 * of the tree.
4664 *
4665 * min_trans indicates the oldest transaction that you are interested
4666 * in walking through.  Any nodes or leaves older than min_trans are
4667 * skipped over (without reading them).
4668 *
4669 * returns zero if something useful was found, < 0 on error and 1 if there
4670 * was nothing in the tree that matched the search criteria.
4671 */
4672int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4673			 struct btrfs_path *path,
4674			 u64 min_trans)
4675{
4676	struct extent_buffer *cur;
4677	struct btrfs_key found_key;
4678	int slot;
4679	int sret;
4680	u32 nritems;
4681	int level;
4682	int ret = 1;
4683	int keep_locks = path->keep_locks;
4684
4685	ASSERT(!path->nowait);
4686	path->keep_locks = 1;
4687again:
4688	cur = btrfs_read_lock_root_node(root);
4689	level = btrfs_header_level(cur);
4690	WARN_ON(path->nodes[level]);
4691	path->nodes[level] = cur;
4692	path->locks[level] = BTRFS_READ_LOCK;
4693
4694	if (btrfs_header_generation(cur) < min_trans) {
4695		ret = 1;
4696		goto out;
4697	}
4698	while (1) {
4699		nritems = btrfs_header_nritems(cur);
4700		level = btrfs_header_level(cur);
4701		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4702		if (sret < 0) {
4703			ret = sret;
4704			goto out;
4705		}
4706
4707		/* at the lowest level, we're done, setup the path and exit */
4708		if (level == path->lowest_level) {
4709			if (slot >= nritems)
4710				goto find_next_key;
4711			ret = 0;
4712			path->slots[level] = slot;
4713			btrfs_item_key_to_cpu(cur, &found_key, slot);
4714			goto out;
4715		}
4716		if (sret && slot > 0)
4717			slot--;
4718		/*
4719		 * check this node pointer against the min_trans parameters.
4720		 * If it is too old, skip to the next one.
4721		 */
4722		while (slot < nritems) {
4723			u64 gen;
4724
4725			gen = btrfs_node_ptr_generation(cur, slot);
4726			if (gen < min_trans) {
4727				slot++;
4728				continue;
4729			}
4730			break;
4731		}
4732find_next_key:
4733		/*
4734		 * we didn't find a candidate key in this node, walk forward
4735		 * and find another one
4736		 */
4737		if (slot >= nritems) {
4738			path->slots[level] = slot;
 
4739			sret = btrfs_find_next_key(root, path, min_key, level,
4740						  min_trans);
4741			if (sret == 0) {
4742				btrfs_release_path(path);
4743				goto again;
4744			} else {
4745				goto out;
4746			}
4747		}
4748		/* save our key for returning back */
4749		btrfs_node_key_to_cpu(cur, &found_key, slot);
4750		path->slots[level] = slot;
4751		if (level == path->lowest_level) {
4752			ret = 0;
4753			goto out;
4754		}
 
4755		cur = btrfs_read_node_slot(cur, slot);
4756		if (IS_ERR(cur)) {
4757			ret = PTR_ERR(cur);
4758			goto out;
4759		}
4760
4761		btrfs_tree_read_lock(cur);
4762
4763		path->locks[level - 1] = BTRFS_READ_LOCK;
4764		path->nodes[level - 1] = cur;
4765		unlock_up(path, level, 1, 0, NULL);
4766	}
4767out:
4768	path->keep_locks = keep_locks;
4769	if (ret == 0) {
4770		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 
4771		memcpy(min_key, &found_key, sizeof(found_key));
4772	}
4773	return ret;
4774}
4775
4776/*
4777 * this is similar to btrfs_next_leaf, but does not try to preserve
4778 * and fixup the path.  It looks for and returns the next key in the
4779 * tree based on the current path and the min_trans parameters.
4780 *
4781 * 0 is returned if another key is found, < 0 if there are any errors
4782 * and 1 is returned if there are no higher keys in the tree
4783 *
4784 * path->keep_locks should be set to 1 on the search made before
4785 * calling this function.
4786 */
4787int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4788			struct btrfs_key *key, int level, u64 min_trans)
4789{
4790	int slot;
4791	struct extent_buffer *c;
4792
4793	WARN_ON(!path->keep_locks && !path->skip_locking);
4794	while (level < BTRFS_MAX_LEVEL) {
4795		if (!path->nodes[level])
4796			return 1;
4797
4798		slot = path->slots[level] + 1;
4799		c = path->nodes[level];
4800next:
4801		if (slot >= btrfs_header_nritems(c)) {
4802			int ret;
4803			int orig_lowest;
4804			struct btrfs_key cur_key;
4805			if (level + 1 >= BTRFS_MAX_LEVEL ||
4806			    !path->nodes[level + 1])
4807				return 1;
4808
4809			if (path->locks[level + 1] || path->skip_locking) {
4810				level++;
4811				continue;
4812			}
4813
4814			slot = btrfs_header_nritems(c) - 1;
4815			if (level == 0)
4816				btrfs_item_key_to_cpu(c, &cur_key, slot);
4817			else
4818				btrfs_node_key_to_cpu(c, &cur_key, slot);
4819
4820			orig_lowest = path->lowest_level;
4821			btrfs_release_path(path);
4822			path->lowest_level = level;
4823			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4824						0, 0);
4825			path->lowest_level = orig_lowest;
4826			if (ret < 0)
4827				return ret;
4828
4829			c = path->nodes[level];
4830			slot = path->slots[level];
4831			if (ret == 0)
4832				slot++;
4833			goto next;
4834		}
4835
4836		if (level == 0)
4837			btrfs_item_key_to_cpu(c, key, slot);
4838		else {
4839			u64 gen = btrfs_node_ptr_generation(c, slot);
4840
4841			if (gen < min_trans) {
4842				slot++;
4843				goto next;
4844			}
4845			btrfs_node_key_to_cpu(c, key, slot);
4846		}
4847		return 0;
4848	}
4849	return 1;
4850}
4851
 
 
 
 
 
 
 
 
 
 
4852int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4853			u64 time_seq)
4854{
4855	int slot;
4856	int level;
4857	struct extent_buffer *c;
4858	struct extent_buffer *next;
4859	struct btrfs_fs_info *fs_info = root->fs_info;
4860	struct btrfs_key key;
4861	bool need_commit_sem = false;
4862	u32 nritems;
4863	int ret;
4864	int i;
4865
4866	/*
4867	 * The nowait semantics are used only for write paths, where we don't
4868	 * use the tree mod log and sequence numbers.
4869	 */
4870	if (time_seq)
4871		ASSERT(!path->nowait);
4872
4873	nritems = btrfs_header_nritems(path->nodes[0]);
4874	if (nritems == 0)
4875		return 1;
4876
4877	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4878again:
4879	level = 1;
4880	next = NULL;
 
4881	btrfs_release_path(path);
4882
4883	path->keep_locks = 1;
 
4884
4885	if (time_seq) {
4886		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4887	} else {
4888		if (path->need_commit_sem) {
4889			path->need_commit_sem = 0;
4890			need_commit_sem = true;
4891			if (path->nowait) {
4892				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4893					ret = -EAGAIN;
4894					goto done;
4895				}
4896			} else {
4897				down_read(&fs_info->commit_root_sem);
4898			}
4899		}
4900		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4901	}
4902	path->keep_locks = 0;
4903
4904	if (ret < 0)
4905		goto done;
4906
4907	nritems = btrfs_header_nritems(path->nodes[0]);
4908	/*
4909	 * by releasing the path above we dropped all our locks.  A balance
4910	 * could have added more items next to the key that used to be
4911	 * at the very end of the block.  So, check again here and
4912	 * advance the path if there are now more items available.
4913	 */
4914	if (nritems > 0 && path->slots[0] < nritems - 1) {
4915		if (ret == 0)
4916			path->slots[0]++;
4917		ret = 0;
4918		goto done;
4919	}
4920	/*
4921	 * So the above check misses one case:
4922	 * - after releasing the path above, someone has removed the item that
4923	 *   used to be at the very end of the block, and balance between leafs
4924	 *   gets another one with bigger key.offset to replace it.
4925	 *
4926	 * This one should be returned as well, or we can get leaf corruption
4927	 * later(esp. in __btrfs_drop_extents()).
4928	 *
4929	 * And a bit more explanation about this check,
4930	 * with ret > 0, the key isn't found, the path points to the slot
4931	 * where it should be inserted, so the path->slots[0] item must be the
4932	 * bigger one.
4933	 */
4934	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4935		ret = 0;
4936		goto done;
4937	}
4938
4939	while (level < BTRFS_MAX_LEVEL) {
4940		if (!path->nodes[level]) {
4941			ret = 1;
4942			goto done;
4943		}
4944
4945		slot = path->slots[level] + 1;
4946		c = path->nodes[level];
4947		if (slot >= btrfs_header_nritems(c)) {
4948			level++;
4949			if (level == BTRFS_MAX_LEVEL) {
4950				ret = 1;
4951				goto done;
4952			}
4953			continue;
4954		}
4955
4956
4957		/*
4958		 * Our current level is where we're going to start from, and to
4959		 * make sure lockdep doesn't complain we need to drop our locks
4960		 * and nodes from 0 to our current level.
4961		 */
4962		for (i = 0; i < level; i++) {
4963			if (path->locks[level]) {
4964				btrfs_tree_read_unlock(path->nodes[i]);
4965				path->locks[i] = 0;
4966			}
4967			free_extent_buffer(path->nodes[i]);
4968			path->nodes[i] = NULL;
4969		}
4970
4971		next = c;
4972		ret = read_block_for_search(root, path, &next, slot, &key);
4973		if (ret == -EAGAIN && !path->nowait)
 
 
4974			goto again;
4975
4976		if (ret < 0) {
4977			btrfs_release_path(path);
4978			goto done;
4979		}
4980
4981		if (!path->skip_locking) {
4982			ret = btrfs_try_tree_read_lock(next);
4983			if (!ret && path->nowait) {
4984				ret = -EAGAIN;
4985				goto done;
4986			}
4987			if (!ret && time_seq) {
4988				/*
4989				 * If we don't get the lock, we may be racing
4990				 * with push_leaf_left, holding that lock while
4991				 * itself waiting for the leaf we've currently
4992				 * locked. To solve this situation, we give up
4993				 * on our lock and cycle.
4994				 */
4995				free_extent_buffer(next);
4996				btrfs_release_path(path);
4997				cond_resched();
4998				goto again;
4999			}
5000			if (!ret)
 
5001				btrfs_tree_read_lock(next);
 
 
5002		}
5003		break;
5004	}
5005	path->slots[level] = slot;
5006	while (1) {
5007		level--;
 
 
 
 
 
5008		path->nodes[level] = next;
5009		path->slots[level] = 0;
5010		if (!path->skip_locking)
5011			path->locks[level] = BTRFS_READ_LOCK;
5012		if (!level)
5013			break;
5014
5015		ret = read_block_for_search(root, path, &next, 0, &key);
5016		if (ret == -EAGAIN && !path->nowait)
 
5017			goto again;
5018
5019		if (ret < 0) {
5020			btrfs_release_path(path);
5021			goto done;
5022		}
5023
5024		if (!path->skip_locking) {
5025			if (path->nowait) {
5026				if (!btrfs_try_tree_read_lock(next)) {
5027					ret = -EAGAIN;
5028					goto done;
5029				}
5030			} else {
5031				btrfs_tree_read_lock(next);
5032			}
 
5033		}
5034	}
5035	ret = 0;
5036done:
5037	unlock_up(path, 0, 1, 0, NULL);
5038	if (need_commit_sem) {
5039		int ret2;
5040
5041		path->need_commit_sem = 1;
5042		ret2 = finish_need_commit_sem_search(path);
5043		up_read(&fs_info->commit_root_sem);
5044		if (ret2)
5045			ret = ret2;
5046	}
5047
5048	return ret;
5049}
5050
5051int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5052{
5053	path->slots[0]++;
5054	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5055		return btrfs_next_old_leaf(root, path, time_seq);
5056	return 0;
5057}
5058
5059/*
5060 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5061 * searching until it gets past min_objectid or finds an item of 'type'
5062 *
5063 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5064 */
5065int btrfs_previous_item(struct btrfs_root *root,
5066			struct btrfs_path *path, u64 min_objectid,
5067			int type)
5068{
5069	struct btrfs_key found_key;
5070	struct extent_buffer *leaf;
5071	u32 nritems;
5072	int ret;
5073
5074	while (1) {
5075		if (path->slots[0] == 0) {
 
5076			ret = btrfs_prev_leaf(root, path);
5077			if (ret != 0)
5078				return ret;
5079		} else {
5080			path->slots[0]--;
5081		}
5082		leaf = path->nodes[0];
5083		nritems = btrfs_header_nritems(leaf);
5084		if (nritems == 0)
5085			return 1;
5086		if (path->slots[0] == nritems)
5087			path->slots[0]--;
5088
5089		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090		if (found_key.objectid < min_objectid)
5091			break;
5092		if (found_key.type == type)
5093			return 0;
5094		if (found_key.objectid == min_objectid &&
5095		    found_key.type < type)
5096			break;
5097	}
5098	return 1;
5099}
5100
5101/*
5102 * search in extent tree to find a previous Metadata/Data extent item with
5103 * min objecitd.
5104 *
5105 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5106 */
5107int btrfs_previous_extent_item(struct btrfs_root *root,
5108			struct btrfs_path *path, u64 min_objectid)
5109{
5110	struct btrfs_key found_key;
5111	struct extent_buffer *leaf;
5112	u32 nritems;
5113	int ret;
5114
5115	while (1) {
5116		if (path->slots[0] == 0) {
 
5117			ret = btrfs_prev_leaf(root, path);
5118			if (ret != 0)
5119				return ret;
5120		} else {
5121			path->slots[0]--;
5122		}
5123		leaf = path->nodes[0];
5124		nritems = btrfs_header_nritems(leaf);
5125		if (nritems == 0)
5126			return 1;
5127		if (path->slots[0] == nritems)
5128			path->slots[0]--;
5129
5130		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5131		if (found_key.objectid < min_objectid)
5132			break;
5133		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5134		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5135			return 0;
5136		if (found_key.objectid == min_objectid &&
5137		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5138			break;
5139	}
5140	return 1;
5141}
5142
5143int __init btrfs_ctree_init(void)
5144{
5145	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5146	if (!btrfs_path_cachep)
5147		return -ENOMEM;
5148	return 0;
5149}
5150
5151void __cold btrfs_ctree_exit(void)
5152{
5153	kmem_cache_destroy(btrfs_path_cachep);
5154}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
 
 
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
 
 
 
 
 
 
 
 
 
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	name[10];
  35	const char	driver[12];
  36} btrfs_csums[] = {
  37	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  38	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  39	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  40	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  41				     .driver = "blake2b-256" },
  42};
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44int btrfs_super_csum_size(const struct btrfs_super_block *s)
  45{
  46	u16 t = btrfs_super_csum_type(s);
  47	/*
  48	 * csum type is validated at mount time
  49	 */
  50	return btrfs_csums[t].size;
  51}
  52
  53const char *btrfs_super_csum_name(u16 csum_type)
  54{
  55	/* csum type is validated at mount time */
  56	return btrfs_csums[csum_type].name;
  57}
  58
  59/*
  60 * Return driver name if defined, otherwise the name that's also a valid driver
  61 * name
  62 */
  63const char *btrfs_super_csum_driver(u16 csum_type)
  64{
  65	/* csum type is validated at mount time */
  66	return btrfs_csums[csum_type].driver[0] ?
  67		btrfs_csums[csum_type].driver :
  68		btrfs_csums[csum_type].name;
  69}
  70
  71size_t __attribute_const__ btrfs_get_num_csums(void)
  72{
  73	return ARRAY_SIZE(btrfs_csums);
  74}
  75
  76struct btrfs_path *btrfs_alloc_path(void)
  77{
 
 
  78	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  79}
  80
  81/* this also releases the path */
  82void btrfs_free_path(struct btrfs_path *p)
  83{
  84	if (!p)
  85		return;
  86	btrfs_release_path(p);
  87	kmem_cache_free(btrfs_path_cachep, p);
  88}
  89
  90/*
  91 * path release drops references on the extent buffers in the path
  92 * and it drops any locks held by this path
  93 *
  94 * It is safe to call this on paths that no locks or extent buffers held.
  95 */
  96noinline void btrfs_release_path(struct btrfs_path *p)
  97{
  98	int i;
  99
 100	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 101		p->slots[i] = 0;
 102		if (!p->nodes[i])
 103			continue;
 104		if (p->locks[i]) {
 105			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 106			p->locks[i] = 0;
 107		}
 108		free_extent_buffer(p->nodes[i]);
 109		p->nodes[i] = NULL;
 110	}
 111}
 112
 113/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114 * safely gets a reference on the root node of a tree.  A lock
 115 * is not taken, so a concurrent writer may put a different node
 116 * at the root of the tree.  See btrfs_lock_root_node for the
 117 * looping required.
 118 *
 119 * The extent buffer returned by this has a reference taken, so
 120 * it won't disappear.  It may stop being the root of the tree
 121 * at any time because there are no locks held.
 122 */
 123struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 124{
 125	struct extent_buffer *eb;
 126
 127	while (1) {
 128		rcu_read_lock();
 129		eb = rcu_dereference(root->node);
 130
 131		/*
 132		 * RCU really hurts here, we could free up the root node because
 133		 * it was COWed but we may not get the new root node yet so do
 134		 * the inc_not_zero dance and if it doesn't work then
 135		 * synchronize_rcu and try again.
 136		 */
 137		if (atomic_inc_not_zero(&eb->refs)) {
 138			rcu_read_unlock();
 139			break;
 140		}
 141		rcu_read_unlock();
 142		synchronize_rcu();
 143	}
 144	return eb;
 145}
 146
 147/*
 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 149 * just get put onto a simple dirty list.  Transaction walks this list to make
 150 * sure they get properly updated on disk.
 151 */
 152static void add_root_to_dirty_list(struct btrfs_root *root)
 153{
 154	struct btrfs_fs_info *fs_info = root->fs_info;
 155
 156	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 157	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 158		return;
 159
 160	spin_lock(&fs_info->trans_lock);
 161	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 162		/* Want the extent tree to be the last on the list */
 163		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 164			list_move_tail(&root->dirty_list,
 165				       &fs_info->dirty_cowonly_roots);
 166		else
 167			list_move(&root->dirty_list,
 168				  &fs_info->dirty_cowonly_roots);
 169	}
 170	spin_unlock(&fs_info->trans_lock);
 171}
 172
 173/*
 174 * used by snapshot creation to make a copy of a root for a tree with
 175 * a given objectid.  The buffer with the new root node is returned in
 176 * cow_ret, and this func returns zero on success or a negative error code.
 177 */
 178int btrfs_copy_root(struct btrfs_trans_handle *trans,
 179		      struct btrfs_root *root,
 180		      struct extent_buffer *buf,
 181		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	struct extent_buffer *cow;
 185	int ret = 0;
 186	int level;
 187	struct btrfs_disk_key disk_key;
 
 188
 189	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 190		trans->transid != fs_info->running_transaction->transid);
 191	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 192		trans->transid != root->last_trans);
 193
 194	level = btrfs_header_level(buf);
 195	if (level == 0)
 196		btrfs_item_key(buf, &disk_key, 0);
 197	else
 198		btrfs_node_key(buf, &disk_key, 0);
 199
 
 
 200	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 201			&disk_key, level, buf->start, 0);
 
 202	if (IS_ERR(cow))
 203		return PTR_ERR(cow);
 204
 205	copy_extent_buffer_full(cow, buf);
 206	btrfs_set_header_bytenr(cow, cow->start);
 207	btrfs_set_header_generation(cow, trans->transid);
 208	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 209	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 210				     BTRFS_HEADER_FLAG_RELOC);
 211	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 212		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 213	else
 214		btrfs_set_header_owner(cow, new_root_objectid);
 215
 216	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 217
 218	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 219	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 220		ret = btrfs_inc_ref(trans, root, cow, 1);
 221	else
 222		ret = btrfs_inc_ref(trans, root, cow, 0);
 223
 224	if (ret)
 
 
 225		return ret;
 
 226
 227	btrfs_mark_buffer_dirty(cow);
 228	*cow_ret = cow;
 229	return 0;
 230}
 231
 232enum mod_log_op {
 233	MOD_LOG_KEY_REPLACE,
 234	MOD_LOG_KEY_ADD,
 235	MOD_LOG_KEY_REMOVE,
 236	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 237	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 238	MOD_LOG_MOVE_KEYS,
 239	MOD_LOG_ROOT_REPLACE,
 240};
 241
 242struct tree_mod_root {
 243	u64 logical;
 244	u8 level;
 245};
 246
 247struct tree_mod_elem {
 248	struct rb_node node;
 249	u64 logical;
 250	u64 seq;
 251	enum mod_log_op op;
 252
 253	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 254	int slot;
 255
 256	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 257	u64 generation;
 258
 259	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 260	struct btrfs_disk_key key;
 261	u64 blockptr;
 262
 263	/* this is used for op == MOD_LOG_MOVE_KEYS */
 264	struct {
 265		int dst_slot;
 266		int nr_items;
 267	} move;
 268
 269	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 270	struct tree_mod_root old_root;
 271};
 272
 273/*
 274 * Pull a new tree mod seq number for our operation.
 275 */
 276static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 277{
 278	return atomic64_inc_return(&fs_info->tree_mod_seq);
 279}
 280
 281/*
 282 * This adds a new blocker to the tree mod log's blocker list if the @elem
 283 * passed does not already have a sequence number set. So when a caller expects
 284 * to record tree modifications, it should ensure to set elem->seq to zero
 285 * before calling btrfs_get_tree_mod_seq.
 286 * Returns a fresh, unused tree log modification sequence number, even if no new
 287 * blocker was added.
 288 */
 289u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 290			   struct seq_list *elem)
 291{
 292	write_lock(&fs_info->tree_mod_log_lock);
 293	if (!elem->seq) {
 294		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 295		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 296	}
 297	write_unlock(&fs_info->tree_mod_log_lock);
 298
 299	return elem->seq;
 300}
 301
 302void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 303			    struct seq_list *elem)
 304{
 305	struct rb_root *tm_root;
 306	struct rb_node *node;
 307	struct rb_node *next;
 308	struct tree_mod_elem *tm;
 309	u64 min_seq = (u64)-1;
 310	u64 seq_putting = elem->seq;
 311
 312	if (!seq_putting)
 313		return;
 314
 315	write_lock(&fs_info->tree_mod_log_lock);
 316	list_del(&elem->list);
 317	elem->seq = 0;
 318
 319	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 320		struct seq_list *first;
 321
 322		first = list_first_entry(&fs_info->tree_mod_seq_list,
 323					 struct seq_list, list);
 324		if (seq_putting > first->seq) {
 325			/*
 326			 * Blocker with lower sequence number exists, we
 327			 * cannot remove anything from the log.
 328			 */
 329			write_unlock(&fs_info->tree_mod_log_lock);
 330			return;
 331		}
 332		min_seq = first->seq;
 333	}
 334
 335	/*
 336	 * anything that's lower than the lowest existing (read: blocked)
 337	 * sequence number can be removed from the tree.
 338	 */
 339	tm_root = &fs_info->tree_mod_log;
 340	for (node = rb_first(tm_root); node; node = next) {
 341		next = rb_next(node);
 342		tm = rb_entry(node, struct tree_mod_elem, node);
 343		if (tm->seq >= min_seq)
 344			continue;
 345		rb_erase(node, tm_root);
 346		kfree(tm);
 347	}
 348	write_unlock(&fs_info->tree_mod_log_lock);
 349}
 350
 351/*
 352 * key order of the log:
 353 *       node/leaf start address -> sequence
 354 *
 355 * The 'start address' is the logical address of the *new* root node
 356 * for root replace operations, or the logical address of the affected
 357 * block for all other operations.
 358 */
 359static noinline int
 360__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 361{
 362	struct rb_root *tm_root;
 363	struct rb_node **new;
 364	struct rb_node *parent = NULL;
 365	struct tree_mod_elem *cur;
 366
 367	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 368
 369	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 370
 371	tm_root = &fs_info->tree_mod_log;
 372	new = &tm_root->rb_node;
 373	while (*new) {
 374		cur = rb_entry(*new, struct tree_mod_elem, node);
 375		parent = *new;
 376		if (cur->logical < tm->logical)
 377			new = &((*new)->rb_left);
 378		else if (cur->logical > tm->logical)
 379			new = &((*new)->rb_right);
 380		else if (cur->seq < tm->seq)
 381			new = &((*new)->rb_left);
 382		else if (cur->seq > tm->seq)
 383			new = &((*new)->rb_right);
 384		else
 385			return -EEXIST;
 386	}
 387
 388	rb_link_node(&tm->node, parent, new);
 389	rb_insert_color(&tm->node, tm_root);
 390	return 0;
 391}
 392
 393/*
 394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 395 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 396 * this until all tree mod log insertions are recorded in the rb tree and then
 397 * write unlock fs_info::tree_mod_log_lock.
 398 */
 399static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 400				    struct extent_buffer *eb) {
 401	smp_mb();
 402	if (list_empty(&(fs_info)->tree_mod_seq_list))
 403		return 1;
 404	if (eb && btrfs_header_level(eb) == 0)
 405		return 1;
 406
 407	write_lock(&fs_info->tree_mod_log_lock);
 408	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 409		write_unlock(&fs_info->tree_mod_log_lock);
 410		return 1;
 411	}
 412
 413	return 0;
 414}
 415
 416/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 417static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 418				    struct extent_buffer *eb)
 419{
 420	smp_mb();
 421	if (list_empty(&(fs_info)->tree_mod_seq_list))
 422		return 0;
 423	if (eb && btrfs_header_level(eb) == 0)
 424		return 0;
 425
 426	return 1;
 427}
 428
 429static struct tree_mod_elem *
 430alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 431		    enum mod_log_op op, gfp_t flags)
 432{
 433	struct tree_mod_elem *tm;
 434
 435	tm = kzalloc(sizeof(*tm), flags);
 436	if (!tm)
 437		return NULL;
 438
 439	tm->logical = eb->start;
 440	if (op != MOD_LOG_KEY_ADD) {
 441		btrfs_node_key(eb, &tm->key, slot);
 442		tm->blockptr = btrfs_node_blockptr(eb, slot);
 443	}
 444	tm->op = op;
 445	tm->slot = slot;
 446	tm->generation = btrfs_node_ptr_generation(eb, slot);
 447	RB_CLEAR_NODE(&tm->node);
 448
 449	return tm;
 450}
 451
 452static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 453		enum mod_log_op op, gfp_t flags)
 454{
 455	struct tree_mod_elem *tm;
 456	int ret;
 457
 458	if (!tree_mod_need_log(eb->fs_info, eb))
 459		return 0;
 460
 461	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 462	if (!tm)
 463		return -ENOMEM;
 464
 465	if (tree_mod_dont_log(eb->fs_info, eb)) {
 466		kfree(tm);
 467		return 0;
 468	}
 469
 470	ret = __tree_mod_log_insert(eb->fs_info, tm);
 471	write_unlock(&eb->fs_info->tree_mod_log_lock);
 472	if (ret)
 473		kfree(tm);
 474
 475	return ret;
 476}
 477
 478static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 479		int dst_slot, int src_slot, int nr_items)
 480{
 481	struct tree_mod_elem *tm = NULL;
 482	struct tree_mod_elem **tm_list = NULL;
 483	int ret = 0;
 484	int i;
 485	int locked = 0;
 486
 487	if (!tree_mod_need_log(eb->fs_info, eb))
 488		return 0;
 489
 490	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 491	if (!tm_list)
 492		return -ENOMEM;
 493
 494	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 495	if (!tm) {
 496		ret = -ENOMEM;
 497		goto free_tms;
 498	}
 499
 500	tm->logical = eb->start;
 501	tm->slot = src_slot;
 502	tm->move.dst_slot = dst_slot;
 503	tm->move.nr_items = nr_items;
 504	tm->op = MOD_LOG_MOVE_KEYS;
 505
 506	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 507		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 508		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 509		if (!tm_list[i]) {
 510			ret = -ENOMEM;
 511			goto free_tms;
 512		}
 513	}
 514
 515	if (tree_mod_dont_log(eb->fs_info, eb))
 516		goto free_tms;
 517	locked = 1;
 518
 519	/*
 520	 * When we override something during the move, we log these removals.
 521	 * This can only happen when we move towards the beginning of the
 522	 * buffer, i.e. dst_slot < src_slot.
 523	 */
 524	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 525		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 526		if (ret)
 527			goto free_tms;
 528	}
 529
 530	ret = __tree_mod_log_insert(eb->fs_info, tm);
 531	if (ret)
 532		goto free_tms;
 533	write_unlock(&eb->fs_info->tree_mod_log_lock);
 534	kfree(tm_list);
 535
 536	return 0;
 537free_tms:
 538	for (i = 0; i < nr_items; i++) {
 539		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 540			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 541		kfree(tm_list[i]);
 542	}
 543	if (locked)
 544		write_unlock(&eb->fs_info->tree_mod_log_lock);
 545	kfree(tm_list);
 546	kfree(tm);
 547
 548	return ret;
 549}
 550
 551static inline int
 552__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 553		       struct tree_mod_elem **tm_list,
 554		       int nritems)
 555{
 556	int i, j;
 557	int ret;
 558
 559	for (i = nritems - 1; i >= 0; i--) {
 560		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 561		if (ret) {
 562			for (j = nritems - 1; j > i; j--)
 563				rb_erase(&tm_list[j]->node,
 564					 &fs_info->tree_mod_log);
 565			return ret;
 566		}
 567	}
 568
 569	return 0;
 570}
 571
 572static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 573			 struct extent_buffer *new_root, int log_removal)
 574{
 575	struct btrfs_fs_info *fs_info = old_root->fs_info;
 576	struct tree_mod_elem *tm = NULL;
 577	struct tree_mod_elem **tm_list = NULL;
 578	int nritems = 0;
 579	int ret = 0;
 580	int i;
 581
 582	if (!tree_mod_need_log(fs_info, NULL))
 583		return 0;
 584
 585	if (log_removal && btrfs_header_level(old_root) > 0) {
 586		nritems = btrfs_header_nritems(old_root);
 587		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 588				  GFP_NOFS);
 589		if (!tm_list) {
 590			ret = -ENOMEM;
 591			goto free_tms;
 592		}
 593		for (i = 0; i < nritems; i++) {
 594			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 595			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 596			if (!tm_list[i]) {
 597				ret = -ENOMEM;
 598				goto free_tms;
 599			}
 600		}
 601	}
 602
 603	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 604	if (!tm) {
 605		ret = -ENOMEM;
 606		goto free_tms;
 607	}
 608
 609	tm->logical = new_root->start;
 610	tm->old_root.logical = old_root->start;
 611	tm->old_root.level = btrfs_header_level(old_root);
 612	tm->generation = btrfs_header_generation(old_root);
 613	tm->op = MOD_LOG_ROOT_REPLACE;
 614
 615	if (tree_mod_dont_log(fs_info, NULL))
 616		goto free_tms;
 617
 618	if (tm_list)
 619		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 620	if (!ret)
 621		ret = __tree_mod_log_insert(fs_info, tm);
 622
 623	write_unlock(&fs_info->tree_mod_log_lock);
 624	if (ret)
 625		goto free_tms;
 626	kfree(tm_list);
 627
 628	return ret;
 629
 630free_tms:
 631	if (tm_list) {
 632		for (i = 0; i < nritems; i++)
 633			kfree(tm_list[i]);
 634		kfree(tm_list);
 635	}
 636	kfree(tm);
 637
 638	return ret;
 639}
 640
 641static struct tree_mod_elem *
 642__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 643		      int smallest)
 644{
 645	struct rb_root *tm_root;
 646	struct rb_node *node;
 647	struct tree_mod_elem *cur = NULL;
 648	struct tree_mod_elem *found = NULL;
 649
 650	read_lock(&fs_info->tree_mod_log_lock);
 651	tm_root = &fs_info->tree_mod_log;
 652	node = tm_root->rb_node;
 653	while (node) {
 654		cur = rb_entry(node, struct tree_mod_elem, node);
 655		if (cur->logical < start) {
 656			node = node->rb_left;
 657		} else if (cur->logical > start) {
 658			node = node->rb_right;
 659		} else if (cur->seq < min_seq) {
 660			node = node->rb_left;
 661		} else if (!smallest) {
 662			/* we want the node with the highest seq */
 663			if (found)
 664				BUG_ON(found->seq > cur->seq);
 665			found = cur;
 666			node = node->rb_left;
 667		} else if (cur->seq > min_seq) {
 668			/* we want the node with the smallest seq */
 669			if (found)
 670				BUG_ON(found->seq < cur->seq);
 671			found = cur;
 672			node = node->rb_right;
 673		} else {
 674			found = cur;
 675			break;
 676		}
 677	}
 678	read_unlock(&fs_info->tree_mod_log_lock);
 679
 680	return found;
 681}
 682
 683/*
 684 * this returns the element from the log with the smallest time sequence
 685 * value that's in the log (the oldest log item). any element with a time
 686 * sequence lower than min_seq will be ignored.
 687 */
 688static struct tree_mod_elem *
 689tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 690			   u64 min_seq)
 691{
 692	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 693}
 694
 695/*
 696 * this returns the element from the log with the largest time sequence
 697 * value that's in the log (the most recent log item). any element with
 698 * a time sequence lower than min_seq will be ignored.
 699 */
 700static struct tree_mod_elem *
 701tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 702{
 703	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 704}
 705
 706static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 707		     struct extent_buffer *src, unsigned long dst_offset,
 708		     unsigned long src_offset, int nr_items)
 709{
 710	struct btrfs_fs_info *fs_info = dst->fs_info;
 711	int ret = 0;
 712	struct tree_mod_elem **tm_list = NULL;
 713	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 714	int i;
 715	int locked = 0;
 716
 717	if (!tree_mod_need_log(fs_info, NULL))
 718		return 0;
 719
 720	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 721		return 0;
 722
 723	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 724			  GFP_NOFS);
 725	if (!tm_list)
 726		return -ENOMEM;
 727
 728	tm_list_add = tm_list;
 729	tm_list_rem = tm_list + nr_items;
 730	for (i = 0; i < nr_items; i++) {
 731		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 732		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 733		if (!tm_list_rem[i]) {
 734			ret = -ENOMEM;
 735			goto free_tms;
 736		}
 737
 738		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 739		    MOD_LOG_KEY_ADD, GFP_NOFS);
 740		if (!tm_list_add[i]) {
 741			ret = -ENOMEM;
 742			goto free_tms;
 743		}
 744	}
 745
 746	if (tree_mod_dont_log(fs_info, NULL))
 747		goto free_tms;
 748	locked = 1;
 749
 750	for (i = 0; i < nr_items; i++) {
 751		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 752		if (ret)
 753			goto free_tms;
 754		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 755		if (ret)
 756			goto free_tms;
 757	}
 758
 759	write_unlock(&fs_info->tree_mod_log_lock);
 760	kfree(tm_list);
 761
 762	return 0;
 763
 764free_tms:
 765	for (i = 0; i < nr_items * 2; i++) {
 766		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 767			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 768		kfree(tm_list[i]);
 769	}
 770	if (locked)
 771		write_unlock(&fs_info->tree_mod_log_lock);
 772	kfree(tm_list);
 773
 774	return ret;
 775}
 776
 777static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 778{
 779	struct tree_mod_elem **tm_list = NULL;
 780	int nritems = 0;
 781	int i;
 782	int ret = 0;
 783
 784	if (btrfs_header_level(eb) == 0)
 785		return 0;
 786
 787	if (!tree_mod_need_log(eb->fs_info, NULL))
 788		return 0;
 789
 790	nritems = btrfs_header_nritems(eb);
 791	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 792	if (!tm_list)
 793		return -ENOMEM;
 794
 795	for (i = 0; i < nritems; i++) {
 796		tm_list[i] = alloc_tree_mod_elem(eb, i,
 797		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 798		if (!tm_list[i]) {
 799			ret = -ENOMEM;
 800			goto free_tms;
 801		}
 802	}
 803
 804	if (tree_mod_dont_log(eb->fs_info, eb))
 805		goto free_tms;
 806
 807	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 808	write_unlock(&eb->fs_info->tree_mod_log_lock);
 809	if (ret)
 810		goto free_tms;
 811	kfree(tm_list);
 812
 813	return 0;
 814
 815free_tms:
 816	for (i = 0; i < nritems; i++)
 817		kfree(tm_list[i]);
 818	kfree(tm_list);
 819
 820	return ret;
 821}
 822
 823/*
 824 * check if the tree block can be shared by multiple trees
 825 */
 826int btrfs_block_can_be_shared(struct btrfs_root *root,
 827			      struct extent_buffer *buf)
 828{
 829	/*
 830	 * Tree blocks not in shareable trees and tree roots are never shared.
 831	 * If a block was allocated after the last snapshot and the block was
 832	 * not allocated by tree relocation, we know the block is not shared.
 
 833	 */
 834	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 835	    buf != root->node && buf != root->commit_root &&
 836	    (btrfs_header_generation(buf) <=
 837	     btrfs_root_last_snapshot(&root->root_item) ||
 838	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 839		return 1;
 840
 841	return 0;
 842}
 843
 844static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 845				       struct btrfs_root *root,
 846				       struct extent_buffer *buf,
 847				       struct extent_buffer *cow,
 848				       int *last_ref)
 849{
 850	struct btrfs_fs_info *fs_info = root->fs_info;
 851	u64 refs;
 852	u64 owner;
 853	u64 flags;
 854	u64 new_flags = 0;
 855	int ret;
 856
 857	/*
 858	 * Backrefs update rules:
 859	 *
 860	 * Always use full backrefs for extent pointers in tree block
 861	 * allocated by tree relocation.
 862	 *
 863	 * If a shared tree block is no longer referenced by its owner
 864	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 865	 * use full backrefs for extent pointers in tree block.
 866	 *
 867	 * If a tree block is been relocating
 868	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 869	 * use full backrefs for extent pointers in tree block.
 870	 * The reason for this is some operations (such as drop tree)
 871	 * are only allowed for blocks use full backrefs.
 872	 */
 873
 874	if (btrfs_block_can_be_shared(root, buf)) {
 875		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 876					       btrfs_header_level(buf), 1,
 877					       &refs, &flags);
 878		if (ret)
 879			return ret;
 880		if (refs == 0) {
 881			ret = -EROFS;
 882			btrfs_handle_fs_error(fs_info, ret, NULL);
 
 
 
 
 883			return ret;
 884		}
 885	} else {
 886		refs = 1;
 887		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 888		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 889			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 890		else
 891			flags = 0;
 892	}
 893
 894	owner = btrfs_header_owner(buf);
 895	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 896	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 
 
 
 
 
 
 
 
 897
 898	if (refs > 1) {
 899		if ((owner == root->root_key.objectid ||
 900		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 901		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 902			ret = btrfs_inc_ref(trans, root, buf, 1);
 903			if (ret)
 904				return ret;
 905
 906			if (root->root_key.objectid ==
 907			    BTRFS_TREE_RELOC_OBJECTID) {
 908				ret = btrfs_dec_ref(trans, root, buf, 0);
 909				if (ret)
 910					return ret;
 911				ret = btrfs_inc_ref(trans, root, cow, 1);
 912				if (ret)
 913					return ret;
 914			}
 915			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
 
 
 916		} else {
 917
 918			if (root->root_key.objectid ==
 919			    BTRFS_TREE_RELOC_OBJECTID)
 920				ret = btrfs_inc_ref(trans, root, cow, 1);
 921			else
 922				ret = btrfs_inc_ref(trans, root, cow, 0);
 923			if (ret)
 924				return ret;
 925		}
 926		if (new_flags != 0) {
 927			int level = btrfs_header_level(buf);
 928
 929			ret = btrfs_set_disk_extent_flags(trans, buf,
 930							  new_flags, level, 0);
 931			if (ret)
 932				return ret;
 933		}
 934	} else {
 935		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 936			if (root->root_key.objectid ==
 937			    BTRFS_TREE_RELOC_OBJECTID)
 938				ret = btrfs_inc_ref(trans, root, cow, 1);
 939			else
 940				ret = btrfs_inc_ref(trans, root, cow, 0);
 941			if (ret)
 942				return ret;
 943			ret = btrfs_dec_ref(trans, root, buf, 1);
 944			if (ret)
 945				return ret;
 946		}
 947		btrfs_clean_tree_block(buf);
 948		*last_ref = 1;
 949	}
 950	return 0;
 951}
 952
 953static struct extent_buffer *alloc_tree_block_no_bg_flush(
 954					  struct btrfs_trans_handle *trans,
 955					  struct btrfs_root *root,
 956					  u64 parent_start,
 957					  const struct btrfs_disk_key *disk_key,
 958					  int level,
 959					  u64 hint,
 960					  u64 empty_size)
 961{
 962	struct btrfs_fs_info *fs_info = root->fs_info;
 963	struct extent_buffer *ret;
 964
 965	/*
 966	 * If we are COWing a node/leaf from the extent, chunk, device or free
 967	 * space trees, make sure that we do not finish block group creation of
 968	 * pending block groups. We do this to avoid a deadlock.
 969	 * COWing can result in allocation of a new chunk, and flushing pending
 970	 * block groups (btrfs_create_pending_block_groups()) can be triggered
 971	 * when finishing allocation of a new chunk. Creation of a pending block
 972	 * group modifies the extent, chunk, device and free space trees,
 973	 * therefore we could deadlock with ourselves since we are holding a
 974	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
 975	 * try to COW later.
 976	 * For similar reasons, we also need to delay flushing pending block
 977	 * groups when splitting a leaf or node, from one of those trees, since
 978	 * we are holding a write lock on it and its parent or when inserting a
 979	 * new root node for one of those trees.
 980	 */
 981	if (root == fs_info->extent_root ||
 982	    root == fs_info->chunk_root ||
 983	    root == fs_info->dev_root ||
 984	    root == fs_info->free_space_root)
 985		trans->can_flush_pending_bgs = false;
 986
 987	ret = btrfs_alloc_tree_block(trans, root, parent_start,
 988				     root->root_key.objectid, disk_key, level,
 989				     hint, empty_size);
 990	trans->can_flush_pending_bgs = true;
 991
 992	return ret;
 993}
 994
 995/*
 996 * does the dirty work in cow of a single block.  The parent block (if
 997 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 998 * dirty and returned locked.  If you modify the block it needs to be marked
 999 * dirty again.
1000 *
1001 * search_start -- an allocation hint for the new block
1002 *
1003 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004 * bytes the allocator should try to find free next to the block it returns.
1005 * This is just a hint and may be ignored by the allocator.
1006 */
1007static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008			     struct btrfs_root *root,
1009			     struct extent_buffer *buf,
1010			     struct extent_buffer *parent, int parent_slot,
1011			     struct extent_buffer **cow_ret,
1012			     u64 search_start, u64 empty_size)
 
1013{
1014	struct btrfs_fs_info *fs_info = root->fs_info;
1015	struct btrfs_disk_key disk_key;
1016	struct extent_buffer *cow;
1017	int level, ret;
1018	int last_ref = 0;
1019	int unlock_orig = 0;
1020	u64 parent_start = 0;
 
1021
1022	if (*cow_ret == buf)
1023		unlock_orig = 1;
1024
1025	btrfs_assert_tree_locked(buf);
1026
1027	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028		trans->transid != fs_info->running_transaction->transid);
1029	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030		trans->transid != root->last_trans);
1031
1032	level = btrfs_header_level(buf);
1033
1034	if (level == 0)
1035		btrfs_item_key(buf, &disk_key, 0);
1036	else
1037		btrfs_node_key(buf, &disk_key, 0);
1038
1039	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040		parent_start = parent->start;
1041
1042	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043					   level, search_start, empty_size);
 
 
 
1044	if (IS_ERR(cow))
1045		return PTR_ERR(cow);
1046
1047	/* cow is set to blocking by btrfs_init_new_buffer */
1048
1049	copy_extent_buffer_full(cow, buf);
1050	btrfs_set_header_bytenr(cow, cow->start);
1051	btrfs_set_header_generation(cow, trans->transid);
1052	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054				     BTRFS_HEADER_FLAG_RELOC);
1055	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057	else
1058		btrfs_set_header_owner(cow, root->root_key.objectid);
1059
1060	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1061
1062	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063	if (ret) {
1064		btrfs_abort_transaction(trans, ret);
1065		return ret;
1066	}
1067
1068	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070		if (ret) {
1071			btrfs_abort_transaction(trans, ret);
1072			return ret;
1073		}
1074	}
1075
1076	if (buf == root->node) {
1077		WARN_ON(parent && parent != buf);
1078		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080			parent_start = buf->start;
1081
 
 
 
 
 
1082		atomic_inc(&cow->refs);
1083		ret = tree_mod_log_insert_root(root->node, cow, 1);
1084		BUG_ON(ret < 0);
1085		rcu_assign_pointer(root->node, cow);
1086
1087		btrfs_free_tree_block(trans, root, buf, parent_start,
1088				      last_ref);
1089		free_extent_buffer(buf);
1090		add_root_to_dirty_list(root);
 
 
 
 
1091	} else {
1092		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093		tree_mod_log_insert_key(parent, parent_slot,
1094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
 
 
 
 
1095		btrfs_set_node_blockptr(parent, parent_slot,
1096					cow->start);
1097		btrfs_set_node_ptr_generation(parent, parent_slot,
1098					      trans->transid);
1099		btrfs_mark_buffer_dirty(parent);
1100		if (last_ref) {
1101			ret = tree_mod_log_free_eb(buf);
1102			if (ret) {
1103				btrfs_abort_transaction(trans, ret);
1104				return ret;
1105			}
1106		}
1107		btrfs_free_tree_block(trans, root, buf, parent_start,
1108				      last_ref);
 
 
 
 
1109	}
 
 
1110	if (unlock_orig)
1111		btrfs_tree_unlock(buf);
1112	free_extent_buffer_stale(buf);
1113	btrfs_mark_buffer_dirty(cow);
1114	*cow_ret = cow;
1115	return 0;
1116}
1117
1118/*
1119 * returns the logical address of the oldest predecessor of the given root.
1120 * entries older than time_seq are ignored.
1121 */
1122static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123		struct extent_buffer *eb_root, u64 time_seq)
1124{
1125	struct tree_mod_elem *tm;
1126	struct tree_mod_elem *found = NULL;
1127	u64 root_logical = eb_root->start;
1128	int looped = 0;
1129
1130	if (!time_seq)
1131		return NULL;
1132
1133	/*
1134	 * the very last operation that's logged for a root is the
1135	 * replacement operation (if it is replaced at all). this has
1136	 * the logical address of the *new* root, making it the very
1137	 * first operation that's logged for this root.
1138	 */
1139	while (1) {
1140		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141						time_seq);
1142		if (!looped && !tm)
1143			return NULL;
1144		/*
1145		 * if there are no tree operation for the oldest root, we simply
1146		 * return it. this should only happen if that (old) root is at
1147		 * level 0.
1148		 */
1149		if (!tm)
1150			break;
1151
1152		/*
1153		 * if there's an operation that's not a root replacement, we
1154		 * found the oldest version of our root. normally, we'll find a
1155		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156		 */
1157		if (tm->op != MOD_LOG_ROOT_REPLACE)
1158			break;
1159
1160		found = tm;
1161		root_logical = tm->old_root.logical;
1162		looped = 1;
1163	}
1164
1165	/* if there's no old root to return, return what we found instead */
1166	if (!found)
1167		found = tm;
1168
1169	return found;
1170}
1171
1172/*
1173 * tm is a pointer to the first operation to rewind within eb. then, all
1174 * previous operations will be rewound (until we reach something older than
1175 * time_seq).
1176 */
1177static void
1178__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179		      u64 time_seq, struct tree_mod_elem *first_tm)
1180{
1181	u32 n;
1182	struct rb_node *next;
1183	struct tree_mod_elem *tm = first_tm;
1184	unsigned long o_dst;
1185	unsigned long o_src;
1186	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187
1188	n = btrfs_header_nritems(eb);
1189	read_lock(&fs_info->tree_mod_log_lock);
1190	while (tm && tm->seq >= time_seq) {
1191		/*
1192		 * all the operations are recorded with the operator used for
1193		 * the modification. as we're going backwards, we do the
1194		 * opposite of each operation here.
1195		 */
1196		switch (tm->op) {
1197		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198			BUG_ON(tm->slot < n);
1199			fallthrough;
1200		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201		case MOD_LOG_KEY_REMOVE:
1202			btrfs_set_node_key(eb, &tm->key, tm->slot);
1203			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204			btrfs_set_node_ptr_generation(eb, tm->slot,
1205						      tm->generation);
1206			n++;
1207			break;
1208		case MOD_LOG_KEY_REPLACE:
1209			BUG_ON(tm->slot >= n);
1210			btrfs_set_node_key(eb, &tm->key, tm->slot);
1211			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212			btrfs_set_node_ptr_generation(eb, tm->slot,
1213						      tm->generation);
1214			break;
1215		case MOD_LOG_KEY_ADD:
1216			/* if a move operation is needed it's in the log */
1217			n--;
1218			break;
1219		case MOD_LOG_MOVE_KEYS:
1220			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222			memmove_extent_buffer(eb, o_dst, o_src,
1223					      tm->move.nr_items * p_size);
1224			break;
1225		case MOD_LOG_ROOT_REPLACE:
1226			/*
1227			 * this operation is special. for roots, this must be
1228			 * handled explicitly before rewinding.
1229			 * for non-roots, this operation may exist if the node
1230			 * was a root: root A -> child B; then A gets empty and
1231			 * B is promoted to the new root. in the mod log, we'll
1232			 * have a root-replace operation for B, a tree block
1233			 * that is no root. we simply ignore that operation.
1234			 */
1235			break;
1236		}
1237		next = rb_next(&tm->node);
1238		if (!next)
1239			break;
1240		tm = rb_entry(next, struct tree_mod_elem, node);
1241		if (tm->logical != first_tm->logical)
1242			break;
1243	}
1244	read_unlock(&fs_info->tree_mod_log_lock);
1245	btrfs_set_header_nritems(eb, n);
1246}
1247
1248/*
1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 * is returned. If rewind operations happen, a fresh buffer is returned. The
1251 * returned buffer is always read-locked. If the returned buffer is not the
1252 * input buffer, the lock on the input buffer is released and the input buffer
1253 * is freed (its refcount is decremented).
1254 */
1255static struct extent_buffer *
1256tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257		    struct extent_buffer *eb, u64 time_seq)
1258{
1259	struct extent_buffer *eb_rewin;
1260	struct tree_mod_elem *tm;
1261
1262	if (!time_seq)
1263		return eb;
1264
1265	if (btrfs_header_level(eb) == 0)
1266		return eb;
1267
1268	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269	if (!tm)
1270		return eb;
1271
1272	btrfs_set_path_blocking(path);
1273	btrfs_set_lock_blocking_read(eb);
1274
1275	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276		BUG_ON(tm->slot != 0);
1277		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278		if (!eb_rewin) {
1279			btrfs_tree_read_unlock_blocking(eb);
1280			free_extent_buffer(eb);
1281			return NULL;
1282		}
1283		btrfs_set_header_bytenr(eb_rewin, eb->start);
1284		btrfs_set_header_backref_rev(eb_rewin,
1285					     btrfs_header_backref_rev(eb));
1286		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288	} else {
1289		eb_rewin = btrfs_clone_extent_buffer(eb);
1290		if (!eb_rewin) {
1291			btrfs_tree_read_unlock_blocking(eb);
1292			free_extent_buffer(eb);
1293			return NULL;
1294		}
1295	}
1296
1297	btrfs_tree_read_unlock_blocking(eb);
1298	free_extent_buffer(eb);
1299
1300	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1301				       eb_rewin, btrfs_header_level(eb_rewin));
1302	btrfs_tree_read_lock(eb_rewin);
1303	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1304	WARN_ON(btrfs_header_nritems(eb_rewin) >
1305		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1306
1307	return eb_rewin;
1308}
1309
1310/*
1311 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1312 * value. If there are no changes, the current root->root_node is returned. If
1313 * anything changed in between, there's a fresh buffer allocated on which the
1314 * rewind operations are done. In any case, the returned buffer is read locked.
1315 * Returns NULL on error (with no locks held).
1316 */
1317static inline struct extent_buffer *
1318get_old_root(struct btrfs_root *root, u64 time_seq)
1319{
1320	struct btrfs_fs_info *fs_info = root->fs_info;
1321	struct tree_mod_elem *tm;
1322	struct extent_buffer *eb = NULL;
1323	struct extent_buffer *eb_root;
1324	u64 eb_root_owner = 0;
1325	struct extent_buffer *old;
1326	struct tree_mod_root *old_root = NULL;
1327	u64 old_generation = 0;
1328	u64 logical;
1329	int level;
1330
1331	eb_root = btrfs_read_lock_root_node(root);
1332	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1333	if (!tm)
1334		return eb_root;
1335
1336	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1337		old_root = &tm->old_root;
1338		old_generation = tm->generation;
1339		logical = old_root->logical;
1340		level = old_root->level;
1341	} else {
1342		logical = eb_root->start;
1343		level = btrfs_header_level(eb_root);
1344	}
1345
1346	tm = tree_mod_log_search(fs_info, logical, time_seq);
1347	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1348		btrfs_tree_read_unlock(eb_root);
1349		free_extent_buffer(eb_root);
1350		old = read_tree_block(fs_info, logical, 0, level, NULL);
1351		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1352			if (!IS_ERR(old))
1353				free_extent_buffer(old);
1354			btrfs_warn(fs_info,
1355				   "failed to read tree block %llu from get_old_root",
1356				   logical);
1357		} else {
1358			eb = btrfs_clone_extent_buffer(old);
1359			free_extent_buffer(old);
1360		}
1361	} else if (old_root) {
1362		eb_root_owner = btrfs_header_owner(eb_root);
1363		btrfs_tree_read_unlock(eb_root);
1364		free_extent_buffer(eb_root);
1365		eb = alloc_dummy_extent_buffer(fs_info, logical);
1366	} else {
1367		btrfs_set_lock_blocking_read(eb_root);
1368		eb = btrfs_clone_extent_buffer(eb_root);
1369		btrfs_tree_read_unlock_blocking(eb_root);
1370		free_extent_buffer(eb_root);
1371	}
1372
1373	if (!eb)
1374		return NULL;
1375	if (old_root) {
1376		btrfs_set_header_bytenr(eb, eb->start);
1377		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1378		btrfs_set_header_owner(eb, eb_root_owner);
1379		btrfs_set_header_level(eb, old_root->level);
1380		btrfs_set_header_generation(eb, old_generation);
1381	}
1382	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1383				       btrfs_header_level(eb));
1384	btrfs_tree_read_lock(eb);
1385	if (tm)
1386		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1387	else
1388		WARN_ON(btrfs_header_level(eb) != 0);
1389	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1390
1391	return eb;
1392}
1393
1394int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1395{
1396	struct tree_mod_elem *tm;
1397	int level;
1398	struct extent_buffer *eb_root = btrfs_root_node(root);
1399
1400	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1401	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1402		level = tm->old_root.level;
1403	} else {
1404		level = btrfs_header_level(eb_root);
1405	}
1406	free_extent_buffer(eb_root);
1407
1408	return level;
1409}
1410
1411static inline int should_cow_block(struct btrfs_trans_handle *trans,
1412				   struct btrfs_root *root,
1413				   struct extent_buffer *buf)
1414{
1415	if (btrfs_is_testing(root->fs_info))
1416		return 0;
1417
1418	/* Ensure we can see the FORCE_COW bit */
1419	smp_mb__before_atomic();
1420
1421	/*
1422	 * We do not need to cow a block if
1423	 * 1) this block is not created or changed in this transaction;
1424	 * 2) this block does not belong to TREE_RELOC tree;
1425	 * 3) the root is not forced COW.
1426	 *
1427	 * What is forced COW:
1428	 *    when we create snapshot during committing the transaction,
1429	 *    after we've finished copying src root, we must COW the shared
1430	 *    block to ensure the metadata consistency.
1431	 */
1432	if (btrfs_header_generation(buf) == trans->transid &&
1433	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1434	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1435	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1436	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1437		return 0;
1438	return 1;
1439}
1440
1441/*
1442 * cows a single block, see __btrfs_cow_block for the real work.
1443 * This version of it has extra checks so that a block isn't COWed more than
1444 * once per transaction, as long as it hasn't been written yet
1445 */
1446noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1447		    struct btrfs_root *root, struct extent_buffer *buf,
1448		    struct extent_buffer *parent, int parent_slot,
1449		    struct extent_buffer **cow_ret)
 
1450{
1451	struct btrfs_fs_info *fs_info = root->fs_info;
1452	u64 search_start;
1453	int ret;
1454
1455	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1456		btrfs_err(fs_info,
1457			"COW'ing blocks on a fs root that's being dropped");
1458
1459	if (trans->transaction != fs_info->running_transaction)
1460		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1461		       trans->transid,
1462		       fs_info->running_transaction->transid);
1463
1464	if (trans->transid != fs_info->generation)
1465		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466		       trans->transid, fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
1467
1468	if (!should_cow_block(trans, root, buf)) {
1469		trans->dirty = true;
1470		*cow_ret = buf;
1471		return 0;
1472	}
1473
1474	search_start = buf->start & ~((u64)SZ_1G - 1);
1475
1476	if (parent)
1477		btrfs_set_lock_blocking_write(parent);
1478	btrfs_set_lock_blocking_write(buf);
1479
1480	/*
1481	 * Before CoWing this block for later modification, check if it's
1482	 * the subtree root and do the delayed subtree trace if needed.
1483	 *
1484	 * Also We don't care about the error, as it's handled internally.
1485	 */
1486	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1487	ret = __btrfs_cow_block(trans, root, buf, parent,
1488				 parent_slot, cow_ret, search_start, 0);
1489
1490	trace_btrfs_cow_block(root, buf, *cow_ret);
1491
1492	return ret;
1493}
1494
1495/*
1496 * helper function for defrag to decide if two blocks pointed to by a
1497 * node are actually close by
1498 */
1499static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1500{
1501	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1502		return 1;
1503	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1504		return 1;
1505	return 0;
1506}
1507
1508#ifdef __LITTLE_ENDIAN
1509
1510/*
1511 * Compare two keys, on little-endian the disk order is same as CPU order and
1512 * we can avoid the conversion.
1513 */
1514static int comp_keys(const struct btrfs_disk_key *disk_key,
1515		     const struct btrfs_key *k2)
1516{
1517	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1518
1519	return btrfs_comp_cpu_keys(k1, k2);
1520}
1521
1522#else
1523
1524/*
1525 * compare two keys in a memcmp fashion
1526 */
1527static int comp_keys(const struct btrfs_disk_key *disk,
1528		     const struct btrfs_key *k2)
1529{
1530	struct btrfs_key k1;
1531
1532	btrfs_disk_key_to_cpu(&k1, disk);
1533
1534	return btrfs_comp_cpu_keys(&k1, k2);
1535}
1536#endif
1537
1538/*
1539 * same as comp_keys only with two btrfs_key's
1540 */
1541int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1542{
1543	if (k1->objectid > k2->objectid)
1544		return 1;
1545	if (k1->objectid < k2->objectid)
1546		return -1;
1547	if (k1->type > k2->type)
1548		return 1;
1549	if (k1->type < k2->type)
1550		return -1;
1551	if (k1->offset > k2->offset)
1552		return 1;
1553	if (k1->offset < k2->offset)
1554		return -1;
1555	return 0;
1556}
1557
1558/*
1559 * this is used by the defrag code to go through all the
1560 * leaves pointed to by a node and reallocate them so that
1561 * disk order is close to key order
1562 */
1563int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1564		       struct btrfs_root *root, struct extent_buffer *parent,
1565		       int start_slot, u64 *last_ret,
1566		       struct btrfs_key *progress)
1567{
1568	struct btrfs_fs_info *fs_info = root->fs_info;
1569	struct extent_buffer *cur;
1570	u64 blocknr;
1571	u64 gen;
1572	u64 search_start = *last_ret;
1573	u64 last_block = 0;
1574	u64 other;
1575	u32 parent_nritems;
1576	int end_slot;
1577	int i;
1578	int err = 0;
1579	int parent_level;
1580	int uptodate;
1581	u32 blocksize;
1582	int progress_passed = 0;
1583	struct btrfs_disk_key disk_key;
1584
1585	parent_level = btrfs_header_level(parent);
1586
1587	WARN_ON(trans->transaction != fs_info->running_transaction);
1588	WARN_ON(trans->transid != fs_info->generation);
1589
1590	parent_nritems = btrfs_header_nritems(parent);
1591	blocksize = fs_info->nodesize;
1592	end_slot = parent_nritems - 1;
1593
1594	if (parent_nritems <= 1)
1595		return 0;
1596
1597	btrfs_set_lock_blocking_write(parent);
1598
1599	for (i = start_slot; i <= end_slot; i++) {
1600		struct btrfs_key first_key;
1601		int close = 1;
1602
1603		btrfs_node_key(parent, &disk_key, i);
1604		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1605			continue;
1606
1607		progress_passed = 1;
1608		blocknr = btrfs_node_blockptr(parent, i);
1609		gen = btrfs_node_ptr_generation(parent, i);
1610		btrfs_node_key_to_cpu(parent, &first_key, i);
1611		if (last_block == 0)
1612			last_block = blocknr;
1613
1614		if (i > 0) {
1615			other = btrfs_node_blockptr(parent, i - 1);
1616			close = close_blocks(blocknr, other, blocksize);
1617		}
1618		if (!close && i < end_slot) {
1619			other = btrfs_node_blockptr(parent, i + 1);
1620			close = close_blocks(blocknr, other, blocksize);
1621		}
1622		if (close) {
1623			last_block = blocknr;
1624			continue;
1625		}
1626
1627		cur = find_extent_buffer(fs_info, blocknr);
1628		if (cur)
1629			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1630		else
1631			uptodate = 0;
1632		if (!cur || !uptodate) {
1633			if (!cur) {
1634				cur = read_tree_block(fs_info, blocknr, gen,
1635						      parent_level - 1,
1636						      &first_key);
1637				if (IS_ERR(cur)) {
1638					return PTR_ERR(cur);
1639				} else if (!extent_buffer_uptodate(cur)) {
1640					free_extent_buffer(cur);
1641					return -EIO;
1642				}
1643			} else if (!uptodate) {
1644				err = btrfs_read_buffer(cur, gen,
1645						parent_level - 1,&first_key);
1646				if (err) {
1647					free_extent_buffer(cur);
1648					return err;
1649				}
1650			}
1651		}
1652		if (search_start == 0)
1653			search_start = last_block;
1654
1655		btrfs_tree_lock(cur);
1656		btrfs_set_lock_blocking_write(cur);
1657		err = __btrfs_cow_block(trans, root, cur, parent, i,
1658					&cur, search_start,
1659					min(16 * blocksize,
1660					    (end_slot - i) * blocksize));
1661		if (err) {
1662			btrfs_tree_unlock(cur);
1663			free_extent_buffer(cur);
1664			break;
1665		}
1666		search_start = cur->start;
1667		last_block = cur->start;
1668		*last_ret = search_start;
1669		btrfs_tree_unlock(cur);
1670		free_extent_buffer(cur);
1671	}
1672	return err;
1673}
1674
1675/*
1676 * search for key in the extent_buffer.  The items start at offset p,
1677 * and they are item_size apart.  There are 'max' items in p.
1678 *
1679 * the slot in the array is returned via slot, and it points to
1680 * the place where you would insert key if it is not found in
1681 * the array.
1682 *
1683 * slot may point to max if the key is bigger than all of the keys
 
1684 */
1685static noinline int generic_bin_search(struct extent_buffer *eb,
1686				       unsigned long p, int item_size,
1687				       const struct btrfs_key *key,
1688				       int max, int *slot)
1689{
1690	int low = 0;
1691	int high = max;
 
 
 
 
 
 
1692	int ret;
1693	const int key_size = sizeof(struct btrfs_disk_key);
1694
1695	if (low > high) {
1696		btrfs_err(eb->fs_info,
1697		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1698			  __func__, low, high, eb->start,
1699			  btrfs_header_owner(eb), btrfs_header_level(eb));
1700		return -EINVAL;
1701	}
1702
 
 
 
 
 
 
 
 
1703	while (low < high) {
1704		unsigned long oip;
 
1705		unsigned long offset;
1706		struct btrfs_disk_key *tmp;
1707		struct btrfs_disk_key unaligned;
1708		int mid;
1709
1710		mid = (low + high) / 2;
1711		offset = p + mid * item_size;
1712		oip = offset_in_page(offset);
1713
1714		if (oip + key_size <= PAGE_SIZE) {
1715			const unsigned long idx = offset >> PAGE_SHIFT;
1716			char *kaddr = page_address(eb->pages[idx]);
1717
1718			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 
1719		} else {
1720			read_extent_buffer(eb, &unaligned, offset, key_size);
1721			tmp = &unaligned;
1722		}
1723
1724		ret = comp_keys(tmp, key);
1725
1726		if (ret < 0)
1727			low = mid + 1;
1728		else if (ret > 0)
1729			high = mid;
1730		else {
1731			*slot = mid;
1732			return 0;
1733		}
1734	}
1735	*slot = low;
1736	return 1;
1737}
1738
1739/*
1740 * simple bin_search frontend that does the right thing for
1741 * leaves vs nodes
1742 */
1743int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1744		     int *slot)
1745{
1746	if (btrfs_header_level(eb) == 0)
1747		return generic_bin_search(eb,
1748					  offsetof(struct btrfs_leaf, items),
1749					  sizeof(struct btrfs_item),
1750					  key, btrfs_header_nritems(eb),
1751					  slot);
1752	else
1753		return generic_bin_search(eb,
1754					  offsetof(struct btrfs_node, ptrs),
1755					  sizeof(struct btrfs_key_ptr),
1756					  key, btrfs_header_nritems(eb),
1757					  slot);
1758}
1759
1760static void root_add_used(struct btrfs_root *root, u32 size)
1761{
1762	spin_lock(&root->accounting_lock);
1763	btrfs_set_root_used(&root->root_item,
1764			    btrfs_root_used(&root->root_item) + size);
1765	spin_unlock(&root->accounting_lock);
1766}
1767
1768static void root_sub_used(struct btrfs_root *root, u32 size)
1769{
1770	spin_lock(&root->accounting_lock);
1771	btrfs_set_root_used(&root->root_item,
1772			    btrfs_root_used(&root->root_item) - size);
1773	spin_unlock(&root->accounting_lock);
1774}
1775
1776/* given a node and slot number, this reads the blocks it points to.  The
1777 * extent buffer is returned with a reference taken (but unlocked).
1778 */
1779struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1780					   int slot)
1781{
1782	int level = btrfs_header_level(parent);
 
1783	struct extent_buffer *eb;
1784	struct btrfs_key first_key;
1785
1786	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1787		return ERR_PTR(-ENOENT);
1788
1789	BUG_ON(level == 0);
 
 
 
 
 
 
1790
1791	btrfs_node_key_to_cpu(parent, &first_key, slot);
1792	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1793			     btrfs_node_ptr_generation(parent, slot),
1794			     level - 1, &first_key);
1795	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 
1796		free_extent_buffer(eb);
1797		eb = ERR_PTR(-EIO);
1798	}
1799
1800	return eb;
1801}
1802
1803/*
1804 * node level balancing, used to make sure nodes are in proper order for
1805 * item deletion.  We balance from the top down, so we have to make sure
1806 * that a deletion won't leave an node completely empty later on.
1807 */
1808static noinline int balance_level(struct btrfs_trans_handle *trans,
1809			 struct btrfs_root *root,
1810			 struct btrfs_path *path, int level)
1811{
1812	struct btrfs_fs_info *fs_info = root->fs_info;
1813	struct extent_buffer *right = NULL;
1814	struct extent_buffer *mid;
1815	struct extent_buffer *left = NULL;
1816	struct extent_buffer *parent = NULL;
1817	int ret = 0;
1818	int wret;
1819	int pslot;
1820	int orig_slot = path->slots[level];
1821	u64 orig_ptr;
1822
1823	ASSERT(level > 0);
1824
1825	mid = path->nodes[level];
1826
1827	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833	if (level < BTRFS_MAX_LEVEL - 1) {
1834		parent = path->nodes[level + 1];
1835		pslot = path->slots[level + 1];
1836	}
1837
1838	/*
1839	 * deal with the case where there is only one pointer in the root
1840	 * by promoting the node below to a root
1841	 */
1842	if (!parent) {
1843		struct extent_buffer *child;
1844
1845		if (btrfs_header_nritems(mid) != 1)
1846			return 0;
1847
1848		/* promote the child to a root */
1849		child = btrfs_read_node_slot(mid, 0);
1850		if (IS_ERR(child)) {
1851			ret = PTR_ERR(child);
1852			btrfs_handle_fs_error(fs_info, ret, NULL);
1853			goto enospc;
1854		}
1855
1856		btrfs_tree_lock(child);
1857		btrfs_set_lock_blocking_write(child);
1858		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859		if (ret) {
1860			btrfs_tree_unlock(child);
1861			free_extent_buffer(child);
1862			goto enospc;
1863		}
1864
1865		ret = tree_mod_log_insert_root(root->node, child, 1);
1866		BUG_ON(ret < 0);
 
 
 
 
 
1867		rcu_assign_pointer(root->node, child);
1868
1869		add_root_to_dirty_list(root);
1870		btrfs_tree_unlock(child);
1871
1872		path->locks[level] = 0;
1873		path->nodes[level] = NULL;
1874		btrfs_clean_tree_block(mid);
1875		btrfs_tree_unlock(mid);
1876		/* once for the path */
1877		free_extent_buffer(mid);
1878
1879		root_sub_used(root, mid->len);
1880		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881		/* once for the root ptr */
1882		free_extent_buffer_stale(mid);
 
 
 
 
1883		return 0;
1884	}
1885	if (btrfs_header_nritems(mid) >
1886	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887		return 0;
1888
1889	left = btrfs_read_node_slot(parent, pslot - 1);
1890	if (IS_ERR(left))
1891		left = NULL;
 
 
 
 
1892
1893	if (left) {
1894		btrfs_tree_lock(left);
1895		btrfs_set_lock_blocking_write(left);
1896		wret = btrfs_cow_block(trans, root, left,
1897				       parent, pslot - 1, &left);
 
1898		if (wret) {
1899			ret = wret;
1900			goto enospc;
1901		}
1902	}
1903
1904	right = btrfs_read_node_slot(parent, pslot + 1);
1905	if (IS_ERR(right))
1906		right = NULL;
 
 
 
 
1907
1908	if (right) {
1909		btrfs_tree_lock(right);
1910		btrfs_set_lock_blocking_write(right);
1911		wret = btrfs_cow_block(trans, root, right,
1912				       parent, pslot + 1, &right);
 
1913		if (wret) {
1914			ret = wret;
1915			goto enospc;
1916		}
1917	}
1918
1919	/* first, try to make some room in the middle buffer */
1920	if (left) {
1921		orig_slot += btrfs_header_nritems(left);
1922		wret = push_node_left(trans, left, mid, 1);
1923		if (wret < 0)
1924			ret = wret;
1925	}
1926
1927	/*
1928	 * then try to empty the right most buffer into the middle
1929	 */
1930	if (right) {
1931		wret = push_node_left(trans, mid, right, 1);
1932		if (wret < 0 && wret != -ENOSPC)
1933			ret = wret;
1934		if (btrfs_header_nritems(right) == 0) {
1935			btrfs_clean_tree_block(right);
1936			btrfs_tree_unlock(right);
1937			del_ptr(root, path, level + 1, pslot + 1);
1938			root_sub_used(root, right->len);
1939			btrfs_free_tree_block(trans, root, right, 0, 1);
 
 
 
 
 
 
1940			free_extent_buffer_stale(right);
1941			right = NULL;
 
 
 
 
1942		} else {
1943			struct btrfs_disk_key right_key;
1944			btrfs_node_key(right, &right_key, 0);
1945			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947			BUG_ON(ret < 0);
 
 
 
1948			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949			btrfs_mark_buffer_dirty(parent);
1950		}
1951	}
1952	if (btrfs_header_nritems(mid) == 1) {
1953		/*
1954		 * we're not allowed to leave a node with one item in the
1955		 * tree during a delete.  A deletion from lower in the tree
1956		 * could try to delete the only pointer in this node.
1957		 * So, pull some keys from the left.
1958		 * There has to be a left pointer at this point because
1959		 * otherwise we would have pulled some pointers from the
1960		 * right
1961		 */
1962		if (!left) {
1963			ret = -EROFS;
1964			btrfs_handle_fs_error(fs_info, ret, NULL);
1965			goto enospc;
 
 
 
 
1966		}
1967		wret = balance_node_right(trans, mid, left);
1968		if (wret < 0) {
1969			ret = wret;
1970			goto enospc;
1971		}
1972		if (wret == 1) {
1973			wret = push_node_left(trans, left, mid, 1);
1974			if (wret < 0)
1975				ret = wret;
1976		}
1977		BUG_ON(wret == 1);
1978	}
1979	if (btrfs_header_nritems(mid) == 0) {
1980		btrfs_clean_tree_block(mid);
1981		btrfs_tree_unlock(mid);
1982		del_ptr(root, path, level + 1, pslot);
1983		root_sub_used(root, mid->len);
1984		btrfs_free_tree_block(trans, root, mid, 0, 1);
 
 
 
 
 
1985		free_extent_buffer_stale(mid);
1986		mid = NULL;
 
 
 
 
1987	} else {
1988		/* update the parent key to reflect our changes */
1989		struct btrfs_disk_key mid_key;
1990		btrfs_node_key(mid, &mid_key, 0);
1991		ret = tree_mod_log_insert_key(parent, pslot,
1992				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993		BUG_ON(ret < 0);
 
 
 
1994		btrfs_set_node_key(parent, &mid_key, pslot);
1995		btrfs_mark_buffer_dirty(parent);
1996	}
1997
1998	/* update the path */
1999	if (left) {
2000		if (btrfs_header_nritems(left) > orig_slot) {
2001			atomic_inc(&left->refs);
2002			/* left was locked after cow */
2003			path->nodes[level] = left;
2004			path->slots[level + 1] -= 1;
2005			path->slots[level] = orig_slot;
2006			if (mid) {
2007				btrfs_tree_unlock(mid);
2008				free_extent_buffer(mid);
2009			}
2010		} else {
2011			orig_slot -= btrfs_header_nritems(left);
2012			path->slots[level] = orig_slot;
2013		}
2014	}
2015	/* double check we haven't messed things up */
2016	if (orig_ptr !=
2017	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018		BUG();
2019enospc:
2020	if (right) {
2021		btrfs_tree_unlock(right);
2022		free_extent_buffer(right);
2023	}
2024	if (left) {
2025		if (path->nodes[level] != left)
2026			btrfs_tree_unlock(left);
2027		free_extent_buffer(left);
2028	}
2029	return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037					  struct btrfs_root *root,
2038					  struct btrfs_path *path, int level)
2039{
2040	struct btrfs_fs_info *fs_info = root->fs_info;
2041	struct extent_buffer *right = NULL;
2042	struct extent_buffer *mid;
2043	struct extent_buffer *left = NULL;
2044	struct extent_buffer *parent = NULL;
2045	int ret = 0;
2046	int wret;
2047	int pslot;
2048	int orig_slot = path->slots[level];
2049
2050	if (level == 0)
2051		return 1;
2052
2053	mid = path->nodes[level];
2054	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056	if (level < BTRFS_MAX_LEVEL - 1) {
2057		parent = path->nodes[level + 1];
2058		pslot = path->slots[level + 1];
2059	}
2060
2061	if (!parent)
2062		return 1;
2063
2064	left = btrfs_read_node_slot(parent, pslot - 1);
2065	if (IS_ERR(left))
2066		left = NULL;
2067
2068	/* first, try to make some room in the middle buffer */
2069	if (left) {
2070		u32 left_nr;
2071
2072		btrfs_tree_lock(left);
2073		btrfs_set_lock_blocking_write(left);
 
 
 
2074
2075		left_nr = btrfs_header_nritems(left);
2076		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077			wret = 1;
2078		} else {
2079			ret = btrfs_cow_block(trans, root, left, parent,
2080					      pslot - 1, &left);
 
2081			if (ret)
2082				wret = 1;
2083			else {
2084				wret = push_node_left(trans, left, mid, 0);
2085			}
2086		}
2087		if (wret < 0)
2088			ret = wret;
2089		if (wret == 0) {
2090			struct btrfs_disk_key disk_key;
2091			orig_slot += left_nr;
2092			btrfs_node_key(mid, &disk_key, 0);
2093			ret = tree_mod_log_insert_key(parent, pslot,
2094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2095			BUG_ON(ret < 0);
 
 
 
 
 
2096			btrfs_set_node_key(parent, &disk_key, pslot);
2097			btrfs_mark_buffer_dirty(parent);
2098			if (btrfs_header_nritems(left) > orig_slot) {
2099				path->nodes[level] = left;
2100				path->slots[level + 1] -= 1;
2101				path->slots[level] = orig_slot;
2102				btrfs_tree_unlock(mid);
2103				free_extent_buffer(mid);
2104			} else {
2105				orig_slot -=
2106					btrfs_header_nritems(left);
2107				path->slots[level] = orig_slot;
2108				btrfs_tree_unlock(left);
2109				free_extent_buffer(left);
2110			}
2111			return 0;
2112		}
2113		btrfs_tree_unlock(left);
2114		free_extent_buffer(left);
2115	}
2116	right = btrfs_read_node_slot(parent, pslot + 1);
2117	if (IS_ERR(right))
2118		right = NULL;
2119
2120	/*
2121	 * then try to empty the right most buffer into the middle
2122	 */
2123	if (right) {
2124		u32 right_nr;
2125
2126		btrfs_tree_lock(right);
2127		btrfs_set_lock_blocking_write(right);
 
 
 
2128
2129		right_nr = btrfs_header_nritems(right);
2130		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2131			wret = 1;
2132		} else {
2133			ret = btrfs_cow_block(trans, root, right,
2134					      parent, pslot + 1,
2135					      &right);
2136			if (ret)
2137				wret = 1;
2138			else {
2139				wret = balance_node_right(trans, right, mid);
2140			}
2141		}
2142		if (wret < 0)
2143			ret = wret;
2144		if (wret == 0) {
2145			struct btrfs_disk_key disk_key;
2146
2147			btrfs_node_key(right, &disk_key, 0);
2148			ret = tree_mod_log_insert_key(parent, pslot + 1,
2149					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2150			BUG_ON(ret < 0);
 
 
 
 
 
2151			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2152			btrfs_mark_buffer_dirty(parent);
2153
2154			if (btrfs_header_nritems(mid) <= orig_slot) {
2155				path->nodes[level] = right;
2156				path->slots[level + 1] += 1;
2157				path->slots[level] = orig_slot -
2158					btrfs_header_nritems(mid);
2159				btrfs_tree_unlock(mid);
2160				free_extent_buffer(mid);
2161			} else {
2162				btrfs_tree_unlock(right);
2163				free_extent_buffer(right);
2164			}
2165			return 0;
2166		}
2167		btrfs_tree_unlock(right);
2168		free_extent_buffer(right);
2169	}
2170	return 1;
2171}
2172
2173/*
2174 * readahead one full node of leaves, finding things that are close
2175 * to the block in 'slot', and triggering ra on them.
2176 */
2177static void reada_for_search(struct btrfs_fs_info *fs_info,
2178			     struct btrfs_path *path,
2179			     int level, int slot, u64 objectid)
2180{
2181	struct extent_buffer *node;
2182	struct btrfs_disk_key disk_key;
2183	u32 nritems;
2184	u64 search;
2185	u64 target;
2186	u64 nread = 0;
2187	struct extent_buffer *eb;
2188	u32 nr;
2189	u32 blocksize;
2190	u32 nscan = 0;
2191
2192	if (level != 1)
2193		return;
2194
2195	if (!path->nodes[level])
2196		return;
2197
2198	node = path->nodes[level];
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200	search = btrfs_node_blockptr(node, slot);
2201	blocksize = fs_info->nodesize;
2202	eb = find_extent_buffer(fs_info, search);
2203	if (eb) {
2204		free_extent_buffer(eb);
2205		return;
 
 
 
 
2206	}
2207
2208	target = search;
2209
2210	nritems = btrfs_header_nritems(node);
2211	nr = slot;
2212
2213	while (1) {
2214		if (path->reada == READA_BACK) {
2215			if (nr == 0)
2216				break;
2217			nr--;
2218		} else if (path->reada == READA_FORWARD) {
 
2219			nr++;
2220			if (nr >= nritems)
2221				break;
2222		}
2223		if (path->reada == READA_BACK && objectid) {
2224			btrfs_node_key(node, &disk_key, nr);
2225			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2226				break;
2227		}
2228		search = btrfs_node_blockptr(node, nr);
2229		if ((search <= target && target - search <= 65536) ||
 
2230		    (search > target && search - target <= 65536)) {
2231			readahead_tree_block(fs_info, search);
2232			nread += blocksize;
2233		}
2234		nscan++;
2235		if ((nread > 65536 || nscan > 32))
2236			break;
2237	}
2238}
2239
2240static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2241				       struct btrfs_path *path, int level)
2242{
 
2243	int slot;
2244	int nritems;
2245	struct extent_buffer *parent;
2246	struct extent_buffer *eb;
2247	u64 gen;
2248	u64 block1 = 0;
2249	u64 block2 = 0;
2250
2251	parent = path->nodes[level + 1];
2252	if (!parent)
2253		return;
2254
2255	nritems = btrfs_header_nritems(parent);
2256	slot = path->slots[level + 1];
2257
2258	if (slot > 0) {
2259		block1 = btrfs_node_blockptr(parent, slot - 1);
2260		gen = btrfs_node_ptr_generation(parent, slot - 1);
2261		eb = find_extent_buffer(fs_info, block1);
2262		/*
2263		 * if we get -eagain from btrfs_buffer_uptodate, we
2264		 * don't want to return eagain here.  That will loop
2265		 * forever
2266		 */
2267		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2268			block1 = 0;
2269		free_extent_buffer(eb);
2270	}
2271	if (slot + 1 < nritems) {
2272		block2 = btrfs_node_blockptr(parent, slot + 1);
2273		gen = btrfs_node_ptr_generation(parent, slot + 1);
2274		eb = find_extent_buffer(fs_info, block2);
2275		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2276			block2 = 0;
2277		free_extent_buffer(eb);
2278	}
2279
2280	if (block1)
2281		readahead_tree_block(fs_info, block1);
2282	if (block2)
2283		readahead_tree_block(fs_info, block2);
2284}
2285
2286
2287/*
2288 * when we walk down the tree, it is usually safe to unlock the higher layers
2289 * in the tree.  The exceptions are when our path goes through slot 0, because
2290 * operations on the tree might require changing key pointers higher up in the
2291 * tree.
2292 *
2293 * callers might also have set path->keep_locks, which tells this code to keep
2294 * the lock if the path points to the last slot in the block.  This is part of
2295 * walking through the tree, and selecting the next slot in the higher block.
2296 *
2297 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2298 * if lowest_unlock is 1, level 0 won't be unlocked
2299 */
2300static noinline void unlock_up(struct btrfs_path *path, int level,
2301			       int lowest_unlock, int min_write_lock_level,
2302			       int *write_lock_level)
2303{
2304	int i;
2305	int skip_level = level;
2306	int no_skips = 0;
2307	struct extent_buffer *t;
2308
2309	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2310		if (!path->nodes[i])
2311			break;
2312		if (!path->locks[i])
2313			break;
2314		if (!no_skips && path->slots[i] == 0) {
2315			skip_level = i + 1;
2316			continue;
2317		}
2318		if (!no_skips && path->keep_locks) {
2319			u32 nritems;
2320			t = path->nodes[i];
2321			nritems = btrfs_header_nritems(t);
2322			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2323				skip_level = i + 1;
2324				continue;
2325			}
 
 
 
 
 
 
 
 
 
 
2326		}
2327		if (skip_level < i && i >= lowest_unlock)
2328			no_skips = 1;
2329
2330		t = path->nodes[i];
2331		if (i >= lowest_unlock && i > skip_level) {
2332			btrfs_tree_unlock_rw(t, path->locks[i]);
 
2333			path->locks[i] = 0;
2334			if (write_lock_level &&
2335			    i > min_write_lock_level &&
2336			    i <= *write_lock_level) {
2337				*write_lock_level = i - 1;
2338			}
2339		}
2340	}
2341}
2342
2343/*
2344 * helper function for btrfs_search_slot.  The goal is to find a block
2345 * in cache without setting the path to blocking.  If we find the block
2346 * we return zero and the path is unchanged.
 
2347 *
2348 * If we can't find the block, we set the path blocking and do some
2349 * reada.  -EAGAIN is returned and the search must be repeated.
2350 */
2351static int
2352read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2353		      struct extent_buffer **eb_ret, int level, int slot,
2354		      const struct btrfs_key *key)
2355{
2356	struct btrfs_fs_info *fs_info = root->fs_info;
 
2357	u64 blocknr;
2358	u64 gen;
2359	struct extent_buffer *tmp;
2360	struct btrfs_key first_key;
2361	int ret;
2362	int parent_level;
 
 
 
 
2363
2364	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2365	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2366	parent_level = btrfs_header_level(*eb_ret);
2367	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
 
 
 
 
2368
 
 
 
 
 
 
 
2369	tmp = find_extent_buffer(fs_info, blocknr);
2370	if (tmp) {
 
 
 
2371		/* first we do an atomic uptodate check */
2372		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2373			/*
2374			 * Do extra check for first_key, eb can be stale due to
2375			 * being cached, read from scrub, or have multiple
2376			 * parents (shared tree blocks).
2377			 */
2378			if (btrfs_verify_level_key(tmp,
2379					parent_level - 1, &first_key, gen)) {
2380				free_extent_buffer(tmp);
2381				return -EUCLEAN;
2382			}
2383			*eb_ret = tmp;
2384			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385		}
2386
2387		/* the pages were up to date, but we failed
2388		 * the generation number check.  Do a full
2389		 * read for the generation number that is correct.
2390		 * We must do this without dropping locks so
2391		 * we can trust our generation number
2392		 */
2393		btrfs_set_path_blocking(p);
2394
2395		/* now we're allowed to do a blocking uptodate check */
2396		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2397		if (!ret) {
2398			*eb_ret = tmp;
2399			return 0;
2400		}
2401		free_extent_buffer(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402		btrfs_release_path(p);
2403		return -EIO;
 
 
 
 
 
 
 
2404	}
2405
2406	/*
2407	 * reduce lock contention at high levels
2408	 * of the btree by dropping locks before
2409	 * we read.  Don't release the lock on the current
2410	 * level because we need to walk this node to figure
2411	 * out which blocks to read.
2412	 */
2413	btrfs_unlock_up_safe(p, level + 1);
2414	btrfs_set_path_blocking(p);
 
 
2415
2416	if (p->reada != READA_NONE)
2417		reada_for_search(fs_info, p, level, slot, key->objectid);
2418
2419	ret = -EAGAIN;
2420	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2421			      &first_key);
2422	if (!IS_ERR(tmp)) {
2423		/*
2424		 * If the read above didn't mark this buffer up to date,
2425		 * it will never end up being up to date.  Set ret to EIO now
2426		 * and give up so that our caller doesn't loop forever
2427		 * on our EAGAINs.
2428		 */
2429		if (!extent_buffer_uptodate(tmp))
2430			ret = -EIO;
2431		free_extent_buffer(tmp);
2432	} else {
2433		ret = PTR_ERR(tmp);
2434	}
 
 
2435
2436	btrfs_release_path(p);
2437	return ret;
2438}
2439
2440/*
2441 * helper function for btrfs_search_slot.  This does all of the checks
2442 * for node-level blocks and does any balancing required based on
2443 * the ins_len.
2444 *
2445 * If no extra work was required, zero is returned.  If we had to
2446 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2447 * start over
2448 */
2449static int
2450setup_nodes_for_search(struct btrfs_trans_handle *trans,
2451		       struct btrfs_root *root, struct btrfs_path *p,
2452		       struct extent_buffer *b, int level, int ins_len,
2453		       int *write_lock_level)
2454{
2455	struct btrfs_fs_info *fs_info = root->fs_info;
2456	int ret;
2457
2458	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2459	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2460		int sret;
2461
2462		if (*write_lock_level < level + 1) {
2463			*write_lock_level = level + 1;
2464			btrfs_release_path(p);
2465			goto again;
2466		}
2467
2468		btrfs_set_path_blocking(p);
2469		reada_for_balance(fs_info, p, level);
2470		sret = split_node(trans, root, p, level);
2471
2472		BUG_ON(sret > 0);
2473		if (sret) {
2474			ret = sret;
2475			goto done;
2476		}
2477		b = p->nodes[level];
2478	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2479		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2480		int sret;
2481
2482		if (*write_lock_level < level + 1) {
2483			*write_lock_level = level + 1;
2484			btrfs_release_path(p);
2485			goto again;
2486		}
2487
2488		btrfs_set_path_blocking(p);
2489		reada_for_balance(fs_info, p, level);
2490		sret = balance_level(trans, root, p, level);
 
2491
2492		if (sret) {
2493			ret = sret;
2494			goto done;
2495		}
2496		b = p->nodes[level];
2497		if (!b) {
2498			btrfs_release_path(p);
2499			goto again;
2500		}
2501		BUG_ON(btrfs_header_nritems(b) == 1);
2502	}
2503	return 0;
2504
2505again:
2506	ret = -EAGAIN;
2507done:
2508	return ret;
2509}
2510
2511int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2512		u64 iobjectid, u64 ioff, u8 key_type,
2513		struct btrfs_key *found_key)
2514{
2515	int ret;
2516	struct btrfs_key key;
2517	struct extent_buffer *eb;
2518
2519	ASSERT(path);
2520	ASSERT(found_key);
2521
2522	key.type = key_type;
2523	key.objectid = iobjectid;
2524	key.offset = ioff;
2525
2526	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2527	if (ret < 0)
2528		return ret;
2529
2530	eb = path->nodes[0];
2531	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2532		ret = btrfs_next_leaf(fs_root, path);
2533		if (ret)
2534			return ret;
2535		eb = path->nodes[0];
2536	}
2537
2538	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2539	if (found_key->type != key.type ||
2540			found_key->objectid != key.objectid)
2541		return 1;
2542
2543	return 0;
2544}
2545
2546static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2547							struct btrfs_path *p,
2548							int write_lock_level)
2549{
2550	struct btrfs_fs_info *fs_info = root->fs_info;
2551	struct extent_buffer *b;
2552	int root_lock;
2553	int level = 0;
2554
2555	/* We try very hard to do read locks on the root */
2556	root_lock = BTRFS_READ_LOCK;
2557
2558	if (p->search_commit_root) {
2559		/*
2560		 * The commit roots are read only so we always do read locks,
2561		 * and we always must hold the commit_root_sem when doing
2562		 * searches on them, the only exception is send where we don't
2563		 * want to block transaction commits for a long time, so
2564		 * we need to clone the commit root in order to avoid races
2565		 * with transaction commits that create a snapshot of one of
2566		 * the roots used by a send operation.
2567		 */
2568		if (p->need_commit_sem) {
2569			down_read(&fs_info->commit_root_sem);
2570			b = btrfs_clone_extent_buffer(root->commit_root);
2571			up_read(&fs_info->commit_root_sem);
2572			if (!b)
2573				return ERR_PTR(-ENOMEM);
2574
2575		} else {
2576			b = root->commit_root;
2577			atomic_inc(&b->refs);
2578		}
2579		level = btrfs_header_level(b);
2580		/*
2581		 * Ensure that all callers have set skip_locking when
2582		 * p->search_commit_root = 1.
2583		 */
2584		ASSERT(p->skip_locking == 1);
2585
2586		goto out;
2587	}
2588
2589	if (p->skip_locking) {
2590		b = btrfs_root_node(root);
2591		level = btrfs_header_level(b);
2592		goto out;
2593	}
2594
 
 
 
2595	/*
2596	 * If the level is set to maximum, we can skip trying to get the read
2597	 * lock.
2598	 */
2599	if (write_lock_level < BTRFS_MAX_LEVEL) {
2600		/*
2601		 * We don't know the level of the root node until we actually
2602		 * have it read locked
2603		 */
2604		b = btrfs_read_lock_root_node(root);
 
 
 
 
 
 
2605		level = btrfs_header_level(b);
2606		if (level > write_lock_level)
2607			goto out;
2608
2609		/* Whoops, must trade for write lock */
2610		btrfs_tree_read_unlock(b);
2611		free_extent_buffer(b);
2612	}
2613
2614	b = btrfs_lock_root_node(root);
2615	root_lock = BTRFS_WRITE_LOCK;
2616
2617	/* The level might have changed, check again */
2618	level = btrfs_header_level(b);
2619
2620out:
 
 
 
 
 
 
 
 
 
 
 
2621	p->nodes[level] = b;
2622	if (!p->skip_locking)
2623		p->locks[level] = root_lock;
2624	/*
2625	 * Callers are responsible for dropping b's references.
2626	 */
2627	return b;
2628}
2629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2630
2631/*
2632 * btrfs_search_slot - look for a key in a tree and perform necessary
2633 * modifications to preserve tree invariants.
2634 *
2635 * @trans:	Handle of transaction, used when modifying the tree
2636 * @p:		Holds all btree nodes along the search path
2637 * @root:	The root node of the tree
2638 * @key:	The key we are looking for
2639 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2640 *		deletions it's -1. 0 for plain searches
 
 
 
 
 
 
2641 * @cow:	boolean should CoW operations be performed. Must always be 1
2642 *		when modifying the tree.
2643 *
2644 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2645 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2646 *
2647 * If @key is found, 0 is returned and you can find the item in the leaf level
2648 * of the path (level 0)
2649 *
2650 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2651 * points to the slot where it should be inserted
2652 *
2653 * If an error is encountered while searching the tree a negative error number
2654 * is returned
2655 */
2656int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2657		      const struct btrfs_key *key, struct btrfs_path *p,
2658		      int ins_len, int cow)
2659{
 
2660	struct extent_buffer *b;
2661	int slot;
2662	int ret;
2663	int err;
2664	int level;
2665	int lowest_unlock = 1;
2666	/* everything at write_lock_level or lower must be write locked */
2667	int write_lock_level = 0;
2668	u8 lowest_level = 0;
2669	int min_write_lock_level;
2670	int prev_cmp;
2671
 
 
 
 
 
 
2672	lowest_level = p->lowest_level;
2673	WARN_ON(lowest_level && ins_len > 0);
2674	WARN_ON(p->nodes[0] != NULL);
2675	BUG_ON(!cow && ins_len);
2676
 
 
 
 
 
 
 
2677	if (ins_len < 0) {
2678		lowest_unlock = 2;
2679
2680		/* when we are removing items, we might have to go up to level
2681		 * two as we update tree pointers  Make sure we keep write
2682		 * for those levels as well
2683		 */
2684		write_lock_level = 2;
2685	} else if (ins_len > 0) {
2686		/*
2687		 * for inserting items, make sure we have a write lock on
2688		 * level 1 so we can update keys
2689		 */
2690		write_lock_level = 1;
2691	}
2692
2693	if (!cow)
2694		write_lock_level = -1;
2695
2696	if (cow && (p->keep_locks || p->lowest_level))
2697		write_lock_level = BTRFS_MAX_LEVEL;
2698
2699	min_write_lock_level = write_lock_level;
2700
 
 
 
 
 
 
 
 
 
 
2701again:
2702	prev_cmp = -1;
2703	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2704	if (IS_ERR(b)) {
2705		ret = PTR_ERR(b);
2706		goto done;
2707	}
2708
2709	while (b) {
2710		int dec = 0;
2711
2712		level = btrfs_header_level(b);
2713
2714		if (cow) {
2715			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2716
2717			/*
2718			 * if we don't really need to cow this block
2719			 * then we don't want to set the path blocking,
2720			 * so we test it here
2721			 */
2722			if (!should_cow_block(trans, root, b)) {
2723				trans->dirty = true;
2724				goto cow_done;
2725			}
2726
2727			/*
2728			 * must have write locks on this node and the
2729			 * parent
2730			 */
2731			if (level > write_lock_level ||
2732			    (level + 1 > write_lock_level &&
2733			    level + 1 < BTRFS_MAX_LEVEL &&
2734			    p->nodes[level + 1])) {
2735				write_lock_level = level + 1;
2736				btrfs_release_path(p);
2737				goto again;
2738			}
2739
2740			btrfs_set_path_blocking(p);
2741			if (last_level)
2742				err = btrfs_cow_block(trans, root, b, NULL, 0,
2743						      &b);
 
2744			else
2745				err = btrfs_cow_block(trans, root, b,
2746						      p->nodes[level + 1],
2747						      p->slots[level + 1], &b);
 
2748			if (err) {
2749				ret = err;
2750				goto done;
2751			}
2752		}
2753cow_done:
2754		p->nodes[level] = b;
2755		/*
2756		 * Leave path with blocking locks to avoid massive
2757		 * lock context switch, this is made on purpose.
2758		 */
2759
2760		/*
2761		 * we have a lock on b and as long as we aren't changing
2762		 * the tree, there is no way to for the items in b to change.
2763		 * It is safe to drop the lock on our parent before we
2764		 * go through the expensive btree search on b.
2765		 *
2766		 * If we're inserting or deleting (ins_len != 0), then we might
2767		 * be changing slot zero, which may require changing the parent.
2768		 * So, we can't drop the lock until after we know which slot
2769		 * we're operating on.
2770		 */
2771		if (!ins_len && !p->keep_locks) {
2772			int u = level + 1;
2773
2774			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2775				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2776				p->locks[u] = 0;
2777			}
2778		}
2779
2780		/*
2781		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2782		 * we can safely assume the target key will always be in slot 0
2783		 * on lower levels due to the invariants BTRFS' btree provides,
2784		 * namely that a btrfs_key_ptr entry always points to the
2785		 * lowest key in the child node, thus we can skip searching
2786		 * lower levels
2787		 */
2788		if (prev_cmp == 0) {
2789			slot = 0;
2790			ret = 0;
2791		} else {
2792			ret = btrfs_bin_search(b, key, &slot);
2793			prev_cmp = ret;
2794			if (ret < 0)
2795				goto done;
2796		}
2797
2798		if (level == 0) {
2799			p->slots[level] = slot;
2800			if (ins_len > 0 &&
2801			    btrfs_leaf_free_space(b) < ins_len) {
2802				if (write_lock_level < 1) {
2803					write_lock_level = 1;
2804					btrfs_release_path(p);
2805					goto again;
2806				}
2807
2808				btrfs_set_path_blocking(p);
2809				err = split_leaf(trans, root, key,
2810						 p, ins_len, ret == 0);
2811
2812				BUG_ON(err > 0);
2813				if (err) {
2814					ret = err;
2815					goto done;
2816				}
2817			}
2818			if (!p->search_for_split)
2819				unlock_up(p, level, lowest_unlock,
2820					  min_write_lock_level, NULL);
2821			goto done;
2822		}
 
 
 
 
 
 
2823		if (ret && slot > 0) {
2824			dec = 1;
2825			slot--;
2826		}
2827		p->slots[level] = slot;
2828		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2829					     &write_lock_level);
2830		if (err == -EAGAIN)
2831			goto again;
2832		if (err) {
2833			ret = err;
2834			goto done;
2835		}
2836		b = p->nodes[level];
2837		slot = p->slots[level];
2838
2839		/*
2840		 * Slot 0 is special, if we change the key we have to update
2841		 * the parent pointer which means we must have a write lock on
2842		 * the parent
2843		 */
2844		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2845			write_lock_level = level + 1;
2846			btrfs_release_path(p);
2847			goto again;
2848		}
2849
2850		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2851			  &write_lock_level);
2852
2853		if (level == lowest_level) {
2854			if (dec)
2855				p->slots[level]++;
2856			goto done;
2857		}
2858
2859		err = read_block_for_search(root, p, &b, level, slot, key);
2860		if (err == -EAGAIN)
2861			goto again;
2862		if (err) {
2863			ret = err;
2864			goto done;
2865		}
2866
2867		if (!p->skip_locking) {
2868			level = btrfs_header_level(b);
 
 
 
2869			if (level <= write_lock_level) {
2870				if (!btrfs_try_tree_write_lock(b)) {
2871					btrfs_set_path_blocking(p);
2872					btrfs_tree_lock(b);
2873				}
2874				p->locks[level] = BTRFS_WRITE_LOCK;
2875			} else {
2876				if (!btrfs_tree_read_lock_atomic(b)) {
2877					btrfs_set_path_blocking(p);
 
 
 
 
 
2878					btrfs_tree_read_lock(b);
2879				}
2880				p->locks[level] = BTRFS_READ_LOCK;
2881			}
2882			p->nodes[level] = b;
2883		}
2884	}
2885	ret = 1;
2886done:
2887	/*
2888	 * we don't really know what they plan on doing with the path
2889	 * from here on, so for now just mark it as blocking
2890	 */
2891	if (!p->leave_spinning)
2892		btrfs_set_path_blocking(p);
2893	if (ret < 0 && !p->skip_release_on_error)
2894		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2895	return ret;
2896}
 
2897
2898/*
2899 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2900 * current state of the tree together with the operations recorded in the tree
2901 * modification log to search for the key in a previous version of this tree, as
2902 * denoted by the time_seq parameter.
2903 *
2904 * Naturally, there is no support for insert, delete or cow operations.
2905 *
2906 * The resulting path and return value will be set up as if we called
2907 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2908 */
2909int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2910			  struct btrfs_path *p, u64 time_seq)
2911{
2912	struct btrfs_fs_info *fs_info = root->fs_info;
2913	struct extent_buffer *b;
2914	int slot;
2915	int ret;
2916	int err;
2917	int level;
2918	int lowest_unlock = 1;
2919	u8 lowest_level = 0;
2920
2921	lowest_level = p->lowest_level;
2922	WARN_ON(p->nodes[0] != NULL);
 
2923
2924	if (p->search_commit_root) {
2925		BUG_ON(time_seq);
2926		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2927	}
2928
2929again:
2930	b = get_old_root(root, time_seq);
2931	if (!b) {
2932		ret = -EIO;
2933		goto done;
2934	}
2935	level = btrfs_header_level(b);
2936	p->locks[level] = BTRFS_READ_LOCK;
2937
2938	while (b) {
2939		int dec = 0;
2940
2941		level = btrfs_header_level(b);
2942		p->nodes[level] = b;
2943
2944		/*
2945		 * we have a lock on b and as long as we aren't changing
2946		 * the tree, there is no way to for the items in b to change.
2947		 * It is safe to drop the lock on our parent before we
2948		 * go through the expensive btree search on b.
2949		 */
2950		btrfs_unlock_up_safe(p, level + 1);
2951
2952		ret = btrfs_bin_search(b, key, &slot);
2953		if (ret < 0)
2954			goto done;
2955
2956		if (level == 0) {
2957			p->slots[level] = slot;
2958			unlock_up(p, level, lowest_unlock, 0, NULL);
2959			goto done;
2960		}
2961
2962		if (ret && slot > 0) {
2963			dec = 1;
2964			slot--;
2965		}
2966		p->slots[level] = slot;
2967		unlock_up(p, level, lowest_unlock, 0, NULL);
2968
2969		if (level == lowest_level) {
2970			if (dec)
2971				p->slots[level]++;
2972			goto done;
2973		}
2974
2975		err = read_block_for_search(root, p, &b, level, slot, key);
2976		if (err == -EAGAIN)
2977			goto again;
2978		if (err) {
2979			ret = err;
2980			goto done;
2981		}
2982
2983		level = btrfs_header_level(b);
2984		if (!btrfs_tree_read_lock_atomic(b)) {
2985			btrfs_set_path_blocking(p);
2986			btrfs_tree_read_lock(b);
2987		}
2988		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2989		if (!b) {
2990			ret = -ENOMEM;
2991			goto done;
2992		}
2993		p->locks[level] = BTRFS_READ_LOCK;
2994		p->nodes[level] = b;
2995	}
2996	ret = 1;
2997done:
2998	if (!p->leave_spinning)
2999		btrfs_set_path_blocking(p);
3000	if (ret < 0)
3001		btrfs_release_path(p);
3002
3003	return ret;
3004}
3005
3006/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007 * helper to use instead of search slot if no exact match is needed but
3008 * instead the next or previous item should be returned.
3009 * When find_higher is true, the next higher item is returned, the next lower
3010 * otherwise.
3011 * When return_any and find_higher are both true, and no higher item is found,
3012 * return the next lower instead.
3013 * When return_any is true and find_higher is false, and no lower item is found,
3014 * return the next higher instead.
3015 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3016 * < 0 on error
3017 */
3018int btrfs_search_slot_for_read(struct btrfs_root *root,
3019			       const struct btrfs_key *key,
3020			       struct btrfs_path *p, int find_higher,
3021			       int return_any)
3022{
3023	int ret;
3024	struct extent_buffer *leaf;
3025
3026again:
3027	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3028	if (ret <= 0)
3029		return ret;
3030	/*
3031	 * a return value of 1 means the path is at the position where the
3032	 * item should be inserted. Normally this is the next bigger item,
3033	 * but in case the previous item is the last in a leaf, path points
3034	 * to the first free slot in the previous leaf, i.e. at an invalid
3035	 * item.
3036	 */
3037	leaf = p->nodes[0];
3038
3039	if (find_higher) {
3040		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3041			ret = btrfs_next_leaf(root, p);
3042			if (ret <= 0)
3043				return ret;
3044			if (!return_any)
3045				return 1;
3046			/*
3047			 * no higher item found, return the next
3048			 * lower instead
3049			 */
3050			return_any = 0;
3051			find_higher = 0;
3052			btrfs_release_path(p);
3053			goto again;
3054		}
3055	} else {
3056		if (p->slots[0] == 0) {
3057			ret = btrfs_prev_leaf(root, p);
3058			if (ret < 0)
3059				return ret;
3060			if (!ret) {
3061				leaf = p->nodes[0];
3062				if (p->slots[0] == btrfs_header_nritems(leaf))
3063					p->slots[0]--;
3064				return 0;
3065			}
3066			if (!return_any)
3067				return 1;
3068			/*
3069			 * no lower item found, return the next
3070			 * higher instead
3071			 */
3072			return_any = 0;
3073			find_higher = 1;
3074			btrfs_release_path(p);
3075			goto again;
3076		} else {
3077			--p->slots[0];
3078		}
3079	}
3080	return 0;
3081}
3082
3083/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3084 * adjust the pointers going up the tree, starting at level
3085 * making sure the right key of each node is points to 'key'.
3086 * This is used after shifting pointers to the left, so it stops
3087 * fixing up pointers when a given leaf/node is not in slot 0 of the
3088 * higher levels
3089 *
3090 */
3091static void fixup_low_keys(struct btrfs_path *path,
3092			   struct btrfs_disk_key *key, int level)
 
3093{
3094	int i;
3095	struct extent_buffer *t;
3096	int ret;
3097
3098	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3099		int tslot = path->slots[i];
3100
3101		if (!path->nodes[i])
3102			break;
3103		t = path->nodes[i];
3104		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3105				GFP_ATOMIC);
3106		BUG_ON(ret < 0);
3107		btrfs_set_node_key(t, key, tslot);
3108		btrfs_mark_buffer_dirty(path->nodes[i]);
3109		if (tslot != 0)
3110			break;
3111	}
3112}
3113
3114/*
3115 * update item key.
3116 *
3117 * This function isn't completely safe. It's the caller's responsibility
3118 * that the new key won't break the order
3119 */
3120void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3121			     struct btrfs_path *path,
3122			     const struct btrfs_key *new_key)
3123{
 
3124	struct btrfs_disk_key disk_key;
3125	struct extent_buffer *eb;
3126	int slot;
3127
3128	eb = path->nodes[0];
3129	slot = path->slots[0];
3130	if (slot > 0) {
3131		btrfs_item_key(eb, &disk_key, slot - 1);
3132		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
 
3133			btrfs_crit(fs_info,
3134		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3135				   slot, btrfs_disk_key_objectid(&disk_key),
3136				   btrfs_disk_key_type(&disk_key),
3137				   btrfs_disk_key_offset(&disk_key),
3138				   new_key->objectid, new_key->type,
3139				   new_key->offset);
3140			btrfs_print_leaf(eb);
3141			BUG();
3142		}
3143	}
3144	if (slot < btrfs_header_nritems(eb) - 1) {
3145		btrfs_item_key(eb, &disk_key, slot + 1);
3146		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
 
3147			btrfs_crit(fs_info,
3148		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3149				   slot, btrfs_disk_key_objectid(&disk_key),
3150				   btrfs_disk_key_type(&disk_key),
3151				   btrfs_disk_key_offset(&disk_key),
3152				   new_key->objectid, new_key->type,
3153				   new_key->offset);
3154			btrfs_print_leaf(eb);
3155			BUG();
3156		}
3157	}
3158
3159	btrfs_cpu_key_to_disk(&disk_key, new_key);
3160	btrfs_set_item_key(eb, &disk_key, slot);
3161	btrfs_mark_buffer_dirty(eb);
3162	if (slot == 0)
3163		fixup_low_keys(path, &disk_key, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164}
3165
3166/*
3167 * try to push data from one node into the next node left in the
3168 * tree.
3169 *
3170 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3171 * error, and > 0 if there was no room in the left hand block.
3172 */
3173static int push_node_left(struct btrfs_trans_handle *trans,
3174			  struct extent_buffer *dst,
3175			  struct extent_buffer *src, int empty)
3176{
3177	struct btrfs_fs_info *fs_info = trans->fs_info;
3178	int push_items = 0;
3179	int src_nritems;
3180	int dst_nritems;
3181	int ret = 0;
3182
3183	src_nritems = btrfs_header_nritems(src);
3184	dst_nritems = btrfs_header_nritems(dst);
3185	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3186	WARN_ON(btrfs_header_generation(src) != trans->transid);
3187	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3188
3189	if (!empty && src_nritems <= 8)
3190		return 1;
3191
3192	if (push_items <= 0)
3193		return 1;
3194
3195	if (empty) {
3196		push_items = min(src_nritems, push_items);
3197		if (push_items < src_nritems) {
3198			/* leave at least 8 pointers in the node if
3199			 * we aren't going to empty it
3200			 */
3201			if (src_nritems - push_items < 8) {
3202				if (push_items <= 8)
3203					return 1;
3204				push_items -= 8;
3205			}
3206		}
3207	} else
3208		push_items = min(src_nritems - 8, push_items);
3209
3210	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
 
 
 
 
 
3211	if (ret) {
3212		btrfs_abort_transaction(trans, ret);
3213		return ret;
3214	}
3215	copy_extent_buffer(dst, src,
3216			   btrfs_node_key_ptr_offset(dst_nritems),
3217			   btrfs_node_key_ptr_offset(0),
3218			   push_items * sizeof(struct btrfs_key_ptr));
3219
3220	if (push_items < src_nritems) {
3221		/*
3222		 * Don't call tree_mod_log_insert_move here, key removal was
3223		 * already fully logged by tree_mod_log_eb_copy above.
3224		 */
3225		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3226				      btrfs_node_key_ptr_offset(push_items),
3227				      (src_nritems - push_items) *
3228				      sizeof(struct btrfs_key_ptr));
3229	}
3230	btrfs_set_header_nritems(src, src_nritems - push_items);
3231	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3232	btrfs_mark_buffer_dirty(src);
3233	btrfs_mark_buffer_dirty(dst);
3234
3235	return ret;
3236}
3237
3238/*
3239 * try to push data from one node into the next node right in the
3240 * tree.
3241 *
3242 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3243 * error, and > 0 if there was no room in the right hand block.
3244 *
3245 * this will  only push up to 1/2 the contents of the left node over
3246 */
3247static int balance_node_right(struct btrfs_trans_handle *trans,
3248			      struct extent_buffer *dst,
3249			      struct extent_buffer *src)
3250{
3251	struct btrfs_fs_info *fs_info = trans->fs_info;
3252	int push_items = 0;
3253	int max_push;
3254	int src_nritems;
3255	int dst_nritems;
3256	int ret = 0;
3257
3258	WARN_ON(btrfs_header_generation(src) != trans->transid);
3259	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3260
3261	src_nritems = btrfs_header_nritems(src);
3262	dst_nritems = btrfs_header_nritems(dst);
3263	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3264	if (push_items <= 0)
3265		return 1;
3266
3267	if (src_nritems < 4)
3268		return 1;
3269
3270	max_push = src_nritems / 2 + 1;
3271	/* don't try to empty the node */
3272	if (max_push >= src_nritems)
3273		return 1;
3274
3275	if (max_push < push_items)
3276		push_items = max_push;
3277
3278	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3279	BUG_ON(ret < 0);
3280	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3281				      btrfs_node_key_ptr_offset(0),
 
 
 
 
 
 
 
 
 
3282				      (dst_nritems) *
3283				      sizeof(struct btrfs_key_ptr));
3284
3285	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3286				   push_items);
3287	if (ret) {
3288		btrfs_abort_transaction(trans, ret);
3289		return ret;
3290	}
3291	copy_extent_buffer(dst, src,
3292			   btrfs_node_key_ptr_offset(0),
3293			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3294			   push_items * sizeof(struct btrfs_key_ptr));
3295
3296	btrfs_set_header_nritems(src, src_nritems - push_items);
3297	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298
3299	btrfs_mark_buffer_dirty(src);
3300	btrfs_mark_buffer_dirty(dst);
3301
3302	return ret;
3303}
3304
3305/*
3306 * helper function to insert a new root level in the tree.
3307 * A new node is allocated, and a single item is inserted to
3308 * point to the existing root
3309 *
3310 * returns zero on success or < 0 on failure.
3311 */
3312static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3313			   struct btrfs_root *root,
3314			   struct btrfs_path *path, int level)
3315{
3316	struct btrfs_fs_info *fs_info = root->fs_info;
3317	u64 lower_gen;
3318	struct extent_buffer *lower;
3319	struct extent_buffer *c;
3320	struct extent_buffer *old;
3321	struct btrfs_disk_key lower_key;
3322	int ret;
3323
3324	BUG_ON(path->nodes[level]);
3325	BUG_ON(path->nodes[level-1] != root->node);
3326
3327	lower = path->nodes[level-1];
3328	if (level == 1)
3329		btrfs_item_key(lower, &lower_key, 0);
3330	else
3331		btrfs_node_key(lower, &lower_key, 0);
3332
3333	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3334					 root->node->start, 0);
 
3335	if (IS_ERR(c))
3336		return PTR_ERR(c);
3337
3338	root_add_used(root, fs_info->nodesize);
3339
3340	btrfs_set_header_nritems(c, 1);
3341	btrfs_set_node_key(c, &lower_key, 0);
3342	btrfs_set_node_blockptr(c, 0, lower->start);
3343	lower_gen = btrfs_header_generation(lower);
3344	WARN_ON(lower_gen != trans->transid);
3345
3346	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3347
3348	btrfs_mark_buffer_dirty(c);
3349
3350	old = root->node;
3351	ret = tree_mod_log_insert_root(root->node, c, 0);
3352	BUG_ON(ret < 0);
 
 
 
 
 
 
 
 
 
3353	rcu_assign_pointer(root->node, c);
3354
3355	/* the super has an extra ref to root->node */
3356	free_extent_buffer(old);
3357
3358	add_root_to_dirty_list(root);
3359	atomic_inc(&c->refs);
3360	path->nodes[level] = c;
3361	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3362	path->slots[level] = 0;
3363	return 0;
3364}
3365
3366/*
3367 * worker function to insert a single pointer in a node.
3368 * the node should have enough room for the pointer already
3369 *
3370 * slot and level indicate where you want the key to go, and
3371 * blocknr is the block the key points to.
3372 */
3373static void insert_ptr(struct btrfs_trans_handle *trans,
3374		       struct btrfs_path *path,
3375		       struct btrfs_disk_key *key, u64 bytenr,
3376		       int slot, int level)
3377{
3378	struct extent_buffer *lower;
3379	int nritems;
3380	int ret;
3381
3382	BUG_ON(!path->nodes[level]);
3383	btrfs_assert_tree_locked(path->nodes[level]);
3384	lower = path->nodes[level];
3385	nritems = btrfs_header_nritems(lower);
3386	BUG_ON(slot > nritems);
3387	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3388	if (slot != nritems) {
3389		if (level) {
3390			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3391					nritems - slot);
3392			BUG_ON(ret < 0);
 
 
 
3393		}
3394		memmove_extent_buffer(lower,
3395			      btrfs_node_key_ptr_offset(slot + 1),
3396			      btrfs_node_key_ptr_offset(slot),
3397			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3398	}
3399	if (level) {
3400		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3401				GFP_NOFS);
3402		BUG_ON(ret < 0);
 
 
 
3403	}
3404	btrfs_set_node_key(lower, key, slot);
3405	btrfs_set_node_blockptr(lower, slot, bytenr);
3406	WARN_ON(trans->transid == 0);
3407	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3408	btrfs_set_header_nritems(lower, nritems + 1);
3409	btrfs_mark_buffer_dirty(lower);
 
 
3410}
3411
3412/*
3413 * split the node at the specified level in path in two.
3414 * The path is corrected to point to the appropriate node after the split
3415 *
3416 * Before splitting this tries to make some room in the node by pushing
3417 * left and right, if either one works, it returns right away.
3418 *
3419 * returns 0 on success and < 0 on failure
3420 */
3421static noinline int split_node(struct btrfs_trans_handle *trans,
3422			       struct btrfs_root *root,
3423			       struct btrfs_path *path, int level)
3424{
3425	struct btrfs_fs_info *fs_info = root->fs_info;
3426	struct extent_buffer *c;
3427	struct extent_buffer *split;
3428	struct btrfs_disk_key disk_key;
3429	int mid;
3430	int ret;
3431	u32 c_nritems;
3432
3433	c = path->nodes[level];
3434	WARN_ON(btrfs_header_generation(c) != trans->transid);
3435	if (c == root->node) {
3436		/*
3437		 * trying to split the root, lets make a new one
3438		 *
3439		 * tree mod log: We don't log_removal old root in
3440		 * insert_new_root, because that root buffer will be kept as a
3441		 * normal node. We are going to log removal of half of the
3442		 * elements below with tree_mod_log_eb_copy. We're holding a
3443		 * tree lock on the buffer, which is why we cannot race with
3444		 * other tree_mod_log users.
3445		 */
3446		ret = insert_new_root(trans, root, path, level + 1);
3447		if (ret)
3448			return ret;
3449	} else {
3450		ret = push_nodes_for_insert(trans, root, path, level);
3451		c = path->nodes[level];
3452		if (!ret && btrfs_header_nritems(c) <
3453		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3454			return 0;
3455		if (ret < 0)
3456			return ret;
3457	}
3458
3459	c_nritems = btrfs_header_nritems(c);
3460	mid = (c_nritems + 1) / 2;
3461	btrfs_node_key(c, &disk_key, mid);
3462
3463	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3464					     c->start, 0);
 
3465	if (IS_ERR(split))
3466		return PTR_ERR(split);
3467
3468	root_add_used(root, fs_info->nodesize);
3469	ASSERT(btrfs_header_level(c) == level);
3470
3471	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3472	if (ret) {
 
 
3473		btrfs_abort_transaction(trans, ret);
3474		return ret;
3475	}
3476	copy_extent_buffer(split, c,
3477			   btrfs_node_key_ptr_offset(0),
3478			   btrfs_node_key_ptr_offset(mid),
3479			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3480	btrfs_set_header_nritems(split, c_nritems - mid);
3481	btrfs_set_header_nritems(c, mid);
3482	ret = 0;
3483
3484	btrfs_mark_buffer_dirty(c);
3485	btrfs_mark_buffer_dirty(split);
3486
3487	insert_ptr(trans, path, &disk_key, split->start,
3488		   path->slots[level + 1] + 1, level + 1);
 
 
 
 
 
3489
3490	if (path->slots[level] >= mid) {
3491		path->slots[level] -= mid;
3492		btrfs_tree_unlock(c);
3493		free_extent_buffer(c);
3494		path->nodes[level] = split;
3495		path->slots[level + 1] += 1;
3496	} else {
3497		btrfs_tree_unlock(split);
3498		free_extent_buffer(split);
3499	}
3500	return ret;
3501}
3502
3503/*
3504 * how many bytes are required to store the items in a leaf.  start
3505 * and nr indicate which items in the leaf to check.  This totals up the
3506 * space used both by the item structs and the item data
3507 */
3508static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3509{
3510	struct btrfs_item *start_item;
3511	struct btrfs_item *end_item;
3512	int data_len;
3513	int nritems = btrfs_header_nritems(l);
3514	int end = min(nritems, start + nr) - 1;
3515
3516	if (!nr)
3517		return 0;
3518	start_item = btrfs_item_nr(start);
3519	end_item = btrfs_item_nr(end);
3520	data_len = btrfs_item_offset(l, start_item) +
3521		   btrfs_item_size(l, start_item);
3522	data_len = data_len - btrfs_item_offset(l, end_item);
3523	data_len += sizeof(struct btrfs_item) * nr;
3524	WARN_ON(data_len < 0);
3525	return data_len;
3526}
3527
3528/*
3529 * The space between the end of the leaf items and
3530 * the start of the leaf data.  IOW, how much room
3531 * the leaf has left for both items and data
3532 */
3533noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3534{
3535	struct btrfs_fs_info *fs_info = leaf->fs_info;
3536	int nritems = btrfs_header_nritems(leaf);
3537	int ret;
3538
3539	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3540	if (ret < 0) {
3541		btrfs_crit(fs_info,
3542			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3543			   ret,
3544			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3545			   leaf_space_used(leaf, 0, nritems), nritems);
3546	}
3547	return ret;
3548}
3549
3550/*
3551 * min slot controls the lowest index we're willing to push to the
3552 * right.  We'll push up to and including min_slot, but no lower
3553 */
3554static noinline int __push_leaf_right(struct btrfs_path *path,
 
3555				      int data_size, int empty,
3556				      struct extent_buffer *right,
3557				      int free_space, u32 left_nritems,
3558				      u32 min_slot)
3559{
3560	struct btrfs_fs_info *fs_info = right->fs_info;
3561	struct extent_buffer *left = path->nodes[0];
3562	struct extent_buffer *upper = path->nodes[1];
3563	struct btrfs_map_token token;
3564	struct btrfs_disk_key disk_key;
3565	int slot;
3566	u32 i;
3567	int push_space = 0;
3568	int push_items = 0;
3569	struct btrfs_item *item;
3570	u32 nr;
3571	u32 right_nritems;
3572	u32 data_end;
3573	u32 this_item_size;
3574
3575	if (empty)
3576		nr = 0;
3577	else
3578		nr = max_t(u32, 1, min_slot);
3579
3580	if (path->slots[0] >= left_nritems)
3581		push_space += data_size;
3582
3583	slot = path->slots[1];
3584	i = left_nritems - 1;
3585	while (i >= nr) {
3586		item = btrfs_item_nr(i);
3587
3588		if (!empty && push_items > 0) {
3589			if (path->slots[0] > i)
3590				break;
3591			if (path->slots[0] == i) {
3592				int space = btrfs_leaf_free_space(left);
3593
3594				if (space + push_space * 2 > free_space)
3595					break;
3596			}
3597		}
3598
3599		if (path->slots[0] == i)
3600			push_space += data_size;
3601
3602		this_item_size = btrfs_item_size(left, item);
3603		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3604			break;
3605
3606		push_items++;
3607		push_space += this_item_size + sizeof(*item);
3608		if (i == 0)
3609			break;
3610		i--;
3611	}
3612
3613	if (push_items == 0)
3614		goto out_unlock;
3615
3616	WARN_ON(!empty && push_items == left_nritems);
3617
3618	/* push left to right */
3619	right_nritems = btrfs_header_nritems(right);
3620
3621	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3622	push_space -= leaf_data_end(left);
3623
3624	/* make room in the right data area */
3625	data_end = leaf_data_end(right);
3626	memmove_extent_buffer(right,
3627			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3628			      BTRFS_LEAF_DATA_OFFSET + data_end,
3629			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3630
3631	/* copy from the left data area */
3632	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3633		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3634		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3635		     push_space);
3636
3637	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3638			      btrfs_item_nr_offset(0),
3639			      right_nritems * sizeof(struct btrfs_item));
3640
3641	/* copy the items from left to right */
3642	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3643		   btrfs_item_nr_offset(left_nritems - push_items),
3644		   push_items * sizeof(struct btrfs_item));
3645
3646	/* update the item pointers */
3647	btrfs_init_map_token(&token, right);
3648	right_nritems += push_items;
3649	btrfs_set_header_nritems(right, right_nritems);
3650	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3651	for (i = 0; i < right_nritems; i++) {
3652		item = btrfs_item_nr(i);
3653		push_space -= btrfs_token_item_size(&token, item);
3654		btrfs_set_token_item_offset(&token, item, push_space);
3655	}
3656
3657	left_nritems -= push_items;
3658	btrfs_set_header_nritems(left, left_nritems);
3659
3660	if (left_nritems)
3661		btrfs_mark_buffer_dirty(left);
3662	else
3663		btrfs_clean_tree_block(left);
3664
3665	btrfs_mark_buffer_dirty(right);
3666
3667	btrfs_item_key(right, &disk_key, 0);
3668	btrfs_set_node_key(upper, &disk_key, slot + 1);
3669	btrfs_mark_buffer_dirty(upper);
3670
3671	/* then fixup the leaf pointer in the path */
3672	if (path->slots[0] >= left_nritems) {
3673		path->slots[0] -= left_nritems;
3674		if (btrfs_header_nritems(path->nodes[0]) == 0)
3675			btrfs_clean_tree_block(path->nodes[0]);
3676		btrfs_tree_unlock(path->nodes[0]);
3677		free_extent_buffer(path->nodes[0]);
3678		path->nodes[0] = right;
3679		path->slots[1] += 1;
3680	} else {
3681		btrfs_tree_unlock(right);
3682		free_extent_buffer(right);
3683	}
3684	return 0;
3685
3686out_unlock:
3687	btrfs_tree_unlock(right);
3688	free_extent_buffer(right);
3689	return 1;
3690}
3691
3692/*
3693 * push some data in the path leaf to the right, trying to free up at
3694 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3695 *
3696 * returns 1 if the push failed because the other node didn't have enough
3697 * room, 0 if everything worked out and < 0 if there were major errors.
3698 *
3699 * this will push starting from min_slot to the end of the leaf.  It won't
3700 * push any slot lower than min_slot
3701 */
3702static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3703			   *root, struct btrfs_path *path,
3704			   int min_data_size, int data_size,
3705			   int empty, u32 min_slot)
3706{
3707	struct extent_buffer *left = path->nodes[0];
3708	struct extent_buffer *right;
3709	struct extent_buffer *upper;
3710	int slot;
3711	int free_space;
3712	u32 left_nritems;
3713	int ret;
3714
3715	if (!path->nodes[1])
3716		return 1;
3717
3718	slot = path->slots[1];
3719	upper = path->nodes[1];
3720	if (slot >= btrfs_header_nritems(upper) - 1)
3721		return 1;
3722
3723	btrfs_assert_tree_locked(path->nodes[1]);
3724
3725	right = btrfs_read_node_slot(upper, slot + 1);
3726	/*
3727	 * slot + 1 is not valid or we fail to read the right node,
3728	 * no big deal, just return.
3729	 */
3730	if (IS_ERR(right))
3731		return 1;
3732
3733	btrfs_tree_lock(right);
3734	btrfs_set_lock_blocking_write(right);
3735
3736	free_space = btrfs_leaf_free_space(right);
3737	if (free_space < data_size)
3738		goto out_unlock;
3739
3740	/* cow and double check */
3741	ret = btrfs_cow_block(trans, root, right, upper,
3742			      slot + 1, &right);
3743	if (ret)
3744		goto out_unlock;
3745
3746	free_space = btrfs_leaf_free_space(right);
3747	if (free_space < data_size)
3748		goto out_unlock;
3749
3750	left_nritems = btrfs_header_nritems(left);
3751	if (left_nritems == 0)
3752		goto out_unlock;
3753
 
 
 
 
 
 
 
3754	if (path->slots[0] == left_nritems && !empty) {
3755		/* Key greater than all keys in the leaf, right neighbor has
3756		 * enough room for it and we're not emptying our leaf to delete
3757		 * it, therefore use right neighbor to insert the new item and
3758		 * no need to touch/dirty our left leaf. */
3759		btrfs_tree_unlock(left);
3760		free_extent_buffer(left);
3761		path->nodes[0] = right;
3762		path->slots[0] = 0;
3763		path->slots[1]++;
3764		return 0;
3765	}
3766
3767	return __push_leaf_right(path, min_data_size, empty,
3768				right, free_space, left_nritems, min_slot);
3769out_unlock:
3770	btrfs_tree_unlock(right);
3771	free_extent_buffer(right);
3772	return 1;
3773}
3774
3775/*
3776 * push some data in the path leaf to the left, trying to free up at
3777 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778 *
3779 * max_slot can put a limit on how far into the leaf we'll push items.  The
3780 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3781 * items
3782 */
3783static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
3784				     int empty, struct extent_buffer *left,
3785				     int free_space, u32 right_nritems,
3786				     u32 max_slot)
3787{
3788	struct btrfs_fs_info *fs_info = left->fs_info;
3789	struct btrfs_disk_key disk_key;
3790	struct extent_buffer *right = path->nodes[0];
3791	int i;
3792	int push_space = 0;
3793	int push_items = 0;
3794	struct btrfs_item *item;
3795	u32 old_left_nritems;
3796	u32 nr;
3797	int ret = 0;
3798	u32 this_item_size;
3799	u32 old_left_item_size;
3800	struct btrfs_map_token token;
3801
3802	if (empty)
3803		nr = min(right_nritems, max_slot);
3804	else
3805		nr = min(right_nritems - 1, max_slot);
3806
3807	for (i = 0; i < nr; i++) {
3808		item = btrfs_item_nr(i);
3809
3810		if (!empty && push_items > 0) {
3811			if (path->slots[0] < i)
3812				break;
3813			if (path->slots[0] == i) {
3814				int space = btrfs_leaf_free_space(right);
3815
3816				if (space + push_space * 2 > free_space)
3817					break;
3818			}
3819		}
3820
3821		if (path->slots[0] == i)
3822			push_space += data_size;
3823
3824		this_item_size = btrfs_item_size(right, item);
3825		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3826			break;
3827
3828		push_items++;
3829		push_space += this_item_size + sizeof(*item);
3830	}
3831
3832	if (push_items == 0) {
3833		ret = 1;
3834		goto out;
3835	}
3836	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3837
3838	/* push data from right to left */
3839	copy_extent_buffer(left, right,
3840			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841			   btrfs_item_nr_offset(0),
3842			   push_items * sizeof(struct btrfs_item));
3843
3844	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3845		     btrfs_item_offset_nr(right, push_items - 1);
3846
3847	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3848		     leaf_data_end(left) - push_space,
3849		     BTRFS_LEAF_DATA_OFFSET +
3850		     btrfs_item_offset_nr(right, push_items - 1),
3851		     push_space);
3852	old_left_nritems = btrfs_header_nritems(left);
3853	BUG_ON(old_left_nritems <= 0);
3854
3855	btrfs_init_map_token(&token, left);
3856	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3857	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3858		u32 ioff;
3859
3860		item = btrfs_item_nr(i);
3861
3862		ioff = btrfs_token_item_offset(&token, item);
3863		btrfs_set_token_item_offset(&token, item,
3864		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3865	}
3866	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3867
3868	/* fixup right node */
3869	if (push_items > right_nritems)
3870		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3871		       right_nritems);
3872
3873	if (push_items < right_nritems) {
3874		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3875						  leaf_data_end(right);
3876		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3877				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3878				      BTRFS_LEAF_DATA_OFFSET +
3879				      leaf_data_end(right), push_space);
3880
3881		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3882			      btrfs_item_nr_offset(push_items),
3883			     (btrfs_header_nritems(right) - push_items) *
3884			     sizeof(struct btrfs_item));
3885	}
3886
3887	btrfs_init_map_token(&token, right);
3888	right_nritems -= push_items;
3889	btrfs_set_header_nritems(right, right_nritems);
3890	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3891	for (i = 0; i < right_nritems; i++) {
3892		item = btrfs_item_nr(i);
3893
3894		push_space = push_space - btrfs_token_item_size(&token, item);
3895		btrfs_set_token_item_offset(&token, item, push_space);
3896	}
3897
3898	btrfs_mark_buffer_dirty(left);
3899	if (right_nritems)
3900		btrfs_mark_buffer_dirty(right);
3901	else
3902		btrfs_clean_tree_block(right);
3903
3904	btrfs_item_key(right, &disk_key, 0);
3905	fixup_low_keys(path, &disk_key, 1);
3906
3907	/* then fixup the leaf pointer in the path */
3908	if (path->slots[0] < push_items) {
3909		path->slots[0] += old_left_nritems;
3910		btrfs_tree_unlock(path->nodes[0]);
3911		free_extent_buffer(path->nodes[0]);
3912		path->nodes[0] = left;
3913		path->slots[1] -= 1;
3914	} else {
3915		btrfs_tree_unlock(left);
3916		free_extent_buffer(left);
3917		path->slots[0] -= push_items;
3918	}
3919	BUG_ON(path->slots[0] < 0);
3920	return ret;
3921out:
3922	btrfs_tree_unlock(left);
3923	free_extent_buffer(left);
3924	return ret;
3925}
3926
3927/*
3928 * push some data in the path leaf to the left, trying to free up at
3929 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3930 *
3931 * max_slot can put a limit on how far into the leaf we'll push items.  The
3932 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3933 * items
3934 */
3935static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3936			  *root, struct btrfs_path *path, int min_data_size,
3937			  int data_size, int empty, u32 max_slot)
3938{
3939	struct extent_buffer *right = path->nodes[0];
3940	struct extent_buffer *left;
3941	int slot;
3942	int free_space;
3943	u32 right_nritems;
3944	int ret = 0;
3945
3946	slot = path->slots[1];
3947	if (slot == 0)
3948		return 1;
3949	if (!path->nodes[1])
3950		return 1;
3951
3952	right_nritems = btrfs_header_nritems(right);
3953	if (right_nritems == 0)
3954		return 1;
3955
3956	btrfs_assert_tree_locked(path->nodes[1]);
3957
3958	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3959	/*
3960	 * slot - 1 is not valid or we fail to read the left node,
3961	 * no big deal, just return.
3962	 */
3963	if (IS_ERR(left))
3964		return 1;
3965
3966	btrfs_tree_lock(left);
3967	btrfs_set_lock_blocking_write(left);
3968
3969	free_space = btrfs_leaf_free_space(left);
3970	if (free_space < data_size) {
3971		ret = 1;
3972		goto out;
3973	}
3974
3975	/* cow and double check */
3976	ret = btrfs_cow_block(trans, root, left,
3977			      path->nodes[1], slot - 1, &left);
 
3978	if (ret) {
3979		/* we hit -ENOSPC, but it isn't fatal here */
3980		if (ret == -ENOSPC)
3981			ret = 1;
3982		goto out;
3983	}
3984
3985	free_space = btrfs_leaf_free_space(left);
3986	if (free_space < data_size) {
3987		ret = 1;
3988		goto out;
3989	}
3990
3991	return __push_leaf_left(path, min_data_size,
3992			       empty, left, free_space, right_nritems,
3993			       max_slot);
3994out:
3995	btrfs_tree_unlock(left);
3996	free_extent_buffer(left);
3997	return ret;
3998}
3999
4000/*
4001 * split the path's leaf in two, making sure there is at least data_size
4002 * available for the resulting leaf level of the path.
4003 */
4004static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4005				    struct btrfs_path *path,
4006				    struct extent_buffer *l,
4007				    struct extent_buffer *right,
4008				    int slot, int mid, int nritems)
4009{
4010	struct btrfs_fs_info *fs_info = trans->fs_info;
4011	int data_copy_size;
4012	int rt_data_off;
4013	int i;
 
4014	struct btrfs_disk_key disk_key;
4015	struct btrfs_map_token token;
4016
4017	nritems = nritems - mid;
4018	btrfs_set_header_nritems(right, nritems);
4019	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4020
4021	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4022			   btrfs_item_nr_offset(mid),
4023			   nritems * sizeof(struct btrfs_item));
4024
4025	copy_extent_buffer(right, l,
4026		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4027		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4028		     leaf_data_end(l), data_copy_size);
4029
4030	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
 
 
 
4031
4032	btrfs_init_map_token(&token, right);
4033	for (i = 0; i < nritems; i++) {
4034		struct btrfs_item *item = btrfs_item_nr(i);
4035		u32 ioff;
4036
4037		ioff = btrfs_token_item_offset(&token, item);
4038		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4039	}
4040
4041	btrfs_set_header_nritems(l, mid);
4042	btrfs_item_key(right, &disk_key, 0);
4043	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
 
4044
4045	btrfs_mark_buffer_dirty(right);
4046	btrfs_mark_buffer_dirty(l);
4047	BUG_ON(path->slots[0] != slot);
4048
4049	if (mid <= slot) {
4050		btrfs_tree_unlock(path->nodes[0]);
4051		free_extent_buffer(path->nodes[0]);
4052		path->nodes[0] = right;
4053		path->slots[0] -= mid;
4054		path->slots[1] += 1;
4055	} else {
4056		btrfs_tree_unlock(right);
4057		free_extent_buffer(right);
4058	}
4059
4060	BUG_ON(path->slots[0] < 0);
 
 
4061}
4062
4063/*
4064 * double splits happen when we need to insert a big item in the middle
4065 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067 *          A                 B                 C
4068 *
4069 * We avoid this by trying to push the items on either side of our target
4070 * into the adjacent leaves.  If all goes well we can avoid the double split
4071 * completely.
4072 */
4073static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074					  struct btrfs_root *root,
4075					  struct btrfs_path *path,
4076					  int data_size)
4077{
4078	int ret;
4079	int progress = 0;
4080	int slot;
4081	u32 nritems;
4082	int space_needed = data_size;
4083
4084	slot = path->slots[0];
4085	if (slot < btrfs_header_nritems(path->nodes[0]))
4086		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4087
4088	/*
4089	 * try to push all the items after our slot into the
4090	 * right leaf
4091	 */
4092	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4093	if (ret < 0)
4094		return ret;
4095
4096	if (ret == 0)
4097		progress++;
4098
4099	nritems = btrfs_header_nritems(path->nodes[0]);
4100	/*
4101	 * our goal is to get our slot at the start or end of a leaf.  If
4102	 * we've done so we're done
4103	 */
4104	if (path->slots[0] == 0 || path->slots[0] == nritems)
4105		return 0;
4106
4107	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4108		return 0;
4109
4110	/* try to push all the items before our slot into the next leaf */
4111	slot = path->slots[0];
4112	space_needed = data_size;
4113	if (slot > 0)
4114		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4115	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4116	if (ret < 0)
4117		return ret;
4118
4119	if (ret == 0)
4120		progress++;
4121
4122	if (progress)
4123		return 0;
4124	return 1;
4125}
4126
4127/*
4128 * split the path's leaf in two, making sure there is at least data_size
4129 * available for the resulting leaf level of the path.
4130 *
4131 * returns 0 if all went well and < 0 on failure.
4132 */
4133static noinline int split_leaf(struct btrfs_trans_handle *trans,
4134			       struct btrfs_root *root,
4135			       const struct btrfs_key *ins_key,
4136			       struct btrfs_path *path, int data_size,
4137			       int extend)
4138{
4139	struct btrfs_disk_key disk_key;
4140	struct extent_buffer *l;
4141	u32 nritems;
4142	int mid;
4143	int slot;
4144	struct extent_buffer *right;
4145	struct btrfs_fs_info *fs_info = root->fs_info;
4146	int ret = 0;
4147	int wret;
4148	int split;
4149	int num_doubles = 0;
4150	int tried_avoid_double = 0;
4151
4152	l = path->nodes[0];
4153	slot = path->slots[0];
4154	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4155	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4156		return -EOVERFLOW;
4157
4158	/* first try to make some room by pushing left and right */
4159	if (data_size && path->nodes[1]) {
4160		int space_needed = data_size;
4161
4162		if (slot < btrfs_header_nritems(l))
4163			space_needed -= btrfs_leaf_free_space(l);
4164
4165		wret = push_leaf_right(trans, root, path, space_needed,
4166				       space_needed, 0, 0);
4167		if (wret < 0)
4168			return wret;
4169		if (wret) {
4170			space_needed = data_size;
4171			if (slot > 0)
4172				space_needed -= btrfs_leaf_free_space(l);
4173			wret = push_leaf_left(trans, root, path, space_needed,
4174					      space_needed, 0, (u32)-1);
4175			if (wret < 0)
4176				return wret;
4177		}
4178		l = path->nodes[0];
4179
4180		/* did the pushes work? */
4181		if (btrfs_leaf_free_space(l) >= data_size)
4182			return 0;
4183	}
4184
4185	if (!path->nodes[1]) {
4186		ret = insert_new_root(trans, root, path, 1);
4187		if (ret)
4188			return ret;
4189	}
4190again:
4191	split = 1;
4192	l = path->nodes[0];
4193	slot = path->slots[0];
4194	nritems = btrfs_header_nritems(l);
4195	mid = (nritems + 1) / 2;
4196
4197	if (mid <= slot) {
4198		if (nritems == 1 ||
4199		    leaf_space_used(l, mid, nritems - mid) + data_size >
4200			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201			if (slot >= nritems) {
4202				split = 0;
4203			} else {
4204				mid = slot;
4205				if (mid != nritems &&
4206				    leaf_space_used(l, mid, nritems - mid) +
4207				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4208					if (data_size && !tried_avoid_double)
4209						goto push_for_double;
4210					split = 2;
4211				}
4212			}
4213		}
4214	} else {
4215		if (leaf_space_used(l, 0, mid) + data_size >
4216			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4217			if (!extend && data_size && slot == 0) {
4218				split = 0;
4219			} else if ((extend || !data_size) && slot == 0) {
4220				mid = 1;
4221			} else {
4222				mid = slot;
4223				if (mid != nritems &&
4224				    leaf_space_used(l, mid, nritems - mid) +
4225				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226					if (data_size && !tried_avoid_double)
4227						goto push_for_double;
4228					split = 2;
4229				}
4230			}
4231		}
4232	}
4233
4234	if (split == 0)
4235		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4236	else
4237		btrfs_item_key(l, &disk_key, mid);
4238
4239	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4240					     l->start, 0);
 
 
 
 
 
 
 
 
 
 
4241	if (IS_ERR(right))
4242		return PTR_ERR(right);
4243
4244	root_add_used(root, fs_info->nodesize);
4245
4246	if (split == 0) {
4247		if (mid <= slot) {
4248			btrfs_set_header_nritems(right, 0);
4249			insert_ptr(trans, path, &disk_key,
4250				   right->start, path->slots[1] + 1, 1);
 
 
 
 
 
4251			btrfs_tree_unlock(path->nodes[0]);
4252			free_extent_buffer(path->nodes[0]);
4253			path->nodes[0] = right;
4254			path->slots[0] = 0;
4255			path->slots[1] += 1;
4256		} else {
4257			btrfs_set_header_nritems(right, 0);
4258			insert_ptr(trans, path, &disk_key,
4259				   right->start, path->slots[1], 1);
 
 
 
 
 
4260			btrfs_tree_unlock(path->nodes[0]);
4261			free_extent_buffer(path->nodes[0]);
4262			path->nodes[0] = right;
4263			path->slots[0] = 0;
4264			if (path->slots[1] == 0)
4265				fixup_low_keys(path, &disk_key, 1);
4266		}
4267		/*
4268		 * We create a new leaf 'right' for the required ins_len and
4269		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4270		 * the content of ins_len to 'right'.
4271		 */
4272		return ret;
4273	}
4274
4275	copy_for_split(trans, path, l, right, slot, mid, nritems);
 
 
 
 
 
4276
4277	if (split == 2) {
4278		BUG_ON(num_doubles != 0);
4279		num_doubles++;
4280		goto again;
4281	}
4282
4283	return 0;
4284
4285push_for_double:
4286	push_for_double_split(trans, root, path, data_size);
4287	tried_avoid_double = 1;
4288	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4289		return 0;
4290	goto again;
4291}
4292
4293static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4294					 struct btrfs_root *root,
4295					 struct btrfs_path *path, int ins_len)
4296{
4297	struct btrfs_key key;
4298	struct extent_buffer *leaf;
4299	struct btrfs_file_extent_item *fi;
4300	u64 extent_len = 0;
4301	u32 item_size;
4302	int ret;
4303
4304	leaf = path->nodes[0];
4305	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4306
4307	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4308	       key.type != BTRFS_EXTENT_CSUM_KEY);
4309
4310	if (btrfs_leaf_free_space(leaf) >= ins_len)
4311		return 0;
4312
4313	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4314	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4315		fi = btrfs_item_ptr(leaf, path->slots[0],
4316				    struct btrfs_file_extent_item);
4317		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4318	}
4319	btrfs_release_path(path);
4320
4321	path->keep_locks = 1;
4322	path->search_for_split = 1;
4323	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4324	path->search_for_split = 0;
4325	if (ret > 0)
4326		ret = -EAGAIN;
4327	if (ret < 0)
4328		goto err;
4329
4330	ret = -EAGAIN;
4331	leaf = path->nodes[0];
4332	/* if our item isn't there, return now */
4333	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4334		goto err;
4335
4336	/* the leaf has  changed, it now has room.  return now */
4337	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4338		goto err;
4339
4340	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4341		fi = btrfs_item_ptr(leaf, path->slots[0],
4342				    struct btrfs_file_extent_item);
4343		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4344			goto err;
4345	}
4346
4347	btrfs_set_path_blocking(path);
4348	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4349	if (ret)
4350		goto err;
4351
4352	path->keep_locks = 0;
4353	btrfs_unlock_up_safe(path, 1);
4354	return 0;
4355err:
4356	path->keep_locks = 0;
4357	return ret;
4358}
4359
4360static noinline int split_item(struct btrfs_path *path,
 
4361			       const struct btrfs_key *new_key,
4362			       unsigned long split_offset)
4363{
4364	struct extent_buffer *leaf;
4365	struct btrfs_item *item;
4366	struct btrfs_item *new_item;
4367	int slot;
4368	char *buf;
4369	u32 nritems;
4370	u32 item_size;
4371	u32 orig_offset;
4372	struct btrfs_disk_key disk_key;
4373
4374	leaf = path->nodes[0];
4375	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
 
 
 
 
 
4376
4377	btrfs_set_path_blocking(path);
4378
4379	item = btrfs_item_nr(path->slots[0]);
4380	orig_offset = btrfs_item_offset(leaf, item);
4381	item_size = btrfs_item_size(leaf, item);
4382
4383	buf = kmalloc(item_size, GFP_NOFS);
4384	if (!buf)
4385		return -ENOMEM;
4386
4387	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4388			    path->slots[0]), item_size);
4389
4390	slot = path->slots[0] + 1;
4391	nritems = btrfs_header_nritems(leaf);
4392	if (slot != nritems) {
4393		/* shift the items */
4394		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4395				btrfs_item_nr_offset(slot),
4396				(nritems - slot) * sizeof(struct btrfs_item));
4397	}
4398
4399	btrfs_cpu_key_to_disk(&disk_key, new_key);
4400	btrfs_set_item_key(leaf, &disk_key, slot);
4401
4402	new_item = btrfs_item_nr(slot);
4403
4404	btrfs_set_item_offset(leaf, new_item, orig_offset);
4405	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4406
4407	btrfs_set_item_offset(leaf, item,
4408			      orig_offset + item_size - split_offset);
4409	btrfs_set_item_size(leaf, item, split_offset);
4410
4411	btrfs_set_header_nritems(leaf, nritems + 1);
4412
4413	/* write the data for the start of the original item */
4414	write_extent_buffer(leaf, buf,
4415			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4416			    split_offset);
4417
4418	/* write the data for the new item */
4419	write_extent_buffer(leaf, buf + split_offset,
4420			    btrfs_item_ptr_offset(leaf, slot),
4421			    item_size - split_offset);
4422	btrfs_mark_buffer_dirty(leaf);
4423
4424	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4425	kfree(buf);
4426	return 0;
4427}
4428
4429/*
4430 * This function splits a single item into two items,
4431 * giving 'new_key' to the new item and splitting the
4432 * old one at split_offset (from the start of the item).
4433 *
4434 * The path may be released by this operation.  After
4435 * the split, the path is pointing to the old item.  The
4436 * new item is going to be in the same node as the old one.
4437 *
4438 * Note, the item being split must be smaller enough to live alone on
4439 * a tree block with room for one extra struct btrfs_item
4440 *
4441 * This allows us to split the item in place, keeping a lock on the
4442 * leaf the entire time.
4443 */
4444int btrfs_split_item(struct btrfs_trans_handle *trans,
4445		     struct btrfs_root *root,
4446		     struct btrfs_path *path,
4447		     const struct btrfs_key *new_key,
4448		     unsigned long split_offset)
4449{
4450	int ret;
4451	ret = setup_leaf_for_split(trans, root, path,
4452				   sizeof(struct btrfs_item));
4453	if (ret)
4454		return ret;
4455
4456	ret = split_item(path, new_key, split_offset);
4457	return ret;
4458}
4459
4460/*
4461 * This function duplicate a item, giving 'new_key' to the new item.
4462 * It guarantees both items live in the same tree leaf and the new item
4463 * is contiguous with the original item.
4464 *
4465 * This allows us to split file extent in place, keeping a lock on the
4466 * leaf the entire time.
4467 */
4468int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4469			 struct btrfs_root *root,
4470			 struct btrfs_path *path,
4471			 const struct btrfs_key *new_key)
4472{
4473	struct extent_buffer *leaf;
4474	int ret;
4475	u32 item_size;
4476
4477	leaf = path->nodes[0];
4478	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4479	ret = setup_leaf_for_split(trans, root, path,
4480				   item_size + sizeof(struct btrfs_item));
4481	if (ret)
4482		return ret;
4483
4484	path->slots[0]++;
4485	setup_items_for_insert(root, path, new_key, &item_size,
4486			       item_size, item_size +
4487			       sizeof(struct btrfs_item), 1);
4488	leaf = path->nodes[0];
4489	memcpy_extent_buffer(leaf,
4490			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492			     item_size);
4493	return 0;
4494}
4495
4496/*
4497 * make the item pointed to by the path smaller.  new_size indicates
4498 * how small to make it, and from_end tells us if we just chop bytes
4499 * off the end of the item or if we shift the item to chop bytes off
4500 * the front.
4501 */
4502void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
4503{
4504	int slot;
4505	struct extent_buffer *leaf;
4506	struct btrfs_item *item;
4507	u32 nritems;
4508	unsigned int data_end;
4509	unsigned int old_data_start;
4510	unsigned int old_size;
4511	unsigned int size_diff;
4512	int i;
4513	struct btrfs_map_token token;
4514
4515	leaf = path->nodes[0];
4516	slot = path->slots[0];
4517
4518	old_size = btrfs_item_size_nr(leaf, slot);
4519	if (old_size == new_size)
4520		return;
4521
4522	nritems = btrfs_header_nritems(leaf);
4523	data_end = leaf_data_end(leaf);
4524
4525	old_data_start = btrfs_item_offset_nr(leaf, slot);
4526
4527	size_diff = old_size - new_size;
4528
4529	BUG_ON(slot < 0);
4530	BUG_ON(slot >= nritems);
4531
4532	/*
4533	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4534	 */
4535	/* first correct the data pointers */
4536	btrfs_init_map_token(&token, leaf);
4537	for (i = slot; i < nritems; i++) {
4538		u32 ioff;
4539		item = btrfs_item_nr(i);
4540
4541		ioff = btrfs_token_item_offset(&token, item);
4542		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4543	}
4544
4545	/* shift the data */
4546	if (from_end) {
4547		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549			      data_end, old_data_start + new_size - data_end);
4550	} else {
4551		struct btrfs_disk_key disk_key;
4552		u64 offset;
4553
4554		btrfs_item_key(leaf, &disk_key, slot);
4555
4556		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557			unsigned long ptr;
4558			struct btrfs_file_extent_item *fi;
4559
4560			fi = btrfs_item_ptr(leaf, slot,
4561					    struct btrfs_file_extent_item);
4562			fi = (struct btrfs_file_extent_item *)(
4563			     (unsigned long)fi - size_diff);
4564
4565			if (btrfs_file_extent_type(leaf, fi) ==
4566			    BTRFS_FILE_EXTENT_INLINE) {
4567				ptr = btrfs_item_ptr_offset(leaf, slot);
4568				memmove_extent_buffer(leaf, ptr,
4569				      (unsigned long)fi,
4570				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4571			}
4572		}
4573
4574		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576			      data_end, old_data_start - data_end);
4577
4578		offset = btrfs_disk_key_offset(&disk_key);
4579		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580		btrfs_set_item_key(leaf, &disk_key, slot);
4581		if (slot == 0)
4582			fixup_low_keys(path, &disk_key, 1);
4583	}
4584
4585	item = btrfs_item_nr(slot);
4586	btrfs_set_item_size(leaf, item, new_size);
4587	btrfs_mark_buffer_dirty(leaf);
4588
4589	if (btrfs_leaf_free_space(leaf) < 0) {
4590		btrfs_print_leaf(leaf);
4591		BUG();
4592	}
4593}
4594
4595/*
4596 * make the item pointed to by the path bigger, data_size is the added size.
4597 */
4598void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4599{
4600	int slot;
4601	struct extent_buffer *leaf;
4602	struct btrfs_item *item;
4603	u32 nritems;
4604	unsigned int data_end;
4605	unsigned int old_data;
4606	unsigned int old_size;
4607	int i;
4608	struct btrfs_map_token token;
4609
4610	leaf = path->nodes[0];
4611
4612	nritems = btrfs_header_nritems(leaf);
4613	data_end = leaf_data_end(leaf);
4614
4615	if (btrfs_leaf_free_space(leaf) < data_size) {
4616		btrfs_print_leaf(leaf);
4617		BUG();
4618	}
4619	slot = path->slots[0];
4620	old_data = btrfs_item_end_nr(leaf, slot);
4621
4622	BUG_ON(slot < 0);
4623	if (slot >= nritems) {
4624		btrfs_print_leaf(leaf);
4625		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626			   slot, nritems);
4627		BUG();
4628	}
4629
4630	/*
4631	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4632	 */
4633	/* first correct the data pointers */
4634	btrfs_init_map_token(&token, leaf);
4635	for (i = slot; i < nritems; i++) {
4636		u32 ioff;
4637		item = btrfs_item_nr(i);
4638
4639		ioff = btrfs_token_item_offset(&token, item);
4640		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4641	}
4642
4643	/* shift the data */
4644	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646		      data_end, old_data - data_end);
4647
4648	data_end = old_data;
4649	old_size = btrfs_item_size_nr(leaf, slot);
4650	item = btrfs_item_nr(slot);
4651	btrfs_set_item_size(leaf, item, old_size + data_size);
4652	btrfs_mark_buffer_dirty(leaf);
4653
4654	if (btrfs_leaf_free_space(leaf) < 0) {
4655		btrfs_print_leaf(leaf);
4656		BUG();
4657	}
4658}
4659
4660/*
4661 * this is a helper for btrfs_insert_empty_items, the main goal here is
4662 * to save stack depth by doing the bulk of the work in a function
4663 * that doesn't call btrfs_search_slot
4664 */
4665void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4666			    const struct btrfs_key *cpu_key, u32 *data_size,
4667			    u32 total_data, u32 total_size, int nr)
 
 
 
 
 
 
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	struct btrfs_item *item;
4671	int i;
4672	u32 nritems;
4673	unsigned int data_end;
4674	struct btrfs_disk_key disk_key;
4675	struct extent_buffer *leaf;
4676	int slot;
4677	struct btrfs_map_token token;
 
4678
 
 
 
 
 
4679	if (path->slots[0] == 0) {
4680		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4681		fixup_low_keys(path, &disk_key, 1);
4682	}
4683	btrfs_unlock_up_safe(path, 1);
4684
4685	leaf = path->nodes[0];
4686	slot = path->slots[0];
4687
4688	nritems = btrfs_header_nritems(leaf);
4689	data_end = leaf_data_end(leaf);
 
4690
4691	if (btrfs_leaf_free_space(leaf) < total_size) {
4692		btrfs_print_leaf(leaf);
4693		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4694			   total_size, btrfs_leaf_free_space(leaf));
4695		BUG();
4696	}
4697
4698	btrfs_init_map_token(&token, leaf);
4699	if (slot != nritems) {
4700		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4701
4702		if (old_data < data_end) {
4703			btrfs_print_leaf(leaf);
4704			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
 
4705				   slot, old_data, data_end);
4706			BUG();
4707		}
4708		/*
4709		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710		 */
4711		/* first correct the data pointers */
4712		for (i = slot; i < nritems; i++) {
4713			u32 ioff;
4714
4715			item = btrfs_item_nr(i);
4716			ioff = btrfs_token_item_offset(&token, item);
4717			btrfs_set_token_item_offset(&token, item,
4718						    ioff - total_data);
4719		}
4720		/* shift the items */
4721		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4722			      btrfs_item_nr_offset(slot),
4723			      (nritems - slot) * sizeof(struct btrfs_item));
4724
4725		/* shift the data */
4726		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4727			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4728			      data_end, old_data - data_end);
4729		data_end = old_data;
4730	}
4731
4732	/* setup the item for the new data */
4733	for (i = 0; i < nr; i++) {
4734		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4735		btrfs_set_item_key(leaf, &disk_key, slot + i);
4736		item = btrfs_item_nr(slot + i);
4737		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
4738		data_end -= data_size[i];
4739		btrfs_set_token_item_size(&token, item, data_size[i]);
4740	}
4741
4742	btrfs_set_header_nritems(leaf, nritems + nr);
4743	btrfs_mark_buffer_dirty(leaf);
4744
4745	if (btrfs_leaf_free_space(leaf) < 0) {
4746		btrfs_print_leaf(leaf);
4747		BUG();
4748	}
4749}
4750
4751/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4752 * Given a key and some data, insert items into the tree.
4753 * This does all the path init required, making room in the tree if needed.
 
 
 
 
4754 */
4755int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4756			    struct btrfs_root *root,
4757			    struct btrfs_path *path,
4758			    const struct btrfs_key *cpu_key, u32 *data_size,
4759			    int nr)
4760{
4761	int ret = 0;
4762	int slot;
4763	int i;
4764	u32 total_size = 0;
4765	u32 total_data = 0;
4766
4767	for (i = 0; i < nr; i++)
4768		total_data += data_size[i];
4769
4770	total_size = total_data + (nr * sizeof(struct btrfs_item));
4771	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4772	if (ret == 0)
4773		return -EEXIST;
4774	if (ret < 0)
4775		return ret;
4776
4777	slot = path->slots[0];
4778	BUG_ON(slot < 0);
4779
4780	setup_items_for_insert(root, path, cpu_key, data_size,
4781			       total_data, total_size, nr);
4782	return 0;
4783}
4784
4785/*
4786 * Given a key and some data, insert an item into the tree.
4787 * This does all the path init required, making room in the tree if needed.
4788 */
4789int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4790		      const struct btrfs_key *cpu_key, void *data,
4791		      u32 data_size)
4792{
4793	int ret = 0;
4794	struct btrfs_path *path;
4795	struct extent_buffer *leaf;
4796	unsigned long ptr;
4797
4798	path = btrfs_alloc_path();
4799	if (!path)
4800		return -ENOMEM;
4801	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4802	if (!ret) {
4803		leaf = path->nodes[0];
4804		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4805		write_extent_buffer(leaf, data, ptr, data_size);
4806		btrfs_mark_buffer_dirty(leaf);
4807	}
4808	btrfs_free_path(path);
4809	return ret;
4810}
4811
4812/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4813 * delete the pointer from a given node.
4814 *
4815 * the tree should have been previously balanced so the deletion does not
4816 * empty a node.
 
 
4817 */
4818static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4819		    int level, int slot)
4820{
4821	struct extent_buffer *parent = path->nodes[level];
4822	u32 nritems;
4823	int ret;
4824
4825	nritems = btrfs_header_nritems(parent);
4826	if (slot != nritems - 1) {
4827		if (level) {
4828			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4829					nritems - slot - 1);
4830			BUG_ON(ret < 0);
 
 
 
4831		}
4832		memmove_extent_buffer(parent,
4833			      btrfs_node_key_ptr_offset(slot),
4834			      btrfs_node_key_ptr_offset(slot + 1),
4835			      sizeof(struct btrfs_key_ptr) *
4836			      (nritems - slot - 1));
4837	} else if (level) {
4838		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4839				GFP_NOFS);
4840		BUG_ON(ret < 0);
 
 
 
4841	}
4842
4843	nritems--;
4844	btrfs_set_header_nritems(parent, nritems);
4845	if (nritems == 0 && parent == root->node) {
4846		BUG_ON(btrfs_header_level(root->node) != 1);
4847		/* just turn the root into a leaf and break */
4848		btrfs_set_header_level(root->node, 0);
4849	} else if (slot == 0) {
4850		struct btrfs_disk_key disk_key;
4851
4852		btrfs_node_key(parent, &disk_key, 0);
4853		fixup_low_keys(path, &disk_key, level + 1);
4854	}
4855	btrfs_mark_buffer_dirty(parent);
 
4856}
4857
4858/*
4859 * a helper function to delete the leaf pointed to by path->slots[1] and
4860 * path->nodes[1].
4861 *
4862 * This deletes the pointer in path->nodes[1] and frees the leaf
4863 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4864 *
4865 * The path must have already been setup for deleting the leaf, including
4866 * all the proper balancing.  path->nodes[1] must be locked.
4867 */
4868static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4869				    struct btrfs_root *root,
4870				    struct btrfs_path *path,
4871				    struct extent_buffer *leaf)
4872{
 
 
4873	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4874	del_ptr(root, path, 1, path->slots[1]);
 
 
4875
4876	/*
4877	 * btrfs_free_extent is expensive, we want to make sure we
4878	 * aren't holding any locks when we call it
4879	 */
4880	btrfs_unlock_up_safe(path, 0);
4881
4882	root_sub_used(root, leaf->len);
4883
4884	atomic_inc(&leaf->refs);
4885	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4886	free_extent_buffer_stale(leaf);
 
 
 
 
4887}
4888/*
4889 * delete the item at the leaf level in path.  If that empties
4890 * the leaf, remove it from the tree
4891 */
4892int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4893		    struct btrfs_path *path, int slot, int nr)
4894{
4895	struct btrfs_fs_info *fs_info = root->fs_info;
4896	struct extent_buffer *leaf;
4897	struct btrfs_item *item;
4898	u32 last_off;
4899	u32 dsize = 0;
4900	int ret = 0;
4901	int wret;
4902	int i;
4903	u32 nritems;
4904
4905	leaf = path->nodes[0];
4906	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4907
4908	for (i = 0; i < nr; i++)
4909		dsize += btrfs_item_size_nr(leaf, slot + i);
4910
4911	nritems = btrfs_header_nritems(leaf);
4912
4913	if (slot + nr != nritems) {
4914		int data_end = leaf_data_end(leaf);
 
4915		struct btrfs_map_token token;
 
 
4916
4917		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4918			      data_end + dsize,
4919			      BTRFS_LEAF_DATA_OFFSET + data_end,
4920			      last_off - data_end);
 
4921
4922		btrfs_init_map_token(&token, leaf);
4923		for (i = slot + nr; i < nritems; i++) {
4924			u32 ioff;
4925
4926			item = btrfs_item_nr(i);
4927			ioff = btrfs_token_item_offset(&token, item);
4928			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4929		}
4930
4931		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4932			      btrfs_item_nr_offset(slot + nr),
4933			      sizeof(struct btrfs_item) *
4934			      (nritems - slot - nr));
4935	}
4936	btrfs_set_header_nritems(leaf, nritems - nr);
4937	nritems -= nr;
4938
4939	/* delete the leaf if we've emptied it */
4940	if (nritems == 0) {
4941		if (leaf == root->node) {
4942			btrfs_set_header_level(leaf, 0);
4943		} else {
4944			btrfs_set_path_blocking(path);
4945			btrfs_clean_tree_block(leaf);
4946			btrfs_del_leaf(trans, root, path, leaf);
 
4947		}
4948	} else {
4949		int used = leaf_space_used(leaf, 0, nritems);
4950		if (slot == 0) {
4951			struct btrfs_disk_key disk_key;
4952
4953			btrfs_item_key(leaf, &disk_key, 0);
4954			fixup_low_keys(path, &disk_key, 1);
4955		}
4956
4957		/* delete the leaf if it is mostly empty */
 
 
 
 
 
 
 
4958		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
 
 
4959			/* push_leaf_left fixes the path.
4960			 * make sure the path still points to our leaf
4961			 * for possible call to del_ptr below
4962			 */
4963			slot = path->slots[1];
4964			atomic_inc(&leaf->refs);
4965
4966			btrfs_set_path_blocking(path);
4967			wret = push_leaf_left(trans, root, path, 1, 1,
4968					      1, (u32)-1);
 
 
 
 
4969			if (wret < 0 && wret != -ENOSPC)
4970				ret = wret;
4971
4972			if (path->nodes[0] == leaf &&
4973			    btrfs_header_nritems(leaf)) {
4974				wret = push_leaf_right(trans, root, path, 1,
4975						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
4976				if (wret < 0 && wret != -ENOSPC)
4977					ret = wret;
4978			}
4979
4980			if (btrfs_header_nritems(leaf) == 0) {
4981				path->slots[1] = slot;
4982				btrfs_del_leaf(trans, root, path, leaf);
 
 
4983				free_extent_buffer(leaf);
4984				ret = 0;
4985			} else {
4986				/* if we're still in the path, make sure
4987				 * we're dirty.  Otherwise, one of the
4988				 * push_leaf functions must have already
4989				 * dirtied this buffer
4990				 */
4991				if (path->nodes[0] == leaf)
4992					btrfs_mark_buffer_dirty(leaf);
4993				free_extent_buffer(leaf);
4994			}
4995		} else {
4996			btrfs_mark_buffer_dirty(leaf);
4997		}
4998	}
4999	return ret;
5000}
5001
5002/*
5003 * search the tree again to find a leaf with lesser keys
5004 * returns 0 if it found something or 1 if there are no lesser leaves.
5005 * returns < 0 on io errors.
5006 *
5007 * This may release the path, and so you may lose any locks held at the
5008 * time you call it.
5009 */
5010int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5011{
5012	struct btrfs_key key;
5013	struct btrfs_disk_key found_key;
5014	int ret;
5015
5016	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5017
5018	if (key.offset > 0) {
5019		key.offset--;
5020	} else if (key.type > 0) {
5021		key.type--;
5022		key.offset = (u64)-1;
5023	} else if (key.objectid > 0) {
5024		key.objectid--;
5025		key.type = (u8)-1;
5026		key.offset = (u64)-1;
5027	} else {
5028		return 1;
5029	}
5030
5031	btrfs_release_path(path);
5032	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033	if (ret < 0)
5034		return ret;
5035	btrfs_item_key(path->nodes[0], &found_key, 0);
5036	ret = comp_keys(&found_key, &key);
5037	/*
5038	 * We might have had an item with the previous key in the tree right
5039	 * before we released our path. And after we released our path, that
5040	 * item might have been pushed to the first slot (0) of the leaf we
5041	 * were holding due to a tree balance. Alternatively, an item with the
5042	 * previous key can exist as the only element of a leaf (big fat item).
5043	 * Therefore account for these 2 cases, so that our callers (like
5044	 * btrfs_previous_item) don't miss an existing item with a key matching
5045	 * the previous key we computed above.
5046	 */
5047	if (ret <= 0)
5048		return 0;
5049	return 1;
5050}
5051
5052/*
5053 * A helper function to walk down the tree starting at min_key, and looking
5054 * for nodes or leaves that are have a minimum transaction id.
5055 * This is used by the btree defrag code, and tree logging
5056 *
5057 * This does not cow, but it does stuff the starting key it finds back
5058 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5059 * key and get a writable path.
5060 *
5061 * This honors path->lowest_level to prevent descent past a given level
5062 * of the tree.
5063 *
5064 * min_trans indicates the oldest transaction that you are interested
5065 * in walking through.  Any nodes or leaves older than min_trans are
5066 * skipped over (without reading them).
5067 *
5068 * returns zero if something useful was found, < 0 on error and 1 if there
5069 * was nothing in the tree that matched the search criteria.
5070 */
5071int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5072			 struct btrfs_path *path,
5073			 u64 min_trans)
5074{
5075	struct extent_buffer *cur;
5076	struct btrfs_key found_key;
5077	int slot;
5078	int sret;
5079	u32 nritems;
5080	int level;
5081	int ret = 1;
5082	int keep_locks = path->keep_locks;
5083
 
5084	path->keep_locks = 1;
5085again:
5086	cur = btrfs_read_lock_root_node(root);
5087	level = btrfs_header_level(cur);
5088	WARN_ON(path->nodes[level]);
5089	path->nodes[level] = cur;
5090	path->locks[level] = BTRFS_READ_LOCK;
5091
5092	if (btrfs_header_generation(cur) < min_trans) {
5093		ret = 1;
5094		goto out;
5095	}
5096	while (1) {
5097		nritems = btrfs_header_nritems(cur);
5098		level = btrfs_header_level(cur);
5099		sret = btrfs_bin_search(cur, min_key, &slot);
5100		if (sret < 0) {
5101			ret = sret;
5102			goto out;
5103		}
5104
5105		/* at the lowest level, we're done, setup the path and exit */
5106		if (level == path->lowest_level) {
5107			if (slot >= nritems)
5108				goto find_next_key;
5109			ret = 0;
5110			path->slots[level] = slot;
5111			btrfs_item_key_to_cpu(cur, &found_key, slot);
5112			goto out;
5113		}
5114		if (sret && slot > 0)
5115			slot--;
5116		/*
5117		 * check this node pointer against the min_trans parameters.
5118		 * If it is too old, old, skip to the next one.
5119		 */
5120		while (slot < nritems) {
5121			u64 gen;
5122
5123			gen = btrfs_node_ptr_generation(cur, slot);
5124			if (gen < min_trans) {
5125				slot++;
5126				continue;
5127			}
5128			break;
5129		}
5130find_next_key:
5131		/*
5132		 * we didn't find a candidate key in this node, walk forward
5133		 * and find another one
5134		 */
5135		if (slot >= nritems) {
5136			path->slots[level] = slot;
5137			btrfs_set_path_blocking(path);
5138			sret = btrfs_find_next_key(root, path, min_key, level,
5139						  min_trans);
5140			if (sret == 0) {
5141				btrfs_release_path(path);
5142				goto again;
5143			} else {
5144				goto out;
5145			}
5146		}
5147		/* save our key for returning back */
5148		btrfs_node_key_to_cpu(cur, &found_key, slot);
5149		path->slots[level] = slot;
5150		if (level == path->lowest_level) {
5151			ret = 0;
5152			goto out;
5153		}
5154		btrfs_set_path_blocking(path);
5155		cur = btrfs_read_node_slot(cur, slot);
5156		if (IS_ERR(cur)) {
5157			ret = PTR_ERR(cur);
5158			goto out;
5159		}
5160
5161		btrfs_tree_read_lock(cur);
5162
5163		path->locks[level - 1] = BTRFS_READ_LOCK;
5164		path->nodes[level - 1] = cur;
5165		unlock_up(path, level, 1, 0, NULL);
5166	}
5167out:
5168	path->keep_locks = keep_locks;
5169	if (ret == 0) {
5170		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5171		btrfs_set_path_blocking(path);
5172		memcpy(min_key, &found_key, sizeof(found_key));
5173	}
5174	return ret;
5175}
5176
5177/*
5178 * this is similar to btrfs_next_leaf, but does not try to preserve
5179 * and fixup the path.  It looks for and returns the next key in the
5180 * tree based on the current path and the min_trans parameters.
5181 *
5182 * 0 is returned if another key is found, < 0 if there are any errors
5183 * and 1 is returned if there are no higher keys in the tree
5184 *
5185 * path->keep_locks should be set to 1 on the search made before
5186 * calling this function.
5187 */
5188int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5189			struct btrfs_key *key, int level, u64 min_trans)
5190{
5191	int slot;
5192	struct extent_buffer *c;
5193
5194	WARN_ON(!path->keep_locks && !path->skip_locking);
5195	while (level < BTRFS_MAX_LEVEL) {
5196		if (!path->nodes[level])
5197			return 1;
5198
5199		slot = path->slots[level] + 1;
5200		c = path->nodes[level];
5201next:
5202		if (slot >= btrfs_header_nritems(c)) {
5203			int ret;
5204			int orig_lowest;
5205			struct btrfs_key cur_key;
5206			if (level + 1 >= BTRFS_MAX_LEVEL ||
5207			    !path->nodes[level + 1])
5208				return 1;
5209
5210			if (path->locks[level + 1] || path->skip_locking) {
5211				level++;
5212				continue;
5213			}
5214
5215			slot = btrfs_header_nritems(c) - 1;
5216			if (level == 0)
5217				btrfs_item_key_to_cpu(c, &cur_key, slot);
5218			else
5219				btrfs_node_key_to_cpu(c, &cur_key, slot);
5220
5221			orig_lowest = path->lowest_level;
5222			btrfs_release_path(path);
5223			path->lowest_level = level;
5224			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5225						0, 0);
5226			path->lowest_level = orig_lowest;
5227			if (ret < 0)
5228				return ret;
5229
5230			c = path->nodes[level];
5231			slot = path->slots[level];
5232			if (ret == 0)
5233				slot++;
5234			goto next;
5235		}
5236
5237		if (level == 0)
5238			btrfs_item_key_to_cpu(c, key, slot);
5239		else {
5240			u64 gen = btrfs_node_ptr_generation(c, slot);
5241
5242			if (gen < min_trans) {
5243				slot++;
5244				goto next;
5245			}
5246			btrfs_node_key_to_cpu(c, key, slot);
5247		}
5248		return 0;
5249	}
5250	return 1;
5251}
5252
5253/*
5254 * search the tree again to find a leaf with greater keys
5255 * returns 0 if it found something or 1 if there are no greater leaves.
5256 * returns < 0 on io errors.
5257 */
5258int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5259{
5260	return btrfs_next_old_leaf(root, path, 0);
5261}
5262
5263int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5264			u64 time_seq)
5265{
5266	int slot;
5267	int level;
5268	struct extent_buffer *c;
5269	struct extent_buffer *next;
 
5270	struct btrfs_key key;
 
5271	u32 nritems;
5272	int ret;
5273	int old_spinning = path->leave_spinning;
5274	int next_rw_lock = 0;
 
 
 
 
 
 
5275
5276	nritems = btrfs_header_nritems(path->nodes[0]);
5277	if (nritems == 0)
5278		return 1;
5279
5280	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5281again:
5282	level = 1;
5283	next = NULL;
5284	next_rw_lock = 0;
5285	btrfs_release_path(path);
5286
5287	path->keep_locks = 1;
5288	path->leave_spinning = 1;
5289
5290	if (time_seq)
5291		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5292	else
 
 
 
 
 
 
 
 
 
 
 
 
5293		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5294	path->keep_locks = 0;
5295
5296	if (ret < 0)
5297		return ret;
5298
5299	nritems = btrfs_header_nritems(path->nodes[0]);
5300	/*
5301	 * by releasing the path above we dropped all our locks.  A balance
5302	 * could have added more items next to the key that used to be
5303	 * at the very end of the block.  So, check again here and
5304	 * advance the path if there are now more items available.
5305	 */
5306	if (nritems > 0 && path->slots[0] < nritems - 1) {
5307		if (ret == 0)
5308			path->slots[0]++;
5309		ret = 0;
5310		goto done;
5311	}
5312	/*
5313	 * So the above check misses one case:
5314	 * - after releasing the path above, someone has removed the item that
5315	 *   used to be at the very end of the block, and balance between leafs
5316	 *   gets another one with bigger key.offset to replace it.
5317	 *
5318	 * This one should be returned as well, or we can get leaf corruption
5319	 * later(esp. in __btrfs_drop_extents()).
5320	 *
5321	 * And a bit more explanation about this check,
5322	 * with ret > 0, the key isn't found, the path points to the slot
5323	 * where it should be inserted, so the path->slots[0] item must be the
5324	 * bigger one.
5325	 */
5326	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5327		ret = 0;
5328		goto done;
5329	}
5330
5331	while (level < BTRFS_MAX_LEVEL) {
5332		if (!path->nodes[level]) {
5333			ret = 1;
5334			goto done;
5335		}
5336
5337		slot = path->slots[level] + 1;
5338		c = path->nodes[level];
5339		if (slot >= btrfs_header_nritems(c)) {
5340			level++;
5341			if (level == BTRFS_MAX_LEVEL) {
5342				ret = 1;
5343				goto done;
5344			}
5345			continue;
5346		}
5347
5348		if (next) {
5349			btrfs_tree_unlock_rw(next, next_rw_lock);
5350			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5351		}
5352
5353		next = c;
5354		next_rw_lock = path->locks[level];
5355		ret = read_block_for_search(root, path, &next, level,
5356					    slot, &key);
5357		if (ret == -EAGAIN)
5358			goto again;
5359
5360		if (ret < 0) {
5361			btrfs_release_path(path);
5362			goto done;
5363		}
5364
5365		if (!path->skip_locking) {
5366			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5367			if (!ret && time_seq) {
5368				/*
5369				 * If we don't get the lock, we may be racing
5370				 * with push_leaf_left, holding that lock while
5371				 * itself waiting for the leaf we've currently
5372				 * locked. To solve this situation, we give up
5373				 * on our lock and cycle.
5374				 */
5375				free_extent_buffer(next);
5376				btrfs_release_path(path);
5377				cond_resched();
5378				goto again;
5379			}
5380			if (!ret) {
5381				btrfs_set_path_blocking(path);
5382				btrfs_tree_read_lock(next);
5383			}
5384			next_rw_lock = BTRFS_READ_LOCK;
5385		}
5386		break;
5387	}
5388	path->slots[level] = slot;
5389	while (1) {
5390		level--;
5391		c = path->nodes[level];
5392		if (path->locks[level])
5393			btrfs_tree_unlock_rw(c, path->locks[level]);
5394
5395		free_extent_buffer(c);
5396		path->nodes[level] = next;
5397		path->slots[level] = 0;
5398		if (!path->skip_locking)
5399			path->locks[level] = next_rw_lock;
5400		if (!level)
5401			break;
5402
5403		ret = read_block_for_search(root, path, &next, level,
5404					    0, &key);
5405		if (ret == -EAGAIN)
5406			goto again;
5407
5408		if (ret < 0) {
5409			btrfs_release_path(path);
5410			goto done;
5411		}
5412
5413		if (!path->skip_locking) {
5414			ret = btrfs_try_tree_read_lock(next);
5415			if (!ret) {
5416				btrfs_set_path_blocking(path);
 
 
 
5417				btrfs_tree_read_lock(next);
5418			}
5419			next_rw_lock = BTRFS_READ_LOCK;
5420		}
5421	}
5422	ret = 0;
5423done:
5424	unlock_up(path, 0, 1, 0, NULL);
5425	path->leave_spinning = old_spinning;
5426	if (!old_spinning)
5427		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5428
5429	return ret;
5430}
5431
 
 
 
 
 
 
 
 
5432/*
5433 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5434 * searching until it gets past min_objectid or finds an item of 'type'
5435 *
5436 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5437 */
5438int btrfs_previous_item(struct btrfs_root *root,
5439			struct btrfs_path *path, u64 min_objectid,
5440			int type)
5441{
5442	struct btrfs_key found_key;
5443	struct extent_buffer *leaf;
5444	u32 nritems;
5445	int ret;
5446
5447	while (1) {
5448		if (path->slots[0] == 0) {
5449			btrfs_set_path_blocking(path);
5450			ret = btrfs_prev_leaf(root, path);
5451			if (ret != 0)
5452				return ret;
5453		} else {
5454			path->slots[0]--;
5455		}
5456		leaf = path->nodes[0];
5457		nritems = btrfs_header_nritems(leaf);
5458		if (nritems == 0)
5459			return 1;
5460		if (path->slots[0] == nritems)
5461			path->slots[0]--;
5462
5463		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5464		if (found_key.objectid < min_objectid)
5465			break;
5466		if (found_key.type == type)
5467			return 0;
5468		if (found_key.objectid == min_objectid &&
5469		    found_key.type < type)
5470			break;
5471	}
5472	return 1;
5473}
5474
5475/*
5476 * search in extent tree to find a previous Metadata/Data extent item with
5477 * min objecitd.
5478 *
5479 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5480 */
5481int btrfs_previous_extent_item(struct btrfs_root *root,
5482			struct btrfs_path *path, u64 min_objectid)
5483{
5484	struct btrfs_key found_key;
5485	struct extent_buffer *leaf;
5486	u32 nritems;
5487	int ret;
5488
5489	while (1) {
5490		if (path->slots[0] == 0) {
5491			btrfs_set_path_blocking(path);
5492			ret = btrfs_prev_leaf(root, path);
5493			if (ret != 0)
5494				return ret;
5495		} else {
5496			path->slots[0]--;
5497		}
5498		leaf = path->nodes[0];
5499		nritems = btrfs_header_nritems(leaf);
5500		if (nritems == 0)
5501			return 1;
5502		if (path->slots[0] == nritems)
5503			path->slots[0]--;
5504
5505		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5506		if (found_key.objectid < min_objectid)
5507			break;
5508		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5509		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5510			return 0;
5511		if (found_key.objectid == min_objectid &&
5512		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5513			break;
5514	}
5515	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
5516}