Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
 
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
 
 
 
 
  40
  41static const struct btrfs_csums {
  42	u16		size;
  43	const char	name[10];
  44	const char	driver[12];
  45} btrfs_csums[] = {
  46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  50				     .driver = "blake2b-256" },
  51};
  52
  53/*
  54 * The leaf data grows from end-to-front in the node.  this returns the address
  55 * of the start of the last item, which is the stop of the leaf data stack.
  56 */
  57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  58{
  59	u32 nr = btrfs_header_nritems(leaf);
  60
  61	if (nr == 0)
  62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  63	return btrfs_item_offset(leaf, nr - 1);
  64}
  65
  66/*
  67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  68 *
  69 * @leaf:	leaf that we're doing a memmove on
  70 * @dst_offset:	item data offset we're moving to
  71 * @src_offset:	item data offset were' moving from
  72 * @len:	length of the data we're moving
  73 *
  74 * Wrapper around memmove_extent_buffer() that takes into account the header on
  75 * the leaf.  The btrfs_item offset's start directly after the header, so we
  76 * have to adjust any offsets to account for the header in the leaf.  This
  77 * handles that math to simplify the callers.
  78 */
  79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  80				     unsigned long dst_offset,
  81				     unsigned long src_offset,
  82				     unsigned long len)
  83{
  84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  86}
  87
  88/*
  89 * Copy item data from @src into @dst at the given @offset.
  90 *
  91 * @dst:	destination leaf that we're copying into
  92 * @src:	source leaf that we're copying from
  93 * @dst_offset:	item data offset we're copying to
  94 * @src_offset:	item data offset were' copying from
  95 * @len:	length of the data we're copying
  96 *
  97 * Wrapper around copy_extent_buffer() that takes into account the header on
  98 * the leaf.  The btrfs_item offset's start directly after the header, so we
  99 * have to adjust any offsets to account for the header in the leaf.  This
 100 * handles that math to simplify the callers.
 101 */
 102static inline void copy_leaf_data(const struct extent_buffer *dst,
 103				  const struct extent_buffer *src,
 104				  unsigned long dst_offset,
 105				  unsigned long src_offset, unsigned long len)
 106{
 107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 
 109}
 110
 111/*
 112 * Move items in a @leaf (using memmove).
 113 *
 114 * @dst:	destination leaf for the items
 115 * @dst_item:	the item nr we're copying into
 116 * @src_item:	the item nr we're copying from
 117 * @nr_items:	the number of items to copy
 118 *
 119 * Wrapper around memmove_extent_buffer() that does the math to get the
 120 * appropriate offsets into the leaf from the item numbers.
 121 */
 122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 123				      int dst_item, int src_item, int nr_items)
 124{
 125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 126			      btrfs_item_nr_offset(leaf, src_item),
 127			      nr_items * sizeof(struct btrfs_item));
 
 
 
 
 
 
 
 128}
 129
 130/*
 131 * Copy items from @src into @dst at the given @offset.
 132 *
 133 * @dst:	destination leaf for the items
 134 * @src:	source leaf for the items
 135 * @dst_item:	the item nr we're copying into
 136 * @src_item:	the item nr we're copying from
 137 * @nr_items:	the number of items to copy
 138 *
 139 * Wrapper around copy_extent_buffer() that does the math to get the
 140 * appropriate offsets into the leaf from the item numbers.
 
 
 141 */
 142static inline void copy_leaf_items(const struct extent_buffer *dst,
 143				   const struct extent_buffer *src,
 144				   int dst_item, int src_item, int nr_items)
 145{
 146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 147			      btrfs_item_nr_offset(src, src_item),
 148			      nr_items * sizeof(struct btrfs_item));
 149}
 150
 151/* This exists for btrfs-progs usages. */
 152u16 btrfs_csum_type_size(u16 type)
 153{
 154	return btrfs_csums[type].size;
 155}
 156
 157int btrfs_super_csum_size(const struct btrfs_super_block *s)
 158{
 159	u16 t = btrfs_super_csum_type(s);
 160	/*
 161	 * csum type is validated at mount time
 
 162	 */
 163	return btrfs_csum_type_size(t);
 164}
 165
 166const char *btrfs_super_csum_name(u16 csum_type)
 167{
 168	/* csum type is validated at mount time */
 169	return btrfs_csums[csum_type].name;
 170}
 171
 172/*
 173 * Return driver name if defined, otherwise the name that's also a valid driver
 174 * name
 175 */
 176const char *btrfs_super_csum_driver(u16 csum_type)
 177{
 178	/* csum type is validated at mount time */
 179	return btrfs_csums[csum_type].driver[0] ?
 180		btrfs_csums[csum_type].driver :
 181		btrfs_csums[csum_type].name;
 182}
 183
 184size_t __attribute_const__ btrfs_get_num_csums(void)
 185{
 186	return ARRAY_SIZE(btrfs_csums);
 187}
 188
 189struct btrfs_path *btrfs_alloc_path(void)
 190{
 191	might_sleep();
 192
 193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
 
 194}
 195
 196/* this also releases the path */
 197void btrfs_free_path(struct btrfs_path *p)
 198{
 199	if (!p)
 200		return;
 201	btrfs_release_path(p);
 202	kmem_cache_free(btrfs_path_cachep, p);
 203}
 204
 205/*
 206 * path release drops references on the extent buffers in the path
 207 * and it drops any locks held by this path
 208 *
 209 * It is safe to call this on paths that no locks or extent buffers held.
 210 */
 211noinline void btrfs_release_path(struct btrfs_path *p)
 212{
 213	int i;
 214
 215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 216		p->slots[i] = 0;
 217		if (!p->nodes[i])
 218			continue;
 219		if (p->locks[i]) {
 220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 221			p->locks[i] = 0;
 222		}
 223		free_extent_buffer(p->nodes[i]);
 224		p->nodes[i] = NULL;
 225	}
 226}
 227
 228/*
 229 * We want the transaction abort to print stack trace only for errors where the
 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 231 * caused by external factors.
 232 */
 233bool __cold abort_should_print_stack(int error)
 234{
 235	switch (error) {
 236	case -EIO:
 237	case -EROFS:
 238	case -ENOMEM:
 239		return false;
 240	}
 241	return true;
 242}
 243
 244/*
 245 * safely gets a reference on the root node of a tree.  A lock
 246 * is not taken, so a concurrent writer may put a different node
 247 * at the root of the tree.  See btrfs_lock_root_node for the
 248 * looping required.
 249 *
 250 * The extent buffer returned by this has a reference taken, so
 251 * it won't disappear.  It may stop being the root of the tree
 252 * at any time because there are no locks held.
 253 */
 254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 255{
 256	struct extent_buffer *eb;
 257
 258	while (1) {
 259		rcu_read_lock();
 260		eb = rcu_dereference(root->node);
 261
 262		/*
 263		 * RCU really hurts here, we could free up the root node because
 264		 * it was COWed but we may not get the new root node yet so do
 265		 * the inc_not_zero dance and if it doesn't work then
 266		 * synchronize_rcu and try again.
 267		 */
 268		if (atomic_inc_not_zero(&eb->refs)) {
 269			rcu_read_unlock();
 270			break;
 271		}
 272		rcu_read_unlock();
 273		synchronize_rcu();
 274	}
 275	return eb;
 276}
 277
 278/*
 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 280 * just get put onto a simple dirty list.  Transaction walks this list to make
 281 * sure they get properly updated on disk.
 282 */
 283static void add_root_to_dirty_list(struct btrfs_root *root)
 284{
 285	struct btrfs_fs_info *fs_info = root->fs_info;
 286
 287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 289		return;
 
 
 
 
 
 
 
 290
 291	spin_lock(&fs_info->trans_lock);
 292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 293		/* Want the extent tree to be the last on the list */
 294		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
 295			list_move_tail(&root->dirty_list,
 296				       &fs_info->dirty_cowonly_roots);
 297		else
 298			list_move(&root->dirty_list,
 299				  &fs_info->dirty_cowonly_roots);
 
 
 
 
 
 
 300	}
 301	spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302}
 303
 304/*
 305 * used by snapshot creation to make a copy of a root for a tree with
 306 * a given objectid.  The buffer with the new root node is returned in
 307 * cow_ret, and this func returns zero on success or a negative error code.
 308 */
 309int btrfs_copy_root(struct btrfs_trans_handle *trans,
 310		      struct btrfs_root *root,
 311		      struct extent_buffer *buf,
 312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 313{
 314	struct btrfs_fs_info *fs_info = root->fs_info;
 315	struct extent_buffer *cow;
 316	int ret = 0;
 317	int level;
 318	struct btrfs_disk_key disk_key;
 319	u64 reloc_src_root = 0;
 320
 321	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 322		trans->transid != fs_info->running_transaction->transid);
 323	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 324		trans->transid != btrfs_get_root_last_trans(root));
 325
 326	level = btrfs_header_level(buf);
 327	if (level == 0)
 328		btrfs_item_key(buf, &disk_key, 0);
 329	else
 330		btrfs_node_key(buf, &disk_key, 0);
 331
 332	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 333		reloc_src_root = btrfs_header_owner(buf);
 334	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 335				     &disk_key, level, buf->start, 0,
 336				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 337	if (IS_ERR(cow))
 338		return PTR_ERR(cow);
 339
 340	copy_extent_buffer_full(cow, buf);
 341	btrfs_set_header_bytenr(cow, cow->start);
 342	btrfs_set_header_generation(cow, trans->transid);
 343	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 344	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 345				     BTRFS_HEADER_FLAG_RELOC);
 346	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 347		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 348	else
 349		btrfs_set_header_owner(cow, new_root_objectid);
 350
 351	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 352
 353	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 354	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 355		ret = btrfs_inc_ref(trans, root, cow, 1);
 356	else
 357		ret = btrfs_inc_ref(trans, root, cow, 0);
 358	if (ret) {
 359		btrfs_tree_unlock(cow);
 360		free_extent_buffer(cow);
 361		btrfs_abort_transaction(trans, ret);
 362		return ret;
 363	}
 364
 365	btrfs_mark_buffer_dirty(trans, cow);
 366	*cow_ret = cow;
 367	return 0;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370/*
 371 * check if the tree block can be shared by multiple trees
 
 
 372 */
 373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 374			       struct btrfs_root *root,
 375			       struct extent_buffer *buf)
 376{
 377	const u64 buf_gen = btrfs_header_generation(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/*
 380	 * Tree blocks not in shareable trees and tree roots are never shared.
 381	 * If a block was allocated after the last snapshot and the block was
 382	 * not allocated by tree relocation, we know the block is not shared.
 383	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 386		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	if (buf == root->node)
 389		return false;
 
 
 
 
 390
 391	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 392	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 393		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395	if (buf != root->commit_root)
 396		return true;
 
 397
 398	/*
 399	 * An extent buffer that used to be the commit root may still be shared
 400	 * because the tree height may have increased and it became a child of a
 401	 * higher level root. This can happen when snapshotting a subvolume
 402	 * created in the current transaction.
 403	 */
 404	if (buf_gen == trans->transid)
 405		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 407	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 411				       struct btrfs_root *root,
 412				       struct extent_buffer *buf,
 413				       struct extent_buffer *cow,
 414				       int *last_ref)
 415{
 416	struct btrfs_fs_info *fs_info = root->fs_info;
 417	u64 refs;
 418	u64 owner;
 419	u64 flags;
 
 420	int ret;
 421
 422	/*
 423	 * Backrefs update rules:
 424	 *
 425	 * Always use full backrefs for extent pointers in tree block
 426	 * allocated by tree relocation.
 427	 *
 428	 * If a shared tree block is no longer referenced by its owner
 429	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 430	 * use full backrefs for extent pointers in tree block.
 431	 *
 432	 * If a tree block is been relocating
 433	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 434	 * use full backrefs for extent pointers in tree block.
 435	 * The reason for this is some operations (such as drop tree)
 436	 * are only allowed for blocks use full backrefs.
 437	 */
 438
 439	if (btrfs_block_can_be_shared(trans, root, buf)) {
 440		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 441					       btrfs_header_level(buf), 1,
 442					       &refs, &flags, NULL);
 443		if (ret)
 444			return ret;
 445		if (unlikely(refs == 0)) {
 446			btrfs_crit(fs_info,
 447		"found 0 references for tree block at bytenr %llu level %d root %llu",
 448				   buf->start, btrfs_header_level(buf),
 449				   btrfs_root_id(root));
 450			ret = -EUCLEAN;
 451			btrfs_abort_transaction(trans, ret);
 452			return ret;
 453		}
 454	} else {
 455		refs = 1;
 456		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 457		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 458			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 459		else
 460			flags = 0;
 461	}
 462
 463	owner = btrfs_header_owner(buf);
 464	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
 465		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
 466		btrfs_crit(fs_info,
 467"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
 468			   buf->start, btrfs_header_level(buf),
 469			   btrfs_root_id(root), refs, flags);
 470		ret = -EUCLEAN;
 471		btrfs_abort_transaction(trans, ret);
 472		return ret;
 473	}
 474
 475	if (refs > 1) {
 476		if ((owner == btrfs_root_id(root) ||
 477		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
 478		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 479			ret = btrfs_inc_ref(trans, root, buf, 1);
 480			if (ret)
 481				return ret;
 482
 483			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 484				ret = btrfs_dec_ref(trans, root, buf, 0);
 485				if (ret)
 486					return ret;
 487				ret = btrfs_inc_ref(trans, root, cow, 1);
 488				if (ret)
 489					return ret;
 490			}
 491			ret = btrfs_set_disk_extent_flags(trans, buf,
 492						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
 493			if (ret)
 494				return ret;
 495		} else {
 496
 497			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 498				ret = btrfs_inc_ref(trans, root, cow, 1);
 
 499			else
 500				ret = btrfs_inc_ref(trans, root, cow, 0);
 
 
 
 
 
 
 
 
 
 501			if (ret)
 502				return ret;
 503		}
 504	} else {
 505		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 506			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 507				ret = btrfs_inc_ref(trans, root, cow, 1);
 
 508			else
 509				ret = btrfs_inc_ref(trans, root, cow, 0);
 510			if (ret)
 511				return ret;
 512			ret = btrfs_dec_ref(trans, root, buf, 1);
 513			if (ret)
 514				return ret;
 515		}
 516		btrfs_clear_buffer_dirty(trans, buf);
 517		*last_ref = 1;
 518	}
 519	return 0;
 520}
 521
 522/*
 523 * does the dirty work in cow of a single block.  The parent block (if
 524 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 525 * dirty and returned locked.  If you modify the block it needs to be marked
 526 * dirty again.
 527 *
 528 * search_start -- an allocation hint for the new block
 529 *
 530 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 531 * bytes the allocator should try to find free next to the block it returns.
 532 * This is just a hint and may be ignored by the allocator.
 533 */
 534int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 535			  struct btrfs_root *root,
 536			  struct extent_buffer *buf,
 537			  struct extent_buffer *parent, int parent_slot,
 538			  struct extent_buffer **cow_ret,
 539			  u64 search_start, u64 empty_size,
 540			  enum btrfs_lock_nesting nest)
 541{
 542	struct btrfs_fs_info *fs_info = root->fs_info;
 543	struct btrfs_disk_key disk_key;
 544	struct extent_buffer *cow;
 545	int level, ret;
 546	int last_ref = 0;
 547	int unlock_orig = 0;
 548	u64 parent_start = 0;
 549	u64 reloc_src_root = 0;
 550
 551	if (*cow_ret == buf)
 552		unlock_orig = 1;
 553
 554	btrfs_assert_tree_write_locked(buf);
 555
 556	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 557		trans->transid != fs_info->running_transaction->transid);
 558	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 559		trans->transid != btrfs_get_root_last_trans(root));
 560
 561	level = btrfs_header_level(buf);
 562
 563	if (level == 0)
 564		btrfs_item_key(buf, &disk_key, 0);
 565	else
 566		btrfs_node_key(buf, &disk_key, 0);
 567
 568	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 569		if (parent)
 570			parent_start = parent->start;
 571		reloc_src_root = btrfs_header_owner(buf);
 572	}
 573	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 574				     btrfs_root_id(root), &disk_key, level,
 575				     search_start, empty_size, reloc_src_root, nest);
 
 
 
 576	if (IS_ERR(cow))
 577		return PTR_ERR(cow);
 578
 579	/* cow is set to blocking by btrfs_init_new_buffer */
 580
 581	copy_extent_buffer_full(cow, buf);
 582	btrfs_set_header_bytenr(cow, cow->start);
 583	btrfs_set_header_generation(cow, trans->transid);
 584	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 585	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 586				     BTRFS_HEADER_FLAG_RELOC);
 587	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 588		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 589	else
 590		btrfs_set_header_owner(cow, btrfs_root_id(root));
 591
 592	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 593
 594	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 595	if (ret) {
 596		btrfs_abort_transaction(trans, ret);
 597		goto error_unlock_cow;
 598	}
 599
 600	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 601		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 602		if (ret) {
 603			btrfs_abort_transaction(trans, ret);
 604			goto error_unlock_cow;
 605		}
 606	}
 607
 608	if (buf == root->node) {
 609		WARN_ON(parent && parent != buf);
 610		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 611		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 612			parent_start = buf->start;
 
 
 613
 614		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 615		if (ret < 0) {
 616			btrfs_abort_transaction(trans, ret);
 617			goto error_unlock_cow;
 618		}
 619		atomic_inc(&cow->refs);
 620		rcu_assign_pointer(root->node, cow);
 621
 622		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 623					    parent_start, last_ref);
 624		free_extent_buffer(buf);
 625		add_root_to_dirty_list(root);
 626		if (ret < 0) {
 627			btrfs_abort_transaction(trans, ret);
 628			goto error_unlock_cow;
 629		}
 630	} else {
 
 
 
 
 
 631		WARN_ON(trans->transid != btrfs_header_generation(parent));
 632		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 633						    BTRFS_MOD_LOG_KEY_REPLACE);
 634		if (ret) {
 635			btrfs_abort_transaction(trans, ret);
 636			goto error_unlock_cow;
 637		}
 638		btrfs_set_node_blockptr(parent, parent_slot,
 639					cow->start);
 640		btrfs_set_node_ptr_generation(parent, parent_slot,
 641					      trans->transid);
 642		btrfs_mark_buffer_dirty(trans, parent);
 643		if (last_ref) {
 644			ret = btrfs_tree_mod_log_free_eb(buf);
 645			if (ret) {
 646				btrfs_abort_transaction(trans, ret);
 647				goto error_unlock_cow;
 648			}
 649		}
 650		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 651					    parent_start, last_ref);
 652		if (ret < 0) {
 653			btrfs_abort_transaction(trans, ret);
 654			goto error_unlock_cow;
 655		}
 656	}
 657
 658	trace_btrfs_cow_block(root, buf, cow);
 659	if (unlock_orig)
 660		btrfs_tree_unlock(buf);
 661	free_extent_buffer_stale(buf);
 662	btrfs_mark_buffer_dirty(trans, cow);
 663	*cow_ret = cow;
 664	return 0;
 
 665
 666error_unlock_cow:
 667	btrfs_tree_unlock(cow);
 668	free_extent_buffer(cow);
 669	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 672static inline int should_cow_block(struct btrfs_trans_handle *trans,
 673				   struct btrfs_root *root,
 674				   struct extent_buffer *buf)
 675{
 676	if (btrfs_is_testing(root->fs_info))
 677		return 0;
 678
 679	/* Ensure we can see the FORCE_COW bit */
 680	smp_mb__before_atomic();
 681
 682	/*
 683	 * We do not need to cow a block if
 684	 * 1) this block is not created or changed in this transaction;
 685	 * 2) this block does not belong to TREE_RELOC tree;
 686	 * 3) the root is not forced COW.
 687	 *
 688	 * What is forced COW:
 689	 *    when we create snapshot during committing the transaction,
 690	 *    after we've finished copying src root, we must COW the shared
 691	 *    block to ensure the metadata consistency.
 692	 */
 693	if (btrfs_header_generation(buf) == trans->transid &&
 694	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 695	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 696	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 697	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 698		return 0;
 699	return 1;
 700}
 701
 702/*
 703 * COWs a single block, see btrfs_force_cow_block() for the real work.
 704 * This version of it has extra checks so that a block isn't COWed more than
 705 * once per transaction, as long as it hasn't been written yet
 706 */
 707int btrfs_cow_block(struct btrfs_trans_handle *trans,
 708		    struct btrfs_root *root, struct extent_buffer *buf,
 709		    struct extent_buffer *parent, int parent_slot,
 710		    struct extent_buffer **cow_ret,
 711		    enum btrfs_lock_nesting nest)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	u64 search_start;
 
 715
 716	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 717		btrfs_abort_transaction(trans, -EUCLEAN);
 718		btrfs_crit(fs_info,
 719		   "attempt to COW block %llu on root %llu that is being deleted",
 720			   buf->start, btrfs_root_id(root));
 721		return -EUCLEAN;
 722	}
 723
 724	/*
 725	 * COWing must happen through a running transaction, which always
 726	 * matches the current fs generation (it's a transaction with a state
 727	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 728	 * into error state to prevent the commit of any transaction.
 729	 */
 730	if (unlikely(trans->transaction != fs_info->running_transaction ||
 731		     trans->transid != fs_info->generation)) {
 732		btrfs_abort_transaction(trans, -EUCLEAN);
 733		btrfs_crit(fs_info,
 734"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 735			   buf->start, btrfs_root_id(root), trans->transid,
 736			   fs_info->running_transaction->transid,
 737			   fs_info->generation);
 738		return -EUCLEAN;
 739	}
 740
 741	if (!should_cow_block(trans, root, buf)) {
 742		*cow_ret = buf;
 743		return 0;
 744	}
 745
 746	search_start = round_down(buf->start, SZ_1G);
 747
 748	/*
 749	 * Before CoWing this block for later modification, check if it's
 750	 * the subtree root and do the delayed subtree trace if needed.
 751	 *
 752	 * Also We don't care about the error, as it's handled internally.
 753	 */
 754	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 755	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 756				     cow_ret, search_start, 0, nest);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757}
 758ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 759
 760/*
 761 * same as comp_keys only with two btrfs_key's
 762 */
 763int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 764{
 765	if (k1->objectid > k2->objectid)
 766		return 1;
 767	if (k1->objectid < k2->objectid)
 768		return -1;
 769	if (k1->type > k2->type)
 770		return 1;
 771	if (k1->type < k2->type)
 772		return -1;
 773	if (k1->offset > k2->offset)
 774		return 1;
 775	if (k1->offset < k2->offset)
 776		return -1;
 777	return 0;
 778}
 779
 780/*
 781 * Search for a key in the given extent_buffer.
 782 *
 783 * The lower boundary for the search is specified by the slot number @first_slot.
 784 * Use a value of 0 to search over the whole extent buffer. Works for both
 785 * leaves and nodes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786 *
 787 * The slot in the extent buffer is returned via @slot. If the key exists in the
 788 * extent buffer, then @slot will point to the slot where the key is, otherwise
 789 * it points to the slot where you would insert the key.
 790 *
 791 * Slot may point to the total number of items (i.e. one position beyond the last
 792 * key) if the key is bigger than the last key in the extent buffer.
 793 */
 794int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 795		     const struct btrfs_key *key, int *slot)
 
 
 796{
 797	unsigned long p;
 798	int item_size;
 799	/*
 800	 * Use unsigned types for the low and high slots, so that we get a more
 801	 * efficient division in the search loop below.
 802	 */
 803	u32 low = first_slot;
 804	u32 high = btrfs_header_nritems(eb);
 805	int ret;
 806	const int key_size = sizeof(struct btrfs_disk_key);
 807
 808	if (unlikely(low > high)) {
 809		btrfs_err(eb->fs_info,
 810		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 811			  __func__, low, high, eb->start,
 812			  btrfs_header_owner(eb), btrfs_header_level(eb));
 813		return -EINVAL;
 814	}
 815
 816	if (btrfs_header_level(eb) == 0) {
 817		p = offsetof(struct btrfs_leaf, items);
 818		item_size = sizeof(struct btrfs_item);
 819	} else {
 820		p = offsetof(struct btrfs_node, ptrs);
 821		item_size = sizeof(struct btrfs_key_ptr);
 822	}
 823
 824	while (low < high) {
 825		const int unit_size = eb->folio_size;
 826		unsigned long oil;
 827		unsigned long offset;
 828		struct btrfs_disk_key *tmp;
 829		struct btrfs_disk_key unaligned;
 830		int mid;
 831
 832		mid = (low + high) / 2;
 833		offset = p + mid * item_size;
 834		oil = get_eb_offset_in_folio(eb, offset);
 835
 836		if (oil + key_size <= unit_size) {
 837			const unsigned long idx = get_eb_folio_index(eb, offset);
 838			char *kaddr = folio_address(eb->folios[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840			oil = get_eb_offset_in_folio(eb, offset);
 841			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 842		} else {
 843			read_extent_buffer(eb, &unaligned, offset, key_size);
 844			tmp = &unaligned;
 845		}
 846
 847		ret = btrfs_comp_keys(tmp, key);
 848
 849		if (ret < 0)
 850			low = mid + 1;
 851		else if (ret > 0)
 852			high = mid;
 853		else {
 854			*slot = mid;
 855			return 0;
 856		}
 857	}
 858	*slot = low;
 859	return 1;
 860}
 861
 862static void root_add_used_bytes(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863{
 864	spin_lock(&root->accounting_lock);
 865	btrfs_set_root_used(&root->root_item,
 866		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 867	spin_unlock(&root->accounting_lock);
 868}
 869
 870static void root_sub_used_bytes(struct btrfs_root *root)
 871{
 872	spin_lock(&root->accounting_lock);
 873	btrfs_set_root_used(&root->root_item,
 874		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 875	spin_unlock(&root->accounting_lock);
 876}
 877
 878/* given a node and slot number, this reads the blocks it points to.  The
 879 * extent buffer is returned with a reference taken (but unlocked).
 
 880 */
 881struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 882					   int slot)
 883{
 884	int level = btrfs_header_level(parent);
 885	struct btrfs_tree_parent_check check = { 0 };
 886	struct extent_buffer *eb;
 887
 888	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 889		return ERR_PTR(-ENOENT);
 890
 891	ASSERT(level);
 892
 893	check.level = level - 1;
 894	check.transid = btrfs_node_ptr_generation(parent, slot);
 895	check.owner_root = btrfs_header_owner(parent);
 896	check.has_first_key = true;
 897	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 898
 899	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 900			     &check);
 901	if (IS_ERR(eb))
 902		return eb;
 903	if (!extent_buffer_uptodate(eb)) {
 904		free_extent_buffer(eb);
 905		return ERR_PTR(-EIO);
 906	}
 907
 908	return eb;
 909}
 910
 911/*
 912 * node level balancing, used to make sure nodes are in proper order for
 913 * item deletion.  We balance from the top down, so we have to make sure
 914 * that a deletion won't leave an node completely empty later on.
 915 */
 916static noinline int balance_level(struct btrfs_trans_handle *trans,
 917			 struct btrfs_root *root,
 918			 struct btrfs_path *path, int level)
 919{
 920	struct btrfs_fs_info *fs_info = root->fs_info;
 921	struct extent_buffer *right = NULL;
 922	struct extent_buffer *mid;
 923	struct extent_buffer *left = NULL;
 924	struct extent_buffer *parent = NULL;
 925	int ret = 0;
 926	int wret;
 927	int pslot;
 928	int orig_slot = path->slots[level];
 929	u64 orig_ptr;
 930
 931	ASSERT(level > 0);
 
 932
 933	mid = path->nodes[level];
 934
 935	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
 936	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 937
 938	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 939
 940	if (level < BTRFS_MAX_LEVEL - 1) {
 941		parent = path->nodes[level + 1];
 942		pslot = path->slots[level + 1];
 943	}
 944
 945	/*
 946	 * deal with the case where there is only one pointer in the root
 947	 * by promoting the node below to a root
 948	 */
 949	if (!parent) {
 950		struct extent_buffer *child;
 951
 952		if (btrfs_header_nritems(mid) != 1)
 953			return 0;
 954
 955		/* promote the child to a root */
 956		child = btrfs_read_node_slot(mid, 0);
 957		if (IS_ERR(child)) {
 958			ret = PTR_ERR(child);
 959			goto out;
 
 960		}
 961
 962		btrfs_tree_lock(child);
 963		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 964				      BTRFS_NESTING_COW);
 965		if (ret) {
 966			btrfs_tree_unlock(child);
 967			free_extent_buffer(child);
 968			goto out;
 969		}
 970
 971		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 972		if (ret < 0) {
 973			btrfs_tree_unlock(child);
 974			free_extent_buffer(child);
 975			btrfs_abort_transaction(trans, ret);
 976			goto out;
 977		}
 978		rcu_assign_pointer(root->node, child);
 979
 980		add_root_to_dirty_list(root);
 981		btrfs_tree_unlock(child);
 982
 983		path->locks[level] = 0;
 984		path->nodes[level] = NULL;
 985		btrfs_clear_buffer_dirty(trans, mid);
 986		btrfs_tree_unlock(mid);
 987		/* once for the path */
 988		free_extent_buffer(mid);
 989
 990		root_sub_used_bytes(root);
 991		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 992		/* once for the root ptr */
 993		free_extent_buffer_stale(mid);
 994		if (ret < 0) {
 995			btrfs_abort_transaction(trans, ret);
 996			goto out;
 997		}
 998		return 0;
 999	}
1000	if (btrfs_header_nritems(mid) >
1001	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002		return 0;
1003
1004	if (pslot) {
1005		left = btrfs_read_node_slot(parent, pslot - 1);
1006		if (IS_ERR(left)) {
1007			ret = PTR_ERR(left);
1008			left = NULL;
1009			goto out;
1010		}
1011
1012		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1013		wret = btrfs_cow_block(trans, root, left,
1014				       parent, pslot - 1, &left,
1015				       BTRFS_NESTING_LEFT_COW);
1016		if (wret) {
1017			ret = wret;
1018			goto out;
1019		}
1020	}
1021
1022	if (pslot + 1 < btrfs_header_nritems(parent)) {
1023		right = btrfs_read_node_slot(parent, pslot + 1);
1024		if (IS_ERR(right)) {
1025			ret = PTR_ERR(right);
1026			right = NULL;
1027			goto out;
1028		}
1029
1030		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1031		wret = btrfs_cow_block(trans, root, right,
1032				       parent, pslot + 1, &right,
1033				       BTRFS_NESTING_RIGHT_COW);
1034		if (wret) {
1035			ret = wret;
1036			goto out;
1037		}
1038	}
1039
1040	/* first, try to make some room in the middle buffer */
1041	if (left) {
1042		orig_slot += btrfs_header_nritems(left);
1043		wret = push_node_left(trans, left, mid, 1);
1044		if (wret < 0)
1045			ret = wret;
1046	}
1047
1048	/*
1049	 * then try to empty the right most buffer into the middle
1050	 */
1051	if (right) {
1052		wret = push_node_left(trans, mid, right, 1);
1053		if (wret < 0 && wret != -ENOSPC)
1054			ret = wret;
1055		if (btrfs_header_nritems(right) == 0) {
1056			btrfs_clear_buffer_dirty(trans, right);
1057			btrfs_tree_unlock(right);
1058			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059			if (ret < 0) {
1060				free_extent_buffer_stale(right);
1061				right = NULL;
1062				goto out;
1063			}
1064			root_sub_used_bytes(root);
1065			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066						    right, 0, 1);
1067			free_extent_buffer_stale(right);
1068			right = NULL;
1069			if (ret < 0) {
1070				btrfs_abort_transaction(trans, ret);
1071				goto out;
1072			}
1073		} else {
1074			struct btrfs_disk_key right_key;
1075			btrfs_node_key(right, &right_key, 0);
1076			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077					BTRFS_MOD_LOG_KEY_REPLACE);
1078			if (ret < 0) {
1079				btrfs_abort_transaction(trans, ret);
1080				goto out;
1081			}
1082			btrfs_set_node_key(parent, &right_key, pslot + 1);
1083			btrfs_mark_buffer_dirty(trans, parent);
1084		}
1085	}
1086	if (btrfs_header_nritems(mid) == 1) {
1087		/*
1088		 * we're not allowed to leave a node with one item in the
1089		 * tree during a delete.  A deletion from lower in the tree
1090		 * could try to delete the only pointer in this node.
1091		 * So, pull some keys from the left.
1092		 * There has to be a left pointer at this point because
1093		 * otherwise we would have pulled some pointers from the
1094		 * right
1095		 */
1096		if (unlikely(!left)) {
1097			btrfs_crit(fs_info,
1098"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099				   parent->start, btrfs_header_level(parent),
1100				   mid->start, btrfs_root_id(root));
1101			ret = -EUCLEAN;
1102			btrfs_abort_transaction(trans, ret);
1103			goto out;
1104		}
1105		wret = balance_node_right(trans, mid, left);
1106		if (wret < 0) {
1107			ret = wret;
1108			goto out;
1109		}
1110		if (wret == 1) {
1111			wret = push_node_left(trans, left, mid, 1);
1112			if (wret < 0)
1113				ret = wret;
1114		}
1115		BUG_ON(wret == 1);
1116	}
1117	if (btrfs_header_nritems(mid) == 0) {
1118		btrfs_clear_buffer_dirty(trans, mid);
1119		btrfs_tree_unlock(mid);
1120		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121		if (ret < 0) {
1122			free_extent_buffer_stale(mid);
1123			mid = NULL;
1124			goto out;
1125		}
1126		root_sub_used_bytes(root);
1127		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128		free_extent_buffer_stale(mid);
1129		mid = NULL;
1130		if (ret < 0) {
1131			btrfs_abort_transaction(trans, ret);
1132			goto out;
1133		}
1134	} else {
1135		/* update the parent key to reflect our changes */
1136		struct btrfs_disk_key mid_key;
1137		btrfs_node_key(mid, &mid_key, 0);
1138		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139						    BTRFS_MOD_LOG_KEY_REPLACE);
1140		if (ret < 0) {
1141			btrfs_abort_transaction(trans, ret);
1142			goto out;
1143		}
1144		btrfs_set_node_key(parent, &mid_key, pslot);
1145		btrfs_mark_buffer_dirty(trans, parent);
1146	}
1147
1148	/* update the path */
1149	if (left) {
1150		if (btrfs_header_nritems(left) > orig_slot) {
1151			atomic_inc(&left->refs);
1152			/* left was locked after cow */
1153			path->nodes[level] = left;
1154			path->slots[level + 1] -= 1;
1155			path->slots[level] = orig_slot;
1156			if (mid) {
1157				btrfs_tree_unlock(mid);
1158				free_extent_buffer(mid);
1159			}
1160		} else {
1161			orig_slot -= btrfs_header_nritems(left);
1162			path->slots[level] = orig_slot;
1163		}
1164	}
1165	/* double check we haven't messed things up */
1166	if (orig_ptr !=
1167	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168		BUG();
1169out:
1170	if (right) {
1171		btrfs_tree_unlock(right);
1172		free_extent_buffer(right);
1173	}
1174	if (left) {
1175		if (path->nodes[level] != left)
1176			btrfs_tree_unlock(left);
1177		free_extent_buffer(left);
1178	}
1179	return ret;
1180}
1181
1182/* Node balancing for insertion.  Here we only split or push nodes around
1183 * when they are completely full.  This is also done top down, so we
1184 * have to be pessimistic.
1185 */
1186static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187					  struct btrfs_root *root,
1188					  struct btrfs_path *path, int level)
1189{
1190	struct btrfs_fs_info *fs_info = root->fs_info;
1191	struct extent_buffer *right = NULL;
1192	struct extent_buffer *mid;
1193	struct extent_buffer *left = NULL;
1194	struct extent_buffer *parent = NULL;
1195	int ret = 0;
1196	int wret;
1197	int pslot;
1198	int orig_slot = path->slots[level];
1199
1200	if (level == 0)
1201		return 1;
1202
1203	mid = path->nodes[level];
1204	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206	if (level < BTRFS_MAX_LEVEL - 1) {
1207		parent = path->nodes[level + 1];
1208		pslot = path->slots[level + 1];
1209	}
1210
1211	if (!parent)
1212		return 1;
1213
 
 
1214	/* first, try to make some room in the middle buffer */
1215	if (pslot) {
1216		u32 left_nr;
1217
1218		left = btrfs_read_node_slot(parent, pslot - 1);
1219		if (IS_ERR(left))
1220			return PTR_ERR(left);
1221
1222		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224		left_nr = btrfs_header_nritems(left);
1225		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226			wret = 1;
1227		} else {
1228			ret = btrfs_cow_block(trans, root, left, parent,
1229					      pslot - 1, &left,
1230					      BTRFS_NESTING_LEFT_COW);
1231			if (ret)
1232				wret = 1;
1233			else {
1234				wret = push_node_left(trans, left, mid, 0);
 
1235			}
1236		}
1237		if (wret < 0)
1238			ret = wret;
1239		if (wret == 0) {
1240			struct btrfs_disk_key disk_key;
1241			orig_slot += left_nr;
1242			btrfs_node_key(mid, &disk_key, 0);
1243			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244					BTRFS_MOD_LOG_KEY_REPLACE);
1245			if (ret < 0) {
1246				btrfs_tree_unlock(left);
1247				free_extent_buffer(left);
1248				btrfs_abort_transaction(trans, ret);
1249				return ret;
1250			}
1251			btrfs_set_node_key(parent, &disk_key, pslot);
1252			btrfs_mark_buffer_dirty(trans, parent);
1253			if (btrfs_header_nritems(left) > orig_slot) {
1254				path->nodes[level] = left;
1255				path->slots[level + 1] -= 1;
1256				path->slots[level] = orig_slot;
1257				btrfs_tree_unlock(mid);
1258				free_extent_buffer(mid);
1259			} else {
1260				orig_slot -=
1261					btrfs_header_nritems(left);
1262				path->slots[level] = orig_slot;
1263				btrfs_tree_unlock(left);
1264				free_extent_buffer(left);
1265			}
1266			return 0;
1267		}
1268		btrfs_tree_unlock(left);
1269		free_extent_buffer(left);
1270	}
 
1271
1272	/*
1273	 * then try to empty the right most buffer into the middle
1274	 */
1275	if (pslot + 1 < btrfs_header_nritems(parent)) {
1276		u32 right_nr;
1277
1278		right = btrfs_read_node_slot(parent, pslot + 1);
1279		if (IS_ERR(right))
1280			return PTR_ERR(right);
1281
1282		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284		right_nr = btrfs_header_nritems(right);
1285		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286			wret = 1;
1287		} else {
1288			ret = btrfs_cow_block(trans, root, right,
1289					      parent, pslot + 1,
1290					      &right, BTRFS_NESTING_RIGHT_COW);
1291			if (ret)
1292				wret = 1;
1293			else {
1294				wret = balance_node_right(trans, right, mid);
 
1295			}
1296		}
1297		if (wret < 0)
1298			ret = wret;
1299		if (wret == 0) {
1300			struct btrfs_disk_key disk_key;
1301
1302			btrfs_node_key(right, &disk_key, 0);
1303			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304					BTRFS_MOD_LOG_KEY_REPLACE);
1305			if (ret < 0) {
1306				btrfs_tree_unlock(right);
1307				free_extent_buffer(right);
1308				btrfs_abort_transaction(trans, ret);
1309				return ret;
1310			}
1311			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312			btrfs_mark_buffer_dirty(trans, parent);
1313
1314			if (btrfs_header_nritems(mid) <= orig_slot) {
1315				path->nodes[level] = right;
1316				path->slots[level + 1] += 1;
1317				path->slots[level] = orig_slot -
1318					btrfs_header_nritems(mid);
1319				btrfs_tree_unlock(mid);
1320				free_extent_buffer(mid);
1321			} else {
1322				btrfs_tree_unlock(right);
1323				free_extent_buffer(right);
1324			}
1325			return 0;
1326		}
1327		btrfs_tree_unlock(right);
1328		free_extent_buffer(right);
1329	}
1330	return 1;
1331}
1332
1333/*
1334 * readahead one full node of leaves, finding things that are close
1335 * to the block in 'slot', and triggering ra on them.
1336 */
1337static void reada_for_search(struct btrfs_fs_info *fs_info,
1338			     struct btrfs_path *path,
1339			     int level, int slot, u64 objectid)
1340{
1341	struct extent_buffer *node;
1342	struct btrfs_disk_key disk_key;
1343	u32 nritems;
1344	u64 search;
1345	u64 target;
1346	u64 nread = 0;
1347	u64 nread_max;
 
 
1348	u32 nr;
1349	u32 blocksize;
1350	u32 nscan = 0;
1351
1352	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353		return;
1354
1355	if (!path->nodes[level])
1356		return;
1357
1358	node = path->nodes[level];
1359
1360	/*
1361	 * Since the time between visiting leaves is much shorter than the time
1362	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363	 * much IO at once (possibly random).
1364	 */
1365	if (path->reada == READA_FORWARD_ALWAYS) {
1366		if (level > 1)
1367			nread_max = node->fs_info->nodesize;
1368		else
1369			nread_max = SZ_128K;
1370	} else {
1371		nread_max = SZ_64K;
1372	}
1373
1374	search = btrfs_node_blockptr(node, slot);
1375	blocksize = fs_info->nodesize;
1376	if (path->reada != READA_FORWARD_ALWAYS) {
1377		struct extent_buffer *eb;
1378
1379		eb = find_extent_buffer(fs_info, search);
1380		if (eb) {
1381			free_extent_buffer(eb);
1382			return;
1383		}
1384	}
1385
1386	target = search;
1387
1388	nritems = btrfs_header_nritems(node);
1389	nr = slot;
1390
1391	while (1) {
1392		if (path->reada == READA_BACK) {
1393			if (nr == 0)
1394				break;
1395			nr--;
1396		} else if (path->reada == READA_FORWARD ||
1397			   path->reada == READA_FORWARD_ALWAYS) {
1398			nr++;
1399			if (nr >= nritems)
1400				break;
1401		}
1402		if (path->reada == READA_BACK && objectid) {
1403			btrfs_node_key(node, &disk_key, nr);
1404			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405				break;
1406		}
1407		search = btrfs_node_blockptr(node, nr);
1408		if (path->reada == READA_FORWARD_ALWAYS ||
1409		    (search <= target && target - search <= 65536) ||
1410		    (search > target && search - target <= 65536)) {
1411			btrfs_readahead_node_child(node, nr);
 
1412			nread += blocksize;
1413		}
1414		nscan++;
1415		if (nread > nread_max || nscan > 32)
1416			break;
1417	}
1418}
1419
1420static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1421{
1422	struct extent_buffer *parent;
1423	int slot;
1424	int nritems;
 
 
 
 
 
 
1425
1426	parent = path->nodes[level + 1];
1427	if (!parent)
1428		return;
1429
1430	nritems = btrfs_header_nritems(parent);
1431	slot = path->slots[level + 1];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432
1433	if (slot > 0)
1434		btrfs_readahead_node_child(parent, slot - 1);
1435	if (slot + 1 < nritems)
1436		btrfs_readahead_node_child(parent, slot + 1);
1437}
1438
1439
1440/*
1441 * when we walk down the tree, it is usually safe to unlock the higher layers
1442 * in the tree.  The exceptions are when our path goes through slot 0, because
1443 * operations on the tree might require changing key pointers higher up in the
1444 * tree.
1445 *
1446 * callers might also have set path->keep_locks, which tells this code to keep
1447 * the lock if the path points to the last slot in the block.  This is part of
1448 * walking through the tree, and selecting the next slot in the higher block.
1449 *
1450 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1451 * if lowest_unlock is 1, level 0 won't be unlocked
1452 */
1453static noinline void unlock_up(struct btrfs_path *path, int level,
1454			       int lowest_unlock, int min_write_lock_level,
1455			       int *write_lock_level)
1456{
1457	int i;
1458	int skip_level = level;
1459	bool check_skip = true;
 
1460
1461	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462		if (!path->nodes[i])
1463			break;
1464		if (!path->locks[i])
1465			break;
1466
1467		if (check_skip) {
1468			if (path->slots[i] == 0) {
 
 
 
 
 
 
1469				skip_level = i + 1;
1470				continue;
1471			}
1472
1473			if (path->keep_locks) {
1474				u32 nritems;
1475
1476				nritems = btrfs_header_nritems(path->nodes[i]);
1477				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478					skip_level = i + 1;
1479					continue;
1480				}
1481			}
1482		}
 
 
1483
1484		if (i >= lowest_unlock && i > skip_level) {
1485			check_skip = false;
1486			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487			path->locks[i] = 0;
1488			if (write_lock_level &&
1489			    i > min_write_lock_level &&
1490			    i <= *write_lock_level) {
1491				*write_lock_level = i - 1;
1492			}
1493		}
1494	}
1495}
1496
1497/*
1498 * Helper function for btrfs_search_slot() and other functions that do a search
1499 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501 * its pages from disk.
1502 *
1503 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504 * whole btree search, starting again from the current root node.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505 */
1506static int
1507read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508		      struct extent_buffer **eb_ret, int slot,
1509		      const struct btrfs_key *key)
 
1510{
1511	struct btrfs_fs_info *fs_info = root->fs_info;
1512	struct btrfs_tree_parent_check check = { 0 };
1513	u64 blocknr;
1514	struct extent_buffer *tmp = NULL;
1515	int ret = 0;
1516	int parent_level;
1517	int err;
1518	bool read_tmp = false;
1519	bool tmp_locked = false;
1520	bool path_released = false;
1521
1522	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1523	parent_level = btrfs_header_level(*eb_ret);
1524	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525	check.has_first_key = true;
1526	check.level = parent_level - 1;
1527	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528	check.owner_root = btrfs_root_id(root);
1529
1530	/*
1531	 * If we need to read an extent buffer from disk and we are holding locks
1532	 * on upper level nodes, we unlock all the upper nodes before reading the
1533	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1534	 * restart the search. We don't release the lock on the current level
1535	 * because we need to walk this node to figure out which blocks to read.
1536	 */
1537	tmp = find_extent_buffer(fs_info, blocknr);
1538	if (tmp) {
1539		if (p->reada == READA_FORWARD_ALWAYS)
1540			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
 
 
1542		/* first we do an atomic uptodate check */
1543		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544			/*
1545			 * Do extra check for first_key, eb can be stale due to
1546			 * being cached, read from scrub, or have multiple
1547			 * parents (shared tree blocks).
1548			 */
1549			if (btrfs_verify_level_key(tmp, &check)) {
1550				ret = -EUCLEAN;
1551				goto out;
1552			}
1553			*eb_ret = tmp;
1554			tmp = NULL;
1555			ret = 0;
1556			goto out;
1557		}
1558
1559		if (p->nowait) {
1560			ret = -EAGAIN;
1561			goto out;
1562		}
1563
1564		if (!p->skip_locking) {
1565			btrfs_unlock_up_safe(p, parent_level + 1);
1566			btrfs_maybe_reset_lockdep_class(root, tmp);
1567			tmp_locked = true;
1568			btrfs_tree_read_lock(tmp);
1569			btrfs_release_path(p);
1570			ret = -EAGAIN;
1571			path_released = true;
1572		}
1573
1574		/* Now we're allowed to do a blocking uptodate check. */
1575		err = btrfs_read_extent_buffer(tmp, &check);
1576		if (err) {
1577			ret = err;
1578			goto out;
1579		}
 
1580
1581		if (ret == 0) {
1582			ASSERT(!tmp_locked);
 
1583			*eb_ret = tmp;
1584			tmp = NULL;
1585		}
1586		goto out;
1587	} else if (p->nowait) {
1588		ret = -EAGAIN;
1589		goto out;
1590	}
1591
1592	if (!p->skip_locking) {
1593		btrfs_unlock_up_safe(p, parent_level + 1);
1594		ret = -EAGAIN;
1595	}
1596
1597	if (p->reada != READA_NONE)
1598		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1599
1600	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1601	if (IS_ERR(tmp)) {
1602		ret = PTR_ERR(tmp);
1603		tmp = NULL;
1604		goto out;
1605	}
1606	read_tmp = true;
1607
1608	if (!p->skip_locking) {
1609		ASSERT(ret == -EAGAIN);
1610		btrfs_maybe_reset_lockdep_class(root, tmp);
1611		tmp_locked = true;
1612		btrfs_tree_read_lock(tmp);
1613		btrfs_release_path(p);
1614		path_released = true;
1615	}
1616
1617	/* Now we're allowed to do a blocking uptodate check. */
1618	err = btrfs_read_extent_buffer(tmp, &check);
1619	if (err) {
1620		ret = err;
1621		goto out;
1622	}
1623
1624	/*
1625	 * If the read above didn't mark this buffer up to date,
1626	 * it will never end up being up to date.  Set ret to EIO now
1627	 * and give up so that our caller doesn't loop forever
1628	 * on our EAGAINs.
 
1629	 */
1630	if (!extent_buffer_uptodate(tmp)) {
1631		ret = -EIO;
1632		goto out;
1633	}
1634
1635	if (ret == 0) {
1636		ASSERT(!tmp_locked);
1637		*eb_ret = tmp;
1638		tmp = NULL;
1639	}
1640out:
 
 
1641	if (tmp) {
1642		if (tmp_locked)
1643			btrfs_tree_read_unlock(tmp);
1644		if (read_tmp && ret && ret != -EAGAIN)
1645			free_extent_buffer_stale(tmp);
1646		else
1647			free_extent_buffer(tmp);
 
 
 
1648	}
1649	if (ret && !path_released)
1650		btrfs_release_path(p);
1651
1652	return ret;
1653}
1654
1655/*
1656 * helper function for btrfs_search_slot.  This does all of the checks
1657 * for node-level blocks and does any balancing required based on
1658 * the ins_len.
1659 *
1660 * If no extra work was required, zero is returned.  If we had to
1661 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1662 * start over
1663 */
1664static int
1665setup_nodes_for_search(struct btrfs_trans_handle *trans,
1666		       struct btrfs_root *root, struct btrfs_path *p,
1667		       struct extent_buffer *b, int level, int ins_len,
1668		       int *write_lock_level)
1669{
1670	struct btrfs_fs_info *fs_info = root->fs_info;
1671	int ret = 0;
1672
1673	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1674	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1675
1676		if (*write_lock_level < level + 1) {
1677			*write_lock_level = level + 1;
1678			btrfs_release_path(p);
1679			return -EAGAIN;
1680		}
1681
1682		reada_for_balance(p, level);
1683		ret = split_node(trans, root, p, level);
 
 
1684
 
 
 
 
 
1685		b = p->nodes[level];
1686	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1687		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1688
1689		if (*write_lock_level < level + 1) {
1690			*write_lock_level = level + 1;
1691			btrfs_release_path(p);
1692			return -EAGAIN;
1693		}
1694
1695		reada_for_balance(p, level);
1696		ret = balance_level(trans, root, p, level);
1697		if (ret)
1698			return ret;
1699
 
 
 
 
1700		b = p->nodes[level];
1701		if (!b) {
1702			btrfs_release_path(p);
1703			return -EAGAIN;
1704		}
1705		BUG_ON(btrfs_header_nritems(b) == 1);
1706	}
 
 
 
 
 
1707	return ret;
1708}
1709
1710int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711		u64 iobjectid, u64 ioff, u8 key_type,
1712		struct btrfs_key *found_key)
1713{
1714	int ret;
1715	struct btrfs_key key;
1716	struct extent_buffer *eb;
1717
1718	ASSERT(path);
1719	ASSERT(found_key);
1720
1721	key.type = key_type;
1722	key.objectid = iobjectid;
1723	key.offset = ioff;
1724
 
 
 
 
 
 
 
1725	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1726	if (ret < 0)
 
 
1727		return ret;
 
1728
1729	eb = path->nodes[0];
1730	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1731		ret = btrfs_next_leaf(fs_root, path);
1732		if (ret)
1733			return ret;
1734		eb = path->nodes[0];
1735	}
1736
1737	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1738	if (found_key->type != key.type ||
1739			found_key->objectid != key.objectid)
1740		return 1;
1741
1742	return 0;
1743}
1744
1745static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1746							struct btrfs_path *p,
1747							int write_lock_level)
1748{
1749	struct extent_buffer *b;
1750	int root_lock = 0;
1751	int level = 0;
1752
1753	if (p->search_commit_root) {
1754		b = root->commit_root;
1755		atomic_inc(&b->refs);
1756		level = btrfs_header_level(b);
1757		/*
1758		 * Ensure that all callers have set skip_locking when
1759		 * p->search_commit_root = 1.
1760		 */
1761		ASSERT(p->skip_locking == 1);
1762
1763		goto out;
1764	}
1765
1766	if (p->skip_locking) {
1767		b = btrfs_root_node(root);
1768		level = btrfs_header_level(b);
1769		goto out;
1770	}
1771
1772	/* We try very hard to do read locks on the root */
1773	root_lock = BTRFS_READ_LOCK;
1774
1775	/*
1776	 * If the level is set to maximum, we can skip trying to get the read
1777	 * lock.
1778	 */
1779	if (write_lock_level < BTRFS_MAX_LEVEL) {
1780		/*
1781		 * We don't know the level of the root node until we actually
1782		 * have it read locked
1783		 */
1784		if (p->nowait) {
1785			b = btrfs_try_read_lock_root_node(root);
1786			if (IS_ERR(b))
1787				return b;
1788		} else {
1789			b = btrfs_read_lock_root_node(root);
1790		}
1791		level = btrfs_header_level(b);
1792		if (level > write_lock_level)
1793			goto out;
1794
1795		/* Whoops, must trade for write lock */
1796		btrfs_tree_read_unlock(b);
1797		free_extent_buffer(b);
1798	}
1799
1800	b = btrfs_lock_root_node(root);
1801	root_lock = BTRFS_WRITE_LOCK;
1802
1803	/* The level might have changed, check again */
1804	level = btrfs_header_level(b);
1805
1806out:
1807	/*
1808	 * The root may have failed to write out at some point, and thus is no
1809	 * longer valid, return an error in this case.
1810	 */
1811	if (!extent_buffer_uptodate(b)) {
1812		if (root_lock)
1813			btrfs_tree_unlock_rw(b, root_lock);
1814		free_extent_buffer(b);
1815		return ERR_PTR(-EIO);
1816	}
1817
1818	p->nodes[level] = b;
1819	if (!p->skip_locking)
1820		p->locks[level] = root_lock;
1821	/*
1822	 * Callers are responsible for dropping b's references.
1823	 */
1824	return b;
1825}
1826
1827/*
1828 * Replace the extent buffer at the lowest level of the path with a cloned
1829 * version. The purpose is to be able to use it safely, after releasing the
1830 * commit root semaphore, even if relocation is happening in parallel, the
1831 * transaction used for relocation is committed and the extent buffer is
1832 * reallocated in the next transaction.
1833 *
1834 * This is used in a context where the caller does not prevent transaction
1835 * commits from happening, either by holding a transaction handle or holding
1836 * some lock, while it's doing searches through a commit root.
1837 * At the moment it's only used for send operations.
1838 */
1839static int finish_need_commit_sem_search(struct btrfs_path *path)
1840{
1841	const int i = path->lowest_level;
1842	const int slot = path->slots[i];
1843	struct extent_buffer *lowest = path->nodes[i];
1844	struct extent_buffer *clone;
1845
1846	ASSERT(path->need_commit_sem);
1847
1848	if (!lowest)
1849		return 0;
1850
1851	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1852
1853	clone = btrfs_clone_extent_buffer(lowest);
1854	if (!clone)
1855		return -ENOMEM;
1856
1857	btrfs_release_path(path);
1858	path->nodes[i] = clone;
1859	path->slots[i] = slot;
1860
1861	return 0;
1862}
1863
1864static inline int search_for_key_slot(struct extent_buffer *eb,
1865				      int search_low_slot,
1866				      const struct btrfs_key *key,
1867				      int prev_cmp,
1868				      int *slot)
1869{
1870	/*
1871	 * If a previous call to btrfs_bin_search() on a parent node returned an
1872	 * exact match (prev_cmp == 0), we can safely assume the target key will
1873	 * always be at slot 0 on lower levels, since each key pointer
1874	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1875	 * subtree it points to. Thus we can skip searching lower levels.
1876	 */
1877	if (prev_cmp == 0) {
1878		*slot = 0;
1879		return 0;
1880	}
1881
1882	return btrfs_bin_search(eb, search_low_slot, key, slot);
1883}
1884
1885static int search_leaf(struct btrfs_trans_handle *trans,
1886		       struct btrfs_root *root,
1887		       const struct btrfs_key *key,
1888		       struct btrfs_path *path,
1889		       int ins_len,
1890		       int prev_cmp)
1891{
1892	struct extent_buffer *leaf = path->nodes[0];
1893	int leaf_free_space = -1;
1894	int search_low_slot = 0;
1895	int ret;
1896	bool do_bin_search = true;
1897
1898	/*
1899	 * If we are doing an insertion, the leaf has enough free space and the
1900	 * destination slot for the key is not slot 0, then we can unlock our
1901	 * write lock on the parent, and any other upper nodes, before doing the
1902	 * binary search on the leaf (with search_for_key_slot()), allowing other
1903	 * tasks to lock the parent and any other upper nodes.
1904	 */
1905	if (ins_len > 0) {
1906		/*
1907		 * Cache the leaf free space, since we will need it later and it
1908		 * will not change until then.
1909		 */
1910		leaf_free_space = btrfs_leaf_free_space(leaf);
1911
1912		/*
1913		 * !path->locks[1] means we have a single node tree, the leaf is
1914		 * the root of the tree.
1915		 */
1916		if (path->locks[1] && leaf_free_space >= ins_len) {
1917			struct btrfs_disk_key first_key;
1918
1919			ASSERT(btrfs_header_nritems(leaf) > 0);
1920			btrfs_item_key(leaf, &first_key, 0);
1921
1922			/*
1923			 * Doing the extra comparison with the first key is cheap,
1924			 * taking into account that the first key is very likely
1925			 * already in a cache line because it immediately follows
1926			 * the extent buffer's header and we have recently accessed
1927			 * the header's level field.
1928			 */
1929			ret = btrfs_comp_keys(&first_key, key);
1930			if (ret < 0) {
1931				/*
1932				 * The first key is smaller than the key we want
1933				 * to insert, so we are safe to unlock all upper
1934				 * nodes and we have to do the binary search.
1935				 *
1936				 * We do use btrfs_unlock_up_safe() and not
1937				 * unlock_up() because the later does not unlock
1938				 * nodes with a slot of 0 - we can safely unlock
1939				 * any node even if its slot is 0 since in this
1940				 * case the key does not end up at slot 0 of the
1941				 * leaf and there's no need to split the leaf.
1942				 */
1943				btrfs_unlock_up_safe(path, 1);
1944				search_low_slot = 1;
1945			} else {
1946				/*
1947				 * The first key is >= then the key we want to
1948				 * insert, so we can skip the binary search as
1949				 * the target key will be at slot 0.
1950				 *
1951				 * We can not unlock upper nodes when the key is
1952				 * less than the first key, because we will need
1953				 * to update the key at slot 0 of the parent node
1954				 * and possibly of other upper nodes too.
1955				 * If the key matches the first key, then we can
1956				 * unlock all the upper nodes, using
1957				 * btrfs_unlock_up_safe() instead of unlock_up()
1958				 * as stated above.
1959				 */
1960				if (ret == 0)
1961					btrfs_unlock_up_safe(path, 1);
1962				/*
1963				 * ret is already 0 or 1, matching the result of
1964				 * a btrfs_bin_search() call, so there is no need
1965				 * to adjust it.
1966				 */
1967				do_bin_search = false;
1968				path->slots[0] = 0;
1969			}
1970		}
1971	}
1972
1973	if (do_bin_search) {
1974		ret = search_for_key_slot(leaf, search_low_slot, key,
1975					  prev_cmp, &path->slots[0]);
1976		if (ret < 0)
1977			return ret;
1978	}
1979
1980	if (ins_len > 0) {
1981		/*
1982		 * Item key already exists. In this case, if we are allowed to
1983		 * insert the item (for example, in dir_item case, item key
1984		 * collision is allowed), it will be merged with the original
1985		 * item. Only the item size grows, no new btrfs item will be
1986		 * added. If search_for_extension is not set, ins_len already
1987		 * accounts the size btrfs_item, deduct it here so leaf space
1988		 * check will be correct.
1989		 */
1990		if (ret == 0 && !path->search_for_extension) {
1991			ASSERT(ins_len >= sizeof(struct btrfs_item));
1992			ins_len -= sizeof(struct btrfs_item);
1993		}
1994
1995		ASSERT(leaf_free_space >= 0);
1996
1997		if (leaf_free_space < ins_len) {
1998			int err;
1999
2000			err = split_leaf(trans, root, key, path, ins_len,
2001					 (ret == 0));
2002			ASSERT(err <= 0);
2003			if (WARN_ON(err > 0))
2004				err = -EUCLEAN;
2005			if (err)
2006				ret = err;
2007		}
2008	}
2009
2010	return ret;
2011}
2012
2013/*
2014 * Look for a key in a tree and perform necessary modifications to preserve
2015 * tree invariants.
2016 *
2017 * @trans:	Handle of transaction, used when modifying the tree
2018 * @p:		Holds all btree nodes along the search path
2019 * @root:	The root node of the tree
2020 * @key:	The key we are looking for
2021 * @ins_len:	Indicates purpose of search:
2022 *              >0  for inserts it's size of item inserted (*)
2023 *              <0  for deletions
2024 *               0  for plain searches, not modifying the tree
2025 *
2026 *              (*) If size of item inserted doesn't include
2027 *              sizeof(struct btrfs_item), then p->search_for_extension must
2028 *              be set.
2029 * @cow:	boolean should CoW operations be performed. Must always be 1
2030 *		when modifying the tree.
2031 *
2032 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2033 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2034 *
2035 * If @key is found, 0 is returned and you can find the item in the leaf level
2036 * of the path (level 0)
2037 *
2038 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2039 * points to the slot where it should be inserted
2040 *
2041 * If an error is encountered while searching the tree a negative error number
2042 * is returned
2043 */
2044int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2045		      const struct btrfs_key *key, struct btrfs_path *p,
2046		      int ins_len, int cow)
2047{
2048	struct btrfs_fs_info *fs_info;
2049	struct extent_buffer *b;
2050	int slot;
2051	int ret;
2052	int err;
2053	int level;
2054	int lowest_unlock = 1;
 
2055	/* everything at write_lock_level or lower must be write locked */
2056	int write_lock_level = 0;
2057	u8 lowest_level = 0;
2058	int min_write_lock_level;
2059	int prev_cmp;
2060
2061	if (!root)
2062		return -EINVAL;
2063
2064	fs_info = root->fs_info;
2065	might_sleep();
2066
2067	lowest_level = p->lowest_level;
2068	WARN_ON(lowest_level && ins_len > 0);
2069	WARN_ON(p->nodes[0] != NULL);
2070	BUG_ON(!cow && ins_len);
2071
2072	/*
2073	 * For now only allow nowait for read only operations.  There's no
2074	 * strict reason why we can't, we just only need it for reads so it's
2075	 * only implemented for reads.
2076	 */
2077	ASSERT(!p->nowait || !cow);
2078
2079	if (ins_len < 0) {
2080		lowest_unlock = 2;
2081
2082		/* when we are removing items, we might have to go up to level
2083		 * two as we update tree pointers  Make sure we keep write
2084		 * for those levels as well
2085		 */
2086		write_lock_level = 2;
2087	} else if (ins_len > 0) {
2088		/*
2089		 * for inserting items, make sure we have a write lock on
2090		 * level 1 so we can update keys
2091		 */
2092		write_lock_level = 1;
2093	}
2094
2095	if (!cow)
2096		write_lock_level = -1;
2097
2098	if (cow && (p->keep_locks || p->lowest_level))
2099		write_lock_level = BTRFS_MAX_LEVEL;
2100
2101	min_write_lock_level = write_lock_level;
2102
2103	if (p->need_commit_sem) {
2104		ASSERT(p->search_commit_root);
2105		if (p->nowait) {
2106			if (!down_read_trylock(&fs_info->commit_root_sem))
2107				return -EAGAIN;
2108		} else {
2109			down_read(&fs_info->commit_root_sem);
2110		}
2111	}
2112
2113again:
2114	prev_cmp = -1;
2115	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2116	if (IS_ERR(b)) {
2117		ret = PTR_ERR(b);
2118		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119	}
 
 
 
2120
2121	while (b) {
2122		int dec = 0;
2123
2124		level = btrfs_header_level(b);
2125
 
 
 
 
2126		if (cow) {
2127			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2128
2129			/*
2130			 * if we don't really need to cow this block
2131			 * then we don't want to set the path blocking,
2132			 * so we test it here
2133			 */
2134			if (!should_cow_block(trans, root, b))
2135				goto cow_done;
2136
 
 
2137			/*
2138			 * must have write locks on this node and the
2139			 * parent
2140			 */
2141			if (level > write_lock_level ||
2142			    (level + 1 > write_lock_level &&
2143			    level + 1 < BTRFS_MAX_LEVEL &&
2144			    p->nodes[level + 1])) {
2145				write_lock_level = level + 1;
2146				btrfs_release_path(p);
2147				goto again;
2148			}
2149
2150			if (last_level)
2151				err = btrfs_cow_block(trans, root, b, NULL, 0,
2152						      &b,
2153						      BTRFS_NESTING_COW);
2154			else
2155				err = btrfs_cow_block(trans, root, b,
2156						      p->nodes[level + 1],
2157						      p->slots[level + 1], &b,
2158						      BTRFS_NESTING_COW);
2159			if (err) {
2160				ret = err;
2161				goto done;
2162			}
2163		}
2164cow_done:
2165		p->nodes[level] = b;
 
2166
2167		/*
2168		 * we have a lock on b and as long as we aren't changing
2169		 * the tree, there is no way to for the items in b to change.
2170		 * It is safe to drop the lock on our parent before we
2171		 * go through the expensive btree search on b.
2172		 *
2173		 * If we're inserting or deleting (ins_len != 0), then we might
2174		 * be changing slot zero, which may require changing the parent.
2175		 * So, we can't drop the lock until after we know which slot
2176		 * we're operating on.
2177		 */
2178		if (!ins_len && !p->keep_locks) {
2179			int u = level + 1;
2180
2181			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2182				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2183				p->locks[u] = 0;
2184			}
2185		}
2186
2187		if (level == 0) {
2188			if (ins_len > 0)
2189				ASSERT(write_lock_level >= 1);
2190
2191			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2192			if (!p->search_for_split)
2193				unlock_up(p, level, lowest_unlock,
2194					  min_write_lock_level, NULL);
2195			goto done;
2196		}
2197
2198		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2199		if (ret < 0)
2200			goto done;
2201		prev_cmp = ret;
2202
2203		if (ret && slot > 0) {
2204			dec = 1;
2205			slot--;
2206		}
2207		p->slots[level] = slot;
2208		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2209					     &write_lock_level);
2210		if (err == -EAGAIN)
2211			goto again;
2212		if (err) {
2213			ret = err;
2214			goto done;
2215		}
2216		b = p->nodes[level];
2217		slot = p->slots[level];
2218
2219		/*
2220		 * Slot 0 is special, if we change the key we have to update
2221		 * the parent pointer which means we must have a write lock on
2222		 * the parent
2223		 */
2224		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2225			write_lock_level = level + 1;
2226			btrfs_release_path(p);
2227			goto again;
2228		}
2229
2230		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2231			  &write_lock_level);
2232
2233		if (level == lowest_level) {
2234			if (dec)
2235				p->slots[level]++;
2236			goto done;
2237		}
 
 
 
 
 
 
 
2238
2239		err = read_block_for_search(root, p, &b, slot, key);
2240		if (err == -EAGAIN && !p->nowait)
2241			goto again;
2242		if (err) {
2243			ret = err;
2244			goto done;
2245		}
2246
2247		if (!p->skip_locking) {
2248			level = btrfs_header_level(b);
 
 
 
2249
2250			btrfs_maybe_reset_lockdep_class(root, b);
 
 
 
 
 
 
 
2251
2252			if (level <= write_lock_level) {
2253				btrfs_tree_lock(b);
2254				p->locks[level] = BTRFS_WRITE_LOCK;
2255			} else {
2256				if (p->nowait) {
2257					if (!btrfs_try_tree_read_lock(b)) {
2258						free_extent_buffer(b);
2259						ret = -EAGAIN;
2260						goto done;
2261					}
 
2262				} else {
2263					btrfs_tree_read_lock(b);
 
 
 
 
 
 
 
2264				}
2265				p->locks[level] = BTRFS_READ_LOCK;
2266			}
2267			p->nodes[level] = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268		}
2269	}
2270	ret = 1;
2271done:
2272	if (ret < 0 && !p->skip_release_on_error)
 
 
 
 
 
 
2273		btrfs_release_path(p);
2274
2275	if (p->need_commit_sem) {
2276		int ret2;
2277
2278		ret2 = finish_need_commit_sem_search(p);
2279		up_read(&fs_info->commit_root_sem);
2280		if (ret2)
2281			ret = ret2;
2282	}
2283
2284	return ret;
2285}
2286ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2287
2288/*
2289 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2290 * current state of the tree together with the operations recorded in the tree
2291 * modification log to search for the key in a previous version of this tree, as
2292 * denoted by the time_seq parameter.
2293 *
2294 * Naturally, there is no support for insert, delete or cow operations.
2295 *
2296 * The resulting path and return value will be set up as if we called
2297 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2298 */
2299int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2300			  struct btrfs_path *p, u64 time_seq)
2301{
2302	struct btrfs_fs_info *fs_info = root->fs_info;
2303	struct extent_buffer *b;
2304	int slot;
2305	int ret;
2306	int err;
2307	int level;
2308	int lowest_unlock = 1;
2309	u8 lowest_level = 0;
 
2310
2311	lowest_level = p->lowest_level;
2312	WARN_ON(p->nodes[0] != NULL);
2313	ASSERT(!p->nowait);
2314
2315	if (p->search_commit_root) {
2316		BUG_ON(time_seq);
2317		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2318	}
2319
2320again:
2321	b = btrfs_get_old_root(root, time_seq);
2322	if (!b) {
2323		ret = -EIO;
2324		goto done;
2325	}
2326	level = btrfs_header_level(b);
2327	p->locks[level] = BTRFS_READ_LOCK;
2328
2329	while (b) {
2330		int dec = 0;
2331
2332		level = btrfs_header_level(b);
2333		p->nodes[level] = b;
 
2334
2335		/*
2336		 * we have a lock on b and as long as we aren't changing
2337		 * the tree, there is no way to for the items in b to change.
2338		 * It is safe to drop the lock on our parent before we
2339		 * go through the expensive btree search on b.
2340		 */
2341		btrfs_unlock_up_safe(p, level + 1);
2342
2343		ret = btrfs_bin_search(b, 0, key, &slot);
2344		if (ret < 0)
2345			goto done;
 
 
 
2346
2347		if (level == 0) {
 
 
 
 
 
2348			p->slots[level] = slot;
2349			unlock_up(p, level, lowest_unlock, 0, NULL);
2350			goto done;
2351		}
2352
2353		if (ret && slot > 0) {
2354			dec = 1;
2355			slot--;
2356		}
2357		p->slots[level] = slot;
2358		unlock_up(p, level, lowest_unlock, 0, NULL);
2359
2360		if (level == lowest_level) {
2361			if (dec)
2362				p->slots[level]++;
2363			goto done;
2364		}
2365
2366		err = read_block_for_search(root, p, &b, slot, key);
2367		if (err == -EAGAIN && !p->nowait)
2368			goto again;
2369		if (err) {
2370			ret = err;
2371			goto done;
2372		}
 
2373
2374		level = btrfs_header_level(b);
2375		btrfs_tree_read_lock(b);
2376		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2377		if (!b) {
2378			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
2379			goto done;
2380		}
2381		p->locks[level] = BTRFS_READ_LOCK;
2382		p->nodes[level] = b;
2383	}
2384	ret = 1;
2385done:
 
 
2386	if (ret < 0)
2387		btrfs_release_path(p);
2388
2389	return ret;
2390}
2391
2392/*
2393 * Search the tree again to find a leaf with smaller keys.
2394 * Returns 0 if it found something.
2395 * Returns 1 if there are no smaller keys.
2396 * Returns < 0 on error.
2397 *
2398 * This may release the path, and so you may lose any locks held at the
2399 * time you call it.
2400 */
2401static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2402{
2403	struct btrfs_key key;
2404	struct btrfs_key orig_key;
2405	struct btrfs_disk_key found_key;
2406	int ret;
2407
2408	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2409	orig_key = key;
2410
2411	if (key.offset > 0) {
2412		key.offset--;
2413	} else if (key.type > 0) {
2414		key.type--;
2415		key.offset = (u64)-1;
2416	} else if (key.objectid > 0) {
2417		key.objectid--;
2418		key.type = (u8)-1;
2419		key.offset = (u64)-1;
2420	} else {
2421		return 1;
2422	}
2423
2424	btrfs_release_path(path);
2425	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426	if (ret <= 0)
2427		return ret;
2428
2429	/*
2430	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2431	 * before releasing the path and calling btrfs_search_slot(), we now may
2432	 * be in a slot pointing to the same original key - this can happen if
2433	 * after we released the path, one of more items were moved from a
2434	 * sibling leaf into the front of the leaf we had due to an insertion
2435	 * (see push_leaf_right()).
2436	 * If we hit this case and our slot is > 0 and just decrement the slot
2437	 * so that the caller does not process the same key again, which may or
2438	 * may not break the caller, depending on its logic.
2439	 */
2440	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2441		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2442		ret = btrfs_comp_keys(&found_key, &orig_key);
2443		if (ret == 0) {
2444			if (path->slots[0] > 0) {
2445				path->slots[0]--;
2446				return 0;
2447			}
2448			/*
2449			 * At slot 0, same key as before, it means orig_key is
2450			 * the lowest, leftmost, key in the tree. We're done.
2451			 */
2452			return 1;
2453		}
2454	}
2455
2456	btrfs_item_key(path->nodes[0], &found_key, 0);
2457	ret = btrfs_comp_keys(&found_key, &key);
2458	/*
2459	 * We might have had an item with the previous key in the tree right
2460	 * before we released our path. And after we released our path, that
2461	 * item might have been pushed to the first slot (0) of the leaf we
2462	 * were holding due to a tree balance. Alternatively, an item with the
2463	 * previous key can exist as the only element of a leaf (big fat item).
2464	 * Therefore account for these 2 cases, so that our callers (like
2465	 * btrfs_previous_item) don't miss an existing item with a key matching
2466	 * the previous key we computed above.
2467	 */
2468	if (ret <= 0)
2469		return 0;
2470	return 1;
2471}
2472
2473/*
2474 * helper to use instead of search slot if no exact match is needed but
2475 * instead the next or previous item should be returned.
2476 * When find_higher is true, the next higher item is returned, the next lower
2477 * otherwise.
2478 * When return_any and find_higher are both true, and no higher item is found,
2479 * return the next lower instead.
2480 * When return_any is true and find_higher is false, and no lower item is found,
2481 * return the next higher instead.
2482 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2483 * < 0 on error
2484 */
2485int btrfs_search_slot_for_read(struct btrfs_root *root,
2486			       const struct btrfs_key *key,
2487			       struct btrfs_path *p, int find_higher,
2488			       int return_any)
2489{
2490	int ret;
2491	struct extent_buffer *leaf;
2492
2493again:
2494	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2495	if (ret <= 0)
2496		return ret;
2497	/*
2498	 * a return value of 1 means the path is at the position where the
2499	 * item should be inserted. Normally this is the next bigger item,
2500	 * but in case the previous item is the last in a leaf, path points
2501	 * to the first free slot in the previous leaf, i.e. at an invalid
2502	 * item.
2503	 */
2504	leaf = p->nodes[0];
2505
2506	if (find_higher) {
2507		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2508			ret = btrfs_next_leaf(root, p);
2509			if (ret <= 0)
2510				return ret;
2511			if (!return_any)
2512				return 1;
2513			/*
2514			 * no higher item found, return the next
2515			 * lower instead
2516			 */
2517			return_any = 0;
2518			find_higher = 0;
2519			btrfs_release_path(p);
2520			goto again;
2521		}
2522	} else {
2523		if (p->slots[0] == 0) {
2524			ret = btrfs_prev_leaf(root, p);
2525			if (ret < 0)
2526				return ret;
2527			if (!ret) {
2528				leaf = p->nodes[0];
2529				if (p->slots[0] == btrfs_header_nritems(leaf))
2530					p->slots[0]--;
2531				return 0;
2532			}
2533			if (!return_any)
2534				return 1;
2535			/*
2536			 * no lower item found, return the next
2537			 * higher instead
2538			 */
2539			return_any = 0;
2540			find_higher = 1;
2541			btrfs_release_path(p);
2542			goto again;
2543		} else {
2544			--p->slots[0];
2545		}
2546	}
2547	return 0;
2548}
2549
2550/*
2551 * Execute search and call btrfs_previous_item to traverse backwards if the item
2552 * was not found.
2553 *
2554 * Return 0 if found, 1 if not found and < 0 if error.
2555 */
2556int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2557			   struct btrfs_path *path)
2558{
2559	int ret;
2560
2561	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2562	if (ret > 0)
2563		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2564
2565	if (ret == 0)
2566		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2567
2568	return ret;
2569}
2570
2571/*
2572 * Search for a valid slot for the given path.
2573 *
2574 * @root:	The root node of the tree.
2575 * @key:	Will contain a valid item if found.
2576 * @path:	The starting point to validate the slot.
2577 *
2578 * Return: 0  if the item is valid
2579 *         1  if not found
2580 *         <0 if error.
2581 */
2582int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2583			      struct btrfs_path *path)
2584{
2585	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2586		int ret;
2587
2588		ret = btrfs_next_leaf(root, path);
2589		if (ret)
2590			return ret;
2591	}
2592
2593	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2594	return 0;
2595}
2596
2597/*
2598 * adjust the pointers going up the tree, starting at level
2599 * making sure the right key of each node is points to 'key'.
2600 * This is used after shifting pointers to the left, so it stops
2601 * fixing up pointers when a given leaf/node is not in slot 0 of the
2602 * higher levels
2603 *
2604 */
2605static void fixup_low_keys(struct btrfs_trans_handle *trans,
2606			   const struct btrfs_path *path,
2607			   const struct btrfs_disk_key *key, int level)
2608{
2609	int i;
2610	struct extent_buffer *t;
2611	int ret;
2612
2613	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2614		int tslot = path->slots[i];
2615
2616		if (!path->nodes[i])
2617			break;
2618		t = path->nodes[i];
2619		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2620						    BTRFS_MOD_LOG_KEY_REPLACE);
2621		BUG_ON(ret < 0);
2622		btrfs_set_node_key(t, key, tslot);
2623		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2624		if (tslot != 0)
2625			break;
2626	}
2627}
2628
2629/*
2630 * update item key.
2631 *
2632 * This function isn't completely safe. It's the caller's responsibility
2633 * that the new key won't break the order
2634 */
2635void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2636			     const struct btrfs_path *path,
2637			     const struct btrfs_key *new_key)
2638{
2639	struct btrfs_fs_info *fs_info = trans->fs_info;
2640	struct btrfs_disk_key disk_key;
2641	struct extent_buffer *eb;
2642	int slot;
2643
2644	eb = path->nodes[0];
2645	slot = path->slots[0];
2646	if (slot > 0) {
2647		btrfs_item_key(eb, &disk_key, slot - 1);
2648		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2649			btrfs_print_leaf(eb);
2650			btrfs_crit(fs_info,
2651		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2652				   slot, btrfs_disk_key_objectid(&disk_key),
2653				   btrfs_disk_key_type(&disk_key),
2654				   btrfs_disk_key_offset(&disk_key),
2655				   new_key->objectid, new_key->type,
2656				   new_key->offset);
2657			BUG();
2658		}
2659	}
2660	if (slot < btrfs_header_nritems(eb) - 1) {
2661		btrfs_item_key(eb, &disk_key, slot + 1);
2662		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2663			btrfs_print_leaf(eb);
2664			btrfs_crit(fs_info,
2665		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2666				   slot, btrfs_disk_key_objectid(&disk_key),
2667				   btrfs_disk_key_type(&disk_key),
2668				   btrfs_disk_key_offset(&disk_key),
2669				   new_key->objectid, new_key->type,
2670				   new_key->offset);
2671			BUG();
2672		}
2673	}
2674
2675	btrfs_cpu_key_to_disk(&disk_key, new_key);
2676	btrfs_set_item_key(eb, &disk_key, slot);
2677	btrfs_mark_buffer_dirty(trans, eb);
2678	if (slot == 0)
2679		fixup_low_keys(trans, path, &disk_key, 1);
2680}
2681
2682/*
2683 * Check key order of two sibling extent buffers.
2684 *
2685 * Return true if something is wrong.
2686 * Return false if everything is fine.
2687 *
2688 * Tree-checker only works inside one tree block, thus the following
2689 * corruption can not be detected by tree-checker:
2690 *
2691 * Leaf @left			| Leaf @right
2692 * --------------------------------------------------------------
2693 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2694 *
2695 * Key f6 in leaf @left itself is valid, but not valid when the next
2696 * key in leaf @right is 7.
2697 * This can only be checked at tree block merge time.
2698 * And since tree checker has ensured all key order in each tree block
2699 * is correct, we only need to bother the last key of @left and the first
2700 * key of @right.
2701 */
2702static bool check_sibling_keys(const struct extent_buffer *left,
2703			       const struct extent_buffer *right)
2704{
2705	struct btrfs_key left_last;
2706	struct btrfs_key right_first;
2707	int level = btrfs_header_level(left);
2708	int nr_left = btrfs_header_nritems(left);
2709	int nr_right = btrfs_header_nritems(right);
2710
2711	/* No key to check in one of the tree blocks */
2712	if (!nr_left || !nr_right)
2713		return false;
2714
2715	if (level) {
2716		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2717		btrfs_node_key_to_cpu(right, &right_first, 0);
2718	} else {
2719		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2720		btrfs_item_key_to_cpu(right, &right_first, 0);
2721	}
2722
2723	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2724		btrfs_crit(left->fs_info, "left extent buffer:");
2725		btrfs_print_tree(left, false);
2726		btrfs_crit(left->fs_info, "right extent buffer:");
2727		btrfs_print_tree(right, false);
2728		btrfs_crit(left->fs_info,
2729"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2730			   left_last.objectid, left_last.type,
2731			   left_last.offset, right_first.objectid,
2732			   right_first.type, right_first.offset);
2733		return true;
2734	}
2735	return false;
2736}
2737
2738/*
2739 * try to push data from one node into the next node left in the
2740 * tree.
2741 *
2742 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2743 * error, and > 0 if there was no room in the left hand block.
2744 */
2745static int push_node_left(struct btrfs_trans_handle *trans,
2746			  struct extent_buffer *dst,
2747			  struct extent_buffer *src, int empty)
2748{
2749	struct btrfs_fs_info *fs_info = trans->fs_info;
2750	int push_items = 0;
2751	int src_nritems;
2752	int dst_nritems;
2753	int ret = 0;
2754
2755	src_nritems = btrfs_header_nritems(src);
2756	dst_nritems = btrfs_header_nritems(dst);
2757	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2758	WARN_ON(btrfs_header_generation(src) != trans->transid);
2759	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2760
2761	if (!empty && src_nritems <= 8)
2762		return 1;
2763
2764	if (push_items <= 0)
2765		return 1;
2766
2767	if (empty) {
2768		push_items = min(src_nritems, push_items);
2769		if (push_items < src_nritems) {
2770			/* leave at least 8 pointers in the node if
2771			 * we aren't going to empty it
2772			 */
2773			if (src_nritems - push_items < 8) {
2774				if (push_items <= 8)
2775					return 1;
2776				push_items -= 8;
2777			}
2778		}
2779	} else
2780		push_items = min(src_nritems - 8, push_items);
2781
2782	/* dst is the left eb, src is the middle eb */
2783	if (check_sibling_keys(dst, src)) {
2784		ret = -EUCLEAN;
2785		btrfs_abort_transaction(trans, ret);
2786		return ret;
2787	}
2788	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2789	if (ret) {
2790		btrfs_abort_transaction(trans, ret);
2791		return ret;
2792	}
2793	copy_extent_buffer(dst, src,
2794			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2795			   btrfs_node_key_ptr_offset(src, 0),
2796			   push_items * sizeof(struct btrfs_key_ptr));
2797
2798	if (push_items < src_nritems) {
2799		/*
2800		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2801		 * don't need to do an explicit tree mod log operation for it.
2802		 */
2803		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2804				      btrfs_node_key_ptr_offset(src, push_items),
2805				      (src_nritems - push_items) *
2806				      sizeof(struct btrfs_key_ptr));
2807	}
2808	btrfs_set_header_nritems(src, src_nritems - push_items);
2809	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2810	btrfs_mark_buffer_dirty(trans, src);
2811	btrfs_mark_buffer_dirty(trans, dst);
2812
2813	return ret;
2814}
2815
2816/*
2817 * try to push data from one node into the next node right in the
2818 * tree.
2819 *
2820 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2821 * error, and > 0 if there was no room in the right hand block.
2822 *
2823 * this will  only push up to 1/2 the contents of the left node over
2824 */
2825static int balance_node_right(struct btrfs_trans_handle *trans,
 
2826			      struct extent_buffer *dst,
2827			      struct extent_buffer *src)
2828{
2829	struct btrfs_fs_info *fs_info = trans->fs_info;
2830	int push_items = 0;
2831	int max_push;
2832	int src_nritems;
2833	int dst_nritems;
2834	int ret = 0;
2835
2836	WARN_ON(btrfs_header_generation(src) != trans->transid);
2837	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2838
2839	src_nritems = btrfs_header_nritems(src);
2840	dst_nritems = btrfs_header_nritems(dst);
2841	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2842	if (push_items <= 0)
2843		return 1;
2844
2845	if (src_nritems < 4)
2846		return 1;
2847
2848	max_push = src_nritems / 2 + 1;
2849	/* don't try to empty the node */
2850	if (max_push >= src_nritems)
2851		return 1;
2852
2853	if (max_push < push_items)
2854		push_items = max_push;
2855
2856	/* dst is the right eb, src is the middle eb */
2857	if (check_sibling_keys(src, dst)) {
2858		ret = -EUCLEAN;
2859		btrfs_abort_transaction(trans, ret);
2860		return ret;
2861	}
2862
2863	/*
2864	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2865	 * need to do an explicit tree mod log operation for it.
2866	 */
2867	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2868				      btrfs_node_key_ptr_offset(dst, 0),
2869				      (dst_nritems) *
2870				      sizeof(struct btrfs_key_ptr));
2871
2872	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2873					 push_items);
2874	if (ret) {
2875		btrfs_abort_transaction(trans, ret);
2876		return ret;
2877	}
2878	copy_extent_buffer(dst, src,
2879			   btrfs_node_key_ptr_offset(dst, 0),
2880			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2881			   push_items * sizeof(struct btrfs_key_ptr));
2882
2883	btrfs_set_header_nritems(src, src_nritems - push_items);
2884	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2885
2886	btrfs_mark_buffer_dirty(trans, src);
2887	btrfs_mark_buffer_dirty(trans, dst);
2888
2889	return ret;
2890}
2891
2892/*
2893 * helper function to insert a new root level in the tree.
2894 * A new node is allocated, and a single item is inserted to
2895 * point to the existing root
2896 *
2897 * returns zero on success or < 0 on failure.
2898 */
2899static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2900			   struct btrfs_root *root,
2901			   struct btrfs_path *path, int level)
2902{
2903	u64 lower_gen;
2904	struct extent_buffer *lower;
2905	struct extent_buffer *c;
2906	struct extent_buffer *old;
2907	struct btrfs_disk_key lower_key;
2908	int ret;
2909
2910	BUG_ON(path->nodes[level]);
2911	BUG_ON(path->nodes[level-1] != root->node);
2912
2913	lower = path->nodes[level-1];
2914	if (level == 1)
2915		btrfs_item_key(lower, &lower_key, 0);
2916	else
2917		btrfs_node_key(lower, &lower_key, 0);
2918
2919	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2920				   &lower_key, level, root->node->start, 0,
2921				   0, BTRFS_NESTING_NEW_ROOT);
2922	if (IS_ERR(c))
2923		return PTR_ERR(c);
2924
2925	root_add_used_bytes(root);
2926
 
2927	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
 
 
 
2928	btrfs_set_node_key(c, &lower_key, 0);
2929	btrfs_set_node_blockptr(c, 0, lower->start);
2930	lower_gen = btrfs_header_generation(lower);
2931	WARN_ON(lower_gen != trans->transid);
2932
2933	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2934
2935	btrfs_mark_buffer_dirty(trans, c);
2936
2937	old = root->node;
2938	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2939	if (ret < 0) {
2940		int ret2;
2941
2942		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2943		if (ret2 < 0)
2944			btrfs_abort_transaction(trans, ret2);
2945		btrfs_tree_unlock(c);
2946		free_extent_buffer(c);
2947		return ret;
2948	}
2949	rcu_assign_pointer(root->node, c);
2950
2951	/* the super has an extra ref to root->node */
2952	free_extent_buffer(old);
2953
2954	add_root_to_dirty_list(root);
2955	atomic_inc(&c->refs);
2956	path->nodes[level] = c;
2957	path->locks[level] = BTRFS_WRITE_LOCK;
2958	path->slots[level] = 0;
2959	return 0;
2960}
2961
2962/*
2963 * worker function to insert a single pointer in a node.
2964 * the node should have enough room for the pointer already
2965 *
2966 * slot and level indicate where you want the key to go, and
2967 * blocknr is the block the key points to.
2968 */
2969static int insert_ptr(struct btrfs_trans_handle *trans,
2970		      const struct btrfs_path *path,
2971		      const struct btrfs_disk_key *key, u64 bytenr,
2972		      int slot, int level)
2973{
2974	struct extent_buffer *lower;
2975	int nritems;
2976	int ret;
2977
2978	BUG_ON(!path->nodes[level]);
2979	btrfs_assert_tree_write_locked(path->nodes[level]);
2980	lower = path->nodes[level];
2981	nritems = btrfs_header_nritems(lower);
2982	BUG_ON(slot > nritems);
2983	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2984	if (slot != nritems) {
2985		if (level) {
2986			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2987					slot, nritems - slot);
2988			if (ret < 0) {
2989				btrfs_abort_transaction(trans, ret);
2990				return ret;
2991			}
2992		}
2993		memmove_extent_buffer(lower,
2994			      btrfs_node_key_ptr_offset(lower, slot + 1),
2995			      btrfs_node_key_ptr_offset(lower, slot),
2996			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2997	}
2998	if (level) {
2999		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3000						    BTRFS_MOD_LOG_KEY_ADD);
3001		if (ret < 0) {
3002			btrfs_abort_transaction(trans, ret);
3003			return ret;
3004		}
3005	}
3006	btrfs_set_node_key(lower, key, slot);
3007	btrfs_set_node_blockptr(lower, slot, bytenr);
3008	WARN_ON(trans->transid == 0);
3009	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3010	btrfs_set_header_nritems(lower, nritems + 1);
3011	btrfs_mark_buffer_dirty(trans, lower);
3012
3013	return 0;
3014}
3015
3016/*
3017 * split the node at the specified level in path in two.
3018 * The path is corrected to point to the appropriate node after the split
3019 *
3020 * Before splitting this tries to make some room in the node by pushing
3021 * left and right, if either one works, it returns right away.
3022 *
3023 * returns 0 on success and < 0 on failure
3024 */
3025static noinline int split_node(struct btrfs_trans_handle *trans,
3026			       struct btrfs_root *root,
3027			       struct btrfs_path *path, int level)
3028{
3029	struct btrfs_fs_info *fs_info = root->fs_info;
3030	struct extent_buffer *c;
3031	struct extent_buffer *split;
3032	struct btrfs_disk_key disk_key;
3033	int mid;
3034	int ret;
3035	u32 c_nritems;
3036
3037	c = path->nodes[level];
3038	WARN_ON(btrfs_header_generation(c) != trans->transid);
3039	if (c == root->node) {
3040		/*
3041		 * trying to split the root, lets make a new one
3042		 *
3043		 * tree mod log: We don't log_removal old root in
3044		 * insert_new_root, because that root buffer will be kept as a
3045		 * normal node. We are going to log removal of half of the
3046		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3047		 * holding a tree lock on the buffer, which is why we cannot
3048		 * race with other tree_mod_log users.
3049		 */
3050		ret = insert_new_root(trans, root, path, level + 1);
3051		if (ret)
3052			return ret;
3053	} else {
3054		ret = push_nodes_for_insert(trans, root, path, level);
3055		c = path->nodes[level];
3056		if (!ret && btrfs_header_nritems(c) <
3057		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3058			return 0;
3059		if (ret < 0)
3060			return ret;
3061	}
3062
3063	c_nritems = btrfs_header_nritems(c);
3064	mid = (c_nritems + 1) / 2;
3065	btrfs_node_key(c, &disk_key, mid);
3066
3067	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3068				       &disk_key, level, c->start, 0,
3069				       0, BTRFS_NESTING_SPLIT);
3070	if (IS_ERR(split))
3071		return PTR_ERR(split);
3072
3073	root_add_used_bytes(root);
3074	ASSERT(btrfs_header_level(c) == level);
 
 
 
 
 
 
 
 
 
 
 
3075
3076	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
3077	if (ret) {
3078		btrfs_tree_unlock(split);
3079		free_extent_buffer(split);
3080		btrfs_abort_transaction(trans, ret);
3081		return ret;
3082	}
3083	copy_extent_buffer(split, c,
3084			   btrfs_node_key_ptr_offset(split, 0),
3085			   btrfs_node_key_ptr_offset(c, mid),
3086			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3087	btrfs_set_header_nritems(split, c_nritems - mid);
3088	btrfs_set_header_nritems(c, mid);
 
3089
3090	btrfs_mark_buffer_dirty(trans, c);
3091	btrfs_mark_buffer_dirty(trans, split);
3092
3093	ret = insert_ptr(trans, path, &disk_key, split->start,
3094			 path->slots[level + 1] + 1, level + 1);
3095	if (ret < 0) {
3096		btrfs_tree_unlock(split);
3097		free_extent_buffer(split);
3098		return ret;
3099	}
3100
3101	if (path->slots[level] >= mid) {
3102		path->slots[level] -= mid;
3103		btrfs_tree_unlock(c);
3104		free_extent_buffer(c);
3105		path->nodes[level] = split;
3106		path->slots[level + 1] += 1;
3107	} else {
3108		btrfs_tree_unlock(split);
3109		free_extent_buffer(split);
3110	}
3111	return 0;
3112}
3113
3114/*
3115 * how many bytes are required to store the items in a leaf.  start
3116 * and nr indicate which items in the leaf to check.  This totals up the
3117 * space used both by the item structs and the item data
3118 */
3119static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3120{
 
 
 
3121	int data_len;
3122	int nritems = btrfs_header_nritems(l);
3123	int end = min(nritems, start + nr) - 1;
3124
3125	if (!nr)
3126		return 0;
3127	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3128	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
 
3129	data_len += sizeof(struct btrfs_item) * nr;
3130	WARN_ON(data_len < 0);
3131	return data_len;
3132}
3133
3134/*
3135 * The space between the end of the leaf items and
3136 * the start of the leaf data.  IOW, how much room
3137 * the leaf has left for both items and data
3138 */
3139int btrfs_leaf_free_space(const struct extent_buffer *leaf)
 
3140{
3141	struct btrfs_fs_info *fs_info = leaf->fs_info;
3142	int nritems = btrfs_header_nritems(leaf);
3143	int ret;
3144
3145	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3146	if (ret < 0) {
3147		btrfs_crit(fs_info,
3148			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3149			   ret,
3150			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3151			   leaf_space_used(leaf, 0, nritems), nritems);
3152	}
3153	return ret;
3154}
3155
3156/*
3157 * min slot controls the lowest index we're willing to push to the
3158 * right.  We'll push up to and including min_slot, but no lower
3159 */
3160static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
 
3161				      struct btrfs_path *path,
3162				      int data_size, int empty,
3163				      struct extent_buffer *right,
3164				      int free_space, u32 left_nritems,
3165				      u32 min_slot)
3166{
3167	struct btrfs_fs_info *fs_info = right->fs_info;
3168	struct extent_buffer *left = path->nodes[0];
3169	struct extent_buffer *upper = path->nodes[1];
3170	struct btrfs_map_token token;
3171	struct btrfs_disk_key disk_key;
3172	int slot;
3173	u32 i;
3174	int push_space = 0;
3175	int push_items = 0;
 
3176	u32 nr;
3177	u32 right_nritems;
3178	u32 data_end;
3179	u32 this_item_size;
3180
 
 
3181	if (empty)
3182		nr = 0;
3183	else
3184		nr = max_t(u32, 1, min_slot);
3185
3186	if (path->slots[0] >= left_nritems)
3187		push_space += data_size;
3188
3189	slot = path->slots[1];
3190	i = left_nritems - 1;
3191	while (i >= nr) {
 
 
3192		if (!empty && push_items > 0) {
3193			if (path->slots[0] > i)
3194				break;
3195			if (path->slots[0] == i) {
3196				int space = btrfs_leaf_free_space(left);
3197
3198				if (space + push_space * 2 > free_space)
3199					break;
3200			}
3201		}
3202
3203		if (path->slots[0] == i)
3204			push_space += data_size;
3205
3206		this_item_size = btrfs_item_size(left, i);
3207		if (this_item_size + sizeof(struct btrfs_item) +
3208		    push_space > free_space)
3209			break;
3210
3211		push_items++;
3212		push_space += this_item_size + sizeof(struct btrfs_item);
3213		if (i == 0)
3214			break;
3215		i--;
3216	}
3217
3218	if (push_items == 0)
3219		goto out_unlock;
3220
3221	WARN_ON(!empty && push_items == left_nritems);
3222
3223	/* push left to right */
3224	right_nritems = btrfs_header_nritems(right);
3225
3226	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3227	push_space -= leaf_data_end(left);
3228
3229	/* make room in the right data area */
3230	data_end = leaf_data_end(right);
3231	memmove_leaf_data(right, data_end - push_space, data_end,
3232			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3233
3234	/* copy from the left data area */
3235	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3236		       leaf_data_end(left), push_space);
3237
3238	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3239
3240	/* copy the items from left to right */
3241	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3242
3243	/* update the item pointers */
3244	btrfs_init_map_token(&token, right);
3245	right_nritems += push_items;
3246	btrfs_set_header_nritems(right, right_nritems);
3247	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3248	for (i = 0; i < right_nritems; i++) {
3249		push_space -= btrfs_token_item_size(&token, i);
3250		btrfs_set_token_item_offset(&token, i, push_space);
 
3251	}
3252
3253	left_nritems -= push_items;
3254	btrfs_set_header_nritems(left, left_nritems);
3255
3256	if (left_nritems)
3257		btrfs_mark_buffer_dirty(trans, left);
3258	else
3259		btrfs_clear_buffer_dirty(trans, left);
3260
3261	btrfs_mark_buffer_dirty(trans, right);
3262
3263	btrfs_item_key(right, &disk_key, 0);
3264	btrfs_set_node_key(upper, &disk_key, slot + 1);
3265	btrfs_mark_buffer_dirty(trans, upper);
3266
3267	/* then fixup the leaf pointer in the path */
3268	if (path->slots[0] >= left_nritems) {
3269		path->slots[0] -= left_nritems;
3270		if (btrfs_header_nritems(path->nodes[0]) == 0)
3271			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3272		btrfs_tree_unlock(path->nodes[0]);
3273		free_extent_buffer(path->nodes[0]);
3274		path->nodes[0] = right;
3275		path->slots[1] += 1;
3276	} else {
3277		btrfs_tree_unlock(right);
3278		free_extent_buffer(right);
3279	}
3280	return 0;
3281
3282out_unlock:
3283	btrfs_tree_unlock(right);
3284	free_extent_buffer(right);
3285	return 1;
3286}
3287
3288/*
3289 * push some data in the path leaf to the right, trying to free up at
3290 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3291 *
3292 * returns 1 if the push failed because the other node didn't have enough
3293 * room, 0 if everything worked out and < 0 if there were major errors.
3294 *
3295 * this will push starting from min_slot to the end of the leaf.  It won't
3296 * push any slot lower than min_slot
3297 */
3298static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3299			   *root, struct btrfs_path *path,
3300			   int min_data_size, int data_size,
3301			   int empty, u32 min_slot)
3302{
3303	struct extent_buffer *left = path->nodes[0];
3304	struct extent_buffer *right;
3305	struct extent_buffer *upper;
3306	int slot;
3307	int free_space;
3308	u32 left_nritems;
3309	int ret;
3310
3311	if (!path->nodes[1])
3312		return 1;
3313
3314	slot = path->slots[1];
3315	upper = path->nodes[1];
3316	if (slot >= btrfs_header_nritems(upper) - 1)
3317		return 1;
3318
3319	btrfs_assert_tree_write_locked(path->nodes[1]);
3320
3321	right = btrfs_read_node_slot(upper, slot + 1);
3322	if (IS_ERR(right))
3323		return PTR_ERR(right);
3324
3325	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
3326
3327	free_space = btrfs_leaf_free_space(right);
3328	if (free_space < data_size)
3329		goto out_unlock;
3330
 
3331	ret = btrfs_cow_block(trans, root, right, upper,
3332			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3333	if (ret)
3334		goto out_unlock;
3335
 
 
 
 
3336	left_nritems = btrfs_header_nritems(left);
3337	if (left_nritems == 0)
3338		goto out_unlock;
3339
3340	if (check_sibling_keys(left, right)) {
3341		ret = -EUCLEAN;
3342		btrfs_abort_transaction(trans, ret);
3343		btrfs_tree_unlock(right);
3344		free_extent_buffer(right);
3345		return ret;
3346	}
3347	if (path->slots[0] == left_nritems && !empty) {
3348		/* Key greater than all keys in the leaf, right neighbor has
3349		 * enough room for it and we're not emptying our leaf to delete
3350		 * it, therefore use right neighbor to insert the new item and
3351		 * no need to touch/dirty our left leaf. */
3352		btrfs_tree_unlock(left);
3353		free_extent_buffer(left);
3354		path->nodes[0] = right;
3355		path->slots[0] = 0;
3356		path->slots[1]++;
3357		return 0;
3358	}
3359
3360	return __push_leaf_right(trans, path, min_data_size, empty, right,
3361				 free_space, left_nritems, min_slot);
3362out_unlock:
3363	btrfs_tree_unlock(right);
3364	free_extent_buffer(right);
3365	return 1;
3366}
3367
3368/*
3369 * push some data in the path leaf to the left, trying to free up at
3370 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3371 *
3372 * max_slot can put a limit on how far into the leaf we'll push items.  The
3373 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3374 * items
3375 */
3376static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
 
3377				     struct btrfs_path *path, int data_size,
3378				     int empty, struct extent_buffer *left,
3379				     int free_space, u32 right_nritems,
3380				     u32 max_slot)
3381{
3382	struct btrfs_fs_info *fs_info = left->fs_info;
3383	struct btrfs_disk_key disk_key;
3384	struct extent_buffer *right = path->nodes[0];
3385	int i;
3386	int push_space = 0;
3387	int push_items = 0;
 
3388	u32 old_left_nritems;
3389	u32 nr;
3390	int ret = 0;
3391	u32 this_item_size;
3392	u32 old_left_item_size;
3393	struct btrfs_map_token token;
3394
 
 
3395	if (empty)
3396		nr = min(right_nritems, max_slot);
3397	else
3398		nr = min(right_nritems - 1, max_slot);
3399
3400	for (i = 0; i < nr; i++) {
 
 
3401		if (!empty && push_items > 0) {
3402			if (path->slots[0] < i)
3403				break;
3404			if (path->slots[0] == i) {
3405				int space = btrfs_leaf_free_space(right);
3406
3407				if (space + push_space * 2 > free_space)
3408					break;
3409			}
3410		}
3411
3412		if (path->slots[0] == i)
3413			push_space += data_size;
3414
3415		this_item_size = btrfs_item_size(right, i);
3416		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3417		    free_space)
3418			break;
3419
3420		push_items++;
3421		push_space += this_item_size + sizeof(struct btrfs_item);
3422	}
3423
3424	if (push_items == 0) {
3425		ret = 1;
3426		goto out;
3427	}
3428	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3429
3430	/* push data from right to left */
3431	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3432
3433	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3434		     btrfs_item_offset(right, push_items - 1);
3435
3436	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3437		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
 
 
 
3438	old_left_nritems = btrfs_header_nritems(left);
3439	BUG_ON(old_left_nritems <= 0);
3440
3441	btrfs_init_map_token(&token, left);
3442	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3443	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3444		u32 ioff;
3445
3446		ioff = btrfs_token_item_offset(&token, i);
3447		btrfs_set_token_item_offset(&token, i,
3448		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
 
3449	}
3450	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3451
3452	/* fixup right node */
3453	if (push_items > right_nritems)
3454		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3455		       right_nritems);
3456
3457	if (push_items < right_nritems) {
3458		push_space = btrfs_item_offset(right, push_items - 1) -
3459						  leaf_data_end(right);
3460		memmove_leaf_data(right,
3461				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3462				  leaf_data_end(right), push_space);
3463
3464		memmove_leaf_items(right, 0, push_items,
3465				   btrfs_header_nritems(right) - push_items);
 
 
 
3466	}
3467
3468	btrfs_init_map_token(&token, right);
3469	right_nritems -= push_items;
3470	btrfs_set_header_nritems(right, right_nritems);
3471	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3472	for (i = 0; i < right_nritems; i++) {
3473		push_space = push_space - btrfs_token_item_size(&token, i);
3474		btrfs_set_token_item_offset(&token, i, push_space);
 
 
 
3475	}
3476
3477	btrfs_mark_buffer_dirty(trans, left);
3478	if (right_nritems)
3479		btrfs_mark_buffer_dirty(trans, right);
3480	else
3481		btrfs_clear_buffer_dirty(trans, right);
3482
3483	btrfs_item_key(right, &disk_key, 0);
3484	fixup_low_keys(trans, path, &disk_key, 1);
3485
3486	/* then fixup the leaf pointer in the path */
3487	if (path->slots[0] < push_items) {
3488		path->slots[0] += old_left_nritems;
3489		btrfs_tree_unlock(path->nodes[0]);
3490		free_extent_buffer(path->nodes[0]);
3491		path->nodes[0] = left;
3492		path->slots[1] -= 1;
3493	} else {
3494		btrfs_tree_unlock(left);
3495		free_extent_buffer(left);
3496		path->slots[0] -= push_items;
3497	}
3498	BUG_ON(path->slots[0] < 0);
3499	return ret;
3500out:
3501	btrfs_tree_unlock(left);
3502	free_extent_buffer(left);
3503	return ret;
3504}
3505
3506/*
3507 * push some data in the path leaf to the left, trying to free up at
3508 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3509 *
3510 * max_slot can put a limit on how far into the leaf we'll push items.  The
3511 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3512 * items
3513 */
3514static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3515			  *root, struct btrfs_path *path, int min_data_size,
3516			  int data_size, int empty, u32 max_slot)
3517{
3518	struct extent_buffer *right = path->nodes[0];
3519	struct extent_buffer *left;
3520	int slot;
3521	int free_space;
3522	u32 right_nritems;
3523	int ret = 0;
3524
3525	slot = path->slots[1];
3526	if (slot == 0)
3527		return 1;
3528	if (!path->nodes[1])
3529		return 1;
3530
3531	right_nritems = btrfs_header_nritems(right);
3532	if (right_nritems == 0)
3533		return 1;
3534
3535	btrfs_assert_tree_write_locked(path->nodes[1]);
3536
3537	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3538	if (IS_ERR(left))
3539		return PTR_ERR(left);
3540
3541	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
3542
3543	free_space = btrfs_leaf_free_space(left);
3544	if (free_space < data_size) {
3545		ret = 1;
3546		goto out;
3547	}
3548
 
3549	ret = btrfs_cow_block(trans, root, left,
3550			      path->nodes[1], slot - 1, &left,
3551			      BTRFS_NESTING_LEFT_COW);
3552	if (ret) {
3553		/* we hit -ENOSPC, but it isn't fatal here */
3554		if (ret == -ENOSPC)
3555			ret = 1;
3556		goto out;
3557	}
3558
3559	if (check_sibling_keys(left, right)) {
3560		ret = -EUCLEAN;
3561		btrfs_abort_transaction(trans, ret);
3562		goto out;
3563	}
3564	return __push_leaf_left(trans, path, min_data_size, empty, left,
3565				free_space, right_nritems, max_slot);
 
 
3566out:
3567	btrfs_tree_unlock(left);
3568	free_extent_buffer(left);
3569	return ret;
3570}
3571
3572/*
3573 * split the path's leaf in two, making sure there is at least data_size
3574 * available for the resulting leaf level of the path.
3575 */
3576static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3577				   struct btrfs_path *path,
3578				   struct extent_buffer *l,
3579				   struct extent_buffer *right,
3580				   int slot, int mid, int nritems)
 
3581{
3582	struct btrfs_fs_info *fs_info = trans->fs_info;
3583	int data_copy_size;
3584	int rt_data_off;
3585	int i;
3586	int ret;
3587	struct btrfs_disk_key disk_key;
3588	struct btrfs_map_token token;
3589
 
 
3590	nritems = nritems - mid;
3591	btrfs_set_header_nritems(right, nritems);
3592	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3593
3594	copy_leaf_items(right, l, 0, mid, nritems);
 
 
 
 
 
 
 
3595
3596	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3597		       leaf_data_end(l), data_copy_size);
3598
3599	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3600
3601	btrfs_init_map_token(&token, right);
3602	for (i = 0; i < nritems; i++) {
 
3603		u32 ioff;
3604
3605		ioff = btrfs_token_item_offset(&token, i);
3606		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 
3607	}
3608
3609	btrfs_set_header_nritems(l, mid);
3610	btrfs_item_key(right, &disk_key, 0);
3611	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3612	if (ret < 0)
3613		return ret;
3614
3615	btrfs_mark_buffer_dirty(trans, right);
3616	btrfs_mark_buffer_dirty(trans, l);
3617	BUG_ON(path->slots[0] != slot);
3618
3619	if (mid <= slot) {
3620		btrfs_tree_unlock(path->nodes[0]);
3621		free_extent_buffer(path->nodes[0]);
3622		path->nodes[0] = right;
3623		path->slots[0] -= mid;
3624		path->slots[1] += 1;
3625	} else {
3626		btrfs_tree_unlock(right);
3627		free_extent_buffer(right);
3628	}
3629
3630	BUG_ON(path->slots[0] < 0);
3631
3632	return 0;
3633}
3634
3635/*
3636 * double splits happen when we need to insert a big item in the middle
3637 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3638 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3639 *          A                 B                 C
3640 *
3641 * We avoid this by trying to push the items on either side of our target
3642 * into the adjacent leaves.  If all goes well we can avoid the double split
3643 * completely.
3644 */
3645static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3646					  struct btrfs_root *root,
3647					  struct btrfs_path *path,
3648					  int data_size)
3649{
3650	int ret;
3651	int progress = 0;
3652	int slot;
3653	u32 nritems;
3654	int space_needed = data_size;
3655
3656	slot = path->slots[0];
3657	if (slot < btrfs_header_nritems(path->nodes[0]))
3658		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3659
3660	/*
3661	 * try to push all the items after our slot into the
3662	 * right leaf
3663	 */
3664	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3665	if (ret < 0)
3666		return ret;
3667
3668	if (ret == 0)
3669		progress++;
3670
3671	nritems = btrfs_header_nritems(path->nodes[0]);
3672	/*
3673	 * our goal is to get our slot at the start or end of a leaf.  If
3674	 * we've done so we're done
3675	 */
3676	if (path->slots[0] == 0 || path->slots[0] == nritems)
3677		return 0;
3678
3679	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3680		return 0;
3681
3682	/* try to push all the items before our slot into the next leaf */
3683	slot = path->slots[0];
3684	space_needed = data_size;
3685	if (slot > 0)
3686		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3687	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3688	if (ret < 0)
3689		return ret;
3690
3691	if (ret == 0)
3692		progress++;
3693
3694	if (progress)
3695		return 0;
3696	return 1;
3697}
3698
3699/*
3700 * split the path's leaf in two, making sure there is at least data_size
3701 * available for the resulting leaf level of the path.
3702 *
3703 * returns 0 if all went well and < 0 on failure.
3704 */
3705static noinline int split_leaf(struct btrfs_trans_handle *trans,
3706			       struct btrfs_root *root,
3707			       const struct btrfs_key *ins_key,
3708			       struct btrfs_path *path, int data_size,
3709			       int extend)
3710{
3711	struct btrfs_disk_key disk_key;
3712	struct extent_buffer *l;
3713	u32 nritems;
3714	int mid;
3715	int slot;
3716	struct extent_buffer *right;
3717	struct btrfs_fs_info *fs_info = root->fs_info;
3718	int ret = 0;
3719	int wret;
3720	int split;
3721	int num_doubles = 0;
3722	int tried_avoid_double = 0;
3723
3724	l = path->nodes[0];
3725	slot = path->slots[0];
3726	if (extend && data_size + btrfs_item_size(l, slot) +
3727	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3728		return -EOVERFLOW;
3729
3730	/* first try to make some room by pushing left and right */
3731	if (data_size && path->nodes[1]) {
3732		int space_needed = data_size;
3733
3734		if (slot < btrfs_header_nritems(l))
3735			space_needed -= btrfs_leaf_free_space(l);
3736
3737		wret = push_leaf_right(trans, root, path, space_needed,
3738				       space_needed, 0, 0);
3739		if (wret < 0)
3740			return wret;
3741		if (wret) {
3742			space_needed = data_size;
3743			if (slot > 0)
3744				space_needed -= btrfs_leaf_free_space(l);
3745			wret = push_leaf_left(trans, root, path, space_needed,
3746					      space_needed, 0, (u32)-1);
3747			if (wret < 0)
3748				return wret;
3749		}
3750		l = path->nodes[0];
3751
3752		/* did the pushes work? */
3753		if (btrfs_leaf_free_space(l) >= data_size)
3754			return 0;
3755	}
3756
3757	if (!path->nodes[1]) {
3758		ret = insert_new_root(trans, root, path, 1);
3759		if (ret)
3760			return ret;
3761	}
3762again:
3763	split = 1;
3764	l = path->nodes[0];
3765	slot = path->slots[0];
3766	nritems = btrfs_header_nritems(l);
3767	mid = (nritems + 1) / 2;
3768
3769	if (mid <= slot) {
3770		if (nritems == 1 ||
3771		    leaf_space_used(l, mid, nritems - mid) + data_size >
3772			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3773			if (slot >= nritems) {
3774				split = 0;
3775			} else {
3776				mid = slot;
3777				if (mid != nritems &&
3778				    leaf_space_used(l, mid, nritems - mid) +
3779				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3780					if (data_size && !tried_avoid_double)
3781						goto push_for_double;
3782					split = 2;
3783				}
3784			}
3785		}
3786	} else {
3787		if (leaf_space_used(l, 0, mid) + data_size >
3788			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3789			if (!extend && data_size && slot == 0) {
3790				split = 0;
3791			} else if ((extend || !data_size) && slot == 0) {
3792				mid = 1;
3793			} else {
3794				mid = slot;
3795				if (mid != nritems &&
3796				    leaf_space_used(l, mid, nritems - mid) +
3797				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3798					if (data_size && !tried_avoid_double)
3799						goto push_for_double;
3800					split = 2;
3801				}
3802			}
3803		}
3804	}
3805
3806	if (split == 0)
3807		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3808	else
3809		btrfs_item_key(l, &disk_key, mid);
3810
3811	/*
3812	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3813	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3814	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3815	 * out.  In the future we could add a
3816	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3817	 * use BTRFS_NESTING_NEW_ROOT.
3818	 */
3819	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3820				       &disk_key, 0, l->start, 0, 0,
3821				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3822				       BTRFS_NESTING_SPLIT);
3823	if (IS_ERR(right))
3824		return PTR_ERR(right);
3825
3826	root_add_used_bytes(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
3827
3828	if (split == 0) {
3829		if (mid <= slot) {
3830			btrfs_set_header_nritems(right, 0);
3831			ret = insert_ptr(trans, path, &disk_key,
3832					 right->start, path->slots[1] + 1, 1);
3833			if (ret < 0) {
3834				btrfs_tree_unlock(right);
3835				free_extent_buffer(right);
3836				return ret;
3837			}
3838			btrfs_tree_unlock(path->nodes[0]);
3839			free_extent_buffer(path->nodes[0]);
3840			path->nodes[0] = right;
3841			path->slots[0] = 0;
3842			path->slots[1] += 1;
3843		} else {
3844			btrfs_set_header_nritems(right, 0);
3845			ret = insert_ptr(trans, path, &disk_key,
3846					 right->start, path->slots[1], 1);
3847			if (ret < 0) {
3848				btrfs_tree_unlock(right);
3849				free_extent_buffer(right);
3850				return ret;
3851			}
3852			btrfs_tree_unlock(path->nodes[0]);
3853			free_extent_buffer(path->nodes[0]);
3854			path->nodes[0] = right;
3855			path->slots[0] = 0;
3856			if (path->slots[1] == 0)
3857				fixup_low_keys(trans, path, &disk_key, 1);
3858		}
3859		/*
3860		 * We create a new leaf 'right' for the required ins_len and
3861		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3862		 * the content of ins_len to 'right'.
3863		 */
3864		return ret;
3865	}
3866
3867	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3868	if (ret < 0) {
3869		btrfs_tree_unlock(right);
3870		free_extent_buffer(right);
3871		return ret;
3872	}
3873
3874	if (split == 2) {
3875		BUG_ON(num_doubles != 0);
3876		num_doubles++;
3877		goto again;
3878	}
3879
3880	return 0;
3881
3882push_for_double:
3883	push_for_double_split(trans, root, path, data_size);
3884	tried_avoid_double = 1;
3885	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3886		return 0;
3887	goto again;
3888}
3889
3890static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3891					 struct btrfs_root *root,
3892					 struct btrfs_path *path, int ins_len)
3893{
3894	struct btrfs_key key;
3895	struct extent_buffer *leaf;
3896	struct btrfs_file_extent_item *fi;
3897	u64 extent_len = 0;
3898	u32 item_size;
3899	int ret;
3900
3901	leaf = path->nodes[0];
3902	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3903
3904	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3905	       key.type != BTRFS_EXTENT_CSUM_KEY);
3906
3907	if (btrfs_leaf_free_space(leaf) >= ins_len)
3908		return 0;
3909
3910	item_size = btrfs_item_size(leaf, path->slots[0]);
3911	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3912		fi = btrfs_item_ptr(leaf, path->slots[0],
3913				    struct btrfs_file_extent_item);
3914		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3915	}
3916	btrfs_release_path(path);
3917
3918	path->keep_locks = 1;
3919	path->search_for_split = 1;
3920	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3921	path->search_for_split = 0;
3922	if (ret > 0)
3923		ret = -EAGAIN;
3924	if (ret < 0)
3925		goto err;
3926
3927	ret = -EAGAIN;
3928	leaf = path->nodes[0];
3929	/* if our item isn't there, return now */
3930	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3931		goto err;
3932
3933	/* the leaf has  changed, it now has room.  return now */
3934	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3935		goto err;
3936
3937	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3938		fi = btrfs_item_ptr(leaf, path->slots[0],
3939				    struct btrfs_file_extent_item);
3940		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3941			goto err;
3942	}
3943
 
3944	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3945	if (ret)
3946		goto err;
3947
3948	path->keep_locks = 0;
3949	btrfs_unlock_up_safe(path, 1);
3950	return 0;
3951err:
3952	path->keep_locks = 0;
3953	return ret;
3954}
3955
3956static noinline int split_item(struct btrfs_trans_handle *trans,
 
3957			       struct btrfs_path *path,
3958			       const struct btrfs_key *new_key,
3959			       unsigned long split_offset)
3960{
3961	struct extent_buffer *leaf;
3962	int orig_slot, slot;
 
 
3963	char *buf;
3964	u32 nritems;
3965	u32 item_size;
3966	u32 orig_offset;
3967	struct btrfs_disk_key disk_key;
3968
3969	leaf = path->nodes[0];
3970	/*
3971	 * Shouldn't happen because the caller must have previously called
3972	 * setup_leaf_for_split() to make room for the new item in the leaf.
3973	 */
3974	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3975		return -ENOSPC;
3976
3977	orig_slot = path->slots[0];
3978	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3979	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3980
3981	buf = kmalloc(item_size, GFP_NOFS);
3982	if (!buf)
3983		return -ENOMEM;
3984
3985	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986			    path->slots[0]), item_size);
3987
3988	slot = path->slots[0] + 1;
3989	nritems = btrfs_header_nritems(leaf);
3990	if (slot != nritems) {
3991		/* shift the items */
3992		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3993	}
3994
3995	btrfs_cpu_key_to_disk(&disk_key, new_key);
3996	btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998	btrfs_set_item_offset(leaf, slot, orig_offset);
3999	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
4000
4001	btrfs_set_item_offset(leaf, orig_slot,
4002				 orig_offset + item_size - split_offset);
4003	btrfs_set_item_size(leaf, orig_slot, split_offset);
4004
4005	btrfs_set_header_nritems(leaf, nritems + 1);
4006
4007	/* write the data for the start of the original item */
4008	write_extent_buffer(leaf, buf,
4009			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4010			    split_offset);
4011
4012	/* write the data for the new item */
4013	write_extent_buffer(leaf, buf + split_offset,
4014			    btrfs_item_ptr_offset(leaf, slot),
4015			    item_size - split_offset);
4016	btrfs_mark_buffer_dirty(trans, leaf);
4017
4018	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4019	kfree(buf);
4020	return 0;
4021}
4022
4023/*
4024 * This function splits a single item into two items,
4025 * giving 'new_key' to the new item and splitting the
4026 * old one at split_offset (from the start of the item).
4027 *
4028 * The path may be released by this operation.  After
4029 * the split, the path is pointing to the old item.  The
4030 * new item is going to be in the same node as the old one.
4031 *
4032 * Note, the item being split must be smaller enough to live alone on
4033 * a tree block with room for one extra struct btrfs_item
4034 *
4035 * This allows us to split the item in place, keeping a lock on the
4036 * leaf the entire time.
4037 */
4038int btrfs_split_item(struct btrfs_trans_handle *trans,
4039		     struct btrfs_root *root,
4040		     struct btrfs_path *path,
4041		     const struct btrfs_key *new_key,
4042		     unsigned long split_offset)
4043{
4044	int ret;
4045	ret = setup_leaf_for_split(trans, root, path,
4046				   sizeof(struct btrfs_item));
4047	if (ret)
4048		return ret;
4049
4050	ret = split_item(trans, path, new_key, split_offset);
4051	return ret;
4052}
4053
4054/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055 * make the item pointed to by the path smaller.  new_size indicates
4056 * how small to make it, and from_end tells us if we just chop bytes
4057 * off the end of the item or if we shift the item to chop bytes off
4058 * the front.
4059 */
4060void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4061			 const struct btrfs_path *path, u32 new_size, int from_end)
4062{
4063	int slot;
4064	struct extent_buffer *leaf;
 
4065	u32 nritems;
4066	unsigned int data_end;
4067	unsigned int old_data_start;
4068	unsigned int old_size;
4069	unsigned int size_diff;
4070	int i;
4071	struct btrfs_map_token token;
4072
 
 
4073	leaf = path->nodes[0];
4074	slot = path->slots[0];
4075
4076	old_size = btrfs_item_size(leaf, slot);
4077	if (old_size == new_size)
4078		return;
4079
4080	nritems = btrfs_header_nritems(leaf);
4081	data_end = leaf_data_end(leaf);
4082
4083	old_data_start = btrfs_item_offset(leaf, slot);
4084
4085	size_diff = old_size - new_size;
4086
4087	BUG_ON(slot < 0);
4088	BUG_ON(slot >= nritems);
4089
4090	/*
4091	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4092	 */
4093	/* first correct the data pointers */
4094	btrfs_init_map_token(&token, leaf);
4095	for (i = slot; i < nritems; i++) {
4096		u32 ioff;
 
4097
4098		ioff = btrfs_token_item_offset(&token, i);
4099		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 
4100	}
4101
4102	/* shift the data */
4103	if (from_end) {
4104		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4105				  old_data_start + new_size - data_end);
 
4106	} else {
4107		struct btrfs_disk_key disk_key;
4108		u64 offset;
4109
4110		btrfs_item_key(leaf, &disk_key, slot);
4111
4112		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4113			unsigned long ptr;
4114			struct btrfs_file_extent_item *fi;
4115
4116			fi = btrfs_item_ptr(leaf, slot,
4117					    struct btrfs_file_extent_item);
4118			fi = (struct btrfs_file_extent_item *)(
4119			     (unsigned long)fi - size_diff);
4120
4121			if (btrfs_file_extent_type(leaf, fi) ==
4122			    BTRFS_FILE_EXTENT_INLINE) {
4123				ptr = btrfs_item_ptr_offset(leaf, slot);
4124				memmove_extent_buffer(leaf, ptr,
4125				      (unsigned long)fi,
4126				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
 
4127			}
4128		}
4129
4130		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4131				  old_data_start - data_end);
 
4132
4133		offset = btrfs_disk_key_offset(&disk_key);
4134		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4135		btrfs_set_item_key(leaf, &disk_key, slot);
4136		if (slot == 0)
4137			fixup_low_keys(trans, path, &disk_key, 1);
4138	}
4139
4140	btrfs_set_item_size(leaf, slot, new_size);
4141	btrfs_mark_buffer_dirty(trans, leaf);
 
4142
4143	if (btrfs_leaf_free_space(leaf) < 0) {
4144		btrfs_print_leaf(leaf);
4145		BUG();
4146	}
4147}
4148
4149/*
4150 * make the item pointed to by the path bigger, data_size is the added size.
4151 */
4152void btrfs_extend_item(struct btrfs_trans_handle *trans,
4153		       const struct btrfs_path *path, u32 data_size)
4154{
4155	int slot;
4156	struct extent_buffer *leaf;
 
4157	u32 nritems;
4158	unsigned int data_end;
4159	unsigned int old_data;
4160	unsigned int old_size;
4161	int i;
4162	struct btrfs_map_token token;
4163
 
 
4164	leaf = path->nodes[0];
4165
4166	nritems = btrfs_header_nritems(leaf);
4167	data_end = leaf_data_end(leaf);
4168
4169	if (btrfs_leaf_free_space(leaf) < data_size) {
4170		btrfs_print_leaf(leaf);
4171		BUG();
4172	}
4173	slot = path->slots[0];
4174	old_data = btrfs_item_data_end(leaf, slot);
4175
4176	BUG_ON(slot < 0);
4177	if (slot >= nritems) {
4178		btrfs_print_leaf(leaf);
4179		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4180			   slot, nritems);
4181		BUG();
4182	}
4183
4184	/*
4185	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4186	 */
4187	/* first correct the data pointers */
4188	btrfs_init_map_token(&token, leaf);
4189	for (i = slot; i < nritems; i++) {
4190		u32 ioff;
 
4191
4192		ioff = btrfs_token_item_offset(&token, i);
4193		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 
4194	}
4195
4196	/* shift the data */
4197	memmove_leaf_data(leaf, data_end - data_size, data_end,
4198			  old_data - data_end);
 
4199
4200	data_end = old_data;
4201	old_size = btrfs_item_size(leaf, slot);
4202	btrfs_set_item_size(leaf, slot, old_size + data_size);
4203	btrfs_mark_buffer_dirty(trans, leaf);
 
4204
4205	if (btrfs_leaf_free_space(leaf) < 0) {
4206		btrfs_print_leaf(leaf);
4207		BUG();
4208	}
4209}
4210
4211/*
4212 * Make space in the node before inserting one or more items.
4213 *
4214 * @trans:	transaction handle
4215 * @root:	root we are inserting items to
4216 * @path:	points to the leaf/slot where we are going to insert new items
4217 * @batch:      information about the batch of items to insert
4218 *
4219 * Main purpose is to save stack depth by doing the bulk of the work in a
4220 * function that doesn't call btrfs_search_slot
4221 */
4222static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4223				   struct btrfs_root *root, struct btrfs_path *path,
4224				   const struct btrfs_item_batch *batch)
4225{
4226	struct btrfs_fs_info *fs_info = root->fs_info;
4227	int i;
4228	u32 nritems;
4229	unsigned int data_end;
4230	struct btrfs_disk_key disk_key;
4231	struct extent_buffer *leaf;
4232	int slot;
4233	struct btrfs_map_token token;
4234	u32 total_size;
4235
4236	/*
4237	 * Before anything else, update keys in the parent and other ancestors
4238	 * if needed, then release the write locks on them, so that other tasks
4239	 * can use them while we modify the leaf.
4240	 */
4241	if (path->slots[0] == 0) {
4242		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4243		fixup_low_keys(trans, path, &disk_key, 1);
4244	}
4245	btrfs_unlock_up_safe(path, 1);
4246
4247	leaf = path->nodes[0];
4248	slot = path->slots[0];
4249
4250	nritems = btrfs_header_nritems(leaf);
4251	data_end = leaf_data_end(leaf);
4252	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4253
4254	if (btrfs_leaf_free_space(leaf) < total_size) {
4255		btrfs_print_leaf(leaf);
4256		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4257			   total_size, btrfs_leaf_free_space(leaf));
4258		BUG();
4259	}
4260
4261	btrfs_init_map_token(&token, leaf);
4262	if (slot != nritems) {
4263		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4264
4265		if (old_data < data_end) {
4266			btrfs_print_leaf(leaf);
4267			btrfs_crit(fs_info,
4268		"item at slot %d with data offset %u beyond data end of leaf %u",
4269				   slot, old_data, data_end);
4270			BUG();
4271		}
4272		/*
4273		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4274		 */
4275		/* first correct the data pointers */
4276		for (i = slot; i < nritems; i++) {
4277			u32 ioff;
4278
4279			ioff = btrfs_token_item_offset(&token, i);
4280			btrfs_set_token_item_offset(&token, i,
4281						       ioff - batch->total_data_size);
 
4282		}
4283		/* shift the items */
4284		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4285
4286		/* shift the data */
4287		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4288				  data_end, old_data - data_end);
 
4289		data_end = old_data;
4290	}
4291
4292	/* setup the item for the new data */
4293	for (i = 0; i < batch->nr; i++) {
4294		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4295		btrfs_set_item_key(leaf, &disk_key, slot + i);
4296		data_end -= batch->data_sizes[i];
4297		btrfs_set_token_item_offset(&token, slot + i, data_end);
4298		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
 
4299	}
4300
4301	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4302	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
4303
4304	if (btrfs_leaf_free_space(leaf) < 0) {
4305		btrfs_print_leaf(leaf);
4306		BUG();
4307	}
4308}
4309
4310/*
4311 * Insert a new item into a leaf.
4312 *
4313 * @trans:     Transaction handle.
4314 * @root:      The root of the btree.
4315 * @path:      A path pointing to the target leaf and slot.
4316 * @key:       The key of the new item.
4317 * @data_size: The size of the data associated with the new key.
4318 */
4319void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4320				 struct btrfs_root *root,
4321				 struct btrfs_path *path,
4322				 const struct btrfs_key *key,
4323				 u32 data_size)
4324{
4325	struct btrfs_item_batch batch;
4326
4327	batch.keys = key;
4328	batch.data_sizes = &data_size;
4329	batch.total_data_size = data_size;
4330	batch.nr = 1;
4331
4332	setup_items_for_insert(trans, root, path, &batch);
4333}
4334
4335/*
4336 * Given a key and some data, insert items into the tree.
4337 * This does all the path init required, making room in the tree if needed.
4338 *
4339 * Returns: 0        on success
4340 *          -EEXIST  if the first key already exists
4341 *          < 0      on other errors
4342 */
4343int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4344			    struct btrfs_root *root,
4345			    struct btrfs_path *path,
4346			    const struct btrfs_item_batch *batch)
 
4347{
4348	int ret = 0;
4349	int slot;
4350	u32 total_size;
 
 
 
 
 
4351
4352	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4353	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4354	if (ret == 0)
4355		return -EEXIST;
4356	if (ret < 0)
4357		return ret;
4358
4359	slot = path->slots[0];
4360	BUG_ON(slot < 0);
4361
4362	setup_items_for_insert(trans, root, path, batch);
 
4363	return 0;
4364}
4365
4366/*
4367 * Given a key and some data, insert an item into the tree.
4368 * This does all the path init required, making room in the tree if needed.
4369 */
4370int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4371		      const struct btrfs_key *cpu_key, void *data,
4372		      u32 data_size)
4373{
4374	int ret = 0;
4375	struct btrfs_path *path;
4376	struct extent_buffer *leaf;
4377	unsigned long ptr;
4378
4379	path = btrfs_alloc_path();
4380	if (!path)
4381		return -ENOMEM;
4382	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4383	if (!ret) {
4384		leaf = path->nodes[0];
4385		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4386		write_extent_buffer(leaf, data, ptr, data_size);
4387		btrfs_mark_buffer_dirty(trans, leaf);
4388	}
4389	btrfs_free_path(path);
4390	return ret;
4391}
4392
4393/*
4394 * This function duplicates an item, giving 'new_key' to the new item.
4395 * It guarantees both items live in the same tree leaf and the new item is
4396 * contiguous with the original item.
4397 *
4398 * This allows us to split a file extent in place, keeping a lock on the leaf
4399 * the entire time.
4400 */
4401int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4402			 struct btrfs_root *root,
4403			 struct btrfs_path *path,
4404			 const struct btrfs_key *new_key)
4405{
4406	struct extent_buffer *leaf;
4407	int ret;
4408	u32 item_size;
4409
4410	leaf = path->nodes[0];
4411	item_size = btrfs_item_size(leaf, path->slots[0]);
4412	ret = setup_leaf_for_split(trans, root, path,
4413				   item_size + sizeof(struct btrfs_item));
4414	if (ret)
4415		return ret;
4416
4417	path->slots[0]++;
4418	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4419	leaf = path->nodes[0];
4420	memcpy_extent_buffer(leaf,
4421			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4422			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4423			     item_size);
4424	return 0;
4425}
4426
4427/*
4428 * delete the pointer from a given node.
4429 *
4430 * the tree should have been previously balanced so the deletion does not
4431 * empty a node.
4432 *
4433 * This is exported for use inside btrfs-progs, don't un-export it.
4434 */
4435int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4436		  struct btrfs_path *path, int level, int slot)
4437{
4438	struct extent_buffer *parent = path->nodes[level];
4439	u32 nritems;
4440	int ret;
4441
4442	nritems = btrfs_header_nritems(parent);
4443	if (slot != nritems - 1) {
4444		if (level) {
4445			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4446					slot + 1, nritems - slot - 1);
4447			if (ret < 0) {
4448				btrfs_abort_transaction(trans, ret);
4449				return ret;
4450			}
4451		}
4452		memmove_extent_buffer(parent,
4453			      btrfs_node_key_ptr_offset(parent, slot),
4454			      btrfs_node_key_ptr_offset(parent, slot + 1),
4455			      sizeof(struct btrfs_key_ptr) *
4456			      (nritems - slot - 1));
4457	} else if (level) {
4458		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4459						    BTRFS_MOD_LOG_KEY_REMOVE);
4460		if (ret < 0) {
4461			btrfs_abort_transaction(trans, ret);
4462			return ret;
4463		}
4464	}
4465
4466	nritems--;
4467	btrfs_set_header_nritems(parent, nritems);
4468	if (nritems == 0 && parent == root->node) {
4469		BUG_ON(btrfs_header_level(root->node) != 1);
4470		/* just turn the root into a leaf and break */
4471		btrfs_set_header_level(root->node, 0);
4472	} else if (slot == 0) {
4473		struct btrfs_disk_key disk_key;
4474
4475		btrfs_node_key(parent, &disk_key, 0);
4476		fixup_low_keys(trans, path, &disk_key, level + 1);
4477	}
4478	btrfs_mark_buffer_dirty(trans, parent);
4479	return 0;
4480}
4481
4482/*
4483 * a helper function to delete the leaf pointed to by path->slots[1] and
4484 * path->nodes[1].
4485 *
4486 * This deletes the pointer in path->nodes[1] and frees the leaf
4487 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4488 *
4489 * The path must have already been setup for deleting the leaf, including
4490 * all the proper balancing.  path->nodes[1] must be locked.
4491 */
4492static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4493				   struct btrfs_root *root,
4494				   struct btrfs_path *path,
4495				   struct extent_buffer *leaf)
4496{
4497	int ret;
4498
4499	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4500	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4501	if (ret < 0)
4502		return ret;
4503
4504	/*
4505	 * btrfs_free_extent is expensive, we want to make sure we
4506	 * aren't holding any locks when we call it
4507	 */
4508	btrfs_unlock_up_safe(path, 0);
4509
4510	root_sub_used_bytes(root);
4511
4512	atomic_inc(&leaf->refs);
4513	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4514	free_extent_buffer_stale(leaf);
4515	if (ret < 0)
4516		btrfs_abort_transaction(trans, ret);
4517
4518	return ret;
4519}
4520/*
4521 * delete the item at the leaf level in path.  If that empties
4522 * the leaf, remove it from the tree
4523 */
4524int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4525		    struct btrfs_path *path, int slot, int nr)
4526{
4527	struct btrfs_fs_info *fs_info = root->fs_info;
4528	struct extent_buffer *leaf;
 
 
 
4529	int ret = 0;
4530	int wret;
 
4531	u32 nritems;
 
 
 
4532
4533	leaf = path->nodes[0];
 
 
 
 
 
4534	nritems = btrfs_header_nritems(leaf);
4535
4536	if (slot + nr != nritems) {
4537		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4538		const int data_end = leaf_data_end(leaf);
4539		struct btrfs_map_token token;
4540		u32 dsize = 0;
4541		int i;
4542
4543		for (i = 0; i < nr; i++)
4544			dsize += btrfs_item_size(leaf, slot + i);
4545
4546		memmove_leaf_data(leaf, data_end + dsize, data_end,
4547				  last_off - data_end);
 
 
4548
4549		btrfs_init_map_token(&token, leaf);
4550		for (i = slot + nr; i < nritems; i++) {
4551			u32 ioff;
4552
4553			ioff = btrfs_token_item_offset(&token, i);
4554			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
 
4555		}
4556
4557		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4558	}
4559	btrfs_set_header_nritems(leaf, nritems - nr);
4560	nritems -= nr;
4561
4562	/* delete the leaf if we've emptied it */
4563	if (nritems == 0) {
4564		if (leaf == root->node) {
4565			btrfs_set_header_level(leaf, 0);
4566		} else {
4567			btrfs_clear_buffer_dirty(trans, leaf);
4568			ret = btrfs_del_leaf(trans, root, path, leaf);
4569			if (ret < 0)
4570				return ret;
4571		}
4572	} else {
4573		int used = leaf_space_used(leaf, 0, nritems);
4574		if (slot == 0) {
4575			struct btrfs_disk_key disk_key;
4576
4577			btrfs_item_key(leaf, &disk_key, 0);
4578			fixup_low_keys(trans, path, &disk_key, 1);
4579		}
4580
4581		/*
4582		 * Try to delete the leaf if it is mostly empty. We do this by
4583		 * trying to move all its items into its left and right neighbours.
4584		 * If we can't move all the items, then we don't delete it - it's
4585		 * not ideal, but future insertions might fill the leaf with more
4586		 * items, or items from other leaves might be moved later into our
4587		 * leaf due to deletions on those leaves.
4588		 */
4589		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4590			u32 min_push_space;
4591
4592			/* push_leaf_left fixes the path.
4593			 * make sure the path still points to our leaf
4594			 * for possible call to btrfs_del_ptr below
4595			 */
4596			slot = path->slots[1];
4597			atomic_inc(&leaf->refs);
4598			/*
4599			 * We want to be able to at least push one item to the
4600			 * left neighbour leaf, and that's the first item.
4601			 */
4602			min_push_space = sizeof(struct btrfs_item) +
4603				btrfs_item_size(leaf, 0);
4604			wret = push_leaf_left(trans, root, path, 0,
4605					      min_push_space, 1, (u32)-1);
4606			if (wret < 0 && wret != -ENOSPC)
4607				ret = wret;
4608
4609			if (path->nodes[0] == leaf &&
4610			    btrfs_header_nritems(leaf)) {
4611				/*
4612				 * If we were not able to push all items from our
4613				 * leaf to its left neighbour, then attempt to
4614				 * either push all the remaining items to the
4615				 * right neighbour or none. There's no advantage
4616				 * in pushing only some items, instead of all, as
4617				 * it's pointless to end up with a leaf having
4618				 * too few items while the neighbours can be full
4619				 * or nearly full.
4620				 */
4621				nritems = btrfs_header_nritems(leaf);
4622				min_push_space = leaf_space_used(leaf, 0, nritems);
4623				wret = push_leaf_right(trans, root, path, 0,
4624						       min_push_space, 1, 0);
4625				if (wret < 0 && wret != -ENOSPC)
4626					ret = wret;
4627			}
4628
4629			if (btrfs_header_nritems(leaf) == 0) {
4630				path->slots[1] = slot;
4631				ret = btrfs_del_leaf(trans, root, path, leaf);
4632				if (ret < 0)
4633					return ret;
4634				free_extent_buffer(leaf);
4635				ret = 0;
4636			} else {
4637				/* if we're still in the path, make sure
4638				 * we're dirty.  Otherwise, one of the
4639				 * push_leaf functions must have already
4640				 * dirtied this buffer
4641				 */
4642				if (path->nodes[0] == leaf)
4643					btrfs_mark_buffer_dirty(trans, leaf);
4644				free_extent_buffer(leaf);
4645			}
4646		} else {
4647			btrfs_mark_buffer_dirty(trans, leaf);
4648		}
4649	}
4650	return ret;
4651}
4652
4653/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654 * A helper function to walk down the tree starting at min_key, and looking
4655 * for nodes or leaves that are have a minimum transaction id.
4656 * This is used by the btree defrag code, and tree logging
4657 *
4658 * This does not cow, but it does stuff the starting key it finds back
4659 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4660 * key and get a writable path.
4661 *
 
 
 
4662 * This honors path->lowest_level to prevent descent past a given level
4663 * of the tree.
4664 *
4665 * min_trans indicates the oldest transaction that you are interested
4666 * in walking through.  Any nodes or leaves older than min_trans are
4667 * skipped over (without reading them).
4668 *
4669 * returns zero if something useful was found, < 0 on error and 1 if there
4670 * was nothing in the tree that matched the search criteria.
4671 */
4672int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4673			 struct btrfs_path *path,
4674			 u64 min_trans)
4675{
4676	struct extent_buffer *cur;
4677	struct btrfs_key found_key;
4678	int slot;
4679	int sret;
4680	u32 nritems;
4681	int level;
4682	int ret = 1;
4683	int keep_locks = path->keep_locks;
4684
4685	ASSERT(!path->nowait);
4686	path->keep_locks = 1;
4687again:
4688	cur = btrfs_read_lock_root_node(root);
4689	level = btrfs_header_level(cur);
4690	WARN_ON(path->nodes[level]);
4691	path->nodes[level] = cur;
4692	path->locks[level] = BTRFS_READ_LOCK;
4693
4694	if (btrfs_header_generation(cur) < min_trans) {
4695		ret = 1;
4696		goto out;
4697	}
4698	while (1) {
4699		nritems = btrfs_header_nritems(cur);
4700		level = btrfs_header_level(cur);
4701		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4702		if (sret < 0) {
4703			ret = sret;
4704			goto out;
4705		}
4706
4707		/* at the lowest level, we're done, setup the path and exit */
4708		if (level == path->lowest_level) {
4709			if (slot >= nritems)
4710				goto find_next_key;
4711			ret = 0;
4712			path->slots[level] = slot;
4713			btrfs_item_key_to_cpu(cur, &found_key, slot);
4714			goto out;
4715		}
4716		if (sret && slot > 0)
4717			slot--;
4718		/*
4719		 * check this node pointer against the min_trans parameters.
4720		 * If it is too old, skip to the next one.
4721		 */
4722		while (slot < nritems) {
4723			u64 gen;
4724
4725			gen = btrfs_node_ptr_generation(cur, slot);
4726			if (gen < min_trans) {
4727				slot++;
4728				continue;
4729			}
4730			break;
4731		}
4732find_next_key:
4733		/*
4734		 * we didn't find a candidate key in this node, walk forward
4735		 * and find another one
4736		 */
4737		if (slot >= nritems) {
4738			path->slots[level] = slot;
 
4739			sret = btrfs_find_next_key(root, path, min_key, level,
4740						  min_trans);
4741			if (sret == 0) {
4742				btrfs_release_path(path);
4743				goto again;
4744			} else {
4745				goto out;
4746			}
4747		}
4748		/* save our key for returning back */
4749		btrfs_node_key_to_cpu(cur, &found_key, slot);
4750		path->slots[level] = slot;
4751		if (level == path->lowest_level) {
4752			ret = 0;
 
4753			goto out;
4754		}
4755		cur = btrfs_read_node_slot(cur, slot);
4756		if (IS_ERR(cur)) {
4757			ret = PTR_ERR(cur);
4758			goto out;
4759		}
4760
4761		btrfs_tree_read_lock(cur);
4762
4763		path->locks[level - 1] = BTRFS_READ_LOCK;
4764		path->nodes[level - 1] = cur;
4765		unlock_up(path, level, 1, 0, NULL);
 
4766	}
4767out:
4768	path->keep_locks = keep_locks;
4769	if (ret == 0) {
4770		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4771		memcpy(min_key, &found_key, sizeof(found_key));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4772	}
4773	return ret;
4774}
4775
4776/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777 * this is similar to btrfs_next_leaf, but does not try to preserve
4778 * and fixup the path.  It looks for and returns the next key in the
4779 * tree based on the current path and the min_trans parameters.
4780 *
4781 * 0 is returned if another key is found, < 0 if there are any errors
4782 * and 1 is returned if there are no higher keys in the tree
4783 *
4784 * path->keep_locks should be set to 1 on the search made before
4785 * calling this function.
4786 */
4787int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4788			struct btrfs_key *key, int level, u64 min_trans)
4789{
4790	int slot;
4791	struct extent_buffer *c;
4792
4793	WARN_ON(!path->keep_locks && !path->skip_locking);
4794	while (level < BTRFS_MAX_LEVEL) {
4795		if (!path->nodes[level])
4796			return 1;
4797
4798		slot = path->slots[level] + 1;
4799		c = path->nodes[level];
4800next:
4801		if (slot >= btrfs_header_nritems(c)) {
4802			int ret;
4803			int orig_lowest;
4804			struct btrfs_key cur_key;
4805			if (level + 1 >= BTRFS_MAX_LEVEL ||
4806			    !path->nodes[level + 1])
4807				return 1;
4808
4809			if (path->locks[level + 1] || path->skip_locking) {
4810				level++;
4811				continue;
4812			}
4813
4814			slot = btrfs_header_nritems(c) - 1;
4815			if (level == 0)
4816				btrfs_item_key_to_cpu(c, &cur_key, slot);
4817			else
4818				btrfs_node_key_to_cpu(c, &cur_key, slot);
4819
4820			orig_lowest = path->lowest_level;
4821			btrfs_release_path(path);
4822			path->lowest_level = level;
4823			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4824						0, 0);
4825			path->lowest_level = orig_lowest;
4826			if (ret < 0)
4827				return ret;
4828
4829			c = path->nodes[level];
4830			slot = path->slots[level];
4831			if (ret == 0)
4832				slot++;
4833			goto next;
4834		}
4835
4836		if (level == 0)
4837			btrfs_item_key_to_cpu(c, key, slot);
4838		else {
4839			u64 gen = btrfs_node_ptr_generation(c, slot);
4840
4841			if (gen < min_trans) {
4842				slot++;
4843				goto next;
4844			}
4845			btrfs_node_key_to_cpu(c, key, slot);
4846		}
4847		return 0;
4848	}
4849	return 1;
4850}
4851
 
 
 
 
 
 
 
 
 
 
4852int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4853			u64 time_seq)
4854{
4855	int slot;
4856	int level;
4857	struct extent_buffer *c;
4858	struct extent_buffer *next;
4859	struct btrfs_fs_info *fs_info = root->fs_info;
4860	struct btrfs_key key;
4861	bool need_commit_sem = false;
4862	u32 nritems;
4863	int ret;
4864	int i;
4865
4866	/*
4867	 * The nowait semantics are used only for write paths, where we don't
4868	 * use the tree mod log and sequence numbers.
4869	 */
4870	if (time_seq)
4871		ASSERT(!path->nowait);
4872
4873	nritems = btrfs_header_nritems(path->nodes[0]);
4874	if (nritems == 0)
4875		return 1;
4876
4877	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4878again:
4879	level = 1;
4880	next = NULL;
 
4881	btrfs_release_path(path);
4882
4883	path->keep_locks = 1;
 
4884
4885	if (time_seq) {
4886		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4887	} else {
4888		if (path->need_commit_sem) {
4889			path->need_commit_sem = 0;
4890			need_commit_sem = true;
4891			if (path->nowait) {
4892				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4893					ret = -EAGAIN;
4894					goto done;
4895				}
4896			} else {
4897				down_read(&fs_info->commit_root_sem);
4898			}
4899		}
4900		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4901	}
4902	path->keep_locks = 0;
4903
4904	if (ret < 0)
4905		goto done;
4906
4907	nritems = btrfs_header_nritems(path->nodes[0]);
4908	/*
4909	 * by releasing the path above we dropped all our locks.  A balance
4910	 * could have added more items next to the key that used to be
4911	 * at the very end of the block.  So, check again here and
4912	 * advance the path if there are now more items available.
4913	 */
4914	if (nritems > 0 && path->slots[0] < nritems - 1) {
4915		if (ret == 0)
4916			path->slots[0]++;
4917		ret = 0;
4918		goto done;
4919	}
4920	/*
4921	 * So the above check misses one case:
4922	 * - after releasing the path above, someone has removed the item that
4923	 *   used to be at the very end of the block, and balance between leafs
4924	 *   gets another one with bigger key.offset to replace it.
4925	 *
4926	 * This one should be returned as well, or we can get leaf corruption
4927	 * later(esp. in __btrfs_drop_extents()).
4928	 *
4929	 * And a bit more explanation about this check,
4930	 * with ret > 0, the key isn't found, the path points to the slot
4931	 * where it should be inserted, so the path->slots[0] item must be the
4932	 * bigger one.
4933	 */
4934	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4935		ret = 0;
4936		goto done;
4937	}
4938
4939	while (level < BTRFS_MAX_LEVEL) {
4940		if (!path->nodes[level]) {
4941			ret = 1;
4942			goto done;
4943		}
4944
4945		slot = path->slots[level] + 1;
4946		c = path->nodes[level];
4947		if (slot >= btrfs_header_nritems(c)) {
4948			level++;
4949			if (level == BTRFS_MAX_LEVEL) {
4950				ret = 1;
4951				goto done;
4952			}
4953			continue;
4954		}
4955
4956
4957		/*
4958		 * Our current level is where we're going to start from, and to
4959		 * make sure lockdep doesn't complain we need to drop our locks
4960		 * and nodes from 0 to our current level.
4961		 */
4962		for (i = 0; i < level; i++) {
4963			if (path->locks[level]) {
4964				btrfs_tree_read_unlock(path->nodes[i]);
4965				path->locks[i] = 0;
4966			}
4967			free_extent_buffer(path->nodes[i]);
4968			path->nodes[i] = NULL;
4969		}
4970
4971		next = c;
4972		ret = read_block_for_search(root, path, &next, slot, &key);
4973		if (ret == -EAGAIN && !path->nowait)
 
 
4974			goto again;
4975
4976		if (ret < 0) {
4977			btrfs_release_path(path);
4978			goto done;
4979		}
4980
4981		if (!path->skip_locking) {
4982			ret = btrfs_try_tree_read_lock(next);
4983			if (!ret && path->nowait) {
4984				ret = -EAGAIN;
4985				goto done;
4986			}
4987			if (!ret && time_seq) {
4988				/*
4989				 * If we don't get the lock, we may be racing
4990				 * with push_leaf_left, holding that lock while
4991				 * itself waiting for the leaf we've currently
4992				 * locked. To solve this situation, we give up
4993				 * on our lock and cycle.
4994				 */
4995				free_extent_buffer(next);
4996				btrfs_release_path(path);
4997				cond_resched();
4998				goto again;
4999			}
5000			if (!ret)
 
5001				btrfs_tree_read_lock(next);
 
 
 
 
5002		}
5003		break;
5004	}
5005	path->slots[level] = slot;
5006	while (1) {
5007		level--;
 
 
 
 
 
5008		path->nodes[level] = next;
5009		path->slots[level] = 0;
5010		if (!path->skip_locking)
5011			path->locks[level] = BTRFS_READ_LOCK;
5012		if (!level)
5013			break;
5014
5015		ret = read_block_for_search(root, path, &next, 0, &key);
5016		if (ret == -EAGAIN && !path->nowait)
 
5017			goto again;
5018
5019		if (ret < 0) {
5020			btrfs_release_path(path);
5021			goto done;
5022		}
5023
5024		if (!path->skip_locking) {
5025			if (path->nowait) {
5026				if (!btrfs_try_tree_read_lock(next)) {
5027					ret = -EAGAIN;
5028					goto done;
5029				}
5030			} else {
5031				btrfs_tree_read_lock(next);
 
 
5032			}
 
5033		}
5034	}
5035	ret = 0;
5036done:
5037	unlock_up(path, 0, 1, 0, NULL);
5038	if (need_commit_sem) {
5039		int ret2;
5040
5041		path->need_commit_sem = 1;
5042		ret2 = finish_need_commit_sem_search(path);
5043		up_read(&fs_info->commit_root_sem);
5044		if (ret2)
5045			ret = ret2;
5046	}
5047
5048	return ret;
5049}
5050
5051int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5052{
5053	path->slots[0]++;
5054	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5055		return btrfs_next_old_leaf(root, path, time_seq);
5056	return 0;
5057}
5058
5059/*
5060 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5061 * searching until it gets past min_objectid or finds an item of 'type'
5062 *
5063 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5064 */
5065int btrfs_previous_item(struct btrfs_root *root,
5066			struct btrfs_path *path, u64 min_objectid,
5067			int type)
5068{
5069	struct btrfs_key found_key;
5070	struct extent_buffer *leaf;
5071	u32 nritems;
5072	int ret;
5073
5074	while (1) {
5075		if (path->slots[0] == 0) {
 
5076			ret = btrfs_prev_leaf(root, path);
5077			if (ret != 0)
5078				return ret;
5079		} else {
5080			path->slots[0]--;
5081		}
5082		leaf = path->nodes[0];
5083		nritems = btrfs_header_nritems(leaf);
5084		if (nritems == 0)
5085			return 1;
5086		if (path->slots[0] == nritems)
5087			path->slots[0]--;
5088
5089		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090		if (found_key.objectid < min_objectid)
5091			break;
5092		if (found_key.type == type)
5093			return 0;
5094		if (found_key.objectid == min_objectid &&
5095		    found_key.type < type)
5096			break;
5097	}
5098	return 1;
5099}
5100
5101/*
5102 * search in extent tree to find a previous Metadata/Data extent item with
5103 * min objecitd.
5104 *
5105 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5106 */
5107int btrfs_previous_extent_item(struct btrfs_root *root,
5108			struct btrfs_path *path, u64 min_objectid)
5109{
5110	struct btrfs_key found_key;
5111	struct extent_buffer *leaf;
5112	u32 nritems;
5113	int ret;
5114
5115	while (1) {
5116		if (path->slots[0] == 0) {
 
5117			ret = btrfs_prev_leaf(root, path);
5118			if (ret != 0)
5119				return ret;
5120		} else {
5121			path->slots[0]--;
5122		}
5123		leaf = path->nodes[0];
5124		nritems = btrfs_header_nritems(leaf);
5125		if (nritems == 0)
5126			return 1;
5127		if (path->slots[0] == nritems)
5128			path->slots[0]--;
5129
5130		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5131		if (found_key.objectid < min_objectid)
5132			break;
5133		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5134		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5135			return 0;
5136		if (found_key.objectid == min_objectid &&
5137		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5138			break;
5139	}
5140	return 1;
5141}
5142
5143int __init btrfs_ctree_init(void)
5144{
5145	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5146	if (!btrfs_path_cachep)
5147		return -ENOMEM;
5148	return 0;
5149}
5150
5151void __cold btrfs_ctree_exit(void)
5152{
5153	kmem_cache_destroy(btrfs_path_cachep);
5154}
v3.15
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
 
 
 
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29		      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31		      *root, struct btrfs_key *ins_key,
  32		      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34			  struct btrfs_root *root, struct extent_buffer *dst,
  35			  struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37			      struct btrfs_root *root,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43				 struct extent_buffer *eb);
  44
  45struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46{
  47	struct btrfs_path *path;
  48	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  49	return path;
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
 
 
 
 
 
 
 
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
 
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
 
 
 
 
 
 
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
 
 
 
 
 
 
 
 
 
  80{
  81	int i;
 
  82
  83#ifdef CONFIG_DEBUG_LOCK_ALLOC
  84	/* lockdep really cares that we take all of these spinlocks
  85	 * in the right order.  If any of the locks in the path are not
  86	 * currently blocking, it is going to complain.  So, make really
  87	 * really sure by forcing the path to blocking before we clear
  88	 * the path blocking.
  89	 */
  90	if (held) {
  91		btrfs_set_lock_blocking_rw(held, held_rw);
  92		if (held_rw == BTRFS_WRITE_LOCK)
  93			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  94		else if (held_rw == BTRFS_READ_LOCK)
  95			held_rw = BTRFS_READ_LOCK_BLOCKING;
  96	}
  97	btrfs_set_path_blocking(p);
  98#endif
  99
 100	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 101		if (p->nodes[i] && p->locks[i]) {
 102			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 103			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 104				p->locks[i] = BTRFS_WRITE_LOCK;
 105			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 106				p->locks[i] = BTRFS_READ_LOCK;
 107		}
 108	}
 
 
 
 
 
 
 
 
 
 
 109
 110#ifdef CONFIG_DEBUG_LOCK_ALLOC
 111	if (held)
 112		btrfs_clear_lock_blocking_rw(held, held_rw);
 113#endif
 114}
 115
 116/* this also releases the path */
 117void btrfs_free_path(struct btrfs_path *p)
 118{
 119	if (!p)
 120		return;
 121	btrfs_release_path(p);
 122	kmem_cache_free(btrfs_path_cachep, p);
 123}
 124
 125/*
 126 * path release drops references on the extent buffers in the path
 127 * and it drops any locks held by this path
 128 *
 129 * It is safe to call this on paths that no locks or extent buffers held.
 130 */
 131noinline void btrfs_release_path(struct btrfs_path *p)
 132{
 133	int i;
 134
 135	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 136		p->slots[i] = 0;
 137		if (!p->nodes[i])
 138			continue;
 139		if (p->locks[i]) {
 140			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 141			p->locks[i] = 0;
 142		}
 143		free_extent_buffer(p->nodes[i]);
 144		p->nodes[i] = NULL;
 145	}
 146}
 147
 148/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149 * safely gets a reference on the root node of a tree.  A lock
 150 * is not taken, so a concurrent writer may put a different node
 151 * at the root of the tree.  See btrfs_lock_root_node for the
 152 * looping required.
 153 *
 154 * The extent buffer returned by this has a reference taken, so
 155 * it won't disappear.  It may stop being the root of the tree
 156 * at any time because there are no locks held.
 157 */
 158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 159{
 160	struct extent_buffer *eb;
 161
 162	while (1) {
 163		rcu_read_lock();
 164		eb = rcu_dereference(root->node);
 165
 166		/*
 167		 * RCU really hurts here, we could free up the root node because
 168		 * it was cow'ed but we may not get the new root node yet so do
 169		 * the inc_not_zero dance and if it doesn't work then
 170		 * synchronize_rcu and try again.
 171		 */
 172		if (atomic_inc_not_zero(&eb->refs)) {
 173			rcu_read_unlock();
 174			break;
 175		}
 176		rcu_read_unlock();
 177		synchronize_rcu();
 178	}
 179	return eb;
 180}
 181
 182/* loop around taking references on and locking the root node of the
 183 * tree until you end up with a lock on the root.  A locked buffer
 184 * is returned, with a reference held.
 
 185 */
 186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 187{
 188	struct extent_buffer *eb;
 189
 190	while (1) {
 191		eb = btrfs_root_node(root);
 192		btrfs_tree_lock(eb);
 193		if (eb == root->node)
 194			break;
 195		btrfs_tree_unlock(eb);
 196		free_extent_buffer(eb);
 197	}
 198	return eb;
 199}
 200
 201/* loop around taking references on and locking the root node of the
 202 * tree until you end up with a lock on the root.  A locked buffer
 203 * is returned, with a reference held.
 204 */
 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 206{
 207	struct extent_buffer *eb;
 208
 209	while (1) {
 210		eb = btrfs_root_node(root);
 211		btrfs_tree_read_lock(eb);
 212		if (eb == root->node)
 213			break;
 214		btrfs_tree_read_unlock(eb);
 215		free_extent_buffer(eb);
 216	}
 217	return eb;
 218}
 219
 220/* cowonly root (everything not a reference counted cow subvolume), just get
 221 * put onto a simple dirty list.  transaction.c walks this to make sure they
 222 * get properly updated on disk.
 223 */
 224static void add_root_to_dirty_list(struct btrfs_root *root)
 225{
 226	spin_lock(&root->fs_info->trans_lock);
 227	if (root->track_dirty && list_empty(&root->dirty_list)) {
 228		list_add(&root->dirty_list,
 229			 &root->fs_info->dirty_cowonly_roots);
 230	}
 231	spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240		      struct btrfs_root *root,
 241		      struct extent_buffer *buf,
 242		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 
 244	struct extent_buffer *cow;
 245	int ret = 0;
 246	int level;
 247	struct btrfs_disk_key disk_key;
 
 248
 249	WARN_ON(root->ref_cows && trans->transid !=
 250		root->fs_info->running_transaction->transid);
 251	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
 252
 253	level = btrfs_header_level(buf);
 254	if (level == 0)
 255		btrfs_item_key(buf, &disk_key, 0);
 256	else
 257		btrfs_node_key(buf, &disk_key, 0);
 258
 259	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 260				     new_root_objectid, &disk_key, level,
 261				     buf->start, 0);
 
 
 262	if (IS_ERR(cow))
 263		return PTR_ERR(cow);
 264
 265	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266	btrfs_set_header_bytenr(cow, cow->start);
 267	btrfs_set_header_generation(cow, trans->transid);
 268	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270				     BTRFS_HEADER_FLAG_RELOC);
 271	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273	else
 274		btrfs_set_header_owner(cow, new_root_objectid);
 275
 276	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 277			    BTRFS_FSID_SIZE);
 278
 279	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 282	else
 283		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 284
 285	if (ret)
 
 
 286		return ret;
 
 287
 288	btrfs_mark_buffer_dirty(cow);
 289	*cow_ret = cow;
 290	return 0;
 291}
 292
 293enum mod_log_op {
 294	MOD_LOG_KEY_REPLACE,
 295	MOD_LOG_KEY_ADD,
 296	MOD_LOG_KEY_REMOVE,
 297	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299	MOD_LOG_MOVE_KEYS,
 300	MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304	int dst_slot;
 305	int nr_items;
 306};
 307
 308struct tree_mod_root {
 309	u64 logical;
 310	u8 level;
 311};
 312
 313struct tree_mod_elem {
 314	struct rb_node node;
 315	u64 index;		/* shifted logical */
 316	u64 seq;
 317	enum mod_log_op op;
 318
 319	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320	int slot;
 321
 322	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323	u64 generation;
 324
 325	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326	struct btrfs_disk_key key;
 327	u64 blockptr;
 328
 329	/* this is used for op == MOD_LOG_MOVE_KEYS */
 330	struct tree_mod_move move;
 331
 332	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 333	struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338	read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343	read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348	write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353	write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Increment the upper half of tree_mod_seq, set lower half zero.
 358 *
 359 * Must be called with fs_info->tree_mod_seq_lock held.
 360 */
 361static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
 
 
 362{
 363	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
 364	seq &= 0xffffffff00000000ull;
 365	seq += 1ull << 32;
 366	atomic64_set(&fs_info->tree_mod_seq, seq);
 367	return seq;
 368}
 369
 370/*
 371 * Increment the lower half of tree_mod_seq.
 372 *
 373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
 374 * are generated should not technically require a spin lock here. (Rationale:
 375 * incrementing the minor while incrementing the major seq number is between its
 376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
 377 * just returns a unique sequence number as usual.) We have decided to leave
 378 * that requirement in here and rethink it once we notice it really imposes a
 379 * problem on some workload.
 380 */
 381static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
 382{
 383	return atomic64_inc_return(&fs_info->tree_mod_seq);
 384}
 385
 386/*
 387 * return the last minor in the previous major tree_mod_seq number
 388 */
 389u64 btrfs_tree_mod_seq_prev(u64 seq)
 390{
 391	return (seq & 0xffffffff00000000ull) - 1ull;
 392}
 393
 394/*
 395 * This adds a new blocker to the tree mod log's blocker list if the @elem
 396 * passed does not already have a sequence number set. So when a caller expects
 397 * to record tree modifications, it should ensure to set elem->seq to zero
 398 * before calling btrfs_get_tree_mod_seq.
 399 * Returns a fresh, unused tree log modification sequence number, even if no new
 400 * blocker was added.
 401 */
 402u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 403			   struct seq_list *elem)
 404{
 405	u64 seq;
 406
 407	tree_mod_log_write_lock(fs_info);
 408	spin_lock(&fs_info->tree_mod_seq_lock);
 409	if (!elem->seq) {
 410		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
 411		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 412	}
 413	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 414	spin_unlock(&fs_info->tree_mod_seq_lock);
 415	tree_mod_log_write_unlock(fs_info);
 416
 417	return seq;
 418}
 419
 420void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 421			    struct seq_list *elem)
 422{
 423	struct rb_root *tm_root;
 424	struct rb_node *node;
 425	struct rb_node *next;
 426	struct seq_list *cur_elem;
 427	struct tree_mod_elem *tm;
 428	u64 min_seq = (u64)-1;
 429	u64 seq_putting = elem->seq;
 430
 431	if (!seq_putting)
 432		return;
 433
 434	spin_lock(&fs_info->tree_mod_seq_lock);
 435	list_del(&elem->list);
 436	elem->seq = 0;
 437
 438	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 439		if (cur_elem->seq < min_seq) {
 440			if (seq_putting > cur_elem->seq) {
 441				/*
 442				 * blocker with lower sequence number exists, we
 443				 * cannot remove anything from the log
 444				 */
 445				spin_unlock(&fs_info->tree_mod_seq_lock);
 446				return;
 447			}
 448			min_seq = cur_elem->seq;
 449		}
 450	}
 451	spin_unlock(&fs_info->tree_mod_seq_lock);
 452
 453	/*
 454	 * anything that's lower than the lowest existing (read: blocked)
 455	 * sequence number can be removed from the tree.
 
 456	 */
 457	tree_mod_log_write_lock(fs_info);
 458	tm_root = &fs_info->tree_mod_log;
 459	for (node = rb_first(tm_root); node; node = next) {
 460		next = rb_next(node);
 461		tm = container_of(node, struct tree_mod_elem, node);
 462		if (tm->seq > min_seq)
 463			continue;
 464		rb_erase(node, tm_root);
 465		kfree(tm);
 466	}
 467	tree_mod_log_write_unlock(fs_info);
 468}
 469
 470/*
 471 * key order of the log:
 472 *       index -> sequence
 473 *
 474 * the index is the shifted logical of the *new* root node for root replace
 475 * operations, or the shifted logical of the affected block for all other
 476 * operations.
 477 *
 478 * Note: must be called with write lock (tree_mod_log_write_lock).
 479 */
 480static noinline int
 481__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 482{
 483	struct rb_root *tm_root;
 484	struct rb_node **new;
 485	struct rb_node *parent = NULL;
 486	struct tree_mod_elem *cur;
 487
 488	BUG_ON(!tm);
 489
 490	spin_lock(&fs_info->tree_mod_seq_lock);
 491	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 492	spin_unlock(&fs_info->tree_mod_seq_lock);
 493
 494	tm_root = &fs_info->tree_mod_log;
 495	new = &tm_root->rb_node;
 496	while (*new) {
 497		cur = container_of(*new, struct tree_mod_elem, node);
 498		parent = *new;
 499		if (cur->index < tm->index)
 500			new = &((*new)->rb_left);
 501		else if (cur->index > tm->index)
 502			new = &((*new)->rb_right);
 503		else if (cur->seq < tm->seq)
 504			new = &((*new)->rb_left);
 505		else if (cur->seq > tm->seq)
 506			new = &((*new)->rb_right);
 507		else
 508			return -EEXIST;
 509	}
 510
 511	rb_link_node(&tm->node, parent, new);
 512	rb_insert_color(&tm->node, tm_root);
 513	return 0;
 514}
 515
 516/*
 517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 518 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 519 * this until all tree mod log insertions are recorded in the rb tree and then
 520 * call tree_mod_log_write_unlock() to release.
 521 */
 522static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 523				    struct extent_buffer *eb) {
 524	smp_mb();
 525	if (list_empty(&(fs_info)->tree_mod_seq_list))
 526		return 1;
 527	if (eb && btrfs_header_level(eb) == 0)
 528		return 1;
 529
 530	tree_mod_log_write_lock(fs_info);
 531	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 532		tree_mod_log_write_unlock(fs_info);
 533		return 1;
 534	}
 535
 536	return 0;
 537}
 538
 539/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 540static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 541				    struct extent_buffer *eb)
 542{
 543	smp_mb();
 544	if (list_empty(&(fs_info)->tree_mod_seq_list))
 545		return 0;
 546	if (eb && btrfs_header_level(eb) == 0)
 547		return 0;
 548
 549	return 1;
 550}
 551
 552static struct tree_mod_elem *
 553alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 554		    enum mod_log_op op, gfp_t flags)
 555{
 556	struct tree_mod_elem *tm;
 557
 558	tm = kzalloc(sizeof(*tm), flags);
 559	if (!tm)
 560		return NULL;
 561
 562	tm->index = eb->start >> PAGE_CACHE_SHIFT;
 563	if (op != MOD_LOG_KEY_ADD) {
 564		btrfs_node_key(eb, &tm->key, slot);
 565		tm->blockptr = btrfs_node_blockptr(eb, slot);
 566	}
 567	tm->op = op;
 568	tm->slot = slot;
 569	tm->generation = btrfs_node_ptr_generation(eb, slot);
 570	RB_CLEAR_NODE(&tm->node);
 571
 572	return tm;
 573}
 574
 575static noinline int
 576tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 577			struct extent_buffer *eb, int slot,
 578			enum mod_log_op op, gfp_t flags)
 579{
 580	struct tree_mod_elem *tm;
 581	int ret;
 582
 583	if (!tree_mod_need_log(fs_info, eb))
 584		return 0;
 585
 586	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 587	if (!tm)
 588		return -ENOMEM;
 589
 590	if (tree_mod_dont_log(fs_info, eb)) {
 591		kfree(tm);
 592		return 0;
 593	}
 594
 595	ret = __tree_mod_log_insert(fs_info, tm);
 596	tree_mod_log_write_unlock(fs_info);
 597	if (ret)
 598		kfree(tm);
 599
 600	return ret;
 601}
 602
 603static noinline int
 604tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 605			 struct extent_buffer *eb, int dst_slot, int src_slot,
 606			 int nr_items, gfp_t flags)
 607{
 608	struct tree_mod_elem *tm = NULL;
 609	struct tree_mod_elem **tm_list = NULL;
 610	int ret = 0;
 611	int i;
 612	int locked = 0;
 613
 614	if (!tree_mod_need_log(fs_info, eb))
 615		return 0;
 616
 617	tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
 618	if (!tm_list)
 619		return -ENOMEM;
 620
 621	tm = kzalloc(sizeof(*tm), flags);
 622	if (!tm) {
 623		ret = -ENOMEM;
 624		goto free_tms;
 625	}
 626
 627	tm->index = eb->start >> PAGE_CACHE_SHIFT;
 628	tm->slot = src_slot;
 629	tm->move.dst_slot = dst_slot;
 630	tm->move.nr_items = nr_items;
 631	tm->op = MOD_LOG_MOVE_KEYS;
 632
 633	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 634		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 635		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 636		if (!tm_list[i]) {
 637			ret = -ENOMEM;
 638			goto free_tms;
 639		}
 640	}
 641
 642	if (tree_mod_dont_log(fs_info, eb))
 643		goto free_tms;
 644	locked = 1;
 645
 646	/*
 647	 * When we override something during the move, we log these removals.
 648	 * This can only happen when we move towards the beginning of the
 649	 * buffer, i.e. dst_slot < src_slot.
 
 650	 */
 651	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 652		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653		if (ret)
 654			goto free_tms;
 655	}
 656
 657	ret = __tree_mod_log_insert(fs_info, tm);
 658	if (ret)
 659		goto free_tms;
 660	tree_mod_log_write_unlock(fs_info);
 661	kfree(tm_list);
 662
 663	return 0;
 664free_tms:
 665	for (i = 0; i < nr_items; i++) {
 666		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 667			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 668		kfree(tm_list[i]);
 669	}
 670	if (locked)
 671		tree_mod_log_write_unlock(fs_info);
 672	kfree(tm_list);
 673	kfree(tm);
 674
 675	return ret;
 676}
 677
 678static inline int
 679__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 680		       struct tree_mod_elem **tm_list,
 681		       int nritems)
 682{
 683	int i, j;
 684	int ret;
 685
 686	for (i = nritems - 1; i >= 0; i--) {
 687		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 688		if (ret) {
 689			for (j = nritems - 1; j > i; j--)
 690				rb_erase(&tm_list[j]->node,
 691					 &fs_info->tree_mod_log);
 692			return ret;
 693		}
 694	}
 695
 696	return 0;
 697}
 698
 699static noinline int
 700tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 701			 struct extent_buffer *old_root,
 702			 struct extent_buffer *new_root, gfp_t flags,
 703			 int log_removal)
 704{
 705	struct tree_mod_elem *tm = NULL;
 706	struct tree_mod_elem **tm_list = NULL;
 707	int nritems = 0;
 708	int ret = 0;
 709	int i;
 710
 711	if (!tree_mod_need_log(fs_info, NULL))
 712		return 0;
 713
 714	if (log_removal && btrfs_header_level(old_root) > 0) {
 715		nritems = btrfs_header_nritems(old_root);
 716		tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 717				  flags);
 718		if (!tm_list) {
 719			ret = -ENOMEM;
 720			goto free_tms;
 721		}
 722		for (i = 0; i < nritems; i++) {
 723			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 724			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 725			if (!tm_list[i]) {
 726				ret = -ENOMEM;
 727				goto free_tms;
 728			}
 729		}
 730	}
 731
 732	tm = kzalloc(sizeof(*tm), flags);
 733	if (!tm) {
 734		ret = -ENOMEM;
 735		goto free_tms;
 736	}
 737
 738	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 739	tm->old_root.logical = old_root->start;
 740	tm->old_root.level = btrfs_header_level(old_root);
 741	tm->generation = btrfs_header_generation(old_root);
 742	tm->op = MOD_LOG_ROOT_REPLACE;
 743
 744	if (tree_mod_dont_log(fs_info, NULL))
 745		goto free_tms;
 746
 747	if (tm_list)
 748		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 749	if (!ret)
 750		ret = __tree_mod_log_insert(fs_info, tm);
 751
 752	tree_mod_log_write_unlock(fs_info);
 753	if (ret)
 754		goto free_tms;
 755	kfree(tm_list);
 756
 757	return ret;
 758
 759free_tms:
 760	if (tm_list) {
 761		for (i = 0; i < nritems; i++)
 762			kfree(tm_list[i]);
 763		kfree(tm_list);
 764	}
 765	kfree(tm);
 766
 767	return ret;
 768}
 769
 770static struct tree_mod_elem *
 771__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 772		      int smallest)
 773{
 774	struct rb_root *tm_root;
 775	struct rb_node *node;
 776	struct tree_mod_elem *cur = NULL;
 777	struct tree_mod_elem *found = NULL;
 778	u64 index = start >> PAGE_CACHE_SHIFT;
 779
 780	tree_mod_log_read_lock(fs_info);
 781	tm_root = &fs_info->tree_mod_log;
 782	node = tm_root->rb_node;
 783	while (node) {
 784		cur = container_of(node, struct tree_mod_elem, node);
 785		if (cur->index < index) {
 786			node = node->rb_left;
 787		} else if (cur->index > index) {
 788			node = node->rb_right;
 789		} else if (cur->seq < min_seq) {
 790			node = node->rb_left;
 791		} else if (!smallest) {
 792			/* we want the node with the highest seq */
 793			if (found)
 794				BUG_ON(found->seq > cur->seq);
 795			found = cur;
 796			node = node->rb_left;
 797		} else if (cur->seq > min_seq) {
 798			/* we want the node with the smallest seq */
 799			if (found)
 800				BUG_ON(found->seq < cur->seq);
 801			found = cur;
 802			node = node->rb_right;
 803		} else {
 804			found = cur;
 805			break;
 806		}
 807	}
 808	tree_mod_log_read_unlock(fs_info);
 809
 810	return found;
 811}
 812
 813/*
 814 * this returns the element from the log with the smallest time sequence
 815 * value that's in the log (the oldest log item). any element with a time
 816 * sequence lower than min_seq will be ignored.
 817 */
 818static struct tree_mod_elem *
 819tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 820			   u64 min_seq)
 821{
 822	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 823}
 824
 825/*
 826 * this returns the element from the log with the largest time sequence
 827 * value that's in the log (the most recent log item). any element with
 828 * a time sequence lower than min_seq will be ignored.
 829 */
 830static struct tree_mod_elem *
 831tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 832{
 833	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 834}
 835
 836static noinline int
 837tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 838		     struct extent_buffer *src, unsigned long dst_offset,
 839		     unsigned long src_offset, int nr_items)
 840{
 841	int ret = 0;
 842	struct tree_mod_elem **tm_list = NULL;
 843	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 844	int i;
 845	int locked = 0;
 846
 847	if (!tree_mod_need_log(fs_info, NULL))
 848		return 0;
 849
 850	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 851		return 0;
 852
 853	tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
 854			  GFP_NOFS);
 855	if (!tm_list)
 856		return -ENOMEM;
 857
 858	tm_list_add = tm_list;
 859	tm_list_rem = tm_list + nr_items;
 860	for (i = 0; i < nr_items; i++) {
 861		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 862		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 863		if (!tm_list_rem[i]) {
 864			ret = -ENOMEM;
 865			goto free_tms;
 866		}
 867
 868		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 869		    MOD_LOG_KEY_ADD, GFP_NOFS);
 870		if (!tm_list_add[i]) {
 871			ret = -ENOMEM;
 872			goto free_tms;
 873		}
 874	}
 875
 876	if (tree_mod_dont_log(fs_info, NULL))
 877		goto free_tms;
 878	locked = 1;
 879
 880	for (i = 0; i < nr_items; i++) {
 881		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 882		if (ret)
 883			goto free_tms;
 884		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 885		if (ret)
 886			goto free_tms;
 887	}
 888
 889	tree_mod_log_write_unlock(fs_info);
 890	kfree(tm_list);
 891
 892	return 0;
 893
 894free_tms:
 895	for (i = 0; i < nr_items * 2; i++) {
 896		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 897			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 898		kfree(tm_list[i]);
 899	}
 900	if (locked)
 901		tree_mod_log_write_unlock(fs_info);
 902	kfree(tm_list);
 903
 904	return ret;
 905}
 906
 907static inline void
 908tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 909		     int dst_offset, int src_offset, int nr_items)
 910{
 911	int ret;
 912	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 913				       nr_items, GFP_NOFS);
 914	BUG_ON(ret < 0);
 915}
 916
 917static noinline void
 918tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 919			  struct extent_buffer *eb, int slot, int atomic)
 920{
 921	int ret;
 922
 923	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 924					MOD_LOG_KEY_REPLACE,
 925					atomic ? GFP_ATOMIC : GFP_NOFS);
 926	BUG_ON(ret < 0);
 927}
 928
 929static noinline int
 930tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 931{
 932	struct tree_mod_elem **tm_list = NULL;
 933	int nritems = 0;
 934	int i;
 935	int ret = 0;
 936
 937	if (btrfs_header_level(eb) == 0)
 938		return 0;
 939
 940	if (!tree_mod_need_log(fs_info, NULL))
 941		return 0;
 942
 943	nritems = btrfs_header_nritems(eb);
 944	tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 945			  GFP_NOFS);
 946	if (!tm_list)
 947		return -ENOMEM;
 948
 949	for (i = 0; i < nritems; i++) {
 950		tm_list[i] = alloc_tree_mod_elem(eb, i,
 951		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 952		if (!tm_list[i]) {
 953			ret = -ENOMEM;
 954			goto free_tms;
 955		}
 956	}
 957
 958	if (tree_mod_dont_log(fs_info, eb))
 959		goto free_tms;
 960
 961	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 962	tree_mod_log_write_unlock(fs_info);
 963	if (ret)
 964		goto free_tms;
 965	kfree(tm_list);
 966
 967	return 0;
 968
 969free_tms:
 970	for (i = 0; i < nritems; i++)
 971		kfree(tm_list[i]);
 972	kfree(tm_list);
 973
 974	return ret;
 975}
 976
 977static noinline void
 978tree_mod_log_set_root_pointer(struct btrfs_root *root,
 979			      struct extent_buffer *new_root_node,
 980			      int log_removal)
 981{
 982	int ret;
 983	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 984				       new_root_node, GFP_NOFS, log_removal);
 985	BUG_ON(ret < 0);
 986}
 987
 988/*
 989 * check if the tree block can be shared by multiple trees
 990 */
 991int btrfs_block_can_be_shared(struct btrfs_root *root,
 992			      struct extent_buffer *buf)
 993{
 994	/*
 995	 * Tree blocks not in refernece counted trees and tree roots
 996	 * are never shared. If a block was allocated after the last
 997	 * snapshot and the block was not allocated by tree relocation,
 998	 * we know the block is not shared.
 999	 */
1000	if (root->ref_cows &&
1001	    buf != root->node && buf != root->commit_root &&
1002	    (btrfs_header_generation(buf) <=
1003	     btrfs_root_last_snapshot(&root->root_item) ||
1004	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005		return 1;
1006#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007	if (root->ref_cows &&
1008	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009		return 1;
1010#endif
1011	return 0;
1012}
1013
1014static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015				       struct btrfs_root *root,
1016				       struct extent_buffer *buf,
1017				       struct extent_buffer *cow,
1018				       int *last_ref)
1019{
 
1020	u64 refs;
1021	u64 owner;
1022	u64 flags;
1023	u64 new_flags = 0;
1024	int ret;
1025
1026	/*
1027	 * Backrefs update rules:
1028	 *
1029	 * Always use full backrefs for extent pointers in tree block
1030	 * allocated by tree relocation.
1031	 *
1032	 * If a shared tree block is no longer referenced by its owner
1033	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034	 * use full backrefs for extent pointers in tree block.
1035	 *
1036	 * If a tree block is been relocating
1037	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038	 * use full backrefs for extent pointers in tree block.
1039	 * The reason for this is some operations (such as drop tree)
1040	 * are only allowed for blocks use full backrefs.
1041	 */
1042
1043	if (btrfs_block_can_be_shared(root, buf)) {
1044		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045					       btrfs_header_level(buf), 1,
1046					       &refs, &flags);
1047		if (ret)
1048			return ret;
1049		if (refs == 0) {
1050			ret = -EROFS;
1051			btrfs_std_error(root->fs_info, ret);
 
 
 
 
1052			return ret;
1053		}
1054	} else {
1055		refs = 1;
1056		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059		else
1060			flags = 0;
1061	}
1062
1063	owner = btrfs_header_owner(buf);
1064	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 
 
 
 
 
 
 
 
1066
1067	if (refs > 1) {
1068		if ((owner == root->root_key.objectid ||
1069		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072			BUG_ON(ret); /* -ENOMEM */
 
1073
1074			if (root->root_key.objectid ==
1075			    BTRFS_TREE_RELOC_OBJECTID) {
1076				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077				BUG_ON(ret); /* -ENOMEM */
1078				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079				BUG_ON(ret); /* -ENOMEM */
 
1080			}
1081			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
 
 
1082		} else {
1083
1084			if (root->root_key.objectid ==
1085			    BTRFS_TREE_RELOC_OBJECTID)
1086				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087			else
1088				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089			BUG_ON(ret); /* -ENOMEM */
1090		}
1091		if (new_flags != 0) {
1092			int level = btrfs_header_level(buf);
1093
1094			ret = btrfs_set_disk_extent_flags(trans, root,
1095							  buf->start,
1096							  buf->len,
1097							  new_flags, level, 0);
1098			if (ret)
1099				return ret;
1100		}
1101	} else {
1102		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103			if (root->root_key.objectid ==
1104			    BTRFS_TREE_RELOC_OBJECTID)
1105				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106			else
1107				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108			BUG_ON(ret); /* -ENOMEM */
1109			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110			BUG_ON(ret); /* -ENOMEM */
 
 
1111		}
1112		clean_tree_block(trans, root, buf);
1113		*last_ref = 1;
1114	}
1115	return 0;
1116}
1117
1118/*
1119 * does the dirty work in cow of a single block.  The parent block (if
1120 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1121 * dirty and returned locked.  If you modify the block it needs to be marked
1122 * dirty again.
1123 *
1124 * search_start -- an allocation hint for the new block
1125 *
1126 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1127 * bytes the allocator should try to find free next to the block it returns.
1128 * This is just a hint and may be ignored by the allocator.
1129 */
1130static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131			     struct btrfs_root *root,
1132			     struct extent_buffer *buf,
1133			     struct extent_buffer *parent, int parent_slot,
1134			     struct extent_buffer **cow_ret,
1135			     u64 search_start, u64 empty_size)
 
1136{
 
1137	struct btrfs_disk_key disk_key;
1138	struct extent_buffer *cow;
1139	int level, ret;
1140	int last_ref = 0;
1141	int unlock_orig = 0;
1142	u64 parent_start;
 
1143
1144	if (*cow_ret == buf)
1145		unlock_orig = 1;
1146
1147	btrfs_assert_tree_locked(buf);
1148
1149	WARN_ON(root->ref_cows && trans->transid !=
1150		root->fs_info->running_transaction->transid);
1151	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
1152
1153	level = btrfs_header_level(buf);
1154
1155	if (level == 0)
1156		btrfs_item_key(buf, &disk_key, 0);
1157	else
1158		btrfs_node_key(buf, &disk_key, 0);
1159
1160	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161		if (parent)
1162			parent_start = parent->start;
1163		else
1164			parent_start = 0;
1165	} else
1166		parent_start = 0;
1167
1168	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169				     root->root_key.objectid, &disk_key,
1170				     level, search_start, empty_size);
1171	if (IS_ERR(cow))
1172		return PTR_ERR(cow);
1173
1174	/* cow is set to blocking by btrfs_init_new_buffer */
1175
1176	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177	btrfs_set_header_bytenr(cow, cow->start);
1178	btrfs_set_header_generation(cow, trans->transid);
1179	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181				     BTRFS_HEADER_FLAG_RELOC);
1182	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184	else
1185		btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1188			    BTRFS_FSID_SIZE);
1189
1190	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191	if (ret) {
1192		btrfs_abort_transaction(trans, root, ret);
1193		return ret;
1194	}
1195
1196	if (root->ref_cows) {
1197		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198		if (ret)
1199			return ret;
 
 
1200	}
1201
1202	if (buf == root->node) {
1203		WARN_ON(parent && parent != buf);
1204		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206			parent_start = buf->start;
1207		else
1208			parent_start = 0;
1209
1210		extent_buffer_get(cow);
1211		tree_mod_log_set_root_pointer(root, cow, 1);
 
 
 
 
1212		rcu_assign_pointer(root->node, cow);
1213
1214		btrfs_free_tree_block(trans, root, buf, parent_start,
1215				      last_ref);
1216		free_extent_buffer(buf);
1217		add_root_to_dirty_list(root);
 
 
 
 
1218	} else {
1219		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220			parent_start = parent->start;
1221		else
1222			parent_start = 0;
1223
1224		WARN_ON(trans->transid != btrfs_header_generation(parent));
1225		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226					MOD_LOG_KEY_REPLACE, GFP_NOFS);
 
 
 
 
1227		btrfs_set_node_blockptr(parent, parent_slot,
1228					cow->start);
1229		btrfs_set_node_ptr_generation(parent, parent_slot,
1230					      trans->transid);
1231		btrfs_mark_buffer_dirty(parent);
1232		if (last_ref) {
1233			ret = tree_mod_log_free_eb(root->fs_info, buf);
1234			if (ret) {
1235				btrfs_abort_transaction(trans, root, ret);
1236				return ret;
1237			}
1238		}
1239		btrfs_free_tree_block(trans, root, buf, parent_start,
1240				      last_ref);
 
 
 
 
1241	}
 
 
1242	if (unlock_orig)
1243		btrfs_tree_unlock(buf);
1244	free_extent_buffer_stale(buf);
1245	btrfs_mark_buffer_dirty(cow);
1246	*cow_ret = cow;
1247	return 0;
1248}
1249
1250/*
1251 * returns the logical address of the oldest predecessor of the given root.
1252 * entries older than time_seq are ignored.
1253 */
1254static struct tree_mod_elem *
1255__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256			   struct extent_buffer *eb_root, u64 time_seq)
1257{
1258	struct tree_mod_elem *tm;
1259	struct tree_mod_elem *found = NULL;
1260	u64 root_logical = eb_root->start;
1261	int looped = 0;
1262
1263	if (!time_seq)
1264		return NULL;
1265
1266	/*
1267	 * the very last operation that's logged for a root is the replacement
1268	 * operation (if it is replaced at all). this has the index of the *new*
1269	 * root, making it the very first operation that's logged for this root.
1270	 */
1271	while (1) {
1272		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273						time_seq);
1274		if (!looped && !tm)
1275			return NULL;
1276		/*
1277		 * if there are no tree operation for the oldest root, we simply
1278		 * return it. this should only happen if that (old) root is at
1279		 * level 0.
1280		 */
1281		if (!tm)
1282			break;
1283
1284		/*
1285		 * if there's an operation that's not a root replacement, we
1286		 * found the oldest version of our root. normally, we'll find a
1287		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288		 */
1289		if (tm->op != MOD_LOG_ROOT_REPLACE)
1290			break;
1291
1292		found = tm;
1293		root_logical = tm->old_root.logical;
1294		looped = 1;
1295	}
1296
1297	/* if there's no old root to return, return what we found instead */
1298	if (!found)
1299		found = tm;
1300
1301	return found;
1302}
1303
1304/*
1305 * tm is a pointer to the first operation to rewind within eb. then, all
1306 * previous operations will be rewinded (until we reach something older than
1307 * time_seq).
1308 */
1309static void
1310__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311		      u64 time_seq, struct tree_mod_elem *first_tm)
1312{
1313	u32 n;
1314	struct rb_node *next;
1315	struct tree_mod_elem *tm = first_tm;
1316	unsigned long o_dst;
1317	unsigned long o_src;
1318	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320	n = btrfs_header_nritems(eb);
1321	tree_mod_log_read_lock(fs_info);
1322	while (tm && tm->seq >= time_seq) {
1323		/*
1324		 * all the operations are recorded with the operator used for
1325		 * the modification. as we're going backwards, we do the
1326		 * opposite of each operation here.
1327		 */
1328		switch (tm->op) {
1329		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330			BUG_ON(tm->slot < n);
1331			/* Fallthrough */
1332		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333		case MOD_LOG_KEY_REMOVE:
1334			btrfs_set_node_key(eb, &tm->key, tm->slot);
1335			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336			btrfs_set_node_ptr_generation(eb, tm->slot,
1337						      tm->generation);
1338			n++;
1339			break;
1340		case MOD_LOG_KEY_REPLACE:
1341			BUG_ON(tm->slot >= n);
1342			btrfs_set_node_key(eb, &tm->key, tm->slot);
1343			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344			btrfs_set_node_ptr_generation(eb, tm->slot,
1345						      tm->generation);
1346			break;
1347		case MOD_LOG_KEY_ADD:
1348			/* if a move operation is needed it's in the log */
1349			n--;
1350			break;
1351		case MOD_LOG_MOVE_KEYS:
1352			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354			memmove_extent_buffer(eb, o_dst, o_src,
1355					      tm->move.nr_items * p_size);
1356			break;
1357		case MOD_LOG_ROOT_REPLACE:
1358			/*
1359			 * this operation is special. for roots, this must be
1360			 * handled explicitly before rewinding.
1361			 * for non-roots, this operation may exist if the node
1362			 * was a root: root A -> child B; then A gets empty and
1363			 * B is promoted to the new root. in the mod log, we'll
1364			 * have a root-replace operation for B, a tree block
1365			 * that is no root. we simply ignore that operation.
1366			 */
1367			break;
1368		}
1369		next = rb_next(&tm->node);
1370		if (!next)
1371			break;
1372		tm = container_of(next, struct tree_mod_elem, node);
1373		if (tm->index != first_tm->index)
1374			break;
1375	}
1376	tree_mod_log_read_unlock(fs_info);
1377	btrfs_set_header_nritems(eb, n);
1378}
1379
1380/*
1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382 * is returned. If rewind operations happen, a fresh buffer is returned. The
1383 * returned buffer is always read-locked. If the returned buffer is not the
1384 * input buffer, the lock on the input buffer is released and the input buffer
1385 * is freed (its refcount is decremented).
1386 */
1387static struct extent_buffer *
1388tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389		    struct extent_buffer *eb, u64 time_seq)
1390{
1391	struct extent_buffer *eb_rewin;
1392	struct tree_mod_elem *tm;
1393
1394	if (!time_seq)
1395		return eb;
1396
1397	if (btrfs_header_level(eb) == 0)
1398		return eb;
1399
1400	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401	if (!tm)
1402		return eb;
1403
1404	btrfs_set_path_blocking(path);
1405	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408		BUG_ON(tm->slot != 0);
1409		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410						fs_info->tree_root->nodesize);
1411		if (!eb_rewin) {
1412			btrfs_tree_read_unlock_blocking(eb);
1413			free_extent_buffer(eb);
1414			return NULL;
1415		}
1416		btrfs_set_header_bytenr(eb_rewin, eb->start);
1417		btrfs_set_header_backref_rev(eb_rewin,
1418					     btrfs_header_backref_rev(eb));
1419		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421	} else {
1422		eb_rewin = btrfs_clone_extent_buffer(eb);
1423		if (!eb_rewin) {
1424			btrfs_tree_read_unlock_blocking(eb);
1425			free_extent_buffer(eb);
1426			return NULL;
1427		}
1428	}
1429
1430	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431	btrfs_tree_read_unlock_blocking(eb);
1432	free_extent_buffer(eb);
1433
1434	extent_buffer_get(eb_rewin);
1435	btrfs_tree_read_lock(eb_rewin);
1436	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437	WARN_ON(btrfs_header_nritems(eb_rewin) >
1438		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440	return eb_rewin;
1441}
1442
1443/*
1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445 * value. If there are no changes, the current root->root_node is returned. If
1446 * anything changed in between, there's a fresh buffer allocated on which the
1447 * rewind operations are done. In any case, the returned buffer is read locked.
1448 * Returns NULL on error (with no locks held).
1449 */
1450static inline struct extent_buffer *
1451get_old_root(struct btrfs_root *root, u64 time_seq)
1452{
1453	struct tree_mod_elem *tm;
1454	struct extent_buffer *eb = NULL;
1455	struct extent_buffer *eb_root;
1456	struct extent_buffer *old;
1457	struct tree_mod_root *old_root = NULL;
1458	u64 old_generation = 0;
1459	u64 logical;
1460	u32 blocksize;
1461
1462	eb_root = btrfs_read_lock_root_node(root);
1463	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464	if (!tm)
1465		return eb_root;
1466
1467	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468		old_root = &tm->old_root;
1469		old_generation = tm->generation;
1470		logical = old_root->logical;
1471	} else {
1472		logical = eb_root->start;
1473	}
1474
1475	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477		btrfs_tree_read_unlock(eb_root);
1478		free_extent_buffer(eb_root);
1479		blocksize = btrfs_level_size(root, old_root->level);
1480		old = read_tree_block(root, logical, blocksize, 0);
1481		if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482			free_extent_buffer(old);
1483			btrfs_warn(root->fs_info,
1484				"failed to read tree block %llu from get_old_root", logical);
1485		} else {
1486			eb = btrfs_clone_extent_buffer(old);
1487			free_extent_buffer(old);
1488		}
1489	} else if (old_root) {
1490		btrfs_tree_read_unlock(eb_root);
1491		free_extent_buffer(eb_root);
1492		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493	} else {
1494		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495		eb = btrfs_clone_extent_buffer(eb_root);
1496		btrfs_tree_read_unlock_blocking(eb_root);
1497		free_extent_buffer(eb_root);
1498	}
1499
1500	if (!eb)
1501		return NULL;
1502	extent_buffer_get(eb);
1503	btrfs_tree_read_lock(eb);
1504	if (old_root) {
1505		btrfs_set_header_bytenr(eb, eb->start);
1506		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508		btrfs_set_header_level(eb, old_root->level);
1509		btrfs_set_header_generation(eb, old_generation);
1510	}
1511	if (tm)
1512		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513	else
1514		WARN_ON(btrfs_header_level(eb) != 0);
1515	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517	return eb;
1518}
1519
1520int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521{
1522	struct tree_mod_elem *tm;
1523	int level;
1524	struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528		level = tm->old_root.level;
1529	} else {
1530		level = btrfs_header_level(eb_root);
1531	}
1532	free_extent_buffer(eb_root);
1533
1534	return level;
1535}
1536
1537static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538				   struct btrfs_root *root,
1539				   struct extent_buffer *buf)
1540{
1541	/* ensure we can see the force_cow */
1542	smp_rmb();
 
 
 
1543
1544	/*
1545	 * We do not need to cow a block if
1546	 * 1) this block is not created or changed in this transaction;
1547	 * 2) this block does not belong to TREE_RELOC tree;
1548	 * 3) the root is not forced COW.
1549	 *
1550	 * What is forced COW:
1551	 *    when we create snapshot during commiting the transaction,
1552	 *    after we've finished coping src root, we must COW the shared
1553	 *    block to ensure the metadata consistency.
1554	 */
1555	if (btrfs_header_generation(buf) == trans->transid &&
1556	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559	    !root->force_cow)
1560		return 0;
1561	return 1;
1562}
1563
1564/*
1565 * cows a single block, see __btrfs_cow_block for the real work.
1566 * This version of it has extra checks so that a block isn't cow'd more than
1567 * once per transaction, as long as it hasn't been written yet
1568 */
1569noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570		    struct btrfs_root *root, struct extent_buffer *buf,
1571		    struct extent_buffer *parent, int parent_slot,
1572		    struct extent_buffer **cow_ret)
 
1573{
 
1574	u64 search_start;
1575	int ret;
1576
1577	if (trans->transaction != root->fs_info->running_transaction)
1578		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579		       trans->transid,
1580		       root->fs_info->running_transaction->transid);
1581
1582	if (trans->transid != root->fs_info->generation)
1583		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584		       trans->transid, root->fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585
1586	if (!should_cow_block(trans, root, buf)) {
1587		*cow_ret = buf;
1588		return 0;
1589	}
1590
1591	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593	if (parent)
1594		btrfs_set_lock_blocking(parent);
1595	btrfs_set_lock_blocking(buf);
1596
1597	ret = __btrfs_cow_block(trans, root, buf, parent,
1598				 parent_slot, cow_ret, search_start, 0);
1599
1600	trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602	return ret;
1603}
1604
1605/*
1606 * helper function for defrag to decide if two blocks pointed to by a
1607 * node are actually close by
1608 */
1609static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610{
1611	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612		return 1;
1613	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614		return 1;
1615	return 0;
1616}
1617
1618/*
1619 * compare two keys in a memcmp fashion
1620 */
1621static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622{
1623	struct btrfs_key k1;
1624
1625	btrfs_disk_key_to_cpu(&k1, disk);
1626
1627	return btrfs_comp_cpu_keys(&k1, k2);
1628}
 
1629
1630/*
1631 * same as comp_keys only with two btrfs_key's
1632 */
1633int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634{
1635	if (k1->objectid > k2->objectid)
1636		return 1;
1637	if (k1->objectid < k2->objectid)
1638		return -1;
1639	if (k1->type > k2->type)
1640		return 1;
1641	if (k1->type < k2->type)
1642		return -1;
1643	if (k1->offset > k2->offset)
1644		return 1;
1645	if (k1->offset < k2->offset)
1646		return -1;
1647	return 0;
1648}
1649
1650/*
1651 * this is used by the defrag code to go through all the
1652 * leaves pointed to by a node and reallocate them so that
1653 * disk order is close to key order
1654 */
1655int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct extent_buffer *parent,
1657		       int start_slot, u64 *last_ret,
1658		       struct btrfs_key *progress)
1659{
1660	struct extent_buffer *cur;
1661	u64 blocknr;
1662	u64 gen;
1663	u64 search_start = *last_ret;
1664	u64 last_block = 0;
1665	u64 other;
1666	u32 parent_nritems;
1667	int end_slot;
1668	int i;
1669	int err = 0;
1670	int parent_level;
1671	int uptodate;
1672	u32 blocksize;
1673	int progress_passed = 0;
1674	struct btrfs_disk_key disk_key;
1675
1676	parent_level = btrfs_header_level(parent);
1677
1678	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679	WARN_ON(trans->transid != root->fs_info->generation);
1680
1681	parent_nritems = btrfs_header_nritems(parent);
1682	blocksize = btrfs_level_size(root, parent_level - 1);
1683	end_slot = parent_nritems;
1684
1685	if (parent_nritems == 1)
1686		return 0;
1687
1688	btrfs_set_lock_blocking(parent);
1689
1690	for (i = start_slot; i < end_slot; i++) {
1691		int close = 1;
1692
1693		btrfs_node_key(parent, &disk_key, i);
1694		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695			continue;
1696
1697		progress_passed = 1;
1698		blocknr = btrfs_node_blockptr(parent, i);
1699		gen = btrfs_node_ptr_generation(parent, i);
1700		if (last_block == 0)
1701			last_block = blocknr;
1702
1703		if (i > 0) {
1704			other = btrfs_node_blockptr(parent, i - 1);
1705			close = close_blocks(blocknr, other, blocksize);
1706		}
1707		if (!close && i < end_slot - 2) {
1708			other = btrfs_node_blockptr(parent, i + 1);
1709			close = close_blocks(blocknr, other, blocksize);
1710		}
1711		if (close) {
1712			last_block = blocknr;
1713			continue;
1714		}
1715
1716		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717		if (cur)
1718			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719		else
1720			uptodate = 0;
1721		if (!cur || !uptodate) {
1722			if (!cur) {
1723				cur = read_tree_block(root, blocknr,
1724							 blocksize, gen);
1725				if (!cur || !extent_buffer_uptodate(cur)) {
1726					free_extent_buffer(cur);
1727					return -EIO;
1728				}
1729			} else if (!uptodate) {
1730				err = btrfs_read_buffer(cur, gen);
1731				if (err) {
1732					free_extent_buffer(cur);
1733					return err;
1734				}
1735			}
1736		}
1737		if (search_start == 0)
1738			search_start = last_block;
1739
1740		btrfs_tree_lock(cur);
1741		btrfs_set_lock_blocking(cur);
1742		err = __btrfs_cow_block(trans, root, cur, parent, i,
1743					&cur, search_start,
1744					min(16 * blocksize,
1745					    (end_slot - i) * blocksize));
1746		if (err) {
1747			btrfs_tree_unlock(cur);
1748			free_extent_buffer(cur);
1749			break;
1750		}
1751		search_start = cur->start;
1752		last_block = cur->start;
1753		*last_ret = search_start;
1754		btrfs_tree_unlock(cur);
1755		free_extent_buffer(cur);
1756	}
1757	return err;
1758}
1759
1760/*
1761 * The leaf data grows from end-to-front in the node.
1762 * this returns the address of the start of the last item,
1763 * which is the stop of the leaf data stack
1764 */
1765static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766					 struct extent_buffer *leaf)
1767{
1768	u32 nr = btrfs_header_nritems(leaf);
1769	if (nr == 0)
1770		return BTRFS_LEAF_DATA_SIZE(root);
1771	return btrfs_item_offset_nr(leaf, nr - 1);
1772}
1773
1774
1775/*
1776 * search for key in the extent_buffer.  The items start at offset p,
1777 * and they are item_size apart.  There are 'max' items in p.
1778 *
1779 * the slot in the array is returned via slot, and it points to
1780 * the place where you would insert key if it is not found in
1781 * the array.
1782 *
1783 * slot may point to max if the key is bigger than all of the keys
 
1784 */
1785static noinline int generic_bin_search(struct extent_buffer *eb,
1786				       unsigned long p,
1787				       int item_size, struct btrfs_key *key,
1788				       int max, int *slot)
1789{
1790	int low = 0;
1791	int high = max;
1792	int mid;
 
 
 
 
 
1793	int ret;
1794	struct btrfs_disk_key *tmp = NULL;
1795	struct btrfs_disk_key unaligned;
1796	unsigned long offset;
1797	char *kaddr = NULL;
1798	unsigned long map_start = 0;
1799	unsigned long map_len = 0;
1800	int err;
 
 
 
 
 
 
 
 
 
 
1801
1802	while (low < high) {
 
 
 
 
 
 
 
1803		mid = (low + high) / 2;
1804		offset = p + mid * item_size;
 
1805
1806		if (!kaddr || offset < map_start ||
1807		    (offset + sizeof(struct btrfs_disk_key)) >
1808		    map_start + map_len) {
1809
1810			err = map_private_extent_buffer(eb, offset,
1811						sizeof(struct btrfs_disk_key),
1812						&kaddr, &map_start, &map_len);
1813
1814			if (!err) {
1815				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816							map_start);
1817			} else {
1818				read_extent_buffer(eb, &unaligned,
1819						   offset, sizeof(unaligned));
1820				tmp = &unaligned;
1821			}
1822
 
 
1823		} else {
1824			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825							map_start);
1826		}
1827		ret = comp_keys(tmp, key);
 
1828
1829		if (ret < 0)
1830			low = mid + 1;
1831		else if (ret > 0)
1832			high = mid;
1833		else {
1834			*slot = mid;
1835			return 0;
1836		}
1837	}
1838	*slot = low;
1839	return 1;
1840}
1841
1842/*
1843 * simple bin_search frontend that does the right thing for
1844 * leaves vs nodes
1845 */
1846static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847		      int level, int *slot)
1848{
1849	if (level == 0)
1850		return generic_bin_search(eb,
1851					  offsetof(struct btrfs_leaf, items),
1852					  sizeof(struct btrfs_item),
1853					  key, btrfs_header_nritems(eb),
1854					  slot);
1855	else
1856		return generic_bin_search(eb,
1857					  offsetof(struct btrfs_node, ptrs),
1858					  sizeof(struct btrfs_key_ptr),
1859					  key, btrfs_header_nritems(eb),
1860					  slot);
1861}
1862
1863int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864		     int level, int *slot)
1865{
1866	return bin_search(eb, key, level, slot);
1867}
1868
1869static void root_add_used(struct btrfs_root *root, u32 size)
1870{
1871	spin_lock(&root->accounting_lock);
1872	btrfs_set_root_used(&root->root_item,
1873			    btrfs_root_used(&root->root_item) + size);
1874	spin_unlock(&root->accounting_lock);
1875}
1876
1877static void root_sub_used(struct btrfs_root *root, u32 size)
1878{
1879	spin_lock(&root->accounting_lock);
1880	btrfs_set_root_used(&root->root_item,
1881			    btrfs_root_used(&root->root_item) - size);
1882	spin_unlock(&root->accounting_lock);
1883}
1884
1885/* given a node and slot number, this reads the blocks it points to.  The
1886 * extent buffer is returned with a reference taken (but unlocked).
1887 * NULL is returned on error.
1888 */
1889static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890				   struct extent_buffer *parent, int slot)
1891{
1892	int level = btrfs_header_level(parent);
 
1893	struct extent_buffer *eb;
1894
1895	if (slot < 0)
1896		return NULL;
1897	if (slot >= btrfs_header_nritems(parent))
1898		return NULL;
1899
1900	BUG_ON(level == 0);
1901
1902	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903			     btrfs_level_size(root, level - 1),
1904			     btrfs_node_ptr_generation(parent, slot));
1905	if (eb && !extent_buffer_uptodate(eb)) {
 
 
 
 
 
1906		free_extent_buffer(eb);
1907		eb = NULL;
1908	}
1909
1910	return eb;
1911}
1912
1913/*
1914 * node level balancing, used to make sure nodes are in proper order for
1915 * item deletion.  We balance from the top down, so we have to make sure
1916 * that a deletion won't leave an node completely empty later on.
1917 */
1918static noinline int balance_level(struct btrfs_trans_handle *trans,
1919			 struct btrfs_root *root,
1920			 struct btrfs_path *path, int level)
1921{
 
1922	struct extent_buffer *right = NULL;
1923	struct extent_buffer *mid;
1924	struct extent_buffer *left = NULL;
1925	struct extent_buffer *parent = NULL;
1926	int ret = 0;
1927	int wret;
1928	int pslot;
1929	int orig_slot = path->slots[level];
1930	u64 orig_ptr;
1931
1932	if (level == 0)
1933		return 0;
1934
1935	mid = path->nodes[level];
1936
1937	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943	if (level < BTRFS_MAX_LEVEL - 1) {
1944		parent = path->nodes[level + 1];
1945		pslot = path->slots[level + 1];
1946	}
1947
1948	/*
1949	 * deal with the case where there is only one pointer in the root
1950	 * by promoting the node below to a root
1951	 */
1952	if (!parent) {
1953		struct extent_buffer *child;
1954
1955		if (btrfs_header_nritems(mid) != 1)
1956			return 0;
1957
1958		/* promote the child to a root */
1959		child = read_node_slot(root, mid, 0);
1960		if (!child) {
1961			ret = -EROFS;
1962			btrfs_std_error(root->fs_info, ret);
1963			goto enospc;
1964		}
1965
1966		btrfs_tree_lock(child);
1967		btrfs_set_lock_blocking(child);
1968		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969		if (ret) {
1970			btrfs_tree_unlock(child);
1971			free_extent_buffer(child);
1972			goto enospc;
1973		}
1974
1975		tree_mod_log_set_root_pointer(root, child, 1);
 
 
 
 
 
 
1976		rcu_assign_pointer(root->node, child);
1977
1978		add_root_to_dirty_list(root);
1979		btrfs_tree_unlock(child);
1980
1981		path->locks[level] = 0;
1982		path->nodes[level] = NULL;
1983		clean_tree_block(trans, root, mid);
1984		btrfs_tree_unlock(mid);
1985		/* once for the path */
1986		free_extent_buffer(mid);
1987
1988		root_sub_used(root, mid->len);
1989		btrfs_free_tree_block(trans, root, mid, 0, 1);
1990		/* once for the root ptr */
1991		free_extent_buffer_stale(mid);
 
 
 
 
1992		return 0;
1993	}
1994	if (btrfs_header_nritems(mid) >
1995	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996		return 0;
1997
1998	left = read_node_slot(root, parent, pslot - 1);
1999	if (left) {
2000		btrfs_tree_lock(left);
2001		btrfs_set_lock_blocking(left);
 
 
 
 
 
2002		wret = btrfs_cow_block(trans, root, left,
2003				       parent, pslot - 1, &left);
 
2004		if (wret) {
2005			ret = wret;
2006			goto enospc;
2007		}
2008	}
2009	right = read_node_slot(root, parent, pslot + 1);
2010	if (right) {
2011		btrfs_tree_lock(right);
2012		btrfs_set_lock_blocking(right);
 
 
 
 
 
 
2013		wret = btrfs_cow_block(trans, root, right,
2014				       parent, pslot + 1, &right);
 
2015		if (wret) {
2016			ret = wret;
2017			goto enospc;
2018		}
2019	}
2020
2021	/* first, try to make some room in the middle buffer */
2022	if (left) {
2023		orig_slot += btrfs_header_nritems(left);
2024		wret = push_node_left(trans, root, left, mid, 1);
2025		if (wret < 0)
2026			ret = wret;
2027	}
2028
2029	/*
2030	 * then try to empty the right most buffer into the middle
2031	 */
2032	if (right) {
2033		wret = push_node_left(trans, root, mid, right, 1);
2034		if (wret < 0 && wret != -ENOSPC)
2035			ret = wret;
2036		if (btrfs_header_nritems(right) == 0) {
2037			clean_tree_block(trans, root, right);
2038			btrfs_tree_unlock(right);
2039			del_ptr(root, path, level + 1, pslot + 1);
2040			root_sub_used(root, right->len);
2041			btrfs_free_tree_block(trans, root, right, 0, 1);
 
 
 
 
 
 
2042			free_extent_buffer_stale(right);
2043			right = NULL;
 
 
 
 
2044		} else {
2045			struct btrfs_disk_key right_key;
2046			btrfs_node_key(right, &right_key, 0);
2047			tree_mod_log_set_node_key(root->fs_info, parent,
2048						  pslot + 1, 0);
 
 
 
 
2049			btrfs_set_node_key(parent, &right_key, pslot + 1);
2050			btrfs_mark_buffer_dirty(parent);
2051		}
2052	}
2053	if (btrfs_header_nritems(mid) == 1) {
2054		/*
2055		 * we're not allowed to leave a node with one item in the
2056		 * tree during a delete.  A deletion from lower in the tree
2057		 * could try to delete the only pointer in this node.
2058		 * So, pull some keys from the left.
2059		 * There has to be a left pointer at this point because
2060		 * otherwise we would have pulled some pointers from the
2061		 * right
2062		 */
2063		if (!left) {
2064			ret = -EROFS;
2065			btrfs_std_error(root->fs_info, ret);
2066			goto enospc;
 
 
 
 
2067		}
2068		wret = balance_node_right(trans, root, mid, left);
2069		if (wret < 0) {
2070			ret = wret;
2071			goto enospc;
2072		}
2073		if (wret == 1) {
2074			wret = push_node_left(trans, root, left, mid, 1);
2075			if (wret < 0)
2076				ret = wret;
2077		}
2078		BUG_ON(wret == 1);
2079	}
2080	if (btrfs_header_nritems(mid) == 0) {
2081		clean_tree_block(trans, root, mid);
2082		btrfs_tree_unlock(mid);
2083		del_ptr(root, path, level + 1, pslot);
2084		root_sub_used(root, mid->len);
2085		btrfs_free_tree_block(trans, root, mid, 0, 1);
 
 
 
 
 
2086		free_extent_buffer_stale(mid);
2087		mid = NULL;
 
 
 
 
2088	} else {
2089		/* update the parent key to reflect our changes */
2090		struct btrfs_disk_key mid_key;
2091		btrfs_node_key(mid, &mid_key, 0);
2092		tree_mod_log_set_node_key(root->fs_info, parent,
2093					  pslot, 0);
 
 
 
 
2094		btrfs_set_node_key(parent, &mid_key, pslot);
2095		btrfs_mark_buffer_dirty(parent);
2096	}
2097
2098	/* update the path */
2099	if (left) {
2100		if (btrfs_header_nritems(left) > orig_slot) {
2101			extent_buffer_get(left);
2102			/* left was locked after cow */
2103			path->nodes[level] = left;
2104			path->slots[level + 1] -= 1;
2105			path->slots[level] = orig_slot;
2106			if (mid) {
2107				btrfs_tree_unlock(mid);
2108				free_extent_buffer(mid);
2109			}
2110		} else {
2111			orig_slot -= btrfs_header_nritems(left);
2112			path->slots[level] = orig_slot;
2113		}
2114	}
2115	/* double check we haven't messed things up */
2116	if (orig_ptr !=
2117	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118		BUG();
2119enospc:
2120	if (right) {
2121		btrfs_tree_unlock(right);
2122		free_extent_buffer(right);
2123	}
2124	if (left) {
2125		if (path->nodes[level] != left)
2126			btrfs_tree_unlock(left);
2127		free_extent_buffer(left);
2128	}
2129	return ret;
2130}
2131
2132/* Node balancing for insertion.  Here we only split or push nodes around
2133 * when they are completely full.  This is also done top down, so we
2134 * have to be pessimistic.
2135 */
2136static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137					  struct btrfs_root *root,
2138					  struct btrfs_path *path, int level)
2139{
 
2140	struct extent_buffer *right = NULL;
2141	struct extent_buffer *mid;
2142	struct extent_buffer *left = NULL;
2143	struct extent_buffer *parent = NULL;
2144	int ret = 0;
2145	int wret;
2146	int pslot;
2147	int orig_slot = path->slots[level];
2148
2149	if (level == 0)
2150		return 1;
2151
2152	mid = path->nodes[level];
2153	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155	if (level < BTRFS_MAX_LEVEL - 1) {
2156		parent = path->nodes[level + 1];
2157		pslot = path->slots[level + 1];
2158	}
2159
2160	if (!parent)
2161		return 1;
2162
2163	left = read_node_slot(root, parent, pslot - 1);
2164
2165	/* first, try to make some room in the middle buffer */
2166	if (left) {
2167		u32 left_nr;
2168
2169		btrfs_tree_lock(left);
2170		btrfs_set_lock_blocking(left);
 
 
 
2171
2172		left_nr = btrfs_header_nritems(left);
2173		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174			wret = 1;
2175		} else {
2176			ret = btrfs_cow_block(trans, root, left, parent,
2177					      pslot - 1, &left);
 
2178			if (ret)
2179				wret = 1;
2180			else {
2181				wret = push_node_left(trans, root,
2182						      left, mid, 0);
2183			}
2184		}
2185		if (wret < 0)
2186			ret = wret;
2187		if (wret == 0) {
2188			struct btrfs_disk_key disk_key;
2189			orig_slot += left_nr;
2190			btrfs_node_key(mid, &disk_key, 0);
2191			tree_mod_log_set_node_key(root->fs_info, parent,
2192						  pslot, 0);
 
 
 
 
 
 
2193			btrfs_set_node_key(parent, &disk_key, pslot);
2194			btrfs_mark_buffer_dirty(parent);
2195			if (btrfs_header_nritems(left) > orig_slot) {
2196				path->nodes[level] = left;
2197				path->slots[level + 1] -= 1;
2198				path->slots[level] = orig_slot;
2199				btrfs_tree_unlock(mid);
2200				free_extent_buffer(mid);
2201			} else {
2202				orig_slot -=
2203					btrfs_header_nritems(left);
2204				path->slots[level] = orig_slot;
2205				btrfs_tree_unlock(left);
2206				free_extent_buffer(left);
2207			}
2208			return 0;
2209		}
2210		btrfs_tree_unlock(left);
2211		free_extent_buffer(left);
2212	}
2213	right = read_node_slot(root, parent, pslot + 1);
2214
2215	/*
2216	 * then try to empty the right most buffer into the middle
2217	 */
2218	if (right) {
2219		u32 right_nr;
2220
2221		btrfs_tree_lock(right);
2222		btrfs_set_lock_blocking(right);
 
 
 
2223
2224		right_nr = btrfs_header_nritems(right);
2225		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226			wret = 1;
2227		} else {
2228			ret = btrfs_cow_block(trans, root, right,
2229					      parent, pslot + 1,
2230					      &right);
2231			if (ret)
2232				wret = 1;
2233			else {
2234				wret = balance_node_right(trans, root,
2235							  right, mid);
2236			}
2237		}
2238		if (wret < 0)
2239			ret = wret;
2240		if (wret == 0) {
2241			struct btrfs_disk_key disk_key;
2242
2243			btrfs_node_key(right, &disk_key, 0);
2244			tree_mod_log_set_node_key(root->fs_info, parent,
2245						  pslot + 1, 0);
 
 
 
 
 
 
2246			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247			btrfs_mark_buffer_dirty(parent);
2248
2249			if (btrfs_header_nritems(mid) <= orig_slot) {
2250				path->nodes[level] = right;
2251				path->slots[level + 1] += 1;
2252				path->slots[level] = orig_slot -
2253					btrfs_header_nritems(mid);
2254				btrfs_tree_unlock(mid);
2255				free_extent_buffer(mid);
2256			} else {
2257				btrfs_tree_unlock(right);
2258				free_extent_buffer(right);
2259			}
2260			return 0;
2261		}
2262		btrfs_tree_unlock(right);
2263		free_extent_buffer(right);
2264	}
2265	return 1;
2266}
2267
2268/*
2269 * readahead one full node of leaves, finding things that are close
2270 * to the block in 'slot', and triggering ra on them.
2271 */
2272static void reada_for_search(struct btrfs_root *root,
2273			     struct btrfs_path *path,
2274			     int level, int slot, u64 objectid)
2275{
2276	struct extent_buffer *node;
2277	struct btrfs_disk_key disk_key;
2278	u32 nritems;
2279	u64 search;
2280	u64 target;
2281	u64 nread = 0;
2282	u64 gen;
2283	int direction = path->reada;
2284	struct extent_buffer *eb;
2285	u32 nr;
2286	u32 blocksize;
2287	u32 nscan = 0;
2288
2289	if (level != 1)
2290		return;
2291
2292	if (!path->nodes[level])
2293		return;
2294
2295	node = path->nodes[level];
2296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297	search = btrfs_node_blockptr(node, slot);
2298	blocksize = btrfs_level_size(root, level - 1);
2299	eb = btrfs_find_tree_block(root, search, blocksize);
2300	if (eb) {
2301		free_extent_buffer(eb);
2302		return;
 
 
 
 
2303	}
2304
2305	target = search;
2306
2307	nritems = btrfs_header_nritems(node);
2308	nr = slot;
2309
2310	while (1) {
2311		if (direction < 0) {
2312			if (nr == 0)
2313				break;
2314			nr--;
2315		} else if (direction > 0) {
 
2316			nr++;
2317			if (nr >= nritems)
2318				break;
2319		}
2320		if (path->reada < 0 && objectid) {
2321			btrfs_node_key(node, &disk_key, nr);
2322			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323				break;
2324		}
2325		search = btrfs_node_blockptr(node, nr);
2326		if ((search <= target && target - search <= 65536) ||
 
2327		    (search > target && search - target <= 65536)) {
2328			gen = btrfs_node_ptr_generation(node, nr);
2329			readahead_tree_block(root, search, blocksize, gen);
2330			nread += blocksize;
2331		}
2332		nscan++;
2333		if ((nread > 65536 || nscan > 32))
2334			break;
2335	}
2336}
2337
2338static noinline void reada_for_balance(struct btrfs_root *root,
2339				       struct btrfs_path *path, int level)
2340{
 
2341	int slot;
2342	int nritems;
2343	struct extent_buffer *parent;
2344	struct extent_buffer *eb;
2345	u64 gen;
2346	u64 block1 = 0;
2347	u64 block2 = 0;
2348	int blocksize;
2349
2350	parent = path->nodes[level + 1];
2351	if (!parent)
2352		return;
2353
2354	nritems = btrfs_header_nritems(parent);
2355	slot = path->slots[level + 1];
2356	blocksize = btrfs_level_size(root, level);
2357
2358	if (slot > 0) {
2359		block1 = btrfs_node_blockptr(parent, slot - 1);
2360		gen = btrfs_node_ptr_generation(parent, slot - 1);
2361		eb = btrfs_find_tree_block(root, block1, blocksize);
2362		/*
2363		 * if we get -eagain from btrfs_buffer_uptodate, we
2364		 * don't want to return eagain here.  That will loop
2365		 * forever
2366		 */
2367		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368			block1 = 0;
2369		free_extent_buffer(eb);
2370	}
2371	if (slot + 1 < nritems) {
2372		block2 = btrfs_node_blockptr(parent, slot + 1);
2373		gen = btrfs_node_ptr_generation(parent, slot + 1);
2374		eb = btrfs_find_tree_block(root, block2, blocksize);
2375		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376			block2 = 0;
2377		free_extent_buffer(eb);
2378	}
2379
2380	if (block1)
2381		readahead_tree_block(root, block1, blocksize, 0);
2382	if (block2)
2383		readahead_tree_block(root, block2, blocksize, 0);
2384}
2385
2386
2387/*
2388 * when we walk down the tree, it is usually safe to unlock the higher layers
2389 * in the tree.  The exceptions are when our path goes through slot 0, because
2390 * operations on the tree might require changing key pointers higher up in the
2391 * tree.
2392 *
2393 * callers might also have set path->keep_locks, which tells this code to keep
2394 * the lock if the path points to the last slot in the block.  This is part of
2395 * walking through the tree, and selecting the next slot in the higher block.
2396 *
2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2398 * if lowest_unlock is 1, level 0 won't be unlocked
2399 */
2400static noinline void unlock_up(struct btrfs_path *path, int level,
2401			       int lowest_unlock, int min_write_lock_level,
2402			       int *write_lock_level)
2403{
2404	int i;
2405	int skip_level = level;
2406	int no_skips = 0;
2407	struct extent_buffer *t;
2408
2409	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410		if (!path->nodes[i])
2411			break;
2412		if (!path->locks[i])
2413			break;
2414		if (!no_skips && path->slots[i] == 0) {
2415			skip_level = i + 1;
2416			continue;
2417		}
2418		if (!no_skips && path->keep_locks) {
2419			u32 nritems;
2420			t = path->nodes[i];
2421			nritems = btrfs_header_nritems(t);
2422			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423				skip_level = i + 1;
2424				continue;
2425			}
 
 
 
 
 
 
 
 
 
 
2426		}
2427		if (skip_level < i && i >= lowest_unlock)
2428			no_skips = 1;
2429
2430		t = path->nodes[i];
2431		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432			btrfs_tree_unlock_rw(t, path->locks[i]);
2433			path->locks[i] = 0;
2434			if (write_lock_level &&
2435			    i > min_write_lock_level &&
2436			    i <= *write_lock_level) {
2437				*write_lock_level = i - 1;
2438			}
2439		}
2440	}
2441}
2442
2443/*
2444 * This releases any locks held in the path starting at level and
2445 * going all the way up to the root.
 
 
2446 *
2447 * btrfs_search_slot will keep the lock held on higher nodes in a few
2448 * corner cases, such as COW of the block at slot zero in the node.  This
2449 * ignores those rules, and it should only be called when there are no
2450 * more updates to be done higher up in the tree.
2451 */
2452noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453{
2454	int i;
2455
2456	if (path->keep_locks)
2457		return;
2458
2459	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460		if (!path->nodes[i])
2461			continue;
2462		if (!path->locks[i])
2463			continue;
2464		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465		path->locks[i] = 0;
2466	}
2467}
2468
2469/*
2470 * helper function for btrfs_search_slot.  The goal is to find a block
2471 * in cache without setting the path to blocking.  If we find the block
2472 * we return zero and the path is unchanged.
2473 *
2474 * If we can't find the block, we set the path blocking and do some
2475 * reada.  -EAGAIN is returned and the search must be repeated.
2476 */
2477static int
2478read_block_for_search(struct btrfs_trans_handle *trans,
2479		       struct btrfs_root *root, struct btrfs_path *p,
2480		       struct extent_buffer **eb_ret, int level, int slot,
2481		       struct btrfs_key *key, u64 time_seq)
2482{
 
 
2483	u64 blocknr;
2484	u64 gen;
2485	u32 blocksize;
2486	struct extent_buffer *b = *eb_ret;
2487	struct extent_buffer *tmp;
2488	int ret;
 
 
 
 
 
 
 
 
 
 
2489
2490	blocknr = btrfs_node_blockptr(b, slot);
2491	gen = btrfs_node_ptr_generation(b, slot);
2492	blocksize = btrfs_level_size(root, level - 1);
 
 
 
 
 
 
 
 
2493
2494	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495	if (tmp) {
2496		/* first we do an atomic uptodate check */
2497		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
2498			*eb_ret = tmp;
2499			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2500		}
2501
2502		/* the pages were up to date, but we failed
2503		 * the generation number check.  Do a full
2504		 * read for the generation number that is correct.
2505		 * We must do this without dropping locks so
2506		 * we can trust our generation number
2507		 */
2508		btrfs_set_path_blocking(p);
2509
2510		/* now we're allowed to do a blocking uptodate check */
2511		ret = btrfs_read_buffer(tmp, gen);
2512		if (!ret) {
2513			*eb_ret = tmp;
2514			return 0;
2515		}
2516		free_extent_buffer(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517		btrfs_release_path(p);
2518		return -EIO;
 
 
 
 
 
 
 
2519	}
2520
2521	/*
2522	 * reduce lock contention at high levels
2523	 * of the btree by dropping locks before
2524	 * we read.  Don't release the lock on the current
2525	 * level because we need to walk this node to figure
2526	 * out which blocks to read.
2527	 */
2528	btrfs_unlock_up_safe(p, level + 1);
2529	btrfs_set_path_blocking(p);
 
 
2530
2531	free_extent_buffer(tmp);
2532	if (p->reada)
2533		reada_for_search(root, p, level, slot, key->objectid);
2534
2535	btrfs_release_path(p);
2536
2537	ret = -EAGAIN;
2538	tmp = read_tree_block(root, blocknr, blocksize, 0);
2539	if (tmp) {
2540		/*
2541		 * If the read above didn't mark this buffer up to date,
2542		 * it will never end up being up to date.  Set ret to EIO now
2543		 * and give up so that our caller doesn't loop forever
2544		 * on our EAGAINs.
2545		 */
2546		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547			ret = -EIO;
2548		free_extent_buffer(tmp);
2549	}
 
 
 
2550	return ret;
2551}
2552
2553/*
2554 * helper function for btrfs_search_slot.  This does all of the checks
2555 * for node-level blocks and does any balancing required based on
2556 * the ins_len.
2557 *
2558 * If no extra work was required, zero is returned.  If we had to
2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560 * start over
2561 */
2562static int
2563setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564		       struct btrfs_root *root, struct btrfs_path *p,
2565		       struct extent_buffer *b, int level, int ins_len,
2566		       int *write_lock_level)
2567{
2568	int ret;
 
 
2569	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571		int sret;
2572
2573		if (*write_lock_level < level + 1) {
2574			*write_lock_level = level + 1;
2575			btrfs_release_path(p);
2576			goto again;
2577		}
2578
2579		btrfs_set_path_blocking(p);
2580		reada_for_balance(root, p, level);
2581		sret = split_node(trans, root, p, level);
2582		btrfs_clear_path_blocking(p, NULL, 0);
2583
2584		BUG_ON(sret > 0);
2585		if (sret) {
2586			ret = sret;
2587			goto done;
2588		}
2589		b = p->nodes[level];
2590	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2591		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592		int sret;
2593
2594		if (*write_lock_level < level + 1) {
2595			*write_lock_level = level + 1;
2596			btrfs_release_path(p);
2597			goto again;
2598		}
2599
2600		btrfs_set_path_blocking(p);
2601		reada_for_balance(root, p, level);
2602		sret = balance_level(trans, root, p, level);
2603		btrfs_clear_path_blocking(p, NULL, 0);
2604
2605		if (sret) {
2606			ret = sret;
2607			goto done;
2608		}
2609		b = p->nodes[level];
2610		if (!b) {
2611			btrfs_release_path(p);
2612			goto again;
2613		}
2614		BUG_ON(btrfs_header_nritems(b) == 1);
2615	}
2616	return 0;
2617
2618again:
2619	ret = -EAGAIN;
2620done:
2621	return ret;
2622}
2623
2624static void key_search_validate(struct extent_buffer *b,
2625				struct btrfs_key *key,
2626				int level)
2627{
2628#ifdef CONFIG_BTRFS_ASSERT
2629	struct btrfs_disk_key disk_key;
2630
2631	btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633	if (level == 0)
2634		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635		    offsetof(struct btrfs_leaf, items[0].key),
2636		    sizeof(disk_key)));
2637	else
2638		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639		    offsetof(struct btrfs_node, ptrs[0].key),
2640		    sizeof(disk_key)));
2641#endif
2642}
2643
2644static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645		      int level, int *prev_cmp, int *slot)
2646{
2647	if (*prev_cmp != 0) {
2648		*prev_cmp = bin_search(b, key, level, slot);
2649		return *prev_cmp;
2650	}
2651
2652	key_search_validate(b, key, level);
2653	*slot = 0;
2654
2655	return 0;
2656}
2657
2658int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659		u64 iobjectid, u64 ioff, u8 key_type,
2660		struct btrfs_key *found_key)
2661{
2662	int ret;
2663	struct btrfs_key key;
2664	struct extent_buffer *eb;
2665	struct btrfs_path *path;
 
 
2666
2667	key.type = key_type;
2668	key.objectid = iobjectid;
2669	key.offset = ioff;
2670
2671	if (found_path == NULL) {
2672		path = btrfs_alloc_path();
2673		if (!path)
2674			return -ENOMEM;
2675	} else
2676		path = found_path;
2677
2678	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679	if ((ret < 0) || (found_key == NULL)) {
2680		if (path != found_path)
2681			btrfs_free_path(path);
2682		return ret;
2683	}
2684
2685	eb = path->nodes[0];
2686	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687		ret = btrfs_next_leaf(fs_root, path);
2688		if (ret)
2689			return ret;
2690		eb = path->nodes[0];
2691	}
2692
2693	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694	if (found_key->type != key.type ||
2695			found_key->objectid != key.objectid)
2696		return 1;
2697
2698	return 0;
2699}
2700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701/*
2702 * look for key in the tree.  path is filled in with nodes along the way
2703 * if key is found, we return zero and you can find the item in the leaf
2704 * level of the path (level 0)
2705 *
2706 * If the key isn't found, the path points to the slot where it should
2707 * be inserted, and 1 is returned.  If there are other errors during the
2708 * search a negative error number is returned.
2709 *
2710 * if ins_len > 0, nodes and leaves will be split as we walk down the
2711 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2712 * possible)
2713 */
2714int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2716		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717{
 
2718	struct extent_buffer *b;
2719	int slot;
2720	int ret;
2721	int err;
2722	int level;
2723	int lowest_unlock = 1;
2724	int root_lock;
2725	/* everything at write_lock_level or lower must be write locked */
2726	int write_lock_level = 0;
2727	u8 lowest_level = 0;
2728	int min_write_lock_level;
2729	int prev_cmp;
2730
 
 
 
 
 
 
2731	lowest_level = p->lowest_level;
2732	WARN_ON(lowest_level && ins_len > 0);
2733	WARN_ON(p->nodes[0] != NULL);
2734	BUG_ON(!cow && ins_len);
2735
 
 
 
 
 
 
 
2736	if (ins_len < 0) {
2737		lowest_unlock = 2;
2738
2739		/* when we are removing items, we might have to go up to level
2740		 * two as we update tree pointers  Make sure we keep write
2741		 * for those levels as well
2742		 */
2743		write_lock_level = 2;
2744	} else if (ins_len > 0) {
2745		/*
2746		 * for inserting items, make sure we have a write lock on
2747		 * level 1 so we can update keys
2748		 */
2749		write_lock_level = 1;
2750	}
2751
2752	if (!cow)
2753		write_lock_level = -1;
2754
2755	if (cow && (p->keep_locks || p->lowest_level))
2756		write_lock_level = BTRFS_MAX_LEVEL;
2757
2758	min_write_lock_level = write_lock_level;
2759
 
 
 
 
 
 
 
 
 
 
2760again:
2761	prev_cmp = -1;
2762	/*
2763	 * we try very hard to do read locks on the root
2764	 */
2765	root_lock = BTRFS_READ_LOCK;
2766	level = 0;
2767	if (p->search_commit_root) {
2768		/*
2769		 * the commit roots are read only
2770		 * so we always do read locks
2771		 */
2772		if (p->need_commit_sem)
2773			down_read(&root->fs_info->commit_root_sem);
2774		b = root->commit_root;
2775		extent_buffer_get(b);
2776		level = btrfs_header_level(b);
2777		if (p->need_commit_sem)
2778			up_read(&root->fs_info->commit_root_sem);
2779		if (!p->skip_locking)
2780			btrfs_tree_read_lock(b);
2781	} else {
2782		if (p->skip_locking) {
2783			b = btrfs_root_node(root);
2784			level = btrfs_header_level(b);
2785		} else {
2786			/* we don't know the level of the root node
2787			 * until we actually have it read locked
2788			 */
2789			b = btrfs_read_lock_root_node(root);
2790			level = btrfs_header_level(b);
2791			if (level <= write_lock_level) {
2792				/* whoops, must trade for write lock */
2793				btrfs_tree_read_unlock(b);
2794				free_extent_buffer(b);
2795				b = btrfs_lock_root_node(root);
2796				root_lock = BTRFS_WRITE_LOCK;
2797
2798				/* the level might have changed, check again */
2799				level = btrfs_header_level(b);
2800			}
2801		}
2802	}
2803	p->nodes[level] = b;
2804	if (!p->skip_locking)
2805		p->locks[level] = root_lock;
2806
2807	while (b) {
 
 
2808		level = btrfs_header_level(b);
2809
2810		/*
2811		 * setup the path here so we can release it under lock
2812		 * contention with the cow code
2813		 */
2814		if (cow) {
 
 
2815			/*
2816			 * if we don't really need to cow this block
2817			 * then we don't want to set the path blocking,
2818			 * so we test it here
2819			 */
2820			if (!should_cow_block(trans, root, b))
2821				goto cow_done;
2822
2823			btrfs_set_path_blocking(p);
2824
2825			/*
2826			 * must have write locks on this node and the
2827			 * parent
2828			 */
2829			if (level > write_lock_level ||
2830			    (level + 1 > write_lock_level &&
2831			    level + 1 < BTRFS_MAX_LEVEL &&
2832			    p->nodes[level + 1])) {
2833				write_lock_level = level + 1;
2834				btrfs_release_path(p);
2835				goto again;
2836			}
2837
2838			err = btrfs_cow_block(trans, root, b,
2839					      p->nodes[level + 1],
2840					      p->slots[level + 1], &b);
 
 
 
 
 
 
2841			if (err) {
2842				ret = err;
2843				goto done;
2844			}
2845		}
2846cow_done:
2847		p->nodes[level] = b;
2848		btrfs_clear_path_blocking(p, NULL, 0);
2849
2850		/*
2851		 * we have a lock on b and as long as we aren't changing
2852		 * the tree, there is no way to for the items in b to change.
2853		 * It is safe to drop the lock on our parent before we
2854		 * go through the expensive btree search on b.
2855		 *
2856		 * If we're inserting or deleting (ins_len != 0), then we might
2857		 * be changing slot zero, which may require changing the parent.
2858		 * So, we can't drop the lock until after we know which slot
2859		 * we're operating on.
2860		 */
2861		if (!ins_len && !p->keep_locks) {
2862			int u = level + 1;
2863
2864			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2865				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2866				p->locks[u] = 0;
2867			}
2868		}
2869
2870		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
2871
2872		if (level != 0) {
2873			int dec = 0;
2874			if (ret && slot > 0) {
2875				dec = 1;
2876				slot -= 1;
2877			}
2878			p->slots[level] = slot;
2879			err = setup_nodes_for_search(trans, root, p, b, level,
2880					     ins_len, &write_lock_level);
2881			if (err == -EAGAIN)
2882				goto again;
2883			if (err) {
2884				ret = err;
2885				goto done;
2886			}
2887			b = p->nodes[level];
2888			slot = p->slots[level];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2889
2890			/*
2891			 * slot 0 is special, if we change the key
2892			 * we have to update the parent pointer
2893			 * which means we must have a write lock
2894			 * on the parent
2895			 */
2896			if (slot == 0 && ins_len &&
2897			    write_lock_level < level + 1) {
2898				write_lock_level = level + 1;
2899				btrfs_release_path(p);
2900				goto again;
2901			}
2902
2903			unlock_up(p, level, lowest_unlock,
2904				  min_write_lock_level, &write_lock_level);
 
 
 
 
 
2905
2906			if (level == lowest_level) {
2907				if (dec)
2908					p->slots[level]++;
2909				goto done;
2910			}
2911
2912			err = read_block_for_search(trans, root, p,
2913						    &b, level, slot, key, 0);
2914			if (err == -EAGAIN)
2915				goto again;
2916			if (err) {
2917				ret = err;
2918				goto done;
2919			}
2920
2921			if (!p->skip_locking) {
2922				level = btrfs_header_level(b);
2923				if (level <= write_lock_level) {
2924					err = btrfs_try_tree_write_lock(b);
2925					if (!err) {
2926						btrfs_set_path_blocking(p);
2927						btrfs_tree_lock(b);
2928						btrfs_clear_path_blocking(p, b,
2929								  BTRFS_WRITE_LOCK);
2930					}
2931					p->locks[level] = BTRFS_WRITE_LOCK;
2932				} else {
2933					err = btrfs_try_tree_read_lock(b);
2934					if (!err) {
2935						btrfs_set_path_blocking(p);
2936						btrfs_tree_read_lock(b);
2937						btrfs_clear_path_blocking(p, b,
2938								  BTRFS_READ_LOCK);
2939					}
2940					p->locks[level] = BTRFS_READ_LOCK;
2941				}
2942				p->nodes[level] = b;
2943			}
2944		} else {
2945			p->slots[level] = slot;
2946			if (ins_len > 0 &&
2947			    btrfs_leaf_free_space(root, b) < ins_len) {
2948				if (write_lock_level < 1) {
2949					write_lock_level = 1;
2950					btrfs_release_path(p);
2951					goto again;
2952				}
2953
2954				btrfs_set_path_blocking(p);
2955				err = split_leaf(trans, root, key,
2956						 p, ins_len, ret == 0);
2957				btrfs_clear_path_blocking(p, NULL, 0);
2958
2959				BUG_ON(err > 0);
2960				if (err) {
2961					ret = err;
2962					goto done;
2963				}
2964			}
2965			if (!p->search_for_split)
2966				unlock_up(p, level, lowest_unlock,
2967					  min_write_lock_level, &write_lock_level);
2968			goto done;
2969		}
2970	}
2971	ret = 1;
2972done:
2973	/*
2974	 * we don't really know what they plan on doing with the path
2975	 * from here on, so for now just mark it as blocking
2976	 */
2977	if (!p->leave_spinning)
2978		btrfs_set_path_blocking(p);
2979	if (ret < 0)
2980		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2981	return ret;
2982}
 
2983
2984/*
2985 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2986 * current state of the tree together with the operations recorded in the tree
2987 * modification log to search for the key in a previous version of this tree, as
2988 * denoted by the time_seq parameter.
2989 *
2990 * Naturally, there is no support for insert, delete or cow operations.
2991 *
2992 * The resulting path and return value will be set up as if we called
2993 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2994 */
2995int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2996			  struct btrfs_path *p, u64 time_seq)
2997{
 
2998	struct extent_buffer *b;
2999	int slot;
3000	int ret;
3001	int err;
3002	int level;
3003	int lowest_unlock = 1;
3004	u8 lowest_level = 0;
3005	int prev_cmp = -1;
3006
3007	lowest_level = p->lowest_level;
3008	WARN_ON(p->nodes[0] != NULL);
 
3009
3010	if (p->search_commit_root) {
3011		BUG_ON(time_seq);
3012		return btrfs_search_slot(NULL, root, key, p, 0, 0);
3013	}
3014
3015again:
3016	b = get_old_root(root, time_seq);
 
 
 
 
3017	level = btrfs_header_level(b);
3018	p->locks[level] = BTRFS_READ_LOCK;
3019
3020	while (b) {
 
 
3021		level = btrfs_header_level(b);
3022		p->nodes[level] = b;
3023		btrfs_clear_path_blocking(p, NULL, 0);
3024
3025		/*
3026		 * we have a lock on b and as long as we aren't changing
3027		 * the tree, there is no way to for the items in b to change.
3028		 * It is safe to drop the lock on our parent before we
3029		 * go through the expensive btree search on b.
3030		 */
3031		btrfs_unlock_up_safe(p, level + 1);
3032
3033		/*
3034		 * Since we can unwind eb's we want to do a real search every
3035		 * time.
3036		 */
3037		prev_cmp = -1;
3038		ret = key_search(b, key, level, &prev_cmp, &slot);
3039
3040		if (level != 0) {
3041			int dec = 0;
3042			if (ret && slot > 0) {
3043				dec = 1;
3044				slot -= 1;
3045			}
3046			p->slots[level] = slot;
3047			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
 
 
 
 
 
 
 
3048
3049			if (level == lowest_level) {
3050				if (dec)
3051					p->slots[level]++;
3052				goto done;
3053			}
3054
3055			err = read_block_for_search(NULL, root, p, &b, level,
3056						    slot, key, time_seq);
3057			if (err == -EAGAIN)
3058				goto again;
3059			if (err) {
3060				ret = err;
3061				goto done;
3062			}
3063
3064			level = btrfs_header_level(b);
3065			err = btrfs_try_tree_read_lock(b);
3066			if (!err) {
3067				btrfs_set_path_blocking(p);
3068				btrfs_tree_read_lock(b);
3069				btrfs_clear_path_blocking(p, b,
3070							  BTRFS_READ_LOCK);
3071			}
3072			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3073			if (!b) {
3074				ret = -ENOMEM;
3075				goto done;
3076			}
3077			p->locks[level] = BTRFS_READ_LOCK;
3078			p->nodes[level] = b;
3079		} else {
3080			p->slots[level] = slot;
3081			unlock_up(p, level, lowest_unlock, 0, NULL);
3082			goto done;
3083		}
 
 
3084	}
3085	ret = 1;
3086done:
3087	if (!p->leave_spinning)
3088		btrfs_set_path_blocking(p);
3089	if (ret < 0)
3090		btrfs_release_path(p);
3091
3092	return ret;
3093}
3094
3095/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096 * helper to use instead of search slot if no exact match is needed but
3097 * instead the next or previous item should be returned.
3098 * When find_higher is true, the next higher item is returned, the next lower
3099 * otherwise.
3100 * When return_any and find_higher are both true, and no higher item is found,
3101 * return the next lower instead.
3102 * When return_any is true and find_higher is false, and no lower item is found,
3103 * return the next higher instead.
3104 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3105 * < 0 on error
3106 */
3107int btrfs_search_slot_for_read(struct btrfs_root *root,
3108			       struct btrfs_key *key, struct btrfs_path *p,
3109			       int find_higher, int return_any)
 
3110{
3111	int ret;
3112	struct extent_buffer *leaf;
3113
3114again:
3115	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3116	if (ret <= 0)
3117		return ret;
3118	/*
3119	 * a return value of 1 means the path is at the position where the
3120	 * item should be inserted. Normally this is the next bigger item,
3121	 * but in case the previous item is the last in a leaf, path points
3122	 * to the first free slot in the previous leaf, i.e. at an invalid
3123	 * item.
3124	 */
3125	leaf = p->nodes[0];
3126
3127	if (find_higher) {
3128		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3129			ret = btrfs_next_leaf(root, p);
3130			if (ret <= 0)
3131				return ret;
3132			if (!return_any)
3133				return 1;
3134			/*
3135			 * no higher item found, return the next
3136			 * lower instead
3137			 */
3138			return_any = 0;
3139			find_higher = 0;
3140			btrfs_release_path(p);
3141			goto again;
3142		}
3143	} else {
3144		if (p->slots[0] == 0) {
3145			ret = btrfs_prev_leaf(root, p);
3146			if (ret < 0)
3147				return ret;
3148			if (!ret) {
3149				leaf = p->nodes[0];
3150				if (p->slots[0] == btrfs_header_nritems(leaf))
3151					p->slots[0]--;
3152				return 0;
3153			}
3154			if (!return_any)
3155				return 1;
3156			/*
3157			 * no lower item found, return the next
3158			 * higher instead
3159			 */
3160			return_any = 0;
3161			find_higher = 1;
3162			btrfs_release_path(p);
3163			goto again;
3164		} else {
3165			--p->slots[0];
3166		}
3167	}
3168	return 0;
3169}
3170
3171/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172 * adjust the pointers going up the tree, starting at level
3173 * making sure the right key of each node is points to 'key'.
3174 * This is used after shifting pointers to the left, so it stops
3175 * fixing up pointers when a given leaf/node is not in slot 0 of the
3176 * higher levels
3177 *
3178 */
3179static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3180			   struct btrfs_disk_key *key, int level)
 
3181{
3182	int i;
3183	struct extent_buffer *t;
 
3184
3185	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3186		int tslot = path->slots[i];
 
3187		if (!path->nodes[i])
3188			break;
3189		t = path->nodes[i];
3190		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
 
 
3191		btrfs_set_node_key(t, key, tslot);
3192		btrfs_mark_buffer_dirty(path->nodes[i]);
3193		if (tslot != 0)
3194			break;
3195	}
3196}
3197
3198/*
3199 * update item key.
3200 *
3201 * This function isn't completely safe. It's the caller's responsibility
3202 * that the new key won't break the order
3203 */
3204void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3205			     struct btrfs_key *new_key)
 
3206{
 
3207	struct btrfs_disk_key disk_key;
3208	struct extent_buffer *eb;
3209	int slot;
3210
3211	eb = path->nodes[0];
3212	slot = path->slots[0];
3213	if (slot > 0) {
3214		btrfs_item_key(eb, &disk_key, slot - 1);
3215		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3216	}
3217	if (slot < btrfs_header_nritems(eb) - 1) {
3218		btrfs_item_key(eb, &disk_key, slot + 1);
3219		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3220	}
3221
3222	btrfs_cpu_key_to_disk(&disk_key, new_key);
3223	btrfs_set_item_key(eb, &disk_key, slot);
3224	btrfs_mark_buffer_dirty(eb);
3225	if (slot == 0)
3226		fixup_low_keys(root, path, &disk_key, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227}
3228
3229/*
3230 * try to push data from one node into the next node left in the
3231 * tree.
3232 *
3233 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3234 * error, and > 0 if there was no room in the left hand block.
3235 */
3236static int push_node_left(struct btrfs_trans_handle *trans,
3237			  struct btrfs_root *root, struct extent_buffer *dst,
3238			  struct extent_buffer *src, int empty)
3239{
 
3240	int push_items = 0;
3241	int src_nritems;
3242	int dst_nritems;
3243	int ret = 0;
3244
3245	src_nritems = btrfs_header_nritems(src);
3246	dst_nritems = btrfs_header_nritems(dst);
3247	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3248	WARN_ON(btrfs_header_generation(src) != trans->transid);
3249	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3250
3251	if (!empty && src_nritems <= 8)
3252		return 1;
3253
3254	if (push_items <= 0)
3255		return 1;
3256
3257	if (empty) {
3258		push_items = min(src_nritems, push_items);
3259		if (push_items < src_nritems) {
3260			/* leave at least 8 pointers in the node if
3261			 * we aren't going to empty it
3262			 */
3263			if (src_nritems - push_items < 8) {
3264				if (push_items <= 8)
3265					return 1;
3266				push_items -= 8;
3267			}
3268		}
3269	} else
3270		push_items = min(src_nritems - 8, push_items);
3271
3272	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3273				   push_items);
 
 
 
 
 
3274	if (ret) {
3275		btrfs_abort_transaction(trans, root, ret);
3276		return ret;
3277	}
3278	copy_extent_buffer(dst, src,
3279			   btrfs_node_key_ptr_offset(dst_nritems),
3280			   btrfs_node_key_ptr_offset(0),
3281			   push_items * sizeof(struct btrfs_key_ptr));
3282
3283	if (push_items < src_nritems) {
3284		/*
3285		 * don't call tree_mod_log_eb_move here, key removal was already
3286		 * fully logged by tree_mod_log_eb_copy above.
3287		 */
3288		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3289				      btrfs_node_key_ptr_offset(push_items),
3290				      (src_nritems - push_items) *
3291				      sizeof(struct btrfs_key_ptr));
3292	}
3293	btrfs_set_header_nritems(src, src_nritems - push_items);
3294	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3295	btrfs_mark_buffer_dirty(src);
3296	btrfs_mark_buffer_dirty(dst);
3297
3298	return ret;
3299}
3300
3301/*
3302 * try to push data from one node into the next node right in the
3303 * tree.
3304 *
3305 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3306 * error, and > 0 if there was no room in the right hand block.
3307 *
3308 * this will  only push up to 1/2 the contents of the left node over
3309 */
3310static int balance_node_right(struct btrfs_trans_handle *trans,
3311			      struct btrfs_root *root,
3312			      struct extent_buffer *dst,
3313			      struct extent_buffer *src)
3314{
 
3315	int push_items = 0;
3316	int max_push;
3317	int src_nritems;
3318	int dst_nritems;
3319	int ret = 0;
3320
3321	WARN_ON(btrfs_header_generation(src) != trans->transid);
3322	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3323
3324	src_nritems = btrfs_header_nritems(src);
3325	dst_nritems = btrfs_header_nritems(dst);
3326	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3327	if (push_items <= 0)
3328		return 1;
3329
3330	if (src_nritems < 4)
3331		return 1;
3332
3333	max_push = src_nritems / 2 + 1;
3334	/* don't try to empty the node */
3335	if (max_push >= src_nritems)
3336		return 1;
3337
3338	if (max_push < push_items)
3339		push_items = max_push;
3340
3341	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3342	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3343				      btrfs_node_key_ptr_offset(0),
 
 
 
 
 
 
 
 
 
 
3344				      (dst_nritems) *
3345				      sizeof(struct btrfs_key_ptr));
3346
3347	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3348				   src_nritems - push_items, push_items);
3349	if (ret) {
3350		btrfs_abort_transaction(trans, root, ret);
3351		return ret;
3352	}
3353	copy_extent_buffer(dst, src,
3354			   btrfs_node_key_ptr_offset(0),
3355			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3356			   push_items * sizeof(struct btrfs_key_ptr));
3357
3358	btrfs_set_header_nritems(src, src_nritems - push_items);
3359	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3360
3361	btrfs_mark_buffer_dirty(src);
3362	btrfs_mark_buffer_dirty(dst);
3363
3364	return ret;
3365}
3366
3367/*
3368 * helper function to insert a new root level in the tree.
3369 * A new node is allocated, and a single item is inserted to
3370 * point to the existing root
3371 *
3372 * returns zero on success or < 0 on failure.
3373 */
3374static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3375			   struct btrfs_root *root,
3376			   struct btrfs_path *path, int level)
3377{
3378	u64 lower_gen;
3379	struct extent_buffer *lower;
3380	struct extent_buffer *c;
3381	struct extent_buffer *old;
3382	struct btrfs_disk_key lower_key;
 
3383
3384	BUG_ON(path->nodes[level]);
3385	BUG_ON(path->nodes[level-1] != root->node);
3386
3387	lower = path->nodes[level-1];
3388	if (level == 1)
3389		btrfs_item_key(lower, &lower_key, 0);
3390	else
3391		btrfs_node_key(lower, &lower_key, 0);
3392
3393	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3394				   root->root_key.objectid, &lower_key,
3395				   level, root->node->start, 0);
3396	if (IS_ERR(c))
3397		return PTR_ERR(c);
3398
3399	root_add_used(root, root->nodesize);
3400
3401	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3402	btrfs_set_header_nritems(c, 1);
3403	btrfs_set_header_level(c, level);
3404	btrfs_set_header_bytenr(c, c->start);
3405	btrfs_set_header_generation(c, trans->transid);
3406	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3407	btrfs_set_header_owner(c, root->root_key.objectid);
3408
3409	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3410			    BTRFS_FSID_SIZE);
3411
3412	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3413			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3414
3415	btrfs_set_node_key(c, &lower_key, 0);
3416	btrfs_set_node_blockptr(c, 0, lower->start);
3417	lower_gen = btrfs_header_generation(lower);
3418	WARN_ON(lower_gen != trans->transid);
3419
3420	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3421
3422	btrfs_mark_buffer_dirty(c);
3423
3424	old = root->node;
3425	tree_mod_log_set_root_pointer(root, c, 0);
 
 
 
 
 
 
 
 
 
 
3426	rcu_assign_pointer(root->node, c);
3427
3428	/* the super has an extra ref to root->node */
3429	free_extent_buffer(old);
3430
3431	add_root_to_dirty_list(root);
3432	extent_buffer_get(c);
3433	path->nodes[level] = c;
3434	path->locks[level] = BTRFS_WRITE_LOCK;
3435	path->slots[level] = 0;
3436	return 0;
3437}
3438
3439/*
3440 * worker function to insert a single pointer in a node.
3441 * the node should have enough room for the pointer already
3442 *
3443 * slot and level indicate where you want the key to go, and
3444 * blocknr is the block the key points to.
3445 */
3446static void insert_ptr(struct btrfs_trans_handle *trans,
3447		       struct btrfs_root *root, struct btrfs_path *path,
3448		       struct btrfs_disk_key *key, u64 bytenr,
3449		       int slot, int level)
3450{
3451	struct extent_buffer *lower;
3452	int nritems;
3453	int ret;
3454
3455	BUG_ON(!path->nodes[level]);
3456	btrfs_assert_tree_locked(path->nodes[level]);
3457	lower = path->nodes[level];
3458	nritems = btrfs_header_nritems(lower);
3459	BUG_ON(slot > nritems);
3460	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3461	if (slot != nritems) {
3462		if (level)
3463			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3464					     slot, nritems - slot);
 
 
 
 
 
3465		memmove_extent_buffer(lower,
3466			      btrfs_node_key_ptr_offset(slot + 1),
3467			      btrfs_node_key_ptr_offset(slot),
3468			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3469	}
3470	if (level) {
3471		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3472					      MOD_LOG_KEY_ADD, GFP_NOFS);
3473		BUG_ON(ret < 0);
 
 
 
3474	}
3475	btrfs_set_node_key(lower, key, slot);
3476	btrfs_set_node_blockptr(lower, slot, bytenr);
3477	WARN_ON(trans->transid == 0);
3478	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3479	btrfs_set_header_nritems(lower, nritems + 1);
3480	btrfs_mark_buffer_dirty(lower);
 
 
3481}
3482
3483/*
3484 * split the node at the specified level in path in two.
3485 * The path is corrected to point to the appropriate node after the split
3486 *
3487 * Before splitting this tries to make some room in the node by pushing
3488 * left and right, if either one works, it returns right away.
3489 *
3490 * returns 0 on success and < 0 on failure
3491 */
3492static noinline int split_node(struct btrfs_trans_handle *trans,
3493			       struct btrfs_root *root,
3494			       struct btrfs_path *path, int level)
3495{
 
3496	struct extent_buffer *c;
3497	struct extent_buffer *split;
3498	struct btrfs_disk_key disk_key;
3499	int mid;
3500	int ret;
3501	u32 c_nritems;
3502
3503	c = path->nodes[level];
3504	WARN_ON(btrfs_header_generation(c) != trans->transid);
3505	if (c == root->node) {
3506		/*
3507		 * trying to split the root, lets make a new one
3508		 *
3509		 * tree mod log: We don't log_removal old root in
3510		 * insert_new_root, because that root buffer will be kept as a
3511		 * normal node. We are going to log removal of half of the
3512		 * elements below with tree_mod_log_eb_copy. We're holding a
3513		 * tree lock on the buffer, which is why we cannot race with
3514		 * other tree_mod_log users.
3515		 */
3516		ret = insert_new_root(trans, root, path, level + 1);
3517		if (ret)
3518			return ret;
3519	} else {
3520		ret = push_nodes_for_insert(trans, root, path, level);
3521		c = path->nodes[level];
3522		if (!ret && btrfs_header_nritems(c) <
3523		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3524			return 0;
3525		if (ret < 0)
3526			return ret;
3527	}
3528
3529	c_nritems = btrfs_header_nritems(c);
3530	mid = (c_nritems + 1) / 2;
3531	btrfs_node_key(c, &disk_key, mid);
3532
3533	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3534					root->root_key.objectid,
3535					&disk_key, level, c->start, 0);
3536	if (IS_ERR(split))
3537		return PTR_ERR(split);
3538
3539	root_add_used(root, root->nodesize);
3540
3541	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3542	btrfs_set_header_level(split, btrfs_header_level(c));
3543	btrfs_set_header_bytenr(split, split->start);
3544	btrfs_set_header_generation(split, trans->transid);
3545	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3546	btrfs_set_header_owner(split, root->root_key.objectid);
3547	write_extent_buffer(split, root->fs_info->fsid,
3548			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3549	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3550			    btrfs_header_chunk_tree_uuid(split),
3551			    BTRFS_UUID_SIZE);
3552
3553	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3554				   mid, c_nritems - mid);
3555	if (ret) {
3556		btrfs_abort_transaction(trans, root, ret);
 
 
3557		return ret;
3558	}
3559	copy_extent_buffer(split, c,
3560			   btrfs_node_key_ptr_offset(0),
3561			   btrfs_node_key_ptr_offset(mid),
3562			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3563	btrfs_set_header_nritems(split, c_nritems - mid);
3564	btrfs_set_header_nritems(c, mid);
3565	ret = 0;
3566
3567	btrfs_mark_buffer_dirty(c);
3568	btrfs_mark_buffer_dirty(split);
3569
3570	insert_ptr(trans, root, path, &disk_key, split->start,
3571		   path->slots[level + 1] + 1, level + 1);
 
 
 
 
 
3572
3573	if (path->slots[level] >= mid) {
3574		path->slots[level] -= mid;
3575		btrfs_tree_unlock(c);
3576		free_extent_buffer(c);
3577		path->nodes[level] = split;
3578		path->slots[level + 1] += 1;
3579	} else {
3580		btrfs_tree_unlock(split);
3581		free_extent_buffer(split);
3582	}
3583	return ret;
3584}
3585
3586/*
3587 * how many bytes are required to store the items in a leaf.  start
3588 * and nr indicate which items in the leaf to check.  This totals up the
3589 * space used both by the item structs and the item data
3590 */
3591static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3592{
3593	struct btrfs_item *start_item;
3594	struct btrfs_item *end_item;
3595	struct btrfs_map_token token;
3596	int data_len;
3597	int nritems = btrfs_header_nritems(l);
3598	int end = min(nritems, start + nr) - 1;
3599
3600	if (!nr)
3601		return 0;
3602	btrfs_init_map_token(&token);
3603	start_item = btrfs_item_nr(start);
3604	end_item = btrfs_item_nr(end);
3605	data_len = btrfs_token_item_offset(l, start_item, &token) +
3606		btrfs_token_item_size(l, start_item, &token);
3607	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3608	data_len += sizeof(struct btrfs_item) * nr;
3609	WARN_ON(data_len < 0);
3610	return data_len;
3611}
3612
3613/*
3614 * The space between the end of the leaf items and
3615 * the start of the leaf data.  IOW, how much room
3616 * the leaf has left for both items and data
3617 */
3618noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3619				   struct extent_buffer *leaf)
3620{
 
3621	int nritems = btrfs_header_nritems(leaf);
3622	int ret;
3623	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
 
3624	if (ret < 0) {
3625		btrfs_crit(root->fs_info,
3626			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3627		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3628		       leaf_space_used(leaf, 0, nritems), nritems);
 
3629	}
3630	return ret;
3631}
3632
3633/*
3634 * min slot controls the lowest index we're willing to push to the
3635 * right.  We'll push up to and including min_slot, but no lower
3636 */
3637static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3638				      struct btrfs_root *root,
3639				      struct btrfs_path *path,
3640				      int data_size, int empty,
3641				      struct extent_buffer *right,
3642				      int free_space, u32 left_nritems,
3643				      u32 min_slot)
3644{
 
3645	struct extent_buffer *left = path->nodes[0];
3646	struct extent_buffer *upper = path->nodes[1];
3647	struct btrfs_map_token token;
3648	struct btrfs_disk_key disk_key;
3649	int slot;
3650	u32 i;
3651	int push_space = 0;
3652	int push_items = 0;
3653	struct btrfs_item *item;
3654	u32 nr;
3655	u32 right_nritems;
3656	u32 data_end;
3657	u32 this_item_size;
3658
3659	btrfs_init_map_token(&token);
3660
3661	if (empty)
3662		nr = 0;
3663	else
3664		nr = max_t(u32, 1, min_slot);
3665
3666	if (path->slots[0] >= left_nritems)
3667		push_space += data_size;
3668
3669	slot = path->slots[1];
3670	i = left_nritems - 1;
3671	while (i >= nr) {
3672		item = btrfs_item_nr(i);
3673
3674		if (!empty && push_items > 0) {
3675			if (path->slots[0] > i)
3676				break;
3677			if (path->slots[0] == i) {
3678				int space = btrfs_leaf_free_space(root, left);
 
3679				if (space + push_space * 2 > free_space)
3680					break;
3681			}
3682		}
3683
3684		if (path->slots[0] == i)
3685			push_space += data_size;
3686
3687		this_item_size = btrfs_item_size(left, item);
3688		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3689			break;
3690
3691		push_items++;
3692		push_space += this_item_size + sizeof(*item);
3693		if (i == 0)
3694			break;
3695		i--;
3696	}
3697
3698	if (push_items == 0)
3699		goto out_unlock;
3700
3701	WARN_ON(!empty && push_items == left_nritems);
3702
3703	/* push left to right */
3704	right_nritems = btrfs_header_nritems(right);
3705
3706	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3707	push_space -= leaf_data_end(root, left);
3708
3709	/* make room in the right data area */
3710	data_end = leaf_data_end(root, right);
3711	memmove_extent_buffer(right,
3712			      btrfs_leaf_data(right) + data_end - push_space,
3713			      btrfs_leaf_data(right) + data_end,
3714			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3715
3716	/* copy from the left data area */
3717	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3718		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3719		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3720		     push_space);
3721
3722	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3723			      btrfs_item_nr_offset(0),
3724			      right_nritems * sizeof(struct btrfs_item));
3725
3726	/* copy the items from left to right */
3727	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3728		   btrfs_item_nr_offset(left_nritems - push_items),
3729		   push_items * sizeof(struct btrfs_item));
3730
3731	/* update the item pointers */
 
3732	right_nritems += push_items;
3733	btrfs_set_header_nritems(right, right_nritems);
3734	push_space = BTRFS_LEAF_DATA_SIZE(root);
3735	for (i = 0; i < right_nritems; i++) {
3736		item = btrfs_item_nr(i);
3737		push_space -= btrfs_token_item_size(right, item, &token);
3738		btrfs_set_token_item_offset(right, item, push_space, &token);
3739	}
3740
3741	left_nritems -= push_items;
3742	btrfs_set_header_nritems(left, left_nritems);
3743
3744	if (left_nritems)
3745		btrfs_mark_buffer_dirty(left);
3746	else
3747		clean_tree_block(trans, root, left);
3748
3749	btrfs_mark_buffer_dirty(right);
3750
3751	btrfs_item_key(right, &disk_key, 0);
3752	btrfs_set_node_key(upper, &disk_key, slot + 1);
3753	btrfs_mark_buffer_dirty(upper);
3754
3755	/* then fixup the leaf pointer in the path */
3756	if (path->slots[0] >= left_nritems) {
3757		path->slots[0] -= left_nritems;
3758		if (btrfs_header_nritems(path->nodes[0]) == 0)
3759			clean_tree_block(trans, root, path->nodes[0]);
3760		btrfs_tree_unlock(path->nodes[0]);
3761		free_extent_buffer(path->nodes[0]);
3762		path->nodes[0] = right;
3763		path->slots[1] += 1;
3764	} else {
3765		btrfs_tree_unlock(right);
3766		free_extent_buffer(right);
3767	}
3768	return 0;
3769
3770out_unlock:
3771	btrfs_tree_unlock(right);
3772	free_extent_buffer(right);
3773	return 1;
3774}
3775
3776/*
3777 * push some data in the path leaf to the right, trying to free up at
3778 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3779 *
3780 * returns 1 if the push failed because the other node didn't have enough
3781 * room, 0 if everything worked out and < 0 if there were major errors.
3782 *
3783 * this will push starting from min_slot to the end of the leaf.  It won't
3784 * push any slot lower than min_slot
3785 */
3786static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3787			   *root, struct btrfs_path *path,
3788			   int min_data_size, int data_size,
3789			   int empty, u32 min_slot)
3790{
3791	struct extent_buffer *left = path->nodes[0];
3792	struct extent_buffer *right;
3793	struct extent_buffer *upper;
3794	int slot;
3795	int free_space;
3796	u32 left_nritems;
3797	int ret;
3798
3799	if (!path->nodes[1])
3800		return 1;
3801
3802	slot = path->slots[1];
3803	upper = path->nodes[1];
3804	if (slot >= btrfs_header_nritems(upper) - 1)
3805		return 1;
3806
3807	btrfs_assert_tree_locked(path->nodes[1]);
3808
3809	right = read_node_slot(root, upper, slot + 1);
3810	if (right == NULL)
3811		return 1;
3812
3813	btrfs_tree_lock(right);
3814	btrfs_set_lock_blocking(right);
3815
3816	free_space = btrfs_leaf_free_space(root, right);
3817	if (free_space < data_size)
3818		goto out_unlock;
3819
3820	/* cow and double check */
3821	ret = btrfs_cow_block(trans, root, right, upper,
3822			      slot + 1, &right);
3823	if (ret)
3824		goto out_unlock;
3825
3826	free_space = btrfs_leaf_free_space(root, right);
3827	if (free_space < data_size)
3828		goto out_unlock;
3829
3830	left_nritems = btrfs_header_nritems(left);
3831	if (left_nritems == 0)
3832		goto out_unlock;
3833
 
 
 
 
 
 
 
3834	if (path->slots[0] == left_nritems && !empty) {
3835		/* Key greater than all keys in the leaf, right neighbor has
3836		 * enough room for it and we're not emptying our leaf to delete
3837		 * it, therefore use right neighbor to insert the new item and
3838		 * no need to touch/dirty our left leaft. */
3839		btrfs_tree_unlock(left);
3840		free_extent_buffer(left);
3841		path->nodes[0] = right;
3842		path->slots[0] = 0;
3843		path->slots[1]++;
3844		return 0;
3845	}
3846
3847	return __push_leaf_right(trans, root, path, min_data_size, empty,
3848				right, free_space, left_nritems, min_slot);
3849out_unlock:
3850	btrfs_tree_unlock(right);
3851	free_extent_buffer(right);
3852	return 1;
3853}
3854
3855/*
3856 * push some data in the path leaf to the left, trying to free up at
3857 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3858 *
3859 * max_slot can put a limit on how far into the leaf we'll push items.  The
3860 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3861 * items
3862 */
3863static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3864				     struct btrfs_root *root,
3865				     struct btrfs_path *path, int data_size,
3866				     int empty, struct extent_buffer *left,
3867				     int free_space, u32 right_nritems,
3868				     u32 max_slot)
3869{
 
3870	struct btrfs_disk_key disk_key;
3871	struct extent_buffer *right = path->nodes[0];
3872	int i;
3873	int push_space = 0;
3874	int push_items = 0;
3875	struct btrfs_item *item;
3876	u32 old_left_nritems;
3877	u32 nr;
3878	int ret = 0;
3879	u32 this_item_size;
3880	u32 old_left_item_size;
3881	struct btrfs_map_token token;
3882
3883	btrfs_init_map_token(&token);
3884
3885	if (empty)
3886		nr = min(right_nritems, max_slot);
3887	else
3888		nr = min(right_nritems - 1, max_slot);
3889
3890	for (i = 0; i < nr; i++) {
3891		item = btrfs_item_nr(i);
3892
3893		if (!empty && push_items > 0) {
3894			if (path->slots[0] < i)
3895				break;
3896			if (path->slots[0] == i) {
3897				int space = btrfs_leaf_free_space(root, right);
 
3898				if (space + push_space * 2 > free_space)
3899					break;
3900			}
3901		}
3902
3903		if (path->slots[0] == i)
3904			push_space += data_size;
3905
3906		this_item_size = btrfs_item_size(right, item);
3907		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3908			break;
3909
3910		push_items++;
3911		push_space += this_item_size + sizeof(*item);
3912	}
3913
3914	if (push_items == 0) {
3915		ret = 1;
3916		goto out;
3917	}
3918	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3919
3920	/* push data from right to left */
3921	copy_extent_buffer(left, right,
3922			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3923			   btrfs_item_nr_offset(0),
3924			   push_items * sizeof(struct btrfs_item));
3925
3926	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3927		     btrfs_item_offset_nr(right, push_items - 1);
3928
3929	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3930		     leaf_data_end(root, left) - push_space,
3931		     btrfs_leaf_data(right) +
3932		     btrfs_item_offset_nr(right, push_items - 1),
3933		     push_space);
3934	old_left_nritems = btrfs_header_nritems(left);
3935	BUG_ON(old_left_nritems <= 0);
3936
3937	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
 
3938	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3939		u32 ioff;
3940
3941		item = btrfs_item_nr(i);
3942
3943		ioff = btrfs_token_item_offset(left, item, &token);
3944		btrfs_set_token_item_offset(left, item,
3945		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3946		      &token);
3947	}
3948	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3949
3950	/* fixup right node */
3951	if (push_items > right_nritems)
3952		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3953		       right_nritems);
3954
3955	if (push_items < right_nritems) {
3956		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3957						  leaf_data_end(root, right);
3958		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3959				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3960				      btrfs_leaf_data(right) +
3961				      leaf_data_end(root, right), push_space);
3962
3963		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3964			      btrfs_item_nr_offset(push_items),
3965			     (btrfs_header_nritems(right) - push_items) *
3966			     sizeof(struct btrfs_item));
3967	}
 
 
3968	right_nritems -= push_items;
3969	btrfs_set_header_nritems(right, right_nritems);
3970	push_space = BTRFS_LEAF_DATA_SIZE(root);
3971	for (i = 0; i < right_nritems; i++) {
3972		item = btrfs_item_nr(i);
3973
3974		push_space = push_space - btrfs_token_item_size(right,
3975								item, &token);
3976		btrfs_set_token_item_offset(right, item, push_space, &token);
3977	}
3978
3979	btrfs_mark_buffer_dirty(left);
3980	if (right_nritems)
3981		btrfs_mark_buffer_dirty(right);
3982	else
3983		clean_tree_block(trans, root, right);
3984
3985	btrfs_item_key(right, &disk_key, 0);
3986	fixup_low_keys(root, path, &disk_key, 1);
3987
3988	/* then fixup the leaf pointer in the path */
3989	if (path->slots[0] < push_items) {
3990		path->slots[0] += old_left_nritems;
3991		btrfs_tree_unlock(path->nodes[0]);
3992		free_extent_buffer(path->nodes[0]);
3993		path->nodes[0] = left;
3994		path->slots[1] -= 1;
3995	} else {
3996		btrfs_tree_unlock(left);
3997		free_extent_buffer(left);
3998		path->slots[0] -= push_items;
3999	}
4000	BUG_ON(path->slots[0] < 0);
4001	return ret;
4002out:
4003	btrfs_tree_unlock(left);
4004	free_extent_buffer(left);
4005	return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017			  *root, struct btrfs_path *path, int min_data_size,
4018			  int data_size, int empty, u32 max_slot)
4019{
4020	struct extent_buffer *right = path->nodes[0];
4021	struct extent_buffer *left;
4022	int slot;
4023	int free_space;
4024	u32 right_nritems;
4025	int ret = 0;
4026
4027	slot = path->slots[1];
4028	if (slot == 0)
4029		return 1;
4030	if (!path->nodes[1])
4031		return 1;
4032
4033	right_nritems = btrfs_header_nritems(right);
4034	if (right_nritems == 0)
4035		return 1;
4036
4037	btrfs_assert_tree_locked(path->nodes[1]);
4038
4039	left = read_node_slot(root, path->nodes[1], slot - 1);
4040	if (left == NULL)
4041		return 1;
4042
4043	btrfs_tree_lock(left);
4044	btrfs_set_lock_blocking(left);
4045
4046	free_space = btrfs_leaf_free_space(root, left);
4047	if (free_space < data_size) {
4048		ret = 1;
4049		goto out;
4050	}
4051
4052	/* cow and double check */
4053	ret = btrfs_cow_block(trans, root, left,
4054			      path->nodes[1], slot - 1, &left);
 
4055	if (ret) {
4056		/* we hit -ENOSPC, but it isn't fatal here */
4057		if (ret == -ENOSPC)
4058			ret = 1;
4059		goto out;
4060	}
4061
4062	free_space = btrfs_leaf_free_space(root, left);
4063	if (free_space < data_size) {
4064		ret = 1;
4065		goto out;
4066	}
4067
4068	return __push_leaf_left(trans, root, path, min_data_size,
4069			       empty, left, free_space, right_nritems,
4070			       max_slot);
4071out:
4072	btrfs_tree_unlock(left);
4073	free_extent_buffer(left);
4074	return ret;
4075}
4076
4077/*
4078 * split the path's leaf in two, making sure there is at least data_size
4079 * available for the resulting leaf level of the path.
4080 */
4081static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4082				    struct btrfs_root *root,
4083				    struct btrfs_path *path,
4084				    struct extent_buffer *l,
4085				    struct extent_buffer *right,
4086				    int slot, int mid, int nritems)
4087{
 
4088	int data_copy_size;
4089	int rt_data_off;
4090	int i;
 
4091	struct btrfs_disk_key disk_key;
4092	struct btrfs_map_token token;
4093
4094	btrfs_init_map_token(&token);
4095
4096	nritems = nritems - mid;
4097	btrfs_set_header_nritems(right, nritems);
4098	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4099
4100	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4101			   btrfs_item_nr_offset(mid),
4102			   nritems * sizeof(struct btrfs_item));
4103
4104	copy_extent_buffer(right, l,
4105		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4106		     data_copy_size, btrfs_leaf_data(l) +
4107		     leaf_data_end(root, l), data_copy_size);
4108
4109	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4110		      btrfs_item_end_nr(l, mid);
4111
 
 
 
4112	for (i = 0; i < nritems; i++) {
4113		struct btrfs_item *item = btrfs_item_nr(i);
4114		u32 ioff;
4115
4116		ioff = btrfs_token_item_offset(right, item, &token);
4117		btrfs_set_token_item_offset(right, item,
4118					    ioff + rt_data_off, &token);
4119	}
4120
4121	btrfs_set_header_nritems(l, mid);
4122	btrfs_item_key(right, &disk_key, 0);
4123	insert_ptr(trans, root, path, &disk_key, right->start,
4124		   path->slots[1] + 1, 1);
 
4125
4126	btrfs_mark_buffer_dirty(right);
4127	btrfs_mark_buffer_dirty(l);
4128	BUG_ON(path->slots[0] != slot);
4129
4130	if (mid <= slot) {
4131		btrfs_tree_unlock(path->nodes[0]);
4132		free_extent_buffer(path->nodes[0]);
4133		path->nodes[0] = right;
4134		path->slots[0] -= mid;
4135		path->slots[1] += 1;
4136	} else {
4137		btrfs_tree_unlock(right);
4138		free_extent_buffer(right);
4139	}
4140
4141	BUG_ON(path->slots[0] < 0);
 
 
4142}
4143
4144/*
4145 * double splits happen when we need to insert a big item in the middle
4146 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4147 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4148 *          A                 B                 C
4149 *
4150 * We avoid this by trying to push the items on either side of our target
4151 * into the adjacent leaves.  If all goes well we can avoid the double split
4152 * completely.
4153 */
4154static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4155					  struct btrfs_root *root,
4156					  struct btrfs_path *path,
4157					  int data_size)
4158{
4159	int ret;
4160	int progress = 0;
4161	int slot;
4162	u32 nritems;
4163	int space_needed = data_size;
4164
4165	slot = path->slots[0];
4166	if (slot < btrfs_header_nritems(path->nodes[0]))
4167		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4168
4169	/*
4170	 * try to push all the items after our slot into the
4171	 * right leaf
4172	 */
4173	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4174	if (ret < 0)
4175		return ret;
4176
4177	if (ret == 0)
4178		progress++;
4179
4180	nritems = btrfs_header_nritems(path->nodes[0]);
4181	/*
4182	 * our goal is to get our slot at the start or end of a leaf.  If
4183	 * we've done so we're done
4184	 */
4185	if (path->slots[0] == 0 || path->slots[0] == nritems)
4186		return 0;
4187
4188	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4189		return 0;
4190
4191	/* try to push all the items before our slot into the next leaf */
4192	slot = path->slots[0];
 
 
 
4193	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4194	if (ret < 0)
4195		return ret;
4196
4197	if (ret == 0)
4198		progress++;
4199
4200	if (progress)
4201		return 0;
4202	return 1;
4203}
4204
4205/*
4206 * split the path's leaf in two, making sure there is at least data_size
4207 * available for the resulting leaf level of the path.
4208 *
4209 * returns 0 if all went well and < 0 on failure.
4210 */
4211static noinline int split_leaf(struct btrfs_trans_handle *trans,
4212			       struct btrfs_root *root,
4213			       struct btrfs_key *ins_key,
4214			       struct btrfs_path *path, int data_size,
4215			       int extend)
4216{
4217	struct btrfs_disk_key disk_key;
4218	struct extent_buffer *l;
4219	u32 nritems;
4220	int mid;
4221	int slot;
4222	struct extent_buffer *right;
 
4223	int ret = 0;
4224	int wret;
4225	int split;
4226	int num_doubles = 0;
4227	int tried_avoid_double = 0;
4228
4229	l = path->nodes[0];
4230	slot = path->slots[0];
4231	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4232	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4233		return -EOVERFLOW;
4234
4235	/* first try to make some room by pushing left and right */
4236	if (data_size && path->nodes[1]) {
4237		int space_needed = data_size;
4238
4239		if (slot < btrfs_header_nritems(l))
4240			space_needed -= btrfs_leaf_free_space(root, l);
4241
4242		wret = push_leaf_right(trans, root, path, space_needed,
4243				       space_needed, 0, 0);
4244		if (wret < 0)
4245			return wret;
4246		if (wret) {
 
 
 
4247			wret = push_leaf_left(trans, root, path, space_needed,
4248					      space_needed, 0, (u32)-1);
4249			if (wret < 0)
4250				return wret;
4251		}
4252		l = path->nodes[0];
4253
4254		/* did the pushes work? */
4255		if (btrfs_leaf_free_space(root, l) >= data_size)
4256			return 0;
4257	}
4258
4259	if (!path->nodes[1]) {
4260		ret = insert_new_root(trans, root, path, 1);
4261		if (ret)
4262			return ret;
4263	}
4264again:
4265	split = 1;
4266	l = path->nodes[0];
4267	slot = path->slots[0];
4268	nritems = btrfs_header_nritems(l);
4269	mid = (nritems + 1) / 2;
4270
4271	if (mid <= slot) {
4272		if (nritems == 1 ||
4273		    leaf_space_used(l, mid, nritems - mid) + data_size >
4274			BTRFS_LEAF_DATA_SIZE(root)) {
4275			if (slot >= nritems) {
4276				split = 0;
4277			} else {
4278				mid = slot;
4279				if (mid != nritems &&
4280				    leaf_space_used(l, mid, nritems - mid) +
4281				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4282					if (data_size && !tried_avoid_double)
4283						goto push_for_double;
4284					split = 2;
4285				}
4286			}
4287		}
4288	} else {
4289		if (leaf_space_used(l, 0, mid) + data_size >
4290			BTRFS_LEAF_DATA_SIZE(root)) {
4291			if (!extend && data_size && slot == 0) {
4292				split = 0;
4293			} else if ((extend || !data_size) && slot == 0) {
4294				mid = 1;
4295			} else {
4296				mid = slot;
4297				if (mid != nritems &&
4298				    leaf_space_used(l, mid, nritems - mid) +
4299				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4300					if (data_size && !tried_avoid_double)
4301						goto push_for_double;
4302					split = 2;
4303				}
4304			}
4305		}
4306	}
4307
4308	if (split == 0)
4309		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4310	else
4311		btrfs_item_key(l, &disk_key, mid);
4312
4313	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4314					root->root_key.objectid,
4315					&disk_key, 0, l->start, 0);
 
 
 
 
 
 
 
 
 
4316	if (IS_ERR(right))
4317		return PTR_ERR(right);
4318
4319	root_add_used(root, root->leafsize);
4320
4321	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4322	btrfs_set_header_bytenr(right, right->start);
4323	btrfs_set_header_generation(right, trans->transid);
4324	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4325	btrfs_set_header_owner(right, root->root_key.objectid);
4326	btrfs_set_header_level(right, 0);
4327	write_extent_buffer(right, root->fs_info->fsid,
4328			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4329
4330	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4331			    btrfs_header_chunk_tree_uuid(right),
4332			    BTRFS_UUID_SIZE);
4333
4334	if (split == 0) {
4335		if (mid <= slot) {
4336			btrfs_set_header_nritems(right, 0);
4337			insert_ptr(trans, root, path, &disk_key, right->start,
4338				   path->slots[1] + 1, 1);
 
 
 
 
 
4339			btrfs_tree_unlock(path->nodes[0]);
4340			free_extent_buffer(path->nodes[0]);
4341			path->nodes[0] = right;
4342			path->slots[0] = 0;
4343			path->slots[1] += 1;
4344		} else {
4345			btrfs_set_header_nritems(right, 0);
4346			insert_ptr(trans, root, path, &disk_key, right->start,
4347					  path->slots[1], 1);
 
 
 
 
 
4348			btrfs_tree_unlock(path->nodes[0]);
4349			free_extent_buffer(path->nodes[0]);
4350			path->nodes[0] = right;
4351			path->slots[0] = 0;
4352			if (path->slots[1] == 0)
4353				fixup_low_keys(root, path, &disk_key, 1);
4354		}
4355		btrfs_mark_buffer_dirty(right);
 
 
 
 
4356		return ret;
4357	}
4358
4359	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
 
 
 
 
 
4360
4361	if (split == 2) {
4362		BUG_ON(num_doubles != 0);
4363		num_doubles++;
4364		goto again;
4365	}
4366
4367	return 0;
4368
4369push_for_double:
4370	push_for_double_split(trans, root, path, data_size);
4371	tried_avoid_double = 1;
4372	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4373		return 0;
4374	goto again;
4375}
4376
4377static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4378					 struct btrfs_root *root,
4379					 struct btrfs_path *path, int ins_len)
4380{
4381	struct btrfs_key key;
4382	struct extent_buffer *leaf;
4383	struct btrfs_file_extent_item *fi;
4384	u64 extent_len = 0;
4385	u32 item_size;
4386	int ret;
4387
4388	leaf = path->nodes[0];
4389	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4390
4391	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4392	       key.type != BTRFS_EXTENT_CSUM_KEY);
4393
4394	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4395		return 0;
4396
4397	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4398	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4399		fi = btrfs_item_ptr(leaf, path->slots[0],
4400				    struct btrfs_file_extent_item);
4401		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4402	}
4403	btrfs_release_path(path);
4404
4405	path->keep_locks = 1;
4406	path->search_for_split = 1;
4407	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4408	path->search_for_split = 0;
 
 
4409	if (ret < 0)
4410		goto err;
4411
4412	ret = -EAGAIN;
4413	leaf = path->nodes[0];
4414	/* if our item isn't there or got smaller, return now */
4415	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416		goto err;
4417
4418	/* the leaf has  changed, it now has room.  return now */
4419	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4420		goto err;
4421
4422	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423		fi = btrfs_item_ptr(leaf, path->slots[0],
4424				    struct btrfs_file_extent_item);
4425		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426			goto err;
4427	}
4428
4429	btrfs_set_path_blocking(path);
4430	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431	if (ret)
4432		goto err;
4433
4434	path->keep_locks = 0;
4435	btrfs_unlock_up_safe(path, 1);
4436	return 0;
4437err:
4438	path->keep_locks = 0;
4439	return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_trans_handle *trans,
4443			       struct btrfs_root *root,
4444			       struct btrfs_path *path,
4445			       struct btrfs_key *new_key,
4446			       unsigned long split_offset)
4447{
4448	struct extent_buffer *leaf;
4449	struct btrfs_item *item;
4450	struct btrfs_item *new_item;
4451	int slot;
4452	char *buf;
4453	u32 nritems;
4454	u32 item_size;
4455	u32 orig_offset;
4456	struct btrfs_disk_key disk_key;
4457
4458	leaf = path->nodes[0];
4459	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
 
 
 
 
 
4460
4461	btrfs_set_path_blocking(path);
4462
4463	item = btrfs_item_nr(path->slots[0]);
4464	orig_offset = btrfs_item_offset(leaf, item);
4465	item_size = btrfs_item_size(leaf, item);
4466
4467	buf = kmalloc(item_size, GFP_NOFS);
4468	if (!buf)
4469		return -ENOMEM;
4470
4471	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4472			    path->slots[0]), item_size);
4473
4474	slot = path->slots[0] + 1;
4475	nritems = btrfs_header_nritems(leaf);
4476	if (slot != nritems) {
4477		/* shift the items */
4478		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4479				btrfs_item_nr_offset(slot),
4480				(nritems - slot) * sizeof(struct btrfs_item));
4481	}
4482
4483	btrfs_cpu_key_to_disk(&disk_key, new_key);
4484	btrfs_set_item_key(leaf, &disk_key, slot);
4485
4486	new_item = btrfs_item_nr(slot);
4487
4488	btrfs_set_item_offset(leaf, new_item, orig_offset);
4489	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4490
4491	btrfs_set_item_offset(leaf, item,
4492			      orig_offset + item_size - split_offset);
4493	btrfs_set_item_size(leaf, item, split_offset);
4494
4495	btrfs_set_header_nritems(leaf, nritems + 1);
4496
4497	/* write the data for the start of the original item */
4498	write_extent_buffer(leaf, buf,
4499			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4500			    split_offset);
4501
4502	/* write the data for the new item */
4503	write_extent_buffer(leaf, buf + split_offset,
4504			    btrfs_item_ptr_offset(leaf, slot),
4505			    item_size - split_offset);
4506	btrfs_mark_buffer_dirty(leaf);
4507
4508	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4509	kfree(buf);
4510	return 0;
4511}
4512
4513/*
4514 * This function splits a single item into two items,
4515 * giving 'new_key' to the new item and splitting the
4516 * old one at split_offset (from the start of the item).
4517 *
4518 * The path may be released by this operation.  After
4519 * the split, the path is pointing to the old item.  The
4520 * new item is going to be in the same node as the old one.
4521 *
4522 * Note, the item being split must be smaller enough to live alone on
4523 * a tree block with room for one extra struct btrfs_item
4524 *
4525 * This allows us to split the item in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528int btrfs_split_item(struct btrfs_trans_handle *trans,
4529		     struct btrfs_root *root,
4530		     struct btrfs_path *path,
4531		     struct btrfs_key *new_key,
4532		     unsigned long split_offset)
4533{
4534	int ret;
4535	ret = setup_leaf_for_split(trans, root, path,
4536				   sizeof(struct btrfs_item));
4537	if (ret)
4538		return ret;
4539
4540	ret = split_item(trans, root, path, new_key, split_offset);
4541	return ret;
4542}
4543
4544/*
4545 * This function duplicate a item, giving 'new_key' to the new item.
4546 * It guarantees both items live in the same tree leaf and the new item
4547 * is contiguous with the original item.
4548 *
4549 * This allows us to split file extent in place, keeping a lock on the
4550 * leaf the entire time.
4551 */
4552int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4553			 struct btrfs_root *root,
4554			 struct btrfs_path *path,
4555			 struct btrfs_key *new_key)
4556{
4557	struct extent_buffer *leaf;
4558	int ret;
4559	u32 item_size;
4560
4561	leaf = path->nodes[0];
4562	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4563	ret = setup_leaf_for_split(trans, root, path,
4564				   item_size + sizeof(struct btrfs_item));
4565	if (ret)
4566		return ret;
4567
4568	path->slots[0]++;
4569	setup_items_for_insert(root, path, new_key, &item_size,
4570			       item_size, item_size +
4571			       sizeof(struct btrfs_item), 1);
4572	leaf = path->nodes[0];
4573	memcpy_extent_buffer(leaf,
4574			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4575			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4576			     item_size);
4577	return 0;
4578}
4579
4580/*
4581 * make the item pointed to by the path smaller.  new_size indicates
4582 * how small to make it, and from_end tells us if we just chop bytes
4583 * off the end of the item or if we shift the item to chop bytes off
4584 * the front.
4585 */
4586void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4587			 u32 new_size, int from_end)
4588{
4589	int slot;
4590	struct extent_buffer *leaf;
4591	struct btrfs_item *item;
4592	u32 nritems;
4593	unsigned int data_end;
4594	unsigned int old_data_start;
4595	unsigned int old_size;
4596	unsigned int size_diff;
4597	int i;
4598	struct btrfs_map_token token;
4599
4600	btrfs_init_map_token(&token);
4601
4602	leaf = path->nodes[0];
4603	slot = path->slots[0];
4604
4605	old_size = btrfs_item_size_nr(leaf, slot);
4606	if (old_size == new_size)
4607		return;
4608
4609	nritems = btrfs_header_nritems(leaf);
4610	data_end = leaf_data_end(root, leaf);
4611
4612	old_data_start = btrfs_item_offset_nr(leaf, slot);
4613
4614	size_diff = old_size - new_size;
4615
4616	BUG_ON(slot < 0);
4617	BUG_ON(slot >= nritems);
4618
4619	/*
4620	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4621	 */
4622	/* first correct the data pointers */
 
4623	for (i = slot; i < nritems; i++) {
4624		u32 ioff;
4625		item = btrfs_item_nr(i);
4626
4627		ioff = btrfs_token_item_offset(leaf, item, &token);
4628		btrfs_set_token_item_offset(leaf, item,
4629					    ioff + size_diff, &token);
4630	}
4631
4632	/* shift the data */
4633	if (from_end) {
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start + new_size - data_end);
4637	} else {
4638		struct btrfs_disk_key disk_key;
4639		u64 offset;
4640
4641		btrfs_item_key(leaf, &disk_key, slot);
4642
4643		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4644			unsigned long ptr;
4645			struct btrfs_file_extent_item *fi;
4646
4647			fi = btrfs_item_ptr(leaf, slot,
4648					    struct btrfs_file_extent_item);
4649			fi = (struct btrfs_file_extent_item *)(
4650			     (unsigned long)fi - size_diff);
4651
4652			if (btrfs_file_extent_type(leaf, fi) ==
4653			    BTRFS_FILE_EXTENT_INLINE) {
4654				ptr = btrfs_item_ptr_offset(leaf, slot);
4655				memmove_extent_buffer(leaf, ptr,
4656				      (unsigned long)fi,
4657				      offsetof(struct btrfs_file_extent_item,
4658						 disk_bytenr));
4659			}
4660		}
4661
4662		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4663			      data_end + size_diff, btrfs_leaf_data(leaf) +
4664			      data_end, old_data_start - data_end);
4665
4666		offset = btrfs_disk_key_offset(&disk_key);
4667		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4668		btrfs_set_item_key(leaf, &disk_key, slot);
4669		if (slot == 0)
4670			fixup_low_keys(root, path, &disk_key, 1);
4671	}
4672
4673	item = btrfs_item_nr(slot);
4674	btrfs_set_item_size(leaf, item, new_size);
4675	btrfs_mark_buffer_dirty(leaf);
4676
4677	if (btrfs_leaf_free_space(root, leaf) < 0) {
4678		btrfs_print_leaf(root, leaf);
4679		BUG();
4680	}
4681}
4682
4683/*
4684 * make the item pointed to by the path bigger, data_size is the added size.
4685 */
4686void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4687		       u32 data_size)
4688{
4689	int slot;
4690	struct extent_buffer *leaf;
4691	struct btrfs_item *item;
4692	u32 nritems;
4693	unsigned int data_end;
4694	unsigned int old_data;
4695	unsigned int old_size;
4696	int i;
4697	struct btrfs_map_token token;
4698
4699	btrfs_init_map_token(&token);
4700
4701	leaf = path->nodes[0];
4702
4703	nritems = btrfs_header_nritems(leaf);
4704	data_end = leaf_data_end(root, leaf);
4705
4706	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4707		btrfs_print_leaf(root, leaf);
4708		BUG();
4709	}
4710	slot = path->slots[0];
4711	old_data = btrfs_item_end_nr(leaf, slot);
4712
4713	BUG_ON(slot < 0);
4714	if (slot >= nritems) {
4715		btrfs_print_leaf(root, leaf);
4716		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4717		       slot, nritems);
4718		BUG_ON(1);
4719	}
4720
4721	/*
4722	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4723	 */
4724	/* first correct the data pointers */
 
4725	for (i = slot; i < nritems; i++) {
4726		u32 ioff;
4727		item = btrfs_item_nr(i);
4728
4729		ioff = btrfs_token_item_offset(leaf, item, &token);
4730		btrfs_set_token_item_offset(leaf, item,
4731					    ioff - data_size, &token);
4732	}
4733
4734	/* shift the data */
4735	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4736		      data_end - data_size, btrfs_leaf_data(leaf) +
4737		      data_end, old_data - data_end);
4738
4739	data_end = old_data;
4740	old_size = btrfs_item_size_nr(leaf, slot);
4741	item = btrfs_item_nr(slot);
4742	btrfs_set_item_size(leaf, item, old_size + data_size);
4743	btrfs_mark_buffer_dirty(leaf);
4744
4745	if (btrfs_leaf_free_space(root, leaf) < 0) {
4746		btrfs_print_leaf(root, leaf);
4747		BUG();
4748	}
4749}
4750
4751/*
4752 * this is a helper for btrfs_insert_empty_items, the main goal here is
4753 * to save stack depth by doing the bulk of the work in a function
4754 * that doesn't call btrfs_search_slot
4755 */
4756void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4757			    struct btrfs_key *cpu_key, u32 *data_size,
4758			    u32 total_data, u32 total_size, int nr)
 
 
 
 
 
 
4759{
4760	struct btrfs_item *item;
4761	int i;
4762	u32 nritems;
4763	unsigned int data_end;
4764	struct btrfs_disk_key disk_key;
4765	struct extent_buffer *leaf;
4766	int slot;
4767	struct btrfs_map_token token;
 
4768
4769	btrfs_init_map_token(&token);
 
 
 
 
 
 
 
 
 
4770
4771	leaf = path->nodes[0];
4772	slot = path->slots[0];
4773
4774	nritems = btrfs_header_nritems(leaf);
4775	data_end = leaf_data_end(root, leaf);
 
4776
4777	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4778		btrfs_print_leaf(root, leaf);
4779		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4780		       total_size, btrfs_leaf_free_space(root, leaf));
4781		BUG();
4782	}
4783
 
4784	if (slot != nritems) {
4785		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4786
4787		if (old_data < data_end) {
4788			btrfs_print_leaf(root, leaf);
4789			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4790			       slot, old_data, data_end);
4791			BUG_ON(1);
 
4792		}
4793		/*
4794		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4795		 */
4796		/* first correct the data pointers */
4797		for (i = slot; i < nritems; i++) {
4798			u32 ioff;
4799
4800			item = btrfs_item_nr( i);
4801			ioff = btrfs_token_item_offset(leaf, item, &token);
4802			btrfs_set_token_item_offset(leaf, item,
4803						    ioff - total_data, &token);
4804		}
4805		/* shift the items */
4806		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4807			      btrfs_item_nr_offset(slot),
4808			      (nritems - slot) * sizeof(struct btrfs_item));
4809
4810		/* shift the data */
4811		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4812			      data_end - total_data, btrfs_leaf_data(leaf) +
4813			      data_end, old_data - data_end);
4814		data_end = old_data;
4815	}
4816
4817	/* setup the item for the new data */
4818	for (i = 0; i < nr; i++) {
4819		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4820		btrfs_set_item_key(leaf, &disk_key, slot + i);
4821		item = btrfs_item_nr(slot + i);
4822		btrfs_set_token_item_offset(leaf, item,
4823					    data_end - data_size[i], &token);
4824		data_end -= data_size[i];
4825		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4826	}
4827
4828	btrfs_set_header_nritems(leaf, nritems + nr);
4829
4830	if (slot == 0) {
4831		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4832		fixup_low_keys(root, path, &disk_key, 1);
4833	}
4834	btrfs_unlock_up_safe(path, 1);
4835	btrfs_mark_buffer_dirty(leaf);
4836
4837	if (btrfs_leaf_free_space(root, leaf) < 0) {
4838		btrfs_print_leaf(root, leaf);
4839		BUG();
4840	}
4841}
4842
4843/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4844 * Given a key and some data, insert items into the tree.
4845 * This does all the path init required, making room in the tree if needed.
 
 
 
 
4846 */
4847int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4848			    struct btrfs_root *root,
4849			    struct btrfs_path *path,
4850			    struct btrfs_key *cpu_key, u32 *data_size,
4851			    int nr)
4852{
4853	int ret = 0;
4854	int slot;
4855	int i;
4856	u32 total_size = 0;
4857	u32 total_data = 0;
4858
4859	for (i = 0; i < nr; i++)
4860		total_data += data_size[i];
4861
4862	total_size = total_data + (nr * sizeof(struct btrfs_item));
4863	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4864	if (ret == 0)
4865		return -EEXIST;
4866	if (ret < 0)
4867		return ret;
4868
4869	slot = path->slots[0];
4870	BUG_ON(slot < 0);
4871
4872	setup_items_for_insert(root, path, cpu_key, data_size,
4873			       total_data, total_size, nr);
4874	return 0;
4875}
4876
4877/*
4878 * Given a key and some data, insert an item into the tree.
4879 * This does all the path init required, making room in the tree if needed.
4880 */
4881int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4882		      *root, struct btrfs_key *cpu_key, void *data, u32
4883		      data_size)
4884{
4885	int ret = 0;
4886	struct btrfs_path *path;
4887	struct extent_buffer *leaf;
4888	unsigned long ptr;
4889
4890	path = btrfs_alloc_path();
4891	if (!path)
4892		return -ENOMEM;
4893	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4894	if (!ret) {
4895		leaf = path->nodes[0];
4896		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4897		write_extent_buffer(leaf, data, ptr, data_size);
4898		btrfs_mark_buffer_dirty(leaf);
4899	}
4900	btrfs_free_path(path);
4901	return ret;
4902}
4903
4904/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4905 * delete the pointer from a given node.
4906 *
4907 * the tree should have been previously balanced so the deletion does not
4908 * empty a node.
 
 
4909 */
4910static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4911		    int level, int slot)
4912{
4913	struct extent_buffer *parent = path->nodes[level];
4914	u32 nritems;
4915	int ret;
4916
4917	nritems = btrfs_header_nritems(parent);
4918	if (slot != nritems - 1) {
4919		if (level)
4920			tree_mod_log_eb_move(root->fs_info, parent, slot,
4921					     slot + 1, nritems - slot - 1);
 
 
 
 
 
4922		memmove_extent_buffer(parent,
4923			      btrfs_node_key_ptr_offset(slot),
4924			      btrfs_node_key_ptr_offset(slot + 1),
4925			      sizeof(struct btrfs_key_ptr) *
4926			      (nritems - slot - 1));
4927	} else if (level) {
4928		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4929					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4930		BUG_ON(ret < 0);
 
 
 
4931	}
4932
4933	nritems--;
4934	btrfs_set_header_nritems(parent, nritems);
4935	if (nritems == 0 && parent == root->node) {
4936		BUG_ON(btrfs_header_level(root->node) != 1);
4937		/* just turn the root into a leaf and break */
4938		btrfs_set_header_level(root->node, 0);
4939	} else if (slot == 0) {
4940		struct btrfs_disk_key disk_key;
4941
4942		btrfs_node_key(parent, &disk_key, 0);
4943		fixup_low_keys(root, path, &disk_key, level + 1);
4944	}
4945	btrfs_mark_buffer_dirty(parent);
 
4946}
4947
4948/*
4949 * a helper function to delete the leaf pointed to by path->slots[1] and
4950 * path->nodes[1].
4951 *
4952 * This deletes the pointer in path->nodes[1] and frees the leaf
4953 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4954 *
4955 * The path must have already been setup for deleting the leaf, including
4956 * all the proper balancing.  path->nodes[1] must be locked.
4957 */
4958static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4959				    struct btrfs_root *root,
4960				    struct btrfs_path *path,
4961				    struct extent_buffer *leaf)
4962{
 
 
4963	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4964	del_ptr(root, path, 1, path->slots[1]);
 
 
4965
4966	/*
4967	 * btrfs_free_extent is expensive, we want to make sure we
4968	 * aren't holding any locks when we call it
4969	 */
4970	btrfs_unlock_up_safe(path, 0);
4971
4972	root_sub_used(root, leaf->len);
4973
4974	extent_buffer_get(leaf);
4975	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4976	free_extent_buffer_stale(leaf);
 
 
 
 
4977}
4978/*
4979 * delete the item at the leaf level in path.  If that empties
4980 * the leaf, remove it from the tree
4981 */
4982int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4983		    struct btrfs_path *path, int slot, int nr)
4984{
 
4985	struct extent_buffer *leaf;
4986	struct btrfs_item *item;
4987	int last_off;
4988	int dsize = 0;
4989	int ret = 0;
4990	int wret;
4991	int i;
4992	u32 nritems;
4993	struct btrfs_map_token token;
4994
4995	btrfs_init_map_token(&token);
4996
4997	leaf = path->nodes[0];
4998	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4999
5000	for (i = 0; i < nr; i++)
5001		dsize += btrfs_item_size_nr(leaf, slot + i);
5002
5003	nritems = btrfs_header_nritems(leaf);
5004
5005	if (slot + nr != nritems) {
5006		int data_end = leaf_data_end(root, leaf);
 
 
 
 
 
 
 
5007
5008		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5009			      data_end + dsize,
5010			      btrfs_leaf_data(leaf) + data_end,
5011			      last_off - data_end);
5012
 
5013		for (i = slot + nr; i < nritems; i++) {
5014			u32 ioff;
5015
5016			item = btrfs_item_nr(i);
5017			ioff = btrfs_token_item_offset(leaf, item, &token);
5018			btrfs_set_token_item_offset(leaf, item,
5019						    ioff + dsize, &token);
5020		}
5021
5022		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5023			      btrfs_item_nr_offset(slot + nr),
5024			      sizeof(struct btrfs_item) *
5025			      (nritems - slot - nr));
5026	}
5027	btrfs_set_header_nritems(leaf, nritems - nr);
5028	nritems -= nr;
5029
5030	/* delete the leaf if we've emptied it */
5031	if (nritems == 0) {
5032		if (leaf == root->node) {
5033			btrfs_set_header_level(leaf, 0);
5034		} else {
5035			btrfs_set_path_blocking(path);
5036			clean_tree_block(trans, root, leaf);
5037			btrfs_del_leaf(trans, root, path, leaf);
 
5038		}
5039	} else {
5040		int used = leaf_space_used(leaf, 0, nritems);
5041		if (slot == 0) {
5042			struct btrfs_disk_key disk_key;
5043
5044			btrfs_item_key(leaf, &disk_key, 0);
5045			fixup_low_keys(root, path, &disk_key, 1);
5046		}
5047
5048		/* delete the leaf if it is mostly empty */
5049		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
 
 
 
 
 
 
 
 
 
5050			/* push_leaf_left fixes the path.
5051			 * make sure the path still points to our leaf
5052			 * for possible call to del_ptr below
5053			 */
5054			slot = path->slots[1];
5055			extent_buffer_get(leaf);
5056
5057			btrfs_set_path_blocking(path);
5058			wret = push_leaf_left(trans, root, path, 1, 1,
5059					      1, (u32)-1);
 
 
 
 
5060			if (wret < 0 && wret != -ENOSPC)
5061				ret = wret;
5062
5063			if (path->nodes[0] == leaf &&
5064			    btrfs_header_nritems(leaf)) {
5065				wret = push_leaf_right(trans, root, path, 1,
5066						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
5067				if (wret < 0 && wret != -ENOSPC)
5068					ret = wret;
5069			}
5070
5071			if (btrfs_header_nritems(leaf) == 0) {
5072				path->slots[1] = slot;
5073				btrfs_del_leaf(trans, root, path, leaf);
 
 
5074				free_extent_buffer(leaf);
5075				ret = 0;
5076			} else {
5077				/* if we're still in the path, make sure
5078				 * we're dirty.  Otherwise, one of the
5079				 * push_leaf functions must have already
5080				 * dirtied this buffer
5081				 */
5082				if (path->nodes[0] == leaf)
5083					btrfs_mark_buffer_dirty(leaf);
5084				free_extent_buffer(leaf);
5085			}
5086		} else {
5087			btrfs_mark_buffer_dirty(leaf);
5088		}
5089	}
5090	return ret;
5091}
5092
5093/*
5094 * search the tree again to find a leaf with lesser keys
5095 * returns 0 if it found something or 1 if there are no lesser leaves.
5096 * returns < 0 on io errors.
5097 *
5098 * This may release the path, and so you may lose any locks held at the
5099 * time you call it.
5100 */
5101int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5102{
5103	struct btrfs_key key;
5104	struct btrfs_disk_key found_key;
5105	int ret;
5106
5107	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5108
5109	if (key.offset > 0) {
5110		key.offset--;
5111	} else if (key.type > 0) {
5112		key.type--;
5113		key.offset = (u64)-1;
5114	} else if (key.objectid > 0) {
5115		key.objectid--;
5116		key.type = (u8)-1;
5117		key.offset = (u64)-1;
5118	} else {
5119		return 1;
5120	}
5121
5122	btrfs_release_path(path);
5123	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5124	if (ret < 0)
5125		return ret;
5126	btrfs_item_key(path->nodes[0], &found_key, 0);
5127	ret = comp_keys(&found_key, &key);
5128	if (ret < 0)
5129		return 0;
5130	return 1;
5131}
5132
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through.  Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5156			 struct btrfs_path *path,
5157			 u64 min_trans)
5158{
5159	struct extent_buffer *cur;
5160	struct btrfs_key found_key;
5161	int slot;
5162	int sret;
5163	u32 nritems;
5164	int level;
5165	int ret = 1;
 
5166
5167	WARN_ON(!path->keep_locks);
 
5168again:
5169	cur = btrfs_read_lock_root_node(root);
5170	level = btrfs_header_level(cur);
5171	WARN_ON(path->nodes[level]);
5172	path->nodes[level] = cur;
5173	path->locks[level] = BTRFS_READ_LOCK;
5174
5175	if (btrfs_header_generation(cur) < min_trans) {
5176		ret = 1;
5177		goto out;
5178	}
5179	while (1) {
5180		nritems = btrfs_header_nritems(cur);
5181		level = btrfs_header_level(cur);
5182		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5183
5184		/* at the lowest level, we're done, setup the path and exit */
5185		if (level == path->lowest_level) {
5186			if (slot >= nritems)
5187				goto find_next_key;
5188			ret = 0;
5189			path->slots[level] = slot;
5190			btrfs_item_key_to_cpu(cur, &found_key, slot);
5191			goto out;
5192		}
5193		if (sret && slot > 0)
5194			slot--;
5195		/*
5196		 * check this node pointer against the min_trans parameters.
5197		 * If it is too old, old, skip to the next one.
5198		 */
5199		while (slot < nritems) {
5200			u64 gen;
5201
5202			gen = btrfs_node_ptr_generation(cur, slot);
5203			if (gen < min_trans) {
5204				slot++;
5205				continue;
5206			}
5207			break;
5208		}
5209find_next_key:
5210		/*
5211		 * we didn't find a candidate key in this node, walk forward
5212		 * and find another one
5213		 */
5214		if (slot >= nritems) {
5215			path->slots[level] = slot;
5216			btrfs_set_path_blocking(path);
5217			sret = btrfs_find_next_key(root, path, min_key, level,
5218						  min_trans);
5219			if (sret == 0) {
5220				btrfs_release_path(path);
5221				goto again;
5222			} else {
5223				goto out;
5224			}
5225		}
5226		/* save our key for returning back */
5227		btrfs_node_key_to_cpu(cur, &found_key, slot);
5228		path->slots[level] = slot;
5229		if (level == path->lowest_level) {
5230			ret = 0;
5231			unlock_up(path, level, 1, 0, NULL);
5232			goto out;
5233		}
5234		btrfs_set_path_blocking(path);
5235		cur = read_node_slot(root, cur, slot);
5236		BUG_ON(!cur); /* -ENOMEM */
 
 
5237
5238		btrfs_tree_read_lock(cur);
5239
5240		path->locks[level - 1] = BTRFS_READ_LOCK;
5241		path->nodes[level - 1] = cur;
5242		unlock_up(path, level, 1, 0, NULL);
5243		btrfs_clear_path_blocking(path, NULL, 0);
5244	}
5245out:
5246	if (ret == 0)
 
 
5247		memcpy(min_key, &found_key, sizeof(found_key));
5248	btrfs_set_path_blocking(path);
5249	return ret;
5250}
5251
5252static void tree_move_down(struct btrfs_root *root,
5253			   struct btrfs_path *path,
5254			   int *level, int root_level)
5255{
5256	BUG_ON(*level == 0);
5257	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5258					path->slots[*level]);
5259	path->slots[*level - 1] = 0;
5260	(*level)--;
5261}
5262
5263static int tree_move_next_or_upnext(struct btrfs_root *root,
5264				    struct btrfs_path *path,
5265				    int *level, int root_level)
5266{
5267	int ret = 0;
5268	int nritems;
5269	nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271	path->slots[*level]++;
5272
5273	while (path->slots[*level] >= nritems) {
5274		if (*level == root_level)
5275			return -1;
5276
5277		/* move upnext */
5278		path->slots[*level] = 0;
5279		free_extent_buffer(path->nodes[*level]);
5280		path->nodes[*level] = NULL;
5281		(*level)++;
5282		path->slots[*level]++;
5283
5284		nritems = btrfs_header_nritems(path->nodes[*level]);
5285		ret = 1;
5286	}
5287	return ret;
5288}
5289
5290/*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
5294static int tree_advance(struct btrfs_root *root,
5295			struct btrfs_path *path,
5296			int *level, int root_level,
5297			int allow_down,
5298			struct btrfs_key *key)
5299{
5300	int ret;
5301
5302	if (*level == 0 || !allow_down) {
5303		ret = tree_move_next_or_upnext(root, path, level, root_level);
5304	} else {
5305		tree_move_down(root, path, level, root_level);
5306		ret = 0;
5307	}
5308	if (ret >= 0) {
5309		if (*level == 0)
5310			btrfs_item_key_to_cpu(path->nodes[*level], key,
5311					path->slots[*level]);
5312		else
5313			btrfs_node_key_to_cpu(path->nodes[*level], key,
5314					path->slots[*level]);
5315	}
5316	return ret;
5317}
5318
5319static int tree_compare_item(struct btrfs_root *left_root,
5320			     struct btrfs_path *left_path,
5321			     struct btrfs_path *right_path,
5322			     char *tmp_buf)
5323{
5324	int cmp;
5325	int len1, len2;
5326	unsigned long off1, off2;
5327
5328	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5329	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5330	if (len1 != len2)
5331		return 1;
5332
5333	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5334	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5335				right_path->slots[0]);
5336
5337	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5338
5339	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5340	if (cmp)
5341		return 1;
5342	return 0;
5343}
5344
5345#define ADVANCE 1
5346#define ADVANCE_ONLY_NEXT -1
5347
5348/*
5349 * This function compares two trees and calls the provided callback for
5350 * every changed/new/deleted item it finds.
5351 * If shared tree blocks are encountered, whole subtrees are skipped, making
5352 * the compare pretty fast on snapshotted subvolumes.
5353 *
5354 * This currently works on commit roots only. As commit roots are read only,
5355 * we don't do any locking. The commit roots are protected with transactions.
5356 * Transactions are ended and rejoined when a commit is tried in between.
5357 *
5358 * This function checks for modifications done to the trees while comparing.
5359 * If it detects a change, it aborts immediately.
5360 */
5361int btrfs_compare_trees(struct btrfs_root *left_root,
5362			struct btrfs_root *right_root,
5363			btrfs_changed_cb_t changed_cb, void *ctx)
5364{
5365	int ret;
5366	int cmp;
5367	struct btrfs_path *left_path = NULL;
5368	struct btrfs_path *right_path = NULL;
5369	struct btrfs_key left_key;
5370	struct btrfs_key right_key;
5371	char *tmp_buf = NULL;
5372	int left_root_level;
5373	int right_root_level;
5374	int left_level;
5375	int right_level;
5376	int left_end_reached;
5377	int right_end_reached;
5378	int advance_left;
5379	int advance_right;
5380	u64 left_blockptr;
5381	u64 right_blockptr;
5382	u64 left_gen;
5383	u64 right_gen;
5384
5385	left_path = btrfs_alloc_path();
5386	if (!left_path) {
5387		ret = -ENOMEM;
5388		goto out;
5389	}
5390	right_path = btrfs_alloc_path();
5391	if (!right_path) {
5392		ret = -ENOMEM;
5393		goto out;
5394	}
5395
5396	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5397	if (!tmp_buf) {
5398		ret = -ENOMEM;
5399		goto out;
5400	}
5401
5402	left_path->search_commit_root = 1;
5403	left_path->skip_locking = 1;
5404	right_path->search_commit_root = 1;
5405	right_path->skip_locking = 1;
5406
5407	/*
5408	 * Strategy: Go to the first items of both trees. Then do
5409	 *
5410	 * If both trees are at level 0
5411	 *   Compare keys of current items
5412	 *     If left < right treat left item as new, advance left tree
5413	 *       and repeat
5414	 *     If left > right treat right item as deleted, advance right tree
5415	 *       and repeat
5416	 *     If left == right do deep compare of items, treat as changed if
5417	 *       needed, advance both trees and repeat
5418	 * If both trees are at the same level but not at level 0
5419	 *   Compare keys of current nodes/leafs
5420	 *     If left < right advance left tree and repeat
5421	 *     If left > right advance right tree and repeat
5422	 *     If left == right compare blockptrs of the next nodes/leafs
5423	 *       If they match advance both trees but stay at the same level
5424	 *         and repeat
5425	 *       If they don't match advance both trees while allowing to go
5426	 *         deeper and repeat
5427	 * If tree levels are different
5428	 *   Advance the tree that needs it and repeat
5429	 *
5430	 * Advancing a tree means:
5431	 *   If we are at level 0, try to go to the next slot. If that's not
5432	 *   possible, go one level up and repeat. Stop when we found a level
5433	 *   where we could go to the next slot. We may at this point be on a
5434	 *   node or a leaf.
5435	 *
5436	 *   If we are not at level 0 and not on shared tree blocks, go one
5437	 *   level deeper.
5438	 *
5439	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5440	 *   the right if possible or go up and right.
5441	 */
5442
5443	down_read(&left_root->fs_info->commit_root_sem);
5444	left_level = btrfs_header_level(left_root->commit_root);
5445	left_root_level = left_level;
5446	left_path->nodes[left_level] = left_root->commit_root;
5447	extent_buffer_get(left_path->nodes[left_level]);
5448
5449	right_level = btrfs_header_level(right_root->commit_root);
5450	right_root_level = right_level;
5451	right_path->nodes[right_level] = right_root->commit_root;
5452	extent_buffer_get(right_path->nodes[right_level]);
5453	up_read(&left_root->fs_info->commit_root_sem);
5454
5455	if (left_level == 0)
5456		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5457				&left_key, left_path->slots[left_level]);
5458	else
5459		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5460				&left_key, left_path->slots[left_level]);
5461	if (right_level == 0)
5462		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5463				&right_key, right_path->slots[right_level]);
5464	else
5465		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5466				&right_key, right_path->slots[right_level]);
5467
5468	left_end_reached = right_end_reached = 0;
5469	advance_left = advance_right = 0;
5470
5471	while (1) {
5472		if (advance_left && !left_end_reached) {
5473			ret = tree_advance(left_root, left_path, &left_level,
5474					left_root_level,
5475					advance_left != ADVANCE_ONLY_NEXT,
5476					&left_key);
5477			if (ret < 0)
5478				left_end_reached = ADVANCE;
5479			advance_left = 0;
5480		}
5481		if (advance_right && !right_end_reached) {
5482			ret = tree_advance(right_root, right_path, &right_level,
5483					right_root_level,
5484					advance_right != ADVANCE_ONLY_NEXT,
5485					&right_key);
5486			if (ret < 0)
5487				right_end_reached = ADVANCE;
5488			advance_right = 0;
5489		}
5490
5491		if (left_end_reached && right_end_reached) {
5492			ret = 0;
5493			goto out;
5494		} else if (left_end_reached) {
5495			if (right_level == 0) {
5496				ret = changed_cb(left_root, right_root,
5497						left_path, right_path,
5498						&right_key,
5499						BTRFS_COMPARE_TREE_DELETED,
5500						ctx);
5501				if (ret < 0)
5502					goto out;
5503			}
5504			advance_right = ADVANCE;
5505			continue;
5506		} else if (right_end_reached) {
5507			if (left_level == 0) {
5508				ret = changed_cb(left_root, right_root,
5509						left_path, right_path,
5510						&left_key,
5511						BTRFS_COMPARE_TREE_NEW,
5512						ctx);
5513				if (ret < 0)
5514					goto out;
5515			}
5516			advance_left = ADVANCE;
5517			continue;
5518		}
5519
5520		if (left_level == 0 && right_level == 0) {
5521			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5522			if (cmp < 0) {
5523				ret = changed_cb(left_root, right_root,
5524						left_path, right_path,
5525						&left_key,
5526						BTRFS_COMPARE_TREE_NEW,
5527						ctx);
5528				if (ret < 0)
5529					goto out;
5530				advance_left = ADVANCE;
5531			} else if (cmp > 0) {
5532				ret = changed_cb(left_root, right_root,
5533						left_path, right_path,
5534						&right_key,
5535						BTRFS_COMPARE_TREE_DELETED,
5536						ctx);
5537				if (ret < 0)
5538					goto out;
5539				advance_right = ADVANCE;
5540			} else {
5541				enum btrfs_compare_tree_result cmp;
5542
5543				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5544				ret = tree_compare_item(left_root, left_path,
5545						right_path, tmp_buf);
5546				if (ret)
5547					cmp = BTRFS_COMPARE_TREE_CHANGED;
5548				else
5549					cmp = BTRFS_COMPARE_TREE_SAME;
5550				ret = changed_cb(left_root, right_root,
5551						 left_path, right_path,
5552						 &left_key, cmp, ctx);
5553				if (ret < 0)
5554					goto out;
5555				advance_left = ADVANCE;
5556				advance_right = ADVANCE;
5557			}
5558		} else if (left_level == right_level) {
5559			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5560			if (cmp < 0) {
5561				advance_left = ADVANCE;
5562			} else if (cmp > 0) {
5563				advance_right = ADVANCE;
5564			} else {
5565				left_blockptr = btrfs_node_blockptr(
5566						left_path->nodes[left_level],
5567						left_path->slots[left_level]);
5568				right_blockptr = btrfs_node_blockptr(
5569						right_path->nodes[right_level],
5570						right_path->slots[right_level]);
5571				left_gen = btrfs_node_ptr_generation(
5572						left_path->nodes[left_level],
5573						left_path->slots[left_level]);
5574				right_gen = btrfs_node_ptr_generation(
5575						right_path->nodes[right_level],
5576						right_path->slots[right_level]);
5577				if (left_blockptr == right_blockptr &&
5578				    left_gen == right_gen) {
5579					/*
5580					 * As we're on a shared block, don't
5581					 * allow to go deeper.
5582					 */
5583					advance_left = ADVANCE_ONLY_NEXT;
5584					advance_right = ADVANCE_ONLY_NEXT;
5585				} else {
5586					advance_left = ADVANCE;
5587					advance_right = ADVANCE;
5588				}
5589			}
5590		} else if (left_level < right_level) {
5591			advance_right = ADVANCE;
5592		} else {
5593			advance_left = ADVANCE;
5594		}
5595	}
5596
5597out:
5598	btrfs_free_path(left_path);
5599	btrfs_free_path(right_path);
5600	kfree(tmp_buf);
5601	return ret;
5602}
5603
5604/*
5605 * this is similar to btrfs_next_leaf, but does not try to preserve
5606 * and fixup the path.  It looks for and returns the next key in the
5607 * tree based on the current path and the min_trans parameters.
5608 *
5609 * 0 is returned if another key is found, < 0 if there are any errors
5610 * and 1 is returned if there are no higher keys in the tree
5611 *
5612 * path->keep_locks should be set to 1 on the search made before
5613 * calling this function.
5614 */
5615int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5616			struct btrfs_key *key, int level, u64 min_trans)
5617{
5618	int slot;
5619	struct extent_buffer *c;
5620
5621	WARN_ON(!path->keep_locks);
5622	while (level < BTRFS_MAX_LEVEL) {
5623		if (!path->nodes[level])
5624			return 1;
5625
5626		slot = path->slots[level] + 1;
5627		c = path->nodes[level];
5628next:
5629		if (slot >= btrfs_header_nritems(c)) {
5630			int ret;
5631			int orig_lowest;
5632			struct btrfs_key cur_key;
5633			if (level + 1 >= BTRFS_MAX_LEVEL ||
5634			    !path->nodes[level + 1])
5635				return 1;
5636
5637			if (path->locks[level + 1]) {
5638				level++;
5639				continue;
5640			}
5641
5642			slot = btrfs_header_nritems(c) - 1;
5643			if (level == 0)
5644				btrfs_item_key_to_cpu(c, &cur_key, slot);
5645			else
5646				btrfs_node_key_to_cpu(c, &cur_key, slot);
5647
5648			orig_lowest = path->lowest_level;
5649			btrfs_release_path(path);
5650			path->lowest_level = level;
5651			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5652						0, 0);
5653			path->lowest_level = orig_lowest;
5654			if (ret < 0)
5655				return ret;
5656
5657			c = path->nodes[level];
5658			slot = path->slots[level];
5659			if (ret == 0)
5660				slot++;
5661			goto next;
5662		}
5663
5664		if (level == 0)
5665			btrfs_item_key_to_cpu(c, key, slot);
5666		else {
5667			u64 gen = btrfs_node_ptr_generation(c, slot);
5668
5669			if (gen < min_trans) {
5670				slot++;
5671				goto next;
5672			}
5673			btrfs_node_key_to_cpu(c, key, slot);
5674		}
5675		return 0;
5676	}
5677	return 1;
5678}
5679
5680/*
5681 * search the tree again to find a leaf with greater keys
5682 * returns 0 if it found something or 1 if there are no greater leaves.
5683 * returns < 0 on io errors.
5684 */
5685int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5686{
5687	return btrfs_next_old_leaf(root, path, 0);
5688}
5689
5690int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5691			u64 time_seq)
5692{
5693	int slot;
5694	int level;
5695	struct extent_buffer *c;
5696	struct extent_buffer *next;
 
5697	struct btrfs_key key;
 
5698	u32 nritems;
5699	int ret;
5700	int old_spinning = path->leave_spinning;
5701	int next_rw_lock = 0;
 
 
 
 
 
 
5702
5703	nritems = btrfs_header_nritems(path->nodes[0]);
5704	if (nritems == 0)
5705		return 1;
5706
5707	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5708again:
5709	level = 1;
5710	next = NULL;
5711	next_rw_lock = 0;
5712	btrfs_release_path(path);
5713
5714	path->keep_locks = 1;
5715	path->leave_spinning = 1;
5716
5717	if (time_seq)
5718		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5719	else
 
 
 
 
 
 
 
 
 
 
 
 
5720		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5721	path->keep_locks = 0;
5722
5723	if (ret < 0)
5724		return ret;
5725
5726	nritems = btrfs_header_nritems(path->nodes[0]);
5727	/*
5728	 * by releasing the path above we dropped all our locks.  A balance
5729	 * could have added more items next to the key that used to be
5730	 * at the very end of the block.  So, check again here and
5731	 * advance the path if there are now more items available.
5732	 */
5733	if (nritems > 0 && path->slots[0] < nritems - 1) {
5734		if (ret == 0)
5735			path->slots[0]++;
5736		ret = 0;
5737		goto done;
5738	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5739
5740	while (level < BTRFS_MAX_LEVEL) {
5741		if (!path->nodes[level]) {
5742			ret = 1;
5743			goto done;
5744		}
5745
5746		slot = path->slots[level] + 1;
5747		c = path->nodes[level];
5748		if (slot >= btrfs_header_nritems(c)) {
5749			level++;
5750			if (level == BTRFS_MAX_LEVEL) {
5751				ret = 1;
5752				goto done;
5753			}
5754			continue;
5755		}
5756
5757		if (next) {
5758			btrfs_tree_unlock_rw(next, next_rw_lock);
5759			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5760		}
5761
5762		next = c;
5763		next_rw_lock = path->locks[level];
5764		ret = read_block_for_search(NULL, root, path, &next, level,
5765					    slot, &key, 0);
5766		if (ret == -EAGAIN)
5767			goto again;
5768
5769		if (ret < 0) {
5770			btrfs_release_path(path);
5771			goto done;
5772		}
5773
5774		if (!path->skip_locking) {
5775			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5776			if (!ret && time_seq) {
5777				/*
5778				 * If we don't get the lock, we may be racing
5779				 * with push_leaf_left, holding that lock while
5780				 * itself waiting for the leaf we've currently
5781				 * locked. To solve this situation, we give up
5782				 * on our lock and cycle.
5783				 */
5784				free_extent_buffer(next);
5785				btrfs_release_path(path);
5786				cond_resched();
5787				goto again;
5788			}
5789			if (!ret) {
5790				btrfs_set_path_blocking(path);
5791				btrfs_tree_read_lock(next);
5792				btrfs_clear_path_blocking(path, next,
5793							  BTRFS_READ_LOCK);
5794			}
5795			next_rw_lock = BTRFS_READ_LOCK;
5796		}
5797		break;
5798	}
5799	path->slots[level] = slot;
5800	while (1) {
5801		level--;
5802		c = path->nodes[level];
5803		if (path->locks[level])
5804			btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806		free_extent_buffer(c);
5807		path->nodes[level] = next;
5808		path->slots[level] = 0;
5809		if (!path->skip_locking)
5810			path->locks[level] = next_rw_lock;
5811		if (!level)
5812			break;
5813
5814		ret = read_block_for_search(NULL, root, path, &next, level,
5815					    0, &key, 0);
5816		if (ret == -EAGAIN)
5817			goto again;
5818
5819		if (ret < 0) {
5820			btrfs_release_path(path);
5821			goto done;
5822		}
5823
5824		if (!path->skip_locking) {
5825			ret = btrfs_try_tree_read_lock(next);
5826			if (!ret) {
5827				btrfs_set_path_blocking(path);
 
 
 
5828				btrfs_tree_read_lock(next);
5829				btrfs_clear_path_blocking(path, next,
5830							  BTRFS_READ_LOCK);
5831			}
5832			next_rw_lock = BTRFS_READ_LOCK;
5833		}
5834	}
5835	ret = 0;
5836done:
5837	unlock_up(path, 0, 1, 0, NULL);
5838	path->leave_spinning = old_spinning;
5839	if (!old_spinning)
5840		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5841
5842	return ret;
5843}
5844
 
 
 
 
 
 
 
 
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852			struct btrfs_path *path, u64 min_objectid,
5853			int type)
5854{
5855	struct btrfs_key found_key;
5856	struct extent_buffer *leaf;
5857	u32 nritems;
5858	int ret;
5859
5860	while (1) {
5861		if (path->slots[0] == 0) {
5862			btrfs_set_path_blocking(path);
5863			ret = btrfs_prev_leaf(root, path);
5864			if (ret != 0)
5865				return ret;
5866		} else {
5867			path->slots[0]--;
5868		}
5869		leaf = path->nodes[0];
5870		nritems = btrfs_header_nritems(leaf);
5871		if (nritems == 0)
5872			return 1;
5873		if (path->slots[0] == nritems)
5874			path->slots[0]--;
5875
5876		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877		if (found_key.objectid < min_objectid)
5878			break;
5879		if (found_key.type == type)
5880			return 0;
5881		if (found_key.objectid == min_objectid &&
5882		    found_key.type < type)
5883			break;
5884	}
5885	return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895			struct btrfs_path *path, u64 min_objectid)
5896{
5897	struct btrfs_key found_key;
5898	struct extent_buffer *leaf;
5899	u32 nritems;
5900	int ret;
5901
5902	while (1) {
5903		if (path->slots[0] == 0) {
5904			btrfs_set_path_blocking(path);
5905			ret = btrfs_prev_leaf(root, path);
5906			if (ret != 0)
5907				return ret;
5908		} else {
5909			path->slots[0]--;
5910		}
5911		leaf = path->nodes[0];
5912		nritems = btrfs_header_nritems(leaf);
5913		if (nritems == 0)
5914			return 1;
5915		if (path->slots[0] == nritems)
5916			path->slots[0]--;
5917
5918		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919		if (found_key.objectid < min_objectid)
5920			break;
5921		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5923			return 0;
5924		if (found_key.objectid == min_objectid &&
5925		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926			break;
5927	}
5928	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
5929}