Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
 
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
 
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
 
 
 
 
  40
  41static const struct btrfs_csums {
  42	u16		size;
  43	const char	name[10];
  44	const char	driver[12];
  45} btrfs_csums[] = {
  46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  50				     .driver = "blake2b-256" },
  51};
  52
  53/*
  54 * The leaf data grows from end-to-front in the node.  this returns the address
  55 * of the start of the last item, which is the stop of the leaf data stack.
  56 */
  57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  58{
  59	u32 nr = btrfs_header_nritems(leaf);
  60
  61	if (nr == 0)
  62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  63	return btrfs_item_offset(leaf, nr - 1);
  64}
  65
  66/*
  67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  68 *
  69 * @leaf:	leaf that we're doing a memmove on
  70 * @dst_offset:	item data offset we're moving to
  71 * @src_offset:	item data offset were' moving from
  72 * @len:	length of the data we're moving
  73 *
  74 * Wrapper around memmove_extent_buffer() that takes into account the header on
  75 * the leaf.  The btrfs_item offset's start directly after the header, so we
  76 * have to adjust any offsets to account for the header in the leaf.  This
  77 * handles that math to simplify the callers.
  78 */
  79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  80				     unsigned long dst_offset,
  81				     unsigned long src_offset,
  82				     unsigned long len)
  83{
  84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  86}
  87
  88/*
  89 * Copy item data from @src into @dst at the given @offset.
  90 *
  91 * @dst:	destination leaf that we're copying into
  92 * @src:	source leaf that we're copying from
  93 * @dst_offset:	item data offset we're copying to
  94 * @src_offset:	item data offset were' copying from
  95 * @len:	length of the data we're copying
  96 *
  97 * Wrapper around copy_extent_buffer() that takes into account the header on
  98 * the leaf.  The btrfs_item offset's start directly after the header, so we
  99 * have to adjust any offsets to account for the header in the leaf.  This
 100 * handles that math to simplify the callers.
 101 */
 102static inline void copy_leaf_data(const struct extent_buffer *dst,
 103				  const struct extent_buffer *src,
 104				  unsigned long dst_offset,
 105				  unsigned long src_offset, unsigned long len)
 106{
 107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 109}
 110
 111/*
 112 * Move items in a @leaf (using memmove).
 113 *
 114 * @dst:	destination leaf for the items
 115 * @dst_item:	the item nr we're copying into
 116 * @src_item:	the item nr we're copying from
 117 * @nr_items:	the number of items to copy
 118 *
 119 * Wrapper around memmove_extent_buffer() that does the math to get the
 120 * appropriate offsets into the leaf from the item numbers.
 121 */
 122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 123				      int dst_item, int src_item, int nr_items)
 124{
 125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 126			      btrfs_item_nr_offset(leaf, src_item),
 127			      nr_items * sizeof(struct btrfs_item));
 
 
 
 
 
 
 
 128}
 129
 130/*
 131 * Copy items from @src into @dst at the given @offset.
 132 *
 133 * @dst:	destination leaf for the items
 134 * @src:	source leaf for the items
 135 * @dst_item:	the item nr we're copying into
 136 * @src_item:	the item nr we're copying from
 137 * @nr_items:	the number of items to copy
 138 *
 139 * Wrapper around copy_extent_buffer() that does the math to get the
 140 * appropriate offsets into the leaf from the item numbers.
 141 */
 142static inline void copy_leaf_items(const struct extent_buffer *dst,
 143				   const struct extent_buffer *src,
 144				   int dst_item, int src_item, int nr_items)
 145{
 146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 147			      btrfs_item_nr_offset(src, src_item),
 148			      nr_items * sizeof(struct btrfs_item));
 149}
 150
 151/* This exists for btrfs-progs usages. */
 152u16 btrfs_csum_type_size(u16 type)
 153{
 154	return btrfs_csums[type].size;
 155}
 156
 157int btrfs_super_csum_size(const struct btrfs_super_block *s)
 158{
 159	u16 t = btrfs_super_csum_type(s);
 160	/*
 161	 * csum type is validated at mount time
 162	 */
 163	return btrfs_csum_type_size(t);
 164}
 165
 166const char *btrfs_super_csum_name(u16 csum_type)
 167{
 168	/* csum type is validated at mount time */
 169	return btrfs_csums[csum_type].name;
 170}
 171
 172/*
 173 * Return driver name if defined, otherwise the name that's also a valid driver
 174 * name
 175 */
 176const char *btrfs_super_csum_driver(u16 csum_type)
 177{
 178	/* csum type is validated at mount time */
 179	return btrfs_csums[csum_type].driver[0] ?
 180		btrfs_csums[csum_type].driver :
 181		btrfs_csums[csum_type].name;
 182}
 183
 184size_t __attribute_const__ btrfs_get_num_csums(void)
 185{
 186	return ARRAY_SIZE(btrfs_csums);
 187}
 188
 189struct btrfs_path *btrfs_alloc_path(void)
 190{
 191	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192
 193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 194}
 195
 196/* this also releases the path */
 197void btrfs_free_path(struct btrfs_path *p)
 198{
 199	if (!p)
 200		return;
 201	btrfs_release_path(p);
 202	kmem_cache_free(btrfs_path_cachep, p);
 203}
 204
 205/*
 206 * path release drops references on the extent buffers in the path
 207 * and it drops any locks held by this path
 208 *
 209 * It is safe to call this on paths that no locks or extent buffers held.
 210 */
 211noinline void btrfs_release_path(struct btrfs_path *p)
 212{
 213	int i;
 214
 215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 216		p->slots[i] = 0;
 217		if (!p->nodes[i])
 218			continue;
 219		if (p->locks[i]) {
 220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 221			p->locks[i] = 0;
 222		}
 223		free_extent_buffer(p->nodes[i]);
 224		p->nodes[i] = NULL;
 225	}
 226}
 227
 228/*
 229 * We want the transaction abort to print stack trace only for errors where the
 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 231 * caused by external factors.
 232 */
 233bool __cold abort_should_print_stack(int error)
 234{
 235	switch (error) {
 236	case -EIO:
 237	case -EROFS:
 238	case -ENOMEM:
 239		return false;
 240	}
 241	return true;
 242}
 243
 244/*
 245 * safely gets a reference on the root node of a tree.  A lock
 246 * is not taken, so a concurrent writer may put a different node
 247 * at the root of the tree.  See btrfs_lock_root_node for the
 248 * looping required.
 249 *
 250 * The extent buffer returned by this has a reference taken, so
 251 * it won't disappear.  It may stop being the root of the tree
 252 * at any time because there are no locks held.
 253 */
 254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 255{
 256	struct extent_buffer *eb;
 257
 258	while (1) {
 259		rcu_read_lock();
 260		eb = rcu_dereference(root->node);
 261
 262		/*
 263		 * RCU really hurts here, we could free up the root node because
 264		 * it was COWed but we may not get the new root node yet so do
 265		 * the inc_not_zero dance and if it doesn't work then
 266		 * synchronize_rcu and try again.
 267		 */
 268		if (atomic_inc_not_zero(&eb->refs)) {
 269			rcu_read_unlock();
 270			break;
 271		}
 272		rcu_read_unlock();
 273		synchronize_rcu();
 274	}
 275	return eb;
 276}
 277
 278/*
 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 280 * just get put onto a simple dirty list.  Transaction walks this list to make
 281 * sure they get properly updated on disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282 */
 283static void add_root_to_dirty_list(struct btrfs_root *root)
 284{
 285	struct btrfs_fs_info *fs_info = root->fs_info;
 286
 287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 289		return;
 290
 291	spin_lock(&fs_info->trans_lock);
 292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 293		/* Want the extent tree to be the last on the list */
 294		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
 295			list_move_tail(&root->dirty_list,
 296				       &fs_info->dirty_cowonly_roots);
 297		else
 298			list_move(&root->dirty_list,
 299				  &fs_info->dirty_cowonly_roots);
 300	}
 301	spin_unlock(&fs_info->trans_lock);
 302}
 303
 304/*
 305 * used by snapshot creation to make a copy of a root for a tree with
 306 * a given objectid.  The buffer with the new root node is returned in
 307 * cow_ret, and this func returns zero on success or a negative error code.
 308 */
 309int btrfs_copy_root(struct btrfs_trans_handle *trans,
 310		      struct btrfs_root *root,
 311		      struct extent_buffer *buf,
 312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 313{
 314	struct btrfs_fs_info *fs_info = root->fs_info;
 315	struct extent_buffer *cow;
 316	int ret = 0;
 317	int level;
 318	struct btrfs_disk_key disk_key;
 319	u64 reloc_src_root = 0;
 320
 321	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 322		trans->transid != fs_info->running_transaction->transid);
 323	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 324		trans->transid != btrfs_get_root_last_trans(root));
 325
 326	level = btrfs_header_level(buf);
 327	if (level == 0)
 328		btrfs_item_key(buf, &disk_key, 0);
 329	else
 330		btrfs_node_key(buf, &disk_key, 0);
 331
 332	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 333		reloc_src_root = btrfs_header_owner(buf);
 334	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 335				     &disk_key, level, buf->start, 0,
 336				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 337	if (IS_ERR(cow))
 338		return PTR_ERR(cow);
 339
 340	copy_extent_buffer_full(cow, buf);
 341	btrfs_set_header_bytenr(cow, cow->start);
 342	btrfs_set_header_generation(cow, trans->transid);
 343	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 344	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 345				     BTRFS_HEADER_FLAG_RELOC);
 346	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 347		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 348	else
 349		btrfs_set_header_owner(cow, new_root_objectid);
 350
 351	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 352
 353	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 354	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 355		ret = btrfs_inc_ref(trans, root, cow, 1);
 356	else
 357		ret = btrfs_inc_ref(trans, root, cow, 0);
 358	if (ret) {
 359		btrfs_tree_unlock(cow);
 360		free_extent_buffer(cow);
 361		btrfs_abort_transaction(trans, ret);
 362		return ret;
 363	}
 364
 365	btrfs_mark_buffer_dirty(trans, cow);
 366	*cow_ret = cow;
 367	return 0;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370/*
 371 * check if the tree block can be shared by multiple trees
 372 */
 373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 374			       struct btrfs_root *root,
 375			       struct extent_buffer *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376{
 377	const u64 buf_gen = btrfs_header_generation(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	/*
 380	 * Tree blocks not in shareable trees and tree roots are never shared.
 381	 * If a block was allocated after the last snapshot and the block was
 382	 * not allocated by tree relocation, we know the block is not shared.
 383	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 386		return false;
 387
 388	if (buf == root->node)
 389		return false;
 390
 391	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 392	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 393		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395	if (buf != root->commit_root)
 396		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398	/*
 399	 * An extent buffer that used to be the commit root may still be shared
 400	 * because the tree height may have increased and it became a child of a
 401	 * higher level root. This can happen when snapshotting a subvolume
 402	 * created in the current transaction.
 403	 */
 404	if (buf_gen == trans->transid)
 405		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 407	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 411				       struct btrfs_root *root,
 412				       struct extent_buffer *buf,
 413				       struct extent_buffer *cow,
 414				       int *last_ref)
 415{
 416	struct btrfs_fs_info *fs_info = root->fs_info;
 417	u64 refs;
 418	u64 owner;
 419	u64 flags;
 
 420	int ret;
 421
 422	/*
 423	 * Backrefs update rules:
 424	 *
 425	 * Always use full backrefs for extent pointers in tree block
 426	 * allocated by tree relocation.
 427	 *
 428	 * If a shared tree block is no longer referenced by its owner
 429	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 430	 * use full backrefs for extent pointers in tree block.
 431	 *
 432	 * If a tree block is been relocating
 433	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 434	 * use full backrefs for extent pointers in tree block.
 435	 * The reason for this is some operations (such as drop tree)
 436	 * are only allowed for blocks use full backrefs.
 437	 */
 438
 439	if (btrfs_block_can_be_shared(trans, root, buf)) {
 440		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 441					       btrfs_header_level(buf), 1,
 442					       &refs, &flags, NULL);
 443		if (ret)
 444			return ret;
 445		if (unlikely(refs == 0)) {
 446			btrfs_crit(fs_info,
 447		"found 0 references for tree block at bytenr %llu level %d root %llu",
 448				   buf->start, btrfs_header_level(buf),
 449				   btrfs_root_id(root));
 450			ret = -EUCLEAN;
 451			btrfs_abort_transaction(trans, ret);
 452			return ret;
 453		}
 454	} else {
 455		refs = 1;
 456		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 457		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 458			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 459		else
 460			flags = 0;
 461	}
 462
 463	owner = btrfs_header_owner(buf);
 464	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
 465		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
 466		btrfs_crit(fs_info,
 467"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
 468			   buf->start, btrfs_header_level(buf),
 469			   btrfs_root_id(root), refs, flags);
 470		ret = -EUCLEAN;
 471		btrfs_abort_transaction(trans, ret);
 472		return ret;
 473	}
 474
 475	if (refs > 1) {
 476		if ((owner == btrfs_root_id(root) ||
 477		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
 478		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 479			ret = btrfs_inc_ref(trans, root, buf, 1);
 480			if (ret)
 481				return ret;
 482
 483			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 
 484				ret = btrfs_dec_ref(trans, root, buf, 0);
 485				if (ret)
 486					return ret;
 487				ret = btrfs_inc_ref(trans, root, cow, 1);
 488				if (ret)
 489					return ret;
 490			}
 491			ret = btrfs_set_disk_extent_flags(trans, buf,
 492						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
 493			if (ret)
 494				return ret;
 495		} else {
 496
 497			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 498				ret = btrfs_inc_ref(trans, root, cow, 1);
 499			else
 500				ret = btrfs_inc_ref(trans, root, cow, 0);
 
 
 
 
 
 
 
 
 
 501			if (ret)
 502				return ret;
 503		}
 504	} else {
 505		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 506			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 
 507				ret = btrfs_inc_ref(trans, root, cow, 1);
 508			else
 509				ret = btrfs_inc_ref(trans, root, cow, 0);
 510			if (ret)
 511				return ret;
 512			ret = btrfs_dec_ref(trans, root, buf, 1);
 513			if (ret)
 514				return ret;
 515		}
 516		btrfs_clear_buffer_dirty(trans, buf);
 517		*last_ref = 1;
 518	}
 519	return 0;
 520}
 521
 522/*
 523 * does the dirty work in cow of a single block.  The parent block (if
 524 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 525 * dirty and returned locked.  If you modify the block it needs to be marked
 526 * dirty again.
 527 *
 528 * search_start -- an allocation hint for the new block
 529 *
 530 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 531 * bytes the allocator should try to find free next to the block it returns.
 532 * This is just a hint and may be ignored by the allocator.
 533 */
 534int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 535			  struct btrfs_root *root,
 536			  struct extent_buffer *buf,
 537			  struct extent_buffer *parent, int parent_slot,
 538			  struct extent_buffer **cow_ret,
 539			  u64 search_start, u64 empty_size,
 540			  enum btrfs_lock_nesting nest)
 541{
 542	struct btrfs_fs_info *fs_info = root->fs_info;
 543	struct btrfs_disk_key disk_key;
 544	struct extent_buffer *cow;
 545	int level, ret;
 546	int last_ref = 0;
 547	int unlock_orig = 0;
 548	u64 parent_start = 0;
 549	u64 reloc_src_root = 0;
 550
 551	if (*cow_ret == buf)
 552		unlock_orig = 1;
 553
 554	btrfs_assert_tree_write_locked(buf);
 555
 556	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 557		trans->transid != fs_info->running_transaction->transid);
 558	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 559		trans->transid != btrfs_get_root_last_trans(root));
 560
 561	level = btrfs_header_level(buf);
 562
 563	if (level == 0)
 564		btrfs_item_key(buf, &disk_key, 0);
 565	else
 566		btrfs_node_key(buf, &disk_key, 0);
 567
 568	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 569		if (parent)
 570			parent_start = parent->start;
 571		reloc_src_root = btrfs_header_owner(buf);
 572	}
 573	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 574				     btrfs_root_id(root), &disk_key, level,
 575				     search_start, empty_size, reloc_src_root, nest);
 576	if (IS_ERR(cow))
 577		return PTR_ERR(cow);
 578
 579	/* cow is set to blocking by btrfs_init_new_buffer */
 580
 581	copy_extent_buffer_full(cow, buf);
 582	btrfs_set_header_bytenr(cow, cow->start);
 583	btrfs_set_header_generation(cow, trans->transid);
 584	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 585	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 586				     BTRFS_HEADER_FLAG_RELOC);
 587	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 588		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 589	else
 590		btrfs_set_header_owner(cow, btrfs_root_id(root));
 591
 592	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 593
 594	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 595	if (ret) {
 596		btrfs_abort_transaction(trans, ret);
 597		goto error_unlock_cow;
 598	}
 599
 600	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 601		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 602		if (ret) {
 603			btrfs_abort_transaction(trans, ret);
 604			goto error_unlock_cow;
 605		}
 606	}
 607
 608	if (buf == root->node) {
 609		WARN_ON(parent && parent != buf);
 610		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 611		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 612			parent_start = buf->start;
 613
 614		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 615		if (ret < 0) {
 616			btrfs_abort_transaction(trans, ret);
 617			goto error_unlock_cow;
 618		}
 619		atomic_inc(&cow->refs);
 620		rcu_assign_pointer(root->node, cow);
 621
 622		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 623					    parent_start, last_ref);
 624		free_extent_buffer(buf);
 625		add_root_to_dirty_list(root);
 626		if (ret < 0) {
 627			btrfs_abort_transaction(trans, ret);
 628			goto error_unlock_cow;
 629		}
 630	} else {
 631		WARN_ON(trans->transid != btrfs_header_generation(parent));
 632		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 633						    BTRFS_MOD_LOG_KEY_REPLACE);
 634		if (ret) {
 635			btrfs_abort_transaction(trans, ret);
 636			goto error_unlock_cow;
 637		}
 638		btrfs_set_node_blockptr(parent, parent_slot,
 639					cow->start);
 640		btrfs_set_node_ptr_generation(parent, parent_slot,
 641					      trans->transid);
 642		btrfs_mark_buffer_dirty(trans, parent);
 643		if (last_ref) {
 644			ret = btrfs_tree_mod_log_free_eb(buf);
 645			if (ret) {
 646				btrfs_abort_transaction(trans, ret);
 647				goto error_unlock_cow;
 648			}
 649		}
 650		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 651					    parent_start, last_ref);
 652		if (ret < 0) {
 653			btrfs_abort_transaction(trans, ret);
 654			goto error_unlock_cow;
 655		}
 656	}
 657
 658	trace_btrfs_cow_block(root, buf, cow);
 659	if (unlock_orig)
 660		btrfs_tree_unlock(buf);
 661	free_extent_buffer_stale(buf);
 662	btrfs_mark_buffer_dirty(trans, cow);
 663	*cow_ret = cow;
 664	return 0;
 
 665
 666error_unlock_cow:
 667	btrfs_tree_unlock(cow);
 668	free_extent_buffer(cow);
 669	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 672static inline int should_cow_block(struct btrfs_trans_handle *trans,
 673				   struct btrfs_root *root,
 674				   struct extent_buffer *buf)
 675{
 676	if (btrfs_is_testing(root->fs_info))
 677		return 0;
 678
 679	/* Ensure we can see the FORCE_COW bit */
 680	smp_mb__before_atomic();
 681
 682	/*
 683	 * We do not need to cow a block if
 684	 * 1) this block is not created or changed in this transaction;
 685	 * 2) this block does not belong to TREE_RELOC tree;
 686	 * 3) the root is not forced COW.
 687	 *
 688	 * What is forced COW:
 689	 *    when we create snapshot during committing the transaction,
 690	 *    after we've finished copying src root, we must COW the shared
 691	 *    block to ensure the metadata consistency.
 692	 */
 693	if (btrfs_header_generation(buf) == trans->transid &&
 694	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 695	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 696	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 697	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 698		return 0;
 699	return 1;
 700}
 701
 702/*
 703 * COWs a single block, see btrfs_force_cow_block() for the real work.
 704 * This version of it has extra checks so that a block isn't COWed more than
 705 * once per transaction, as long as it hasn't been written yet
 706 */
 707int btrfs_cow_block(struct btrfs_trans_handle *trans,
 708		    struct btrfs_root *root, struct extent_buffer *buf,
 709		    struct extent_buffer *parent, int parent_slot,
 710		    struct extent_buffer **cow_ret,
 711		    enum btrfs_lock_nesting nest)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	u64 search_start;
 
 715
 716	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 717		btrfs_abort_transaction(trans, -EUCLEAN);
 718		btrfs_crit(fs_info,
 719		   "attempt to COW block %llu on root %llu that is being deleted",
 720			   buf->start, btrfs_root_id(root));
 721		return -EUCLEAN;
 722	}
 723
 724	/*
 725	 * COWing must happen through a running transaction, which always
 726	 * matches the current fs generation (it's a transaction with a state
 727	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 728	 * into error state to prevent the commit of any transaction.
 729	 */
 730	if (unlikely(trans->transaction != fs_info->running_transaction ||
 731		     trans->transid != fs_info->generation)) {
 732		btrfs_abort_transaction(trans, -EUCLEAN);
 733		btrfs_crit(fs_info,
 734"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 735			   buf->start, btrfs_root_id(root), trans->transid,
 736			   fs_info->running_transaction->transid,
 737			   fs_info->generation);
 738		return -EUCLEAN;
 739	}
 740
 741	if (!should_cow_block(trans, root, buf)) {
 
 742		*cow_ret = buf;
 743		return 0;
 744	}
 745
 746	search_start = round_down(buf->start, SZ_1G);
 747
 748	/*
 749	 * Before CoWing this block for later modification, check if it's
 750	 * the subtree root and do the delayed subtree trace if needed.
 751	 *
 752	 * Also We don't care about the error, as it's handled internally.
 753	 */
 754	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 755	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 756				     cow_ret, search_start, 0, nest);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757}
 758ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 759
 760/*
 761 * same as comp_keys only with two btrfs_key's
 762 */
 763int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 764{
 765	if (k1->objectid > k2->objectid)
 766		return 1;
 767	if (k1->objectid < k2->objectid)
 768		return -1;
 769	if (k1->type > k2->type)
 770		return 1;
 771	if (k1->type < k2->type)
 772		return -1;
 773	if (k1->offset > k2->offset)
 774		return 1;
 775	if (k1->offset < k2->offset)
 776		return -1;
 777	return 0;
 778}
 779
 780/*
 781 * Search for a key in the given extent_buffer.
 782 *
 783 * The lower boundary for the search is specified by the slot number @first_slot.
 784 * Use a value of 0 to search over the whole extent buffer. Works for both
 785 * leaves and nodes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786 *
 787 * The slot in the extent buffer is returned via @slot. If the key exists in the
 788 * extent buffer, then @slot will point to the slot where the key is, otherwise
 789 * it points to the slot where you would insert the key.
 790 *
 791 * Slot may point to the total number of items (i.e. one position beyond the last
 792 * key) if the key is bigger than the last key in the extent buffer.
 793 */
 794int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 795		     const struct btrfs_key *key, int *slot)
 
 
 796{
 797	unsigned long p;
 798	int item_size;
 799	/*
 800	 * Use unsigned types for the low and high slots, so that we get a more
 801	 * efficient division in the search loop below.
 802	 */
 803	u32 low = first_slot;
 804	u32 high = btrfs_header_nritems(eb);
 805	int ret;
 806	const int key_size = sizeof(struct btrfs_disk_key);
 
 
 
 
 
 
 807
 808	if (unlikely(low > high)) {
 809		btrfs_err(eb->fs_info,
 810		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 811			  __func__, low, high, eb->start,
 812			  btrfs_header_owner(eb), btrfs_header_level(eb));
 813		return -EINVAL;
 814	}
 815
 816	if (btrfs_header_level(eb) == 0) {
 817		p = offsetof(struct btrfs_leaf, items);
 818		item_size = sizeof(struct btrfs_item);
 819	} else {
 820		p = offsetof(struct btrfs_node, ptrs);
 821		item_size = sizeof(struct btrfs_key_ptr);
 822	}
 823
 824	while (low < high) {
 825		const int unit_size = eb->folio_size;
 826		unsigned long oil;
 827		unsigned long offset;
 828		struct btrfs_disk_key *tmp;
 829		struct btrfs_disk_key unaligned;
 830		int mid;
 831
 832		mid = (low + high) / 2;
 833		offset = p + mid * item_size;
 834		oil = get_eb_offset_in_folio(eb, offset);
 835
 836		if (oil + key_size <= unit_size) {
 837			const unsigned long idx = get_eb_folio_index(eb, offset);
 838			char *kaddr = folio_address(eb->folios[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840			oil = get_eb_offset_in_folio(eb, offset);
 841			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 842		} else {
 843			read_extent_buffer(eb, &unaligned, offset, key_size);
 844			tmp = &unaligned;
 845		}
 846
 847		ret = btrfs_comp_keys(tmp, key);
 848
 849		if (ret < 0)
 850			low = mid + 1;
 851		else if (ret > 0)
 852			high = mid;
 853		else {
 854			*slot = mid;
 855			return 0;
 856		}
 857	}
 858	*slot = low;
 859	return 1;
 860}
 861
 862static void root_add_used_bytes(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863{
 864	spin_lock(&root->accounting_lock);
 865	btrfs_set_root_used(&root->root_item,
 866		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 867	spin_unlock(&root->accounting_lock);
 868}
 869
 870static void root_sub_used_bytes(struct btrfs_root *root)
 871{
 872	spin_lock(&root->accounting_lock);
 873	btrfs_set_root_used(&root->root_item,
 874		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 875	spin_unlock(&root->accounting_lock);
 876}
 877
 878/* given a node and slot number, this reads the blocks it points to.  The
 879 * extent buffer is returned with a reference taken (but unlocked).
 880 */
 881struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 882					   int slot)
 
 883{
 884	int level = btrfs_header_level(parent);
 885	struct btrfs_tree_parent_check check = { 0 };
 886	struct extent_buffer *eb;
 887
 888	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 889		return ERR_PTR(-ENOENT);
 890
 891	ASSERT(level);
 892
 893	check.level = level - 1;
 894	check.transid = btrfs_node_ptr_generation(parent, slot);
 895	check.owner_root = btrfs_header_owner(parent);
 896	check.has_first_key = true;
 897	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 898
 899	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 900			     &check);
 901	if (IS_ERR(eb))
 902		return eb;
 903	if (!extent_buffer_uptodate(eb)) {
 904		free_extent_buffer(eb);
 905		return ERR_PTR(-EIO);
 906	}
 907
 908	return eb;
 909}
 910
 911/*
 912 * node level balancing, used to make sure nodes are in proper order for
 913 * item deletion.  We balance from the top down, so we have to make sure
 914 * that a deletion won't leave an node completely empty later on.
 915 */
 916static noinline int balance_level(struct btrfs_trans_handle *trans,
 917			 struct btrfs_root *root,
 918			 struct btrfs_path *path, int level)
 919{
 920	struct btrfs_fs_info *fs_info = root->fs_info;
 921	struct extent_buffer *right = NULL;
 922	struct extent_buffer *mid;
 923	struct extent_buffer *left = NULL;
 924	struct extent_buffer *parent = NULL;
 925	int ret = 0;
 926	int wret;
 927	int pslot;
 928	int orig_slot = path->slots[level];
 929	u64 orig_ptr;
 930
 931	ASSERT(level > 0);
 
 932
 933	mid = path->nodes[level];
 934
 935	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
 936	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 937
 938	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 939
 940	if (level < BTRFS_MAX_LEVEL - 1) {
 941		parent = path->nodes[level + 1];
 942		pslot = path->slots[level + 1];
 943	}
 944
 945	/*
 946	 * deal with the case where there is only one pointer in the root
 947	 * by promoting the node below to a root
 948	 */
 949	if (!parent) {
 950		struct extent_buffer *child;
 951
 952		if (btrfs_header_nritems(mid) != 1)
 953			return 0;
 954
 955		/* promote the child to a root */
 956		child = btrfs_read_node_slot(mid, 0);
 957		if (IS_ERR(child)) {
 958			ret = PTR_ERR(child);
 959			goto out;
 
 960		}
 961
 962		btrfs_tree_lock(child);
 963		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 964				      BTRFS_NESTING_COW);
 965		if (ret) {
 966			btrfs_tree_unlock(child);
 967			free_extent_buffer(child);
 968			goto out;
 969		}
 970
 971		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 972		if (ret < 0) {
 973			btrfs_tree_unlock(child);
 974			free_extent_buffer(child);
 975			btrfs_abort_transaction(trans, ret);
 976			goto out;
 977		}
 978		rcu_assign_pointer(root->node, child);
 979
 980		add_root_to_dirty_list(root);
 981		btrfs_tree_unlock(child);
 982
 983		path->locks[level] = 0;
 984		path->nodes[level] = NULL;
 985		btrfs_clear_buffer_dirty(trans, mid);
 986		btrfs_tree_unlock(mid);
 987		/* once for the path */
 988		free_extent_buffer(mid);
 989
 990		root_sub_used_bytes(root);
 991		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 992		/* once for the root ptr */
 993		free_extent_buffer_stale(mid);
 994		if (ret < 0) {
 995			btrfs_abort_transaction(trans, ret);
 996			goto out;
 997		}
 998		return 0;
 999	}
1000	if (btrfs_header_nritems(mid) >
1001	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002		return 0;
1003
1004	if (pslot) {
1005		left = btrfs_read_node_slot(parent, pslot - 1);
1006		if (IS_ERR(left)) {
1007			ret = PTR_ERR(left);
1008			left = NULL;
1009			goto out;
1010		}
1011
1012		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
 
1013		wret = btrfs_cow_block(trans, root, left,
1014				       parent, pslot - 1, &left,
1015				       BTRFS_NESTING_LEFT_COW);
1016		if (wret) {
1017			ret = wret;
1018			goto out;
1019		}
1020	}
1021
1022	if (pslot + 1 < btrfs_header_nritems(parent)) {
1023		right = btrfs_read_node_slot(parent, pslot + 1);
1024		if (IS_ERR(right)) {
1025			ret = PTR_ERR(right);
1026			right = NULL;
1027			goto out;
1028		}
1029
1030		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
 
1031		wret = btrfs_cow_block(trans, root, right,
1032				       parent, pslot + 1, &right,
1033				       BTRFS_NESTING_RIGHT_COW);
1034		if (wret) {
1035			ret = wret;
1036			goto out;
1037		}
1038	}
1039
1040	/* first, try to make some room in the middle buffer */
1041	if (left) {
1042		orig_slot += btrfs_header_nritems(left);
1043		wret = push_node_left(trans, left, mid, 1);
1044		if (wret < 0)
1045			ret = wret;
1046	}
1047
1048	/*
1049	 * then try to empty the right most buffer into the middle
1050	 */
1051	if (right) {
1052		wret = push_node_left(trans, mid, right, 1);
1053		if (wret < 0 && wret != -ENOSPC)
1054			ret = wret;
1055		if (btrfs_header_nritems(right) == 0) {
1056			btrfs_clear_buffer_dirty(trans, right);
1057			btrfs_tree_unlock(right);
1058			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059			if (ret < 0) {
1060				free_extent_buffer_stale(right);
1061				right = NULL;
1062				goto out;
1063			}
1064			root_sub_used_bytes(root);
1065			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066						    right, 0, 1);
1067			free_extent_buffer_stale(right);
1068			right = NULL;
1069			if (ret < 0) {
1070				btrfs_abort_transaction(trans, ret);
1071				goto out;
1072			}
1073		} else {
1074			struct btrfs_disk_key right_key;
1075			btrfs_node_key(right, &right_key, 0);
1076			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077					BTRFS_MOD_LOG_KEY_REPLACE);
1078			if (ret < 0) {
1079				btrfs_abort_transaction(trans, ret);
1080				goto out;
1081			}
1082			btrfs_set_node_key(parent, &right_key, pslot + 1);
1083			btrfs_mark_buffer_dirty(trans, parent);
1084		}
1085	}
1086	if (btrfs_header_nritems(mid) == 1) {
1087		/*
1088		 * we're not allowed to leave a node with one item in the
1089		 * tree during a delete.  A deletion from lower in the tree
1090		 * could try to delete the only pointer in this node.
1091		 * So, pull some keys from the left.
1092		 * There has to be a left pointer at this point because
1093		 * otherwise we would have pulled some pointers from the
1094		 * right
1095		 */
1096		if (unlikely(!left)) {
1097			btrfs_crit(fs_info,
1098"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099				   parent->start, btrfs_header_level(parent),
1100				   mid->start, btrfs_root_id(root));
1101			ret = -EUCLEAN;
1102			btrfs_abort_transaction(trans, ret);
1103			goto out;
1104		}
1105		wret = balance_node_right(trans, mid, left);
1106		if (wret < 0) {
1107			ret = wret;
1108			goto out;
1109		}
1110		if (wret == 1) {
1111			wret = push_node_left(trans, left, mid, 1);
1112			if (wret < 0)
1113				ret = wret;
1114		}
1115		BUG_ON(wret == 1);
1116	}
1117	if (btrfs_header_nritems(mid) == 0) {
1118		btrfs_clear_buffer_dirty(trans, mid);
1119		btrfs_tree_unlock(mid);
1120		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121		if (ret < 0) {
1122			free_extent_buffer_stale(mid);
1123			mid = NULL;
1124			goto out;
1125		}
1126		root_sub_used_bytes(root);
1127		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128		free_extent_buffer_stale(mid);
1129		mid = NULL;
1130		if (ret < 0) {
1131			btrfs_abort_transaction(trans, ret);
1132			goto out;
1133		}
1134	} else {
1135		/* update the parent key to reflect our changes */
1136		struct btrfs_disk_key mid_key;
1137		btrfs_node_key(mid, &mid_key, 0);
1138		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139						    BTRFS_MOD_LOG_KEY_REPLACE);
1140		if (ret < 0) {
1141			btrfs_abort_transaction(trans, ret);
1142			goto out;
1143		}
1144		btrfs_set_node_key(parent, &mid_key, pslot);
1145		btrfs_mark_buffer_dirty(trans, parent);
1146	}
1147
1148	/* update the path */
1149	if (left) {
1150		if (btrfs_header_nritems(left) > orig_slot) {
1151			atomic_inc(&left->refs);
1152			/* left was locked after cow */
1153			path->nodes[level] = left;
1154			path->slots[level + 1] -= 1;
1155			path->slots[level] = orig_slot;
1156			if (mid) {
1157				btrfs_tree_unlock(mid);
1158				free_extent_buffer(mid);
1159			}
1160		} else {
1161			orig_slot -= btrfs_header_nritems(left);
1162			path->slots[level] = orig_slot;
1163		}
1164	}
1165	/* double check we haven't messed things up */
1166	if (orig_ptr !=
1167	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168		BUG();
1169out:
1170	if (right) {
1171		btrfs_tree_unlock(right);
1172		free_extent_buffer(right);
1173	}
1174	if (left) {
1175		if (path->nodes[level] != left)
1176			btrfs_tree_unlock(left);
1177		free_extent_buffer(left);
1178	}
1179	return ret;
1180}
1181
1182/* Node balancing for insertion.  Here we only split or push nodes around
1183 * when they are completely full.  This is also done top down, so we
1184 * have to be pessimistic.
1185 */
1186static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187					  struct btrfs_root *root,
1188					  struct btrfs_path *path, int level)
1189{
1190	struct btrfs_fs_info *fs_info = root->fs_info;
1191	struct extent_buffer *right = NULL;
1192	struct extent_buffer *mid;
1193	struct extent_buffer *left = NULL;
1194	struct extent_buffer *parent = NULL;
1195	int ret = 0;
1196	int wret;
1197	int pslot;
1198	int orig_slot = path->slots[level];
1199
1200	if (level == 0)
1201		return 1;
1202
1203	mid = path->nodes[level];
1204	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206	if (level < BTRFS_MAX_LEVEL - 1) {
1207		parent = path->nodes[level + 1];
1208		pslot = path->slots[level + 1];
1209	}
1210
1211	if (!parent)
1212		return 1;
1213
 
 
 
 
1214	/* first, try to make some room in the middle buffer */
1215	if (pslot) {
1216		u32 left_nr;
1217
1218		left = btrfs_read_node_slot(parent, pslot - 1);
1219		if (IS_ERR(left))
1220			return PTR_ERR(left);
1221
1222		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224		left_nr = btrfs_header_nritems(left);
1225		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226			wret = 1;
1227		} else {
1228			ret = btrfs_cow_block(trans, root, left, parent,
1229					      pslot - 1, &left,
1230					      BTRFS_NESTING_LEFT_COW);
1231			if (ret)
1232				wret = 1;
1233			else {
1234				wret = push_node_left(trans, left, mid, 0);
 
1235			}
1236		}
1237		if (wret < 0)
1238			ret = wret;
1239		if (wret == 0) {
1240			struct btrfs_disk_key disk_key;
1241			orig_slot += left_nr;
1242			btrfs_node_key(mid, &disk_key, 0);
1243			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244					BTRFS_MOD_LOG_KEY_REPLACE);
1245			if (ret < 0) {
1246				btrfs_tree_unlock(left);
1247				free_extent_buffer(left);
1248				btrfs_abort_transaction(trans, ret);
1249				return ret;
1250			}
1251			btrfs_set_node_key(parent, &disk_key, pslot);
1252			btrfs_mark_buffer_dirty(trans, parent);
1253			if (btrfs_header_nritems(left) > orig_slot) {
1254				path->nodes[level] = left;
1255				path->slots[level + 1] -= 1;
1256				path->slots[level] = orig_slot;
1257				btrfs_tree_unlock(mid);
1258				free_extent_buffer(mid);
1259			} else {
1260				orig_slot -=
1261					btrfs_header_nritems(left);
1262				path->slots[level] = orig_slot;
1263				btrfs_tree_unlock(left);
1264				free_extent_buffer(left);
1265			}
1266			return 0;
1267		}
1268		btrfs_tree_unlock(left);
1269		free_extent_buffer(left);
1270	}
 
 
 
1271
1272	/*
1273	 * then try to empty the right most buffer into the middle
1274	 */
1275	if (pslot + 1 < btrfs_header_nritems(parent)) {
1276		u32 right_nr;
1277
1278		right = btrfs_read_node_slot(parent, pslot + 1);
1279		if (IS_ERR(right))
1280			return PTR_ERR(right);
1281
1282		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284		right_nr = btrfs_header_nritems(right);
1285		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286			wret = 1;
1287		} else {
1288			ret = btrfs_cow_block(trans, root, right,
1289					      parent, pslot + 1,
1290					      &right, BTRFS_NESTING_RIGHT_COW);
1291			if (ret)
1292				wret = 1;
1293			else {
1294				wret = balance_node_right(trans, right, mid);
 
1295			}
1296		}
1297		if (wret < 0)
1298			ret = wret;
1299		if (wret == 0) {
1300			struct btrfs_disk_key disk_key;
1301
1302			btrfs_node_key(right, &disk_key, 0);
1303			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304					BTRFS_MOD_LOG_KEY_REPLACE);
1305			if (ret < 0) {
1306				btrfs_tree_unlock(right);
1307				free_extent_buffer(right);
1308				btrfs_abort_transaction(trans, ret);
1309				return ret;
1310			}
1311			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312			btrfs_mark_buffer_dirty(trans, parent);
1313
1314			if (btrfs_header_nritems(mid) <= orig_slot) {
1315				path->nodes[level] = right;
1316				path->slots[level + 1] += 1;
1317				path->slots[level] = orig_slot -
1318					btrfs_header_nritems(mid);
1319				btrfs_tree_unlock(mid);
1320				free_extent_buffer(mid);
1321			} else {
1322				btrfs_tree_unlock(right);
1323				free_extent_buffer(right);
1324			}
1325			return 0;
1326		}
1327		btrfs_tree_unlock(right);
1328		free_extent_buffer(right);
1329	}
1330	return 1;
1331}
1332
1333/*
1334 * readahead one full node of leaves, finding things that are close
1335 * to the block in 'slot', and triggering ra on them.
1336 */
1337static void reada_for_search(struct btrfs_fs_info *fs_info,
1338			     struct btrfs_path *path,
1339			     int level, int slot, u64 objectid)
1340{
1341	struct extent_buffer *node;
1342	struct btrfs_disk_key disk_key;
1343	u32 nritems;
1344	u64 search;
1345	u64 target;
1346	u64 nread = 0;
1347	u64 nread_max;
1348	u32 nr;
1349	u32 blocksize;
1350	u32 nscan = 0;
1351
1352	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353		return;
1354
1355	if (!path->nodes[level])
1356		return;
1357
1358	node = path->nodes[level];
1359
1360	/*
1361	 * Since the time between visiting leaves is much shorter than the time
1362	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363	 * much IO at once (possibly random).
1364	 */
1365	if (path->reada == READA_FORWARD_ALWAYS) {
1366		if (level > 1)
1367			nread_max = node->fs_info->nodesize;
1368		else
1369			nread_max = SZ_128K;
1370	} else {
1371		nread_max = SZ_64K;
1372	}
1373
1374	search = btrfs_node_blockptr(node, slot);
1375	blocksize = fs_info->nodesize;
1376	if (path->reada != READA_FORWARD_ALWAYS) {
1377		struct extent_buffer *eb;
1378
1379		eb = find_extent_buffer(fs_info, search);
1380		if (eb) {
1381			free_extent_buffer(eb);
1382			return;
1383		}
1384	}
1385
1386	target = search;
1387
1388	nritems = btrfs_header_nritems(node);
1389	nr = slot;
1390
1391	while (1) {
1392		if (path->reada == READA_BACK) {
1393			if (nr == 0)
1394				break;
1395			nr--;
1396		} else if (path->reada == READA_FORWARD ||
1397			   path->reada == READA_FORWARD_ALWAYS) {
1398			nr++;
1399			if (nr >= nritems)
1400				break;
1401		}
1402		if (path->reada == READA_BACK && objectid) {
1403			btrfs_node_key(node, &disk_key, nr);
1404			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405				break;
1406		}
1407		search = btrfs_node_blockptr(node, nr);
1408		if (path->reada == READA_FORWARD_ALWAYS ||
1409		    (search <= target && target - search <= 65536) ||
1410		    (search > target && search - target <= 65536)) {
1411			btrfs_readahead_node_child(node, nr);
1412			nread += blocksize;
1413		}
1414		nscan++;
1415		if (nread > nread_max || nscan > 32)
1416			break;
1417	}
1418}
1419
1420static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
1421{
1422	struct extent_buffer *parent;
1423	int slot;
1424	int nritems;
 
 
 
 
 
1425
1426	parent = path->nodes[level + 1];
1427	if (!parent)
1428		return;
1429
1430	nritems = btrfs_header_nritems(parent);
1431	slot = path->slots[level + 1];
1432
1433	if (slot > 0)
1434		btrfs_readahead_node_child(parent, slot - 1);
1435	if (slot + 1 < nritems)
1436		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437}
1438
1439
1440/*
1441 * when we walk down the tree, it is usually safe to unlock the higher layers
1442 * in the tree.  The exceptions are when our path goes through slot 0, because
1443 * operations on the tree might require changing key pointers higher up in the
1444 * tree.
1445 *
1446 * callers might also have set path->keep_locks, which tells this code to keep
1447 * the lock if the path points to the last slot in the block.  This is part of
1448 * walking through the tree, and selecting the next slot in the higher block.
1449 *
1450 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1451 * if lowest_unlock is 1, level 0 won't be unlocked
1452 */
1453static noinline void unlock_up(struct btrfs_path *path, int level,
1454			       int lowest_unlock, int min_write_lock_level,
1455			       int *write_lock_level)
1456{
1457	int i;
1458	int skip_level = level;
1459	bool check_skip = true;
 
1460
1461	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462		if (!path->nodes[i])
1463			break;
1464		if (!path->locks[i])
1465			break;
1466
1467		if (check_skip) {
1468			if (path->slots[i] == 0) {
 
 
 
 
 
 
1469				skip_level = i + 1;
1470				continue;
1471			}
1472
1473			if (path->keep_locks) {
1474				u32 nritems;
1475
1476				nritems = btrfs_header_nritems(path->nodes[i]);
1477				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478					skip_level = i + 1;
1479					continue;
1480				}
1481			}
1482		}
 
 
1483
1484		if (i >= lowest_unlock && i > skip_level) {
1485			check_skip = false;
1486			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487			path->locks[i] = 0;
1488			if (write_lock_level &&
1489			    i > min_write_lock_level &&
1490			    i <= *write_lock_level) {
1491				*write_lock_level = i - 1;
1492			}
1493		}
1494	}
1495}
1496
1497/*
1498 * Helper function for btrfs_search_slot() and other functions that do a search
1499 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501 * its pages from disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502 *
1503 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504 * whole btree search, starting again from the current root node.
1505 */
1506static int
1507read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508		      struct extent_buffer **eb_ret, int slot,
1509		      const struct btrfs_key *key)
 
1510{
1511	struct btrfs_fs_info *fs_info = root->fs_info;
1512	struct btrfs_tree_parent_check check = { 0 };
1513	u64 blocknr;
1514	struct extent_buffer *tmp = NULL;
1515	int ret = 0;
1516	int parent_level;
1517	int err;
1518	bool read_tmp = false;
1519	bool tmp_locked = false;
1520	bool path_released = false;
1521
1522	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1523	parent_level = btrfs_header_level(*eb_ret);
1524	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525	check.has_first_key = true;
1526	check.level = parent_level - 1;
1527	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528	check.owner_root = btrfs_root_id(root);
1529
1530	/*
1531	 * If we need to read an extent buffer from disk and we are holding locks
1532	 * on upper level nodes, we unlock all the upper nodes before reading the
1533	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1534	 * restart the search. We don't release the lock on the current level
1535	 * because we need to walk this node to figure out which blocks to read.
1536	 */
1537	tmp = find_extent_buffer(fs_info, blocknr);
1538	if (tmp) {
1539		if (p->reada == READA_FORWARD_ALWAYS)
1540			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
1542		/* first we do an atomic uptodate check */
1543		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544			/*
1545			 * Do extra check for first_key, eb can be stale due to
1546			 * being cached, read from scrub, or have multiple
1547			 * parents (shared tree blocks).
1548			 */
1549			if (btrfs_verify_level_key(tmp, &check)) {
1550				ret = -EUCLEAN;
1551				goto out;
1552			}
1553			*eb_ret = tmp;
1554			tmp = NULL;
1555			ret = 0;
1556			goto out;
1557		}
1558
1559		if (p->nowait) {
1560			ret = -EAGAIN;
1561			goto out;
1562		}
1563
1564		if (!p->skip_locking) {
1565			btrfs_unlock_up_safe(p, parent_level + 1);
1566			btrfs_maybe_reset_lockdep_class(root, tmp);
1567			tmp_locked = true;
1568			btrfs_tree_read_lock(tmp);
1569			btrfs_release_path(p);
1570			ret = -EAGAIN;
1571			path_released = true;
1572		}
1573
1574		/* Now we're allowed to do a blocking uptodate check. */
1575		err = btrfs_read_extent_buffer(tmp, &check);
1576		if (err) {
1577			ret = err;
1578			goto out;
1579		}
 
1580
1581		if (ret == 0) {
1582			ASSERT(!tmp_locked);
 
1583			*eb_ret = tmp;
1584			tmp = NULL;
1585		}
1586		goto out;
1587	} else if (p->nowait) {
1588		ret = -EAGAIN;
1589		goto out;
1590	}
1591
1592	if (!p->skip_locking) {
1593		btrfs_unlock_up_safe(p, parent_level + 1);
1594		ret = -EAGAIN;
1595	}
1596
1597	if (p->reada != READA_NONE)
1598		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1599
1600	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1601	if (IS_ERR(tmp)) {
1602		ret = PTR_ERR(tmp);
1603		tmp = NULL;
1604		goto out;
1605	}
1606	read_tmp = true;
1607
1608	if (!p->skip_locking) {
1609		ASSERT(ret == -EAGAIN);
1610		btrfs_maybe_reset_lockdep_class(root, tmp);
1611		tmp_locked = true;
1612		btrfs_tree_read_lock(tmp);
1613		btrfs_release_path(p);
1614		path_released = true;
1615	}
1616
1617	/* Now we're allowed to do a blocking uptodate check. */
1618	err = btrfs_read_extent_buffer(tmp, &check);
1619	if (err) {
1620		ret = err;
1621		goto out;
1622	}
1623
1624	/*
1625	 * If the read above didn't mark this buffer up to date,
1626	 * it will never end up being up to date.  Set ret to EIO now
1627	 * and give up so that our caller doesn't loop forever
1628	 * on our EAGAINs.
 
1629	 */
1630	if (!extent_buffer_uptodate(tmp)) {
1631		ret = -EIO;
1632		goto out;
1633	}
1634
1635	if (ret == 0) {
1636		ASSERT(!tmp_locked);
1637		*eb_ret = tmp;
1638		tmp = NULL;
1639	}
1640out:
1641	if (tmp) {
1642		if (tmp_locked)
1643			btrfs_tree_read_unlock(tmp);
1644		if (read_tmp && ret && ret != -EAGAIN)
1645			free_extent_buffer_stale(tmp);
1646		else
1647			free_extent_buffer(tmp);
1648	}
1649	if (ret && !path_released)
1650		btrfs_release_path(p);
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	return ret;
1653}
1654
1655/*
1656 * helper function for btrfs_search_slot.  This does all of the checks
1657 * for node-level blocks and does any balancing required based on
1658 * the ins_len.
1659 *
1660 * If no extra work was required, zero is returned.  If we had to
1661 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1662 * start over
1663 */
1664static int
1665setup_nodes_for_search(struct btrfs_trans_handle *trans,
1666		       struct btrfs_root *root, struct btrfs_path *p,
1667		       struct extent_buffer *b, int level, int ins_len,
1668		       int *write_lock_level)
1669{
1670	struct btrfs_fs_info *fs_info = root->fs_info;
1671	int ret = 0;
1672
1673	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1674	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1675
1676		if (*write_lock_level < level + 1) {
1677			*write_lock_level = level + 1;
1678			btrfs_release_path(p);
1679			return -EAGAIN;
1680		}
1681
1682		reada_for_balance(p, level);
1683		ret = split_node(trans, root, p, level);
 
 
1684
 
 
 
 
 
1685		b = p->nodes[level];
1686	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1687		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1688
1689		if (*write_lock_level < level + 1) {
1690			*write_lock_level = level + 1;
1691			btrfs_release_path(p);
1692			return -EAGAIN;
1693		}
1694
1695		reada_for_balance(p, level);
1696		ret = balance_level(trans, root, p, level);
1697		if (ret)
1698			return ret;
1699
 
 
 
 
1700		b = p->nodes[level];
1701		if (!b) {
1702			btrfs_release_path(p);
1703			return -EAGAIN;
1704		}
1705		BUG_ON(btrfs_header_nritems(b) == 1);
1706	}
 
 
 
 
 
1707	return ret;
1708}
1709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1711		u64 iobjectid, u64 ioff, u8 key_type,
1712		struct btrfs_key *found_key)
1713{
1714	int ret;
1715	struct btrfs_key key;
1716	struct extent_buffer *eb;
1717
1718	ASSERT(path);
1719	ASSERT(found_key);
1720
1721	key.type = key_type;
1722	key.objectid = iobjectid;
1723	key.offset = ioff;
1724
1725	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1726	if (ret < 0)
1727		return ret;
1728
1729	eb = path->nodes[0];
1730	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1731		ret = btrfs_next_leaf(fs_root, path);
1732		if (ret)
1733			return ret;
1734		eb = path->nodes[0];
1735	}
1736
1737	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1738	if (found_key->type != key.type ||
1739			found_key->objectid != key.objectid)
1740		return 1;
1741
1742	return 0;
1743}
1744
1745static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1746							struct btrfs_path *p,
1747							int write_lock_level)
1748{
1749	struct extent_buffer *b;
1750	int root_lock = 0;
1751	int level = 0;
1752
1753	if (p->search_commit_root) {
1754		b = root->commit_root;
1755		atomic_inc(&b->refs);
1756		level = btrfs_header_level(b);
1757		/*
1758		 * Ensure that all callers have set skip_locking when
1759		 * p->search_commit_root = 1.
1760		 */
1761		ASSERT(p->skip_locking == 1);
1762
1763		goto out;
1764	}
1765
1766	if (p->skip_locking) {
1767		b = btrfs_root_node(root);
1768		level = btrfs_header_level(b);
1769		goto out;
1770	}
1771
1772	/* We try very hard to do read locks on the root */
1773	root_lock = BTRFS_READ_LOCK;
1774
1775	/*
1776	 * If the level is set to maximum, we can skip trying to get the read
1777	 * lock.
1778	 */
1779	if (write_lock_level < BTRFS_MAX_LEVEL) {
1780		/*
1781		 * We don't know the level of the root node until we actually
1782		 * have it read locked
1783		 */
1784		if (p->nowait) {
1785			b = btrfs_try_read_lock_root_node(root);
1786			if (IS_ERR(b))
1787				return b;
1788		} else {
1789			b = btrfs_read_lock_root_node(root);
1790		}
1791		level = btrfs_header_level(b);
1792		if (level > write_lock_level)
1793			goto out;
1794
1795		/* Whoops, must trade for write lock */
1796		btrfs_tree_read_unlock(b);
1797		free_extent_buffer(b);
1798	}
1799
1800	b = btrfs_lock_root_node(root);
1801	root_lock = BTRFS_WRITE_LOCK;
1802
1803	/* The level might have changed, check again */
1804	level = btrfs_header_level(b);
1805
1806out:
1807	/*
1808	 * The root may have failed to write out at some point, and thus is no
1809	 * longer valid, return an error in this case.
1810	 */
1811	if (!extent_buffer_uptodate(b)) {
1812		if (root_lock)
1813			btrfs_tree_unlock_rw(b, root_lock);
1814		free_extent_buffer(b);
1815		return ERR_PTR(-EIO);
1816	}
1817
1818	p->nodes[level] = b;
1819	if (!p->skip_locking)
1820		p->locks[level] = root_lock;
1821	/*
1822	 * Callers are responsible for dropping b's references.
1823	 */
1824	return b;
1825}
1826
1827/*
1828 * Replace the extent buffer at the lowest level of the path with a cloned
1829 * version. The purpose is to be able to use it safely, after releasing the
1830 * commit root semaphore, even if relocation is happening in parallel, the
1831 * transaction used for relocation is committed and the extent buffer is
1832 * reallocated in the next transaction.
1833 *
1834 * This is used in a context where the caller does not prevent transaction
1835 * commits from happening, either by holding a transaction handle or holding
1836 * some lock, while it's doing searches through a commit root.
1837 * At the moment it's only used for send operations.
1838 */
1839static int finish_need_commit_sem_search(struct btrfs_path *path)
1840{
1841	const int i = path->lowest_level;
1842	const int slot = path->slots[i];
1843	struct extent_buffer *lowest = path->nodes[i];
1844	struct extent_buffer *clone;
1845
1846	ASSERT(path->need_commit_sem);
1847
1848	if (!lowest)
1849		return 0;
1850
1851	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1852
1853	clone = btrfs_clone_extent_buffer(lowest);
1854	if (!clone)
1855		return -ENOMEM;
1856
1857	btrfs_release_path(path);
1858	path->nodes[i] = clone;
1859	path->slots[i] = slot;
1860
1861	return 0;
1862}
1863
1864static inline int search_for_key_slot(struct extent_buffer *eb,
1865				      int search_low_slot,
1866				      const struct btrfs_key *key,
1867				      int prev_cmp,
1868				      int *slot)
1869{
1870	/*
1871	 * If a previous call to btrfs_bin_search() on a parent node returned an
1872	 * exact match (prev_cmp == 0), we can safely assume the target key will
1873	 * always be at slot 0 on lower levels, since each key pointer
1874	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1875	 * subtree it points to. Thus we can skip searching lower levels.
1876	 */
1877	if (prev_cmp == 0) {
1878		*slot = 0;
1879		return 0;
1880	}
1881
1882	return btrfs_bin_search(eb, search_low_slot, key, slot);
1883}
1884
1885static int search_leaf(struct btrfs_trans_handle *trans,
1886		       struct btrfs_root *root,
1887		       const struct btrfs_key *key,
1888		       struct btrfs_path *path,
1889		       int ins_len,
1890		       int prev_cmp)
1891{
1892	struct extent_buffer *leaf = path->nodes[0];
1893	int leaf_free_space = -1;
1894	int search_low_slot = 0;
1895	int ret;
1896	bool do_bin_search = true;
1897
1898	/*
1899	 * If we are doing an insertion, the leaf has enough free space and the
1900	 * destination slot for the key is not slot 0, then we can unlock our
1901	 * write lock on the parent, and any other upper nodes, before doing the
1902	 * binary search on the leaf (with search_for_key_slot()), allowing other
1903	 * tasks to lock the parent and any other upper nodes.
1904	 */
1905	if (ins_len > 0) {
1906		/*
1907		 * Cache the leaf free space, since we will need it later and it
1908		 * will not change until then.
1909		 */
1910		leaf_free_space = btrfs_leaf_free_space(leaf);
1911
1912		/*
1913		 * !path->locks[1] means we have a single node tree, the leaf is
1914		 * the root of the tree.
1915		 */
1916		if (path->locks[1] && leaf_free_space >= ins_len) {
1917			struct btrfs_disk_key first_key;
1918
1919			ASSERT(btrfs_header_nritems(leaf) > 0);
1920			btrfs_item_key(leaf, &first_key, 0);
1921
1922			/*
1923			 * Doing the extra comparison with the first key is cheap,
1924			 * taking into account that the first key is very likely
1925			 * already in a cache line because it immediately follows
1926			 * the extent buffer's header and we have recently accessed
1927			 * the header's level field.
1928			 */
1929			ret = btrfs_comp_keys(&first_key, key);
1930			if (ret < 0) {
1931				/*
1932				 * The first key is smaller than the key we want
1933				 * to insert, so we are safe to unlock all upper
1934				 * nodes and we have to do the binary search.
1935				 *
1936				 * We do use btrfs_unlock_up_safe() and not
1937				 * unlock_up() because the later does not unlock
1938				 * nodes with a slot of 0 - we can safely unlock
1939				 * any node even if its slot is 0 since in this
1940				 * case the key does not end up at slot 0 of the
1941				 * leaf and there's no need to split the leaf.
1942				 */
1943				btrfs_unlock_up_safe(path, 1);
1944				search_low_slot = 1;
1945			} else {
1946				/*
1947				 * The first key is >= then the key we want to
1948				 * insert, so we can skip the binary search as
1949				 * the target key will be at slot 0.
1950				 *
1951				 * We can not unlock upper nodes when the key is
1952				 * less than the first key, because we will need
1953				 * to update the key at slot 0 of the parent node
1954				 * and possibly of other upper nodes too.
1955				 * If the key matches the first key, then we can
1956				 * unlock all the upper nodes, using
1957				 * btrfs_unlock_up_safe() instead of unlock_up()
1958				 * as stated above.
1959				 */
1960				if (ret == 0)
1961					btrfs_unlock_up_safe(path, 1);
1962				/*
1963				 * ret is already 0 or 1, matching the result of
1964				 * a btrfs_bin_search() call, so there is no need
1965				 * to adjust it.
1966				 */
1967				do_bin_search = false;
1968				path->slots[0] = 0;
1969			}
1970		}
1971	}
1972
1973	if (do_bin_search) {
1974		ret = search_for_key_slot(leaf, search_low_slot, key,
1975					  prev_cmp, &path->slots[0]);
1976		if (ret < 0)
1977			return ret;
1978	}
1979
1980	if (ins_len > 0) {
1981		/*
1982		 * Item key already exists. In this case, if we are allowed to
1983		 * insert the item (for example, in dir_item case, item key
1984		 * collision is allowed), it will be merged with the original
1985		 * item. Only the item size grows, no new btrfs item will be
1986		 * added. If search_for_extension is not set, ins_len already
1987		 * accounts the size btrfs_item, deduct it here so leaf space
1988		 * check will be correct.
1989		 */
1990		if (ret == 0 && !path->search_for_extension) {
1991			ASSERT(ins_len >= sizeof(struct btrfs_item));
1992			ins_len -= sizeof(struct btrfs_item);
1993		}
1994
1995		ASSERT(leaf_free_space >= 0);
1996
1997		if (leaf_free_space < ins_len) {
1998			int err;
1999
2000			err = split_leaf(trans, root, key, path, ins_len,
2001					 (ret == 0));
2002			ASSERT(err <= 0);
2003			if (WARN_ON(err > 0))
2004				err = -EUCLEAN;
2005			if (err)
2006				ret = err;
2007		}
2008	}
2009
2010	return ret;
2011}
2012
2013/*
2014 * Look for a key in a tree and perform necessary modifications to preserve
2015 * tree invariants.
2016 *
2017 * @trans:	Handle of transaction, used when modifying the tree
2018 * @p:		Holds all btree nodes along the search path
2019 * @root:	The root node of the tree
2020 * @key:	The key we are looking for
2021 * @ins_len:	Indicates purpose of search:
2022 *              >0  for inserts it's size of item inserted (*)
2023 *              <0  for deletions
2024 *               0  for plain searches, not modifying the tree
2025 *
2026 *              (*) If size of item inserted doesn't include
2027 *              sizeof(struct btrfs_item), then p->search_for_extension must
2028 *              be set.
2029 * @cow:	boolean should CoW operations be performed. Must always be 1
2030 *		when modifying the tree.
2031 *
2032 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2033 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2034 *
2035 * If @key is found, 0 is returned and you can find the item in the leaf level
2036 * of the path (level 0)
2037 *
2038 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2039 * points to the slot where it should be inserted
2040 *
2041 * If an error is encountered while searching the tree a negative error number
2042 * is returned
2043 */
2044int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2045		      const struct btrfs_key *key, struct btrfs_path *p,
2046		      int ins_len, int cow)
2047{
2048	struct btrfs_fs_info *fs_info;
2049	struct extent_buffer *b;
2050	int slot;
2051	int ret;
2052	int err;
2053	int level;
2054	int lowest_unlock = 1;
 
2055	/* everything at write_lock_level or lower must be write locked */
2056	int write_lock_level = 0;
2057	u8 lowest_level = 0;
2058	int min_write_lock_level;
2059	int prev_cmp;
2060
2061	if (!root)
2062		return -EINVAL;
2063
2064	fs_info = root->fs_info;
2065	might_sleep();
2066
2067	lowest_level = p->lowest_level;
2068	WARN_ON(lowest_level && ins_len > 0);
2069	WARN_ON(p->nodes[0] != NULL);
2070	BUG_ON(!cow && ins_len);
2071
2072	/*
2073	 * For now only allow nowait for read only operations.  There's no
2074	 * strict reason why we can't, we just only need it for reads so it's
2075	 * only implemented for reads.
2076	 */
2077	ASSERT(!p->nowait || !cow);
2078
2079	if (ins_len < 0) {
2080		lowest_unlock = 2;
2081
2082		/* when we are removing items, we might have to go up to level
2083		 * two as we update tree pointers  Make sure we keep write
2084		 * for those levels as well
2085		 */
2086		write_lock_level = 2;
2087	} else if (ins_len > 0) {
2088		/*
2089		 * for inserting items, make sure we have a write lock on
2090		 * level 1 so we can update keys
2091		 */
2092		write_lock_level = 1;
2093	}
2094
2095	if (!cow)
2096		write_lock_level = -1;
2097
2098	if (cow && (p->keep_locks || p->lowest_level))
2099		write_lock_level = BTRFS_MAX_LEVEL;
2100
2101	min_write_lock_level = write_lock_level;
2102
2103	if (p->need_commit_sem) {
2104		ASSERT(p->search_commit_root);
2105		if (p->nowait) {
2106			if (!down_read_trylock(&fs_info->commit_root_sem))
2107				return -EAGAIN;
2108		} else {
2109			down_read(&fs_info->commit_root_sem);
2110		}
2111	}
2112
2113again:
2114	prev_cmp = -1;
2115	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2116	if (IS_ERR(b)) {
2117		ret = PTR_ERR(b);
2118		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119	}
 
 
 
2120
2121	while (b) {
2122		int dec = 0;
2123
2124		level = btrfs_header_level(b);
2125
 
 
 
 
2126		if (cow) {
2127			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2128
2129			/*
2130			 * if we don't really need to cow this block
2131			 * then we don't want to set the path blocking,
2132			 * so we test it here
2133			 */
2134			if (!should_cow_block(trans, root, b))
 
2135				goto cow_done;
 
2136
2137			/*
2138			 * must have write locks on this node and the
2139			 * parent
2140			 */
2141			if (level > write_lock_level ||
2142			    (level + 1 > write_lock_level &&
2143			    level + 1 < BTRFS_MAX_LEVEL &&
2144			    p->nodes[level + 1])) {
2145				write_lock_level = level + 1;
2146				btrfs_release_path(p);
2147				goto again;
2148			}
2149
2150			if (last_level)
2151				err = btrfs_cow_block(trans, root, b, NULL, 0,
2152						      &b,
2153						      BTRFS_NESTING_COW);
2154			else
2155				err = btrfs_cow_block(trans, root, b,
2156						      p->nodes[level + 1],
2157						      p->slots[level + 1], &b,
2158						      BTRFS_NESTING_COW);
2159			if (err) {
2160				ret = err;
2161				goto done;
2162			}
2163		}
2164cow_done:
2165		p->nodes[level] = b;
 
2166
2167		/*
2168		 * we have a lock on b and as long as we aren't changing
2169		 * the tree, there is no way to for the items in b to change.
2170		 * It is safe to drop the lock on our parent before we
2171		 * go through the expensive btree search on b.
2172		 *
2173		 * If we're inserting or deleting (ins_len != 0), then we might
2174		 * be changing slot zero, which may require changing the parent.
2175		 * So, we can't drop the lock until after we know which slot
2176		 * we're operating on.
2177		 */
2178		if (!ins_len && !p->keep_locks) {
2179			int u = level + 1;
2180
2181			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2182				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2183				p->locks[u] = 0;
2184			}
2185		}
2186
2187		if (level == 0) {
2188			if (ins_len > 0)
2189				ASSERT(write_lock_level >= 1);
2190
2191			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2192			if (!p->search_for_split)
2193				unlock_up(p, level, lowest_unlock,
2194					  min_write_lock_level, NULL);
2195			goto done;
2196		}
2197
2198		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2199		if (ret < 0)
2200			goto done;
2201		prev_cmp = ret;
2202
2203		if (ret && slot > 0) {
2204			dec = 1;
2205			slot--;
2206		}
2207		p->slots[level] = slot;
2208		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2209					     &write_lock_level);
2210		if (err == -EAGAIN)
2211			goto again;
2212		if (err) {
2213			ret = err;
2214			goto done;
2215		}
2216		b = p->nodes[level];
2217		slot = p->slots[level];
2218
2219		/*
2220		 * Slot 0 is special, if we change the key we have to update
2221		 * the parent pointer which means we must have a write lock on
2222		 * the parent
2223		 */
2224		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2225			write_lock_level = level + 1;
2226			btrfs_release_path(p);
2227			goto again;
2228		}
2229
2230		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2231			  &write_lock_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232
2233		if (level == lowest_level) {
2234			if (dec)
2235				p->slots[level]++;
2236			goto done;
2237		}
 
 
 
 
 
 
 
2238
2239		err = read_block_for_search(root, p, &b, slot, key);
2240		if (err == -EAGAIN && !p->nowait)
2241			goto again;
2242		if (err) {
2243			ret = err;
2244			goto done;
2245		}
2246
2247		if (!p->skip_locking) {
2248			level = btrfs_header_level(b);
 
 
 
2249
2250			btrfs_maybe_reset_lockdep_class(root, b);
 
 
 
 
 
 
 
2251
2252			if (level <= write_lock_level) {
2253				btrfs_tree_lock(b);
2254				p->locks[level] = BTRFS_WRITE_LOCK;
2255			} else {
2256				if (p->nowait) {
2257					if (!btrfs_try_tree_read_lock(b)) {
2258						free_extent_buffer(b);
2259						ret = -EAGAIN;
2260						goto done;
2261					}
 
2262				} else {
2263					btrfs_tree_read_lock(b);
 
 
 
 
 
 
 
2264				}
2265				p->locks[level] = BTRFS_READ_LOCK;
2266			}
2267			p->nodes[level] = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268		}
2269	}
2270	ret = 1;
2271done:
 
 
 
 
 
 
2272	if (ret < 0 && !p->skip_release_on_error)
2273		btrfs_release_path(p);
2274
2275	if (p->need_commit_sem) {
2276		int ret2;
2277
2278		ret2 = finish_need_commit_sem_search(p);
2279		up_read(&fs_info->commit_root_sem);
2280		if (ret2)
2281			ret = ret2;
2282	}
2283
2284	return ret;
2285}
2286ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2287
2288/*
2289 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2290 * current state of the tree together with the operations recorded in the tree
2291 * modification log to search for the key in a previous version of this tree, as
2292 * denoted by the time_seq parameter.
2293 *
2294 * Naturally, there is no support for insert, delete or cow operations.
2295 *
2296 * The resulting path and return value will be set up as if we called
2297 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2298 */
2299int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2300			  struct btrfs_path *p, u64 time_seq)
2301{
2302	struct btrfs_fs_info *fs_info = root->fs_info;
2303	struct extent_buffer *b;
2304	int slot;
2305	int ret;
2306	int err;
2307	int level;
2308	int lowest_unlock = 1;
2309	u8 lowest_level = 0;
 
2310
2311	lowest_level = p->lowest_level;
2312	WARN_ON(p->nodes[0] != NULL);
2313	ASSERT(!p->nowait);
2314
2315	if (p->search_commit_root) {
2316		BUG_ON(time_seq);
2317		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2318	}
2319
2320again:
2321	b = btrfs_get_old_root(root, time_seq);
2322	if (!b) {
2323		ret = -EIO;
2324		goto done;
2325	}
2326	level = btrfs_header_level(b);
2327	p->locks[level] = BTRFS_READ_LOCK;
2328
2329	while (b) {
2330		int dec = 0;
2331
2332		level = btrfs_header_level(b);
2333		p->nodes[level] = b;
 
2334
2335		/*
2336		 * we have a lock on b and as long as we aren't changing
2337		 * the tree, there is no way to for the items in b to change.
2338		 * It is safe to drop the lock on our parent before we
2339		 * go through the expensive btree search on b.
2340		 */
2341		btrfs_unlock_up_safe(p, level + 1);
2342
2343		ret = btrfs_bin_search(b, 0, key, &slot);
2344		if (ret < 0)
2345			goto done;
 
 
 
2346
2347		if (level == 0) {
 
 
 
 
 
2348			p->slots[level] = slot;
2349			unlock_up(p, level, lowest_unlock, 0, NULL);
2350			goto done;
2351		}
2352
2353		if (ret && slot > 0) {
2354			dec = 1;
2355			slot--;
2356		}
2357		p->slots[level] = slot;
2358		unlock_up(p, level, lowest_unlock, 0, NULL);
2359
2360		if (level == lowest_level) {
2361			if (dec)
2362				p->slots[level]++;
2363			goto done;
2364		}
2365
2366		err = read_block_for_search(root, p, &b, slot, key);
2367		if (err == -EAGAIN && !p->nowait)
2368			goto again;
2369		if (err) {
2370			ret = err;
2371			goto done;
2372		}
 
2373
2374		level = btrfs_header_level(b);
2375		btrfs_tree_read_lock(b);
2376		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2377		if (!b) {
2378			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
2379			goto done;
2380		}
2381		p->locks[level] = BTRFS_READ_LOCK;
2382		p->nodes[level] = b;
2383	}
2384	ret = 1;
2385done:
 
 
2386	if (ret < 0)
2387		btrfs_release_path(p);
2388
2389	return ret;
2390}
2391
2392/*
2393 * Search the tree again to find a leaf with smaller keys.
2394 * Returns 0 if it found something.
2395 * Returns 1 if there are no smaller keys.
2396 * Returns < 0 on error.
2397 *
2398 * This may release the path, and so you may lose any locks held at the
2399 * time you call it.
2400 */
2401static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2402{
2403	struct btrfs_key key;
2404	struct btrfs_key orig_key;
2405	struct btrfs_disk_key found_key;
2406	int ret;
2407
2408	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2409	orig_key = key;
2410
2411	if (key.offset > 0) {
2412		key.offset--;
2413	} else if (key.type > 0) {
2414		key.type--;
2415		key.offset = (u64)-1;
2416	} else if (key.objectid > 0) {
2417		key.objectid--;
2418		key.type = (u8)-1;
2419		key.offset = (u64)-1;
2420	} else {
2421		return 1;
2422	}
2423
2424	btrfs_release_path(path);
2425	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426	if (ret <= 0)
2427		return ret;
2428
2429	/*
2430	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2431	 * before releasing the path and calling btrfs_search_slot(), we now may
2432	 * be in a slot pointing to the same original key - this can happen if
2433	 * after we released the path, one of more items were moved from a
2434	 * sibling leaf into the front of the leaf we had due to an insertion
2435	 * (see push_leaf_right()).
2436	 * If we hit this case and our slot is > 0 and just decrement the slot
2437	 * so that the caller does not process the same key again, which may or
2438	 * may not break the caller, depending on its logic.
2439	 */
2440	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2441		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2442		ret = btrfs_comp_keys(&found_key, &orig_key);
2443		if (ret == 0) {
2444			if (path->slots[0] > 0) {
2445				path->slots[0]--;
2446				return 0;
2447			}
2448			/*
2449			 * At slot 0, same key as before, it means orig_key is
2450			 * the lowest, leftmost, key in the tree. We're done.
2451			 */
2452			return 1;
2453		}
2454	}
2455
2456	btrfs_item_key(path->nodes[0], &found_key, 0);
2457	ret = btrfs_comp_keys(&found_key, &key);
2458	/*
2459	 * We might have had an item with the previous key in the tree right
2460	 * before we released our path. And after we released our path, that
2461	 * item might have been pushed to the first slot (0) of the leaf we
2462	 * were holding due to a tree balance. Alternatively, an item with the
2463	 * previous key can exist as the only element of a leaf (big fat item).
2464	 * Therefore account for these 2 cases, so that our callers (like
2465	 * btrfs_previous_item) don't miss an existing item with a key matching
2466	 * the previous key we computed above.
2467	 */
2468	if (ret <= 0)
2469		return 0;
2470	return 1;
2471}
2472
2473/*
2474 * helper to use instead of search slot if no exact match is needed but
2475 * instead the next or previous item should be returned.
2476 * When find_higher is true, the next higher item is returned, the next lower
2477 * otherwise.
2478 * When return_any and find_higher are both true, and no higher item is found,
2479 * return the next lower instead.
2480 * When return_any is true and find_higher is false, and no lower item is found,
2481 * return the next higher instead.
2482 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2483 * < 0 on error
2484 */
2485int btrfs_search_slot_for_read(struct btrfs_root *root,
2486			       const struct btrfs_key *key,
2487			       struct btrfs_path *p, int find_higher,
2488			       int return_any)
2489{
2490	int ret;
2491	struct extent_buffer *leaf;
2492
2493again:
2494	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2495	if (ret <= 0)
2496		return ret;
2497	/*
2498	 * a return value of 1 means the path is at the position where the
2499	 * item should be inserted. Normally this is the next bigger item,
2500	 * but in case the previous item is the last in a leaf, path points
2501	 * to the first free slot in the previous leaf, i.e. at an invalid
2502	 * item.
2503	 */
2504	leaf = p->nodes[0];
2505
2506	if (find_higher) {
2507		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2508			ret = btrfs_next_leaf(root, p);
2509			if (ret <= 0)
2510				return ret;
2511			if (!return_any)
2512				return 1;
2513			/*
2514			 * no higher item found, return the next
2515			 * lower instead
2516			 */
2517			return_any = 0;
2518			find_higher = 0;
2519			btrfs_release_path(p);
2520			goto again;
2521		}
2522	} else {
2523		if (p->slots[0] == 0) {
2524			ret = btrfs_prev_leaf(root, p);
2525			if (ret < 0)
2526				return ret;
2527			if (!ret) {
2528				leaf = p->nodes[0];
2529				if (p->slots[0] == btrfs_header_nritems(leaf))
2530					p->slots[0]--;
2531				return 0;
2532			}
2533			if (!return_any)
2534				return 1;
2535			/*
2536			 * no lower item found, return the next
2537			 * higher instead
2538			 */
2539			return_any = 0;
2540			find_higher = 1;
2541			btrfs_release_path(p);
2542			goto again;
2543		} else {
2544			--p->slots[0];
2545		}
2546	}
2547	return 0;
2548}
2549
2550/*
2551 * Execute search and call btrfs_previous_item to traverse backwards if the item
2552 * was not found.
2553 *
2554 * Return 0 if found, 1 if not found and < 0 if error.
2555 */
2556int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2557			   struct btrfs_path *path)
2558{
2559	int ret;
2560
2561	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2562	if (ret > 0)
2563		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2564
2565	if (ret == 0)
2566		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2567
2568	return ret;
2569}
2570
2571/*
2572 * Search for a valid slot for the given path.
2573 *
2574 * @root:	The root node of the tree.
2575 * @key:	Will contain a valid item if found.
2576 * @path:	The starting point to validate the slot.
2577 *
2578 * Return: 0  if the item is valid
2579 *         1  if not found
2580 *         <0 if error.
2581 */
2582int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2583			      struct btrfs_path *path)
2584{
2585	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2586		int ret;
2587
2588		ret = btrfs_next_leaf(root, path);
2589		if (ret)
2590			return ret;
2591	}
2592
2593	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2594	return 0;
2595}
2596
2597/*
2598 * adjust the pointers going up the tree, starting at level
2599 * making sure the right key of each node is points to 'key'.
2600 * This is used after shifting pointers to the left, so it stops
2601 * fixing up pointers when a given leaf/node is not in slot 0 of the
2602 * higher levels
2603 *
2604 */
2605static void fixup_low_keys(struct btrfs_trans_handle *trans,
2606			   const struct btrfs_path *path,
2607			   const struct btrfs_disk_key *key, int level)
2608{
2609	int i;
2610	struct extent_buffer *t;
2611	int ret;
2612
2613	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2614		int tslot = path->slots[i];
2615
2616		if (!path->nodes[i])
2617			break;
2618		t = path->nodes[i];
2619		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2620						    BTRFS_MOD_LOG_KEY_REPLACE);
2621		BUG_ON(ret < 0);
2622		btrfs_set_node_key(t, key, tslot);
2623		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2624		if (tslot != 0)
2625			break;
2626	}
2627}
2628
2629/*
2630 * update item key.
2631 *
2632 * This function isn't completely safe. It's the caller's responsibility
2633 * that the new key won't break the order
2634 */
2635void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2636			     const struct btrfs_path *path,
2637			     const struct btrfs_key *new_key)
2638{
2639	struct btrfs_fs_info *fs_info = trans->fs_info;
2640	struct btrfs_disk_key disk_key;
2641	struct extent_buffer *eb;
2642	int slot;
2643
2644	eb = path->nodes[0];
2645	slot = path->slots[0];
2646	if (slot > 0) {
2647		btrfs_item_key(eb, &disk_key, slot - 1);
2648		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2649			btrfs_print_leaf(eb);
2650			btrfs_crit(fs_info,
2651		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2652				   slot, btrfs_disk_key_objectid(&disk_key),
2653				   btrfs_disk_key_type(&disk_key),
2654				   btrfs_disk_key_offset(&disk_key),
2655				   new_key->objectid, new_key->type,
2656				   new_key->offset);
2657			BUG();
2658		}
2659	}
2660	if (slot < btrfs_header_nritems(eb) - 1) {
2661		btrfs_item_key(eb, &disk_key, slot + 1);
2662		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2663			btrfs_print_leaf(eb);
2664			btrfs_crit(fs_info,
2665		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2666				   slot, btrfs_disk_key_objectid(&disk_key),
2667				   btrfs_disk_key_type(&disk_key),
2668				   btrfs_disk_key_offset(&disk_key),
2669				   new_key->objectid, new_key->type,
2670				   new_key->offset);
2671			BUG();
2672		}
2673	}
2674
2675	btrfs_cpu_key_to_disk(&disk_key, new_key);
2676	btrfs_set_item_key(eb, &disk_key, slot);
2677	btrfs_mark_buffer_dirty(trans, eb);
2678	if (slot == 0)
2679		fixup_low_keys(trans, path, &disk_key, 1);
2680}
2681
2682/*
2683 * Check key order of two sibling extent buffers.
2684 *
2685 * Return true if something is wrong.
2686 * Return false if everything is fine.
2687 *
2688 * Tree-checker only works inside one tree block, thus the following
2689 * corruption can not be detected by tree-checker:
2690 *
2691 * Leaf @left			| Leaf @right
2692 * --------------------------------------------------------------
2693 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2694 *
2695 * Key f6 in leaf @left itself is valid, but not valid when the next
2696 * key in leaf @right is 7.
2697 * This can only be checked at tree block merge time.
2698 * And since tree checker has ensured all key order in each tree block
2699 * is correct, we only need to bother the last key of @left and the first
2700 * key of @right.
2701 */
2702static bool check_sibling_keys(const struct extent_buffer *left,
2703			       const struct extent_buffer *right)
2704{
2705	struct btrfs_key left_last;
2706	struct btrfs_key right_first;
2707	int level = btrfs_header_level(left);
2708	int nr_left = btrfs_header_nritems(left);
2709	int nr_right = btrfs_header_nritems(right);
2710
2711	/* No key to check in one of the tree blocks */
2712	if (!nr_left || !nr_right)
2713		return false;
2714
2715	if (level) {
2716		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2717		btrfs_node_key_to_cpu(right, &right_first, 0);
2718	} else {
2719		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2720		btrfs_item_key_to_cpu(right, &right_first, 0);
2721	}
2722
2723	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2724		btrfs_crit(left->fs_info, "left extent buffer:");
2725		btrfs_print_tree(left, false);
2726		btrfs_crit(left->fs_info, "right extent buffer:");
2727		btrfs_print_tree(right, false);
2728		btrfs_crit(left->fs_info,
2729"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2730			   left_last.objectid, left_last.type,
2731			   left_last.offset, right_first.objectid,
2732			   right_first.type, right_first.offset);
2733		return true;
2734	}
2735	return false;
2736}
2737
2738/*
2739 * try to push data from one node into the next node left in the
2740 * tree.
2741 *
2742 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2743 * error, and > 0 if there was no room in the left hand block.
2744 */
2745static int push_node_left(struct btrfs_trans_handle *trans,
 
2746			  struct extent_buffer *dst,
2747			  struct extent_buffer *src, int empty)
2748{
2749	struct btrfs_fs_info *fs_info = trans->fs_info;
2750	int push_items = 0;
2751	int src_nritems;
2752	int dst_nritems;
2753	int ret = 0;
2754
2755	src_nritems = btrfs_header_nritems(src);
2756	dst_nritems = btrfs_header_nritems(dst);
2757	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2758	WARN_ON(btrfs_header_generation(src) != trans->transid);
2759	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2760
2761	if (!empty && src_nritems <= 8)
2762		return 1;
2763
2764	if (push_items <= 0)
2765		return 1;
2766
2767	if (empty) {
2768		push_items = min(src_nritems, push_items);
2769		if (push_items < src_nritems) {
2770			/* leave at least 8 pointers in the node if
2771			 * we aren't going to empty it
2772			 */
2773			if (src_nritems - push_items < 8) {
2774				if (push_items <= 8)
2775					return 1;
2776				push_items -= 8;
2777			}
2778		}
2779	} else
2780		push_items = min(src_nritems - 8, push_items);
2781
2782	/* dst is the left eb, src is the middle eb */
2783	if (check_sibling_keys(dst, src)) {
2784		ret = -EUCLEAN;
2785		btrfs_abort_transaction(trans, ret);
2786		return ret;
2787	}
2788	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2789	if (ret) {
2790		btrfs_abort_transaction(trans, ret);
2791		return ret;
2792	}
2793	copy_extent_buffer(dst, src,
2794			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2795			   btrfs_node_key_ptr_offset(src, 0),
2796			   push_items * sizeof(struct btrfs_key_ptr));
2797
2798	if (push_items < src_nritems) {
2799		/*
2800		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2801		 * don't need to do an explicit tree mod log operation for it.
2802		 */
2803		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2804				      btrfs_node_key_ptr_offset(src, push_items),
2805				      (src_nritems - push_items) *
2806				      sizeof(struct btrfs_key_ptr));
2807	}
2808	btrfs_set_header_nritems(src, src_nritems - push_items);
2809	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2810	btrfs_mark_buffer_dirty(trans, src);
2811	btrfs_mark_buffer_dirty(trans, dst);
2812
2813	return ret;
2814}
2815
2816/*
2817 * try to push data from one node into the next node right in the
2818 * tree.
2819 *
2820 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2821 * error, and > 0 if there was no room in the right hand block.
2822 *
2823 * this will  only push up to 1/2 the contents of the left node over
2824 */
2825static int balance_node_right(struct btrfs_trans_handle *trans,
 
2826			      struct extent_buffer *dst,
2827			      struct extent_buffer *src)
2828{
2829	struct btrfs_fs_info *fs_info = trans->fs_info;
2830	int push_items = 0;
2831	int max_push;
2832	int src_nritems;
2833	int dst_nritems;
2834	int ret = 0;
2835
2836	WARN_ON(btrfs_header_generation(src) != trans->transid);
2837	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2838
2839	src_nritems = btrfs_header_nritems(src);
2840	dst_nritems = btrfs_header_nritems(dst);
2841	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2842	if (push_items <= 0)
2843		return 1;
2844
2845	if (src_nritems < 4)
2846		return 1;
2847
2848	max_push = src_nritems / 2 + 1;
2849	/* don't try to empty the node */
2850	if (max_push >= src_nritems)
2851		return 1;
2852
2853	if (max_push < push_items)
2854		push_items = max_push;
2855
2856	/* dst is the right eb, src is the middle eb */
2857	if (check_sibling_keys(src, dst)) {
2858		ret = -EUCLEAN;
2859		btrfs_abort_transaction(trans, ret);
2860		return ret;
2861	}
2862
2863	/*
2864	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2865	 * need to do an explicit tree mod log operation for it.
2866	 */
2867	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2868				      btrfs_node_key_ptr_offset(dst, 0),
2869				      (dst_nritems) *
2870				      sizeof(struct btrfs_key_ptr));
2871
2872	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2873					 push_items);
2874	if (ret) {
2875		btrfs_abort_transaction(trans, ret);
2876		return ret;
2877	}
2878	copy_extent_buffer(dst, src,
2879			   btrfs_node_key_ptr_offset(dst, 0),
2880			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2881			   push_items * sizeof(struct btrfs_key_ptr));
2882
2883	btrfs_set_header_nritems(src, src_nritems - push_items);
2884	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2885
2886	btrfs_mark_buffer_dirty(trans, src);
2887	btrfs_mark_buffer_dirty(trans, dst);
2888
2889	return ret;
2890}
2891
2892/*
2893 * helper function to insert a new root level in the tree.
2894 * A new node is allocated, and a single item is inserted to
2895 * point to the existing root
2896 *
2897 * returns zero on success or < 0 on failure.
2898 */
2899static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2900			   struct btrfs_root *root,
2901			   struct btrfs_path *path, int level)
2902{
 
2903	u64 lower_gen;
2904	struct extent_buffer *lower;
2905	struct extent_buffer *c;
2906	struct extent_buffer *old;
2907	struct btrfs_disk_key lower_key;
2908	int ret;
2909
2910	BUG_ON(path->nodes[level]);
2911	BUG_ON(path->nodes[level-1] != root->node);
2912
2913	lower = path->nodes[level-1];
2914	if (level == 1)
2915		btrfs_item_key(lower, &lower_key, 0);
2916	else
2917		btrfs_node_key(lower, &lower_key, 0);
2918
2919	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2920				   &lower_key, level, root->node->start, 0,
2921				   0, BTRFS_NESTING_NEW_ROOT);
2922	if (IS_ERR(c))
2923		return PTR_ERR(c);
2924
2925	root_add_used_bytes(root);
2926
 
2927	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
2928	btrfs_set_node_key(c, &lower_key, 0);
2929	btrfs_set_node_blockptr(c, 0, lower->start);
2930	lower_gen = btrfs_header_generation(lower);
2931	WARN_ON(lower_gen != trans->transid);
2932
2933	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2934
2935	btrfs_mark_buffer_dirty(trans, c);
2936
2937	old = root->node;
2938	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2939	if (ret < 0) {
2940		int ret2;
2941
2942		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2943		if (ret2 < 0)
2944			btrfs_abort_transaction(trans, ret2);
2945		btrfs_tree_unlock(c);
2946		free_extent_buffer(c);
2947		return ret;
2948	}
2949	rcu_assign_pointer(root->node, c);
2950
2951	/* the super has an extra ref to root->node */
2952	free_extent_buffer(old);
2953
2954	add_root_to_dirty_list(root);
2955	atomic_inc(&c->refs);
2956	path->nodes[level] = c;
2957	path->locks[level] = BTRFS_WRITE_LOCK;
2958	path->slots[level] = 0;
2959	return 0;
2960}
2961
2962/*
2963 * worker function to insert a single pointer in a node.
2964 * the node should have enough room for the pointer already
2965 *
2966 * slot and level indicate where you want the key to go, and
2967 * blocknr is the block the key points to.
2968 */
2969static int insert_ptr(struct btrfs_trans_handle *trans,
2970		      const struct btrfs_path *path,
2971		      const struct btrfs_disk_key *key, u64 bytenr,
2972		      int slot, int level)
2973{
2974	struct extent_buffer *lower;
2975	int nritems;
2976	int ret;
2977
2978	BUG_ON(!path->nodes[level]);
2979	btrfs_assert_tree_write_locked(path->nodes[level]);
2980	lower = path->nodes[level];
2981	nritems = btrfs_header_nritems(lower);
2982	BUG_ON(slot > nritems);
2983	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2984	if (slot != nritems) {
2985		if (level) {
2986			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2987					slot, nritems - slot);
2988			if (ret < 0) {
2989				btrfs_abort_transaction(trans, ret);
2990				return ret;
2991			}
2992		}
2993		memmove_extent_buffer(lower,
2994			      btrfs_node_key_ptr_offset(lower, slot + 1),
2995			      btrfs_node_key_ptr_offset(lower, slot),
2996			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2997	}
2998	if (level) {
2999		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3000						    BTRFS_MOD_LOG_KEY_ADD);
3001		if (ret < 0) {
3002			btrfs_abort_transaction(trans, ret);
3003			return ret;
3004		}
3005	}
3006	btrfs_set_node_key(lower, key, slot);
3007	btrfs_set_node_blockptr(lower, slot, bytenr);
3008	WARN_ON(trans->transid == 0);
3009	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3010	btrfs_set_header_nritems(lower, nritems + 1);
3011	btrfs_mark_buffer_dirty(trans, lower);
3012
3013	return 0;
3014}
3015
3016/*
3017 * split the node at the specified level in path in two.
3018 * The path is corrected to point to the appropriate node after the split
3019 *
3020 * Before splitting this tries to make some room in the node by pushing
3021 * left and right, if either one works, it returns right away.
3022 *
3023 * returns 0 on success and < 0 on failure
3024 */
3025static noinline int split_node(struct btrfs_trans_handle *trans,
3026			       struct btrfs_root *root,
3027			       struct btrfs_path *path, int level)
3028{
3029	struct btrfs_fs_info *fs_info = root->fs_info;
3030	struct extent_buffer *c;
3031	struct extent_buffer *split;
3032	struct btrfs_disk_key disk_key;
3033	int mid;
3034	int ret;
3035	u32 c_nritems;
3036
3037	c = path->nodes[level];
3038	WARN_ON(btrfs_header_generation(c) != trans->transid);
3039	if (c == root->node) {
3040		/*
3041		 * trying to split the root, lets make a new one
3042		 *
3043		 * tree mod log: We don't log_removal old root in
3044		 * insert_new_root, because that root buffer will be kept as a
3045		 * normal node. We are going to log removal of half of the
3046		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3047		 * holding a tree lock on the buffer, which is why we cannot
3048		 * race with other tree_mod_log users.
3049		 */
3050		ret = insert_new_root(trans, root, path, level + 1);
3051		if (ret)
3052			return ret;
3053	} else {
3054		ret = push_nodes_for_insert(trans, root, path, level);
3055		c = path->nodes[level];
3056		if (!ret && btrfs_header_nritems(c) <
3057		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3058			return 0;
3059		if (ret < 0)
3060			return ret;
3061	}
3062
3063	c_nritems = btrfs_header_nritems(c);
3064	mid = (c_nritems + 1) / 2;
3065	btrfs_node_key(c, &disk_key, mid);
3066
3067	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3068				       &disk_key, level, c->start, 0,
3069				       0, BTRFS_NESTING_SPLIT);
3070	if (IS_ERR(split))
3071		return PTR_ERR(split);
3072
3073	root_add_used_bytes(root);
3074	ASSERT(btrfs_header_level(c) == level);
 
 
 
 
 
 
 
 
3075
3076	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3077	if (ret) {
3078		btrfs_tree_unlock(split);
3079		free_extent_buffer(split);
3080		btrfs_abort_transaction(trans, ret);
3081		return ret;
3082	}
3083	copy_extent_buffer(split, c,
3084			   btrfs_node_key_ptr_offset(split, 0),
3085			   btrfs_node_key_ptr_offset(c, mid),
3086			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3087	btrfs_set_header_nritems(split, c_nritems - mid);
3088	btrfs_set_header_nritems(c, mid);
 
3089
3090	btrfs_mark_buffer_dirty(trans, c);
3091	btrfs_mark_buffer_dirty(trans, split);
3092
3093	ret = insert_ptr(trans, path, &disk_key, split->start,
3094			 path->slots[level + 1] + 1, level + 1);
3095	if (ret < 0) {
3096		btrfs_tree_unlock(split);
3097		free_extent_buffer(split);
3098		return ret;
3099	}
3100
3101	if (path->slots[level] >= mid) {
3102		path->slots[level] -= mid;
3103		btrfs_tree_unlock(c);
3104		free_extent_buffer(c);
3105		path->nodes[level] = split;
3106		path->slots[level + 1] += 1;
3107	} else {
3108		btrfs_tree_unlock(split);
3109		free_extent_buffer(split);
3110	}
3111	return 0;
3112}
3113
3114/*
3115 * how many bytes are required to store the items in a leaf.  start
3116 * and nr indicate which items in the leaf to check.  This totals up the
3117 * space used both by the item structs and the item data
3118 */
3119static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3120{
 
 
 
3121	int data_len;
3122	int nritems = btrfs_header_nritems(l);
3123	int end = min(nritems, start + nr) - 1;
3124
3125	if (!nr)
3126		return 0;
3127	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3128	data_len = data_len - btrfs_item_offset(l, end);
 
 
 
 
3129	data_len += sizeof(struct btrfs_item) * nr;
3130	WARN_ON(data_len < 0);
3131	return data_len;
3132}
3133
3134/*
3135 * The space between the end of the leaf items and
3136 * the start of the leaf data.  IOW, how much room
3137 * the leaf has left for both items and data
3138 */
3139int btrfs_leaf_free_space(const struct extent_buffer *leaf)
 
3140{
3141	struct btrfs_fs_info *fs_info = leaf->fs_info;
3142	int nritems = btrfs_header_nritems(leaf);
3143	int ret;
3144
3145	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3146	if (ret < 0) {
3147		btrfs_crit(fs_info,
3148			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3149			   ret,
3150			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3151			   leaf_space_used(leaf, 0, nritems), nritems);
3152	}
3153	return ret;
3154}
3155
3156/*
3157 * min slot controls the lowest index we're willing to push to the
3158 * right.  We'll push up to and including min_slot, but no lower
3159 */
3160static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
 
3161				      struct btrfs_path *path,
3162				      int data_size, int empty,
3163				      struct extent_buffer *right,
3164				      int free_space, u32 left_nritems,
3165				      u32 min_slot)
3166{
3167	struct btrfs_fs_info *fs_info = right->fs_info;
3168	struct extent_buffer *left = path->nodes[0];
3169	struct extent_buffer *upper = path->nodes[1];
3170	struct btrfs_map_token token;
3171	struct btrfs_disk_key disk_key;
3172	int slot;
3173	u32 i;
3174	int push_space = 0;
3175	int push_items = 0;
 
3176	u32 nr;
3177	u32 right_nritems;
3178	u32 data_end;
3179	u32 this_item_size;
3180
 
 
3181	if (empty)
3182		nr = 0;
3183	else
3184		nr = max_t(u32, 1, min_slot);
3185
3186	if (path->slots[0] >= left_nritems)
3187		push_space += data_size;
3188
3189	slot = path->slots[1];
3190	i = left_nritems - 1;
3191	while (i >= nr) {
 
 
3192		if (!empty && push_items > 0) {
3193			if (path->slots[0] > i)
3194				break;
3195			if (path->slots[0] == i) {
3196				int space = btrfs_leaf_free_space(left);
3197
3198				if (space + push_space * 2 > free_space)
3199					break;
3200			}
3201		}
3202
3203		if (path->slots[0] == i)
3204			push_space += data_size;
3205
3206		this_item_size = btrfs_item_size(left, i);
3207		if (this_item_size + sizeof(struct btrfs_item) +
3208		    push_space > free_space)
3209			break;
3210
3211		push_items++;
3212		push_space += this_item_size + sizeof(struct btrfs_item);
3213		if (i == 0)
3214			break;
3215		i--;
3216	}
3217
3218	if (push_items == 0)
3219		goto out_unlock;
3220
3221	WARN_ON(!empty && push_items == left_nritems);
3222
3223	/* push left to right */
3224	right_nritems = btrfs_header_nritems(right);
3225
3226	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3227	push_space -= leaf_data_end(left);
3228
3229	/* make room in the right data area */
3230	data_end = leaf_data_end(right);
3231	memmove_leaf_data(right, data_end - push_space, data_end,
3232			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3233
3234	/* copy from the left data area */
3235	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3236		       leaf_data_end(left), push_space);
3237
3238	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3239
3240	/* copy the items from left to right */
3241	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3242
3243	/* update the item pointers */
3244	btrfs_init_map_token(&token, right);
3245	right_nritems += push_items;
3246	btrfs_set_header_nritems(right, right_nritems);
3247	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3248	for (i = 0; i < right_nritems; i++) {
3249		push_space -= btrfs_token_item_size(&token, i);
3250		btrfs_set_token_item_offset(&token, i, push_space);
 
3251	}
3252
3253	left_nritems -= push_items;
3254	btrfs_set_header_nritems(left, left_nritems);
3255
3256	if (left_nritems)
3257		btrfs_mark_buffer_dirty(trans, left);
3258	else
3259		btrfs_clear_buffer_dirty(trans, left);
3260
3261	btrfs_mark_buffer_dirty(trans, right);
3262
3263	btrfs_item_key(right, &disk_key, 0);
3264	btrfs_set_node_key(upper, &disk_key, slot + 1);
3265	btrfs_mark_buffer_dirty(trans, upper);
3266
3267	/* then fixup the leaf pointer in the path */
3268	if (path->slots[0] >= left_nritems) {
3269		path->slots[0] -= left_nritems;
3270		if (btrfs_header_nritems(path->nodes[0]) == 0)
3271			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3272		btrfs_tree_unlock(path->nodes[0]);
3273		free_extent_buffer(path->nodes[0]);
3274		path->nodes[0] = right;
3275		path->slots[1] += 1;
3276	} else {
3277		btrfs_tree_unlock(right);
3278		free_extent_buffer(right);
3279	}
3280	return 0;
3281
3282out_unlock:
3283	btrfs_tree_unlock(right);
3284	free_extent_buffer(right);
3285	return 1;
3286}
3287
3288/*
3289 * push some data in the path leaf to the right, trying to free up at
3290 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3291 *
3292 * returns 1 if the push failed because the other node didn't have enough
3293 * room, 0 if everything worked out and < 0 if there were major errors.
3294 *
3295 * this will push starting from min_slot to the end of the leaf.  It won't
3296 * push any slot lower than min_slot
3297 */
3298static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3299			   *root, struct btrfs_path *path,
3300			   int min_data_size, int data_size,
3301			   int empty, u32 min_slot)
3302{
 
3303	struct extent_buffer *left = path->nodes[0];
3304	struct extent_buffer *right;
3305	struct extent_buffer *upper;
3306	int slot;
3307	int free_space;
3308	u32 left_nritems;
3309	int ret;
3310
3311	if (!path->nodes[1])
3312		return 1;
3313
3314	slot = path->slots[1];
3315	upper = path->nodes[1];
3316	if (slot >= btrfs_header_nritems(upper) - 1)
3317		return 1;
3318
3319	btrfs_assert_tree_write_locked(path->nodes[1]);
3320
3321	right = btrfs_read_node_slot(upper, slot + 1);
 
 
 
 
3322	if (IS_ERR(right))
3323		return PTR_ERR(right);
3324
3325	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 
3326
3327	free_space = btrfs_leaf_free_space(right);
3328	if (free_space < data_size)
3329		goto out_unlock;
3330
 
3331	ret = btrfs_cow_block(trans, root, right, upper,
3332			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3333	if (ret)
3334		goto out_unlock;
3335
 
 
 
 
3336	left_nritems = btrfs_header_nritems(left);
3337	if (left_nritems == 0)
3338		goto out_unlock;
3339
3340	if (check_sibling_keys(left, right)) {
3341		ret = -EUCLEAN;
3342		btrfs_abort_transaction(trans, ret);
3343		btrfs_tree_unlock(right);
3344		free_extent_buffer(right);
3345		return ret;
3346	}
3347	if (path->slots[0] == left_nritems && !empty) {
3348		/* Key greater than all keys in the leaf, right neighbor has
3349		 * enough room for it and we're not emptying our leaf to delete
3350		 * it, therefore use right neighbor to insert the new item and
3351		 * no need to touch/dirty our left leaf. */
3352		btrfs_tree_unlock(left);
3353		free_extent_buffer(left);
3354		path->nodes[0] = right;
3355		path->slots[0] = 0;
3356		path->slots[1]++;
3357		return 0;
3358	}
3359
3360	return __push_leaf_right(trans, path, min_data_size, empty, right,
3361				 free_space, left_nritems, min_slot);
3362out_unlock:
3363	btrfs_tree_unlock(right);
3364	free_extent_buffer(right);
3365	return 1;
3366}
3367
3368/*
3369 * push some data in the path leaf to the left, trying to free up at
3370 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3371 *
3372 * max_slot can put a limit on how far into the leaf we'll push items.  The
3373 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3374 * items
3375 */
3376static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
 
3377				     struct btrfs_path *path, int data_size,
3378				     int empty, struct extent_buffer *left,
3379				     int free_space, u32 right_nritems,
3380				     u32 max_slot)
3381{
3382	struct btrfs_fs_info *fs_info = left->fs_info;
3383	struct btrfs_disk_key disk_key;
3384	struct extent_buffer *right = path->nodes[0];
3385	int i;
3386	int push_space = 0;
3387	int push_items = 0;
 
3388	u32 old_left_nritems;
3389	u32 nr;
3390	int ret = 0;
3391	u32 this_item_size;
3392	u32 old_left_item_size;
3393	struct btrfs_map_token token;
3394
 
 
3395	if (empty)
3396		nr = min(right_nritems, max_slot);
3397	else
3398		nr = min(right_nritems - 1, max_slot);
3399
3400	for (i = 0; i < nr; i++) {
 
 
3401		if (!empty && push_items > 0) {
3402			if (path->slots[0] < i)
3403				break;
3404			if (path->slots[0] == i) {
3405				int space = btrfs_leaf_free_space(right);
3406
3407				if (space + push_space * 2 > free_space)
3408					break;
3409			}
3410		}
3411
3412		if (path->slots[0] == i)
3413			push_space += data_size;
3414
3415		this_item_size = btrfs_item_size(right, i);
3416		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3417		    free_space)
3418			break;
3419
3420		push_items++;
3421		push_space += this_item_size + sizeof(struct btrfs_item);
3422	}
3423
3424	if (push_items == 0) {
3425		ret = 1;
3426		goto out;
3427	}
3428	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3429
3430	/* push data from right to left */
3431	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
 
 
 
3432
3433	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3434		     btrfs_item_offset(right, push_items - 1);
3435
3436	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3437		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
3438	old_left_nritems = btrfs_header_nritems(left);
3439	BUG_ON(old_left_nritems <= 0);
3440
3441	btrfs_init_map_token(&token, left);
3442	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3443	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3444		u32 ioff;
3445
3446		ioff = btrfs_token_item_offset(&token, i);
3447		btrfs_set_token_item_offset(&token, i,
3448		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
 
3449	}
3450	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3451
3452	/* fixup right node */
3453	if (push_items > right_nritems)
3454		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3455		       right_nritems);
3456
3457	if (push_items < right_nritems) {
3458		push_space = btrfs_item_offset(right, push_items - 1) -
3459						  leaf_data_end(right);
3460		memmove_leaf_data(right,
3461				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3462				  leaf_data_end(right), push_space);
3463
3464		memmove_leaf_items(right, 0, push_items,
3465				   btrfs_header_nritems(right) - push_items);
 
 
 
3466	}
3467
3468	btrfs_init_map_token(&token, right);
3469	right_nritems -= push_items;
3470	btrfs_set_header_nritems(right, right_nritems);
3471	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3472	for (i = 0; i < right_nritems; i++) {
3473		push_space = push_space - btrfs_token_item_size(&token, i);
3474		btrfs_set_token_item_offset(&token, i, push_space);
 
 
 
3475	}
3476
3477	btrfs_mark_buffer_dirty(trans, left);
3478	if (right_nritems)
3479		btrfs_mark_buffer_dirty(trans, right);
3480	else
3481		btrfs_clear_buffer_dirty(trans, right);
3482
3483	btrfs_item_key(right, &disk_key, 0);
3484	fixup_low_keys(trans, path, &disk_key, 1);
3485
3486	/* then fixup the leaf pointer in the path */
3487	if (path->slots[0] < push_items) {
3488		path->slots[0] += old_left_nritems;
3489		btrfs_tree_unlock(path->nodes[0]);
3490		free_extent_buffer(path->nodes[0]);
3491		path->nodes[0] = left;
3492		path->slots[1] -= 1;
3493	} else {
3494		btrfs_tree_unlock(left);
3495		free_extent_buffer(left);
3496		path->slots[0] -= push_items;
3497	}
3498	BUG_ON(path->slots[0] < 0);
3499	return ret;
3500out:
3501	btrfs_tree_unlock(left);
3502	free_extent_buffer(left);
3503	return ret;
3504}
3505
3506/*
3507 * push some data in the path leaf to the left, trying to free up at
3508 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3509 *
3510 * max_slot can put a limit on how far into the leaf we'll push items.  The
3511 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3512 * items
3513 */
3514static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3515			  *root, struct btrfs_path *path, int min_data_size,
3516			  int data_size, int empty, u32 max_slot)
3517{
 
3518	struct extent_buffer *right = path->nodes[0];
3519	struct extent_buffer *left;
3520	int slot;
3521	int free_space;
3522	u32 right_nritems;
3523	int ret = 0;
3524
3525	slot = path->slots[1];
3526	if (slot == 0)
3527		return 1;
3528	if (!path->nodes[1])
3529		return 1;
3530
3531	right_nritems = btrfs_header_nritems(right);
3532	if (right_nritems == 0)
3533		return 1;
3534
3535	btrfs_assert_tree_write_locked(path->nodes[1]);
3536
3537	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
 
 
 
 
3538	if (IS_ERR(left))
3539		return PTR_ERR(left);
3540
3541	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 
3542
3543	free_space = btrfs_leaf_free_space(left);
3544	if (free_space < data_size) {
3545		ret = 1;
3546		goto out;
3547	}
3548
 
3549	ret = btrfs_cow_block(trans, root, left,
3550			      path->nodes[1], slot - 1, &left,
3551			      BTRFS_NESTING_LEFT_COW);
3552	if (ret) {
3553		/* we hit -ENOSPC, but it isn't fatal here */
3554		if (ret == -ENOSPC)
3555			ret = 1;
3556		goto out;
3557	}
3558
3559	if (check_sibling_keys(left, right)) {
3560		ret = -EUCLEAN;
3561		btrfs_abort_transaction(trans, ret);
3562		goto out;
3563	}
3564	return __push_leaf_left(trans, path, min_data_size, empty, left,
3565				free_space, right_nritems, max_slot);
 
 
3566out:
3567	btrfs_tree_unlock(left);
3568	free_extent_buffer(left);
3569	return ret;
3570}
3571
3572/*
3573 * split the path's leaf in two, making sure there is at least data_size
3574 * available for the resulting leaf level of the path.
3575 */
3576static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3577				   struct btrfs_path *path,
3578				   struct extent_buffer *l,
3579				   struct extent_buffer *right,
3580				   int slot, int mid, int nritems)
 
3581{
3582	struct btrfs_fs_info *fs_info = trans->fs_info;
3583	int data_copy_size;
3584	int rt_data_off;
3585	int i;
3586	int ret;
3587	struct btrfs_disk_key disk_key;
3588	struct btrfs_map_token token;
3589
 
 
3590	nritems = nritems - mid;
3591	btrfs_set_header_nritems(right, nritems);
3592	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3593
3594	copy_leaf_items(right, l, 0, mid, nritems);
3595
3596	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3597		       leaf_data_end(l), data_copy_size);
 
 
 
 
 
 
3598
3599	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3600
3601	btrfs_init_map_token(&token, right);
3602	for (i = 0; i < nritems; i++) {
 
3603		u32 ioff;
3604
3605		ioff = btrfs_token_item_offset(&token, i);
3606		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 
3607	}
3608
3609	btrfs_set_header_nritems(l, mid);
3610	btrfs_item_key(right, &disk_key, 0);
3611	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3612	if (ret < 0)
3613		return ret;
3614
3615	btrfs_mark_buffer_dirty(trans, right);
3616	btrfs_mark_buffer_dirty(trans, l);
3617	BUG_ON(path->slots[0] != slot);
3618
3619	if (mid <= slot) {
3620		btrfs_tree_unlock(path->nodes[0]);
3621		free_extent_buffer(path->nodes[0]);
3622		path->nodes[0] = right;
3623		path->slots[0] -= mid;
3624		path->slots[1] += 1;
3625	} else {
3626		btrfs_tree_unlock(right);
3627		free_extent_buffer(right);
3628	}
3629
3630	BUG_ON(path->slots[0] < 0);
3631
3632	return 0;
3633}
3634
3635/*
3636 * double splits happen when we need to insert a big item in the middle
3637 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3638 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3639 *          A                 B                 C
3640 *
3641 * We avoid this by trying to push the items on either side of our target
3642 * into the adjacent leaves.  If all goes well we can avoid the double split
3643 * completely.
3644 */
3645static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3646					  struct btrfs_root *root,
3647					  struct btrfs_path *path,
3648					  int data_size)
3649{
 
3650	int ret;
3651	int progress = 0;
3652	int slot;
3653	u32 nritems;
3654	int space_needed = data_size;
3655
3656	slot = path->slots[0];
3657	if (slot < btrfs_header_nritems(path->nodes[0]))
3658		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3659
3660	/*
3661	 * try to push all the items after our slot into the
3662	 * right leaf
3663	 */
3664	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3665	if (ret < 0)
3666		return ret;
3667
3668	if (ret == 0)
3669		progress++;
3670
3671	nritems = btrfs_header_nritems(path->nodes[0]);
3672	/*
3673	 * our goal is to get our slot at the start or end of a leaf.  If
3674	 * we've done so we're done
3675	 */
3676	if (path->slots[0] == 0 || path->slots[0] == nritems)
3677		return 0;
3678
3679	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3680		return 0;
3681
3682	/* try to push all the items before our slot into the next leaf */
3683	slot = path->slots[0];
3684	space_needed = data_size;
3685	if (slot > 0)
3686		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3687	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3688	if (ret < 0)
3689		return ret;
3690
3691	if (ret == 0)
3692		progress++;
3693
3694	if (progress)
3695		return 0;
3696	return 1;
3697}
3698
3699/*
3700 * split the path's leaf in two, making sure there is at least data_size
3701 * available for the resulting leaf level of the path.
3702 *
3703 * returns 0 if all went well and < 0 on failure.
3704 */
3705static noinline int split_leaf(struct btrfs_trans_handle *trans,
3706			       struct btrfs_root *root,
3707			       const struct btrfs_key *ins_key,
3708			       struct btrfs_path *path, int data_size,
3709			       int extend)
3710{
3711	struct btrfs_disk_key disk_key;
3712	struct extent_buffer *l;
3713	u32 nritems;
3714	int mid;
3715	int slot;
3716	struct extent_buffer *right;
3717	struct btrfs_fs_info *fs_info = root->fs_info;
3718	int ret = 0;
3719	int wret;
3720	int split;
3721	int num_doubles = 0;
3722	int tried_avoid_double = 0;
3723
3724	l = path->nodes[0];
3725	slot = path->slots[0];
3726	if (extend && data_size + btrfs_item_size(l, slot) +
3727	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3728		return -EOVERFLOW;
3729
3730	/* first try to make some room by pushing left and right */
3731	if (data_size && path->nodes[1]) {
3732		int space_needed = data_size;
3733
3734		if (slot < btrfs_header_nritems(l))
3735			space_needed -= btrfs_leaf_free_space(l);
3736
3737		wret = push_leaf_right(trans, root, path, space_needed,
3738				       space_needed, 0, 0);
3739		if (wret < 0)
3740			return wret;
3741		if (wret) {
3742			space_needed = data_size;
3743			if (slot > 0)
3744				space_needed -= btrfs_leaf_free_space(l);
3745			wret = push_leaf_left(trans, root, path, space_needed,
3746					      space_needed, 0, (u32)-1);
3747			if (wret < 0)
3748				return wret;
3749		}
3750		l = path->nodes[0];
3751
3752		/* did the pushes work? */
3753		if (btrfs_leaf_free_space(l) >= data_size)
3754			return 0;
3755	}
3756
3757	if (!path->nodes[1]) {
3758		ret = insert_new_root(trans, root, path, 1);
3759		if (ret)
3760			return ret;
3761	}
3762again:
3763	split = 1;
3764	l = path->nodes[0];
3765	slot = path->slots[0];
3766	nritems = btrfs_header_nritems(l);
3767	mid = (nritems + 1) / 2;
3768
3769	if (mid <= slot) {
3770		if (nritems == 1 ||
3771		    leaf_space_used(l, mid, nritems - mid) + data_size >
3772			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3773			if (slot >= nritems) {
3774				split = 0;
3775			} else {
3776				mid = slot;
3777				if (mid != nritems &&
3778				    leaf_space_used(l, mid, nritems - mid) +
3779				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3780					if (data_size && !tried_avoid_double)
3781						goto push_for_double;
3782					split = 2;
3783				}
3784			}
3785		}
3786	} else {
3787		if (leaf_space_used(l, 0, mid) + data_size >
3788			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3789			if (!extend && data_size && slot == 0) {
3790				split = 0;
3791			} else if ((extend || !data_size) && slot == 0) {
3792				mid = 1;
3793			} else {
3794				mid = slot;
3795				if (mid != nritems &&
3796				    leaf_space_used(l, mid, nritems - mid) +
3797				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3798					if (data_size && !tried_avoid_double)
3799						goto push_for_double;
3800					split = 2;
3801				}
3802			}
3803		}
3804	}
3805
3806	if (split == 0)
3807		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3808	else
3809		btrfs_item_key(l, &disk_key, mid);
3810
3811	/*
3812	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3813	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3814	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3815	 * out.  In the future we could add a
3816	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3817	 * use BTRFS_NESTING_NEW_ROOT.
3818	 */
3819	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3820				       &disk_key, 0, l->start, 0, 0,
3821				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3822				       BTRFS_NESTING_SPLIT);
3823	if (IS_ERR(right))
3824		return PTR_ERR(right);
3825
3826	root_add_used_bytes(root);
 
 
 
 
 
 
 
 
 
3827
3828	if (split == 0) {
3829		if (mid <= slot) {
3830			btrfs_set_header_nritems(right, 0);
3831			ret = insert_ptr(trans, path, &disk_key,
3832					 right->start, path->slots[1] + 1, 1);
3833			if (ret < 0) {
3834				btrfs_tree_unlock(right);
3835				free_extent_buffer(right);
3836				return ret;
3837			}
3838			btrfs_tree_unlock(path->nodes[0]);
3839			free_extent_buffer(path->nodes[0]);
3840			path->nodes[0] = right;
3841			path->slots[0] = 0;
3842			path->slots[1] += 1;
3843		} else {
3844			btrfs_set_header_nritems(right, 0);
3845			ret = insert_ptr(trans, path, &disk_key,
3846					 right->start, path->slots[1], 1);
3847			if (ret < 0) {
3848				btrfs_tree_unlock(right);
3849				free_extent_buffer(right);
3850				return ret;
3851			}
3852			btrfs_tree_unlock(path->nodes[0]);
3853			free_extent_buffer(path->nodes[0]);
3854			path->nodes[0] = right;
3855			path->slots[0] = 0;
3856			if (path->slots[1] == 0)
3857				fixup_low_keys(trans, path, &disk_key, 1);
3858		}
3859		/*
3860		 * We create a new leaf 'right' for the required ins_len and
3861		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3862		 * the content of ins_len to 'right'.
3863		 */
3864		return ret;
3865	}
3866
3867	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3868	if (ret < 0) {
3869		btrfs_tree_unlock(right);
3870		free_extent_buffer(right);
3871		return ret;
3872	}
3873
3874	if (split == 2) {
3875		BUG_ON(num_doubles != 0);
3876		num_doubles++;
3877		goto again;
3878	}
3879
3880	return 0;
3881
3882push_for_double:
3883	push_for_double_split(trans, root, path, data_size);
3884	tried_avoid_double = 1;
3885	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3886		return 0;
3887	goto again;
3888}
3889
3890static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3891					 struct btrfs_root *root,
3892					 struct btrfs_path *path, int ins_len)
3893{
 
3894	struct btrfs_key key;
3895	struct extent_buffer *leaf;
3896	struct btrfs_file_extent_item *fi;
3897	u64 extent_len = 0;
3898	u32 item_size;
3899	int ret;
3900
3901	leaf = path->nodes[0];
3902	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3903
3904	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3905	       key.type != BTRFS_EXTENT_CSUM_KEY);
3906
3907	if (btrfs_leaf_free_space(leaf) >= ins_len)
3908		return 0;
3909
3910	item_size = btrfs_item_size(leaf, path->slots[0]);
3911	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3912		fi = btrfs_item_ptr(leaf, path->slots[0],
3913				    struct btrfs_file_extent_item);
3914		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3915	}
3916	btrfs_release_path(path);
3917
3918	path->keep_locks = 1;
3919	path->search_for_split = 1;
3920	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3921	path->search_for_split = 0;
3922	if (ret > 0)
3923		ret = -EAGAIN;
3924	if (ret < 0)
3925		goto err;
3926
3927	ret = -EAGAIN;
3928	leaf = path->nodes[0];
3929	/* if our item isn't there, return now */
3930	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3931		goto err;
3932
3933	/* the leaf has  changed, it now has room.  return now */
3934	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3935		goto err;
3936
3937	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3938		fi = btrfs_item_ptr(leaf, path->slots[0],
3939				    struct btrfs_file_extent_item);
3940		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3941			goto err;
3942	}
3943
 
3944	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3945	if (ret)
3946		goto err;
3947
3948	path->keep_locks = 0;
3949	btrfs_unlock_up_safe(path, 1);
3950	return 0;
3951err:
3952	path->keep_locks = 0;
3953	return ret;
3954}
3955
3956static noinline int split_item(struct btrfs_trans_handle *trans,
 
3957			       struct btrfs_path *path,
3958			       const struct btrfs_key *new_key,
3959			       unsigned long split_offset)
3960{
3961	struct extent_buffer *leaf;
3962	int orig_slot, slot;
 
 
3963	char *buf;
3964	u32 nritems;
3965	u32 item_size;
3966	u32 orig_offset;
3967	struct btrfs_disk_key disk_key;
3968
3969	leaf = path->nodes[0];
3970	/*
3971	 * Shouldn't happen because the caller must have previously called
3972	 * setup_leaf_for_split() to make room for the new item in the leaf.
3973	 */
3974	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3975		return -ENOSPC;
3976
3977	orig_slot = path->slots[0];
3978	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3979	item_size = btrfs_item_size(leaf, path->slots[0]);
3980
3981	buf = kmalloc(item_size, GFP_NOFS);
3982	if (!buf)
3983		return -ENOMEM;
3984
3985	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986			    path->slots[0]), item_size);
3987
3988	slot = path->slots[0] + 1;
3989	nritems = btrfs_header_nritems(leaf);
3990	if (slot != nritems) {
3991		/* shift the items */
3992		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3993	}
3994
3995	btrfs_cpu_key_to_disk(&disk_key, new_key);
3996	btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998	btrfs_set_item_offset(leaf, slot, orig_offset);
3999	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
4000
4001	btrfs_set_item_offset(leaf, orig_slot,
4002				 orig_offset + item_size - split_offset);
4003	btrfs_set_item_size(leaf, orig_slot, split_offset);
4004
4005	btrfs_set_header_nritems(leaf, nritems + 1);
4006
4007	/* write the data for the start of the original item */
4008	write_extent_buffer(leaf, buf,
4009			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4010			    split_offset);
4011
4012	/* write the data for the new item */
4013	write_extent_buffer(leaf, buf + split_offset,
4014			    btrfs_item_ptr_offset(leaf, slot),
4015			    item_size - split_offset);
4016	btrfs_mark_buffer_dirty(trans, leaf);
4017
4018	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4019	kfree(buf);
4020	return 0;
4021}
4022
4023/*
4024 * This function splits a single item into two items,
4025 * giving 'new_key' to the new item and splitting the
4026 * old one at split_offset (from the start of the item).
4027 *
4028 * The path may be released by this operation.  After
4029 * the split, the path is pointing to the old item.  The
4030 * new item is going to be in the same node as the old one.
4031 *
4032 * Note, the item being split must be smaller enough to live alone on
4033 * a tree block with room for one extra struct btrfs_item
4034 *
4035 * This allows us to split the item in place, keeping a lock on the
4036 * leaf the entire time.
4037 */
4038int btrfs_split_item(struct btrfs_trans_handle *trans,
4039		     struct btrfs_root *root,
4040		     struct btrfs_path *path,
4041		     const struct btrfs_key *new_key,
4042		     unsigned long split_offset)
4043{
4044	int ret;
4045	ret = setup_leaf_for_split(trans, root, path,
4046				   sizeof(struct btrfs_item));
4047	if (ret)
4048		return ret;
4049
4050	ret = split_item(trans, path, new_key, split_offset);
4051	return ret;
4052}
4053
4054/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055 * make the item pointed to by the path smaller.  new_size indicates
4056 * how small to make it, and from_end tells us if we just chop bytes
4057 * off the end of the item or if we shift the item to chop bytes off
4058 * the front.
4059 */
4060void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4061			 const struct btrfs_path *path, u32 new_size, int from_end)
4062{
4063	int slot;
4064	struct extent_buffer *leaf;
 
4065	u32 nritems;
4066	unsigned int data_end;
4067	unsigned int old_data_start;
4068	unsigned int old_size;
4069	unsigned int size_diff;
4070	int i;
4071	struct btrfs_map_token token;
4072
 
 
4073	leaf = path->nodes[0];
4074	slot = path->slots[0];
4075
4076	old_size = btrfs_item_size(leaf, slot);
4077	if (old_size == new_size)
4078		return;
4079
4080	nritems = btrfs_header_nritems(leaf);
4081	data_end = leaf_data_end(leaf);
4082
4083	old_data_start = btrfs_item_offset(leaf, slot);
4084
4085	size_diff = old_size - new_size;
4086
4087	BUG_ON(slot < 0);
4088	BUG_ON(slot >= nritems);
4089
4090	/*
4091	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4092	 */
4093	/* first correct the data pointers */
4094	btrfs_init_map_token(&token, leaf);
4095	for (i = slot; i < nritems; i++) {
4096		u32 ioff;
 
4097
4098		ioff = btrfs_token_item_offset(&token, i);
4099		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 
4100	}
4101
4102	/* shift the data */
4103	if (from_end) {
4104		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4105				  old_data_start + new_size - data_end);
 
4106	} else {
4107		struct btrfs_disk_key disk_key;
4108		u64 offset;
4109
4110		btrfs_item_key(leaf, &disk_key, slot);
4111
4112		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4113			unsigned long ptr;
4114			struct btrfs_file_extent_item *fi;
4115
4116			fi = btrfs_item_ptr(leaf, slot,
4117					    struct btrfs_file_extent_item);
4118			fi = (struct btrfs_file_extent_item *)(
4119			     (unsigned long)fi - size_diff);
4120
4121			if (btrfs_file_extent_type(leaf, fi) ==
4122			    BTRFS_FILE_EXTENT_INLINE) {
4123				ptr = btrfs_item_ptr_offset(leaf, slot);
4124				memmove_extent_buffer(leaf, ptr,
4125				      (unsigned long)fi,
4126				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4127			}
4128		}
4129
4130		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4131				  old_data_start - data_end);
 
4132
4133		offset = btrfs_disk_key_offset(&disk_key);
4134		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4135		btrfs_set_item_key(leaf, &disk_key, slot);
4136		if (slot == 0)
4137			fixup_low_keys(trans, path, &disk_key, 1);
4138	}
4139
4140	btrfs_set_item_size(leaf, slot, new_size);
4141	btrfs_mark_buffer_dirty(trans, leaf);
 
4142
4143	if (btrfs_leaf_free_space(leaf) < 0) {
4144		btrfs_print_leaf(leaf);
4145		BUG();
4146	}
4147}
4148
4149/*
4150 * make the item pointed to by the path bigger, data_size is the added size.
4151 */
4152void btrfs_extend_item(struct btrfs_trans_handle *trans,
4153		       const struct btrfs_path *path, u32 data_size)
4154{
4155	int slot;
4156	struct extent_buffer *leaf;
 
4157	u32 nritems;
4158	unsigned int data_end;
4159	unsigned int old_data;
4160	unsigned int old_size;
4161	int i;
4162	struct btrfs_map_token token;
4163
 
 
4164	leaf = path->nodes[0];
4165
4166	nritems = btrfs_header_nritems(leaf);
4167	data_end = leaf_data_end(leaf);
4168
4169	if (btrfs_leaf_free_space(leaf) < data_size) {
4170		btrfs_print_leaf(leaf);
4171		BUG();
4172	}
4173	slot = path->slots[0];
4174	old_data = btrfs_item_data_end(leaf, slot);
4175
4176	BUG_ON(slot < 0);
4177	if (slot >= nritems) {
4178		btrfs_print_leaf(leaf);
4179		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4180			   slot, nritems);
4181		BUG();
4182	}
4183
4184	/*
4185	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4186	 */
4187	/* first correct the data pointers */
4188	btrfs_init_map_token(&token, leaf);
4189	for (i = slot; i < nritems; i++) {
4190		u32 ioff;
 
4191
4192		ioff = btrfs_token_item_offset(&token, i);
4193		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 
4194	}
4195
4196	/* shift the data */
4197	memmove_leaf_data(leaf, data_end - data_size, data_end,
4198			  old_data - data_end);
 
4199
4200	data_end = old_data;
4201	old_size = btrfs_item_size(leaf, slot);
4202	btrfs_set_item_size(leaf, slot, old_size + data_size);
4203	btrfs_mark_buffer_dirty(trans, leaf);
 
4204
4205	if (btrfs_leaf_free_space(leaf) < 0) {
4206		btrfs_print_leaf(leaf);
4207		BUG();
4208	}
4209}
4210
4211/*
4212 * Make space in the node before inserting one or more items.
4213 *
4214 * @trans:	transaction handle
4215 * @root:	root we are inserting items to
4216 * @path:	points to the leaf/slot where we are going to insert new items
4217 * @batch:      information about the batch of items to insert
4218 *
4219 * Main purpose is to save stack depth by doing the bulk of the work in a
4220 * function that doesn't call btrfs_search_slot
4221 */
4222static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4223				   struct btrfs_root *root, struct btrfs_path *path,
4224				   const struct btrfs_item_batch *batch)
4225{
4226	struct btrfs_fs_info *fs_info = root->fs_info;
 
4227	int i;
4228	u32 nritems;
4229	unsigned int data_end;
4230	struct btrfs_disk_key disk_key;
4231	struct extent_buffer *leaf;
4232	int slot;
4233	struct btrfs_map_token token;
4234	u32 total_size;
4235
4236	/*
4237	 * Before anything else, update keys in the parent and other ancestors
4238	 * if needed, then release the write locks on them, so that other tasks
4239	 * can use them while we modify the leaf.
4240	 */
4241	if (path->slots[0] == 0) {
4242		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4243		fixup_low_keys(trans, path, &disk_key, 1);
4244	}
4245	btrfs_unlock_up_safe(path, 1);
4246
 
 
4247	leaf = path->nodes[0];
4248	slot = path->slots[0];
4249
4250	nritems = btrfs_header_nritems(leaf);
4251	data_end = leaf_data_end(leaf);
4252	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4253
4254	if (btrfs_leaf_free_space(leaf) < total_size) {
4255		btrfs_print_leaf(leaf);
4256		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4257			   total_size, btrfs_leaf_free_space(leaf));
4258		BUG();
4259	}
4260
4261	btrfs_init_map_token(&token, leaf);
4262	if (slot != nritems) {
4263		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4264
4265		if (old_data < data_end) {
4266			btrfs_print_leaf(leaf);
4267			btrfs_crit(fs_info,
4268		"item at slot %d with data offset %u beyond data end of leaf %u",
4269				   slot, old_data, data_end);
4270			BUG();
4271		}
4272		/*
4273		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4274		 */
4275		/* first correct the data pointers */
4276		for (i = slot; i < nritems; i++) {
4277			u32 ioff;
4278
4279			ioff = btrfs_token_item_offset(&token, i);
4280			btrfs_set_token_item_offset(&token, i,
4281						       ioff - batch->total_data_size);
 
4282		}
4283		/* shift the items */
4284		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4285
4286		/* shift the data */
4287		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4288				  data_end, old_data - data_end);
 
4289		data_end = old_data;
4290	}
4291
4292	/* setup the item for the new data */
4293	for (i = 0; i < batch->nr; i++) {
4294		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4295		btrfs_set_item_key(leaf, &disk_key, slot + i);
4296		data_end -= batch->data_sizes[i];
4297		btrfs_set_token_item_offset(&token, slot + i, data_end);
4298		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
 
4299	}
4300
4301	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4302	btrfs_mark_buffer_dirty(trans, leaf);
4303
4304	if (btrfs_leaf_free_space(leaf) < 0) {
4305		btrfs_print_leaf(leaf);
4306		BUG();
4307	}
4308}
4309
4310/*
4311 * Insert a new item into a leaf.
4312 *
4313 * @trans:     Transaction handle.
4314 * @root:      The root of the btree.
4315 * @path:      A path pointing to the target leaf and slot.
4316 * @key:       The key of the new item.
4317 * @data_size: The size of the data associated with the new key.
4318 */
4319void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4320				 struct btrfs_root *root,
4321				 struct btrfs_path *path,
4322				 const struct btrfs_key *key,
4323				 u32 data_size)
4324{
4325	struct btrfs_item_batch batch;
4326
4327	batch.keys = key;
4328	batch.data_sizes = &data_size;
4329	batch.total_data_size = data_size;
4330	batch.nr = 1;
4331
4332	setup_items_for_insert(trans, root, path, &batch);
4333}
4334
4335/*
4336 * Given a key and some data, insert items into the tree.
4337 * This does all the path init required, making room in the tree if needed.
4338 *
4339 * Returns: 0        on success
4340 *          -EEXIST  if the first key already exists
4341 *          < 0      on other errors
4342 */
4343int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4344			    struct btrfs_root *root,
4345			    struct btrfs_path *path,
4346			    const struct btrfs_item_batch *batch)
 
4347{
4348	int ret = 0;
4349	int slot;
4350	u32 total_size;
 
 
4351
4352	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4353	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
 
 
 
4354	if (ret == 0)
4355		return -EEXIST;
4356	if (ret < 0)
4357		return ret;
4358
4359	slot = path->slots[0];
4360	BUG_ON(slot < 0);
4361
4362	setup_items_for_insert(trans, root, path, batch);
 
4363	return 0;
4364}
4365
4366/*
4367 * Given a key and some data, insert an item into the tree.
4368 * This does all the path init required, making room in the tree if needed.
4369 */
4370int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4371		      const struct btrfs_key *cpu_key, void *data,
4372		      u32 data_size)
4373{
4374	int ret = 0;
4375	struct btrfs_path *path;
4376	struct extent_buffer *leaf;
4377	unsigned long ptr;
4378
4379	path = btrfs_alloc_path();
4380	if (!path)
4381		return -ENOMEM;
4382	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4383	if (!ret) {
4384		leaf = path->nodes[0];
4385		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4386		write_extent_buffer(leaf, data, ptr, data_size);
4387		btrfs_mark_buffer_dirty(trans, leaf);
4388	}
4389	btrfs_free_path(path);
4390	return ret;
4391}
4392
4393/*
4394 * This function duplicates an item, giving 'new_key' to the new item.
4395 * It guarantees both items live in the same tree leaf and the new item is
4396 * contiguous with the original item.
4397 *
4398 * This allows us to split a file extent in place, keeping a lock on the leaf
4399 * the entire time.
4400 */
4401int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4402			 struct btrfs_root *root,
4403			 struct btrfs_path *path,
4404			 const struct btrfs_key *new_key)
4405{
4406	struct extent_buffer *leaf;
4407	int ret;
4408	u32 item_size;
4409
4410	leaf = path->nodes[0];
4411	item_size = btrfs_item_size(leaf, path->slots[0]);
4412	ret = setup_leaf_for_split(trans, root, path,
4413				   item_size + sizeof(struct btrfs_item));
4414	if (ret)
4415		return ret;
4416
4417	path->slots[0]++;
4418	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4419	leaf = path->nodes[0];
4420	memcpy_extent_buffer(leaf,
4421			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4422			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4423			     item_size);
4424	return 0;
4425}
4426
4427/*
4428 * delete the pointer from a given node.
4429 *
4430 * the tree should have been previously balanced so the deletion does not
4431 * empty a node.
4432 *
4433 * This is exported for use inside btrfs-progs, don't un-export it.
4434 */
4435int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4436		  struct btrfs_path *path, int level, int slot)
4437{
 
4438	struct extent_buffer *parent = path->nodes[level];
4439	u32 nritems;
4440	int ret;
4441
4442	nritems = btrfs_header_nritems(parent);
4443	if (slot != nritems - 1) {
4444		if (level) {
4445			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4446					slot + 1, nritems - slot - 1);
4447			if (ret < 0) {
4448				btrfs_abort_transaction(trans, ret);
4449				return ret;
4450			}
4451		}
4452		memmove_extent_buffer(parent,
4453			      btrfs_node_key_ptr_offset(parent, slot),
4454			      btrfs_node_key_ptr_offset(parent, slot + 1),
4455			      sizeof(struct btrfs_key_ptr) *
4456			      (nritems - slot - 1));
4457	} else if (level) {
4458		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4459						    BTRFS_MOD_LOG_KEY_REMOVE);
4460		if (ret < 0) {
4461			btrfs_abort_transaction(trans, ret);
4462			return ret;
4463		}
4464	}
4465
4466	nritems--;
4467	btrfs_set_header_nritems(parent, nritems);
4468	if (nritems == 0 && parent == root->node) {
4469		BUG_ON(btrfs_header_level(root->node) != 1);
4470		/* just turn the root into a leaf and break */
4471		btrfs_set_header_level(root->node, 0);
4472	} else if (slot == 0) {
4473		struct btrfs_disk_key disk_key;
4474
4475		btrfs_node_key(parent, &disk_key, 0);
4476		fixup_low_keys(trans, path, &disk_key, level + 1);
4477	}
4478	btrfs_mark_buffer_dirty(trans, parent);
4479	return 0;
4480}
4481
4482/*
4483 * a helper function to delete the leaf pointed to by path->slots[1] and
4484 * path->nodes[1].
4485 *
4486 * This deletes the pointer in path->nodes[1] and frees the leaf
4487 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4488 *
4489 * The path must have already been setup for deleting the leaf, including
4490 * all the proper balancing.  path->nodes[1] must be locked.
4491 */
4492static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4493				   struct btrfs_root *root,
4494				   struct btrfs_path *path,
4495				   struct extent_buffer *leaf)
4496{
4497	int ret;
4498
4499	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4500	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4501	if (ret < 0)
4502		return ret;
4503
4504	/*
4505	 * btrfs_free_extent is expensive, we want to make sure we
4506	 * aren't holding any locks when we call it
4507	 */
4508	btrfs_unlock_up_safe(path, 0);
4509
4510	root_sub_used_bytes(root);
4511
4512	atomic_inc(&leaf->refs);
4513	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4514	free_extent_buffer_stale(leaf);
4515	if (ret < 0)
4516		btrfs_abort_transaction(trans, ret);
4517
4518	return ret;
4519}
4520/*
4521 * delete the item at the leaf level in path.  If that empties
4522 * the leaf, remove it from the tree
4523 */
4524int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4525		    struct btrfs_path *path, int slot, int nr)
4526{
4527	struct btrfs_fs_info *fs_info = root->fs_info;
4528	struct extent_buffer *leaf;
 
 
 
4529	int ret = 0;
4530	int wret;
 
4531	u32 nritems;
 
 
 
4532
4533	leaf = path->nodes[0];
 
 
 
 
 
4534	nritems = btrfs_header_nritems(leaf);
4535
4536	if (slot + nr != nritems) {
4537		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4538		const int data_end = leaf_data_end(leaf);
4539		struct btrfs_map_token token;
4540		u32 dsize = 0;
4541		int i;
4542
4543		for (i = 0; i < nr; i++)
4544			dsize += btrfs_item_size(leaf, slot + i);
 
 
4545
4546		memmove_leaf_data(leaf, data_end + dsize, data_end,
4547				  last_off - data_end);
4548
4549		btrfs_init_map_token(&token, leaf);
4550		for (i = slot + nr; i < nritems; i++) {
4551			u32 ioff;
4552
4553			ioff = btrfs_token_item_offset(&token, i);
4554			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
 
4555		}
4556
4557		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4558	}
4559	btrfs_set_header_nritems(leaf, nritems - nr);
4560	nritems -= nr;
4561
4562	/* delete the leaf if we've emptied it */
4563	if (nritems == 0) {
4564		if (leaf == root->node) {
4565			btrfs_set_header_level(leaf, 0);
4566		} else {
4567			btrfs_clear_buffer_dirty(trans, leaf);
4568			ret = btrfs_del_leaf(trans, root, path, leaf);
4569			if (ret < 0)
4570				return ret;
4571		}
4572	} else {
4573		int used = leaf_space_used(leaf, 0, nritems);
4574		if (slot == 0) {
4575			struct btrfs_disk_key disk_key;
4576
4577			btrfs_item_key(leaf, &disk_key, 0);
4578			fixup_low_keys(trans, path, &disk_key, 1);
4579		}
4580
4581		/*
4582		 * Try to delete the leaf if it is mostly empty. We do this by
4583		 * trying to move all its items into its left and right neighbours.
4584		 * If we can't move all the items, then we don't delete it - it's
4585		 * not ideal, but future insertions might fill the leaf with more
4586		 * items, or items from other leaves might be moved later into our
4587		 * leaf due to deletions on those leaves.
4588		 */
4589		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4590			u32 min_push_space;
4591
4592			/* push_leaf_left fixes the path.
4593			 * make sure the path still points to our leaf
4594			 * for possible call to btrfs_del_ptr below
4595			 */
4596			slot = path->slots[1];
4597			atomic_inc(&leaf->refs);
4598			/*
4599			 * We want to be able to at least push one item to the
4600			 * left neighbour leaf, and that's the first item.
4601			 */
4602			min_push_space = sizeof(struct btrfs_item) +
4603				btrfs_item_size(leaf, 0);
4604			wret = push_leaf_left(trans, root, path, 0,
4605					      min_push_space, 1, (u32)-1);
4606			if (wret < 0 && wret != -ENOSPC)
4607				ret = wret;
4608
4609			if (path->nodes[0] == leaf &&
4610			    btrfs_header_nritems(leaf)) {
4611				/*
4612				 * If we were not able to push all items from our
4613				 * leaf to its left neighbour, then attempt to
4614				 * either push all the remaining items to the
4615				 * right neighbour or none. There's no advantage
4616				 * in pushing only some items, instead of all, as
4617				 * it's pointless to end up with a leaf having
4618				 * too few items while the neighbours can be full
4619				 * or nearly full.
4620				 */
4621				nritems = btrfs_header_nritems(leaf);
4622				min_push_space = leaf_space_used(leaf, 0, nritems);
4623				wret = push_leaf_right(trans, root, path, 0,
4624						       min_push_space, 1, 0);
4625				if (wret < 0 && wret != -ENOSPC)
4626					ret = wret;
4627			}
4628
4629			if (btrfs_header_nritems(leaf) == 0) {
4630				path->slots[1] = slot;
4631				ret = btrfs_del_leaf(trans, root, path, leaf);
4632				if (ret < 0)
4633					return ret;
4634				free_extent_buffer(leaf);
4635				ret = 0;
4636			} else {
4637				/* if we're still in the path, make sure
4638				 * we're dirty.  Otherwise, one of the
4639				 * push_leaf functions must have already
4640				 * dirtied this buffer
4641				 */
4642				if (path->nodes[0] == leaf)
4643					btrfs_mark_buffer_dirty(trans, leaf);
4644				free_extent_buffer(leaf);
4645			}
4646		} else {
4647			btrfs_mark_buffer_dirty(trans, leaf);
4648		}
4649	}
4650	return ret;
4651}
4652
4653/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654 * A helper function to walk down the tree starting at min_key, and looking
4655 * for nodes or leaves that are have a minimum transaction id.
4656 * This is used by the btree defrag code, and tree logging
4657 *
4658 * This does not cow, but it does stuff the starting key it finds back
4659 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4660 * key and get a writable path.
4661 *
 
 
 
4662 * This honors path->lowest_level to prevent descent past a given level
4663 * of the tree.
4664 *
4665 * min_trans indicates the oldest transaction that you are interested
4666 * in walking through.  Any nodes or leaves older than min_trans are
4667 * skipped over (without reading them).
4668 *
4669 * returns zero if something useful was found, < 0 on error and 1 if there
4670 * was nothing in the tree that matched the search criteria.
4671 */
4672int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4673			 struct btrfs_path *path,
4674			 u64 min_trans)
4675{
 
4676	struct extent_buffer *cur;
4677	struct btrfs_key found_key;
4678	int slot;
4679	int sret;
4680	u32 nritems;
4681	int level;
4682	int ret = 1;
4683	int keep_locks = path->keep_locks;
4684
4685	ASSERT(!path->nowait);
4686	path->keep_locks = 1;
4687again:
4688	cur = btrfs_read_lock_root_node(root);
4689	level = btrfs_header_level(cur);
4690	WARN_ON(path->nodes[level]);
4691	path->nodes[level] = cur;
4692	path->locks[level] = BTRFS_READ_LOCK;
4693
4694	if (btrfs_header_generation(cur) < min_trans) {
4695		ret = 1;
4696		goto out;
4697	}
4698	while (1) {
4699		nritems = btrfs_header_nritems(cur);
4700		level = btrfs_header_level(cur);
4701		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4702		if (sret < 0) {
4703			ret = sret;
4704			goto out;
4705		}
4706
4707		/* at the lowest level, we're done, setup the path and exit */
4708		if (level == path->lowest_level) {
4709			if (slot >= nritems)
4710				goto find_next_key;
4711			ret = 0;
4712			path->slots[level] = slot;
4713			btrfs_item_key_to_cpu(cur, &found_key, slot);
4714			goto out;
4715		}
4716		if (sret && slot > 0)
4717			slot--;
4718		/*
4719		 * check this node pointer against the min_trans parameters.
4720		 * If it is too old, skip to the next one.
4721		 */
4722		while (slot < nritems) {
4723			u64 gen;
4724
4725			gen = btrfs_node_ptr_generation(cur, slot);
4726			if (gen < min_trans) {
4727				slot++;
4728				continue;
4729			}
4730			break;
4731		}
4732find_next_key:
4733		/*
4734		 * we didn't find a candidate key in this node, walk forward
4735		 * and find another one
4736		 */
4737		if (slot >= nritems) {
4738			path->slots[level] = slot;
 
4739			sret = btrfs_find_next_key(root, path, min_key, level,
4740						  min_trans);
4741			if (sret == 0) {
4742				btrfs_release_path(path);
4743				goto again;
4744			} else {
4745				goto out;
4746			}
4747		}
4748		/* save our key for returning back */
4749		btrfs_node_key_to_cpu(cur, &found_key, slot);
4750		path->slots[level] = slot;
4751		if (level == path->lowest_level) {
4752			ret = 0;
4753			goto out;
4754		}
4755		cur = btrfs_read_node_slot(cur, slot);
 
4756		if (IS_ERR(cur)) {
4757			ret = PTR_ERR(cur);
4758			goto out;
4759		}
4760
4761		btrfs_tree_read_lock(cur);
4762
4763		path->locks[level - 1] = BTRFS_READ_LOCK;
4764		path->nodes[level - 1] = cur;
4765		unlock_up(path, level, 1, 0, NULL);
 
4766	}
4767out:
4768	path->keep_locks = keep_locks;
4769	if (ret == 0) {
4770		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 
4771		memcpy(min_key, &found_key, sizeof(found_key));
4772	}
4773	return ret;
4774}
4775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4776/*
4777 * this is similar to btrfs_next_leaf, but does not try to preserve
4778 * and fixup the path.  It looks for and returns the next key in the
4779 * tree based on the current path and the min_trans parameters.
4780 *
4781 * 0 is returned if another key is found, < 0 if there are any errors
4782 * and 1 is returned if there are no higher keys in the tree
4783 *
4784 * path->keep_locks should be set to 1 on the search made before
4785 * calling this function.
4786 */
4787int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4788			struct btrfs_key *key, int level, u64 min_trans)
4789{
4790	int slot;
4791	struct extent_buffer *c;
4792
4793	WARN_ON(!path->keep_locks && !path->skip_locking);
4794	while (level < BTRFS_MAX_LEVEL) {
4795		if (!path->nodes[level])
4796			return 1;
4797
4798		slot = path->slots[level] + 1;
4799		c = path->nodes[level];
4800next:
4801		if (slot >= btrfs_header_nritems(c)) {
4802			int ret;
4803			int orig_lowest;
4804			struct btrfs_key cur_key;
4805			if (level + 1 >= BTRFS_MAX_LEVEL ||
4806			    !path->nodes[level + 1])
4807				return 1;
4808
4809			if (path->locks[level + 1] || path->skip_locking) {
4810				level++;
4811				continue;
4812			}
4813
4814			slot = btrfs_header_nritems(c) - 1;
4815			if (level == 0)
4816				btrfs_item_key_to_cpu(c, &cur_key, slot);
4817			else
4818				btrfs_node_key_to_cpu(c, &cur_key, slot);
4819
4820			orig_lowest = path->lowest_level;
4821			btrfs_release_path(path);
4822			path->lowest_level = level;
4823			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4824						0, 0);
4825			path->lowest_level = orig_lowest;
4826			if (ret < 0)
4827				return ret;
4828
4829			c = path->nodes[level];
4830			slot = path->slots[level];
4831			if (ret == 0)
4832				slot++;
4833			goto next;
4834		}
4835
4836		if (level == 0)
4837			btrfs_item_key_to_cpu(c, key, slot);
4838		else {
4839			u64 gen = btrfs_node_ptr_generation(c, slot);
4840
4841			if (gen < min_trans) {
4842				slot++;
4843				goto next;
4844			}
4845			btrfs_node_key_to_cpu(c, key, slot);
4846		}
4847		return 0;
4848	}
4849	return 1;
4850}
4851
 
 
 
 
 
 
 
 
 
 
4852int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4853			u64 time_seq)
4854{
4855	int slot;
4856	int level;
4857	struct extent_buffer *c;
4858	struct extent_buffer *next;
4859	struct btrfs_fs_info *fs_info = root->fs_info;
4860	struct btrfs_key key;
4861	bool need_commit_sem = false;
4862	u32 nritems;
4863	int ret;
4864	int i;
4865
4866	/*
4867	 * The nowait semantics are used only for write paths, where we don't
4868	 * use the tree mod log and sequence numbers.
4869	 */
4870	if (time_seq)
4871		ASSERT(!path->nowait);
4872
4873	nritems = btrfs_header_nritems(path->nodes[0]);
4874	if (nritems == 0)
4875		return 1;
4876
4877	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4878again:
4879	level = 1;
4880	next = NULL;
 
4881	btrfs_release_path(path);
4882
4883	path->keep_locks = 1;
 
4884
4885	if (time_seq) {
4886		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4887	} else {
4888		if (path->need_commit_sem) {
4889			path->need_commit_sem = 0;
4890			need_commit_sem = true;
4891			if (path->nowait) {
4892				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4893					ret = -EAGAIN;
4894					goto done;
4895				}
4896			} else {
4897				down_read(&fs_info->commit_root_sem);
4898			}
4899		}
4900		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4901	}
4902	path->keep_locks = 0;
4903
4904	if (ret < 0)
4905		goto done;
4906
4907	nritems = btrfs_header_nritems(path->nodes[0]);
4908	/*
4909	 * by releasing the path above we dropped all our locks.  A balance
4910	 * could have added more items next to the key that used to be
4911	 * at the very end of the block.  So, check again here and
4912	 * advance the path if there are now more items available.
4913	 */
4914	if (nritems > 0 && path->slots[0] < nritems - 1) {
4915		if (ret == 0)
4916			path->slots[0]++;
4917		ret = 0;
4918		goto done;
4919	}
4920	/*
4921	 * So the above check misses one case:
4922	 * - after releasing the path above, someone has removed the item that
4923	 *   used to be at the very end of the block, and balance between leafs
4924	 *   gets another one with bigger key.offset to replace it.
4925	 *
4926	 * This one should be returned as well, or we can get leaf corruption
4927	 * later(esp. in __btrfs_drop_extents()).
4928	 *
4929	 * And a bit more explanation about this check,
4930	 * with ret > 0, the key isn't found, the path points to the slot
4931	 * where it should be inserted, so the path->slots[0] item must be the
4932	 * bigger one.
4933	 */
4934	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4935		ret = 0;
4936		goto done;
4937	}
4938
4939	while (level < BTRFS_MAX_LEVEL) {
4940		if (!path->nodes[level]) {
4941			ret = 1;
4942			goto done;
4943		}
4944
4945		slot = path->slots[level] + 1;
4946		c = path->nodes[level];
4947		if (slot >= btrfs_header_nritems(c)) {
4948			level++;
4949			if (level == BTRFS_MAX_LEVEL) {
4950				ret = 1;
4951				goto done;
4952			}
4953			continue;
4954		}
4955
4956
4957		/*
4958		 * Our current level is where we're going to start from, and to
4959		 * make sure lockdep doesn't complain we need to drop our locks
4960		 * and nodes from 0 to our current level.
4961		 */
4962		for (i = 0; i < level; i++) {
4963			if (path->locks[level]) {
4964				btrfs_tree_read_unlock(path->nodes[i]);
4965				path->locks[i] = 0;
4966			}
4967			free_extent_buffer(path->nodes[i]);
4968			path->nodes[i] = NULL;
4969		}
4970
4971		next = c;
4972		ret = read_block_for_search(root, path, &next, slot, &key);
4973		if (ret == -EAGAIN && !path->nowait)
 
 
4974			goto again;
4975
4976		if (ret < 0) {
4977			btrfs_release_path(path);
4978			goto done;
4979		}
4980
4981		if (!path->skip_locking) {
4982			ret = btrfs_try_tree_read_lock(next);
4983			if (!ret && path->nowait) {
4984				ret = -EAGAIN;
4985				goto done;
4986			}
4987			if (!ret && time_seq) {
4988				/*
4989				 * If we don't get the lock, we may be racing
4990				 * with push_leaf_left, holding that lock while
4991				 * itself waiting for the leaf we've currently
4992				 * locked. To solve this situation, we give up
4993				 * on our lock and cycle.
4994				 */
4995				free_extent_buffer(next);
4996				btrfs_release_path(path);
4997				cond_resched();
4998				goto again;
4999			}
5000			if (!ret)
 
5001				btrfs_tree_read_lock(next);
 
 
 
 
5002		}
5003		break;
5004	}
5005	path->slots[level] = slot;
5006	while (1) {
5007		level--;
 
 
 
 
 
5008		path->nodes[level] = next;
5009		path->slots[level] = 0;
5010		if (!path->skip_locking)
5011			path->locks[level] = BTRFS_READ_LOCK;
5012		if (!level)
5013			break;
5014
5015		ret = read_block_for_search(root, path, &next, 0, &key);
5016		if (ret == -EAGAIN && !path->nowait)
 
5017			goto again;
5018
5019		if (ret < 0) {
5020			btrfs_release_path(path);
5021			goto done;
5022		}
5023
5024		if (!path->skip_locking) {
5025			if (path->nowait) {
5026				if (!btrfs_try_tree_read_lock(next)) {
5027					ret = -EAGAIN;
5028					goto done;
5029				}
5030			} else {
5031				btrfs_tree_read_lock(next);
 
 
5032			}
 
5033		}
5034	}
5035	ret = 0;
5036done:
5037	unlock_up(path, 0, 1, 0, NULL);
5038	if (need_commit_sem) {
5039		int ret2;
5040
5041		path->need_commit_sem = 1;
5042		ret2 = finish_need_commit_sem_search(path);
5043		up_read(&fs_info->commit_root_sem);
5044		if (ret2)
5045			ret = ret2;
5046	}
5047
5048	return ret;
5049}
5050
5051int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5052{
5053	path->slots[0]++;
5054	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5055		return btrfs_next_old_leaf(root, path, time_seq);
5056	return 0;
5057}
5058
5059/*
5060 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5061 * searching until it gets past min_objectid or finds an item of 'type'
5062 *
5063 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5064 */
5065int btrfs_previous_item(struct btrfs_root *root,
5066			struct btrfs_path *path, u64 min_objectid,
5067			int type)
5068{
5069	struct btrfs_key found_key;
5070	struct extent_buffer *leaf;
5071	u32 nritems;
5072	int ret;
5073
5074	while (1) {
5075		if (path->slots[0] == 0) {
 
5076			ret = btrfs_prev_leaf(root, path);
5077			if (ret != 0)
5078				return ret;
5079		} else {
5080			path->slots[0]--;
5081		}
5082		leaf = path->nodes[0];
5083		nritems = btrfs_header_nritems(leaf);
5084		if (nritems == 0)
5085			return 1;
5086		if (path->slots[0] == nritems)
5087			path->slots[0]--;
5088
5089		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090		if (found_key.objectid < min_objectid)
5091			break;
5092		if (found_key.type == type)
5093			return 0;
5094		if (found_key.objectid == min_objectid &&
5095		    found_key.type < type)
5096			break;
5097	}
5098	return 1;
5099}
5100
5101/*
5102 * search in extent tree to find a previous Metadata/Data extent item with
5103 * min objecitd.
5104 *
5105 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5106 */
5107int btrfs_previous_extent_item(struct btrfs_root *root,
5108			struct btrfs_path *path, u64 min_objectid)
5109{
5110	struct btrfs_key found_key;
5111	struct extent_buffer *leaf;
5112	u32 nritems;
5113	int ret;
5114
5115	while (1) {
5116		if (path->slots[0] == 0) {
 
5117			ret = btrfs_prev_leaf(root, path);
5118			if (ret != 0)
5119				return ret;
5120		} else {
5121			path->slots[0]--;
5122		}
5123		leaf = path->nodes[0];
5124		nritems = btrfs_header_nritems(leaf);
5125		if (nritems == 0)
5126			return 1;
5127		if (path->slots[0] == nritems)
5128			path->slots[0]--;
5129
5130		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5131		if (found_key.objectid < min_objectid)
5132			break;
5133		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5134		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5135			return 0;
5136		if (found_key.objectid == min_objectid &&
5137		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5138			break;
5139	}
5140	return 1;
5141}
5142
5143int __init btrfs_ctree_init(void)
5144{
5145	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5146	if (!btrfs_path_cachep)
5147		return -ENOMEM;
5148	return 0;
5149}
5150
5151void __cold btrfs_ctree_exit(void)
5152{
5153	kmem_cache_destroy(btrfs_path_cachep);
5154}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
 
 
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_fs_info *fs_info,
  36			  struct extent_buffer *dst,
  37			  struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39			      struct btrfs_fs_info *fs_info,
  40			      struct extent_buffer *dst_buf,
  41			      struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43		    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45				 struct extent_buffer *eb);
  46
  47struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48{
  49	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
 
 
 
 
 
 
 
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
 
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
 
 
 
 
 
 
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
 
 
 
 
 
 
 
  80{
  81	int i;
 
  82
  83	if (held) {
  84		btrfs_set_lock_blocking_rw(held, held_rw);
  85		if (held_rw == BTRFS_WRITE_LOCK)
  86			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87		else if (held_rw == BTRFS_READ_LOCK)
  88			held_rw = BTRFS_READ_LOCK_BLOCKING;
  89	}
  90	btrfs_set_path_blocking(p);
  91
  92	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93		if (p->nodes[i] && p->locks[i]) {
  94			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96				p->locks[i] = BTRFS_WRITE_LOCK;
  97			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98				p->locks[i] = BTRFS_READ_LOCK;
  99		}
 100	}
 101
 102	if (held)
 103		btrfs_clear_lock_blocking_rw(held, held_rw);
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109	if (!p)
 110		return;
 111	btrfs_release_path(p);
 112	kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123	int i;
 124
 125	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126		p->slots[i] = 0;
 127		if (!p->nodes[i])
 128			continue;
 129		if (p->locks[i]) {
 130			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131			p->locks[i] = 0;
 132		}
 133		free_extent_buffer(p->nodes[i]);
 134		p->nodes[i] = NULL;
 135	}
 136}
 137
 138/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150	struct extent_buffer *eb;
 151
 152	while (1) {
 153		rcu_read_lock();
 154		eb = rcu_dereference(root->node);
 155
 156		/*
 157		 * RCU really hurts here, we could free up the root node because
 158		 * it was COWed but we may not get the new root node yet so do
 159		 * the inc_not_zero dance and if it doesn't work then
 160		 * synchronize_rcu and try again.
 161		 */
 162		if (atomic_inc_not_zero(&eb->refs)) {
 163			rcu_read_unlock();
 164			break;
 165		}
 166		rcu_read_unlock();
 167		synchronize_rcu();
 168	}
 169	return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178	struct extent_buffer *eb;
 179
 180	while (1) {
 181		eb = btrfs_root_node(root);
 182		btrfs_tree_lock(eb);
 183		if (eb == root->node)
 184			break;
 185		btrfs_tree_unlock(eb);
 186		free_extent_buffer(eb);
 187	}
 188	return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197	struct extent_buffer *eb;
 198
 199	while (1) {
 200		eb = btrfs_root_node(root);
 201		btrfs_tree_read_lock(eb);
 202		if (eb == root->node)
 203			break;
 204		btrfs_tree_read_unlock(eb);
 205		free_extent_buffer(eb);
 206	}
 207	return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216	struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220		return;
 221
 222	spin_lock(&fs_info->trans_lock);
 223	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224		/* Want the extent tree to be the last on the list */
 225		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226			list_move_tail(&root->dirty_list,
 227				       &fs_info->dirty_cowonly_roots);
 228		else
 229			list_move(&root->dirty_list,
 230				  &fs_info->dirty_cowonly_roots);
 231	}
 232	spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241		      struct btrfs_root *root,
 242		      struct extent_buffer *buf,
 243		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245	struct btrfs_fs_info *fs_info = root->fs_info;
 246	struct extent_buffer *cow;
 247	int ret = 0;
 248	int level;
 249	struct btrfs_disk_key disk_key;
 
 250
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != fs_info->running_transaction->transid);
 253	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254		trans->transid != root->last_trans);
 255
 256	level = btrfs_header_level(buf);
 257	if (level == 0)
 258		btrfs_item_key(buf, &disk_key, 0);
 259	else
 260		btrfs_node_key(buf, &disk_key, 0);
 261
 
 
 262	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263			&disk_key, level, buf->start, 0);
 
 264	if (IS_ERR(cow))
 265		return PTR_ERR(cow);
 266
 267	copy_extent_buffer_full(cow, buf);
 268	btrfs_set_header_bytenr(cow, cow->start);
 269	btrfs_set_header_generation(cow, trans->transid);
 270	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272				     BTRFS_HEADER_FLAG_RELOC);
 273	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275	else
 276		btrfs_set_header_owner(cow, new_root_objectid);
 277
 278	write_extent_buffer_fsid(cow, fs_info->fsid);
 279
 280	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282		ret = btrfs_inc_ref(trans, root, cow, 1);
 283	else
 284		ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286	if (ret)
 
 
 287		return ret;
 
 288
 289	btrfs_mark_buffer_dirty(cow);
 290	*cow_ret = cow;
 291	return 0;
 292}
 293
 294enum mod_log_op {
 295	MOD_LOG_KEY_REPLACE,
 296	MOD_LOG_KEY_ADD,
 297	MOD_LOG_KEY_REMOVE,
 298	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300	MOD_LOG_MOVE_KEYS,
 301	MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305	int dst_slot;
 306	int nr_items;
 307};
 308
 309struct tree_mod_root {
 310	u64 logical;
 311	u8 level;
 312};
 313
 314struct tree_mod_elem {
 315	struct rb_node node;
 316	u64 logical;
 317	u64 seq;
 318	enum mod_log_op op;
 319
 320	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321	int slot;
 322
 323	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324	u64 generation;
 325
 326	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327	struct btrfs_disk_key key;
 328	u64 blockptr;
 329
 330	/* this is used for op == MOD_LOG_MOVE_KEYS */
 331	struct tree_mod_move move;
 332
 333	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 334	struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339	read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344	read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349	write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354	write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362	return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374			   struct seq_list *elem)
 375{
 376	tree_mod_log_write_lock(fs_info);
 377	spin_lock(&fs_info->tree_mod_seq_lock);
 378	if (!elem->seq) {
 379		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383	tree_mod_log_write_unlock(fs_info);
 384
 385	return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389			    struct seq_list *elem)
 390{
 391	struct rb_root *tm_root;
 392	struct rb_node *node;
 393	struct rb_node *next;
 394	struct seq_list *cur_elem;
 395	struct tree_mod_elem *tm;
 396	u64 min_seq = (u64)-1;
 397	u64 seq_putting = elem->seq;
 398
 399	if (!seq_putting)
 400		return;
 401
 402	spin_lock(&fs_info->tree_mod_seq_lock);
 403	list_del(&elem->list);
 404	elem->seq = 0;
 405
 406	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407		if (cur_elem->seq < min_seq) {
 408			if (seq_putting > cur_elem->seq) {
 409				/*
 410				 * blocker with lower sequence number exists, we
 411				 * cannot remove anything from the log
 412				 */
 413				spin_unlock(&fs_info->tree_mod_seq_lock);
 414				return;
 415			}
 416			min_seq = cur_elem->seq;
 417		}
 418	}
 419	spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421	/*
 422	 * anything that's lower than the lowest existing (read: blocked)
 423	 * sequence number can be removed from the tree.
 
 424	 */
 425	tree_mod_log_write_lock(fs_info);
 426	tm_root = &fs_info->tree_mod_log;
 427	for (node = rb_first(tm_root); node; node = next) {
 428		next = rb_next(node);
 429		tm = container_of(node, struct tree_mod_elem, node);
 430		if (tm->seq > min_seq)
 431			continue;
 432		rb_erase(node, tm_root);
 433		kfree(tm);
 434	}
 435	tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451	struct rb_root *tm_root;
 452	struct rb_node **new;
 453	struct rb_node *parent = NULL;
 454	struct tree_mod_elem *cur;
 455
 456	BUG_ON(!tm);
 
 457
 458	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 
 459
 460	tm_root = &fs_info->tree_mod_log;
 461	new = &tm_root->rb_node;
 462	while (*new) {
 463		cur = container_of(*new, struct tree_mod_elem, node);
 464		parent = *new;
 465		if (cur->logical < tm->logical)
 466			new = &((*new)->rb_left);
 467		else if (cur->logical > tm->logical)
 468			new = &((*new)->rb_right);
 469		else if (cur->seq < tm->seq)
 470			new = &((*new)->rb_left);
 471		else if (cur->seq > tm->seq)
 472			new = &((*new)->rb_right);
 473		else
 474			return -EEXIST;
 475	}
 476
 477	rb_link_node(&tm->node, parent, new);
 478	rb_insert_color(&tm->node, tm_root);
 479	return 0;
 480}
 481
 482/*
 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 485 * this until all tree mod log insertions are recorded in the rb tree and then
 486 * call tree_mod_log_write_unlock() to release.
 487 */
 488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 489				    struct extent_buffer *eb) {
 490	smp_mb();
 491	if (list_empty(&(fs_info)->tree_mod_seq_list))
 492		return 1;
 493	if (eb && btrfs_header_level(eb) == 0)
 494		return 1;
 495
 496	tree_mod_log_write_lock(fs_info);
 497	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 498		tree_mod_log_write_unlock(fs_info);
 499		return 1;
 500	}
 501
 502	return 0;
 503}
 504
 505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 507				    struct extent_buffer *eb)
 508{
 509	smp_mb();
 510	if (list_empty(&(fs_info)->tree_mod_seq_list))
 511		return 0;
 512	if (eb && btrfs_header_level(eb) == 0)
 513		return 0;
 514
 515	return 1;
 516}
 517
 518static struct tree_mod_elem *
 519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 520		    enum mod_log_op op, gfp_t flags)
 521{
 522	struct tree_mod_elem *tm;
 523
 524	tm = kzalloc(sizeof(*tm), flags);
 525	if (!tm)
 526		return NULL;
 527
 528	tm->logical = eb->start;
 529	if (op != MOD_LOG_KEY_ADD) {
 530		btrfs_node_key(eb, &tm->key, slot);
 531		tm->blockptr = btrfs_node_blockptr(eb, slot);
 532	}
 533	tm->op = op;
 534	tm->slot = slot;
 535	tm->generation = btrfs_node_ptr_generation(eb, slot);
 536	RB_CLEAR_NODE(&tm->node);
 537
 538	return tm;
 539}
 540
 541static noinline int
 542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 543			struct extent_buffer *eb, int slot,
 544			enum mod_log_op op, gfp_t flags)
 545{
 546	struct tree_mod_elem *tm;
 547	int ret;
 548
 549	if (!tree_mod_need_log(fs_info, eb))
 550		return 0;
 551
 552	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 553	if (!tm)
 554		return -ENOMEM;
 555
 556	if (tree_mod_dont_log(fs_info, eb)) {
 557		kfree(tm);
 558		return 0;
 559	}
 560
 561	ret = __tree_mod_log_insert(fs_info, tm);
 562	tree_mod_log_write_unlock(fs_info);
 563	if (ret)
 564		kfree(tm);
 565
 566	return ret;
 567}
 568
 569static noinline int
 570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 571			 struct extent_buffer *eb, int dst_slot, int src_slot,
 572			 int nr_items, gfp_t flags)
 573{
 574	struct tree_mod_elem *tm = NULL;
 575	struct tree_mod_elem **tm_list = NULL;
 576	int ret = 0;
 577	int i;
 578	int locked = 0;
 579
 580	if (!tree_mod_need_log(fs_info, eb))
 581		return 0;
 582
 583	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 584	if (!tm_list)
 585		return -ENOMEM;
 586
 587	tm = kzalloc(sizeof(*tm), flags);
 588	if (!tm) {
 589		ret = -ENOMEM;
 590		goto free_tms;
 591	}
 592
 593	tm->logical = eb->start;
 594	tm->slot = src_slot;
 595	tm->move.dst_slot = dst_slot;
 596	tm->move.nr_items = nr_items;
 597	tm->op = MOD_LOG_MOVE_KEYS;
 598
 599	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 600		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 601		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 602		if (!tm_list[i]) {
 603			ret = -ENOMEM;
 604			goto free_tms;
 605		}
 606	}
 607
 608	if (tree_mod_dont_log(fs_info, eb))
 609		goto free_tms;
 610	locked = 1;
 611
 612	/*
 613	 * When we override something during the move, we log these removals.
 614	 * This can only happen when we move towards the beginning of the
 615	 * buffer, i.e. dst_slot < src_slot.
 
 616	 */
 617	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 618		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 619		if (ret)
 620			goto free_tms;
 621	}
 622
 623	ret = __tree_mod_log_insert(fs_info, tm);
 624	if (ret)
 625		goto free_tms;
 626	tree_mod_log_write_unlock(fs_info);
 627	kfree(tm_list);
 628
 629	return 0;
 630free_tms:
 631	for (i = 0; i < nr_items; i++) {
 632		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 633			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 634		kfree(tm_list[i]);
 635	}
 636	if (locked)
 637		tree_mod_log_write_unlock(fs_info);
 638	kfree(tm_list);
 639	kfree(tm);
 640
 641	return ret;
 642}
 643
 644static inline int
 645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 646		       struct tree_mod_elem **tm_list,
 647		       int nritems)
 648{
 649	int i, j;
 650	int ret;
 651
 652	for (i = nritems - 1; i >= 0; i--) {
 653		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 654		if (ret) {
 655			for (j = nritems - 1; j > i; j--)
 656				rb_erase(&tm_list[j]->node,
 657					 &fs_info->tree_mod_log);
 658			return ret;
 659		}
 660	}
 661
 662	return 0;
 663}
 664
 665static noinline int
 666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 667			 struct extent_buffer *old_root,
 668			 struct extent_buffer *new_root, gfp_t flags,
 669			 int log_removal)
 670{
 671	struct tree_mod_elem *tm = NULL;
 672	struct tree_mod_elem **tm_list = NULL;
 673	int nritems = 0;
 674	int ret = 0;
 675	int i;
 676
 677	if (!tree_mod_need_log(fs_info, NULL))
 678		return 0;
 679
 680	if (log_removal && btrfs_header_level(old_root) > 0) {
 681		nritems = btrfs_header_nritems(old_root);
 682		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 683				  flags);
 684		if (!tm_list) {
 685			ret = -ENOMEM;
 686			goto free_tms;
 687		}
 688		for (i = 0; i < nritems; i++) {
 689			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 690			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 691			if (!tm_list[i]) {
 692				ret = -ENOMEM;
 693				goto free_tms;
 694			}
 695		}
 696	}
 697
 698	tm = kzalloc(sizeof(*tm), flags);
 699	if (!tm) {
 700		ret = -ENOMEM;
 701		goto free_tms;
 702	}
 703
 704	tm->logical = new_root->start;
 705	tm->old_root.logical = old_root->start;
 706	tm->old_root.level = btrfs_header_level(old_root);
 707	tm->generation = btrfs_header_generation(old_root);
 708	tm->op = MOD_LOG_ROOT_REPLACE;
 709
 710	if (tree_mod_dont_log(fs_info, NULL))
 711		goto free_tms;
 712
 713	if (tm_list)
 714		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 715	if (!ret)
 716		ret = __tree_mod_log_insert(fs_info, tm);
 717
 718	tree_mod_log_write_unlock(fs_info);
 719	if (ret)
 720		goto free_tms;
 721	kfree(tm_list);
 722
 723	return ret;
 724
 725free_tms:
 726	if (tm_list) {
 727		for (i = 0; i < nritems; i++)
 728			kfree(tm_list[i]);
 729		kfree(tm_list);
 730	}
 731	kfree(tm);
 732
 733	return ret;
 734}
 735
 736static struct tree_mod_elem *
 737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 738		      int smallest)
 739{
 740	struct rb_root *tm_root;
 741	struct rb_node *node;
 742	struct tree_mod_elem *cur = NULL;
 743	struct tree_mod_elem *found = NULL;
 744
 745	tree_mod_log_read_lock(fs_info);
 746	tm_root = &fs_info->tree_mod_log;
 747	node = tm_root->rb_node;
 748	while (node) {
 749		cur = container_of(node, struct tree_mod_elem, node);
 750		if (cur->logical < start) {
 751			node = node->rb_left;
 752		} else if (cur->logical > start) {
 753			node = node->rb_right;
 754		} else if (cur->seq < min_seq) {
 755			node = node->rb_left;
 756		} else if (!smallest) {
 757			/* we want the node with the highest seq */
 758			if (found)
 759				BUG_ON(found->seq > cur->seq);
 760			found = cur;
 761			node = node->rb_left;
 762		} else if (cur->seq > min_seq) {
 763			/* we want the node with the smallest seq */
 764			if (found)
 765				BUG_ON(found->seq < cur->seq);
 766			found = cur;
 767			node = node->rb_right;
 768		} else {
 769			found = cur;
 770			break;
 771		}
 772	}
 773	tree_mod_log_read_unlock(fs_info);
 774
 775	return found;
 776}
 777
 778/*
 779 * this returns the element from the log with the smallest time sequence
 780 * value that's in the log (the oldest log item). any element with a time
 781 * sequence lower than min_seq will be ignored.
 782 */
 783static struct tree_mod_elem *
 784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 785			   u64 min_seq)
 786{
 787	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 788}
 789
 790/*
 791 * this returns the element from the log with the largest time sequence
 792 * value that's in the log (the most recent log item). any element with
 793 * a time sequence lower than min_seq will be ignored.
 794 */
 795static struct tree_mod_elem *
 796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 797{
 798	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 799}
 800
 801static noinline int
 802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 803		     struct extent_buffer *src, unsigned long dst_offset,
 804		     unsigned long src_offset, int nr_items)
 805{
 806	int ret = 0;
 807	struct tree_mod_elem **tm_list = NULL;
 808	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 809	int i;
 810	int locked = 0;
 811
 812	if (!tree_mod_need_log(fs_info, NULL))
 813		return 0;
 814
 815	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 816		return 0;
 817
 818	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 819			  GFP_NOFS);
 820	if (!tm_list)
 821		return -ENOMEM;
 822
 823	tm_list_add = tm_list;
 824	tm_list_rem = tm_list + nr_items;
 825	for (i = 0; i < nr_items; i++) {
 826		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 827		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 828		if (!tm_list_rem[i]) {
 829			ret = -ENOMEM;
 830			goto free_tms;
 831		}
 832
 833		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 834		    MOD_LOG_KEY_ADD, GFP_NOFS);
 835		if (!tm_list_add[i]) {
 836			ret = -ENOMEM;
 837			goto free_tms;
 838		}
 839	}
 840
 841	if (tree_mod_dont_log(fs_info, NULL))
 842		goto free_tms;
 843	locked = 1;
 844
 845	for (i = 0; i < nr_items; i++) {
 846		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 847		if (ret)
 848			goto free_tms;
 849		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 850		if (ret)
 851			goto free_tms;
 852	}
 853
 854	tree_mod_log_write_unlock(fs_info);
 855	kfree(tm_list);
 856
 857	return 0;
 858
 859free_tms:
 860	for (i = 0; i < nr_items * 2; i++) {
 861		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 862			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 863		kfree(tm_list[i]);
 864	}
 865	if (locked)
 866		tree_mod_log_write_unlock(fs_info);
 867	kfree(tm_list);
 868
 869	return ret;
 870}
 871
 872static inline void
 873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 874		     int dst_offset, int src_offset, int nr_items)
 875{
 876	int ret;
 877	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 878				       nr_items, GFP_NOFS);
 879	BUG_ON(ret < 0);
 880}
 881
 882static noinline void
 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 884			  struct extent_buffer *eb, int slot, int atomic)
 885{
 886	int ret;
 887
 888	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 889					MOD_LOG_KEY_REPLACE,
 890					atomic ? GFP_ATOMIC : GFP_NOFS);
 891	BUG_ON(ret < 0);
 892}
 893
 894static noinline int
 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 896{
 897	struct tree_mod_elem **tm_list = NULL;
 898	int nritems = 0;
 899	int i;
 900	int ret = 0;
 901
 902	if (btrfs_header_level(eb) == 0)
 903		return 0;
 904
 905	if (!tree_mod_need_log(fs_info, NULL))
 906		return 0;
 907
 908	nritems = btrfs_header_nritems(eb);
 909	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 910	if (!tm_list)
 911		return -ENOMEM;
 912
 913	for (i = 0; i < nritems; i++) {
 914		tm_list[i] = alloc_tree_mod_elem(eb, i,
 915		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 916		if (!tm_list[i]) {
 917			ret = -ENOMEM;
 918			goto free_tms;
 919		}
 920	}
 921
 922	if (tree_mod_dont_log(fs_info, eb))
 923		goto free_tms;
 924
 925	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 926	tree_mod_log_write_unlock(fs_info);
 927	if (ret)
 928		goto free_tms;
 929	kfree(tm_list);
 930
 931	return 0;
 932
 933free_tms:
 934	for (i = 0; i < nritems; i++)
 935		kfree(tm_list[i]);
 936	kfree(tm_list);
 937
 938	return ret;
 939}
 940
 941static noinline void
 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
 943			      struct extent_buffer *new_root_node,
 944			      int log_removal)
 945{
 946	int ret;
 947	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 948				       new_root_node, GFP_NOFS, log_removal);
 949	BUG_ON(ret < 0);
 950}
 951
 952/*
 953 * check if the tree block can be shared by multiple trees
 954 */
 955int btrfs_block_can_be_shared(struct btrfs_root *root,
 956			      struct extent_buffer *buf)
 957{
 958	/*
 959	 * Tree blocks not in reference counted trees and tree roots
 960	 * are never shared. If a block was allocated after the last
 961	 * snapshot and the block was not allocated by tree relocation,
 962	 * we know the block is not shared.
 963	 */
 964	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 965	    buf != root->node && buf != root->commit_root &&
 966	    (btrfs_header_generation(buf) <=
 967	     btrfs_root_last_snapshot(&root->root_item) ||
 968	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 969		return 1;
 970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 971	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 972	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 973		return 1;
 974#endif
 975	return 0;
 976}
 977
 978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 979				       struct btrfs_root *root,
 980				       struct extent_buffer *buf,
 981				       struct extent_buffer *cow,
 982				       int *last_ref)
 983{
 984	struct btrfs_fs_info *fs_info = root->fs_info;
 985	u64 refs;
 986	u64 owner;
 987	u64 flags;
 988	u64 new_flags = 0;
 989	int ret;
 990
 991	/*
 992	 * Backrefs update rules:
 993	 *
 994	 * Always use full backrefs for extent pointers in tree block
 995	 * allocated by tree relocation.
 996	 *
 997	 * If a shared tree block is no longer referenced by its owner
 998	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 999	 * use full backrefs for extent pointers in tree block.
1000	 *
1001	 * If a tree block is been relocating
1002	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003	 * use full backrefs for extent pointers in tree block.
1004	 * The reason for this is some operations (such as drop tree)
1005	 * are only allowed for blocks use full backrefs.
1006	 */
1007
1008	if (btrfs_block_can_be_shared(root, buf)) {
1009		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010					       btrfs_header_level(buf), 1,
1011					       &refs, &flags);
1012		if (ret)
1013			return ret;
1014		if (refs == 0) {
1015			ret = -EROFS;
1016			btrfs_handle_fs_error(fs_info, ret, NULL);
 
 
 
 
1017			return ret;
1018		}
1019	} else {
1020		refs = 1;
1021		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024		else
1025			flags = 0;
1026	}
1027
1028	owner = btrfs_header_owner(buf);
1029	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 
 
 
 
 
 
 
 
1031
1032	if (refs > 1) {
1033		if ((owner == root->root_key.objectid ||
1034		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036			ret = btrfs_inc_ref(trans, root, buf, 1);
1037			BUG_ON(ret); /* -ENOMEM */
 
1038
1039			if (root->root_key.objectid ==
1040			    BTRFS_TREE_RELOC_OBJECTID) {
1041				ret = btrfs_dec_ref(trans, root, buf, 0);
1042				BUG_ON(ret); /* -ENOMEM */
 
1043				ret = btrfs_inc_ref(trans, root, cow, 1);
1044				BUG_ON(ret); /* -ENOMEM */
 
1045			}
1046			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
 
 
1047		} else {
1048
1049			if (root->root_key.objectid ==
1050			    BTRFS_TREE_RELOC_OBJECTID)
1051				ret = btrfs_inc_ref(trans, root, cow, 1);
1052			else
1053				ret = btrfs_inc_ref(trans, root, cow, 0);
1054			BUG_ON(ret); /* -ENOMEM */
1055		}
1056		if (new_flags != 0) {
1057			int level = btrfs_header_level(buf);
1058
1059			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060							  buf->start,
1061							  buf->len,
1062							  new_flags, level, 0);
1063			if (ret)
1064				return ret;
1065		}
1066	} else {
1067		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068			if (root->root_key.objectid ==
1069			    BTRFS_TREE_RELOC_OBJECTID)
1070				ret = btrfs_inc_ref(trans, root, cow, 1);
1071			else
1072				ret = btrfs_inc_ref(trans, root, cow, 0);
1073			BUG_ON(ret); /* -ENOMEM */
 
1074			ret = btrfs_dec_ref(trans, root, buf, 1);
1075			BUG_ON(ret); /* -ENOMEM */
 
1076		}
1077		clean_tree_block(trans, fs_info, buf);
1078		*last_ref = 1;
1079	}
1080	return 0;
1081}
1082
1083/*
1084 * does the dirty work in cow of a single block.  The parent block (if
1085 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086 * dirty and returned locked.  If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096			     struct btrfs_root *root,
1097			     struct extent_buffer *buf,
1098			     struct extent_buffer *parent, int parent_slot,
1099			     struct extent_buffer **cow_ret,
1100			     u64 search_start, u64 empty_size)
 
1101{
1102	struct btrfs_fs_info *fs_info = root->fs_info;
1103	struct btrfs_disk_key disk_key;
1104	struct extent_buffer *cow;
1105	int level, ret;
1106	int last_ref = 0;
1107	int unlock_orig = 0;
1108	u64 parent_start = 0;
 
1109
1110	if (*cow_ret == buf)
1111		unlock_orig = 1;
1112
1113	btrfs_assert_tree_locked(buf);
1114
1115	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116		trans->transid != fs_info->running_transaction->transid);
1117	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118		trans->transid != root->last_trans);
1119
1120	level = btrfs_header_level(buf);
1121
1122	if (level == 0)
1123		btrfs_item_key(buf, &disk_key, 0);
1124	else
1125		btrfs_node_key(buf, &disk_key, 0);
1126
1127	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128		parent_start = parent->start;
1129
 
 
1130	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131			root->root_key.objectid, &disk_key, level,
1132			search_start, empty_size);
1133	if (IS_ERR(cow))
1134		return PTR_ERR(cow);
1135
1136	/* cow is set to blocking by btrfs_init_new_buffer */
1137
1138	copy_extent_buffer_full(cow, buf);
1139	btrfs_set_header_bytenr(cow, cow->start);
1140	btrfs_set_header_generation(cow, trans->transid);
1141	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143				     BTRFS_HEADER_FLAG_RELOC);
1144	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146	else
1147		btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149	write_extent_buffer_fsid(cow, fs_info->fsid);
1150
1151	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152	if (ret) {
1153		btrfs_abort_transaction(trans, ret);
1154		return ret;
1155	}
1156
1157	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159		if (ret) {
1160			btrfs_abort_transaction(trans, ret);
1161			return ret;
1162		}
1163	}
1164
1165	if (buf == root->node) {
1166		WARN_ON(parent && parent != buf);
1167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169			parent_start = buf->start;
1170
1171		extent_buffer_get(cow);
1172		tree_mod_log_set_root_pointer(root, cow, 1);
 
 
 
 
1173		rcu_assign_pointer(root->node, cow);
1174
1175		btrfs_free_tree_block(trans, root, buf, parent_start,
1176				      last_ref);
1177		free_extent_buffer(buf);
1178		add_root_to_dirty_list(root);
 
 
 
 
1179	} else {
1180		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182					MOD_LOG_KEY_REPLACE, GFP_NOFS);
 
 
 
 
1183		btrfs_set_node_blockptr(parent, parent_slot,
1184					cow->start);
1185		btrfs_set_node_ptr_generation(parent, parent_slot,
1186					      trans->transid);
1187		btrfs_mark_buffer_dirty(parent);
1188		if (last_ref) {
1189			ret = tree_mod_log_free_eb(fs_info, buf);
1190			if (ret) {
1191				btrfs_abort_transaction(trans, ret);
1192				return ret;
1193			}
1194		}
1195		btrfs_free_tree_block(trans, root, buf, parent_start,
1196				      last_ref);
 
 
 
 
1197	}
 
 
1198	if (unlock_orig)
1199		btrfs_tree_unlock(buf);
1200	free_extent_buffer_stale(buf);
1201	btrfs_mark_buffer_dirty(cow);
1202	*cow_ret = cow;
1203	return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212			   struct extent_buffer *eb_root, u64 time_seq)
1213{
1214	struct tree_mod_elem *tm;
1215	struct tree_mod_elem *found = NULL;
1216	u64 root_logical = eb_root->start;
1217	int looped = 0;
1218
1219	if (!time_seq)
1220		return NULL;
1221
1222	/*
1223	 * the very last operation that's logged for a root is the
1224	 * replacement operation (if it is replaced at all). this has
1225	 * the logical address of the *new* root, making it the very
1226	 * first operation that's logged for this root.
1227	 */
1228	while (1) {
1229		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230						time_seq);
1231		if (!looped && !tm)
1232			return NULL;
1233		/*
1234		 * if there are no tree operation for the oldest root, we simply
1235		 * return it. this should only happen if that (old) root is at
1236		 * level 0.
1237		 */
1238		if (!tm)
1239			break;
1240
1241		/*
1242		 * if there's an operation that's not a root replacement, we
1243		 * found the oldest version of our root. normally, we'll find a
1244		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245		 */
1246		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247			break;
1248
1249		found = tm;
1250		root_logical = tm->old_root.logical;
1251		looped = 1;
1252	}
1253
1254	/* if there's no old root to return, return what we found instead */
1255	if (!found)
1256		found = tm;
1257
1258	return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268		      u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270	u32 n;
1271	struct rb_node *next;
1272	struct tree_mod_elem *tm = first_tm;
1273	unsigned long o_dst;
1274	unsigned long o_src;
1275	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277	n = btrfs_header_nritems(eb);
1278	tree_mod_log_read_lock(fs_info);
1279	while (tm && tm->seq >= time_seq) {
1280		/*
1281		 * all the operations are recorded with the operator used for
1282		 * the modification. as we're going backwards, we do the
1283		 * opposite of each operation here.
1284		 */
1285		switch (tm->op) {
1286		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287			BUG_ON(tm->slot < n);
1288			/* Fallthrough */
1289		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290		case MOD_LOG_KEY_REMOVE:
1291			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293			btrfs_set_node_ptr_generation(eb, tm->slot,
1294						      tm->generation);
1295			n++;
1296			break;
1297		case MOD_LOG_KEY_REPLACE:
1298			BUG_ON(tm->slot >= n);
1299			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301			btrfs_set_node_ptr_generation(eb, tm->slot,
1302						      tm->generation);
1303			break;
1304		case MOD_LOG_KEY_ADD:
1305			/* if a move operation is needed it's in the log */
1306			n--;
1307			break;
1308		case MOD_LOG_MOVE_KEYS:
1309			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311			memmove_extent_buffer(eb, o_dst, o_src,
1312					      tm->move.nr_items * p_size);
1313			break;
1314		case MOD_LOG_ROOT_REPLACE:
1315			/*
1316			 * this operation is special. for roots, this must be
1317			 * handled explicitly before rewinding.
1318			 * for non-roots, this operation may exist if the node
1319			 * was a root: root A -> child B; then A gets empty and
1320			 * B is promoted to the new root. in the mod log, we'll
1321			 * have a root-replace operation for B, a tree block
1322			 * that is no root. we simply ignore that operation.
1323			 */
1324			break;
1325		}
1326		next = rb_next(&tm->node);
1327		if (!next)
1328			break;
1329		tm = container_of(next, struct tree_mod_elem, node);
1330		if (tm->logical != first_tm->logical)
1331			break;
1332	}
1333	tree_mod_log_read_unlock(fs_info);
1334	btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346		    struct extent_buffer *eb, u64 time_seq)
1347{
1348	struct extent_buffer *eb_rewin;
1349	struct tree_mod_elem *tm;
1350
1351	if (!time_seq)
1352		return eb;
1353
1354	if (btrfs_header_level(eb) == 0)
1355		return eb;
1356
1357	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358	if (!tm)
1359		return eb;
1360
1361	btrfs_set_path_blocking(path);
1362	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365		BUG_ON(tm->slot != 0);
1366		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367		if (!eb_rewin) {
1368			btrfs_tree_read_unlock_blocking(eb);
1369			free_extent_buffer(eb);
1370			return NULL;
1371		}
1372		btrfs_set_header_bytenr(eb_rewin, eb->start);
1373		btrfs_set_header_backref_rev(eb_rewin,
1374					     btrfs_header_backref_rev(eb));
1375		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377	} else {
1378		eb_rewin = btrfs_clone_extent_buffer(eb);
1379		if (!eb_rewin) {
1380			btrfs_tree_read_unlock_blocking(eb);
1381			free_extent_buffer(eb);
1382			return NULL;
1383		}
1384	}
1385
1386	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387	btrfs_tree_read_unlock_blocking(eb);
1388	free_extent_buffer(eb);
1389
1390	extent_buffer_get(eb_rewin);
1391	btrfs_tree_read_lock(eb_rewin);
1392	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396	return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct tree_mod_elem *tm;
1411	struct extent_buffer *eb = NULL;
1412	struct extent_buffer *eb_root;
1413	struct extent_buffer *old;
1414	struct tree_mod_root *old_root = NULL;
1415	u64 old_generation = 0;
1416	u64 logical;
1417
1418	eb_root = btrfs_read_lock_root_node(root);
1419	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420	if (!tm)
1421		return eb_root;
1422
1423	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424		old_root = &tm->old_root;
1425		old_generation = tm->generation;
1426		logical = old_root->logical;
1427	} else {
1428		logical = eb_root->start;
1429	}
1430
1431	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433		btrfs_tree_read_unlock(eb_root);
1434		free_extent_buffer(eb_root);
1435		old = read_tree_block(fs_info, logical, 0);
1436		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437			if (!IS_ERR(old))
1438				free_extent_buffer(old);
1439			btrfs_warn(fs_info,
1440				   "failed to read tree block %llu from get_old_root",
1441				   logical);
1442		} else {
1443			eb = btrfs_clone_extent_buffer(old);
1444			free_extent_buffer(old);
1445		}
1446	} else if (old_root) {
1447		btrfs_tree_read_unlock(eb_root);
1448		free_extent_buffer(eb_root);
1449		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450	} else {
1451		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452		eb = btrfs_clone_extent_buffer(eb_root);
1453		btrfs_tree_read_unlock_blocking(eb_root);
1454		free_extent_buffer(eb_root);
1455	}
1456
1457	if (!eb)
1458		return NULL;
1459	extent_buffer_get(eb);
1460	btrfs_tree_read_lock(eb);
1461	if (old_root) {
1462		btrfs_set_header_bytenr(eb, eb->start);
1463		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465		btrfs_set_header_level(eb, old_root->level);
1466		btrfs_set_header_generation(eb, old_generation);
1467	}
1468	if (tm)
1469		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470	else
1471		WARN_ON(btrfs_header_level(eb) != 0);
1472	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474	return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479	struct tree_mod_elem *tm;
1480	int level;
1481	struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485		level = tm->old_root.level;
1486	} else {
1487		level = btrfs_header_level(eb_root);
1488	}
1489	free_extent_buffer(eb_root);
1490
1491	return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495				   struct btrfs_root *root,
1496				   struct extent_buffer *buf)
1497{
1498	if (btrfs_is_testing(root->fs_info))
1499		return 0;
1500
1501	/* ensure we can see the force_cow */
1502	smp_rmb();
1503
1504	/*
1505	 * We do not need to cow a block if
1506	 * 1) this block is not created or changed in this transaction;
1507	 * 2) this block does not belong to TREE_RELOC tree;
1508	 * 3) the root is not forced COW.
1509	 *
1510	 * What is forced COW:
1511	 *    when we create snapshot during committing the transaction,
1512	 *    after we've finished coping src root, we must COW the shared
1513	 *    block to ensure the metadata consistency.
1514	 */
1515	if (btrfs_header_generation(buf) == trans->transid &&
1516	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520		return 0;
1521	return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530		    struct btrfs_root *root, struct extent_buffer *buf,
1531		    struct extent_buffer *parent, int parent_slot,
1532		    struct extent_buffer **cow_ret)
 
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	u64 search_start;
1536	int ret;
1537
1538	if (trans->transaction != fs_info->running_transaction)
1539		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540		       trans->transid,
1541		       fs_info->running_transaction->transid);
1542
1543	if (trans->transid != fs_info->generation)
1544		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545		       trans->transid, fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546
1547	if (!should_cow_block(trans, root, buf)) {
1548		trans->dirty = true;
1549		*cow_ret = buf;
1550		return 0;
1551	}
1552
1553	search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555	if (parent)
1556		btrfs_set_lock_blocking(parent);
1557	btrfs_set_lock_blocking(buf);
1558
1559	ret = __btrfs_cow_block(trans, root, buf, parent,
1560				 parent_slot, cow_ret, search_start, 0);
1561
1562	trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564	return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574		return 1;
1575	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576		return 1;
1577	return 0;
1578}
1579
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1584{
1585	struct btrfs_key k1;
1586
1587	btrfs_disk_key_to_cpu(&k1, disk);
1588
1589	return btrfs_comp_cpu_keys(&k1, k2);
1590}
 
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597	if (k1->objectid > k2->objectid)
1598		return 1;
1599	if (k1->objectid < k2->objectid)
1600		return -1;
1601	if (k1->type > k2->type)
1602		return 1;
1603	if (k1->type < k2->type)
1604		return -1;
1605	if (k1->offset > k2->offset)
1606		return 1;
1607	if (k1->offset < k2->offset)
1608		return -1;
1609	return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618		       struct btrfs_root *root, struct extent_buffer *parent,
1619		       int start_slot, u64 *last_ret,
1620		       struct btrfs_key *progress)
1621{
1622	struct btrfs_fs_info *fs_info = root->fs_info;
1623	struct extent_buffer *cur;
1624	u64 blocknr;
1625	u64 gen;
1626	u64 search_start = *last_ret;
1627	u64 last_block = 0;
1628	u64 other;
1629	u32 parent_nritems;
1630	int end_slot;
1631	int i;
1632	int err = 0;
1633	int parent_level;
1634	int uptodate;
1635	u32 blocksize;
1636	int progress_passed = 0;
1637	struct btrfs_disk_key disk_key;
1638
1639	parent_level = btrfs_header_level(parent);
1640
1641	WARN_ON(trans->transaction != fs_info->running_transaction);
1642	WARN_ON(trans->transid != fs_info->generation);
1643
1644	parent_nritems = btrfs_header_nritems(parent);
1645	blocksize = fs_info->nodesize;
1646	end_slot = parent_nritems - 1;
1647
1648	if (parent_nritems <= 1)
1649		return 0;
1650
1651	btrfs_set_lock_blocking(parent);
1652
1653	for (i = start_slot; i <= end_slot; i++) {
1654		int close = 1;
1655
1656		btrfs_node_key(parent, &disk_key, i);
1657		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658			continue;
1659
1660		progress_passed = 1;
1661		blocknr = btrfs_node_blockptr(parent, i);
1662		gen = btrfs_node_ptr_generation(parent, i);
1663		if (last_block == 0)
1664			last_block = blocknr;
1665
1666		if (i > 0) {
1667			other = btrfs_node_blockptr(parent, i - 1);
1668			close = close_blocks(blocknr, other, blocksize);
1669		}
1670		if (!close && i < end_slot) {
1671			other = btrfs_node_blockptr(parent, i + 1);
1672			close = close_blocks(blocknr, other, blocksize);
1673		}
1674		if (close) {
1675			last_block = blocknr;
1676			continue;
1677		}
1678
1679		cur = find_extent_buffer(fs_info, blocknr);
1680		if (cur)
1681			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682		else
1683			uptodate = 0;
1684		if (!cur || !uptodate) {
1685			if (!cur) {
1686				cur = read_tree_block(fs_info, blocknr, gen);
1687				if (IS_ERR(cur)) {
1688					return PTR_ERR(cur);
1689				} else if (!extent_buffer_uptodate(cur)) {
1690					free_extent_buffer(cur);
1691					return -EIO;
1692				}
1693			} else if (!uptodate) {
1694				err = btrfs_read_buffer(cur, gen);
1695				if (err) {
1696					free_extent_buffer(cur);
1697					return err;
1698				}
1699			}
1700		}
1701		if (search_start == 0)
1702			search_start = last_block;
1703
1704		btrfs_tree_lock(cur);
1705		btrfs_set_lock_blocking(cur);
1706		err = __btrfs_cow_block(trans, root, cur, parent, i,
1707					&cur, search_start,
1708					min(16 * blocksize,
1709					    (end_slot - i) * blocksize));
1710		if (err) {
1711			btrfs_tree_unlock(cur);
1712			free_extent_buffer(cur);
1713			break;
1714		}
1715		search_start = cur->start;
1716		last_block = cur->start;
1717		*last_ret = search_start;
1718		btrfs_tree_unlock(cur);
1719		free_extent_buffer(cur);
1720	}
1721	return err;
1722}
1723
1724/*
1725 * search for key in the extent_buffer.  The items start at offset p,
1726 * and they are item_size apart.  There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
 
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735				       unsigned long p,
1736				       int item_size, struct btrfs_key *key,
1737				       int max, int *slot)
1738{
1739	int low = 0;
1740	int high = max;
1741	int mid;
 
 
 
 
 
1742	int ret;
1743	struct btrfs_disk_key *tmp = NULL;
1744	struct btrfs_disk_key unaligned;
1745	unsigned long offset;
1746	char *kaddr = NULL;
1747	unsigned long map_start = 0;
1748	unsigned long map_len = 0;
1749	int err;
1750
1751	if (low > high) {
1752		btrfs_err(eb->fs_info,
1753		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754			  __func__, low, high, eb->start,
1755			  btrfs_header_owner(eb), btrfs_header_level(eb));
1756		return -EINVAL;
1757	}
1758
 
 
 
 
 
 
 
 
1759	while (low < high) {
 
 
 
 
 
 
 
1760		mid = (low + high) / 2;
1761		offset = p + mid * item_size;
 
1762
1763		if (!kaddr || offset < map_start ||
1764		    (offset + sizeof(struct btrfs_disk_key)) >
1765		    map_start + map_len) {
1766
1767			err = map_private_extent_buffer(eb, offset,
1768						sizeof(struct btrfs_disk_key),
1769						&kaddr, &map_start, &map_len);
1770
1771			if (!err) {
1772				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773							map_start);
1774			} else if (err == 1) {
1775				read_extent_buffer(eb, &unaligned,
1776						   offset, sizeof(unaligned));
1777				tmp = &unaligned;
1778			} else {
1779				return err;
1780			}
1781
 
 
1782		} else {
1783			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784							map_start);
1785		}
1786		ret = comp_keys(tmp, key);
 
1787
1788		if (ret < 0)
1789			low = mid + 1;
1790		else if (ret > 0)
1791			high = mid;
1792		else {
1793			*slot = mid;
1794			return 0;
1795		}
1796	}
1797	*slot = low;
1798	return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806		      int level, int *slot)
1807{
1808	if (level == 0)
1809		return generic_bin_search(eb,
1810					  offsetof(struct btrfs_leaf, items),
1811					  sizeof(struct btrfs_item),
1812					  key, btrfs_header_nritems(eb),
1813					  slot);
1814	else
1815		return generic_bin_search(eb,
1816					  offsetof(struct btrfs_node, ptrs),
1817					  sizeof(struct btrfs_key_ptr),
1818					  key, btrfs_header_nritems(eb),
1819					  slot);
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823		     int level, int *slot)
1824{
1825	return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830	spin_lock(&root->accounting_lock);
1831	btrfs_set_root_used(&root->root_item,
1832			    btrfs_root_used(&root->root_item) + size);
1833	spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838	spin_lock(&root->accounting_lock);
1839	btrfs_set_root_used(&root->root_item,
1840			    btrfs_root_used(&root->root_item) - size);
1841	spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to.  The
1845 * extent buffer is returned with a reference taken (but unlocked).
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849	       int slot)
1850{
1851	int level = btrfs_header_level(parent);
 
1852	struct extent_buffer *eb;
1853
1854	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855		return ERR_PTR(-ENOENT);
1856
1857	BUG_ON(level == 0);
 
 
 
 
 
 
1858
1859	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860			     btrfs_node_ptr_generation(parent, slot));
1861	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 
 
1862		free_extent_buffer(eb);
1863		eb = ERR_PTR(-EIO);
1864	}
1865
1866	return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion.  We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875			 struct btrfs_root *root,
1876			 struct btrfs_path *path, int level)
1877{
1878	struct btrfs_fs_info *fs_info = root->fs_info;
1879	struct extent_buffer *right = NULL;
1880	struct extent_buffer *mid;
1881	struct extent_buffer *left = NULL;
1882	struct extent_buffer *parent = NULL;
1883	int ret = 0;
1884	int wret;
1885	int pslot;
1886	int orig_slot = path->slots[level];
1887	u64 orig_ptr;
1888
1889	if (level == 0)
1890		return 0;
1891
1892	mid = path->nodes[level];
1893
1894	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900	if (level < BTRFS_MAX_LEVEL - 1) {
1901		parent = path->nodes[level + 1];
1902		pslot = path->slots[level + 1];
1903	}
1904
1905	/*
1906	 * deal with the case where there is only one pointer in the root
1907	 * by promoting the node below to a root
1908	 */
1909	if (!parent) {
1910		struct extent_buffer *child;
1911
1912		if (btrfs_header_nritems(mid) != 1)
1913			return 0;
1914
1915		/* promote the child to a root */
1916		child = read_node_slot(fs_info, mid, 0);
1917		if (IS_ERR(child)) {
1918			ret = PTR_ERR(child);
1919			btrfs_handle_fs_error(fs_info, ret, NULL);
1920			goto enospc;
1921		}
1922
1923		btrfs_tree_lock(child);
1924		btrfs_set_lock_blocking(child);
1925		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926		if (ret) {
1927			btrfs_tree_unlock(child);
1928			free_extent_buffer(child);
1929			goto enospc;
1930		}
1931
1932		tree_mod_log_set_root_pointer(root, child, 1);
 
 
 
 
 
 
1933		rcu_assign_pointer(root->node, child);
1934
1935		add_root_to_dirty_list(root);
1936		btrfs_tree_unlock(child);
1937
1938		path->locks[level] = 0;
1939		path->nodes[level] = NULL;
1940		clean_tree_block(trans, fs_info, mid);
1941		btrfs_tree_unlock(mid);
1942		/* once for the path */
1943		free_extent_buffer(mid);
1944
1945		root_sub_used(root, mid->len);
1946		btrfs_free_tree_block(trans, root, mid, 0, 1);
1947		/* once for the root ptr */
1948		free_extent_buffer_stale(mid);
 
 
 
 
1949		return 0;
1950	}
1951	if (btrfs_header_nritems(mid) >
1952	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953		return 0;
1954
1955	left = read_node_slot(fs_info, parent, pslot - 1);
1956	if (IS_ERR(left))
1957		left = NULL;
 
 
 
 
1958
1959	if (left) {
1960		btrfs_tree_lock(left);
1961		btrfs_set_lock_blocking(left);
1962		wret = btrfs_cow_block(trans, root, left,
1963				       parent, pslot - 1, &left);
 
1964		if (wret) {
1965			ret = wret;
1966			goto enospc;
1967		}
1968	}
1969
1970	right = read_node_slot(fs_info, parent, pslot + 1);
1971	if (IS_ERR(right))
1972		right = NULL;
 
 
 
 
1973
1974	if (right) {
1975		btrfs_tree_lock(right);
1976		btrfs_set_lock_blocking(right);
1977		wret = btrfs_cow_block(trans, root, right,
1978				       parent, pslot + 1, &right);
 
1979		if (wret) {
1980			ret = wret;
1981			goto enospc;
1982		}
1983	}
1984
1985	/* first, try to make some room in the middle buffer */
1986	if (left) {
1987		orig_slot += btrfs_header_nritems(left);
1988		wret = push_node_left(trans, fs_info, left, mid, 1);
1989		if (wret < 0)
1990			ret = wret;
1991	}
1992
1993	/*
1994	 * then try to empty the right most buffer into the middle
1995	 */
1996	if (right) {
1997		wret = push_node_left(trans, fs_info, mid, right, 1);
1998		if (wret < 0 && wret != -ENOSPC)
1999			ret = wret;
2000		if (btrfs_header_nritems(right) == 0) {
2001			clean_tree_block(trans, fs_info, right);
2002			btrfs_tree_unlock(right);
2003			del_ptr(root, path, level + 1, pslot + 1);
2004			root_sub_used(root, right->len);
2005			btrfs_free_tree_block(trans, root, right, 0, 1);
 
 
 
 
 
 
2006			free_extent_buffer_stale(right);
2007			right = NULL;
 
 
 
 
2008		} else {
2009			struct btrfs_disk_key right_key;
2010			btrfs_node_key(right, &right_key, 0);
2011			tree_mod_log_set_node_key(fs_info, parent,
2012						  pslot + 1, 0);
 
 
 
 
2013			btrfs_set_node_key(parent, &right_key, pslot + 1);
2014			btrfs_mark_buffer_dirty(parent);
2015		}
2016	}
2017	if (btrfs_header_nritems(mid) == 1) {
2018		/*
2019		 * we're not allowed to leave a node with one item in the
2020		 * tree during a delete.  A deletion from lower in the tree
2021		 * could try to delete the only pointer in this node.
2022		 * So, pull some keys from the left.
2023		 * There has to be a left pointer at this point because
2024		 * otherwise we would have pulled some pointers from the
2025		 * right
2026		 */
2027		if (!left) {
2028			ret = -EROFS;
2029			btrfs_handle_fs_error(fs_info, ret, NULL);
2030			goto enospc;
 
 
 
 
2031		}
2032		wret = balance_node_right(trans, fs_info, mid, left);
2033		if (wret < 0) {
2034			ret = wret;
2035			goto enospc;
2036		}
2037		if (wret == 1) {
2038			wret = push_node_left(trans, fs_info, left, mid, 1);
2039			if (wret < 0)
2040				ret = wret;
2041		}
2042		BUG_ON(wret == 1);
2043	}
2044	if (btrfs_header_nritems(mid) == 0) {
2045		clean_tree_block(trans, fs_info, mid);
2046		btrfs_tree_unlock(mid);
2047		del_ptr(root, path, level + 1, pslot);
2048		root_sub_used(root, mid->len);
2049		btrfs_free_tree_block(trans, root, mid, 0, 1);
 
 
 
 
 
2050		free_extent_buffer_stale(mid);
2051		mid = NULL;
 
 
 
 
2052	} else {
2053		/* update the parent key to reflect our changes */
2054		struct btrfs_disk_key mid_key;
2055		btrfs_node_key(mid, &mid_key, 0);
2056		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
 
 
 
2057		btrfs_set_node_key(parent, &mid_key, pslot);
2058		btrfs_mark_buffer_dirty(parent);
2059	}
2060
2061	/* update the path */
2062	if (left) {
2063		if (btrfs_header_nritems(left) > orig_slot) {
2064			extent_buffer_get(left);
2065			/* left was locked after cow */
2066			path->nodes[level] = left;
2067			path->slots[level + 1] -= 1;
2068			path->slots[level] = orig_slot;
2069			if (mid) {
2070				btrfs_tree_unlock(mid);
2071				free_extent_buffer(mid);
2072			}
2073		} else {
2074			orig_slot -= btrfs_header_nritems(left);
2075			path->slots[level] = orig_slot;
2076		}
2077	}
2078	/* double check we haven't messed things up */
2079	if (orig_ptr !=
2080	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081		BUG();
2082enospc:
2083	if (right) {
2084		btrfs_tree_unlock(right);
2085		free_extent_buffer(right);
2086	}
2087	if (left) {
2088		if (path->nodes[level] != left)
2089			btrfs_tree_unlock(left);
2090		free_extent_buffer(left);
2091	}
2092	return ret;
2093}
2094
2095/* Node balancing for insertion.  Here we only split or push nodes around
2096 * when they are completely full.  This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100					  struct btrfs_root *root,
2101					  struct btrfs_path *path, int level)
2102{
2103	struct btrfs_fs_info *fs_info = root->fs_info;
2104	struct extent_buffer *right = NULL;
2105	struct extent_buffer *mid;
2106	struct extent_buffer *left = NULL;
2107	struct extent_buffer *parent = NULL;
2108	int ret = 0;
2109	int wret;
2110	int pslot;
2111	int orig_slot = path->slots[level];
2112
2113	if (level == 0)
2114		return 1;
2115
2116	mid = path->nodes[level];
2117	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119	if (level < BTRFS_MAX_LEVEL - 1) {
2120		parent = path->nodes[level + 1];
2121		pslot = path->slots[level + 1];
2122	}
2123
2124	if (!parent)
2125		return 1;
2126
2127	left = read_node_slot(fs_info, parent, pslot - 1);
2128	if (IS_ERR(left))
2129		left = NULL;
2130
2131	/* first, try to make some room in the middle buffer */
2132	if (left) {
2133		u32 left_nr;
2134
2135		btrfs_tree_lock(left);
2136		btrfs_set_lock_blocking(left);
 
 
 
2137
2138		left_nr = btrfs_header_nritems(left);
2139		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140			wret = 1;
2141		} else {
2142			ret = btrfs_cow_block(trans, root, left, parent,
2143					      pslot - 1, &left);
 
2144			if (ret)
2145				wret = 1;
2146			else {
2147				wret = push_node_left(trans, fs_info,
2148						      left, mid, 0);
2149			}
2150		}
2151		if (wret < 0)
2152			ret = wret;
2153		if (wret == 0) {
2154			struct btrfs_disk_key disk_key;
2155			orig_slot += left_nr;
2156			btrfs_node_key(mid, &disk_key, 0);
2157			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
 
 
 
 
 
2158			btrfs_set_node_key(parent, &disk_key, pslot);
2159			btrfs_mark_buffer_dirty(parent);
2160			if (btrfs_header_nritems(left) > orig_slot) {
2161				path->nodes[level] = left;
2162				path->slots[level + 1] -= 1;
2163				path->slots[level] = orig_slot;
2164				btrfs_tree_unlock(mid);
2165				free_extent_buffer(mid);
2166			} else {
2167				orig_slot -=
2168					btrfs_header_nritems(left);
2169				path->slots[level] = orig_slot;
2170				btrfs_tree_unlock(left);
2171				free_extent_buffer(left);
2172			}
2173			return 0;
2174		}
2175		btrfs_tree_unlock(left);
2176		free_extent_buffer(left);
2177	}
2178	right = read_node_slot(fs_info, parent, pslot + 1);
2179	if (IS_ERR(right))
2180		right = NULL;
2181
2182	/*
2183	 * then try to empty the right most buffer into the middle
2184	 */
2185	if (right) {
2186		u32 right_nr;
2187
2188		btrfs_tree_lock(right);
2189		btrfs_set_lock_blocking(right);
 
 
 
2190
2191		right_nr = btrfs_header_nritems(right);
2192		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193			wret = 1;
2194		} else {
2195			ret = btrfs_cow_block(trans, root, right,
2196					      parent, pslot + 1,
2197					      &right);
2198			if (ret)
2199				wret = 1;
2200			else {
2201				wret = balance_node_right(trans, fs_info,
2202							  right, mid);
2203			}
2204		}
2205		if (wret < 0)
2206			ret = wret;
2207		if (wret == 0) {
2208			struct btrfs_disk_key disk_key;
2209
2210			btrfs_node_key(right, &disk_key, 0);
2211			tree_mod_log_set_node_key(fs_info, parent,
2212						  pslot + 1, 0);
 
 
 
 
 
 
2213			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214			btrfs_mark_buffer_dirty(parent);
2215
2216			if (btrfs_header_nritems(mid) <= orig_slot) {
2217				path->nodes[level] = right;
2218				path->slots[level + 1] += 1;
2219				path->slots[level] = orig_slot -
2220					btrfs_header_nritems(mid);
2221				btrfs_tree_unlock(mid);
2222				free_extent_buffer(mid);
2223			} else {
2224				btrfs_tree_unlock(right);
2225				free_extent_buffer(right);
2226			}
2227			return 0;
2228		}
2229		btrfs_tree_unlock(right);
2230		free_extent_buffer(right);
2231	}
2232	return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240			     struct btrfs_path *path,
2241			     int level, int slot, u64 objectid)
2242{
2243	struct extent_buffer *node;
2244	struct btrfs_disk_key disk_key;
2245	u32 nritems;
2246	u64 search;
2247	u64 target;
2248	u64 nread = 0;
2249	struct extent_buffer *eb;
2250	u32 nr;
2251	u32 blocksize;
2252	u32 nscan = 0;
2253
2254	if (level != 1)
2255		return;
2256
2257	if (!path->nodes[level])
2258		return;
2259
2260	node = path->nodes[level];
2261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262	search = btrfs_node_blockptr(node, slot);
2263	blocksize = fs_info->nodesize;
2264	eb = find_extent_buffer(fs_info, search);
2265	if (eb) {
2266		free_extent_buffer(eb);
2267		return;
 
 
 
 
2268	}
2269
2270	target = search;
2271
2272	nritems = btrfs_header_nritems(node);
2273	nr = slot;
2274
2275	while (1) {
2276		if (path->reada == READA_BACK) {
2277			if (nr == 0)
2278				break;
2279			nr--;
2280		} else if (path->reada == READA_FORWARD) {
 
2281			nr++;
2282			if (nr >= nritems)
2283				break;
2284		}
2285		if (path->reada == READA_BACK && objectid) {
2286			btrfs_node_key(node, &disk_key, nr);
2287			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288				break;
2289		}
2290		search = btrfs_node_blockptr(node, nr);
2291		if ((search <= target && target - search <= 65536) ||
 
2292		    (search > target && search - target <= 65536)) {
2293			readahead_tree_block(fs_info, search);
2294			nread += blocksize;
2295		}
2296		nscan++;
2297		if ((nread > 65536 || nscan > 32))
2298			break;
2299	}
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303				       struct btrfs_path *path, int level)
2304{
 
2305	int slot;
2306	int nritems;
2307	struct extent_buffer *parent;
2308	struct extent_buffer *eb;
2309	u64 gen;
2310	u64 block1 = 0;
2311	u64 block2 = 0;
2312
2313	parent = path->nodes[level + 1];
2314	if (!parent)
2315		return;
2316
2317	nritems = btrfs_header_nritems(parent);
2318	slot = path->slots[level + 1];
2319
2320	if (slot > 0) {
2321		block1 = btrfs_node_blockptr(parent, slot - 1);
2322		gen = btrfs_node_ptr_generation(parent, slot - 1);
2323		eb = find_extent_buffer(fs_info, block1);
2324		/*
2325		 * if we get -eagain from btrfs_buffer_uptodate, we
2326		 * don't want to return eagain here.  That will loop
2327		 * forever
2328		 */
2329		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330			block1 = 0;
2331		free_extent_buffer(eb);
2332	}
2333	if (slot + 1 < nritems) {
2334		block2 = btrfs_node_blockptr(parent, slot + 1);
2335		gen = btrfs_node_ptr_generation(parent, slot + 1);
2336		eb = find_extent_buffer(fs_info, block2);
2337		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338			block2 = 0;
2339		free_extent_buffer(eb);
2340	}
2341
2342	if (block1)
2343		readahead_tree_block(fs_info, block1);
2344	if (block2)
2345		readahead_tree_block(fs_info, block2);
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree.  The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block.  This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363			       int lowest_unlock, int min_write_lock_level,
2364			       int *write_lock_level)
2365{
2366	int i;
2367	int skip_level = level;
2368	int no_skips = 0;
2369	struct extent_buffer *t;
2370
2371	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372		if (!path->nodes[i])
2373			break;
2374		if (!path->locks[i])
2375			break;
2376		if (!no_skips && path->slots[i] == 0) {
2377			skip_level = i + 1;
2378			continue;
2379		}
2380		if (!no_skips && path->keep_locks) {
2381			u32 nritems;
2382			t = path->nodes[i];
2383			nritems = btrfs_header_nritems(t);
2384			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385				skip_level = i + 1;
2386				continue;
2387			}
 
 
 
 
 
 
 
 
 
 
2388		}
2389		if (skip_level < i && i >= lowest_unlock)
2390			no_skips = 1;
2391
2392		t = path->nodes[i];
2393		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394			btrfs_tree_unlock_rw(t, path->locks[i]);
2395			path->locks[i] = 0;
2396			if (write_lock_level &&
2397			    i > min_write_lock_level &&
2398			    i <= *write_lock_level) {
2399				*write_lock_level = i - 1;
2400			}
2401		}
2402	}
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node.  This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416	int i;
2417
2418	if (path->keep_locks)
2419		return;
2420
2421	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422		if (!path->nodes[i])
2423			continue;
2424		if (!path->locks[i])
2425			continue;
2426		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427		path->locks[i] = 0;
2428	}
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot.  The goal is to find a block
2433 * in cache without setting the path to blocking.  If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada.  -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441		       struct btrfs_root *root, struct btrfs_path *p,
2442		       struct extent_buffer **eb_ret, int level, int slot,
2443		       struct btrfs_key *key, u64 time_seq)
2444{
2445	struct btrfs_fs_info *fs_info = root->fs_info;
 
2446	u64 blocknr;
2447	u64 gen;
2448	struct extent_buffer *b = *eb_ret;
2449	struct extent_buffer *tmp;
2450	int ret;
2451
2452	blocknr = btrfs_node_blockptr(b, slot);
2453	gen = btrfs_node_ptr_generation(b, slot);
 
 
 
 
 
 
 
 
2454
 
 
 
 
 
 
 
2455	tmp = find_extent_buffer(fs_info, blocknr);
2456	if (tmp) {
 
 
 
2457		/* first we do an atomic uptodate check */
2458		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
2459			*eb_ret = tmp;
2460			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461		}
2462
2463		/* the pages were up to date, but we failed
2464		 * the generation number check.  Do a full
2465		 * read for the generation number that is correct.
2466		 * We must do this without dropping locks so
2467		 * we can trust our generation number
2468		 */
2469		btrfs_set_path_blocking(p);
2470
2471		/* now we're allowed to do a blocking uptodate check */
2472		ret = btrfs_read_buffer(tmp, gen);
2473		if (!ret) {
2474			*eb_ret = tmp;
2475			return 0;
2476		}
2477		free_extent_buffer(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478		btrfs_release_path(p);
2479		return -EIO;
 
 
 
 
 
 
 
2480	}
2481
2482	/*
2483	 * reduce lock contention at high levels
2484	 * of the btree by dropping locks before
2485	 * we read.  Don't release the lock on the current
2486	 * level because we need to walk this node to figure
2487	 * out which blocks to read.
2488	 */
2489	btrfs_unlock_up_safe(p, level + 1);
2490	btrfs_set_path_blocking(p);
 
 
2491
2492	free_extent_buffer(tmp);
2493	if (p->reada != READA_NONE)
2494		reada_for_search(fs_info, p, level, slot, key->objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496	btrfs_release_path(p);
2497
2498	ret = -EAGAIN;
2499	tmp = read_tree_block(fs_info, blocknr, 0);
2500	if (!IS_ERR(tmp)) {
2501		/*
2502		 * If the read above didn't mark this buffer up to date,
2503		 * it will never end up being up to date.  Set ret to EIO now
2504		 * and give up so that our caller doesn't loop forever
2505		 * on our EAGAINs.
2506		 */
2507		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508			ret = -EIO;
2509		free_extent_buffer(tmp);
2510	} else {
2511		ret = PTR_ERR(tmp);
2512	}
2513	return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot.  This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned.  If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527		       struct btrfs_root *root, struct btrfs_path *p,
2528		       struct extent_buffer *b, int level, int ins_len,
2529		       int *write_lock_level)
2530{
2531	struct btrfs_fs_info *fs_info = root->fs_info;
2532	int ret;
2533
2534	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536		int sret;
2537
2538		if (*write_lock_level < level + 1) {
2539			*write_lock_level = level + 1;
2540			btrfs_release_path(p);
2541			goto again;
2542		}
2543
2544		btrfs_set_path_blocking(p);
2545		reada_for_balance(fs_info, p, level);
2546		sret = split_node(trans, root, p, level);
2547		btrfs_clear_path_blocking(p, NULL, 0);
2548
2549		BUG_ON(sret > 0);
2550		if (sret) {
2551			ret = sret;
2552			goto done;
2553		}
2554		b = p->nodes[level];
2555	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557		int sret;
2558
2559		if (*write_lock_level < level + 1) {
2560			*write_lock_level = level + 1;
2561			btrfs_release_path(p);
2562			goto again;
2563		}
2564
2565		btrfs_set_path_blocking(p);
2566		reada_for_balance(fs_info, p, level);
2567		sret = balance_level(trans, root, p, level);
2568		btrfs_clear_path_blocking(p, NULL, 0);
2569
2570		if (sret) {
2571			ret = sret;
2572			goto done;
2573		}
2574		b = p->nodes[level];
2575		if (!b) {
2576			btrfs_release_path(p);
2577			goto again;
2578		}
2579		BUG_ON(btrfs_header_nritems(b) == 1);
2580	}
2581	return 0;
2582
2583again:
2584	ret = -EAGAIN;
2585done:
2586	return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590				struct btrfs_key *key,
2591				int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594	struct btrfs_disk_key disk_key;
2595
2596	btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598	if (level == 0)
2599		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600		    offsetof(struct btrfs_leaf, items[0].key),
2601		    sizeof(disk_key)));
2602	else
2603		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604		    offsetof(struct btrfs_node, ptrs[0].key),
2605		    sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610		      int level, int *prev_cmp, int *slot)
2611{
2612	if (*prev_cmp != 0) {
2613		*prev_cmp = bin_search(b, key, level, slot);
2614		return *prev_cmp;
2615	}
2616
2617	key_search_validate(b, key, level);
2618	*slot = 0;
2619
2620	return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624		u64 iobjectid, u64 ioff, u8 key_type,
2625		struct btrfs_key *found_key)
2626{
2627	int ret;
2628	struct btrfs_key key;
2629	struct extent_buffer *eb;
2630
2631	ASSERT(path);
2632	ASSERT(found_key);
2633
2634	key.type = key_type;
2635	key.objectid = iobjectid;
2636	key.offset = ioff;
2637
2638	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639	if (ret < 0)
2640		return ret;
2641
2642	eb = path->nodes[0];
2643	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644		ret = btrfs_next_leaf(fs_root, path);
2645		if (ret)
2646			return ret;
2647		eb = path->nodes[0];
2648	}
2649
2650	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651	if (found_key->type != key.type ||
2652			found_key->objectid != key.objectid)
2653		return 1;
2654
2655	return 0;
2656}
2657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658/*
2659 * look for key in the tree.  path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned.  If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2673		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674{
2675	struct btrfs_fs_info *fs_info = root->fs_info;
2676	struct extent_buffer *b;
2677	int slot;
2678	int ret;
2679	int err;
2680	int level;
2681	int lowest_unlock = 1;
2682	int root_lock;
2683	/* everything at write_lock_level or lower must be write locked */
2684	int write_lock_level = 0;
2685	u8 lowest_level = 0;
2686	int min_write_lock_level;
2687	int prev_cmp;
2688
 
 
 
 
 
 
2689	lowest_level = p->lowest_level;
2690	WARN_ON(lowest_level && ins_len > 0);
2691	WARN_ON(p->nodes[0] != NULL);
2692	BUG_ON(!cow && ins_len);
2693
 
 
 
 
 
 
 
2694	if (ins_len < 0) {
2695		lowest_unlock = 2;
2696
2697		/* when we are removing items, we might have to go up to level
2698		 * two as we update tree pointers  Make sure we keep write
2699		 * for those levels as well
2700		 */
2701		write_lock_level = 2;
2702	} else if (ins_len > 0) {
2703		/*
2704		 * for inserting items, make sure we have a write lock on
2705		 * level 1 so we can update keys
2706		 */
2707		write_lock_level = 1;
2708	}
2709
2710	if (!cow)
2711		write_lock_level = -1;
2712
2713	if (cow && (p->keep_locks || p->lowest_level))
2714		write_lock_level = BTRFS_MAX_LEVEL;
2715
2716	min_write_lock_level = write_lock_level;
2717
 
 
 
 
 
 
 
 
 
 
2718again:
2719	prev_cmp = -1;
2720	/*
2721	 * we try very hard to do read locks on the root
2722	 */
2723	root_lock = BTRFS_READ_LOCK;
2724	level = 0;
2725	if (p->search_commit_root) {
2726		/*
2727		 * the commit roots are read only
2728		 * so we always do read locks
2729		 */
2730		if (p->need_commit_sem)
2731			down_read(&fs_info->commit_root_sem);
2732		b = root->commit_root;
2733		extent_buffer_get(b);
2734		level = btrfs_header_level(b);
2735		if (p->need_commit_sem)
2736			up_read(&fs_info->commit_root_sem);
2737		if (!p->skip_locking)
2738			btrfs_tree_read_lock(b);
2739	} else {
2740		if (p->skip_locking) {
2741			b = btrfs_root_node(root);
2742			level = btrfs_header_level(b);
2743		} else {
2744			/* we don't know the level of the root node
2745			 * until we actually have it read locked
2746			 */
2747			b = btrfs_read_lock_root_node(root);
2748			level = btrfs_header_level(b);
2749			if (level <= write_lock_level) {
2750				/* whoops, must trade for write lock */
2751				btrfs_tree_read_unlock(b);
2752				free_extent_buffer(b);
2753				b = btrfs_lock_root_node(root);
2754				root_lock = BTRFS_WRITE_LOCK;
2755
2756				/* the level might have changed, check again */
2757				level = btrfs_header_level(b);
2758			}
2759		}
2760	}
2761	p->nodes[level] = b;
2762	if (!p->skip_locking)
2763		p->locks[level] = root_lock;
2764
2765	while (b) {
 
 
2766		level = btrfs_header_level(b);
2767
2768		/*
2769		 * setup the path here so we can release it under lock
2770		 * contention with the cow code
2771		 */
2772		if (cow) {
 
 
2773			/*
2774			 * if we don't really need to cow this block
2775			 * then we don't want to set the path blocking,
2776			 * so we test it here
2777			 */
2778			if (!should_cow_block(trans, root, b)) {
2779				trans->dirty = true;
2780				goto cow_done;
2781			}
2782
2783			/*
2784			 * must have write locks on this node and the
2785			 * parent
2786			 */
2787			if (level > write_lock_level ||
2788			    (level + 1 > write_lock_level &&
2789			    level + 1 < BTRFS_MAX_LEVEL &&
2790			    p->nodes[level + 1])) {
2791				write_lock_level = level + 1;
2792				btrfs_release_path(p);
2793				goto again;
2794			}
2795
2796			btrfs_set_path_blocking(p);
2797			err = btrfs_cow_block(trans, root, b,
2798					      p->nodes[level + 1],
2799					      p->slots[level + 1], &b);
 
 
 
 
 
2800			if (err) {
2801				ret = err;
2802				goto done;
2803			}
2804		}
2805cow_done:
2806		p->nodes[level] = b;
2807		btrfs_clear_path_blocking(p, NULL, 0);
2808
2809		/*
2810		 * we have a lock on b and as long as we aren't changing
2811		 * the tree, there is no way to for the items in b to change.
2812		 * It is safe to drop the lock on our parent before we
2813		 * go through the expensive btree search on b.
2814		 *
2815		 * If we're inserting or deleting (ins_len != 0), then we might
2816		 * be changing slot zero, which may require changing the parent.
2817		 * So, we can't drop the lock until after we know which slot
2818		 * we're operating on.
2819		 */
2820		if (!ins_len && !p->keep_locks) {
2821			int u = level + 1;
2822
2823			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825				p->locks[u] = 0;
2826			}
2827		}
2828
2829		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
 
 
 
 
 
 
 
 
 
2830		if (ret < 0)
2831			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833		if (level != 0) {
2834			int dec = 0;
2835			if (ret && slot > 0) {
2836				dec = 1;
2837				slot -= 1;
2838			}
2839			p->slots[level] = slot;
2840			err = setup_nodes_for_search(trans, root, p, b, level,
2841					     ins_len, &write_lock_level);
2842			if (err == -EAGAIN)
2843				goto again;
2844			if (err) {
2845				ret = err;
2846				goto done;
2847			}
2848			b = p->nodes[level];
2849			slot = p->slots[level];
2850
2851			/*
2852			 * slot 0 is special, if we change the key
2853			 * we have to update the parent pointer
2854			 * which means we must have a write lock
2855			 * on the parent
2856			 */
2857			if (slot == 0 && ins_len &&
2858			    write_lock_level < level + 1) {
2859				write_lock_level = level + 1;
2860				btrfs_release_path(p);
2861				goto again;
2862			}
2863
2864			unlock_up(p, level, lowest_unlock,
2865				  min_write_lock_level, &write_lock_level);
 
 
 
 
 
2866
2867			if (level == lowest_level) {
2868				if (dec)
2869					p->slots[level]++;
2870				goto done;
2871			}
2872
2873			err = read_block_for_search(trans, root, p,
2874						    &b, level, slot, key, 0);
2875			if (err == -EAGAIN)
2876				goto again;
2877			if (err) {
2878				ret = err;
2879				goto done;
2880			}
2881
2882			if (!p->skip_locking) {
2883				level = btrfs_header_level(b);
2884				if (level <= write_lock_level) {
2885					err = btrfs_try_tree_write_lock(b);
2886					if (!err) {
2887						btrfs_set_path_blocking(p);
2888						btrfs_tree_lock(b);
2889						btrfs_clear_path_blocking(p, b,
2890								  BTRFS_WRITE_LOCK);
2891					}
2892					p->locks[level] = BTRFS_WRITE_LOCK;
2893				} else {
2894					err = btrfs_tree_read_lock_atomic(b);
2895					if (!err) {
2896						btrfs_set_path_blocking(p);
2897						btrfs_tree_read_lock(b);
2898						btrfs_clear_path_blocking(p, b,
2899								  BTRFS_READ_LOCK);
2900					}
2901					p->locks[level] = BTRFS_READ_LOCK;
2902				}
2903				p->nodes[level] = b;
2904			}
2905		} else {
2906			p->slots[level] = slot;
2907			if (ins_len > 0 &&
2908			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909				if (write_lock_level < 1) {
2910					write_lock_level = 1;
2911					btrfs_release_path(p);
2912					goto again;
2913				}
2914
2915				btrfs_set_path_blocking(p);
2916				err = split_leaf(trans, root, key,
2917						 p, ins_len, ret == 0);
2918				btrfs_clear_path_blocking(p, NULL, 0);
2919
2920				BUG_ON(err > 0);
2921				if (err) {
2922					ret = err;
2923					goto done;
2924				}
2925			}
2926			if (!p->search_for_split)
2927				unlock_up(p, level, lowest_unlock,
2928					  min_write_lock_level, &write_lock_level);
2929			goto done;
2930		}
2931	}
2932	ret = 1;
2933done:
2934	/*
2935	 * we don't really know what they plan on doing with the path
2936	 * from here on, so for now just mark it as blocking
2937	 */
2938	if (!p->leave_spinning)
2939		btrfs_set_path_blocking(p);
2940	if (ret < 0 && !p->skip_release_on_error)
2941		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
2942	return ret;
2943}
 
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957			  struct btrfs_path *p, u64 time_seq)
2958{
2959	struct btrfs_fs_info *fs_info = root->fs_info;
2960	struct extent_buffer *b;
2961	int slot;
2962	int ret;
2963	int err;
2964	int level;
2965	int lowest_unlock = 1;
2966	u8 lowest_level = 0;
2967	int prev_cmp = -1;
2968
2969	lowest_level = p->lowest_level;
2970	WARN_ON(p->nodes[0] != NULL);
 
2971
2972	if (p->search_commit_root) {
2973		BUG_ON(time_seq);
2974		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975	}
2976
2977again:
2978	b = get_old_root(root, time_seq);
 
 
 
 
2979	level = btrfs_header_level(b);
2980	p->locks[level] = BTRFS_READ_LOCK;
2981
2982	while (b) {
 
 
2983		level = btrfs_header_level(b);
2984		p->nodes[level] = b;
2985		btrfs_clear_path_blocking(p, NULL, 0);
2986
2987		/*
2988		 * we have a lock on b and as long as we aren't changing
2989		 * the tree, there is no way to for the items in b to change.
2990		 * It is safe to drop the lock on our parent before we
2991		 * go through the expensive btree search on b.
2992		 */
2993		btrfs_unlock_up_safe(p, level + 1);
2994
2995		/*
2996		 * Since we can unwind ebs we want to do a real search every
2997		 * time.
2998		 */
2999		prev_cmp = -1;
3000		ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002		if (level != 0) {
3003			int dec = 0;
3004			if (ret && slot > 0) {
3005				dec = 1;
3006				slot -= 1;
3007			}
3008			p->slots[level] = slot;
3009			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
3010
3011			if (level == lowest_level) {
3012				if (dec)
3013					p->slots[level]++;
3014				goto done;
3015			}
 
 
 
 
 
 
 
3016
3017			err = read_block_for_search(NULL, root, p, &b, level,
3018						    slot, key, time_seq);
3019			if (err == -EAGAIN)
3020				goto again;
3021			if (err) {
3022				ret = err;
3023				goto done;
3024			}
3025
3026			level = btrfs_header_level(b);
3027			err = btrfs_tree_read_lock_atomic(b);
3028			if (!err) {
3029				btrfs_set_path_blocking(p);
3030				btrfs_tree_read_lock(b);
3031				btrfs_clear_path_blocking(p, b,
3032							  BTRFS_READ_LOCK);
3033			}
3034			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035			if (!b) {
3036				ret = -ENOMEM;
3037				goto done;
3038			}
3039			p->locks[level] = BTRFS_READ_LOCK;
3040			p->nodes[level] = b;
3041		} else {
3042			p->slots[level] = slot;
3043			unlock_up(p, level, lowest_unlock, 0, NULL);
3044			goto done;
3045		}
 
 
3046	}
3047	ret = 1;
3048done:
3049	if (!p->leave_spinning)
3050		btrfs_set_path_blocking(p);
3051	if (ret < 0)
3052		btrfs_release_path(p);
3053
3054	return ret;
3055}
3056
3057/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070			       struct btrfs_key *key, struct btrfs_path *p,
3071			       int find_higher, int return_any)
 
3072{
3073	int ret;
3074	struct extent_buffer *leaf;
3075
3076again:
3077	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078	if (ret <= 0)
3079		return ret;
3080	/*
3081	 * a return value of 1 means the path is at the position where the
3082	 * item should be inserted. Normally this is the next bigger item,
3083	 * but in case the previous item is the last in a leaf, path points
3084	 * to the first free slot in the previous leaf, i.e. at an invalid
3085	 * item.
3086	 */
3087	leaf = p->nodes[0];
3088
3089	if (find_higher) {
3090		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091			ret = btrfs_next_leaf(root, p);
3092			if (ret <= 0)
3093				return ret;
3094			if (!return_any)
3095				return 1;
3096			/*
3097			 * no higher item found, return the next
3098			 * lower instead
3099			 */
3100			return_any = 0;
3101			find_higher = 0;
3102			btrfs_release_path(p);
3103			goto again;
3104		}
3105	} else {
3106		if (p->slots[0] == 0) {
3107			ret = btrfs_prev_leaf(root, p);
3108			if (ret < 0)
3109				return ret;
3110			if (!ret) {
3111				leaf = p->nodes[0];
3112				if (p->slots[0] == btrfs_header_nritems(leaf))
3113					p->slots[0]--;
3114				return 0;
3115			}
3116			if (!return_any)
3117				return 1;
3118			/*
3119			 * no lower item found, return the next
3120			 * higher instead
3121			 */
3122			return_any = 0;
3123			find_higher = 1;
3124			btrfs_release_path(p);
3125			goto again;
3126		} else {
3127			--p->slots[0];
3128		}
3129	}
3130	return 0;
3131}
3132
3133/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142			   struct btrfs_path *path,
3143			   struct btrfs_disk_key *key, int level)
3144{
3145	int i;
3146	struct extent_buffer *t;
 
3147
3148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149		int tslot = path->slots[i];
 
3150		if (!path->nodes[i])
3151			break;
3152		t = path->nodes[i];
3153		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
 
 
3154		btrfs_set_node_key(t, key, tslot);
3155		btrfs_mark_buffer_dirty(path->nodes[i]);
3156		if (tslot != 0)
3157			break;
3158	}
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168			     struct btrfs_path *path,
3169			     struct btrfs_key *new_key)
3170{
 
3171	struct btrfs_disk_key disk_key;
3172	struct extent_buffer *eb;
3173	int slot;
3174
3175	eb = path->nodes[0];
3176	slot = path->slots[0];
3177	if (slot > 0) {
3178		btrfs_item_key(eb, &disk_key, slot - 1);
3179		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3180	}
3181	if (slot < btrfs_header_nritems(eb) - 1) {
3182		btrfs_item_key(eb, &disk_key, slot + 1);
3183		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3184	}
3185
3186	btrfs_cpu_key_to_disk(&disk_key, new_key);
3187	btrfs_set_item_key(eb, &disk_key, slot);
3188	btrfs_mark_buffer_dirty(eb);
3189	if (slot == 0)
3190		fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201			  struct btrfs_fs_info *fs_info,
3202			  struct extent_buffer *dst,
3203			  struct extent_buffer *src, int empty)
3204{
 
3205	int push_items = 0;
3206	int src_nritems;
3207	int dst_nritems;
3208	int ret = 0;
3209
3210	src_nritems = btrfs_header_nritems(src);
3211	dst_nritems = btrfs_header_nritems(dst);
3212	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213	WARN_ON(btrfs_header_generation(src) != trans->transid);
3214	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216	if (!empty && src_nritems <= 8)
3217		return 1;
3218
3219	if (push_items <= 0)
3220		return 1;
3221
3222	if (empty) {
3223		push_items = min(src_nritems, push_items);
3224		if (push_items < src_nritems) {
3225			/* leave at least 8 pointers in the node if
3226			 * we aren't going to empty it
3227			 */
3228			if (src_nritems - push_items < 8) {
3229				if (push_items <= 8)
3230					return 1;
3231				push_items -= 8;
3232			}
3233		}
3234	} else
3235		push_items = min(src_nritems - 8, push_items);
3236
3237	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238				   push_items);
 
 
 
 
 
3239	if (ret) {
3240		btrfs_abort_transaction(trans, ret);
3241		return ret;
3242	}
3243	copy_extent_buffer(dst, src,
3244			   btrfs_node_key_ptr_offset(dst_nritems),
3245			   btrfs_node_key_ptr_offset(0),
3246			   push_items * sizeof(struct btrfs_key_ptr));
3247
3248	if (push_items < src_nritems) {
3249		/*
3250		 * don't call tree_mod_log_eb_move here, key removal was already
3251		 * fully logged by tree_mod_log_eb_copy above.
3252		 */
3253		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254				      btrfs_node_key_ptr_offset(push_items),
3255				      (src_nritems - push_items) *
3256				      sizeof(struct btrfs_key_ptr));
3257	}
3258	btrfs_set_header_nritems(src, src_nritems - push_items);
3259	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260	btrfs_mark_buffer_dirty(src);
3261	btrfs_mark_buffer_dirty(dst);
3262
3263	return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will  only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276			      struct btrfs_fs_info *fs_info,
3277			      struct extent_buffer *dst,
3278			      struct extent_buffer *src)
3279{
 
3280	int push_items = 0;
3281	int max_push;
3282	int src_nritems;
3283	int dst_nritems;
3284	int ret = 0;
3285
3286	WARN_ON(btrfs_header_generation(src) != trans->transid);
3287	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289	src_nritems = btrfs_header_nritems(src);
3290	dst_nritems = btrfs_header_nritems(dst);
3291	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292	if (push_items <= 0)
3293		return 1;
3294
3295	if (src_nritems < 4)
3296		return 1;
3297
3298	max_push = src_nritems / 2 + 1;
3299	/* don't try to empty the node */
3300	if (max_push >= src_nritems)
3301		return 1;
3302
3303	if (max_push < push_items)
3304		push_items = max_push;
3305
3306	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3307	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308				      btrfs_node_key_ptr_offset(0),
 
 
 
 
 
 
 
 
 
 
3309				      (dst_nritems) *
3310				      sizeof(struct btrfs_key_ptr));
3311
3312	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313				   src_nritems - push_items, push_items);
3314	if (ret) {
3315		btrfs_abort_transaction(trans, ret);
3316		return ret;
3317	}
3318	copy_extent_buffer(dst, src,
3319			   btrfs_node_key_ptr_offset(0),
3320			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3321			   push_items * sizeof(struct btrfs_key_ptr));
3322
3323	btrfs_set_header_nritems(src, src_nritems - push_items);
3324	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326	btrfs_mark_buffer_dirty(src);
3327	btrfs_mark_buffer_dirty(dst);
3328
3329	return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340			   struct btrfs_root *root,
3341			   struct btrfs_path *path, int level)
3342{
3343	struct btrfs_fs_info *fs_info = root->fs_info;
3344	u64 lower_gen;
3345	struct extent_buffer *lower;
3346	struct extent_buffer *c;
3347	struct extent_buffer *old;
3348	struct btrfs_disk_key lower_key;
 
3349
3350	BUG_ON(path->nodes[level]);
3351	BUG_ON(path->nodes[level-1] != root->node);
3352
3353	lower = path->nodes[level-1];
3354	if (level == 1)
3355		btrfs_item_key(lower, &lower_key, 0);
3356	else
3357		btrfs_node_key(lower, &lower_key, 0);
3358
3359	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360				   &lower_key, level, root->node->start, 0);
 
3361	if (IS_ERR(c))
3362		return PTR_ERR(c);
3363
3364	root_add_used(root, fs_info->nodesize);
3365
3366	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367	btrfs_set_header_nritems(c, 1);
3368	btrfs_set_header_level(c, level);
3369	btrfs_set_header_bytenr(c, c->start);
3370	btrfs_set_header_generation(c, trans->transid);
3371	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372	btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374	write_extent_buffer_fsid(c, fs_info->fsid);
3375	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3376
3377	btrfs_set_node_key(c, &lower_key, 0);
3378	btrfs_set_node_blockptr(c, 0, lower->start);
3379	lower_gen = btrfs_header_generation(lower);
3380	WARN_ON(lower_gen != trans->transid);
3381
3382	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384	btrfs_mark_buffer_dirty(c);
3385
3386	old = root->node;
3387	tree_mod_log_set_root_pointer(root, c, 0);
 
 
 
 
 
 
 
 
 
 
3388	rcu_assign_pointer(root->node, c);
3389
3390	/* the super has an extra ref to root->node */
3391	free_extent_buffer(old);
3392
3393	add_root_to_dirty_list(root);
3394	extent_buffer_get(c);
3395	path->nodes[level] = c;
3396	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397	path->slots[level] = 0;
3398	return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410		       struct btrfs_disk_key *key, u64 bytenr,
3411		       int slot, int level)
3412{
3413	struct extent_buffer *lower;
3414	int nritems;
3415	int ret;
3416
3417	BUG_ON(!path->nodes[level]);
3418	btrfs_assert_tree_locked(path->nodes[level]);
3419	lower = path->nodes[level];
3420	nritems = btrfs_header_nritems(lower);
3421	BUG_ON(slot > nritems);
3422	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3423	if (slot != nritems) {
3424		if (level)
3425			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426					     slot, nritems - slot);
 
 
 
 
 
3427		memmove_extent_buffer(lower,
3428			      btrfs_node_key_ptr_offset(slot + 1),
3429			      btrfs_node_key_ptr_offset(slot),
3430			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431	}
3432	if (level) {
3433		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434					      MOD_LOG_KEY_ADD, GFP_NOFS);
3435		BUG_ON(ret < 0);
 
 
 
3436	}
3437	btrfs_set_node_key(lower, key, slot);
3438	btrfs_set_node_blockptr(lower, slot, bytenr);
3439	WARN_ON(trans->transid == 0);
3440	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441	btrfs_set_header_nritems(lower, nritems + 1);
3442	btrfs_mark_buffer_dirty(lower);
 
 
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455			       struct btrfs_root *root,
3456			       struct btrfs_path *path, int level)
3457{
3458	struct btrfs_fs_info *fs_info = root->fs_info;
3459	struct extent_buffer *c;
3460	struct extent_buffer *split;
3461	struct btrfs_disk_key disk_key;
3462	int mid;
3463	int ret;
3464	u32 c_nritems;
3465
3466	c = path->nodes[level];
3467	WARN_ON(btrfs_header_generation(c) != trans->transid);
3468	if (c == root->node) {
3469		/*
3470		 * trying to split the root, lets make a new one
3471		 *
3472		 * tree mod log: We don't log_removal old root in
3473		 * insert_new_root, because that root buffer will be kept as a
3474		 * normal node. We are going to log removal of half of the
3475		 * elements below with tree_mod_log_eb_copy. We're holding a
3476		 * tree lock on the buffer, which is why we cannot race with
3477		 * other tree_mod_log users.
3478		 */
3479		ret = insert_new_root(trans, root, path, level + 1);
3480		if (ret)
3481			return ret;
3482	} else {
3483		ret = push_nodes_for_insert(trans, root, path, level);
3484		c = path->nodes[level];
3485		if (!ret && btrfs_header_nritems(c) <
3486		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487			return 0;
3488		if (ret < 0)
3489			return ret;
3490	}
3491
3492	c_nritems = btrfs_header_nritems(c);
3493	mid = (c_nritems + 1) / 2;
3494	btrfs_node_key(c, &disk_key, mid);
3495
3496	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497			&disk_key, level, c->start, 0);
 
3498	if (IS_ERR(split))
3499		return PTR_ERR(split);
3500
3501	root_add_used(root, fs_info->nodesize);
3502
3503	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504	btrfs_set_header_level(split, btrfs_header_level(c));
3505	btrfs_set_header_bytenr(split, split->start);
3506	btrfs_set_header_generation(split, trans->transid);
3507	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508	btrfs_set_header_owner(split, root->root_key.objectid);
3509	write_extent_buffer_fsid(split, fs_info->fsid);
3510	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3511
3512	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513	if (ret) {
 
 
3514		btrfs_abort_transaction(trans, ret);
3515		return ret;
3516	}
3517	copy_extent_buffer(split, c,
3518			   btrfs_node_key_ptr_offset(0),
3519			   btrfs_node_key_ptr_offset(mid),
3520			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521	btrfs_set_header_nritems(split, c_nritems - mid);
3522	btrfs_set_header_nritems(c, mid);
3523	ret = 0;
3524
3525	btrfs_mark_buffer_dirty(c);
3526	btrfs_mark_buffer_dirty(split);
3527
3528	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529		   path->slots[level + 1] + 1, level + 1);
 
 
 
 
 
3530
3531	if (path->slots[level] >= mid) {
3532		path->slots[level] -= mid;
3533		btrfs_tree_unlock(c);
3534		free_extent_buffer(c);
3535		path->nodes[level] = split;
3536		path->slots[level + 1] += 1;
3537	} else {
3538		btrfs_tree_unlock(split);
3539		free_extent_buffer(split);
3540	}
3541	return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf.  start
3546 * and nr indicate which items in the leaf to check.  This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551	struct btrfs_item *start_item;
3552	struct btrfs_item *end_item;
3553	struct btrfs_map_token token;
3554	int data_len;
3555	int nritems = btrfs_header_nritems(l);
3556	int end = min(nritems, start + nr) - 1;
3557
3558	if (!nr)
3559		return 0;
3560	btrfs_init_map_token(&token);
3561	start_item = btrfs_item_nr(start);
3562	end_item = btrfs_item_nr(end);
3563	data_len = btrfs_token_item_offset(l, start_item, &token) +
3564		btrfs_token_item_size(l, start_item, &token);
3565	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566	data_len += sizeof(struct btrfs_item) * nr;
3567	WARN_ON(data_len < 0);
3568	return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data.  IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577				   struct extent_buffer *leaf)
3578{
 
3579	int nritems = btrfs_header_nritems(leaf);
3580	int ret;
3581
3582	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583	if (ret < 0) {
3584		btrfs_crit(fs_info,
3585			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586			   ret,
3587			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588			   leaf_space_used(leaf, 0, nritems), nritems);
3589	}
3590	return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right.  We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598				      struct btrfs_fs_info *fs_info,
3599				      struct btrfs_path *path,
3600				      int data_size, int empty,
3601				      struct extent_buffer *right,
3602				      int free_space, u32 left_nritems,
3603				      u32 min_slot)
3604{
 
3605	struct extent_buffer *left = path->nodes[0];
3606	struct extent_buffer *upper = path->nodes[1];
3607	struct btrfs_map_token token;
3608	struct btrfs_disk_key disk_key;
3609	int slot;
3610	u32 i;
3611	int push_space = 0;
3612	int push_items = 0;
3613	struct btrfs_item *item;
3614	u32 nr;
3615	u32 right_nritems;
3616	u32 data_end;
3617	u32 this_item_size;
3618
3619	btrfs_init_map_token(&token);
3620
3621	if (empty)
3622		nr = 0;
3623	else
3624		nr = max_t(u32, 1, min_slot);
3625
3626	if (path->slots[0] >= left_nritems)
3627		push_space += data_size;
3628
3629	slot = path->slots[1];
3630	i = left_nritems - 1;
3631	while (i >= nr) {
3632		item = btrfs_item_nr(i);
3633
3634		if (!empty && push_items > 0) {
3635			if (path->slots[0] > i)
3636				break;
3637			if (path->slots[0] == i) {
3638				int space = btrfs_leaf_free_space(fs_info, left);
 
3639				if (space + push_space * 2 > free_space)
3640					break;
3641			}
3642		}
3643
3644		if (path->slots[0] == i)
3645			push_space += data_size;
3646
3647		this_item_size = btrfs_item_size(left, item);
3648		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3649			break;
3650
3651		push_items++;
3652		push_space += this_item_size + sizeof(*item);
3653		if (i == 0)
3654			break;
3655		i--;
3656	}
3657
3658	if (push_items == 0)
3659		goto out_unlock;
3660
3661	WARN_ON(!empty && push_items == left_nritems);
3662
3663	/* push left to right */
3664	right_nritems = btrfs_header_nritems(right);
3665
3666	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667	push_space -= leaf_data_end(fs_info, left);
3668
3669	/* make room in the right data area */
3670	data_end = leaf_data_end(fs_info, right);
3671	memmove_extent_buffer(right,
3672			      btrfs_leaf_data(right) + data_end - push_space,
3673			      btrfs_leaf_data(right) + data_end,
3674			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676	/* copy from the left data area */
3677	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680		     push_space);
3681
3682	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683			      btrfs_item_nr_offset(0),
3684			      right_nritems * sizeof(struct btrfs_item));
3685
3686	/* copy the items from left to right */
3687	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688		   btrfs_item_nr_offset(left_nritems - push_items),
3689		   push_items * sizeof(struct btrfs_item));
3690
3691	/* update the item pointers */
 
3692	right_nritems += push_items;
3693	btrfs_set_header_nritems(right, right_nritems);
3694	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695	for (i = 0; i < right_nritems; i++) {
3696		item = btrfs_item_nr(i);
3697		push_space -= btrfs_token_item_size(right, item, &token);
3698		btrfs_set_token_item_offset(right, item, push_space, &token);
3699	}
3700
3701	left_nritems -= push_items;
3702	btrfs_set_header_nritems(left, left_nritems);
3703
3704	if (left_nritems)
3705		btrfs_mark_buffer_dirty(left);
3706	else
3707		clean_tree_block(trans, fs_info, left);
3708
3709	btrfs_mark_buffer_dirty(right);
3710
3711	btrfs_item_key(right, &disk_key, 0);
3712	btrfs_set_node_key(upper, &disk_key, slot + 1);
3713	btrfs_mark_buffer_dirty(upper);
3714
3715	/* then fixup the leaf pointer in the path */
3716	if (path->slots[0] >= left_nritems) {
3717		path->slots[0] -= left_nritems;
3718		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719			clean_tree_block(trans, fs_info, path->nodes[0]);
3720		btrfs_tree_unlock(path->nodes[0]);
3721		free_extent_buffer(path->nodes[0]);
3722		path->nodes[0] = right;
3723		path->slots[1] += 1;
3724	} else {
3725		btrfs_tree_unlock(right);
3726		free_extent_buffer(right);
3727	}
3728	return 0;
3729
3730out_unlock:
3731	btrfs_tree_unlock(right);
3732	free_extent_buffer(right);
3733	return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf.  It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747			   *root, struct btrfs_path *path,
3748			   int min_data_size, int data_size,
3749			   int empty, u32 min_slot)
3750{
3751	struct btrfs_fs_info *fs_info = root->fs_info;
3752	struct extent_buffer *left = path->nodes[0];
3753	struct extent_buffer *right;
3754	struct extent_buffer *upper;
3755	int slot;
3756	int free_space;
3757	u32 left_nritems;
3758	int ret;
3759
3760	if (!path->nodes[1])
3761		return 1;
3762
3763	slot = path->slots[1];
3764	upper = path->nodes[1];
3765	if (slot >= btrfs_header_nritems(upper) - 1)
3766		return 1;
3767
3768	btrfs_assert_tree_locked(path->nodes[1]);
3769
3770	right = read_node_slot(fs_info, upper, slot + 1);
3771	/*
3772	 * slot + 1 is not valid or we fail to read the right node,
3773	 * no big deal, just return.
3774	 */
3775	if (IS_ERR(right))
3776		return 1;
3777
3778	btrfs_tree_lock(right);
3779	btrfs_set_lock_blocking(right);
3780
3781	free_space = btrfs_leaf_free_space(fs_info, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	/* cow and double check */
3786	ret = btrfs_cow_block(trans, root, right, upper,
3787			      slot + 1, &right);
3788	if (ret)
3789		goto out_unlock;
3790
3791	free_space = btrfs_leaf_free_space(fs_info, right);
3792	if (free_space < data_size)
3793		goto out_unlock;
3794
3795	left_nritems = btrfs_header_nritems(left);
3796	if (left_nritems == 0)
3797		goto out_unlock;
3798
 
 
 
 
 
 
 
3799	if (path->slots[0] == left_nritems && !empty) {
3800		/* Key greater than all keys in the leaf, right neighbor has
3801		 * enough room for it and we're not emptying our leaf to delete
3802		 * it, therefore use right neighbor to insert the new item and
3803		 * no need to touch/dirty our left leaft. */
3804		btrfs_tree_unlock(left);
3805		free_extent_buffer(left);
3806		path->nodes[0] = right;
3807		path->slots[0] = 0;
3808		path->slots[1]++;
3809		return 0;
3810	}
3811
3812	return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813				right, free_space, left_nritems, min_slot);
3814out_unlock:
3815	btrfs_tree_unlock(right);
3816	free_extent_buffer(right);
3817	return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items.  The
3825 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829				     struct btrfs_fs_info *fs_info,
3830				     struct btrfs_path *path, int data_size,
3831				     int empty, struct extent_buffer *left,
3832				     int free_space, u32 right_nritems,
3833				     u32 max_slot)
3834{
 
3835	struct btrfs_disk_key disk_key;
3836	struct extent_buffer *right = path->nodes[0];
3837	int i;
3838	int push_space = 0;
3839	int push_items = 0;
3840	struct btrfs_item *item;
3841	u32 old_left_nritems;
3842	u32 nr;
3843	int ret = 0;
3844	u32 this_item_size;
3845	u32 old_left_item_size;
3846	struct btrfs_map_token token;
3847
3848	btrfs_init_map_token(&token);
3849
3850	if (empty)
3851		nr = min(right_nritems, max_slot);
3852	else
3853		nr = min(right_nritems - 1, max_slot);
3854
3855	for (i = 0; i < nr; i++) {
3856		item = btrfs_item_nr(i);
3857
3858		if (!empty && push_items > 0) {
3859			if (path->slots[0] < i)
3860				break;
3861			if (path->slots[0] == i) {
3862				int space = btrfs_leaf_free_space(fs_info, right);
 
3863				if (space + push_space * 2 > free_space)
3864					break;
3865			}
3866		}
3867
3868		if (path->slots[0] == i)
3869			push_space += data_size;
3870
3871		this_item_size = btrfs_item_size(right, item);
3872		if (this_item_size + sizeof(*item) + push_space > free_space)
 
3873			break;
3874
3875		push_items++;
3876		push_space += this_item_size + sizeof(*item);
3877	}
3878
3879	if (push_items == 0) {
3880		ret = 1;
3881		goto out;
3882	}
3883	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884
3885	/* push data from right to left */
3886	copy_extent_buffer(left, right,
3887			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888			   btrfs_item_nr_offset(0),
3889			   push_items * sizeof(struct btrfs_item));
3890
3891	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892		     btrfs_item_offset_nr(right, push_items - 1);
3893
3894	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895		     leaf_data_end(fs_info, left) - push_space,
3896		     btrfs_leaf_data(right) +
3897		     btrfs_item_offset_nr(right, push_items - 1),
3898		     push_space);
3899	old_left_nritems = btrfs_header_nritems(left);
3900	BUG_ON(old_left_nritems <= 0);
3901
3902	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
 
3903	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904		u32 ioff;
3905
3906		item = btrfs_item_nr(i);
3907
3908		ioff = btrfs_token_item_offset(left, item, &token);
3909		btrfs_set_token_item_offset(left, item,
3910		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911		      &token);
3912	}
3913	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915	/* fixup right node */
3916	if (push_items > right_nritems)
3917		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918		       right_nritems);
3919
3920	if (push_items < right_nritems) {
3921		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922						  leaf_data_end(fs_info, right);
3923		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925				      btrfs_leaf_data(right) +
3926				      leaf_data_end(fs_info, right), push_space);
3927
3928		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929			      btrfs_item_nr_offset(push_items),
3930			     (btrfs_header_nritems(right) - push_items) *
3931			     sizeof(struct btrfs_item));
3932	}
 
 
3933	right_nritems -= push_items;
3934	btrfs_set_header_nritems(right, right_nritems);
3935	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936	for (i = 0; i < right_nritems; i++) {
3937		item = btrfs_item_nr(i);
3938
3939		push_space = push_space - btrfs_token_item_size(right,
3940								item, &token);
3941		btrfs_set_token_item_offset(right, item, push_space, &token);
3942	}
3943
3944	btrfs_mark_buffer_dirty(left);
3945	if (right_nritems)
3946		btrfs_mark_buffer_dirty(right);
3947	else
3948		clean_tree_block(trans, fs_info, right);
3949
3950	btrfs_item_key(right, &disk_key, 0);
3951	fixup_low_keys(fs_info, path, &disk_key, 1);
3952
3953	/* then fixup the leaf pointer in the path */
3954	if (path->slots[0] < push_items) {
3955		path->slots[0] += old_left_nritems;
3956		btrfs_tree_unlock(path->nodes[0]);
3957		free_extent_buffer(path->nodes[0]);
3958		path->nodes[0] = left;
3959		path->slots[1] -= 1;
3960	} else {
3961		btrfs_tree_unlock(left);
3962		free_extent_buffer(left);
3963		path->slots[0] -= push_items;
3964	}
3965	BUG_ON(path->slots[0] < 0);
3966	return ret;
3967out:
3968	btrfs_tree_unlock(left);
3969	free_extent_buffer(left);
3970	return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items.  The
3978 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982			  *root, struct btrfs_path *path, int min_data_size,
3983			  int data_size, int empty, u32 max_slot)
3984{
3985	struct btrfs_fs_info *fs_info = root->fs_info;
3986	struct extent_buffer *right = path->nodes[0];
3987	struct extent_buffer *left;
3988	int slot;
3989	int free_space;
3990	u32 right_nritems;
3991	int ret = 0;
3992
3993	slot = path->slots[1];
3994	if (slot == 0)
3995		return 1;
3996	if (!path->nodes[1])
3997		return 1;
3998
3999	right_nritems = btrfs_header_nritems(right);
4000	if (right_nritems == 0)
4001		return 1;
4002
4003	btrfs_assert_tree_locked(path->nodes[1]);
4004
4005	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006	/*
4007	 * slot - 1 is not valid or we fail to read the left node,
4008	 * no big deal, just return.
4009	 */
4010	if (IS_ERR(left))
4011		return 1;
4012
4013	btrfs_tree_lock(left);
4014	btrfs_set_lock_blocking(left);
4015
4016	free_space = btrfs_leaf_free_space(fs_info, left);
4017	if (free_space < data_size) {
4018		ret = 1;
4019		goto out;
4020	}
4021
4022	/* cow and double check */
4023	ret = btrfs_cow_block(trans, root, left,
4024			      path->nodes[1], slot - 1, &left);
 
4025	if (ret) {
4026		/* we hit -ENOSPC, but it isn't fatal here */
4027		if (ret == -ENOSPC)
4028			ret = 1;
4029		goto out;
4030	}
4031
4032	free_space = btrfs_leaf_free_space(fs_info, left);
4033	if (free_space < data_size) {
4034		ret = 1;
4035		goto out;
4036	}
4037
4038	return __push_leaf_left(trans, fs_info, path, min_data_size,
4039			       empty, left, free_space, right_nritems,
4040			       max_slot);
4041out:
4042	btrfs_tree_unlock(left);
4043	free_extent_buffer(left);
4044	return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052				    struct btrfs_fs_info *fs_info,
4053				    struct btrfs_path *path,
4054				    struct extent_buffer *l,
4055				    struct extent_buffer *right,
4056				    int slot, int mid, int nritems)
4057{
 
4058	int data_copy_size;
4059	int rt_data_off;
4060	int i;
 
4061	struct btrfs_disk_key disk_key;
4062	struct btrfs_map_token token;
4063
4064	btrfs_init_map_token(&token);
4065
4066	nritems = nritems - mid;
4067	btrfs_set_header_nritems(right, nritems);
4068	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
 
 
4069
4070	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071			   btrfs_item_nr_offset(mid),
4072			   nritems * sizeof(struct btrfs_item));
4073
4074	copy_extent_buffer(right, l,
4075		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076		     data_copy_size, btrfs_leaf_data(l) +
4077		     leaf_data_end(fs_info, l), data_copy_size);
4078
4079	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080
 
4081	for (i = 0; i < nritems; i++) {
4082		struct btrfs_item *item = btrfs_item_nr(i);
4083		u32 ioff;
4084
4085		ioff = btrfs_token_item_offset(right, item, &token);
4086		btrfs_set_token_item_offset(right, item,
4087					    ioff + rt_data_off, &token);
4088	}
4089
4090	btrfs_set_header_nritems(l, mid);
4091	btrfs_item_key(right, &disk_key, 0);
4092	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093		   path->slots[1] + 1, 1);
 
4094
4095	btrfs_mark_buffer_dirty(right);
4096	btrfs_mark_buffer_dirty(l);
4097	BUG_ON(path->slots[0] != slot);
4098
4099	if (mid <= slot) {
4100		btrfs_tree_unlock(path->nodes[0]);
4101		free_extent_buffer(path->nodes[0]);
4102		path->nodes[0] = right;
4103		path->slots[0] -= mid;
4104		path->slots[1] += 1;
4105	} else {
4106		btrfs_tree_unlock(right);
4107		free_extent_buffer(right);
4108	}
4109
4110	BUG_ON(path->slots[0] < 0);
 
 
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 *          A                 B                 C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves.  If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124					  struct btrfs_root *root,
4125					  struct btrfs_path *path,
4126					  int data_size)
4127{
4128	struct btrfs_fs_info *fs_info = root->fs_info;
4129	int ret;
4130	int progress = 0;
4131	int slot;
4132	u32 nritems;
4133	int space_needed = data_size;
4134
4135	slot = path->slots[0];
4136	if (slot < btrfs_header_nritems(path->nodes[0]))
4137		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139	/*
4140	 * try to push all the items after our slot into the
4141	 * right leaf
4142	 */
4143	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144	if (ret < 0)
4145		return ret;
4146
4147	if (ret == 0)
4148		progress++;
4149
4150	nritems = btrfs_header_nritems(path->nodes[0]);
4151	/*
4152	 * our goal is to get our slot at the start or end of a leaf.  If
4153	 * we've done so we're done
4154	 */
4155	if (path->slots[0] == 0 || path->slots[0] == nritems)
4156		return 0;
4157
4158	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159		return 0;
4160
4161	/* try to push all the items before our slot into the next leaf */
4162	slot = path->slots[0];
 
 
 
4163	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164	if (ret < 0)
4165		return ret;
4166
4167	if (ret == 0)
4168		progress++;
4169
4170	if (progress)
4171		return 0;
4172	return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182			       struct btrfs_root *root,
4183			       struct btrfs_key *ins_key,
4184			       struct btrfs_path *path, int data_size,
4185			       int extend)
4186{
4187	struct btrfs_disk_key disk_key;
4188	struct extent_buffer *l;
4189	u32 nritems;
4190	int mid;
4191	int slot;
4192	struct extent_buffer *right;
4193	struct btrfs_fs_info *fs_info = root->fs_info;
4194	int ret = 0;
4195	int wret;
4196	int split;
4197	int num_doubles = 0;
4198	int tried_avoid_double = 0;
4199
4200	l = path->nodes[0];
4201	slot = path->slots[0];
4202	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204		return -EOVERFLOW;
4205
4206	/* first try to make some room by pushing left and right */
4207	if (data_size && path->nodes[1]) {
4208		int space_needed = data_size;
4209
4210		if (slot < btrfs_header_nritems(l))
4211			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213		wret = push_leaf_right(trans, root, path, space_needed,
4214				       space_needed, 0, 0);
4215		if (wret < 0)
4216			return wret;
4217		if (wret) {
 
 
 
4218			wret = push_leaf_left(trans, root, path, space_needed,
4219					      space_needed, 0, (u32)-1);
4220			if (wret < 0)
4221				return wret;
4222		}
4223		l = path->nodes[0];
4224
4225		/* did the pushes work? */
4226		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227			return 0;
4228	}
4229
4230	if (!path->nodes[1]) {
4231		ret = insert_new_root(trans, root, path, 1);
4232		if (ret)
4233			return ret;
4234	}
4235again:
4236	split = 1;
4237	l = path->nodes[0];
4238	slot = path->slots[0];
4239	nritems = btrfs_header_nritems(l);
4240	mid = (nritems + 1) / 2;
4241
4242	if (mid <= slot) {
4243		if (nritems == 1 ||
4244		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246			if (slot >= nritems) {
4247				split = 0;
4248			} else {
4249				mid = slot;
4250				if (mid != nritems &&
4251				    leaf_space_used(l, mid, nritems - mid) +
4252				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253					if (data_size && !tried_avoid_double)
4254						goto push_for_double;
4255					split = 2;
4256				}
4257			}
4258		}
4259	} else {
4260		if (leaf_space_used(l, 0, mid) + data_size >
4261			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262			if (!extend && data_size && slot == 0) {
4263				split = 0;
4264			} else if ((extend || !data_size) && slot == 0) {
4265				mid = 1;
4266			} else {
4267				mid = slot;
4268				if (mid != nritems &&
4269				    leaf_space_used(l, mid, nritems - mid) +
4270				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271					if (data_size && !tried_avoid_double)
4272						goto push_for_double;
4273					split = 2;
4274				}
4275			}
4276		}
4277	}
4278
4279	if (split == 0)
4280		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281	else
4282		btrfs_item_key(l, &disk_key, mid);
4283
4284	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285			&disk_key, 0, l->start, 0);
 
 
 
 
 
 
 
 
 
 
4286	if (IS_ERR(right))
4287		return PTR_ERR(right);
4288
4289	root_add_used(root, fs_info->nodesize);
4290
4291	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292	btrfs_set_header_bytenr(right, right->start);
4293	btrfs_set_header_generation(right, trans->transid);
4294	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295	btrfs_set_header_owner(right, root->root_key.objectid);
4296	btrfs_set_header_level(right, 0);
4297	write_extent_buffer_fsid(right, fs_info->fsid);
4298	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299
4300	if (split == 0) {
4301		if (mid <= slot) {
4302			btrfs_set_header_nritems(right, 0);
4303			insert_ptr(trans, fs_info, path, &disk_key,
4304				   right->start, path->slots[1] + 1, 1);
 
 
 
 
 
4305			btrfs_tree_unlock(path->nodes[0]);
4306			free_extent_buffer(path->nodes[0]);
4307			path->nodes[0] = right;
4308			path->slots[0] = 0;
4309			path->slots[1] += 1;
4310		} else {
4311			btrfs_set_header_nritems(right, 0);
4312			insert_ptr(trans, fs_info, path, &disk_key,
4313				   right->start, path->slots[1], 1);
 
 
 
 
 
4314			btrfs_tree_unlock(path->nodes[0]);
4315			free_extent_buffer(path->nodes[0]);
4316			path->nodes[0] = right;
4317			path->slots[0] = 0;
4318			if (path->slots[1] == 0)
4319				fixup_low_keys(fs_info, path, &disk_key, 1);
4320		}
4321		/*
4322		 * We create a new leaf 'right' for the required ins_len and
4323		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324		 * the content of ins_len to 'right'.
4325		 */
4326		return ret;
4327	}
4328
4329	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
 
 
 
 
 
4330
4331	if (split == 2) {
4332		BUG_ON(num_doubles != 0);
4333		num_doubles++;
4334		goto again;
4335	}
4336
4337	return 0;
4338
4339push_for_double:
4340	push_for_double_split(trans, root, path, data_size);
4341	tried_avoid_double = 1;
4342	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343		return 0;
4344	goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348					 struct btrfs_root *root,
4349					 struct btrfs_path *path, int ins_len)
4350{
4351	struct btrfs_fs_info *fs_info = root->fs_info;
4352	struct btrfs_key key;
4353	struct extent_buffer *leaf;
4354	struct btrfs_file_extent_item *fi;
4355	u64 extent_len = 0;
4356	u32 item_size;
4357	int ret;
4358
4359	leaf = path->nodes[0];
4360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363	       key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366		return 0;
4367
4368	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370		fi = btrfs_item_ptr(leaf, path->slots[0],
4371				    struct btrfs_file_extent_item);
4372		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373	}
4374	btrfs_release_path(path);
4375
4376	path->keep_locks = 1;
4377	path->search_for_split = 1;
4378	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379	path->search_for_split = 0;
4380	if (ret > 0)
4381		ret = -EAGAIN;
4382	if (ret < 0)
4383		goto err;
4384
4385	ret = -EAGAIN;
4386	leaf = path->nodes[0];
4387	/* if our item isn't there, return now */
4388	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389		goto err;
4390
4391	/* the leaf has  changed, it now has room.  return now */
4392	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393		goto err;
4394
4395	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396		fi = btrfs_item_ptr(leaf, path->slots[0],
4397				    struct btrfs_file_extent_item);
4398		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399			goto err;
4400	}
4401
4402	btrfs_set_path_blocking(path);
4403	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404	if (ret)
4405		goto err;
4406
4407	path->keep_locks = 0;
4408	btrfs_unlock_up_safe(path, 1);
4409	return 0;
4410err:
4411	path->keep_locks = 0;
4412	return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416			       struct btrfs_fs_info *fs_info,
4417			       struct btrfs_path *path,
4418			       struct btrfs_key *new_key,
4419			       unsigned long split_offset)
4420{
4421	struct extent_buffer *leaf;
4422	struct btrfs_item *item;
4423	struct btrfs_item *new_item;
4424	int slot;
4425	char *buf;
4426	u32 nritems;
4427	u32 item_size;
4428	u32 orig_offset;
4429	struct btrfs_disk_key disk_key;
4430
4431	leaf = path->nodes[0];
4432	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434	btrfs_set_path_blocking(path);
 
 
 
4435
4436	item = btrfs_item_nr(path->slots[0]);
4437	orig_offset = btrfs_item_offset(leaf, item);
4438	item_size = btrfs_item_size(leaf, item);
4439
4440	buf = kmalloc(item_size, GFP_NOFS);
4441	if (!buf)
4442		return -ENOMEM;
4443
4444	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445			    path->slots[0]), item_size);
4446
4447	slot = path->slots[0] + 1;
4448	nritems = btrfs_header_nritems(leaf);
4449	if (slot != nritems) {
4450		/* shift the items */
4451		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452				btrfs_item_nr_offset(slot),
4453				(nritems - slot) * sizeof(struct btrfs_item));
4454	}
4455
4456	btrfs_cpu_key_to_disk(&disk_key, new_key);
4457	btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459	new_item = btrfs_item_nr(slot);
4460
4461	btrfs_set_item_offset(leaf, new_item, orig_offset);
4462	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464	btrfs_set_item_offset(leaf, item,
4465			      orig_offset + item_size - split_offset);
4466	btrfs_set_item_size(leaf, item, split_offset);
4467
4468	btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470	/* write the data for the start of the original item */
4471	write_extent_buffer(leaf, buf,
4472			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4473			    split_offset);
4474
4475	/* write the data for the new item */
4476	write_extent_buffer(leaf, buf + split_offset,
4477			    btrfs_item_ptr_offset(leaf, slot),
4478			    item_size - split_offset);
4479	btrfs_mark_buffer_dirty(leaf);
4480
4481	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482	kfree(buf);
4483	return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation.  After
4492 * the split, the path is pointing to the old item.  The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502		     struct btrfs_root *root,
4503		     struct btrfs_path *path,
4504		     struct btrfs_key *new_key,
4505		     unsigned long split_offset)
4506{
4507	int ret;
4508	ret = setup_leaf_for_split(trans, root, path,
4509				   sizeof(struct btrfs_item));
4510	if (ret)
4511		return ret;
4512
4513	ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514	return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526			 struct btrfs_root *root,
4527			 struct btrfs_path *path,
4528			 struct btrfs_key *new_key)
4529{
4530	struct extent_buffer *leaf;
4531	int ret;
4532	u32 item_size;
4533
4534	leaf = path->nodes[0];
4535	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536	ret = setup_leaf_for_split(trans, root, path,
4537				   item_size + sizeof(struct btrfs_item));
4538	if (ret)
4539		return ret;
4540
4541	path->slots[0]++;
4542	setup_items_for_insert(root, path, new_key, &item_size,
4543			       item_size, item_size +
4544			       sizeof(struct btrfs_item), 1);
4545	leaf = path->nodes[0];
4546	memcpy_extent_buffer(leaf,
4547			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4548			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549			     item_size);
4550	return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller.  new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560			 struct btrfs_path *path, u32 new_size, int from_end)
4561{
4562	int slot;
4563	struct extent_buffer *leaf;
4564	struct btrfs_item *item;
4565	u32 nritems;
4566	unsigned int data_end;
4567	unsigned int old_data_start;
4568	unsigned int old_size;
4569	unsigned int size_diff;
4570	int i;
4571	struct btrfs_map_token token;
4572
4573	btrfs_init_map_token(&token);
4574
4575	leaf = path->nodes[0];
4576	slot = path->slots[0];
4577
4578	old_size = btrfs_item_size_nr(leaf, slot);
4579	if (old_size == new_size)
4580		return;
4581
4582	nritems = btrfs_header_nritems(leaf);
4583	data_end = leaf_data_end(fs_info, leaf);
4584
4585	old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587	size_diff = old_size - new_size;
4588
4589	BUG_ON(slot < 0);
4590	BUG_ON(slot >= nritems);
4591
4592	/*
4593	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594	 */
4595	/* first correct the data pointers */
 
4596	for (i = slot; i < nritems; i++) {
4597		u32 ioff;
4598		item = btrfs_item_nr(i);
4599
4600		ioff = btrfs_token_item_offset(leaf, item, &token);
4601		btrfs_set_token_item_offset(leaf, item,
4602					    ioff + size_diff, &token);
4603	}
4604
4605	/* shift the data */
4606	if (from_end) {
4607		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608			      data_end + size_diff, btrfs_leaf_data(leaf) +
4609			      data_end, old_data_start + new_size - data_end);
4610	} else {
4611		struct btrfs_disk_key disk_key;
4612		u64 offset;
4613
4614		btrfs_item_key(leaf, &disk_key, slot);
4615
4616		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617			unsigned long ptr;
4618			struct btrfs_file_extent_item *fi;
4619
4620			fi = btrfs_item_ptr(leaf, slot,
4621					    struct btrfs_file_extent_item);
4622			fi = (struct btrfs_file_extent_item *)(
4623			     (unsigned long)fi - size_diff);
4624
4625			if (btrfs_file_extent_type(leaf, fi) ==
4626			    BTRFS_FILE_EXTENT_INLINE) {
4627				ptr = btrfs_item_ptr_offset(leaf, slot);
4628				memmove_extent_buffer(leaf, ptr,
4629				      (unsigned long)fi,
4630				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4631			}
4632		}
4633
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start - data_end);
4637
4638		offset = btrfs_disk_key_offset(&disk_key);
4639		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640		btrfs_set_item_key(leaf, &disk_key, slot);
4641		if (slot == 0)
4642			fixup_low_keys(fs_info, path, &disk_key, 1);
4643	}
4644
4645	item = btrfs_item_nr(slot);
4646	btrfs_set_item_size(leaf, item, new_size);
4647	btrfs_mark_buffer_dirty(leaf);
4648
4649	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650		btrfs_print_leaf(fs_info, leaf);
4651		BUG();
4652	}
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659		       u32 data_size)
4660{
4661	int slot;
4662	struct extent_buffer *leaf;
4663	struct btrfs_item *item;
4664	u32 nritems;
4665	unsigned int data_end;
4666	unsigned int old_data;
4667	unsigned int old_size;
4668	int i;
4669	struct btrfs_map_token token;
4670
4671	btrfs_init_map_token(&token);
4672
4673	leaf = path->nodes[0];
4674
4675	nritems = btrfs_header_nritems(leaf);
4676	data_end = leaf_data_end(fs_info, leaf);
4677
4678	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679		btrfs_print_leaf(fs_info, leaf);
4680		BUG();
4681	}
4682	slot = path->slots[0];
4683	old_data = btrfs_item_end_nr(leaf, slot);
4684
4685	BUG_ON(slot < 0);
4686	if (slot >= nritems) {
4687		btrfs_print_leaf(fs_info, leaf);
4688		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689			   slot, nritems);
4690		BUG_ON(1);
4691	}
4692
4693	/*
4694	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695	 */
4696	/* first correct the data pointers */
 
4697	for (i = slot; i < nritems; i++) {
4698		u32 ioff;
4699		item = btrfs_item_nr(i);
4700
4701		ioff = btrfs_token_item_offset(leaf, item, &token);
4702		btrfs_set_token_item_offset(leaf, item,
4703					    ioff - data_size, &token);
4704	}
4705
4706	/* shift the data */
4707	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708		      data_end - data_size, btrfs_leaf_data(leaf) +
4709		      data_end, old_data - data_end);
4710
4711	data_end = old_data;
4712	old_size = btrfs_item_size_nr(leaf, slot);
4713	item = btrfs_item_nr(slot);
4714	btrfs_set_item_size(leaf, item, old_size + data_size);
4715	btrfs_mark_buffer_dirty(leaf);
4716
4717	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718		btrfs_print_leaf(fs_info, leaf);
4719		BUG();
4720	}
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729			    struct btrfs_key *cpu_key, u32 *data_size,
4730			    u32 total_data, u32 total_size, int nr)
 
 
 
 
 
 
4731{
4732	struct btrfs_fs_info *fs_info = root->fs_info;
4733	struct btrfs_item *item;
4734	int i;
4735	u32 nritems;
4736	unsigned int data_end;
4737	struct btrfs_disk_key disk_key;
4738	struct extent_buffer *leaf;
4739	int slot;
4740	struct btrfs_map_token token;
 
4741
 
 
 
 
 
4742	if (path->slots[0] == 0) {
4743		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744		fixup_low_keys(fs_info, path, &disk_key, 1);
4745	}
4746	btrfs_unlock_up_safe(path, 1);
4747
4748	btrfs_init_map_token(&token);
4749
4750	leaf = path->nodes[0];
4751	slot = path->slots[0];
4752
4753	nritems = btrfs_header_nritems(leaf);
4754	data_end = leaf_data_end(fs_info, leaf);
 
4755
4756	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757		btrfs_print_leaf(fs_info, leaf);
4758		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4760		BUG();
4761	}
4762
 
4763	if (slot != nritems) {
4764		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766		if (old_data < data_end) {
4767			btrfs_print_leaf(fs_info, leaf);
4768			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
 
4769				   slot, old_data, data_end);
4770			BUG_ON(1);
4771		}
4772		/*
4773		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774		 */
4775		/* first correct the data pointers */
4776		for (i = slot; i < nritems; i++) {
4777			u32 ioff;
4778
4779			item = btrfs_item_nr(i);
4780			ioff = btrfs_token_item_offset(leaf, item, &token);
4781			btrfs_set_token_item_offset(leaf, item,
4782						    ioff - total_data, &token);
4783		}
4784		/* shift the items */
4785		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786			      btrfs_item_nr_offset(slot),
4787			      (nritems - slot) * sizeof(struct btrfs_item));
4788
4789		/* shift the data */
4790		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791			      data_end - total_data, btrfs_leaf_data(leaf) +
4792			      data_end, old_data - data_end);
4793		data_end = old_data;
4794	}
4795
4796	/* setup the item for the new data */
4797	for (i = 0; i < nr; i++) {
4798		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799		btrfs_set_item_key(leaf, &disk_key, slot + i);
4800		item = btrfs_item_nr(slot + i);
4801		btrfs_set_token_item_offset(leaf, item,
4802					    data_end - data_size[i], &token);
4803		data_end -= data_size[i];
4804		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805	}
4806
4807	btrfs_set_header_nritems(leaf, nritems + nr);
4808	btrfs_mark_buffer_dirty(leaf);
4809
4810	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811		btrfs_print_leaf(fs_info, leaf);
4812		BUG();
4813	}
4814}
4815
4816/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
 
 
 
 
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821			    struct btrfs_root *root,
4822			    struct btrfs_path *path,
4823			    struct btrfs_key *cpu_key, u32 *data_size,
4824			    int nr)
4825{
4826	int ret = 0;
4827	int slot;
4828	int i;
4829	u32 total_size = 0;
4830	u32 total_data = 0;
4831
4832	for (i = 0; i < nr; i++)
4833		total_data += data_size[i];
4834
4835	total_size = total_data + (nr * sizeof(struct btrfs_item));
4836	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837	if (ret == 0)
4838		return -EEXIST;
4839	if (ret < 0)
4840		return ret;
4841
4842	slot = path->slots[0];
4843	BUG_ON(slot < 0);
4844
4845	setup_items_for_insert(root, path, cpu_key, data_size,
4846			       total_data, total_size, nr);
4847	return 0;
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855		      *root, struct btrfs_key *cpu_key, void *data, u32
4856		      data_size)
4857{
4858	int ret = 0;
4859	struct btrfs_path *path;
4860	struct extent_buffer *leaf;
4861	unsigned long ptr;
4862
4863	path = btrfs_alloc_path();
4864	if (!path)
4865		return -ENOMEM;
4866	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867	if (!ret) {
4868		leaf = path->nodes[0];
4869		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870		write_extent_buffer(leaf, data, ptr, data_size);
4871		btrfs_mark_buffer_dirty(leaf);
4872	}
4873	btrfs_free_path(path);
4874	return ret;
4875}
4876
4877/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
 
 
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884		    int level, int slot)
4885{
4886	struct btrfs_fs_info *fs_info = root->fs_info;
4887	struct extent_buffer *parent = path->nodes[level];
4888	u32 nritems;
4889	int ret;
4890
4891	nritems = btrfs_header_nritems(parent);
4892	if (slot != nritems - 1) {
4893		if (level)
4894			tree_mod_log_eb_move(fs_info, parent, slot,
4895					     slot + 1, nritems - slot - 1);
 
 
 
 
 
4896		memmove_extent_buffer(parent,
4897			      btrfs_node_key_ptr_offset(slot),
4898			      btrfs_node_key_ptr_offset(slot + 1),
4899			      sizeof(struct btrfs_key_ptr) *
4900			      (nritems - slot - 1));
4901	} else if (level) {
4902		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904		BUG_ON(ret < 0);
 
 
 
4905	}
4906
4907	nritems--;
4908	btrfs_set_header_nritems(parent, nritems);
4909	if (nritems == 0 && parent == root->node) {
4910		BUG_ON(btrfs_header_level(root->node) != 1);
4911		/* just turn the root into a leaf and break */
4912		btrfs_set_header_level(root->node, 0);
4913	} else if (slot == 0) {
4914		struct btrfs_disk_key disk_key;
4915
4916		btrfs_node_key(parent, &disk_key, 0);
4917		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4918	}
4919	btrfs_mark_buffer_dirty(parent);
 
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing.  path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933				    struct btrfs_root *root,
4934				    struct btrfs_path *path,
4935				    struct extent_buffer *leaf)
4936{
 
 
4937	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938	del_ptr(root, path, 1, path->slots[1]);
 
 
4939
4940	/*
4941	 * btrfs_free_extent is expensive, we want to make sure we
4942	 * aren't holding any locks when we call it
4943	 */
4944	btrfs_unlock_up_safe(path, 0);
4945
4946	root_sub_used(root, leaf->len);
4947
4948	extent_buffer_get(leaf);
4949	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950	free_extent_buffer_stale(leaf);
 
 
 
 
4951}
4952/*
4953 * delete the item at the leaf level in path.  If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957		    struct btrfs_path *path, int slot, int nr)
4958{
4959	struct btrfs_fs_info *fs_info = root->fs_info;
4960	struct extent_buffer *leaf;
4961	struct btrfs_item *item;
4962	u32 last_off;
4963	u32 dsize = 0;
4964	int ret = 0;
4965	int wret;
4966	int i;
4967	u32 nritems;
4968	struct btrfs_map_token token;
4969
4970	btrfs_init_map_token(&token);
4971
4972	leaf = path->nodes[0];
4973	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975	for (i = 0; i < nr; i++)
4976		dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978	nritems = btrfs_header_nritems(leaf);
4979
4980	if (slot + nr != nritems) {
4981		int data_end = leaf_data_end(fs_info, leaf);
 
 
 
 
4982
4983		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984			      data_end + dsize,
4985			      btrfs_leaf_data(leaf) + data_end,
4986			      last_off - data_end);
4987
 
 
 
 
4988		for (i = slot + nr; i < nritems; i++) {
4989			u32 ioff;
4990
4991			item = btrfs_item_nr(i);
4992			ioff = btrfs_token_item_offset(leaf, item, &token);
4993			btrfs_set_token_item_offset(leaf, item,
4994						    ioff + dsize, &token);
4995		}
4996
4997		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998			      btrfs_item_nr_offset(slot + nr),
4999			      sizeof(struct btrfs_item) *
5000			      (nritems - slot - nr));
5001	}
5002	btrfs_set_header_nritems(leaf, nritems - nr);
5003	nritems -= nr;
5004
5005	/* delete the leaf if we've emptied it */
5006	if (nritems == 0) {
5007		if (leaf == root->node) {
5008			btrfs_set_header_level(leaf, 0);
5009		} else {
5010			btrfs_set_path_blocking(path);
5011			clean_tree_block(trans, fs_info, leaf);
5012			btrfs_del_leaf(trans, root, path, leaf);
 
5013		}
5014	} else {
5015		int used = leaf_space_used(leaf, 0, nritems);
5016		if (slot == 0) {
5017			struct btrfs_disk_key disk_key;
5018
5019			btrfs_item_key(leaf, &disk_key, 0);
5020			fixup_low_keys(fs_info, path, &disk_key, 1);
5021		}
5022
5023		/* delete the leaf if it is mostly empty */
 
 
 
 
 
 
 
5024		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
 
 
5025			/* push_leaf_left fixes the path.
5026			 * make sure the path still points to our leaf
5027			 * for possible call to del_ptr below
5028			 */
5029			slot = path->slots[1];
5030			extent_buffer_get(leaf);
5031
5032			btrfs_set_path_blocking(path);
5033			wret = push_leaf_left(trans, root, path, 1, 1,
5034					      1, (u32)-1);
 
 
 
 
5035			if (wret < 0 && wret != -ENOSPC)
5036				ret = wret;
5037
5038			if (path->nodes[0] == leaf &&
5039			    btrfs_header_nritems(leaf)) {
5040				wret = push_leaf_right(trans, root, path, 1,
5041						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
5042				if (wret < 0 && wret != -ENOSPC)
5043					ret = wret;
5044			}
5045
5046			if (btrfs_header_nritems(leaf) == 0) {
5047				path->slots[1] = slot;
5048				btrfs_del_leaf(trans, root, path, leaf);
 
 
5049				free_extent_buffer(leaf);
5050				ret = 0;
5051			} else {
5052				/* if we're still in the path, make sure
5053				 * we're dirty.  Otherwise, one of the
5054				 * push_leaf functions must have already
5055				 * dirtied this buffer
5056				 */
5057				if (path->nodes[0] == leaf)
5058					btrfs_mark_buffer_dirty(leaf);
5059				free_extent_buffer(leaf);
5060			}
5061		} else {
5062			btrfs_mark_buffer_dirty(leaf);
5063		}
5064	}
5065	return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078	struct btrfs_key key;
5079	struct btrfs_disk_key found_key;
5080	int ret;
5081
5082	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084	if (key.offset > 0) {
5085		key.offset--;
5086	} else if (key.type > 0) {
5087		key.type--;
5088		key.offset = (u64)-1;
5089	} else if (key.objectid > 0) {
5090		key.objectid--;
5091		key.type = (u8)-1;
5092		key.offset = (u64)-1;
5093	} else {
5094		return 1;
5095	}
5096
5097	btrfs_release_path(path);
5098	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099	if (ret < 0)
5100		return ret;
5101	btrfs_item_key(path->nodes[0], &found_key, 0);
5102	ret = comp_keys(&found_key, &key);
5103	/*
5104	 * We might have had an item with the previous key in the tree right
5105	 * before we released our path. And after we released our path, that
5106	 * item might have been pushed to the first slot (0) of the leaf we
5107	 * were holding due to a tree balance. Alternatively, an item with the
5108	 * previous key can exist as the only element of a leaf (big fat item).
5109	 * Therefore account for these 2 cases, so that our callers (like
5110	 * btrfs_previous_item) don't miss an existing item with a key matching
5111	 * the previous key we computed above.
5112	 */
5113	if (ret <= 0)
5114		return 0;
5115	return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through.  Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141			 struct btrfs_path *path,
5142			 u64 min_trans)
5143{
5144	struct btrfs_fs_info *fs_info = root->fs_info;
5145	struct extent_buffer *cur;
5146	struct btrfs_key found_key;
5147	int slot;
5148	int sret;
5149	u32 nritems;
5150	int level;
5151	int ret = 1;
5152	int keep_locks = path->keep_locks;
5153
 
5154	path->keep_locks = 1;
5155again:
5156	cur = btrfs_read_lock_root_node(root);
5157	level = btrfs_header_level(cur);
5158	WARN_ON(path->nodes[level]);
5159	path->nodes[level] = cur;
5160	path->locks[level] = BTRFS_READ_LOCK;
5161
5162	if (btrfs_header_generation(cur) < min_trans) {
5163		ret = 1;
5164		goto out;
5165	}
5166	while (1) {
5167		nritems = btrfs_header_nritems(cur);
5168		level = btrfs_header_level(cur);
5169		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5170
5171		/* at the lowest level, we're done, setup the path and exit */
5172		if (level == path->lowest_level) {
5173			if (slot >= nritems)
5174				goto find_next_key;
5175			ret = 0;
5176			path->slots[level] = slot;
5177			btrfs_item_key_to_cpu(cur, &found_key, slot);
5178			goto out;
5179		}
5180		if (sret && slot > 0)
5181			slot--;
5182		/*
5183		 * check this node pointer against the min_trans parameters.
5184		 * If it is too old, old, skip to the next one.
5185		 */
5186		while (slot < nritems) {
5187			u64 gen;
5188
5189			gen = btrfs_node_ptr_generation(cur, slot);
5190			if (gen < min_trans) {
5191				slot++;
5192				continue;
5193			}
5194			break;
5195		}
5196find_next_key:
5197		/*
5198		 * we didn't find a candidate key in this node, walk forward
5199		 * and find another one
5200		 */
5201		if (slot >= nritems) {
5202			path->slots[level] = slot;
5203			btrfs_set_path_blocking(path);
5204			sret = btrfs_find_next_key(root, path, min_key, level,
5205						  min_trans);
5206			if (sret == 0) {
5207				btrfs_release_path(path);
5208				goto again;
5209			} else {
5210				goto out;
5211			}
5212		}
5213		/* save our key for returning back */
5214		btrfs_node_key_to_cpu(cur, &found_key, slot);
5215		path->slots[level] = slot;
5216		if (level == path->lowest_level) {
5217			ret = 0;
5218			goto out;
5219		}
5220		btrfs_set_path_blocking(path);
5221		cur = read_node_slot(fs_info, cur, slot);
5222		if (IS_ERR(cur)) {
5223			ret = PTR_ERR(cur);
5224			goto out;
5225		}
5226
5227		btrfs_tree_read_lock(cur);
5228
5229		path->locks[level - 1] = BTRFS_READ_LOCK;
5230		path->nodes[level - 1] = cur;
5231		unlock_up(path, level, 1, 0, NULL);
5232		btrfs_clear_path_blocking(path, NULL, 0);
5233	}
5234out:
5235	path->keep_locks = keep_locks;
5236	if (ret == 0) {
5237		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238		btrfs_set_path_blocking(path);
5239		memcpy(min_key, &found_key, sizeof(found_key));
5240	}
5241	return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245			   struct btrfs_path *path,
5246			   int *level, int root_level)
5247{
5248	struct extent_buffer *eb;
5249
5250	BUG_ON(*level == 0);
5251	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252	if (IS_ERR(eb))
5253		return PTR_ERR(eb);
5254
5255	path->nodes[*level - 1] = eb;
5256	path->slots[*level - 1] = 0;
5257	(*level)--;
5258	return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262				    struct btrfs_path *path,
5263				    int *level, int root_level)
5264{
5265	int ret = 0;
5266	int nritems;
5267	nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269	path->slots[*level]++;
5270
5271	while (path->slots[*level] >= nritems) {
5272		if (*level == root_level)
5273			return -1;
5274
5275		/* move upnext */
5276		path->slots[*level] = 0;
5277		free_extent_buffer(path->nodes[*level]);
5278		path->nodes[*level] = NULL;
5279		(*level)++;
5280		path->slots[*level]++;
5281
5282		nritems = btrfs_header_nritems(path->nodes[*level]);
5283		ret = 1;
5284	}
5285	return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293			struct btrfs_path *path,
5294			int *level, int root_level,
5295			int allow_down,
5296			struct btrfs_key *key)
5297{
5298	int ret;
5299
5300	if (*level == 0 || !allow_down) {
5301		ret = tree_move_next_or_upnext(fs_info, path, level,
5302					       root_level);
5303	} else {
5304		ret = tree_move_down(fs_info, path, level, root_level);
5305	}
5306	if (ret >= 0) {
5307		if (*level == 0)
5308			btrfs_item_key_to_cpu(path->nodes[*level], key,
5309					path->slots[*level]);
5310		else
5311			btrfs_node_key_to_cpu(path->nodes[*level], key,
5312					path->slots[*level]);
5313	}
5314	return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318			     struct btrfs_path *right_path,
5319			     char *tmp_buf)
5320{
5321	int cmp;
5322	int len1, len2;
5323	unsigned long off1, off2;
5324
5325	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327	if (len1 != len2)
5328		return 1;
5329
5330	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332				right_path->slots[0]);
5333
5334	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337	if (cmp)
5338		return 1;
5339	return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359			struct btrfs_root *right_root,
5360			btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362	struct btrfs_fs_info *fs_info = left_root->fs_info;
5363	int ret;
5364	int cmp;
5365	struct btrfs_path *left_path = NULL;
5366	struct btrfs_path *right_path = NULL;
5367	struct btrfs_key left_key;
5368	struct btrfs_key right_key;
5369	char *tmp_buf = NULL;
5370	int left_root_level;
5371	int right_root_level;
5372	int left_level;
5373	int right_level;
5374	int left_end_reached;
5375	int right_end_reached;
5376	int advance_left;
5377	int advance_right;
5378	u64 left_blockptr;
5379	u64 right_blockptr;
5380	u64 left_gen;
5381	u64 right_gen;
5382
5383	left_path = btrfs_alloc_path();
5384	if (!left_path) {
5385		ret = -ENOMEM;
5386		goto out;
5387	}
5388	right_path = btrfs_alloc_path();
5389	if (!right_path) {
5390		ret = -ENOMEM;
5391		goto out;
5392	}
5393
5394	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395	if (!tmp_buf) {
5396		tmp_buf = vmalloc(fs_info->nodesize);
5397		if (!tmp_buf) {
5398			ret = -ENOMEM;
5399			goto out;
5400		}
5401	}
5402
5403	left_path->search_commit_root = 1;
5404	left_path->skip_locking = 1;
5405	right_path->search_commit_root = 1;
5406	right_path->skip_locking = 1;
5407
5408	/*
5409	 * Strategy: Go to the first items of both trees. Then do
5410	 *
5411	 * If both trees are at level 0
5412	 *   Compare keys of current items
5413	 *     If left < right treat left item as new, advance left tree
5414	 *       and repeat
5415	 *     If left > right treat right item as deleted, advance right tree
5416	 *       and repeat
5417	 *     If left == right do deep compare of items, treat as changed if
5418	 *       needed, advance both trees and repeat
5419	 * If both trees are at the same level but not at level 0
5420	 *   Compare keys of current nodes/leafs
5421	 *     If left < right advance left tree and repeat
5422	 *     If left > right advance right tree and repeat
5423	 *     If left == right compare blockptrs of the next nodes/leafs
5424	 *       If they match advance both trees but stay at the same level
5425	 *         and repeat
5426	 *       If they don't match advance both trees while allowing to go
5427	 *         deeper and repeat
5428	 * If tree levels are different
5429	 *   Advance the tree that needs it and repeat
5430	 *
5431	 * Advancing a tree means:
5432	 *   If we are at level 0, try to go to the next slot. If that's not
5433	 *   possible, go one level up and repeat. Stop when we found a level
5434	 *   where we could go to the next slot. We may at this point be on a
5435	 *   node or a leaf.
5436	 *
5437	 *   If we are not at level 0 and not on shared tree blocks, go one
5438	 *   level deeper.
5439	 *
5440	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5441	 *   the right if possible or go up and right.
5442	 */
5443
5444	down_read(&fs_info->commit_root_sem);
5445	left_level = btrfs_header_level(left_root->commit_root);
5446	left_root_level = left_level;
5447	left_path->nodes[left_level] = left_root->commit_root;
5448	extent_buffer_get(left_path->nodes[left_level]);
5449
5450	right_level = btrfs_header_level(right_root->commit_root);
5451	right_root_level = right_level;
5452	right_path->nodes[right_level] = right_root->commit_root;
5453	extent_buffer_get(right_path->nodes[right_level]);
5454	up_read(&fs_info->commit_root_sem);
5455
5456	if (left_level == 0)
5457		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458				&left_key, left_path->slots[left_level]);
5459	else
5460		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461				&left_key, left_path->slots[left_level]);
5462	if (right_level == 0)
5463		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464				&right_key, right_path->slots[right_level]);
5465	else
5466		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467				&right_key, right_path->slots[right_level]);
5468
5469	left_end_reached = right_end_reached = 0;
5470	advance_left = advance_right = 0;
5471
5472	while (1) {
5473		if (advance_left && !left_end_reached) {
5474			ret = tree_advance(fs_info, left_path, &left_level,
5475					left_root_level,
5476					advance_left != ADVANCE_ONLY_NEXT,
5477					&left_key);
5478			if (ret == -1)
5479				left_end_reached = ADVANCE;
5480			else if (ret < 0)
5481				goto out;
5482			advance_left = 0;
5483		}
5484		if (advance_right && !right_end_reached) {
5485			ret = tree_advance(fs_info, right_path, &right_level,
5486					right_root_level,
5487					advance_right != ADVANCE_ONLY_NEXT,
5488					&right_key);
5489			if (ret == -1)
5490				right_end_reached = ADVANCE;
5491			else if (ret < 0)
5492				goto out;
5493			advance_right = 0;
5494		}
5495
5496		if (left_end_reached && right_end_reached) {
5497			ret = 0;
5498			goto out;
5499		} else if (left_end_reached) {
5500			if (right_level == 0) {
5501				ret = changed_cb(left_root, right_root,
5502						left_path, right_path,
5503						&right_key,
5504						BTRFS_COMPARE_TREE_DELETED,
5505						ctx);
5506				if (ret < 0)
5507					goto out;
5508			}
5509			advance_right = ADVANCE;
5510			continue;
5511		} else if (right_end_reached) {
5512			if (left_level == 0) {
5513				ret = changed_cb(left_root, right_root,
5514						left_path, right_path,
5515						&left_key,
5516						BTRFS_COMPARE_TREE_NEW,
5517						ctx);
5518				if (ret < 0)
5519					goto out;
5520			}
5521			advance_left = ADVANCE;
5522			continue;
5523		}
5524
5525		if (left_level == 0 && right_level == 0) {
5526			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527			if (cmp < 0) {
5528				ret = changed_cb(left_root, right_root,
5529						left_path, right_path,
5530						&left_key,
5531						BTRFS_COMPARE_TREE_NEW,
5532						ctx);
5533				if (ret < 0)
5534					goto out;
5535				advance_left = ADVANCE;
5536			} else if (cmp > 0) {
5537				ret = changed_cb(left_root, right_root,
5538						left_path, right_path,
5539						&right_key,
5540						BTRFS_COMPARE_TREE_DELETED,
5541						ctx);
5542				if (ret < 0)
5543					goto out;
5544				advance_right = ADVANCE;
5545			} else {
5546				enum btrfs_compare_tree_result result;
5547
5548				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549				ret = tree_compare_item(left_path, right_path,
5550							tmp_buf);
5551				if (ret)
5552					result = BTRFS_COMPARE_TREE_CHANGED;
5553				else
5554					result = BTRFS_COMPARE_TREE_SAME;
5555				ret = changed_cb(left_root, right_root,
5556						 left_path, right_path,
5557						 &left_key, result, ctx);
5558				if (ret < 0)
5559					goto out;
5560				advance_left = ADVANCE;
5561				advance_right = ADVANCE;
5562			}
5563		} else if (left_level == right_level) {
5564			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565			if (cmp < 0) {
5566				advance_left = ADVANCE;
5567			} else if (cmp > 0) {
5568				advance_right = ADVANCE;
5569			} else {
5570				left_blockptr = btrfs_node_blockptr(
5571						left_path->nodes[left_level],
5572						left_path->slots[left_level]);
5573				right_blockptr = btrfs_node_blockptr(
5574						right_path->nodes[right_level],
5575						right_path->slots[right_level]);
5576				left_gen = btrfs_node_ptr_generation(
5577						left_path->nodes[left_level],
5578						left_path->slots[left_level]);
5579				right_gen = btrfs_node_ptr_generation(
5580						right_path->nodes[right_level],
5581						right_path->slots[right_level]);
5582				if (left_blockptr == right_blockptr &&
5583				    left_gen == right_gen) {
5584					/*
5585					 * As we're on a shared block, don't
5586					 * allow to go deeper.
5587					 */
5588					advance_left = ADVANCE_ONLY_NEXT;
5589					advance_right = ADVANCE_ONLY_NEXT;
5590				} else {
5591					advance_left = ADVANCE;
5592					advance_right = ADVANCE;
5593				}
5594			}
5595		} else if (left_level < right_level) {
5596			advance_right = ADVANCE;
5597		} else {
5598			advance_left = ADVANCE;
5599		}
5600	}
5601
5602out:
5603	btrfs_free_path(left_path);
5604	btrfs_free_path(right_path);
5605	kvfree(tmp_buf);
5606	return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621			struct btrfs_key *key, int level, u64 min_trans)
5622{
5623	int slot;
5624	struct extent_buffer *c;
5625
5626	WARN_ON(!path->keep_locks);
5627	while (level < BTRFS_MAX_LEVEL) {
5628		if (!path->nodes[level])
5629			return 1;
5630
5631		slot = path->slots[level] + 1;
5632		c = path->nodes[level];
5633next:
5634		if (slot >= btrfs_header_nritems(c)) {
5635			int ret;
5636			int orig_lowest;
5637			struct btrfs_key cur_key;
5638			if (level + 1 >= BTRFS_MAX_LEVEL ||
5639			    !path->nodes[level + 1])
5640				return 1;
5641
5642			if (path->locks[level + 1]) {
5643				level++;
5644				continue;
5645			}
5646
5647			slot = btrfs_header_nritems(c) - 1;
5648			if (level == 0)
5649				btrfs_item_key_to_cpu(c, &cur_key, slot);
5650			else
5651				btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653			orig_lowest = path->lowest_level;
5654			btrfs_release_path(path);
5655			path->lowest_level = level;
5656			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657						0, 0);
5658			path->lowest_level = orig_lowest;
5659			if (ret < 0)
5660				return ret;
5661
5662			c = path->nodes[level];
5663			slot = path->slots[level];
5664			if (ret == 0)
5665				slot++;
5666			goto next;
5667		}
5668
5669		if (level == 0)
5670			btrfs_item_key_to_cpu(c, key, slot);
5671		else {
5672			u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674			if (gen < min_trans) {
5675				slot++;
5676				goto next;
5677			}
5678			btrfs_node_key_to_cpu(c, key, slot);
5679		}
5680		return 0;
5681	}
5682	return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692	return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696			u64 time_seq)
5697{
5698	int slot;
5699	int level;
5700	struct extent_buffer *c;
5701	struct extent_buffer *next;
 
5702	struct btrfs_key key;
 
5703	u32 nritems;
5704	int ret;
5705	int old_spinning = path->leave_spinning;
5706	int next_rw_lock = 0;
 
 
 
 
 
 
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	if (nritems == 0)
5710		return 1;
5711
5712	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714	level = 1;
5715	next = NULL;
5716	next_rw_lock = 0;
5717	btrfs_release_path(path);
5718
5719	path->keep_locks = 1;
5720	path->leave_spinning = 1;
5721
5722	if (time_seq)
5723		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724	else
 
 
 
 
 
 
 
 
 
 
 
 
5725		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5726	path->keep_locks = 0;
5727
5728	if (ret < 0)
5729		return ret;
5730
5731	nritems = btrfs_header_nritems(path->nodes[0]);
5732	/*
5733	 * by releasing the path above we dropped all our locks.  A balance
5734	 * could have added more items next to the key that used to be
5735	 * at the very end of the block.  So, check again here and
5736	 * advance the path if there are now more items available.
5737	 */
5738	if (nritems > 0 && path->slots[0] < nritems - 1) {
5739		if (ret == 0)
5740			path->slots[0]++;
5741		ret = 0;
5742		goto done;
5743	}
5744	/*
5745	 * So the above check misses one case:
5746	 * - after releasing the path above, someone has removed the item that
5747	 *   used to be at the very end of the block, and balance between leafs
5748	 *   gets another one with bigger key.offset to replace it.
5749	 *
5750	 * This one should be returned as well, or we can get leaf corruption
5751	 * later(esp. in __btrfs_drop_extents()).
5752	 *
5753	 * And a bit more explanation about this check,
5754	 * with ret > 0, the key isn't found, the path points to the slot
5755	 * where it should be inserted, so the path->slots[0] item must be the
5756	 * bigger one.
5757	 */
5758	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759		ret = 0;
5760		goto done;
5761	}
5762
5763	while (level < BTRFS_MAX_LEVEL) {
5764		if (!path->nodes[level]) {
5765			ret = 1;
5766			goto done;
5767		}
5768
5769		slot = path->slots[level] + 1;
5770		c = path->nodes[level];
5771		if (slot >= btrfs_header_nritems(c)) {
5772			level++;
5773			if (level == BTRFS_MAX_LEVEL) {
5774				ret = 1;
5775				goto done;
5776			}
5777			continue;
5778		}
5779
5780		if (next) {
5781			btrfs_tree_unlock_rw(next, next_rw_lock);
5782			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
5783		}
5784
5785		next = c;
5786		next_rw_lock = path->locks[level];
5787		ret = read_block_for_search(NULL, root, path, &next, level,
5788					    slot, &key, 0);
5789		if (ret == -EAGAIN)
5790			goto again;
5791
5792		if (ret < 0) {
5793			btrfs_release_path(path);
5794			goto done;
5795		}
5796
5797		if (!path->skip_locking) {
5798			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
5799			if (!ret && time_seq) {
5800				/*
5801				 * If we don't get the lock, we may be racing
5802				 * with push_leaf_left, holding that lock while
5803				 * itself waiting for the leaf we've currently
5804				 * locked. To solve this situation, we give up
5805				 * on our lock and cycle.
5806				 */
5807				free_extent_buffer(next);
5808				btrfs_release_path(path);
5809				cond_resched();
5810				goto again;
5811			}
5812			if (!ret) {
5813				btrfs_set_path_blocking(path);
5814				btrfs_tree_read_lock(next);
5815				btrfs_clear_path_blocking(path, next,
5816							  BTRFS_READ_LOCK);
5817			}
5818			next_rw_lock = BTRFS_READ_LOCK;
5819		}
5820		break;
5821	}
5822	path->slots[level] = slot;
5823	while (1) {
5824		level--;
5825		c = path->nodes[level];
5826		if (path->locks[level])
5827			btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829		free_extent_buffer(c);
5830		path->nodes[level] = next;
5831		path->slots[level] = 0;
5832		if (!path->skip_locking)
5833			path->locks[level] = next_rw_lock;
5834		if (!level)
5835			break;
5836
5837		ret = read_block_for_search(NULL, root, path, &next, level,
5838					    0, &key, 0);
5839		if (ret == -EAGAIN)
5840			goto again;
5841
5842		if (ret < 0) {
5843			btrfs_release_path(path);
5844			goto done;
5845		}
5846
5847		if (!path->skip_locking) {
5848			ret = btrfs_try_tree_read_lock(next);
5849			if (!ret) {
5850				btrfs_set_path_blocking(path);
 
 
 
5851				btrfs_tree_read_lock(next);
5852				btrfs_clear_path_blocking(path, next,
5853							  BTRFS_READ_LOCK);
5854			}
5855			next_rw_lock = BTRFS_READ_LOCK;
5856		}
5857	}
5858	ret = 0;
5859done:
5860	unlock_up(path, 0, 1, 0, NULL);
5861	path->leave_spinning = old_spinning;
5862	if (!old_spinning)
5863		btrfs_set_path_blocking(path);
 
 
 
 
 
 
5864
5865	return ret;
5866}
5867
 
 
 
 
 
 
 
 
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875			struct btrfs_path *path, u64 min_objectid,
5876			int type)
5877{
5878	struct btrfs_key found_key;
5879	struct extent_buffer *leaf;
5880	u32 nritems;
5881	int ret;
5882
5883	while (1) {
5884		if (path->slots[0] == 0) {
5885			btrfs_set_path_blocking(path);
5886			ret = btrfs_prev_leaf(root, path);
5887			if (ret != 0)
5888				return ret;
5889		} else {
5890			path->slots[0]--;
5891		}
5892		leaf = path->nodes[0];
5893		nritems = btrfs_header_nritems(leaf);
5894		if (nritems == 0)
5895			return 1;
5896		if (path->slots[0] == nritems)
5897			path->slots[0]--;
5898
5899		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900		if (found_key.objectid < min_objectid)
5901			break;
5902		if (found_key.type == type)
5903			return 0;
5904		if (found_key.objectid == min_objectid &&
5905		    found_key.type < type)
5906			break;
5907	}
5908	return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918			struct btrfs_path *path, u64 min_objectid)
5919{
5920	struct btrfs_key found_key;
5921	struct extent_buffer *leaf;
5922	u32 nritems;
5923	int ret;
5924
5925	while (1) {
5926		if (path->slots[0] == 0) {
5927			btrfs_set_path_blocking(path);
5928			ret = btrfs_prev_leaf(root, path);
5929			if (ret != 0)
5930				return ret;
5931		} else {
5932			path->slots[0]--;
5933		}
5934		leaf = path->nodes[0];
5935		nritems = btrfs_header_nritems(leaf);
5936		if (nritems == 0)
5937			return 1;
5938		if (path->slots[0] == nritems)
5939			path->slots[0]--;
5940
5941		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942		if (found_key.objectid < min_objectid)
5943			break;
5944		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5946			return 0;
5947		if (found_key.objectid == min_objectid &&
5948		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949			break;
5950	}
5951	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
5952}