Loading...
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME "starfire"
30
31#include <linux/interrupt.h>
32#include <linux/module.h>
33#include <linux/kernel.h>
34#include <linux/pci.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if_vlan.h>
43#include <linux/mm.h>
44#include <linux/firmware.h>
45#include <asm/processor.h> /* Processor type for cache alignment. */
46#include <linux/uaccess.h>
47#include <asm/io.h>
48
49/*
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
52 */
53#define HAS_BROKEN_FIRMWARE
54
55/*
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
57 */
58#ifdef HAS_BROKEN_FIRMWARE
59#define PADDING_MASK 3
60#endif
61
62/*
63 * Define this if using the driver with the zero-copy patch
64 */
65#define ZEROCOPY
66
67#if IS_ENABLED(CONFIG_VLAN_8021Q)
68#define VLAN_SUPPORT
69#endif
70
71/* The user-configurable values.
72 These may be modified when a driver module is loaded.*/
73
74/* Used for tuning interrupt latency vs. overhead. */
75static int intr_latency;
76static int small_frames;
77
78static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
79static int max_interrupt_work = 20;
80static int mtu;
81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82 The Starfire has a 512 element hash table based on the Ethernet CRC. */
83static const int multicast_filter_limit = 512;
84/* Whether to do TCP/UDP checksums in hardware */
85static int enable_hw_cksum = 1;
86
87#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88/*
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
91 *
92 * NOTE:
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
96 * 23/10/2000 - Jes
97 *
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
100 * penalty. -Ion
101 */
102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103static int rx_copybreak = PKT_BUF_SZ;
104#else
105static int rx_copybreak /* = 0 */;
106#endif
107
108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109#ifdef __sparc__
110#define DMA_BURST_SIZE 64
111#else
112#define DMA_BURST_SIZE 128
113#endif
114
115/* Operational parameters that are set at compile time. */
116
117/* The "native" ring sizes are either 256 or 2048.
118 However in some modes a descriptor may be marked to wrap the ring earlier.
119*/
120#define RX_RING_SIZE 256
121#define TX_RING_SIZE 32
122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123#define DONE_Q_SIZE 1024
124/* All queues must be aligned on a 256-byte boundary */
125#define QUEUE_ALIGN 256
126
127#if RX_RING_SIZE > 256
128#define RX_Q_ENTRIES Rx2048QEntries
129#else
130#define RX_Q_ENTRIES Rx256QEntries
131#endif
132
133/* Operational parameters that usually are not changed. */
134/* Time in jiffies before concluding the transmitter is hung. */
135#define TX_TIMEOUT (2 * HZ)
136
137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138/* 64-bit dma_addr_t */
139#define ADDR_64BITS /* This chip uses 64 bit addresses. */
140#define netdrv_addr_t __le64
141#define cpu_to_dma(x) cpu_to_le64(x)
142#define dma_to_cpu(x) le64_to_cpu(x)
143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
148#else /* 32-bit dma_addr_t */
149#define netdrv_addr_t __le32
150#define cpu_to_dma(x) cpu_to_le32(x)
151#define dma_to_cpu(x) le32_to_cpu(x)
152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
157#endif
158
159#define skb_first_frag_len(skb) skb_headlen(skb)
160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161
162/* Firmware names */
163#define FIRMWARE_RX "adaptec/starfire_rx.bin"
164#define FIRMWARE_TX "adaptec/starfire_tx.bin"
165
166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168MODULE_LICENSE("GPL");
169MODULE_FIRMWARE(FIRMWARE_RX);
170MODULE_FIRMWARE(FIRMWARE_TX);
171
172module_param(max_interrupt_work, int, 0);
173module_param(mtu, int, 0);
174module_param(debug, int, 0);
175module_param(rx_copybreak, int, 0);
176module_param(intr_latency, int, 0);
177module_param(small_frames, int, 0);
178module_param(enable_hw_cksum, int, 0);
179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180MODULE_PARM_DESC(mtu, "MTU (all boards)");
181MODULE_PARM_DESC(debug, "Debug level (0-6)");
182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186
187/*
188 Theory of Operation
189
190I. Board Compatibility
191
192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193
194II. Board-specific settings
195
196III. Driver operation
197
198IIIa. Ring buffers
199
200The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
201ring sizes are set fixed by the hardware, but may optionally be wrapped
202earlier by the END bit in the descriptor.
203This driver uses that hardware queue size for the Rx ring, where a large
204number of entries has no ill effect beyond increases the potential backlog.
205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206disables the queue layer priority ordering and we have no mechanism to
207utilize the hardware two-level priority queue. When modifying the
208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209levels.
210
211IIIb/c. Transmit/Receive Structure
212
213See the Adaptec manual for the many possible structures, and options for
214each structure. There are far too many to document all of them here.
215
216For transmit this driver uses type 0/1 transmit descriptors (depending
217on the 32/64 bitness of the architecture), and relies on automatic
218minimum-length padding. It does not use the completion queue
219consumer index, but instead checks for non-zero status entries.
220
221For receive this driver uses type 2/3 receive descriptors. The driver
222allocates full frame size skbuffs for the Rx ring buffers, so all frames
223should fit in a single descriptor. The driver does not use the completion
224queue consumer index, but instead checks for non-zero status entries.
225
226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227is allocated and the frame is copied to the new skbuff. When the incoming
228frame is larger, the skbuff is passed directly up the protocol stack.
229Buffers consumed this way are replaced by newly allocated skbuffs in a later
230phase of receive.
231
232A notable aspect of operation is that unaligned buffers are not permitted by
233the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
234isn't longword aligned, which may cause problems on some machine
235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236the frame into a new skbuff unconditionally. Copied frames are put into the
237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238
239IIId. Synchronization
240
241The driver runs as two independent, single-threaded flows of control. One
242is the send-packet routine, which enforces single-threaded use by the
243dev->tbusy flag. The other thread is the interrupt handler, which is single
244threaded by the hardware and interrupt handling software.
245
246The send packet thread has partial control over the Tx ring and the netif_queue
247status. If the number of free Tx slots in the ring falls below a certain number
248(currently hardcoded to 4), it signals the upper layer to stop the queue.
249
250The interrupt handler has exclusive control over the Rx ring and records stats
251from the Tx ring. After reaping the stats, it marks the Tx queue entry as
252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253number of free Tx slow is above the threshold, it signals the upper layer to
254restart the queue.
255
256IV. Notes
257
258IVb. References
259
260The Adaptec Starfire manuals, available only from Adaptec.
261http://www.scyld.com/expert/100mbps.html
262http://www.scyld.com/expert/NWay.html
263
264IVc. Errata
265
266- StopOnPerr is broken, don't enable
267- Hardware ethernet padding exposes random data, perform software padding
268 instead (unverified -- works correctly for all the hardware I have)
269
270*/
271
272
273
274enum chip_capability_flags {CanHaveMII=1, };
275
276enum chipset {
277 CH_6915 = 0,
278};
279
280static const struct pci_device_id starfire_pci_tbl[] = {
281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 { 0, }
283};
284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285
286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287static const struct chip_info {
288 const char *name;
289 int drv_flags;
290} netdrv_tbl[] = {
291 { "Adaptec Starfire 6915", CanHaveMII },
292};
293
294
295/* Offsets to the device registers.
296 Unlike software-only systems, device drivers interact with complex hardware.
297 It's not useful to define symbolic names for every register bit in the
298 device. The name can only partially document the semantics and make
299 the driver longer and more difficult to read.
300 In general, only the important configuration values or bits changed
301 multiple times should be defined symbolically.
302*/
303enum register_offsets {
304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 TxThreshold=0x500B0,
312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 TxMode=0x55000, VlanType=0x55064,
318 PerfFilterTable=0x56000, HashTable=0x56100,
319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
320};
321
322/*
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
326 */
327enum intr_status_bits {
328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 IntrTxGfp=0x02, IntrPCIPad=0x01,
342 /* not quite bits */
343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346};
347
348/* Bits in the RxFilterMode register. */
349enum rx_mode_bits {
350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 WakeupOnGFP=0x0800,
354};
355
356/* Bits in the TxMode register */
357enum tx_mode_bits {
358 MiiSoftReset=0x8000, MIILoopback=0x4000,
359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361};
362
363/* Bits in the TxDescCtrl register. */
364enum tx_ctrl_bits {
365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 TxDescSpace128=0x30, TxDescSpace256=0x40,
367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 TxDescType3=0x03, TxDescType4=0x04,
369 TxNoDMACompletion=0x08,
370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 TxDMABurstSizeShift=8,
373};
374
375/* Bits in the RxDescQCtrl register. */
376enum rx_ctrl_bits {
377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 Rx2048QEntries=0x4000, Rx256QEntries=0,
380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 RxDescSpace4=0x000, RxDescSpace8=0x100,
383 RxDescSpace16=0x200, RxDescSpace32=0x300,
384 RxDescSpace64=0x400, RxDescSpace128=0x500,
385 RxConsumerWrEn=0x80,
386};
387
388/* Bits in the RxDMACtrl register. */
389enum rx_dmactrl_bits {
390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 RxChecksumRejectTCPOnly=0x01000000,
395 RxCompletionQ2Enable=0x800000,
396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 RxDMAQ2NonIP=0x400000,
399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 RxBurstSizeShift=0,
402};
403
404/* Bits in the RxCompletionAddr register */
405enum rx_compl_bits {
406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 RxComplProducerWrEn=0x40,
408 RxComplType0=0x00, RxComplType1=0x10,
409 RxComplType2=0x20, RxComplType3=0x30,
410 RxComplThreshShift=0,
411};
412
413/* Bits in the TxCompletionAddr register */
414enum tx_compl_bits {
415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 TxComplProducerWrEn=0x40,
417 TxComplIntrStatus=0x20,
418 CommonQueueMode=0x10,
419 TxComplThreshShift=0,
420};
421
422/* Bits in the GenCtrl register */
423enum gen_ctrl_bits {
424 RxEnable=0x05, TxEnable=0x0a,
425 RxGFPEnable=0x10, TxGFPEnable=0x20,
426};
427
428/* Bits in the IntrTimerCtrl register */
429enum intr_ctrl_bits {
430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 IntrLatencyMask=0x1f,
433};
434
435/* The Rx and Tx buffer descriptors. */
436struct starfire_rx_desc {
437 netdrv_addr_t rxaddr;
438};
439enum rx_desc_bits {
440 RxDescValid=1, RxDescEndRing=2,
441};
442
443/* Completion queue entry. */
444struct csum_rx_done_desc {
445 __le32 status; /* Low 16 bits is length. */
446 __le16 csum; /* Partial checksum */
447 __le16 status2;
448};
449struct full_rx_done_desc {
450 __le32 status; /* Low 16 bits is length. */
451 __le16 status3;
452 __le16 status2;
453 __le16 vlanid;
454 __le16 csum; /* partial checksum */
455 __le32 timestamp;
456};
457/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
458#ifdef VLAN_SUPPORT
459typedef struct full_rx_done_desc rx_done_desc;
460#define RxComplType RxComplType3
461#else /* not VLAN_SUPPORT */
462typedef struct csum_rx_done_desc rx_done_desc;
463#define RxComplType RxComplType2
464#endif /* not VLAN_SUPPORT */
465
466enum rx_done_bits {
467 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
468};
469
470/* Type 1 Tx descriptor. */
471struct starfire_tx_desc_1 {
472 __le32 status; /* Upper bits are status, lower 16 length. */
473 __le32 addr;
474};
475
476/* Type 2 Tx descriptor. */
477struct starfire_tx_desc_2 {
478 __le32 status; /* Upper bits are status, lower 16 length. */
479 __le32 reserved;
480 __le64 addr;
481};
482
483#ifdef ADDR_64BITS
484typedef struct starfire_tx_desc_2 starfire_tx_desc;
485#define TX_DESC_TYPE TxDescType2
486#else /* not ADDR_64BITS */
487typedef struct starfire_tx_desc_1 starfire_tx_desc;
488#define TX_DESC_TYPE TxDescType1
489#endif /* not ADDR_64BITS */
490#define TX_DESC_SPACING TxDescSpaceUnlim
491
492enum tx_desc_bits {
493 TxDescID=0xB0000000,
494 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
495 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
496};
497struct tx_done_desc {
498 __le32 status; /* timestamp, index. */
499#if 0
500 __le32 intrstatus; /* interrupt status */
501#endif
502};
503
504struct rx_ring_info {
505 struct sk_buff *skb;
506 dma_addr_t mapping;
507};
508struct tx_ring_info {
509 struct sk_buff *skb;
510 dma_addr_t mapping;
511 unsigned int used_slots;
512};
513
514#define PHY_CNT 2
515struct netdev_private {
516 /* Descriptor rings first for alignment. */
517 struct starfire_rx_desc *rx_ring;
518 starfire_tx_desc *tx_ring;
519 dma_addr_t rx_ring_dma;
520 dma_addr_t tx_ring_dma;
521 /* The addresses of rx/tx-in-place skbuffs. */
522 struct rx_ring_info rx_info[RX_RING_SIZE];
523 struct tx_ring_info tx_info[TX_RING_SIZE];
524 /* Pointers to completion queues (full pages). */
525 rx_done_desc *rx_done_q;
526 dma_addr_t rx_done_q_dma;
527 unsigned int rx_done;
528 struct tx_done_desc *tx_done_q;
529 dma_addr_t tx_done_q_dma;
530 unsigned int tx_done;
531 struct napi_struct napi;
532 struct net_device *dev;
533 struct pci_dev *pci_dev;
534#ifdef VLAN_SUPPORT
535 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
536#endif
537 void *queue_mem;
538 dma_addr_t queue_mem_dma;
539 size_t queue_mem_size;
540
541 /* Frequently used values: keep some adjacent for cache effect. */
542 spinlock_t lock;
543 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
544 unsigned int cur_tx, dirty_tx, reap_tx;
545 unsigned int rx_buf_sz; /* Based on MTU+slack. */
546 /* These values keep track of the transceiver/media in use. */
547 int speed100; /* Set if speed == 100MBit. */
548 u32 tx_mode;
549 u32 intr_timer_ctrl;
550 u8 tx_threshold;
551 /* MII transceiver section. */
552 struct mii_if_info mii_if; /* MII lib hooks/info */
553 int phy_cnt; /* MII device addresses. */
554 unsigned char phys[PHY_CNT]; /* MII device addresses. */
555 void __iomem *base;
556};
557
558
559static int mdio_read(struct net_device *dev, int phy_id, int location);
560static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
561static int netdev_open(struct net_device *dev);
562static void check_duplex(struct net_device *dev);
563static void tx_timeout(struct net_device *dev, unsigned int txqueue);
564static void init_ring(struct net_device *dev);
565static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
566static irqreturn_t intr_handler(int irq, void *dev_instance);
567static void netdev_error(struct net_device *dev, int intr_status);
568static int __netdev_rx(struct net_device *dev, int *quota);
569static int netdev_poll(struct napi_struct *napi, int budget);
570static void refill_rx_ring(struct net_device *dev);
571static void netdev_error(struct net_device *dev, int intr_status);
572static void set_rx_mode(struct net_device *dev);
573static struct net_device_stats *get_stats(struct net_device *dev);
574static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
575static int netdev_close(struct net_device *dev);
576static void netdev_media_change(struct net_device *dev);
577static const struct ethtool_ops ethtool_ops;
578
579
580#ifdef VLAN_SUPPORT
581static int netdev_vlan_rx_add_vid(struct net_device *dev,
582 __be16 proto, u16 vid)
583{
584 struct netdev_private *np = netdev_priv(dev);
585
586 spin_lock(&np->lock);
587 if (debug > 1)
588 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
589 set_bit(vid, np->active_vlans);
590 set_rx_mode(dev);
591 spin_unlock(&np->lock);
592
593 return 0;
594}
595
596static int netdev_vlan_rx_kill_vid(struct net_device *dev,
597 __be16 proto, u16 vid)
598{
599 struct netdev_private *np = netdev_priv(dev);
600
601 spin_lock(&np->lock);
602 if (debug > 1)
603 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
604 clear_bit(vid, np->active_vlans);
605 set_rx_mode(dev);
606 spin_unlock(&np->lock);
607
608 return 0;
609}
610#endif /* VLAN_SUPPORT */
611
612
613static const struct net_device_ops netdev_ops = {
614 .ndo_open = netdev_open,
615 .ndo_stop = netdev_close,
616 .ndo_start_xmit = start_tx,
617 .ndo_tx_timeout = tx_timeout,
618 .ndo_get_stats = get_stats,
619 .ndo_set_rx_mode = set_rx_mode,
620 .ndo_eth_ioctl = netdev_ioctl,
621 .ndo_set_mac_address = eth_mac_addr,
622 .ndo_validate_addr = eth_validate_addr,
623#ifdef VLAN_SUPPORT
624 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
625 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
626#endif
627};
628
629static int starfire_init_one(struct pci_dev *pdev,
630 const struct pci_device_id *ent)
631{
632 struct device *d = &pdev->dev;
633 struct netdev_private *np;
634 int i, irq, chip_idx = ent->driver_data;
635 struct net_device *dev;
636 u8 addr[ETH_ALEN];
637 long ioaddr;
638 void __iomem *base;
639 int drv_flags, io_size;
640 int boguscnt;
641
642 if (pci_enable_device (pdev))
643 return -EIO;
644
645 ioaddr = pci_resource_start(pdev, 0);
646 io_size = pci_resource_len(pdev, 0);
647 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
648 dev_err(d, "no PCI MEM resources, aborting\n");
649 return -ENODEV;
650 }
651
652 dev = alloc_etherdev(sizeof(*np));
653 if (!dev)
654 return -ENOMEM;
655
656 SET_NETDEV_DEV(dev, &pdev->dev);
657
658 irq = pdev->irq;
659
660 if (pci_request_regions (pdev, DRV_NAME)) {
661 dev_err(d, "cannot reserve PCI resources, aborting\n");
662 goto err_out_free_netdev;
663 }
664
665 base = ioremap(ioaddr, io_size);
666 if (!base) {
667 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
668 io_size, ioaddr);
669 goto err_out_free_res;
670 }
671
672 pci_set_master(pdev);
673
674 /* enable MWI -- it vastly improves Rx performance on sparc64 */
675 pci_try_set_mwi(pdev);
676
677#ifdef ZEROCOPY
678 /* Starfire can do TCP/UDP checksumming */
679 if (enable_hw_cksum)
680 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
681#endif /* ZEROCOPY */
682
683#ifdef VLAN_SUPPORT
684 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
685#endif /* VLAN_RX_KILL_VID */
686#ifdef ADDR_64BITS
687 dev->features |= NETIF_F_HIGHDMA;
688#endif /* ADDR_64BITS */
689
690 /* Serial EEPROM reads are hidden by the hardware. */
691 for (i = 0; i < 6; i++)
692 addr[i] = readb(base + EEPROMCtrl + 20 - i);
693 eth_hw_addr_set(dev, addr);
694
695#if ! defined(final_version) /* Dump the EEPROM contents during development. */
696 if (debug > 4)
697 for (i = 0; i < 0x20; i++)
698 printk("%2.2x%s",
699 (unsigned int)readb(base + EEPROMCtrl + i),
700 i % 16 != 15 ? " " : "\n");
701#endif
702
703 /* Issue soft reset */
704 writel(MiiSoftReset, base + TxMode);
705 udelay(1000);
706 writel(0, base + TxMode);
707
708 /* Reset the chip to erase previous misconfiguration. */
709 writel(1, base + PCIDeviceConfig);
710 boguscnt = 1000;
711 while (--boguscnt > 0) {
712 udelay(10);
713 if ((readl(base + PCIDeviceConfig) & 1) == 0)
714 break;
715 }
716 if (boguscnt == 0)
717 printk("%s: chipset reset never completed!\n", dev->name);
718 /* wait a little longer */
719 udelay(1000);
720
721 np = netdev_priv(dev);
722 np->dev = dev;
723 np->base = base;
724 spin_lock_init(&np->lock);
725 pci_set_drvdata(pdev, dev);
726
727 np->pci_dev = pdev;
728
729 np->mii_if.dev = dev;
730 np->mii_if.mdio_read = mdio_read;
731 np->mii_if.mdio_write = mdio_write;
732 np->mii_if.phy_id_mask = 0x1f;
733 np->mii_if.reg_num_mask = 0x1f;
734
735 drv_flags = netdrv_tbl[chip_idx].drv_flags;
736
737 np->speed100 = 1;
738
739 /* timer resolution is 128 * 0.8us */
740 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
741 Timer10X | EnableIntrMasking;
742
743 if (small_frames > 0) {
744 np->intr_timer_ctrl |= SmallFrameBypass;
745 switch (small_frames) {
746 case 1 ... 64:
747 np->intr_timer_ctrl |= SmallFrame64;
748 break;
749 case 65 ... 128:
750 np->intr_timer_ctrl |= SmallFrame128;
751 break;
752 case 129 ... 256:
753 np->intr_timer_ctrl |= SmallFrame256;
754 break;
755 default:
756 np->intr_timer_ctrl |= SmallFrame512;
757 if (small_frames > 512)
758 printk("Adjusting small_frames down to 512\n");
759 break;
760 }
761 }
762
763 dev->netdev_ops = &netdev_ops;
764 dev->watchdog_timeo = TX_TIMEOUT;
765 dev->ethtool_ops = ðtool_ops;
766
767 netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
768
769 if (mtu)
770 dev->mtu = mtu;
771
772 if (register_netdev(dev))
773 goto err_out_cleardev;
774
775 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
776 dev->name, netdrv_tbl[chip_idx].name, base,
777 dev->dev_addr, irq);
778
779 if (drv_flags & CanHaveMII) {
780 int phy, phy_idx = 0;
781 int mii_status;
782 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
783 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
784 msleep(100);
785 boguscnt = 1000;
786 while (--boguscnt > 0)
787 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
788 break;
789 if (boguscnt == 0) {
790 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
791 continue;
792 }
793 mii_status = mdio_read(dev, phy, MII_BMSR);
794 if (mii_status != 0) {
795 np->phys[phy_idx++] = phy;
796 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
797 printk(KERN_INFO "%s: MII PHY found at address %d, status "
798 "%#4.4x advertising %#4.4x.\n",
799 dev->name, phy, mii_status, np->mii_if.advertising);
800 /* there can be only one PHY on-board */
801 break;
802 }
803 }
804 np->phy_cnt = phy_idx;
805 if (np->phy_cnt > 0)
806 np->mii_if.phy_id = np->phys[0];
807 else
808 memset(&np->mii_if, 0, sizeof(np->mii_if));
809 }
810
811 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
812 dev->name, enable_hw_cksum ? "enabled" : "disabled");
813 return 0;
814
815err_out_cleardev:
816 iounmap(base);
817err_out_free_res:
818 pci_release_regions (pdev);
819err_out_free_netdev:
820 free_netdev(dev);
821 return -ENODEV;
822}
823
824
825/* Read the MII Management Data I/O (MDIO) interfaces. */
826static int mdio_read(struct net_device *dev, int phy_id, int location)
827{
828 struct netdev_private *np = netdev_priv(dev);
829 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
830 int result, boguscnt=1000;
831 /* ??? Should we add a busy-wait here? */
832 do {
833 result = readl(mdio_addr);
834 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
835 if (boguscnt == 0)
836 return 0;
837 if ((result & 0xffff) == 0xffff)
838 return 0;
839 return result & 0xffff;
840}
841
842
843static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
844{
845 struct netdev_private *np = netdev_priv(dev);
846 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
847 writel(value, mdio_addr);
848 /* The busy-wait will occur before a read. */
849}
850
851
852static int netdev_open(struct net_device *dev)
853{
854 const struct firmware *fw_rx, *fw_tx;
855 const __be32 *fw_rx_data, *fw_tx_data;
856 struct netdev_private *np = netdev_priv(dev);
857 void __iomem *ioaddr = np->base;
858 const int irq = np->pci_dev->irq;
859 int i, retval;
860 size_t tx_size, rx_size;
861 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
862
863 /* Do we ever need to reset the chip??? */
864
865 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
866 if (retval)
867 return retval;
868
869 /* Disable the Rx and Tx, and reset the chip. */
870 writel(0, ioaddr + GenCtrl);
871 writel(1, ioaddr + PCIDeviceConfig);
872 if (debug > 1)
873 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
874 dev->name, irq);
875
876 /* Allocate the various queues. */
877 if (!np->queue_mem) {
878 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
879 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
880 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
881 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
882 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
883 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
884 np->queue_mem_size,
885 &np->queue_mem_dma, GFP_ATOMIC);
886 if (np->queue_mem == NULL) {
887 free_irq(irq, dev);
888 return -ENOMEM;
889 }
890
891 np->tx_done_q = np->queue_mem;
892 np->tx_done_q_dma = np->queue_mem_dma;
893 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
894 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
895 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
896 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
897 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
898 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
899 }
900
901 /* Start with no carrier, it gets adjusted later */
902 netif_carrier_off(dev);
903 init_ring(dev);
904 /* Set the size of the Rx buffers. */
905 writel((np->rx_buf_sz << RxBufferLenShift) |
906 (0 << RxMinDescrThreshShift) |
907 RxPrefetchMode | RxVariableQ |
908 RX_Q_ENTRIES |
909 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
910 RxDescSpace4,
911 ioaddr + RxDescQCtrl);
912
913 /* Set up the Rx DMA controller. */
914 writel(RxChecksumIgnore |
915 (0 << RxEarlyIntThreshShift) |
916 (6 << RxHighPrioThreshShift) |
917 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
918 ioaddr + RxDMACtrl);
919
920 /* Set Tx descriptor */
921 writel((2 << TxHiPriFIFOThreshShift) |
922 (0 << TxPadLenShift) |
923 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
924 TX_DESC_Q_ADDR_SIZE |
925 TX_DESC_SPACING | TX_DESC_TYPE,
926 ioaddr + TxDescCtrl);
927
928 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
929 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
930 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
931 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
932 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
933
934 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
935 writel(np->rx_done_q_dma |
936 RxComplType |
937 (0 << RxComplThreshShift),
938 ioaddr + RxCompletionAddr);
939
940 if (debug > 1)
941 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
942
943 /* Fill both the Tx SA register and the Rx perfect filter. */
944 for (i = 0; i < 6; i++)
945 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
946 /* The first entry is special because it bypasses the VLAN filter.
947 Don't use it. */
948 writew(0, ioaddr + PerfFilterTable);
949 writew(0, ioaddr + PerfFilterTable + 4);
950 writew(0, ioaddr + PerfFilterTable + 8);
951 for (i = 1; i < 16; i++) {
952 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
953 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
954 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
955 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
956 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
957 }
958
959 /* Initialize other registers. */
960 /* Configure the PCI bus bursts and FIFO thresholds. */
961 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
962 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
963 udelay(1000);
964 writel(np->tx_mode, ioaddr + TxMode);
965 np->tx_threshold = 4;
966 writel(np->tx_threshold, ioaddr + TxThreshold);
967
968 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
969
970 napi_enable(&np->napi);
971
972 netif_start_queue(dev);
973
974 if (debug > 1)
975 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
976 set_rx_mode(dev);
977
978 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
979 check_duplex(dev);
980
981 /* Enable GPIO interrupts on link change */
982 writel(0x0f00ff00, ioaddr + GPIOCtrl);
983
984 /* Set the interrupt mask */
985 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
986 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
987 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
988 ioaddr + IntrEnable);
989 /* Enable PCI interrupts. */
990 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
991 ioaddr + PCIDeviceConfig);
992
993#ifdef VLAN_SUPPORT
994 /* Set VLAN type to 802.1q */
995 writel(ETH_P_8021Q, ioaddr + VlanType);
996#endif /* VLAN_SUPPORT */
997
998 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
999 if (retval) {
1000 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1001 FIRMWARE_RX);
1002 goto out_init;
1003 }
1004 if (fw_rx->size % 4) {
1005 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1006 fw_rx->size, FIRMWARE_RX);
1007 retval = -EINVAL;
1008 goto out_rx;
1009 }
1010 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1011 if (retval) {
1012 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1013 FIRMWARE_TX);
1014 goto out_rx;
1015 }
1016 if (fw_tx->size % 4) {
1017 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1018 fw_tx->size, FIRMWARE_TX);
1019 retval = -EINVAL;
1020 goto out_tx;
1021 }
1022 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1023 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1024 rx_size = fw_rx->size / 4;
1025 tx_size = fw_tx->size / 4;
1026
1027 /* Load Rx/Tx firmware into the frame processors */
1028 for (i = 0; i < rx_size; i++)
1029 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1030 for (i = 0; i < tx_size; i++)
1031 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1032 if (enable_hw_cksum)
1033 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1034 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1035 else
1036 /* Enable the Rx and Tx units only. */
1037 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1038
1039 if (debug > 1)
1040 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1041 dev->name);
1042
1043out_tx:
1044 release_firmware(fw_tx);
1045out_rx:
1046 release_firmware(fw_rx);
1047out_init:
1048 if (retval)
1049 netdev_close(dev);
1050 return retval;
1051}
1052
1053
1054static void check_duplex(struct net_device *dev)
1055{
1056 struct netdev_private *np = netdev_priv(dev);
1057 u16 reg0;
1058 int silly_count = 1000;
1059
1060 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1061 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1062 udelay(500);
1063 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1064 /* do nothing */;
1065 if (!silly_count) {
1066 printk("%s: MII reset failed!\n", dev->name);
1067 return;
1068 }
1069
1070 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1071
1072 if (!np->mii_if.force_media) {
1073 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1074 } else {
1075 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1076 if (np->speed100)
1077 reg0 |= BMCR_SPEED100;
1078 if (np->mii_if.full_duplex)
1079 reg0 |= BMCR_FULLDPLX;
1080 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1081 dev->name,
1082 np->speed100 ? "100" : "10",
1083 np->mii_if.full_duplex ? "full" : "half");
1084 }
1085 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1086}
1087
1088
1089static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1090{
1091 struct netdev_private *np = netdev_priv(dev);
1092 void __iomem *ioaddr = np->base;
1093 int old_debug;
1094
1095 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1096 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1097
1098 /* Perhaps we should reinitialize the hardware here. */
1099
1100 /*
1101 * Stop and restart the interface.
1102 * Cheat and increase the debug level temporarily.
1103 */
1104 old_debug = debug;
1105 debug = 2;
1106 netdev_close(dev);
1107 netdev_open(dev);
1108 debug = old_debug;
1109
1110 /* Trigger an immediate transmit demand. */
1111
1112 netif_trans_update(dev); /* prevent tx timeout */
1113 dev->stats.tx_errors++;
1114 netif_wake_queue(dev);
1115}
1116
1117
1118/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1119static void init_ring(struct net_device *dev)
1120{
1121 struct netdev_private *np = netdev_priv(dev);
1122 int i;
1123
1124 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1125 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1126
1127 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1128
1129 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1130 for (i = 0; i < RX_RING_SIZE; i++) {
1131 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1132 np->rx_info[i].skb = skb;
1133 if (skb == NULL)
1134 break;
1135 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1136 skb->data,
1137 np->rx_buf_sz,
1138 DMA_FROM_DEVICE);
1139 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1140 dev_kfree_skb(skb);
1141 np->rx_info[i].skb = NULL;
1142 break;
1143 }
1144 /* Grrr, we cannot offset to correctly align the IP header. */
1145 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1146 }
1147 writew(i - 1, np->base + RxDescQIdx);
1148 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1149
1150 /* Clear the remainder of the Rx buffer ring. */
1151 for ( ; i < RX_RING_SIZE; i++) {
1152 np->rx_ring[i].rxaddr = 0;
1153 np->rx_info[i].skb = NULL;
1154 np->rx_info[i].mapping = 0;
1155 }
1156 /* Mark the last entry as wrapping the ring. */
1157 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1158
1159 /* Clear the completion rings. */
1160 for (i = 0; i < DONE_Q_SIZE; i++) {
1161 np->rx_done_q[i].status = 0;
1162 np->tx_done_q[i].status = 0;
1163 }
1164
1165 for (i = 0; i < TX_RING_SIZE; i++)
1166 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1167}
1168
1169
1170static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1171{
1172 struct netdev_private *np = netdev_priv(dev);
1173 unsigned int entry;
1174 unsigned int prev_tx;
1175 u32 status;
1176 int i, j;
1177
1178 /*
1179 * be cautious here, wrapping the queue has weird semantics
1180 * and we may not have enough slots even when it seems we do.
1181 */
1182 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1183 netif_stop_queue(dev);
1184 return NETDEV_TX_BUSY;
1185 }
1186
1187#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1188 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1189 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1190 return NETDEV_TX_OK;
1191 }
1192#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1193
1194 prev_tx = np->cur_tx;
1195 entry = np->cur_tx % TX_RING_SIZE;
1196 for (i = 0; i < skb_num_frags(skb); i++) {
1197 int wrap_ring = 0;
1198 status = TxDescID;
1199
1200 if (i == 0) {
1201 np->tx_info[entry].skb = skb;
1202 status |= TxCRCEn;
1203 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1204 status |= TxRingWrap;
1205 wrap_ring = 1;
1206 }
1207 if (np->reap_tx) {
1208 status |= TxDescIntr;
1209 np->reap_tx = 0;
1210 }
1211 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1212 status |= TxCalTCP;
1213 dev->stats.tx_compressed++;
1214 }
1215 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1216
1217 np->tx_info[entry].mapping =
1218 dma_map_single(&np->pci_dev->dev, skb->data,
1219 skb_first_frag_len(skb),
1220 DMA_TO_DEVICE);
1221 } else {
1222 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223 status |= skb_frag_size(this_frag);
1224 np->tx_info[entry].mapping =
1225 dma_map_single(&np->pci_dev->dev,
1226 skb_frag_address(this_frag),
1227 skb_frag_size(this_frag),
1228 DMA_TO_DEVICE);
1229 }
1230 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1231 dev->stats.tx_dropped++;
1232 goto err_out;
1233 }
1234
1235 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1236 np->tx_ring[entry].status = cpu_to_le32(status);
1237 if (debug > 3)
1238 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1239 dev->name, np->cur_tx, np->dirty_tx,
1240 entry, status);
1241 if (wrap_ring) {
1242 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1243 np->cur_tx += np->tx_info[entry].used_slots;
1244 entry = 0;
1245 } else {
1246 np->tx_info[entry].used_slots = 1;
1247 np->cur_tx += np->tx_info[entry].used_slots;
1248 entry++;
1249 }
1250 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1251 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1252 np->reap_tx = 1;
1253 }
1254
1255 /* Non-x86: explicitly flush descriptor cache lines here. */
1256 /* Ensure all descriptors are written back before the transmit is
1257 initiated. - Jes */
1258 wmb();
1259
1260 /* Update the producer index. */
1261 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1262
1263 /* 4 is arbitrary, but should be ok */
1264 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1265 netif_stop_queue(dev);
1266
1267 return NETDEV_TX_OK;
1268
1269err_out:
1270 entry = prev_tx % TX_RING_SIZE;
1271 np->tx_info[entry].skb = NULL;
1272 if (i > 0) {
1273 dma_unmap_single(&np->pci_dev->dev,
1274 np->tx_info[entry].mapping,
1275 skb_first_frag_len(skb), DMA_TO_DEVICE);
1276 np->tx_info[entry].mapping = 0;
1277 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1278 for (j = 1; j < i; j++) {
1279 dma_unmap_single(&np->pci_dev->dev,
1280 np->tx_info[entry].mapping,
1281 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1282 DMA_TO_DEVICE);
1283 entry++;
1284 }
1285 }
1286 dev_kfree_skb_any(skb);
1287 np->cur_tx = prev_tx;
1288 return NETDEV_TX_OK;
1289}
1290
1291/* The interrupt handler does all of the Rx thread work and cleans up
1292 after the Tx thread. */
1293static irqreturn_t intr_handler(int irq, void *dev_instance)
1294{
1295 struct net_device *dev = dev_instance;
1296 struct netdev_private *np = netdev_priv(dev);
1297 void __iomem *ioaddr = np->base;
1298 int boguscnt = max_interrupt_work;
1299 int consumer;
1300 int tx_status;
1301 int handled = 0;
1302
1303 do {
1304 u32 intr_status = readl(ioaddr + IntrClear);
1305
1306 if (debug > 4)
1307 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1308 dev->name, intr_status);
1309
1310 if (intr_status == 0 || intr_status == (u32) -1)
1311 break;
1312
1313 handled = 1;
1314
1315 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1316 u32 enable;
1317
1318 if (likely(napi_schedule_prep(&np->napi))) {
1319 __napi_schedule(&np->napi);
1320 enable = readl(ioaddr + IntrEnable);
1321 enable &= ~(IntrRxDone | IntrRxEmpty);
1322 writel(enable, ioaddr + IntrEnable);
1323 /* flush PCI posting buffers */
1324 readl(ioaddr + IntrEnable);
1325 } else {
1326 /* Paranoia check */
1327 enable = readl(ioaddr + IntrEnable);
1328 if (enable & (IntrRxDone | IntrRxEmpty)) {
1329 printk(KERN_INFO
1330 "%s: interrupt while in poll!\n",
1331 dev->name);
1332 enable &= ~(IntrRxDone | IntrRxEmpty);
1333 writel(enable, ioaddr + IntrEnable);
1334 }
1335 }
1336 }
1337
1338 /* Scavenge the skbuff list based on the Tx-done queue.
1339 There are redundant checks here that may be cleaned up
1340 after the driver has proven to be reliable. */
1341 consumer = readl(ioaddr + TxConsumerIdx);
1342 if (debug > 3)
1343 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1344 dev->name, consumer);
1345
1346 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347 if (debug > 3)
1348 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1349 dev->name, np->dirty_tx, np->tx_done, tx_status);
1350 if ((tx_status & 0xe0000000) == 0xa0000000) {
1351 dev->stats.tx_packets++;
1352 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1353 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1354 struct sk_buff *skb = np->tx_info[entry].skb;
1355 np->tx_info[entry].skb = NULL;
1356 dma_unmap_single(&np->pci_dev->dev,
1357 np->tx_info[entry].mapping,
1358 skb_first_frag_len(skb),
1359 DMA_TO_DEVICE);
1360 np->tx_info[entry].mapping = 0;
1361 np->dirty_tx += np->tx_info[entry].used_slots;
1362 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1363 {
1364 int i;
1365 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1366 dma_unmap_single(&np->pci_dev->dev,
1367 np->tx_info[entry].mapping,
1368 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1369 DMA_TO_DEVICE);
1370 np->dirty_tx++;
1371 entry++;
1372 }
1373 }
1374
1375 dev_consume_skb_irq(skb);
1376 }
1377 np->tx_done_q[np->tx_done].status = 0;
1378 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379 }
1380 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381
1382 if (netif_queue_stopped(dev) &&
1383 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1384 /* The ring is no longer full, wake the queue. */
1385 netif_wake_queue(dev);
1386 }
1387
1388 /* Stats overflow */
1389 if (intr_status & IntrStatsMax)
1390 get_stats(dev);
1391
1392 /* Media change interrupt. */
1393 if (intr_status & IntrLinkChange)
1394 netdev_media_change(dev);
1395
1396 /* Abnormal error summary/uncommon events handlers. */
1397 if (intr_status & IntrAbnormalSummary)
1398 netdev_error(dev, intr_status);
1399
1400 if (--boguscnt < 0) {
1401 if (debug > 1)
1402 printk(KERN_WARNING "%s: Too much work at interrupt, "
1403 "status=%#8.8x.\n",
1404 dev->name, intr_status);
1405 break;
1406 }
1407 } while (1);
1408
1409 if (debug > 4)
1410 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1411 dev->name, (int) readl(ioaddr + IntrStatus));
1412 return IRQ_RETVAL(handled);
1413}
1414
1415
1416/*
1417 * This routine is logically part of the interrupt/poll handler, but separated
1418 * for clarity and better register allocation.
1419 */
1420static int __netdev_rx(struct net_device *dev, int *quota)
1421{
1422 struct netdev_private *np = netdev_priv(dev);
1423 u32 desc_status;
1424 int retcode = 0;
1425
1426 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1427 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1428 struct sk_buff *skb;
1429 u16 pkt_len;
1430 int entry;
1431 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1432
1433 if (debug > 4)
1434 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1435 if (!(desc_status & RxOK)) {
1436 /* There was an error. */
1437 if (debug > 2)
1438 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1439 dev->stats.rx_errors++;
1440 if (desc_status & RxFIFOErr)
1441 dev->stats.rx_fifo_errors++;
1442 goto next_rx;
1443 }
1444
1445 if (*quota <= 0) { /* out of rx quota */
1446 retcode = 1;
1447 goto out;
1448 }
1449 (*quota)--;
1450
1451 pkt_len = desc_status; /* Implicitly Truncate */
1452 entry = (desc_status >> 16) & 0x7ff;
1453
1454 if (debug > 4)
1455 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1456 /* Check if the packet is long enough to accept without copying
1457 to a minimally-sized skbuff. */
1458 if (pkt_len < rx_copybreak &&
1459 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1460 skb_reserve(skb, 2); /* 16 byte align the IP header */
1461 dma_sync_single_for_cpu(&np->pci_dev->dev,
1462 np->rx_info[entry].mapping,
1463 pkt_len, DMA_FROM_DEVICE);
1464 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1465 dma_sync_single_for_device(&np->pci_dev->dev,
1466 np->rx_info[entry].mapping,
1467 pkt_len, DMA_FROM_DEVICE);
1468 skb_put(skb, pkt_len);
1469 } else {
1470 dma_unmap_single(&np->pci_dev->dev,
1471 np->rx_info[entry].mapping,
1472 np->rx_buf_sz, DMA_FROM_DEVICE);
1473 skb = np->rx_info[entry].skb;
1474 skb_put(skb, pkt_len);
1475 np->rx_info[entry].skb = NULL;
1476 np->rx_info[entry].mapping = 0;
1477 }
1478#ifndef final_version /* Remove after testing. */
1479 /* You will want this info for the initial debug. */
1480 if (debug > 5) {
1481 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1482 skb->data, skb->data + 6,
1483 skb->data[12], skb->data[13]);
1484 }
1485#endif
1486
1487 skb->protocol = eth_type_trans(skb, dev);
1488#ifdef VLAN_SUPPORT
1489 if (debug > 4)
1490 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1491#endif
1492 if (le16_to_cpu(desc->status2) & 0x0100) {
1493 skb->ip_summed = CHECKSUM_UNNECESSARY;
1494 dev->stats.rx_compressed++;
1495 }
1496 /*
1497 * This feature doesn't seem to be working, at least
1498 * with the two firmware versions I have. If the GFP sees
1499 * an IP fragment, it either ignores it completely, or reports
1500 * "bad checksum" on it.
1501 *
1502 * Maybe I missed something -- corrections are welcome.
1503 * Until then, the printk stays. :-) -Ion
1504 */
1505 else if (le16_to_cpu(desc->status2) & 0x0040) {
1506 skb->ip_summed = CHECKSUM_COMPLETE;
1507 skb->csum = le16_to_cpu(desc->csum);
1508 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1509 }
1510#ifdef VLAN_SUPPORT
1511 if (le16_to_cpu(desc->status2) & 0x0200) {
1512 u16 vlid = le16_to_cpu(desc->vlanid);
1513
1514 if (debug > 4) {
1515 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1516 vlid);
1517 }
1518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1519 }
1520#endif /* VLAN_SUPPORT */
1521 netif_receive_skb(skb);
1522 dev->stats.rx_packets++;
1523
1524 next_rx:
1525 np->cur_rx++;
1526 desc->status = 0;
1527 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1528 }
1529
1530 if (*quota == 0) { /* out of rx quota */
1531 retcode = 1;
1532 goto out;
1533 }
1534 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1535
1536 out:
1537 refill_rx_ring(dev);
1538 if (debug > 5)
1539 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1540 retcode, np->rx_done, desc_status);
1541 return retcode;
1542}
1543
1544static int netdev_poll(struct napi_struct *napi, int budget)
1545{
1546 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1547 struct net_device *dev = np->dev;
1548 u32 intr_status;
1549 void __iomem *ioaddr = np->base;
1550 int quota = budget;
1551
1552 do {
1553 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1554
1555 if (__netdev_rx(dev, "a))
1556 goto out;
1557
1558 intr_status = readl(ioaddr + IntrStatus);
1559 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1560
1561 napi_complete(napi);
1562 intr_status = readl(ioaddr + IntrEnable);
1563 intr_status |= IntrRxDone | IntrRxEmpty;
1564 writel(intr_status, ioaddr + IntrEnable);
1565
1566 out:
1567 if (debug > 5)
1568 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1569 budget - quota);
1570
1571 /* Restart Rx engine if stopped. */
1572 return budget - quota;
1573}
1574
1575static void refill_rx_ring(struct net_device *dev)
1576{
1577 struct netdev_private *np = netdev_priv(dev);
1578 struct sk_buff *skb;
1579 int entry = -1;
1580
1581 /* Refill the Rx ring buffers. */
1582 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1583 entry = np->dirty_rx % RX_RING_SIZE;
1584 if (np->rx_info[entry].skb == NULL) {
1585 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1586 np->rx_info[entry].skb = skb;
1587 if (skb == NULL)
1588 break; /* Better luck next round. */
1589 np->rx_info[entry].mapping =
1590 dma_map_single(&np->pci_dev->dev, skb->data,
1591 np->rx_buf_sz, DMA_FROM_DEVICE);
1592 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1593 dev_kfree_skb(skb);
1594 np->rx_info[entry].skb = NULL;
1595 break;
1596 }
1597 np->rx_ring[entry].rxaddr =
1598 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1599 }
1600 if (entry == RX_RING_SIZE - 1)
1601 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1602 }
1603 if (entry >= 0)
1604 writew(entry, np->base + RxDescQIdx);
1605}
1606
1607
1608static void netdev_media_change(struct net_device *dev)
1609{
1610 struct netdev_private *np = netdev_priv(dev);
1611 void __iomem *ioaddr = np->base;
1612 u16 reg0, reg1, reg4, reg5;
1613 u32 new_tx_mode;
1614 u32 new_intr_timer_ctrl;
1615
1616 /* reset status first */
1617 mdio_read(dev, np->phys[0], MII_BMCR);
1618 mdio_read(dev, np->phys[0], MII_BMSR);
1619
1620 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1621 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1622
1623 if (reg1 & BMSR_LSTATUS) {
1624 /* link is up */
1625 if (reg0 & BMCR_ANENABLE) {
1626 /* autonegotiation is enabled */
1627 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1628 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1629 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1630 np->speed100 = 1;
1631 np->mii_if.full_duplex = 1;
1632 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1633 np->speed100 = 1;
1634 np->mii_if.full_duplex = 0;
1635 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1636 np->speed100 = 0;
1637 np->mii_if.full_duplex = 1;
1638 } else {
1639 np->speed100 = 0;
1640 np->mii_if.full_duplex = 0;
1641 }
1642 } else {
1643 /* autonegotiation is disabled */
1644 if (reg0 & BMCR_SPEED100)
1645 np->speed100 = 1;
1646 else
1647 np->speed100 = 0;
1648 if (reg0 & BMCR_FULLDPLX)
1649 np->mii_if.full_duplex = 1;
1650 else
1651 np->mii_if.full_duplex = 0;
1652 }
1653 netif_carrier_on(dev);
1654 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1655 dev->name,
1656 np->speed100 ? "100" : "10",
1657 np->mii_if.full_duplex ? "full" : "half");
1658
1659 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1660 if (np->mii_if.full_duplex)
1661 new_tx_mode |= FullDuplex;
1662 if (np->tx_mode != new_tx_mode) {
1663 np->tx_mode = new_tx_mode;
1664 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1665 udelay(1000);
1666 writel(np->tx_mode, ioaddr + TxMode);
1667 }
1668
1669 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1670 if (np->speed100)
1671 new_intr_timer_ctrl |= Timer10X;
1672 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1673 np->intr_timer_ctrl = new_intr_timer_ctrl;
1674 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1675 }
1676 } else {
1677 netif_carrier_off(dev);
1678 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1679 }
1680}
1681
1682
1683static void netdev_error(struct net_device *dev, int intr_status)
1684{
1685 struct netdev_private *np = netdev_priv(dev);
1686
1687 /* Came close to underrunning the Tx FIFO, increase threshold. */
1688 if (intr_status & IntrTxDataLow) {
1689 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1690 writel(++np->tx_threshold, np->base + TxThreshold);
1691 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1692 dev->name, np->tx_threshold * 16);
1693 } else
1694 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1695 }
1696 if (intr_status & IntrRxGFPDead) {
1697 dev->stats.rx_fifo_errors++;
1698 dev->stats.rx_errors++;
1699 }
1700 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1701 dev->stats.tx_fifo_errors++;
1702 dev->stats.tx_errors++;
1703 }
1704 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1705 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1706 dev->name, intr_status);
1707}
1708
1709
1710static struct net_device_stats *get_stats(struct net_device *dev)
1711{
1712 struct netdev_private *np = netdev_priv(dev);
1713 void __iomem *ioaddr = np->base;
1714
1715 /* This adapter architecture needs no SMP locks. */
1716 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1717 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1718 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1719 dev->stats.tx_aborted_errors =
1720 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1721 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1722 dev->stats.collisions =
1723 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1724
1725 /* The chip only need report frame silently dropped. */
1726 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1727 writew(0, ioaddr + RxDMAStatus);
1728 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1729 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1730 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1731 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1732
1733 return &dev->stats;
1734}
1735
1736#ifdef VLAN_SUPPORT
1737static u32 set_vlan_mode(struct netdev_private *np)
1738{
1739 u32 ret = VlanMode;
1740 u16 vid;
1741 void __iomem *filter_addr = np->base + HashTable + 8;
1742 int vlan_count = 0;
1743
1744 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1745 if (vlan_count == 32)
1746 break;
1747 writew(vid, filter_addr);
1748 filter_addr += 16;
1749 vlan_count++;
1750 }
1751 if (vlan_count == 32) {
1752 ret |= PerfectFilterVlan;
1753 while (vlan_count < 32) {
1754 writew(0, filter_addr);
1755 filter_addr += 16;
1756 vlan_count++;
1757 }
1758 }
1759 return ret;
1760}
1761#endif /* VLAN_SUPPORT */
1762
1763static void set_rx_mode(struct net_device *dev)
1764{
1765 struct netdev_private *np = netdev_priv(dev);
1766 void __iomem *ioaddr = np->base;
1767 u32 rx_mode = MinVLANPrio;
1768 struct netdev_hw_addr *ha;
1769 int i;
1770
1771#ifdef VLAN_SUPPORT
1772 rx_mode |= set_vlan_mode(np);
1773#endif /* VLAN_SUPPORT */
1774
1775 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1776 rx_mode |= AcceptAll;
1777 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1778 (dev->flags & IFF_ALLMULTI)) {
1779 /* Too many to match, or accept all multicasts. */
1780 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1781 } else if (netdev_mc_count(dev) <= 14) {
1782 /* Use the 16 element perfect filter, skip first two entries. */
1783 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1784 const __be16 *eaddrs;
1785 netdev_for_each_mc_addr(ha, dev) {
1786 eaddrs = (__be16 *) ha->addr;
1787 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1788 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1789 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1790 }
1791 eaddrs = (const __be16 *)dev->dev_addr;
1792 i = netdev_mc_count(dev) + 2;
1793 while (i++ < 16) {
1794 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 }
1798 rx_mode |= AcceptBroadcast|PerfectFilter;
1799 } else {
1800 /* Must use a multicast hash table. */
1801 void __iomem *filter_addr;
1802 const __be16 *eaddrs;
1803 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1804
1805 memset(mc_filter, 0, sizeof(mc_filter));
1806 netdev_for_each_mc_addr(ha, dev) {
1807 /* The chip uses the upper 9 CRC bits
1808 as index into the hash table */
1809 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1810 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1811
1812 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1813 }
1814 /* Clear the perfect filter list, skip first two entries. */
1815 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1816 eaddrs = (const __be16 *)dev->dev_addr;
1817 for (i = 2; i < 16; i++) {
1818 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1819 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1820 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1821 }
1822 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1823 writew(mc_filter[i], filter_addr);
1824 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1825 }
1826 writel(rx_mode, ioaddr + RxFilterMode);
1827}
1828
1829static int check_if_running(struct net_device *dev)
1830{
1831 if (!netif_running(dev))
1832 return -EINVAL;
1833 return 0;
1834}
1835
1836static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1837{
1838 struct netdev_private *np = netdev_priv(dev);
1839 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1840 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1841}
1842
1843static int get_link_ksettings(struct net_device *dev,
1844 struct ethtool_link_ksettings *cmd)
1845{
1846 struct netdev_private *np = netdev_priv(dev);
1847 spin_lock_irq(&np->lock);
1848 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1849 spin_unlock_irq(&np->lock);
1850 return 0;
1851}
1852
1853static int set_link_ksettings(struct net_device *dev,
1854 const struct ethtool_link_ksettings *cmd)
1855{
1856 struct netdev_private *np = netdev_priv(dev);
1857 int res;
1858 spin_lock_irq(&np->lock);
1859 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1860 spin_unlock_irq(&np->lock);
1861 check_duplex(dev);
1862 return res;
1863}
1864
1865static int nway_reset(struct net_device *dev)
1866{
1867 struct netdev_private *np = netdev_priv(dev);
1868 return mii_nway_restart(&np->mii_if);
1869}
1870
1871static u32 get_link(struct net_device *dev)
1872{
1873 struct netdev_private *np = netdev_priv(dev);
1874 return mii_link_ok(&np->mii_if);
1875}
1876
1877static u32 get_msglevel(struct net_device *dev)
1878{
1879 return debug;
1880}
1881
1882static void set_msglevel(struct net_device *dev, u32 val)
1883{
1884 debug = val;
1885}
1886
1887static const struct ethtool_ops ethtool_ops = {
1888 .begin = check_if_running,
1889 .get_drvinfo = get_drvinfo,
1890 .nway_reset = nway_reset,
1891 .get_link = get_link,
1892 .get_msglevel = get_msglevel,
1893 .set_msglevel = set_msglevel,
1894 .get_link_ksettings = get_link_ksettings,
1895 .set_link_ksettings = set_link_ksettings,
1896};
1897
1898static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1899{
1900 struct netdev_private *np = netdev_priv(dev);
1901 struct mii_ioctl_data *data = if_mii(rq);
1902 int rc;
1903
1904 if (!netif_running(dev))
1905 return -EINVAL;
1906
1907 spin_lock_irq(&np->lock);
1908 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1909 spin_unlock_irq(&np->lock);
1910
1911 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1912 check_duplex(dev);
1913
1914 return rc;
1915}
1916
1917static int netdev_close(struct net_device *dev)
1918{
1919 struct netdev_private *np = netdev_priv(dev);
1920 void __iomem *ioaddr = np->base;
1921 int i;
1922
1923 netif_stop_queue(dev);
1924
1925 napi_disable(&np->napi);
1926
1927 if (debug > 1) {
1928 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1929 dev->name, (int) readl(ioaddr + IntrStatus));
1930 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1931 dev->name, np->cur_tx, np->dirty_tx,
1932 np->cur_rx, np->dirty_rx);
1933 }
1934
1935 /* Disable interrupts by clearing the interrupt mask. */
1936 writel(0, ioaddr + IntrEnable);
1937
1938 /* Stop the chip's Tx and Rx processes. */
1939 writel(0, ioaddr + GenCtrl);
1940 readl(ioaddr + GenCtrl);
1941
1942 if (debug > 5) {
1943 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1944 (long long) np->tx_ring_dma);
1945 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1946 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1947 i, le32_to_cpu(np->tx_ring[i].status),
1948 (long long) dma_to_cpu(np->tx_ring[i].addr),
1949 le32_to_cpu(np->tx_done_q[i].status));
1950 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1951 (long long) np->rx_ring_dma, np->rx_done_q);
1952 if (np->rx_done_q)
1953 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1954 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1955 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1956 }
1957 }
1958
1959 free_irq(np->pci_dev->irq, dev);
1960
1961 /* Free all the skbuffs in the Rx queue. */
1962 for (i = 0; i < RX_RING_SIZE; i++) {
1963 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1964 if (np->rx_info[i].skb != NULL) {
1965 dma_unmap_single(&np->pci_dev->dev,
1966 np->rx_info[i].mapping,
1967 np->rx_buf_sz, DMA_FROM_DEVICE);
1968 dev_kfree_skb(np->rx_info[i].skb);
1969 }
1970 np->rx_info[i].skb = NULL;
1971 np->rx_info[i].mapping = 0;
1972 }
1973 for (i = 0; i < TX_RING_SIZE; i++) {
1974 struct sk_buff *skb = np->tx_info[i].skb;
1975 if (skb == NULL)
1976 continue;
1977 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1978 skb_first_frag_len(skb), DMA_TO_DEVICE);
1979 np->tx_info[i].mapping = 0;
1980 dev_kfree_skb(skb);
1981 np->tx_info[i].skb = NULL;
1982 }
1983
1984 return 0;
1985}
1986
1987static int __maybe_unused starfire_suspend(struct device *dev_d)
1988{
1989 struct net_device *dev = dev_get_drvdata(dev_d);
1990
1991 if (netif_running(dev)) {
1992 netif_device_detach(dev);
1993 netdev_close(dev);
1994 }
1995
1996 return 0;
1997}
1998
1999static int __maybe_unused starfire_resume(struct device *dev_d)
2000{
2001 struct net_device *dev = dev_get_drvdata(dev_d);
2002
2003 if (netif_running(dev)) {
2004 netdev_open(dev);
2005 netif_device_attach(dev);
2006 }
2007
2008 return 0;
2009}
2010
2011static void starfire_remove_one(struct pci_dev *pdev)
2012{
2013 struct net_device *dev = pci_get_drvdata(pdev);
2014 struct netdev_private *np = netdev_priv(dev);
2015
2016 BUG_ON(!dev);
2017
2018 unregister_netdev(dev);
2019
2020 if (np->queue_mem)
2021 dma_free_coherent(&pdev->dev, np->queue_mem_size,
2022 np->queue_mem, np->queue_mem_dma);
2023
2024
2025 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2026 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2027 pci_disable_device(pdev);
2028
2029 iounmap(np->base);
2030 pci_release_regions(pdev);
2031
2032 free_netdev(dev); /* Will also free np!! */
2033}
2034
2035static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2036
2037static struct pci_driver starfire_driver = {
2038 .name = DRV_NAME,
2039 .probe = starfire_init_one,
2040 .remove = starfire_remove_one,
2041 .driver.pm = &starfire_pm_ops,
2042 .id_table = starfire_pci_tbl,
2043};
2044
2045
2046static int __init starfire_init (void)
2047{
2048/* when a module, this is printed whether or not devices are found in probe */
2049#ifdef MODULE
2050 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2051#endif
2052
2053 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2054
2055 return pci_register_driver(&starfire_driver);
2056}
2057
2058
2059static void __exit starfire_cleanup (void)
2060{
2061 pci_unregister_driver (&starfire_driver);
2062}
2063
2064
2065module_init(starfire_init);
2066module_exit(starfire_cleanup);
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME "starfire"
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
32
33#include <linux/interrupt.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
45#include <linux/mm.h>
46#include <linux/firmware.h>
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <linux/uaccess.h>
49#include <asm/io.h>
50
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
67#define ZEROCOPY
68
69#if IS_ENABLED(CONFIG_VLAN_8021Q)
70#define VLAN_SUPPORT
71#endif
72
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85static const int multicast_filter_limit = 512;
86/* Whether to do TCP/UDP checksums in hardware */
87static int enable_hw_cksum = 1;
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Operational parameters that are set at compile time. */
118
119/* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
121*/
122#define RX_RING_SIZE 256
123#define TX_RING_SIZE 32
124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125#define DONE_Q_SIZE 1024
126/* All queues must be aligned on a 256-byte boundary */
127#define QUEUE_ALIGN 256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135/* Operational parameters that usually are not changed. */
136/* Time in jiffies before concluding the transmitter is hung. */
137#define TX_TIMEOUT (2 * HZ)
138
139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140/* 64-bit dma_addr_t */
141#define ADDR_64BITS /* This chip uses 64 bit addresses. */
142#define netdrv_addr_t __le64
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else /* 32-bit dma_addr_t */
151#define netdrv_addr_t __le32
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
161#define skb_first_frag_len(skb) skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164/* Firmware names */
165#define FIRMWARE_RX "adaptec/starfire_rx.bin"
166#define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
168/* These identify the driver base version and may not be removed. */
169static const char version[] =
170KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195/*
196 Theory of Operation
197
198I. Board Compatibility
199
200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202II. Board-specific settings
203
204III. Driver operation
205
206IIIa. Ring buffers
207
208The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209ring sizes are set fixed by the hardware, but may optionally be wrapped
210earlier by the END bit in the descriptor.
211This driver uses that hardware queue size for the Rx ring, where a large
212number of entries has no ill effect beyond increases the potential backlog.
213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214disables the queue layer priority ordering and we have no mechanism to
215utilize the hardware two-level priority queue. When modifying the
216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217levels.
218
219IIIb/c. Transmit/Receive Structure
220
221See the Adaptec manual for the many possible structures, and options for
222each structure. There are far too many to document all of them here.
223
224For transmit this driver uses type 0/1 transmit descriptors (depending
225on the 32/64 bitness of the architecture), and relies on automatic
226minimum-length padding. It does not use the completion queue
227consumer index, but instead checks for non-zero status entries.
228
229For receive this driver uses type 2/3 receive descriptors. The driver
230allocates full frame size skbuffs for the Rx ring buffers, so all frames
231should fit in a single descriptor. The driver does not use the completion
232queue consumer index, but instead checks for non-zero status entries.
233
234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235is allocated and the frame is copied to the new skbuff. When the incoming
236frame is larger, the skbuff is passed directly up the protocol stack.
237Buffers consumed this way are replaced by newly allocated skbuffs in a later
238phase of receive.
239
240A notable aspect of operation is that unaligned buffers are not permitted by
241the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242isn't longword aligned, which may cause problems on some machine
243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244the frame into a new skbuff unconditionally. Copied frames are put into the
245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247IIId. Synchronization
248
249The driver runs as two independent, single-threaded flows of control. One
250is the send-packet routine, which enforces single-threaded use by the
251dev->tbusy flag. The other thread is the interrupt handler, which is single
252threaded by the hardware and interrupt handling software.
253
254The send packet thread has partial control over the Tx ring and the netif_queue
255status. If the number of free Tx slots in the ring falls below a certain number
256(currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258The interrupt handler has exclusive control over the Rx ring and records stats
259from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261number of free Tx slow is above the threshold, it signals the upper layer to
262restart the queue.
263
264IV. Notes
265
266IVb. References
267
268The Adaptec Starfire manuals, available only from Adaptec.
269http://www.scyld.com/expert/100mbps.html
270http://www.scyld.com/expert/NWay.html
271
272IVc. Errata
273
274- StopOnPerr is broken, don't enable
275- Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
277
278*/
279
280
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285 CH_6915 = 0,
286};
287
288static const struct pci_device_id starfire_pci_tbl[] = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295static const struct chip_info {
296 const char *name;
297 int drv_flags;
298} netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303/* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
310*/
311enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330/*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356/* Bits in the RxFilterMode register. */
357enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362};
363
364/* Bits in the TxMode register */
365enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371/* Bits in the TxDescCtrl register. */
372enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381};
382
383/* Bits in the RxDescQCtrl register. */
384enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394};
395
396/* Bits in the RxDMACtrl register. */
397enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410};
411
412/* Bits in the RxCompletionAddr register */
413enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419};
420
421/* Bits in the TxCompletionAddr register */
422enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428};
429
430/* Bits in the GenCtrl register */
431enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436/* Bits in the IntrTimerCtrl register */
437enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441};
442
443/* The Rx and Tx buffer descriptors. */
444struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
446};
447enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449};
450
451/* Completion queue entry. */
452struct short_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454};
455struct basic_rx_done_desc {
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
459};
460struct csum_rx_done_desc {
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
464};
465struct full_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
472};
473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else /* not VLAN_SUPPORT */
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif /* not VLAN_SUPPORT */
481
482enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486/* Type 1 Tx descriptor. */
487struct starfire_tx_desc_1 {
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
490};
491
492/* Type 2 Tx descriptor. */
493struct starfire_tx_desc_2 {
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else /* not ADDR_64BITS */
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif /* not ADDR_64BITS */
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
514 __le32 status; /* timestamp, index. */
515#if 0
516 __le32 intrstatus; /* interrupt status */
517#endif
518};
519
520struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523};
524struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528};
529
530#define PHY_CNT 2
531struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552#endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
572};
573
574
575static int mdio_read(struct net_device *dev, int phy_id, int location);
576static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int netdev_open(struct net_device *dev);
578static void check_duplex(struct net_device *dev);
579static void tx_timeout(struct net_device *dev);
580static void init_ring(struct net_device *dev);
581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582static irqreturn_t intr_handler(int irq, void *dev_instance);
583static void netdev_error(struct net_device *dev, int intr_status);
584static int __netdev_rx(struct net_device *dev, int *quota);
585static int netdev_poll(struct napi_struct *napi, int budget);
586static void refill_rx_ring(struct net_device *dev);
587static void netdev_error(struct net_device *dev, int intr_status);
588static void set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int netdev_close(struct net_device *dev);
592static void netdev_media_change(struct net_device *dev);
593static const struct ethtool_ops ethtool_ops;
594
595
596#ifdef VLAN_SUPPORT
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
599{
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 set_bit(vid, np->active_vlans);
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
608
609 return 0;
610}
611
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
614{
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 clear_bit(vid, np->active_vlans);
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
623
624 return 0;
625}
626#endif /* VLAN_SUPPORT */
627
628
629static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
635 .ndo_set_rx_mode = set_rx_mode,
636 .ndo_do_ioctl = netdev_ioctl,
637 .ndo_set_mac_address = eth_mac_addr,
638 .ndo_validate_addr = eth_validate_addr,
639#ifdef VLAN_SUPPORT
640 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
641 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
642#endif
643};
644
645static int starfire_init_one(struct pci_dev *pdev,
646 const struct pci_device_id *ent)
647{
648 struct device *d = &pdev->dev;
649 struct netdev_private *np;
650 int i, irq, chip_idx = ent->driver_data;
651 struct net_device *dev;
652 long ioaddr;
653 void __iomem *base;
654 int drv_flags, io_size;
655 int boguscnt;
656
657/* when built into the kernel, we only print version if device is found */
658#ifndef MODULE
659 static int printed_version;
660 if (!printed_version++)
661 printk(version);
662#endif
663
664 if (pci_enable_device (pdev))
665 return -EIO;
666
667 ioaddr = pci_resource_start(pdev, 0);
668 io_size = pci_resource_len(pdev, 0);
669 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
670 dev_err(d, "no PCI MEM resources, aborting\n");
671 return -ENODEV;
672 }
673
674 dev = alloc_etherdev(sizeof(*np));
675 if (!dev)
676 return -ENOMEM;
677
678 SET_NETDEV_DEV(dev, &pdev->dev);
679
680 irq = pdev->irq;
681
682 if (pci_request_regions (pdev, DRV_NAME)) {
683 dev_err(d, "cannot reserve PCI resources, aborting\n");
684 goto err_out_free_netdev;
685 }
686
687 base = ioremap(ioaddr, io_size);
688 if (!base) {
689 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
690 io_size, ioaddr);
691 goto err_out_free_res;
692 }
693
694 pci_set_master(pdev);
695
696 /* enable MWI -- it vastly improves Rx performance on sparc64 */
697 pci_try_set_mwi(pdev);
698
699#ifdef ZEROCOPY
700 /* Starfire can do TCP/UDP checksumming */
701 if (enable_hw_cksum)
702 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
703#endif /* ZEROCOPY */
704
705#ifdef VLAN_SUPPORT
706 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
707#endif /* VLAN_RX_KILL_VID */
708#ifdef ADDR_64BITS
709 dev->features |= NETIF_F_HIGHDMA;
710#endif /* ADDR_64BITS */
711
712 /* Serial EEPROM reads are hidden by the hardware. */
713 for (i = 0; i < 6; i++)
714 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
715
716#if ! defined(final_version) /* Dump the EEPROM contents during development. */
717 if (debug > 4)
718 for (i = 0; i < 0x20; i++)
719 printk("%2.2x%s",
720 (unsigned int)readb(base + EEPROMCtrl + i),
721 i % 16 != 15 ? " " : "\n");
722#endif
723
724 /* Issue soft reset */
725 writel(MiiSoftReset, base + TxMode);
726 udelay(1000);
727 writel(0, base + TxMode);
728
729 /* Reset the chip to erase previous misconfiguration. */
730 writel(1, base + PCIDeviceConfig);
731 boguscnt = 1000;
732 while (--boguscnt > 0) {
733 udelay(10);
734 if ((readl(base + PCIDeviceConfig) & 1) == 0)
735 break;
736 }
737 if (boguscnt == 0)
738 printk("%s: chipset reset never completed!\n", dev->name);
739 /* wait a little longer */
740 udelay(1000);
741
742 np = netdev_priv(dev);
743 np->dev = dev;
744 np->base = base;
745 spin_lock_init(&np->lock);
746 pci_set_drvdata(pdev, dev);
747
748 np->pci_dev = pdev;
749
750 np->mii_if.dev = dev;
751 np->mii_if.mdio_read = mdio_read;
752 np->mii_if.mdio_write = mdio_write;
753 np->mii_if.phy_id_mask = 0x1f;
754 np->mii_if.reg_num_mask = 0x1f;
755
756 drv_flags = netdrv_tbl[chip_idx].drv_flags;
757
758 np->speed100 = 1;
759
760 /* timer resolution is 128 * 0.8us */
761 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
762 Timer10X | EnableIntrMasking;
763
764 if (small_frames > 0) {
765 np->intr_timer_ctrl |= SmallFrameBypass;
766 switch (small_frames) {
767 case 1 ... 64:
768 np->intr_timer_ctrl |= SmallFrame64;
769 break;
770 case 65 ... 128:
771 np->intr_timer_ctrl |= SmallFrame128;
772 break;
773 case 129 ... 256:
774 np->intr_timer_ctrl |= SmallFrame256;
775 break;
776 default:
777 np->intr_timer_ctrl |= SmallFrame512;
778 if (small_frames > 512)
779 printk("Adjusting small_frames down to 512\n");
780 break;
781 }
782 }
783
784 dev->netdev_ops = &netdev_ops;
785 dev->watchdog_timeo = TX_TIMEOUT;
786 dev->ethtool_ops = ðtool_ops;
787
788 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
789
790 if (mtu)
791 dev->mtu = mtu;
792
793 if (register_netdev(dev))
794 goto err_out_cleardev;
795
796 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
797 dev->name, netdrv_tbl[chip_idx].name, base,
798 dev->dev_addr, irq);
799
800 if (drv_flags & CanHaveMII) {
801 int phy, phy_idx = 0;
802 int mii_status;
803 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
804 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
805 msleep(100);
806 boguscnt = 1000;
807 while (--boguscnt > 0)
808 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
809 break;
810 if (boguscnt == 0) {
811 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
812 continue;
813 }
814 mii_status = mdio_read(dev, phy, MII_BMSR);
815 if (mii_status != 0) {
816 np->phys[phy_idx++] = phy;
817 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
818 printk(KERN_INFO "%s: MII PHY found at address %d, status "
819 "%#4.4x advertising %#4.4x.\n",
820 dev->name, phy, mii_status, np->mii_if.advertising);
821 /* there can be only one PHY on-board */
822 break;
823 }
824 }
825 np->phy_cnt = phy_idx;
826 if (np->phy_cnt > 0)
827 np->mii_if.phy_id = np->phys[0];
828 else
829 memset(&np->mii_if, 0, sizeof(np->mii_if));
830 }
831
832 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
833 dev->name, enable_hw_cksum ? "enabled" : "disabled");
834 return 0;
835
836err_out_cleardev:
837 iounmap(base);
838err_out_free_res:
839 pci_release_regions (pdev);
840err_out_free_netdev:
841 free_netdev(dev);
842 return -ENODEV;
843}
844
845
846/* Read the MII Management Data I/O (MDIO) interfaces. */
847static int mdio_read(struct net_device *dev, int phy_id, int location)
848{
849 struct netdev_private *np = netdev_priv(dev);
850 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851 int result, boguscnt=1000;
852 /* ??? Should we add a busy-wait here? */
853 do {
854 result = readl(mdio_addr);
855 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
856 if (boguscnt == 0)
857 return 0;
858 if ((result & 0xffff) == 0xffff)
859 return 0;
860 return result & 0xffff;
861}
862
863
864static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865{
866 struct netdev_private *np = netdev_priv(dev);
867 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868 writel(value, mdio_addr);
869 /* The busy-wait will occur before a read. */
870}
871
872
873static int netdev_open(struct net_device *dev)
874{
875 const struct firmware *fw_rx, *fw_tx;
876 const __be32 *fw_rx_data, *fw_tx_data;
877 struct netdev_private *np = netdev_priv(dev);
878 void __iomem *ioaddr = np->base;
879 const int irq = np->pci_dev->irq;
880 int i, retval;
881 size_t tx_size, rx_size;
882 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883
884 /* Do we ever need to reset the chip??? */
885
886 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
887 if (retval)
888 return retval;
889
890 /* Disable the Rx and Tx, and reset the chip. */
891 writel(0, ioaddr + GenCtrl);
892 writel(1, ioaddr + PCIDeviceConfig);
893 if (debug > 1)
894 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
895 dev->name, irq);
896
897 /* Allocate the various queues. */
898 if (!np->queue_mem) {
899 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
905 if (np->queue_mem == NULL) {
906 free_irq(irq, dev);
907 return -ENOMEM;
908 }
909
910 np->tx_done_q = np->queue_mem;
911 np->tx_done_q_dma = np->queue_mem_dma;
912 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
913 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
915 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
916 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
917 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
918 }
919
920 /* Start with no carrier, it gets adjusted later */
921 netif_carrier_off(dev);
922 init_ring(dev);
923 /* Set the size of the Rx buffers. */
924 writel((np->rx_buf_sz << RxBufferLenShift) |
925 (0 << RxMinDescrThreshShift) |
926 RxPrefetchMode | RxVariableQ |
927 RX_Q_ENTRIES |
928 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929 RxDescSpace4,
930 ioaddr + RxDescQCtrl);
931
932 /* Set up the Rx DMA controller. */
933 writel(RxChecksumIgnore |
934 (0 << RxEarlyIntThreshShift) |
935 (6 << RxHighPrioThreshShift) |
936 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937 ioaddr + RxDMACtrl);
938
939 /* Set Tx descriptor */
940 writel((2 << TxHiPriFIFOThreshShift) |
941 (0 << TxPadLenShift) |
942 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943 TX_DESC_Q_ADDR_SIZE |
944 TX_DESC_SPACING | TX_DESC_TYPE,
945 ioaddr + TxDescCtrl);
946
947 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952
953 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954 writel(np->rx_done_q_dma |
955 RxComplType |
956 (0 << RxComplThreshShift),
957 ioaddr + RxCompletionAddr);
958
959 if (debug > 1)
960 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961
962 /* Fill both the Tx SA register and the Rx perfect filter. */
963 for (i = 0; i < 6; i++)
964 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965 /* The first entry is special because it bypasses the VLAN filter.
966 Don't use it. */
967 writew(0, ioaddr + PerfFilterTable);
968 writew(0, ioaddr + PerfFilterTable + 4);
969 writew(0, ioaddr + PerfFilterTable + 8);
970 for (i = 1; i < 16; i++) {
971 __be16 *eaddrs = (__be16 *)dev->dev_addr;
972 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
973 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
976 }
977
978 /* Initialize other registers. */
979 /* Configure the PCI bus bursts and FIFO thresholds. */
980 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
981 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982 udelay(1000);
983 writel(np->tx_mode, ioaddr + TxMode);
984 np->tx_threshold = 4;
985 writel(np->tx_threshold, ioaddr + TxThreshold);
986
987 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988
989 napi_enable(&np->napi);
990
991 netif_start_queue(dev);
992
993 if (debug > 1)
994 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995 set_rx_mode(dev);
996
997 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998 check_duplex(dev);
999
1000 /* Enable GPIO interrupts on link change */
1001 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003 /* Set the interrupt mask */
1004 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007 ioaddr + IntrEnable);
1008 /* Enable PCI interrupts. */
1009 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010 ioaddr + PCIDeviceConfig);
1011
1012#ifdef VLAN_SUPPORT
1013 /* Set VLAN type to 802.1q */
1014 writel(ETH_P_8021Q, ioaddr + VlanType);
1015#endif /* VLAN_SUPPORT */
1016
1017 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018 if (retval) {
1019 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020 FIRMWARE_RX);
1021 goto out_init;
1022 }
1023 if (fw_rx->size % 4) {
1024 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025 fw_rx->size, FIRMWARE_RX);
1026 retval = -EINVAL;
1027 goto out_rx;
1028 }
1029 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030 if (retval) {
1031 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032 FIRMWARE_TX);
1033 goto out_rx;
1034 }
1035 if (fw_tx->size % 4) {
1036 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037 fw_tx->size, FIRMWARE_TX);
1038 retval = -EINVAL;
1039 goto out_tx;
1040 }
1041 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043 rx_size = fw_rx->size / 4;
1044 tx_size = fw_tx->size / 4;
1045
1046 /* Load Rx/Tx firmware into the frame processors */
1047 for (i = 0; i < rx_size; i++)
1048 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049 for (i = 0; i < tx_size; i++)
1050 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051 if (enable_hw_cksum)
1052 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054 else
1055 /* Enable the Rx and Tx units only. */
1056 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058 if (debug > 1)
1059 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060 dev->name);
1061
1062out_tx:
1063 release_firmware(fw_tx);
1064out_rx:
1065 release_firmware(fw_rx);
1066out_init:
1067 if (retval)
1068 netdev_close(dev);
1069 return retval;
1070}
1071
1072
1073static void check_duplex(struct net_device *dev)
1074{
1075 struct netdev_private *np = netdev_priv(dev);
1076 u16 reg0;
1077 int silly_count = 1000;
1078
1079 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081 udelay(500);
1082 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083 /* do nothing */;
1084 if (!silly_count) {
1085 printk("%s: MII reset failed!\n", dev->name);
1086 return;
1087 }
1088
1089 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091 if (!np->mii_if.force_media) {
1092 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093 } else {
1094 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095 if (np->speed100)
1096 reg0 |= BMCR_SPEED100;
1097 if (np->mii_if.full_duplex)
1098 reg0 |= BMCR_FULLDPLX;
1099 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100 dev->name,
1101 np->speed100 ? "100" : "10",
1102 np->mii_if.full_duplex ? "full" : "half");
1103 }
1104 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105}
1106
1107
1108static void tx_timeout(struct net_device *dev)
1109{
1110 struct netdev_private *np = netdev_priv(dev);
1111 void __iomem *ioaddr = np->base;
1112 int old_debug;
1113
1114 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117 /* Perhaps we should reinitialize the hardware here. */
1118
1119 /*
1120 * Stop and restart the interface.
1121 * Cheat and increase the debug level temporarily.
1122 */
1123 old_debug = debug;
1124 debug = 2;
1125 netdev_close(dev);
1126 netdev_open(dev);
1127 debug = old_debug;
1128
1129 /* Trigger an immediate transmit demand. */
1130
1131 netif_trans_update(dev); /* prevent tx timeout */
1132 dev->stats.tx_errors++;
1133 netif_wake_queue(dev);
1134}
1135
1136
1137/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138static void init_ring(struct net_device *dev)
1139{
1140 struct netdev_private *np = netdev_priv(dev);
1141 int i;
1142
1143 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1149 for (i = 0; i < RX_RING_SIZE; i++) {
1150 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151 np->rx_info[i].skb = skb;
1152 if (skb == NULL)
1153 break;
1154 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1155 if (pci_dma_mapping_error(np->pci_dev,
1156 np->rx_info[i].mapping)) {
1157 dev_kfree_skb(skb);
1158 np->rx_info[i].skb = NULL;
1159 break;
1160 }
1161 /* Grrr, we cannot offset to correctly align the IP header. */
1162 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1163 }
1164 writew(i - 1, np->base + RxDescQIdx);
1165 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1166
1167 /* Clear the remainder of the Rx buffer ring. */
1168 for ( ; i < RX_RING_SIZE; i++) {
1169 np->rx_ring[i].rxaddr = 0;
1170 np->rx_info[i].skb = NULL;
1171 np->rx_info[i].mapping = 0;
1172 }
1173 /* Mark the last entry as wrapping the ring. */
1174 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1175
1176 /* Clear the completion rings. */
1177 for (i = 0; i < DONE_Q_SIZE; i++) {
1178 np->rx_done_q[i].status = 0;
1179 np->tx_done_q[i].status = 0;
1180 }
1181
1182 for (i = 0; i < TX_RING_SIZE; i++)
1183 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1184}
1185
1186
1187static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1188{
1189 struct netdev_private *np = netdev_priv(dev);
1190 unsigned int entry;
1191 unsigned int prev_tx;
1192 u32 status;
1193 int i, j;
1194
1195 /*
1196 * be cautious here, wrapping the queue has weird semantics
1197 * and we may not have enough slots even when it seems we do.
1198 */
1199 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1200 netif_stop_queue(dev);
1201 return NETDEV_TX_BUSY;
1202 }
1203
1204#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1205 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1206 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1207 return NETDEV_TX_OK;
1208 }
1209#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1210
1211 prev_tx = np->cur_tx;
1212 entry = np->cur_tx % TX_RING_SIZE;
1213 for (i = 0; i < skb_num_frags(skb); i++) {
1214 int wrap_ring = 0;
1215 status = TxDescID;
1216
1217 if (i == 0) {
1218 np->tx_info[entry].skb = skb;
1219 status |= TxCRCEn;
1220 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1221 status |= TxRingWrap;
1222 wrap_ring = 1;
1223 }
1224 if (np->reap_tx) {
1225 status |= TxDescIntr;
1226 np->reap_tx = 0;
1227 }
1228 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1229 status |= TxCalTCP;
1230 dev->stats.tx_compressed++;
1231 }
1232 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1233
1234 np->tx_info[entry].mapping =
1235 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1236 } else {
1237 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1238 status |= skb_frag_size(this_frag);
1239 np->tx_info[entry].mapping =
1240 pci_map_single(np->pci_dev,
1241 skb_frag_address(this_frag),
1242 skb_frag_size(this_frag),
1243 PCI_DMA_TODEVICE);
1244 }
1245 if (pci_dma_mapping_error(np->pci_dev,
1246 np->tx_info[entry].mapping)) {
1247 dev->stats.tx_dropped++;
1248 goto err_out;
1249 }
1250
1251 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1252 np->tx_ring[entry].status = cpu_to_le32(status);
1253 if (debug > 3)
1254 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1255 dev->name, np->cur_tx, np->dirty_tx,
1256 entry, status);
1257 if (wrap_ring) {
1258 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1259 np->cur_tx += np->tx_info[entry].used_slots;
1260 entry = 0;
1261 } else {
1262 np->tx_info[entry].used_slots = 1;
1263 np->cur_tx += np->tx_info[entry].used_slots;
1264 entry++;
1265 }
1266 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1267 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1268 np->reap_tx = 1;
1269 }
1270
1271 /* Non-x86: explicitly flush descriptor cache lines here. */
1272 /* Ensure all descriptors are written back before the transmit is
1273 initiated. - Jes */
1274 wmb();
1275
1276 /* Update the producer index. */
1277 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1278
1279 /* 4 is arbitrary, but should be ok */
1280 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1281 netif_stop_queue(dev);
1282
1283 return NETDEV_TX_OK;
1284
1285err_out:
1286 entry = prev_tx % TX_RING_SIZE;
1287 np->tx_info[entry].skb = NULL;
1288 if (i > 0) {
1289 pci_unmap_single(np->pci_dev,
1290 np->tx_info[entry].mapping,
1291 skb_first_frag_len(skb),
1292 PCI_DMA_TODEVICE);
1293 np->tx_info[entry].mapping = 0;
1294 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1295 for (j = 1; j < i; j++) {
1296 pci_unmap_single(np->pci_dev,
1297 np->tx_info[entry].mapping,
1298 skb_frag_size(
1299 &skb_shinfo(skb)->frags[j-1]),
1300 PCI_DMA_TODEVICE);
1301 entry++;
1302 }
1303 }
1304 dev_kfree_skb_any(skb);
1305 np->cur_tx = prev_tx;
1306 return NETDEV_TX_OK;
1307}
1308
1309/* The interrupt handler does all of the Rx thread work and cleans up
1310 after the Tx thread. */
1311static irqreturn_t intr_handler(int irq, void *dev_instance)
1312{
1313 struct net_device *dev = dev_instance;
1314 struct netdev_private *np = netdev_priv(dev);
1315 void __iomem *ioaddr = np->base;
1316 int boguscnt = max_interrupt_work;
1317 int consumer;
1318 int tx_status;
1319 int handled = 0;
1320
1321 do {
1322 u32 intr_status = readl(ioaddr + IntrClear);
1323
1324 if (debug > 4)
1325 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1326 dev->name, intr_status);
1327
1328 if (intr_status == 0 || intr_status == (u32) -1)
1329 break;
1330
1331 handled = 1;
1332
1333 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1334 u32 enable;
1335
1336 if (likely(napi_schedule_prep(&np->napi))) {
1337 __napi_schedule(&np->napi);
1338 enable = readl(ioaddr + IntrEnable);
1339 enable &= ~(IntrRxDone | IntrRxEmpty);
1340 writel(enable, ioaddr + IntrEnable);
1341 /* flush PCI posting buffers */
1342 readl(ioaddr + IntrEnable);
1343 } else {
1344 /* Paranoia check */
1345 enable = readl(ioaddr + IntrEnable);
1346 if (enable & (IntrRxDone | IntrRxEmpty)) {
1347 printk(KERN_INFO
1348 "%s: interrupt while in poll!\n",
1349 dev->name);
1350 enable &= ~(IntrRxDone | IntrRxEmpty);
1351 writel(enable, ioaddr + IntrEnable);
1352 }
1353 }
1354 }
1355
1356 /* Scavenge the skbuff list based on the Tx-done queue.
1357 There are redundant checks here that may be cleaned up
1358 after the driver has proven to be reliable. */
1359 consumer = readl(ioaddr + TxConsumerIdx);
1360 if (debug > 3)
1361 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1362 dev->name, consumer);
1363
1364 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1365 if (debug > 3)
1366 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1367 dev->name, np->dirty_tx, np->tx_done, tx_status);
1368 if ((tx_status & 0xe0000000) == 0xa0000000) {
1369 dev->stats.tx_packets++;
1370 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1371 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1372 struct sk_buff *skb = np->tx_info[entry].skb;
1373 np->tx_info[entry].skb = NULL;
1374 pci_unmap_single(np->pci_dev,
1375 np->tx_info[entry].mapping,
1376 skb_first_frag_len(skb),
1377 PCI_DMA_TODEVICE);
1378 np->tx_info[entry].mapping = 0;
1379 np->dirty_tx += np->tx_info[entry].used_slots;
1380 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1381 {
1382 int i;
1383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1384 pci_unmap_single(np->pci_dev,
1385 np->tx_info[entry].mapping,
1386 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1387 PCI_DMA_TODEVICE);
1388 np->dirty_tx++;
1389 entry++;
1390 }
1391 }
1392
1393 dev_consume_skb_irq(skb);
1394 }
1395 np->tx_done_q[np->tx_done].status = 0;
1396 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1397 }
1398 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1399
1400 if (netif_queue_stopped(dev) &&
1401 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1402 /* The ring is no longer full, wake the queue. */
1403 netif_wake_queue(dev);
1404 }
1405
1406 /* Stats overflow */
1407 if (intr_status & IntrStatsMax)
1408 get_stats(dev);
1409
1410 /* Media change interrupt. */
1411 if (intr_status & IntrLinkChange)
1412 netdev_media_change(dev);
1413
1414 /* Abnormal error summary/uncommon events handlers. */
1415 if (intr_status & IntrAbnormalSummary)
1416 netdev_error(dev, intr_status);
1417
1418 if (--boguscnt < 0) {
1419 if (debug > 1)
1420 printk(KERN_WARNING "%s: Too much work at interrupt, "
1421 "status=%#8.8x.\n",
1422 dev->name, intr_status);
1423 break;
1424 }
1425 } while (1);
1426
1427 if (debug > 4)
1428 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1429 dev->name, (int) readl(ioaddr + IntrStatus));
1430 return IRQ_RETVAL(handled);
1431}
1432
1433
1434/*
1435 * This routine is logically part of the interrupt/poll handler, but separated
1436 * for clarity and better register allocation.
1437 */
1438static int __netdev_rx(struct net_device *dev, int *quota)
1439{
1440 struct netdev_private *np = netdev_priv(dev);
1441 u32 desc_status;
1442 int retcode = 0;
1443
1444 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1445 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1446 struct sk_buff *skb;
1447 u16 pkt_len;
1448 int entry;
1449 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1450
1451 if (debug > 4)
1452 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1453 if (!(desc_status & RxOK)) {
1454 /* There was an error. */
1455 if (debug > 2)
1456 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1457 dev->stats.rx_errors++;
1458 if (desc_status & RxFIFOErr)
1459 dev->stats.rx_fifo_errors++;
1460 goto next_rx;
1461 }
1462
1463 if (*quota <= 0) { /* out of rx quota */
1464 retcode = 1;
1465 goto out;
1466 }
1467 (*quota)--;
1468
1469 pkt_len = desc_status; /* Implicitly Truncate */
1470 entry = (desc_status >> 16) & 0x7ff;
1471
1472 if (debug > 4)
1473 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1474 /* Check if the packet is long enough to accept without copying
1475 to a minimally-sized skbuff. */
1476 if (pkt_len < rx_copybreak &&
1477 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1478 skb_reserve(skb, 2); /* 16 byte align the IP header */
1479 pci_dma_sync_single_for_cpu(np->pci_dev,
1480 np->rx_info[entry].mapping,
1481 pkt_len, PCI_DMA_FROMDEVICE);
1482 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1483 pci_dma_sync_single_for_device(np->pci_dev,
1484 np->rx_info[entry].mapping,
1485 pkt_len, PCI_DMA_FROMDEVICE);
1486 skb_put(skb, pkt_len);
1487 } else {
1488 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1489 skb = np->rx_info[entry].skb;
1490 skb_put(skb, pkt_len);
1491 np->rx_info[entry].skb = NULL;
1492 np->rx_info[entry].mapping = 0;
1493 }
1494#ifndef final_version /* Remove after testing. */
1495 /* You will want this info for the initial debug. */
1496 if (debug > 5) {
1497 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1498 skb->data, skb->data + 6,
1499 skb->data[12], skb->data[13]);
1500 }
1501#endif
1502
1503 skb->protocol = eth_type_trans(skb, dev);
1504#ifdef VLAN_SUPPORT
1505 if (debug > 4)
1506 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1507#endif
1508 if (le16_to_cpu(desc->status2) & 0x0100) {
1509 skb->ip_summed = CHECKSUM_UNNECESSARY;
1510 dev->stats.rx_compressed++;
1511 }
1512 /*
1513 * This feature doesn't seem to be working, at least
1514 * with the two firmware versions I have. If the GFP sees
1515 * an IP fragment, it either ignores it completely, or reports
1516 * "bad checksum" on it.
1517 *
1518 * Maybe I missed something -- corrections are welcome.
1519 * Until then, the printk stays. :-) -Ion
1520 */
1521 else if (le16_to_cpu(desc->status2) & 0x0040) {
1522 skb->ip_summed = CHECKSUM_COMPLETE;
1523 skb->csum = le16_to_cpu(desc->csum);
1524 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1525 }
1526#ifdef VLAN_SUPPORT
1527 if (le16_to_cpu(desc->status2) & 0x0200) {
1528 u16 vlid = le16_to_cpu(desc->vlanid);
1529
1530 if (debug > 4) {
1531 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1532 vlid);
1533 }
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1535 }
1536#endif /* VLAN_SUPPORT */
1537 netif_receive_skb(skb);
1538 dev->stats.rx_packets++;
1539
1540 next_rx:
1541 np->cur_rx++;
1542 desc->status = 0;
1543 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1544 }
1545
1546 if (*quota == 0) { /* out of rx quota */
1547 retcode = 1;
1548 goto out;
1549 }
1550 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1551
1552 out:
1553 refill_rx_ring(dev);
1554 if (debug > 5)
1555 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1556 retcode, np->rx_done, desc_status);
1557 return retcode;
1558}
1559
1560static int netdev_poll(struct napi_struct *napi, int budget)
1561{
1562 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1563 struct net_device *dev = np->dev;
1564 u32 intr_status;
1565 void __iomem *ioaddr = np->base;
1566 int quota = budget;
1567
1568 do {
1569 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1570
1571 if (__netdev_rx(dev, "a))
1572 goto out;
1573
1574 intr_status = readl(ioaddr + IntrStatus);
1575 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1576
1577 napi_complete(napi);
1578 intr_status = readl(ioaddr + IntrEnable);
1579 intr_status |= IntrRxDone | IntrRxEmpty;
1580 writel(intr_status, ioaddr + IntrEnable);
1581
1582 out:
1583 if (debug > 5)
1584 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1585 budget - quota);
1586
1587 /* Restart Rx engine if stopped. */
1588 return budget - quota;
1589}
1590
1591static void refill_rx_ring(struct net_device *dev)
1592{
1593 struct netdev_private *np = netdev_priv(dev);
1594 struct sk_buff *skb;
1595 int entry = -1;
1596
1597 /* Refill the Rx ring buffers. */
1598 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1599 entry = np->dirty_rx % RX_RING_SIZE;
1600 if (np->rx_info[entry].skb == NULL) {
1601 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1602 np->rx_info[entry].skb = skb;
1603 if (skb == NULL)
1604 break; /* Better luck next round. */
1605 np->rx_info[entry].mapping =
1606 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1607 if (pci_dma_mapping_error(np->pci_dev,
1608 np->rx_info[entry].mapping)) {
1609 dev_kfree_skb(skb);
1610 np->rx_info[entry].skb = NULL;
1611 break;
1612 }
1613 np->rx_ring[entry].rxaddr =
1614 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1615 }
1616 if (entry == RX_RING_SIZE - 1)
1617 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1618 }
1619 if (entry >= 0)
1620 writew(entry, np->base + RxDescQIdx);
1621}
1622
1623
1624static void netdev_media_change(struct net_device *dev)
1625{
1626 struct netdev_private *np = netdev_priv(dev);
1627 void __iomem *ioaddr = np->base;
1628 u16 reg0, reg1, reg4, reg5;
1629 u32 new_tx_mode;
1630 u32 new_intr_timer_ctrl;
1631
1632 /* reset status first */
1633 mdio_read(dev, np->phys[0], MII_BMCR);
1634 mdio_read(dev, np->phys[0], MII_BMSR);
1635
1636 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1637 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1638
1639 if (reg1 & BMSR_LSTATUS) {
1640 /* link is up */
1641 if (reg0 & BMCR_ANENABLE) {
1642 /* autonegotiation is enabled */
1643 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1644 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1645 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1646 np->speed100 = 1;
1647 np->mii_if.full_duplex = 1;
1648 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1649 np->speed100 = 1;
1650 np->mii_if.full_duplex = 0;
1651 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1652 np->speed100 = 0;
1653 np->mii_if.full_duplex = 1;
1654 } else {
1655 np->speed100 = 0;
1656 np->mii_if.full_duplex = 0;
1657 }
1658 } else {
1659 /* autonegotiation is disabled */
1660 if (reg0 & BMCR_SPEED100)
1661 np->speed100 = 1;
1662 else
1663 np->speed100 = 0;
1664 if (reg0 & BMCR_FULLDPLX)
1665 np->mii_if.full_duplex = 1;
1666 else
1667 np->mii_if.full_duplex = 0;
1668 }
1669 netif_carrier_on(dev);
1670 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1671 dev->name,
1672 np->speed100 ? "100" : "10",
1673 np->mii_if.full_duplex ? "full" : "half");
1674
1675 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1676 if (np->mii_if.full_duplex)
1677 new_tx_mode |= FullDuplex;
1678 if (np->tx_mode != new_tx_mode) {
1679 np->tx_mode = new_tx_mode;
1680 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1681 udelay(1000);
1682 writel(np->tx_mode, ioaddr + TxMode);
1683 }
1684
1685 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1686 if (np->speed100)
1687 new_intr_timer_ctrl |= Timer10X;
1688 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1689 np->intr_timer_ctrl = new_intr_timer_ctrl;
1690 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1691 }
1692 } else {
1693 netif_carrier_off(dev);
1694 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1695 }
1696}
1697
1698
1699static void netdev_error(struct net_device *dev, int intr_status)
1700{
1701 struct netdev_private *np = netdev_priv(dev);
1702
1703 /* Came close to underrunning the Tx FIFO, increase threshold. */
1704 if (intr_status & IntrTxDataLow) {
1705 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1706 writel(++np->tx_threshold, np->base + TxThreshold);
1707 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1708 dev->name, np->tx_threshold * 16);
1709 } else
1710 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1711 }
1712 if (intr_status & IntrRxGFPDead) {
1713 dev->stats.rx_fifo_errors++;
1714 dev->stats.rx_errors++;
1715 }
1716 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1717 dev->stats.tx_fifo_errors++;
1718 dev->stats.tx_errors++;
1719 }
1720 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1721 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1722 dev->name, intr_status);
1723}
1724
1725
1726static struct net_device_stats *get_stats(struct net_device *dev)
1727{
1728 struct netdev_private *np = netdev_priv(dev);
1729 void __iomem *ioaddr = np->base;
1730
1731 /* This adapter architecture needs no SMP locks. */
1732 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1733 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1734 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1735 dev->stats.tx_aborted_errors =
1736 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1737 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1738 dev->stats.collisions =
1739 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1740
1741 /* The chip only need report frame silently dropped. */
1742 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1743 writew(0, ioaddr + RxDMAStatus);
1744 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1745 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1746 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1747 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1748
1749 return &dev->stats;
1750}
1751
1752#ifdef VLAN_SUPPORT
1753static u32 set_vlan_mode(struct netdev_private *np)
1754{
1755 u32 ret = VlanMode;
1756 u16 vid;
1757 void __iomem *filter_addr = np->base + HashTable + 8;
1758 int vlan_count = 0;
1759
1760 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1761 if (vlan_count == 32)
1762 break;
1763 writew(vid, filter_addr);
1764 filter_addr += 16;
1765 vlan_count++;
1766 }
1767 if (vlan_count == 32) {
1768 ret |= PerfectFilterVlan;
1769 while (vlan_count < 32) {
1770 writew(0, filter_addr);
1771 filter_addr += 16;
1772 vlan_count++;
1773 }
1774 }
1775 return ret;
1776}
1777#endif /* VLAN_SUPPORT */
1778
1779static void set_rx_mode(struct net_device *dev)
1780{
1781 struct netdev_private *np = netdev_priv(dev);
1782 void __iomem *ioaddr = np->base;
1783 u32 rx_mode = MinVLANPrio;
1784 struct netdev_hw_addr *ha;
1785 int i;
1786
1787#ifdef VLAN_SUPPORT
1788 rx_mode |= set_vlan_mode(np);
1789#endif /* VLAN_SUPPORT */
1790
1791 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1792 rx_mode |= AcceptAll;
1793 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1794 (dev->flags & IFF_ALLMULTI)) {
1795 /* Too many to match, or accept all multicasts. */
1796 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1797 } else if (netdev_mc_count(dev) <= 14) {
1798 /* Use the 16 element perfect filter, skip first two entries. */
1799 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1800 __be16 *eaddrs;
1801 netdev_for_each_mc_addr(ha, dev) {
1802 eaddrs = (__be16 *) ha->addr;
1803 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1806 }
1807 eaddrs = (__be16 *)dev->dev_addr;
1808 i = netdev_mc_count(dev) + 2;
1809 while (i++ < 16) {
1810 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1811 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1812 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1813 }
1814 rx_mode |= AcceptBroadcast|PerfectFilter;
1815 } else {
1816 /* Must use a multicast hash table. */
1817 void __iomem *filter_addr;
1818 __be16 *eaddrs;
1819 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1820
1821 memset(mc_filter, 0, sizeof(mc_filter));
1822 netdev_for_each_mc_addr(ha, dev) {
1823 /* The chip uses the upper 9 CRC bits
1824 as index into the hash table */
1825 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1826 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1827
1828 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1829 }
1830 /* Clear the perfect filter list, skip first two entries. */
1831 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1832 eaddrs = (__be16 *)dev->dev_addr;
1833 for (i = 2; i < 16; i++) {
1834 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1835 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1836 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1837 }
1838 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1839 writew(mc_filter[i], filter_addr);
1840 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1841 }
1842 writel(rx_mode, ioaddr + RxFilterMode);
1843}
1844
1845static int check_if_running(struct net_device *dev)
1846{
1847 if (!netif_running(dev))
1848 return -EINVAL;
1849 return 0;
1850}
1851
1852static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1853{
1854 struct netdev_private *np = netdev_priv(dev);
1855 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1856 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1857 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1858}
1859
1860static int get_link_ksettings(struct net_device *dev,
1861 struct ethtool_link_ksettings *cmd)
1862{
1863 struct netdev_private *np = netdev_priv(dev);
1864 spin_lock_irq(&np->lock);
1865 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1866 spin_unlock_irq(&np->lock);
1867 return 0;
1868}
1869
1870static int set_link_ksettings(struct net_device *dev,
1871 const struct ethtool_link_ksettings *cmd)
1872{
1873 struct netdev_private *np = netdev_priv(dev);
1874 int res;
1875 spin_lock_irq(&np->lock);
1876 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1877 spin_unlock_irq(&np->lock);
1878 check_duplex(dev);
1879 return res;
1880}
1881
1882static int nway_reset(struct net_device *dev)
1883{
1884 struct netdev_private *np = netdev_priv(dev);
1885 return mii_nway_restart(&np->mii_if);
1886}
1887
1888static u32 get_link(struct net_device *dev)
1889{
1890 struct netdev_private *np = netdev_priv(dev);
1891 return mii_link_ok(&np->mii_if);
1892}
1893
1894static u32 get_msglevel(struct net_device *dev)
1895{
1896 return debug;
1897}
1898
1899static void set_msglevel(struct net_device *dev, u32 val)
1900{
1901 debug = val;
1902}
1903
1904static const struct ethtool_ops ethtool_ops = {
1905 .begin = check_if_running,
1906 .get_drvinfo = get_drvinfo,
1907 .nway_reset = nway_reset,
1908 .get_link = get_link,
1909 .get_msglevel = get_msglevel,
1910 .set_msglevel = set_msglevel,
1911 .get_link_ksettings = get_link_ksettings,
1912 .set_link_ksettings = set_link_ksettings,
1913};
1914
1915static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1916{
1917 struct netdev_private *np = netdev_priv(dev);
1918 struct mii_ioctl_data *data = if_mii(rq);
1919 int rc;
1920
1921 if (!netif_running(dev))
1922 return -EINVAL;
1923
1924 spin_lock_irq(&np->lock);
1925 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1926 spin_unlock_irq(&np->lock);
1927
1928 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1929 check_duplex(dev);
1930
1931 return rc;
1932}
1933
1934static int netdev_close(struct net_device *dev)
1935{
1936 struct netdev_private *np = netdev_priv(dev);
1937 void __iomem *ioaddr = np->base;
1938 int i;
1939
1940 netif_stop_queue(dev);
1941
1942 napi_disable(&np->napi);
1943
1944 if (debug > 1) {
1945 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1946 dev->name, (int) readl(ioaddr + IntrStatus));
1947 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1948 dev->name, np->cur_tx, np->dirty_tx,
1949 np->cur_rx, np->dirty_rx);
1950 }
1951
1952 /* Disable interrupts by clearing the interrupt mask. */
1953 writel(0, ioaddr + IntrEnable);
1954
1955 /* Stop the chip's Tx and Rx processes. */
1956 writel(0, ioaddr + GenCtrl);
1957 readl(ioaddr + GenCtrl);
1958
1959 if (debug > 5) {
1960 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1961 (long long) np->tx_ring_dma);
1962 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1963 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1964 i, le32_to_cpu(np->tx_ring[i].status),
1965 (long long) dma_to_cpu(np->tx_ring[i].addr),
1966 le32_to_cpu(np->tx_done_q[i].status));
1967 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1968 (long long) np->rx_ring_dma, np->rx_done_q);
1969 if (np->rx_done_q)
1970 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1971 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1972 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1973 }
1974 }
1975
1976 free_irq(np->pci_dev->irq, dev);
1977
1978 /* Free all the skbuffs in the Rx queue. */
1979 for (i = 0; i < RX_RING_SIZE; i++) {
1980 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1981 if (np->rx_info[i].skb != NULL) {
1982 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1983 dev_kfree_skb(np->rx_info[i].skb);
1984 }
1985 np->rx_info[i].skb = NULL;
1986 np->rx_info[i].mapping = 0;
1987 }
1988 for (i = 0; i < TX_RING_SIZE; i++) {
1989 struct sk_buff *skb = np->tx_info[i].skb;
1990 if (skb == NULL)
1991 continue;
1992 pci_unmap_single(np->pci_dev,
1993 np->tx_info[i].mapping,
1994 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1995 np->tx_info[i].mapping = 0;
1996 dev_kfree_skb(skb);
1997 np->tx_info[i].skb = NULL;
1998 }
1999
2000 return 0;
2001}
2002
2003#ifdef CONFIG_PM
2004static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2005{
2006 struct net_device *dev = pci_get_drvdata(pdev);
2007
2008 if (netif_running(dev)) {
2009 netif_device_detach(dev);
2010 netdev_close(dev);
2011 }
2012
2013 pci_save_state(pdev);
2014 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2015
2016 return 0;
2017}
2018
2019static int starfire_resume(struct pci_dev *pdev)
2020{
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022
2023 pci_set_power_state(pdev, PCI_D0);
2024 pci_restore_state(pdev);
2025
2026 if (netif_running(dev)) {
2027 netdev_open(dev);
2028 netif_device_attach(dev);
2029 }
2030
2031 return 0;
2032}
2033#endif /* CONFIG_PM */
2034
2035
2036static void starfire_remove_one(struct pci_dev *pdev)
2037{
2038 struct net_device *dev = pci_get_drvdata(pdev);
2039 struct netdev_private *np = netdev_priv(dev);
2040
2041 BUG_ON(!dev);
2042
2043 unregister_netdev(dev);
2044
2045 if (np->queue_mem)
2046 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2047
2048
2049 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2050 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2051 pci_disable_device(pdev);
2052
2053 iounmap(np->base);
2054 pci_release_regions(pdev);
2055
2056 free_netdev(dev); /* Will also free np!! */
2057}
2058
2059
2060static struct pci_driver starfire_driver = {
2061 .name = DRV_NAME,
2062 .probe = starfire_init_one,
2063 .remove = starfire_remove_one,
2064#ifdef CONFIG_PM
2065 .suspend = starfire_suspend,
2066 .resume = starfire_resume,
2067#endif /* CONFIG_PM */
2068 .id_table = starfire_pci_tbl,
2069};
2070
2071
2072static int __init starfire_init (void)
2073{
2074/* when a module, this is printed whether or not devices are found in probe */
2075#ifdef MODULE
2076 printk(version);
2077
2078 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2079#endif
2080
2081 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2082
2083 return pci_register_driver(&starfire_driver);
2084}
2085
2086
2087static void __exit starfire_cleanup (void)
2088{
2089 pci_unregister_driver (&starfire_driver);
2090}
2091
2092
2093module_init(starfire_init);
2094module_exit(starfire_cleanup);
2095
2096
2097/*
2098 * Local variables:
2099 * c-basic-offset: 8
2100 * tab-width: 8
2101 * End:
2102 */