Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
  30
  31#include <linux/interrupt.h>
  32#include <linux/module.h>
  33#include <linux/kernel.h>
  34#include <linux/pci.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/init.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/if_vlan.h>
  43#include <linux/mm.h>
  44#include <linux/firmware.h>
  45#include <asm/processor.h>		/* Processor type for cache alignment. */
  46#include <linux/uaccess.h>
  47#include <asm/io.h>
  48
  49/*
  50 * The current frame processor firmware fails to checksum a fragment
  51 * of length 1. If and when this is fixed, the #define below can be removed.
  52 */
  53#define HAS_BROKEN_FIRMWARE
  54
  55/*
  56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  57 */
  58#ifdef HAS_BROKEN_FIRMWARE
  59#define PADDING_MASK 3
  60#endif
  61
  62/*
  63 * Define this if using the driver with the zero-copy patch
  64 */
  65#define ZEROCOPY
  66
  67#if IS_ENABLED(CONFIG_VLAN_8021Q)
  68#define VLAN_SUPPORT
  69#endif
  70
  71/* The user-configurable values.
  72   These may be modified when a driver module is loaded.*/
  73
  74/* Used for tuning interrupt latency vs. overhead. */
  75static int intr_latency;
  76static int small_frames;
  77
  78static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  79static int max_interrupt_work = 20;
  80static int mtu;
  81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  82   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  83static const int multicast_filter_limit = 512;
  84/* Whether to do TCP/UDP checksums in hardware */
  85static int enable_hw_cksum = 1;
  86
  87#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  88/*
  89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  90 * Setting to > 1518 effectively disables this feature.
  91 *
  92 * NOTE:
  93 * The ia64 doesn't allow for unaligned loads even of integers being
  94 * misaligned on a 2 byte boundary. Thus always force copying of
  95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  96 * 23/10/2000 - Jes
  97 *
  98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
  99 * at least, having unaligned frames leads to a rather serious performance
 100 * penalty. -Ion
 101 */
 102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 103static int rx_copybreak = PKT_BUF_SZ;
 104#else
 105static int rx_copybreak /* = 0 */;
 106#endif
 107
 108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 109#ifdef __sparc__
 110#define DMA_BURST_SIZE 64
 111#else
 112#define DMA_BURST_SIZE 128
 113#endif
 114
 115/* Operational parameters that are set at compile time. */
 116
 117/* The "native" ring sizes are either 256 or 2048.
 118   However in some modes a descriptor may be marked to wrap the ring earlier.
 119*/
 120#define RX_RING_SIZE	256
 121#define TX_RING_SIZE	32
 122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 123#define DONE_Q_SIZE	1024
 124/* All queues must be aligned on a 256-byte boundary */
 125#define QUEUE_ALIGN	256
 126
 127#if RX_RING_SIZE > 256
 128#define RX_Q_ENTRIES Rx2048QEntries
 129#else
 130#define RX_Q_ENTRIES Rx256QEntries
 131#endif
 132
 133/* Operational parameters that usually are not changed. */
 134/* Time in jiffies before concluding the transmitter is hung. */
 135#define TX_TIMEOUT	(2 * HZ)
 136
 137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 138/* 64-bit dma_addr_t */
 139#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 140#define netdrv_addr_t __le64
 141#define cpu_to_dma(x) cpu_to_le64(x)
 142#define dma_to_cpu(x) le64_to_cpu(x)
 143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 148#else  /* 32-bit dma_addr_t */
 149#define netdrv_addr_t __le32
 150#define cpu_to_dma(x) cpu_to_le32(x)
 151#define dma_to_cpu(x) le32_to_cpu(x)
 152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 157#endif
 158
 159#define skb_first_frag_len(skb)	skb_headlen(skb)
 160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 161
 162/* Firmware names */
 163#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 164#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 165
 166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 168MODULE_LICENSE("GPL");
 169MODULE_FIRMWARE(FIRMWARE_RX);
 170MODULE_FIRMWARE(FIRMWARE_TX);
 171
 172module_param(max_interrupt_work, int, 0);
 173module_param(mtu, int, 0);
 174module_param(debug, int, 0);
 175module_param(rx_copybreak, int, 0);
 176module_param(intr_latency, int, 0);
 177module_param(small_frames, int, 0);
 178module_param(enable_hw_cksum, int, 0);
 179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 180MODULE_PARM_DESC(mtu, "MTU (all boards)");
 181MODULE_PARM_DESC(debug, "Debug level (0-6)");
 182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 186
 187/*
 188				Theory of Operation
 189
 190I. Board Compatibility
 191
 192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 193
 194II. Board-specific settings
 195
 196III. Driver operation
 197
 198IIIa. Ring buffers
 199
 200The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 201ring sizes are set fixed by the hardware, but may optionally be wrapped
 202earlier by the END bit in the descriptor.
 203This driver uses that hardware queue size for the Rx ring, where a large
 204number of entries has no ill effect beyond increases the potential backlog.
 205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 206disables the queue layer priority ordering and we have no mechanism to
 207utilize the hardware two-level priority queue.  When modifying the
 208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 209levels.
 210
 211IIIb/c. Transmit/Receive Structure
 212
 213See the Adaptec manual for the many possible structures, and options for
 214each structure.  There are far too many to document all of them here.
 215
 216For transmit this driver uses type 0/1 transmit descriptors (depending
 217on the 32/64 bitness of the architecture), and relies on automatic
 218minimum-length padding.  It does not use the completion queue
 219consumer index, but instead checks for non-zero status entries.
 220
 221For receive this driver uses type 2/3 receive descriptors.  The driver
 222allocates full frame size skbuffs for the Rx ring buffers, so all frames
 223should fit in a single descriptor.  The driver does not use the completion
 224queue consumer index, but instead checks for non-zero status entries.
 225
 226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 227is allocated and the frame is copied to the new skbuff.  When the incoming
 228frame is larger, the skbuff is passed directly up the protocol stack.
 229Buffers consumed this way are replaced by newly allocated skbuffs in a later
 230phase of receive.
 231
 232A notable aspect of operation is that unaligned buffers are not permitted by
 233the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 234isn't longword aligned, which may cause problems on some machine
 235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 236the frame into a new skbuff unconditionally. Copied frames are put into the
 237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 238
 239IIId. Synchronization
 240
 241The driver runs as two independent, single-threaded flows of control.  One
 242is the send-packet routine, which enforces single-threaded use by the
 243dev->tbusy flag.  The other thread is the interrupt handler, which is single
 244threaded by the hardware and interrupt handling software.
 245
 246The send packet thread has partial control over the Tx ring and the netif_queue
 247status. If the number of free Tx slots in the ring falls below a certain number
 248(currently hardcoded to 4), it signals the upper layer to stop the queue.
 249
 250The interrupt handler has exclusive control over the Rx ring and records stats
 251from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 253number of free Tx slow is above the threshold, it signals the upper layer to
 254restart the queue.
 255
 256IV. Notes
 257
 258IVb. References
 259
 260The Adaptec Starfire manuals, available only from Adaptec.
 261http://www.scyld.com/expert/100mbps.html
 262http://www.scyld.com/expert/NWay.html
 263
 264IVc. Errata
 265
 266- StopOnPerr is broken, don't enable
 267- Hardware ethernet padding exposes random data, perform software padding
 268  instead (unverified -- works correctly for all the hardware I have)
 269
 270*/
 271
 272
 273
 274enum chip_capability_flags {CanHaveMII=1, };
 275
 276enum chipset {
 277	CH_6915 = 0,
 278};
 279
 280static const struct pci_device_id starfire_pci_tbl[] = {
 281	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 282	{ 0, }
 283};
 284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 285
 286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 287static const struct chip_info {
 288	const char *name;
 289	int drv_flags;
 290} netdrv_tbl[] = {
 291	{ "Adaptec Starfire 6915", CanHaveMII },
 292};
 293
 294
 295/* Offsets to the device registers.
 296   Unlike software-only systems, device drivers interact with complex hardware.
 297   It's not useful to define symbolic names for every register bit in the
 298   device.  The name can only partially document the semantics and make
 299   the driver longer and more difficult to read.
 300   In general, only the important configuration values or bits changed
 301   multiple times should be defined symbolically.
 302*/
 303enum register_offsets {
 304	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 305	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 306	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 307	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 308	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 309	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 310	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 311	TxThreshold=0x500B0,
 312	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 313	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 314	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 315	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 316	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 317	TxMode=0x55000, VlanType=0x55064,
 318	PerfFilterTable=0x56000, HashTable=0x56100,
 319	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 320};
 321
 322/*
 323 * Bits in the interrupt status/mask registers.
 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 325 * enables all the interrupt sources that are or'ed into those status bits.
 326 */
 327enum intr_status_bits {
 328	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 329	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 330	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 331	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 332	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 333	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 334	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 335	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 336	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 337	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 338	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 339	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 340	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 341	IntrTxGfp=0x02, IntrPCIPad=0x01,
 342	/* not quite bits */
 343	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 344	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 345	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 346};
 347
 348/* Bits in the RxFilterMode register. */
 349enum rx_mode_bits {
 350	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 351	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 352	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 353	WakeupOnGFP=0x0800,
 354};
 355
 356/* Bits in the TxMode register */
 357enum tx_mode_bits {
 358	MiiSoftReset=0x8000, MIILoopback=0x4000,
 359	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 360	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 361};
 362
 363/* Bits in the TxDescCtrl register. */
 364enum tx_ctrl_bits {
 365	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 366	TxDescSpace128=0x30, TxDescSpace256=0x40,
 367	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 368	TxDescType3=0x03, TxDescType4=0x04,
 369	TxNoDMACompletion=0x08,
 370	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 371	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 372	TxDMABurstSizeShift=8,
 373};
 374
 375/* Bits in the RxDescQCtrl register. */
 376enum rx_ctrl_bits {
 377	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 378	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 379	Rx2048QEntries=0x4000, Rx256QEntries=0,
 380	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 381	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 382	RxDescSpace4=0x000, RxDescSpace8=0x100,
 383	RxDescSpace16=0x200, RxDescSpace32=0x300,
 384	RxDescSpace64=0x400, RxDescSpace128=0x500,
 385	RxConsumerWrEn=0x80,
 386};
 387
 388/* Bits in the RxDMACtrl register. */
 389enum rx_dmactrl_bits {
 390	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 391	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 392	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 393	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 394	RxChecksumRejectTCPOnly=0x01000000,
 395	RxCompletionQ2Enable=0x800000,
 396	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 397	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 398	RxDMAQ2NonIP=0x400000,
 399	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 400	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 401	RxBurstSizeShift=0,
 402};
 403
 404/* Bits in the RxCompletionAddr register */
 405enum rx_compl_bits {
 406	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 407	RxComplProducerWrEn=0x40,
 408	RxComplType0=0x00, RxComplType1=0x10,
 409	RxComplType2=0x20, RxComplType3=0x30,
 410	RxComplThreshShift=0,
 411};
 412
 413/* Bits in the TxCompletionAddr register */
 414enum tx_compl_bits {
 415	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 416	TxComplProducerWrEn=0x40,
 417	TxComplIntrStatus=0x20,
 418	CommonQueueMode=0x10,
 419	TxComplThreshShift=0,
 420};
 421
 422/* Bits in the GenCtrl register */
 423enum gen_ctrl_bits {
 424	RxEnable=0x05, TxEnable=0x0a,
 425	RxGFPEnable=0x10, TxGFPEnable=0x20,
 426};
 427
 428/* Bits in the IntrTimerCtrl register */
 429enum intr_ctrl_bits {
 430	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 431	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 432	IntrLatencyMask=0x1f,
 433};
 434
 435/* The Rx and Tx buffer descriptors. */
 436struct starfire_rx_desc {
 437	netdrv_addr_t rxaddr;
 438};
 439enum rx_desc_bits {
 440	RxDescValid=1, RxDescEndRing=2,
 441};
 442
 443/* Completion queue entry. */
 444struct csum_rx_done_desc {
 445	__le32 status;			/* Low 16 bits is length. */
 446	__le16 csum;			/* Partial checksum */
 447	__le16 status2;
 448};
 449struct full_rx_done_desc {
 450	__le32 status;			/* Low 16 bits is length. */
 451	__le16 status3;
 452	__le16 status2;
 453	__le16 vlanid;
 454	__le16 csum;			/* partial checksum */
 455	__le32 timestamp;
 456};
 457/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 458#ifdef VLAN_SUPPORT
 459typedef struct full_rx_done_desc rx_done_desc;
 460#define RxComplType RxComplType3
 461#else  /* not VLAN_SUPPORT */
 462typedef struct csum_rx_done_desc rx_done_desc;
 463#define RxComplType RxComplType2
 464#endif /* not VLAN_SUPPORT */
 465
 466enum rx_done_bits {
 467	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 468};
 469
 470/* Type 1 Tx descriptor. */
 471struct starfire_tx_desc_1 {
 472	__le32 status;			/* Upper bits are status, lower 16 length. */
 473	__le32 addr;
 474};
 475
 476/* Type 2 Tx descriptor. */
 477struct starfire_tx_desc_2 {
 478	__le32 status;			/* Upper bits are status, lower 16 length. */
 479	__le32 reserved;
 480	__le64 addr;
 481};
 482
 483#ifdef ADDR_64BITS
 484typedef struct starfire_tx_desc_2 starfire_tx_desc;
 485#define TX_DESC_TYPE TxDescType2
 486#else  /* not ADDR_64BITS */
 487typedef struct starfire_tx_desc_1 starfire_tx_desc;
 488#define TX_DESC_TYPE TxDescType1
 489#endif /* not ADDR_64BITS */
 490#define TX_DESC_SPACING TxDescSpaceUnlim
 491
 492enum tx_desc_bits {
 493	TxDescID=0xB0000000,
 494	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 495	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 496};
 497struct tx_done_desc {
 498	__le32 status;			/* timestamp, index. */
 499#if 0
 500	__le32 intrstatus;		/* interrupt status */
 501#endif
 502};
 503
 504struct rx_ring_info {
 505	struct sk_buff *skb;
 506	dma_addr_t mapping;
 507};
 508struct tx_ring_info {
 509	struct sk_buff *skb;
 510	dma_addr_t mapping;
 511	unsigned int used_slots;
 512};
 513
 514#define PHY_CNT		2
 515struct netdev_private {
 516	/* Descriptor rings first for alignment. */
 517	struct starfire_rx_desc *rx_ring;
 518	starfire_tx_desc *tx_ring;
 519	dma_addr_t rx_ring_dma;
 520	dma_addr_t tx_ring_dma;
 521	/* The addresses of rx/tx-in-place skbuffs. */
 522	struct rx_ring_info rx_info[RX_RING_SIZE];
 523	struct tx_ring_info tx_info[TX_RING_SIZE];
 524	/* Pointers to completion queues (full pages). */
 525	rx_done_desc *rx_done_q;
 526	dma_addr_t rx_done_q_dma;
 527	unsigned int rx_done;
 528	struct tx_done_desc *tx_done_q;
 529	dma_addr_t tx_done_q_dma;
 530	unsigned int tx_done;
 531	struct napi_struct napi;
 532	struct net_device *dev;
 533	struct pci_dev *pci_dev;
 534#ifdef VLAN_SUPPORT
 535	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 536#endif
 537	void *queue_mem;
 538	dma_addr_t queue_mem_dma;
 539	size_t queue_mem_size;
 540
 541	/* Frequently used values: keep some adjacent for cache effect. */
 542	spinlock_t lock;
 543	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 544	unsigned int cur_tx, dirty_tx, reap_tx;
 545	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 546	/* These values keep track of the transceiver/media in use. */
 547	int speed100;			/* Set if speed == 100MBit. */
 548	u32 tx_mode;
 549	u32 intr_timer_ctrl;
 550	u8 tx_threshold;
 551	/* MII transceiver section. */
 552	struct mii_if_info mii_if;		/* MII lib hooks/info */
 553	int phy_cnt;			/* MII device addresses. */
 554	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 555	void __iomem *base;
 556};
 557
 558
 559static int	mdio_read(struct net_device *dev, int phy_id, int location);
 560static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 561static int	netdev_open(struct net_device *dev);
 562static void	check_duplex(struct net_device *dev);
 563static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
 564static void	init_ring(struct net_device *dev);
 565static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 566static irqreturn_t intr_handler(int irq, void *dev_instance);
 567static void	netdev_error(struct net_device *dev, int intr_status);
 568static int	__netdev_rx(struct net_device *dev, int *quota);
 569static int	netdev_poll(struct napi_struct *napi, int budget);
 570static void	refill_rx_ring(struct net_device *dev);
 571static void	netdev_error(struct net_device *dev, int intr_status);
 572static void	set_rx_mode(struct net_device *dev);
 573static struct net_device_stats *get_stats(struct net_device *dev);
 574static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 575static int	netdev_close(struct net_device *dev);
 576static void	netdev_media_change(struct net_device *dev);
 577static const struct ethtool_ops ethtool_ops;
 578
 579
 580#ifdef VLAN_SUPPORT
 581static int netdev_vlan_rx_add_vid(struct net_device *dev,
 582				  __be16 proto, u16 vid)
 583{
 584	struct netdev_private *np = netdev_priv(dev);
 585
 586	spin_lock(&np->lock);
 587	if (debug > 1)
 588		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 589	set_bit(vid, np->active_vlans);
 590	set_rx_mode(dev);
 591	spin_unlock(&np->lock);
 592
 593	return 0;
 594}
 595
 596static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 597				   __be16 proto, u16 vid)
 598{
 599	struct netdev_private *np = netdev_priv(dev);
 600
 601	spin_lock(&np->lock);
 602	if (debug > 1)
 603		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 604	clear_bit(vid, np->active_vlans);
 605	set_rx_mode(dev);
 606	spin_unlock(&np->lock);
 607
 608	return 0;
 609}
 610#endif /* VLAN_SUPPORT */
 611
 612
 613static const struct net_device_ops netdev_ops = {
 614	.ndo_open		= netdev_open,
 615	.ndo_stop		= netdev_close,
 616	.ndo_start_xmit		= start_tx,
 617	.ndo_tx_timeout		= tx_timeout,
 618	.ndo_get_stats		= get_stats,
 619	.ndo_set_rx_mode	= set_rx_mode,
 620	.ndo_eth_ioctl		= netdev_ioctl,
 621	.ndo_set_mac_address	= eth_mac_addr,
 622	.ndo_validate_addr	= eth_validate_addr,
 623#ifdef VLAN_SUPPORT
 624	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 625	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 626#endif
 627};
 628
 629static int starfire_init_one(struct pci_dev *pdev,
 630			     const struct pci_device_id *ent)
 631{
 632	struct device *d = &pdev->dev;
 633	struct netdev_private *np;
 634	int i, irq, chip_idx = ent->driver_data;
 635	struct net_device *dev;
 636	u8 addr[ETH_ALEN];
 637	long ioaddr;
 638	void __iomem *base;
 639	int drv_flags, io_size;
 640	int boguscnt;
 641
 642	if (pci_enable_device (pdev))
 643		return -EIO;
 644
 645	ioaddr = pci_resource_start(pdev, 0);
 646	io_size = pci_resource_len(pdev, 0);
 647	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 648		dev_err(d, "no PCI MEM resources, aborting\n");
 649		return -ENODEV;
 650	}
 651
 652	dev = alloc_etherdev(sizeof(*np));
 653	if (!dev)
 654		return -ENOMEM;
 655
 656	SET_NETDEV_DEV(dev, &pdev->dev);
 657
 658	irq = pdev->irq;
 659
 660	if (pci_request_regions (pdev, DRV_NAME)) {
 661		dev_err(d, "cannot reserve PCI resources, aborting\n");
 662		goto err_out_free_netdev;
 663	}
 664
 665	base = ioremap(ioaddr, io_size);
 666	if (!base) {
 667		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 668			io_size, ioaddr);
 669		goto err_out_free_res;
 670	}
 671
 672	pci_set_master(pdev);
 673
 674	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 675	pci_try_set_mwi(pdev);
 676
 677#ifdef ZEROCOPY
 678	/* Starfire can do TCP/UDP checksumming */
 679	if (enable_hw_cksum)
 680		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 681#endif /* ZEROCOPY */
 682
 683#ifdef VLAN_SUPPORT
 684	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 685#endif /* VLAN_RX_KILL_VID */
 686#ifdef ADDR_64BITS
 687	dev->features |= NETIF_F_HIGHDMA;
 688#endif /* ADDR_64BITS */
 689
 690	/* Serial EEPROM reads are hidden by the hardware. */
 691	for (i = 0; i < 6; i++)
 692		addr[i] = readb(base + EEPROMCtrl + 20 - i);
 693	eth_hw_addr_set(dev, addr);
 694
 695#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 696	if (debug > 4)
 697		for (i = 0; i < 0x20; i++)
 698			printk("%2.2x%s",
 699			       (unsigned int)readb(base + EEPROMCtrl + i),
 700			       i % 16 != 15 ? " " : "\n");
 701#endif
 702
 703	/* Issue soft reset */
 704	writel(MiiSoftReset, base + TxMode);
 705	udelay(1000);
 706	writel(0, base + TxMode);
 707
 708	/* Reset the chip to erase previous misconfiguration. */
 709	writel(1, base + PCIDeviceConfig);
 710	boguscnt = 1000;
 711	while (--boguscnt > 0) {
 712		udelay(10);
 713		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 714			break;
 715	}
 716	if (boguscnt == 0)
 717		printk("%s: chipset reset never completed!\n", dev->name);
 718	/* wait a little longer */
 719	udelay(1000);
 720
 721	np = netdev_priv(dev);
 722	np->dev = dev;
 723	np->base = base;
 724	spin_lock_init(&np->lock);
 725	pci_set_drvdata(pdev, dev);
 726
 727	np->pci_dev = pdev;
 728
 729	np->mii_if.dev = dev;
 730	np->mii_if.mdio_read = mdio_read;
 731	np->mii_if.mdio_write = mdio_write;
 732	np->mii_if.phy_id_mask = 0x1f;
 733	np->mii_if.reg_num_mask = 0x1f;
 734
 735	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 736
 737	np->speed100 = 1;
 738
 739	/* timer resolution is 128 * 0.8us */
 740	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 741		Timer10X | EnableIntrMasking;
 742
 743	if (small_frames > 0) {
 744		np->intr_timer_ctrl |= SmallFrameBypass;
 745		switch (small_frames) {
 746		case 1 ... 64:
 747			np->intr_timer_ctrl |= SmallFrame64;
 748			break;
 749		case 65 ... 128:
 750			np->intr_timer_ctrl |= SmallFrame128;
 751			break;
 752		case 129 ... 256:
 753			np->intr_timer_ctrl |= SmallFrame256;
 754			break;
 755		default:
 756			np->intr_timer_ctrl |= SmallFrame512;
 757			if (small_frames > 512)
 758				printk("Adjusting small_frames down to 512\n");
 759			break;
 760		}
 761	}
 762
 763	dev->netdev_ops = &netdev_ops;
 764	dev->watchdog_timeo = TX_TIMEOUT;
 765	dev->ethtool_ops = &ethtool_ops;
 766
 767	netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
 768
 769	if (mtu)
 770		dev->mtu = mtu;
 771
 772	if (register_netdev(dev))
 773		goto err_out_cleardev;
 774
 775	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 776	       dev->name, netdrv_tbl[chip_idx].name, base,
 777	       dev->dev_addr, irq);
 778
 779	if (drv_flags & CanHaveMII) {
 780		int phy, phy_idx = 0;
 781		int mii_status;
 782		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 783			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 784			msleep(100);
 785			boguscnt = 1000;
 786			while (--boguscnt > 0)
 787				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 788					break;
 789			if (boguscnt == 0) {
 790				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 791				continue;
 792			}
 793			mii_status = mdio_read(dev, phy, MII_BMSR);
 794			if (mii_status != 0) {
 795				np->phys[phy_idx++] = phy;
 796				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 797				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 798					   "%#4.4x advertising %#4.4x.\n",
 799					   dev->name, phy, mii_status, np->mii_if.advertising);
 800				/* there can be only one PHY on-board */
 801				break;
 802			}
 803		}
 804		np->phy_cnt = phy_idx;
 805		if (np->phy_cnt > 0)
 806			np->mii_if.phy_id = np->phys[0];
 807		else
 808			memset(&np->mii_if, 0, sizeof(np->mii_if));
 809	}
 810
 811	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 812	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 813	return 0;
 814
 815err_out_cleardev:
 816	iounmap(base);
 817err_out_free_res:
 818	pci_release_regions (pdev);
 819err_out_free_netdev:
 820	free_netdev(dev);
 821	return -ENODEV;
 822}
 823
 824
 825/* Read the MII Management Data I/O (MDIO) interfaces. */
 826static int mdio_read(struct net_device *dev, int phy_id, int location)
 827{
 828	struct netdev_private *np = netdev_priv(dev);
 829	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 830	int result, boguscnt=1000;
 831	/* ??? Should we add a busy-wait here? */
 832	do {
 833		result = readl(mdio_addr);
 834	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 835	if (boguscnt == 0)
 836		return 0;
 837	if ((result & 0xffff) == 0xffff)
 838		return 0;
 839	return result & 0xffff;
 840}
 841
 842
 843static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 844{
 845	struct netdev_private *np = netdev_priv(dev);
 846	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 847	writel(value, mdio_addr);
 848	/* The busy-wait will occur before a read. */
 849}
 850
 851
 852static int netdev_open(struct net_device *dev)
 853{
 854	const struct firmware *fw_rx, *fw_tx;
 855	const __be32 *fw_rx_data, *fw_tx_data;
 856	struct netdev_private *np = netdev_priv(dev);
 857	void __iomem *ioaddr = np->base;
 858	const int irq = np->pci_dev->irq;
 859	int i, retval;
 860	size_t tx_size, rx_size;
 861	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 862
 863	/* Do we ever need to reset the chip??? */
 864
 865	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 866	if (retval)
 867		return retval;
 868
 869	/* Disable the Rx and Tx, and reset the chip. */
 870	writel(0, ioaddr + GenCtrl);
 871	writel(1, ioaddr + PCIDeviceConfig);
 872	if (debug > 1)
 873		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 874		       dev->name, irq);
 875
 876	/* Allocate the various queues. */
 877	if (!np->queue_mem) {
 878		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 879		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 880		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 881		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 882		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 883		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
 884						   np->queue_mem_size,
 885						   &np->queue_mem_dma, GFP_ATOMIC);
 886		if (np->queue_mem == NULL) {
 887			free_irq(irq, dev);
 888			return -ENOMEM;
 889		}
 890
 891		np->tx_done_q     = np->queue_mem;
 892		np->tx_done_q_dma = np->queue_mem_dma;
 893		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 894		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 895		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 896		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 897		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 898		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 899	}
 900
 901	/* Start with no carrier, it gets adjusted later */
 902	netif_carrier_off(dev);
 903	init_ring(dev);
 904	/* Set the size of the Rx buffers. */
 905	writel((np->rx_buf_sz << RxBufferLenShift) |
 906	       (0 << RxMinDescrThreshShift) |
 907	       RxPrefetchMode | RxVariableQ |
 908	       RX_Q_ENTRIES |
 909	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 910	       RxDescSpace4,
 911	       ioaddr + RxDescQCtrl);
 912
 913	/* Set up the Rx DMA controller. */
 914	writel(RxChecksumIgnore |
 915	       (0 << RxEarlyIntThreshShift) |
 916	       (6 << RxHighPrioThreshShift) |
 917	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 918	       ioaddr + RxDMACtrl);
 919
 920	/* Set Tx descriptor */
 921	writel((2 << TxHiPriFIFOThreshShift) |
 922	       (0 << TxPadLenShift) |
 923	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 924	       TX_DESC_Q_ADDR_SIZE |
 925	       TX_DESC_SPACING | TX_DESC_TYPE,
 926	       ioaddr + TxDescCtrl);
 927
 928	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 929	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 930	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 931	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 932	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 933
 934	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 935	writel(np->rx_done_q_dma |
 936	       RxComplType |
 937	       (0 << RxComplThreshShift),
 938	       ioaddr + RxCompletionAddr);
 939
 940	if (debug > 1)
 941		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 942
 943	/* Fill both the Tx SA register and the Rx perfect filter. */
 944	for (i = 0; i < 6; i++)
 945		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 946	/* The first entry is special because it bypasses the VLAN filter.
 947	   Don't use it. */
 948	writew(0, ioaddr + PerfFilterTable);
 949	writew(0, ioaddr + PerfFilterTable + 4);
 950	writew(0, ioaddr + PerfFilterTable + 8);
 951	for (i = 1; i < 16; i++) {
 952		const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
 953		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 954		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 955		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 956		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 957	}
 958
 959	/* Initialize other registers. */
 960	/* Configure the PCI bus bursts and FIFO thresholds. */
 961	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 962	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 963	udelay(1000);
 964	writel(np->tx_mode, ioaddr + TxMode);
 965	np->tx_threshold = 4;
 966	writel(np->tx_threshold, ioaddr + TxThreshold);
 967
 968	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 969
 970	napi_enable(&np->napi);
 971
 972	netif_start_queue(dev);
 973
 974	if (debug > 1)
 975		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 976	set_rx_mode(dev);
 977
 978	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 979	check_duplex(dev);
 980
 981	/* Enable GPIO interrupts on link change */
 982	writel(0x0f00ff00, ioaddr + GPIOCtrl);
 983
 984	/* Set the interrupt mask */
 985	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
 986	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
 987	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
 988	       ioaddr + IntrEnable);
 989	/* Enable PCI interrupts. */
 990	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
 991	       ioaddr + PCIDeviceConfig);
 992
 993#ifdef VLAN_SUPPORT
 994	/* Set VLAN type to 802.1q */
 995	writel(ETH_P_8021Q, ioaddr + VlanType);
 996#endif /* VLAN_SUPPORT */
 997
 998	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
 999	if (retval) {
1000		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1001		       FIRMWARE_RX);
1002		goto out_init;
1003	}
1004	if (fw_rx->size % 4) {
1005		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1006		       fw_rx->size, FIRMWARE_RX);
1007		retval = -EINVAL;
1008		goto out_rx;
1009	}
1010	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1011	if (retval) {
1012		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1013		       FIRMWARE_TX);
1014		goto out_rx;
1015	}
1016	if (fw_tx->size % 4) {
1017		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1018		       fw_tx->size, FIRMWARE_TX);
1019		retval = -EINVAL;
1020		goto out_tx;
1021	}
1022	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1023	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1024	rx_size = fw_rx->size / 4;
1025	tx_size = fw_tx->size / 4;
1026
1027	/* Load Rx/Tx firmware into the frame processors */
1028	for (i = 0; i < rx_size; i++)
1029		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1030	for (i = 0; i < tx_size; i++)
1031		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1032	if (enable_hw_cksum)
1033		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1034		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1035	else
1036		/* Enable the Rx and Tx units only. */
1037		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1038
1039	if (debug > 1)
1040		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1041		       dev->name);
1042
1043out_tx:
1044	release_firmware(fw_tx);
1045out_rx:
1046	release_firmware(fw_rx);
1047out_init:
1048	if (retval)
1049		netdev_close(dev);
1050	return retval;
1051}
1052
1053
1054static void check_duplex(struct net_device *dev)
1055{
1056	struct netdev_private *np = netdev_priv(dev);
1057	u16 reg0;
1058	int silly_count = 1000;
1059
1060	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1061	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1062	udelay(500);
1063	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1064		/* do nothing */;
1065	if (!silly_count) {
1066		printk("%s: MII reset failed!\n", dev->name);
1067		return;
1068	}
1069
1070	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1071
1072	if (!np->mii_if.force_media) {
1073		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1074	} else {
1075		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1076		if (np->speed100)
1077			reg0 |= BMCR_SPEED100;
1078		if (np->mii_if.full_duplex)
1079			reg0 |= BMCR_FULLDPLX;
1080		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1081		       dev->name,
1082		       np->speed100 ? "100" : "10",
1083		       np->mii_if.full_duplex ? "full" : "half");
1084	}
1085	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1086}
1087
1088
1089static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1090{
1091	struct netdev_private *np = netdev_priv(dev);
1092	void __iomem *ioaddr = np->base;
1093	int old_debug;
1094
1095	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1096	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1097
1098	/* Perhaps we should reinitialize the hardware here. */
1099
1100	/*
1101	 * Stop and restart the interface.
1102	 * Cheat and increase the debug level temporarily.
1103	 */
1104	old_debug = debug;
1105	debug = 2;
1106	netdev_close(dev);
1107	netdev_open(dev);
1108	debug = old_debug;
1109
1110	/* Trigger an immediate transmit demand. */
1111
1112	netif_trans_update(dev); /* prevent tx timeout */
1113	dev->stats.tx_errors++;
1114	netif_wake_queue(dev);
1115}
1116
1117
1118/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1119static void init_ring(struct net_device *dev)
1120{
1121	struct netdev_private *np = netdev_priv(dev);
1122	int i;
1123
1124	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1125	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1126
1127	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1128
1129	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1130	for (i = 0; i < RX_RING_SIZE; i++) {
1131		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1132		np->rx_info[i].skb = skb;
1133		if (skb == NULL)
1134			break;
1135		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1136							skb->data,
1137							np->rx_buf_sz,
1138							DMA_FROM_DEVICE);
1139		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1140			dev_kfree_skb(skb);
1141			np->rx_info[i].skb = NULL;
1142			break;
1143		}
1144		/* Grrr, we cannot offset to correctly align the IP header. */
1145		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1146	}
1147	writew(i - 1, np->base + RxDescQIdx);
1148	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1149
1150	/* Clear the remainder of the Rx buffer ring. */
1151	for (  ; i < RX_RING_SIZE; i++) {
1152		np->rx_ring[i].rxaddr = 0;
1153		np->rx_info[i].skb = NULL;
1154		np->rx_info[i].mapping = 0;
1155	}
1156	/* Mark the last entry as wrapping the ring. */
1157	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1158
1159	/* Clear the completion rings. */
1160	for (i = 0; i < DONE_Q_SIZE; i++) {
1161		np->rx_done_q[i].status = 0;
1162		np->tx_done_q[i].status = 0;
1163	}
1164
1165	for (i = 0; i < TX_RING_SIZE; i++)
1166		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1167}
1168
1169
1170static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1171{
1172	struct netdev_private *np = netdev_priv(dev);
1173	unsigned int entry;
1174	unsigned int prev_tx;
1175	u32 status;
1176	int i, j;
1177
1178	/*
1179	 * be cautious here, wrapping the queue has weird semantics
1180	 * and we may not have enough slots even when it seems we do.
1181	 */
1182	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1183		netif_stop_queue(dev);
1184		return NETDEV_TX_BUSY;
1185	}
1186
1187#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1188	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1189		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1190			return NETDEV_TX_OK;
1191	}
1192#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1193
1194	prev_tx = np->cur_tx;
1195	entry = np->cur_tx % TX_RING_SIZE;
1196	for (i = 0; i < skb_num_frags(skb); i++) {
1197		int wrap_ring = 0;
1198		status = TxDescID;
1199
1200		if (i == 0) {
1201			np->tx_info[entry].skb = skb;
1202			status |= TxCRCEn;
1203			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1204				status |= TxRingWrap;
1205				wrap_ring = 1;
1206			}
1207			if (np->reap_tx) {
1208				status |= TxDescIntr;
1209				np->reap_tx = 0;
1210			}
1211			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1212				status |= TxCalTCP;
1213				dev->stats.tx_compressed++;
1214			}
1215			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1216
1217			np->tx_info[entry].mapping =
1218				dma_map_single(&np->pci_dev->dev, skb->data,
1219					       skb_first_frag_len(skb),
1220					       DMA_TO_DEVICE);
1221		} else {
1222			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223			status |= skb_frag_size(this_frag);
1224			np->tx_info[entry].mapping =
1225				dma_map_single(&np->pci_dev->dev,
1226					       skb_frag_address(this_frag),
1227					       skb_frag_size(this_frag),
1228					       DMA_TO_DEVICE);
1229		}
1230		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1231			dev->stats.tx_dropped++;
1232			goto err_out;
1233		}
1234
1235		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1236		np->tx_ring[entry].status = cpu_to_le32(status);
1237		if (debug > 3)
1238			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1239			       dev->name, np->cur_tx, np->dirty_tx,
1240			       entry, status);
1241		if (wrap_ring) {
1242			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1243			np->cur_tx += np->tx_info[entry].used_slots;
1244			entry = 0;
1245		} else {
1246			np->tx_info[entry].used_slots = 1;
1247			np->cur_tx += np->tx_info[entry].used_slots;
1248			entry++;
1249		}
1250		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1251		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1252			np->reap_tx = 1;
1253	}
1254
1255	/* Non-x86: explicitly flush descriptor cache lines here. */
1256	/* Ensure all descriptors are written back before the transmit is
1257	   initiated. - Jes */
1258	wmb();
1259
1260	/* Update the producer index. */
1261	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1262
1263	/* 4 is arbitrary, but should be ok */
1264	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1265		netif_stop_queue(dev);
1266
1267	return NETDEV_TX_OK;
1268
1269err_out:
1270	entry = prev_tx % TX_RING_SIZE;
1271	np->tx_info[entry].skb = NULL;
1272	if (i > 0) {
1273		dma_unmap_single(&np->pci_dev->dev,
1274				 np->tx_info[entry].mapping,
1275				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1276		np->tx_info[entry].mapping = 0;
1277		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1278		for (j = 1; j < i; j++) {
1279			dma_unmap_single(&np->pci_dev->dev,
1280					 np->tx_info[entry].mapping,
1281					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1282					 DMA_TO_DEVICE);
1283			entry++;
1284		}
1285	}
1286	dev_kfree_skb_any(skb);
1287	np->cur_tx = prev_tx;
1288	return NETDEV_TX_OK;
1289}
1290
1291/* The interrupt handler does all of the Rx thread work and cleans up
1292   after the Tx thread. */
1293static irqreturn_t intr_handler(int irq, void *dev_instance)
1294{
1295	struct net_device *dev = dev_instance;
1296	struct netdev_private *np = netdev_priv(dev);
1297	void __iomem *ioaddr = np->base;
1298	int boguscnt = max_interrupt_work;
1299	int consumer;
1300	int tx_status;
1301	int handled = 0;
1302
1303	do {
1304		u32 intr_status = readl(ioaddr + IntrClear);
1305
1306		if (debug > 4)
1307			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1308			       dev->name, intr_status);
1309
1310		if (intr_status == 0 || intr_status == (u32) -1)
1311			break;
1312
1313		handled = 1;
1314
1315		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1316			u32 enable;
1317
1318			if (likely(napi_schedule_prep(&np->napi))) {
1319				__napi_schedule(&np->napi);
1320				enable = readl(ioaddr + IntrEnable);
1321				enable &= ~(IntrRxDone | IntrRxEmpty);
1322				writel(enable, ioaddr + IntrEnable);
1323				/* flush PCI posting buffers */
1324				readl(ioaddr + IntrEnable);
1325			} else {
1326				/* Paranoia check */
1327				enable = readl(ioaddr + IntrEnable);
1328				if (enable & (IntrRxDone | IntrRxEmpty)) {
1329					printk(KERN_INFO
1330					       "%s: interrupt while in poll!\n",
1331					       dev->name);
1332					enable &= ~(IntrRxDone | IntrRxEmpty);
1333					writel(enable, ioaddr + IntrEnable);
1334				}
1335			}
1336		}
1337
1338		/* Scavenge the skbuff list based on the Tx-done queue.
1339		   There are redundant checks here that may be cleaned up
1340		   after the driver has proven to be reliable. */
1341		consumer = readl(ioaddr + TxConsumerIdx);
1342		if (debug > 3)
1343			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1344			       dev->name, consumer);
1345
1346		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347			if (debug > 3)
1348				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1349				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1350			if ((tx_status & 0xe0000000) == 0xa0000000) {
1351				dev->stats.tx_packets++;
1352			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1353				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1354				struct sk_buff *skb = np->tx_info[entry].skb;
1355				np->tx_info[entry].skb = NULL;
1356				dma_unmap_single(&np->pci_dev->dev,
1357						 np->tx_info[entry].mapping,
1358						 skb_first_frag_len(skb),
1359						 DMA_TO_DEVICE);
1360				np->tx_info[entry].mapping = 0;
1361				np->dirty_tx += np->tx_info[entry].used_slots;
1362				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1363				{
1364					int i;
1365					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1366						dma_unmap_single(&np->pci_dev->dev,
1367								 np->tx_info[entry].mapping,
1368								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1369								 DMA_TO_DEVICE);
1370						np->dirty_tx++;
1371						entry++;
1372					}
1373				}
1374
1375				dev_consume_skb_irq(skb);
1376			}
1377			np->tx_done_q[np->tx_done].status = 0;
1378			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379		}
1380		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381
1382		if (netif_queue_stopped(dev) &&
1383		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1384			/* The ring is no longer full, wake the queue. */
1385			netif_wake_queue(dev);
1386		}
1387
1388		/* Stats overflow */
1389		if (intr_status & IntrStatsMax)
1390			get_stats(dev);
1391
1392		/* Media change interrupt. */
1393		if (intr_status & IntrLinkChange)
1394			netdev_media_change(dev);
1395
1396		/* Abnormal error summary/uncommon events handlers. */
1397		if (intr_status & IntrAbnormalSummary)
1398			netdev_error(dev, intr_status);
1399
1400		if (--boguscnt < 0) {
1401			if (debug > 1)
1402				printk(KERN_WARNING "%s: Too much work at interrupt, "
1403				       "status=%#8.8x.\n",
1404				       dev->name, intr_status);
1405			break;
1406		}
1407	} while (1);
1408
1409	if (debug > 4)
1410		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1411		       dev->name, (int) readl(ioaddr + IntrStatus));
1412	return IRQ_RETVAL(handled);
1413}
1414
1415
1416/*
1417 * This routine is logically part of the interrupt/poll handler, but separated
1418 * for clarity and better register allocation.
1419 */
1420static int __netdev_rx(struct net_device *dev, int *quota)
1421{
1422	struct netdev_private *np = netdev_priv(dev);
1423	u32 desc_status;
1424	int retcode = 0;
1425
1426	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1427	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1428		struct sk_buff *skb;
1429		u16 pkt_len;
1430		int entry;
1431		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1432
1433		if (debug > 4)
1434			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1435		if (!(desc_status & RxOK)) {
1436			/* There was an error. */
1437			if (debug > 2)
1438				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1439			dev->stats.rx_errors++;
1440			if (desc_status & RxFIFOErr)
1441				dev->stats.rx_fifo_errors++;
1442			goto next_rx;
1443		}
1444
1445		if (*quota <= 0) {	/* out of rx quota */
1446			retcode = 1;
1447			goto out;
1448		}
1449		(*quota)--;
1450
1451		pkt_len = desc_status;	/* Implicitly Truncate */
1452		entry = (desc_status >> 16) & 0x7ff;
1453
1454		if (debug > 4)
1455			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1456		/* Check if the packet is long enough to accept without copying
1457		   to a minimally-sized skbuff. */
1458		if (pkt_len < rx_copybreak &&
1459		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1460			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1461			dma_sync_single_for_cpu(&np->pci_dev->dev,
1462						np->rx_info[entry].mapping,
1463						pkt_len, DMA_FROM_DEVICE);
1464			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1465			dma_sync_single_for_device(&np->pci_dev->dev,
1466						   np->rx_info[entry].mapping,
1467						   pkt_len, DMA_FROM_DEVICE);
1468			skb_put(skb, pkt_len);
1469		} else {
1470			dma_unmap_single(&np->pci_dev->dev,
1471					 np->rx_info[entry].mapping,
1472					 np->rx_buf_sz, DMA_FROM_DEVICE);
1473			skb = np->rx_info[entry].skb;
1474			skb_put(skb, pkt_len);
1475			np->rx_info[entry].skb = NULL;
1476			np->rx_info[entry].mapping = 0;
1477		}
1478#ifndef final_version			/* Remove after testing. */
1479		/* You will want this info for the initial debug. */
1480		if (debug > 5) {
1481			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1482			       skb->data, skb->data + 6,
1483			       skb->data[12], skb->data[13]);
1484		}
1485#endif
1486
1487		skb->protocol = eth_type_trans(skb, dev);
1488#ifdef VLAN_SUPPORT
1489		if (debug > 4)
1490			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1491#endif
1492		if (le16_to_cpu(desc->status2) & 0x0100) {
1493			skb->ip_summed = CHECKSUM_UNNECESSARY;
1494			dev->stats.rx_compressed++;
1495		}
1496		/*
1497		 * This feature doesn't seem to be working, at least
1498		 * with the two firmware versions I have. If the GFP sees
1499		 * an IP fragment, it either ignores it completely, or reports
1500		 * "bad checksum" on it.
1501		 *
1502		 * Maybe I missed something -- corrections are welcome.
1503		 * Until then, the printk stays. :-) -Ion
1504		 */
1505		else if (le16_to_cpu(desc->status2) & 0x0040) {
1506			skb->ip_summed = CHECKSUM_COMPLETE;
1507			skb->csum = le16_to_cpu(desc->csum);
1508			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1509		}
1510#ifdef VLAN_SUPPORT
1511		if (le16_to_cpu(desc->status2) & 0x0200) {
1512			u16 vlid = le16_to_cpu(desc->vlanid);
1513
1514			if (debug > 4) {
1515				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1516				       vlid);
1517			}
1518			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1519		}
1520#endif /* VLAN_SUPPORT */
1521		netif_receive_skb(skb);
1522		dev->stats.rx_packets++;
1523
1524	next_rx:
1525		np->cur_rx++;
1526		desc->status = 0;
1527		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1528	}
1529
1530	if (*quota == 0) {	/* out of rx quota */
1531		retcode = 1;
1532		goto out;
1533	}
1534	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1535
1536 out:
1537	refill_rx_ring(dev);
1538	if (debug > 5)
1539		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1540		       retcode, np->rx_done, desc_status);
1541	return retcode;
1542}
1543
1544static int netdev_poll(struct napi_struct *napi, int budget)
1545{
1546	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1547	struct net_device *dev = np->dev;
1548	u32 intr_status;
1549	void __iomem *ioaddr = np->base;
1550	int quota = budget;
1551
1552	do {
1553		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1554
1555		if (__netdev_rx(dev, &quota))
1556			goto out;
1557
1558		intr_status = readl(ioaddr + IntrStatus);
1559	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1560
1561	napi_complete(napi);
1562	intr_status = readl(ioaddr + IntrEnable);
1563	intr_status |= IntrRxDone | IntrRxEmpty;
1564	writel(intr_status, ioaddr + IntrEnable);
1565
1566 out:
1567	if (debug > 5)
1568		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1569		       budget - quota);
1570
1571	/* Restart Rx engine if stopped. */
1572	return budget - quota;
1573}
1574
1575static void refill_rx_ring(struct net_device *dev)
1576{
1577	struct netdev_private *np = netdev_priv(dev);
1578	struct sk_buff *skb;
1579	int entry = -1;
1580
1581	/* Refill the Rx ring buffers. */
1582	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1583		entry = np->dirty_rx % RX_RING_SIZE;
1584		if (np->rx_info[entry].skb == NULL) {
1585			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1586			np->rx_info[entry].skb = skb;
1587			if (skb == NULL)
1588				break;	/* Better luck next round. */
1589			np->rx_info[entry].mapping =
1590				dma_map_single(&np->pci_dev->dev, skb->data,
1591					       np->rx_buf_sz, DMA_FROM_DEVICE);
1592			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1593				dev_kfree_skb(skb);
1594				np->rx_info[entry].skb = NULL;
1595				break;
1596			}
1597			np->rx_ring[entry].rxaddr =
1598				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1599		}
1600		if (entry == RX_RING_SIZE - 1)
1601			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1602	}
1603	if (entry >= 0)
1604		writew(entry, np->base + RxDescQIdx);
1605}
1606
1607
1608static void netdev_media_change(struct net_device *dev)
1609{
1610	struct netdev_private *np = netdev_priv(dev);
1611	void __iomem *ioaddr = np->base;
1612	u16 reg0, reg1, reg4, reg5;
1613	u32 new_tx_mode;
1614	u32 new_intr_timer_ctrl;
1615
1616	/* reset status first */
1617	mdio_read(dev, np->phys[0], MII_BMCR);
1618	mdio_read(dev, np->phys[0], MII_BMSR);
1619
1620	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1621	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1622
1623	if (reg1 & BMSR_LSTATUS) {
1624		/* link is up */
1625		if (reg0 & BMCR_ANENABLE) {
1626			/* autonegotiation is enabled */
1627			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1628			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1629			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1630				np->speed100 = 1;
1631				np->mii_if.full_duplex = 1;
1632			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1633				np->speed100 = 1;
1634				np->mii_if.full_duplex = 0;
1635			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1636				np->speed100 = 0;
1637				np->mii_if.full_duplex = 1;
1638			} else {
1639				np->speed100 = 0;
1640				np->mii_if.full_duplex = 0;
1641			}
1642		} else {
1643			/* autonegotiation is disabled */
1644			if (reg0 & BMCR_SPEED100)
1645				np->speed100 = 1;
1646			else
1647				np->speed100 = 0;
1648			if (reg0 & BMCR_FULLDPLX)
1649				np->mii_if.full_duplex = 1;
1650			else
1651				np->mii_if.full_duplex = 0;
1652		}
1653		netif_carrier_on(dev);
1654		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1655		       dev->name,
1656		       np->speed100 ? "100" : "10",
1657		       np->mii_if.full_duplex ? "full" : "half");
1658
1659		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1660		if (np->mii_if.full_duplex)
1661			new_tx_mode |= FullDuplex;
1662		if (np->tx_mode != new_tx_mode) {
1663			np->tx_mode = new_tx_mode;
1664			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1665			udelay(1000);
1666			writel(np->tx_mode, ioaddr + TxMode);
1667		}
1668
1669		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1670		if (np->speed100)
1671			new_intr_timer_ctrl |= Timer10X;
1672		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1673			np->intr_timer_ctrl = new_intr_timer_ctrl;
1674			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1675		}
1676	} else {
1677		netif_carrier_off(dev);
1678		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1679	}
1680}
1681
1682
1683static void netdev_error(struct net_device *dev, int intr_status)
1684{
1685	struct netdev_private *np = netdev_priv(dev);
1686
1687	/* Came close to underrunning the Tx FIFO, increase threshold. */
1688	if (intr_status & IntrTxDataLow) {
1689		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1690			writel(++np->tx_threshold, np->base + TxThreshold);
1691			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1692			       dev->name, np->tx_threshold * 16);
1693		} else
1694			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1695	}
1696	if (intr_status & IntrRxGFPDead) {
1697		dev->stats.rx_fifo_errors++;
1698		dev->stats.rx_errors++;
1699	}
1700	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1701		dev->stats.tx_fifo_errors++;
1702		dev->stats.tx_errors++;
1703	}
1704	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1705		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1706		       dev->name, intr_status);
1707}
1708
1709
1710static struct net_device_stats *get_stats(struct net_device *dev)
1711{
1712	struct netdev_private *np = netdev_priv(dev);
1713	void __iomem *ioaddr = np->base;
1714
1715	/* This adapter architecture needs no SMP locks. */
1716	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1717	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1718	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1719	dev->stats.tx_aborted_errors =
1720		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1721	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1722	dev->stats.collisions =
1723		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1724
1725	/* The chip only need report frame silently dropped. */
1726	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1727	writew(0, ioaddr + RxDMAStatus);
1728	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1729	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1730	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1731	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1732
1733	return &dev->stats;
1734}
1735
1736#ifdef VLAN_SUPPORT
1737static u32 set_vlan_mode(struct netdev_private *np)
1738{
1739	u32 ret = VlanMode;
1740	u16 vid;
1741	void __iomem *filter_addr = np->base + HashTable + 8;
1742	int vlan_count = 0;
1743
1744	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1745		if (vlan_count == 32)
1746			break;
1747		writew(vid, filter_addr);
1748		filter_addr += 16;
1749		vlan_count++;
1750	}
1751	if (vlan_count == 32) {
1752		ret |= PerfectFilterVlan;
1753		while (vlan_count < 32) {
1754			writew(0, filter_addr);
1755			filter_addr += 16;
1756			vlan_count++;
1757		}
1758	}
1759	return ret;
1760}
1761#endif /* VLAN_SUPPORT */
1762
1763static void set_rx_mode(struct net_device *dev)
1764{
1765	struct netdev_private *np = netdev_priv(dev);
1766	void __iomem *ioaddr = np->base;
1767	u32 rx_mode = MinVLANPrio;
1768	struct netdev_hw_addr *ha;
1769	int i;
1770
1771#ifdef VLAN_SUPPORT
1772	rx_mode |= set_vlan_mode(np);
1773#endif /* VLAN_SUPPORT */
1774
1775	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1776		rx_mode |= AcceptAll;
1777	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1778		   (dev->flags & IFF_ALLMULTI)) {
1779		/* Too many to match, or accept all multicasts. */
1780		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1781	} else if (netdev_mc_count(dev) <= 14) {
1782		/* Use the 16 element perfect filter, skip first two entries. */
1783		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1784		const __be16 *eaddrs;
1785		netdev_for_each_mc_addr(ha, dev) {
1786			eaddrs = (__be16 *) ha->addr;
1787			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1788			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1789			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1790		}
1791		eaddrs = (const __be16 *)dev->dev_addr;
1792		i = netdev_mc_count(dev) + 2;
1793		while (i++ < 16) {
1794			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797		}
1798		rx_mode |= AcceptBroadcast|PerfectFilter;
1799	} else {
1800		/* Must use a multicast hash table. */
1801		void __iomem *filter_addr;
1802		const __be16 *eaddrs;
1803		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1804
1805		memset(mc_filter, 0, sizeof(mc_filter));
1806		netdev_for_each_mc_addr(ha, dev) {
1807			/* The chip uses the upper 9 CRC bits
1808			   as index into the hash table */
1809			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1810			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1811
1812			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1813		}
1814		/* Clear the perfect filter list, skip first two entries. */
1815		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1816		eaddrs = (const __be16 *)dev->dev_addr;
1817		for (i = 2; i < 16; i++) {
1818			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1819			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1820			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1821		}
1822		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1823			writew(mc_filter[i], filter_addr);
1824		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1825	}
1826	writel(rx_mode, ioaddr + RxFilterMode);
1827}
1828
1829static int check_if_running(struct net_device *dev)
1830{
1831	if (!netif_running(dev))
1832		return -EINVAL;
1833	return 0;
1834}
1835
1836static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1837{
1838	struct netdev_private *np = netdev_priv(dev);
1839	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1840	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1841}
1842
1843static int get_link_ksettings(struct net_device *dev,
1844			      struct ethtool_link_ksettings *cmd)
1845{
1846	struct netdev_private *np = netdev_priv(dev);
1847	spin_lock_irq(&np->lock);
1848	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1849	spin_unlock_irq(&np->lock);
1850	return 0;
1851}
1852
1853static int set_link_ksettings(struct net_device *dev,
1854			      const struct ethtool_link_ksettings *cmd)
1855{
1856	struct netdev_private *np = netdev_priv(dev);
1857	int res;
1858	spin_lock_irq(&np->lock);
1859	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1860	spin_unlock_irq(&np->lock);
1861	check_duplex(dev);
1862	return res;
1863}
1864
1865static int nway_reset(struct net_device *dev)
1866{
1867	struct netdev_private *np = netdev_priv(dev);
1868	return mii_nway_restart(&np->mii_if);
1869}
1870
1871static u32 get_link(struct net_device *dev)
1872{
1873	struct netdev_private *np = netdev_priv(dev);
1874	return mii_link_ok(&np->mii_if);
1875}
1876
1877static u32 get_msglevel(struct net_device *dev)
1878{
1879	return debug;
1880}
1881
1882static void set_msglevel(struct net_device *dev, u32 val)
1883{
1884	debug = val;
1885}
1886
1887static const struct ethtool_ops ethtool_ops = {
1888	.begin = check_if_running,
1889	.get_drvinfo = get_drvinfo,
1890	.nway_reset = nway_reset,
1891	.get_link = get_link,
1892	.get_msglevel = get_msglevel,
1893	.set_msglevel = set_msglevel,
1894	.get_link_ksettings = get_link_ksettings,
1895	.set_link_ksettings = set_link_ksettings,
1896};
1897
1898static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1899{
1900	struct netdev_private *np = netdev_priv(dev);
1901	struct mii_ioctl_data *data = if_mii(rq);
1902	int rc;
1903
1904	if (!netif_running(dev))
1905		return -EINVAL;
1906
1907	spin_lock_irq(&np->lock);
1908	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1909	spin_unlock_irq(&np->lock);
1910
1911	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1912		check_duplex(dev);
1913
1914	return rc;
1915}
1916
1917static int netdev_close(struct net_device *dev)
1918{
1919	struct netdev_private *np = netdev_priv(dev);
1920	void __iomem *ioaddr = np->base;
1921	int i;
1922
1923	netif_stop_queue(dev);
1924
1925	napi_disable(&np->napi);
1926
1927	if (debug > 1) {
1928		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1929			   dev->name, (int) readl(ioaddr + IntrStatus));
1930		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1931		       dev->name, np->cur_tx, np->dirty_tx,
1932		       np->cur_rx, np->dirty_rx);
1933	}
1934
1935	/* Disable interrupts by clearing the interrupt mask. */
1936	writel(0, ioaddr + IntrEnable);
1937
1938	/* Stop the chip's Tx and Rx processes. */
1939	writel(0, ioaddr + GenCtrl);
1940	readl(ioaddr + GenCtrl);
1941
1942	if (debug > 5) {
1943		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1944		       (long long) np->tx_ring_dma);
1945		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1946			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1947			       i, le32_to_cpu(np->tx_ring[i].status),
1948			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1949			       le32_to_cpu(np->tx_done_q[i].status));
1950		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1951		       (long long) np->rx_ring_dma, np->rx_done_q);
1952		if (np->rx_done_q)
1953			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1954				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1955				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1956		}
1957	}
1958
1959	free_irq(np->pci_dev->irq, dev);
1960
1961	/* Free all the skbuffs in the Rx queue. */
1962	for (i = 0; i < RX_RING_SIZE; i++) {
1963		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1964		if (np->rx_info[i].skb != NULL) {
1965			dma_unmap_single(&np->pci_dev->dev,
1966					 np->rx_info[i].mapping,
1967					 np->rx_buf_sz, DMA_FROM_DEVICE);
1968			dev_kfree_skb(np->rx_info[i].skb);
1969		}
1970		np->rx_info[i].skb = NULL;
1971		np->rx_info[i].mapping = 0;
1972	}
1973	for (i = 0; i < TX_RING_SIZE; i++) {
1974		struct sk_buff *skb = np->tx_info[i].skb;
1975		if (skb == NULL)
1976			continue;
1977		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1978				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1979		np->tx_info[i].mapping = 0;
1980		dev_kfree_skb(skb);
1981		np->tx_info[i].skb = NULL;
1982	}
1983
1984	return 0;
1985}
1986
1987static int __maybe_unused starfire_suspend(struct device *dev_d)
1988{
1989	struct net_device *dev = dev_get_drvdata(dev_d);
1990
1991	if (netif_running(dev)) {
1992		netif_device_detach(dev);
1993		netdev_close(dev);
1994	}
1995
1996	return 0;
1997}
1998
1999static int __maybe_unused starfire_resume(struct device *dev_d)
2000{
2001	struct net_device *dev = dev_get_drvdata(dev_d);
2002
2003	if (netif_running(dev)) {
2004		netdev_open(dev);
2005		netif_device_attach(dev);
2006	}
2007
2008	return 0;
2009}
2010
2011static void starfire_remove_one(struct pci_dev *pdev)
2012{
2013	struct net_device *dev = pci_get_drvdata(pdev);
2014	struct netdev_private *np = netdev_priv(dev);
2015
2016	BUG_ON(!dev);
2017
2018	unregister_netdev(dev);
2019
2020	if (np->queue_mem)
2021		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2022				  np->queue_mem, np->queue_mem_dma);
2023
2024
2025	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2026	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2027	pci_disable_device(pdev);
2028
2029	iounmap(np->base);
2030	pci_release_regions(pdev);
2031
2032	free_netdev(dev);			/* Will also free np!! */
2033}
2034
2035static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2036
2037static struct pci_driver starfire_driver = {
2038	.name		= DRV_NAME,
2039	.probe		= starfire_init_one,
2040	.remove		= starfire_remove_one,
2041	.driver.pm	= &starfire_pm_ops,
2042	.id_table	= starfire_pci_tbl,
2043};
2044
2045
2046static int __init starfire_init (void)
2047{
2048/* when a module, this is printed whether or not devices are found in probe */
2049#ifdef MODULE
2050	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2051#endif
2052
2053	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2054
2055	return pci_register_driver(&starfire_driver);
2056}
2057
2058
2059static void __exit starfire_cleanup (void)
2060{
2061	pci_unregister_driver (&starfire_driver);
2062}
2063
2064
2065module_init(starfire_init);
2066module_exit(starfire_cleanup);