Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
 
 
  30
  31#include <linux/interrupt.h>
  32#include <linux/module.h>
  33#include <linux/kernel.h>
  34#include <linux/pci.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/init.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/if_vlan.h>
  43#include <linux/mm.h>
  44#include <linux/firmware.h>
  45#include <asm/processor.h>		/* Processor type for cache alignment. */
  46#include <linux/uaccess.h>
  47#include <asm/io.h>
  48
  49/*
  50 * The current frame processor firmware fails to checksum a fragment
  51 * of length 1. If and when this is fixed, the #define below can be removed.
  52 */
  53#define HAS_BROKEN_FIRMWARE
  54
  55/*
  56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  57 */
  58#ifdef HAS_BROKEN_FIRMWARE
  59#define PADDING_MASK 3
  60#endif
  61
  62/*
  63 * Define this if using the driver with the zero-copy patch
  64 */
  65#define ZEROCOPY
  66
  67#if IS_ENABLED(CONFIG_VLAN_8021Q)
  68#define VLAN_SUPPORT
  69#endif
  70
  71/* The user-configurable values.
  72   These may be modified when a driver module is loaded.*/
  73
  74/* Used for tuning interrupt latency vs. overhead. */
  75static int intr_latency;
  76static int small_frames;
  77
  78static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  79static int max_interrupt_work = 20;
  80static int mtu;
  81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  82   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  83static const int multicast_filter_limit = 512;
  84/* Whether to do TCP/UDP checksums in hardware */
  85static int enable_hw_cksum = 1;
  86
  87#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  88/*
  89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  90 * Setting to > 1518 effectively disables this feature.
  91 *
  92 * NOTE:
  93 * The ia64 doesn't allow for unaligned loads even of integers being
  94 * misaligned on a 2 byte boundary. Thus always force copying of
  95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  96 * 23/10/2000 - Jes
  97 *
  98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
  99 * at least, having unaligned frames leads to a rather serious performance
 100 * penalty. -Ion
 101 */
 102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 103static int rx_copybreak = PKT_BUF_SZ;
 104#else
 105static int rx_copybreak /* = 0 */;
 106#endif
 107
 108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 109#ifdef __sparc__
 110#define DMA_BURST_SIZE 64
 111#else
 112#define DMA_BURST_SIZE 128
 113#endif
 114
 115/* Operational parameters that are set at compile time. */
 116
 117/* The "native" ring sizes are either 256 or 2048.
 118   However in some modes a descriptor may be marked to wrap the ring earlier.
 119*/
 120#define RX_RING_SIZE	256
 121#define TX_RING_SIZE	32
 122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 123#define DONE_Q_SIZE	1024
 124/* All queues must be aligned on a 256-byte boundary */
 125#define QUEUE_ALIGN	256
 126
 127#if RX_RING_SIZE > 256
 128#define RX_Q_ENTRIES Rx2048QEntries
 129#else
 130#define RX_Q_ENTRIES Rx256QEntries
 131#endif
 132
 133/* Operational parameters that usually are not changed. */
 134/* Time in jiffies before concluding the transmitter is hung. */
 135#define TX_TIMEOUT	(2 * HZ)
 136
 137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 138/* 64-bit dma_addr_t */
 139#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 140#define netdrv_addr_t __le64
 141#define cpu_to_dma(x) cpu_to_le64(x)
 142#define dma_to_cpu(x) le64_to_cpu(x)
 143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 148#else  /* 32-bit dma_addr_t */
 149#define netdrv_addr_t __le32
 150#define cpu_to_dma(x) cpu_to_le32(x)
 151#define dma_to_cpu(x) le32_to_cpu(x)
 152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 157#endif
 158
 159#define skb_first_frag_len(skb)	skb_headlen(skb)
 160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 161
 162/* Firmware names */
 163#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 164#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 165
 
 
 
 
 
 166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 168MODULE_LICENSE("GPL");
 
 169MODULE_FIRMWARE(FIRMWARE_RX);
 170MODULE_FIRMWARE(FIRMWARE_TX);
 171
 172module_param(max_interrupt_work, int, 0);
 173module_param(mtu, int, 0);
 174module_param(debug, int, 0);
 175module_param(rx_copybreak, int, 0);
 176module_param(intr_latency, int, 0);
 177module_param(small_frames, int, 0);
 178module_param(enable_hw_cksum, int, 0);
 179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 180MODULE_PARM_DESC(mtu, "MTU (all boards)");
 181MODULE_PARM_DESC(debug, "Debug level (0-6)");
 182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 186
 187/*
 188				Theory of Operation
 189
 190I. Board Compatibility
 191
 192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 193
 194II. Board-specific settings
 195
 196III. Driver operation
 197
 198IIIa. Ring buffers
 199
 200The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 201ring sizes are set fixed by the hardware, but may optionally be wrapped
 202earlier by the END bit in the descriptor.
 203This driver uses that hardware queue size for the Rx ring, where a large
 204number of entries has no ill effect beyond increases the potential backlog.
 205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 206disables the queue layer priority ordering and we have no mechanism to
 207utilize the hardware two-level priority queue.  When modifying the
 208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 209levels.
 210
 211IIIb/c. Transmit/Receive Structure
 212
 213See the Adaptec manual for the many possible structures, and options for
 214each structure.  There are far too many to document all of them here.
 215
 216For transmit this driver uses type 0/1 transmit descriptors (depending
 217on the 32/64 bitness of the architecture), and relies on automatic
 218minimum-length padding.  It does not use the completion queue
 219consumer index, but instead checks for non-zero status entries.
 220
 221For receive this driver uses type 2/3 receive descriptors.  The driver
 222allocates full frame size skbuffs for the Rx ring buffers, so all frames
 223should fit in a single descriptor.  The driver does not use the completion
 224queue consumer index, but instead checks for non-zero status entries.
 225
 226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 227is allocated and the frame is copied to the new skbuff.  When the incoming
 228frame is larger, the skbuff is passed directly up the protocol stack.
 229Buffers consumed this way are replaced by newly allocated skbuffs in a later
 230phase of receive.
 231
 232A notable aspect of operation is that unaligned buffers are not permitted by
 233the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 234isn't longword aligned, which may cause problems on some machine
 235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 236the frame into a new skbuff unconditionally. Copied frames are put into the
 237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 238
 239IIId. Synchronization
 240
 241The driver runs as two independent, single-threaded flows of control.  One
 242is the send-packet routine, which enforces single-threaded use by the
 243dev->tbusy flag.  The other thread is the interrupt handler, which is single
 244threaded by the hardware and interrupt handling software.
 245
 246The send packet thread has partial control over the Tx ring and the netif_queue
 247status. If the number of free Tx slots in the ring falls below a certain number
 248(currently hardcoded to 4), it signals the upper layer to stop the queue.
 249
 250The interrupt handler has exclusive control over the Rx ring and records stats
 251from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 253number of free Tx slow is above the threshold, it signals the upper layer to
 254restart the queue.
 255
 256IV. Notes
 257
 258IVb. References
 259
 260The Adaptec Starfire manuals, available only from Adaptec.
 261http://www.scyld.com/expert/100mbps.html
 262http://www.scyld.com/expert/NWay.html
 263
 264IVc. Errata
 265
 266- StopOnPerr is broken, don't enable
 267- Hardware ethernet padding exposes random data, perform software padding
 268  instead (unverified -- works correctly for all the hardware I have)
 269
 270*/
 271
 272
 273
 274enum chip_capability_flags {CanHaveMII=1, };
 275
 276enum chipset {
 277	CH_6915 = 0,
 278};
 279
 280static const struct pci_device_id starfire_pci_tbl[] = {
 281	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 282	{ 0, }
 283};
 284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 285
 286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 287static const struct chip_info {
 288	const char *name;
 289	int drv_flags;
 290} netdrv_tbl[] = {
 291	{ "Adaptec Starfire 6915", CanHaveMII },
 292};
 293
 294
 295/* Offsets to the device registers.
 296   Unlike software-only systems, device drivers interact with complex hardware.
 297   It's not useful to define symbolic names for every register bit in the
 298   device.  The name can only partially document the semantics and make
 299   the driver longer and more difficult to read.
 300   In general, only the important configuration values or bits changed
 301   multiple times should be defined symbolically.
 302*/
 303enum register_offsets {
 304	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 305	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 306	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 307	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 308	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 309	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 310	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 311	TxThreshold=0x500B0,
 312	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 313	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 314	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 315	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 316	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 317	TxMode=0x55000, VlanType=0x55064,
 318	PerfFilterTable=0x56000, HashTable=0x56100,
 319	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 320};
 321
 322/*
 323 * Bits in the interrupt status/mask registers.
 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 325 * enables all the interrupt sources that are or'ed into those status bits.
 326 */
 327enum intr_status_bits {
 328	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 329	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 330	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 331	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 332	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 333	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 334	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 335	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 336	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 337	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 338	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 339	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 340	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 341	IntrTxGfp=0x02, IntrPCIPad=0x01,
 342	/* not quite bits */
 343	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 344	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 345	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 346};
 347
 348/* Bits in the RxFilterMode register. */
 349enum rx_mode_bits {
 350	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 351	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 352	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 353	WakeupOnGFP=0x0800,
 354};
 355
 356/* Bits in the TxMode register */
 357enum tx_mode_bits {
 358	MiiSoftReset=0x8000, MIILoopback=0x4000,
 359	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 360	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 361};
 362
 363/* Bits in the TxDescCtrl register. */
 364enum tx_ctrl_bits {
 365	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 366	TxDescSpace128=0x30, TxDescSpace256=0x40,
 367	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 368	TxDescType3=0x03, TxDescType4=0x04,
 369	TxNoDMACompletion=0x08,
 370	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 371	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 372	TxDMABurstSizeShift=8,
 373};
 374
 375/* Bits in the RxDescQCtrl register. */
 376enum rx_ctrl_bits {
 377	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 378	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 379	Rx2048QEntries=0x4000, Rx256QEntries=0,
 380	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 381	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 382	RxDescSpace4=0x000, RxDescSpace8=0x100,
 383	RxDescSpace16=0x200, RxDescSpace32=0x300,
 384	RxDescSpace64=0x400, RxDescSpace128=0x500,
 385	RxConsumerWrEn=0x80,
 386};
 387
 388/* Bits in the RxDMACtrl register. */
 389enum rx_dmactrl_bits {
 390	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 391	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 392	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 393	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 394	RxChecksumRejectTCPOnly=0x01000000,
 395	RxCompletionQ2Enable=0x800000,
 396	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 397	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 398	RxDMAQ2NonIP=0x400000,
 399	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 400	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 401	RxBurstSizeShift=0,
 402};
 403
 404/* Bits in the RxCompletionAddr register */
 405enum rx_compl_bits {
 406	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 407	RxComplProducerWrEn=0x40,
 408	RxComplType0=0x00, RxComplType1=0x10,
 409	RxComplType2=0x20, RxComplType3=0x30,
 410	RxComplThreshShift=0,
 411};
 412
 413/* Bits in the TxCompletionAddr register */
 414enum tx_compl_bits {
 415	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 416	TxComplProducerWrEn=0x40,
 417	TxComplIntrStatus=0x20,
 418	CommonQueueMode=0x10,
 419	TxComplThreshShift=0,
 420};
 421
 422/* Bits in the GenCtrl register */
 423enum gen_ctrl_bits {
 424	RxEnable=0x05, TxEnable=0x0a,
 425	RxGFPEnable=0x10, TxGFPEnable=0x20,
 426};
 427
 428/* Bits in the IntrTimerCtrl register */
 429enum intr_ctrl_bits {
 430	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 431	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 432	IntrLatencyMask=0x1f,
 433};
 434
 435/* The Rx and Tx buffer descriptors. */
 436struct starfire_rx_desc {
 437	netdrv_addr_t rxaddr;
 438};
 439enum rx_desc_bits {
 440	RxDescValid=1, RxDescEndRing=2,
 441};
 442
 443/* Completion queue entry. */
 
 
 
 
 
 
 
 
 444struct csum_rx_done_desc {
 445	__le32 status;			/* Low 16 bits is length. */
 446	__le16 csum;			/* Partial checksum */
 447	__le16 status2;
 448};
 449struct full_rx_done_desc {
 450	__le32 status;			/* Low 16 bits is length. */
 451	__le16 status3;
 452	__le16 status2;
 453	__le16 vlanid;
 454	__le16 csum;			/* partial checksum */
 455	__le32 timestamp;
 456};
 457/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 458#ifdef VLAN_SUPPORT
 459typedef struct full_rx_done_desc rx_done_desc;
 460#define RxComplType RxComplType3
 461#else  /* not VLAN_SUPPORT */
 462typedef struct csum_rx_done_desc rx_done_desc;
 463#define RxComplType RxComplType2
 464#endif /* not VLAN_SUPPORT */
 465
 466enum rx_done_bits {
 467	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 468};
 469
 470/* Type 1 Tx descriptor. */
 471struct starfire_tx_desc_1 {
 472	__le32 status;			/* Upper bits are status, lower 16 length. */
 473	__le32 addr;
 474};
 475
 476/* Type 2 Tx descriptor. */
 477struct starfire_tx_desc_2 {
 478	__le32 status;			/* Upper bits are status, lower 16 length. */
 479	__le32 reserved;
 480	__le64 addr;
 481};
 482
 483#ifdef ADDR_64BITS
 484typedef struct starfire_tx_desc_2 starfire_tx_desc;
 485#define TX_DESC_TYPE TxDescType2
 486#else  /* not ADDR_64BITS */
 487typedef struct starfire_tx_desc_1 starfire_tx_desc;
 488#define TX_DESC_TYPE TxDescType1
 489#endif /* not ADDR_64BITS */
 490#define TX_DESC_SPACING TxDescSpaceUnlim
 491
 492enum tx_desc_bits {
 493	TxDescID=0xB0000000,
 494	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 495	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 496};
 497struct tx_done_desc {
 498	__le32 status;			/* timestamp, index. */
 499#if 0
 500	__le32 intrstatus;		/* interrupt status */
 501#endif
 502};
 503
 504struct rx_ring_info {
 505	struct sk_buff *skb;
 506	dma_addr_t mapping;
 507};
 508struct tx_ring_info {
 509	struct sk_buff *skb;
 510	dma_addr_t mapping;
 511	unsigned int used_slots;
 512};
 513
 514#define PHY_CNT		2
 515struct netdev_private {
 516	/* Descriptor rings first for alignment. */
 517	struct starfire_rx_desc *rx_ring;
 518	starfire_tx_desc *tx_ring;
 519	dma_addr_t rx_ring_dma;
 520	dma_addr_t tx_ring_dma;
 521	/* The addresses of rx/tx-in-place skbuffs. */
 522	struct rx_ring_info rx_info[RX_RING_SIZE];
 523	struct tx_ring_info tx_info[TX_RING_SIZE];
 524	/* Pointers to completion queues (full pages). */
 525	rx_done_desc *rx_done_q;
 526	dma_addr_t rx_done_q_dma;
 527	unsigned int rx_done;
 528	struct tx_done_desc *tx_done_q;
 529	dma_addr_t tx_done_q_dma;
 530	unsigned int tx_done;
 531	struct napi_struct napi;
 532	struct net_device *dev;
 533	struct pci_dev *pci_dev;
 534#ifdef VLAN_SUPPORT
 535	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 536#endif
 537	void *queue_mem;
 538	dma_addr_t queue_mem_dma;
 539	size_t queue_mem_size;
 540
 541	/* Frequently used values: keep some adjacent for cache effect. */
 542	spinlock_t lock;
 543	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 544	unsigned int cur_tx, dirty_tx, reap_tx;
 545	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 546	/* These values keep track of the transceiver/media in use. */
 547	int speed100;			/* Set if speed == 100MBit. */
 548	u32 tx_mode;
 549	u32 intr_timer_ctrl;
 550	u8 tx_threshold;
 551	/* MII transceiver section. */
 552	struct mii_if_info mii_if;		/* MII lib hooks/info */
 553	int phy_cnt;			/* MII device addresses. */
 554	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 555	void __iomem *base;
 556};
 557
 558
 559static int	mdio_read(struct net_device *dev, int phy_id, int location);
 560static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 561static int	netdev_open(struct net_device *dev);
 562static void	check_duplex(struct net_device *dev);
 563static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
 564static void	init_ring(struct net_device *dev);
 565static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 566static irqreturn_t intr_handler(int irq, void *dev_instance);
 567static void	netdev_error(struct net_device *dev, int intr_status);
 568static int	__netdev_rx(struct net_device *dev, int *quota);
 569static int	netdev_poll(struct napi_struct *napi, int budget);
 570static void	refill_rx_ring(struct net_device *dev);
 571static void	netdev_error(struct net_device *dev, int intr_status);
 572static void	set_rx_mode(struct net_device *dev);
 573static struct net_device_stats *get_stats(struct net_device *dev);
 574static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 575static int	netdev_close(struct net_device *dev);
 576static void	netdev_media_change(struct net_device *dev);
 577static const struct ethtool_ops ethtool_ops;
 578
 579
 580#ifdef VLAN_SUPPORT
 581static int netdev_vlan_rx_add_vid(struct net_device *dev,
 582				  __be16 proto, u16 vid)
 583{
 584	struct netdev_private *np = netdev_priv(dev);
 585
 586	spin_lock(&np->lock);
 587	if (debug > 1)
 588		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 589	set_bit(vid, np->active_vlans);
 590	set_rx_mode(dev);
 591	spin_unlock(&np->lock);
 592
 593	return 0;
 594}
 595
 596static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 597				   __be16 proto, u16 vid)
 598{
 599	struct netdev_private *np = netdev_priv(dev);
 600
 601	spin_lock(&np->lock);
 602	if (debug > 1)
 603		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 604	clear_bit(vid, np->active_vlans);
 605	set_rx_mode(dev);
 606	spin_unlock(&np->lock);
 607
 608	return 0;
 609}
 610#endif /* VLAN_SUPPORT */
 611
 612
 613static const struct net_device_ops netdev_ops = {
 614	.ndo_open		= netdev_open,
 615	.ndo_stop		= netdev_close,
 616	.ndo_start_xmit		= start_tx,
 617	.ndo_tx_timeout		= tx_timeout,
 618	.ndo_get_stats		= get_stats,
 619	.ndo_set_rx_mode	= set_rx_mode,
 620	.ndo_eth_ioctl		= netdev_ioctl,
 
 621	.ndo_set_mac_address	= eth_mac_addr,
 622	.ndo_validate_addr	= eth_validate_addr,
 623#ifdef VLAN_SUPPORT
 624	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 625	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 626#endif
 627};
 628
 629static int starfire_init_one(struct pci_dev *pdev,
 630			     const struct pci_device_id *ent)
 631{
 632	struct device *d = &pdev->dev;
 633	struct netdev_private *np;
 634	int i, irq, chip_idx = ent->driver_data;
 635	struct net_device *dev;
 636	u8 addr[ETH_ALEN];
 637	long ioaddr;
 638	void __iomem *base;
 639	int drv_flags, io_size;
 640	int boguscnt;
 641
 
 
 
 
 
 
 
 642	if (pci_enable_device (pdev))
 643		return -EIO;
 644
 645	ioaddr = pci_resource_start(pdev, 0);
 646	io_size = pci_resource_len(pdev, 0);
 647	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 648		dev_err(d, "no PCI MEM resources, aborting\n");
 649		return -ENODEV;
 650	}
 651
 652	dev = alloc_etherdev(sizeof(*np));
 653	if (!dev)
 654		return -ENOMEM;
 655
 656	SET_NETDEV_DEV(dev, &pdev->dev);
 657
 658	irq = pdev->irq;
 659
 660	if (pci_request_regions (pdev, DRV_NAME)) {
 661		dev_err(d, "cannot reserve PCI resources, aborting\n");
 662		goto err_out_free_netdev;
 663	}
 664
 665	base = ioremap(ioaddr, io_size);
 666	if (!base) {
 667		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 668			io_size, ioaddr);
 669		goto err_out_free_res;
 670	}
 671
 672	pci_set_master(pdev);
 673
 674	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 675	pci_try_set_mwi(pdev);
 676
 677#ifdef ZEROCOPY
 678	/* Starfire can do TCP/UDP checksumming */
 679	if (enable_hw_cksum)
 680		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 681#endif /* ZEROCOPY */
 682
 683#ifdef VLAN_SUPPORT
 684	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 685#endif /* VLAN_RX_KILL_VID */
 686#ifdef ADDR_64BITS
 687	dev->features |= NETIF_F_HIGHDMA;
 688#endif /* ADDR_64BITS */
 689
 690	/* Serial EEPROM reads are hidden by the hardware. */
 691	for (i = 0; i < 6; i++)
 692		addr[i] = readb(base + EEPROMCtrl + 20 - i);
 693	eth_hw_addr_set(dev, addr);
 694
 695#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 696	if (debug > 4)
 697		for (i = 0; i < 0x20; i++)
 698			printk("%2.2x%s",
 699			       (unsigned int)readb(base + EEPROMCtrl + i),
 700			       i % 16 != 15 ? " " : "\n");
 701#endif
 702
 703	/* Issue soft reset */
 704	writel(MiiSoftReset, base + TxMode);
 705	udelay(1000);
 706	writel(0, base + TxMode);
 707
 708	/* Reset the chip to erase previous misconfiguration. */
 709	writel(1, base + PCIDeviceConfig);
 710	boguscnt = 1000;
 711	while (--boguscnt > 0) {
 712		udelay(10);
 713		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 714			break;
 715	}
 716	if (boguscnt == 0)
 717		printk("%s: chipset reset never completed!\n", dev->name);
 718	/* wait a little longer */
 719	udelay(1000);
 720
 721	np = netdev_priv(dev);
 722	np->dev = dev;
 723	np->base = base;
 724	spin_lock_init(&np->lock);
 725	pci_set_drvdata(pdev, dev);
 726
 727	np->pci_dev = pdev;
 728
 729	np->mii_if.dev = dev;
 730	np->mii_if.mdio_read = mdio_read;
 731	np->mii_if.mdio_write = mdio_write;
 732	np->mii_if.phy_id_mask = 0x1f;
 733	np->mii_if.reg_num_mask = 0x1f;
 734
 735	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 736
 737	np->speed100 = 1;
 738
 739	/* timer resolution is 128 * 0.8us */
 740	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 741		Timer10X | EnableIntrMasking;
 742
 743	if (small_frames > 0) {
 744		np->intr_timer_ctrl |= SmallFrameBypass;
 745		switch (small_frames) {
 746		case 1 ... 64:
 747			np->intr_timer_ctrl |= SmallFrame64;
 748			break;
 749		case 65 ... 128:
 750			np->intr_timer_ctrl |= SmallFrame128;
 751			break;
 752		case 129 ... 256:
 753			np->intr_timer_ctrl |= SmallFrame256;
 754			break;
 755		default:
 756			np->intr_timer_ctrl |= SmallFrame512;
 757			if (small_frames > 512)
 758				printk("Adjusting small_frames down to 512\n");
 759			break;
 760		}
 761	}
 762
 763	dev->netdev_ops = &netdev_ops;
 764	dev->watchdog_timeo = TX_TIMEOUT;
 765	dev->ethtool_ops = &ethtool_ops;
 766
 767	netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
 768
 769	if (mtu)
 770		dev->mtu = mtu;
 771
 772	if (register_netdev(dev))
 773		goto err_out_cleardev;
 774
 775	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 776	       dev->name, netdrv_tbl[chip_idx].name, base,
 777	       dev->dev_addr, irq);
 778
 779	if (drv_flags & CanHaveMII) {
 780		int phy, phy_idx = 0;
 781		int mii_status;
 782		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 783			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 784			msleep(100);
 785			boguscnt = 1000;
 786			while (--boguscnt > 0)
 787				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 788					break;
 789			if (boguscnt == 0) {
 790				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 791				continue;
 792			}
 793			mii_status = mdio_read(dev, phy, MII_BMSR);
 794			if (mii_status != 0) {
 795				np->phys[phy_idx++] = phy;
 796				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 797				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 798					   "%#4.4x advertising %#4.4x.\n",
 799					   dev->name, phy, mii_status, np->mii_if.advertising);
 800				/* there can be only one PHY on-board */
 801				break;
 802			}
 803		}
 804		np->phy_cnt = phy_idx;
 805		if (np->phy_cnt > 0)
 806			np->mii_if.phy_id = np->phys[0];
 807		else
 808			memset(&np->mii_if, 0, sizeof(np->mii_if));
 809	}
 810
 811	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 812	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 813	return 0;
 814
 815err_out_cleardev:
 816	iounmap(base);
 817err_out_free_res:
 818	pci_release_regions (pdev);
 819err_out_free_netdev:
 820	free_netdev(dev);
 821	return -ENODEV;
 822}
 823
 824
 825/* Read the MII Management Data I/O (MDIO) interfaces. */
 826static int mdio_read(struct net_device *dev, int phy_id, int location)
 827{
 828	struct netdev_private *np = netdev_priv(dev);
 829	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 830	int result, boguscnt=1000;
 831	/* ??? Should we add a busy-wait here? */
 832	do {
 833		result = readl(mdio_addr);
 834	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 835	if (boguscnt == 0)
 836		return 0;
 837	if ((result & 0xffff) == 0xffff)
 838		return 0;
 839	return result & 0xffff;
 840}
 841
 842
 843static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 844{
 845	struct netdev_private *np = netdev_priv(dev);
 846	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 847	writel(value, mdio_addr);
 848	/* The busy-wait will occur before a read. */
 849}
 850
 851
 852static int netdev_open(struct net_device *dev)
 853{
 854	const struct firmware *fw_rx, *fw_tx;
 855	const __be32 *fw_rx_data, *fw_tx_data;
 856	struct netdev_private *np = netdev_priv(dev);
 857	void __iomem *ioaddr = np->base;
 858	const int irq = np->pci_dev->irq;
 859	int i, retval;
 860	size_t tx_size, rx_size;
 861	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 862
 863	/* Do we ever need to reset the chip??? */
 864
 865	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 866	if (retval)
 867		return retval;
 868
 869	/* Disable the Rx and Tx, and reset the chip. */
 870	writel(0, ioaddr + GenCtrl);
 871	writel(1, ioaddr + PCIDeviceConfig);
 872	if (debug > 1)
 873		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 874		       dev->name, irq);
 875
 876	/* Allocate the various queues. */
 877	if (!np->queue_mem) {
 878		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 879		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 880		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 881		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 882		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 883		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
 884						   np->queue_mem_size,
 885						   &np->queue_mem_dma, GFP_ATOMIC);
 886		if (np->queue_mem == NULL) {
 887			free_irq(irq, dev);
 888			return -ENOMEM;
 889		}
 890
 891		np->tx_done_q     = np->queue_mem;
 892		np->tx_done_q_dma = np->queue_mem_dma;
 893		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 894		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 895		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 896		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 897		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 898		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 899	}
 900
 901	/* Start with no carrier, it gets adjusted later */
 902	netif_carrier_off(dev);
 903	init_ring(dev);
 904	/* Set the size of the Rx buffers. */
 905	writel((np->rx_buf_sz << RxBufferLenShift) |
 906	       (0 << RxMinDescrThreshShift) |
 907	       RxPrefetchMode | RxVariableQ |
 908	       RX_Q_ENTRIES |
 909	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 910	       RxDescSpace4,
 911	       ioaddr + RxDescQCtrl);
 912
 913	/* Set up the Rx DMA controller. */
 914	writel(RxChecksumIgnore |
 915	       (0 << RxEarlyIntThreshShift) |
 916	       (6 << RxHighPrioThreshShift) |
 917	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 918	       ioaddr + RxDMACtrl);
 919
 920	/* Set Tx descriptor */
 921	writel((2 << TxHiPriFIFOThreshShift) |
 922	       (0 << TxPadLenShift) |
 923	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 924	       TX_DESC_Q_ADDR_SIZE |
 925	       TX_DESC_SPACING | TX_DESC_TYPE,
 926	       ioaddr + TxDescCtrl);
 927
 928	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 929	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 930	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 931	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 932	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 933
 934	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 935	writel(np->rx_done_q_dma |
 936	       RxComplType |
 937	       (0 << RxComplThreshShift),
 938	       ioaddr + RxCompletionAddr);
 939
 940	if (debug > 1)
 941		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 942
 943	/* Fill both the Tx SA register and the Rx perfect filter. */
 944	for (i = 0; i < 6; i++)
 945		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 946	/* The first entry is special because it bypasses the VLAN filter.
 947	   Don't use it. */
 948	writew(0, ioaddr + PerfFilterTable);
 949	writew(0, ioaddr + PerfFilterTable + 4);
 950	writew(0, ioaddr + PerfFilterTable + 8);
 951	for (i = 1; i < 16; i++) {
 952		const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
 953		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 954		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 955		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 956		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 957	}
 958
 959	/* Initialize other registers. */
 960	/* Configure the PCI bus bursts and FIFO thresholds. */
 961	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 962	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 963	udelay(1000);
 964	writel(np->tx_mode, ioaddr + TxMode);
 965	np->tx_threshold = 4;
 966	writel(np->tx_threshold, ioaddr + TxThreshold);
 967
 968	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 969
 970	napi_enable(&np->napi);
 971
 972	netif_start_queue(dev);
 973
 974	if (debug > 1)
 975		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 976	set_rx_mode(dev);
 977
 978	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 979	check_duplex(dev);
 980
 981	/* Enable GPIO interrupts on link change */
 982	writel(0x0f00ff00, ioaddr + GPIOCtrl);
 983
 984	/* Set the interrupt mask */
 985	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
 986	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
 987	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
 988	       ioaddr + IntrEnable);
 989	/* Enable PCI interrupts. */
 990	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
 991	       ioaddr + PCIDeviceConfig);
 992
 993#ifdef VLAN_SUPPORT
 994	/* Set VLAN type to 802.1q */
 995	writel(ETH_P_8021Q, ioaddr + VlanType);
 996#endif /* VLAN_SUPPORT */
 997
 998	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
 999	if (retval) {
1000		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1001		       FIRMWARE_RX);
1002		goto out_init;
1003	}
1004	if (fw_rx->size % 4) {
1005		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1006		       fw_rx->size, FIRMWARE_RX);
1007		retval = -EINVAL;
1008		goto out_rx;
1009	}
1010	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1011	if (retval) {
1012		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1013		       FIRMWARE_TX);
1014		goto out_rx;
1015	}
1016	if (fw_tx->size % 4) {
1017		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1018		       fw_tx->size, FIRMWARE_TX);
1019		retval = -EINVAL;
1020		goto out_tx;
1021	}
1022	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1023	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1024	rx_size = fw_rx->size / 4;
1025	tx_size = fw_tx->size / 4;
1026
1027	/* Load Rx/Tx firmware into the frame processors */
1028	for (i = 0; i < rx_size; i++)
1029		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1030	for (i = 0; i < tx_size; i++)
1031		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1032	if (enable_hw_cksum)
1033		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1034		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1035	else
1036		/* Enable the Rx and Tx units only. */
1037		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1038
1039	if (debug > 1)
1040		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1041		       dev->name);
1042
1043out_tx:
1044	release_firmware(fw_tx);
1045out_rx:
1046	release_firmware(fw_rx);
1047out_init:
1048	if (retval)
1049		netdev_close(dev);
1050	return retval;
1051}
1052
1053
1054static void check_duplex(struct net_device *dev)
1055{
1056	struct netdev_private *np = netdev_priv(dev);
1057	u16 reg0;
1058	int silly_count = 1000;
1059
1060	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1061	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1062	udelay(500);
1063	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1064		/* do nothing */;
1065	if (!silly_count) {
1066		printk("%s: MII reset failed!\n", dev->name);
1067		return;
1068	}
1069
1070	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1071
1072	if (!np->mii_if.force_media) {
1073		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1074	} else {
1075		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1076		if (np->speed100)
1077			reg0 |= BMCR_SPEED100;
1078		if (np->mii_if.full_duplex)
1079			reg0 |= BMCR_FULLDPLX;
1080		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1081		       dev->name,
1082		       np->speed100 ? "100" : "10",
1083		       np->mii_if.full_duplex ? "full" : "half");
1084	}
1085	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1086}
1087
1088
1089static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1090{
1091	struct netdev_private *np = netdev_priv(dev);
1092	void __iomem *ioaddr = np->base;
1093	int old_debug;
1094
1095	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1096	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1097
1098	/* Perhaps we should reinitialize the hardware here. */
1099
1100	/*
1101	 * Stop and restart the interface.
1102	 * Cheat and increase the debug level temporarily.
1103	 */
1104	old_debug = debug;
1105	debug = 2;
1106	netdev_close(dev);
1107	netdev_open(dev);
1108	debug = old_debug;
1109
1110	/* Trigger an immediate transmit demand. */
1111
1112	netif_trans_update(dev); /* prevent tx timeout */
1113	dev->stats.tx_errors++;
1114	netif_wake_queue(dev);
1115}
1116
1117
1118/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1119static void init_ring(struct net_device *dev)
1120{
1121	struct netdev_private *np = netdev_priv(dev);
1122	int i;
1123
1124	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1125	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1126
1127	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1128
1129	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1130	for (i = 0; i < RX_RING_SIZE; i++) {
1131		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1132		np->rx_info[i].skb = skb;
1133		if (skb == NULL)
1134			break;
1135		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1136							skb->data,
1137							np->rx_buf_sz,
1138							DMA_FROM_DEVICE);
1139		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1140			dev_kfree_skb(skb);
1141			np->rx_info[i].skb = NULL;
1142			break;
1143		}
1144		/* Grrr, we cannot offset to correctly align the IP header. */
1145		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1146	}
1147	writew(i - 1, np->base + RxDescQIdx);
1148	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1149
1150	/* Clear the remainder of the Rx buffer ring. */
1151	for (  ; i < RX_RING_SIZE; i++) {
1152		np->rx_ring[i].rxaddr = 0;
1153		np->rx_info[i].skb = NULL;
1154		np->rx_info[i].mapping = 0;
1155	}
1156	/* Mark the last entry as wrapping the ring. */
1157	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1158
1159	/* Clear the completion rings. */
1160	for (i = 0; i < DONE_Q_SIZE; i++) {
1161		np->rx_done_q[i].status = 0;
1162		np->tx_done_q[i].status = 0;
1163	}
1164
1165	for (i = 0; i < TX_RING_SIZE; i++)
1166		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1167}
1168
1169
1170static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1171{
1172	struct netdev_private *np = netdev_priv(dev);
1173	unsigned int entry;
1174	unsigned int prev_tx;
1175	u32 status;
1176	int i, j;
1177
1178	/*
1179	 * be cautious here, wrapping the queue has weird semantics
1180	 * and we may not have enough slots even when it seems we do.
1181	 */
1182	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1183		netif_stop_queue(dev);
1184		return NETDEV_TX_BUSY;
1185	}
1186
1187#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1188	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1189		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1190			return NETDEV_TX_OK;
1191	}
1192#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1193
1194	prev_tx = np->cur_tx;
1195	entry = np->cur_tx % TX_RING_SIZE;
1196	for (i = 0; i < skb_num_frags(skb); i++) {
1197		int wrap_ring = 0;
1198		status = TxDescID;
1199
1200		if (i == 0) {
1201			np->tx_info[entry].skb = skb;
1202			status |= TxCRCEn;
1203			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1204				status |= TxRingWrap;
1205				wrap_ring = 1;
1206			}
1207			if (np->reap_tx) {
1208				status |= TxDescIntr;
1209				np->reap_tx = 0;
1210			}
1211			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1212				status |= TxCalTCP;
1213				dev->stats.tx_compressed++;
1214			}
1215			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1216
1217			np->tx_info[entry].mapping =
1218				dma_map_single(&np->pci_dev->dev, skb->data,
1219					       skb_first_frag_len(skb),
1220					       DMA_TO_DEVICE);
1221		} else {
1222			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223			status |= skb_frag_size(this_frag);
1224			np->tx_info[entry].mapping =
1225				dma_map_single(&np->pci_dev->dev,
1226					       skb_frag_address(this_frag),
1227					       skb_frag_size(this_frag),
1228					       DMA_TO_DEVICE);
1229		}
1230		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1231			dev->stats.tx_dropped++;
1232			goto err_out;
1233		}
1234
1235		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1236		np->tx_ring[entry].status = cpu_to_le32(status);
1237		if (debug > 3)
1238			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1239			       dev->name, np->cur_tx, np->dirty_tx,
1240			       entry, status);
1241		if (wrap_ring) {
1242			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1243			np->cur_tx += np->tx_info[entry].used_slots;
1244			entry = 0;
1245		} else {
1246			np->tx_info[entry].used_slots = 1;
1247			np->cur_tx += np->tx_info[entry].used_slots;
1248			entry++;
1249		}
1250		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1251		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1252			np->reap_tx = 1;
1253	}
1254
1255	/* Non-x86: explicitly flush descriptor cache lines here. */
1256	/* Ensure all descriptors are written back before the transmit is
1257	   initiated. - Jes */
1258	wmb();
1259
1260	/* Update the producer index. */
1261	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1262
1263	/* 4 is arbitrary, but should be ok */
1264	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1265		netif_stop_queue(dev);
1266
1267	return NETDEV_TX_OK;
1268
1269err_out:
1270	entry = prev_tx % TX_RING_SIZE;
1271	np->tx_info[entry].skb = NULL;
1272	if (i > 0) {
1273		dma_unmap_single(&np->pci_dev->dev,
1274				 np->tx_info[entry].mapping,
1275				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1276		np->tx_info[entry].mapping = 0;
1277		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1278		for (j = 1; j < i; j++) {
1279			dma_unmap_single(&np->pci_dev->dev,
1280					 np->tx_info[entry].mapping,
1281					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1282					 DMA_TO_DEVICE);
1283			entry++;
1284		}
1285	}
1286	dev_kfree_skb_any(skb);
1287	np->cur_tx = prev_tx;
1288	return NETDEV_TX_OK;
1289}
1290
 
1291/* The interrupt handler does all of the Rx thread work and cleans up
1292   after the Tx thread. */
1293static irqreturn_t intr_handler(int irq, void *dev_instance)
1294{
1295	struct net_device *dev = dev_instance;
1296	struct netdev_private *np = netdev_priv(dev);
1297	void __iomem *ioaddr = np->base;
1298	int boguscnt = max_interrupt_work;
1299	int consumer;
1300	int tx_status;
1301	int handled = 0;
1302
1303	do {
1304		u32 intr_status = readl(ioaddr + IntrClear);
1305
1306		if (debug > 4)
1307			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1308			       dev->name, intr_status);
1309
1310		if (intr_status == 0 || intr_status == (u32) -1)
1311			break;
1312
1313		handled = 1;
1314
1315		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1316			u32 enable;
1317
1318			if (likely(napi_schedule_prep(&np->napi))) {
1319				__napi_schedule(&np->napi);
1320				enable = readl(ioaddr + IntrEnable);
1321				enable &= ~(IntrRxDone | IntrRxEmpty);
1322				writel(enable, ioaddr + IntrEnable);
1323				/* flush PCI posting buffers */
1324				readl(ioaddr + IntrEnable);
1325			} else {
1326				/* Paranoia check */
1327				enable = readl(ioaddr + IntrEnable);
1328				if (enable & (IntrRxDone | IntrRxEmpty)) {
1329					printk(KERN_INFO
1330					       "%s: interrupt while in poll!\n",
1331					       dev->name);
1332					enable &= ~(IntrRxDone | IntrRxEmpty);
1333					writel(enable, ioaddr + IntrEnable);
1334				}
1335			}
1336		}
1337
1338		/* Scavenge the skbuff list based on the Tx-done queue.
1339		   There are redundant checks here that may be cleaned up
1340		   after the driver has proven to be reliable. */
1341		consumer = readl(ioaddr + TxConsumerIdx);
1342		if (debug > 3)
1343			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1344			       dev->name, consumer);
1345
1346		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347			if (debug > 3)
1348				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1349				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1350			if ((tx_status & 0xe0000000) == 0xa0000000) {
1351				dev->stats.tx_packets++;
1352			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1353				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1354				struct sk_buff *skb = np->tx_info[entry].skb;
1355				np->tx_info[entry].skb = NULL;
1356				dma_unmap_single(&np->pci_dev->dev,
1357						 np->tx_info[entry].mapping,
1358						 skb_first_frag_len(skb),
1359						 DMA_TO_DEVICE);
1360				np->tx_info[entry].mapping = 0;
1361				np->dirty_tx += np->tx_info[entry].used_slots;
1362				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1363				{
1364					int i;
1365					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1366						dma_unmap_single(&np->pci_dev->dev,
1367								 np->tx_info[entry].mapping,
1368								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1369								 DMA_TO_DEVICE);
1370						np->dirty_tx++;
1371						entry++;
1372					}
1373				}
1374
1375				dev_consume_skb_irq(skb);
1376			}
1377			np->tx_done_q[np->tx_done].status = 0;
1378			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379		}
1380		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381
1382		if (netif_queue_stopped(dev) &&
1383		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1384			/* The ring is no longer full, wake the queue. */
1385			netif_wake_queue(dev);
1386		}
1387
1388		/* Stats overflow */
1389		if (intr_status & IntrStatsMax)
1390			get_stats(dev);
1391
1392		/* Media change interrupt. */
1393		if (intr_status & IntrLinkChange)
1394			netdev_media_change(dev);
1395
1396		/* Abnormal error summary/uncommon events handlers. */
1397		if (intr_status & IntrAbnormalSummary)
1398			netdev_error(dev, intr_status);
1399
1400		if (--boguscnt < 0) {
1401			if (debug > 1)
1402				printk(KERN_WARNING "%s: Too much work at interrupt, "
1403				       "status=%#8.8x.\n",
1404				       dev->name, intr_status);
1405			break;
1406		}
1407	} while (1);
1408
1409	if (debug > 4)
1410		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1411		       dev->name, (int) readl(ioaddr + IntrStatus));
1412	return IRQ_RETVAL(handled);
1413}
1414
1415
1416/*
1417 * This routine is logically part of the interrupt/poll handler, but separated
1418 * for clarity and better register allocation.
1419 */
1420static int __netdev_rx(struct net_device *dev, int *quota)
1421{
1422	struct netdev_private *np = netdev_priv(dev);
1423	u32 desc_status;
1424	int retcode = 0;
1425
1426	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1427	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1428		struct sk_buff *skb;
1429		u16 pkt_len;
1430		int entry;
1431		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1432
1433		if (debug > 4)
1434			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1435		if (!(desc_status & RxOK)) {
1436			/* There was an error. */
1437			if (debug > 2)
1438				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1439			dev->stats.rx_errors++;
1440			if (desc_status & RxFIFOErr)
1441				dev->stats.rx_fifo_errors++;
1442			goto next_rx;
1443		}
1444
1445		if (*quota <= 0) {	/* out of rx quota */
1446			retcode = 1;
1447			goto out;
1448		}
1449		(*quota)--;
1450
1451		pkt_len = desc_status;	/* Implicitly Truncate */
1452		entry = (desc_status >> 16) & 0x7ff;
1453
1454		if (debug > 4)
1455			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1456		/* Check if the packet is long enough to accept without copying
1457		   to a minimally-sized skbuff. */
1458		if (pkt_len < rx_copybreak &&
1459		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1460			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1461			dma_sync_single_for_cpu(&np->pci_dev->dev,
1462						np->rx_info[entry].mapping,
1463						pkt_len, DMA_FROM_DEVICE);
1464			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1465			dma_sync_single_for_device(&np->pci_dev->dev,
1466						   np->rx_info[entry].mapping,
1467						   pkt_len, DMA_FROM_DEVICE);
1468			skb_put(skb, pkt_len);
1469		} else {
1470			dma_unmap_single(&np->pci_dev->dev,
1471					 np->rx_info[entry].mapping,
1472					 np->rx_buf_sz, DMA_FROM_DEVICE);
1473			skb = np->rx_info[entry].skb;
1474			skb_put(skb, pkt_len);
1475			np->rx_info[entry].skb = NULL;
1476			np->rx_info[entry].mapping = 0;
1477		}
1478#ifndef final_version			/* Remove after testing. */
1479		/* You will want this info for the initial debug. */
1480		if (debug > 5) {
1481			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1482			       skb->data, skb->data + 6,
1483			       skb->data[12], skb->data[13]);
1484		}
1485#endif
1486
1487		skb->protocol = eth_type_trans(skb, dev);
1488#ifdef VLAN_SUPPORT
1489		if (debug > 4)
1490			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1491#endif
1492		if (le16_to_cpu(desc->status2) & 0x0100) {
1493			skb->ip_summed = CHECKSUM_UNNECESSARY;
1494			dev->stats.rx_compressed++;
1495		}
1496		/*
1497		 * This feature doesn't seem to be working, at least
1498		 * with the two firmware versions I have. If the GFP sees
1499		 * an IP fragment, it either ignores it completely, or reports
1500		 * "bad checksum" on it.
1501		 *
1502		 * Maybe I missed something -- corrections are welcome.
1503		 * Until then, the printk stays. :-) -Ion
1504		 */
1505		else if (le16_to_cpu(desc->status2) & 0x0040) {
1506			skb->ip_summed = CHECKSUM_COMPLETE;
1507			skb->csum = le16_to_cpu(desc->csum);
1508			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1509		}
1510#ifdef VLAN_SUPPORT
1511		if (le16_to_cpu(desc->status2) & 0x0200) {
1512			u16 vlid = le16_to_cpu(desc->vlanid);
1513
1514			if (debug > 4) {
1515				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1516				       vlid);
1517			}
1518			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1519		}
1520#endif /* VLAN_SUPPORT */
1521		netif_receive_skb(skb);
1522		dev->stats.rx_packets++;
1523
1524	next_rx:
1525		np->cur_rx++;
1526		desc->status = 0;
1527		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1528	}
1529
1530	if (*quota == 0) {	/* out of rx quota */
1531		retcode = 1;
1532		goto out;
1533	}
1534	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1535
1536 out:
1537	refill_rx_ring(dev);
1538	if (debug > 5)
1539		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1540		       retcode, np->rx_done, desc_status);
1541	return retcode;
1542}
1543
1544static int netdev_poll(struct napi_struct *napi, int budget)
1545{
1546	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1547	struct net_device *dev = np->dev;
1548	u32 intr_status;
1549	void __iomem *ioaddr = np->base;
1550	int quota = budget;
1551
1552	do {
1553		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1554
1555		if (__netdev_rx(dev, &quota))
1556			goto out;
1557
1558		intr_status = readl(ioaddr + IntrStatus);
1559	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1560
1561	napi_complete(napi);
1562	intr_status = readl(ioaddr + IntrEnable);
1563	intr_status |= IntrRxDone | IntrRxEmpty;
1564	writel(intr_status, ioaddr + IntrEnable);
1565
1566 out:
1567	if (debug > 5)
1568		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1569		       budget - quota);
1570
1571	/* Restart Rx engine if stopped. */
1572	return budget - quota;
1573}
1574
1575static void refill_rx_ring(struct net_device *dev)
1576{
1577	struct netdev_private *np = netdev_priv(dev);
1578	struct sk_buff *skb;
1579	int entry = -1;
1580
1581	/* Refill the Rx ring buffers. */
1582	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1583		entry = np->dirty_rx % RX_RING_SIZE;
1584		if (np->rx_info[entry].skb == NULL) {
1585			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1586			np->rx_info[entry].skb = skb;
1587			if (skb == NULL)
1588				break;	/* Better luck next round. */
1589			np->rx_info[entry].mapping =
1590				dma_map_single(&np->pci_dev->dev, skb->data,
1591					       np->rx_buf_sz, DMA_FROM_DEVICE);
1592			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1593				dev_kfree_skb(skb);
1594				np->rx_info[entry].skb = NULL;
1595				break;
1596			}
1597			np->rx_ring[entry].rxaddr =
1598				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1599		}
1600		if (entry == RX_RING_SIZE - 1)
1601			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1602	}
1603	if (entry >= 0)
1604		writew(entry, np->base + RxDescQIdx);
1605}
1606
1607
1608static void netdev_media_change(struct net_device *dev)
1609{
1610	struct netdev_private *np = netdev_priv(dev);
1611	void __iomem *ioaddr = np->base;
1612	u16 reg0, reg1, reg4, reg5;
1613	u32 new_tx_mode;
1614	u32 new_intr_timer_ctrl;
1615
1616	/* reset status first */
1617	mdio_read(dev, np->phys[0], MII_BMCR);
1618	mdio_read(dev, np->phys[0], MII_BMSR);
1619
1620	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1621	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1622
1623	if (reg1 & BMSR_LSTATUS) {
1624		/* link is up */
1625		if (reg0 & BMCR_ANENABLE) {
1626			/* autonegotiation is enabled */
1627			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1628			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1629			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1630				np->speed100 = 1;
1631				np->mii_if.full_duplex = 1;
1632			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1633				np->speed100 = 1;
1634				np->mii_if.full_duplex = 0;
1635			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1636				np->speed100 = 0;
1637				np->mii_if.full_duplex = 1;
1638			} else {
1639				np->speed100 = 0;
1640				np->mii_if.full_duplex = 0;
1641			}
1642		} else {
1643			/* autonegotiation is disabled */
1644			if (reg0 & BMCR_SPEED100)
1645				np->speed100 = 1;
1646			else
1647				np->speed100 = 0;
1648			if (reg0 & BMCR_FULLDPLX)
1649				np->mii_if.full_duplex = 1;
1650			else
1651				np->mii_if.full_duplex = 0;
1652		}
1653		netif_carrier_on(dev);
1654		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1655		       dev->name,
1656		       np->speed100 ? "100" : "10",
1657		       np->mii_if.full_duplex ? "full" : "half");
1658
1659		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1660		if (np->mii_if.full_duplex)
1661			new_tx_mode |= FullDuplex;
1662		if (np->tx_mode != new_tx_mode) {
1663			np->tx_mode = new_tx_mode;
1664			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1665			udelay(1000);
1666			writel(np->tx_mode, ioaddr + TxMode);
1667		}
1668
1669		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1670		if (np->speed100)
1671			new_intr_timer_ctrl |= Timer10X;
1672		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1673			np->intr_timer_ctrl = new_intr_timer_ctrl;
1674			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1675		}
1676	} else {
1677		netif_carrier_off(dev);
1678		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1679	}
1680}
1681
1682
1683static void netdev_error(struct net_device *dev, int intr_status)
1684{
1685	struct netdev_private *np = netdev_priv(dev);
1686
1687	/* Came close to underrunning the Tx FIFO, increase threshold. */
1688	if (intr_status & IntrTxDataLow) {
1689		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1690			writel(++np->tx_threshold, np->base + TxThreshold);
1691			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1692			       dev->name, np->tx_threshold * 16);
1693		} else
1694			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1695	}
1696	if (intr_status & IntrRxGFPDead) {
1697		dev->stats.rx_fifo_errors++;
1698		dev->stats.rx_errors++;
1699	}
1700	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1701		dev->stats.tx_fifo_errors++;
1702		dev->stats.tx_errors++;
1703	}
1704	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1705		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1706		       dev->name, intr_status);
1707}
1708
1709
1710static struct net_device_stats *get_stats(struct net_device *dev)
1711{
1712	struct netdev_private *np = netdev_priv(dev);
1713	void __iomem *ioaddr = np->base;
1714
1715	/* This adapter architecture needs no SMP locks. */
1716	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1717	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1718	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1719	dev->stats.tx_aborted_errors =
1720		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1721	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1722	dev->stats.collisions =
1723		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1724
1725	/* The chip only need report frame silently dropped. */
1726	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1727	writew(0, ioaddr + RxDMAStatus);
1728	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1729	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1730	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1731	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1732
1733	return &dev->stats;
1734}
1735
1736#ifdef VLAN_SUPPORT
1737static u32 set_vlan_mode(struct netdev_private *np)
1738{
1739	u32 ret = VlanMode;
1740	u16 vid;
1741	void __iomem *filter_addr = np->base + HashTable + 8;
1742	int vlan_count = 0;
1743
1744	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1745		if (vlan_count == 32)
1746			break;
1747		writew(vid, filter_addr);
1748		filter_addr += 16;
1749		vlan_count++;
1750	}
1751	if (vlan_count == 32) {
1752		ret |= PerfectFilterVlan;
1753		while (vlan_count < 32) {
1754			writew(0, filter_addr);
1755			filter_addr += 16;
1756			vlan_count++;
1757		}
1758	}
1759	return ret;
1760}
1761#endif /* VLAN_SUPPORT */
1762
1763static void set_rx_mode(struct net_device *dev)
1764{
1765	struct netdev_private *np = netdev_priv(dev);
1766	void __iomem *ioaddr = np->base;
1767	u32 rx_mode = MinVLANPrio;
1768	struct netdev_hw_addr *ha;
1769	int i;
1770
1771#ifdef VLAN_SUPPORT
1772	rx_mode |= set_vlan_mode(np);
1773#endif /* VLAN_SUPPORT */
1774
1775	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1776		rx_mode |= AcceptAll;
1777	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1778		   (dev->flags & IFF_ALLMULTI)) {
1779		/* Too many to match, or accept all multicasts. */
1780		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1781	} else if (netdev_mc_count(dev) <= 14) {
1782		/* Use the 16 element perfect filter, skip first two entries. */
1783		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1784		const __be16 *eaddrs;
1785		netdev_for_each_mc_addr(ha, dev) {
1786			eaddrs = (__be16 *) ha->addr;
1787			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1788			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1789			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1790		}
1791		eaddrs = (const __be16 *)dev->dev_addr;
1792		i = netdev_mc_count(dev) + 2;
1793		while (i++ < 16) {
1794			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797		}
1798		rx_mode |= AcceptBroadcast|PerfectFilter;
1799	} else {
1800		/* Must use a multicast hash table. */
1801		void __iomem *filter_addr;
1802		const __be16 *eaddrs;
1803		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1804
1805		memset(mc_filter, 0, sizeof(mc_filter));
1806		netdev_for_each_mc_addr(ha, dev) {
1807			/* The chip uses the upper 9 CRC bits
1808			   as index into the hash table */
1809			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1810			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1811
1812			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1813		}
1814		/* Clear the perfect filter list, skip first two entries. */
1815		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1816		eaddrs = (const __be16 *)dev->dev_addr;
1817		for (i = 2; i < 16; i++) {
1818			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1819			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1820			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1821		}
1822		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1823			writew(mc_filter[i], filter_addr);
1824		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1825	}
1826	writel(rx_mode, ioaddr + RxFilterMode);
1827}
1828
1829static int check_if_running(struct net_device *dev)
1830{
1831	if (!netif_running(dev))
1832		return -EINVAL;
1833	return 0;
1834}
1835
1836static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1837{
1838	struct netdev_private *np = netdev_priv(dev);
1839	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1840	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
 
1841}
1842
1843static int get_link_ksettings(struct net_device *dev,
1844			      struct ethtool_link_ksettings *cmd)
1845{
1846	struct netdev_private *np = netdev_priv(dev);
1847	spin_lock_irq(&np->lock);
1848	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1849	spin_unlock_irq(&np->lock);
1850	return 0;
1851}
1852
1853static int set_link_ksettings(struct net_device *dev,
1854			      const struct ethtool_link_ksettings *cmd)
1855{
1856	struct netdev_private *np = netdev_priv(dev);
1857	int res;
1858	spin_lock_irq(&np->lock);
1859	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1860	spin_unlock_irq(&np->lock);
1861	check_duplex(dev);
1862	return res;
1863}
1864
1865static int nway_reset(struct net_device *dev)
1866{
1867	struct netdev_private *np = netdev_priv(dev);
1868	return mii_nway_restart(&np->mii_if);
1869}
1870
1871static u32 get_link(struct net_device *dev)
1872{
1873	struct netdev_private *np = netdev_priv(dev);
1874	return mii_link_ok(&np->mii_if);
1875}
1876
1877static u32 get_msglevel(struct net_device *dev)
1878{
1879	return debug;
1880}
1881
1882static void set_msglevel(struct net_device *dev, u32 val)
1883{
1884	debug = val;
1885}
1886
1887static const struct ethtool_ops ethtool_ops = {
1888	.begin = check_if_running,
1889	.get_drvinfo = get_drvinfo,
 
 
1890	.nway_reset = nway_reset,
1891	.get_link = get_link,
1892	.get_msglevel = get_msglevel,
1893	.set_msglevel = set_msglevel,
1894	.get_link_ksettings = get_link_ksettings,
1895	.set_link_ksettings = set_link_ksettings,
1896};
1897
1898static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1899{
1900	struct netdev_private *np = netdev_priv(dev);
1901	struct mii_ioctl_data *data = if_mii(rq);
1902	int rc;
1903
1904	if (!netif_running(dev))
1905		return -EINVAL;
1906
1907	spin_lock_irq(&np->lock);
1908	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1909	spin_unlock_irq(&np->lock);
1910
1911	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1912		check_duplex(dev);
1913
1914	return rc;
1915}
1916
1917static int netdev_close(struct net_device *dev)
1918{
1919	struct netdev_private *np = netdev_priv(dev);
1920	void __iomem *ioaddr = np->base;
1921	int i;
1922
1923	netif_stop_queue(dev);
1924
1925	napi_disable(&np->napi);
1926
1927	if (debug > 1) {
1928		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1929			   dev->name, (int) readl(ioaddr + IntrStatus));
1930		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1931		       dev->name, np->cur_tx, np->dirty_tx,
1932		       np->cur_rx, np->dirty_rx);
1933	}
1934
1935	/* Disable interrupts by clearing the interrupt mask. */
1936	writel(0, ioaddr + IntrEnable);
1937
1938	/* Stop the chip's Tx and Rx processes. */
1939	writel(0, ioaddr + GenCtrl);
1940	readl(ioaddr + GenCtrl);
1941
1942	if (debug > 5) {
1943		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1944		       (long long) np->tx_ring_dma);
1945		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1946			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1947			       i, le32_to_cpu(np->tx_ring[i].status),
1948			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1949			       le32_to_cpu(np->tx_done_q[i].status));
1950		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1951		       (long long) np->rx_ring_dma, np->rx_done_q);
1952		if (np->rx_done_q)
1953			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1954				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1955				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1956		}
1957	}
1958
1959	free_irq(np->pci_dev->irq, dev);
1960
1961	/* Free all the skbuffs in the Rx queue. */
1962	for (i = 0; i < RX_RING_SIZE; i++) {
1963		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1964		if (np->rx_info[i].skb != NULL) {
1965			dma_unmap_single(&np->pci_dev->dev,
1966					 np->rx_info[i].mapping,
1967					 np->rx_buf_sz, DMA_FROM_DEVICE);
1968			dev_kfree_skb(np->rx_info[i].skb);
1969		}
1970		np->rx_info[i].skb = NULL;
1971		np->rx_info[i].mapping = 0;
1972	}
1973	for (i = 0; i < TX_RING_SIZE; i++) {
1974		struct sk_buff *skb = np->tx_info[i].skb;
1975		if (skb == NULL)
1976			continue;
1977		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1978				 skb_first_frag_len(skb), DMA_TO_DEVICE);
 
1979		np->tx_info[i].mapping = 0;
1980		dev_kfree_skb(skb);
1981		np->tx_info[i].skb = NULL;
1982	}
1983
1984	return 0;
1985}
1986
1987static int __maybe_unused starfire_suspend(struct device *dev_d)
 
1988{
1989	struct net_device *dev = dev_get_drvdata(dev_d);
1990
1991	if (netif_running(dev)) {
1992		netif_device_detach(dev);
1993		netdev_close(dev);
1994	}
1995
 
 
 
1996	return 0;
1997}
1998
1999static int __maybe_unused starfire_resume(struct device *dev_d)
2000{
2001	struct net_device *dev = dev_get_drvdata(dev_d);
 
 
 
2002
2003	if (netif_running(dev)) {
2004		netdev_open(dev);
2005		netif_device_attach(dev);
2006	}
2007
2008	return 0;
2009}
 
 
2010
2011static void starfire_remove_one(struct pci_dev *pdev)
2012{
2013	struct net_device *dev = pci_get_drvdata(pdev);
2014	struct netdev_private *np = netdev_priv(dev);
2015
2016	BUG_ON(!dev);
2017
2018	unregister_netdev(dev);
2019
2020	if (np->queue_mem)
2021		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2022				  np->queue_mem, np->queue_mem_dma);
2023
2024
2025	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2026	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2027	pci_disable_device(pdev);
2028
2029	iounmap(np->base);
2030	pci_release_regions(pdev);
2031
2032	free_netdev(dev);			/* Will also free np!! */
2033}
2034
2035static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2036
2037static struct pci_driver starfire_driver = {
2038	.name		= DRV_NAME,
2039	.probe		= starfire_init_one,
2040	.remove		= starfire_remove_one,
2041	.driver.pm	= &starfire_pm_ops,
 
 
 
2042	.id_table	= starfire_pci_tbl,
2043};
2044
2045
2046static int __init starfire_init (void)
2047{
2048/* when a module, this is printed whether or not devices are found in probe */
2049#ifdef MODULE
 
 
2050	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2051#endif
2052
2053	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2054
2055	return pci_register_driver(&starfire_driver);
2056}
2057
2058
2059static void __exit starfire_cleanup (void)
2060{
2061	pci_unregister_driver (&starfire_driver);
2062}
2063
2064
2065module_init(starfire_init);
2066module_exit(starfire_cleanup);
v3.15
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
  30#define DRV_VERSION	"2.1"
  31#define DRV_RELDATE	"July  6, 2008"
  32
  33#include <linux/interrupt.h>
  34#include <linux/module.h>
  35#include <linux/kernel.h>
  36#include <linux/pci.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/init.h>
  40#include <linux/delay.h>
  41#include <linux/crc32.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/if_vlan.h>
  45#include <linux/mm.h>
  46#include <linux/firmware.h>
  47#include <asm/processor.h>		/* Processor type for cache alignment. */
  48#include <asm/uaccess.h>
  49#include <asm/io.h>
  50
  51/*
  52 * The current frame processor firmware fails to checksum a fragment
  53 * of length 1. If and when this is fixed, the #define below can be removed.
  54 */
  55#define HAS_BROKEN_FIRMWARE
  56
  57/*
  58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  59 */
  60#ifdef HAS_BROKEN_FIRMWARE
  61#define PADDING_MASK 3
  62#endif
  63
  64/*
  65 * Define this if using the driver with the zero-copy patch
  66 */
  67#define ZEROCOPY
  68
  69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  70#define VLAN_SUPPORT
  71#endif
  72
  73/* The user-configurable values.
  74   These may be modified when a driver module is loaded.*/
  75
  76/* Used for tuning interrupt latency vs. overhead. */
  77static int intr_latency;
  78static int small_frames;
  79
  80static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  81static int max_interrupt_work = 20;
  82static int mtu;
  83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  84   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  85static const int multicast_filter_limit = 512;
  86/* Whether to do TCP/UDP checksums in hardware */
  87static int enable_hw_cksum = 1;
  88
  89#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  90/*
  91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  92 * Setting to > 1518 effectively disables this feature.
  93 *
  94 * NOTE:
  95 * The ia64 doesn't allow for unaligned loads even of integers being
  96 * misaligned on a 2 byte boundary. Thus always force copying of
  97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  98 * 23/10/2000 - Jes
  99 *
 100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
 101 * at least, having unaligned frames leads to a rather serious performance
 102 * penalty. -Ion
 103 */
 104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 105static int rx_copybreak = PKT_BUF_SZ;
 106#else
 107static int rx_copybreak /* = 0 */;
 108#endif
 109
 110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 111#ifdef __sparc__
 112#define DMA_BURST_SIZE 64
 113#else
 114#define DMA_BURST_SIZE 128
 115#endif
 116
 117/* Operational parameters that are set at compile time. */
 118
 119/* The "native" ring sizes are either 256 or 2048.
 120   However in some modes a descriptor may be marked to wrap the ring earlier.
 121*/
 122#define RX_RING_SIZE	256
 123#define TX_RING_SIZE	32
 124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 125#define DONE_Q_SIZE	1024
 126/* All queues must be aligned on a 256-byte boundary */
 127#define QUEUE_ALIGN	256
 128
 129#if RX_RING_SIZE > 256
 130#define RX_Q_ENTRIES Rx2048QEntries
 131#else
 132#define RX_Q_ENTRIES Rx256QEntries
 133#endif
 134
 135/* Operational parameters that usually are not changed. */
 136/* Time in jiffies before concluding the transmitter is hung. */
 137#define TX_TIMEOUT	(2 * HZ)
 138
 139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 140/* 64-bit dma_addr_t */
 141#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 142#define netdrv_addr_t __le64
 143#define cpu_to_dma(x) cpu_to_le64(x)
 144#define dma_to_cpu(x) le64_to_cpu(x)
 145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 150#else  /* 32-bit dma_addr_t */
 151#define netdrv_addr_t __le32
 152#define cpu_to_dma(x) cpu_to_le32(x)
 153#define dma_to_cpu(x) le32_to_cpu(x)
 154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 159#endif
 160
 161#define skb_first_frag_len(skb)	skb_headlen(skb)
 162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 163
 164/* Firmware names */
 165#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 166#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 167
 168/* These identify the driver base version and may not be removed. */
 169static const char version[] =
 170KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
 171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
 172
 173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 175MODULE_LICENSE("GPL");
 176MODULE_VERSION(DRV_VERSION);
 177MODULE_FIRMWARE(FIRMWARE_RX);
 178MODULE_FIRMWARE(FIRMWARE_TX);
 179
 180module_param(max_interrupt_work, int, 0);
 181module_param(mtu, int, 0);
 182module_param(debug, int, 0);
 183module_param(rx_copybreak, int, 0);
 184module_param(intr_latency, int, 0);
 185module_param(small_frames, int, 0);
 186module_param(enable_hw_cksum, int, 0);
 187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 188MODULE_PARM_DESC(mtu, "MTU (all boards)");
 189MODULE_PARM_DESC(debug, "Debug level (0-6)");
 190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 194
 195/*
 196				Theory of Operation
 197
 198I. Board Compatibility
 199
 200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 201
 202II. Board-specific settings
 203
 204III. Driver operation
 205
 206IIIa. Ring buffers
 207
 208The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 209ring sizes are set fixed by the hardware, but may optionally be wrapped
 210earlier by the END bit in the descriptor.
 211This driver uses that hardware queue size for the Rx ring, where a large
 212number of entries has no ill effect beyond increases the potential backlog.
 213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 214disables the queue layer priority ordering and we have no mechanism to
 215utilize the hardware two-level priority queue.  When modifying the
 216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 217levels.
 218
 219IIIb/c. Transmit/Receive Structure
 220
 221See the Adaptec manual for the many possible structures, and options for
 222each structure.  There are far too many to document all of them here.
 223
 224For transmit this driver uses type 0/1 transmit descriptors (depending
 225on the 32/64 bitness of the architecture), and relies on automatic
 226minimum-length padding.  It does not use the completion queue
 227consumer index, but instead checks for non-zero status entries.
 228
 229For receive this driver uses type 2/3 receive descriptors.  The driver
 230allocates full frame size skbuffs for the Rx ring buffers, so all frames
 231should fit in a single descriptor.  The driver does not use the completion
 232queue consumer index, but instead checks for non-zero status entries.
 233
 234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 235is allocated and the frame is copied to the new skbuff.  When the incoming
 236frame is larger, the skbuff is passed directly up the protocol stack.
 237Buffers consumed this way are replaced by newly allocated skbuffs in a later
 238phase of receive.
 239
 240A notable aspect of operation is that unaligned buffers are not permitted by
 241the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 242isn't longword aligned, which may cause problems on some machine
 243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 244the frame into a new skbuff unconditionally. Copied frames are put into the
 245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 246
 247IIId. Synchronization
 248
 249The driver runs as two independent, single-threaded flows of control.  One
 250is the send-packet routine, which enforces single-threaded use by the
 251dev->tbusy flag.  The other thread is the interrupt handler, which is single
 252threaded by the hardware and interrupt handling software.
 253
 254The send packet thread has partial control over the Tx ring and the netif_queue
 255status. If the number of free Tx slots in the ring falls below a certain number
 256(currently hardcoded to 4), it signals the upper layer to stop the queue.
 257
 258The interrupt handler has exclusive control over the Rx ring and records stats
 259from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 261number of free Tx slow is above the threshold, it signals the upper layer to
 262restart the queue.
 263
 264IV. Notes
 265
 266IVb. References
 267
 268The Adaptec Starfire manuals, available only from Adaptec.
 269http://www.scyld.com/expert/100mbps.html
 270http://www.scyld.com/expert/NWay.html
 271
 272IVc. Errata
 273
 274- StopOnPerr is broken, don't enable
 275- Hardware ethernet padding exposes random data, perform software padding
 276  instead (unverified -- works correctly for all the hardware I have)
 277
 278*/
 279
 280
 281
 282enum chip_capability_flags {CanHaveMII=1, };
 283
 284enum chipset {
 285	CH_6915 = 0,
 286};
 287
 288static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
 289	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 290	{ 0, }
 291};
 292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 293
 294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 295static const struct chip_info {
 296	const char *name;
 297	int drv_flags;
 298} netdrv_tbl[] = {
 299	{ "Adaptec Starfire 6915", CanHaveMII },
 300};
 301
 302
 303/* Offsets to the device registers.
 304   Unlike software-only systems, device drivers interact with complex hardware.
 305   It's not useful to define symbolic names for every register bit in the
 306   device.  The name can only partially document the semantics and make
 307   the driver longer and more difficult to read.
 308   In general, only the important configuration values or bits changed
 309   multiple times should be defined symbolically.
 310*/
 311enum register_offsets {
 312	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 313	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 314	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 315	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 316	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 317	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 318	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 319	TxThreshold=0x500B0,
 320	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 321	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 322	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 323	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 324	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 325	TxMode=0x55000, VlanType=0x55064,
 326	PerfFilterTable=0x56000, HashTable=0x56100,
 327	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 328};
 329
 330/*
 331 * Bits in the interrupt status/mask registers.
 332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 333 * enables all the interrupt sources that are or'ed into those status bits.
 334 */
 335enum intr_status_bits {
 336	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 337	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 338	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 339	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 340	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 341	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 342	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 343	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 344	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 345	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 346	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 347	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 348	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 349	IntrTxGfp=0x02, IntrPCIPad=0x01,
 350	/* not quite bits */
 351	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 352	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 353	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 354};
 355
 356/* Bits in the RxFilterMode register. */
 357enum rx_mode_bits {
 358	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 359	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 360	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 361	WakeupOnGFP=0x0800,
 362};
 363
 364/* Bits in the TxMode register */
 365enum tx_mode_bits {
 366	MiiSoftReset=0x8000, MIILoopback=0x4000,
 367	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 368	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 369};
 370
 371/* Bits in the TxDescCtrl register. */
 372enum tx_ctrl_bits {
 373	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 374	TxDescSpace128=0x30, TxDescSpace256=0x40,
 375	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 376	TxDescType3=0x03, TxDescType4=0x04,
 377	TxNoDMACompletion=0x08,
 378	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 379	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 380	TxDMABurstSizeShift=8,
 381};
 382
 383/* Bits in the RxDescQCtrl register. */
 384enum rx_ctrl_bits {
 385	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 386	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 387	Rx2048QEntries=0x4000, Rx256QEntries=0,
 388	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 389	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 390	RxDescSpace4=0x000, RxDescSpace8=0x100,
 391	RxDescSpace16=0x200, RxDescSpace32=0x300,
 392	RxDescSpace64=0x400, RxDescSpace128=0x500,
 393	RxConsumerWrEn=0x80,
 394};
 395
 396/* Bits in the RxDMACtrl register. */
 397enum rx_dmactrl_bits {
 398	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 399	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 400	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 401	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 402	RxChecksumRejectTCPOnly=0x01000000,
 403	RxCompletionQ2Enable=0x800000,
 404	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 405	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 406	RxDMAQ2NonIP=0x400000,
 407	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 408	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 409	RxBurstSizeShift=0,
 410};
 411
 412/* Bits in the RxCompletionAddr register */
 413enum rx_compl_bits {
 414	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 415	RxComplProducerWrEn=0x40,
 416	RxComplType0=0x00, RxComplType1=0x10,
 417	RxComplType2=0x20, RxComplType3=0x30,
 418	RxComplThreshShift=0,
 419};
 420
 421/* Bits in the TxCompletionAddr register */
 422enum tx_compl_bits {
 423	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 424	TxComplProducerWrEn=0x40,
 425	TxComplIntrStatus=0x20,
 426	CommonQueueMode=0x10,
 427	TxComplThreshShift=0,
 428};
 429
 430/* Bits in the GenCtrl register */
 431enum gen_ctrl_bits {
 432	RxEnable=0x05, TxEnable=0x0a,
 433	RxGFPEnable=0x10, TxGFPEnable=0x20,
 434};
 435
 436/* Bits in the IntrTimerCtrl register */
 437enum intr_ctrl_bits {
 438	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 439	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 440	IntrLatencyMask=0x1f,
 441};
 442
 443/* The Rx and Tx buffer descriptors. */
 444struct starfire_rx_desc {
 445	netdrv_addr_t rxaddr;
 446};
 447enum rx_desc_bits {
 448	RxDescValid=1, RxDescEndRing=2,
 449};
 450
 451/* Completion queue entry. */
 452struct short_rx_done_desc {
 453	__le32 status;			/* Low 16 bits is length. */
 454};
 455struct basic_rx_done_desc {
 456	__le32 status;			/* Low 16 bits is length. */
 457	__le16 vlanid;
 458	__le16 status2;
 459};
 460struct csum_rx_done_desc {
 461	__le32 status;			/* Low 16 bits is length. */
 462	__le16 csum;			/* Partial checksum */
 463	__le16 status2;
 464};
 465struct full_rx_done_desc {
 466	__le32 status;			/* Low 16 bits is length. */
 467	__le16 status3;
 468	__le16 status2;
 469	__le16 vlanid;
 470	__le16 csum;			/* partial checksum */
 471	__le32 timestamp;
 472};
 473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 474#ifdef VLAN_SUPPORT
 475typedef struct full_rx_done_desc rx_done_desc;
 476#define RxComplType RxComplType3
 477#else  /* not VLAN_SUPPORT */
 478typedef struct csum_rx_done_desc rx_done_desc;
 479#define RxComplType RxComplType2
 480#endif /* not VLAN_SUPPORT */
 481
 482enum rx_done_bits {
 483	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 484};
 485
 486/* Type 1 Tx descriptor. */
 487struct starfire_tx_desc_1 {
 488	__le32 status;			/* Upper bits are status, lower 16 length. */
 489	__le32 addr;
 490};
 491
 492/* Type 2 Tx descriptor. */
 493struct starfire_tx_desc_2 {
 494	__le32 status;			/* Upper bits are status, lower 16 length. */
 495	__le32 reserved;
 496	__le64 addr;
 497};
 498
 499#ifdef ADDR_64BITS
 500typedef struct starfire_tx_desc_2 starfire_tx_desc;
 501#define TX_DESC_TYPE TxDescType2
 502#else  /* not ADDR_64BITS */
 503typedef struct starfire_tx_desc_1 starfire_tx_desc;
 504#define TX_DESC_TYPE TxDescType1
 505#endif /* not ADDR_64BITS */
 506#define TX_DESC_SPACING TxDescSpaceUnlim
 507
 508enum tx_desc_bits {
 509	TxDescID=0xB0000000,
 510	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 511	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 512};
 513struct tx_done_desc {
 514	__le32 status;			/* timestamp, index. */
 515#if 0
 516	__le32 intrstatus;		/* interrupt status */
 517#endif
 518};
 519
 520struct rx_ring_info {
 521	struct sk_buff *skb;
 522	dma_addr_t mapping;
 523};
 524struct tx_ring_info {
 525	struct sk_buff *skb;
 526	dma_addr_t mapping;
 527	unsigned int used_slots;
 528};
 529
 530#define PHY_CNT		2
 531struct netdev_private {
 532	/* Descriptor rings first for alignment. */
 533	struct starfire_rx_desc *rx_ring;
 534	starfire_tx_desc *tx_ring;
 535	dma_addr_t rx_ring_dma;
 536	dma_addr_t tx_ring_dma;
 537	/* The addresses of rx/tx-in-place skbuffs. */
 538	struct rx_ring_info rx_info[RX_RING_SIZE];
 539	struct tx_ring_info tx_info[TX_RING_SIZE];
 540	/* Pointers to completion queues (full pages). */
 541	rx_done_desc *rx_done_q;
 542	dma_addr_t rx_done_q_dma;
 543	unsigned int rx_done;
 544	struct tx_done_desc *tx_done_q;
 545	dma_addr_t tx_done_q_dma;
 546	unsigned int tx_done;
 547	struct napi_struct napi;
 548	struct net_device *dev;
 549	struct pci_dev *pci_dev;
 550#ifdef VLAN_SUPPORT
 551	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 552#endif
 553	void *queue_mem;
 554	dma_addr_t queue_mem_dma;
 555	size_t queue_mem_size;
 556
 557	/* Frequently used values: keep some adjacent for cache effect. */
 558	spinlock_t lock;
 559	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 560	unsigned int cur_tx, dirty_tx, reap_tx;
 561	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 562	/* These values keep track of the transceiver/media in use. */
 563	int speed100;			/* Set if speed == 100MBit. */
 564	u32 tx_mode;
 565	u32 intr_timer_ctrl;
 566	u8 tx_threshold;
 567	/* MII transceiver section. */
 568	struct mii_if_info mii_if;		/* MII lib hooks/info */
 569	int phy_cnt;			/* MII device addresses. */
 570	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 571	void __iomem *base;
 572};
 573
 574
 575static int	mdio_read(struct net_device *dev, int phy_id, int location);
 576static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 577static int	netdev_open(struct net_device *dev);
 578static void	check_duplex(struct net_device *dev);
 579static void	tx_timeout(struct net_device *dev);
 580static void	init_ring(struct net_device *dev);
 581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 582static irqreturn_t intr_handler(int irq, void *dev_instance);
 583static void	netdev_error(struct net_device *dev, int intr_status);
 584static int	__netdev_rx(struct net_device *dev, int *quota);
 585static int	netdev_poll(struct napi_struct *napi, int budget);
 586static void	refill_rx_ring(struct net_device *dev);
 587static void	netdev_error(struct net_device *dev, int intr_status);
 588static void	set_rx_mode(struct net_device *dev);
 589static struct net_device_stats *get_stats(struct net_device *dev);
 590static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 591static int	netdev_close(struct net_device *dev);
 592static void	netdev_media_change(struct net_device *dev);
 593static const struct ethtool_ops ethtool_ops;
 594
 595
 596#ifdef VLAN_SUPPORT
 597static int netdev_vlan_rx_add_vid(struct net_device *dev,
 598				  __be16 proto, u16 vid)
 599{
 600	struct netdev_private *np = netdev_priv(dev);
 601
 602	spin_lock(&np->lock);
 603	if (debug > 1)
 604		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 605	set_bit(vid, np->active_vlans);
 606	set_rx_mode(dev);
 607	spin_unlock(&np->lock);
 608
 609	return 0;
 610}
 611
 612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 613				   __be16 proto, u16 vid)
 614{
 615	struct netdev_private *np = netdev_priv(dev);
 616
 617	spin_lock(&np->lock);
 618	if (debug > 1)
 619		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 620	clear_bit(vid, np->active_vlans);
 621	set_rx_mode(dev);
 622	spin_unlock(&np->lock);
 623
 624	return 0;
 625}
 626#endif /* VLAN_SUPPORT */
 627
 628
 629static const struct net_device_ops netdev_ops = {
 630	.ndo_open		= netdev_open,
 631	.ndo_stop		= netdev_close,
 632	.ndo_start_xmit		= start_tx,
 633	.ndo_tx_timeout		= tx_timeout,
 634	.ndo_get_stats		= get_stats,
 635	.ndo_set_rx_mode	= set_rx_mode,
 636	.ndo_do_ioctl		= netdev_ioctl,
 637	.ndo_change_mtu		= eth_change_mtu,
 638	.ndo_set_mac_address	= eth_mac_addr,
 639	.ndo_validate_addr	= eth_validate_addr,
 640#ifdef VLAN_SUPPORT
 641	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 642	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 643#endif
 644};
 645
 646static int starfire_init_one(struct pci_dev *pdev,
 647			     const struct pci_device_id *ent)
 648{
 649	struct device *d = &pdev->dev;
 650	struct netdev_private *np;
 651	int i, irq, chip_idx = ent->driver_data;
 652	struct net_device *dev;
 
 653	long ioaddr;
 654	void __iomem *base;
 655	int drv_flags, io_size;
 656	int boguscnt;
 657
 658/* when built into the kernel, we only print version if device is found */
 659#ifndef MODULE
 660	static int printed_version;
 661	if (!printed_version++)
 662		printk(version);
 663#endif
 664
 665	if (pci_enable_device (pdev))
 666		return -EIO;
 667
 668	ioaddr = pci_resource_start(pdev, 0);
 669	io_size = pci_resource_len(pdev, 0);
 670	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 671		dev_err(d, "no PCI MEM resources, aborting\n");
 672		return -ENODEV;
 673	}
 674
 675	dev = alloc_etherdev(sizeof(*np));
 676	if (!dev)
 677		return -ENOMEM;
 678
 679	SET_NETDEV_DEV(dev, &pdev->dev);
 680
 681	irq = pdev->irq;
 682
 683	if (pci_request_regions (pdev, DRV_NAME)) {
 684		dev_err(d, "cannot reserve PCI resources, aborting\n");
 685		goto err_out_free_netdev;
 686	}
 687
 688	base = ioremap(ioaddr, io_size);
 689	if (!base) {
 690		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 691			io_size, ioaddr);
 692		goto err_out_free_res;
 693	}
 694
 695	pci_set_master(pdev);
 696
 697	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 698	pci_try_set_mwi(pdev);
 699
 700#ifdef ZEROCOPY
 701	/* Starfire can do TCP/UDP checksumming */
 702	if (enable_hw_cksum)
 703		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 704#endif /* ZEROCOPY */
 705
 706#ifdef VLAN_SUPPORT
 707	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 708#endif /* VLAN_RX_KILL_VID */
 709#ifdef ADDR_64BITS
 710	dev->features |= NETIF_F_HIGHDMA;
 711#endif /* ADDR_64BITS */
 712
 713	/* Serial EEPROM reads are hidden by the hardware. */
 714	for (i = 0; i < 6; i++)
 715		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
 
 716
 717#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 718	if (debug > 4)
 719		for (i = 0; i < 0x20; i++)
 720			printk("%2.2x%s",
 721			       (unsigned int)readb(base + EEPROMCtrl + i),
 722			       i % 16 != 15 ? " " : "\n");
 723#endif
 724
 725	/* Issue soft reset */
 726	writel(MiiSoftReset, base + TxMode);
 727	udelay(1000);
 728	writel(0, base + TxMode);
 729
 730	/* Reset the chip to erase previous misconfiguration. */
 731	writel(1, base + PCIDeviceConfig);
 732	boguscnt = 1000;
 733	while (--boguscnt > 0) {
 734		udelay(10);
 735		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 736			break;
 737	}
 738	if (boguscnt == 0)
 739		printk("%s: chipset reset never completed!\n", dev->name);
 740	/* wait a little longer */
 741	udelay(1000);
 742
 743	np = netdev_priv(dev);
 744	np->dev = dev;
 745	np->base = base;
 746	spin_lock_init(&np->lock);
 747	pci_set_drvdata(pdev, dev);
 748
 749	np->pci_dev = pdev;
 750
 751	np->mii_if.dev = dev;
 752	np->mii_if.mdio_read = mdio_read;
 753	np->mii_if.mdio_write = mdio_write;
 754	np->mii_if.phy_id_mask = 0x1f;
 755	np->mii_if.reg_num_mask = 0x1f;
 756
 757	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 758
 759	np->speed100 = 1;
 760
 761	/* timer resolution is 128 * 0.8us */
 762	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 763		Timer10X | EnableIntrMasking;
 764
 765	if (small_frames > 0) {
 766		np->intr_timer_ctrl |= SmallFrameBypass;
 767		switch (small_frames) {
 768		case 1 ... 64:
 769			np->intr_timer_ctrl |= SmallFrame64;
 770			break;
 771		case 65 ... 128:
 772			np->intr_timer_ctrl |= SmallFrame128;
 773			break;
 774		case 129 ... 256:
 775			np->intr_timer_ctrl |= SmallFrame256;
 776			break;
 777		default:
 778			np->intr_timer_ctrl |= SmallFrame512;
 779			if (small_frames > 512)
 780				printk("Adjusting small_frames down to 512\n");
 781			break;
 782		}
 783	}
 784
 785	dev->netdev_ops = &netdev_ops;
 786	dev->watchdog_timeo = TX_TIMEOUT;
 787	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 788
 789	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
 790
 791	if (mtu)
 792		dev->mtu = mtu;
 793
 794	if (register_netdev(dev))
 795		goto err_out_cleardev;
 796
 797	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 798	       dev->name, netdrv_tbl[chip_idx].name, base,
 799	       dev->dev_addr, irq);
 800
 801	if (drv_flags & CanHaveMII) {
 802		int phy, phy_idx = 0;
 803		int mii_status;
 804		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 805			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 806			mdelay(100);
 807			boguscnt = 1000;
 808			while (--boguscnt > 0)
 809				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 810					break;
 811			if (boguscnt == 0) {
 812				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 813				continue;
 814			}
 815			mii_status = mdio_read(dev, phy, MII_BMSR);
 816			if (mii_status != 0) {
 817				np->phys[phy_idx++] = phy;
 818				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 819				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 820					   "%#4.4x advertising %#4.4x.\n",
 821					   dev->name, phy, mii_status, np->mii_if.advertising);
 822				/* there can be only one PHY on-board */
 823				break;
 824			}
 825		}
 826		np->phy_cnt = phy_idx;
 827		if (np->phy_cnt > 0)
 828			np->mii_if.phy_id = np->phys[0];
 829		else
 830			memset(&np->mii_if, 0, sizeof(np->mii_if));
 831	}
 832
 833	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 834	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 835	return 0;
 836
 837err_out_cleardev:
 838	iounmap(base);
 839err_out_free_res:
 840	pci_release_regions (pdev);
 841err_out_free_netdev:
 842	free_netdev(dev);
 843	return -ENODEV;
 844}
 845
 846
 847/* Read the MII Management Data I/O (MDIO) interfaces. */
 848static int mdio_read(struct net_device *dev, int phy_id, int location)
 849{
 850	struct netdev_private *np = netdev_priv(dev);
 851	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 852	int result, boguscnt=1000;
 853	/* ??? Should we add a busy-wait here? */
 854	do {
 855		result = readl(mdio_addr);
 856	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 857	if (boguscnt == 0)
 858		return 0;
 859	if ((result & 0xffff) == 0xffff)
 860		return 0;
 861	return result & 0xffff;
 862}
 863
 864
 865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 866{
 867	struct netdev_private *np = netdev_priv(dev);
 868	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 869	writel(value, mdio_addr);
 870	/* The busy-wait will occur before a read. */
 871}
 872
 873
 874static int netdev_open(struct net_device *dev)
 875{
 876	const struct firmware *fw_rx, *fw_tx;
 877	const __be32 *fw_rx_data, *fw_tx_data;
 878	struct netdev_private *np = netdev_priv(dev);
 879	void __iomem *ioaddr = np->base;
 880	const int irq = np->pci_dev->irq;
 881	int i, retval;
 882	size_t tx_size, rx_size;
 883	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 884
 885	/* Do we ever need to reset the chip??? */
 886
 887	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 888	if (retval)
 889		return retval;
 890
 891	/* Disable the Rx and Tx, and reset the chip. */
 892	writel(0, ioaddr + GenCtrl);
 893	writel(1, ioaddr + PCIDeviceConfig);
 894	if (debug > 1)
 895		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 896		       dev->name, irq);
 897
 898	/* Allocate the various queues. */
 899	if (!np->queue_mem) {
 900		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 901		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 902		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 903		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 904		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 905		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
 
 
 906		if (np->queue_mem == NULL) {
 907			free_irq(irq, dev);
 908			return -ENOMEM;
 909		}
 910
 911		np->tx_done_q     = np->queue_mem;
 912		np->tx_done_q_dma = np->queue_mem_dma;
 913		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 914		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 915		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 916		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 917		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 918		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 919	}
 920
 921	/* Start with no carrier, it gets adjusted later */
 922	netif_carrier_off(dev);
 923	init_ring(dev);
 924	/* Set the size of the Rx buffers. */
 925	writel((np->rx_buf_sz << RxBufferLenShift) |
 926	       (0 << RxMinDescrThreshShift) |
 927	       RxPrefetchMode | RxVariableQ |
 928	       RX_Q_ENTRIES |
 929	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 930	       RxDescSpace4,
 931	       ioaddr + RxDescQCtrl);
 932
 933	/* Set up the Rx DMA controller. */
 934	writel(RxChecksumIgnore |
 935	       (0 << RxEarlyIntThreshShift) |
 936	       (6 << RxHighPrioThreshShift) |
 937	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 938	       ioaddr + RxDMACtrl);
 939
 940	/* Set Tx descriptor */
 941	writel((2 << TxHiPriFIFOThreshShift) |
 942	       (0 << TxPadLenShift) |
 943	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 944	       TX_DESC_Q_ADDR_SIZE |
 945	       TX_DESC_SPACING | TX_DESC_TYPE,
 946	       ioaddr + TxDescCtrl);
 947
 948	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 949	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 950	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 951	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 952	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 953
 954	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 955	writel(np->rx_done_q_dma |
 956	       RxComplType |
 957	       (0 << RxComplThreshShift),
 958	       ioaddr + RxCompletionAddr);
 959
 960	if (debug > 1)
 961		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 962
 963	/* Fill both the Tx SA register and the Rx perfect filter. */
 964	for (i = 0; i < 6; i++)
 965		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 966	/* The first entry is special because it bypasses the VLAN filter.
 967	   Don't use it. */
 968	writew(0, ioaddr + PerfFilterTable);
 969	writew(0, ioaddr + PerfFilterTable + 4);
 970	writew(0, ioaddr + PerfFilterTable + 8);
 971	for (i = 1; i < 16; i++) {
 972		__be16 *eaddrs = (__be16 *)dev->dev_addr;
 973		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 974		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 975		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 976		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 977	}
 978
 979	/* Initialize other registers. */
 980	/* Configure the PCI bus bursts and FIFO thresholds. */
 981	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 982	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 983	udelay(1000);
 984	writel(np->tx_mode, ioaddr + TxMode);
 985	np->tx_threshold = 4;
 986	writel(np->tx_threshold, ioaddr + TxThreshold);
 987
 988	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 989
 990	napi_enable(&np->napi);
 991
 992	netif_start_queue(dev);
 993
 994	if (debug > 1)
 995		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 996	set_rx_mode(dev);
 997
 998	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 999	check_duplex(dev);
1000
1001	/* Enable GPIO interrupts on link change */
1002	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004	/* Set the interrupt mask */
1005	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008	       ioaddr + IntrEnable);
1009	/* Enable PCI interrupts. */
1010	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011	       ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014	/* Set VLAN type to 802.1q */
1015	writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif /* VLAN_SUPPORT */
1017
1018	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019	if (retval) {
1020		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021		       FIRMWARE_RX);
1022		goto out_init;
1023	}
1024	if (fw_rx->size % 4) {
1025		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026		       fw_rx->size, FIRMWARE_RX);
1027		retval = -EINVAL;
1028		goto out_rx;
1029	}
1030	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031	if (retval) {
1032		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033		       FIRMWARE_TX);
1034		goto out_rx;
1035	}
1036	if (fw_tx->size % 4) {
1037		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038		       fw_tx->size, FIRMWARE_TX);
1039		retval = -EINVAL;
1040		goto out_tx;
1041	}
1042	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044	rx_size = fw_rx->size / 4;
1045	tx_size = fw_tx->size / 4;
1046
1047	/* Load Rx/Tx firmware into the frame processors */
1048	for (i = 0; i < rx_size; i++)
1049		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050	for (i = 0; i < tx_size; i++)
1051		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052	if (enable_hw_cksum)
1053		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055	else
1056		/* Enable the Rx and Tx units only. */
1057		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059	if (debug > 1)
1060		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061		       dev->name);
1062
1063out_tx:
1064	release_firmware(fw_tx);
1065out_rx:
1066	release_firmware(fw_rx);
1067out_init:
1068	if (retval)
1069		netdev_close(dev);
1070	return retval;
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076	struct netdev_private *np = netdev_priv(dev);
1077	u16 reg0;
1078	int silly_count = 1000;
1079
1080	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082	udelay(500);
1083	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084		/* do nothing */;
1085	if (!silly_count) {
1086		printk("%s: MII reset failed!\n", dev->name);
1087		return;
1088	}
1089
1090	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092	if (!np->mii_if.force_media) {
1093		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094	} else {
1095		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096		if (np->speed100)
1097			reg0 |= BMCR_SPEED100;
1098		if (np->mii_if.full_duplex)
1099			reg0 |= BMCR_FULLDPLX;
1100		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101		       dev->name,
1102		       np->speed100 ? "100" : "10",
1103		       np->mii_if.full_duplex ? "full" : "half");
1104	}
1105	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111	struct netdev_private *np = netdev_priv(dev);
1112	void __iomem *ioaddr = np->base;
1113	int old_debug;
1114
1115	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118	/* Perhaps we should reinitialize the hardware here. */
1119
1120	/*
1121	 * Stop and restart the interface.
1122	 * Cheat and increase the debug level temporarily.
1123	 */
1124	old_debug = debug;
1125	debug = 2;
1126	netdev_close(dev);
1127	netdev_open(dev);
1128	debug = old_debug;
1129
1130	/* Trigger an immediate transmit demand. */
1131
1132	dev->trans_start = jiffies; /* prevent tx timeout */
1133	dev->stats.tx_errors++;
1134	netif_wake_queue(dev);
1135}
1136
1137
1138/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139static void init_ring(struct net_device *dev)
1140{
1141	struct netdev_private *np = netdev_priv(dev);
1142	int i;
1143
1144	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1150	for (i = 0; i < RX_RING_SIZE; i++) {
1151		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152		np->rx_info[i].skb = skb;
1153		if (skb == NULL)
1154			break;
1155		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
 
 
 
 
 
 
1156		/* Grrr, we cannot offset to correctly align the IP header. */
1157		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158	}
1159	writew(i - 1, np->base + RxDescQIdx);
1160	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162	/* Clear the remainder of the Rx buffer ring. */
1163	for (  ; i < RX_RING_SIZE; i++) {
1164		np->rx_ring[i].rxaddr = 0;
1165		np->rx_info[i].skb = NULL;
1166		np->rx_info[i].mapping = 0;
1167	}
1168	/* Mark the last entry as wrapping the ring. */
1169	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171	/* Clear the completion rings. */
1172	for (i = 0; i < DONE_Q_SIZE; i++) {
1173		np->rx_done_q[i].status = 0;
1174		np->tx_done_q[i].status = 0;
1175	}
1176
1177	for (i = 0; i < TX_RING_SIZE; i++)
1178		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179}
1180
1181
1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183{
1184	struct netdev_private *np = netdev_priv(dev);
1185	unsigned int entry;
 
1186	u32 status;
1187	int i;
1188
1189	/*
1190	 * be cautious here, wrapping the queue has weird semantics
1191	 * and we may not have enough slots even when it seems we do.
1192	 */
1193	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194		netif_stop_queue(dev);
1195		return NETDEV_TX_BUSY;
1196	}
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201			return NETDEV_TX_OK;
1202	}
1203#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204
 
1205	entry = np->cur_tx % TX_RING_SIZE;
1206	for (i = 0; i < skb_num_frags(skb); i++) {
1207		int wrap_ring = 0;
1208		status = TxDescID;
1209
1210		if (i == 0) {
1211			np->tx_info[entry].skb = skb;
1212			status |= TxCRCEn;
1213			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214				status |= TxRingWrap;
1215				wrap_ring = 1;
1216			}
1217			if (np->reap_tx) {
1218				status |= TxDescIntr;
1219				np->reap_tx = 0;
1220			}
1221			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222				status |= TxCalTCP;
1223				dev->stats.tx_compressed++;
1224			}
1225			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227			np->tx_info[entry].mapping =
1228				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
 
 
1229		} else {
1230			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231			status |= skb_frag_size(this_frag);
1232			np->tx_info[entry].mapping =
1233				pci_map_single(np->pci_dev,
1234					       skb_frag_address(this_frag),
1235					       skb_frag_size(this_frag),
1236					       PCI_DMA_TODEVICE);
 
 
 
 
1237		}
1238
1239		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240		np->tx_ring[entry].status = cpu_to_le32(status);
1241		if (debug > 3)
1242			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243			       dev->name, np->cur_tx, np->dirty_tx,
1244			       entry, status);
1245		if (wrap_ring) {
1246			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247			np->cur_tx += np->tx_info[entry].used_slots;
1248			entry = 0;
1249		} else {
1250			np->tx_info[entry].used_slots = 1;
1251			np->cur_tx += np->tx_info[entry].used_slots;
1252			entry++;
1253		}
1254		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1255		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256			np->reap_tx = 1;
1257	}
1258
1259	/* Non-x86: explicitly flush descriptor cache lines here. */
1260	/* Ensure all descriptors are written back before the transmit is
1261	   initiated. - Jes */
1262	wmb();
1263
1264	/* Update the producer index. */
1265	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267	/* 4 is arbitrary, but should be ok */
1268	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269		netif_stop_queue(dev);
1270
1271	return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272}
1273
1274
1275/* The interrupt handler does all of the Rx thread work and cleans up
1276   after the Tx thread. */
1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1278{
1279	struct net_device *dev = dev_instance;
1280	struct netdev_private *np = netdev_priv(dev);
1281	void __iomem *ioaddr = np->base;
1282	int boguscnt = max_interrupt_work;
1283	int consumer;
1284	int tx_status;
1285	int handled = 0;
1286
1287	do {
1288		u32 intr_status = readl(ioaddr + IntrClear);
1289
1290		if (debug > 4)
1291			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292			       dev->name, intr_status);
1293
1294		if (intr_status == 0 || intr_status == (u32) -1)
1295			break;
1296
1297		handled = 1;
1298
1299		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300			u32 enable;
1301
1302			if (likely(napi_schedule_prep(&np->napi))) {
1303				__napi_schedule(&np->napi);
1304				enable = readl(ioaddr + IntrEnable);
1305				enable &= ~(IntrRxDone | IntrRxEmpty);
1306				writel(enable, ioaddr + IntrEnable);
1307				/* flush PCI posting buffers */
1308				readl(ioaddr + IntrEnable);
1309			} else {
1310				/* Paranoia check */
1311				enable = readl(ioaddr + IntrEnable);
1312				if (enable & (IntrRxDone | IntrRxEmpty)) {
1313					printk(KERN_INFO
1314					       "%s: interrupt while in poll!\n",
1315					       dev->name);
1316					enable &= ~(IntrRxDone | IntrRxEmpty);
1317					writel(enable, ioaddr + IntrEnable);
1318				}
1319			}
1320		}
1321
1322		/* Scavenge the skbuff list based on the Tx-done queue.
1323		   There are redundant checks here that may be cleaned up
1324		   after the driver has proven to be reliable. */
1325		consumer = readl(ioaddr + TxConsumerIdx);
1326		if (debug > 3)
1327			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328			       dev->name, consumer);
1329
1330		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331			if (debug > 3)
1332				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1334			if ((tx_status & 0xe0000000) == 0xa0000000) {
1335				dev->stats.tx_packets++;
1336			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1337				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338				struct sk_buff *skb = np->tx_info[entry].skb;
1339				np->tx_info[entry].skb = NULL;
1340				pci_unmap_single(np->pci_dev,
1341						 np->tx_info[entry].mapping,
1342						 skb_first_frag_len(skb),
1343						 PCI_DMA_TODEVICE);
1344				np->tx_info[entry].mapping = 0;
1345				np->dirty_tx += np->tx_info[entry].used_slots;
1346				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347				{
1348					int i;
1349					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350						pci_unmap_single(np->pci_dev,
1351								 np->tx_info[entry].mapping,
1352								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353								 PCI_DMA_TODEVICE);
1354						np->dirty_tx++;
1355						entry++;
1356					}
1357				}
1358
1359				dev_kfree_skb_irq(skb);
1360			}
1361			np->tx_done_q[np->tx_done].status = 0;
1362			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363		}
1364		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366		if (netif_queue_stopped(dev) &&
1367		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368			/* The ring is no longer full, wake the queue. */
1369			netif_wake_queue(dev);
1370		}
1371
1372		/* Stats overflow */
1373		if (intr_status & IntrStatsMax)
1374			get_stats(dev);
1375
1376		/* Media change interrupt. */
1377		if (intr_status & IntrLinkChange)
1378			netdev_media_change(dev);
1379
1380		/* Abnormal error summary/uncommon events handlers. */
1381		if (intr_status & IntrAbnormalSummary)
1382			netdev_error(dev, intr_status);
1383
1384		if (--boguscnt < 0) {
1385			if (debug > 1)
1386				printk(KERN_WARNING "%s: Too much work at interrupt, "
1387				       "status=%#8.8x.\n",
1388				       dev->name, intr_status);
1389			break;
1390		}
1391	} while (1);
1392
1393	if (debug > 4)
1394		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395		       dev->name, (int) readl(ioaddr + IntrStatus));
1396	return IRQ_RETVAL(handled);
1397}
1398
1399
1400/*
1401 * This routine is logically part of the interrupt/poll handler, but separated
1402 * for clarity and better register allocation.
1403 */
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406	struct netdev_private *np = netdev_priv(dev);
1407	u32 desc_status;
1408	int retcode = 0;
1409
1410	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1411	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412		struct sk_buff *skb;
1413		u16 pkt_len;
1414		int entry;
1415		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417		if (debug > 4)
1418			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419		if (!(desc_status & RxOK)) {
1420			/* There was an error. */
1421			if (debug > 2)
1422				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423			dev->stats.rx_errors++;
1424			if (desc_status & RxFIFOErr)
1425				dev->stats.rx_fifo_errors++;
1426			goto next_rx;
1427		}
1428
1429		if (*quota <= 0) {	/* out of rx quota */
1430			retcode = 1;
1431			goto out;
1432		}
1433		(*quota)--;
1434
1435		pkt_len = desc_status;	/* Implicitly Truncate */
1436		entry = (desc_status >> 16) & 0x7ff;
1437
1438		if (debug > 4)
1439			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440		/* Check if the packet is long enough to accept without copying
1441		   to a minimally-sized skbuff. */
1442		if (pkt_len < rx_copybreak &&
1443		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1445			pci_dma_sync_single_for_cpu(np->pci_dev,
1446						    np->rx_info[entry].mapping,
1447						    pkt_len, PCI_DMA_FROMDEVICE);
1448			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449			pci_dma_sync_single_for_device(np->pci_dev,
1450						       np->rx_info[entry].mapping,
1451						       pkt_len, PCI_DMA_FROMDEVICE);
1452			skb_put(skb, pkt_len);
1453		} else {
1454			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
1455			skb = np->rx_info[entry].skb;
1456			skb_put(skb, pkt_len);
1457			np->rx_info[entry].skb = NULL;
1458			np->rx_info[entry].mapping = 0;
1459		}
1460#ifndef final_version			/* Remove after testing. */
1461		/* You will want this info for the initial debug. */
1462		if (debug > 5) {
1463			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1464			       skb->data, skb->data + 6,
1465			       skb->data[12], skb->data[13]);
1466		}
1467#endif
1468
1469		skb->protocol = eth_type_trans(skb, dev);
1470#ifdef VLAN_SUPPORT
1471		if (debug > 4)
1472			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1474		if (le16_to_cpu(desc->status2) & 0x0100) {
1475			skb->ip_summed = CHECKSUM_UNNECESSARY;
1476			dev->stats.rx_compressed++;
1477		}
1478		/*
1479		 * This feature doesn't seem to be working, at least
1480		 * with the two firmware versions I have. If the GFP sees
1481		 * an IP fragment, it either ignores it completely, or reports
1482		 * "bad checksum" on it.
1483		 *
1484		 * Maybe I missed something -- corrections are welcome.
1485		 * Until then, the printk stays. :-) -Ion
1486		 */
1487		else if (le16_to_cpu(desc->status2) & 0x0040) {
1488			skb->ip_summed = CHECKSUM_COMPLETE;
1489			skb->csum = le16_to_cpu(desc->csum);
1490			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491		}
1492#ifdef VLAN_SUPPORT
1493		if (le16_to_cpu(desc->status2) & 0x0200) {
1494			u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496			if (debug > 4) {
1497				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1498				       vlid);
1499			}
1500			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501		}
1502#endif /* VLAN_SUPPORT */
1503		netif_receive_skb(skb);
1504		dev->stats.rx_packets++;
1505
1506	next_rx:
1507		np->cur_rx++;
1508		desc->status = 0;
1509		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510	}
1511
1512	if (*quota == 0) {	/* out of rx quota */
1513		retcode = 1;
1514		goto out;
1515	}
1516	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519	refill_rx_ring(dev);
1520	if (debug > 5)
1521		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522		       retcode, np->rx_done, desc_status);
1523	return retcode;
1524}
1525
1526static int netdev_poll(struct napi_struct *napi, int budget)
1527{
1528	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529	struct net_device *dev = np->dev;
1530	u32 intr_status;
1531	void __iomem *ioaddr = np->base;
1532	int quota = budget;
1533
1534	do {
1535		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
1537		if (__netdev_rx(dev, &quota))
1538			goto out;
1539
1540		intr_status = readl(ioaddr + IntrStatus);
1541	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
1543	napi_complete(napi);
1544	intr_status = readl(ioaddr + IntrEnable);
1545	intr_status |= IntrRxDone | IntrRxEmpty;
1546	writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549	if (debug > 5)
1550		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1551		       budget - quota);
1552
1553	/* Restart Rx engine if stopped. */
1554	return budget - quota;
1555}
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559	struct netdev_private *np = netdev_priv(dev);
1560	struct sk_buff *skb;
1561	int entry = -1;
1562
1563	/* Refill the Rx ring buffers. */
1564	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565		entry = np->dirty_rx % RX_RING_SIZE;
1566		if (np->rx_info[entry].skb == NULL) {
1567			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568			np->rx_info[entry].skb = skb;
1569			if (skb == NULL)
1570				break;	/* Better luck next round. */
1571			np->rx_info[entry].mapping =
1572				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
 
 
 
 
1573			np->rx_ring[entry].rxaddr =
1574				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575		}
1576		if (entry == RX_RING_SIZE - 1)
1577			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578	}
1579	if (entry >= 0)
1580		writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586	struct netdev_private *np = netdev_priv(dev);
1587	void __iomem *ioaddr = np->base;
1588	u16 reg0, reg1, reg4, reg5;
1589	u32 new_tx_mode;
1590	u32 new_intr_timer_ctrl;
1591
1592	/* reset status first */
1593	mdio_read(dev, np->phys[0], MII_BMCR);
1594	mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599	if (reg1 & BMSR_LSTATUS) {
1600		/* link is up */
1601		if (reg0 & BMCR_ANENABLE) {
1602			/* autonegotiation is enabled */
1603			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606				np->speed100 = 1;
1607				np->mii_if.full_duplex = 1;
1608			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609				np->speed100 = 1;
1610				np->mii_if.full_duplex = 0;
1611			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612				np->speed100 = 0;
1613				np->mii_if.full_duplex = 1;
1614			} else {
1615				np->speed100 = 0;
1616				np->mii_if.full_duplex = 0;
1617			}
1618		} else {
1619			/* autonegotiation is disabled */
1620			if (reg0 & BMCR_SPEED100)
1621				np->speed100 = 1;
1622			else
1623				np->speed100 = 0;
1624			if (reg0 & BMCR_FULLDPLX)
1625				np->mii_if.full_duplex = 1;
1626			else
1627				np->mii_if.full_duplex = 0;
1628		}
1629		netif_carrier_on(dev);
1630		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631		       dev->name,
1632		       np->speed100 ? "100" : "10",
1633		       np->mii_if.full_duplex ? "full" : "half");
1634
1635		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1636		if (np->mii_if.full_duplex)
1637			new_tx_mode |= FullDuplex;
1638		if (np->tx_mode != new_tx_mode) {
1639			np->tx_mode = new_tx_mode;
1640			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641			udelay(1000);
1642			writel(np->tx_mode, ioaddr + TxMode);
1643		}
1644
1645		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646		if (np->speed100)
1647			new_intr_timer_ctrl |= Timer10X;
1648		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649			np->intr_timer_ctrl = new_intr_timer_ctrl;
1650			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651		}
1652	} else {
1653		netif_carrier_off(dev);
1654		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655	}
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661	struct netdev_private *np = netdev_priv(dev);
1662
1663	/* Came close to underrunning the Tx FIFO, increase threshold. */
1664	if (intr_status & IntrTxDataLow) {
1665		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666			writel(++np->tx_threshold, np->base + TxThreshold);
1667			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668			       dev->name, np->tx_threshold * 16);
1669		} else
1670			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671	}
1672	if (intr_status & IntrRxGFPDead) {
1673		dev->stats.rx_fifo_errors++;
1674		dev->stats.rx_errors++;
1675	}
1676	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677		dev->stats.tx_fifo_errors++;
1678		dev->stats.tx_errors++;
1679	}
1680	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682		       dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688	struct netdev_private *np = netdev_priv(dev);
1689	void __iomem *ioaddr = np->base;
1690
1691	/* This adapter architecture needs no SMP locks. */
1692	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695	dev->stats.tx_aborted_errors =
1696		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698	dev->stats.collisions =
1699		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701	/* The chip only need report frame silently dropped. */
1702	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703	writew(0, ioaddr + RxDMAStatus);
1704	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708
1709	return &dev->stats;
1710}
1711
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715	u32 ret = VlanMode;
1716	u16 vid;
1717	void __iomem *filter_addr = np->base + HashTable + 8;
1718	int vlan_count = 0;
1719
1720	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721		if (vlan_count == 32)
1722			break;
1723		writew(vid, filter_addr);
1724		filter_addr += 16;
1725		vlan_count++;
1726	}
1727	if (vlan_count == 32) {
1728		ret |= PerfectFilterVlan;
1729		while (vlan_count < 32) {
1730			writew(0, filter_addr);
1731			filter_addr += 16;
1732			vlan_count++;
1733		}
1734	}
1735	return ret;
1736}
1737#endif /* VLAN_SUPPORT */
1738
1739static void set_rx_mode(struct net_device *dev)
1740{
1741	struct netdev_private *np = netdev_priv(dev);
1742	void __iomem *ioaddr = np->base;
1743	u32 rx_mode = MinVLANPrio;
1744	struct netdev_hw_addr *ha;
1745	int i;
1746
1747#ifdef VLAN_SUPPORT
1748	rx_mode |= set_vlan_mode(np);
1749#endif /* VLAN_SUPPORT */
1750
1751	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1752		rx_mode |= AcceptAll;
1753	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754		   (dev->flags & IFF_ALLMULTI)) {
1755		/* Too many to match, or accept all multicasts. */
1756		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757	} else if (netdev_mc_count(dev) <= 14) {
1758		/* Use the 16 element perfect filter, skip first two entries. */
1759		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760		__be16 *eaddrs;
1761		netdev_for_each_mc_addr(ha, dev) {
1762			eaddrs = (__be16 *) ha->addr;
1763			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766		}
1767		eaddrs = (__be16 *)dev->dev_addr;
1768		i = netdev_mc_count(dev) + 2;
1769		while (i++ < 16) {
1770			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773		}
1774		rx_mode |= AcceptBroadcast|PerfectFilter;
1775	} else {
1776		/* Must use a multicast hash table. */
1777		void __iomem *filter_addr;
1778		__be16 *eaddrs;
1779		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1780
1781		memset(mc_filter, 0, sizeof(mc_filter));
1782		netdev_for_each_mc_addr(ha, dev) {
1783			/* The chip uses the upper 9 CRC bits
1784			   as index into the hash table */
1785			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787
1788			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789		}
1790		/* Clear the perfect filter list, skip first two entries. */
1791		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792		eaddrs = (__be16 *)dev->dev_addr;
1793		for (i = 2; i < 16; i++) {
1794			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797		}
1798		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799			writew(mc_filter[i], filter_addr);
1800		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801	}
1802	writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807	if (!netif_running(dev))
1808		return -EINVAL;
1809	return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814	struct netdev_private *np = netdev_priv(dev);
1815	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
1821{
1822	struct netdev_private *np = netdev_priv(dev);
1823	spin_lock_irq(&np->lock);
1824	mii_ethtool_gset(&np->mii_if, ecmd);
1825	spin_unlock_irq(&np->lock);
1826	return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
1830{
1831	struct netdev_private *np = netdev_priv(dev);
1832	int res;
1833	spin_lock_irq(&np->lock);
1834	res = mii_ethtool_sset(&np->mii_if, ecmd);
1835	spin_unlock_irq(&np->lock);
1836	check_duplex(dev);
1837	return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842	struct netdev_private *np = netdev_priv(dev);
1843	return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848	struct netdev_private *np = netdev_priv(dev);
1849	return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854	return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859	debug = val;
1860}
1861
1862static const struct ethtool_ops ethtool_ops = {
1863	.begin = check_if_running,
1864	.get_drvinfo = get_drvinfo,
1865	.get_settings = get_settings,
1866	.set_settings = set_settings,
1867	.nway_reset = nway_reset,
1868	.get_link = get_link,
1869	.get_msglevel = get_msglevel,
1870	.set_msglevel = set_msglevel,
 
 
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875	struct netdev_private *np = netdev_priv(dev);
1876	struct mii_ioctl_data *data = if_mii(rq);
1877	int rc;
1878
1879	if (!netif_running(dev))
1880		return -EINVAL;
1881
1882	spin_lock_irq(&np->lock);
1883	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884	spin_unlock_irq(&np->lock);
1885
1886	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887		check_duplex(dev);
1888
1889	return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894	struct netdev_private *np = netdev_priv(dev);
1895	void __iomem *ioaddr = np->base;
1896	int i;
1897
1898	netif_stop_queue(dev);
1899
1900	napi_disable(&np->napi);
1901
1902	if (debug > 1) {
1903		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904			   dev->name, (int) readl(ioaddr + IntrStatus));
1905		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906		       dev->name, np->cur_tx, np->dirty_tx,
1907		       np->cur_rx, np->dirty_rx);
1908	}
1909
1910	/* Disable interrupts by clearing the interrupt mask. */
1911	writel(0, ioaddr + IntrEnable);
1912
1913	/* Stop the chip's Tx and Rx processes. */
1914	writel(0, ioaddr + GenCtrl);
1915	readl(ioaddr + GenCtrl);
1916
1917	if (debug > 5) {
1918		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1919		       (long long) np->tx_ring_dma);
1920		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922			       i, le32_to_cpu(np->tx_ring[i].status),
1923			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1924			       le32_to_cpu(np->tx_done_q[i].status));
1925		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1926		       (long long) np->rx_ring_dma, np->rx_done_q);
1927		if (np->rx_done_q)
1928			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931		}
1932	}
1933
1934	free_irq(np->pci_dev->irq, dev);
1935
1936	/* Free all the skbuffs in the Rx queue. */
1937	for (i = 0; i < RX_RING_SIZE; i++) {
1938		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939		if (np->rx_info[i].skb != NULL) {
1940			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
1941			dev_kfree_skb(np->rx_info[i].skb);
1942		}
1943		np->rx_info[i].skb = NULL;
1944		np->rx_info[i].mapping = 0;
1945	}
1946	for (i = 0; i < TX_RING_SIZE; i++) {
1947		struct sk_buff *skb = np->tx_info[i].skb;
1948		if (skb == NULL)
1949			continue;
1950		pci_unmap_single(np->pci_dev,
1951				 np->tx_info[i].mapping,
1952				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953		np->tx_info[i].mapping = 0;
1954		dev_kfree_skb(skb);
1955		np->tx_info[i].skb = NULL;
1956	}
1957
1958	return 0;
1959}
1960
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964	struct net_device *dev = pci_get_drvdata(pdev);
1965
1966	if (netif_running(dev)) {
1967		netif_device_detach(dev);
1968		netdev_close(dev);
1969	}
1970
1971	pci_save_state(pdev);
1972	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974	return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979	struct net_device *dev = pci_get_drvdata(pdev);
1980
1981	pci_set_power_state(pdev, PCI_D0);
1982	pci_restore_state(pdev);
1983
1984	if (netif_running(dev)) {
1985		netdev_open(dev);
1986		netif_device_attach(dev);
1987	}
1988
1989	return 0;
1990}
1991#endif /* CONFIG_PM */
1992
1993
1994static void starfire_remove_one(struct pci_dev *pdev)
1995{
1996	struct net_device *dev = pci_get_drvdata(pdev);
1997	struct netdev_private *np = netdev_priv(dev);
1998
1999	BUG_ON(!dev);
2000
2001	unregister_netdev(dev);
2002
2003	if (np->queue_mem)
2004		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
 
2005
2006
2007	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2008	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2009	pci_disable_device(pdev);
2010
2011	iounmap(np->base);
2012	pci_release_regions(pdev);
2013
2014	free_netdev(dev);			/* Will also free np!! */
2015}
2016
 
2017
2018static struct pci_driver starfire_driver = {
2019	.name		= DRV_NAME,
2020	.probe		= starfire_init_one,
2021	.remove		= starfire_remove_one,
2022#ifdef CONFIG_PM
2023	.suspend	= starfire_suspend,
2024	.resume		= starfire_resume,
2025#endif /* CONFIG_PM */
2026	.id_table	= starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034	printk(version);
2035
2036	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041	return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047	pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 *  c-basic-offset: 8
2058 *  tab-width: 8
2059 * End:
2060 */