Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
 
 
 
 
   5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2006 Jeff Garzik
   7 *
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/gfp.h>
  17#include <linux/pci.h>
  18#include <linux/module.h>
  19#include <linux/libata.h>
  20#include <linux/highmem.h>
  21#include <trace/events/libata.h>
  22#include "libata.h"
  23
  24static struct workqueue_struct *ata_sff_wq;
  25
  26const struct ata_port_operations ata_sff_port_ops = {
  27	.inherits		= &ata_base_port_ops,
  28
 
  29	.qc_issue		= ata_sff_qc_issue,
  30	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  31
  32	.freeze			= ata_sff_freeze,
  33	.thaw			= ata_sff_thaw,
  34	.prereset		= ata_sff_prereset,
  35	.softreset		= ata_sff_softreset,
  36	.hardreset		= sata_sff_hardreset,
  37	.postreset		= ata_sff_postreset,
  38	.error_handler		= ata_sff_error_handler,
  39
  40	.sff_dev_select		= ata_sff_dev_select,
  41	.sff_check_status	= ata_sff_check_status,
  42	.sff_tf_load		= ata_sff_tf_load,
  43	.sff_tf_read		= ata_sff_tf_read,
  44	.sff_exec_command	= ata_sff_exec_command,
  45	.sff_data_xfer		= ata_sff_data_xfer,
  46	.sff_drain_fifo		= ata_sff_drain_fifo,
  47
  48	.lost_interrupt		= ata_sff_lost_interrupt,
  49};
  50EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  51
  52/**
  53 *	ata_sff_check_status - Read device status reg & clear interrupt
  54 *	@ap: port where the device is
  55 *
  56 *	Reads ATA taskfile status register for currently-selected device
  57 *	and return its value. This also clears pending interrupts
  58 *      from this device
  59 *
  60 *	LOCKING:
  61 *	Inherited from caller.
  62 */
  63u8 ata_sff_check_status(struct ata_port *ap)
  64{
  65	return ioread8(ap->ioaddr.status_addr);
  66}
  67EXPORT_SYMBOL_GPL(ata_sff_check_status);
  68
  69/**
  70 *	ata_sff_altstatus - Read device alternate status reg
  71 *	@ap: port where the device is
  72 *	@status: pointer to a status value
  73 *
  74 *	Reads ATA alternate status register for currently-selected device
  75 *	and return its value.
  76 *
  77 *	RETURN:
  78 *	true if the register exists, false if not.
  79 *
  80 *	LOCKING:
  81 *	Inherited from caller.
  82 */
  83static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
  84{
  85	u8 tmp;
 
  86
  87	if (ap->ops->sff_check_altstatus) {
  88		tmp = ap->ops->sff_check_altstatus(ap);
  89		goto read;
  90	}
  91	if (ap->ioaddr.altstatus_addr) {
  92		tmp = ioread8(ap->ioaddr.altstatus_addr);
  93		goto read;
  94	}
  95	return false;
  96
  97read:
  98	if (status)
  99		*status = tmp;
 100	return true;
 101}
 102
 103/**
 104 *	ata_sff_irq_status - Check if the device is busy
 105 *	@ap: port where the device is
 106 *
 107 *	Determine if the port is currently busy. Uses altstatus
 108 *	if available in order to avoid clearing shared IRQ status
 109 *	when finding an IRQ source. Non ctl capable devices don't
 110 *	share interrupt lines fortunately for us.
 111 *
 112 *	LOCKING:
 113 *	Inherited from caller.
 114 */
 115static u8 ata_sff_irq_status(struct ata_port *ap)
 116{
 117	u8 status;
 118
 119	/* Not us: We are busy */
 120	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
 121		return status;
 
 
 
 122	/* Clear INTRQ latch */
 123	status = ap->ops->sff_check_status(ap);
 124	return status;
 125}
 126
 127/**
 128 *	ata_sff_sync - Flush writes
 129 *	@ap: Port to wait for.
 130 *
 131 *	CAUTION:
 132 *	If we have an mmio device with no ctl and no altstatus
 133 *	method this will fail. No such devices are known to exist.
 134 *
 135 *	LOCKING:
 136 *	Inherited from caller.
 137 */
 138
 139static void ata_sff_sync(struct ata_port *ap)
 140{
 141	ata_sff_altstatus(ap, NULL);
 
 
 
 142}
 143
 144/**
 145 *	ata_sff_pause		-	Flush writes and wait 400nS
 146 *	@ap: Port to pause for.
 147 *
 148 *	CAUTION:
 149 *	If we have an mmio device with no ctl and no altstatus
 150 *	method this will fail. No such devices are known to exist.
 151 *
 152 *	LOCKING:
 153 *	Inherited from caller.
 154 */
 155
 156void ata_sff_pause(struct ata_port *ap)
 157{
 158	ata_sff_sync(ap);
 159	ndelay(400);
 160}
 161EXPORT_SYMBOL_GPL(ata_sff_pause);
 162
 163/**
 164 *	ata_sff_dma_pause	-	Pause before commencing DMA
 165 *	@ap: Port to pause for.
 166 *
 167 *	Perform I/O fencing and ensure sufficient cycle delays occur
 168 *	for the HDMA1:0 transition
 169 */
 170
 171void ata_sff_dma_pause(struct ata_port *ap)
 172{
 173	/*
 174	 * An altstatus read will cause the needed delay without
 175	 * messing up the IRQ status
 176	 */
 177	if (ata_sff_altstatus(ap, NULL))
 178		return;
 
 179	/* There are no DMA controllers without ctl. BUG here to ensure
 180	   we never violate the HDMA1:0 transition timing and risk
 181	   corruption. */
 182	BUG();
 183}
 184EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186static int ata_sff_check_ready(struct ata_link *link)
 187{
 188	u8 status = link->ap->ops->sff_check_status(link->ap);
 189
 190	return ata_check_ready(status);
 191}
 192
 193/**
 194 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 195 *	@link: SFF link to wait ready status for
 196 *	@deadline: deadline jiffies for the operation
 197 *
 198 *	Sleep until ATA Status register bit BSY clears, or timeout
 199 *	occurs.
 200 *
 201 *	LOCKING:
 202 *	Kernel thread context (may sleep).
 203 *
 204 *	RETURNS:
 205 *	0 on success, -errno otherwise.
 206 */
 207int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 208{
 209	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 210}
 211EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 212
 213/**
 214 *	ata_sff_set_devctl - Write device control reg
 215 *	@ap: port where the device is
 216 *	@ctl: value to write
 217 *
 218 *	Writes ATA device control register.
 219 *
 220 *	RETURN:
 221 *	true if the register exists, false if not.
 222 *
 223 *	LOCKING:
 224 *	Inherited from caller.
 225 */
 226static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 227{
 228	if (ap->ops->sff_set_devctl) {
 229		ap->ops->sff_set_devctl(ap, ctl);
 230		return true;
 231	}
 232	if (ap->ioaddr.ctl_addr) {
 233		iowrite8(ctl, ap->ioaddr.ctl_addr);
 234		return true;
 235	}
 236
 237	return false;
 238}
 239
 240/**
 241 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 242 *	@ap: ATA channel to manipulate
 243 *	@device: ATA device (numbered from zero) to select
 244 *
 245 *	Use the method defined in the ATA specification to
 246 *	make either device 0, or device 1, active on the
 247 *	ATA channel.  Works with both PIO and MMIO.
 248 *
 249 *	May be used as the dev_select() entry in ata_port_operations.
 250 *
 251 *	LOCKING:
 252 *	caller.
 253 */
 254void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 255{
 256	u8 tmp;
 257
 258	if (device == 0)
 259		tmp = ATA_DEVICE_OBS;
 260	else
 261		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 262
 263	iowrite8(tmp, ap->ioaddr.device_addr);
 264	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 265}
 266EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 267
 268/**
 269 *	ata_dev_select - Select device 0/1 on ATA bus
 270 *	@ap: ATA channel to manipulate
 271 *	@device: ATA device (numbered from zero) to select
 272 *	@wait: non-zero to wait for Status register BSY bit to clear
 273 *	@can_sleep: non-zero if context allows sleeping
 274 *
 275 *	Use the method defined in the ATA specification to
 276 *	make either device 0, or device 1, active on the
 277 *	ATA channel.
 278 *
 279 *	This is a high-level version of ata_sff_dev_select(), which
 280 *	additionally provides the services of inserting the proper
 281 *	pauses and status polling, where needed.
 282 *
 283 *	LOCKING:
 284 *	caller.
 285 */
 286static void ata_dev_select(struct ata_port *ap, unsigned int device,
 287			   unsigned int wait, unsigned int can_sleep)
 288{
 
 
 
 
 289	if (wait)
 290		ata_wait_idle(ap);
 291
 292	ap->ops->sff_dev_select(ap, device);
 293
 294	if (wait) {
 295		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 296			ata_msleep(ap, 150);
 297		ata_wait_idle(ap);
 298	}
 299}
 300
 301/**
 302 *	ata_sff_irq_on - Enable interrupts on a port.
 303 *	@ap: Port on which interrupts are enabled.
 304 *
 305 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 306 *	wait for idle, clear any pending interrupts.
 307 *
 308 *	Note: may NOT be used as the sff_irq_on() entry in
 309 *	ata_port_operations.
 310 *
 311 *	LOCKING:
 312 *	Inherited from caller.
 313 */
 314void ata_sff_irq_on(struct ata_port *ap)
 315{
 
 
 316	if (ap->ops->sff_irq_on) {
 317		ap->ops->sff_irq_on(ap);
 318		return;
 319	}
 320
 321	ap->ctl &= ~ATA_NIEN;
 322	ap->last_ctl = ap->ctl;
 323
 324	ata_sff_set_devctl(ap, ap->ctl);
 
 325	ata_wait_idle(ap);
 326
 327	if (ap->ops->sff_irq_clear)
 328		ap->ops->sff_irq_clear(ap);
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 331
 332/**
 333 *	ata_sff_tf_load - send taskfile registers to host controller
 334 *	@ap: Port to which output is sent
 335 *	@tf: ATA taskfile register set
 336 *
 337 *	Outputs ATA taskfile to standard ATA host controller.
 338 *
 339 *	LOCKING:
 340 *	Inherited from caller.
 341 */
 342void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 343{
 344	struct ata_ioports *ioaddr = &ap->ioaddr;
 345	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 346
 347	if (tf->ctl != ap->last_ctl) {
 348		if (ioaddr->ctl_addr)
 349			iowrite8(tf->ctl, ioaddr->ctl_addr);
 350		ap->last_ctl = tf->ctl;
 351		ata_wait_idle(ap);
 352	}
 353
 354	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 355		WARN_ON_ONCE(!ioaddr->ctl_addr);
 356		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 357		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 358		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 359		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 360		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 361	}
 362
 363	if (is_addr) {
 364		iowrite8(tf->feature, ioaddr->feature_addr);
 365		iowrite8(tf->nsect, ioaddr->nsect_addr);
 366		iowrite8(tf->lbal, ioaddr->lbal_addr);
 367		iowrite8(tf->lbam, ioaddr->lbam_addr);
 368		iowrite8(tf->lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 369	}
 370
 371	if (tf->flags & ATA_TFLAG_DEVICE)
 372		iowrite8(tf->device, ioaddr->device_addr);
 
 
 373
 374	ata_wait_idle(ap);
 375}
 376EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 377
 378/**
 379 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 380 *	@ap: Port from which input is read
 381 *	@tf: ATA taskfile register set for storing input
 382 *
 383 *	Reads ATA taskfile registers for currently-selected device
 384 *	into @tf. Assumes the device has a fully SFF compliant task file
 385 *	layout and behaviour. If you device does not (eg has a different
 386 *	status method) then you will need to provide a replacement tf_read
 387 *
 388 *	LOCKING:
 389 *	Inherited from caller.
 390 */
 391void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 392{
 393	struct ata_ioports *ioaddr = &ap->ioaddr;
 394
 395	tf->status = ata_sff_check_status(ap);
 396	tf->error = ioread8(ioaddr->error_addr);
 397	tf->nsect = ioread8(ioaddr->nsect_addr);
 398	tf->lbal = ioread8(ioaddr->lbal_addr);
 399	tf->lbam = ioread8(ioaddr->lbam_addr);
 400	tf->lbah = ioread8(ioaddr->lbah_addr);
 401	tf->device = ioread8(ioaddr->device_addr);
 402
 403	if (tf->flags & ATA_TFLAG_LBA48) {
 404		if (likely(ioaddr->ctl_addr)) {
 405			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 406			tf->hob_feature = ioread8(ioaddr->error_addr);
 407			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 408			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 409			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 410			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 411			iowrite8(tf->ctl, ioaddr->ctl_addr);
 412			ap->last_ctl = tf->ctl;
 413		} else
 414			WARN_ON_ONCE(1);
 415	}
 416}
 417EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 418
 419/**
 420 *	ata_sff_exec_command - issue ATA command to host controller
 421 *	@ap: port to which command is being issued
 422 *	@tf: ATA taskfile register set
 423 *
 424 *	Issues ATA command, with proper synchronization with interrupt
 425 *	handler / other threads.
 426 *
 427 *	LOCKING:
 428 *	spin_lock_irqsave(host lock)
 429 */
 430void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 431{
 
 
 432	iowrite8(tf->command, ap->ioaddr.command_addr);
 433	ata_sff_pause(ap);
 434}
 435EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 436
 437/**
 438 *	ata_tf_to_host - issue ATA taskfile to host controller
 439 *	@ap: port to which command is being issued
 440 *	@tf: ATA taskfile register set
 441 *	@tag: tag of the associated command
 442 *
 443 *	Issues ATA taskfile register set to ATA host controller,
 444 *	with proper synchronization with interrupt handler and
 445 *	other threads.
 446 *
 447 *	LOCKING:
 448 *	spin_lock_irqsave(host lock)
 449 */
 450static inline void ata_tf_to_host(struct ata_port *ap,
 451				  const struct ata_taskfile *tf,
 452				  unsigned int tag)
 453{
 454	trace_ata_tf_load(ap, tf);
 455	ap->ops->sff_tf_load(ap, tf);
 456	trace_ata_exec_command(ap, tf, tag);
 457	ap->ops->sff_exec_command(ap, tf);
 458}
 459
 460/**
 461 *	ata_sff_data_xfer - Transfer data by PIO
 462 *	@qc: queued command
 463 *	@buf: data buffer
 464 *	@buflen: buffer length
 465 *	@rw: read/write
 466 *
 467 *	Transfer data from/to the device data register by PIO.
 468 *
 469 *	LOCKING:
 470 *	Inherited from caller.
 471 *
 472 *	RETURNS:
 473 *	Bytes consumed.
 474 */
 475unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 476			       unsigned int buflen, int rw)
 477{
 478	struct ata_port *ap = qc->dev->link->ap;
 479	void __iomem *data_addr = ap->ioaddr.data_addr;
 480	unsigned int words = buflen >> 1;
 481
 482	/* Transfer multiple of 2 bytes */
 483	if (rw == READ)
 484		ioread16_rep(data_addr, buf, words);
 485	else
 486		iowrite16_rep(data_addr, buf, words);
 487
 488	/* Transfer trailing byte, if any. */
 489	if (unlikely(buflen & 0x01)) {
 490		unsigned char pad[2] = { };
 491
 492		/* Point buf to the tail of buffer */
 493		buf += buflen - 1;
 494
 495		/*
 496		 * Use io*16_rep() accessors here as well to avoid pointlessly
 497		 * swapping bytes to and from on the big endian machines...
 498		 */
 499		if (rw == READ) {
 500			ioread16_rep(data_addr, pad, 1);
 501			*buf = pad[0];
 502		} else {
 503			pad[0] = *buf;
 504			iowrite16_rep(data_addr, pad, 1);
 505		}
 506		words++;
 507	}
 508
 509	return words << 1;
 510}
 511EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 512
 513/**
 514 *	ata_sff_data_xfer32 - Transfer data by PIO
 515 *	@qc: queued command
 516 *	@buf: data buffer
 517 *	@buflen: buffer length
 518 *	@rw: read/write
 519 *
 520 *	Transfer data from/to the device data register by PIO using 32bit
 521 *	I/O operations.
 522 *
 523 *	LOCKING:
 524 *	Inherited from caller.
 525 *
 526 *	RETURNS:
 527 *	Bytes consumed.
 528 */
 529
 530unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 531			       unsigned int buflen, int rw)
 532{
 533	struct ata_device *dev = qc->dev;
 534	struct ata_port *ap = dev->link->ap;
 535	void __iomem *data_addr = ap->ioaddr.data_addr;
 536	unsigned int words = buflen >> 2;
 537	int slop = buflen & 3;
 538
 539	if (!(ap->pflags & ATA_PFLAG_PIO32))
 540		return ata_sff_data_xfer(qc, buf, buflen, rw);
 541
 542	/* Transfer multiple of 4 bytes */
 543	if (rw == READ)
 544		ioread32_rep(data_addr, buf, words);
 545	else
 546		iowrite32_rep(data_addr, buf, words);
 547
 548	/* Transfer trailing bytes, if any */
 549	if (unlikely(slop)) {
 550		unsigned char pad[4] = { };
 551
 552		/* Point buf to the tail of buffer */
 553		buf += buflen - slop;
 554
 555		/*
 556		 * Use io*_rep() accessors here as well to avoid pointlessly
 557		 * swapping bytes to and from on the big endian machines...
 558		 */
 559		if (rw == READ) {
 560			if (slop < 3)
 561				ioread16_rep(data_addr, pad, 1);
 562			else
 563				ioread32_rep(data_addr, pad, 1);
 564			memcpy(buf, pad, slop);
 565		} else {
 566			memcpy(pad, buf, slop);
 567			if (slop < 3)
 568				iowrite16_rep(data_addr, pad, 1);
 569			else
 570				iowrite32_rep(data_addr, pad, 1);
 571		}
 572	}
 573	return (buflen + 1) & ~1;
 574}
 575EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 576
 577static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
 578		unsigned int offset, size_t xfer_size)
 579{
 580	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 581	unsigned char *buf;
 582
 583	buf = kmap_atomic(page);
 584	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
 585	kunmap_atomic(buf);
 586
 587	if (!do_write && !PageSlab(page))
 588		flush_dcache_page(page);
 589}
 590
 591/**
 592 *	ata_pio_sector - Transfer a sector of data.
 593 *	@qc: Command on going
 594 *
 595 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 596 *
 597 *	LOCKING:
 598 *	Inherited from caller.
 599 */
 600static void ata_pio_sector(struct ata_queued_cmd *qc)
 601{
 
 602	struct ata_port *ap = qc->ap;
 603	struct page *page;
 604	unsigned int offset, count;
 
 605
 606	if (!qc->cursg) {
 607		qc->curbytes = qc->nbytes;
 608		return;
 609	}
 610	if (qc->curbytes == qc->nbytes - qc->sect_size)
 611		ap->hsm_task_state = HSM_ST_LAST;
 612
 613	page = sg_page(qc->cursg);
 614	offset = qc->cursg->offset + qc->cursg_ofs;
 615
 616	/* get the current page and offset */
 617	page = nth_page(page, (offset >> PAGE_SHIFT));
 618	offset %= PAGE_SIZE;
 619
 620	/* don't overrun current sg */
 621	count = min(qc->cursg->length - qc->cursg_ofs, qc->sect_size);
 622
 623	trace_ata_sff_pio_transfer_data(qc, offset, count);
 624
 625	/*
 626	 * Split the transfer when it splits a page boundary.  Note that the
 627	 * split still has to be dword aligned like all ATA data transfers.
 628	 */
 629	WARN_ON_ONCE(offset % 4);
 630	if (offset + count > PAGE_SIZE) {
 631		unsigned int split_len = PAGE_SIZE - offset;
 632
 633		ata_pio_xfer(qc, page, offset, split_len);
 634		ata_pio_xfer(qc, nth_page(page, 1), 0, count - split_len);
 635	} else {
 636		ata_pio_xfer(qc, page, offset, count);
 637	}
 638
 639	qc->curbytes += count;
 640	qc->cursg_ofs += count;
 641
 642	if (qc->cursg_ofs == qc->cursg->length) {
 643		qc->cursg = sg_next(qc->cursg);
 644		if (!qc->cursg)
 645			ap->hsm_task_state = HSM_ST_LAST;
 646		qc->cursg_ofs = 0;
 647	}
 648}
 649
 650/**
 651 *	ata_pio_sectors - Transfer one or many sectors.
 652 *	@qc: Command on going
 653 *
 654 *	Transfer one or many sectors of data from/to the
 655 *	ATA device for the DRQ request.
 656 *
 657 *	LOCKING:
 658 *	Inherited from caller.
 659 */
 660static void ata_pio_sectors(struct ata_queued_cmd *qc)
 661{
 662	if (is_multi_taskfile(&qc->tf)) {
 663		/* READ/WRITE MULTIPLE */
 664		unsigned int nsect;
 665
 666		WARN_ON_ONCE(qc->dev->multi_count == 0);
 667
 668		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 669			    qc->dev->multi_count);
 670		while (nsect--)
 671			ata_pio_sector(qc);
 672	} else
 673		ata_pio_sector(qc);
 674
 675	ata_sff_sync(qc->ap); /* flush */
 676}
 677
 678/**
 679 *	atapi_send_cdb - Write CDB bytes to hardware
 680 *	@ap: Port to which ATAPI device is attached.
 681 *	@qc: Taskfile currently active
 682 *
 683 *	When device has indicated its readiness to accept
 684 *	a CDB, this function is called.  Send the CDB.
 685 *
 686 *	LOCKING:
 687 *	caller.
 688 */
 689static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 690{
 691	/* send SCSI cdb */
 692	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
 693	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 694
 695	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 696	ata_sff_sync(ap);
 697	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 698	   or is bmdma_start guaranteed to do it ? */
 699	switch (qc->tf.protocol) {
 700	case ATAPI_PROT_PIO:
 701		ap->hsm_task_state = HSM_ST;
 702		break;
 703	case ATAPI_PROT_NODATA:
 704		ap->hsm_task_state = HSM_ST_LAST;
 705		break;
 706#ifdef CONFIG_ATA_BMDMA
 707	case ATAPI_PROT_DMA:
 708		ap->hsm_task_state = HSM_ST_LAST;
 709		/* initiate bmdma */
 710		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 711		ap->ops->bmdma_start(qc);
 712		break;
 713#endif /* CONFIG_ATA_BMDMA */
 714	default:
 715		BUG();
 716	}
 717}
 718
 719/**
 720 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 721 *	@qc: Command on going
 722 *	@bytes: number of bytes
 723 *
 724 *	Transfer data from/to the ATAPI device.
 725 *
 726 *	LOCKING:
 727 *	Inherited from caller.
 728 *
 729 */
 730static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 731{
 732	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 733	struct ata_port *ap = qc->ap;
 734	struct ata_device *dev = qc->dev;
 735	struct ata_eh_info *ehi = &dev->link->eh_info;
 736	struct scatterlist *sg;
 737	struct page *page;
 738	unsigned char *buf;
 739	unsigned int offset, count, consumed;
 740
 741next_sg:
 742	sg = qc->cursg;
 743	if (unlikely(!sg)) {
 744		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 745				  "buf=%u cur=%u bytes=%u",
 746				  qc->nbytes, qc->curbytes, bytes);
 747		return -1;
 748	}
 749
 750	page = sg_page(sg);
 751	offset = sg->offset + qc->cursg_ofs;
 752
 753	/* get the current page and offset */
 754	page = nth_page(page, (offset >> PAGE_SHIFT));
 755	offset %= PAGE_SIZE;
 756
 757	/* don't overrun current sg */
 758	count = min(sg->length - qc->cursg_ofs, bytes);
 759
 760	/* don't cross page boundaries */
 761	count = min(count, (unsigned int)PAGE_SIZE - offset);
 762
 763	trace_atapi_pio_transfer_data(qc, offset, count);
 764
 765	/* do the actual data transfer */
 766	buf = kmap_atomic(page);
 767	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 768	kunmap_atomic(buf);
 769
 770	bytes -= min(bytes, consumed);
 771	qc->curbytes += count;
 772	qc->cursg_ofs += count;
 773
 774	if (qc->cursg_ofs == sg->length) {
 775		qc->cursg = sg_next(qc->cursg);
 776		qc->cursg_ofs = 0;
 777	}
 778
 779	/*
 780	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 781	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 782	 * check correctly as it doesn't know if it is the last request being
 783	 * made. Somebody should implement a proper sanity check.
 784	 */
 785	if (bytes)
 786		goto next_sg;
 787	return 0;
 788}
 789
 790/**
 791 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 792 *	@qc: Command on going
 793 *
 794 *	Transfer Transfer data from/to the ATAPI device.
 795 *
 796 *	LOCKING:
 797 *	Inherited from caller.
 798 */
 799static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 800{
 801	struct ata_port *ap = qc->ap;
 802	struct ata_device *dev = qc->dev;
 803	struct ata_eh_info *ehi = &dev->link->eh_info;
 804	unsigned int ireason, bc_lo, bc_hi, bytes;
 805	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 806
 807	/* Abuse qc->result_tf for temp storage of intermediate TF
 808	 * here to save some kernel stack usage.
 809	 * For normal completion, qc->result_tf is not relevant. For
 810	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 811	 * So, the correctness of qc->result_tf is not affected.
 812	 */
 813	ap->ops->sff_tf_read(ap, &qc->result_tf);
 814	ireason = qc->result_tf.nsect;
 815	bc_lo = qc->result_tf.lbam;
 816	bc_hi = qc->result_tf.lbah;
 817	bytes = (bc_hi << 8) | bc_lo;
 818
 819	/* shall be cleared to zero, indicating xfer of data */
 820	if (unlikely(ireason & ATAPI_COD))
 821		goto atapi_check;
 822
 823	/* make sure transfer direction matches expected */
 824	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 825	if (unlikely(do_write != i_write))
 826		goto atapi_check;
 827
 828	if (unlikely(!bytes))
 829		goto atapi_check;
 830
 
 
 831	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 832		goto err_out;
 833	ata_sff_sync(ap); /* flush */
 834
 835	return;
 836
 837 atapi_check:
 838	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 839			  ireason, bytes);
 840 err_out:
 841	qc->err_mask |= AC_ERR_HSM;
 842	ap->hsm_task_state = HSM_ST_ERR;
 843}
 844
 845/**
 846 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 847 *	@ap: the target ata_port
 848 *	@qc: qc on going
 849 *
 850 *	RETURNS:
 851 *	1 if ok in workqueue, 0 otherwise.
 852 */
 853static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 854						struct ata_queued_cmd *qc)
 855{
 856	if (qc->tf.flags & ATA_TFLAG_POLLING)
 857		return 1;
 858
 859	if (ap->hsm_task_state == HSM_ST_FIRST) {
 860		if (qc->tf.protocol == ATA_PROT_PIO &&
 861		   (qc->tf.flags & ATA_TFLAG_WRITE))
 862		    return 1;
 863
 864		if (ata_is_atapi(qc->tf.protocol) &&
 865		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 866			return 1;
 867	}
 868
 869	return 0;
 870}
 871
 872/**
 873 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 874 *	@qc: Command to complete
 875 *	@in_wq: 1 if called from workqueue, 0 otherwise
 876 *
 877 *	Finish @qc which is running on standard HSM.
 878 *
 879 *	LOCKING:
 880 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 881 *	Otherwise, none on entry and grabs host lock.
 882 */
 883static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 884{
 885	struct ata_port *ap = qc->ap;
 886
 887	if (in_wq) {
 888		/* EH might have kicked in while host lock is released. */
 889		qc = ata_qc_from_tag(ap, qc->tag);
 890		if (qc) {
 891			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 892				ata_sff_irq_on(ap);
 
 
 
 
 
 
 
 
 
 893				ata_qc_complete(qc);
 894			} else
 895				ata_port_freeze(ap);
 896		}
 897	} else {
 898		if (likely(!(qc->err_mask & AC_ERR_HSM)))
 
 
 
 899			ata_qc_complete(qc);
 900		else
 901			ata_port_freeze(ap);
 902	}
 903}
 904
 905/**
 906 *	ata_sff_hsm_move - move the HSM to the next state.
 907 *	@ap: the target ata_port
 908 *	@qc: qc on going
 909 *	@status: current device status
 910 *	@in_wq: 1 if called from workqueue, 0 otherwise
 911 *
 912 *	RETURNS:
 913 *	1 when poll next status needed, 0 otherwise.
 914 */
 915int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 916		     u8 status, int in_wq)
 917{
 918	struct ata_link *link = qc->dev->link;
 919	struct ata_eh_info *ehi = &link->eh_info;
 920	int poll_next;
 921
 922	lockdep_assert_held(ap->lock);
 923
 924	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 925
 926	/* Make sure ata_sff_qc_issue() does not throw things
 927	 * like DMA polling into the workqueue. Notice that
 928	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 929	 */
 930	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 931
 932fsm_start:
 933	trace_ata_sff_hsm_state(qc, status);
 
 934
 935	switch (ap->hsm_task_state) {
 936	case HSM_ST_FIRST:
 937		/* Send first data block or PACKET CDB */
 938
 939		/* If polling, we will stay in the work queue after
 940		 * sending the data. Otherwise, interrupt handler
 941		 * takes over after sending the data.
 942		 */
 943		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 944
 945		/* check device status */
 946		if (unlikely((status & ATA_DRQ) == 0)) {
 947			/* handle BSY=0, DRQ=0 as error */
 948			if (likely(status & (ATA_ERR | ATA_DF)))
 949				/* device stops HSM for abort/error */
 950				qc->err_mask |= AC_ERR_DEV;
 951			else {
 952				/* HSM violation. Let EH handle this */
 953				ata_ehi_push_desc(ehi,
 954					"ST_FIRST: !(DRQ|ERR|DF)");
 955				qc->err_mask |= AC_ERR_HSM;
 956			}
 957
 958			ap->hsm_task_state = HSM_ST_ERR;
 959			goto fsm_start;
 960		}
 961
 962		/* Device should not ask for data transfer (DRQ=1)
 963		 * when it finds something wrong.
 964		 * We ignore DRQ here and stop the HSM by
 965		 * changing hsm_task_state to HSM_ST_ERR and
 966		 * let the EH abort the command or reset the device.
 967		 */
 968		if (unlikely(status & (ATA_ERR | ATA_DF))) {
 969			/* Some ATAPI tape drives forget to clear the ERR bit
 970			 * when doing the next command (mostly request sense).
 971			 * We ignore ERR here to workaround and proceed sending
 972			 * the CDB.
 973			 */
 974			if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) {
 975				ata_ehi_push_desc(ehi, "ST_FIRST: "
 976					"DRQ=1 with device error, "
 977					"dev_stat 0x%X", status);
 978				qc->err_mask |= AC_ERR_HSM;
 979				ap->hsm_task_state = HSM_ST_ERR;
 980				goto fsm_start;
 981			}
 982		}
 983
 984		if (qc->tf.protocol == ATA_PROT_PIO) {
 985			/* PIO data out protocol.
 986			 * send first data block.
 987			 */
 988
 989			/* ata_pio_sectors() might change the state
 990			 * to HSM_ST_LAST. so, the state is changed here
 991			 * before ata_pio_sectors().
 992			 */
 993			ap->hsm_task_state = HSM_ST;
 994			ata_pio_sectors(qc);
 995		} else
 996			/* send CDB */
 997			atapi_send_cdb(ap, qc);
 998
 999		/* if polling, ata_sff_pio_task() handles the rest.
1000		 * otherwise, interrupt handler takes over from here.
1001		 */
1002		break;
1003
1004	case HSM_ST:
1005		/* complete command or read/write the data register */
1006		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1007			/* ATAPI PIO protocol */
1008			if ((status & ATA_DRQ) == 0) {
1009				/* No more data to transfer or device error.
1010				 * Device error will be tagged in HSM_ST_LAST.
1011				 */
1012				ap->hsm_task_state = HSM_ST_LAST;
1013				goto fsm_start;
1014			}
1015
1016			/* Device should not ask for data transfer (DRQ=1)
1017			 * when it finds something wrong.
1018			 * We ignore DRQ here and stop the HSM by
1019			 * changing hsm_task_state to HSM_ST_ERR and
1020			 * let the EH abort the command or reset the device.
1021			 */
1022			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1023				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1024					"DRQ=1 with device error, "
1025					"dev_stat 0x%X", status);
1026				qc->err_mask |= AC_ERR_HSM;
1027				ap->hsm_task_state = HSM_ST_ERR;
1028				goto fsm_start;
1029			}
1030
1031			atapi_pio_bytes(qc);
1032
1033			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1034				/* bad ireason reported by device */
1035				goto fsm_start;
1036
1037		} else {
1038			/* ATA PIO protocol */
1039			if (unlikely((status & ATA_DRQ) == 0)) {
1040				/* handle BSY=0, DRQ=0 as error */
1041				if (likely(status & (ATA_ERR | ATA_DF))) {
1042					/* device stops HSM for abort/error */
1043					qc->err_mask |= AC_ERR_DEV;
1044
1045					/* If diagnostic failed and this is
1046					 * IDENTIFY, it's likely a phantom
1047					 * device.  Mark hint.
1048					 */
1049					if (qc->dev->quirks &
1050					    ATA_QUIRK_DIAGNOSTIC)
1051						qc->err_mask |=
1052							AC_ERR_NODEV_HINT;
1053				} else {
1054					/* HSM violation. Let EH handle this.
1055					 * Phantom devices also trigger this
1056					 * condition.  Mark hint.
1057					 */
1058					ata_ehi_push_desc(ehi, "ST-ATA: "
1059						"DRQ=0 without device error, "
1060						"dev_stat 0x%X", status);
1061					qc->err_mask |= AC_ERR_HSM |
1062							AC_ERR_NODEV_HINT;
1063				}
1064
1065				ap->hsm_task_state = HSM_ST_ERR;
1066				goto fsm_start;
1067			}
1068
1069			/* For PIO reads, some devices may ask for
1070			 * data transfer (DRQ=1) alone with ERR=1.
1071			 * We respect DRQ here and transfer one
1072			 * block of junk data before changing the
1073			 * hsm_task_state to HSM_ST_ERR.
1074			 *
1075			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1076			 * sense since the data block has been
1077			 * transferred to the device.
1078			 */
1079			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1080				/* data might be corrputed */
1081				qc->err_mask |= AC_ERR_DEV;
1082
1083				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1084					ata_pio_sectors(qc);
1085					status = ata_wait_idle(ap);
1086				}
1087
1088				if (status & (ATA_BUSY | ATA_DRQ)) {
1089					ata_ehi_push_desc(ehi, "ST-ATA: "
1090						"BUSY|DRQ persists on ERR|DF, "
1091						"dev_stat 0x%X", status);
1092					qc->err_mask |= AC_ERR_HSM;
1093				}
1094
1095				/* There are oddball controllers with
1096				 * status register stuck at 0x7f and
1097				 * lbal/m/h at zero which makes it
1098				 * pass all other presence detection
1099				 * mechanisms we have.  Set NODEV_HINT
1100				 * for it.  Kernel bz#7241.
1101				 */
1102				if (status == 0x7f)
1103					qc->err_mask |= AC_ERR_NODEV_HINT;
1104
1105				/* ata_pio_sectors() might change the
1106				 * state to HSM_ST_LAST. so, the state
1107				 * is changed after ata_pio_sectors().
1108				 */
1109				ap->hsm_task_state = HSM_ST_ERR;
1110				goto fsm_start;
1111			}
1112
1113			ata_pio_sectors(qc);
1114
1115			if (ap->hsm_task_state == HSM_ST_LAST &&
1116			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1117				/* all data read */
1118				status = ata_wait_idle(ap);
1119				goto fsm_start;
1120			}
1121		}
1122
1123		poll_next = 1;
1124		break;
1125
1126	case HSM_ST_LAST:
1127		if (unlikely(!ata_ok(status))) {
1128			qc->err_mask |= __ac_err_mask(status);
1129			ap->hsm_task_state = HSM_ST_ERR;
1130			goto fsm_start;
1131		}
1132
1133		/* no more data to transfer */
1134		trace_ata_sff_hsm_command_complete(qc, status);
 
1135
1136		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1137
1138		ap->hsm_task_state = HSM_ST_IDLE;
1139
1140		/* complete taskfile transaction */
1141		ata_hsm_qc_complete(qc, in_wq);
1142
1143		poll_next = 0;
1144		break;
1145
1146	case HSM_ST_ERR:
1147		ap->hsm_task_state = HSM_ST_IDLE;
1148
1149		/* complete taskfile transaction */
1150		ata_hsm_qc_complete(qc, in_wq);
1151
1152		poll_next = 0;
1153		break;
1154	default:
1155		poll_next = 0;
1156		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1157		     ap->print_id, ap->hsm_task_state);
1158	}
1159
1160	return poll_next;
1161}
1162EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1163
1164void ata_sff_queue_work(struct work_struct *work)
1165{
1166	queue_work(ata_sff_wq, work);
1167}
1168EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1169
1170void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1171{
1172	queue_delayed_work(ata_sff_wq, dwork, delay);
1173}
1174EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1175
1176void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1177{
1178	struct ata_port *ap = link->ap;
1179
1180	WARN_ON((ap->sff_pio_task_link != NULL) &&
1181		(ap->sff_pio_task_link != link));
1182	ap->sff_pio_task_link = link;
1183
1184	/* may fail if ata_sff_flush_pio_task() in progress */
1185	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1186}
1187EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1188
1189void ata_sff_flush_pio_task(struct ata_port *ap)
1190{
1191	trace_ata_sff_flush_pio_task(ap);
1192
1193	cancel_delayed_work_sync(&ap->sff_pio_task);
1194
1195	/*
1196	 * We wanna reset the HSM state to IDLE.  If we do so without
1197	 * grabbing the port lock, critical sections protected by it which
1198	 * expect the HSM state to stay stable may get surprised.  For
1199	 * example, we may set IDLE in between the time
1200	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1201	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1202	 */
1203	spin_lock_irq(ap->lock);
1204	ap->hsm_task_state = HSM_ST_IDLE;
1205	spin_unlock_irq(ap->lock);
1206
1207	ap->sff_pio_task_link = NULL;
 
 
 
1208}
1209
1210static void ata_sff_pio_task(struct work_struct *work)
1211{
1212	struct ata_port *ap =
1213		container_of(work, struct ata_port, sff_pio_task.work);
1214	struct ata_link *link = ap->sff_pio_task_link;
1215	struct ata_queued_cmd *qc;
1216	u8 status;
1217	int poll_next;
1218
1219	spin_lock_irq(ap->lock);
1220
1221	BUG_ON(ap->sff_pio_task_link == NULL);
1222	/* qc can be NULL if timeout occurred */
1223	qc = ata_qc_from_tag(ap, link->active_tag);
1224	if (!qc) {
1225		ap->sff_pio_task_link = NULL;
1226		goto out_unlock;
1227	}
1228
1229fsm_start:
1230	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1231
1232	/*
1233	 * This is purely heuristic.  This is a fast path.
1234	 * Sometimes when we enter, BSY will be cleared in
1235	 * a chk-status or two.  If not, the drive is probably seeking
1236	 * or something.  Snooze for a couple msecs, then
1237	 * chk-status again.  If still busy, queue delayed work.
1238	 */
1239	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1240	if (status & ATA_BUSY) {
1241		spin_unlock_irq(ap->lock);
1242		ata_msleep(ap, 2);
1243		spin_lock_irq(ap->lock);
1244
1245		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1246		if (status & ATA_BUSY) {
1247			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1248			goto out_unlock;
1249		}
1250	}
1251
1252	/*
1253	 * hsm_move() may trigger another command to be processed.
1254	 * clean the link beforehand.
1255	 */
1256	ap->sff_pio_task_link = NULL;
1257	/* move the HSM */
1258	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1259
1260	/* another command or interrupt handler
1261	 * may be running at this point.
1262	 */
1263	if (poll_next)
1264		goto fsm_start;
1265out_unlock:
1266	spin_unlock_irq(ap->lock);
1267}
1268
1269/**
1270 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1271 *	@qc: command to issue to device
1272 *
1273 *	This function issues a PIO or NODATA command to a SFF
1274 *	controller.
1275 *
1276 *	LOCKING:
1277 *	spin_lock_irqsave(host lock)
1278 *
1279 *	RETURNS:
1280 *	Zero on success, AC_ERR_* mask on failure
1281 */
1282unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1283{
1284	struct ata_port *ap = qc->ap;
1285	struct ata_link *link = qc->dev->link;
1286
1287	/* Use polling pio if the LLD doesn't handle
1288	 * interrupt driven pio and atapi CDB interrupt.
1289	 */
1290	if (ap->flags & ATA_FLAG_PIO_POLLING)
1291		qc->tf.flags |= ATA_TFLAG_POLLING;
1292
1293	/* select the device */
1294	ata_dev_select(ap, qc->dev->devno, 1, 0);
1295
1296	/* start the command */
1297	switch (qc->tf.protocol) {
1298	case ATA_PROT_NODATA:
1299		if (qc->tf.flags & ATA_TFLAG_POLLING)
1300			ata_qc_set_polling(qc);
1301
1302		ata_tf_to_host(ap, &qc->tf, qc->tag);
1303		ap->hsm_task_state = HSM_ST_LAST;
1304
1305		if (qc->tf.flags & ATA_TFLAG_POLLING)
1306			ata_sff_queue_pio_task(link, 0);
1307
1308		break;
1309
1310	case ATA_PROT_PIO:
1311		if (qc->tf.flags & ATA_TFLAG_POLLING)
1312			ata_qc_set_polling(qc);
1313
1314		ata_tf_to_host(ap, &qc->tf, qc->tag);
1315
1316		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1317			/* PIO data out protocol */
1318			ap->hsm_task_state = HSM_ST_FIRST;
1319			ata_sff_queue_pio_task(link, 0);
1320
1321			/* always send first data block using the
1322			 * ata_sff_pio_task() codepath.
1323			 */
1324		} else {
1325			/* PIO data in protocol */
1326			ap->hsm_task_state = HSM_ST;
1327
1328			if (qc->tf.flags & ATA_TFLAG_POLLING)
1329				ata_sff_queue_pio_task(link, 0);
1330
1331			/* if polling, ata_sff_pio_task() handles the
1332			 * rest.  otherwise, interrupt handler takes
1333			 * over from here.
1334			 */
1335		}
1336
1337		break;
1338
1339	case ATAPI_PROT_PIO:
1340	case ATAPI_PROT_NODATA:
1341		if (qc->tf.flags & ATA_TFLAG_POLLING)
1342			ata_qc_set_polling(qc);
1343
1344		ata_tf_to_host(ap, &qc->tf, qc->tag);
1345
1346		ap->hsm_task_state = HSM_ST_FIRST;
1347
1348		/* send cdb by polling if no cdb interrupt */
1349		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1350		    (qc->tf.flags & ATA_TFLAG_POLLING))
1351			ata_sff_queue_pio_task(link, 0);
1352		break;
1353
1354	default:
1355		return AC_ERR_SYSTEM;
1356	}
1357
1358	return 0;
1359}
1360EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1361
1362/**
1363 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1364 *	@qc: qc to fill result TF for
1365 *
1366 *	@qc is finished and result TF needs to be filled.  Fill it
1367 *	using ->sff_tf_read.
1368 *
1369 *	LOCKING:
1370 *	spin_lock_irqsave(host lock)
 
 
 
1371 */
1372void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1373{
1374	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
 
1375}
1376EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1377
1378static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1379{
1380	ap->stats.idle_irq++;
1381
1382#ifdef ATA_IRQ_TRAP
1383	if ((ap->stats.idle_irq % 1000) == 0) {
1384		ap->ops->sff_check_status(ap);
1385		if (ap->ops->sff_irq_clear)
1386			ap->ops->sff_irq_clear(ap);
1387		ata_port_warn(ap, "irq trap\n");
1388		return 1;
1389	}
1390#endif
1391	return 0;	/* irq not handled */
1392}
1393
1394static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1395					struct ata_queued_cmd *qc,
1396					bool hsmv_on_idle)
1397{
1398	u8 status;
1399
1400	trace_ata_sff_port_intr(qc, hsmv_on_idle);
 
1401
1402	/* Check whether we are expecting interrupt in this state */
1403	switch (ap->hsm_task_state) {
1404	case HSM_ST_FIRST:
1405		/* Some pre-ATAPI-4 devices assert INTRQ
1406		 * at this state when ready to receive CDB.
1407		 */
1408
1409		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1410		 * The flag was turned on only for atapi devices.  No
1411		 * need to check ata_is_atapi(qc->tf.protocol) again.
1412		 */
1413		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1414			return ata_sff_idle_irq(ap);
1415		break;
1416	case HSM_ST_IDLE:
1417		return ata_sff_idle_irq(ap);
1418	default:
1419		break;
1420	}
1421
1422	/* check main status, clearing INTRQ if needed */
1423	status = ata_sff_irq_status(ap);
1424	if (status & ATA_BUSY) {
1425		if (hsmv_on_idle) {
1426			/* BMDMA engine is already stopped, we're screwed */
1427			qc->err_mask |= AC_ERR_HSM;
1428			ap->hsm_task_state = HSM_ST_ERR;
1429		} else
1430			return ata_sff_idle_irq(ap);
1431	}
1432
1433	/* clear irq events */
1434	if (ap->ops->sff_irq_clear)
1435		ap->ops->sff_irq_clear(ap);
1436
1437	ata_sff_hsm_move(ap, qc, status, 0);
1438
1439	return 1;	/* irq handled */
1440}
1441
1442/**
1443 *	ata_sff_port_intr - Handle SFF port interrupt
1444 *	@ap: Port on which interrupt arrived (possibly...)
1445 *	@qc: Taskfile currently active in engine
1446 *
1447 *	Handle port interrupt for given queued command.
1448 *
1449 *	LOCKING:
1450 *	spin_lock_irqsave(host lock)
1451 *
1452 *	RETURNS:
1453 *	One if interrupt was handled, zero if not (shared irq).
1454 */
1455unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1456{
1457	return __ata_sff_port_intr(ap, qc, false);
1458}
1459EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1460
1461static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1462	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1463{
1464	struct ata_host *host = dev_instance;
1465	bool retried = false;
1466	unsigned int i;
1467	unsigned int handled, idle, polling;
1468	unsigned long flags;
1469
1470	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1471	spin_lock_irqsave(&host->lock, flags);
1472
1473retry:
1474	handled = idle = polling = 0;
1475	for (i = 0; i < host->n_ports; i++) {
1476		struct ata_port *ap = host->ports[i];
1477		struct ata_queued_cmd *qc;
1478
1479		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1480		if (qc) {
1481			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1482				handled |= port_intr(ap, qc);
1483			else
1484				polling |= 1 << i;
1485		} else
1486			idle |= 1 << i;
1487	}
1488
1489	/*
1490	 * If no port was expecting IRQ but the controller is actually
1491	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1492	 * pending status if available and clear spurious IRQ.
1493	 */
1494	if (!handled && !retried) {
1495		bool retry = false;
1496
1497		for (i = 0; i < host->n_ports; i++) {
1498			struct ata_port *ap = host->ports[i];
1499
1500			if (polling & (1 << i))
1501				continue;
1502
1503			if (!ap->ops->sff_irq_check ||
1504			    !ap->ops->sff_irq_check(ap))
1505				continue;
1506
1507			if (idle & (1 << i)) {
1508				ap->ops->sff_check_status(ap);
1509				if (ap->ops->sff_irq_clear)
1510					ap->ops->sff_irq_clear(ap);
1511			} else {
1512				/* clear INTRQ and check if BUSY cleared */
1513				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1514					retry |= true;
1515				/*
1516				 * With command in flight, we can't do
1517				 * sff_irq_clear() w/o racing with completion.
1518				 */
1519			}
1520		}
1521
1522		if (retry) {
1523			retried = true;
1524			goto retry;
1525		}
1526	}
1527
1528	spin_unlock_irqrestore(&host->lock, flags);
1529
1530	return IRQ_RETVAL(handled);
1531}
1532
1533/**
1534 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1535 *	@irq: irq line (unused)
1536 *	@dev_instance: pointer to our ata_host information structure
1537 *
1538 *	Default interrupt handler for PCI IDE devices.  Calls
1539 *	ata_sff_port_intr() for each port that is not disabled.
1540 *
1541 *	LOCKING:
1542 *	Obtains host lock during operation.
1543 *
1544 *	RETURNS:
1545 *	IRQ_NONE or IRQ_HANDLED.
1546 */
1547irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1548{
1549	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1550}
1551EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1552
1553/**
1554 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1555 *	@ap: port that appears to have timed out
1556 *
1557 *	Called from the libata error handlers when the core code suspects
1558 *	an interrupt has been lost. If it has complete anything we can and
1559 *	then return. Interface must support altstatus for this faster
1560 *	recovery to occur.
1561 *
1562 *	Locking:
1563 *	Caller holds host lock
1564 */
1565
1566void ata_sff_lost_interrupt(struct ata_port *ap)
1567{
1568	u8 status = 0;
1569	struct ata_queued_cmd *qc;
1570
1571	/* Only one outstanding command per SFF channel */
1572	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1573	/* We cannot lose an interrupt on a non-existent or polled command */
1574	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1575		return;
1576	/* See if the controller thinks it is still busy - if so the command
1577	   isn't a lost IRQ but is still in progress */
1578	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1579		return;
1580	if (status & ATA_BUSY)
1581		return;
1582
1583	/* There was a command running, we are no longer busy and we have
1584	   no interrupt. */
1585	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
 
1586	/* Run the host interrupt logic as if the interrupt had not been
1587	   lost */
1588	ata_sff_port_intr(ap, qc);
1589}
1590EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1591
1592/**
1593 *	ata_sff_freeze - Freeze SFF controller port
1594 *	@ap: port to freeze
1595 *
1596 *	Freeze SFF controller port.
1597 *
1598 *	LOCKING:
1599 *	Inherited from caller.
1600 */
1601void ata_sff_freeze(struct ata_port *ap)
1602{
1603	ap->ctl |= ATA_NIEN;
1604	ap->last_ctl = ap->ctl;
1605
1606	ata_sff_set_devctl(ap, ap->ctl);
 
1607
1608	/* Under certain circumstances, some controllers raise IRQ on
1609	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1610	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1611	 */
1612	ap->ops->sff_check_status(ap);
1613
1614	if (ap->ops->sff_irq_clear)
1615		ap->ops->sff_irq_clear(ap);
1616}
1617EXPORT_SYMBOL_GPL(ata_sff_freeze);
1618
1619/**
1620 *	ata_sff_thaw - Thaw SFF controller port
1621 *	@ap: port to thaw
1622 *
1623 *	Thaw SFF controller port.
1624 *
1625 *	LOCKING:
1626 *	Inherited from caller.
1627 */
1628void ata_sff_thaw(struct ata_port *ap)
1629{
1630	/* clear & re-enable interrupts */
1631	ap->ops->sff_check_status(ap);
1632	if (ap->ops->sff_irq_clear)
1633		ap->ops->sff_irq_clear(ap);
1634	ata_sff_irq_on(ap);
1635}
1636EXPORT_SYMBOL_GPL(ata_sff_thaw);
1637
1638/**
1639 *	ata_sff_prereset - prepare SFF link for reset
1640 *	@link: SFF link to be reset
1641 *	@deadline: deadline jiffies for the operation
1642 *
1643 *	SFF link @link is about to be reset.  Initialize it.  It first
1644 *	calls ata_std_prereset() and wait for !BSY if the port is
1645 *	being softreset.
1646 *
1647 *	LOCKING:
1648 *	Kernel thread context (may sleep)
1649 *
1650 *	RETURNS:
1651 *	Always 0.
1652 */
1653int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1654{
1655	struct ata_eh_context *ehc = &link->eh_context;
1656	int rc;
1657
1658	/* The standard prereset is best-effort and always returns 0 */
1659	ata_std_prereset(link, deadline);
 
1660
1661	/* if we're about to do hardreset, nothing more to do */
1662	if (ehc->i.action & ATA_EH_HARDRESET)
1663		return 0;
1664
1665	/* wait for !BSY if we don't know that no device is attached */
1666	if (!ata_link_offline(link)) {
1667		rc = ata_sff_wait_ready(link, deadline);
1668		if (rc && rc != -ENODEV) {
1669			ata_link_warn(link,
1670				      "device not ready (errno=%d), forcing hardreset\n",
1671				      rc);
1672			ehc->i.action |= ATA_EH_HARDRESET;
1673		}
1674	}
1675
1676	return 0;
1677}
1678EXPORT_SYMBOL_GPL(ata_sff_prereset);
1679
1680/**
1681 *	ata_devchk - PATA device presence detection
1682 *	@ap: ATA channel to examine
1683 *	@device: Device to examine (starting at zero)
1684 *
1685 *	This technique was originally described in
1686 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1687 *	later found its way into the ATA/ATAPI spec.
1688 *
1689 *	Write a pattern to the ATA shadow registers,
1690 *	and if a device is present, it will respond by
1691 *	correctly storing and echoing back the
1692 *	ATA shadow register contents.
1693 *
1694 *	RETURN:
1695 *	true if device is present, false if not.
1696 *
1697 *	LOCKING:
1698 *	caller.
1699 */
1700static bool ata_devchk(struct ata_port *ap, unsigned int device)
1701{
1702	struct ata_ioports *ioaddr = &ap->ioaddr;
1703	u8 nsect, lbal;
1704
1705	ap->ops->sff_dev_select(ap, device);
1706
1707	iowrite8(0x55, ioaddr->nsect_addr);
1708	iowrite8(0xaa, ioaddr->lbal_addr);
1709
1710	iowrite8(0xaa, ioaddr->nsect_addr);
1711	iowrite8(0x55, ioaddr->lbal_addr);
1712
1713	iowrite8(0x55, ioaddr->nsect_addr);
1714	iowrite8(0xaa, ioaddr->lbal_addr);
1715
1716	nsect = ioread8(ioaddr->nsect_addr);
1717	lbal = ioread8(ioaddr->lbal_addr);
1718
1719	if ((nsect == 0x55) && (lbal == 0xaa))
1720		return true;	/* we found a device */
1721
1722	return false;		/* nothing found */
1723}
1724
1725/**
1726 *	ata_sff_dev_classify - Parse returned ATA device signature
1727 *	@dev: ATA device to classify (starting at zero)
1728 *	@present: device seems present
1729 *	@r_err: Value of error register on completion
1730 *
1731 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1732 *	an ATA/ATAPI-defined set of values is placed in the ATA
1733 *	shadow registers, indicating the results of device detection
1734 *	and diagnostics.
1735 *
1736 *	Select the ATA device, and read the values from the ATA shadow
1737 *	registers.  Then parse according to the Error register value,
1738 *	and the spec-defined values examined by ata_dev_classify().
1739 *
1740 *	LOCKING:
1741 *	caller.
1742 *
1743 *	RETURNS:
1744 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1745 */
1746unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1747				  u8 *r_err)
1748{
1749	struct ata_port *ap = dev->link->ap;
1750	struct ata_taskfile tf;
1751	unsigned int class;
1752	u8 err;
1753
1754	ap->ops->sff_dev_select(ap, dev->devno);
1755
1756	memset(&tf, 0, sizeof(tf));
1757
1758	ap->ops->sff_tf_read(ap, &tf);
1759	err = tf.error;
1760	if (r_err)
1761		*r_err = err;
1762
1763	/* see if device passed diags: continue and warn later */
1764	if (err == 0)
1765		/* diagnostic fail : do nothing _YET_ */
1766		dev->quirks |= ATA_QUIRK_DIAGNOSTIC;
1767	else if (err == 1)
1768		/* do nothing */ ;
1769	else if ((dev->devno == 0) && (err == 0x81))
1770		/* do nothing */ ;
1771	else
1772		return ATA_DEV_NONE;
1773
1774	/* determine if device is ATA or ATAPI */
1775	class = ata_port_classify(ap, &tf);
1776	switch (class) {
1777	case ATA_DEV_UNKNOWN:
1778		/*
1779		 * If the device failed diagnostic, it's likely to
1780		 * have reported incorrect device signature too.
1781		 * Assume ATA device if the device seems present but
1782		 * device signature is invalid with diagnostic
1783		 * failure.
1784		 */
1785		if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC))
1786			class = ATA_DEV_ATA;
1787		else
1788			class = ATA_DEV_NONE;
1789		break;
1790	case ATA_DEV_ATA:
1791		if (ap->ops->sff_check_status(ap) == 0)
1792			class = ATA_DEV_NONE;
1793		break;
1794	}
1795	return class;
1796}
1797EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1798
1799/**
1800 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1801 *	@link: SFF link which is just reset
1802 *	@devmask: mask of present devices
1803 *	@deadline: deadline jiffies for the operation
1804 *
1805 *	Wait devices attached to SFF @link to become ready after
1806 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1807 *	status register too early.
1808 *
1809 *	LOCKING:
1810 *	Kernel thread context (may sleep).
1811 *
1812 *	RETURNS:
1813 *	0 on success, -ENODEV if some or all of devices in @devmask
1814 *	don't seem to exist.  -errno on other errors.
1815 */
1816int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1817			     unsigned long deadline)
1818{
1819	struct ata_port *ap = link->ap;
1820	struct ata_ioports *ioaddr = &ap->ioaddr;
1821	unsigned int dev0 = devmask & (1 << 0);
1822	unsigned int dev1 = devmask & (1 << 1);
1823	int rc, ret = 0;
1824
1825	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1826
1827	/* always check readiness of the master device */
1828	rc = ata_sff_wait_ready(link, deadline);
1829	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1830	 * and TF status is 0xff, bail out on it too.
1831	 */
1832	if (rc)
1833		return rc;
1834
1835	/* if device 1 was found in ata_devchk, wait for register
1836	 * access briefly, then wait for BSY to clear.
1837	 */
1838	if (dev1) {
1839		int i;
1840
1841		ap->ops->sff_dev_select(ap, 1);
1842
1843		/* Wait for register access.  Some ATAPI devices fail
1844		 * to set nsect/lbal after reset, so don't waste too
1845		 * much time on it.  We're gonna wait for !BSY anyway.
1846		 */
1847		for (i = 0; i < 2; i++) {
1848			u8 nsect, lbal;
1849
1850			nsect = ioread8(ioaddr->nsect_addr);
1851			lbal = ioread8(ioaddr->lbal_addr);
1852			if ((nsect == 1) && (lbal == 1))
1853				break;
1854			ata_msleep(ap, 50);	/* give drive a breather */
1855		}
1856
1857		rc = ata_sff_wait_ready(link, deadline);
1858		if (rc) {
1859			if (rc != -ENODEV)
1860				return rc;
1861			ret = rc;
1862		}
1863	}
1864
1865	/* is all this really necessary? */
1866	ap->ops->sff_dev_select(ap, 0);
1867	if (dev1)
1868		ap->ops->sff_dev_select(ap, 1);
1869	if (dev0)
1870		ap->ops->sff_dev_select(ap, 0);
1871
1872	return ret;
1873}
1874EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1875
1876static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1877			     unsigned long deadline)
1878{
1879	struct ata_ioports *ioaddr = &ap->ioaddr;
1880
 
 
1881	if (ap->ioaddr.ctl_addr) {
1882		/* software reset.  causes dev0 to be selected */
1883		iowrite8(ap->ctl, ioaddr->ctl_addr);
1884		udelay(20);	/* FIXME: flush */
1885		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1886		udelay(20);	/* FIXME: flush */
1887		iowrite8(ap->ctl, ioaddr->ctl_addr);
1888		ap->last_ctl = ap->ctl;
1889	}
1890
1891	/* wait the port to become ready */
1892	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1893}
1894
1895/**
1896 *	ata_sff_softreset - reset host port via ATA SRST
1897 *	@link: ATA link to reset
1898 *	@classes: resulting classes of attached devices
1899 *	@deadline: deadline jiffies for the operation
1900 *
1901 *	Reset host port using ATA SRST.
1902 *
1903 *	LOCKING:
1904 *	Kernel thread context (may sleep)
1905 *
1906 *	RETURNS:
1907 *	0 on success, -errno otherwise.
1908 */
1909int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1910		      unsigned long deadline)
1911{
1912	struct ata_port *ap = link->ap;
1913	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1914	unsigned int devmask = 0;
1915	int rc;
1916	u8 err;
1917
 
 
1918	/* determine if device 0/1 are present */
1919	if (ata_devchk(ap, 0))
1920		devmask |= (1 << 0);
1921	if (slave_possible && ata_devchk(ap, 1))
1922		devmask |= (1 << 1);
1923
1924	/* select device 0 again */
1925	ap->ops->sff_dev_select(ap, 0);
1926
1927	/* issue bus reset */
 
1928	rc = ata_bus_softreset(ap, devmask, deadline);
1929	/* if link is occupied, -ENODEV too is an error */
1930	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1931		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1932		return rc;
1933	}
1934
1935	/* determine by signature whether we have ATA or ATAPI devices */
1936	classes[0] = ata_sff_dev_classify(&link->device[0],
1937					  devmask & (1 << 0), &err);
1938	if (slave_possible && err != 0x81)
1939		classes[1] = ata_sff_dev_classify(&link->device[1],
1940						  devmask & (1 << 1), &err);
1941
 
1942	return 0;
1943}
1944EXPORT_SYMBOL_GPL(ata_sff_softreset);
1945
1946/**
1947 *	sata_sff_hardreset - reset host port via SATA phy reset
1948 *	@link: link to reset
1949 *	@class: resulting class of attached device
1950 *	@deadline: deadline jiffies for the operation
1951 *
1952 *	SATA phy-reset host port using DET bits of SControl register,
1953 *	wait for !BSY and classify the attached device.
1954 *
1955 *	LOCKING:
1956 *	Kernel thread context (may sleep)
1957 *
1958 *	RETURNS:
1959 *	0 on success, -errno otherwise.
1960 */
1961int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1962		       unsigned long deadline)
1963{
1964	struct ata_eh_context *ehc = &link->eh_context;
1965	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1966	bool online;
1967	int rc;
1968
1969	rc = sata_link_hardreset(link, timing, deadline, &online,
1970				 ata_sff_check_ready);
1971	if (online)
1972		*class = ata_sff_dev_classify(link->device, 1, NULL);
1973
 
1974	return rc;
1975}
1976EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1977
1978/**
1979 *	ata_sff_postreset - SFF postreset callback
1980 *	@link: the target SFF ata_link
1981 *	@classes: classes of attached devices
1982 *
1983 *	This function is invoked after a successful reset.  It first
1984 *	calls ata_std_postreset() and performs SFF specific postreset
1985 *	processing.
1986 *
1987 *	LOCKING:
1988 *	Kernel thread context (may sleep)
1989 */
1990void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1991{
1992	struct ata_port *ap = link->ap;
1993
1994	ata_std_postreset(link, classes);
1995
1996	/* is double-select really necessary? */
1997	if (classes[0] != ATA_DEV_NONE)
1998		ap->ops->sff_dev_select(ap, 1);
1999	if (classes[1] != ATA_DEV_NONE)
2000		ap->ops->sff_dev_select(ap, 0);
2001
2002	/* bail out if no device is present */
2003	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
 
2004		return;
 
2005
2006	/* set up device control */
2007	if (ata_sff_set_devctl(ap, ap->ctl))
 
2008		ap->last_ctl = ap->ctl;
 
2009}
2010EXPORT_SYMBOL_GPL(ata_sff_postreset);
2011
2012/**
2013 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2014 *	@qc: command
2015 *
2016 *	Drain the FIFO and device of any stuck data following a command
2017 *	failing to complete. In some cases this is necessary before a
2018 *	reset will recover the device.
2019 *
2020 */
2021
2022void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2023{
2024	int count;
2025	struct ata_port *ap;
2026
2027	/* We only need to flush incoming data when a command was running */
2028	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2029		return;
2030
2031	ap = qc->ap;
2032	/* Drain up to 64K of data before we give up this recovery method */
2033	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2034						&& count < 65536; count += 2)
2035		ioread16(ap->ioaddr.data_addr);
2036
 
2037	if (count)
2038		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2039
2040}
2041EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2042
2043/**
2044 *	ata_sff_error_handler - Stock error handler for SFF controller
2045 *	@ap: port to handle error for
2046 *
2047 *	Stock error handler for SFF controller.  It can handle both
2048 *	PATA and SATA controllers.  Many controllers should be able to
2049 *	use this EH as-is or with some added handling before and
2050 *	after.
2051 *
2052 *	LOCKING:
2053 *	Kernel thread context (may sleep)
2054 */
2055void ata_sff_error_handler(struct ata_port *ap)
2056{
2057	ata_reset_fn_t softreset = ap->ops->softreset;
2058	ata_reset_fn_t hardreset = ap->ops->hardreset;
2059	struct ata_queued_cmd *qc;
2060	unsigned long flags;
2061
2062	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2063	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2064		qc = NULL;
2065
2066	spin_lock_irqsave(ap->lock, flags);
2067
2068	/*
2069	 * We *MUST* do FIFO draining before we issue a reset as
2070	 * several devices helpfully clear their internal state and
2071	 * will lock solid if we touch the data port post reset. Pass
2072	 * qc in case anyone wants to do different PIO/DMA recovery or
2073	 * has per command fixups
2074	 */
2075	if (ap->ops->sff_drain_fifo)
2076		ap->ops->sff_drain_fifo(qc);
2077
2078	spin_unlock_irqrestore(ap->lock, flags);
2079
2080	/* ignore built-in hardresets if SCR access is not available */
2081	if ((hardreset == sata_std_hardreset ||
2082	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2083		hardreset = NULL;
2084
2085	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2086		  ap->ops->postreset);
2087}
2088EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2089
2090/**
2091 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2092 *	@ioaddr: IO address structure to be initialized
2093 *
2094 *	Utility function which initializes data_addr, error_addr,
2095 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2096 *	device_addr, status_addr, and command_addr to standard offsets
2097 *	relative to cmd_addr.
2098 *
2099 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2100 */
2101void ata_sff_std_ports(struct ata_ioports *ioaddr)
2102{
2103	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2104	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2105	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2106	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2107	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2108	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2109	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2110	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2111	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2112	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2113}
2114EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2115
2116#ifdef CONFIG_PCI
2117
2118static bool ata_resources_present(struct pci_dev *pdev, int port)
2119{
2120	int i;
2121
2122	/* Check the PCI resources for this channel are enabled */
2123	port *= 2;
2124	for (i = 0; i < 2; i++) {
2125		if (pci_resource_start(pdev, port + i) == 0 ||
2126		    pci_resource_len(pdev, port + i) == 0)
2127			return false;
2128	}
2129	return true;
2130}
2131
2132/**
2133 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2134 *	@host: target ATA host
2135 *
2136 *	Acquire native PCI ATA resources for @host and initialize the
2137 *	first two ports of @host accordingly.  Ports marked dummy are
2138 *	skipped and allocation failure makes the port dummy.
2139 *
2140 *	Note that native PCI resources are valid even for legacy hosts
2141 *	as we fix up pdev resources array early in boot, so this
2142 *	function can be used for both native and legacy SFF hosts.
2143 *
2144 *	LOCKING:
2145 *	Inherited from calling layer (may sleep).
2146 *
2147 *	RETURNS:
2148 *	0 if at least one port is initialized, -ENODEV if no port is
2149 *	available.
2150 */
2151int ata_pci_sff_init_host(struct ata_host *host)
2152{
2153	struct device *gdev = host->dev;
2154	struct pci_dev *pdev = to_pci_dev(gdev);
2155	unsigned int mask = 0;
2156	int i, rc;
2157
2158	/* request, iomap BARs and init port addresses accordingly */
2159	for (i = 0; i < 2; i++) {
2160		struct ata_port *ap = host->ports[i];
2161		int base = i * 2;
2162		void __iomem * const *iomap;
2163
2164		if (ata_port_is_dummy(ap))
2165			continue;
2166
2167		/* Discard disabled ports.  Some controllers show
2168		 * their unused channels this way.  Disabled ports are
2169		 * made dummy.
2170		 */
2171		if (!ata_resources_present(pdev, i)) {
2172			ap->ops = &ata_dummy_port_ops;
2173			continue;
2174		}
2175
2176		rc = pcim_iomap_regions(pdev, 0x3 << base,
2177					dev_driver_string(gdev));
2178		if (rc) {
2179			dev_warn(gdev,
2180				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2181				 i, rc);
2182			if (rc == -EBUSY)
2183				pcim_pin_device(pdev);
2184			ap->ops = &ata_dummy_port_ops;
2185			continue;
2186		}
2187		host->iomap = iomap = pcim_iomap_table(pdev);
2188
2189		ap->ioaddr.cmd_addr = iomap[base];
2190		ap->ioaddr.altstatus_addr =
2191		ap->ioaddr.ctl_addr = (void __iomem *)
2192			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2193		ata_sff_std_ports(&ap->ioaddr);
2194
2195		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2196			(unsigned long long)pci_resource_start(pdev, base),
2197			(unsigned long long)pci_resource_start(pdev, base + 1));
2198
2199		mask |= 1 << i;
2200	}
2201
2202	if (!mask) {
2203		dev_err(gdev, "no available native port\n");
2204		return -ENODEV;
2205	}
2206
2207	return 0;
2208}
2209EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2210
2211/**
2212 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2213 *	@pdev: target PCI device
2214 *	@ppi: array of port_info, must be enough for two ports
2215 *	@r_host: out argument for the initialized ATA host
2216 *
2217 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2218 *	all PCI resources and initialize it accordingly in one go.
2219 *
2220 *	LOCKING:
2221 *	Inherited from calling layer (may sleep).
2222 *
2223 *	RETURNS:
2224 *	0 on success, -errno otherwise.
2225 */
2226int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2227			     const struct ata_port_info * const *ppi,
2228			     struct ata_host **r_host)
2229{
2230	struct ata_host *host;
2231	int rc;
2232
2233	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2234		return -ENOMEM;
2235
2236	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2237	if (!host) {
2238		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2239		rc = -ENOMEM;
2240		goto err_out;
2241	}
2242
2243	rc = ata_pci_sff_init_host(host);
2244	if (rc)
2245		goto err_out;
2246
2247	devres_remove_group(&pdev->dev, NULL);
2248	*r_host = host;
2249	return 0;
2250
2251err_out:
2252	devres_release_group(&pdev->dev, NULL);
2253	return rc;
2254}
2255EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2256
2257/**
2258 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2259 *	@host: target SFF ATA host
2260 *	@irq_handler: irq_handler used when requesting IRQ(s)
2261 *	@sht: scsi_host_template to use when registering the host
2262 *
2263 *	This is the counterpart of ata_host_activate() for SFF ATA
2264 *	hosts.  This separate helper is necessary because SFF hosts
2265 *	use two separate interrupts in legacy mode.
2266 *
2267 *	LOCKING:
2268 *	Inherited from calling layer (may sleep).
2269 *
2270 *	RETURNS:
2271 *	0 on success, -errno otherwise.
2272 */
2273int ata_pci_sff_activate_host(struct ata_host *host,
2274			      irq_handler_t irq_handler,
2275			      const struct scsi_host_template *sht)
2276{
2277	struct device *dev = host->dev;
2278	struct pci_dev *pdev = to_pci_dev(dev);
2279	const char *drv_name = dev_driver_string(host->dev);
2280	int legacy_mode = 0, rc;
2281
2282	rc = ata_host_start(host);
2283	if (rc)
2284		return rc;
2285
2286	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2287		u8 tmp8, mask = 0;
2288
2289		/*
2290		 * ATA spec says we should use legacy mode when one
2291		 * port is in legacy mode, but disabled ports on some
2292		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2293		 * on which the secondary port is not wired, so
2294		 * ignore ports that are marked as 'dummy' during
2295		 * this check
2296		 */
2297		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2298		if (!ata_port_is_dummy(host->ports[0]))
2299			mask |= (1 << 0);
2300		if (!ata_port_is_dummy(host->ports[1]))
2301			mask |= (1 << 2);
2302		if ((tmp8 & mask) != mask)
2303			legacy_mode = 1;
2304	}
2305
2306	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2307		return -ENOMEM;
2308
2309	if (!legacy_mode && pdev->irq) {
2310		int i;
2311
2312		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2313				      IRQF_SHARED, drv_name, host);
2314		if (rc)
2315			goto out;
2316
2317		for (i = 0; i < 2; i++) {
2318			if (ata_port_is_dummy(host->ports[i]))
2319				continue;
2320			ata_port_desc_misc(host->ports[i], pdev->irq);
2321		}
2322	} else if (legacy_mode) {
2323		if (!ata_port_is_dummy(host->ports[0])) {
2324			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2325					      irq_handler, IRQF_SHARED,
2326					      drv_name, host);
2327			if (rc)
2328				goto out;
2329
2330			ata_port_desc_misc(host->ports[0],
2331					   ATA_PRIMARY_IRQ(pdev));
2332		}
2333
2334		if (!ata_port_is_dummy(host->ports[1])) {
2335			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2336					      irq_handler, IRQF_SHARED,
2337					      drv_name, host);
2338			if (rc)
2339				goto out;
2340
2341			ata_port_desc_misc(host->ports[1],
2342					   ATA_SECONDARY_IRQ(pdev));
2343		}
2344	}
2345
2346	rc = ata_host_register(host, sht);
2347out:
2348	if (rc == 0)
2349		devres_remove_group(dev, NULL);
2350	else
2351		devres_release_group(dev, NULL);
2352
2353	return rc;
2354}
2355EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2356
2357static const struct ata_port_info *ata_sff_find_valid_pi(
2358					const struct ata_port_info * const *ppi)
2359{
2360	int i;
2361
2362	/* look up the first valid port_info */
2363	for (i = 0; i < 2 && ppi[i]; i++)
2364		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2365			return ppi[i];
2366
2367	return NULL;
2368}
2369
2370static int ata_pci_init_one(struct pci_dev *pdev,
2371		const struct ata_port_info * const *ppi,
2372		const struct scsi_host_template *sht, void *host_priv,
2373		int hflags, bool bmdma)
2374{
2375	struct device *dev = &pdev->dev;
2376	const struct ata_port_info *pi;
2377	struct ata_host *host = NULL;
2378	int rc;
2379
 
 
2380	pi = ata_sff_find_valid_pi(ppi);
2381	if (!pi) {
2382		dev_err(&pdev->dev, "no valid port_info specified\n");
2383		return -EINVAL;
2384	}
2385
2386	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2387		return -ENOMEM;
2388
2389	rc = pcim_enable_device(pdev);
2390	if (rc)
2391		goto out;
2392
2393#ifdef CONFIG_ATA_BMDMA
2394	if (bmdma)
2395		/* prepare and activate BMDMA host */
2396		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2397	else
2398#endif
2399		/* prepare and activate SFF host */
2400		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2401	if (rc)
2402		goto out;
2403	host->private_data = host_priv;
2404	host->flags |= hflags;
2405
2406#ifdef CONFIG_ATA_BMDMA
2407	if (bmdma) {
2408		pci_set_master(pdev);
2409		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2410	} else
2411#endif
2412		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2413out:
2414	if (rc == 0)
2415		devres_remove_group(&pdev->dev, NULL);
2416	else
2417		devres_release_group(&pdev->dev, NULL);
2418
2419	return rc;
2420}
2421
2422/**
2423 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2424 *	@pdev: Controller to be initialized
2425 *	@ppi: array of port_info, must be enough for two ports
2426 *	@sht: scsi_host_template to use when registering the host
2427 *	@host_priv: host private_data
2428 *	@hflag: host flags
2429 *
2430 *	This is a helper function which can be called from a driver's
2431 *	xxx_init_one() probe function if the hardware uses traditional
2432 *	IDE taskfile registers and is PIO only.
2433 *
2434 *	ASSUMPTION:
2435 *	Nobody makes a single channel controller that appears solely as
2436 *	the secondary legacy port on PCI.
2437 *
2438 *	LOCKING:
2439 *	Inherited from PCI layer (may sleep).
2440 *
2441 *	RETURNS:
2442 *	Zero on success, negative on errno-based value on error.
2443 */
2444int ata_pci_sff_init_one(struct pci_dev *pdev,
2445		 const struct ata_port_info * const *ppi,
2446		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2447{
2448	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2449}
2450EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2451
2452#endif /* CONFIG_PCI */
2453
2454/*
2455 *	BMDMA support
2456 */
2457
2458#ifdef CONFIG_ATA_BMDMA
2459
2460const struct ata_port_operations ata_bmdma_port_ops = {
2461	.inherits		= &ata_sff_port_ops,
2462
2463	.error_handler		= ata_bmdma_error_handler,
2464	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2465
2466	.qc_prep		= ata_bmdma_qc_prep,
2467	.qc_issue		= ata_bmdma_qc_issue,
2468
2469	.sff_irq_clear		= ata_bmdma_irq_clear,
2470	.bmdma_setup		= ata_bmdma_setup,
2471	.bmdma_start		= ata_bmdma_start,
2472	.bmdma_stop		= ata_bmdma_stop,
2473	.bmdma_status		= ata_bmdma_status,
2474
2475	.port_start		= ata_bmdma_port_start,
2476};
2477EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2478
2479const struct ata_port_operations ata_bmdma32_port_ops = {
2480	.inherits		= &ata_bmdma_port_ops,
2481
2482	.sff_data_xfer		= ata_sff_data_xfer32,
2483	.port_start		= ata_bmdma_port_start32,
2484};
2485EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2486
2487/**
2488 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2489 *	@qc: Metadata associated with taskfile to be transferred
2490 *
2491 *	Fill PCI IDE PRD (scatter-gather) table with segments
2492 *	associated with the current disk command.
2493 *
2494 *	LOCKING:
2495 *	spin_lock_irqsave(host lock)
2496 *
2497 */
2498static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2499{
2500	struct ata_port *ap = qc->ap;
2501	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2502	struct scatterlist *sg;
2503	unsigned int si, pi;
2504
2505	pi = 0;
2506	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2507		u32 addr, offset;
2508		u32 sg_len, len;
2509
2510		/* determine if physical DMA addr spans 64K boundary.
2511		 * Note h/w doesn't support 64-bit, so we unconditionally
2512		 * truncate dma_addr_t to u32.
2513		 */
2514		addr = (u32) sg_dma_address(sg);
2515		sg_len = sg_dma_len(sg);
2516
2517		while (sg_len) {
2518			offset = addr & 0xffff;
2519			len = sg_len;
2520			if ((offset + sg_len) > 0x10000)
2521				len = 0x10000 - offset;
2522
2523			prd[pi].addr = cpu_to_le32(addr);
2524			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
 
2525
2526			pi++;
2527			sg_len -= len;
2528			addr += len;
2529		}
2530	}
2531
2532	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2533}
2534
2535/**
2536 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2537 *	@qc: Metadata associated with taskfile to be transferred
2538 *
2539 *	Fill PCI IDE PRD (scatter-gather) table with segments
2540 *	associated with the current disk command. Perform the fill
2541 *	so that we avoid writing any length 64K records for
2542 *	controllers that don't follow the spec.
2543 *
2544 *	LOCKING:
2545 *	spin_lock_irqsave(host lock)
2546 *
2547 */
2548static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2549{
2550	struct ata_port *ap = qc->ap;
2551	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2552	struct scatterlist *sg;
2553	unsigned int si, pi;
2554
2555	pi = 0;
2556	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2557		u32 addr, offset;
2558		u32 sg_len, len, blen;
2559
2560		/* determine if physical DMA addr spans 64K boundary.
2561		 * Note h/w doesn't support 64-bit, so we unconditionally
2562		 * truncate dma_addr_t to u32.
2563		 */
2564		addr = (u32) sg_dma_address(sg);
2565		sg_len = sg_dma_len(sg);
2566
2567		while (sg_len) {
2568			offset = addr & 0xffff;
2569			len = sg_len;
2570			if ((offset + sg_len) > 0x10000)
2571				len = 0x10000 - offset;
2572
2573			blen = len & 0xffff;
2574			prd[pi].addr = cpu_to_le32(addr);
2575			if (blen == 0) {
2576				/* Some PATA chipsets like the CS5530 can't
2577				   cope with 0x0000 meaning 64K as the spec
2578				   says */
2579				prd[pi].flags_len = cpu_to_le32(0x8000);
2580				blen = 0x8000;
2581				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2582			}
2583			prd[pi].flags_len = cpu_to_le32(blen);
 
2584
2585			pi++;
2586			sg_len -= len;
2587			addr += len;
2588		}
2589	}
2590
2591	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2592}
2593
2594/**
2595 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2596 *	@qc: Metadata associated with taskfile to be prepared
2597 *
2598 *	Prepare ATA taskfile for submission.
2599 *
2600 *	LOCKING:
2601 *	spin_lock_irqsave(host lock)
2602 */
2603enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2604{
2605	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2606		return AC_ERR_OK;
2607
2608	ata_bmdma_fill_sg(qc);
2609
2610	return AC_ERR_OK;
2611}
2612EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2613
2614/**
2615 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2616 *	@qc: Metadata associated with taskfile to be prepared
2617 *
2618 *	Prepare ATA taskfile for submission.
2619 *
2620 *	LOCKING:
2621 *	spin_lock_irqsave(host lock)
2622 */
2623enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2624{
2625	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2626		return AC_ERR_OK;
2627
2628	ata_bmdma_fill_sg_dumb(qc);
2629
2630	return AC_ERR_OK;
2631}
2632EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2633
2634/**
2635 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2636 *	@qc: command to issue to device
2637 *
2638 *	This function issues a PIO, NODATA or DMA command to a
2639 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2640 *	ata_sff_qc_issue().
2641 *
2642 *	LOCKING:
2643 *	spin_lock_irqsave(host lock)
2644 *
2645 *	RETURNS:
2646 *	Zero on success, AC_ERR_* mask on failure
2647 */
2648unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2649{
2650	struct ata_port *ap = qc->ap;
2651	struct ata_link *link = qc->dev->link;
2652
2653	/* defer PIO handling to sff_qc_issue */
2654	if (!ata_is_dma(qc->tf.protocol))
2655		return ata_sff_qc_issue(qc);
2656
2657	/* select the device */
2658	ata_dev_select(ap, qc->dev->devno, 1, 0);
2659
2660	/* start the command */
2661	switch (qc->tf.protocol) {
2662	case ATA_PROT_DMA:
2663		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2664
2665		trace_ata_tf_load(ap, &qc->tf);
2666		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2667		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2668		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2669		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2670		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2671		ap->hsm_task_state = HSM_ST_LAST;
2672		break;
2673
2674	case ATAPI_PROT_DMA:
2675		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2676
2677		trace_ata_tf_load(ap, &qc->tf);
2678		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2679		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2680		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2681		ap->hsm_task_state = HSM_ST_FIRST;
2682
2683		/* send cdb by polling if no cdb interrupt */
2684		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2685			ata_sff_queue_pio_task(link, 0);
2686		break;
2687
2688	default:
2689		WARN_ON(1);
2690		return AC_ERR_SYSTEM;
2691	}
2692
2693	return 0;
2694}
2695EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2696
2697/**
2698 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2699 *	@ap: Port on which interrupt arrived (possibly...)
2700 *	@qc: Taskfile currently active in engine
2701 *
2702 *	Handle port interrupt for given queued command.
2703 *
2704 *	LOCKING:
2705 *	spin_lock_irqsave(host lock)
2706 *
2707 *	RETURNS:
2708 *	One if interrupt was handled, zero if not (shared irq).
2709 */
2710unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2711{
2712	struct ata_eh_info *ehi = &ap->link.eh_info;
2713	u8 host_stat = 0;
2714	bool bmdma_stopped = false;
2715	unsigned int handled;
2716
2717	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2718		/* check status of DMA engine */
2719		host_stat = ap->ops->bmdma_status(ap);
2720		trace_ata_bmdma_status(ap, host_stat);
2721
2722		/* if it's not our irq... */
2723		if (!(host_stat & ATA_DMA_INTR))
2724			return ata_sff_idle_irq(ap);
2725
2726		/* before we do anything else, clear DMA-Start bit */
2727		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2728		ap->ops->bmdma_stop(qc);
2729		bmdma_stopped = true;
2730
2731		if (unlikely(host_stat & ATA_DMA_ERR)) {
2732			/* error when transferring data to/from memory */
2733			qc->err_mask |= AC_ERR_HOST_BUS;
2734			ap->hsm_task_state = HSM_ST_ERR;
2735		}
2736	}
2737
2738	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2739
2740	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2741		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2742
2743	return handled;
2744}
2745EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2746
2747/**
2748 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2749 *	@irq: irq line (unused)
2750 *	@dev_instance: pointer to our ata_host information structure
2751 *
2752 *	Default interrupt handler for PCI IDE devices.  Calls
2753 *	ata_bmdma_port_intr() for each port that is not disabled.
2754 *
2755 *	LOCKING:
2756 *	Obtains host lock during operation.
2757 *
2758 *	RETURNS:
2759 *	IRQ_NONE or IRQ_HANDLED.
2760 */
2761irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2762{
2763	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2766
2767/**
2768 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2769 *	@ap: port to handle error for
2770 *
2771 *	Stock error handler for BMDMA controller.  It can handle both
2772 *	PATA and SATA controllers.  Most BMDMA controllers should be
2773 *	able to use this EH as-is or with some added handling before
2774 *	and after.
2775 *
2776 *	LOCKING:
2777 *	Kernel thread context (may sleep)
2778 */
2779void ata_bmdma_error_handler(struct ata_port *ap)
2780{
2781	struct ata_queued_cmd *qc;
2782	unsigned long flags;
2783	bool thaw = false;
2784
2785	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2786	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2787		qc = NULL;
2788
2789	/* reset PIO HSM and stop DMA engine */
2790	spin_lock_irqsave(ap->lock, flags);
2791
2792	if (qc && ata_is_dma(qc->tf.protocol)) {
2793		u8 host_stat;
2794
2795		host_stat = ap->ops->bmdma_status(ap);
2796		trace_ata_bmdma_status(ap, host_stat);
2797
2798		/* BMDMA controllers indicate host bus error by
2799		 * setting DMA_ERR bit and timing out.  As it wasn't
2800		 * really a timeout event, adjust error mask and
2801		 * cancel frozen state.
2802		 */
2803		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2804			qc->err_mask = AC_ERR_HOST_BUS;
2805			thaw = true;
2806		}
2807
2808		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2809		ap->ops->bmdma_stop(qc);
2810
2811		/* if we're gonna thaw, make sure IRQ is clear */
2812		if (thaw) {
2813			ap->ops->sff_check_status(ap);
2814			if (ap->ops->sff_irq_clear)
2815				ap->ops->sff_irq_clear(ap);
2816		}
2817	}
2818
2819	spin_unlock_irqrestore(ap->lock, flags);
2820
2821	if (thaw)
2822		ata_eh_thaw_port(ap);
2823
2824	ata_sff_error_handler(ap);
2825}
2826EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2827
2828/**
2829 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2830 *	@qc: internal command to clean up
2831 *
2832 *	LOCKING:
2833 *	Kernel thread context (may sleep)
2834 */
2835void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2836{
2837	struct ata_port *ap = qc->ap;
2838	unsigned long flags;
2839
2840	if (ata_is_dma(qc->tf.protocol)) {
2841		spin_lock_irqsave(ap->lock, flags);
2842		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2843		ap->ops->bmdma_stop(qc);
2844		spin_unlock_irqrestore(ap->lock, flags);
2845	}
2846}
2847EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2848
2849/**
2850 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2851 *	@ap: Port associated with this ATA transaction.
2852 *
2853 *	Clear interrupt and error flags in DMA status register.
2854 *
2855 *	May be used as the irq_clear() entry in ata_port_operations.
2856 *
2857 *	LOCKING:
2858 *	spin_lock_irqsave(host lock)
2859 */
2860void ata_bmdma_irq_clear(struct ata_port *ap)
2861{
2862	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2863
2864	if (!mmio)
2865		return;
2866
2867	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2868}
2869EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2870
2871/**
2872 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2873 *	@qc: Info associated with this ATA transaction.
2874 *
2875 *	LOCKING:
2876 *	spin_lock_irqsave(host lock)
2877 */
2878void ata_bmdma_setup(struct ata_queued_cmd *qc)
2879{
2880	struct ata_port *ap = qc->ap;
2881	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2882	u8 dmactl;
2883
2884	/* load PRD table addr. */
2885	mb();	/* make sure PRD table writes are visible to controller */
2886	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2887
2888	/* specify data direction, triple-check start bit is clear */
2889	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2890	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2891	if (!rw)
2892		dmactl |= ATA_DMA_WR;
2893	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2894
2895	/* issue r/w command */
2896	ap->ops->sff_exec_command(ap, &qc->tf);
2897}
2898EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2899
2900/**
2901 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2902 *	@qc: Info associated with this ATA transaction.
2903 *
2904 *	LOCKING:
2905 *	spin_lock_irqsave(host lock)
2906 */
2907void ata_bmdma_start(struct ata_queued_cmd *qc)
2908{
2909	struct ata_port *ap = qc->ap;
2910	u8 dmactl;
2911
2912	/* start host DMA transaction */
2913	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2915
2916	/* Strictly, one may wish to issue an ioread8() here, to
2917	 * flush the mmio write.  However, control also passes
2918	 * to the hardware at this point, and it will interrupt
2919	 * us when we are to resume control.  So, in effect,
2920	 * we don't care when the mmio write flushes.
2921	 * Further, a read of the DMA status register _immediately_
2922	 * following the write may not be what certain flaky hardware
2923	 * is expected, so I think it is best to not add a readb()
2924	 * without first all the MMIO ATA cards/mobos.
2925	 * Or maybe I'm just being paranoid.
2926	 *
2927	 * FIXME: The posting of this write means I/O starts are
2928	 * unnecessarily delayed for MMIO
2929	 */
2930}
2931EXPORT_SYMBOL_GPL(ata_bmdma_start);
2932
2933/**
2934 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2935 *	@qc: Command we are ending DMA for
2936 *
2937 *	Clears the ATA_DMA_START flag in the dma control register
2938 *
2939 *	May be used as the bmdma_stop() entry in ata_port_operations.
2940 *
2941 *	LOCKING:
2942 *	spin_lock_irqsave(host lock)
2943 */
2944void ata_bmdma_stop(struct ata_queued_cmd *qc)
2945{
2946	struct ata_port *ap = qc->ap;
2947	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2948
2949	/* clear start/stop bit */
2950	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2951		 mmio + ATA_DMA_CMD);
2952
2953	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2954	ata_sff_dma_pause(ap);
2955}
2956EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2957
2958/**
2959 *	ata_bmdma_status - Read PCI IDE BMDMA status
2960 *	@ap: Port associated with this ATA transaction.
2961 *
2962 *	Read and return BMDMA status register.
2963 *
2964 *	May be used as the bmdma_status() entry in ata_port_operations.
2965 *
2966 *	LOCKING:
2967 *	spin_lock_irqsave(host lock)
2968 */
2969u8 ata_bmdma_status(struct ata_port *ap)
2970{
2971	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2972}
2973EXPORT_SYMBOL_GPL(ata_bmdma_status);
2974
2975
2976/**
2977 *	ata_bmdma_port_start - Set port up for bmdma.
2978 *	@ap: Port to initialize
2979 *
2980 *	Called just after data structures for each port are
2981 *	initialized.  Allocates space for PRD table.
2982 *
2983 *	May be used as the port_start() entry in ata_port_operations.
2984 *
2985 *	LOCKING:
2986 *	Inherited from caller.
2987 */
2988int ata_bmdma_port_start(struct ata_port *ap)
2989{
2990	if (ap->mwdma_mask || ap->udma_mask) {
2991		ap->bmdma_prd =
2992			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2993					    &ap->bmdma_prd_dma, GFP_KERNEL);
2994		if (!ap->bmdma_prd)
2995			return -ENOMEM;
2996	}
2997
2998	return 0;
2999}
3000EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3001
3002/**
3003 *	ata_bmdma_port_start32 - Set port up for dma.
3004 *	@ap: Port to initialize
3005 *
3006 *	Called just after data structures for each port are
3007 *	initialized.  Enables 32bit PIO and allocates space for PRD
3008 *	table.
3009 *
3010 *	May be used as the port_start() entry in ata_port_operations for
3011 *	devices that are capable of 32bit PIO.
3012 *
3013 *	LOCKING:
3014 *	Inherited from caller.
3015 */
3016int ata_bmdma_port_start32(struct ata_port *ap)
3017{
3018	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3019	return ata_bmdma_port_start(ap);
3020}
3021EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3022
3023#ifdef CONFIG_PCI
3024
3025/**
3026 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3027 *	@pdev: PCI device
3028 *
3029 *	Some PCI ATA devices report simplex mode but in fact can be told to
3030 *	enter non simplex mode. This implements the necessary logic to
3031 *	perform the task on such devices. Calling it on other devices will
3032 *	have -undefined- behaviour.
3033 */
3034int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3035{
3036#ifdef CONFIG_HAS_IOPORT
3037	unsigned long bmdma = pci_resource_start(pdev, 4);
3038	u8 simplex;
3039
3040	if (bmdma == 0)
3041		return -ENOENT;
3042
3043	simplex = inb(bmdma + 0x02);
3044	outb(simplex & 0x60, bmdma + 0x02);
3045	simplex = inb(bmdma + 0x02);
3046	if (simplex & 0x80)
3047		return -EOPNOTSUPP;
3048	return 0;
3049#else
3050	return -ENOENT;
3051#endif /* CONFIG_HAS_IOPORT */
3052}
3053EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3054
3055static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3056{
3057	int i;
3058
3059	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3060
3061	for (i = 0; i < 2; i++) {
3062		host->ports[i]->mwdma_mask = 0;
3063		host->ports[i]->udma_mask = 0;
3064	}
3065}
3066
3067/**
3068 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3069 *	@host: target ATA host
3070 *
3071 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3072 *
3073 *	LOCKING:
3074 *	Inherited from calling layer (may sleep).
3075 */
3076void ata_pci_bmdma_init(struct ata_host *host)
3077{
3078	struct device *gdev = host->dev;
3079	struct pci_dev *pdev = to_pci_dev(gdev);
3080	int i, rc;
3081
3082	/* No BAR4 allocation: No DMA */
3083	if (pci_resource_start(pdev, 4) == 0) {
3084		ata_bmdma_nodma(host, "BAR4 is zero");
3085		return;
3086	}
3087
3088	/*
3089	 * Some controllers require BMDMA region to be initialized
3090	 * even if DMA is not in use to clear IRQ status via
3091	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3092	 * regardless of dma masks.
3093	 */
3094	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3095	if (rc)
3096		ata_bmdma_nodma(host, "failed to set dma mask");
3097
3098	/* request and iomap DMA region */
3099	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3100	if (rc) {
3101		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3102		return;
3103	}
3104	host->iomap = pcim_iomap_table(pdev);
3105
3106	for (i = 0; i < 2; i++) {
3107		struct ata_port *ap = host->ports[i];
3108		void __iomem *bmdma = host->iomap[4] + 8 * i;
3109
3110		if (ata_port_is_dummy(ap))
3111			continue;
3112
3113		ap->ioaddr.bmdma_addr = bmdma;
3114		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3115		    (ioread8(bmdma + 2) & 0x80))
3116			host->flags |= ATA_HOST_SIMPLEX;
3117
3118		ata_port_desc(ap, "bmdma 0x%llx",
3119		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3120	}
3121}
3122EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3123
3124/**
3125 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3126 *	@pdev: target PCI device
3127 *	@ppi: array of port_info, must be enough for two ports
3128 *	@r_host: out argument for the initialized ATA host
3129 *
3130 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3131 *	resources and initialize it accordingly in one go.
3132 *
3133 *	LOCKING:
3134 *	Inherited from calling layer (may sleep).
3135 *
3136 *	RETURNS:
3137 *	0 on success, -errno otherwise.
3138 */
3139int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3140			       const struct ata_port_info * const * ppi,
3141			       struct ata_host **r_host)
3142{
3143	int rc;
3144
3145	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3146	if (rc)
3147		return rc;
3148
3149	ata_pci_bmdma_init(*r_host);
3150	return 0;
3151}
3152EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3153
3154/**
3155 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3156 *	@pdev: Controller to be initialized
3157 *	@ppi: array of port_info, must be enough for two ports
3158 *	@sht: scsi_host_template to use when registering the host
3159 *	@host_priv: host private_data
3160 *	@hflags: host flags
3161 *
3162 *	This function is similar to ata_pci_sff_init_one() but also
3163 *	takes care of BMDMA initialization.
3164 *
3165 *	LOCKING:
3166 *	Inherited from PCI layer (may sleep).
3167 *
3168 *	RETURNS:
3169 *	Zero on success, negative on errno-based value on error.
3170 */
3171int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3172			   const struct ata_port_info * const * ppi,
3173			   const struct scsi_host_template *sht, void *host_priv,
3174			   int hflags)
3175{
3176	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3177}
3178EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3179
3180#endif /* CONFIG_PCI */
3181#endif /* CONFIG_ATA_BMDMA */
3182
3183/**
3184 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3185 *	@ap: Port to initialize
3186 *
3187 *	Called on port allocation to initialize SFF/BMDMA specific
3188 *	fields.
3189 *
3190 *	LOCKING:
3191 *	None.
3192 */
3193void ata_sff_port_init(struct ata_port *ap)
3194{
3195	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3196	ap->ctl = ATA_DEVCTL_OBS;
3197	ap->last_ctl = 0xFF;
3198}
3199
3200int __init ata_sff_init(void)
3201{
3202	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3203	if (!ata_sff_wq)
3204		return -ENOMEM;
3205
3206	return 0;
3207}
3208
3209void ata_sff_exit(void)
3210{
3211	destroy_workqueue(ata_sff_wq);
3212}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   7 *		    on emails.
   8 *
   9 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2006 Jeff Garzik
  11 *
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/gfp.h>
  21#include <linux/pci.h>
  22#include <linux/module.h>
  23#include <linux/libata.h>
  24#include <linux/highmem.h>
  25
  26#include "libata.h"
  27
  28static struct workqueue_struct *ata_sff_wq;
  29
  30const struct ata_port_operations ata_sff_port_ops = {
  31	.inherits		= &ata_base_port_ops,
  32
  33	.qc_prep		= ata_noop_qc_prep,
  34	.qc_issue		= ata_sff_qc_issue,
  35	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  36
  37	.freeze			= ata_sff_freeze,
  38	.thaw			= ata_sff_thaw,
  39	.prereset		= ata_sff_prereset,
  40	.softreset		= ata_sff_softreset,
  41	.hardreset		= sata_sff_hardreset,
  42	.postreset		= ata_sff_postreset,
  43	.error_handler		= ata_sff_error_handler,
  44
  45	.sff_dev_select		= ata_sff_dev_select,
  46	.sff_check_status	= ata_sff_check_status,
  47	.sff_tf_load		= ata_sff_tf_load,
  48	.sff_tf_read		= ata_sff_tf_read,
  49	.sff_exec_command	= ata_sff_exec_command,
  50	.sff_data_xfer		= ata_sff_data_xfer,
  51	.sff_drain_fifo		= ata_sff_drain_fifo,
  52
  53	.lost_interrupt		= ata_sff_lost_interrupt,
  54};
  55EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  56
  57/**
  58 *	ata_sff_check_status - Read device status reg & clear interrupt
  59 *	@ap: port where the device is
  60 *
  61 *	Reads ATA taskfile status register for currently-selected device
  62 *	and return its value. This also clears pending interrupts
  63 *      from this device
  64 *
  65 *	LOCKING:
  66 *	Inherited from caller.
  67 */
  68u8 ata_sff_check_status(struct ata_port *ap)
  69{
  70	return ioread8(ap->ioaddr.status_addr);
  71}
  72EXPORT_SYMBOL_GPL(ata_sff_check_status);
  73
  74/**
  75 *	ata_sff_altstatus - Read device alternate status reg
  76 *	@ap: port where the device is
 
  77 *
  78 *	Reads ATA taskfile alternate status register for
  79 *	currently-selected device and return its value.
  80 *
  81 *	Note: may NOT be used as the check_altstatus() entry in
  82 *	ata_port_operations.
  83 *
  84 *	LOCKING:
  85 *	Inherited from caller.
  86 */
  87static u8 ata_sff_altstatus(struct ata_port *ap)
  88{
  89	if (ap->ops->sff_check_altstatus)
  90		return ap->ops->sff_check_altstatus(ap);
  91
  92	return ioread8(ap->ioaddr.altstatus_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95/**
  96 *	ata_sff_irq_status - Check if the device is busy
  97 *	@ap: port where the device is
  98 *
  99 *	Determine if the port is currently busy. Uses altstatus
 100 *	if available in order to avoid clearing shared IRQ status
 101 *	when finding an IRQ source. Non ctl capable devices don't
 102 *	share interrupt lines fortunately for us.
 103 *
 104 *	LOCKING:
 105 *	Inherited from caller.
 106 */
 107static u8 ata_sff_irq_status(struct ata_port *ap)
 108{
 109	u8 status;
 110
 111	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 112		status = ata_sff_altstatus(ap);
 113		/* Not us: We are busy */
 114		if (status & ATA_BUSY)
 115			return status;
 116	}
 117	/* Clear INTRQ latch */
 118	status = ap->ops->sff_check_status(ap);
 119	return status;
 120}
 121
 122/**
 123 *	ata_sff_sync - Flush writes
 124 *	@ap: Port to wait for.
 125 *
 126 *	CAUTION:
 127 *	If we have an mmio device with no ctl and no altstatus
 128 *	method this will fail. No such devices are known to exist.
 129 *
 130 *	LOCKING:
 131 *	Inherited from caller.
 132 */
 133
 134static void ata_sff_sync(struct ata_port *ap)
 135{
 136	if (ap->ops->sff_check_altstatus)
 137		ap->ops->sff_check_altstatus(ap);
 138	else if (ap->ioaddr.altstatus_addr)
 139		ioread8(ap->ioaddr.altstatus_addr);
 140}
 141
 142/**
 143 *	ata_sff_pause		-	Flush writes and wait 400nS
 144 *	@ap: Port to pause for.
 145 *
 146 *	CAUTION:
 147 *	If we have an mmio device with no ctl and no altstatus
 148 *	method this will fail. No such devices are known to exist.
 149 *
 150 *	LOCKING:
 151 *	Inherited from caller.
 152 */
 153
 154void ata_sff_pause(struct ata_port *ap)
 155{
 156	ata_sff_sync(ap);
 157	ndelay(400);
 158}
 159EXPORT_SYMBOL_GPL(ata_sff_pause);
 160
 161/**
 162 *	ata_sff_dma_pause	-	Pause before commencing DMA
 163 *	@ap: Port to pause for.
 164 *
 165 *	Perform I/O fencing and ensure sufficient cycle delays occur
 166 *	for the HDMA1:0 transition
 167 */
 168
 169void ata_sff_dma_pause(struct ata_port *ap)
 170{
 171	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 172		/* An altstatus read will cause the needed delay without
 173		   messing up the IRQ status */
 174		ata_sff_altstatus(ap);
 
 175		return;
 176	}
 177	/* There are no DMA controllers without ctl. BUG here to ensure
 178	   we never violate the HDMA1:0 transition timing and risk
 179	   corruption. */
 180	BUG();
 181}
 182EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 183
 184/**
 185 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
 186 *	@ap: port containing status register to be polled
 187 *	@tmout_pat: impatience timeout in msecs
 188 *	@tmout: overall timeout in msecs
 189 *
 190 *	Sleep until ATA Status register bit BSY clears,
 191 *	or a timeout occurs.
 192 *
 193 *	LOCKING:
 194 *	Kernel thread context (may sleep).
 195 *
 196 *	RETURNS:
 197 *	0 on success, -errno otherwise.
 198 */
 199int ata_sff_busy_sleep(struct ata_port *ap,
 200		       unsigned long tmout_pat, unsigned long tmout)
 201{
 202	unsigned long timer_start, timeout;
 203	u8 status;
 204
 205	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 206	timer_start = jiffies;
 207	timeout = ata_deadline(timer_start, tmout_pat);
 208	while (status != 0xff && (status & ATA_BUSY) &&
 209	       time_before(jiffies, timeout)) {
 210		ata_msleep(ap, 50);
 211		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 212	}
 213
 214	if (status != 0xff && (status & ATA_BUSY))
 215		ata_port_warn(ap,
 216			      "port is slow to respond, please be patient (Status 0x%x)\n",
 217			      status);
 218
 219	timeout = ata_deadline(timer_start, tmout);
 220	while (status != 0xff && (status & ATA_BUSY) &&
 221	       time_before(jiffies, timeout)) {
 222		ata_msleep(ap, 50);
 223		status = ap->ops->sff_check_status(ap);
 224	}
 225
 226	if (status == 0xff)
 227		return -ENODEV;
 228
 229	if (status & ATA_BUSY) {
 230		ata_port_err(ap,
 231			     "port failed to respond (%lu secs, Status 0x%x)\n",
 232			     DIV_ROUND_UP(tmout, 1000), status);
 233		return -EBUSY;
 234	}
 235
 236	return 0;
 237}
 238EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 239
 240static int ata_sff_check_ready(struct ata_link *link)
 241{
 242	u8 status = link->ap->ops->sff_check_status(link->ap);
 243
 244	return ata_check_ready(status);
 245}
 246
 247/**
 248 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 249 *	@link: SFF link to wait ready status for
 250 *	@deadline: deadline jiffies for the operation
 251 *
 252 *	Sleep until ATA Status register bit BSY clears, or timeout
 253 *	occurs.
 254 *
 255 *	LOCKING:
 256 *	Kernel thread context (may sleep).
 257 *
 258 *	RETURNS:
 259 *	0 on success, -errno otherwise.
 260 */
 261int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 262{
 263	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 264}
 265EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 266
 267/**
 268 *	ata_sff_set_devctl - Write device control reg
 269 *	@ap: port where the device is
 270 *	@ctl: value to write
 271 *
 272 *	Writes ATA taskfile device control register.
 273 *
 274 *	Note: may NOT be used as the sff_set_devctl() entry in
 275 *	ata_port_operations.
 276 *
 277 *	LOCKING:
 278 *	Inherited from caller.
 279 */
 280static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 281{
 282	if (ap->ops->sff_set_devctl)
 283		ap->ops->sff_set_devctl(ap, ctl);
 284	else
 
 
 285		iowrite8(ctl, ap->ioaddr.ctl_addr);
 
 
 
 
 286}
 287
 288/**
 289 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 290 *	@ap: ATA channel to manipulate
 291 *	@device: ATA device (numbered from zero) to select
 292 *
 293 *	Use the method defined in the ATA specification to
 294 *	make either device 0, or device 1, active on the
 295 *	ATA channel.  Works with both PIO and MMIO.
 296 *
 297 *	May be used as the dev_select() entry in ata_port_operations.
 298 *
 299 *	LOCKING:
 300 *	caller.
 301 */
 302void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 303{
 304	u8 tmp;
 305
 306	if (device == 0)
 307		tmp = ATA_DEVICE_OBS;
 308	else
 309		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 310
 311	iowrite8(tmp, ap->ioaddr.device_addr);
 312	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 313}
 314EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 315
 316/**
 317 *	ata_dev_select - Select device 0/1 on ATA bus
 318 *	@ap: ATA channel to manipulate
 319 *	@device: ATA device (numbered from zero) to select
 320 *	@wait: non-zero to wait for Status register BSY bit to clear
 321 *	@can_sleep: non-zero if context allows sleeping
 322 *
 323 *	Use the method defined in the ATA specification to
 324 *	make either device 0, or device 1, active on the
 325 *	ATA channel.
 326 *
 327 *	This is a high-level version of ata_sff_dev_select(), which
 328 *	additionally provides the services of inserting the proper
 329 *	pauses and status polling, where needed.
 330 *
 331 *	LOCKING:
 332 *	caller.
 333 */
 334static void ata_dev_select(struct ata_port *ap, unsigned int device,
 335			   unsigned int wait, unsigned int can_sleep)
 336{
 337	if (ata_msg_probe(ap))
 338		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 339			      device, wait);
 340
 341	if (wait)
 342		ata_wait_idle(ap);
 343
 344	ap->ops->sff_dev_select(ap, device);
 345
 346	if (wait) {
 347		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 348			ata_msleep(ap, 150);
 349		ata_wait_idle(ap);
 350	}
 351}
 352
 353/**
 354 *	ata_sff_irq_on - Enable interrupts on a port.
 355 *	@ap: Port on which interrupts are enabled.
 356 *
 357 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 358 *	wait for idle, clear any pending interrupts.
 359 *
 360 *	Note: may NOT be used as the sff_irq_on() entry in
 361 *	ata_port_operations.
 362 *
 363 *	LOCKING:
 364 *	Inherited from caller.
 365 */
 366void ata_sff_irq_on(struct ata_port *ap)
 367{
 368	struct ata_ioports *ioaddr = &ap->ioaddr;
 369
 370	if (ap->ops->sff_irq_on) {
 371		ap->ops->sff_irq_on(ap);
 372		return;
 373	}
 374
 375	ap->ctl &= ~ATA_NIEN;
 376	ap->last_ctl = ap->ctl;
 377
 378	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 379		ata_sff_set_devctl(ap, ap->ctl);
 380	ata_wait_idle(ap);
 381
 382	if (ap->ops->sff_irq_clear)
 383		ap->ops->sff_irq_clear(ap);
 384}
 385EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 386
 387/**
 388 *	ata_sff_tf_load - send taskfile registers to host controller
 389 *	@ap: Port to which output is sent
 390 *	@tf: ATA taskfile register set
 391 *
 392 *	Outputs ATA taskfile to standard ATA host controller.
 393 *
 394 *	LOCKING:
 395 *	Inherited from caller.
 396 */
 397void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 398{
 399	struct ata_ioports *ioaddr = &ap->ioaddr;
 400	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 401
 402	if (tf->ctl != ap->last_ctl) {
 403		if (ioaddr->ctl_addr)
 404			iowrite8(tf->ctl, ioaddr->ctl_addr);
 405		ap->last_ctl = tf->ctl;
 406		ata_wait_idle(ap);
 407	}
 408
 409	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 410		WARN_ON_ONCE(!ioaddr->ctl_addr);
 411		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 412		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 413		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 414		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 415		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 416		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 417			tf->hob_feature,
 418			tf->hob_nsect,
 419			tf->hob_lbal,
 420			tf->hob_lbam,
 421			tf->hob_lbah);
 422	}
 423
 424	if (is_addr) {
 425		iowrite8(tf->feature, ioaddr->feature_addr);
 426		iowrite8(tf->nsect, ioaddr->nsect_addr);
 427		iowrite8(tf->lbal, ioaddr->lbal_addr);
 428		iowrite8(tf->lbam, ioaddr->lbam_addr);
 429		iowrite8(tf->lbah, ioaddr->lbah_addr);
 430		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 431			tf->feature,
 432			tf->nsect,
 433			tf->lbal,
 434			tf->lbam,
 435			tf->lbah);
 436	}
 437
 438	if (tf->flags & ATA_TFLAG_DEVICE) {
 439		iowrite8(tf->device, ioaddr->device_addr);
 440		VPRINTK("device 0x%X\n", tf->device);
 441	}
 442
 443	ata_wait_idle(ap);
 444}
 445EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 446
 447/**
 448 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 449 *	@ap: Port from which input is read
 450 *	@tf: ATA taskfile register set for storing input
 451 *
 452 *	Reads ATA taskfile registers for currently-selected device
 453 *	into @tf. Assumes the device has a fully SFF compliant task file
 454 *	layout and behaviour. If you device does not (eg has a different
 455 *	status method) then you will need to provide a replacement tf_read
 456 *
 457 *	LOCKING:
 458 *	Inherited from caller.
 459 */
 460void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 461{
 462	struct ata_ioports *ioaddr = &ap->ioaddr;
 463
 464	tf->command = ata_sff_check_status(ap);
 465	tf->feature = ioread8(ioaddr->error_addr);
 466	tf->nsect = ioread8(ioaddr->nsect_addr);
 467	tf->lbal = ioread8(ioaddr->lbal_addr);
 468	tf->lbam = ioread8(ioaddr->lbam_addr);
 469	tf->lbah = ioread8(ioaddr->lbah_addr);
 470	tf->device = ioread8(ioaddr->device_addr);
 471
 472	if (tf->flags & ATA_TFLAG_LBA48) {
 473		if (likely(ioaddr->ctl_addr)) {
 474			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 475			tf->hob_feature = ioread8(ioaddr->error_addr);
 476			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 477			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 478			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 479			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 480			iowrite8(tf->ctl, ioaddr->ctl_addr);
 481			ap->last_ctl = tf->ctl;
 482		} else
 483			WARN_ON_ONCE(1);
 484	}
 485}
 486EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 487
 488/**
 489 *	ata_sff_exec_command - issue ATA command to host controller
 490 *	@ap: port to which command is being issued
 491 *	@tf: ATA taskfile register set
 492 *
 493 *	Issues ATA command, with proper synchronization with interrupt
 494 *	handler / other threads.
 495 *
 496 *	LOCKING:
 497 *	spin_lock_irqsave(host lock)
 498 */
 499void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 500{
 501	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 502
 503	iowrite8(tf->command, ap->ioaddr.command_addr);
 504	ata_sff_pause(ap);
 505}
 506EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 507
 508/**
 509 *	ata_tf_to_host - issue ATA taskfile to host controller
 510 *	@ap: port to which command is being issued
 511 *	@tf: ATA taskfile register set
 
 512 *
 513 *	Issues ATA taskfile register set to ATA host controller,
 514 *	with proper synchronization with interrupt handler and
 515 *	other threads.
 516 *
 517 *	LOCKING:
 518 *	spin_lock_irqsave(host lock)
 519 */
 520static inline void ata_tf_to_host(struct ata_port *ap,
 521				  const struct ata_taskfile *tf)
 
 522{
 
 523	ap->ops->sff_tf_load(ap, tf);
 
 524	ap->ops->sff_exec_command(ap, tf);
 525}
 526
 527/**
 528 *	ata_sff_data_xfer - Transfer data by PIO
 529 *	@qc: queued command
 530 *	@buf: data buffer
 531 *	@buflen: buffer length
 532 *	@rw: read/write
 533 *
 534 *	Transfer data from/to the device data register by PIO.
 535 *
 536 *	LOCKING:
 537 *	Inherited from caller.
 538 *
 539 *	RETURNS:
 540 *	Bytes consumed.
 541 */
 542unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 543			       unsigned int buflen, int rw)
 544{
 545	struct ata_port *ap = qc->dev->link->ap;
 546	void __iomem *data_addr = ap->ioaddr.data_addr;
 547	unsigned int words = buflen >> 1;
 548
 549	/* Transfer multiple of 2 bytes */
 550	if (rw == READ)
 551		ioread16_rep(data_addr, buf, words);
 552	else
 553		iowrite16_rep(data_addr, buf, words);
 554
 555	/* Transfer trailing byte, if any. */
 556	if (unlikely(buflen & 0x01)) {
 557		unsigned char pad[2] = { };
 558
 559		/* Point buf to the tail of buffer */
 560		buf += buflen - 1;
 561
 562		/*
 563		 * Use io*16_rep() accessors here as well to avoid pointlessly
 564		 * swapping bytes to and from on the big endian machines...
 565		 */
 566		if (rw == READ) {
 567			ioread16_rep(data_addr, pad, 1);
 568			*buf = pad[0];
 569		} else {
 570			pad[0] = *buf;
 571			iowrite16_rep(data_addr, pad, 1);
 572		}
 573		words++;
 574	}
 575
 576	return words << 1;
 577}
 578EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 579
 580/**
 581 *	ata_sff_data_xfer32 - Transfer data by PIO
 582 *	@qc: queued command
 583 *	@buf: data buffer
 584 *	@buflen: buffer length
 585 *	@rw: read/write
 586 *
 587 *	Transfer data from/to the device data register by PIO using 32bit
 588 *	I/O operations.
 589 *
 590 *	LOCKING:
 591 *	Inherited from caller.
 592 *
 593 *	RETURNS:
 594 *	Bytes consumed.
 595 */
 596
 597unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 598			       unsigned int buflen, int rw)
 599{
 600	struct ata_device *dev = qc->dev;
 601	struct ata_port *ap = dev->link->ap;
 602	void __iomem *data_addr = ap->ioaddr.data_addr;
 603	unsigned int words = buflen >> 2;
 604	int slop = buflen & 3;
 605
 606	if (!(ap->pflags & ATA_PFLAG_PIO32))
 607		return ata_sff_data_xfer(qc, buf, buflen, rw);
 608
 609	/* Transfer multiple of 4 bytes */
 610	if (rw == READ)
 611		ioread32_rep(data_addr, buf, words);
 612	else
 613		iowrite32_rep(data_addr, buf, words);
 614
 615	/* Transfer trailing bytes, if any */
 616	if (unlikely(slop)) {
 617		unsigned char pad[4] = { };
 618
 619		/* Point buf to the tail of buffer */
 620		buf += buflen - slop;
 621
 622		/*
 623		 * Use io*_rep() accessors here as well to avoid pointlessly
 624		 * swapping bytes to and from on the big endian machines...
 625		 */
 626		if (rw == READ) {
 627			if (slop < 3)
 628				ioread16_rep(data_addr, pad, 1);
 629			else
 630				ioread32_rep(data_addr, pad, 1);
 631			memcpy(buf, pad, slop);
 632		} else {
 633			memcpy(pad, buf, slop);
 634			if (slop < 3)
 635				iowrite16_rep(data_addr, pad, 1);
 636			else
 637				iowrite32_rep(data_addr, pad, 1);
 638		}
 639	}
 640	return (buflen + 1) & ~1;
 641}
 642EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644/**
 645 *	ata_pio_sector - Transfer a sector of data.
 646 *	@qc: Command on going
 647 *
 648 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 649 *
 650 *	LOCKING:
 651 *	Inherited from caller.
 652 */
 653static void ata_pio_sector(struct ata_queued_cmd *qc)
 654{
 655	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 656	struct ata_port *ap = qc->ap;
 657	struct page *page;
 658	unsigned int offset;
 659	unsigned char *buf;
 660
 661	if (!qc->cursg) {
 662		qc->curbytes = qc->nbytes;
 663		return;
 664	}
 665	if (qc->curbytes == qc->nbytes - qc->sect_size)
 666		ap->hsm_task_state = HSM_ST_LAST;
 667
 668	page = sg_page(qc->cursg);
 669	offset = qc->cursg->offset + qc->cursg_ofs;
 670
 671	/* get the current page and offset */
 672	page = nth_page(page, (offset >> PAGE_SHIFT));
 673	offset %= PAGE_SIZE;
 674
 675	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 
 
 
 676
 677	/* do the actual data transfer */
 678	buf = kmap_atomic(page);
 679	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
 680	kunmap_atomic(buf);
 
 
 
 681
 682	if (!do_write && !PageSlab(page))
 683		flush_dcache_page(page);
 
 
 
 684
 685	qc->curbytes += qc->sect_size;
 686	qc->cursg_ofs += qc->sect_size;
 687
 688	if (qc->cursg_ofs == qc->cursg->length) {
 689		qc->cursg = sg_next(qc->cursg);
 690		if (!qc->cursg)
 691			ap->hsm_task_state = HSM_ST_LAST;
 692		qc->cursg_ofs = 0;
 693	}
 694}
 695
 696/**
 697 *	ata_pio_sectors - Transfer one or many sectors.
 698 *	@qc: Command on going
 699 *
 700 *	Transfer one or many sectors of data from/to the
 701 *	ATA device for the DRQ request.
 702 *
 703 *	LOCKING:
 704 *	Inherited from caller.
 705 */
 706static void ata_pio_sectors(struct ata_queued_cmd *qc)
 707{
 708	if (is_multi_taskfile(&qc->tf)) {
 709		/* READ/WRITE MULTIPLE */
 710		unsigned int nsect;
 711
 712		WARN_ON_ONCE(qc->dev->multi_count == 0);
 713
 714		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 715			    qc->dev->multi_count);
 716		while (nsect--)
 717			ata_pio_sector(qc);
 718	} else
 719		ata_pio_sector(qc);
 720
 721	ata_sff_sync(qc->ap); /* flush */
 722}
 723
 724/**
 725 *	atapi_send_cdb - Write CDB bytes to hardware
 726 *	@ap: Port to which ATAPI device is attached.
 727 *	@qc: Taskfile currently active
 728 *
 729 *	When device has indicated its readiness to accept
 730 *	a CDB, this function is called.  Send the CDB.
 731 *
 732 *	LOCKING:
 733 *	caller.
 734 */
 735static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 736{
 737	/* send SCSI cdb */
 738	DPRINTK("send cdb\n");
 739	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 740
 741	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 742	ata_sff_sync(ap);
 743	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 744	   or is bmdma_start guaranteed to do it ? */
 745	switch (qc->tf.protocol) {
 746	case ATAPI_PROT_PIO:
 747		ap->hsm_task_state = HSM_ST;
 748		break;
 749	case ATAPI_PROT_NODATA:
 750		ap->hsm_task_state = HSM_ST_LAST;
 751		break;
 752#ifdef CONFIG_ATA_BMDMA
 753	case ATAPI_PROT_DMA:
 754		ap->hsm_task_state = HSM_ST_LAST;
 755		/* initiate bmdma */
 
 756		ap->ops->bmdma_start(qc);
 757		break;
 758#endif /* CONFIG_ATA_BMDMA */
 759	default:
 760		BUG();
 761	}
 762}
 763
 764/**
 765 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 766 *	@qc: Command on going
 767 *	@bytes: number of bytes
 768 *
 769 *	Transfer Transfer data from/to the ATAPI device.
 770 *
 771 *	LOCKING:
 772 *	Inherited from caller.
 773 *
 774 */
 775static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 776{
 777	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 778	struct ata_port *ap = qc->ap;
 779	struct ata_device *dev = qc->dev;
 780	struct ata_eh_info *ehi = &dev->link->eh_info;
 781	struct scatterlist *sg;
 782	struct page *page;
 783	unsigned char *buf;
 784	unsigned int offset, count, consumed;
 785
 786next_sg:
 787	sg = qc->cursg;
 788	if (unlikely(!sg)) {
 789		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 790				  "buf=%u cur=%u bytes=%u",
 791				  qc->nbytes, qc->curbytes, bytes);
 792		return -1;
 793	}
 794
 795	page = sg_page(sg);
 796	offset = sg->offset + qc->cursg_ofs;
 797
 798	/* get the current page and offset */
 799	page = nth_page(page, (offset >> PAGE_SHIFT));
 800	offset %= PAGE_SIZE;
 801
 802	/* don't overrun current sg */
 803	count = min(sg->length - qc->cursg_ofs, bytes);
 804
 805	/* don't cross page boundaries */
 806	count = min(count, (unsigned int)PAGE_SIZE - offset);
 807
 808	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 809
 810	/* do the actual data transfer */
 811	buf = kmap_atomic(page);
 812	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 813	kunmap_atomic(buf);
 814
 815	bytes -= min(bytes, consumed);
 816	qc->curbytes += count;
 817	qc->cursg_ofs += count;
 818
 819	if (qc->cursg_ofs == sg->length) {
 820		qc->cursg = sg_next(qc->cursg);
 821		qc->cursg_ofs = 0;
 822	}
 823
 824	/*
 825	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 826	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 827	 * check correctly as it doesn't know if it is the last request being
 828	 * made. Somebody should implement a proper sanity check.
 829	 */
 830	if (bytes)
 831		goto next_sg;
 832	return 0;
 833}
 834
 835/**
 836 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 837 *	@qc: Command on going
 838 *
 839 *	Transfer Transfer data from/to the ATAPI device.
 840 *
 841 *	LOCKING:
 842 *	Inherited from caller.
 843 */
 844static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 845{
 846	struct ata_port *ap = qc->ap;
 847	struct ata_device *dev = qc->dev;
 848	struct ata_eh_info *ehi = &dev->link->eh_info;
 849	unsigned int ireason, bc_lo, bc_hi, bytes;
 850	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 851
 852	/* Abuse qc->result_tf for temp storage of intermediate TF
 853	 * here to save some kernel stack usage.
 854	 * For normal completion, qc->result_tf is not relevant. For
 855	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 856	 * So, the correctness of qc->result_tf is not affected.
 857	 */
 858	ap->ops->sff_tf_read(ap, &qc->result_tf);
 859	ireason = qc->result_tf.nsect;
 860	bc_lo = qc->result_tf.lbam;
 861	bc_hi = qc->result_tf.lbah;
 862	bytes = (bc_hi << 8) | bc_lo;
 863
 864	/* shall be cleared to zero, indicating xfer of data */
 865	if (unlikely(ireason & ATAPI_COD))
 866		goto atapi_check;
 867
 868	/* make sure transfer direction matches expected */
 869	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 870	if (unlikely(do_write != i_write))
 871		goto atapi_check;
 872
 873	if (unlikely(!bytes))
 874		goto atapi_check;
 875
 876	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 877
 878	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 879		goto err_out;
 880	ata_sff_sync(ap); /* flush */
 881
 882	return;
 883
 884 atapi_check:
 885	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 886			  ireason, bytes);
 887 err_out:
 888	qc->err_mask |= AC_ERR_HSM;
 889	ap->hsm_task_state = HSM_ST_ERR;
 890}
 891
 892/**
 893 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 894 *	@ap: the target ata_port
 895 *	@qc: qc on going
 896 *
 897 *	RETURNS:
 898 *	1 if ok in workqueue, 0 otherwise.
 899 */
 900static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 901						struct ata_queued_cmd *qc)
 902{
 903	if (qc->tf.flags & ATA_TFLAG_POLLING)
 904		return 1;
 905
 906	if (ap->hsm_task_state == HSM_ST_FIRST) {
 907		if (qc->tf.protocol == ATA_PROT_PIO &&
 908		   (qc->tf.flags & ATA_TFLAG_WRITE))
 909		    return 1;
 910
 911		if (ata_is_atapi(qc->tf.protocol) &&
 912		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 913			return 1;
 914	}
 915
 916	return 0;
 917}
 918
 919/**
 920 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 921 *	@qc: Command to complete
 922 *	@in_wq: 1 if called from workqueue, 0 otherwise
 923 *
 924 *	Finish @qc which is running on standard HSM.
 925 *
 926 *	LOCKING:
 927 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 928 *	Otherwise, none on entry and grabs host lock.
 929 */
 930static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 931{
 932	struct ata_port *ap = qc->ap;
 933
 934	if (ap->ops->error_handler) {
 935		if (in_wq) {
 936			/* EH might have kicked in while host lock is
 937			 * released.
 938			 */
 939			qc = ata_qc_from_tag(ap, qc->tag);
 940			if (qc) {
 941				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 942					ata_sff_irq_on(ap);
 943					ata_qc_complete(qc);
 944				} else
 945					ata_port_freeze(ap);
 946			}
 947		} else {
 948			if (likely(!(qc->err_mask & AC_ERR_HSM)))
 949				ata_qc_complete(qc);
 950			else
 951				ata_port_freeze(ap);
 952		}
 953	} else {
 954		if (in_wq) {
 955			ata_sff_irq_on(ap);
 956			ata_qc_complete(qc);
 957		} else
 958			ata_qc_complete(qc);
 
 
 959	}
 960}
 961
 962/**
 963 *	ata_sff_hsm_move - move the HSM to the next state.
 964 *	@ap: the target ata_port
 965 *	@qc: qc on going
 966 *	@status: current device status
 967 *	@in_wq: 1 if called from workqueue, 0 otherwise
 968 *
 969 *	RETURNS:
 970 *	1 when poll next status needed, 0 otherwise.
 971 */
 972int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 973		     u8 status, int in_wq)
 974{
 975	struct ata_link *link = qc->dev->link;
 976	struct ata_eh_info *ehi = &link->eh_info;
 977	int poll_next;
 978
 979	lockdep_assert_held(ap->lock);
 980
 981	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 982
 983	/* Make sure ata_sff_qc_issue() does not throw things
 984	 * like DMA polling into the workqueue. Notice that
 985	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 986	 */
 987	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 988
 989fsm_start:
 990	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
 991		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
 992
 993	switch (ap->hsm_task_state) {
 994	case HSM_ST_FIRST:
 995		/* Send first data block or PACKET CDB */
 996
 997		/* If polling, we will stay in the work queue after
 998		 * sending the data. Otherwise, interrupt handler
 999		 * takes over after sending the data.
1000		 */
1001		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1002
1003		/* check device status */
1004		if (unlikely((status & ATA_DRQ) == 0)) {
1005			/* handle BSY=0, DRQ=0 as error */
1006			if (likely(status & (ATA_ERR | ATA_DF)))
1007				/* device stops HSM for abort/error */
1008				qc->err_mask |= AC_ERR_DEV;
1009			else {
1010				/* HSM violation. Let EH handle this */
1011				ata_ehi_push_desc(ehi,
1012					"ST_FIRST: !(DRQ|ERR|DF)");
1013				qc->err_mask |= AC_ERR_HSM;
1014			}
1015
1016			ap->hsm_task_state = HSM_ST_ERR;
1017			goto fsm_start;
1018		}
1019
1020		/* Device should not ask for data transfer (DRQ=1)
1021		 * when it finds something wrong.
1022		 * We ignore DRQ here and stop the HSM by
1023		 * changing hsm_task_state to HSM_ST_ERR and
1024		 * let the EH abort the command or reset the device.
1025		 */
1026		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1027			/* Some ATAPI tape drives forget to clear the ERR bit
1028			 * when doing the next command (mostly request sense).
1029			 * We ignore ERR here to workaround and proceed sending
1030			 * the CDB.
1031			 */
1032			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1033				ata_ehi_push_desc(ehi, "ST_FIRST: "
1034					"DRQ=1 with device error, "
1035					"dev_stat 0x%X", status);
1036				qc->err_mask |= AC_ERR_HSM;
1037				ap->hsm_task_state = HSM_ST_ERR;
1038				goto fsm_start;
1039			}
1040		}
1041
1042		if (qc->tf.protocol == ATA_PROT_PIO) {
1043			/* PIO data out protocol.
1044			 * send first data block.
1045			 */
1046
1047			/* ata_pio_sectors() might change the state
1048			 * to HSM_ST_LAST. so, the state is changed here
1049			 * before ata_pio_sectors().
1050			 */
1051			ap->hsm_task_state = HSM_ST;
1052			ata_pio_sectors(qc);
1053		} else
1054			/* send CDB */
1055			atapi_send_cdb(ap, qc);
1056
1057		/* if polling, ata_sff_pio_task() handles the rest.
1058		 * otherwise, interrupt handler takes over from here.
1059		 */
1060		break;
1061
1062	case HSM_ST:
1063		/* complete command or read/write the data register */
1064		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1065			/* ATAPI PIO protocol */
1066			if ((status & ATA_DRQ) == 0) {
1067				/* No more data to transfer or device error.
1068				 * Device error will be tagged in HSM_ST_LAST.
1069				 */
1070				ap->hsm_task_state = HSM_ST_LAST;
1071				goto fsm_start;
1072			}
1073
1074			/* Device should not ask for data transfer (DRQ=1)
1075			 * when it finds something wrong.
1076			 * We ignore DRQ here and stop the HSM by
1077			 * changing hsm_task_state to HSM_ST_ERR and
1078			 * let the EH abort the command or reset the device.
1079			 */
1080			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1081				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1082					"DRQ=1 with device error, "
1083					"dev_stat 0x%X", status);
1084				qc->err_mask |= AC_ERR_HSM;
1085				ap->hsm_task_state = HSM_ST_ERR;
1086				goto fsm_start;
1087			}
1088
1089			atapi_pio_bytes(qc);
1090
1091			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1092				/* bad ireason reported by device */
1093				goto fsm_start;
1094
1095		} else {
1096			/* ATA PIO protocol */
1097			if (unlikely((status & ATA_DRQ) == 0)) {
1098				/* handle BSY=0, DRQ=0 as error */
1099				if (likely(status & (ATA_ERR | ATA_DF))) {
1100					/* device stops HSM for abort/error */
1101					qc->err_mask |= AC_ERR_DEV;
1102
1103					/* If diagnostic failed and this is
1104					 * IDENTIFY, it's likely a phantom
1105					 * device.  Mark hint.
1106					 */
1107					if (qc->dev->horkage &
1108					    ATA_HORKAGE_DIAGNOSTIC)
1109						qc->err_mask |=
1110							AC_ERR_NODEV_HINT;
1111				} else {
1112					/* HSM violation. Let EH handle this.
1113					 * Phantom devices also trigger this
1114					 * condition.  Mark hint.
1115					 */
1116					ata_ehi_push_desc(ehi, "ST-ATA: "
1117						"DRQ=0 without device error, "
1118						"dev_stat 0x%X", status);
1119					qc->err_mask |= AC_ERR_HSM |
1120							AC_ERR_NODEV_HINT;
1121				}
1122
1123				ap->hsm_task_state = HSM_ST_ERR;
1124				goto fsm_start;
1125			}
1126
1127			/* For PIO reads, some devices may ask for
1128			 * data transfer (DRQ=1) alone with ERR=1.
1129			 * We respect DRQ here and transfer one
1130			 * block of junk data before changing the
1131			 * hsm_task_state to HSM_ST_ERR.
1132			 *
1133			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1134			 * sense since the data block has been
1135			 * transferred to the device.
1136			 */
1137			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1138				/* data might be corrputed */
1139				qc->err_mask |= AC_ERR_DEV;
1140
1141				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1142					ata_pio_sectors(qc);
1143					status = ata_wait_idle(ap);
1144				}
1145
1146				if (status & (ATA_BUSY | ATA_DRQ)) {
1147					ata_ehi_push_desc(ehi, "ST-ATA: "
1148						"BUSY|DRQ persists on ERR|DF, "
1149						"dev_stat 0x%X", status);
1150					qc->err_mask |= AC_ERR_HSM;
1151				}
1152
1153				/* There are oddball controllers with
1154				 * status register stuck at 0x7f and
1155				 * lbal/m/h at zero which makes it
1156				 * pass all other presence detection
1157				 * mechanisms we have.  Set NODEV_HINT
1158				 * for it.  Kernel bz#7241.
1159				 */
1160				if (status == 0x7f)
1161					qc->err_mask |= AC_ERR_NODEV_HINT;
1162
1163				/* ata_pio_sectors() might change the
1164				 * state to HSM_ST_LAST. so, the state
1165				 * is changed after ata_pio_sectors().
1166				 */
1167				ap->hsm_task_state = HSM_ST_ERR;
1168				goto fsm_start;
1169			}
1170
1171			ata_pio_sectors(qc);
1172
1173			if (ap->hsm_task_state == HSM_ST_LAST &&
1174			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1175				/* all data read */
1176				status = ata_wait_idle(ap);
1177				goto fsm_start;
1178			}
1179		}
1180
1181		poll_next = 1;
1182		break;
1183
1184	case HSM_ST_LAST:
1185		if (unlikely(!ata_ok(status))) {
1186			qc->err_mask |= __ac_err_mask(status);
1187			ap->hsm_task_state = HSM_ST_ERR;
1188			goto fsm_start;
1189		}
1190
1191		/* no more data to transfer */
1192		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1193			ap->print_id, qc->dev->devno, status);
1194
1195		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1196
1197		ap->hsm_task_state = HSM_ST_IDLE;
1198
1199		/* complete taskfile transaction */
1200		ata_hsm_qc_complete(qc, in_wq);
1201
1202		poll_next = 0;
1203		break;
1204
1205	case HSM_ST_ERR:
1206		ap->hsm_task_state = HSM_ST_IDLE;
1207
1208		/* complete taskfile transaction */
1209		ata_hsm_qc_complete(qc, in_wq);
1210
1211		poll_next = 0;
1212		break;
1213	default:
1214		poll_next = 0;
1215		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1216		     ap->print_id, ap->hsm_task_state);
1217	}
1218
1219	return poll_next;
1220}
1221EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1222
1223void ata_sff_queue_work(struct work_struct *work)
1224{
1225	queue_work(ata_sff_wq, work);
1226}
1227EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1228
1229void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1230{
1231	queue_delayed_work(ata_sff_wq, dwork, delay);
1232}
1233EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1234
1235void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1236{
1237	struct ata_port *ap = link->ap;
1238
1239	WARN_ON((ap->sff_pio_task_link != NULL) &&
1240		(ap->sff_pio_task_link != link));
1241	ap->sff_pio_task_link = link;
1242
1243	/* may fail if ata_sff_flush_pio_task() in progress */
1244	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1245}
1246EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1247
1248void ata_sff_flush_pio_task(struct ata_port *ap)
1249{
1250	DPRINTK("ENTER\n");
1251
1252	cancel_delayed_work_sync(&ap->sff_pio_task);
1253
1254	/*
1255	 * We wanna reset the HSM state to IDLE.  If we do so without
1256	 * grabbing the port lock, critical sections protected by it which
1257	 * expect the HSM state to stay stable may get surprised.  For
1258	 * example, we may set IDLE in between the time
1259	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1260	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1261	 */
1262	spin_lock_irq(ap->lock);
1263	ap->hsm_task_state = HSM_ST_IDLE;
1264	spin_unlock_irq(ap->lock);
1265
1266	ap->sff_pio_task_link = NULL;
1267
1268	if (ata_msg_ctl(ap))
1269		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1270}
1271
1272static void ata_sff_pio_task(struct work_struct *work)
1273{
1274	struct ata_port *ap =
1275		container_of(work, struct ata_port, sff_pio_task.work);
1276	struct ata_link *link = ap->sff_pio_task_link;
1277	struct ata_queued_cmd *qc;
1278	u8 status;
1279	int poll_next;
1280
1281	spin_lock_irq(ap->lock);
1282
1283	BUG_ON(ap->sff_pio_task_link == NULL);
1284	/* qc can be NULL if timeout occurred */
1285	qc = ata_qc_from_tag(ap, link->active_tag);
1286	if (!qc) {
1287		ap->sff_pio_task_link = NULL;
1288		goto out_unlock;
1289	}
1290
1291fsm_start:
1292	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1293
1294	/*
1295	 * This is purely heuristic.  This is a fast path.
1296	 * Sometimes when we enter, BSY will be cleared in
1297	 * a chk-status or two.  If not, the drive is probably seeking
1298	 * or something.  Snooze for a couple msecs, then
1299	 * chk-status again.  If still busy, queue delayed work.
1300	 */
1301	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1302	if (status & ATA_BUSY) {
1303		spin_unlock_irq(ap->lock);
1304		ata_msleep(ap, 2);
1305		spin_lock_irq(ap->lock);
1306
1307		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1308		if (status & ATA_BUSY) {
1309			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1310			goto out_unlock;
1311		}
1312	}
1313
1314	/*
1315	 * hsm_move() may trigger another command to be processed.
1316	 * clean the link beforehand.
1317	 */
1318	ap->sff_pio_task_link = NULL;
1319	/* move the HSM */
1320	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1321
1322	/* another command or interrupt handler
1323	 * may be running at this point.
1324	 */
1325	if (poll_next)
1326		goto fsm_start;
1327out_unlock:
1328	spin_unlock_irq(ap->lock);
1329}
1330
1331/**
1332 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1333 *	@qc: command to issue to device
1334 *
1335 *	This function issues a PIO or NODATA command to a SFF
1336 *	controller.
1337 *
1338 *	LOCKING:
1339 *	spin_lock_irqsave(host lock)
1340 *
1341 *	RETURNS:
1342 *	Zero on success, AC_ERR_* mask on failure
1343 */
1344unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1345{
1346	struct ata_port *ap = qc->ap;
1347	struct ata_link *link = qc->dev->link;
1348
1349	/* Use polling pio if the LLD doesn't handle
1350	 * interrupt driven pio and atapi CDB interrupt.
1351	 */
1352	if (ap->flags & ATA_FLAG_PIO_POLLING)
1353		qc->tf.flags |= ATA_TFLAG_POLLING;
1354
1355	/* select the device */
1356	ata_dev_select(ap, qc->dev->devno, 1, 0);
1357
1358	/* start the command */
1359	switch (qc->tf.protocol) {
1360	case ATA_PROT_NODATA:
1361		if (qc->tf.flags & ATA_TFLAG_POLLING)
1362			ata_qc_set_polling(qc);
1363
1364		ata_tf_to_host(ap, &qc->tf);
1365		ap->hsm_task_state = HSM_ST_LAST;
1366
1367		if (qc->tf.flags & ATA_TFLAG_POLLING)
1368			ata_sff_queue_pio_task(link, 0);
1369
1370		break;
1371
1372	case ATA_PROT_PIO:
1373		if (qc->tf.flags & ATA_TFLAG_POLLING)
1374			ata_qc_set_polling(qc);
1375
1376		ata_tf_to_host(ap, &qc->tf);
1377
1378		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1379			/* PIO data out protocol */
1380			ap->hsm_task_state = HSM_ST_FIRST;
1381			ata_sff_queue_pio_task(link, 0);
1382
1383			/* always send first data block using the
1384			 * ata_sff_pio_task() codepath.
1385			 */
1386		} else {
1387			/* PIO data in protocol */
1388			ap->hsm_task_state = HSM_ST;
1389
1390			if (qc->tf.flags & ATA_TFLAG_POLLING)
1391				ata_sff_queue_pio_task(link, 0);
1392
1393			/* if polling, ata_sff_pio_task() handles the
1394			 * rest.  otherwise, interrupt handler takes
1395			 * over from here.
1396			 */
1397		}
1398
1399		break;
1400
1401	case ATAPI_PROT_PIO:
1402	case ATAPI_PROT_NODATA:
1403		if (qc->tf.flags & ATA_TFLAG_POLLING)
1404			ata_qc_set_polling(qc);
1405
1406		ata_tf_to_host(ap, &qc->tf);
1407
1408		ap->hsm_task_state = HSM_ST_FIRST;
1409
1410		/* send cdb by polling if no cdb interrupt */
1411		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1412		    (qc->tf.flags & ATA_TFLAG_POLLING))
1413			ata_sff_queue_pio_task(link, 0);
1414		break;
1415
1416	default:
1417		return AC_ERR_SYSTEM;
1418	}
1419
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1423
1424/**
1425 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1426 *	@qc: qc to fill result TF for
1427 *
1428 *	@qc is finished and result TF needs to be filled.  Fill it
1429 *	using ->sff_tf_read.
1430 *
1431 *	LOCKING:
1432 *	spin_lock_irqsave(host lock)
1433 *
1434 *	RETURNS:
1435 *	true indicating that result TF is successfully filled.
1436 */
1437bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1438{
1439	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1440	return true;
1441}
1442EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1443
1444static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1445{
1446	ap->stats.idle_irq++;
1447
1448#ifdef ATA_IRQ_TRAP
1449	if ((ap->stats.idle_irq % 1000) == 0) {
1450		ap->ops->sff_check_status(ap);
1451		if (ap->ops->sff_irq_clear)
1452			ap->ops->sff_irq_clear(ap);
1453		ata_port_warn(ap, "irq trap\n");
1454		return 1;
1455	}
1456#endif
1457	return 0;	/* irq not handled */
1458}
1459
1460static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1461					struct ata_queued_cmd *qc,
1462					bool hsmv_on_idle)
1463{
1464	u8 status;
1465
1466	VPRINTK("ata%u: protocol %d task_state %d\n",
1467		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1468
1469	/* Check whether we are expecting interrupt in this state */
1470	switch (ap->hsm_task_state) {
1471	case HSM_ST_FIRST:
1472		/* Some pre-ATAPI-4 devices assert INTRQ
1473		 * at this state when ready to receive CDB.
1474		 */
1475
1476		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1477		 * The flag was turned on only for atapi devices.  No
1478		 * need to check ata_is_atapi(qc->tf.protocol) again.
1479		 */
1480		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1481			return ata_sff_idle_irq(ap);
1482		break;
1483	case HSM_ST_IDLE:
1484		return ata_sff_idle_irq(ap);
1485	default:
1486		break;
1487	}
1488
1489	/* check main status, clearing INTRQ if needed */
1490	status = ata_sff_irq_status(ap);
1491	if (status & ATA_BUSY) {
1492		if (hsmv_on_idle) {
1493			/* BMDMA engine is already stopped, we're screwed */
1494			qc->err_mask |= AC_ERR_HSM;
1495			ap->hsm_task_state = HSM_ST_ERR;
1496		} else
1497			return ata_sff_idle_irq(ap);
1498	}
1499
1500	/* clear irq events */
1501	if (ap->ops->sff_irq_clear)
1502		ap->ops->sff_irq_clear(ap);
1503
1504	ata_sff_hsm_move(ap, qc, status, 0);
1505
1506	return 1;	/* irq handled */
1507}
1508
1509/**
1510 *	ata_sff_port_intr - Handle SFF port interrupt
1511 *	@ap: Port on which interrupt arrived (possibly...)
1512 *	@qc: Taskfile currently active in engine
1513 *
1514 *	Handle port interrupt for given queued command.
1515 *
1516 *	LOCKING:
1517 *	spin_lock_irqsave(host lock)
1518 *
1519 *	RETURNS:
1520 *	One if interrupt was handled, zero if not (shared irq).
1521 */
1522unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1523{
1524	return __ata_sff_port_intr(ap, qc, false);
1525}
1526EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1527
1528static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1529	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1530{
1531	struct ata_host *host = dev_instance;
1532	bool retried = false;
1533	unsigned int i;
1534	unsigned int handled, idle, polling;
1535	unsigned long flags;
1536
1537	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1538	spin_lock_irqsave(&host->lock, flags);
1539
1540retry:
1541	handled = idle = polling = 0;
1542	for (i = 0; i < host->n_ports; i++) {
1543		struct ata_port *ap = host->ports[i];
1544		struct ata_queued_cmd *qc;
1545
1546		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1547		if (qc) {
1548			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1549				handled |= port_intr(ap, qc);
1550			else
1551				polling |= 1 << i;
1552		} else
1553			idle |= 1 << i;
1554	}
1555
1556	/*
1557	 * If no port was expecting IRQ but the controller is actually
1558	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1559	 * pending status if available and clear spurious IRQ.
1560	 */
1561	if (!handled && !retried) {
1562		bool retry = false;
1563
1564		for (i = 0; i < host->n_ports; i++) {
1565			struct ata_port *ap = host->ports[i];
1566
1567			if (polling & (1 << i))
1568				continue;
1569
1570			if (!ap->ops->sff_irq_check ||
1571			    !ap->ops->sff_irq_check(ap))
1572				continue;
1573
1574			if (idle & (1 << i)) {
1575				ap->ops->sff_check_status(ap);
1576				if (ap->ops->sff_irq_clear)
1577					ap->ops->sff_irq_clear(ap);
1578			} else {
1579				/* clear INTRQ and check if BUSY cleared */
1580				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1581					retry |= true;
1582				/*
1583				 * With command in flight, we can't do
1584				 * sff_irq_clear() w/o racing with completion.
1585				 */
1586			}
1587		}
1588
1589		if (retry) {
1590			retried = true;
1591			goto retry;
1592		}
1593	}
1594
1595	spin_unlock_irqrestore(&host->lock, flags);
1596
1597	return IRQ_RETVAL(handled);
1598}
1599
1600/**
1601 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1602 *	@irq: irq line (unused)
1603 *	@dev_instance: pointer to our ata_host information structure
1604 *
1605 *	Default interrupt handler for PCI IDE devices.  Calls
1606 *	ata_sff_port_intr() for each port that is not disabled.
1607 *
1608 *	LOCKING:
1609 *	Obtains host lock during operation.
1610 *
1611 *	RETURNS:
1612 *	IRQ_NONE or IRQ_HANDLED.
1613 */
1614irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1615{
1616	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1617}
1618EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1619
1620/**
1621 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1622 *	@ap: port that appears to have timed out
1623 *
1624 *	Called from the libata error handlers when the core code suspects
1625 *	an interrupt has been lost. If it has complete anything we can and
1626 *	then return. Interface must support altstatus for this faster
1627 *	recovery to occur.
1628 *
1629 *	Locking:
1630 *	Caller holds host lock
1631 */
1632
1633void ata_sff_lost_interrupt(struct ata_port *ap)
1634{
1635	u8 status;
1636	struct ata_queued_cmd *qc;
1637
1638	/* Only one outstanding command per SFF channel */
1639	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1640	/* We cannot lose an interrupt on a non-existent or polled command */
1641	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1642		return;
1643	/* See if the controller thinks it is still busy - if so the command
1644	   isn't a lost IRQ but is still in progress */
1645	status = ata_sff_altstatus(ap);
 
1646	if (status & ATA_BUSY)
1647		return;
1648
1649	/* There was a command running, we are no longer busy and we have
1650	   no interrupt. */
1651	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1652								status);
1653	/* Run the host interrupt logic as if the interrupt had not been
1654	   lost */
1655	ata_sff_port_intr(ap, qc);
1656}
1657EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1658
1659/**
1660 *	ata_sff_freeze - Freeze SFF controller port
1661 *	@ap: port to freeze
1662 *
1663 *	Freeze SFF controller port.
1664 *
1665 *	LOCKING:
1666 *	Inherited from caller.
1667 */
1668void ata_sff_freeze(struct ata_port *ap)
1669{
1670	ap->ctl |= ATA_NIEN;
1671	ap->last_ctl = ap->ctl;
1672
1673	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1674		ata_sff_set_devctl(ap, ap->ctl);
1675
1676	/* Under certain circumstances, some controllers raise IRQ on
1677	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1678	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1679	 */
1680	ap->ops->sff_check_status(ap);
1681
1682	if (ap->ops->sff_irq_clear)
1683		ap->ops->sff_irq_clear(ap);
1684}
1685EXPORT_SYMBOL_GPL(ata_sff_freeze);
1686
1687/**
1688 *	ata_sff_thaw - Thaw SFF controller port
1689 *	@ap: port to thaw
1690 *
1691 *	Thaw SFF controller port.
1692 *
1693 *	LOCKING:
1694 *	Inherited from caller.
1695 */
1696void ata_sff_thaw(struct ata_port *ap)
1697{
1698	/* clear & re-enable interrupts */
1699	ap->ops->sff_check_status(ap);
1700	if (ap->ops->sff_irq_clear)
1701		ap->ops->sff_irq_clear(ap);
1702	ata_sff_irq_on(ap);
1703}
1704EXPORT_SYMBOL_GPL(ata_sff_thaw);
1705
1706/**
1707 *	ata_sff_prereset - prepare SFF link for reset
1708 *	@link: SFF link to be reset
1709 *	@deadline: deadline jiffies for the operation
1710 *
1711 *	SFF link @link is about to be reset.  Initialize it.  It first
1712 *	calls ata_std_prereset() and wait for !BSY if the port is
1713 *	being softreset.
1714 *
1715 *	LOCKING:
1716 *	Kernel thread context (may sleep)
1717 *
1718 *	RETURNS:
1719 *	0 on success, -errno otherwise.
1720 */
1721int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1722{
1723	struct ata_eh_context *ehc = &link->eh_context;
1724	int rc;
1725
1726	rc = ata_std_prereset(link, deadline);
1727	if (rc)
1728		return rc;
1729
1730	/* if we're about to do hardreset, nothing more to do */
1731	if (ehc->i.action & ATA_EH_HARDRESET)
1732		return 0;
1733
1734	/* wait for !BSY if we don't know that no device is attached */
1735	if (!ata_link_offline(link)) {
1736		rc = ata_sff_wait_ready(link, deadline);
1737		if (rc && rc != -ENODEV) {
1738			ata_link_warn(link,
1739				      "device not ready (errno=%d), forcing hardreset\n",
1740				      rc);
1741			ehc->i.action |= ATA_EH_HARDRESET;
1742		}
1743	}
1744
1745	return 0;
1746}
1747EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748
1749/**
1750 *	ata_devchk - PATA device presence detection
1751 *	@ap: ATA channel to examine
1752 *	@device: Device to examine (starting at zero)
1753 *
1754 *	This technique was originally described in
1755 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1756 *	later found its way into the ATA/ATAPI spec.
1757 *
1758 *	Write a pattern to the ATA shadow registers,
1759 *	and if a device is present, it will respond by
1760 *	correctly storing and echoing back the
1761 *	ATA shadow register contents.
1762 *
 
 
 
1763 *	LOCKING:
1764 *	caller.
1765 */
1766static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1767{
1768	struct ata_ioports *ioaddr = &ap->ioaddr;
1769	u8 nsect, lbal;
1770
1771	ap->ops->sff_dev_select(ap, device);
1772
1773	iowrite8(0x55, ioaddr->nsect_addr);
1774	iowrite8(0xaa, ioaddr->lbal_addr);
1775
1776	iowrite8(0xaa, ioaddr->nsect_addr);
1777	iowrite8(0x55, ioaddr->lbal_addr);
1778
1779	iowrite8(0x55, ioaddr->nsect_addr);
1780	iowrite8(0xaa, ioaddr->lbal_addr);
1781
1782	nsect = ioread8(ioaddr->nsect_addr);
1783	lbal = ioread8(ioaddr->lbal_addr);
1784
1785	if ((nsect == 0x55) && (lbal == 0xaa))
1786		return 1;	/* we found a device */
1787
1788	return 0;		/* nothing found */
1789}
1790
1791/**
1792 *	ata_sff_dev_classify - Parse returned ATA device signature
1793 *	@dev: ATA device to classify (starting at zero)
1794 *	@present: device seems present
1795 *	@r_err: Value of error register on completion
1796 *
1797 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1798 *	an ATA/ATAPI-defined set of values is placed in the ATA
1799 *	shadow registers, indicating the results of device detection
1800 *	and diagnostics.
1801 *
1802 *	Select the ATA device, and read the values from the ATA shadow
1803 *	registers.  Then parse according to the Error register value,
1804 *	and the spec-defined values examined by ata_dev_classify().
1805 *
1806 *	LOCKING:
1807 *	caller.
1808 *
1809 *	RETURNS:
1810 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1811 */
1812unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1813				  u8 *r_err)
1814{
1815	struct ata_port *ap = dev->link->ap;
1816	struct ata_taskfile tf;
1817	unsigned int class;
1818	u8 err;
1819
1820	ap->ops->sff_dev_select(ap, dev->devno);
1821
1822	memset(&tf, 0, sizeof(tf));
1823
1824	ap->ops->sff_tf_read(ap, &tf);
1825	err = tf.feature;
1826	if (r_err)
1827		*r_err = err;
1828
1829	/* see if device passed diags: continue and warn later */
1830	if (err == 0)
1831		/* diagnostic fail : do nothing _YET_ */
1832		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1833	else if (err == 1)
1834		/* do nothing */ ;
1835	else if ((dev->devno == 0) && (err == 0x81))
1836		/* do nothing */ ;
1837	else
1838		return ATA_DEV_NONE;
1839
1840	/* determine if device is ATA or ATAPI */
1841	class = ata_dev_classify(&tf);
1842
1843	if (class == ATA_DEV_UNKNOWN) {
1844		/* If the device failed diagnostic, it's likely to
 
1845		 * have reported incorrect device signature too.
1846		 * Assume ATA device if the device seems present but
1847		 * device signature is invalid with diagnostic
1848		 * failure.
1849		 */
1850		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1851			class = ATA_DEV_ATA;
1852		else
1853			class = ATA_DEV_NONE;
1854	} else if ((class == ATA_DEV_ATA) &&
1855		   (ap->ops->sff_check_status(ap) == 0))
1856		class = ATA_DEV_NONE;
1857
 
 
1858	return class;
1859}
1860EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1861
1862/**
1863 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1864 *	@link: SFF link which is just reset
1865 *	@devmask: mask of present devices
1866 *	@deadline: deadline jiffies for the operation
1867 *
1868 *	Wait devices attached to SFF @link to become ready after
1869 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1870 *	status register too early.
1871 *
1872 *	LOCKING:
1873 *	Kernel thread context (may sleep).
1874 *
1875 *	RETURNS:
1876 *	0 on success, -ENODEV if some or all of devices in @devmask
1877 *	don't seem to exist.  -errno on other errors.
1878 */
1879int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1880			     unsigned long deadline)
1881{
1882	struct ata_port *ap = link->ap;
1883	struct ata_ioports *ioaddr = &ap->ioaddr;
1884	unsigned int dev0 = devmask & (1 << 0);
1885	unsigned int dev1 = devmask & (1 << 1);
1886	int rc, ret = 0;
1887
1888	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1889
1890	/* always check readiness of the master device */
1891	rc = ata_sff_wait_ready(link, deadline);
1892	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1893	 * and TF status is 0xff, bail out on it too.
1894	 */
1895	if (rc)
1896		return rc;
1897
1898	/* if device 1 was found in ata_devchk, wait for register
1899	 * access briefly, then wait for BSY to clear.
1900	 */
1901	if (dev1) {
1902		int i;
1903
1904		ap->ops->sff_dev_select(ap, 1);
1905
1906		/* Wait for register access.  Some ATAPI devices fail
1907		 * to set nsect/lbal after reset, so don't waste too
1908		 * much time on it.  We're gonna wait for !BSY anyway.
1909		 */
1910		for (i = 0; i < 2; i++) {
1911			u8 nsect, lbal;
1912
1913			nsect = ioread8(ioaddr->nsect_addr);
1914			lbal = ioread8(ioaddr->lbal_addr);
1915			if ((nsect == 1) && (lbal == 1))
1916				break;
1917			ata_msleep(ap, 50);	/* give drive a breather */
1918		}
1919
1920		rc = ata_sff_wait_ready(link, deadline);
1921		if (rc) {
1922			if (rc != -ENODEV)
1923				return rc;
1924			ret = rc;
1925		}
1926	}
1927
1928	/* is all this really necessary? */
1929	ap->ops->sff_dev_select(ap, 0);
1930	if (dev1)
1931		ap->ops->sff_dev_select(ap, 1);
1932	if (dev0)
1933		ap->ops->sff_dev_select(ap, 0);
1934
1935	return ret;
1936}
1937EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1938
1939static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1940			     unsigned long deadline)
1941{
1942	struct ata_ioports *ioaddr = &ap->ioaddr;
1943
1944	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1945
1946	if (ap->ioaddr.ctl_addr) {
1947		/* software reset.  causes dev0 to be selected */
1948		iowrite8(ap->ctl, ioaddr->ctl_addr);
1949		udelay(20);	/* FIXME: flush */
1950		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1951		udelay(20);	/* FIXME: flush */
1952		iowrite8(ap->ctl, ioaddr->ctl_addr);
1953		ap->last_ctl = ap->ctl;
1954	}
1955
1956	/* wait the port to become ready */
1957	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1958}
1959
1960/**
1961 *	ata_sff_softreset - reset host port via ATA SRST
1962 *	@link: ATA link to reset
1963 *	@classes: resulting classes of attached devices
1964 *	@deadline: deadline jiffies for the operation
1965 *
1966 *	Reset host port using ATA SRST.
1967 *
1968 *	LOCKING:
1969 *	Kernel thread context (may sleep)
1970 *
1971 *	RETURNS:
1972 *	0 on success, -errno otherwise.
1973 */
1974int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1975		      unsigned long deadline)
1976{
1977	struct ata_port *ap = link->ap;
1978	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1979	unsigned int devmask = 0;
1980	int rc;
1981	u8 err;
1982
1983	DPRINTK("ENTER\n");
1984
1985	/* determine if device 0/1 are present */
1986	if (ata_devchk(ap, 0))
1987		devmask |= (1 << 0);
1988	if (slave_possible && ata_devchk(ap, 1))
1989		devmask |= (1 << 1);
1990
1991	/* select device 0 again */
1992	ap->ops->sff_dev_select(ap, 0);
1993
1994	/* issue bus reset */
1995	DPRINTK("about to softreset, devmask=%x\n", devmask);
1996	rc = ata_bus_softreset(ap, devmask, deadline);
1997	/* if link is occupied, -ENODEV too is an error */
1998	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1999		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2000		return rc;
2001	}
2002
2003	/* determine by signature whether we have ATA or ATAPI devices */
2004	classes[0] = ata_sff_dev_classify(&link->device[0],
2005					  devmask & (1 << 0), &err);
2006	if (slave_possible && err != 0x81)
2007		classes[1] = ata_sff_dev_classify(&link->device[1],
2008						  devmask & (1 << 1), &err);
2009
2010	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2011	return 0;
2012}
2013EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014
2015/**
2016 *	sata_sff_hardreset - reset host port via SATA phy reset
2017 *	@link: link to reset
2018 *	@class: resulting class of attached device
2019 *	@deadline: deadline jiffies for the operation
2020 *
2021 *	SATA phy-reset host port using DET bits of SControl register,
2022 *	wait for !BSY and classify the attached device.
2023 *
2024 *	LOCKING:
2025 *	Kernel thread context (may sleep)
2026 *
2027 *	RETURNS:
2028 *	0 on success, -errno otherwise.
2029 */
2030int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031		       unsigned long deadline)
2032{
2033	struct ata_eh_context *ehc = &link->eh_context;
2034	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035	bool online;
2036	int rc;
2037
2038	rc = sata_link_hardreset(link, timing, deadline, &online,
2039				 ata_sff_check_ready);
2040	if (online)
2041		*class = ata_sff_dev_classify(link->device, 1, NULL);
2042
2043	DPRINTK("EXIT, class=%u\n", *class);
2044	return rc;
2045}
2046EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2047
2048/**
2049 *	ata_sff_postreset - SFF postreset callback
2050 *	@link: the target SFF ata_link
2051 *	@classes: classes of attached devices
2052 *
2053 *	This function is invoked after a successful reset.  It first
2054 *	calls ata_std_postreset() and performs SFF specific postreset
2055 *	processing.
2056 *
2057 *	LOCKING:
2058 *	Kernel thread context (may sleep)
2059 */
2060void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2061{
2062	struct ata_port *ap = link->ap;
2063
2064	ata_std_postreset(link, classes);
2065
2066	/* is double-select really necessary? */
2067	if (classes[0] != ATA_DEV_NONE)
2068		ap->ops->sff_dev_select(ap, 1);
2069	if (classes[1] != ATA_DEV_NONE)
2070		ap->ops->sff_dev_select(ap, 0);
2071
2072	/* bail out if no device is present */
2073	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2074		DPRINTK("EXIT, no device\n");
2075		return;
2076	}
2077
2078	/* set up device control */
2079	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2080		ata_sff_set_devctl(ap, ap->ctl);
2081		ap->last_ctl = ap->ctl;
2082	}
2083}
2084EXPORT_SYMBOL_GPL(ata_sff_postreset);
2085
2086/**
2087 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2088 *	@qc: command
2089 *
2090 *	Drain the FIFO and device of any stuck data following a command
2091 *	failing to complete. In some cases this is necessary before a
2092 *	reset will recover the device.
2093 *
2094 */
2095
2096void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2097{
2098	int count;
2099	struct ata_port *ap;
2100
2101	/* We only need to flush incoming data when a command was running */
2102	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2103		return;
2104
2105	ap = qc->ap;
2106	/* Drain up to 64K of data before we give up this recovery method */
2107	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2108						&& count < 65536; count += 2)
2109		ioread16(ap->ioaddr.data_addr);
2110
2111	/* Can become DEBUG later */
2112	if (count)
2113		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2114
2115}
2116EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2117
2118/**
2119 *	ata_sff_error_handler - Stock error handler for SFF controller
2120 *	@ap: port to handle error for
2121 *
2122 *	Stock error handler for SFF controller.  It can handle both
2123 *	PATA and SATA controllers.  Many controllers should be able to
2124 *	use this EH as-is or with some added handling before and
2125 *	after.
2126 *
2127 *	LOCKING:
2128 *	Kernel thread context (may sleep)
2129 */
2130void ata_sff_error_handler(struct ata_port *ap)
2131{
2132	ata_reset_fn_t softreset = ap->ops->softreset;
2133	ata_reset_fn_t hardreset = ap->ops->hardreset;
2134	struct ata_queued_cmd *qc;
2135	unsigned long flags;
2136
2137	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2138	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2139		qc = NULL;
2140
2141	spin_lock_irqsave(ap->lock, flags);
2142
2143	/*
2144	 * We *MUST* do FIFO draining before we issue a reset as
2145	 * several devices helpfully clear their internal state and
2146	 * will lock solid if we touch the data port post reset. Pass
2147	 * qc in case anyone wants to do different PIO/DMA recovery or
2148	 * has per command fixups
2149	 */
2150	if (ap->ops->sff_drain_fifo)
2151		ap->ops->sff_drain_fifo(qc);
2152
2153	spin_unlock_irqrestore(ap->lock, flags);
2154
2155	/* ignore built-in hardresets if SCR access is not available */
2156	if ((hardreset == sata_std_hardreset ||
2157	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2158		hardreset = NULL;
2159
2160	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2161		  ap->ops->postreset);
2162}
2163EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2164
2165/**
2166 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2167 *	@ioaddr: IO address structure to be initialized
2168 *
2169 *	Utility function which initializes data_addr, error_addr,
2170 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2171 *	device_addr, status_addr, and command_addr to standard offsets
2172 *	relative to cmd_addr.
2173 *
2174 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2175 */
2176void ata_sff_std_ports(struct ata_ioports *ioaddr)
2177{
2178	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2179	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2180	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2181	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2182	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2183	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2184	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2185	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2186	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2187	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2188}
2189EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2190
2191#ifdef CONFIG_PCI
2192
2193static int ata_resources_present(struct pci_dev *pdev, int port)
2194{
2195	int i;
2196
2197	/* Check the PCI resources for this channel are enabled */
2198	port = port * 2;
2199	for (i = 0; i < 2; i++) {
2200		if (pci_resource_start(pdev, port + i) == 0 ||
2201		    pci_resource_len(pdev, port + i) == 0)
2202			return 0;
2203	}
2204	return 1;
2205}
2206
2207/**
2208 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2209 *	@host: target ATA host
2210 *
2211 *	Acquire native PCI ATA resources for @host and initialize the
2212 *	first two ports of @host accordingly.  Ports marked dummy are
2213 *	skipped and allocation failure makes the port dummy.
2214 *
2215 *	Note that native PCI resources are valid even for legacy hosts
2216 *	as we fix up pdev resources array early in boot, so this
2217 *	function can be used for both native and legacy SFF hosts.
2218 *
2219 *	LOCKING:
2220 *	Inherited from calling layer (may sleep).
2221 *
2222 *	RETURNS:
2223 *	0 if at least one port is initialized, -ENODEV if no port is
2224 *	available.
2225 */
2226int ata_pci_sff_init_host(struct ata_host *host)
2227{
2228	struct device *gdev = host->dev;
2229	struct pci_dev *pdev = to_pci_dev(gdev);
2230	unsigned int mask = 0;
2231	int i, rc;
2232
2233	/* request, iomap BARs and init port addresses accordingly */
2234	for (i = 0; i < 2; i++) {
2235		struct ata_port *ap = host->ports[i];
2236		int base = i * 2;
2237		void __iomem * const *iomap;
2238
2239		if (ata_port_is_dummy(ap))
2240			continue;
2241
2242		/* Discard disabled ports.  Some controllers show
2243		 * their unused channels this way.  Disabled ports are
2244		 * made dummy.
2245		 */
2246		if (!ata_resources_present(pdev, i)) {
2247			ap->ops = &ata_dummy_port_ops;
2248			continue;
2249		}
2250
2251		rc = pcim_iomap_regions(pdev, 0x3 << base,
2252					dev_driver_string(gdev));
2253		if (rc) {
2254			dev_warn(gdev,
2255				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2256				 i, rc);
2257			if (rc == -EBUSY)
2258				pcim_pin_device(pdev);
2259			ap->ops = &ata_dummy_port_ops;
2260			continue;
2261		}
2262		host->iomap = iomap = pcim_iomap_table(pdev);
2263
2264		ap->ioaddr.cmd_addr = iomap[base];
2265		ap->ioaddr.altstatus_addr =
2266		ap->ioaddr.ctl_addr = (void __iomem *)
2267			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2268		ata_sff_std_ports(&ap->ioaddr);
2269
2270		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2271			(unsigned long long)pci_resource_start(pdev, base),
2272			(unsigned long long)pci_resource_start(pdev, base + 1));
2273
2274		mask |= 1 << i;
2275	}
2276
2277	if (!mask) {
2278		dev_err(gdev, "no available native port\n");
2279		return -ENODEV;
2280	}
2281
2282	return 0;
2283}
2284EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2285
2286/**
2287 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2288 *	@pdev: target PCI device
2289 *	@ppi: array of port_info, must be enough for two ports
2290 *	@r_host: out argument for the initialized ATA host
2291 *
2292 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2293 *	all PCI resources and initialize it accordingly in one go.
2294 *
2295 *	LOCKING:
2296 *	Inherited from calling layer (may sleep).
2297 *
2298 *	RETURNS:
2299 *	0 on success, -errno otherwise.
2300 */
2301int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2302			     const struct ata_port_info * const *ppi,
2303			     struct ata_host **r_host)
2304{
2305	struct ata_host *host;
2306	int rc;
2307
2308	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2309		return -ENOMEM;
2310
2311	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2312	if (!host) {
2313		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2314		rc = -ENOMEM;
2315		goto err_out;
2316	}
2317
2318	rc = ata_pci_sff_init_host(host);
2319	if (rc)
2320		goto err_out;
2321
2322	devres_remove_group(&pdev->dev, NULL);
2323	*r_host = host;
2324	return 0;
2325
2326err_out:
2327	devres_release_group(&pdev->dev, NULL);
2328	return rc;
2329}
2330EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2331
2332/**
2333 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2334 *	@host: target SFF ATA host
2335 *	@irq_handler: irq_handler used when requesting IRQ(s)
2336 *	@sht: scsi_host_template to use when registering the host
2337 *
2338 *	This is the counterpart of ata_host_activate() for SFF ATA
2339 *	hosts.  This separate helper is necessary because SFF hosts
2340 *	use two separate interrupts in legacy mode.
2341 *
2342 *	LOCKING:
2343 *	Inherited from calling layer (may sleep).
2344 *
2345 *	RETURNS:
2346 *	0 on success, -errno otherwise.
2347 */
2348int ata_pci_sff_activate_host(struct ata_host *host,
2349			      irq_handler_t irq_handler,
2350			      struct scsi_host_template *sht)
2351{
2352	struct device *dev = host->dev;
2353	struct pci_dev *pdev = to_pci_dev(dev);
2354	const char *drv_name = dev_driver_string(host->dev);
2355	int legacy_mode = 0, rc;
2356
2357	rc = ata_host_start(host);
2358	if (rc)
2359		return rc;
2360
2361	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2362		u8 tmp8, mask = 0;
2363
2364		/*
2365		 * ATA spec says we should use legacy mode when one
2366		 * port is in legacy mode, but disabled ports on some
2367		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2368		 * on which the secondary port is not wired, so
2369		 * ignore ports that are marked as 'dummy' during
2370		 * this check
2371		 */
2372		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2373		if (!ata_port_is_dummy(host->ports[0]))
2374			mask |= (1 << 0);
2375		if (!ata_port_is_dummy(host->ports[1]))
2376			mask |= (1 << 2);
2377		if ((tmp8 & mask) != mask)
2378			legacy_mode = 1;
2379	}
2380
2381	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2382		return -ENOMEM;
2383
2384	if (!legacy_mode && pdev->irq) {
2385		int i;
2386
2387		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2388				      IRQF_SHARED, drv_name, host);
2389		if (rc)
2390			goto out;
2391
2392		for (i = 0; i < 2; i++) {
2393			if (ata_port_is_dummy(host->ports[i]))
2394				continue;
2395			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2396		}
2397	} else if (legacy_mode) {
2398		if (!ata_port_is_dummy(host->ports[0])) {
2399			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2400					      irq_handler, IRQF_SHARED,
2401					      drv_name, host);
2402			if (rc)
2403				goto out;
2404
2405			ata_port_desc(host->ports[0], "irq %d",
2406				      ATA_PRIMARY_IRQ(pdev));
2407		}
2408
2409		if (!ata_port_is_dummy(host->ports[1])) {
2410			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2411					      irq_handler, IRQF_SHARED,
2412					      drv_name, host);
2413			if (rc)
2414				goto out;
2415
2416			ata_port_desc(host->ports[1], "irq %d",
2417				      ATA_SECONDARY_IRQ(pdev));
2418		}
2419	}
2420
2421	rc = ata_host_register(host, sht);
2422out:
2423	if (rc == 0)
2424		devres_remove_group(dev, NULL);
2425	else
2426		devres_release_group(dev, NULL);
2427
2428	return rc;
2429}
2430EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2431
2432static const struct ata_port_info *ata_sff_find_valid_pi(
2433					const struct ata_port_info * const *ppi)
2434{
2435	int i;
2436
2437	/* look up the first valid port_info */
2438	for (i = 0; i < 2 && ppi[i]; i++)
2439		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2440			return ppi[i];
2441
2442	return NULL;
2443}
2444
2445static int ata_pci_init_one(struct pci_dev *pdev,
2446		const struct ata_port_info * const *ppi,
2447		struct scsi_host_template *sht, void *host_priv,
2448		int hflags, bool bmdma)
2449{
2450	struct device *dev = &pdev->dev;
2451	const struct ata_port_info *pi;
2452	struct ata_host *host = NULL;
2453	int rc;
2454
2455	DPRINTK("ENTER\n");
2456
2457	pi = ata_sff_find_valid_pi(ppi);
2458	if (!pi) {
2459		dev_err(&pdev->dev, "no valid port_info specified\n");
2460		return -EINVAL;
2461	}
2462
2463	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2464		return -ENOMEM;
2465
2466	rc = pcim_enable_device(pdev);
2467	if (rc)
2468		goto out;
2469
2470#ifdef CONFIG_ATA_BMDMA
2471	if (bmdma)
2472		/* prepare and activate BMDMA host */
2473		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2474	else
2475#endif
2476		/* prepare and activate SFF host */
2477		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2478	if (rc)
2479		goto out;
2480	host->private_data = host_priv;
2481	host->flags |= hflags;
2482
2483#ifdef CONFIG_ATA_BMDMA
2484	if (bmdma) {
2485		pci_set_master(pdev);
2486		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2487	} else
2488#endif
2489		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2490out:
2491	if (rc == 0)
2492		devres_remove_group(&pdev->dev, NULL);
2493	else
2494		devres_release_group(&pdev->dev, NULL);
2495
2496	return rc;
2497}
2498
2499/**
2500 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2501 *	@pdev: Controller to be initialized
2502 *	@ppi: array of port_info, must be enough for two ports
2503 *	@sht: scsi_host_template to use when registering the host
2504 *	@host_priv: host private_data
2505 *	@hflag: host flags
2506 *
2507 *	This is a helper function which can be called from a driver's
2508 *	xxx_init_one() probe function if the hardware uses traditional
2509 *	IDE taskfile registers and is PIO only.
2510 *
2511 *	ASSUMPTION:
2512 *	Nobody makes a single channel controller that appears solely as
2513 *	the secondary legacy port on PCI.
2514 *
2515 *	LOCKING:
2516 *	Inherited from PCI layer (may sleep).
2517 *
2518 *	RETURNS:
2519 *	Zero on success, negative on errno-based value on error.
2520 */
2521int ata_pci_sff_init_one(struct pci_dev *pdev,
2522		 const struct ata_port_info * const *ppi,
2523		 struct scsi_host_template *sht, void *host_priv, int hflag)
2524{
2525	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2526}
2527EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2528
2529#endif /* CONFIG_PCI */
2530
2531/*
2532 *	BMDMA support
2533 */
2534
2535#ifdef CONFIG_ATA_BMDMA
2536
2537const struct ata_port_operations ata_bmdma_port_ops = {
2538	.inherits		= &ata_sff_port_ops,
2539
2540	.error_handler		= ata_bmdma_error_handler,
2541	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2542
2543	.qc_prep		= ata_bmdma_qc_prep,
2544	.qc_issue		= ata_bmdma_qc_issue,
2545
2546	.sff_irq_clear		= ata_bmdma_irq_clear,
2547	.bmdma_setup		= ata_bmdma_setup,
2548	.bmdma_start		= ata_bmdma_start,
2549	.bmdma_stop		= ata_bmdma_stop,
2550	.bmdma_status		= ata_bmdma_status,
2551
2552	.port_start		= ata_bmdma_port_start,
2553};
2554EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2555
2556const struct ata_port_operations ata_bmdma32_port_ops = {
2557	.inherits		= &ata_bmdma_port_ops,
2558
2559	.sff_data_xfer		= ata_sff_data_xfer32,
2560	.port_start		= ata_bmdma_port_start32,
2561};
2562EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2563
2564/**
2565 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2566 *	@qc: Metadata associated with taskfile to be transferred
2567 *
2568 *	Fill PCI IDE PRD (scatter-gather) table with segments
2569 *	associated with the current disk command.
2570 *
2571 *	LOCKING:
2572 *	spin_lock_irqsave(host lock)
2573 *
2574 */
2575static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2576{
2577	struct ata_port *ap = qc->ap;
2578	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2579	struct scatterlist *sg;
2580	unsigned int si, pi;
2581
2582	pi = 0;
2583	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2584		u32 addr, offset;
2585		u32 sg_len, len;
2586
2587		/* determine if physical DMA addr spans 64K boundary.
2588		 * Note h/w doesn't support 64-bit, so we unconditionally
2589		 * truncate dma_addr_t to u32.
2590		 */
2591		addr = (u32) sg_dma_address(sg);
2592		sg_len = sg_dma_len(sg);
2593
2594		while (sg_len) {
2595			offset = addr & 0xffff;
2596			len = sg_len;
2597			if ((offset + sg_len) > 0x10000)
2598				len = 0x10000 - offset;
2599
2600			prd[pi].addr = cpu_to_le32(addr);
2601			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2602			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2603
2604			pi++;
2605			sg_len -= len;
2606			addr += len;
2607		}
2608	}
2609
2610	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2611}
2612
2613/**
2614 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2615 *	@qc: Metadata associated with taskfile to be transferred
2616 *
2617 *	Fill PCI IDE PRD (scatter-gather) table with segments
2618 *	associated with the current disk command. Perform the fill
2619 *	so that we avoid writing any length 64K records for
2620 *	controllers that don't follow the spec.
2621 *
2622 *	LOCKING:
2623 *	spin_lock_irqsave(host lock)
2624 *
2625 */
2626static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2627{
2628	struct ata_port *ap = qc->ap;
2629	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2630	struct scatterlist *sg;
2631	unsigned int si, pi;
2632
2633	pi = 0;
2634	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2635		u32 addr, offset;
2636		u32 sg_len, len, blen;
2637
2638		/* determine if physical DMA addr spans 64K boundary.
2639		 * Note h/w doesn't support 64-bit, so we unconditionally
2640		 * truncate dma_addr_t to u32.
2641		 */
2642		addr = (u32) sg_dma_address(sg);
2643		sg_len = sg_dma_len(sg);
2644
2645		while (sg_len) {
2646			offset = addr & 0xffff;
2647			len = sg_len;
2648			if ((offset + sg_len) > 0x10000)
2649				len = 0x10000 - offset;
2650
2651			blen = len & 0xffff;
2652			prd[pi].addr = cpu_to_le32(addr);
2653			if (blen == 0) {
2654				/* Some PATA chipsets like the CS5530 can't
2655				   cope with 0x0000 meaning 64K as the spec
2656				   says */
2657				prd[pi].flags_len = cpu_to_le32(0x8000);
2658				blen = 0x8000;
2659				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2660			}
2661			prd[pi].flags_len = cpu_to_le32(blen);
2662			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2663
2664			pi++;
2665			sg_len -= len;
2666			addr += len;
2667		}
2668	}
2669
2670	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2671}
2672
2673/**
2674 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2675 *	@qc: Metadata associated with taskfile to be prepared
2676 *
2677 *	Prepare ATA taskfile for submission.
2678 *
2679 *	LOCKING:
2680 *	spin_lock_irqsave(host lock)
2681 */
2682void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2683{
2684	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2685		return;
2686
2687	ata_bmdma_fill_sg(qc);
 
 
2688}
2689EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2690
2691/**
2692 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2693 *	@qc: Metadata associated with taskfile to be prepared
2694 *
2695 *	Prepare ATA taskfile for submission.
2696 *
2697 *	LOCKING:
2698 *	spin_lock_irqsave(host lock)
2699 */
2700void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2701{
2702	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2703		return;
2704
2705	ata_bmdma_fill_sg_dumb(qc);
 
 
2706}
2707EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2708
2709/**
2710 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711 *	@qc: command to issue to device
2712 *
2713 *	This function issues a PIO, NODATA or DMA command to a
2714 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2715 *	ata_sff_qc_issue().
2716 *
2717 *	LOCKING:
2718 *	spin_lock_irqsave(host lock)
2719 *
2720 *	RETURNS:
2721 *	Zero on success, AC_ERR_* mask on failure
2722 */
2723unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2724{
2725	struct ata_port *ap = qc->ap;
2726	struct ata_link *link = qc->dev->link;
2727
2728	/* defer PIO handling to sff_qc_issue */
2729	if (!ata_is_dma(qc->tf.protocol))
2730		return ata_sff_qc_issue(qc);
2731
2732	/* select the device */
2733	ata_dev_select(ap, qc->dev->devno, 1, 0);
2734
2735	/* start the command */
2736	switch (qc->tf.protocol) {
2737	case ATA_PROT_DMA:
2738		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2739
 
2740		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2741		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 
2742		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2743		ap->hsm_task_state = HSM_ST_LAST;
2744		break;
2745
2746	case ATAPI_PROT_DMA:
2747		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2748
 
2749		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2750		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2751		ap->hsm_task_state = HSM_ST_FIRST;
2752
2753		/* send cdb by polling if no cdb interrupt */
2754		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2755			ata_sff_queue_pio_task(link, 0);
2756		break;
2757
2758	default:
2759		WARN_ON(1);
2760		return AC_ERR_SYSTEM;
2761	}
2762
2763	return 0;
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2766
2767/**
2768 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2769 *	@ap: Port on which interrupt arrived (possibly...)
2770 *	@qc: Taskfile currently active in engine
2771 *
2772 *	Handle port interrupt for given queued command.
2773 *
2774 *	LOCKING:
2775 *	spin_lock_irqsave(host lock)
2776 *
2777 *	RETURNS:
2778 *	One if interrupt was handled, zero if not (shared irq).
2779 */
2780unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2781{
2782	struct ata_eh_info *ehi = &ap->link.eh_info;
2783	u8 host_stat = 0;
2784	bool bmdma_stopped = false;
2785	unsigned int handled;
2786
2787	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2788		/* check status of DMA engine */
2789		host_stat = ap->ops->bmdma_status(ap);
2790		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2791
2792		/* if it's not our irq... */
2793		if (!(host_stat & ATA_DMA_INTR))
2794			return ata_sff_idle_irq(ap);
2795
2796		/* before we do anything else, clear DMA-Start bit */
 
2797		ap->ops->bmdma_stop(qc);
2798		bmdma_stopped = true;
2799
2800		if (unlikely(host_stat & ATA_DMA_ERR)) {
2801			/* error when transferring data to/from memory */
2802			qc->err_mask |= AC_ERR_HOST_BUS;
2803			ap->hsm_task_state = HSM_ST_ERR;
2804		}
2805	}
2806
2807	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808
2809	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811
2812	return handled;
2813}
2814EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815
2816/**
2817 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 *	@irq: irq line (unused)
2819 *	@dev_instance: pointer to our ata_host information structure
2820 *
2821 *	Default interrupt handler for PCI IDE devices.  Calls
2822 *	ata_bmdma_port_intr() for each port that is not disabled.
2823 *
2824 *	LOCKING:
2825 *	Obtains host lock during operation.
2826 *
2827 *	RETURNS:
2828 *	IRQ_NONE or IRQ_HANDLED.
2829 */
2830irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831{
2832	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833}
2834EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835
2836/**
2837 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 *	@ap: port to handle error for
2839 *
2840 *	Stock error handler for BMDMA controller.  It can handle both
2841 *	PATA and SATA controllers.  Most BMDMA controllers should be
2842 *	able to use this EH as-is or with some added handling before
2843 *	and after.
2844 *
2845 *	LOCKING:
2846 *	Kernel thread context (may sleep)
2847 */
2848void ata_bmdma_error_handler(struct ata_port *ap)
2849{
2850	struct ata_queued_cmd *qc;
2851	unsigned long flags;
2852	bool thaw = false;
2853
2854	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856		qc = NULL;
2857
2858	/* reset PIO HSM and stop DMA engine */
2859	spin_lock_irqsave(ap->lock, flags);
2860
2861	if (qc && ata_is_dma(qc->tf.protocol)) {
2862		u8 host_stat;
2863
2864		host_stat = ap->ops->bmdma_status(ap);
 
2865
2866		/* BMDMA controllers indicate host bus error by
2867		 * setting DMA_ERR bit and timing out.  As it wasn't
2868		 * really a timeout event, adjust error mask and
2869		 * cancel frozen state.
2870		 */
2871		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2872			qc->err_mask = AC_ERR_HOST_BUS;
2873			thaw = true;
2874		}
2875
 
2876		ap->ops->bmdma_stop(qc);
2877
2878		/* if we're gonna thaw, make sure IRQ is clear */
2879		if (thaw) {
2880			ap->ops->sff_check_status(ap);
2881			if (ap->ops->sff_irq_clear)
2882				ap->ops->sff_irq_clear(ap);
2883		}
2884	}
2885
2886	spin_unlock_irqrestore(ap->lock, flags);
2887
2888	if (thaw)
2889		ata_eh_thaw_port(ap);
2890
2891	ata_sff_error_handler(ap);
2892}
2893EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2894
2895/**
2896 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897 *	@qc: internal command to clean up
2898 *
2899 *	LOCKING:
2900 *	Kernel thread context (may sleep)
2901 */
2902void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2903{
2904	struct ata_port *ap = qc->ap;
2905	unsigned long flags;
2906
2907	if (ata_is_dma(qc->tf.protocol)) {
2908		spin_lock_irqsave(ap->lock, flags);
 
2909		ap->ops->bmdma_stop(qc);
2910		spin_unlock_irqrestore(ap->lock, flags);
2911	}
2912}
2913EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2914
2915/**
2916 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917 *	@ap: Port associated with this ATA transaction.
2918 *
2919 *	Clear interrupt and error flags in DMA status register.
2920 *
2921 *	May be used as the irq_clear() entry in ata_port_operations.
2922 *
2923 *	LOCKING:
2924 *	spin_lock_irqsave(host lock)
2925 */
2926void ata_bmdma_irq_clear(struct ata_port *ap)
2927{
2928	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2929
2930	if (!mmio)
2931		return;
2932
2933	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2934}
2935EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2936
2937/**
2938 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939 *	@qc: Info associated with this ATA transaction.
2940 *
2941 *	LOCKING:
2942 *	spin_lock_irqsave(host lock)
2943 */
2944void ata_bmdma_setup(struct ata_queued_cmd *qc)
2945{
2946	struct ata_port *ap = qc->ap;
2947	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2948	u8 dmactl;
2949
2950	/* load PRD table addr. */
2951	mb();	/* make sure PRD table writes are visible to controller */
2952	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2953
2954	/* specify data direction, triple-check start bit is clear */
2955	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2956	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2957	if (!rw)
2958		dmactl |= ATA_DMA_WR;
2959	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960
2961	/* issue r/w command */
2962	ap->ops->sff_exec_command(ap, &qc->tf);
2963}
2964EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2965
2966/**
2967 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968 *	@qc: Info associated with this ATA transaction.
2969 *
2970 *	LOCKING:
2971 *	spin_lock_irqsave(host lock)
2972 */
2973void ata_bmdma_start(struct ata_queued_cmd *qc)
2974{
2975	struct ata_port *ap = qc->ap;
2976	u8 dmactl;
2977
2978	/* start host DMA transaction */
2979	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2981
2982	/* Strictly, one may wish to issue an ioread8() here, to
2983	 * flush the mmio write.  However, control also passes
2984	 * to the hardware at this point, and it will interrupt
2985	 * us when we are to resume control.  So, in effect,
2986	 * we don't care when the mmio write flushes.
2987	 * Further, a read of the DMA status register _immediately_
2988	 * following the write may not be what certain flaky hardware
2989	 * is expected, so I think it is best to not add a readb()
2990	 * without first all the MMIO ATA cards/mobos.
2991	 * Or maybe I'm just being paranoid.
2992	 *
2993	 * FIXME: The posting of this write means I/O starts are
2994	 * unnecessarily delayed for MMIO
2995	 */
2996}
2997EXPORT_SYMBOL_GPL(ata_bmdma_start);
2998
2999/**
3000 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001 *	@qc: Command we are ending DMA for
3002 *
3003 *	Clears the ATA_DMA_START flag in the dma control register
3004 *
3005 *	May be used as the bmdma_stop() entry in ata_port_operations.
3006 *
3007 *	LOCKING:
3008 *	spin_lock_irqsave(host lock)
3009 */
3010void ata_bmdma_stop(struct ata_queued_cmd *qc)
3011{
3012	struct ata_port *ap = qc->ap;
3013	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3014
3015	/* clear start/stop bit */
3016	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3017		 mmio + ATA_DMA_CMD);
3018
3019	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020	ata_sff_dma_pause(ap);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3023
3024/**
3025 *	ata_bmdma_status - Read PCI IDE BMDMA status
3026 *	@ap: Port associated with this ATA transaction.
3027 *
3028 *	Read and return BMDMA status register.
3029 *
3030 *	May be used as the bmdma_status() entry in ata_port_operations.
3031 *
3032 *	LOCKING:
3033 *	spin_lock_irqsave(host lock)
3034 */
3035u8 ata_bmdma_status(struct ata_port *ap)
3036{
3037	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3038}
3039EXPORT_SYMBOL_GPL(ata_bmdma_status);
3040
3041
3042/**
3043 *	ata_bmdma_port_start - Set port up for bmdma.
3044 *	@ap: Port to initialize
3045 *
3046 *	Called just after data structures for each port are
3047 *	initialized.  Allocates space for PRD table.
3048 *
3049 *	May be used as the port_start() entry in ata_port_operations.
3050 *
3051 *	LOCKING:
3052 *	Inherited from caller.
3053 */
3054int ata_bmdma_port_start(struct ata_port *ap)
3055{
3056	if (ap->mwdma_mask || ap->udma_mask) {
3057		ap->bmdma_prd =
3058			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3059					    &ap->bmdma_prd_dma, GFP_KERNEL);
3060		if (!ap->bmdma_prd)
3061			return -ENOMEM;
3062	}
3063
3064	return 0;
3065}
3066EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3067
3068/**
3069 *	ata_bmdma_port_start32 - Set port up for dma.
3070 *	@ap: Port to initialize
3071 *
3072 *	Called just after data structures for each port are
3073 *	initialized.  Enables 32bit PIO and allocates space for PRD
3074 *	table.
3075 *
3076 *	May be used as the port_start() entry in ata_port_operations for
3077 *	devices that are capable of 32bit PIO.
3078 *
3079 *	LOCKING:
3080 *	Inherited from caller.
3081 */
3082int ata_bmdma_port_start32(struct ata_port *ap)
3083{
3084	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3085	return ata_bmdma_port_start(ap);
3086}
3087EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3088
3089#ifdef CONFIG_PCI
3090
3091/**
3092 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3093 *	@pdev: PCI device
3094 *
3095 *	Some PCI ATA devices report simplex mode but in fact can be told to
3096 *	enter non simplex mode. This implements the necessary logic to
3097 *	perform the task on such devices. Calling it on other devices will
3098 *	have -undefined- behaviour.
3099 */
3100int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3101{
 
3102	unsigned long bmdma = pci_resource_start(pdev, 4);
3103	u8 simplex;
3104
3105	if (bmdma == 0)
3106		return -ENOENT;
3107
3108	simplex = inb(bmdma + 0x02);
3109	outb(simplex & 0x60, bmdma + 0x02);
3110	simplex = inb(bmdma + 0x02);
3111	if (simplex & 0x80)
3112		return -EOPNOTSUPP;
3113	return 0;
 
 
 
3114}
3115EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3116
3117static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3118{
3119	int i;
3120
3121	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3122
3123	for (i = 0; i < 2; i++) {
3124		host->ports[i]->mwdma_mask = 0;
3125		host->ports[i]->udma_mask = 0;
3126	}
3127}
3128
3129/**
3130 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131 *	@host: target ATA host
3132 *
3133 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3134 *
3135 *	LOCKING:
3136 *	Inherited from calling layer (may sleep).
3137 */
3138void ata_pci_bmdma_init(struct ata_host *host)
3139{
3140	struct device *gdev = host->dev;
3141	struct pci_dev *pdev = to_pci_dev(gdev);
3142	int i, rc;
3143
3144	/* No BAR4 allocation: No DMA */
3145	if (pci_resource_start(pdev, 4) == 0) {
3146		ata_bmdma_nodma(host, "BAR4 is zero");
3147		return;
3148	}
3149
3150	/*
3151	 * Some controllers require BMDMA region to be initialized
3152	 * even if DMA is not in use to clear IRQ status via
3153	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3154	 * regardless of dma masks.
3155	 */
3156	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3157	if (rc)
3158		ata_bmdma_nodma(host, "failed to set dma mask");
3159
3160	/* request and iomap DMA region */
3161	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3162	if (rc) {
3163		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3164		return;
3165	}
3166	host->iomap = pcim_iomap_table(pdev);
3167
3168	for (i = 0; i < 2; i++) {
3169		struct ata_port *ap = host->ports[i];
3170		void __iomem *bmdma = host->iomap[4] + 8 * i;
3171
3172		if (ata_port_is_dummy(ap))
3173			continue;
3174
3175		ap->ioaddr.bmdma_addr = bmdma;
3176		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3177		    (ioread8(bmdma + 2) & 0x80))
3178			host->flags |= ATA_HOST_SIMPLEX;
3179
3180		ata_port_desc(ap, "bmdma 0x%llx",
3181		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3182	}
3183}
3184EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3185
3186/**
3187 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188 *	@pdev: target PCI device
3189 *	@ppi: array of port_info, must be enough for two ports
3190 *	@r_host: out argument for the initialized ATA host
3191 *
3192 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193 *	resources and initialize it accordingly in one go.
3194 *
3195 *	LOCKING:
3196 *	Inherited from calling layer (may sleep).
3197 *
3198 *	RETURNS:
3199 *	0 on success, -errno otherwise.
3200 */
3201int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3202			       const struct ata_port_info * const * ppi,
3203			       struct ata_host **r_host)
3204{
3205	int rc;
3206
3207	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3208	if (rc)
3209		return rc;
3210
3211	ata_pci_bmdma_init(*r_host);
3212	return 0;
3213}
3214EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3215
3216/**
3217 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218 *	@pdev: Controller to be initialized
3219 *	@ppi: array of port_info, must be enough for two ports
3220 *	@sht: scsi_host_template to use when registering the host
3221 *	@host_priv: host private_data
3222 *	@hflags: host flags
3223 *
3224 *	This function is similar to ata_pci_sff_init_one() but also
3225 *	takes care of BMDMA initialization.
3226 *
3227 *	LOCKING:
3228 *	Inherited from PCI layer (may sleep).
3229 *
3230 *	RETURNS:
3231 *	Zero on success, negative on errno-based value on error.
3232 */
3233int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3234			   const struct ata_port_info * const * ppi,
3235			   struct scsi_host_template *sht, void *host_priv,
3236			   int hflags)
3237{
3238	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3239}
3240EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3241
3242#endif /* CONFIG_PCI */
3243#endif /* CONFIG_ATA_BMDMA */
3244
3245/**
3246 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247 *	@ap: Port to initialize
3248 *
3249 *	Called on port allocation to initialize SFF/BMDMA specific
3250 *	fields.
3251 *
3252 *	LOCKING:
3253 *	None.
3254 */
3255void ata_sff_port_init(struct ata_port *ap)
3256{
3257	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3258	ap->ctl = ATA_DEVCTL_OBS;
3259	ap->last_ctl = 0xFF;
3260}
3261
3262int __init ata_sff_init(void)
3263{
3264	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3265	if (!ata_sff_wq)
3266		return -ENOMEM;
3267
3268	return 0;
3269}
3270
3271void ata_sff_exit(void)
3272{
3273	destroy_workqueue(ata_sff_wq);
3274}