Linux Audio

Check our new training course

Loading...
   1/*
   2 *  libata-sff.c - helper library for PCI IDE BMDMA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2006 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/gfp.h>
  37#include <linux/pci.h>
  38#include <linux/module.h>
  39#include <linux/libata.h>
  40#include <linux/highmem.h>
  41
  42#include "libata.h"
  43
  44static struct workqueue_struct *ata_sff_wq;
  45
  46const struct ata_port_operations ata_sff_port_ops = {
  47	.inherits		= &ata_base_port_ops,
  48
  49	.qc_prep		= ata_noop_qc_prep,
  50	.qc_issue		= ata_sff_qc_issue,
  51	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  52
  53	.freeze			= ata_sff_freeze,
  54	.thaw			= ata_sff_thaw,
  55	.prereset		= ata_sff_prereset,
  56	.softreset		= ata_sff_softreset,
  57	.hardreset		= sata_sff_hardreset,
  58	.postreset		= ata_sff_postreset,
  59	.error_handler		= ata_sff_error_handler,
  60
  61	.sff_dev_select		= ata_sff_dev_select,
  62	.sff_check_status	= ata_sff_check_status,
  63	.sff_tf_load		= ata_sff_tf_load,
  64	.sff_tf_read		= ata_sff_tf_read,
  65	.sff_exec_command	= ata_sff_exec_command,
  66	.sff_data_xfer		= ata_sff_data_xfer,
  67	.sff_drain_fifo		= ata_sff_drain_fifo,
  68
  69	.lost_interrupt		= ata_sff_lost_interrupt,
  70};
  71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  72
  73/**
  74 *	ata_sff_check_status - Read device status reg & clear interrupt
  75 *	@ap: port where the device is
  76 *
  77 *	Reads ATA taskfile status register for currently-selected device
  78 *	and return its value. This also clears pending interrupts
  79 *      from this device
  80 *
  81 *	LOCKING:
  82 *	Inherited from caller.
  83 */
  84u8 ata_sff_check_status(struct ata_port *ap)
  85{
  86	return ioread8(ap->ioaddr.status_addr);
  87}
  88EXPORT_SYMBOL_GPL(ata_sff_check_status);
  89
  90/**
  91 *	ata_sff_altstatus - Read device alternate status reg
  92 *	@ap: port where the device is
  93 *
  94 *	Reads ATA taskfile alternate status register for
  95 *	currently-selected device and return its value.
  96 *
  97 *	Note: may NOT be used as the check_altstatus() entry in
  98 *	ata_port_operations.
  99 *
 100 *	LOCKING:
 101 *	Inherited from caller.
 102 */
 103static u8 ata_sff_altstatus(struct ata_port *ap)
 104{
 105	if (ap->ops->sff_check_altstatus)
 106		return ap->ops->sff_check_altstatus(ap);
 107
 108	return ioread8(ap->ioaddr.altstatus_addr);
 109}
 110
 111/**
 112 *	ata_sff_irq_status - Check if the device is busy
 113 *	@ap: port where the device is
 114 *
 115 *	Determine if the port is currently busy. Uses altstatus
 116 *	if available in order to avoid clearing shared IRQ status
 117 *	when finding an IRQ source. Non ctl capable devices don't
 118 *	share interrupt lines fortunately for us.
 119 *
 120 *	LOCKING:
 121 *	Inherited from caller.
 122 */
 123static u8 ata_sff_irq_status(struct ata_port *ap)
 124{
 125	u8 status;
 126
 127	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 128		status = ata_sff_altstatus(ap);
 129		/* Not us: We are busy */
 130		if (status & ATA_BUSY)
 131			return status;
 132	}
 133	/* Clear INTRQ latch */
 134	status = ap->ops->sff_check_status(ap);
 135	return status;
 136}
 137
 138/**
 139 *	ata_sff_sync - Flush writes
 140 *	@ap: Port to wait for.
 141 *
 142 *	CAUTION:
 143 *	If we have an mmio device with no ctl and no altstatus
 144 *	method this will fail. No such devices are known to exist.
 145 *
 146 *	LOCKING:
 147 *	Inherited from caller.
 148 */
 149
 150static void ata_sff_sync(struct ata_port *ap)
 151{
 152	if (ap->ops->sff_check_altstatus)
 153		ap->ops->sff_check_altstatus(ap);
 154	else if (ap->ioaddr.altstatus_addr)
 155		ioread8(ap->ioaddr.altstatus_addr);
 156}
 157
 158/**
 159 *	ata_sff_pause		-	Flush writes and wait 400nS
 160 *	@ap: Port to pause for.
 161 *
 162 *	CAUTION:
 163 *	If we have an mmio device with no ctl and no altstatus
 164 *	method this will fail. No such devices are known to exist.
 165 *
 166 *	LOCKING:
 167 *	Inherited from caller.
 168 */
 169
 170void ata_sff_pause(struct ata_port *ap)
 171{
 172	ata_sff_sync(ap);
 173	ndelay(400);
 174}
 175EXPORT_SYMBOL_GPL(ata_sff_pause);
 176
 177/**
 178 *	ata_sff_dma_pause	-	Pause before commencing DMA
 179 *	@ap: Port to pause for.
 180 *
 181 *	Perform I/O fencing and ensure sufficient cycle delays occur
 182 *	for the HDMA1:0 transition
 183 */
 184
 185void ata_sff_dma_pause(struct ata_port *ap)
 186{
 187	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 188		/* An altstatus read will cause the needed delay without
 189		   messing up the IRQ status */
 190		ata_sff_altstatus(ap);
 191		return;
 192	}
 193	/* There are no DMA controllers without ctl. BUG here to ensure
 194	   we never violate the HDMA1:0 transition timing and risk
 195	   corruption. */
 196	BUG();
 197}
 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 199
 200/**
 201 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
 202 *	@ap: port containing status register to be polled
 203 *	@tmout_pat: impatience timeout in msecs
 204 *	@tmout: overall timeout in msecs
 205 *
 206 *	Sleep until ATA Status register bit BSY clears,
 207 *	or a timeout occurs.
 208 *
 209 *	LOCKING:
 210 *	Kernel thread context (may sleep).
 211 *
 212 *	RETURNS:
 213 *	0 on success, -errno otherwise.
 214 */
 215int ata_sff_busy_sleep(struct ata_port *ap,
 216		       unsigned long tmout_pat, unsigned long tmout)
 217{
 218	unsigned long timer_start, timeout;
 219	u8 status;
 220
 221	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 222	timer_start = jiffies;
 223	timeout = ata_deadline(timer_start, tmout_pat);
 224	while (status != 0xff && (status & ATA_BUSY) &&
 225	       time_before(jiffies, timeout)) {
 226		ata_msleep(ap, 50);
 227		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 228	}
 229
 230	if (status != 0xff && (status & ATA_BUSY))
 231		ata_port_warn(ap,
 232			      "port is slow to respond, please be patient (Status 0x%x)\n",
 233			      status);
 234
 235	timeout = ata_deadline(timer_start, tmout);
 236	while (status != 0xff && (status & ATA_BUSY) &&
 237	       time_before(jiffies, timeout)) {
 238		ata_msleep(ap, 50);
 239		status = ap->ops->sff_check_status(ap);
 240	}
 241
 242	if (status == 0xff)
 243		return -ENODEV;
 244
 245	if (status & ATA_BUSY) {
 246		ata_port_err(ap,
 247			     "port failed to respond (%lu secs, Status 0x%x)\n",
 248			     DIV_ROUND_UP(tmout, 1000), status);
 249		return -EBUSY;
 250	}
 251
 252	return 0;
 253}
 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 255
 256static int ata_sff_check_ready(struct ata_link *link)
 257{
 258	u8 status = link->ap->ops->sff_check_status(link->ap);
 259
 260	return ata_check_ready(status);
 261}
 262
 263/**
 264 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 265 *	@link: SFF link to wait ready status for
 266 *	@deadline: deadline jiffies for the operation
 267 *
 268 *	Sleep until ATA Status register bit BSY clears, or timeout
 269 *	occurs.
 270 *
 271 *	LOCKING:
 272 *	Kernel thread context (may sleep).
 273 *
 274 *	RETURNS:
 275 *	0 on success, -errno otherwise.
 276 */
 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 278{
 279	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 280}
 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 282
 283/**
 284 *	ata_sff_set_devctl - Write device control reg
 285 *	@ap: port where the device is
 286 *	@ctl: value to write
 287 *
 288 *	Writes ATA taskfile device control register.
 289 *
 290 *	Note: may NOT be used as the sff_set_devctl() entry in
 291 *	ata_port_operations.
 292 *
 293 *	LOCKING:
 294 *	Inherited from caller.
 295 */
 296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 297{
 298	if (ap->ops->sff_set_devctl)
 299		ap->ops->sff_set_devctl(ap, ctl);
 300	else
 301		iowrite8(ctl, ap->ioaddr.ctl_addr);
 302}
 303
 304/**
 305 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 306 *	@ap: ATA channel to manipulate
 307 *	@device: ATA device (numbered from zero) to select
 308 *
 309 *	Use the method defined in the ATA specification to
 310 *	make either device 0, or device 1, active on the
 311 *	ATA channel.  Works with both PIO and MMIO.
 312 *
 313 *	May be used as the dev_select() entry in ata_port_operations.
 314 *
 315 *	LOCKING:
 316 *	caller.
 317 */
 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 319{
 320	u8 tmp;
 321
 322	if (device == 0)
 323		tmp = ATA_DEVICE_OBS;
 324	else
 325		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 326
 327	iowrite8(tmp, ap->ioaddr.device_addr);
 328	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 331
 332/**
 333 *	ata_dev_select - Select device 0/1 on ATA bus
 334 *	@ap: ATA channel to manipulate
 335 *	@device: ATA device (numbered from zero) to select
 336 *	@wait: non-zero to wait for Status register BSY bit to clear
 337 *	@can_sleep: non-zero if context allows sleeping
 338 *
 339 *	Use the method defined in the ATA specification to
 340 *	make either device 0, or device 1, active on the
 341 *	ATA channel.
 342 *
 343 *	This is a high-level version of ata_sff_dev_select(), which
 344 *	additionally provides the services of inserting the proper
 345 *	pauses and status polling, where needed.
 346 *
 347 *	LOCKING:
 348 *	caller.
 349 */
 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
 351			   unsigned int wait, unsigned int can_sleep)
 352{
 353	if (ata_msg_probe(ap))
 354		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 355			      device, wait);
 356
 357	if (wait)
 358		ata_wait_idle(ap);
 359
 360	ap->ops->sff_dev_select(ap, device);
 361
 362	if (wait) {
 363		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 364			ata_msleep(ap, 150);
 365		ata_wait_idle(ap);
 366	}
 367}
 368
 369/**
 370 *	ata_sff_irq_on - Enable interrupts on a port.
 371 *	@ap: Port on which interrupts are enabled.
 372 *
 373 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 374 *	wait for idle, clear any pending interrupts.
 375 *
 376 *	Note: may NOT be used as the sff_irq_on() entry in
 377 *	ata_port_operations.
 378 *
 379 *	LOCKING:
 380 *	Inherited from caller.
 381 */
 382void ata_sff_irq_on(struct ata_port *ap)
 383{
 384	struct ata_ioports *ioaddr = &ap->ioaddr;
 385
 386	if (ap->ops->sff_irq_on) {
 387		ap->ops->sff_irq_on(ap);
 388		return;
 389	}
 390
 391	ap->ctl &= ~ATA_NIEN;
 392	ap->last_ctl = ap->ctl;
 393
 394	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 395		ata_sff_set_devctl(ap, ap->ctl);
 396	ata_wait_idle(ap);
 397
 398	if (ap->ops->sff_irq_clear)
 399		ap->ops->sff_irq_clear(ap);
 400}
 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 402
 403/**
 404 *	ata_sff_tf_load - send taskfile registers to host controller
 405 *	@ap: Port to which output is sent
 406 *	@tf: ATA taskfile register set
 407 *
 408 *	Outputs ATA taskfile to standard ATA host controller.
 409 *
 410 *	LOCKING:
 411 *	Inherited from caller.
 412 */
 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 414{
 415	struct ata_ioports *ioaddr = &ap->ioaddr;
 416	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 417
 418	if (tf->ctl != ap->last_ctl) {
 419		if (ioaddr->ctl_addr)
 420			iowrite8(tf->ctl, ioaddr->ctl_addr);
 421		ap->last_ctl = tf->ctl;
 422		ata_wait_idle(ap);
 423	}
 424
 425	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 426		WARN_ON_ONCE(!ioaddr->ctl_addr);
 427		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 428		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 429		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 430		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 431		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 432		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 433			tf->hob_feature,
 434			tf->hob_nsect,
 435			tf->hob_lbal,
 436			tf->hob_lbam,
 437			tf->hob_lbah);
 438	}
 439
 440	if (is_addr) {
 441		iowrite8(tf->feature, ioaddr->feature_addr);
 442		iowrite8(tf->nsect, ioaddr->nsect_addr);
 443		iowrite8(tf->lbal, ioaddr->lbal_addr);
 444		iowrite8(tf->lbam, ioaddr->lbam_addr);
 445		iowrite8(tf->lbah, ioaddr->lbah_addr);
 446		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 447			tf->feature,
 448			tf->nsect,
 449			tf->lbal,
 450			tf->lbam,
 451			tf->lbah);
 452	}
 453
 454	if (tf->flags & ATA_TFLAG_DEVICE) {
 455		iowrite8(tf->device, ioaddr->device_addr);
 456		VPRINTK("device 0x%X\n", tf->device);
 457	}
 458
 459	ata_wait_idle(ap);
 460}
 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 462
 463/**
 464 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 465 *	@ap: Port from which input is read
 466 *	@tf: ATA taskfile register set for storing input
 467 *
 468 *	Reads ATA taskfile registers for currently-selected device
 469 *	into @tf. Assumes the device has a fully SFF compliant task file
 470 *	layout and behaviour. If you device does not (eg has a different
 471 *	status method) then you will need to provide a replacement tf_read
 472 *
 473 *	LOCKING:
 474 *	Inherited from caller.
 475 */
 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 477{
 478	struct ata_ioports *ioaddr = &ap->ioaddr;
 479
 480	tf->command = ata_sff_check_status(ap);
 481	tf->feature = ioread8(ioaddr->error_addr);
 482	tf->nsect = ioread8(ioaddr->nsect_addr);
 483	tf->lbal = ioread8(ioaddr->lbal_addr);
 484	tf->lbam = ioread8(ioaddr->lbam_addr);
 485	tf->lbah = ioread8(ioaddr->lbah_addr);
 486	tf->device = ioread8(ioaddr->device_addr);
 487
 488	if (tf->flags & ATA_TFLAG_LBA48) {
 489		if (likely(ioaddr->ctl_addr)) {
 490			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 491			tf->hob_feature = ioread8(ioaddr->error_addr);
 492			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 493			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 494			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 495			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 496			iowrite8(tf->ctl, ioaddr->ctl_addr);
 497			ap->last_ctl = tf->ctl;
 498		} else
 499			WARN_ON_ONCE(1);
 500	}
 501}
 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 503
 504/**
 505 *	ata_sff_exec_command - issue ATA command to host controller
 506 *	@ap: port to which command is being issued
 507 *	@tf: ATA taskfile register set
 508 *
 509 *	Issues ATA command, with proper synchronization with interrupt
 510 *	handler / other threads.
 511 *
 512 *	LOCKING:
 513 *	spin_lock_irqsave(host lock)
 514 */
 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 516{
 517	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 518
 519	iowrite8(tf->command, ap->ioaddr.command_addr);
 520	ata_sff_pause(ap);
 521}
 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 523
 524/**
 525 *	ata_tf_to_host - issue ATA taskfile to host controller
 526 *	@ap: port to which command is being issued
 527 *	@tf: ATA taskfile register set
 528 *
 529 *	Issues ATA taskfile register set to ATA host controller,
 530 *	with proper synchronization with interrupt handler and
 531 *	other threads.
 532 *
 533 *	LOCKING:
 534 *	spin_lock_irqsave(host lock)
 535 */
 536static inline void ata_tf_to_host(struct ata_port *ap,
 537				  const struct ata_taskfile *tf)
 538{
 539	ap->ops->sff_tf_load(ap, tf);
 540	ap->ops->sff_exec_command(ap, tf);
 541}
 542
 543/**
 544 *	ata_sff_data_xfer - Transfer data by PIO
 545 *	@dev: device to target
 546 *	@buf: data buffer
 547 *	@buflen: buffer length
 548 *	@rw: read/write
 549 *
 550 *	Transfer data from/to the device data register by PIO.
 551 *
 552 *	LOCKING:
 553 *	Inherited from caller.
 554 *
 555 *	RETURNS:
 556 *	Bytes consumed.
 557 */
 558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
 559			       unsigned int buflen, int rw)
 560{
 561	struct ata_port *ap = dev->link->ap;
 562	void __iomem *data_addr = ap->ioaddr.data_addr;
 563	unsigned int words = buflen >> 1;
 564
 565	/* Transfer multiple of 2 bytes */
 566	if (rw == READ)
 567		ioread16_rep(data_addr, buf, words);
 568	else
 569		iowrite16_rep(data_addr, buf, words);
 570
 571	/* Transfer trailing byte, if any. */
 572	if (unlikely(buflen & 0x01)) {
 573		unsigned char pad[2] = { };
 574
 575		/* Point buf to the tail of buffer */
 576		buf += buflen - 1;
 577
 578		/*
 579		 * Use io*16_rep() accessors here as well to avoid pointlessly
 580		 * swapping bytes to and from on the big endian machines...
 581		 */
 582		if (rw == READ) {
 583			ioread16_rep(data_addr, pad, 1);
 584			*buf = pad[0];
 585		} else {
 586			pad[0] = *buf;
 587			iowrite16_rep(data_addr, pad, 1);
 588		}
 589		words++;
 590	}
 591
 592	return words << 1;
 593}
 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 595
 596/**
 597 *	ata_sff_data_xfer32 - Transfer data by PIO
 598 *	@dev: device to target
 599 *	@buf: data buffer
 600 *	@buflen: buffer length
 601 *	@rw: read/write
 602 *
 603 *	Transfer data from/to the device data register by PIO using 32bit
 604 *	I/O operations.
 605 *
 606 *	LOCKING:
 607 *	Inherited from caller.
 608 *
 609 *	RETURNS:
 610 *	Bytes consumed.
 611 */
 612
 613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
 614			       unsigned int buflen, int rw)
 615{
 616	struct ata_port *ap = dev->link->ap;
 617	void __iomem *data_addr = ap->ioaddr.data_addr;
 618	unsigned int words = buflen >> 2;
 619	int slop = buflen & 3;
 620
 621	if (!(ap->pflags & ATA_PFLAG_PIO32))
 622		return ata_sff_data_xfer(dev, buf, buflen, rw);
 623
 624	/* Transfer multiple of 4 bytes */
 625	if (rw == READ)
 626		ioread32_rep(data_addr, buf, words);
 627	else
 628		iowrite32_rep(data_addr, buf, words);
 629
 630	/* Transfer trailing bytes, if any */
 631	if (unlikely(slop)) {
 632		unsigned char pad[4] = { };
 633
 634		/* Point buf to the tail of buffer */
 635		buf += buflen - slop;
 636
 637		/*
 638		 * Use io*_rep() accessors here as well to avoid pointlessly
 639		 * swapping bytes to and from on the big endian machines...
 640		 */
 641		if (rw == READ) {
 642			if (slop < 3)
 643				ioread16_rep(data_addr, pad, 1);
 644			else
 645				ioread32_rep(data_addr, pad, 1);
 646			memcpy(buf, pad, slop);
 647		} else {
 648			memcpy(pad, buf, slop);
 649			if (slop < 3)
 650				iowrite16_rep(data_addr, pad, 1);
 651			else
 652				iowrite32_rep(data_addr, pad, 1);
 653		}
 654	}
 655	return (buflen + 1) & ~1;
 656}
 657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 658
 659/**
 660 *	ata_sff_data_xfer_noirq - Transfer data by PIO
 661 *	@dev: device to target
 662 *	@buf: data buffer
 663 *	@buflen: buffer length
 664 *	@rw: read/write
 665 *
 666 *	Transfer data from/to the device data register by PIO. Do the
 667 *	transfer with interrupts disabled.
 668 *
 669 *	LOCKING:
 670 *	Inherited from caller.
 671 *
 672 *	RETURNS:
 673 *	Bytes consumed.
 674 */
 675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
 676				     unsigned int buflen, int rw)
 677{
 678	unsigned long flags;
 679	unsigned int consumed;
 680
 681	local_irq_save(flags);
 682	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
 683	local_irq_restore(flags);
 684
 685	return consumed;
 686}
 687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
 688
 689/**
 690 *	ata_pio_sector - Transfer a sector of data.
 691 *	@qc: Command on going
 692 *
 693 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 694 *
 695 *	LOCKING:
 696 *	Inherited from caller.
 697 */
 698static void ata_pio_sector(struct ata_queued_cmd *qc)
 699{
 700	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 701	struct ata_port *ap = qc->ap;
 702	struct page *page;
 703	unsigned int offset;
 704	unsigned char *buf;
 705
 706	if (qc->curbytes == qc->nbytes - qc->sect_size)
 707		ap->hsm_task_state = HSM_ST_LAST;
 708
 709	page = sg_page(qc->cursg);
 710	offset = qc->cursg->offset + qc->cursg_ofs;
 711
 712	/* get the current page and offset */
 713	page = nth_page(page, (offset >> PAGE_SHIFT));
 714	offset %= PAGE_SIZE;
 715
 716	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 717
 718	if (PageHighMem(page)) {
 719		unsigned long flags;
 720
 721		/* FIXME: use a bounce buffer */
 722		local_irq_save(flags);
 723		buf = kmap_atomic(page);
 724
 725		/* do the actual data transfer */
 726		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 727				       do_write);
 728
 729		kunmap_atomic(buf);
 730		local_irq_restore(flags);
 731	} else {
 732		buf = page_address(page);
 733		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 734				       do_write);
 735	}
 736
 737	if (!do_write && !PageSlab(page))
 738		flush_dcache_page(page);
 739
 740	qc->curbytes += qc->sect_size;
 741	qc->cursg_ofs += qc->sect_size;
 742
 743	if (qc->cursg_ofs == qc->cursg->length) {
 744		qc->cursg = sg_next(qc->cursg);
 745		qc->cursg_ofs = 0;
 746	}
 747}
 748
 749/**
 750 *	ata_pio_sectors - Transfer one or many sectors.
 751 *	@qc: Command on going
 752 *
 753 *	Transfer one or many sectors of data from/to the
 754 *	ATA device for the DRQ request.
 755 *
 756 *	LOCKING:
 757 *	Inherited from caller.
 758 */
 759static void ata_pio_sectors(struct ata_queued_cmd *qc)
 760{
 761	if (is_multi_taskfile(&qc->tf)) {
 762		/* READ/WRITE MULTIPLE */
 763		unsigned int nsect;
 764
 765		WARN_ON_ONCE(qc->dev->multi_count == 0);
 766
 767		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 768			    qc->dev->multi_count);
 769		while (nsect--)
 770			ata_pio_sector(qc);
 771	} else
 772		ata_pio_sector(qc);
 773
 774	ata_sff_sync(qc->ap); /* flush */
 775}
 776
 777/**
 778 *	atapi_send_cdb - Write CDB bytes to hardware
 779 *	@ap: Port to which ATAPI device is attached.
 780 *	@qc: Taskfile currently active
 781 *
 782 *	When device has indicated its readiness to accept
 783 *	a CDB, this function is called.  Send the CDB.
 784 *
 785 *	LOCKING:
 786 *	caller.
 787 */
 788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 789{
 790	/* send SCSI cdb */
 791	DPRINTK("send cdb\n");
 792	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 793
 794	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
 795	ata_sff_sync(ap);
 796	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 797	   or is bmdma_start guaranteed to do it ? */
 798	switch (qc->tf.protocol) {
 799	case ATAPI_PROT_PIO:
 800		ap->hsm_task_state = HSM_ST;
 801		break;
 802	case ATAPI_PROT_NODATA:
 803		ap->hsm_task_state = HSM_ST_LAST;
 804		break;
 805#ifdef CONFIG_ATA_BMDMA
 806	case ATAPI_PROT_DMA:
 807		ap->hsm_task_state = HSM_ST_LAST;
 808		/* initiate bmdma */
 809		ap->ops->bmdma_start(qc);
 810		break;
 811#endif /* CONFIG_ATA_BMDMA */
 812	default:
 813		BUG();
 814	}
 815}
 816
 817/**
 818 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 819 *	@qc: Command on going
 820 *	@bytes: number of bytes
 821 *
 822 *	Transfer Transfer data from/to the ATAPI device.
 823 *
 824 *	LOCKING:
 825 *	Inherited from caller.
 826 *
 827 */
 828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 829{
 830	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 831	struct ata_port *ap = qc->ap;
 832	struct ata_device *dev = qc->dev;
 833	struct ata_eh_info *ehi = &dev->link->eh_info;
 834	struct scatterlist *sg;
 835	struct page *page;
 836	unsigned char *buf;
 837	unsigned int offset, count, consumed;
 838
 839next_sg:
 840	sg = qc->cursg;
 841	if (unlikely(!sg)) {
 842		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 843				  "buf=%u cur=%u bytes=%u",
 844				  qc->nbytes, qc->curbytes, bytes);
 845		return -1;
 846	}
 847
 848	page = sg_page(sg);
 849	offset = sg->offset + qc->cursg_ofs;
 850
 851	/* get the current page and offset */
 852	page = nth_page(page, (offset >> PAGE_SHIFT));
 853	offset %= PAGE_SIZE;
 854
 855	/* don't overrun current sg */
 856	count = min(sg->length - qc->cursg_ofs, bytes);
 857
 858	/* don't cross page boundaries */
 859	count = min(count, (unsigned int)PAGE_SIZE - offset);
 860
 861	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 862
 863	if (PageHighMem(page)) {
 864		unsigned long flags;
 865
 866		/* FIXME: use bounce buffer */
 867		local_irq_save(flags);
 868		buf = kmap_atomic(page);
 869
 870		/* do the actual data transfer */
 871		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 872								count, rw);
 873
 874		kunmap_atomic(buf);
 875		local_irq_restore(flags);
 876	} else {
 877		buf = page_address(page);
 878		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 879								count, rw);
 880	}
 881
 882	bytes -= min(bytes, consumed);
 883	qc->curbytes += count;
 884	qc->cursg_ofs += count;
 885
 886	if (qc->cursg_ofs == sg->length) {
 887		qc->cursg = sg_next(qc->cursg);
 888		qc->cursg_ofs = 0;
 889	}
 890
 891	/*
 892	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 893	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 894	 * check correctly as it doesn't know if it is the last request being
 895	 * made. Somebody should implement a proper sanity check.
 896	 */
 897	if (bytes)
 898		goto next_sg;
 899	return 0;
 900}
 901
 902/**
 903 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 904 *	@qc: Command on going
 905 *
 906 *	Transfer Transfer data from/to the ATAPI device.
 907 *
 908 *	LOCKING:
 909 *	Inherited from caller.
 910 */
 911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 912{
 913	struct ata_port *ap = qc->ap;
 914	struct ata_device *dev = qc->dev;
 915	struct ata_eh_info *ehi = &dev->link->eh_info;
 916	unsigned int ireason, bc_lo, bc_hi, bytes;
 917	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 918
 919	/* Abuse qc->result_tf for temp storage of intermediate TF
 920	 * here to save some kernel stack usage.
 921	 * For normal completion, qc->result_tf is not relevant. For
 922	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 923	 * So, the correctness of qc->result_tf is not affected.
 924	 */
 925	ap->ops->sff_tf_read(ap, &qc->result_tf);
 926	ireason = qc->result_tf.nsect;
 927	bc_lo = qc->result_tf.lbam;
 928	bc_hi = qc->result_tf.lbah;
 929	bytes = (bc_hi << 8) | bc_lo;
 930
 931	/* shall be cleared to zero, indicating xfer of data */
 932	if (unlikely(ireason & ATAPI_COD))
 933		goto atapi_check;
 934
 935	/* make sure transfer direction matches expected */
 936	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 937	if (unlikely(do_write != i_write))
 938		goto atapi_check;
 939
 940	if (unlikely(!bytes))
 941		goto atapi_check;
 942
 943	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 944
 945	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 946		goto err_out;
 947	ata_sff_sync(ap); /* flush */
 948
 949	return;
 950
 951 atapi_check:
 952	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 953			  ireason, bytes);
 954 err_out:
 955	qc->err_mask |= AC_ERR_HSM;
 956	ap->hsm_task_state = HSM_ST_ERR;
 957}
 958
 959/**
 960 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 961 *	@ap: the target ata_port
 962 *	@qc: qc on going
 963 *
 964 *	RETURNS:
 965 *	1 if ok in workqueue, 0 otherwise.
 966 */
 967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 968						struct ata_queued_cmd *qc)
 969{
 970	if (qc->tf.flags & ATA_TFLAG_POLLING)
 971		return 1;
 972
 973	if (ap->hsm_task_state == HSM_ST_FIRST) {
 974		if (qc->tf.protocol == ATA_PROT_PIO &&
 975		   (qc->tf.flags & ATA_TFLAG_WRITE))
 976		    return 1;
 977
 978		if (ata_is_atapi(qc->tf.protocol) &&
 979		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 980			return 1;
 981	}
 982
 983	return 0;
 984}
 985
 986/**
 987 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 988 *	@qc: Command to complete
 989 *	@in_wq: 1 if called from workqueue, 0 otherwise
 990 *
 991 *	Finish @qc which is running on standard HSM.
 992 *
 993 *	LOCKING:
 994 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 995 *	Otherwise, none on entry and grabs host lock.
 996 */
 997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 998{
 999	struct ata_port *ap = qc->ap;
1000	unsigned long flags;
1001
1002	if (ap->ops->error_handler) {
1003		if (in_wq) {
1004			spin_lock_irqsave(ap->lock, flags);
1005
1006			/* EH might have kicked in while host lock is
1007			 * released.
1008			 */
1009			qc = ata_qc_from_tag(ap, qc->tag);
1010			if (qc) {
1011				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1012					ata_sff_irq_on(ap);
1013					ata_qc_complete(qc);
1014				} else
1015					ata_port_freeze(ap);
1016			}
1017
1018			spin_unlock_irqrestore(ap->lock, flags);
1019		} else {
1020			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1021				ata_qc_complete(qc);
1022			else
1023				ata_port_freeze(ap);
1024		}
1025	} else {
1026		if (in_wq) {
1027			spin_lock_irqsave(ap->lock, flags);
1028			ata_sff_irq_on(ap);
1029			ata_qc_complete(qc);
1030			spin_unlock_irqrestore(ap->lock, flags);
1031		} else
1032			ata_qc_complete(qc);
1033	}
1034}
1035
1036/**
1037 *	ata_sff_hsm_move - move the HSM to the next state.
1038 *	@ap: the target ata_port
1039 *	@qc: qc on going
1040 *	@status: current device status
1041 *	@in_wq: 1 if called from workqueue, 0 otherwise
1042 *
1043 *	RETURNS:
1044 *	1 when poll next status needed, 0 otherwise.
1045 */
1046int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1047		     u8 status, int in_wq)
1048{
1049	struct ata_link *link = qc->dev->link;
1050	struct ata_eh_info *ehi = &link->eh_info;
1051	unsigned long flags = 0;
1052	int poll_next;
1053
1054	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055
1056	/* Make sure ata_sff_qc_issue() does not throw things
1057	 * like DMA polling into the workqueue. Notice that
1058	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059	 */
1060	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061
1062fsm_start:
1063	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065
1066	switch (ap->hsm_task_state) {
1067	case HSM_ST_FIRST:
1068		/* Send first data block or PACKET CDB */
1069
1070		/* If polling, we will stay in the work queue after
1071		 * sending the data. Otherwise, interrupt handler
1072		 * takes over after sending the data.
1073		 */
1074		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075
1076		/* check device status */
1077		if (unlikely((status & ATA_DRQ) == 0)) {
1078			/* handle BSY=0, DRQ=0 as error */
1079			if (likely(status & (ATA_ERR | ATA_DF)))
1080				/* device stops HSM for abort/error */
1081				qc->err_mask |= AC_ERR_DEV;
1082			else {
1083				/* HSM violation. Let EH handle this */
1084				ata_ehi_push_desc(ehi,
1085					"ST_FIRST: !(DRQ|ERR|DF)");
1086				qc->err_mask |= AC_ERR_HSM;
1087			}
1088
1089			ap->hsm_task_state = HSM_ST_ERR;
1090			goto fsm_start;
1091		}
1092
1093		/* Device should not ask for data transfer (DRQ=1)
1094		 * when it finds something wrong.
1095		 * We ignore DRQ here and stop the HSM by
1096		 * changing hsm_task_state to HSM_ST_ERR and
1097		 * let the EH abort the command or reset the device.
1098		 */
1099		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100			/* Some ATAPI tape drives forget to clear the ERR bit
1101			 * when doing the next command (mostly request sense).
1102			 * We ignore ERR here to workaround and proceed sending
1103			 * the CDB.
1104			 */
1105			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106				ata_ehi_push_desc(ehi, "ST_FIRST: "
1107					"DRQ=1 with device error, "
1108					"dev_stat 0x%X", status);
1109				qc->err_mask |= AC_ERR_HSM;
1110				ap->hsm_task_state = HSM_ST_ERR;
1111				goto fsm_start;
1112			}
1113		}
1114
1115		/* Send the CDB (atapi) or the first data block (ata pio out).
1116		 * During the state transition, interrupt handler shouldn't
1117		 * be invoked before the data transfer is complete and
1118		 * hsm_task_state is changed. Hence, the following locking.
1119		 */
1120		if (in_wq)
1121			spin_lock_irqsave(ap->lock, flags);
1122
1123		if (qc->tf.protocol == ATA_PROT_PIO) {
1124			/* PIO data out protocol.
1125			 * send first data block.
1126			 */
1127
1128			/* ata_pio_sectors() might change the state
1129			 * to HSM_ST_LAST. so, the state is changed here
1130			 * before ata_pio_sectors().
1131			 */
1132			ap->hsm_task_state = HSM_ST;
1133			ata_pio_sectors(qc);
1134		} else
1135			/* send CDB */
1136			atapi_send_cdb(ap, qc);
1137
1138		if (in_wq)
1139			spin_unlock_irqrestore(ap->lock, flags);
1140
1141		/* if polling, ata_sff_pio_task() handles the rest.
1142		 * otherwise, interrupt handler takes over from here.
1143		 */
1144		break;
1145
1146	case HSM_ST:
1147		/* complete command or read/write the data register */
1148		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1149			/* ATAPI PIO protocol */
1150			if ((status & ATA_DRQ) == 0) {
1151				/* No more data to transfer or device error.
1152				 * Device error will be tagged in HSM_ST_LAST.
1153				 */
1154				ap->hsm_task_state = HSM_ST_LAST;
1155				goto fsm_start;
1156			}
1157
1158			/* Device should not ask for data transfer (DRQ=1)
1159			 * when it finds something wrong.
1160			 * We ignore DRQ here and stop the HSM by
1161			 * changing hsm_task_state to HSM_ST_ERR and
1162			 * let the EH abort the command or reset the device.
1163			 */
1164			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1165				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1166					"DRQ=1 with device error, "
1167					"dev_stat 0x%X", status);
1168				qc->err_mask |= AC_ERR_HSM;
1169				ap->hsm_task_state = HSM_ST_ERR;
1170				goto fsm_start;
1171			}
1172
1173			atapi_pio_bytes(qc);
1174
1175			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1176				/* bad ireason reported by device */
1177				goto fsm_start;
1178
1179		} else {
1180			/* ATA PIO protocol */
1181			if (unlikely((status & ATA_DRQ) == 0)) {
1182				/* handle BSY=0, DRQ=0 as error */
1183				if (likely(status & (ATA_ERR | ATA_DF))) {
1184					/* device stops HSM for abort/error */
1185					qc->err_mask |= AC_ERR_DEV;
1186
1187					/* If diagnostic failed and this is
1188					 * IDENTIFY, it's likely a phantom
1189					 * device.  Mark hint.
1190					 */
1191					if (qc->dev->horkage &
1192					    ATA_HORKAGE_DIAGNOSTIC)
1193						qc->err_mask |=
1194							AC_ERR_NODEV_HINT;
1195				} else {
1196					/* HSM violation. Let EH handle this.
1197					 * Phantom devices also trigger this
1198					 * condition.  Mark hint.
1199					 */
1200					ata_ehi_push_desc(ehi, "ST-ATA: "
1201						"DRQ=0 without device error, "
1202						"dev_stat 0x%X", status);
1203					qc->err_mask |= AC_ERR_HSM |
1204							AC_ERR_NODEV_HINT;
1205				}
1206
1207				ap->hsm_task_state = HSM_ST_ERR;
1208				goto fsm_start;
1209			}
1210
1211			/* For PIO reads, some devices may ask for
1212			 * data transfer (DRQ=1) alone with ERR=1.
1213			 * We respect DRQ here and transfer one
1214			 * block of junk data before changing the
1215			 * hsm_task_state to HSM_ST_ERR.
1216			 *
1217			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1218			 * sense since the data block has been
1219			 * transferred to the device.
1220			 */
1221			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1222				/* data might be corrputed */
1223				qc->err_mask |= AC_ERR_DEV;
1224
1225				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1226					ata_pio_sectors(qc);
1227					status = ata_wait_idle(ap);
1228				}
1229
1230				if (status & (ATA_BUSY | ATA_DRQ)) {
1231					ata_ehi_push_desc(ehi, "ST-ATA: "
1232						"BUSY|DRQ persists on ERR|DF, "
1233						"dev_stat 0x%X", status);
1234					qc->err_mask |= AC_ERR_HSM;
1235				}
1236
1237				/* There are oddball controllers with
1238				 * status register stuck at 0x7f and
1239				 * lbal/m/h at zero which makes it
1240				 * pass all other presence detection
1241				 * mechanisms we have.  Set NODEV_HINT
1242				 * for it.  Kernel bz#7241.
1243				 */
1244				if (status == 0x7f)
1245					qc->err_mask |= AC_ERR_NODEV_HINT;
1246
1247				/* ata_pio_sectors() might change the
1248				 * state to HSM_ST_LAST. so, the state
1249				 * is changed after ata_pio_sectors().
1250				 */
1251				ap->hsm_task_state = HSM_ST_ERR;
1252				goto fsm_start;
1253			}
1254
1255			ata_pio_sectors(qc);
1256
1257			if (ap->hsm_task_state == HSM_ST_LAST &&
1258			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1259				/* all data read */
1260				status = ata_wait_idle(ap);
1261				goto fsm_start;
1262			}
1263		}
1264
1265		poll_next = 1;
1266		break;
1267
1268	case HSM_ST_LAST:
1269		if (unlikely(!ata_ok(status))) {
1270			qc->err_mask |= __ac_err_mask(status);
1271			ap->hsm_task_state = HSM_ST_ERR;
1272			goto fsm_start;
1273		}
1274
1275		/* no more data to transfer */
1276		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1277			ap->print_id, qc->dev->devno, status);
1278
1279		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1280
1281		ap->hsm_task_state = HSM_ST_IDLE;
1282
1283		/* complete taskfile transaction */
1284		ata_hsm_qc_complete(qc, in_wq);
1285
1286		poll_next = 0;
1287		break;
1288
1289	case HSM_ST_ERR:
1290		ap->hsm_task_state = HSM_ST_IDLE;
1291
1292		/* complete taskfile transaction */
1293		ata_hsm_qc_complete(qc, in_wq);
1294
1295		poll_next = 0;
1296		break;
1297	default:
1298		poll_next = 0;
1299		BUG();
1300	}
1301
1302	return poll_next;
1303}
1304EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1305
1306void ata_sff_queue_work(struct work_struct *work)
1307{
1308	queue_work(ata_sff_wq, work);
1309}
1310EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1311
1312void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1313{
1314	queue_delayed_work(ata_sff_wq, dwork, delay);
1315}
1316EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1317
1318void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1319{
1320	struct ata_port *ap = link->ap;
1321
1322	WARN_ON((ap->sff_pio_task_link != NULL) &&
1323		(ap->sff_pio_task_link != link));
1324	ap->sff_pio_task_link = link;
1325
1326	/* may fail if ata_sff_flush_pio_task() in progress */
1327	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1328}
1329EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1330
1331void ata_sff_flush_pio_task(struct ata_port *ap)
1332{
1333	DPRINTK("ENTER\n");
1334
1335	cancel_delayed_work_sync(&ap->sff_pio_task);
1336	ap->hsm_task_state = HSM_ST_IDLE;
1337	ap->sff_pio_task_link = NULL;
1338
1339	if (ata_msg_ctl(ap))
1340		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1341}
1342
1343static void ata_sff_pio_task(struct work_struct *work)
1344{
1345	struct ata_port *ap =
1346		container_of(work, struct ata_port, sff_pio_task.work);
1347	struct ata_link *link = ap->sff_pio_task_link;
1348	struct ata_queued_cmd *qc;
1349	u8 status;
1350	int poll_next;
1351
1352	BUG_ON(ap->sff_pio_task_link == NULL);
1353	/* qc can be NULL if timeout occurred */
1354	qc = ata_qc_from_tag(ap, link->active_tag);
1355	if (!qc) {
1356		ap->sff_pio_task_link = NULL;
1357		return;
1358	}
1359
1360fsm_start:
1361	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1362
1363	/*
1364	 * This is purely heuristic.  This is a fast path.
1365	 * Sometimes when we enter, BSY will be cleared in
1366	 * a chk-status or two.  If not, the drive is probably seeking
1367	 * or something.  Snooze for a couple msecs, then
1368	 * chk-status again.  If still busy, queue delayed work.
1369	 */
1370	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1371	if (status & ATA_BUSY) {
1372		ata_msleep(ap, 2);
1373		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1374		if (status & ATA_BUSY) {
1375			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1376			return;
1377		}
1378	}
1379
1380	/*
1381	 * hsm_move() may trigger another command to be processed.
1382	 * clean the link beforehand.
1383	 */
1384	ap->sff_pio_task_link = NULL;
1385	/* move the HSM */
1386	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1387
1388	/* another command or interrupt handler
1389	 * may be running at this point.
1390	 */
1391	if (poll_next)
1392		goto fsm_start;
1393}
1394
1395/**
1396 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1397 *	@qc: command to issue to device
1398 *
1399 *	This function issues a PIO or NODATA command to a SFF
1400 *	controller.
1401 *
1402 *	LOCKING:
1403 *	spin_lock_irqsave(host lock)
1404 *
1405 *	RETURNS:
1406 *	Zero on success, AC_ERR_* mask on failure
1407 */
1408unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1409{
1410	struct ata_port *ap = qc->ap;
1411	struct ata_link *link = qc->dev->link;
1412
1413	/* Use polling pio if the LLD doesn't handle
1414	 * interrupt driven pio and atapi CDB interrupt.
1415	 */
1416	if (ap->flags & ATA_FLAG_PIO_POLLING)
1417		qc->tf.flags |= ATA_TFLAG_POLLING;
1418
1419	/* select the device */
1420	ata_dev_select(ap, qc->dev->devno, 1, 0);
1421
1422	/* start the command */
1423	switch (qc->tf.protocol) {
1424	case ATA_PROT_NODATA:
1425		if (qc->tf.flags & ATA_TFLAG_POLLING)
1426			ata_qc_set_polling(qc);
1427
1428		ata_tf_to_host(ap, &qc->tf);
1429		ap->hsm_task_state = HSM_ST_LAST;
1430
1431		if (qc->tf.flags & ATA_TFLAG_POLLING)
1432			ata_sff_queue_pio_task(link, 0);
1433
1434		break;
1435
1436	case ATA_PROT_PIO:
1437		if (qc->tf.flags & ATA_TFLAG_POLLING)
1438			ata_qc_set_polling(qc);
1439
1440		ata_tf_to_host(ap, &qc->tf);
1441
1442		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1443			/* PIO data out protocol */
1444			ap->hsm_task_state = HSM_ST_FIRST;
1445			ata_sff_queue_pio_task(link, 0);
1446
1447			/* always send first data block using the
1448			 * ata_sff_pio_task() codepath.
1449			 */
1450		} else {
1451			/* PIO data in protocol */
1452			ap->hsm_task_state = HSM_ST;
1453
1454			if (qc->tf.flags & ATA_TFLAG_POLLING)
1455				ata_sff_queue_pio_task(link, 0);
1456
1457			/* if polling, ata_sff_pio_task() handles the
1458			 * rest.  otherwise, interrupt handler takes
1459			 * over from here.
1460			 */
1461		}
1462
1463		break;
1464
1465	case ATAPI_PROT_PIO:
1466	case ATAPI_PROT_NODATA:
1467		if (qc->tf.flags & ATA_TFLAG_POLLING)
1468			ata_qc_set_polling(qc);
1469
1470		ata_tf_to_host(ap, &qc->tf);
1471
1472		ap->hsm_task_state = HSM_ST_FIRST;
1473
1474		/* send cdb by polling if no cdb interrupt */
1475		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1476		    (qc->tf.flags & ATA_TFLAG_POLLING))
1477			ata_sff_queue_pio_task(link, 0);
1478		break;
1479
1480	default:
1481		WARN_ON_ONCE(1);
1482		return AC_ERR_SYSTEM;
1483	}
1484
1485	return 0;
1486}
1487EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1488
1489/**
1490 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1491 *	@qc: qc to fill result TF for
1492 *
1493 *	@qc is finished and result TF needs to be filled.  Fill it
1494 *	using ->sff_tf_read.
1495 *
1496 *	LOCKING:
1497 *	spin_lock_irqsave(host lock)
1498 *
1499 *	RETURNS:
1500 *	true indicating that result TF is successfully filled.
1501 */
1502bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1503{
1504	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1505	return true;
1506}
1507EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1508
1509static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1510{
1511	ap->stats.idle_irq++;
1512
1513#ifdef ATA_IRQ_TRAP
1514	if ((ap->stats.idle_irq % 1000) == 0) {
1515		ap->ops->sff_check_status(ap);
1516		if (ap->ops->sff_irq_clear)
1517			ap->ops->sff_irq_clear(ap);
1518		ata_port_warn(ap, "irq trap\n");
1519		return 1;
1520	}
1521#endif
1522	return 0;	/* irq not handled */
1523}
1524
1525static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1526					struct ata_queued_cmd *qc,
1527					bool hsmv_on_idle)
1528{
1529	u8 status;
1530
1531	VPRINTK("ata%u: protocol %d task_state %d\n",
1532		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1533
1534	/* Check whether we are expecting interrupt in this state */
1535	switch (ap->hsm_task_state) {
1536	case HSM_ST_FIRST:
1537		/* Some pre-ATAPI-4 devices assert INTRQ
1538		 * at this state when ready to receive CDB.
1539		 */
1540
1541		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1542		 * The flag was turned on only for atapi devices.  No
1543		 * need to check ata_is_atapi(qc->tf.protocol) again.
1544		 */
1545		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1546			return ata_sff_idle_irq(ap);
1547		break;
1548	case HSM_ST_IDLE:
1549		return ata_sff_idle_irq(ap);
1550	default:
1551		break;
1552	}
1553
1554	/* check main status, clearing INTRQ if needed */
1555	status = ata_sff_irq_status(ap);
1556	if (status & ATA_BUSY) {
1557		if (hsmv_on_idle) {
1558			/* BMDMA engine is already stopped, we're screwed */
1559			qc->err_mask |= AC_ERR_HSM;
1560			ap->hsm_task_state = HSM_ST_ERR;
1561		} else
1562			return ata_sff_idle_irq(ap);
1563	}
1564
1565	/* clear irq events */
1566	if (ap->ops->sff_irq_clear)
1567		ap->ops->sff_irq_clear(ap);
1568
1569	ata_sff_hsm_move(ap, qc, status, 0);
1570
1571	return 1;	/* irq handled */
1572}
1573
1574/**
1575 *	ata_sff_port_intr - Handle SFF port interrupt
1576 *	@ap: Port on which interrupt arrived (possibly...)
1577 *	@qc: Taskfile currently active in engine
1578 *
1579 *	Handle port interrupt for given queued command.
1580 *
1581 *	LOCKING:
1582 *	spin_lock_irqsave(host lock)
1583 *
1584 *	RETURNS:
1585 *	One if interrupt was handled, zero if not (shared irq).
1586 */
1587unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1588{
1589	return __ata_sff_port_intr(ap, qc, false);
1590}
1591EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1592
1593static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1594	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1595{
1596	struct ata_host *host = dev_instance;
1597	bool retried = false;
1598	unsigned int i;
1599	unsigned int handled, idle, polling;
1600	unsigned long flags;
1601
1602	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1603	spin_lock_irqsave(&host->lock, flags);
1604
1605retry:
1606	handled = idle = polling = 0;
1607	for (i = 0; i < host->n_ports; i++) {
1608		struct ata_port *ap = host->ports[i];
1609		struct ata_queued_cmd *qc;
1610
1611		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1612		if (qc) {
1613			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1614				handled |= port_intr(ap, qc);
1615			else
1616				polling |= 1 << i;
1617		} else
1618			idle |= 1 << i;
1619	}
1620
1621	/*
1622	 * If no port was expecting IRQ but the controller is actually
1623	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1624	 * pending status if available and clear spurious IRQ.
1625	 */
1626	if (!handled && !retried) {
1627		bool retry = false;
1628
1629		for (i = 0; i < host->n_ports; i++) {
1630			struct ata_port *ap = host->ports[i];
1631
1632			if (polling & (1 << i))
1633				continue;
1634
1635			if (!ap->ops->sff_irq_check ||
1636			    !ap->ops->sff_irq_check(ap))
1637				continue;
1638
1639			if (idle & (1 << i)) {
1640				ap->ops->sff_check_status(ap);
1641				if (ap->ops->sff_irq_clear)
1642					ap->ops->sff_irq_clear(ap);
1643			} else {
1644				/* clear INTRQ and check if BUSY cleared */
1645				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1646					retry |= true;
1647				/*
1648				 * With command in flight, we can't do
1649				 * sff_irq_clear() w/o racing with completion.
1650				 */
1651			}
1652		}
1653
1654		if (retry) {
1655			retried = true;
1656			goto retry;
1657		}
1658	}
1659
1660	spin_unlock_irqrestore(&host->lock, flags);
1661
1662	return IRQ_RETVAL(handled);
1663}
1664
1665/**
1666 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1667 *	@irq: irq line (unused)
1668 *	@dev_instance: pointer to our ata_host information structure
1669 *
1670 *	Default interrupt handler for PCI IDE devices.  Calls
1671 *	ata_sff_port_intr() for each port that is not disabled.
1672 *
1673 *	LOCKING:
1674 *	Obtains host lock during operation.
1675 *
1676 *	RETURNS:
1677 *	IRQ_NONE or IRQ_HANDLED.
1678 */
1679irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1680{
1681	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1682}
1683EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1684
1685/**
1686 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1687 *	@ap: port that appears to have timed out
1688 *
1689 *	Called from the libata error handlers when the core code suspects
1690 *	an interrupt has been lost. If it has complete anything we can and
1691 *	then return. Interface must support altstatus for this faster
1692 *	recovery to occur.
1693 *
1694 *	Locking:
1695 *	Caller holds host lock
1696 */
1697
1698void ata_sff_lost_interrupt(struct ata_port *ap)
1699{
1700	u8 status;
1701	struct ata_queued_cmd *qc;
1702
1703	/* Only one outstanding command per SFF channel */
1704	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1705	/* We cannot lose an interrupt on a non-existent or polled command */
1706	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1707		return;
1708	/* See if the controller thinks it is still busy - if so the command
1709	   isn't a lost IRQ but is still in progress */
1710	status = ata_sff_altstatus(ap);
1711	if (status & ATA_BUSY)
1712		return;
1713
1714	/* There was a command running, we are no longer busy and we have
1715	   no interrupt. */
1716	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1717								status);
1718	/* Run the host interrupt logic as if the interrupt had not been
1719	   lost */
1720	ata_sff_port_intr(ap, qc);
1721}
1722EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1723
1724/**
1725 *	ata_sff_freeze - Freeze SFF controller port
1726 *	@ap: port to freeze
1727 *
1728 *	Freeze SFF controller port.
1729 *
1730 *	LOCKING:
1731 *	Inherited from caller.
1732 */
1733void ata_sff_freeze(struct ata_port *ap)
1734{
1735	ap->ctl |= ATA_NIEN;
1736	ap->last_ctl = ap->ctl;
1737
1738	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1739		ata_sff_set_devctl(ap, ap->ctl);
1740
1741	/* Under certain circumstances, some controllers raise IRQ on
1742	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1743	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1744	 */
1745	ap->ops->sff_check_status(ap);
1746
1747	if (ap->ops->sff_irq_clear)
1748		ap->ops->sff_irq_clear(ap);
1749}
1750EXPORT_SYMBOL_GPL(ata_sff_freeze);
1751
1752/**
1753 *	ata_sff_thaw - Thaw SFF controller port
1754 *	@ap: port to thaw
1755 *
1756 *	Thaw SFF controller port.
1757 *
1758 *	LOCKING:
1759 *	Inherited from caller.
1760 */
1761void ata_sff_thaw(struct ata_port *ap)
1762{
1763	/* clear & re-enable interrupts */
1764	ap->ops->sff_check_status(ap);
1765	if (ap->ops->sff_irq_clear)
1766		ap->ops->sff_irq_clear(ap);
1767	ata_sff_irq_on(ap);
1768}
1769EXPORT_SYMBOL_GPL(ata_sff_thaw);
1770
1771/**
1772 *	ata_sff_prereset - prepare SFF link for reset
1773 *	@link: SFF link to be reset
1774 *	@deadline: deadline jiffies for the operation
1775 *
1776 *	SFF link @link is about to be reset.  Initialize it.  It first
1777 *	calls ata_std_prereset() and wait for !BSY if the port is
1778 *	being softreset.
1779 *
1780 *	LOCKING:
1781 *	Kernel thread context (may sleep)
1782 *
1783 *	RETURNS:
1784 *	0 on success, -errno otherwise.
1785 */
1786int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1787{
1788	struct ata_eh_context *ehc = &link->eh_context;
1789	int rc;
1790
1791	rc = ata_std_prereset(link, deadline);
1792	if (rc)
1793		return rc;
1794
1795	/* if we're about to do hardreset, nothing more to do */
1796	if (ehc->i.action & ATA_EH_HARDRESET)
1797		return 0;
1798
1799	/* wait for !BSY if we don't know that no device is attached */
1800	if (!ata_link_offline(link)) {
1801		rc = ata_sff_wait_ready(link, deadline);
1802		if (rc && rc != -ENODEV) {
1803			ata_link_warn(link,
1804				      "device not ready (errno=%d), forcing hardreset\n",
1805				      rc);
1806			ehc->i.action |= ATA_EH_HARDRESET;
1807		}
1808	}
1809
1810	return 0;
1811}
1812EXPORT_SYMBOL_GPL(ata_sff_prereset);
1813
1814/**
1815 *	ata_devchk - PATA device presence detection
1816 *	@ap: ATA channel to examine
1817 *	@device: Device to examine (starting at zero)
1818 *
1819 *	This technique was originally described in
1820 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1821 *	later found its way into the ATA/ATAPI spec.
1822 *
1823 *	Write a pattern to the ATA shadow registers,
1824 *	and if a device is present, it will respond by
1825 *	correctly storing and echoing back the
1826 *	ATA shadow register contents.
1827 *
1828 *	LOCKING:
1829 *	caller.
1830 */
1831static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1832{
1833	struct ata_ioports *ioaddr = &ap->ioaddr;
1834	u8 nsect, lbal;
1835
1836	ap->ops->sff_dev_select(ap, device);
1837
1838	iowrite8(0x55, ioaddr->nsect_addr);
1839	iowrite8(0xaa, ioaddr->lbal_addr);
1840
1841	iowrite8(0xaa, ioaddr->nsect_addr);
1842	iowrite8(0x55, ioaddr->lbal_addr);
1843
1844	iowrite8(0x55, ioaddr->nsect_addr);
1845	iowrite8(0xaa, ioaddr->lbal_addr);
1846
1847	nsect = ioread8(ioaddr->nsect_addr);
1848	lbal = ioread8(ioaddr->lbal_addr);
1849
1850	if ((nsect == 0x55) && (lbal == 0xaa))
1851		return 1;	/* we found a device */
1852
1853	return 0;		/* nothing found */
1854}
1855
1856/**
1857 *	ata_sff_dev_classify - Parse returned ATA device signature
1858 *	@dev: ATA device to classify (starting at zero)
1859 *	@present: device seems present
1860 *	@r_err: Value of error register on completion
1861 *
1862 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1863 *	an ATA/ATAPI-defined set of values is placed in the ATA
1864 *	shadow registers, indicating the results of device detection
1865 *	and diagnostics.
1866 *
1867 *	Select the ATA device, and read the values from the ATA shadow
1868 *	registers.  Then parse according to the Error register value,
1869 *	and the spec-defined values examined by ata_dev_classify().
1870 *
1871 *	LOCKING:
1872 *	caller.
1873 *
1874 *	RETURNS:
1875 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1876 */
1877unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1878				  u8 *r_err)
1879{
1880	struct ata_port *ap = dev->link->ap;
1881	struct ata_taskfile tf;
1882	unsigned int class;
1883	u8 err;
1884
1885	ap->ops->sff_dev_select(ap, dev->devno);
1886
1887	memset(&tf, 0, sizeof(tf));
1888
1889	ap->ops->sff_tf_read(ap, &tf);
1890	err = tf.feature;
1891	if (r_err)
1892		*r_err = err;
1893
1894	/* see if device passed diags: continue and warn later */
1895	if (err == 0)
1896		/* diagnostic fail : do nothing _YET_ */
1897		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1898	else if (err == 1)
1899		/* do nothing */ ;
1900	else if ((dev->devno == 0) && (err == 0x81))
1901		/* do nothing */ ;
1902	else
1903		return ATA_DEV_NONE;
1904
1905	/* determine if device is ATA or ATAPI */
1906	class = ata_dev_classify(&tf);
1907
1908	if (class == ATA_DEV_UNKNOWN) {
1909		/* If the device failed diagnostic, it's likely to
1910		 * have reported incorrect device signature too.
1911		 * Assume ATA device if the device seems present but
1912		 * device signature is invalid with diagnostic
1913		 * failure.
1914		 */
1915		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1916			class = ATA_DEV_ATA;
1917		else
1918			class = ATA_DEV_NONE;
1919	} else if ((class == ATA_DEV_ATA) &&
1920		   (ap->ops->sff_check_status(ap) == 0))
1921		class = ATA_DEV_NONE;
1922
1923	return class;
1924}
1925EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1926
1927/**
1928 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1929 *	@link: SFF link which is just reset
1930 *	@devmask: mask of present devices
1931 *	@deadline: deadline jiffies for the operation
1932 *
1933 *	Wait devices attached to SFF @link to become ready after
1934 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1935 *	status register too early.
1936 *
1937 *	LOCKING:
1938 *	Kernel thread context (may sleep).
1939 *
1940 *	RETURNS:
1941 *	0 on success, -ENODEV if some or all of devices in @devmask
1942 *	don't seem to exist.  -errno on other errors.
1943 */
1944int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1945			     unsigned long deadline)
1946{
1947	struct ata_port *ap = link->ap;
1948	struct ata_ioports *ioaddr = &ap->ioaddr;
1949	unsigned int dev0 = devmask & (1 << 0);
1950	unsigned int dev1 = devmask & (1 << 1);
1951	int rc, ret = 0;
1952
1953	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1954
1955	/* always check readiness of the master device */
1956	rc = ata_sff_wait_ready(link, deadline);
1957	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1958	 * and TF status is 0xff, bail out on it too.
1959	 */
1960	if (rc)
1961		return rc;
1962
1963	/* if device 1 was found in ata_devchk, wait for register
1964	 * access briefly, then wait for BSY to clear.
1965	 */
1966	if (dev1) {
1967		int i;
1968
1969		ap->ops->sff_dev_select(ap, 1);
1970
1971		/* Wait for register access.  Some ATAPI devices fail
1972		 * to set nsect/lbal after reset, so don't waste too
1973		 * much time on it.  We're gonna wait for !BSY anyway.
1974		 */
1975		for (i = 0; i < 2; i++) {
1976			u8 nsect, lbal;
1977
1978			nsect = ioread8(ioaddr->nsect_addr);
1979			lbal = ioread8(ioaddr->lbal_addr);
1980			if ((nsect == 1) && (lbal == 1))
1981				break;
1982			ata_msleep(ap, 50);	/* give drive a breather */
1983		}
1984
1985		rc = ata_sff_wait_ready(link, deadline);
1986		if (rc) {
1987			if (rc != -ENODEV)
1988				return rc;
1989			ret = rc;
1990		}
1991	}
1992
1993	/* is all this really necessary? */
1994	ap->ops->sff_dev_select(ap, 0);
1995	if (dev1)
1996		ap->ops->sff_dev_select(ap, 1);
1997	if (dev0)
1998		ap->ops->sff_dev_select(ap, 0);
1999
2000	return ret;
2001}
2002EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2003
2004static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2005			     unsigned long deadline)
2006{
2007	struct ata_ioports *ioaddr = &ap->ioaddr;
2008
2009	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2010
2011	/* software reset.  causes dev0 to be selected */
2012	iowrite8(ap->ctl, ioaddr->ctl_addr);
2013	udelay(20);	/* FIXME: flush */
2014	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2015	udelay(20);	/* FIXME: flush */
2016	iowrite8(ap->ctl, ioaddr->ctl_addr);
2017	ap->last_ctl = ap->ctl;
2018
2019	/* wait the port to become ready */
2020	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2021}
2022
2023/**
2024 *	ata_sff_softreset - reset host port via ATA SRST
2025 *	@link: ATA link to reset
2026 *	@classes: resulting classes of attached devices
2027 *	@deadline: deadline jiffies for the operation
2028 *
2029 *	Reset host port using ATA SRST.
2030 *
2031 *	LOCKING:
2032 *	Kernel thread context (may sleep)
2033 *
2034 *	RETURNS:
2035 *	0 on success, -errno otherwise.
2036 */
2037int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2038		      unsigned long deadline)
2039{
2040	struct ata_port *ap = link->ap;
2041	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2042	unsigned int devmask = 0;
2043	int rc;
2044	u8 err;
2045
2046	DPRINTK("ENTER\n");
2047
2048	/* determine if device 0/1 are present */
2049	if (ata_devchk(ap, 0))
2050		devmask |= (1 << 0);
2051	if (slave_possible && ata_devchk(ap, 1))
2052		devmask |= (1 << 1);
2053
2054	/* select device 0 again */
2055	ap->ops->sff_dev_select(ap, 0);
2056
2057	/* issue bus reset */
2058	DPRINTK("about to softreset, devmask=%x\n", devmask);
2059	rc = ata_bus_softreset(ap, devmask, deadline);
2060	/* if link is occupied, -ENODEV too is an error */
2061	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2062		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2063		return rc;
2064	}
2065
2066	/* determine by signature whether we have ATA or ATAPI devices */
2067	classes[0] = ata_sff_dev_classify(&link->device[0],
2068					  devmask & (1 << 0), &err);
2069	if (slave_possible && err != 0x81)
2070		classes[1] = ata_sff_dev_classify(&link->device[1],
2071						  devmask & (1 << 1), &err);
2072
2073	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2074	return 0;
2075}
2076EXPORT_SYMBOL_GPL(ata_sff_softreset);
2077
2078/**
2079 *	sata_sff_hardreset - reset host port via SATA phy reset
2080 *	@link: link to reset
2081 *	@class: resulting class of attached device
2082 *	@deadline: deadline jiffies for the operation
2083 *
2084 *	SATA phy-reset host port using DET bits of SControl register,
2085 *	wait for !BSY and classify the attached device.
2086 *
2087 *	LOCKING:
2088 *	Kernel thread context (may sleep)
2089 *
2090 *	RETURNS:
2091 *	0 on success, -errno otherwise.
2092 */
2093int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2094		       unsigned long deadline)
2095{
2096	struct ata_eh_context *ehc = &link->eh_context;
2097	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2098	bool online;
2099	int rc;
2100
2101	rc = sata_link_hardreset(link, timing, deadline, &online,
2102				 ata_sff_check_ready);
2103	if (online)
2104		*class = ata_sff_dev_classify(link->device, 1, NULL);
2105
2106	DPRINTK("EXIT, class=%u\n", *class);
2107	return rc;
2108}
2109EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2110
2111/**
2112 *	ata_sff_postreset - SFF postreset callback
2113 *	@link: the target SFF ata_link
2114 *	@classes: classes of attached devices
2115 *
2116 *	This function is invoked after a successful reset.  It first
2117 *	calls ata_std_postreset() and performs SFF specific postreset
2118 *	processing.
2119 *
2120 *	LOCKING:
2121 *	Kernel thread context (may sleep)
2122 */
2123void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2124{
2125	struct ata_port *ap = link->ap;
2126
2127	ata_std_postreset(link, classes);
2128
2129	/* is double-select really necessary? */
2130	if (classes[0] != ATA_DEV_NONE)
2131		ap->ops->sff_dev_select(ap, 1);
2132	if (classes[1] != ATA_DEV_NONE)
2133		ap->ops->sff_dev_select(ap, 0);
2134
2135	/* bail out if no device is present */
2136	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2137		DPRINTK("EXIT, no device\n");
2138		return;
2139	}
2140
2141	/* set up device control */
2142	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2143		ata_sff_set_devctl(ap, ap->ctl);
2144		ap->last_ctl = ap->ctl;
2145	}
2146}
2147EXPORT_SYMBOL_GPL(ata_sff_postreset);
2148
2149/**
2150 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2151 *	@qc: command
2152 *
2153 *	Drain the FIFO and device of any stuck data following a command
2154 *	failing to complete. In some cases this is necessary before a
2155 *	reset will recover the device.
2156 *
2157 */
2158
2159void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2160{
2161	int count;
2162	struct ata_port *ap;
2163
2164	/* We only need to flush incoming data when a command was running */
2165	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2166		return;
2167
2168	ap = qc->ap;
2169	/* Drain up to 64K of data before we give up this recovery method */
2170	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2171						&& count < 65536; count += 2)
2172		ioread16(ap->ioaddr.data_addr);
2173
2174	/* Can become DEBUG later */
2175	if (count)
2176		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2177
2178}
2179EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2180
2181/**
2182 *	ata_sff_error_handler - Stock error handler for SFF controller
2183 *	@ap: port to handle error for
2184 *
2185 *	Stock error handler for SFF controller.  It can handle both
2186 *	PATA and SATA controllers.  Many controllers should be able to
2187 *	use this EH as-is or with some added handling before and
2188 *	after.
2189 *
2190 *	LOCKING:
2191 *	Kernel thread context (may sleep)
2192 */
2193void ata_sff_error_handler(struct ata_port *ap)
2194{
2195	ata_reset_fn_t softreset = ap->ops->softreset;
2196	ata_reset_fn_t hardreset = ap->ops->hardreset;
2197	struct ata_queued_cmd *qc;
2198	unsigned long flags;
2199
2200	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2201	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2202		qc = NULL;
2203
2204	spin_lock_irqsave(ap->lock, flags);
2205
2206	/*
2207	 * We *MUST* do FIFO draining before we issue a reset as
2208	 * several devices helpfully clear their internal state and
2209	 * will lock solid if we touch the data port post reset. Pass
2210	 * qc in case anyone wants to do different PIO/DMA recovery or
2211	 * has per command fixups
2212	 */
2213	if (ap->ops->sff_drain_fifo)
2214		ap->ops->sff_drain_fifo(qc);
2215
2216	spin_unlock_irqrestore(ap->lock, flags);
2217
2218	/* ignore ata_sff_softreset if ctl isn't accessible */
2219	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2220		softreset = NULL;
2221
2222	/* ignore built-in hardresets if SCR access is not available */
2223	if ((hardreset == sata_std_hardreset ||
2224	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2225		hardreset = NULL;
2226
2227	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2228		  ap->ops->postreset);
2229}
2230EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2231
2232/**
2233 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2234 *	@ioaddr: IO address structure to be initialized
2235 *
2236 *	Utility function which initializes data_addr, error_addr,
2237 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2238 *	device_addr, status_addr, and command_addr to standard offsets
2239 *	relative to cmd_addr.
2240 *
2241 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242 */
2243void ata_sff_std_ports(struct ata_ioports *ioaddr)
2244{
2245	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2246	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2247	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2248	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2249	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2250	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2251	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2252	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2253	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2254	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2255}
2256EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2257
2258#ifdef CONFIG_PCI
2259
2260static int ata_resources_present(struct pci_dev *pdev, int port)
2261{
2262	int i;
2263
2264	/* Check the PCI resources for this channel are enabled */
2265	port = port * 2;
2266	for (i = 0; i < 2; i++) {
2267		if (pci_resource_start(pdev, port + i) == 0 ||
2268		    pci_resource_len(pdev, port + i) == 0)
2269			return 0;
2270	}
2271	return 1;
2272}
2273
2274/**
2275 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2276 *	@host: target ATA host
2277 *
2278 *	Acquire native PCI ATA resources for @host and initialize the
2279 *	first two ports of @host accordingly.  Ports marked dummy are
2280 *	skipped and allocation failure makes the port dummy.
2281 *
2282 *	Note that native PCI resources are valid even for legacy hosts
2283 *	as we fix up pdev resources array early in boot, so this
2284 *	function can be used for both native and legacy SFF hosts.
2285 *
2286 *	LOCKING:
2287 *	Inherited from calling layer (may sleep).
2288 *
2289 *	RETURNS:
2290 *	0 if at least one port is initialized, -ENODEV if no port is
2291 *	available.
2292 */
2293int ata_pci_sff_init_host(struct ata_host *host)
2294{
2295	struct device *gdev = host->dev;
2296	struct pci_dev *pdev = to_pci_dev(gdev);
2297	unsigned int mask = 0;
2298	int i, rc;
2299
2300	/* request, iomap BARs and init port addresses accordingly */
2301	for (i = 0; i < 2; i++) {
2302		struct ata_port *ap = host->ports[i];
2303		int base = i * 2;
2304		void __iomem * const *iomap;
2305
2306		if (ata_port_is_dummy(ap))
2307			continue;
2308
2309		/* Discard disabled ports.  Some controllers show
2310		 * their unused channels this way.  Disabled ports are
2311		 * made dummy.
2312		 */
2313		if (!ata_resources_present(pdev, i)) {
2314			ap->ops = &ata_dummy_port_ops;
2315			continue;
2316		}
2317
2318		rc = pcim_iomap_regions(pdev, 0x3 << base,
2319					dev_driver_string(gdev));
2320		if (rc) {
2321			dev_warn(gdev,
2322				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2323				 i, rc);
2324			if (rc == -EBUSY)
2325				pcim_pin_device(pdev);
2326			ap->ops = &ata_dummy_port_ops;
2327			continue;
2328		}
2329		host->iomap = iomap = pcim_iomap_table(pdev);
2330
2331		ap->ioaddr.cmd_addr = iomap[base];
2332		ap->ioaddr.altstatus_addr =
2333		ap->ioaddr.ctl_addr = (void __iomem *)
2334			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2335		ata_sff_std_ports(&ap->ioaddr);
2336
2337		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2338			(unsigned long long)pci_resource_start(pdev, base),
2339			(unsigned long long)pci_resource_start(pdev, base + 1));
2340
2341		mask |= 1 << i;
2342	}
2343
2344	if (!mask) {
2345		dev_err(gdev, "no available native port\n");
2346		return -ENODEV;
2347	}
2348
2349	return 0;
2350}
2351EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2352
2353/**
2354 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2355 *	@pdev: target PCI device
2356 *	@ppi: array of port_info, must be enough for two ports
2357 *	@r_host: out argument for the initialized ATA host
2358 *
2359 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2360 *	all PCI resources and initialize it accordingly in one go.
2361 *
2362 *	LOCKING:
2363 *	Inherited from calling layer (may sleep).
2364 *
2365 *	RETURNS:
2366 *	0 on success, -errno otherwise.
2367 */
2368int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2369			     const struct ata_port_info * const *ppi,
2370			     struct ata_host **r_host)
2371{
2372	struct ata_host *host;
2373	int rc;
2374
2375	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2376		return -ENOMEM;
2377
2378	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2379	if (!host) {
2380		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2381		rc = -ENOMEM;
2382		goto err_out;
2383	}
2384
2385	rc = ata_pci_sff_init_host(host);
2386	if (rc)
2387		goto err_out;
2388
2389	devres_remove_group(&pdev->dev, NULL);
2390	*r_host = host;
2391	return 0;
2392
2393err_out:
2394	devres_release_group(&pdev->dev, NULL);
2395	return rc;
2396}
2397EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2398
2399/**
2400 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2401 *	@host: target SFF ATA host
2402 *	@irq_handler: irq_handler used when requesting IRQ(s)
2403 *	@sht: scsi_host_template to use when registering the host
2404 *
2405 *	This is the counterpart of ata_host_activate() for SFF ATA
2406 *	hosts.  This separate helper is necessary because SFF hosts
2407 *	use two separate interrupts in legacy mode.
2408 *
2409 *	LOCKING:
2410 *	Inherited from calling layer (may sleep).
2411 *
2412 *	RETURNS:
2413 *	0 on success, -errno otherwise.
2414 */
2415int ata_pci_sff_activate_host(struct ata_host *host,
2416			      irq_handler_t irq_handler,
2417			      struct scsi_host_template *sht)
2418{
2419	struct device *dev = host->dev;
2420	struct pci_dev *pdev = to_pci_dev(dev);
2421	const char *drv_name = dev_driver_string(host->dev);
2422	int legacy_mode = 0, rc;
2423
2424	rc = ata_host_start(host);
2425	if (rc)
2426		return rc;
2427
2428	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2429		u8 tmp8, mask;
2430
2431		/* TODO: What if one channel is in native mode ... */
2432		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2433		mask = (1 << 2) | (1 << 0);
2434		if ((tmp8 & mask) != mask)
2435			legacy_mode = 1;
2436#if defined(CONFIG_NO_ATA_LEGACY)
2437		/* Some platforms with PCI limits cannot address compat
2438		   port space. In that case we punt if their firmware has
2439		   left a device in compatibility mode */
2440		if (legacy_mode) {
2441			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2442			return -EOPNOTSUPP;
2443		}
2444#endif
2445	}
2446
2447	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2448		return -ENOMEM;
2449
2450	if (!legacy_mode && pdev->irq) {
2451		int i;
2452
2453		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2454				      IRQF_SHARED, drv_name, host);
2455		if (rc)
2456			goto out;
2457
2458		for (i = 0; i < 2; i++) {
2459			if (ata_port_is_dummy(host->ports[i]))
2460				continue;
2461			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2462		}
2463	} else if (legacy_mode) {
2464		if (!ata_port_is_dummy(host->ports[0])) {
2465			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2466					      irq_handler, IRQF_SHARED,
2467					      drv_name, host);
2468			if (rc)
2469				goto out;
2470
2471			ata_port_desc(host->ports[0], "irq %d",
2472				      ATA_PRIMARY_IRQ(pdev));
2473		}
2474
2475		if (!ata_port_is_dummy(host->ports[1])) {
2476			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2477					      irq_handler, IRQF_SHARED,
2478					      drv_name, host);
2479			if (rc)
2480				goto out;
2481
2482			ata_port_desc(host->ports[1], "irq %d",
2483				      ATA_SECONDARY_IRQ(pdev));
2484		}
2485	}
2486
2487	rc = ata_host_register(host, sht);
2488out:
2489	if (rc == 0)
2490		devres_remove_group(dev, NULL);
2491	else
2492		devres_release_group(dev, NULL);
2493
2494	return rc;
2495}
2496EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2497
2498static const struct ata_port_info *ata_sff_find_valid_pi(
2499					const struct ata_port_info * const *ppi)
2500{
2501	int i;
2502
2503	/* look up the first valid port_info */
2504	for (i = 0; i < 2 && ppi[i]; i++)
2505		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2506			return ppi[i];
2507
2508	return NULL;
2509}
2510
2511static int ata_pci_init_one(struct pci_dev *pdev,
2512		const struct ata_port_info * const *ppi,
2513		struct scsi_host_template *sht, void *host_priv,
2514		int hflags, bool bmdma)
2515{
2516	struct device *dev = &pdev->dev;
2517	const struct ata_port_info *pi;
2518	struct ata_host *host = NULL;
2519	int rc;
2520
2521	DPRINTK("ENTER\n");
2522
2523	pi = ata_sff_find_valid_pi(ppi);
2524	if (!pi) {
2525		dev_err(&pdev->dev, "no valid port_info specified\n");
2526		return -EINVAL;
2527	}
2528
2529	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2530		return -ENOMEM;
2531
2532	rc = pcim_enable_device(pdev);
2533	if (rc)
2534		goto out;
2535
2536#ifdef CONFIG_ATA_BMDMA
2537	if (bmdma)
2538		/* prepare and activate BMDMA host */
2539		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2540	else
2541#endif
2542		/* prepare and activate SFF host */
2543		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2544	if (rc)
2545		goto out;
2546	host->private_data = host_priv;
2547	host->flags |= hflags;
2548
2549#ifdef CONFIG_ATA_BMDMA
2550	if (bmdma) {
2551		pci_set_master(pdev);
2552		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2553	} else
2554#endif
2555		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2556out:
2557	if (rc == 0)
2558		devres_remove_group(&pdev->dev, NULL);
2559	else
2560		devres_release_group(&pdev->dev, NULL);
2561
2562	return rc;
2563}
2564
2565/**
2566 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2567 *	@pdev: Controller to be initialized
2568 *	@ppi: array of port_info, must be enough for two ports
2569 *	@sht: scsi_host_template to use when registering the host
2570 *	@host_priv: host private_data
2571 *	@hflag: host flags
2572 *
2573 *	This is a helper function which can be called from a driver's
2574 *	xxx_init_one() probe function if the hardware uses traditional
2575 *	IDE taskfile registers and is PIO only.
2576 *
2577 *	ASSUMPTION:
2578 *	Nobody makes a single channel controller that appears solely as
2579 *	the secondary legacy port on PCI.
2580 *
2581 *	LOCKING:
2582 *	Inherited from PCI layer (may sleep).
2583 *
2584 *	RETURNS:
2585 *	Zero on success, negative on errno-based value on error.
2586 */
2587int ata_pci_sff_init_one(struct pci_dev *pdev,
2588		 const struct ata_port_info * const *ppi,
2589		 struct scsi_host_template *sht, void *host_priv, int hflag)
2590{
2591	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2592}
2593EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2594
2595#endif /* CONFIG_PCI */
2596
2597/*
2598 *	BMDMA support
2599 */
2600
2601#ifdef CONFIG_ATA_BMDMA
2602
2603const struct ata_port_operations ata_bmdma_port_ops = {
2604	.inherits		= &ata_sff_port_ops,
2605
2606	.error_handler		= ata_bmdma_error_handler,
2607	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2608
2609	.qc_prep		= ata_bmdma_qc_prep,
2610	.qc_issue		= ata_bmdma_qc_issue,
2611
2612	.sff_irq_clear		= ata_bmdma_irq_clear,
2613	.bmdma_setup		= ata_bmdma_setup,
2614	.bmdma_start		= ata_bmdma_start,
2615	.bmdma_stop		= ata_bmdma_stop,
2616	.bmdma_status		= ata_bmdma_status,
2617
2618	.port_start		= ata_bmdma_port_start,
2619};
2620EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2621
2622const struct ata_port_operations ata_bmdma32_port_ops = {
2623	.inherits		= &ata_bmdma_port_ops,
2624
2625	.sff_data_xfer		= ata_sff_data_xfer32,
2626	.port_start		= ata_bmdma_port_start32,
2627};
2628EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2629
2630/**
2631 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2632 *	@qc: Metadata associated with taskfile to be transferred
2633 *
2634 *	Fill PCI IDE PRD (scatter-gather) table with segments
2635 *	associated with the current disk command.
2636 *
2637 *	LOCKING:
2638 *	spin_lock_irqsave(host lock)
2639 *
2640 */
2641static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2642{
2643	struct ata_port *ap = qc->ap;
2644	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2645	struct scatterlist *sg;
2646	unsigned int si, pi;
2647
2648	pi = 0;
2649	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2650		u32 addr, offset;
2651		u32 sg_len, len;
2652
2653		/* determine if physical DMA addr spans 64K boundary.
2654		 * Note h/w doesn't support 64-bit, so we unconditionally
2655		 * truncate dma_addr_t to u32.
2656		 */
2657		addr = (u32) sg_dma_address(sg);
2658		sg_len = sg_dma_len(sg);
2659
2660		while (sg_len) {
2661			offset = addr & 0xffff;
2662			len = sg_len;
2663			if ((offset + sg_len) > 0x10000)
2664				len = 0x10000 - offset;
2665
2666			prd[pi].addr = cpu_to_le32(addr);
2667			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2668			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2669
2670			pi++;
2671			sg_len -= len;
2672			addr += len;
2673		}
2674	}
2675
2676	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2677}
2678
2679/**
2680 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2681 *	@qc: Metadata associated with taskfile to be transferred
2682 *
2683 *	Fill PCI IDE PRD (scatter-gather) table with segments
2684 *	associated with the current disk command. Perform the fill
2685 *	so that we avoid writing any length 64K records for
2686 *	controllers that don't follow the spec.
2687 *
2688 *	LOCKING:
2689 *	spin_lock_irqsave(host lock)
2690 *
2691 */
2692static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2693{
2694	struct ata_port *ap = qc->ap;
2695	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2696	struct scatterlist *sg;
2697	unsigned int si, pi;
2698
2699	pi = 0;
2700	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2701		u32 addr, offset;
2702		u32 sg_len, len, blen;
2703
2704		/* determine if physical DMA addr spans 64K boundary.
2705		 * Note h/w doesn't support 64-bit, so we unconditionally
2706		 * truncate dma_addr_t to u32.
2707		 */
2708		addr = (u32) sg_dma_address(sg);
2709		sg_len = sg_dma_len(sg);
2710
2711		while (sg_len) {
2712			offset = addr & 0xffff;
2713			len = sg_len;
2714			if ((offset + sg_len) > 0x10000)
2715				len = 0x10000 - offset;
2716
2717			blen = len & 0xffff;
2718			prd[pi].addr = cpu_to_le32(addr);
2719			if (blen == 0) {
2720				/* Some PATA chipsets like the CS5530 can't
2721				   cope with 0x0000 meaning 64K as the spec
2722				   says */
2723				prd[pi].flags_len = cpu_to_le32(0x8000);
2724				blen = 0x8000;
2725				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2726			}
2727			prd[pi].flags_len = cpu_to_le32(blen);
2728			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2729
2730			pi++;
2731			sg_len -= len;
2732			addr += len;
2733		}
2734	}
2735
2736	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2737}
2738
2739/**
2740 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2741 *	@qc: Metadata associated with taskfile to be prepared
2742 *
2743 *	Prepare ATA taskfile for submission.
2744 *
2745 *	LOCKING:
2746 *	spin_lock_irqsave(host lock)
2747 */
2748void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2749{
2750	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2751		return;
2752
2753	ata_bmdma_fill_sg(qc);
2754}
2755EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2756
2757/**
2758 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2759 *	@qc: Metadata associated with taskfile to be prepared
2760 *
2761 *	Prepare ATA taskfile for submission.
2762 *
2763 *	LOCKING:
2764 *	spin_lock_irqsave(host lock)
2765 */
2766void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2767{
2768	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2769		return;
2770
2771	ata_bmdma_fill_sg_dumb(qc);
2772}
2773EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2774
2775/**
2776 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2777 *	@qc: command to issue to device
2778 *
2779 *	This function issues a PIO, NODATA or DMA command to a
2780 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2781 *	ata_sff_qc_issue().
2782 *
2783 *	LOCKING:
2784 *	spin_lock_irqsave(host lock)
2785 *
2786 *	RETURNS:
2787 *	Zero on success, AC_ERR_* mask on failure
2788 */
2789unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2790{
2791	struct ata_port *ap = qc->ap;
2792	struct ata_link *link = qc->dev->link;
2793
2794	/* defer PIO handling to sff_qc_issue */
2795	if (!ata_is_dma(qc->tf.protocol))
2796		return ata_sff_qc_issue(qc);
2797
2798	/* select the device */
2799	ata_dev_select(ap, qc->dev->devno, 1, 0);
2800
2801	/* start the command */
2802	switch (qc->tf.protocol) {
2803	case ATA_PROT_DMA:
2804		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805
2806		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2807		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2808		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2809		ap->hsm_task_state = HSM_ST_LAST;
2810		break;
2811
2812	case ATAPI_PROT_DMA:
2813		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2814
2815		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2816		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2817		ap->hsm_task_state = HSM_ST_FIRST;
2818
2819		/* send cdb by polling if no cdb interrupt */
2820		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2821			ata_sff_queue_pio_task(link, 0);
2822		break;
2823
2824	default:
2825		WARN_ON(1);
2826		return AC_ERR_SYSTEM;
2827	}
2828
2829	return 0;
2830}
2831EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2832
2833/**
2834 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2835 *	@ap: Port on which interrupt arrived (possibly...)
2836 *	@qc: Taskfile currently active in engine
2837 *
2838 *	Handle port interrupt for given queued command.
2839 *
2840 *	LOCKING:
2841 *	spin_lock_irqsave(host lock)
2842 *
2843 *	RETURNS:
2844 *	One if interrupt was handled, zero if not (shared irq).
2845 */
2846unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2847{
2848	struct ata_eh_info *ehi = &ap->link.eh_info;
2849	u8 host_stat = 0;
2850	bool bmdma_stopped = false;
2851	unsigned int handled;
2852
2853	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2854		/* check status of DMA engine */
2855		host_stat = ap->ops->bmdma_status(ap);
2856		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2857
2858		/* if it's not our irq... */
2859		if (!(host_stat & ATA_DMA_INTR))
2860			return ata_sff_idle_irq(ap);
2861
2862		/* before we do anything else, clear DMA-Start bit */
2863		ap->ops->bmdma_stop(qc);
2864		bmdma_stopped = true;
2865
2866		if (unlikely(host_stat & ATA_DMA_ERR)) {
2867			/* error when transferring data to/from memory */
2868			qc->err_mask |= AC_ERR_HOST_BUS;
2869			ap->hsm_task_state = HSM_ST_ERR;
2870		}
2871	}
2872
2873	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2874
2875	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2876		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2877
2878	return handled;
2879}
2880EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2881
2882/**
2883 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2884 *	@irq: irq line (unused)
2885 *	@dev_instance: pointer to our ata_host information structure
2886 *
2887 *	Default interrupt handler for PCI IDE devices.  Calls
2888 *	ata_bmdma_port_intr() for each port that is not disabled.
2889 *
2890 *	LOCKING:
2891 *	Obtains host lock during operation.
2892 *
2893 *	RETURNS:
2894 *	IRQ_NONE or IRQ_HANDLED.
2895 */
2896irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2897{
2898	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2899}
2900EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2901
2902/**
2903 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2904 *	@ap: port to handle error for
2905 *
2906 *	Stock error handler for BMDMA controller.  It can handle both
2907 *	PATA and SATA controllers.  Most BMDMA controllers should be
2908 *	able to use this EH as-is or with some added handling before
2909 *	and after.
2910 *
2911 *	LOCKING:
2912 *	Kernel thread context (may sleep)
2913 */
2914void ata_bmdma_error_handler(struct ata_port *ap)
2915{
2916	struct ata_queued_cmd *qc;
2917	unsigned long flags;
2918	bool thaw = false;
2919
2920	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2921	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2922		qc = NULL;
2923
2924	/* reset PIO HSM and stop DMA engine */
2925	spin_lock_irqsave(ap->lock, flags);
2926
2927	if (qc && ata_is_dma(qc->tf.protocol)) {
2928		u8 host_stat;
2929
2930		host_stat = ap->ops->bmdma_status(ap);
2931
2932		/* BMDMA controllers indicate host bus error by
2933		 * setting DMA_ERR bit and timing out.  As it wasn't
2934		 * really a timeout event, adjust error mask and
2935		 * cancel frozen state.
2936		 */
2937		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2938			qc->err_mask = AC_ERR_HOST_BUS;
2939			thaw = true;
2940		}
2941
2942		ap->ops->bmdma_stop(qc);
2943
2944		/* if we're gonna thaw, make sure IRQ is clear */
2945		if (thaw) {
2946			ap->ops->sff_check_status(ap);
2947			if (ap->ops->sff_irq_clear)
2948				ap->ops->sff_irq_clear(ap);
2949		}
2950	}
2951
2952	spin_unlock_irqrestore(ap->lock, flags);
2953
2954	if (thaw)
2955		ata_eh_thaw_port(ap);
2956
2957	ata_sff_error_handler(ap);
2958}
2959EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2960
2961/**
2962 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2963 *	@qc: internal command to clean up
2964 *
2965 *	LOCKING:
2966 *	Kernel thread context (may sleep)
2967 */
2968void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2969{
2970	struct ata_port *ap = qc->ap;
2971	unsigned long flags;
2972
2973	if (ata_is_dma(qc->tf.protocol)) {
2974		spin_lock_irqsave(ap->lock, flags);
2975		ap->ops->bmdma_stop(qc);
2976		spin_unlock_irqrestore(ap->lock, flags);
2977	}
2978}
2979EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2980
2981/**
2982 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2983 *	@ap: Port associated with this ATA transaction.
2984 *
2985 *	Clear interrupt and error flags in DMA status register.
2986 *
2987 *	May be used as the irq_clear() entry in ata_port_operations.
2988 *
2989 *	LOCKING:
2990 *	spin_lock_irqsave(host lock)
2991 */
2992void ata_bmdma_irq_clear(struct ata_port *ap)
2993{
2994	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2995
2996	if (!mmio)
2997		return;
2998
2999	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3000}
3001EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3002
3003/**
3004 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3005 *	@qc: Info associated with this ATA transaction.
3006 *
3007 *	LOCKING:
3008 *	spin_lock_irqsave(host lock)
3009 */
3010void ata_bmdma_setup(struct ata_queued_cmd *qc)
3011{
3012	struct ata_port *ap = qc->ap;
3013	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3014	u8 dmactl;
3015
3016	/* load PRD table addr. */
3017	mb();	/* make sure PRD table writes are visible to controller */
3018	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3019
3020	/* specify data direction, triple-check start bit is clear */
3021	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3023	if (!rw)
3024		dmactl |= ATA_DMA_WR;
3025	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026
3027	/* issue r/w command */
3028	ap->ops->sff_exec_command(ap, &qc->tf);
3029}
3030EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3031
3032/**
3033 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3034 *	@qc: Info associated with this ATA transaction.
3035 *
3036 *	LOCKING:
3037 *	spin_lock_irqsave(host lock)
3038 */
3039void ata_bmdma_start(struct ata_queued_cmd *qc)
3040{
3041	struct ata_port *ap = qc->ap;
3042	u8 dmactl;
3043
3044	/* start host DMA transaction */
3045	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3046	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047
3048	/* Strictly, one may wish to issue an ioread8() here, to
3049	 * flush the mmio write.  However, control also passes
3050	 * to the hardware at this point, and it will interrupt
3051	 * us when we are to resume control.  So, in effect,
3052	 * we don't care when the mmio write flushes.
3053	 * Further, a read of the DMA status register _immediately_
3054	 * following the write may not be what certain flaky hardware
3055	 * is expected, so I think it is best to not add a readb()
3056	 * without first all the MMIO ATA cards/mobos.
3057	 * Or maybe I'm just being paranoid.
3058	 *
3059	 * FIXME: The posting of this write means I/O starts are
3060	 * unnecessarily delayed for MMIO
3061	 */
3062}
3063EXPORT_SYMBOL_GPL(ata_bmdma_start);
3064
3065/**
3066 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3067 *	@qc: Command we are ending DMA for
3068 *
3069 *	Clears the ATA_DMA_START flag in the dma control register
3070 *
3071 *	May be used as the bmdma_stop() entry in ata_port_operations.
3072 *
3073 *	LOCKING:
3074 *	spin_lock_irqsave(host lock)
3075 */
3076void ata_bmdma_stop(struct ata_queued_cmd *qc)
3077{
3078	struct ata_port *ap = qc->ap;
3079	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3080
3081	/* clear start/stop bit */
3082	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3083		 mmio + ATA_DMA_CMD);
3084
3085	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3086	ata_sff_dma_pause(ap);
3087}
3088EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3089
3090/**
3091 *	ata_bmdma_status - Read PCI IDE BMDMA status
3092 *	@ap: Port associated with this ATA transaction.
3093 *
3094 *	Read and return BMDMA status register.
3095 *
3096 *	May be used as the bmdma_status() entry in ata_port_operations.
3097 *
3098 *	LOCKING:
3099 *	spin_lock_irqsave(host lock)
3100 */
3101u8 ata_bmdma_status(struct ata_port *ap)
3102{
3103	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3104}
3105EXPORT_SYMBOL_GPL(ata_bmdma_status);
3106
3107
3108/**
3109 *	ata_bmdma_port_start - Set port up for bmdma.
3110 *	@ap: Port to initialize
3111 *
3112 *	Called just after data structures for each port are
3113 *	initialized.  Allocates space for PRD table.
3114 *
3115 *	May be used as the port_start() entry in ata_port_operations.
3116 *
3117 *	LOCKING:
3118 *	Inherited from caller.
3119 */
3120int ata_bmdma_port_start(struct ata_port *ap)
3121{
3122	if (ap->mwdma_mask || ap->udma_mask) {
3123		ap->bmdma_prd =
3124			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3125					    &ap->bmdma_prd_dma, GFP_KERNEL);
3126		if (!ap->bmdma_prd)
3127			return -ENOMEM;
3128	}
3129
3130	return 0;
3131}
3132EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3133
3134/**
3135 *	ata_bmdma_port_start32 - Set port up for dma.
3136 *	@ap: Port to initialize
3137 *
3138 *	Called just after data structures for each port are
3139 *	initialized.  Enables 32bit PIO and allocates space for PRD
3140 *	table.
3141 *
3142 *	May be used as the port_start() entry in ata_port_operations for
3143 *	devices that are capable of 32bit PIO.
3144 *
3145 *	LOCKING:
3146 *	Inherited from caller.
3147 */
3148int ata_bmdma_port_start32(struct ata_port *ap)
3149{
3150	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3151	return ata_bmdma_port_start(ap);
3152}
3153EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3154
3155#ifdef CONFIG_PCI
3156
3157/**
3158 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3159 *	@pdev: PCI device
3160 *
3161 *	Some PCI ATA devices report simplex mode but in fact can be told to
3162 *	enter non simplex mode. This implements the necessary logic to
3163 *	perform the task on such devices. Calling it on other devices will
3164 *	have -undefined- behaviour.
3165 */
3166int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3167{
3168	unsigned long bmdma = pci_resource_start(pdev, 4);
3169	u8 simplex;
3170
3171	if (bmdma == 0)
3172		return -ENOENT;
3173
3174	simplex = inb(bmdma + 0x02);
3175	outb(simplex & 0x60, bmdma + 0x02);
3176	simplex = inb(bmdma + 0x02);
3177	if (simplex & 0x80)
3178		return -EOPNOTSUPP;
3179	return 0;
3180}
3181EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3182
3183static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3184{
3185	int i;
3186
3187	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3188
3189	for (i = 0; i < 2; i++) {
3190		host->ports[i]->mwdma_mask = 0;
3191		host->ports[i]->udma_mask = 0;
3192	}
3193}
3194
3195/**
3196 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3197 *	@host: target ATA host
3198 *
3199 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3200 *
3201 *	LOCKING:
3202 *	Inherited from calling layer (may sleep).
3203 */
3204void ata_pci_bmdma_init(struct ata_host *host)
3205{
3206	struct device *gdev = host->dev;
3207	struct pci_dev *pdev = to_pci_dev(gdev);
3208	int i, rc;
3209
3210	/* No BAR4 allocation: No DMA */
3211	if (pci_resource_start(pdev, 4) == 0) {
3212		ata_bmdma_nodma(host, "BAR4 is zero");
3213		return;
3214	}
3215
3216	/*
3217	 * Some controllers require BMDMA region to be initialized
3218	 * even if DMA is not in use to clear IRQ status via
3219	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3220	 * regardless of dma masks.
3221	 */
3222	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3223	if (rc)
3224		ata_bmdma_nodma(host, "failed to set dma mask");
3225	if (!rc) {
3226		rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3227		if (rc)
3228			ata_bmdma_nodma(host,
3229					"failed to set consistent dma mask");
3230	}
3231
3232	/* request and iomap DMA region */
3233	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3234	if (rc) {
3235		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3236		return;
3237	}
3238	host->iomap = pcim_iomap_table(pdev);
3239
3240	for (i = 0; i < 2; i++) {
3241		struct ata_port *ap = host->ports[i];
3242		void __iomem *bmdma = host->iomap[4] + 8 * i;
3243
3244		if (ata_port_is_dummy(ap))
3245			continue;
3246
3247		ap->ioaddr.bmdma_addr = bmdma;
3248		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3249		    (ioread8(bmdma + 2) & 0x80))
3250			host->flags |= ATA_HOST_SIMPLEX;
3251
3252		ata_port_desc(ap, "bmdma 0x%llx",
3253		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3254	}
3255}
3256EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3257
3258/**
3259 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3260 *	@pdev: target PCI device
3261 *	@ppi: array of port_info, must be enough for two ports
3262 *	@r_host: out argument for the initialized ATA host
3263 *
3264 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3265 *	resources and initialize it accordingly in one go.
3266 *
3267 *	LOCKING:
3268 *	Inherited from calling layer (may sleep).
3269 *
3270 *	RETURNS:
3271 *	0 on success, -errno otherwise.
3272 */
3273int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3274			       const struct ata_port_info * const * ppi,
3275			       struct ata_host **r_host)
3276{
3277	int rc;
3278
3279	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3280	if (rc)
3281		return rc;
3282
3283	ata_pci_bmdma_init(*r_host);
3284	return 0;
3285}
3286EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3287
3288/**
3289 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3290 *	@pdev: Controller to be initialized
3291 *	@ppi: array of port_info, must be enough for two ports
3292 *	@sht: scsi_host_template to use when registering the host
3293 *	@host_priv: host private_data
3294 *	@hflags: host flags
3295 *
3296 *	This function is similar to ata_pci_sff_init_one() but also
3297 *	takes care of BMDMA initialization.
3298 *
3299 *	LOCKING:
3300 *	Inherited from PCI layer (may sleep).
3301 *
3302 *	RETURNS:
3303 *	Zero on success, negative on errno-based value on error.
3304 */
3305int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3306			   const struct ata_port_info * const * ppi,
3307			   struct scsi_host_template *sht, void *host_priv,
3308			   int hflags)
3309{
3310	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3311}
3312EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3313
3314#endif /* CONFIG_PCI */
3315#endif /* CONFIG_ATA_BMDMA */
3316
3317/**
3318 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3319 *	@ap: Port to initialize
3320 *
3321 *	Called on port allocation to initialize SFF/BMDMA specific
3322 *	fields.
3323 *
3324 *	LOCKING:
3325 *	None.
3326 */
3327void ata_sff_port_init(struct ata_port *ap)
3328{
3329	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3330	ap->ctl = ATA_DEVCTL_OBS;
3331	ap->last_ctl = 0xFF;
3332}
3333
3334int __init ata_sff_init(void)
3335{
3336	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3337	if (!ata_sff_wq)
3338		return -ENOMEM;
3339
3340	return 0;
3341}
3342
3343void ata_sff_exit(void)
3344{
3345	destroy_workqueue(ata_sff_wq);
3346}