Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15#include <linux/kernel.h>
16#include <linux/gfp.h>
17#include <linux/pci.h>
18#include <linux/module.h>
19#include <linux/libata.h>
20#include <linux/highmem.h>
21#include <trace/events/libata.h>
22#include "libata.h"
23
24static struct workqueue_struct *ata_sff_wq;
25
26const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_issue = ata_sff_qc_issue,
30 .qc_fill_rtf = ata_sff_qc_fill_rtf,
31
32 .freeze = ata_sff_freeze,
33 .thaw = ata_sff_thaw,
34 .prereset = ata_sff_prereset,
35 .softreset = ata_sff_softreset,
36 .hardreset = sata_sff_hardreset,
37 .postreset = ata_sff_postreset,
38 .error_handler = ata_sff_error_handler,
39
40 .sff_dev_select = ata_sff_dev_select,
41 .sff_check_status = ata_sff_check_status,
42 .sff_tf_load = ata_sff_tf_load,
43 .sff_tf_read = ata_sff_tf_read,
44 .sff_exec_command = ata_sff_exec_command,
45 .sff_data_xfer = ata_sff_data_xfer,
46 .sff_drain_fifo = ata_sff_drain_fifo,
47
48 .lost_interrupt = ata_sff_lost_interrupt,
49};
50EXPORT_SYMBOL_GPL(ata_sff_port_ops);
51
52/**
53 * ata_sff_check_status - Read device status reg & clear interrupt
54 * @ap: port where the device is
55 *
56 * Reads ATA taskfile status register for currently-selected device
57 * and return its value. This also clears pending interrupts
58 * from this device
59 *
60 * LOCKING:
61 * Inherited from caller.
62 */
63u8 ata_sff_check_status(struct ata_port *ap)
64{
65 return ioread8(ap->ioaddr.status_addr);
66}
67EXPORT_SYMBOL_GPL(ata_sff_check_status);
68
69/**
70 * ata_sff_altstatus - Read device alternate status reg
71 * @ap: port where the device is
72 * @status: pointer to a status value
73 *
74 * Reads ATA alternate status register for currently-selected device
75 * and return its value.
76 *
77 * RETURN:
78 * true if the register exists, false if not.
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
83static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
84{
85 u8 tmp;
86
87 if (ap->ops->sff_check_altstatus) {
88 tmp = ap->ops->sff_check_altstatus(ap);
89 goto read;
90 }
91 if (ap->ioaddr.altstatus_addr) {
92 tmp = ioread8(ap->ioaddr.altstatus_addr);
93 goto read;
94 }
95 return false;
96
97read:
98 if (status)
99 *status = tmp;
100 return true;
101}
102
103/**
104 * ata_sff_irq_status - Check if the device is busy
105 * @ap: port where the device is
106 *
107 * Determine if the port is currently busy. Uses altstatus
108 * if available in order to avoid clearing shared IRQ status
109 * when finding an IRQ source. Non ctl capable devices don't
110 * share interrupt lines fortunately for us.
111 *
112 * LOCKING:
113 * Inherited from caller.
114 */
115static u8 ata_sff_irq_status(struct ata_port *ap)
116{
117 u8 status;
118
119 /* Not us: We are busy */
120 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
121 return status;
122 /* Clear INTRQ latch */
123 status = ap->ops->sff_check_status(ap);
124 return status;
125}
126
127/**
128 * ata_sff_sync - Flush writes
129 * @ap: Port to wait for.
130 *
131 * CAUTION:
132 * If we have an mmio device with no ctl and no altstatus
133 * method this will fail. No such devices are known to exist.
134 *
135 * LOCKING:
136 * Inherited from caller.
137 */
138
139static void ata_sff_sync(struct ata_port *ap)
140{
141 ata_sff_altstatus(ap, NULL);
142}
143
144/**
145 * ata_sff_pause - Flush writes and wait 400nS
146 * @ap: Port to pause for.
147 *
148 * CAUTION:
149 * If we have an mmio device with no ctl and no altstatus
150 * method this will fail. No such devices are known to exist.
151 *
152 * LOCKING:
153 * Inherited from caller.
154 */
155
156void ata_sff_pause(struct ata_port *ap)
157{
158 ata_sff_sync(ap);
159 ndelay(400);
160}
161EXPORT_SYMBOL_GPL(ata_sff_pause);
162
163/**
164 * ata_sff_dma_pause - Pause before commencing DMA
165 * @ap: Port to pause for.
166 *
167 * Perform I/O fencing and ensure sufficient cycle delays occur
168 * for the HDMA1:0 transition
169 */
170
171void ata_sff_dma_pause(struct ata_port *ap)
172{
173 /*
174 * An altstatus read will cause the needed delay without
175 * messing up the IRQ status
176 */
177 if (ata_sff_altstatus(ap, NULL))
178 return;
179 /* There are no DMA controllers without ctl. BUG here to ensure
180 we never violate the HDMA1:0 transition timing and risk
181 corruption. */
182 BUG();
183}
184EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
185
186static int ata_sff_check_ready(struct ata_link *link)
187{
188 u8 status = link->ap->ops->sff_check_status(link->ap);
189
190 return ata_check_ready(status);
191}
192
193/**
194 * ata_sff_wait_ready - sleep until BSY clears, or timeout
195 * @link: SFF link to wait ready status for
196 * @deadline: deadline jiffies for the operation
197 *
198 * Sleep until ATA Status register bit BSY clears, or timeout
199 * occurs.
200 *
201 * LOCKING:
202 * Kernel thread context (may sleep).
203 *
204 * RETURNS:
205 * 0 on success, -errno otherwise.
206 */
207int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
208{
209 return ata_wait_ready(link, deadline, ata_sff_check_ready);
210}
211EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
212
213/**
214 * ata_sff_set_devctl - Write device control reg
215 * @ap: port where the device is
216 * @ctl: value to write
217 *
218 * Writes ATA device control register.
219 *
220 * RETURN:
221 * true if the register exists, false if not.
222 *
223 * LOCKING:
224 * Inherited from caller.
225 */
226static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
227{
228 if (ap->ops->sff_set_devctl) {
229 ap->ops->sff_set_devctl(ap, ctl);
230 return true;
231 }
232 if (ap->ioaddr.ctl_addr) {
233 iowrite8(ctl, ap->ioaddr.ctl_addr);
234 return true;
235 }
236
237 return false;
238}
239
240/**
241 * ata_sff_dev_select - Select device 0/1 on ATA bus
242 * @ap: ATA channel to manipulate
243 * @device: ATA device (numbered from zero) to select
244 *
245 * Use the method defined in the ATA specification to
246 * make either device 0, or device 1, active on the
247 * ATA channel. Works with both PIO and MMIO.
248 *
249 * May be used as the dev_select() entry in ata_port_operations.
250 *
251 * LOCKING:
252 * caller.
253 */
254void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
255{
256 u8 tmp;
257
258 if (device == 0)
259 tmp = ATA_DEVICE_OBS;
260 else
261 tmp = ATA_DEVICE_OBS | ATA_DEV1;
262
263 iowrite8(tmp, ap->ioaddr.device_addr);
264 ata_sff_pause(ap); /* needed; also flushes, for mmio */
265}
266EXPORT_SYMBOL_GPL(ata_sff_dev_select);
267
268/**
269 * ata_dev_select - Select device 0/1 on ATA bus
270 * @ap: ATA channel to manipulate
271 * @device: ATA device (numbered from zero) to select
272 * @wait: non-zero to wait for Status register BSY bit to clear
273 * @can_sleep: non-zero if context allows sleeping
274 *
275 * Use the method defined in the ATA specification to
276 * make either device 0, or device 1, active on the
277 * ATA channel.
278 *
279 * This is a high-level version of ata_sff_dev_select(), which
280 * additionally provides the services of inserting the proper
281 * pauses and status polling, where needed.
282 *
283 * LOCKING:
284 * caller.
285 */
286static void ata_dev_select(struct ata_port *ap, unsigned int device,
287 unsigned int wait, unsigned int can_sleep)
288{
289 if (wait)
290 ata_wait_idle(ap);
291
292 ap->ops->sff_dev_select(ap, device);
293
294 if (wait) {
295 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
296 ata_msleep(ap, 150);
297 ata_wait_idle(ap);
298 }
299}
300
301/**
302 * ata_sff_irq_on - Enable interrupts on a port.
303 * @ap: Port on which interrupts are enabled.
304 *
305 * Enable interrupts on a legacy IDE device using MMIO or PIO,
306 * wait for idle, clear any pending interrupts.
307 *
308 * Note: may NOT be used as the sff_irq_on() entry in
309 * ata_port_operations.
310 *
311 * LOCKING:
312 * Inherited from caller.
313 */
314void ata_sff_irq_on(struct ata_port *ap)
315{
316 if (ap->ops->sff_irq_on) {
317 ap->ops->sff_irq_on(ap);
318 return;
319 }
320
321 ap->ctl &= ~ATA_NIEN;
322 ap->last_ctl = ap->ctl;
323
324 ata_sff_set_devctl(ap, ap->ctl);
325 ata_wait_idle(ap);
326
327 if (ap->ops->sff_irq_clear)
328 ap->ops->sff_irq_clear(ap);
329}
330EXPORT_SYMBOL_GPL(ata_sff_irq_on);
331
332/**
333 * ata_sff_tf_load - send taskfile registers to host controller
334 * @ap: Port to which output is sent
335 * @tf: ATA taskfile register set
336 *
337 * Outputs ATA taskfile to standard ATA host controller.
338 *
339 * LOCKING:
340 * Inherited from caller.
341 */
342void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
343{
344 struct ata_ioports *ioaddr = &ap->ioaddr;
345 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
346
347 if (tf->ctl != ap->last_ctl) {
348 if (ioaddr->ctl_addr)
349 iowrite8(tf->ctl, ioaddr->ctl_addr);
350 ap->last_ctl = tf->ctl;
351 ata_wait_idle(ap);
352 }
353
354 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
355 WARN_ON_ONCE(!ioaddr->ctl_addr);
356 iowrite8(tf->hob_feature, ioaddr->feature_addr);
357 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
358 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
359 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
360 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
361 }
362
363 if (is_addr) {
364 iowrite8(tf->feature, ioaddr->feature_addr);
365 iowrite8(tf->nsect, ioaddr->nsect_addr);
366 iowrite8(tf->lbal, ioaddr->lbal_addr);
367 iowrite8(tf->lbam, ioaddr->lbam_addr);
368 iowrite8(tf->lbah, ioaddr->lbah_addr);
369 }
370
371 if (tf->flags & ATA_TFLAG_DEVICE)
372 iowrite8(tf->device, ioaddr->device_addr);
373
374 ata_wait_idle(ap);
375}
376EXPORT_SYMBOL_GPL(ata_sff_tf_load);
377
378/**
379 * ata_sff_tf_read - input device's ATA taskfile shadow registers
380 * @ap: Port from which input is read
381 * @tf: ATA taskfile register set for storing input
382 *
383 * Reads ATA taskfile registers for currently-selected device
384 * into @tf. Assumes the device has a fully SFF compliant task file
385 * layout and behaviour. If you device does not (eg has a different
386 * status method) then you will need to provide a replacement tf_read
387 *
388 * LOCKING:
389 * Inherited from caller.
390 */
391void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
392{
393 struct ata_ioports *ioaddr = &ap->ioaddr;
394
395 tf->status = ata_sff_check_status(ap);
396 tf->error = ioread8(ioaddr->error_addr);
397 tf->nsect = ioread8(ioaddr->nsect_addr);
398 tf->lbal = ioread8(ioaddr->lbal_addr);
399 tf->lbam = ioread8(ioaddr->lbam_addr);
400 tf->lbah = ioread8(ioaddr->lbah_addr);
401 tf->device = ioread8(ioaddr->device_addr);
402
403 if (tf->flags & ATA_TFLAG_LBA48) {
404 if (likely(ioaddr->ctl_addr)) {
405 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
406 tf->hob_feature = ioread8(ioaddr->error_addr);
407 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
408 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
409 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
410 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
411 iowrite8(tf->ctl, ioaddr->ctl_addr);
412 ap->last_ctl = tf->ctl;
413 } else
414 WARN_ON_ONCE(1);
415 }
416}
417EXPORT_SYMBOL_GPL(ata_sff_tf_read);
418
419/**
420 * ata_sff_exec_command - issue ATA command to host controller
421 * @ap: port to which command is being issued
422 * @tf: ATA taskfile register set
423 *
424 * Issues ATA command, with proper synchronization with interrupt
425 * handler / other threads.
426 *
427 * LOCKING:
428 * spin_lock_irqsave(host lock)
429 */
430void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
431{
432 iowrite8(tf->command, ap->ioaddr.command_addr);
433 ata_sff_pause(ap);
434}
435EXPORT_SYMBOL_GPL(ata_sff_exec_command);
436
437/**
438 * ata_tf_to_host - issue ATA taskfile to host controller
439 * @ap: port to which command is being issued
440 * @tf: ATA taskfile register set
441 * @tag: tag of the associated command
442 *
443 * Issues ATA taskfile register set to ATA host controller,
444 * with proper synchronization with interrupt handler and
445 * other threads.
446 *
447 * LOCKING:
448 * spin_lock_irqsave(host lock)
449 */
450static inline void ata_tf_to_host(struct ata_port *ap,
451 const struct ata_taskfile *tf,
452 unsigned int tag)
453{
454 trace_ata_tf_load(ap, tf);
455 ap->ops->sff_tf_load(ap, tf);
456 trace_ata_exec_command(ap, tf, tag);
457 ap->ops->sff_exec_command(ap, tf);
458}
459
460/**
461 * ata_sff_data_xfer - Transfer data by PIO
462 * @qc: queued command
463 * @buf: data buffer
464 * @buflen: buffer length
465 * @rw: read/write
466 *
467 * Transfer data from/to the device data register by PIO.
468 *
469 * LOCKING:
470 * Inherited from caller.
471 *
472 * RETURNS:
473 * Bytes consumed.
474 */
475unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
476 unsigned int buflen, int rw)
477{
478 struct ata_port *ap = qc->dev->link->ap;
479 void __iomem *data_addr = ap->ioaddr.data_addr;
480 unsigned int words = buflen >> 1;
481
482 /* Transfer multiple of 2 bytes */
483 if (rw == READ)
484 ioread16_rep(data_addr, buf, words);
485 else
486 iowrite16_rep(data_addr, buf, words);
487
488 /* Transfer trailing byte, if any. */
489 if (unlikely(buflen & 0x01)) {
490 unsigned char pad[2] = { };
491
492 /* Point buf to the tail of buffer */
493 buf += buflen - 1;
494
495 /*
496 * Use io*16_rep() accessors here as well to avoid pointlessly
497 * swapping bytes to and from on the big endian machines...
498 */
499 if (rw == READ) {
500 ioread16_rep(data_addr, pad, 1);
501 *buf = pad[0];
502 } else {
503 pad[0] = *buf;
504 iowrite16_rep(data_addr, pad, 1);
505 }
506 words++;
507 }
508
509 return words << 1;
510}
511EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
512
513/**
514 * ata_sff_data_xfer32 - Transfer data by PIO
515 * @qc: queued command
516 * @buf: data buffer
517 * @buflen: buffer length
518 * @rw: read/write
519 *
520 * Transfer data from/to the device data register by PIO using 32bit
521 * I/O operations.
522 *
523 * LOCKING:
524 * Inherited from caller.
525 *
526 * RETURNS:
527 * Bytes consumed.
528 */
529
530unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
531 unsigned int buflen, int rw)
532{
533 struct ata_device *dev = qc->dev;
534 struct ata_port *ap = dev->link->ap;
535 void __iomem *data_addr = ap->ioaddr.data_addr;
536 unsigned int words = buflen >> 2;
537 int slop = buflen & 3;
538
539 if (!(ap->pflags & ATA_PFLAG_PIO32))
540 return ata_sff_data_xfer(qc, buf, buflen, rw);
541
542 /* Transfer multiple of 4 bytes */
543 if (rw == READ)
544 ioread32_rep(data_addr, buf, words);
545 else
546 iowrite32_rep(data_addr, buf, words);
547
548 /* Transfer trailing bytes, if any */
549 if (unlikely(slop)) {
550 unsigned char pad[4] = { };
551
552 /* Point buf to the tail of buffer */
553 buf += buflen - slop;
554
555 /*
556 * Use io*_rep() accessors here as well to avoid pointlessly
557 * swapping bytes to and from on the big endian machines...
558 */
559 if (rw == READ) {
560 if (slop < 3)
561 ioread16_rep(data_addr, pad, 1);
562 else
563 ioread32_rep(data_addr, pad, 1);
564 memcpy(buf, pad, slop);
565 } else {
566 memcpy(pad, buf, slop);
567 if (slop < 3)
568 iowrite16_rep(data_addr, pad, 1);
569 else
570 iowrite32_rep(data_addr, pad, 1);
571 }
572 }
573 return (buflen + 1) & ~1;
574}
575EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
576
577static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
578 unsigned int offset, size_t xfer_size)
579{
580 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
581 unsigned char *buf;
582
583 buf = kmap_atomic(page);
584 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
585 kunmap_atomic(buf);
586
587 if (!do_write && !PageSlab(page))
588 flush_dcache_page(page);
589}
590
591/**
592 * ata_pio_sector - Transfer a sector of data.
593 * @qc: Command on going
594 *
595 * Transfer qc->sect_size bytes of data from/to the ATA device.
596 *
597 * LOCKING:
598 * Inherited from caller.
599 */
600static void ata_pio_sector(struct ata_queued_cmd *qc)
601{
602 struct ata_port *ap = qc->ap;
603 struct page *page;
604 unsigned int offset, count;
605
606 if (!qc->cursg) {
607 qc->curbytes = qc->nbytes;
608 return;
609 }
610 if (qc->curbytes == qc->nbytes - qc->sect_size)
611 ap->hsm_task_state = HSM_ST_LAST;
612
613 page = sg_page(qc->cursg);
614 offset = qc->cursg->offset + qc->cursg_ofs;
615
616 /* get the current page and offset */
617 page = nth_page(page, (offset >> PAGE_SHIFT));
618 offset %= PAGE_SIZE;
619
620 /* don't overrun current sg */
621 count = min(qc->cursg->length - qc->cursg_ofs, qc->sect_size);
622
623 trace_ata_sff_pio_transfer_data(qc, offset, count);
624
625 /*
626 * Split the transfer when it splits a page boundary. Note that the
627 * split still has to be dword aligned like all ATA data transfers.
628 */
629 WARN_ON_ONCE(offset % 4);
630 if (offset + count > PAGE_SIZE) {
631 unsigned int split_len = PAGE_SIZE - offset;
632
633 ata_pio_xfer(qc, page, offset, split_len);
634 ata_pio_xfer(qc, nth_page(page, 1), 0, count - split_len);
635 } else {
636 ata_pio_xfer(qc, page, offset, count);
637 }
638
639 qc->curbytes += count;
640 qc->cursg_ofs += count;
641
642 if (qc->cursg_ofs == qc->cursg->length) {
643 qc->cursg = sg_next(qc->cursg);
644 if (!qc->cursg)
645 ap->hsm_task_state = HSM_ST_LAST;
646 qc->cursg_ofs = 0;
647 }
648}
649
650/**
651 * ata_pio_sectors - Transfer one or many sectors.
652 * @qc: Command on going
653 *
654 * Transfer one or many sectors of data from/to the
655 * ATA device for the DRQ request.
656 *
657 * LOCKING:
658 * Inherited from caller.
659 */
660static void ata_pio_sectors(struct ata_queued_cmd *qc)
661{
662 if (is_multi_taskfile(&qc->tf)) {
663 /* READ/WRITE MULTIPLE */
664 unsigned int nsect;
665
666 WARN_ON_ONCE(qc->dev->multi_count == 0);
667
668 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
669 qc->dev->multi_count);
670 while (nsect--)
671 ata_pio_sector(qc);
672 } else
673 ata_pio_sector(qc);
674
675 ata_sff_sync(qc->ap); /* flush */
676}
677
678/**
679 * atapi_send_cdb - Write CDB bytes to hardware
680 * @ap: Port to which ATAPI device is attached.
681 * @qc: Taskfile currently active
682 *
683 * When device has indicated its readiness to accept
684 * a CDB, this function is called. Send the CDB.
685 *
686 * LOCKING:
687 * caller.
688 */
689static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
690{
691 /* send SCSI cdb */
692 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
693 WARN_ON_ONCE(qc->dev->cdb_len < 12);
694
695 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
696 ata_sff_sync(ap);
697 /* FIXME: If the CDB is for DMA do we need to do the transition delay
698 or is bmdma_start guaranteed to do it ? */
699 switch (qc->tf.protocol) {
700 case ATAPI_PROT_PIO:
701 ap->hsm_task_state = HSM_ST;
702 break;
703 case ATAPI_PROT_NODATA:
704 ap->hsm_task_state = HSM_ST_LAST;
705 break;
706#ifdef CONFIG_ATA_BMDMA
707 case ATAPI_PROT_DMA:
708 ap->hsm_task_state = HSM_ST_LAST;
709 /* initiate bmdma */
710 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
711 ap->ops->bmdma_start(qc);
712 break;
713#endif /* CONFIG_ATA_BMDMA */
714 default:
715 BUG();
716 }
717}
718
719/**
720 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
721 * @qc: Command on going
722 * @bytes: number of bytes
723 *
724 * Transfer data from/to the ATAPI device.
725 *
726 * LOCKING:
727 * Inherited from caller.
728 *
729 */
730static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
731{
732 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
733 struct ata_port *ap = qc->ap;
734 struct ata_device *dev = qc->dev;
735 struct ata_eh_info *ehi = &dev->link->eh_info;
736 struct scatterlist *sg;
737 struct page *page;
738 unsigned char *buf;
739 unsigned int offset, count, consumed;
740
741next_sg:
742 sg = qc->cursg;
743 if (unlikely(!sg)) {
744 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
745 "buf=%u cur=%u bytes=%u",
746 qc->nbytes, qc->curbytes, bytes);
747 return -1;
748 }
749
750 page = sg_page(sg);
751 offset = sg->offset + qc->cursg_ofs;
752
753 /* get the current page and offset */
754 page = nth_page(page, (offset >> PAGE_SHIFT));
755 offset %= PAGE_SIZE;
756
757 /* don't overrun current sg */
758 count = min(sg->length - qc->cursg_ofs, bytes);
759
760 /* don't cross page boundaries */
761 count = min(count, (unsigned int)PAGE_SIZE - offset);
762
763 trace_atapi_pio_transfer_data(qc, offset, count);
764
765 /* do the actual data transfer */
766 buf = kmap_atomic(page);
767 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
768 kunmap_atomic(buf);
769
770 bytes -= min(bytes, consumed);
771 qc->curbytes += count;
772 qc->cursg_ofs += count;
773
774 if (qc->cursg_ofs == sg->length) {
775 qc->cursg = sg_next(qc->cursg);
776 qc->cursg_ofs = 0;
777 }
778
779 /*
780 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
781 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
782 * check correctly as it doesn't know if it is the last request being
783 * made. Somebody should implement a proper sanity check.
784 */
785 if (bytes)
786 goto next_sg;
787 return 0;
788}
789
790/**
791 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
792 * @qc: Command on going
793 *
794 * Transfer Transfer data from/to the ATAPI device.
795 *
796 * LOCKING:
797 * Inherited from caller.
798 */
799static void atapi_pio_bytes(struct ata_queued_cmd *qc)
800{
801 struct ata_port *ap = qc->ap;
802 struct ata_device *dev = qc->dev;
803 struct ata_eh_info *ehi = &dev->link->eh_info;
804 unsigned int ireason, bc_lo, bc_hi, bytes;
805 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
806
807 /* Abuse qc->result_tf for temp storage of intermediate TF
808 * here to save some kernel stack usage.
809 * For normal completion, qc->result_tf is not relevant. For
810 * error, qc->result_tf is later overwritten by ata_qc_complete().
811 * So, the correctness of qc->result_tf is not affected.
812 */
813 ap->ops->sff_tf_read(ap, &qc->result_tf);
814 ireason = qc->result_tf.nsect;
815 bc_lo = qc->result_tf.lbam;
816 bc_hi = qc->result_tf.lbah;
817 bytes = (bc_hi << 8) | bc_lo;
818
819 /* shall be cleared to zero, indicating xfer of data */
820 if (unlikely(ireason & ATAPI_COD))
821 goto atapi_check;
822
823 /* make sure transfer direction matches expected */
824 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
825 if (unlikely(do_write != i_write))
826 goto atapi_check;
827
828 if (unlikely(!bytes))
829 goto atapi_check;
830
831 if (unlikely(__atapi_pio_bytes(qc, bytes)))
832 goto err_out;
833 ata_sff_sync(ap); /* flush */
834
835 return;
836
837 atapi_check:
838 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
839 ireason, bytes);
840 err_out:
841 qc->err_mask |= AC_ERR_HSM;
842 ap->hsm_task_state = HSM_ST_ERR;
843}
844
845/**
846 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
847 * @ap: the target ata_port
848 * @qc: qc on going
849 *
850 * RETURNS:
851 * 1 if ok in workqueue, 0 otherwise.
852 */
853static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
854 struct ata_queued_cmd *qc)
855{
856 if (qc->tf.flags & ATA_TFLAG_POLLING)
857 return 1;
858
859 if (ap->hsm_task_state == HSM_ST_FIRST) {
860 if (qc->tf.protocol == ATA_PROT_PIO &&
861 (qc->tf.flags & ATA_TFLAG_WRITE))
862 return 1;
863
864 if (ata_is_atapi(qc->tf.protocol) &&
865 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
866 return 1;
867 }
868
869 return 0;
870}
871
872/**
873 * ata_hsm_qc_complete - finish a qc running on standard HSM
874 * @qc: Command to complete
875 * @in_wq: 1 if called from workqueue, 0 otherwise
876 *
877 * Finish @qc which is running on standard HSM.
878 *
879 * LOCKING:
880 * If @in_wq is zero, spin_lock_irqsave(host lock).
881 * Otherwise, none on entry and grabs host lock.
882 */
883static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
884{
885 struct ata_port *ap = qc->ap;
886
887 if (in_wq) {
888 /* EH might have kicked in while host lock is released. */
889 qc = ata_qc_from_tag(ap, qc->tag);
890 if (qc) {
891 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
892 ata_sff_irq_on(ap);
893 ata_qc_complete(qc);
894 } else
895 ata_port_freeze(ap);
896 }
897 } else {
898 if (likely(!(qc->err_mask & AC_ERR_HSM)))
899 ata_qc_complete(qc);
900 else
901 ata_port_freeze(ap);
902 }
903}
904
905/**
906 * ata_sff_hsm_move - move the HSM to the next state.
907 * @ap: the target ata_port
908 * @qc: qc on going
909 * @status: current device status
910 * @in_wq: 1 if called from workqueue, 0 otherwise
911 *
912 * RETURNS:
913 * 1 when poll next status needed, 0 otherwise.
914 */
915int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
916 u8 status, int in_wq)
917{
918 struct ata_link *link = qc->dev->link;
919 struct ata_eh_info *ehi = &link->eh_info;
920 int poll_next;
921
922 lockdep_assert_held(ap->lock);
923
924 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
925
926 /* Make sure ata_sff_qc_issue() does not throw things
927 * like DMA polling into the workqueue. Notice that
928 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
929 */
930 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
931
932fsm_start:
933 trace_ata_sff_hsm_state(qc, status);
934
935 switch (ap->hsm_task_state) {
936 case HSM_ST_FIRST:
937 /* Send first data block or PACKET CDB */
938
939 /* If polling, we will stay in the work queue after
940 * sending the data. Otherwise, interrupt handler
941 * takes over after sending the data.
942 */
943 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
944
945 /* check device status */
946 if (unlikely((status & ATA_DRQ) == 0)) {
947 /* handle BSY=0, DRQ=0 as error */
948 if (likely(status & (ATA_ERR | ATA_DF)))
949 /* device stops HSM for abort/error */
950 qc->err_mask |= AC_ERR_DEV;
951 else {
952 /* HSM violation. Let EH handle this */
953 ata_ehi_push_desc(ehi,
954 "ST_FIRST: !(DRQ|ERR|DF)");
955 qc->err_mask |= AC_ERR_HSM;
956 }
957
958 ap->hsm_task_state = HSM_ST_ERR;
959 goto fsm_start;
960 }
961
962 /* Device should not ask for data transfer (DRQ=1)
963 * when it finds something wrong.
964 * We ignore DRQ here and stop the HSM by
965 * changing hsm_task_state to HSM_ST_ERR and
966 * let the EH abort the command or reset the device.
967 */
968 if (unlikely(status & (ATA_ERR | ATA_DF))) {
969 /* Some ATAPI tape drives forget to clear the ERR bit
970 * when doing the next command (mostly request sense).
971 * We ignore ERR here to workaround and proceed sending
972 * the CDB.
973 */
974 if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) {
975 ata_ehi_push_desc(ehi, "ST_FIRST: "
976 "DRQ=1 with device error, "
977 "dev_stat 0x%X", status);
978 qc->err_mask |= AC_ERR_HSM;
979 ap->hsm_task_state = HSM_ST_ERR;
980 goto fsm_start;
981 }
982 }
983
984 if (qc->tf.protocol == ATA_PROT_PIO) {
985 /* PIO data out protocol.
986 * send first data block.
987 */
988
989 /* ata_pio_sectors() might change the state
990 * to HSM_ST_LAST. so, the state is changed here
991 * before ata_pio_sectors().
992 */
993 ap->hsm_task_state = HSM_ST;
994 ata_pio_sectors(qc);
995 } else
996 /* send CDB */
997 atapi_send_cdb(ap, qc);
998
999 /* if polling, ata_sff_pio_task() handles the rest.
1000 * otherwise, interrupt handler takes over from here.
1001 */
1002 break;
1003
1004 case HSM_ST:
1005 /* complete command or read/write the data register */
1006 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1007 /* ATAPI PIO protocol */
1008 if ((status & ATA_DRQ) == 0) {
1009 /* No more data to transfer or device error.
1010 * Device error will be tagged in HSM_ST_LAST.
1011 */
1012 ap->hsm_task_state = HSM_ST_LAST;
1013 goto fsm_start;
1014 }
1015
1016 /* Device should not ask for data transfer (DRQ=1)
1017 * when it finds something wrong.
1018 * We ignore DRQ here and stop the HSM by
1019 * changing hsm_task_state to HSM_ST_ERR and
1020 * let the EH abort the command or reset the device.
1021 */
1022 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1023 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1024 "DRQ=1 with device error, "
1025 "dev_stat 0x%X", status);
1026 qc->err_mask |= AC_ERR_HSM;
1027 ap->hsm_task_state = HSM_ST_ERR;
1028 goto fsm_start;
1029 }
1030
1031 atapi_pio_bytes(qc);
1032
1033 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1034 /* bad ireason reported by device */
1035 goto fsm_start;
1036
1037 } else {
1038 /* ATA PIO protocol */
1039 if (unlikely((status & ATA_DRQ) == 0)) {
1040 /* handle BSY=0, DRQ=0 as error */
1041 if (likely(status & (ATA_ERR | ATA_DF))) {
1042 /* device stops HSM for abort/error */
1043 qc->err_mask |= AC_ERR_DEV;
1044
1045 /* If diagnostic failed and this is
1046 * IDENTIFY, it's likely a phantom
1047 * device. Mark hint.
1048 */
1049 if (qc->dev->quirks &
1050 ATA_QUIRK_DIAGNOSTIC)
1051 qc->err_mask |=
1052 AC_ERR_NODEV_HINT;
1053 } else {
1054 /* HSM violation. Let EH handle this.
1055 * Phantom devices also trigger this
1056 * condition. Mark hint.
1057 */
1058 ata_ehi_push_desc(ehi, "ST-ATA: "
1059 "DRQ=0 without device error, "
1060 "dev_stat 0x%X", status);
1061 qc->err_mask |= AC_ERR_HSM |
1062 AC_ERR_NODEV_HINT;
1063 }
1064
1065 ap->hsm_task_state = HSM_ST_ERR;
1066 goto fsm_start;
1067 }
1068
1069 /* For PIO reads, some devices may ask for
1070 * data transfer (DRQ=1) alone with ERR=1.
1071 * We respect DRQ here and transfer one
1072 * block of junk data before changing the
1073 * hsm_task_state to HSM_ST_ERR.
1074 *
1075 * For PIO writes, ERR=1 DRQ=1 doesn't make
1076 * sense since the data block has been
1077 * transferred to the device.
1078 */
1079 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1080 /* data might be corrputed */
1081 qc->err_mask |= AC_ERR_DEV;
1082
1083 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1084 ata_pio_sectors(qc);
1085 status = ata_wait_idle(ap);
1086 }
1087
1088 if (status & (ATA_BUSY | ATA_DRQ)) {
1089 ata_ehi_push_desc(ehi, "ST-ATA: "
1090 "BUSY|DRQ persists on ERR|DF, "
1091 "dev_stat 0x%X", status);
1092 qc->err_mask |= AC_ERR_HSM;
1093 }
1094
1095 /* There are oddball controllers with
1096 * status register stuck at 0x7f and
1097 * lbal/m/h at zero which makes it
1098 * pass all other presence detection
1099 * mechanisms we have. Set NODEV_HINT
1100 * for it. Kernel bz#7241.
1101 */
1102 if (status == 0x7f)
1103 qc->err_mask |= AC_ERR_NODEV_HINT;
1104
1105 /* ata_pio_sectors() might change the
1106 * state to HSM_ST_LAST. so, the state
1107 * is changed after ata_pio_sectors().
1108 */
1109 ap->hsm_task_state = HSM_ST_ERR;
1110 goto fsm_start;
1111 }
1112
1113 ata_pio_sectors(qc);
1114
1115 if (ap->hsm_task_state == HSM_ST_LAST &&
1116 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1117 /* all data read */
1118 status = ata_wait_idle(ap);
1119 goto fsm_start;
1120 }
1121 }
1122
1123 poll_next = 1;
1124 break;
1125
1126 case HSM_ST_LAST:
1127 if (unlikely(!ata_ok(status))) {
1128 qc->err_mask |= __ac_err_mask(status);
1129 ap->hsm_task_state = HSM_ST_ERR;
1130 goto fsm_start;
1131 }
1132
1133 /* no more data to transfer */
1134 trace_ata_sff_hsm_command_complete(qc, status);
1135
1136 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1137
1138 ap->hsm_task_state = HSM_ST_IDLE;
1139
1140 /* complete taskfile transaction */
1141 ata_hsm_qc_complete(qc, in_wq);
1142
1143 poll_next = 0;
1144 break;
1145
1146 case HSM_ST_ERR:
1147 ap->hsm_task_state = HSM_ST_IDLE;
1148
1149 /* complete taskfile transaction */
1150 ata_hsm_qc_complete(qc, in_wq);
1151
1152 poll_next = 0;
1153 break;
1154 default:
1155 poll_next = 0;
1156 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1157 ap->print_id, ap->hsm_task_state);
1158 }
1159
1160 return poll_next;
1161}
1162EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1163
1164void ata_sff_queue_work(struct work_struct *work)
1165{
1166 queue_work(ata_sff_wq, work);
1167}
1168EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1169
1170void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1171{
1172 queue_delayed_work(ata_sff_wq, dwork, delay);
1173}
1174EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1175
1176void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1177{
1178 struct ata_port *ap = link->ap;
1179
1180 WARN_ON((ap->sff_pio_task_link != NULL) &&
1181 (ap->sff_pio_task_link != link));
1182 ap->sff_pio_task_link = link;
1183
1184 /* may fail if ata_sff_flush_pio_task() in progress */
1185 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1186}
1187EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1188
1189void ata_sff_flush_pio_task(struct ata_port *ap)
1190{
1191 trace_ata_sff_flush_pio_task(ap);
1192
1193 cancel_delayed_work_sync(&ap->sff_pio_task);
1194
1195 /*
1196 * We wanna reset the HSM state to IDLE. If we do so without
1197 * grabbing the port lock, critical sections protected by it which
1198 * expect the HSM state to stay stable may get surprised. For
1199 * example, we may set IDLE in between the time
1200 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1201 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1202 */
1203 spin_lock_irq(ap->lock);
1204 ap->hsm_task_state = HSM_ST_IDLE;
1205 spin_unlock_irq(ap->lock);
1206
1207 ap->sff_pio_task_link = NULL;
1208}
1209
1210static void ata_sff_pio_task(struct work_struct *work)
1211{
1212 struct ata_port *ap =
1213 container_of(work, struct ata_port, sff_pio_task.work);
1214 struct ata_link *link = ap->sff_pio_task_link;
1215 struct ata_queued_cmd *qc;
1216 u8 status;
1217 int poll_next;
1218
1219 spin_lock_irq(ap->lock);
1220
1221 BUG_ON(ap->sff_pio_task_link == NULL);
1222 /* qc can be NULL if timeout occurred */
1223 qc = ata_qc_from_tag(ap, link->active_tag);
1224 if (!qc) {
1225 ap->sff_pio_task_link = NULL;
1226 goto out_unlock;
1227 }
1228
1229fsm_start:
1230 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1231
1232 /*
1233 * This is purely heuristic. This is a fast path.
1234 * Sometimes when we enter, BSY will be cleared in
1235 * a chk-status or two. If not, the drive is probably seeking
1236 * or something. Snooze for a couple msecs, then
1237 * chk-status again. If still busy, queue delayed work.
1238 */
1239 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1240 if (status & ATA_BUSY) {
1241 spin_unlock_irq(ap->lock);
1242 ata_msleep(ap, 2);
1243 spin_lock_irq(ap->lock);
1244
1245 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1246 if (status & ATA_BUSY) {
1247 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1248 goto out_unlock;
1249 }
1250 }
1251
1252 /*
1253 * hsm_move() may trigger another command to be processed.
1254 * clean the link beforehand.
1255 */
1256 ap->sff_pio_task_link = NULL;
1257 /* move the HSM */
1258 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1259
1260 /* another command or interrupt handler
1261 * may be running at this point.
1262 */
1263 if (poll_next)
1264 goto fsm_start;
1265out_unlock:
1266 spin_unlock_irq(ap->lock);
1267}
1268
1269/**
1270 * ata_sff_qc_issue - issue taskfile to a SFF controller
1271 * @qc: command to issue to device
1272 *
1273 * This function issues a PIO or NODATA command to a SFF
1274 * controller.
1275 *
1276 * LOCKING:
1277 * spin_lock_irqsave(host lock)
1278 *
1279 * RETURNS:
1280 * Zero on success, AC_ERR_* mask on failure
1281 */
1282unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1283{
1284 struct ata_port *ap = qc->ap;
1285 struct ata_link *link = qc->dev->link;
1286
1287 /* Use polling pio if the LLD doesn't handle
1288 * interrupt driven pio and atapi CDB interrupt.
1289 */
1290 if (ap->flags & ATA_FLAG_PIO_POLLING)
1291 qc->tf.flags |= ATA_TFLAG_POLLING;
1292
1293 /* select the device */
1294 ata_dev_select(ap, qc->dev->devno, 1, 0);
1295
1296 /* start the command */
1297 switch (qc->tf.protocol) {
1298 case ATA_PROT_NODATA:
1299 if (qc->tf.flags & ATA_TFLAG_POLLING)
1300 ata_qc_set_polling(qc);
1301
1302 ata_tf_to_host(ap, &qc->tf, qc->tag);
1303 ap->hsm_task_state = HSM_ST_LAST;
1304
1305 if (qc->tf.flags & ATA_TFLAG_POLLING)
1306 ata_sff_queue_pio_task(link, 0);
1307
1308 break;
1309
1310 case ATA_PROT_PIO:
1311 if (qc->tf.flags & ATA_TFLAG_POLLING)
1312 ata_qc_set_polling(qc);
1313
1314 ata_tf_to_host(ap, &qc->tf, qc->tag);
1315
1316 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1317 /* PIO data out protocol */
1318 ap->hsm_task_state = HSM_ST_FIRST;
1319 ata_sff_queue_pio_task(link, 0);
1320
1321 /* always send first data block using the
1322 * ata_sff_pio_task() codepath.
1323 */
1324 } else {
1325 /* PIO data in protocol */
1326 ap->hsm_task_state = HSM_ST;
1327
1328 if (qc->tf.flags & ATA_TFLAG_POLLING)
1329 ata_sff_queue_pio_task(link, 0);
1330
1331 /* if polling, ata_sff_pio_task() handles the
1332 * rest. otherwise, interrupt handler takes
1333 * over from here.
1334 */
1335 }
1336
1337 break;
1338
1339 case ATAPI_PROT_PIO:
1340 case ATAPI_PROT_NODATA:
1341 if (qc->tf.flags & ATA_TFLAG_POLLING)
1342 ata_qc_set_polling(qc);
1343
1344 ata_tf_to_host(ap, &qc->tf, qc->tag);
1345
1346 ap->hsm_task_state = HSM_ST_FIRST;
1347
1348 /* send cdb by polling if no cdb interrupt */
1349 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1350 (qc->tf.flags & ATA_TFLAG_POLLING))
1351 ata_sff_queue_pio_task(link, 0);
1352 break;
1353
1354 default:
1355 return AC_ERR_SYSTEM;
1356 }
1357
1358 return 0;
1359}
1360EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1361
1362/**
1363 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1364 * @qc: qc to fill result TF for
1365 *
1366 * @qc is finished and result TF needs to be filled. Fill it
1367 * using ->sff_tf_read.
1368 *
1369 * LOCKING:
1370 * spin_lock_irqsave(host lock)
1371 */
1372void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1373{
1374 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1375}
1376EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1377
1378static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1379{
1380 ap->stats.idle_irq++;
1381
1382#ifdef ATA_IRQ_TRAP
1383 if ((ap->stats.idle_irq % 1000) == 0) {
1384 ap->ops->sff_check_status(ap);
1385 if (ap->ops->sff_irq_clear)
1386 ap->ops->sff_irq_clear(ap);
1387 ata_port_warn(ap, "irq trap\n");
1388 return 1;
1389 }
1390#endif
1391 return 0; /* irq not handled */
1392}
1393
1394static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1395 struct ata_queued_cmd *qc,
1396 bool hsmv_on_idle)
1397{
1398 u8 status;
1399
1400 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1401
1402 /* Check whether we are expecting interrupt in this state */
1403 switch (ap->hsm_task_state) {
1404 case HSM_ST_FIRST:
1405 /* Some pre-ATAPI-4 devices assert INTRQ
1406 * at this state when ready to receive CDB.
1407 */
1408
1409 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1410 * The flag was turned on only for atapi devices. No
1411 * need to check ata_is_atapi(qc->tf.protocol) again.
1412 */
1413 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1414 return ata_sff_idle_irq(ap);
1415 break;
1416 case HSM_ST_IDLE:
1417 return ata_sff_idle_irq(ap);
1418 default:
1419 break;
1420 }
1421
1422 /* check main status, clearing INTRQ if needed */
1423 status = ata_sff_irq_status(ap);
1424 if (status & ATA_BUSY) {
1425 if (hsmv_on_idle) {
1426 /* BMDMA engine is already stopped, we're screwed */
1427 qc->err_mask |= AC_ERR_HSM;
1428 ap->hsm_task_state = HSM_ST_ERR;
1429 } else
1430 return ata_sff_idle_irq(ap);
1431 }
1432
1433 /* clear irq events */
1434 if (ap->ops->sff_irq_clear)
1435 ap->ops->sff_irq_clear(ap);
1436
1437 ata_sff_hsm_move(ap, qc, status, 0);
1438
1439 return 1; /* irq handled */
1440}
1441
1442/**
1443 * ata_sff_port_intr - Handle SFF port interrupt
1444 * @ap: Port on which interrupt arrived (possibly...)
1445 * @qc: Taskfile currently active in engine
1446 *
1447 * Handle port interrupt for given queued command.
1448 *
1449 * LOCKING:
1450 * spin_lock_irqsave(host lock)
1451 *
1452 * RETURNS:
1453 * One if interrupt was handled, zero if not (shared irq).
1454 */
1455unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1456{
1457 return __ata_sff_port_intr(ap, qc, false);
1458}
1459EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1460
1461static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1462 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1463{
1464 struct ata_host *host = dev_instance;
1465 bool retried = false;
1466 unsigned int i;
1467 unsigned int handled, idle, polling;
1468 unsigned long flags;
1469
1470 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1471 spin_lock_irqsave(&host->lock, flags);
1472
1473retry:
1474 handled = idle = polling = 0;
1475 for (i = 0; i < host->n_ports; i++) {
1476 struct ata_port *ap = host->ports[i];
1477 struct ata_queued_cmd *qc;
1478
1479 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1480 if (qc) {
1481 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1482 handled |= port_intr(ap, qc);
1483 else
1484 polling |= 1 << i;
1485 } else
1486 idle |= 1 << i;
1487 }
1488
1489 /*
1490 * If no port was expecting IRQ but the controller is actually
1491 * asserting IRQ line, nobody cared will ensue. Check IRQ
1492 * pending status if available and clear spurious IRQ.
1493 */
1494 if (!handled && !retried) {
1495 bool retry = false;
1496
1497 for (i = 0; i < host->n_ports; i++) {
1498 struct ata_port *ap = host->ports[i];
1499
1500 if (polling & (1 << i))
1501 continue;
1502
1503 if (!ap->ops->sff_irq_check ||
1504 !ap->ops->sff_irq_check(ap))
1505 continue;
1506
1507 if (idle & (1 << i)) {
1508 ap->ops->sff_check_status(ap);
1509 if (ap->ops->sff_irq_clear)
1510 ap->ops->sff_irq_clear(ap);
1511 } else {
1512 /* clear INTRQ and check if BUSY cleared */
1513 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1514 retry |= true;
1515 /*
1516 * With command in flight, we can't do
1517 * sff_irq_clear() w/o racing with completion.
1518 */
1519 }
1520 }
1521
1522 if (retry) {
1523 retried = true;
1524 goto retry;
1525 }
1526 }
1527
1528 spin_unlock_irqrestore(&host->lock, flags);
1529
1530 return IRQ_RETVAL(handled);
1531}
1532
1533/**
1534 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1535 * @irq: irq line (unused)
1536 * @dev_instance: pointer to our ata_host information structure
1537 *
1538 * Default interrupt handler for PCI IDE devices. Calls
1539 * ata_sff_port_intr() for each port that is not disabled.
1540 *
1541 * LOCKING:
1542 * Obtains host lock during operation.
1543 *
1544 * RETURNS:
1545 * IRQ_NONE or IRQ_HANDLED.
1546 */
1547irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1548{
1549 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1550}
1551EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1552
1553/**
1554 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1555 * @ap: port that appears to have timed out
1556 *
1557 * Called from the libata error handlers when the core code suspects
1558 * an interrupt has been lost. If it has complete anything we can and
1559 * then return. Interface must support altstatus for this faster
1560 * recovery to occur.
1561 *
1562 * Locking:
1563 * Caller holds host lock
1564 */
1565
1566void ata_sff_lost_interrupt(struct ata_port *ap)
1567{
1568 u8 status = 0;
1569 struct ata_queued_cmd *qc;
1570
1571 /* Only one outstanding command per SFF channel */
1572 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1573 /* We cannot lose an interrupt on a non-existent or polled command */
1574 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1575 return;
1576 /* See if the controller thinks it is still busy - if so the command
1577 isn't a lost IRQ but is still in progress */
1578 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1579 return;
1580 if (status & ATA_BUSY)
1581 return;
1582
1583 /* There was a command running, we are no longer busy and we have
1584 no interrupt. */
1585 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1586 /* Run the host interrupt logic as if the interrupt had not been
1587 lost */
1588 ata_sff_port_intr(ap, qc);
1589}
1590EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1591
1592/**
1593 * ata_sff_freeze - Freeze SFF controller port
1594 * @ap: port to freeze
1595 *
1596 * Freeze SFF controller port.
1597 *
1598 * LOCKING:
1599 * Inherited from caller.
1600 */
1601void ata_sff_freeze(struct ata_port *ap)
1602{
1603 ap->ctl |= ATA_NIEN;
1604 ap->last_ctl = ap->ctl;
1605
1606 ata_sff_set_devctl(ap, ap->ctl);
1607
1608 /* Under certain circumstances, some controllers raise IRQ on
1609 * ATA_NIEN manipulation. Also, many controllers fail to mask
1610 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1611 */
1612 ap->ops->sff_check_status(ap);
1613
1614 if (ap->ops->sff_irq_clear)
1615 ap->ops->sff_irq_clear(ap);
1616}
1617EXPORT_SYMBOL_GPL(ata_sff_freeze);
1618
1619/**
1620 * ata_sff_thaw - Thaw SFF controller port
1621 * @ap: port to thaw
1622 *
1623 * Thaw SFF controller port.
1624 *
1625 * LOCKING:
1626 * Inherited from caller.
1627 */
1628void ata_sff_thaw(struct ata_port *ap)
1629{
1630 /* clear & re-enable interrupts */
1631 ap->ops->sff_check_status(ap);
1632 if (ap->ops->sff_irq_clear)
1633 ap->ops->sff_irq_clear(ap);
1634 ata_sff_irq_on(ap);
1635}
1636EXPORT_SYMBOL_GPL(ata_sff_thaw);
1637
1638/**
1639 * ata_sff_prereset - prepare SFF link for reset
1640 * @link: SFF link to be reset
1641 * @deadline: deadline jiffies for the operation
1642 *
1643 * SFF link @link is about to be reset. Initialize it. It first
1644 * calls ata_std_prereset() and wait for !BSY if the port is
1645 * being softreset.
1646 *
1647 * LOCKING:
1648 * Kernel thread context (may sleep)
1649 *
1650 * RETURNS:
1651 * Always 0.
1652 */
1653int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1654{
1655 struct ata_eh_context *ehc = &link->eh_context;
1656 int rc;
1657
1658 /* The standard prereset is best-effort and always returns 0 */
1659 ata_std_prereset(link, deadline);
1660
1661 /* if we're about to do hardreset, nothing more to do */
1662 if (ehc->i.action & ATA_EH_HARDRESET)
1663 return 0;
1664
1665 /* wait for !BSY if we don't know that no device is attached */
1666 if (!ata_link_offline(link)) {
1667 rc = ata_sff_wait_ready(link, deadline);
1668 if (rc && rc != -ENODEV) {
1669 ata_link_warn(link,
1670 "device not ready (errno=%d), forcing hardreset\n",
1671 rc);
1672 ehc->i.action |= ATA_EH_HARDRESET;
1673 }
1674 }
1675
1676 return 0;
1677}
1678EXPORT_SYMBOL_GPL(ata_sff_prereset);
1679
1680/**
1681 * ata_devchk - PATA device presence detection
1682 * @ap: ATA channel to examine
1683 * @device: Device to examine (starting at zero)
1684 *
1685 * This technique was originally described in
1686 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1687 * later found its way into the ATA/ATAPI spec.
1688 *
1689 * Write a pattern to the ATA shadow registers,
1690 * and if a device is present, it will respond by
1691 * correctly storing and echoing back the
1692 * ATA shadow register contents.
1693 *
1694 * RETURN:
1695 * true if device is present, false if not.
1696 *
1697 * LOCKING:
1698 * caller.
1699 */
1700static bool ata_devchk(struct ata_port *ap, unsigned int device)
1701{
1702 struct ata_ioports *ioaddr = &ap->ioaddr;
1703 u8 nsect, lbal;
1704
1705 ap->ops->sff_dev_select(ap, device);
1706
1707 iowrite8(0x55, ioaddr->nsect_addr);
1708 iowrite8(0xaa, ioaddr->lbal_addr);
1709
1710 iowrite8(0xaa, ioaddr->nsect_addr);
1711 iowrite8(0x55, ioaddr->lbal_addr);
1712
1713 iowrite8(0x55, ioaddr->nsect_addr);
1714 iowrite8(0xaa, ioaddr->lbal_addr);
1715
1716 nsect = ioread8(ioaddr->nsect_addr);
1717 lbal = ioread8(ioaddr->lbal_addr);
1718
1719 if ((nsect == 0x55) && (lbal == 0xaa))
1720 return true; /* we found a device */
1721
1722 return false; /* nothing found */
1723}
1724
1725/**
1726 * ata_sff_dev_classify - Parse returned ATA device signature
1727 * @dev: ATA device to classify (starting at zero)
1728 * @present: device seems present
1729 * @r_err: Value of error register on completion
1730 *
1731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1732 * an ATA/ATAPI-defined set of values is placed in the ATA
1733 * shadow registers, indicating the results of device detection
1734 * and diagnostics.
1735 *
1736 * Select the ATA device, and read the values from the ATA shadow
1737 * registers. Then parse according to the Error register value,
1738 * and the spec-defined values examined by ata_dev_classify().
1739 *
1740 * LOCKING:
1741 * caller.
1742 *
1743 * RETURNS:
1744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1745 */
1746unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1747 u8 *r_err)
1748{
1749 struct ata_port *ap = dev->link->ap;
1750 struct ata_taskfile tf;
1751 unsigned int class;
1752 u8 err;
1753
1754 ap->ops->sff_dev_select(ap, dev->devno);
1755
1756 memset(&tf, 0, sizeof(tf));
1757
1758 ap->ops->sff_tf_read(ap, &tf);
1759 err = tf.error;
1760 if (r_err)
1761 *r_err = err;
1762
1763 /* see if device passed diags: continue and warn later */
1764 if (err == 0)
1765 /* diagnostic fail : do nothing _YET_ */
1766 dev->quirks |= ATA_QUIRK_DIAGNOSTIC;
1767 else if (err == 1)
1768 /* do nothing */ ;
1769 else if ((dev->devno == 0) && (err == 0x81))
1770 /* do nothing */ ;
1771 else
1772 return ATA_DEV_NONE;
1773
1774 /* determine if device is ATA or ATAPI */
1775 class = ata_port_classify(ap, &tf);
1776 switch (class) {
1777 case ATA_DEV_UNKNOWN:
1778 /*
1779 * If the device failed diagnostic, it's likely to
1780 * have reported incorrect device signature too.
1781 * Assume ATA device if the device seems present but
1782 * device signature is invalid with diagnostic
1783 * failure.
1784 */
1785 if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC))
1786 class = ATA_DEV_ATA;
1787 else
1788 class = ATA_DEV_NONE;
1789 break;
1790 case ATA_DEV_ATA:
1791 if (ap->ops->sff_check_status(ap) == 0)
1792 class = ATA_DEV_NONE;
1793 break;
1794 }
1795 return class;
1796}
1797EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1798
1799/**
1800 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1801 * @link: SFF link which is just reset
1802 * @devmask: mask of present devices
1803 * @deadline: deadline jiffies for the operation
1804 *
1805 * Wait devices attached to SFF @link to become ready after
1806 * reset. It contains preceding 150ms wait to avoid accessing TF
1807 * status register too early.
1808 *
1809 * LOCKING:
1810 * Kernel thread context (may sleep).
1811 *
1812 * RETURNS:
1813 * 0 on success, -ENODEV if some or all of devices in @devmask
1814 * don't seem to exist. -errno on other errors.
1815 */
1816int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1817 unsigned long deadline)
1818{
1819 struct ata_port *ap = link->ap;
1820 struct ata_ioports *ioaddr = &ap->ioaddr;
1821 unsigned int dev0 = devmask & (1 << 0);
1822 unsigned int dev1 = devmask & (1 << 1);
1823 int rc, ret = 0;
1824
1825 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1826
1827 /* always check readiness of the master device */
1828 rc = ata_sff_wait_ready(link, deadline);
1829 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1830 * and TF status is 0xff, bail out on it too.
1831 */
1832 if (rc)
1833 return rc;
1834
1835 /* if device 1 was found in ata_devchk, wait for register
1836 * access briefly, then wait for BSY to clear.
1837 */
1838 if (dev1) {
1839 int i;
1840
1841 ap->ops->sff_dev_select(ap, 1);
1842
1843 /* Wait for register access. Some ATAPI devices fail
1844 * to set nsect/lbal after reset, so don't waste too
1845 * much time on it. We're gonna wait for !BSY anyway.
1846 */
1847 for (i = 0; i < 2; i++) {
1848 u8 nsect, lbal;
1849
1850 nsect = ioread8(ioaddr->nsect_addr);
1851 lbal = ioread8(ioaddr->lbal_addr);
1852 if ((nsect == 1) && (lbal == 1))
1853 break;
1854 ata_msleep(ap, 50); /* give drive a breather */
1855 }
1856
1857 rc = ata_sff_wait_ready(link, deadline);
1858 if (rc) {
1859 if (rc != -ENODEV)
1860 return rc;
1861 ret = rc;
1862 }
1863 }
1864
1865 /* is all this really necessary? */
1866 ap->ops->sff_dev_select(ap, 0);
1867 if (dev1)
1868 ap->ops->sff_dev_select(ap, 1);
1869 if (dev0)
1870 ap->ops->sff_dev_select(ap, 0);
1871
1872 return ret;
1873}
1874EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1875
1876static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1877 unsigned long deadline)
1878{
1879 struct ata_ioports *ioaddr = &ap->ioaddr;
1880
1881 if (ap->ioaddr.ctl_addr) {
1882 /* software reset. causes dev0 to be selected */
1883 iowrite8(ap->ctl, ioaddr->ctl_addr);
1884 udelay(20); /* FIXME: flush */
1885 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1886 udelay(20); /* FIXME: flush */
1887 iowrite8(ap->ctl, ioaddr->ctl_addr);
1888 ap->last_ctl = ap->ctl;
1889 }
1890
1891 /* wait the port to become ready */
1892 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1893}
1894
1895/**
1896 * ata_sff_softreset - reset host port via ATA SRST
1897 * @link: ATA link to reset
1898 * @classes: resulting classes of attached devices
1899 * @deadline: deadline jiffies for the operation
1900 *
1901 * Reset host port using ATA SRST.
1902 *
1903 * LOCKING:
1904 * Kernel thread context (may sleep)
1905 *
1906 * RETURNS:
1907 * 0 on success, -errno otherwise.
1908 */
1909int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1910 unsigned long deadline)
1911{
1912 struct ata_port *ap = link->ap;
1913 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1914 unsigned int devmask = 0;
1915 int rc;
1916 u8 err;
1917
1918 /* determine if device 0/1 are present */
1919 if (ata_devchk(ap, 0))
1920 devmask |= (1 << 0);
1921 if (slave_possible && ata_devchk(ap, 1))
1922 devmask |= (1 << 1);
1923
1924 /* select device 0 again */
1925 ap->ops->sff_dev_select(ap, 0);
1926
1927 /* issue bus reset */
1928 rc = ata_bus_softreset(ap, devmask, deadline);
1929 /* if link is occupied, -ENODEV too is an error */
1930 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1931 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1932 return rc;
1933 }
1934
1935 /* determine by signature whether we have ATA or ATAPI devices */
1936 classes[0] = ata_sff_dev_classify(&link->device[0],
1937 devmask & (1 << 0), &err);
1938 if (slave_possible && err != 0x81)
1939 classes[1] = ata_sff_dev_classify(&link->device[1],
1940 devmask & (1 << 1), &err);
1941
1942 return 0;
1943}
1944EXPORT_SYMBOL_GPL(ata_sff_softreset);
1945
1946/**
1947 * sata_sff_hardreset - reset host port via SATA phy reset
1948 * @link: link to reset
1949 * @class: resulting class of attached device
1950 * @deadline: deadline jiffies for the operation
1951 *
1952 * SATA phy-reset host port using DET bits of SControl register,
1953 * wait for !BSY and classify the attached device.
1954 *
1955 * LOCKING:
1956 * Kernel thread context (may sleep)
1957 *
1958 * RETURNS:
1959 * 0 on success, -errno otherwise.
1960 */
1961int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1962 unsigned long deadline)
1963{
1964 struct ata_eh_context *ehc = &link->eh_context;
1965 const unsigned int *timing = sata_ehc_deb_timing(ehc);
1966 bool online;
1967 int rc;
1968
1969 rc = sata_link_hardreset(link, timing, deadline, &online,
1970 ata_sff_check_ready);
1971 if (online)
1972 *class = ata_sff_dev_classify(link->device, 1, NULL);
1973
1974 return rc;
1975}
1976EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1977
1978/**
1979 * ata_sff_postreset - SFF postreset callback
1980 * @link: the target SFF ata_link
1981 * @classes: classes of attached devices
1982 *
1983 * This function is invoked after a successful reset. It first
1984 * calls ata_std_postreset() and performs SFF specific postreset
1985 * processing.
1986 *
1987 * LOCKING:
1988 * Kernel thread context (may sleep)
1989 */
1990void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1991{
1992 struct ata_port *ap = link->ap;
1993
1994 ata_std_postreset(link, classes);
1995
1996 /* is double-select really necessary? */
1997 if (classes[0] != ATA_DEV_NONE)
1998 ap->ops->sff_dev_select(ap, 1);
1999 if (classes[1] != ATA_DEV_NONE)
2000 ap->ops->sff_dev_select(ap, 0);
2001
2002 /* bail out if no device is present */
2003 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2004 return;
2005
2006 /* set up device control */
2007 if (ata_sff_set_devctl(ap, ap->ctl))
2008 ap->last_ctl = ap->ctl;
2009}
2010EXPORT_SYMBOL_GPL(ata_sff_postreset);
2011
2012/**
2013 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2014 * @qc: command
2015 *
2016 * Drain the FIFO and device of any stuck data following a command
2017 * failing to complete. In some cases this is necessary before a
2018 * reset will recover the device.
2019 *
2020 */
2021
2022void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2023{
2024 int count;
2025 struct ata_port *ap;
2026
2027 /* We only need to flush incoming data when a command was running */
2028 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2029 return;
2030
2031 ap = qc->ap;
2032 /* Drain up to 64K of data before we give up this recovery method */
2033 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2034 && count < 65536; count += 2)
2035 ioread16(ap->ioaddr.data_addr);
2036
2037 if (count)
2038 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2039
2040}
2041EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2042
2043/**
2044 * ata_sff_error_handler - Stock error handler for SFF controller
2045 * @ap: port to handle error for
2046 *
2047 * Stock error handler for SFF controller. It can handle both
2048 * PATA and SATA controllers. Many controllers should be able to
2049 * use this EH as-is or with some added handling before and
2050 * after.
2051 *
2052 * LOCKING:
2053 * Kernel thread context (may sleep)
2054 */
2055void ata_sff_error_handler(struct ata_port *ap)
2056{
2057 ata_reset_fn_t softreset = ap->ops->softreset;
2058 ata_reset_fn_t hardreset = ap->ops->hardreset;
2059 struct ata_queued_cmd *qc;
2060 unsigned long flags;
2061
2062 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2063 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2064 qc = NULL;
2065
2066 spin_lock_irqsave(ap->lock, flags);
2067
2068 /*
2069 * We *MUST* do FIFO draining before we issue a reset as
2070 * several devices helpfully clear their internal state and
2071 * will lock solid if we touch the data port post reset. Pass
2072 * qc in case anyone wants to do different PIO/DMA recovery or
2073 * has per command fixups
2074 */
2075 if (ap->ops->sff_drain_fifo)
2076 ap->ops->sff_drain_fifo(qc);
2077
2078 spin_unlock_irqrestore(ap->lock, flags);
2079
2080 /* ignore built-in hardresets if SCR access is not available */
2081 if ((hardreset == sata_std_hardreset ||
2082 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2083 hardreset = NULL;
2084
2085 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2086 ap->ops->postreset);
2087}
2088EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2089
2090/**
2091 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2092 * @ioaddr: IO address structure to be initialized
2093 *
2094 * Utility function which initializes data_addr, error_addr,
2095 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2096 * device_addr, status_addr, and command_addr to standard offsets
2097 * relative to cmd_addr.
2098 *
2099 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2100 */
2101void ata_sff_std_ports(struct ata_ioports *ioaddr)
2102{
2103 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2104 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2105 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2106 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2107 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2108 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2109 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2110 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2111 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2112 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2113}
2114EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2115
2116#ifdef CONFIG_PCI
2117
2118static bool ata_resources_present(struct pci_dev *pdev, int port)
2119{
2120 int i;
2121
2122 /* Check the PCI resources for this channel are enabled */
2123 port *= 2;
2124 for (i = 0; i < 2; i++) {
2125 if (pci_resource_start(pdev, port + i) == 0 ||
2126 pci_resource_len(pdev, port + i) == 0)
2127 return false;
2128 }
2129 return true;
2130}
2131
2132/**
2133 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2134 * @host: target ATA host
2135 *
2136 * Acquire native PCI ATA resources for @host and initialize the
2137 * first two ports of @host accordingly. Ports marked dummy are
2138 * skipped and allocation failure makes the port dummy.
2139 *
2140 * Note that native PCI resources are valid even for legacy hosts
2141 * as we fix up pdev resources array early in boot, so this
2142 * function can be used for both native and legacy SFF hosts.
2143 *
2144 * LOCKING:
2145 * Inherited from calling layer (may sleep).
2146 *
2147 * RETURNS:
2148 * 0 if at least one port is initialized, -ENODEV if no port is
2149 * available.
2150 */
2151int ata_pci_sff_init_host(struct ata_host *host)
2152{
2153 struct device *gdev = host->dev;
2154 struct pci_dev *pdev = to_pci_dev(gdev);
2155 unsigned int mask = 0;
2156 int i, rc;
2157
2158 /* request, iomap BARs and init port addresses accordingly */
2159 for (i = 0; i < 2; i++) {
2160 struct ata_port *ap = host->ports[i];
2161 int base = i * 2;
2162 void __iomem * const *iomap;
2163
2164 if (ata_port_is_dummy(ap))
2165 continue;
2166
2167 /* Discard disabled ports. Some controllers show
2168 * their unused channels this way. Disabled ports are
2169 * made dummy.
2170 */
2171 if (!ata_resources_present(pdev, i)) {
2172 ap->ops = &ata_dummy_port_ops;
2173 continue;
2174 }
2175
2176 rc = pcim_iomap_regions(pdev, 0x3 << base,
2177 dev_driver_string(gdev));
2178 if (rc) {
2179 dev_warn(gdev,
2180 "failed to request/iomap BARs for port %d (errno=%d)\n",
2181 i, rc);
2182 if (rc == -EBUSY)
2183 pcim_pin_device(pdev);
2184 ap->ops = &ata_dummy_port_ops;
2185 continue;
2186 }
2187 host->iomap = iomap = pcim_iomap_table(pdev);
2188
2189 ap->ioaddr.cmd_addr = iomap[base];
2190 ap->ioaddr.altstatus_addr =
2191 ap->ioaddr.ctl_addr = (void __iomem *)
2192 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2193 ata_sff_std_ports(&ap->ioaddr);
2194
2195 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2196 (unsigned long long)pci_resource_start(pdev, base),
2197 (unsigned long long)pci_resource_start(pdev, base + 1));
2198
2199 mask |= 1 << i;
2200 }
2201
2202 if (!mask) {
2203 dev_err(gdev, "no available native port\n");
2204 return -ENODEV;
2205 }
2206
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2210
2211/**
2212 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2213 * @pdev: target PCI device
2214 * @ppi: array of port_info, must be enough for two ports
2215 * @r_host: out argument for the initialized ATA host
2216 *
2217 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2218 * all PCI resources and initialize it accordingly in one go.
2219 *
2220 * LOCKING:
2221 * Inherited from calling layer (may sleep).
2222 *
2223 * RETURNS:
2224 * 0 on success, -errno otherwise.
2225 */
2226int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2227 const struct ata_port_info * const *ppi,
2228 struct ata_host **r_host)
2229{
2230 struct ata_host *host;
2231 int rc;
2232
2233 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2234 return -ENOMEM;
2235
2236 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2237 if (!host) {
2238 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2239 rc = -ENOMEM;
2240 goto err_out;
2241 }
2242
2243 rc = ata_pci_sff_init_host(host);
2244 if (rc)
2245 goto err_out;
2246
2247 devres_remove_group(&pdev->dev, NULL);
2248 *r_host = host;
2249 return 0;
2250
2251err_out:
2252 devres_release_group(&pdev->dev, NULL);
2253 return rc;
2254}
2255EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2256
2257/**
2258 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2259 * @host: target SFF ATA host
2260 * @irq_handler: irq_handler used when requesting IRQ(s)
2261 * @sht: scsi_host_template to use when registering the host
2262 *
2263 * This is the counterpart of ata_host_activate() for SFF ATA
2264 * hosts. This separate helper is necessary because SFF hosts
2265 * use two separate interrupts in legacy mode.
2266 *
2267 * LOCKING:
2268 * Inherited from calling layer (may sleep).
2269 *
2270 * RETURNS:
2271 * 0 on success, -errno otherwise.
2272 */
2273int ata_pci_sff_activate_host(struct ata_host *host,
2274 irq_handler_t irq_handler,
2275 const struct scsi_host_template *sht)
2276{
2277 struct device *dev = host->dev;
2278 struct pci_dev *pdev = to_pci_dev(dev);
2279 const char *drv_name = dev_driver_string(host->dev);
2280 int legacy_mode = 0, rc;
2281
2282 rc = ata_host_start(host);
2283 if (rc)
2284 return rc;
2285
2286 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2287 u8 tmp8, mask = 0;
2288
2289 /*
2290 * ATA spec says we should use legacy mode when one
2291 * port is in legacy mode, but disabled ports on some
2292 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2293 * on which the secondary port is not wired, so
2294 * ignore ports that are marked as 'dummy' during
2295 * this check
2296 */
2297 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2298 if (!ata_port_is_dummy(host->ports[0]))
2299 mask |= (1 << 0);
2300 if (!ata_port_is_dummy(host->ports[1]))
2301 mask |= (1 << 2);
2302 if ((tmp8 & mask) != mask)
2303 legacy_mode = 1;
2304 }
2305
2306 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2307 return -ENOMEM;
2308
2309 if (!legacy_mode && pdev->irq) {
2310 int i;
2311
2312 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2313 IRQF_SHARED, drv_name, host);
2314 if (rc)
2315 goto out;
2316
2317 for (i = 0; i < 2; i++) {
2318 if (ata_port_is_dummy(host->ports[i]))
2319 continue;
2320 ata_port_desc_misc(host->ports[i], pdev->irq);
2321 }
2322 } else if (legacy_mode) {
2323 if (!ata_port_is_dummy(host->ports[0])) {
2324 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2325 irq_handler, IRQF_SHARED,
2326 drv_name, host);
2327 if (rc)
2328 goto out;
2329
2330 ata_port_desc_misc(host->ports[0],
2331 ATA_PRIMARY_IRQ(pdev));
2332 }
2333
2334 if (!ata_port_is_dummy(host->ports[1])) {
2335 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2336 irq_handler, IRQF_SHARED,
2337 drv_name, host);
2338 if (rc)
2339 goto out;
2340
2341 ata_port_desc_misc(host->ports[1],
2342 ATA_SECONDARY_IRQ(pdev));
2343 }
2344 }
2345
2346 rc = ata_host_register(host, sht);
2347out:
2348 if (rc == 0)
2349 devres_remove_group(dev, NULL);
2350 else
2351 devres_release_group(dev, NULL);
2352
2353 return rc;
2354}
2355EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2356
2357static const struct ata_port_info *ata_sff_find_valid_pi(
2358 const struct ata_port_info * const *ppi)
2359{
2360 int i;
2361
2362 /* look up the first valid port_info */
2363 for (i = 0; i < 2 && ppi[i]; i++)
2364 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2365 return ppi[i];
2366
2367 return NULL;
2368}
2369
2370static int ata_pci_init_one(struct pci_dev *pdev,
2371 const struct ata_port_info * const *ppi,
2372 const struct scsi_host_template *sht, void *host_priv,
2373 int hflags, bool bmdma)
2374{
2375 struct device *dev = &pdev->dev;
2376 const struct ata_port_info *pi;
2377 struct ata_host *host = NULL;
2378 int rc;
2379
2380 pi = ata_sff_find_valid_pi(ppi);
2381 if (!pi) {
2382 dev_err(&pdev->dev, "no valid port_info specified\n");
2383 return -EINVAL;
2384 }
2385
2386 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2387 return -ENOMEM;
2388
2389 rc = pcim_enable_device(pdev);
2390 if (rc)
2391 goto out;
2392
2393#ifdef CONFIG_ATA_BMDMA
2394 if (bmdma)
2395 /* prepare and activate BMDMA host */
2396 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2397 else
2398#endif
2399 /* prepare and activate SFF host */
2400 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2401 if (rc)
2402 goto out;
2403 host->private_data = host_priv;
2404 host->flags |= hflags;
2405
2406#ifdef CONFIG_ATA_BMDMA
2407 if (bmdma) {
2408 pci_set_master(pdev);
2409 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2410 } else
2411#endif
2412 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2413out:
2414 if (rc == 0)
2415 devres_remove_group(&pdev->dev, NULL);
2416 else
2417 devres_release_group(&pdev->dev, NULL);
2418
2419 return rc;
2420}
2421
2422/**
2423 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2424 * @pdev: Controller to be initialized
2425 * @ppi: array of port_info, must be enough for two ports
2426 * @sht: scsi_host_template to use when registering the host
2427 * @host_priv: host private_data
2428 * @hflag: host flags
2429 *
2430 * This is a helper function which can be called from a driver's
2431 * xxx_init_one() probe function if the hardware uses traditional
2432 * IDE taskfile registers and is PIO only.
2433 *
2434 * ASSUMPTION:
2435 * Nobody makes a single channel controller that appears solely as
2436 * the secondary legacy port on PCI.
2437 *
2438 * LOCKING:
2439 * Inherited from PCI layer (may sleep).
2440 *
2441 * RETURNS:
2442 * Zero on success, negative on errno-based value on error.
2443 */
2444int ata_pci_sff_init_one(struct pci_dev *pdev,
2445 const struct ata_port_info * const *ppi,
2446 const struct scsi_host_template *sht, void *host_priv, int hflag)
2447{
2448 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2449}
2450EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2451
2452#endif /* CONFIG_PCI */
2453
2454/*
2455 * BMDMA support
2456 */
2457
2458#ifdef CONFIG_ATA_BMDMA
2459
2460const struct ata_port_operations ata_bmdma_port_ops = {
2461 .inherits = &ata_sff_port_ops,
2462
2463 .error_handler = ata_bmdma_error_handler,
2464 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2465
2466 .qc_prep = ata_bmdma_qc_prep,
2467 .qc_issue = ata_bmdma_qc_issue,
2468
2469 .sff_irq_clear = ata_bmdma_irq_clear,
2470 .bmdma_setup = ata_bmdma_setup,
2471 .bmdma_start = ata_bmdma_start,
2472 .bmdma_stop = ata_bmdma_stop,
2473 .bmdma_status = ata_bmdma_status,
2474
2475 .port_start = ata_bmdma_port_start,
2476};
2477EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2478
2479const struct ata_port_operations ata_bmdma32_port_ops = {
2480 .inherits = &ata_bmdma_port_ops,
2481
2482 .sff_data_xfer = ata_sff_data_xfer32,
2483 .port_start = ata_bmdma_port_start32,
2484};
2485EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2486
2487/**
2488 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2489 * @qc: Metadata associated with taskfile to be transferred
2490 *
2491 * Fill PCI IDE PRD (scatter-gather) table with segments
2492 * associated with the current disk command.
2493 *
2494 * LOCKING:
2495 * spin_lock_irqsave(host lock)
2496 *
2497 */
2498static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2499{
2500 struct ata_port *ap = qc->ap;
2501 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2502 struct scatterlist *sg;
2503 unsigned int si, pi;
2504
2505 pi = 0;
2506 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2507 u32 addr, offset;
2508 u32 sg_len, len;
2509
2510 /* determine if physical DMA addr spans 64K boundary.
2511 * Note h/w doesn't support 64-bit, so we unconditionally
2512 * truncate dma_addr_t to u32.
2513 */
2514 addr = (u32) sg_dma_address(sg);
2515 sg_len = sg_dma_len(sg);
2516
2517 while (sg_len) {
2518 offset = addr & 0xffff;
2519 len = sg_len;
2520 if ((offset + sg_len) > 0x10000)
2521 len = 0x10000 - offset;
2522
2523 prd[pi].addr = cpu_to_le32(addr);
2524 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2525
2526 pi++;
2527 sg_len -= len;
2528 addr += len;
2529 }
2530 }
2531
2532 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2533}
2534
2535/**
2536 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2537 * @qc: Metadata associated with taskfile to be transferred
2538 *
2539 * Fill PCI IDE PRD (scatter-gather) table with segments
2540 * associated with the current disk command. Perform the fill
2541 * so that we avoid writing any length 64K records for
2542 * controllers that don't follow the spec.
2543 *
2544 * LOCKING:
2545 * spin_lock_irqsave(host lock)
2546 *
2547 */
2548static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2549{
2550 struct ata_port *ap = qc->ap;
2551 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2552 struct scatterlist *sg;
2553 unsigned int si, pi;
2554
2555 pi = 0;
2556 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2557 u32 addr, offset;
2558 u32 sg_len, len, blen;
2559
2560 /* determine if physical DMA addr spans 64K boundary.
2561 * Note h/w doesn't support 64-bit, so we unconditionally
2562 * truncate dma_addr_t to u32.
2563 */
2564 addr = (u32) sg_dma_address(sg);
2565 sg_len = sg_dma_len(sg);
2566
2567 while (sg_len) {
2568 offset = addr & 0xffff;
2569 len = sg_len;
2570 if ((offset + sg_len) > 0x10000)
2571 len = 0x10000 - offset;
2572
2573 blen = len & 0xffff;
2574 prd[pi].addr = cpu_to_le32(addr);
2575 if (blen == 0) {
2576 /* Some PATA chipsets like the CS5530 can't
2577 cope with 0x0000 meaning 64K as the spec
2578 says */
2579 prd[pi].flags_len = cpu_to_le32(0x8000);
2580 blen = 0x8000;
2581 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2582 }
2583 prd[pi].flags_len = cpu_to_le32(blen);
2584
2585 pi++;
2586 sg_len -= len;
2587 addr += len;
2588 }
2589 }
2590
2591 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2592}
2593
2594/**
2595 * ata_bmdma_qc_prep - Prepare taskfile for submission
2596 * @qc: Metadata associated with taskfile to be prepared
2597 *
2598 * Prepare ATA taskfile for submission.
2599 *
2600 * LOCKING:
2601 * spin_lock_irqsave(host lock)
2602 */
2603enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2604{
2605 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2606 return AC_ERR_OK;
2607
2608 ata_bmdma_fill_sg(qc);
2609
2610 return AC_ERR_OK;
2611}
2612EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2613
2614/**
2615 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2616 * @qc: Metadata associated with taskfile to be prepared
2617 *
2618 * Prepare ATA taskfile for submission.
2619 *
2620 * LOCKING:
2621 * spin_lock_irqsave(host lock)
2622 */
2623enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2624{
2625 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2626 return AC_ERR_OK;
2627
2628 ata_bmdma_fill_sg_dumb(qc);
2629
2630 return AC_ERR_OK;
2631}
2632EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2633
2634/**
2635 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2636 * @qc: command to issue to device
2637 *
2638 * This function issues a PIO, NODATA or DMA command to a
2639 * SFF/BMDMA controller. PIO and NODATA are handled by
2640 * ata_sff_qc_issue().
2641 *
2642 * LOCKING:
2643 * spin_lock_irqsave(host lock)
2644 *
2645 * RETURNS:
2646 * Zero on success, AC_ERR_* mask on failure
2647 */
2648unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2649{
2650 struct ata_port *ap = qc->ap;
2651 struct ata_link *link = qc->dev->link;
2652
2653 /* defer PIO handling to sff_qc_issue */
2654 if (!ata_is_dma(qc->tf.protocol))
2655 return ata_sff_qc_issue(qc);
2656
2657 /* select the device */
2658 ata_dev_select(ap, qc->dev->devno, 1, 0);
2659
2660 /* start the command */
2661 switch (qc->tf.protocol) {
2662 case ATA_PROT_DMA:
2663 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2664
2665 trace_ata_tf_load(ap, &qc->tf);
2666 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2667 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2668 ap->ops->bmdma_setup(qc); /* set up bmdma */
2669 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2670 ap->ops->bmdma_start(qc); /* initiate bmdma */
2671 ap->hsm_task_state = HSM_ST_LAST;
2672 break;
2673
2674 case ATAPI_PROT_DMA:
2675 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2676
2677 trace_ata_tf_load(ap, &qc->tf);
2678 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2679 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2680 ap->ops->bmdma_setup(qc); /* set up bmdma */
2681 ap->hsm_task_state = HSM_ST_FIRST;
2682
2683 /* send cdb by polling if no cdb interrupt */
2684 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2685 ata_sff_queue_pio_task(link, 0);
2686 break;
2687
2688 default:
2689 WARN_ON(1);
2690 return AC_ERR_SYSTEM;
2691 }
2692
2693 return 0;
2694}
2695EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2696
2697/**
2698 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2699 * @ap: Port on which interrupt arrived (possibly...)
2700 * @qc: Taskfile currently active in engine
2701 *
2702 * Handle port interrupt for given queued command.
2703 *
2704 * LOCKING:
2705 * spin_lock_irqsave(host lock)
2706 *
2707 * RETURNS:
2708 * One if interrupt was handled, zero if not (shared irq).
2709 */
2710unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2711{
2712 struct ata_eh_info *ehi = &ap->link.eh_info;
2713 u8 host_stat = 0;
2714 bool bmdma_stopped = false;
2715 unsigned int handled;
2716
2717 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2718 /* check status of DMA engine */
2719 host_stat = ap->ops->bmdma_status(ap);
2720 trace_ata_bmdma_status(ap, host_stat);
2721
2722 /* if it's not our irq... */
2723 if (!(host_stat & ATA_DMA_INTR))
2724 return ata_sff_idle_irq(ap);
2725
2726 /* before we do anything else, clear DMA-Start bit */
2727 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2728 ap->ops->bmdma_stop(qc);
2729 bmdma_stopped = true;
2730
2731 if (unlikely(host_stat & ATA_DMA_ERR)) {
2732 /* error when transferring data to/from memory */
2733 qc->err_mask |= AC_ERR_HOST_BUS;
2734 ap->hsm_task_state = HSM_ST_ERR;
2735 }
2736 }
2737
2738 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2739
2740 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2741 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2742
2743 return handled;
2744}
2745EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2746
2747/**
2748 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2749 * @irq: irq line (unused)
2750 * @dev_instance: pointer to our ata_host information structure
2751 *
2752 * Default interrupt handler for PCI IDE devices. Calls
2753 * ata_bmdma_port_intr() for each port that is not disabled.
2754 *
2755 * LOCKING:
2756 * Obtains host lock during operation.
2757 *
2758 * RETURNS:
2759 * IRQ_NONE or IRQ_HANDLED.
2760 */
2761irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2762{
2763 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2766
2767/**
2768 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2769 * @ap: port to handle error for
2770 *
2771 * Stock error handler for BMDMA controller. It can handle both
2772 * PATA and SATA controllers. Most BMDMA controllers should be
2773 * able to use this EH as-is or with some added handling before
2774 * and after.
2775 *
2776 * LOCKING:
2777 * Kernel thread context (may sleep)
2778 */
2779void ata_bmdma_error_handler(struct ata_port *ap)
2780{
2781 struct ata_queued_cmd *qc;
2782 unsigned long flags;
2783 bool thaw = false;
2784
2785 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2786 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2787 qc = NULL;
2788
2789 /* reset PIO HSM and stop DMA engine */
2790 spin_lock_irqsave(ap->lock, flags);
2791
2792 if (qc && ata_is_dma(qc->tf.protocol)) {
2793 u8 host_stat;
2794
2795 host_stat = ap->ops->bmdma_status(ap);
2796 trace_ata_bmdma_status(ap, host_stat);
2797
2798 /* BMDMA controllers indicate host bus error by
2799 * setting DMA_ERR bit and timing out. As it wasn't
2800 * really a timeout event, adjust error mask and
2801 * cancel frozen state.
2802 */
2803 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2804 qc->err_mask = AC_ERR_HOST_BUS;
2805 thaw = true;
2806 }
2807
2808 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2809 ap->ops->bmdma_stop(qc);
2810
2811 /* if we're gonna thaw, make sure IRQ is clear */
2812 if (thaw) {
2813 ap->ops->sff_check_status(ap);
2814 if (ap->ops->sff_irq_clear)
2815 ap->ops->sff_irq_clear(ap);
2816 }
2817 }
2818
2819 spin_unlock_irqrestore(ap->lock, flags);
2820
2821 if (thaw)
2822 ata_eh_thaw_port(ap);
2823
2824 ata_sff_error_handler(ap);
2825}
2826EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2827
2828/**
2829 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2830 * @qc: internal command to clean up
2831 *
2832 * LOCKING:
2833 * Kernel thread context (may sleep)
2834 */
2835void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2836{
2837 struct ata_port *ap = qc->ap;
2838 unsigned long flags;
2839
2840 if (ata_is_dma(qc->tf.protocol)) {
2841 spin_lock_irqsave(ap->lock, flags);
2842 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2843 ap->ops->bmdma_stop(qc);
2844 spin_unlock_irqrestore(ap->lock, flags);
2845 }
2846}
2847EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2848
2849/**
2850 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2851 * @ap: Port associated with this ATA transaction.
2852 *
2853 * Clear interrupt and error flags in DMA status register.
2854 *
2855 * May be used as the irq_clear() entry in ata_port_operations.
2856 *
2857 * LOCKING:
2858 * spin_lock_irqsave(host lock)
2859 */
2860void ata_bmdma_irq_clear(struct ata_port *ap)
2861{
2862 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2863
2864 if (!mmio)
2865 return;
2866
2867 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2868}
2869EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2870
2871/**
2872 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2873 * @qc: Info associated with this ATA transaction.
2874 *
2875 * LOCKING:
2876 * spin_lock_irqsave(host lock)
2877 */
2878void ata_bmdma_setup(struct ata_queued_cmd *qc)
2879{
2880 struct ata_port *ap = qc->ap;
2881 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2882 u8 dmactl;
2883
2884 /* load PRD table addr. */
2885 mb(); /* make sure PRD table writes are visible to controller */
2886 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2887
2888 /* specify data direction, triple-check start bit is clear */
2889 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2890 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2891 if (!rw)
2892 dmactl |= ATA_DMA_WR;
2893 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2894
2895 /* issue r/w command */
2896 ap->ops->sff_exec_command(ap, &qc->tf);
2897}
2898EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2899
2900/**
2901 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2902 * @qc: Info associated with this ATA transaction.
2903 *
2904 * LOCKING:
2905 * spin_lock_irqsave(host lock)
2906 */
2907void ata_bmdma_start(struct ata_queued_cmd *qc)
2908{
2909 struct ata_port *ap = qc->ap;
2910 u8 dmactl;
2911
2912 /* start host DMA transaction */
2913 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2915
2916 /* Strictly, one may wish to issue an ioread8() here, to
2917 * flush the mmio write. However, control also passes
2918 * to the hardware at this point, and it will interrupt
2919 * us when we are to resume control. So, in effect,
2920 * we don't care when the mmio write flushes.
2921 * Further, a read of the DMA status register _immediately_
2922 * following the write may not be what certain flaky hardware
2923 * is expected, so I think it is best to not add a readb()
2924 * without first all the MMIO ATA cards/mobos.
2925 * Or maybe I'm just being paranoid.
2926 *
2927 * FIXME: The posting of this write means I/O starts are
2928 * unnecessarily delayed for MMIO
2929 */
2930}
2931EXPORT_SYMBOL_GPL(ata_bmdma_start);
2932
2933/**
2934 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2935 * @qc: Command we are ending DMA for
2936 *
2937 * Clears the ATA_DMA_START flag in the dma control register
2938 *
2939 * May be used as the bmdma_stop() entry in ata_port_operations.
2940 *
2941 * LOCKING:
2942 * spin_lock_irqsave(host lock)
2943 */
2944void ata_bmdma_stop(struct ata_queued_cmd *qc)
2945{
2946 struct ata_port *ap = qc->ap;
2947 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2948
2949 /* clear start/stop bit */
2950 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2951 mmio + ATA_DMA_CMD);
2952
2953 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2954 ata_sff_dma_pause(ap);
2955}
2956EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2957
2958/**
2959 * ata_bmdma_status - Read PCI IDE BMDMA status
2960 * @ap: Port associated with this ATA transaction.
2961 *
2962 * Read and return BMDMA status register.
2963 *
2964 * May be used as the bmdma_status() entry in ata_port_operations.
2965 *
2966 * LOCKING:
2967 * spin_lock_irqsave(host lock)
2968 */
2969u8 ata_bmdma_status(struct ata_port *ap)
2970{
2971 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2972}
2973EXPORT_SYMBOL_GPL(ata_bmdma_status);
2974
2975
2976/**
2977 * ata_bmdma_port_start - Set port up for bmdma.
2978 * @ap: Port to initialize
2979 *
2980 * Called just after data structures for each port are
2981 * initialized. Allocates space for PRD table.
2982 *
2983 * May be used as the port_start() entry in ata_port_operations.
2984 *
2985 * LOCKING:
2986 * Inherited from caller.
2987 */
2988int ata_bmdma_port_start(struct ata_port *ap)
2989{
2990 if (ap->mwdma_mask || ap->udma_mask) {
2991 ap->bmdma_prd =
2992 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2993 &ap->bmdma_prd_dma, GFP_KERNEL);
2994 if (!ap->bmdma_prd)
2995 return -ENOMEM;
2996 }
2997
2998 return 0;
2999}
3000EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3001
3002/**
3003 * ata_bmdma_port_start32 - Set port up for dma.
3004 * @ap: Port to initialize
3005 *
3006 * Called just after data structures for each port are
3007 * initialized. Enables 32bit PIO and allocates space for PRD
3008 * table.
3009 *
3010 * May be used as the port_start() entry in ata_port_operations for
3011 * devices that are capable of 32bit PIO.
3012 *
3013 * LOCKING:
3014 * Inherited from caller.
3015 */
3016int ata_bmdma_port_start32(struct ata_port *ap)
3017{
3018 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3019 return ata_bmdma_port_start(ap);
3020}
3021EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3022
3023#ifdef CONFIG_PCI
3024
3025/**
3026 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3027 * @pdev: PCI device
3028 *
3029 * Some PCI ATA devices report simplex mode but in fact can be told to
3030 * enter non simplex mode. This implements the necessary logic to
3031 * perform the task on such devices. Calling it on other devices will
3032 * have -undefined- behaviour.
3033 */
3034int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3035{
3036#ifdef CONFIG_HAS_IOPORT
3037 unsigned long bmdma = pci_resource_start(pdev, 4);
3038 u8 simplex;
3039
3040 if (bmdma == 0)
3041 return -ENOENT;
3042
3043 simplex = inb(bmdma + 0x02);
3044 outb(simplex & 0x60, bmdma + 0x02);
3045 simplex = inb(bmdma + 0x02);
3046 if (simplex & 0x80)
3047 return -EOPNOTSUPP;
3048 return 0;
3049#else
3050 return -ENOENT;
3051#endif /* CONFIG_HAS_IOPORT */
3052}
3053EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3054
3055static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3056{
3057 int i;
3058
3059 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3060
3061 for (i = 0; i < 2; i++) {
3062 host->ports[i]->mwdma_mask = 0;
3063 host->ports[i]->udma_mask = 0;
3064 }
3065}
3066
3067/**
3068 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3069 * @host: target ATA host
3070 *
3071 * Acquire PCI BMDMA resources and initialize @host accordingly.
3072 *
3073 * LOCKING:
3074 * Inherited from calling layer (may sleep).
3075 */
3076void ata_pci_bmdma_init(struct ata_host *host)
3077{
3078 struct device *gdev = host->dev;
3079 struct pci_dev *pdev = to_pci_dev(gdev);
3080 int i, rc;
3081
3082 /* No BAR4 allocation: No DMA */
3083 if (pci_resource_start(pdev, 4) == 0) {
3084 ata_bmdma_nodma(host, "BAR4 is zero");
3085 return;
3086 }
3087
3088 /*
3089 * Some controllers require BMDMA region to be initialized
3090 * even if DMA is not in use to clear IRQ status via
3091 * ->sff_irq_clear method. Try to initialize bmdma_addr
3092 * regardless of dma masks.
3093 */
3094 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3095 if (rc)
3096 ata_bmdma_nodma(host, "failed to set dma mask");
3097
3098 /* request and iomap DMA region */
3099 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3100 if (rc) {
3101 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3102 return;
3103 }
3104 host->iomap = pcim_iomap_table(pdev);
3105
3106 for (i = 0; i < 2; i++) {
3107 struct ata_port *ap = host->ports[i];
3108 void __iomem *bmdma = host->iomap[4] + 8 * i;
3109
3110 if (ata_port_is_dummy(ap))
3111 continue;
3112
3113 ap->ioaddr.bmdma_addr = bmdma;
3114 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3115 (ioread8(bmdma + 2) & 0x80))
3116 host->flags |= ATA_HOST_SIMPLEX;
3117
3118 ata_port_desc(ap, "bmdma 0x%llx",
3119 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3120 }
3121}
3122EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3123
3124/**
3125 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3126 * @pdev: target PCI device
3127 * @ppi: array of port_info, must be enough for two ports
3128 * @r_host: out argument for the initialized ATA host
3129 *
3130 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3131 * resources and initialize it accordingly in one go.
3132 *
3133 * LOCKING:
3134 * Inherited from calling layer (may sleep).
3135 *
3136 * RETURNS:
3137 * 0 on success, -errno otherwise.
3138 */
3139int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3140 const struct ata_port_info * const * ppi,
3141 struct ata_host **r_host)
3142{
3143 int rc;
3144
3145 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3146 if (rc)
3147 return rc;
3148
3149 ata_pci_bmdma_init(*r_host);
3150 return 0;
3151}
3152EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3153
3154/**
3155 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3156 * @pdev: Controller to be initialized
3157 * @ppi: array of port_info, must be enough for two ports
3158 * @sht: scsi_host_template to use when registering the host
3159 * @host_priv: host private_data
3160 * @hflags: host flags
3161 *
3162 * This function is similar to ata_pci_sff_init_one() but also
3163 * takes care of BMDMA initialization.
3164 *
3165 * LOCKING:
3166 * Inherited from PCI layer (may sleep).
3167 *
3168 * RETURNS:
3169 * Zero on success, negative on errno-based value on error.
3170 */
3171int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3172 const struct ata_port_info * const * ppi,
3173 const struct scsi_host_template *sht, void *host_priv,
3174 int hflags)
3175{
3176 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3177}
3178EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3179
3180#endif /* CONFIG_PCI */
3181#endif /* CONFIG_ATA_BMDMA */
3182
3183/**
3184 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3185 * @ap: Port to initialize
3186 *
3187 * Called on port allocation to initialize SFF/BMDMA specific
3188 * fields.
3189 *
3190 * LOCKING:
3191 * None.
3192 */
3193void ata_sff_port_init(struct ata_port *ap)
3194{
3195 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3196 ap->ctl = ATA_DEVCTL_OBS;
3197 ap->last_ctl = 0xFF;
3198}
3199
3200int __init ata_sff_init(void)
3201{
3202 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3203 if (!ata_sff_wq)
3204 return -ENOMEM;
3205
3206 return 0;
3207}
3208
3209void ata_sff_exit(void)
3210{
3211 destroy_workqueue(ata_sff_wq);
3212}
1/*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35#include <linux/kernel.h>
36#include <linux/gfp.h>
37#include <linux/pci.h>
38#include <linux/module.h>
39#include <linux/libata.h>
40#include <linux/highmem.h>
41
42#include "libata.h"
43
44static struct workqueue_struct *ata_sff_wq;
45
46const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70};
71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73/**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
84u8 ata_sff_check_status(struct ata_port *ap)
85{
86 return ioread8(ap->ioaddr.status_addr);
87}
88EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90/**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103static u8 ata_sff_altstatus(struct ata_port *ap)
104{
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109}
110
111/**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123static u8 ata_sff_irq_status(struct ata_port *ap)
124{
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136}
137
138/**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150static void ata_sff_sync(struct ata_port *ap)
151{
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156}
157
158/**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
170void ata_sff_pause(struct ata_port *ap)
171{
172 ata_sff_sync(ap);
173 ndelay(400);
174}
175EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177/**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
185void ata_sff_dma_pause(struct ata_port *ap)
186{
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197}
198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200/**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
215int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217{
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253}
254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
256static int ata_sff_check_ready(struct ata_link *link)
257{
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261}
262
263/**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278{
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280}
281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283/**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297{
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302}
303
304/**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319{
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329}
330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332/**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
350static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352{
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367}
368
369/**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
382void ata_sff_irq_on(struct ata_port *ap)
383{
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400}
401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403/**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414{
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460}
461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463/**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477{
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501}
502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504/**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516{
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521}
522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524/**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
536static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538{
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541}
542
543/**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 unsigned int buflen, int rw)
560{
561 struct ata_port *ap = dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593}
594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596/**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 unsigned int buflen, int rw)
615{
616 struct ata_port *ap = dev->link->ap;
617 void __iomem *data_addr = ap->ioaddr.data_addr;
618 unsigned int words = buflen >> 2;
619 int slop = buflen & 3;
620
621 if (!(ap->pflags & ATA_PFLAG_PIO32))
622 return ata_sff_data_xfer(dev, buf, buflen, rw);
623
624 /* Transfer multiple of 4 bytes */
625 if (rw == READ)
626 ioread32_rep(data_addr, buf, words);
627 else
628 iowrite32_rep(data_addr, buf, words);
629
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop)) {
632 unsigned char pad[4] = { };
633
634 /* Point buf to the tail of buffer */
635 buf += buflen - slop;
636
637 /*
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
640 */
641 if (rw == READ) {
642 if (slop < 3)
643 ioread16_rep(data_addr, pad, 1);
644 else
645 ioread32_rep(data_addr, pad, 1);
646 memcpy(buf, pad, slop);
647 } else {
648 memcpy(pad, buf, slop);
649 if (slop < 3)
650 iowrite16_rep(data_addr, pad, 1);
651 else
652 iowrite32_rep(data_addr, pad, 1);
653 }
654 }
655 return (buflen + 1) & ~1;
656}
657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658
659/**
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
662 * @buf: data buffer
663 * @buflen: buffer length
664 * @rw: read/write
665 *
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
668 *
669 * LOCKING:
670 * Inherited from caller.
671 *
672 * RETURNS:
673 * Bytes consumed.
674 */
675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 unsigned int buflen, int rw)
677{
678 unsigned long flags;
679 unsigned int consumed;
680
681 local_irq_save(flags);
682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 local_irq_restore(flags);
684
685 return consumed;
686}
687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688
689/**
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
692 *
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
694 *
695 * LOCKING:
696 * Inherited from caller.
697 */
698static void ata_pio_sector(struct ata_queued_cmd *qc)
699{
700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 struct ata_port *ap = qc->ap;
702 struct page *page;
703 unsigned int offset;
704 unsigned char *buf;
705
706 if (qc->curbytes == qc->nbytes - qc->sect_size)
707 ap->hsm_task_state = HSM_ST_LAST;
708
709 page = sg_page(qc->cursg);
710 offset = qc->cursg->offset + qc->cursg_ofs;
711
712 /* get the current page and offset */
713 page = nth_page(page, (offset >> PAGE_SHIFT));
714 offset %= PAGE_SIZE;
715
716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717
718 if (PageHighMem(page)) {
719 unsigned long flags;
720
721 /* FIXME: use a bounce buffer */
722 local_irq_save(flags);
723 buf = kmap_atomic(page);
724
725 /* do the actual data transfer */
726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 do_write);
728
729 kunmap_atomic(buf);
730 local_irq_restore(flags);
731 } else {
732 buf = page_address(page);
733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 do_write);
735 }
736
737 if (!do_write && !PageSlab(page))
738 flush_dcache_page(page);
739
740 qc->curbytes += qc->sect_size;
741 qc->cursg_ofs += qc->sect_size;
742
743 if (qc->cursg_ofs == qc->cursg->length) {
744 qc->cursg = sg_next(qc->cursg);
745 qc->cursg_ofs = 0;
746 }
747}
748
749/**
750 * ata_pio_sectors - Transfer one or many sectors.
751 * @qc: Command on going
752 *
753 * Transfer one or many sectors of data from/to the
754 * ATA device for the DRQ request.
755 *
756 * LOCKING:
757 * Inherited from caller.
758 */
759static void ata_pio_sectors(struct ata_queued_cmd *qc)
760{
761 if (is_multi_taskfile(&qc->tf)) {
762 /* READ/WRITE MULTIPLE */
763 unsigned int nsect;
764
765 WARN_ON_ONCE(qc->dev->multi_count == 0);
766
767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 qc->dev->multi_count);
769 while (nsect--)
770 ata_pio_sector(qc);
771 } else
772 ata_pio_sector(qc);
773
774 ata_sff_sync(qc->ap); /* flush */
775}
776
777/**
778 * atapi_send_cdb - Write CDB bytes to hardware
779 * @ap: Port to which ATAPI device is attached.
780 * @qc: Taskfile currently active
781 *
782 * When device has indicated its readiness to accept
783 * a CDB, this function is called. Send the CDB.
784 *
785 * LOCKING:
786 * caller.
787 */
788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789{
790 /* send SCSI cdb */
791 DPRINTK("send cdb\n");
792 WARN_ON_ONCE(qc->dev->cdb_len < 12);
793
794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 ata_sff_sync(ap);
796 /* FIXME: If the CDB is for DMA do we need to do the transition delay
797 or is bmdma_start guaranteed to do it ? */
798 switch (qc->tf.protocol) {
799 case ATAPI_PROT_PIO:
800 ap->hsm_task_state = HSM_ST;
801 break;
802 case ATAPI_PROT_NODATA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 break;
805#ifdef CONFIG_ATA_BMDMA
806 case ATAPI_PROT_DMA:
807 ap->hsm_task_state = HSM_ST_LAST;
808 /* initiate bmdma */
809 ap->ops->bmdma_start(qc);
810 break;
811#endif /* CONFIG_ATA_BMDMA */
812 default:
813 BUG();
814 }
815}
816
817/**
818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 * @qc: Command on going
820 * @bytes: number of bytes
821 *
822 * Transfer Transfer data from/to the ATAPI device.
823 *
824 * LOCKING:
825 * Inherited from caller.
826 *
827 */
828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829{
830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 struct ata_port *ap = qc->ap;
832 struct ata_device *dev = qc->dev;
833 struct ata_eh_info *ehi = &dev->link->eh_info;
834 struct scatterlist *sg;
835 struct page *page;
836 unsigned char *buf;
837 unsigned int offset, count, consumed;
838
839next_sg:
840 sg = qc->cursg;
841 if (unlikely(!sg)) {
842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 "buf=%u cur=%u bytes=%u",
844 qc->nbytes, qc->curbytes, bytes);
845 return -1;
846 }
847
848 page = sg_page(sg);
849 offset = sg->offset + qc->cursg_ofs;
850
851 /* get the current page and offset */
852 page = nth_page(page, (offset >> PAGE_SHIFT));
853 offset %= PAGE_SIZE;
854
855 /* don't overrun current sg */
856 count = min(sg->length - qc->cursg_ofs, bytes);
857
858 /* don't cross page boundaries */
859 count = min(count, (unsigned int)PAGE_SIZE - offset);
860
861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862
863 if (PageHighMem(page)) {
864 unsigned long flags;
865
866 /* FIXME: use bounce buffer */
867 local_irq_save(flags);
868 buf = kmap_atomic(page);
869
870 /* do the actual data transfer */
871 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
872 count, rw);
873
874 kunmap_atomic(buf);
875 local_irq_restore(flags);
876 } else {
877 buf = page_address(page);
878 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
879 count, rw);
880 }
881
882 bytes -= min(bytes, consumed);
883 qc->curbytes += count;
884 qc->cursg_ofs += count;
885
886 if (qc->cursg_ofs == sg->length) {
887 qc->cursg = sg_next(qc->cursg);
888 qc->cursg_ofs = 0;
889 }
890
891 /*
892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 * check correctly as it doesn't know if it is the last request being
895 * made. Somebody should implement a proper sanity check.
896 */
897 if (bytes)
898 goto next_sg;
899 return 0;
900}
901
902/**
903 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 * @qc: Command on going
905 *
906 * Transfer Transfer data from/to the ATAPI device.
907 *
908 * LOCKING:
909 * Inherited from caller.
910 */
911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912{
913 struct ata_port *ap = qc->ap;
914 struct ata_device *dev = qc->dev;
915 struct ata_eh_info *ehi = &dev->link->eh_info;
916 unsigned int ireason, bc_lo, bc_hi, bytes;
917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918
919 /* Abuse qc->result_tf for temp storage of intermediate TF
920 * here to save some kernel stack usage.
921 * For normal completion, qc->result_tf is not relevant. For
922 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 * So, the correctness of qc->result_tf is not affected.
924 */
925 ap->ops->sff_tf_read(ap, &qc->result_tf);
926 ireason = qc->result_tf.nsect;
927 bc_lo = qc->result_tf.lbam;
928 bc_hi = qc->result_tf.lbah;
929 bytes = (bc_hi << 8) | bc_lo;
930
931 /* shall be cleared to zero, indicating xfer of data */
932 if (unlikely(ireason & ATAPI_COD))
933 goto atapi_check;
934
935 /* make sure transfer direction matches expected */
936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 if (unlikely(do_write != i_write))
938 goto atapi_check;
939
940 if (unlikely(!bytes))
941 goto atapi_check;
942
943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944
945 if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 goto err_out;
947 ata_sff_sync(ap); /* flush */
948
949 return;
950
951 atapi_check:
952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 ireason, bytes);
954 err_out:
955 qc->err_mask |= AC_ERR_HSM;
956 ap->hsm_task_state = HSM_ST_ERR;
957}
958
959/**
960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 * @ap: the target ata_port
962 * @qc: qc on going
963 *
964 * RETURNS:
965 * 1 if ok in workqueue, 0 otherwise.
966 */
967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 struct ata_queued_cmd *qc)
969{
970 if (qc->tf.flags & ATA_TFLAG_POLLING)
971 return 1;
972
973 if (ap->hsm_task_state == HSM_ST_FIRST) {
974 if (qc->tf.protocol == ATA_PROT_PIO &&
975 (qc->tf.flags & ATA_TFLAG_WRITE))
976 return 1;
977
978 if (ata_is_atapi(qc->tf.protocol) &&
979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 return 1;
981 }
982
983 return 0;
984}
985
986/**
987 * ata_hsm_qc_complete - finish a qc running on standard HSM
988 * @qc: Command to complete
989 * @in_wq: 1 if called from workqueue, 0 otherwise
990 *
991 * Finish @qc which is running on standard HSM.
992 *
993 * LOCKING:
994 * If @in_wq is zero, spin_lock_irqsave(host lock).
995 * Otherwise, none on entry and grabs host lock.
996 */
997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998{
999 struct ata_port *ap = qc->ap;
1000
1001 if (ap->ops->error_handler) {
1002 if (in_wq) {
1003 /* EH might have kicked in while host lock is
1004 * released.
1005 */
1006 qc = ata_qc_from_tag(ap, qc->tag);
1007 if (qc) {
1008 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009 ata_sff_irq_on(ap);
1010 ata_qc_complete(qc);
1011 } else
1012 ata_port_freeze(ap);
1013 }
1014 } else {
1015 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016 ata_qc_complete(qc);
1017 else
1018 ata_port_freeze(ap);
1019 }
1020 } else {
1021 if (in_wq) {
1022 ata_sff_irq_on(ap);
1023 ata_qc_complete(qc);
1024 } else
1025 ata_qc_complete(qc);
1026 }
1027}
1028
1029/**
1030 * ata_sff_hsm_move - move the HSM to the next state.
1031 * @ap: the target ata_port
1032 * @qc: qc on going
1033 * @status: current device status
1034 * @in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 * RETURNS:
1037 * 1 when poll next status needed, 0 otherwise.
1038 */
1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040 u8 status, int in_wq)
1041{
1042 struct ata_link *link = qc->dev->link;
1043 struct ata_eh_info *ehi = &link->eh_info;
1044 int poll_next;
1045
1046 lockdep_assert_held(ap->lock);
1047
1048 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050 /* Make sure ata_sff_qc_issue() does not throw things
1051 * like DMA polling into the workqueue. Notice that
1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053 */
1054 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056fsm_start:
1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060 switch (ap->hsm_task_state) {
1061 case HSM_ST_FIRST:
1062 /* Send first data block or PACKET CDB */
1063
1064 /* If polling, we will stay in the work queue after
1065 * sending the data. Otherwise, interrupt handler
1066 * takes over after sending the data.
1067 */
1068 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070 /* check device status */
1071 if (unlikely((status & ATA_DRQ) == 0)) {
1072 /* handle BSY=0, DRQ=0 as error */
1073 if (likely(status & (ATA_ERR | ATA_DF)))
1074 /* device stops HSM for abort/error */
1075 qc->err_mask |= AC_ERR_DEV;
1076 else {
1077 /* HSM violation. Let EH handle this */
1078 ata_ehi_push_desc(ehi,
1079 "ST_FIRST: !(DRQ|ERR|DF)");
1080 qc->err_mask |= AC_ERR_HSM;
1081 }
1082
1083 ap->hsm_task_state = HSM_ST_ERR;
1084 goto fsm_start;
1085 }
1086
1087 /* Device should not ask for data transfer (DRQ=1)
1088 * when it finds something wrong.
1089 * We ignore DRQ here and stop the HSM by
1090 * changing hsm_task_state to HSM_ST_ERR and
1091 * let the EH abort the command or reset the device.
1092 */
1093 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094 /* Some ATAPI tape drives forget to clear the ERR bit
1095 * when doing the next command (mostly request sense).
1096 * We ignore ERR here to workaround and proceed sending
1097 * the CDB.
1098 */
1099 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100 ata_ehi_push_desc(ehi, "ST_FIRST: "
1101 "DRQ=1 with device error, "
1102 "dev_stat 0x%X", status);
1103 qc->err_mask |= AC_ERR_HSM;
1104 ap->hsm_task_state = HSM_ST_ERR;
1105 goto fsm_start;
1106 }
1107 }
1108
1109 if (qc->tf.protocol == ATA_PROT_PIO) {
1110 /* PIO data out protocol.
1111 * send first data block.
1112 */
1113
1114 /* ata_pio_sectors() might change the state
1115 * to HSM_ST_LAST. so, the state is changed here
1116 * before ata_pio_sectors().
1117 */
1118 ap->hsm_task_state = HSM_ST;
1119 ata_pio_sectors(qc);
1120 } else
1121 /* send CDB */
1122 atapi_send_cdb(ap, qc);
1123
1124 /* if polling, ata_sff_pio_task() handles the rest.
1125 * otherwise, interrupt handler takes over from here.
1126 */
1127 break;
1128
1129 case HSM_ST:
1130 /* complete command or read/write the data register */
1131 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132 /* ATAPI PIO protocol */
1133 if ((status & ATA_DRQ) == 0) {
1134 /* No more data to transfer or device error.
1135 * Device error will be tagged in HSM_ST_LAST.
1136 */
1137 ap->hsm_task_state = HSM_ST_LAST;
1138 goto fsm_start;
1139 }
1140
1141 /* Device should not ask for data transfer (DRQ=1)
1142 * when it finds something wrong.
1143 * We ignore DRQ here and stop the HSM by
1144 * changing hsm_task_state to HSM_ST_ERR and
1145 * let the EH abort the command or reset the device.
1146 */
1147 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149 "DRQ=1 with device error, "
1150 "dev_stat 0x%X", status);
1151 qc->err_mask |= AC_ERR_HSM;
1152 ap->hsm_task_state = HSM_ST_ERR;
1153 goto fsm_start;
1154 }
1155
1156 atapi_pio_bytes(qc);
1157
1158 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159 /* bad ireason reported by device */
1160 goto fsm_start;
1161
1162 } else {
1163 /* ATA PIO protocol */
1164 if (unlikely((status & ATA_DRQ) == 0)) {
1165 /* handle BSY=0, DRQ=0 as error */
1166 if (likely(status & (ATA_ERR | ATA_DF))) {
1167 /* device stops HSM for abort/error */
1168 qc->err_mask |= AC_ERR_DEV;
1169
1170 /* If diagnostic failed and this is
1171 * IDENTIFY, it's likely a phantom
1172 * device. Mark hint.
1173 */
1174 if (qc->dev->horkage &
1175 ATA_HORKAGE_DIAGNOSTIC)
1176 qc->err_mask |=
1177 AC_ERR_NODEV_HINT;
1178 } else {
1179 /* HSM violation. Let EH handle this.
1180 * Phantom devices also trigger this
1181 * condition. Mark hint.
1182 */
1183 ata_ehi_push_desc(ehi, "ST-ATA: "
1184 "DRQ=0 without device error, "
1185 "dev_stat 0x%X", status);
1186 qc->err_mask |= AC_ERR_HSM |
1187 AC_ERR_NODEV_HINT;
1188 }
1189
1190 ap->hsm_task_state = HSM_ST_ERR;
1191 goto fsm_start;
1192 }
1193
1194 /* For PIO reads, some devices may ask for
1195 * data transfer (DRQ=1) alone with ERR=1.
1196 * We respect DRQ here and transfer one
1197 * block of junk data before changing the
1198 * hsm_task_state to HSM_ST_ERR.
1199 *
1200 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201 * sense since the data block has been
1202 * transferred to the device.
1203 */
1204 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205 /* data might be corrputed */
1206 qc->err_mask |= AC_ERR_DEV;
1207
1208 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209 ata_pio_sectors(qc);
1210 status = ata_wait_idle(ap);
1211 }
1212
1213 if (status & (ATA_BUSY | ATA_DRQ)) {
1214 ata_ehi_push_desc(ehi, "ST-ATA: "
1215 "BUSY|DRQ persists on ERR|DF, "
1216 "dev_stat 0x%X", status);
1217 qc->err_mask |= AC_ERR_HSM;
1218 }
1219
1220 /* There are oddball controllers with
1221 * status register stuck at 0x7f and
1222 * lbal/m/h at zero which makes it
1223 * pass all other presence detection
1224 * mechanisms we have. Set NODEV_HINT
1225 * for it. Kernel bz#7241.
1226 */
1227 if (status == 0x7f)
1228 qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230 /* ata_pio_sectors() might change the
1231 * state to HSM_ST_LAST. so, the state
1232 * is changed after ata_pio_sectors().
1233 */
1234 ap->hsm_task_state = HSM_ST_ERR;
1235 goto fsm_start;
1236 }
1237
1238 ata_pio_sectors(qc);
1239
1240 if (ap->hsm_task_state == HSM_ST_LAST &&
1241 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242 /* all data read */
1243 status = ata_wait_idle(ap);
1244 goto fsm_start;
1245 }
1246 }
1247
1248 poll_next = 1;
1249 break;
1250
1251 case HSM_ST_LAST:
1252 if (unlikely(!ata_ok(status))) {
1253 qc->err_mask |= __ac_err_mask(status);
1254 ap->hsm_task_state = HSM_ST_ERR;
1255 goto fsm_start;
1256 }
1257
1258 /* no more data to transfer */
1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260 ap->print_id, qc->dev->devno, status);
1261
1262 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264 ap->hsm_task_state = HSM_ST_IDLE;
1265
1266 /* complete taskfile transaction */
1267 ata_hsm_qc_complete(qc, in_wq);
1268
1269 poll_next = 0;
1270 break;
1271
1272 case HSM_ST_ERR:
1273 ap->hsm_task_state = HSM_ST_IDLE;
1274
1275 /* complete taskfile transaction */
1276 ata_hsm_qc_complete(qc, in_wq);
1277
1278 poll_next = 0;
1279 break;
1280 default:
1281 poll_next = 0;
1282 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283 ap->print_id, ap->hsm_task_state);
1284 }
1285
1286 return poll_next;
1287}
1288EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289
1290void ata_sff_queue_work(struct work_struct *work)
1291{
1292 queue_work(ata_sff_wq, work);
1293}
1294EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295
1296void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297{
1298 queue_delayed_work(ata_sff_wq, dwork, delay);
1299}
1300EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301
1302void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303{
1304 struct ata_port *ap = link->ap;
1305
1306 WARN_ON((ap->sff_pio_task_link != NULL) &&
1307 (ap->sff_pio_task_link != link));
1308 ap->sff_pio_task_link = link;
1309
1310 /* may fail if ata_sff_flush_pio_task() in progress */
1311 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312}
1313EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314
1315void ata_sff_flush_pio_task(struct ata_port *ap)
1316{
1317 DPRINTK("ENTER\n");
1318
1319 cancel_delayed_work_sync(&ap->sff_pio_task);
1320
1321 /*
1322 * We wanna reset the HSM state to IDLE. If we do so without
1323 * grabbing the port lock, critical sections protected by it which
1324 * expect the HSM state to stay stable may get surprised. For
1325 * example, we may set IDLE in between the time
1326 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328 */
1329 spin_lock_irq(ap->lock);
1330 ap->hsm_task_state = HSM_ST_IDLE;
1331 spin_unlock_irq(ap->lock);
1332
1333 ap->sff_pio_task_link = NULL;
1334
1335 if (ata_msg_ctl(ap))
1336 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337}
1338
1339static void ata_sff_pio_task(struct work_struct *work)
1340{
1341 struct ata_port *ap =
1342 container_of(work, struct ata_port, sff_pio_task.work);
1343 struct ata_link *link = ap->sff_pio_task_link;
1344 struct ata_queued_cmd *qc;
1345 u8 status;
1346 int poll_next;
1347
1348 spin_lock_irq(ap->lock);
1349
1350 BUG_ON(ap->sff_pio_task_link == NULL);
1351 /* qc can be NULL if timeout occurred */
1352 qc = ata_qc_from_tag(ap, link->active_tag);
1353 if (!qc) {
1354 ap->sff_pio_task_link = NULL;
1355 goto out_unlock;
1356 }
1357
1358fsm_start:
1359 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361 /*
1362 * This is purely heuristic. This is a fast path.
1363 * Sometimes when we enter, BSY will be cleared in
1364 * a chk-status or two. If not, the drive is probably seeking
1365 * or something. Snooze for a couple msecs, then
1366 * chk-status again. If still busy, queue delayed work.
1367 */
1368 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369 if (status & ATA_BUSY) {
1370 spin_unlock_irq(ap->lock);
1371 ata_msleep(ap, 2);
1372 spin_lock_irq(ap->lock);
1373
1374 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375 if (status & ATA_BUSY) {
1376 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377 goto out_unlock;
1378 }
1379 }
1380
1381 /*
1382 * hsm_move() may trigger another command to be processed.
1383 * clean the link beforehand.
1384 */
1385 ap->sff_pio_task_link = NULL;
1386 /* move the HSM */
1387 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388
1389 /* another command or interrupt handler
1390 * may be running at this point.
1391 */
1392 if (poll_next)
1393 goto fsm_start;
1394out_unlock:
1395 spin_unlock_irq(ap->lock);
1396}
1397
1398/**
1399 * ata_sff_qc_issue - issue taskfile to a SFF controller
1400 * @qc: command to issue to device
1401 *
1402 * This function issues a PIO or NODATA command to a SFF
1403 * controller.
1404 *
1405 * LOCKING:
1406 * spin_lock_irqsave(host lock)
1407 *
1408 * RETURNS:
1409 * Zero on success, AC_ERR_* mask on failure
1410 */
1411unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412{
1413 struct ata_port *ap = qc->ap;
1414 struct ata_link *link = qc->dev->link;
1415
1416 /* Use polling pio if the LLD doesn't handle
1417 * interrupt driven pio and atapi CDB interrupt.
1418 */
1419 if (ap->flags & ATA_FLAG_PIO_POLLING)
1420 qc->tf.flags |= ATA_TFLAG_POLLING;
1421
1422 /* select the device */
1423 ata_dev_select(ap, qc->dev->devno, 1, 0);
1424
1425 /* start the command */
1426 switch (qc->tf.protocol) {
1427 case ATA_PROT_NODATA:
1428 if (qc->tf.flags & ATA_TFLAG_POLLING)
1429 ata_qc_set_polling(qc);
1430
1431 ata_tf_to_host(ap, &qc->tf);
1432 ap->hsm_task_state = HSM_ST_LAST;
1433
1434 if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 ata_sff_queue_pio_task(link, 0);
1436
1437 break;
1438
1439 case ATA_PROT_PIO:
1440 if (qc->tf.flags & ATA_TFLAG_POLLING)
1441 ata_qc_set_polling(qc);
1442
1443 ata_tf_to_host(ap, &qc->tf);
1444
1445 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446 /* PIO data out protocol */
1447 ap->hsm_task_state = HSM_ST_FIRST;
1448 ata_sff_queue_pio_task(link, 0);
1449
1450 /* always send first data block using the
1451 * ata_sff_pio_task() codepath.
1452 */
1453 } else {
1454 /* PIO data in protocol */
1455 ap->hsm_task_state = HSM_ST;
1456
1457 if (qc->tf.flags & ATA_TFLAG_POLLING)
1458 ata_sff_queue_pio_task(link, 0);
1459
1460 /* if polling, ata_sff_pio_task() handles the
1461 * rest. otherwise, interrupt handler takes
1462 * over from here.
1463 */
1464 }
1465
1466 break;
1467
1468 case ATAPI_PROT_PIO:
1469 case ATAPI_PROT_NODATA:
1470 if (qc->tf.flags & ATA_TFLAG_POLLING)
1471 ata_qc_set_polling(qc);
1472
1473 ata_tf_to_host(ap, &qc->tf);
1474
1475 ap->hsm_task_state = HSM_ST_FIRST;
1476
1477 /* send cdb by polling if no cdb interrupt */
1478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479 (qc->tf.flags & ATA_TFLAG_POLLING))
1480 ata_sff_queue_pio_task(link, 0);
1481 break;
1482
1483 default:
1484 WARN_ON_ONCE(1);
1485 return AC_ERR_SYSTEM;
1486 }
1487
1488 return 0;
1489}
1490EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491
1492/**
1493 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494 * @qc: qc to fill result TF for
1495 *
1496 * @qc is finished and result TF needs to be filled. Fill it
1497 * using ->sff_tf_read.
1498 *
1499 * LOCKING:
1500 * spin_lock_irqsave(host lock)
1501 *
1502 * RETURNS:
1503 * true indicating that result TF is successfully filled.
1504 */
1505bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506{
1507 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508 return true;
1509}
1510EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511
1512static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513{
1514 ap->stats.idle_irq++;
1515
1516#ifdef ATA_IRQ_TRAP
1517 if ((ap->stats.idle_irq % 1000) == 0) {
1518 ap->ops->sff_check_status(ap);
1519 if (ap->ops->sff_irq_clear)
1520 ap->ops->sff_irq_clear(ap);
1521 ata_port_warn(ap, "irq trap\n");
1522 return 1;
1523 }
1524#endif
1525 return 0; /* irq not handled */
1526}
1527
1528static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529 struct ata_queued_cmd *qc,
1530 bool hsmv_on_idle)
1531{
1532 u8 status;
1533
1534 VPRINTK("ata%u: protocol %d task_state %d\n",
1535 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536
1537 /* Check whether we are expecting interrupt in this state */
1538 switch (ap->hsm_task_state) {
1539 case HSM_ST_FIRST:
1540 /* Some pre-ATAPI-4 devices assert INTRQ
1541 * at this state when ready to receive CDB.
1542 */
1543
1544 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545 * The flag was turned on only for atapi devices. No
1546 * need to check ata_is_atapi(qc->tf.protocol) again.
1547 */
1548 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549 return ata_sff_idle_irq(ap);
1550 break;
1551 case HSM_ST_IDLE:
1552 return ata_sff_idle_irq(ap);
1553 default:
1554 break;
1555 }
1556
1557 /* check main status, clearing INTRQ if needed */
1558 status = ata_sff_irq_status(ap);
1559 if (status & ATA_BUSY) {
1560 if (hsmv_on_idle) {
1561 /* BMDMA engine is already stopped, we're screwed */
1562 qc->err_mask |= AC_ERR_HSM;
1563 ap->hsm_task_state = HSM_ST_ERR;
1564 } else
1565 return ata_sff_idle_irq(ap);
1566 }
1567
1568 /* clear irq events */
1569 if (ap->ops->sff_irq_clear)
1570 ap->ops->sff_irq_clear(ap);
1571
1572 ata_sff_hsm_move(ap, qc, status, 0);
1573
1574 return 1; /* irq handled */
1575}
1576
1577/**
1578 * ata_sff_port_intr - Handle SFF port interrupt
1579 * @ap: Port on which interrupt arrived (possibly...)
1580 * @qc: Taskfile currently active in engine
1581 *
1582 * Handle port interrupt for given queued command.
1583 *
1584 * LOCKING:
1585 * spin_lock_irqsave(host lock)
1586 *
1587 * RETURNS:
1588 * One if interrupt was handled, zero if not (shared irq).
1589 */
1590unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591{
1592 return __ata_sff_port_intr(ap, qc, false);
1593}
1594EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595
1596static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598{
1599 struct ata_host *host = dev_instance;
1600 bool retried = false;
1601 unsigned int i;
1602 unsigned int handled, idle, polling;
1603 unsigned long flags;
1604
1605 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606 spin_lock_irqsave(&host->lock, flags);
1607
1608retry:
1609 handled = idle = polling = 0;
1610 for (i = 0; i < host->n_ports; i++) {
1611 struct ata_port *ap = host->ports[i];
1612 struct ata_queued_cmd *qc;
1613
1614 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615 if (qc) {
1616 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617 handled |= port_intr(ap, qc);
1618 else
1619 polling |= 1 << i;
1620 } else
1621 idle |= 1 << i;
1622 }
1623
1624 /*
1625 * If no port was expecting IRQ but the controller is actually
1626 * asserting IRQ line, nobody cared will ensue. Check IRQ
1627 * pending status if available and clear spurious IRQ.
1628 */
1629 if (!handled && !retried) {
1630 bool retry = false;
1631
1632 for (i = 0; i < host->n_ports; i++) {
1633 struct ata_port *ap = host->ports[i];
1634
1635 if (polling & (1 << i))
1636 continue;
1637
1638 if (!ap->ops->sff_irq_check ||
1639 !ap->ops->sff_irq_check(ap))
1640 continue;
1641
1642 if (idle & (1 << i)) {
1643 ap->ops->sff_check_status(ap);
1644 if (ap->ops->sff_irq_clear)
1645 ap->ops->sff_irq_clear(ap);
1646 } else {
1647 /* clear INTRQ and check if BUSY cleared */
1648 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649 retry |= true;
1650 /*
1651 * With command in flight, we can't do
1652 * sff_irq_clear() w/o racing with completion.
1653 */
1654 }
1655 }
1656
1657 if (retry) {
1658 retried = true;
1659 goto retry;
1660 }
1661 }
1662
1663 spin_unlock_irqrestore(&host->lock, flags);
1664
1665 return IRQ_RETVAL(handled);
1666}
1667
1668/**
1669 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1670 * @irq: irq line (unused)
1671 * @dev_instance: pointer to our ata_host information structure
1672 *
1673 * Default interrupt handler for PCI IDE devices. Calls
1674 * ata_sff_port_intr() for each port that is not disabled.
1675 *
1676 * LOCKING:
1677 * Obtains host lock during operation.
1678 *
1679 * RETURNS:
1680 * IRQ_NONE or IRQ_HANDLED.
1681 */
1682irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683{
1684 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685}
1686EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687
1688/**
1689 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1690 * @ap: port that appears to have timed out
1691 *
1692 * Called from the libata error handlers when the core code suspects
1693 * an interrupt has been lost. If it has complete anything we can and
1694 * then return. Interface must support altstatus for this faster
1695 * recovery to occur.
1696 *
1697 * Locking:
1698 * Caller holds host lock
1699 */
1700
1701void ata_sff_lost_interrupt(struct ata_port *ap)
1702{
1703 u8 status;
1704 struct ata_queued_cmd *qc;
1705
1706 /* Only one outstanding command per SFF channel */
1707 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708 /* We cannot lose an interrupt on a non-existent or polled command */
1709 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710 return;
1711 /* See if the controller thinks it is still busy - if so the command
1712 isn't a lost IRQ but is still in progress */
1713 status = ata_sff_altstatus(ap);
1714 if (status & ATA_BUSY)
1715 return;
1716
1717 /* There was a command running, we are no longer busy and we have
1718 no interrupt. */
1719 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720 status);
1721 /* Run the host interrupt logic as if the interrupt had not been
1722 lost */
1723 ata_sff_port_intr(ap, qc);
1724}
1725EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726
1727/**
1728 * ata_sff_freeze - Freeze SFF controller port
1729 * @ap: port to freeze
1730 *
1731 * Freeze SFF controller port.
1732 *
1733 * LOCKING:
1734 * Inherited from caller.
1735 */
1736void ata_sff_freeze(struct ata_port *ap)
1737{
1738 ap->ctl |= ATA_NIEN;
1739 ap->last_ctl = ap->ctl;
1740
1741 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742 ata_sff_set_devctl(ap, ap->ctl);
1743
1744 /* Under certain circumstances, some controllers raise IRQ on
1745 * ATA_NIEN manipulation. Also, many controllers fail to mask
1746 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1747 */
1748 ap->ops->sff_check_status(ap);
1749
1750 if (ap->ops->sff_irq_clear)
1751 ap->ops->sff_irq_clear(ap);
1752}
1753EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754
1755/**
1756 * ata_sff_thaw - Thaw SFF controller port
1757 * @ap: port to thaw
1758 *
1759 * Thaw SFF controller port.
1760 *
1761 * LOCKING:
1762 * Inherited from caller.
1763 */
1764void ata_sff_thaw(struct ata_port *ap)
1765{
1766 /* clear & re-enable interrupts */
1767 ap->ops->sff_check_status(ap);
1768 if (ap->ops->sff_irq_clear)
1769 ap->ops->sff_irq_clear(ap);
1770 ata_sff_irq_on(ap);
1771}
1772EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773
1774/**
1775 * ata_sff_prereset - prepare SFF link for reset
1776 * @link: SFF link to be reset
1777 * @deadline: deadline jiffies for the operation
1778 *
1779 * SFF link @link is about to be reset. Initialize it. It first
1780 * calls ata_std_prereset() and wait for !BSY if the port is
1781 * being softreset.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
1789int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790{
1791 struct ata_eh_context *ehc = &link->eh_context;
1792 int rc;
1793
1794 rc = ata_std_prereset(link, deadline);
1795 if (rc)
1796 return rc;
1797
1798 /* if we're about to do hardreset, nothing more to do */
1799 if (ehc->i.action & ATA_EH_HARDRESET)
1800 return 0;
1801
1802 /* wait for !BSY if we don't know that no device is attached */
1803 if (!ata_link_offline(link)) {
1804 rc = ata_sff_wait_ready(link, deadline);
1805 if (rc && rc != -ENODEV) {
1806 ata_link_warn(link,
1807 "device not ready (errno=%d), forcing hardreset\n",
1808 rc);
1809 ehc->i.action |= ATA_EH_HARDRESET;
1810 }
1811 }
1812
1813 return 0;
1814}
1815EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816
1817/**
1818 * ata_devchk - PATA device presence detection
1819 * @ap: ATA channel to examine
1820 * @device: Device to examine (starting at zero)
1821 *
1822 * This technique was originally described in
1823 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1824 * later found its way into the ATA/ATAPI spec.
1825 *
1826 * Write a pattern to the ATA shadow registers,
1827 * and if a device is present, it will respond by
1828 * correctly storing and echoing back the
1829 * ATA shadow register contents.
1830 *
1831 * LOCKING:
1832 * caller.
1833 */
1834static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835{
1836 struct ata_ioports *ioaddr = &ap->ioaddr;
1837 u8 nsect, lbal;
1838
1839 ap->ops->sff_dev_select(ap, device);
1840
1841 iowrite8(0x55, ioaddr->nsect_addr);
1842 iowrite8(0xaa, ioaddr->lbal_addr);
1843
1844 iowrite8(0xaa, ioaddr->nsect_addr);
1845 iowrite8(0x55, ioaddr->lbal_addr);
1846
1847 iowrite8(0x55, ioaddr->nsect_addr);
1848 iowrite8(0xaa, ioaddr->lbal_addr);
1849
1850 nsect = ioread8(ioaddr->nsect_addr);
1851 lbal = ioread8(ioaddr->lbal_addr);
1852
1853 if ((nsect == 0x55) && (lbal == 0xaa))
1854 return 1; /* we found a device */
1855
1856 return 0; /* nothing found */
1857}
1858
1859/**
1860 * ata_sff_dev_classify - Parse returned ATA device signature
1861 * @dev: ATA device to classify (starting at zero)
1862 * @present: device seems present
1863 * @r_err: Value of error register on completion
1864 *
1865 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866 * an ATA/ATAPI-defined set of values is placed in the ATA
1867 * shadow registers, indicating the results of device detection
1868 * and diagnostics.
1869 *
1870 * Select the ATA device, and read the values from the ATA shadow
1871 * registers. Then parse according to the Error register value,
1872 * and the spec-defined values examined by ata_dev_classify().
1873 *
1874 * LOCKING:
1875 * caller.
1876 *
1877 * RETURNS:
1878 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879 */
1880unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881 u8 *r_err)
1882{
1883 struct ata_port *ap = dev->link->ap;
1884 struct ata_taskfile tf;
1885 unsigned int class;
1886 u8 err;
1887
1888 ap->ops->sff_dev_select(ap, dev->devno);
1889
1890 memset(&tf, 0, sizeof(tf));
1891
1892 ap->ops->sff_tf_read(ap, &tf);
1893 err = tf.feature;
1894 if (r_err)
1895 *r_err = err;
1896
1897 /* see if device passed diags: continue and warn later */
1898 if (err == 0)
1899 /* diagnostic fail : do nothing _YET_ */
1900 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901 else if (err == 1)
1902 /* do nothing */ ;
1903 else if ((dev->devno == 0) && (err == 0x81))
1904 /* do nothing */ ;
1905 else
1906 return ATA_DEV_NONE;
1907
1908 /* determine if device is ATA or ATAPI */
1909 class = ata_dev_classify(&tf);
1910
1911 if (class == ATA_DEV_UNKNOWN) {
1912 /* If the device failed diagnostic, it's likely to
1913 * have reported incorrect device signature too.
1914 * Assume ATA device if the device seems present but
1915 * device signature is invalid with diagnostic
1916 * failure.
1917 */
1918 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919 class = ATA_DEV_ATA;
1920 else
1921 class = ATA_DEV_NONE;
1922 } else if ((class == ATA_DEV_ATA) &&
1923 (ap->ops->sff_check_status(ap) == 0))
1924 class = ATA_DEV_NONE;
1925
1926 return class;
1927}
1928EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929
1930/**
1931 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1932 * @link: SFF link which is just reset
1933 * @devmask: mask of present devices
1934 * @deadline: deadline jiffies for the operation
1935 *
1936 * Wait devices attached to SFF @link to become ready after
1937 * reset. It contains preceding 150ms wait to avoid accessing TF
1938 * status register too early.
1939 *
1940 * LOCKING:
1941 * Kernel thread context (may sleep).
1942 *
1943 * RETURNS:
1944 * 0 on success, -ENODEV if some or all of devices in @devmask
1945 * don't seem to exist. -errno on other errors.
1946 */
1947int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948 unsigned long deadline)
1949{
1950 struct ata_port *ap = link->ap;
1951 struct ata_ioports *ioaddr = &ap->ioaddr;
1952 unsigned int dev0 = devmask & (1 << 0);
1953 unsigned int dev1 = devmask & (1 << 1);
1954 int rc, ret = 0;
1955
1956 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957
1958 /* always check readiness of the master device */
1959 rc = ata_sff_wait_ready(link, deadline);
1960 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961 * and TF status is 0xff, bail out on it too.
1962 */
1963 if (rc)
1964 return rc;
1965
1966 /* if device 1 was found in ata_devchk, wait for register
1967 * access briefly, then wait for BSY to clear.
1968 */
1969 if (dev1) {
1970 int i;
1971
1972 ap->ops->sff_dev_select(ap, 1);
1973
1974 /* Wait for register access. Some ATAPI devices fail
1975 * to set nsect/lbal after reset, so don't waste too
1976 * much time on it. We're gonna wait for !BSY anyway.
1977 */
1978 for (i = 0; i < 2; i++) {
1979 u8 nsect, lbal;
1980
1981 nsect = ioread8(ioaddr->nsect_addr);
1982 lbal = ioread8(ioaddr->lbal_addr);
1983 if ((nsect == 1) && (lbal == 1))
1984 break;
1985 ata_msleep(ap, 50); /* give drive a breather */
1986 }
1987
1988 rc = ata_sff_wait_ready(link, deadline);
1989 if (rc) {
1990 if (rc != -ENODEV)
1991 return rc;
1992 ret = rc;
1993 }
1994 }
1995
1996 /* is all this really necessary? */
1997 ap->ops->sff_dev_select(ap, 0);
1998 if (dev1)
1999 ap->ops->sff_dev_select(ap, 1);
2000 if (dev0)
2001 ap->ops->sff_dev_select(ap, 0);
2002
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006
2007static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008 unsigned long deadline)
2009{
2010 struct ata_ioports *ioaddr = &ap->ioaddr;
2011
2012 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013
2014 if (ap->ioaddr.ctl_addr) {
2015 /* software reset. causes dev0 to be selected */
2016 iowrite8(ap->ctl, ioaddr->ctl_addr);
2017 udelay(20); /* FIXME: flush */
2018 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019 udelay(20); /* FIXME: flush */
2020 iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 ap->last_ctl = ap->ctl;
2022 }
2023
2024 /* wait the port to become ready */
2025 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026}
2027
2028/**
2029 * ata_sff_softreset - reset host port via ATA SRST
2030 * @link: ATA link to reset
2031 * @classes: resulting classes of attached devices
2032 * @deadline: deadline jiffies for the operation
2033 *
2034 * Reset host port using ATA SRST.
2035 *
2036 * LOCKING:
2037 * Kernel thread context (may sleep)
2038 *
2039 * RETURNS:
2040 * 0 on success, -errno otherwise.
2041 */
2042int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043 unsigned long deadline)
2044{
2045 struct ata_port *ap = link->ap;
2046 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047 unsigned int devmask = 0;
2048 int rc;
2049 u8 err;
2050
2051 DPRINTK("ENTER\n");
2052
2053 /* determine if device 0/1 are present */
2054 if (ata_devchk(ap, 0))
2055 devmask |= (1 << 0);
2056 if (slave_possible && ata_devchk(ap, 1))
2057 devmask |= (1 << 1);
2058
2059 /* select device 0 again */
2060 ap->ops->sff_dev_select(ap, 0);
2061
2062 /* issue bus reset */
2063 DPRINTK("about to softreset, devmask=%x\n", devmask);
2064 rc = ata_bus_softreset(ap, devmask, deadline);
2065 /* if link is occupied, -ENODEV too is an error */
2066 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068 return rc;
2069 }
2070
2071 /* determine by signature whether we have ATA or ATAPI devices */
2072 classes[0] = ata_sff_dev_classify(&link->device[0],
2073 devmask & (1 << 0), &err);
2074 if (slave_possible && err != 0x81)
2075 classes[1] = ata_sff_dev_classify(&link->device[1],
2076 devmask & (1 << 1), &err);
2077
2078 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079 return 0;
2080}
2081EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082
2083/**
2084 * sata_sff_hardreset - reset host port via SATA phy reset
2085 * @link: link to reset
2086 * @class: resulting class of attached device
2087 * @deadline: deadline jiffies for the operation
2088 *
2089 * SATA phy-reset host port using DET bits of SControl register,
2090 * wait for !BSY and classify the attached device.
2091 *
2092 * LOCKING:
2093 * Kernel thread context (may sleep)
2094 *
2095 * RETURNS:
2096 * 0 on success, -errno otherwise.
2097 */
2098int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099 unsigned long deadline)
2100{
2101 struct ata_eh_context *ehc = &link->eh_context;
2102 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103 bool online;
2104 int rc;
2105
2106 rc = sata_link_hardreset(link, timing, deadline, &online,
2107 ata_sff_check_ready);
2108 if (online)
2109 *class = ata_sff_dev_classify(link->device, 1, NULL);
2110
2111 DPRINTK("EXIT, class=%u\n", *class);
2112 return rc;
2113}
2114EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115
2116/**
2117 * ata_sff_postreset - SFF postreset callback
2118 * @link: the target SFF ata_link
2119 * @classes: classes of attached devices
2120 *
2121 * This function is invoked after a successful reset. It first
2122 * calls ata_std_postreset() and performs SFF specific postreset
2123 * processing.
2124 *
2125 * LOCKING:
2126 * Kernel thread context (may sleep)
2127 */
2128void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129{
2130 struct ata_port *ap = link->ap;
2131
2132 ata_std_postreset(link, classes);
2133
2134 /* is double-select really necessary? */
2135 if (classes[0] != ATA_DEV_NONE)
2136 ap->ops->sff_dev_select(ap, 1);
2137 if (classes[1] != ATA_DEV_NONE)
2138 ap->ops->sff_dev_select(ap, 0);
2139
2140 /* bail out if no device is present */
2141 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142 DPRINTK("EXIT, no device\n");
2143 return;
2144 }
2145
2146 /* set up device control */
2147 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148 ata_sff_set_devctl(ap, ap->ctl);
2149 ap->last_ctl = ap->ctl;
2150 }
2151}
2152EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153
2154/**
2155 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 * @qc: command
2157 *
2158 * Drain the FIFO and device of any stuck data following a command
2159 * failing to complete. In some cases this is necessary before a
2160 * reset will recover the device.
2161 *
2162 */
2163
2164void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165{
2166 int count;
2167 struct ata_port *ap;
2168
2169 /* We only need to flush incoming data when a command was running */
2170 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171 return;
2172
2173 ap = qc->ap;
2174 /* Drain up to 64K of data before we give up this recovery method */
2175 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176 && count < 65536; count += 2)
2177 ioread16(ap->ioaddr.data_addr);
2178
2179 /* Can become DEBUG later */
2180 if (count)
2181 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182
2183}
2184EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185
2186/**
2187 * ata_sff_error_handler - Stock error handler for SFF controller
2188 * @ap: port to handle error for
2189 *
2190 * Stock error handler for SFF controller. It can handle both
2191 * PATA and SATA controllers. Many controllers should be able to
2192 * use this EH as-is or with some added handling before and
2193 * after.
2194 *
2195 * LOCKING:
2196 * Kernel thread context (may sleep)
2197 */
2198void ata_sff_error_handler(struct ata_port *ap)
2199{
2200 ata_reset_fn_t softreset = ap->ops->softreset;
2201 ata_reset_fn_t hardreset = ap->ops->hardreset;
2202 struct ata_queued_cmd *qc;
2203 unsigned long flags;
2204
2205 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207 qc = NULL;
2208
2209 spin_lock_irqsave(ap->lock, flags);
2210
2211 /*
2212 * We *MUST* do FIFO draining before we issue a reset as
2213 * several devices helpfully clear their internal state and
2214 * will lock solid if we touch the data port post reset. Pass
2215 * qc in case anyone wants to do different PIO/DMA recovery or
2216 * has per command fixups
2217 */
2218 if (ap->ops->sff_drain_fifo)
2219 ap->ops->sff_drain_fifo(qc);
2220
2221 spin_unlock_irqrestore(ap->lock, flags);
2222
2223 /* ignore built-in hardresets if SCR access is not available */
2224 if ((hardreset == sata_std_hardreset ||
2225 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226 hardreset = NULL;
2227
2228 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229 ap->ops->postreset);
2230}
2231EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232
2233/**
2234 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235 * @ioaddr: IO address structure to be initialized
2236 *
2237 * Utility function which initializes data_addr, error_addr,
2238 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239 * device_addr, status_addr, and command_addr to standard offsets
2240 * relative to cmd_addr.
2241 *
2242 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243 */
2244void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245{
2246 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256}
2257EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258
2259#ifdef CONFIG_PCI
2260
2261static int ata_resources_present(struct pci_dev *pdev, int port)
2262{
2263 int i;
2264
2265 /* Check the PCI resources for this channel are enabled */
2266 port = port * 2;
2267 for (i = 0; i < 2; i++) {
2268 if (pci_resource_start(pdev, port + i) == 0 ||
2269 pci_resource_len(pdev, port + i) == 0)
2270 return 0;
2271 }
2272 return 1;
2273}
2274
2275/**
2276 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277 * @host: target ATA host
2278 *
2279 * Acquire native PCI ATA resources for @host and initialize the
2280 * first two ports of @host accordingly. Ports marked dummy are
2281 * skipped and allocation failure makes the port dummy.
2282 *
2283 * Note that native PCI resources are valid even for legacy hosts
2284 * as we fix up pdev resources array early in boot, so this
2285 * function can be used for both native and legacy SFF hosts.
2286 *
2287 * LOCKING:
2288 * Inherited from calling layer (may sleep).
2289 *
2290 * RETURNS:
2291 * 0 if at least one port is initialized, -ENODEV if no port is
2292 * available.
2293 */
2294int ata_pci_sff_init_host(struct ata_host *host)
2295{
2296 struct device *gdev = host->dev;
2297 struct pci_dev *pdev = to_pci_dev(gdev);
2298 unsigned int mask = 0;
2299 int i, rc;
2300
2301 /* request, iomap BARs and init port addresses accordingly */
2302 for (i = 0; i < 2; i++) {
2303 struct ata_port *ap = host->ports[i];
2304 int base = i * 2;
2305 void __iomem * const *iomap;
2306
2307 if (ata_port_is_dummy(ap))
2308 continue;
2309
2310 /* Discard disabled ports. Some controllers show
2311 * their unused channels this way. Disabled ports are
2312 * made dummy.
2313 */
2314 if (!ata_resources_present(pdev, i)) {
2315 ap->ops = &ata_dummy_port_ops;
2316 continue;
2317 }
2318
2319 rc = pcim_iomap_regions(pdev, 0x3 << base,
2320 dev_driver_string(gdev));
2321 if (rc) {
2322 dev_warn(gdev,
2323 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 i, rc);
2325 if (rc == -EBUSY)
2326 pcim_pin_device(pdev);
2327 ap->ops = &ata_dummy_port_ops;
2328 continue;
2329 }
2330 host->iomap = iomap = pcim_iomap_table(pdev);
2331
2332 ap->ioaddr.cmd_addr = iomap[base];
2333 ap->ioaddr.altstatus_addr =
2334 ap->ioaddr.ctl_addr = (void __iomem *)
2335 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336 ata_sff_std_ports(&ap->ioaddr);
2337
2338 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339 (unsigned long long)pci_resource_start(pdev, base),
2340 (unsigned long long)pci_resource_start(pdev, base + 1));
2341
2342 mask |= 1 << i;
2343 }
2344
2345 if (!mask) {
2346 dev_err(gdev, "no available native port\n");
2347 return -ENODEV;
2348 }
2349
2350 return 0;
2351}
2352EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353
2354/**
2355 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356 * @pdev: target PCI device
2357 * @ppi: array of port_info, must be enough for two ports
2358 * @r_host: out argument for the initialized ATA host
2359 *
2360 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361 * all PCI resources and initialize it accordingly in one go.
2362 *
2363 * LOCKING:
2364 * Inherited from calling layer (may sleep).
2365 *
2366 * RETURNS:
2367 * 0 on success, -errno otherwise.
2368 */
2369int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370 const struct ata_port_info * const *ppi,
2371 struct ata_host **r_host)
2372{
2373 struct ata_host *host;
2374 int rc;
2375
2376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377 return -ENOMEM;
2378
2379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380 if (!host) {
2381 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382 rc = -ENOMEM;
2383 goto err_out;
2384 }
2385
2386 rc = ata_pci_sff_init_host(host);
2387 if (rc)
2388 goto err_out;
2389
2390 devres_remove_group(&pdev->dev, NULL);
2391 *r_host = host;
2392 return 0;
2393
2394err_out:
2395 devres_release_group(&pdev->dev, NULL);
2396 return rc;
2397}
2398EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399
2400/**
2401 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402 * @host: target SFF ATA host
2403 * @irq_handler: irq_handler used when requesting IRQ(s)
2404 * @sht: scsi_host_template to use when registering the host
2405 *
2406 * This is the counterpart of ata_host_activate() for SFF ATA
2407 * hosts. This separate helper is necessary because SFF hosts
2408 * use two separate interrupts in legacy mode.
2409 *
2410 * LOCKING:
2411 * Inherited from calling layer (may sleep).
2412 *
2413 * RETURNS:
2414 * 0 on success, -errno otherwise.
2415 */
2416int ata_pci_sff_activate_host(struct ata_host *host,
2417 irq_handler_t irq_handler,
2418 struct scsi_host_template *sht)
2419{
2420 struct device *dev = host->dev;
2421 struct pci_dev *pdev = to_pci_dev(dev);
2422 const char *drv_name = dev_driver_string(host->dev);
2423 int legacy_mode = 0, rc;
2424
2425 rc = ata_host_start(host);
2426 if (rc)
2427 return rc;
2428
2429 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430 u8 tmp8, mask;
2431
2432 /* TODO: What if one channel is in native mode ... */
2433 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2434 mask = (1 << 2) | (1 << 0);
2435 if ((tmp8 & mask) != mask)
2436 legacy_mode = 1;
2437 }
2438
2439 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2440 return -ENOMEM;
2441
2442 if (!legacy_mode && pdev->irq) {
2443 int i;
2444
2445 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2446 IRQF_SHARED, drv_name, host);
2447 if (rc)
2448 goto out;
2449
2450 for (i = 0; i < 2; i++) {
2451 if (ata_port_is_dummy(host->ports[i]))
2452 continue;
2453 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2454 }
2455 } else if (legacy_mode) {
2456 if (!ata_port_is_dummy(host->ports[0])) {
2457 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2458 irq_handler, IRQF_SHARED,
2459 drv_name, host);
2460 if (rc)
2461 goto out;
2462
2463 ata_port_desc(host->ports[0], "irq %d",
2464 ATA_PRIMARY_IRQ(pdev));
2465 }
2466
2467 if (!ata_port_is_dummy(host->ports[1])) {
2468 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2469 irq_handler, IRQF_SHARED,
2470 drv_name, host);
2471 if (rc)
2472 goto out;
2473
2474 ata_port_desc(host->ports[1], "irq %d",
2475 ATA_SECONDARY_IRQ(pdev));
2476 }
2477 }
2478
2479 rc = ata_host_register(host, sht);
2480out:
2481 if (rc == 0)
2482 devres_remove_group(dev, NULL);
2483 else
2484 devres_release_group(dev, NULL);
2485
2486 return rc;
2487}
2488EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2489
2490static const struct ata_port_info *ata_sff_find_valid_pi(
2491 const struct ata_port_info * const *ppi)
2492{
2493 int i;
2494
2495 /* look up the first valid port_info */
2496 for (i = 0; i < 2 && ppi[i]; i++)
2497 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2498 return ppi[i];
2499
2500 return NULL;
2501}
2502
2503static int ata_pci_init_one(struct pci_dev *pdev,
2504 const struct ata_port_info * const *ppi,
2505 struct scsi_host_template *sht, void *host_priv,
2506 int hflags, bool bmdma)
2507{
2508 struct device *dev = &pdev->dev;
2509 const struct ata_port_info *pi;
2510 struct ata_host *host = NULL;
2511 int rc;
2512
2513 DPRINTK("ENTER\n");
2514
2515 pi = ata_sff_find_valid_pi(ppi);
2516 if (!pi) {
2517 dev_err(&pdev->dev, "no valid port_info specified\n");
2518 return -EINVAL;
2519 }
2520
2521 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2522 return -ENOMEM;
2523
2524 rc = pcim_enable_device(pdev);
2525 if (rc)
2526 goto out;
2527
2528#ifdef CONFIG_ATA_BMDMA
2529 if (bmdma)
2530 /* prepare and activate BMDMA host */
2531 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2532 else
2533#endif
2534 /* prepare and activate SFF host */
2535 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2536 if (rc)
2537 goto out;
2538 host->private_data = host_priv;
2539 host->flags |= hflags;
2540
2541#ifdef CONFIG_ATA_BMDMA
2542 if (bmdma) {
2543 pci_set_master(pdev);
2544 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2545 } else
2546#endif
2547 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2548out:
2549 if (rc == 0)
2550 devres_remove_group(&pdev->dev, NULL);
2551 else
2552 devres_release_group(&pdev->dev, NULL);
2553
2554 return rc;
2555}
2556
2557/**
2558 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2559 * @pdev: Controller to be initialized
2560 * @ppi: array of port_info, must be enough for two ports
2561 * @sht: scsi_host_template to use when registering the host
2562 * @host_priv: host private_data
2563 * @hflag: host flags
2564 *
2565 * This is a helper function which can be called from a driver's
2566 * xxx_init_one() probe function if the hardware uses traditional
2567 * IDE taskfile registers and is PIO only.
2568 *
2569 * ASSUMPTION:
2570 * Nobody makes a single channel controller that appears solely as
2571 * the secondary legacy port on PCI.
2572 *
2573 * LOCKING:
2574 * Inherited from PCI layer (may sleep).
2575 *
2576 * RETURNS:
2577 * Zero on success, negative on errno-based value on error.
2578 */
2579int ata_pci_sff_init_one(struct pci_dev *pdev,
2580 const struct ata_port_info * const *ppi,
2581 struct scsi_host_template *sht, void *host_priv, int hflag)
2582{
2583 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2584}
2585EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2586
2587#endif /* CONFIG_PCI */
2588
2589/*
2590 * BMDMA support
2591 */
2592
2593#ifdef CONFIG_ATA_BMDMA
2594
2595const struct ata_port_operations ata_bmdma_port_ops = {
2596 .inherits = &ata_sff_port_ops,
2597
2598 .error_handler = ata_bmdma_error_handler,
2599 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2600
2601 .qc_prep = ata_bmdma_qc_prep,
2602 .qc_issue = ata_bmdma_qc_issue,
2603
2604 .sff_irq_clear = ata_bmdma_irq_clear,
2605 .bmdma_setup = ata_bmdma_setup,
2606 .bmdma_start = ata_bmdma_start,
2607 .bmdma_stop = ata_bmdma_stop,
2608 .bmdma_status = ata_bmdma_status,
2609
2610 .port_start = ata_bmdma_port_start,
2611};
2612EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2613
2614const struct ata_port_operations ata_bmdma32_port_ops = {
2615 .inherits = &ata_bmdma_port_ops,
2616
2617 .sff_data_xfer = ata_sff_data_xfer32,
2618 .port_start = ata_bmdma_port_start32,
2619};
2620EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2621
2622/**
2623 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2624 * @qc: Metadata associated with taskfile to be transferred
2625 *
2626 * Fill PCI IDE PRD (scatter-gather) table with segments
2627 * associated with the current disk command.
2628 *
2629 * LOCKING:
2630 * spin_lock_irqsave(host lock)
2631 *
2632 */
2633static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2634{
2635 struct ata_port *ap = qc->ap;
2636 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2637 struct scatterlist *sg;
2638 unsigned int si, pi;
2639
2640 pi = 0;
2641 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2642 u32 addr, offset;
2643 u32 sg_len, len;
2644
2645 /* determine if physical DMA addr spans 64K boundary.
2646 * Note h/w doesn't support 64-bit, so we unconditionally
2647 * truncate dma_addr_t to u32.
2648 */
2649 addr = (u32) sg_dma_address(sg);
2650 sg_len = sg_dma_len(sg);
2651
2652 while (sg_len) {
2653 offset = addr & 0xffff;
2654 len = sg_len;
2655 if ((offset + sg_len) > 0x10000)
2656 len = 0x10000 - offset;
2657
2658 prd[pi].addr = cpu_to_le32(addr);
2659 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2660 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2661
2662 pi++;
2663 sg_len -= len;
2664 addr += len;
2665 }
2666 }
2667
2668 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2669}
2670
2671/**
2672 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2673 * @qc: Metadata associated with taskfile to be transferred
2674 *
2675 * Fill PCI IDE PRD (scatter-gather) table with segments
2676 * associated with the current disk command. Perform the fill
2677 * so that we avoid writing any length 64K records for
2678 * controllers that don't follow the spec.
2679 *
2680 * LOCKING:
2681 * spin_lock_irqsave(host lock)
2682 *
2683 */
2684static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2685{
2686 struct ata_port *ap = qc->ap;
2687 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2688 struct scatterlist *sg;
2689 unsigned int si, pi;
2690
2691 pi = 0;
2692 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2693 u32 addr, offset;
2694 u32 sg_len, len, blen;
2695
2696 /* determine if physical DMA addr spans 64K boundary.
2697 * Note h/w doesn't support 64-bit, so we unconditionally
2698 * truncate dma_addr_t to u32.
2699 */
2700 addr = (u32) sg_dma_address(sg);
2701 sg_len = sg_dma_len(sg);
2702
2703 while (sg_len) {
2704 offset = addr & 0xffff;
2705 len = sg_len;
2706 if ((offset + sg_len) > 0x10000)
2707 len = 0x10000 - offset;
2708
2709 blen = len & 0xffff;
2710 prd[pi].addr = cpu_to_le32(addr);
2711 if (blen == 0) {
2712 /* Some PATA chipsets like the CS5530 can't
2713 cope with 0x0000 meaning 64K as the spec
2714 says */
2715 prd[pi].flags_len = cpu_to_le32(0x8000);
2716 blen = 0x8000;
2717 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2718 }
2719 prd[pi].flags_len = cpu_to_le32(blen);
2720 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2721
2722 pi++;
2723 sg_len -= len;
2724 addr += len;
2725 }
2726 }
2727
2728 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2729}
2730
2731/**
2732 * ata_bmdma_qc_prep - Prepare taskfile for submission
2733 * @qc: Metadata associated with taskfile to be prepared
2734 *
2735 * Prepare ATA taskfile for submission.
2736 *
2737 * LOCKING:
2738 * spin_lock_irqsave(host lock)
2739 */
2740void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2741{
2742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743 return;
2744
2745 ata_bmdma_fill_sg(qc);
2746}
2747EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2748
2749/**
2750 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2751 * @qc: Metadata associated with taskfile to be prepared
2752 *
2753 * Prepare ATA taskfile for submission.
2754 *
2755 * LOCKING:
2756 * spin_lock_irqsave(host lock)
2757 */
2758void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2759{
2760 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2761 return;
2762
2763 ata_bmdma_fill_sg_dumb(qc);
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2766
2767/**
2768 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2769 * @qc: command to issue to device
2770 *
2771 * This function issues a PIO, NODATA or DMA command to a
2772 * SFF/BMDMA controller. PIO and NODATA are handled by
2773 * ata_sff_qc_issue().
2774 *
2775 * LOCKING:
2776 * spin_lock_irqsave(host lock)
2777 *
2778 * RETURNS:
2779 * Zero on success, AC_ERR_* mask on failure
2780 */
2781unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2782{
2783 struct ata_port *ap = qc->ap;
2784 struct ata_link *link = qc->dev->link;
2785
2786 /* defer PIO handling to sff_qc_issue */
2787 if (!ata_is_dma(qc->tf.protocol))
2788 return ata_sff_qc_issue(qc);
2789
2790 /* select the device */
2791 ata_dev_select(ap, qc->dev->devno, 1, 0);
2792
2793 /* start the command */
2794 switch (qc->tf.protocol) {
2795 case ATA_PROT_DMA:
2796 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2797
2798 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2799 ap->ops->bmdma_setup(qc); /* set up bmdma */
2800 ap->ops->bmdma_start(qc); /* initiate bmdma */
2801 ap->hsm_task_state = HSM_ST_LAST;
2802 break;
2803
2804 case ATAPI_PROT_DMA:
2805 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806
2807 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2808 ap->ops->bmdma_setup(qc); /* set up bmdma */
2809 ap->hsm_task_state = HSM_ST_FIRST;
2810
2811 /* send cdb by polling if no cdb interrupt */
2812 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2813 ata_sff_queue_pio_task(link, 0);
2814 break;
2815
2816 default:
2817 WARN_ON(1);
2818 return AC_ERR_SYSTEM;
2819 }
2820
2821 return 0;
2822}
2823EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2824
2825/**
2826 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2827 * @ap: Port on which interrupt arrived (possibly...)
2828 * @qc: Taskfile currently active in engine
2829 *
2830 * Handle port interrupt for given queued command.
2831 *
2832 * LOCKING:
2833 * spin_lock_irqsave(host lock)
2834 *
2835 * RETURNS:
2836 * One if interrupt was handled, zero if not (shared irq).
2837 */
2838unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2839{
2840 struct ata_eh_info *ehi = &ap->link.eh_info;
2841 u8 host_stat = 0;
2842 bool bmdma_stopped = false;
2843 unsigned int handled;
2844
2845 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2846 /* check status of DMA engine */
2847 host_stat = ap->ops->bmdma_status(ap);
2848 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2849
2850 /* if it's not our irq... */
2851 if (!(host_stat & ATA_DMA_INTR))
2852 return ata_sff_idle_irq(ap);
2853
2854 /* before we do anything else, clear DMA-Start bit */
2855 ap->ops->bmdma_stop(qc);
2856 bmdma_stopped = true;
2857
2858 if (unlikely(host_stat & ATA_DMA_ERR)) {
2859 /* error when transferring data to/from memory */
2860 qc->err_mask |= AC_ERR_HOST_BUS;
2861 ap->hsm_task_state = HSM_ST_ERR;
2862 }
2863 }
2864
2865 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2866
2867 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2868 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2869
2870 return handled;
2871}
2872EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2873
2874/**
2875 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2876 * @irq: irq line (unused)
2877 * @dev_instance: pointer to our ata_host information structure
2878 *
2879 * Default interrupt handler for PCI IDE devices. Calls
2880 * ata_bmdma_port_intr() for each port that is not disabled.
2881 *
2882 * LOCKING:
2883 * Obtains host lock during operation.
2884 *
2885 * RETURNS:
2886 * IRQ_NONE or IRQ_HANDLED.
2887 */
2888irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2889{
2890 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2891}
2892EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2893
2894/**
2895 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2896 * @ap: port to handle error for
2897 *
2898 * Stock error handler for BMDMA controller. It can handle both
2899 * PATA and SATA controllers. Most BMDMA controllers should be
2900 * able to use this EH as-is or with some added handling before
2901 * and after.
2902 *
2903 * LOCKING:
2904 * Kernel thread context (may sleep)
2905 */
2906void ata_bmdma_error_handler(struct ata_port *ap)
2907{
2908 struct ata_queued_cmd *qc;
2909 unsigned long flags;
2910 bool thaw = false;
2911
2912 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2913 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2914 qc = NULL;
2915
2916 /* reset PIO HSM and stop DMA engine */
2917 spin_lock_irqsave(ap->lock, flags);
2918
2919 if (qc && ata_is_dma(qc->tf.protocol)) {
2920 u8 host_stat;
2921
2922 host_stat = ap->ops->bmdma_status(ap);
2923
2924 /* BMDMA controllers indicate host bus error by
2925 * setting DMA_ERR bit and timing out. As it wasn't
2926 * really a timeout event, adjust error mask and
2927 * cancel frozen state.
2928 */
2929 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2930 qc->err_mask = AC_ERR_HOST_BUS;
2931 thaw = true;
2932 }
2933
2934 ap->ops->bmdma_stop(qc);
2935
2936 /* if we're gonna thaw, make sure IRQ is clear */
2937 if (thaw) {
2938 ap->ops->sff_check_status(ap);
2939 if (ap->ops->sff_irq_clear)
2940 ap->ops->sff_irq_clear(ap);
2941 }
2942 }
2943
2944 spin_unlock_irqrestore(ap->lock, flags);
2945
2946 if (thaw)
2947 ata_eh_thaw_port(ap);
2948
2949 ata_sff_error_handler(ap);
2950}
2951EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2952
2953/**
2954 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2955 * @qc: internal command to clean up
2956 *
2957 * LOCKING:
2958 * Kernel thread context (may sleep)
2959 */
2960void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2961{
2962 struct ata_port *ap = qc->ap;
2963 unsigned long flags;
2964
2965 if (ata_is_dma(qc->tf.protocol)) {
2966 spin_lock_irqsave(ap->lock, flags);
2967 ap->ops->bmdma_stop(qc);
2968 spin_unlock_irqrestore(ap->lock, flags);
2969 }
2970}
2971EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2972
2973/**
2974 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2975 * @ap: Port associated with this ATA transaction.
2976 *
2977 * Clear interrupt and error flags in DMA status register.
2978 *
2979 * May be used as the irq_clear() entry in ata_port_operations.
2980 *
2981 * LOCKING:
2982 * spin_lock_irqsave(host lock)
2983 */
2984void ata_bmdma_irq_clear(struct ata_port *ap)
2985{
2986 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2987
2988 if (!mmio)
2989 return;
2990
2991 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2992}
2993EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2994
2995/**
2996 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2997 * @qc: Info associated with this ATA transaction.
2998 *
2999 * LOCKING:
3000 * spin_lock_irqsave(host lock)
3001 */
3002void ata_bmdma_setup(struct ata_queued_cmd *qc)
3003{
3004 struct ata_port *ap = qc->ap;
3005 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3006 u8 dmactl;
3007
3008 /* load PRD table addr. */
3009 mb(); /* make sure PRD table writes are visible to controller */
3010 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3011
3012 /* specify data direction, triple-check start bit is clear */
3013 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3014 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3015 if (!rw)
3016 dmactl |= ATA_DMA_WR;
3017 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3018
3019 /* issue r/w command */
3020 ap->ops->sff_exec_command(ap, &qc->tf);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3023
3024/**
3025 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3026 * @qc: Info associated with this ATA transaction.
3027 *
3028 * LOCKING:
3029 * spin_lock_irqsave(host lock)
3030 */
3031void ata_bmdma_start(struct ata_queued_cmd *qc)
3032{
3033 struct ata_port *ap = qc->ap;
3034 u8 dmactl;
3035
3036 /* start host DMA transaction */
3037 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039
3040 /* Strictly, one may wish to issue an ioread8() here, to
3041 * flush the mmio write. However, control also passes
3042 * to the hardware at this point, and it will interrupt
3043 * us when we are to resume control. So, in effect,
3044 * we don't care when the mmio write flushes.
3045 * Further, a read of the DMA status register _immediately_
3046 * following the write may not be what certain flaky hardware
3047 * is expected, so I think it is best to not add a readb()
3048 * without first all the MMIO ATA cards/mobos.
3049 * Or maybe I'm just being paranoid.
3050 *
3051 * FIXME: The posting of this write means I/O starts are
3052 * unnecessarily delayed for MMIO
3053 */
3054}
3055EXPORT_SYMBOL_GPL(ata_bmdma_start);
3056
3057/**
3058 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3059 * @qc: Command we are ending DMA for
3060 *
3061 * Clears the ATA_DMA_START flag in the dma control register
3062 *
3063 * May be used as the bmdma_stop() entry in ata_port_operations.
3064 *
3065 * LOCKING:
3066 * spin_lock_irqsave(host lock)
3067 */
3068void ata_bmdma_stop(struct ata_queued_cmd *qc)
3069{
3070 struct ata_port *ap = qc->ap;
3071 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3072
3073 /* clear start/stop bit */
3074 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3075 mmio + ATA_DMA_CMD);
3076
3077 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3078 ata_sff_dma_pause(ap);
3079}
3080EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3081
3082/**
3083 * ata_bmdma_status - Read PCI IDE BMDMA status
3084 * @ap: Port associated with this ATA transaction.
3085 *
3086 * Read and return BMDMA status register.
3087 *
3088 * May be used as the bmdma_status() entry in ata_port_operations.
3089 *
3090 * LOCKING:
3091 * spin_lock_irqsave(host lock)
3092 */
3093u8 ata_bmdma_status(struct ata_port *ap)
3094{
3095 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3096}
3097EXPORT_SYMBOL_GPL(ata_bmdma_status);
3098
3099
3100/**
3101 * ata_bmdma_port_start - Set port up for bmdma.
3102 * @ap: Port to initialize
3103 *
3104 * Called just after data structures for each port are
3105 * initialized. Allocates space for PRD table.
3106 *
3107 * May be used as the port_start() entry in ata_port_operations.
3108 *
3109 * LOCKING:
3110 * Inherited from caller.
3111 */
3112int ata_bmdma_port_start(struct ata_port *ap)
3113{
3114 if (ap->mwdma_mask || ap->udma_mask) {
3115 ap->bmdma_prd =
3116 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3117 &ap->bmdma_prd_dma, GFP_KERNEL);
3118 if (!ap->bmdma_prd)
3119 return -ENOMEM;
3120 }
3121
3122 return 0;
3123}
3124EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3125
3126/**
3127 * ata_bmdma_port_start32 - Set port up for dma.
3128 * @ap: Port to initialize
3129 *
3130 * Called just after data structures for each port are
3131 * initialized. Enables 32bit PIO and allocates space for PRD
3132 * table.
3133 *
3134 * May be used as the port_start() entry in ata_port_operations for
3135 * devices that are capable of 32bit PIO.
3136 *
3137 * LOCKING:
3138 * Inherited from caller.
3139 */
3140int ata_bmdma_port_start32(struct ata_port *ap)
3141{
3142 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3143 return ata_bmdma_port_start(ap);
3144}
3145EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3146
3147#ifdef CONFIG_PCI
3148
3149/**
3150 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3151 * @pdev: PCI device
3152 *
3153 * Some PCI ATA devices report simplex mode but in fact can be told to
3154 * enter non simplex mode. This implements the necessary logic to
3155 * perform the task on such devices. Calling it on other devices will
3156 * have -undefined- behaviour.
3157 */
3158int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3159{
3160 unsigned long bmdma = pci_resource_start(pdev, 4);
3161 u8 simplex;
3162
3163 if (bmdma == 0)
3164 return -ENOENT;
3165
3166 simplex = inb(bmdma + 0x02);
3167 outb(simplex & 0x60, bmdma + 0x02);
3168 simplex = inb(bmdma + 0x02);
3169 if (simplex & 0x80)
3170 return -EOPNOTSUPP;
3171 return 0;
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3174
3175static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3176{
3177 int i;
3178
3179 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3180
3181 for (i = 0; i < 2; i++) {
3182 host->ports[i]->mwdma_mask = 0;
3183 host->ports[i]->udma_mask = 0;
3184 }
3185}
3186
3187/**
3188 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3189 * @host: target ATA host
3190 *
3191 * Acquire PCI BMDMA resources and initialize @host accordingly.
3192 *
3193 * LOCKING:
3194 * Inherited from calling layer (may sleep).
3195 */
3196void ata_pci_bmdma_init(struct ata_host *host)
3197{
3198 struct device *gdev = host->dev;
3199 struct pci_dev *pdev = to_pci_dev(gdev);
3200 int i, rc;
3201
3202 /* No BAR4 allocation: No DMA */
3203 if (pci_resource_start(pdev, 4) == 0) {
3204 ata_bmdma_nodma(host, "BAR4 is zero");
3205 return;
3206 }
3207
3208 /*
3209 * Some controllers require BMDMA region to be initialized
3210 * even if DMA is not in use to clear IRQ status via
3211 * ->sff_irq_clear method. Try to initialize bmdma_addr
3212 * regardless of dma masks.
3213 */
3214 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3215 if (rc)
3216 ata_bmdma_nodma(host, "failed to set dma mask");
3217 if (!rc) {
3218 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3219 if (rc)
3220 ata_bmdma_nodma(host,
3221 "failed to set consistent dma mask");
3222 }
3223
3224 /* request and iomap DMA region */
3225 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3226 if (rc) {
3227 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3228 return;
3229 }
3230 host->iomap = pcim_iomap_table(pdev);
3231
3232 for (i = 0; i < 2; i++) {
3233 struct ata_port *ap = host->ports[i];
3234 void __iomem *bmdma = host->iomap[4] + 8 * i;
3235
3236 if (ata_port_is_dummy(ap))
3237 continue;
3238
3239 ap->ioaddr.bmdma_addr = bmdma;
3240 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3241 (ioread8(bmdma + 2) & 0x80))
3242 host->flags |= ATA_HOST_SIMPLEX;
3243
3244 ata_port_desc(ap, "bmdma 0x%llx",
3245 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3246 }
3247}
3248EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3249
3250/**
3251 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3252 * @pdev: target PCI device
3253 * @ppi: array of port_info, must be enough for two ports
3254 * @r_host: out argument for the initialized ATA host
3255 *
3256 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3257 * resources and initialize it accordingly in one go.
3258 *
3259 * LOCKING:
3260 * Inherited from calling layer (may sleep).
3261 *
3262 * RETURNS:
3263 * 0 on success, -errno otherwise.
3264 */
3265int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3266 const struct ata_port_info * const * ppi,
3267 struct ata_host **r_host)
3268{
3269 int rc;
3270
3271 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3272 if (rc)
3273 return rc;
3274
3275 ata_pci_bmdma_init(*r_host);
3276 return 0;
3277}
3278EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3279
3280/**
3281 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3282 * @pdev: Controller to be initialized
3283 * @ppi: array of port_info, must be enough for two ports
3284 * @sht: scsi_host_template to use when registering the host
3285 * @host_priv: host private_data
3286 * @hflags: host flags
3287 *
3288 * This function is similar to ata_pci_sff_init_one() but also
3289 * takes care of BMDMA initialization.
3290 *
3291 * LOCKING:
3292 * Inherited from PCI layer (may sleep).
3293 *
3294 * RETURNS:
3295 * Zero on success, negative on errno-based value on error.
3296 */
3297int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3298 const struct ata_port_info * const * ppi,
3299 struct scsi_host_template *sht, void *host_priv,
3300 int hflags)
3301{
3302 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3303}
3304EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3305
3306#endif /* CONFIG_PCI */
3307#endif /* CONFIG_ATA_BMDMA */
3308
3309/**
3310 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3311 * @ap: Port to initialize
3312 *
3313 * Called on port allocation to initialize SFF/BMDMA specific
3314 * fields.
3315 *
3316 * LOCKING:
3317 * None.
3318 */
3319void ata_sff_port_init(struct ata_port *ap)
3320{
3321 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3322 ap->ctl = ATA_DEVCTL_OBS;
3323 ap->last_ctl = 0xFF;
3324}
3325
3326int __init ata_sff_init(void)
3327{
3328 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3329 if (!ata_sff_wq)
3330 return -ENOMEM;
3331
3332 return 0;
3333}
3334
3335void ata_sff_exit(void)
3336{
3337 destroy_workqueue(ata_sff_wq);
3338}