Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
 
 
 
 
   5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2006 Jeff Garzik
   7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
 
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/gfp.h>
  17#include <linux/pci.h>
  18#include <linux/module.h>
  19#include <linux/libata.h>
  20#include <linux/highmem.h>
  21#include <trace/events/libata.h>
  22#include "libata.h"
  23
  24static struct workqueue_struct *ata_sff_wq;
  25
  26const struct ata_port_operations ata_sff_port_ops = {
  27	.inherits		= &ata_base_port_ops,
  28
 
  29	.qc_issue		= ata_sff_qc_issue,
  30	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  31
  32	.freeze			= ata_sff_freeze,
  33	.thaw			= ata_sff_thaw,
  34	.prereset		= ata_sff_prereset,
  35	.softreset		= ata_sff_softreset,
  36	.hardreset		= sata_sff_hardreset,
  37	.postreset		= ata_sff_postreset,
  38	.error_handler		= ata_sff_error_handler,
  39
  40	.sff_dev_select		= ata_sff_dev_select,
  41	.sff_check_status	= ata_sff_check_status,
  42	.sff_tf_load		= ata_sff_tf_load,
  43	.sff_tf_read		= ata_sff_tf_read,
  44	.sff_exec_command	= ata_sff_exec_command,
  45	.sff_data_xfer		= ata_sff_data_xfer,
  46	.sff_drain_fifo		= ata_sff_drain_fifo,
  47
  48	.lost_interrupt		= ata_sff_lost_interrupt,
  49};
  50EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  51
  52/**
  53 *	ata_sff_check_status - Read device status reg & clear interrupt
  54 *	@ap: port where the device is
  55 *
  56 *	Reads ATA taskfile status register for currently-selected device
  57 *	and return its value. This also clears pending interrupts
  58 *      from this device
  59 *
  60 *	LOCKING:
  61 *	Inherited from caller.
  62 */
  63u8 ata_sff_check_status(struct ata_port *ap)
  64{
  65	return ioread8(ap->ioaddr.status_addr);
  66}
  67EXPORT_SYMBOL_GPL(ata_sff_check_status);
  68
  69/**
  70 *	ata_sff_altstatus - Read device alternate status reg
  71 *	@ap: port where the device is
  72 *	@status: pointer to a status value
  73 *
  74 *	Reads ATA alternate status register for currently-selected device
  75 *	and return its value.
  76 *
  77 *	RETURN:
  78 *	true if the register exists, false if not.
  79 *
  80 *	LOCKING:
  81 *	Inherited from caller.
  82 */
  83static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
  84{
  85	u8 tmp;
 
  86
  87	if (ap->ops->sff_check_altstatus) {
  88		tmp = ap->ops->sff_check_altstatus(ap);
  89		goto read;
  90	}
  91	if (ap->ioaddr.altstatus_addr) {
  92		tmp = ioread8(ap->ioaddr.altstatus_addr);
  93		goto read;
  94	}
  95	return false;
  96
  97read:
  98	if (status)
  99		*status = tmp;
 100	return true;
 101}
 102
 103/**
 104 *	ata_sff_irq_status - Check if the device is busy
 105 *	@ap: port where the device is
 106 *
 107 *	Determine if the port is currently busy. Uses altstatus
 108 *	if available in order to avoid clearing shared IRQ status
 109 *	when finding an IRQ source. Non ctl capable devices don't
 110 *	share interrupt lines fortunately for us.
 111 *
 112 *	LOCKING:
 113 *	Inherited from caller.
 114 */
 115static u8 ata_sff_irq_status(struct ata_port *ap)
 116{
 117	u8 status;
 118
 119	/* Not us: We are busy */
 120	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
 121		return status;
 
 
 
 122	/* Clear INTRQ latch */
 123	status = ap->ops->sff_check_status(ap);
 124	return status;
 125}
 126
 127/**
 128 *	ata_sff_sync - Flush writes
 129 *	@ap: Port to wait for.
 130 *
 131 *	CAUTION:
 132 *	If we have an mmio device with no ctl and no altstatus
 133 *	method this will fail. No such devices are known to exist.
 134 *
 135 *	LOCKING:
 136 *	Inherited from caller.
 137 */
 138
 139static void ata_sff_sync(struct ata_port *ap)
 140{
 141	ata_sff_altstatus(ap, NULL);
 
 
 
 142}
 143
 144/**
 145 *	ata_sff_pause		-	Flush writes and wait 400nS
 146 *	@ap: Port to pause for.
 147 *
 148 *	CAUTION:
 149 *	If we have an mmio device with no ctl and no altstatus
 150 *	method this will fail. No such devices are known to exist.
 151 *
 152 *	LOCKING:
 153 *	Inherited from caller.
 154 */
 155
 156void ata_sff_pause(struct ata_port *ap)
 157{
 158	ata_sff_sync(ap);
 159	ndelay(400);
 160}
 161EXPORT_SYMBOL_GPL(ata_sff_pause);
 162
 163/**
 164 *	ata_sff_dma_pause	-	Pause before commencing DMA
 165 *	@ap: Port to pause for.
 166 *
 167 *	Perform I/O fencing and ensure sufficient cycle delays occur
 168 *	for the HDMA1:0 transition
 169 */
 170
 171void ata_sff_dma_pause(struct ata_port *ap)
 172{
 173	/*
 174	 * An altstatus read will cause the needed delay without
 175	 * messing up the IRQ status
 176	 */
 177	if (ata_sff_altstatus(ap, NULL))
 178		return;
 
 179	/* There are no DMA controllers without ctl. BUG here to ensure
 180	   we never violate the HDMA1:0 transition timing and risk
 181	   corruption. */
 182	BUG();
 183}
 184EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186static int ata_sff_check_ready(struct ata_link *link)
 187{
 188	u8 status = link->ap->ops->sff_check_status(link->ap);
 189
 190	return ata_check_ready(status);
 191}
 192
 193/**
 194 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 195 *	@link: SFF link to wait ready status for
 196 *	@deadline: deadline jiffies for the operation
 197 *
 198 *	Sleep until ATA Status register bit BSY clears, or timeout
 199 *	occurs.
 200 *
 201 *	LOCKING:
 202 *	Kernel thread context (may sleep).
 203 *
 204 *	RETURNS:
 205 *	0 on success, -errno otherwise.
 206 */
 207int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 208{
 209	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 210}
 211EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 212
 213/**
 214 *	ata_sff_set_devctl - Write device control reg
 215 *	@ap: port where the device is
 216 *	@ctl: value to write
 217 *
 218 *	Writes ATA device control register.
 219 *
 220 *	RETURN:
 221 *	true if the register exists, false if not.
 222 *
 223 *	LOCKING:
 224 *	Inherited from caller.
 225 */
 226static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 227{
 228	if (ap->ops->sff_set_devctl) {
 229		ap->ops->sff_set_devctl(ap, ctl);
 230		return true;
 231	}
 232	if (ap->ioaddr.ctl_addr) {
 233		iowrite8(ctl, ap->ioaddr.ctl_addr);
 234		return true;
 235	}
 236
 237	return false;
 238}
 239
 240/**
 241 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 242 *	@ap: ATA channel to manipulate
 243 *	@device: ATA device (numbered from zero) to select
 244 *
 245 *	Use the method defined in the ATA specification to
 246 *	make either device 0, or device 1, active on the
 247 *	ATA channel.  Works with both PIO and MMIO.
 248 *
 249 *	May be used as the dev_select() entry in ata_port_operations.
 250 *
 251 *	LOCKING:
 252 *	caller.
 253 */
 254void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 255{
 256	u8 tmp;
 257
 258	if (device == 0)
 259		tmp = ATA_DEVICE_OBS;
 260	else
 261		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 262
 263	iowrite8(tmp, ap->ioaddr.device_addr);
 264	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 265}
 266EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 267
 268/**
 269 *	ata_dev_select - Select device 0/1 on ATA bus
 270 *	@ap: ATA channel to manipulate
 271 *	@device: ATA device (numbered from zero) to select
 272 *	@wait: non-zero to wait for Status register BSY bit to clear
 273 *	@can_sleep: non-zero if context allows sleeping
 274 *
 275 *	Use the method defined in the ATA specification to
 276 *	make either device 0, or device 1, active on the
 277 *	ATA channel.
 278 *
 279 *	This is a high-level version of ata_sff_dev_select(), which
 280 *	additionally provides the services of inserting the proper
 281 *	pauses and status polling, where needed.
 282 *
 283 *	LOCKING:
 284 *	caller.
 285 */
 286static void ata_dev_select(struct ata_port *ap, unsigned int device,
 287			   unsigned int wait, unsigned int can_sleep)
 288{
 
 
 
 
 289	if (wait)
 290		ata_wait_idle(ap);
 291
 292	ap->ops->sff_dev_select(ap, device);
 293
 294	if (wait) {
 295		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 296			ata_msleep(ap, 150);
 297		ata_wait_idle(ap);
 298	}
 299}
 300
 301/**
 302 *	ata_sff_irq_on - Enable interrupts on a port.
 303 *	@ap: Port on which interrupts are enabled.
 304 *
 305 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 306 *	wait for idle, clear any pending interrupts.
 307 *
 308 *	Note: may NOT be used as the sff_irq_on() entry in
 309 *	ata_port_operations.
 310 *
 311 *	LOCKING:
 312 *	Inherited from caller.
 313 */
 314void ata_sff_irq_on(struct ata_port *ap)
 315{
 
 
 316	if (ap->ops->sff_irq_on) {
 317		ap->ops->sff_irq_on(ap);
 318		return;
 319	}
 320
 321	ap->ctl &= ~ATA_NIEN;
 322	ap->last_ctl = ap->ctl;
 323
 324	ata_sff_set_devctl(ap, ap->ctl);
 
 325	ata_wait_idle(ap);
 326
 327	if (ap->ops->sff_irq_clear)
 328		ap->ops->sff_irq_clear(ap);
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 331
 332/**
 333 *	ata_sff_tf_load - send taskfile registers to host controller
 334 *	@ap: Port to which output is sent
 335 *	@tf: ATA taskfile register set
 336 *
 337 *	Outputs ATA taskfile to standard ATA host controller.
 338 *
 339 *	LOCKING:
 340 *	Inherited from caller.
 341 */
 342void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 343{
 344	struct ata_ioports *ioaddr = &ap->ioaddr;
 345	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 346
 347	if (tf->ctl != ap->last_ctl) {
 348		if (ioaddr->ctl_addr)
 349			iowrite8(tf->ctl, ioaddr->ctl_addr);
 350		ap->last_ctl = tf->ctl;
 351		ata_wait_idle(ap);
 352	}
 353
 354	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 355		WARN_ON_ONCE(!ioaddr->ctl_addr);
 356		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 357		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 358		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 359		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 360		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 361	}
 362
 363	if (is_addr) {
 364		iowrite8(tf->feature, ioaddr->feature_addr);
 365		iowrite8(tf->nsect, ioaddr->nsect_addr);
 366		iowrite8(tf->lbal, ioaddr->lbal_addr);
 367		iowrite8(tf->lbam, ioaddr->lbam_addr);
 368		iowrite8(tf->lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 369	}
 370
 371	if (tf->flags & ATA_TFLAG_DEVICE)
 372		iowrite8(tf->device, ioaddr->device_addr);
 
 
 373
 374	ata_wait_idle(ap);
 375}
 376EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 377
 378/**
 379 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 380 *	@ap: Port from which input is read
 381 *	@tf: ATA taskfile register set for storing input
 382 *
 383 *	Reads ATA taskfile registers for currently-selected device
 384 *	into @tf. Assumes the device has a fully SFF compliant task file
 385 *	layout and behaviour. If you device does not (eg has a different
 386 *	status method) then you will need to provide a replacement tf_read
 387 *
 388 *	LOCKING:
 389 *	Inherited from caller.
 390 */
 391void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 392{
 393	struct ata_ioports *ioaddr = &ap->ioaddr;
 394
 395	tf->status = ata_sff_check_status(ap);
 396	tf->error = ioread8(ioaddr->error_addr);
 397	tf->nsect = ioread8(ioaddr->nsect_addr);
 398	tf->lbal = ioread8(ioaddr->lbal_addr);
 399	tf->lbam = ioread8(ioaddr->lbam_addr);
 400	tf->lbah = ioread8(ioaddr->lbah_addr);
 401	tf->device = ioread8(ioaddr->device_addr);
 402
 403	if (tf->flags & ATA_TFLAG_LBA48) {
 404		if (likely(ioaddr->ctl_addr)) {
 405			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 406			tf->hob_feature = ioread8(ioaddr->error_addr);
 407			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 408			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 409			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 410			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 411			iowrite8(tf->ctl, ioaddr->ctl_addr);
 412			ap->last_ctl = tf->ctl;
 413		} else
 414			WARN_ON_ONCE(1);
 415	}
 416}
 417EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 418
 419/**
 420 *	ata_sff_exec_command - issue ATA command to host controller
 421 *	@ap: port to which command is being issued
 422 *	@tf: ATA taskfile register set
 423 *
 424 *	Issues ATA command, with proper synchronization with interrupt
 425 *	handler / other threads.
 426 *
 427 *	LOCKING:
 428 *	spin_lock_irqsave(host lock)
 429 */
 430void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 431{
 
 
 432	iowrite8(tf->command, ap->ioaddr.command_addr);
 433	ata_sff_pause(ap);
 434}
 435EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 436
 437/**
 438 *	ata_tf_to_host - issue ATA taskfile to host controller
 439 *	@ap: port to which command is being issued
 440 *	@tf: ATA taskfile register set
 441 *	@tag: tag of the associated command
 442 *
 443 *	Issues ATA taskfile register set to ATA host controller,
 444 *	with proper synchronization with interrupt handler and
 445 *	other threads.
 446 *
 447 *	LOCKING:
 448 *	spin_lock_irqsave(host lock)
 449 */
 450static inline void ata_tf_to_host(struct ata_port *ap,
 451				  const struct ata_taskfile *tf,
 452				  unsigned int tag)
 453{
 454	trace_ata_tf_load(ap, tf);
 455	ap->ops->sff_tf_load(ap, tf);
 456	trace_ata_exec_command(ap, tf, tag);
 457	ap->ops->sff_exec_command(ap, tf);
 458}
 459
 460/**
 461 *	ata_sff_data_xfer - Transfer data by PIO
 462 *	@qc: queued command
 463 *	@buf: data buffer
 464 *	@buflen: buffer length
 465 *	@rw: read/write
 466 *
 467 *	Transfer data from/to the device data register by PIO.
 468 *
 469 *	LOCKING:
 470 *	Inherited from caller.
 471 *
 472 *	RETURNS:
 473 *	Bytes consumed.
 474 */
 475unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 476			       unsigned int buflen, int rw)
 477{
 478	struct ata_port *ap = qc->dev->link->ap;
 479	void __iomem *data_addr = ap->ioaddr.data_addr;
 480	unsigned int words = buflen >> 1;
 481
 482	/* Transfer multiple of 2 bytes */
 483	if (rw == READ)
 484		ioread16_rep(data_addr, buf, words);
 485	else
 486		iowrite16_rep(data_addr, buf, words);
 487
 488	/* Transfer trailing byte, if any. */
 489	if (unlikely(buflen & 0x01)) {
 490		unsigned char pad[2] = { };
 491
 492		/* Point buf to the tail of buffer */
 493		buf += buflen - 1;
 494
 495		/*
 496		 * Use io*16_rep() accessors here as well to avoid pointlessly
 497		 * swapping bytes to and from on the big endian machines...
 498		 */
 499		if (rw == READ) {
 500			ioread16_rep(data_addr, pad, 1);
 501			*buf = pad[0];
 502		} else {
 503			pad[0] = *buf;
 504			iowrite16_rep(data_addr, pad, 1);
 505		}
 506		words++;
 507	}
 508
 509	return words << 1;
 510}
 511EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 512
 513/**
 514 *	ata_sff_data_xfer32 - Transfer data by PIO
 515 *	@qc: queued command
 516 *	@buf: data buffer
 517 *	@buflen: buffer length
 518 *	@rw: read/write
 519 *
 520 *	Transfer data from/to the device data register by PIO using 32bit
 521 *	I/O operations.
 522 *
 523 *	LOCKING:
 524 *	Inherited from caller.
 525 *
 526 *	RETURNS:
 527 *	Bytes consumed.
 528 */
 529
 530unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 531			       unsigned int buflen, int rw)
 532{
 533	struct ata_device *dev = qc->dev;
 534	struct ata_port *ap = dev->link->ap;
 535	void __iomem *data_addr = ap->ioaddr.data_addr;
 536	unsigned int words = buflen >> 2;
 537	int slop = buflen & 3;
 538
 539	if (!(ap->pflags & ATA_PFLAG_PIO32))
 540		return ata_sff_data_xfer(qc, buf, buflen, rw);
 541
 542	/* Transfer multiple of 4 bytes */
 543	if (rw == READ)
 544		ioread32_rep(data_addr, buf, words);
 545	else
 546		iowrite32_rep(data_addr, buf, words);
 547
 548	/* Transfer trailing bytes, if any */
 549	if (unlikely(slop)) {
 550		unsigned char pad[4] = { };
 551
 552		/* Point buf to the tail of buffer */
 553		buf += buflen - slop;
 554
 555		/*
 556		 * Use io*_rep() accessors here as well to avoid pointlessly
 557		 * swapping bytes to and from on the big endian machines...
 558		 */
 559		if (rw == READ) {
 560			if (slop < 3)
 561				ioread16_rep(data_addr, pad, 1);
 562			else
 563				ioread32_rep(data_addr, pad, 1);
 564			memcpy(buf, pad, slop);
 565		} else {
 566			memcpy(pad, buf, slop);
 567			if (slop < 3)
 568				iowrite16_rep(data_addr, pad, 1);
 569			else
 570				iowrite32_rep(data_addr, pad, 1);
 571		}
 572	}
 573	return (buflen + 1) & ~1;
 574}
 575EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 576
 577static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
 578		unsigned int offset, size_t xfer_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579{
 580	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 581	unsigned char *buf;
 582
 583	buf = kmap_atomic(page);
 584	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
 585	kunmap_atomic(buf);
 586
 587	if (!do_write && !PageSlab(page))
 588		flush_dcache_page(page);
 589}
 
 590
 591/**
 592 *	ata_pio_sector - Transfer a sector of data.
 593 *	@qc: Command on going
 594 *
 595 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 596 *
 597 *	LOCKING:
 598 *	Inherited from caller.
 599 */
 600static void ata_pio_sector(struct ata_queued_cmd *qc)
 601{
 
 602	struct ata_port *ap = qc->ap;
 603	struct page *page;
 604	unsigned int offset, count;
 
 605
 606	if (!qc->cursg) {
 607		qc->curbytes = qc->nbytes;
 608		return;
 609	}
 610	if (qc->curbytes == qc->nbytes - qc->sect_size)
 611		ap->hsm_task_state = HSM_ST_LAST;
 612
 613	page = sg_page(qc->cursg);
 614	offset = qc->cursg->offset + qc->cursg_ofs;
 615
 616	/* get the current page and offset */
 617	page = nth_page(page, (offset >> PAGE_SHIFT));
 618	offset %= PAGE_SIZE;
 619
 620	/* don't overrun current sg */
 621	count = min(qc->cursg->length - qc->cursg_ofs, qc->sect_size);
 622
 623	trace_ata_sff_pio_transfer_data(qc, offset, count);
 
 624
 625	/*
 626	 * Split the transfer when it splits a page boundary.  Note that the
 627	 * split still has to be dword aligned like all ATA data transfers.
 628	 */
 629	WARN_ON_ONCE(offset % 4);
 630	if (offset + count > PAGE_SIZE) {
 631		unsigned int split_len = PAGE_SIZE - offset;
 632
 633		ata_pio_xfer(qc, page, offset, split_len);
 634		ata_pio_xfer(qc, nth_page(page, 1), 0, count - split_len);
 635	} else {
 636		ata_pio_xfer(qc, page, offset, count);
 
 
 637	}
 638
 639	qc->curbytes += count;
 640	qc->cursg_ofs += count;
 
 
 
 641
 642	if (qc->cursg_ofs == qc->cursg->length) {
 643		qc->cursg = sg_next(qc->cursg);
 644		if (!qc->cursg)
 645			ap->hsm_task_state = HSM_ST_LAST;
 646		qc->cursg_ofs = 0;
 647	}
 648}
 649
 650/**
 651 *	ata_pio_sectors - Transfer one or many sectors.
 652 *	@qc: Command on going
 653 *
 654 *	Transfer one or many sectors of data from/to the
 655 *	ATA device for the DRQ request.
 656 *
 657 *	LOCKING:
 658 *	Inherited from caller.
 659 */
 660static void ata_pio_sectors(struct ata_queued_cmd *qc)
 661{
 662	if (is_multi_taskfile(&qc->tf)) {
 663		/* READ/WRITE MULTIPLE */
 664		unsigned int nsect;
 665
 666		WARN_ON_ONCE(qc->dev->multi_count == 0);
 667
 668		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 669			    qc->dev->multi_count);
 670		while (nsect--)
 671			ata_pio_sector(qc);
 672	} else
 673		ata_pio_sector(qc);
 674
 675	ata_sff_sync(qc->ap); /* flush */
 676}
 677
 678/**
 679 *	atapi_send_cdb - Write CDB bytes to hardware
 680 *	@ap: Port to which ATAPI device is attached.
 681 *	@qc: Taskfile currently active
 682 *
 683 *	When device has indicated its readiness to accept
 684 *	a CDB, this function is called.  Send the CDB.
 685 *
 686 *	LOCKING:
 687 *	caller.
 688 */
 689static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 690{
 691	/* send SCSI cdb */
 692	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
 693	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 694
 695	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 696	ata_sff_sync(ap);
 697	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 698	   or is bmdma_start guaranteed to do it ? */
 699	switch (qc->tf.protocol) {
 700	case ATAPI_PROT_PIO:
 701		ap->hsm_task_state = HSM_ST;
 702		break;
 703	case ATAPI_PROT_NODATA:
 704		ap->hsm_task_state = HSM_ST_LAST;
 705		break;
 706#ifdef CONFIG_ATA_BMDMA
 707	case ATAPI_PROT_DMA:
 708		ap->hsm_task_state = HSM_ST_LAST;
 709		/* initiate bmdma */
 710		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 711		ap->ops->bmdma_start(qc);
 712		break;
 713#endif /* CONFIG_ATA_BMDMA */
 714	default:
 715		BUG();
 716	}
 717}
 718
 719/**
 720 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 721 *	@qc: Command on going
 722 *	@bytes: number of bytes
 723 *
 724 *	Transfer data from/to the ATAPI device.
 725 *
 726 *	LOCKING:
 727 *	Inherited from caller.
 728 *
 729 */
 730static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 731{
 732	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 733	struct ata_port *ap = qc->ap;
 734	struct ata_device *dev = qc->dev;
 735	struct ata_eh_info *ehi = &dev->link->eh_info;
 736	struct scatterlist *sg;
 737	struct page *page;
 738	unsigned char *buf;
 739	unsigned int offset, count, consumed;
 740
 741next_sg:
 742	sg = qc->cursg;
 743	if (unlikely(!sg)) {
 744		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 745				  "buf=%u cur=%u bytes=%u",
 746				  qc->nbytes, qc->curbytes, bytes);
 747		return -1;
 748	}
 749
 750	page = sg_page(sg);
 751	offset = sg->offset + qc->cursg_ofs;
 752
 753	/* get the current page and offset */
 754	page = nth_page(page, (offset >> PAGE_SHIFT));
 755	offset %= PAGE_SIZE;
 756
 757	/* don't overrun current sg */
 758	count = min(sg->length - qc->cursg_ofs, bytes);
 759
 760	/* don't cross page boundaries */
 761	count = min(count, (unsigned int)PAGE_SIZE - offset);
 762
 763	trace_atapi_pio_transfer_data(qc, offset, count);
 764
 765	/* do the actual data transfer */
 766	buf = kmap_atomic(page);
 767	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 768	kunmap_atomic(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	bytes -= min(bytes, consumed);
 771	qc->curbytes += count;
 772	qc->cursg_ofs += count;
 773
 774	if (qc->cursg_ofs == sg->length) {
 775		qc->cursg = sg_next(qc->cursg);
 776		qc->cursg_ofs = 0;
 777	}
 778
 779	/*
 780	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 781	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 782	 * check correctly as it doesn't know if it is the last request being
 783	 * made. Somebody should implement a proper sanity check.
 784	 */
 785	if (bytes)
 786		goto next_sg;
 787	return 0;
 788}
 789
 790/**
 791 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 792 *	@qc: Command on going
 793 *
 794 *	Transfer Transfer data from/to the ATAPI device.
 795 *
 796 *	LOCKING:
 797 *	Inherited from caller.
 798 */
 799static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 800{
 801	struct ata_port *ap = qc->ap;
 802	struct ata_device *dev = qc->dev;
 803	struct ata_eh_info *ehi = &dev->link->eh_info;
 804	unsigned int ireason, bc_lo, bc_hi, bytes;
 805	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 806
 807	/* Abuse qc->result_tf for temp storage of intermediate TF
 808	 * here to save some kernel stack usage.
 809	 * For normal completion, qc->result_tf is not relevant. For
 810	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 811	 * So, the correctness of qc->result_tf is not affected.
 812	 */
 813	ap->ops->sff_tf_read(ap, &qc->result_tf);
 814	ireason = qc->result_tf.nsect;
 815	bc_lo = qc->result_tf.lbam;
 816	bc_hi = qc->result_tf.lbah;
 817	bytes = (bc_hi << 8) | bc_lo;
 818
 819	/* shall be cleared to zero, indicating xfer of data */
 820	if (unlikely(ireason & ATAPI_COD))
 821		goto atapi_check;
 822
 823	/* make sure transfer direction matches expected */
 824	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 825	if (unlikely(do_write != i_write))
 826		goto atapi_check;
 827
 828	if (unlikely(!bytes))
 829		goto atapi_check;
 830
 
 
 831	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 832		goto err_out;
 833	ata_sff_sync(ap); /* flush */
 834
 835	return;
 836
 837 atapi_check:
 838	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 839			  ireason, bytes);
 840 err_out:
 841	qc->err_mask |= AC_ERR_HSM;
 842	ap->hsm_task_state = HSM_ST_ERR;
 843}
 844
 845/**
 846 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 847 *	@ap: the target ata_port
 848 *	@qc: qc on going
 849 *
 850 *	RETURNS:
 851 *	1 if ok in workqueue, 0 otherwise.
 852 */
 853static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 854						struct ata_queued_cmd *qc)
 855{
 856	if (qc->tf.flags & ATA_TFLAG_POLLING)
 857		return 1;
 858
 859	if (ap->hsm_task_state == HSM_ST_FIRST) {
 860		if (qc->tf.protocol == ATA_PROT_PIO &&
 861		   (qc->tf.flags & ATA_TFLAG_WRITE))
 862		    return 1;
 863
 864		if (ata_is_atapi(qc->tf.protocol) &&
 865		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 866			return 1;
 867	}
 868
 869	return 0;
 870}
 871
 872/**
 873 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 874 *	@qc: Command to complete
 875 *	@in_wq: 1 if called from workqueue, 0 otherwise
 876 *
 877 *	Finish @qc which is running on standard HSM.
 878 *
 879 *	LOCKING:
 880 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 881 *	Otherwise, none on entry and grabs host lock.
 882 */
 883static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 884{
 885	struct ata_port *ap = qc->ap;
 886
 887	if (in_wq) {
 888		/* EH might have kicked in while host lock is released. */
 889		qc = ata_qc_from_tag(ap, qc->tag);
 890		if (qc) {
 891			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 892				ata_sff_irq_on(ap);
 
 
 
 
 
 
 
 
 
 893				ata_qc_complete(qc);
 894			} else
 895				ata_port_freeze(ap);
 896		}
 897	} else {
 898		if (likely(!(qc->err_mask & AC_ERR_HSM)))
 
 
 
 899			ata_qc_complete(qc);
 900		else
 901			ata_port_freeze(ap);
 902	}
 903}
 904
 905/**
 906 *	ata_sff_hsm_move - move the HSM to the next state.
 907 *	@ap: the target ata_port
 908 *	@qc: qc on going
 909 *	@status: current device status
 910 *	@in_wq: 1 if called from workqueue, 0 otherwise
 911 *
 912 *	RETURNS:
 913 *	1 when poll next status needed, 0 otherwise.
 914 */
 915int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 916		     u8 status, int in_wq)
 917{
 918	struct ata_link *link = qc->dev->link;
 919	struct ata_eh_info *ehi = &link->eh_info;
 920	int poll_next;
 921
 922	lockdep_assert_held(ap->lock);
 923
 924	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 925
 926	/* Make sure ata_sff_qc_issue() does not throw things
 927	 * like DMA polling into the workqueue. Notice that
 928	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 929	 */
 930	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 931
 932fsm_start:
 933	trace_ata_sff_hsm_state(qc, status);
 
 934
 935	switch (ap->hsm_task_state) {
 936	case HSM_ST_FIRST:
 937		/* Send first data block or PACKET CDB */
 938
 939		/* If polling, we will stay in the work queue after
 940		 * sending the data. Otherwise, interrupt handler
 941		 * takes over after sending the data.
 942		 */
 943		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 944
 945		/* check device status */
 946		if (unlikely((status & ATA_DRQ) == 0)) {
 947			/* handle BSY=0, DRQ=0 as error */
 948			if (likely(status & (ATA_ERR | ATA_DF)))
 949				/* device stops HSM for abort/error */
 950				qc->err_mask |= AC_ERR_DEV;
 951			else {
 952				/* HSM violation. Let EH handle this */
 953				ata_ehi_push_desc(ehi,
 954					"ST_FIRST: !(DRQ|ERR|DF)");
 955				qc->err_mask |= AC_ERR_HSM;
 956			}
 957
 958			ap->hsm_task_state = HSM_ST_ERR;
 959			goto fsm_start;
 960		}
 961
 962		/* Device should not ask for data transfer (DRQ=1)
 963		 * when it finds something wrong.
 964		 * We ignore DRQ here and stop the HSM by
 965		 * changing hsm_task_state to HSM_ST_ERR and
 966		 * let the EH abort the command or reset the device.
 967		 */
 968		if (unlikely(status & (ATA_ERR | ATA_DF))) {
 969			/* Some ATAPI tape drives forget to clear the ERR bit
 970			 * when doing the next command (mostly request sense).
 971			 * We ignore ERR here to workaround and proceed sending
 972			 * the CDB.
 973			 */
 974			if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) {
 975				ata_ehi_push_desc(ehi, "ST_FIRST: "
 976					"DRQ=1 with device error, "
 977					"dev_stat 0x%X", status);
 978				qc->err_mask |= AC_ERR_HSM;
 979				ap->hsm_task_state = HSM_ST_ERR;
 980				goto fsm_start;
 981			}
 982		}
 983
 984		if (qc->tf.protocol == ATA_PROT_PIO) {
 985			/* PIO data out protocol.
 986			 * send first data block.
 987			 */
 988
 989			/* ata_pio_sectors() might change the state
 990			 * to HSM_ST_LAST. so, the state is changed here
 991			 * before ata_pio_sectors().
 992			 */
 993			ap->hsm_task_state = HSM_ST;
 994			ata_pio_sectors(qc);
 995		} else
 996			/* send CDB */
 997			atapi_send_cdb(ap, qc);
 998
 999		/* if polling, ata_sff_pio_task() handles the rest.
1000		 * otherwise, interrupt handler takes over from here.
1001		 */
1002		break;
1003
1004	case HSM_ST:
1005		/* complete command or read/write the data register */
1006		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1007			/* ATAPI PIO protocol */
1008			if ((status & ATA_DRQ) == 0) {
1009				/* No more data to transfer or device error.
1010				 * Device error will be tagged in HSM_ST_LAST.
1011				 */
1012				ap->hsm_task_state = HSM_ST_LAST;
1013				goto fsm_start;
1014			}
1015
1016			/* Device should not ask for data transfer (DRQ=1)
1017			 * when it finds something wrong.
1018			 * We ignore DRQ here and stop the HSM by
1019			 * changing hsm_task_state to HSM_ST_ERR and
1020			 * let the EH abort the command or reset the device.
1021			 */
1022			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1023				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1024					"DRQ=1 with device error, "
1025					"dev_stat 0x%X", status);
1026				qc->err_mask |= AC_ERR_HSM;
1027				ap->hsm_task_state = HSM_ST_ERR;
1028				goto fsm_start;
1029			}
1030
1031			atapi_pio_bytes(qc);
1032
1033			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1034				/* bad ireason reported by device */
1035				goto fsm_start;
1036
1037		} else {
1038			/* ATA PIO protocol */
1039			if (unlikely((status & ATA_DRQ) == 0)) {
1040				/* handle BSY=0, DRQ=0 as error */
1041				if (likely(status & (ATA_ERR | ATA_DF))) {
1042					/* device stops HSM for abort/error */
1043					qc->err_mask |= AC_ERR_DEV;
1044
1045					/* If diagnostic failed and this is
1046					 * IDENTIFY, it's likely a phantom
1047					 * device.  Mark hint.
1048					 */
1049					if (qc->dev->quirks &
1050					    ATA_QUIRK_DIAGNOSTIC)
1051						qc->err_mask |=
1052							AC_ERR_NODEV_HINT;
1053				} else {
1054					/* HSM violation. Let EH handle this.
1055					 * Phantom devices also trigger this
1056					 * condition.  Mark hint.
1057					 */
1058					ata_ehi_push_desc(ehi, "ST-ATA: "
1059						"DRQ=0 without device error, "
1060						"dev_stat 0x%X", status);
1061					qc->err_mask |= AC_ERR_HSM |
1062							AC_ERR_NODEV_HINT;
1063				}
1064
1065				ap->hsm_task_state = HSM_ST_ERR;
1066				goto fsm_start;
1067			}
1068
1069			/* For PIO reads, some devices may ask for
1070			 * data transfer (DRQ=1) alone with ERR=1.
1071			 * We respect DRQ here and transfer one
1072			 * block of junk data before changing the
1073			 * hsm_task_state to HSM_ST_ERR.
1074			 *
1075			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1076			 * sense since the data block has been
1077			 * transferred to the device.
1078			 */
1079			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1080				/* data might be corrputed */
1081				qc->err_mask |= AC_ERR_DEV;
1082
1083				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1084					ata_pio_sectors(qc);
1085					status = ata_wait_idle(ap);
1086				}
1087
1088				if (status & (ATA_BUSY | ATA_DRQ)) {
1089					ata_ehi_push_desc(ehi, "ST-ATA: "
1090						"BUSY|DRQ persists on ERR|DF, "
1091						"dev_stat 0x%X", status);
1092					qc->err_mask |= AC_ERR_HSM;
1093				}
1094
1095				/* There are oddball controllers with
1096				 * status register stuck at 0x7f and
1097				 * lbal/m/h at zero which makes it
1098				 * pass all other presence detection
1099				 * mechanisms we have.  Set NODEV_HINT
1100				 * for it.  Kernel bz#7241.
1101				 */
1102				if (status == 0x7f)
1103					qc->err_mask |= AC_ERR_NODEV_HINT;
1104
1105				/* ata_pio_sectors() might change the
1106				 * state to HSM_ST_LAST. so, the state
1107				 * is changed after ata_pio_sectors().
1108				 */
1109				ap->hsm_task_state = HSM_ST_ERR;
1110				goto fsm_start;
1111			}
1112
1113			ata_pio_sectors(qc);
1114
1115			if (ap->hsm_task_state == HSM_ST_LAST &&
1116			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1117				/* all data read */
1118				status = ata_wait_idle(ap);
1119				goto fsm_start;
1120			}
1121		}
1122
1123		poll_next = 1;
1124		break;
1125
1126	case HSM_ST_LAST:
1127		if (unlikely(!ata_ok(status))) {
1128			qc->err_mask |= __ac_err_mask(status);
1129			ap->hsm_task_state = HSM_ST_ERR;
1130			goto fsm_start;
1131		}
1132
1133		/* no more data to transfer */
1134		trace_ata_sff_hsm_command_complete(qc, status);
 
1135
1136		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1137
1138		ap->hsm_task_state = HSM_ST_IDLE;
1139
1140		/* complete taskfile transaction */
1141		ata_hsm_qc_complete(qc, in_wq);
1142
1143		poll_next = 0;
1144		break;
1145
1146	case HSM_ST_ERR:
1147		ap->hsm_task_state = HSM_ST_IDLE;
1148
1149		/* complete taskfile transaction */
1150		ata_hsm_qc_complete(qc, in_wq);
1151
1152		poll_next = 0;
1153		break;
1154	default:
1155		poll_next = 0;
1156		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1157		     ap->print_id, ap->hsm_task_state);
1158	}
1159
1160	return poll_next;
1161}
1162EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1163
1164void ata_sff_queue_work(struct work_struct *work)
1165{
1166	queue_work(ata_sff_wq, work);
1167}
1168EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1169
1170void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1171{
1172	queue_delayed_work(ata_sff_wq, dwork, delay);
1173}
1174EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1175
1176void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1177{
1178	struct ata_port *ap = link->ap;
1179
1180	WARN_ON((ap->sff_pio_task_link != NULL) &&
1181		(ap->sff_pio_task_link != link));
1182	ap->sff_pio_task_link = link;
1183
1184	/* may fail if ata_sff_flush_pio_task() in progress */
1185	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1186}
1187EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1188
1189void ata_sff_flush_pio_task(struct ata_port *ap)
1190{
1191	trace_ata_sff_flush_pio_task(ap);
1192
1193	cancel_delayed_work_sync(&ap->sff_pio_task);
1194
1195	/*
1196	 * We wanna reset the HSM state to IDLE.  If we do so without
1197	 * grabbing the port lock, critical sections protected by it which
1198	 * expect the HSM state to stay stable may get surprised.  For
1199	 * example, we may set IDLE in between the time
1200	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1201	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1202	 */
1203	spin_lock_irq(ap->lock);
1204	ap->hsm_task_state = HSM_ST_IDLE;
1205	spin_unlock_irq(ap->lock);
1206
1207	ap->sff_pio_task_link = NULL;
 
 
 
1208}
1209
1210static void ata_sff_pio_task(struct work_struct *work)
1211{
1212	struct ata_port *ap =
1213		container_of(work, struct ata_port, sff_pio_task.work);
1214	struct ata_link *link = ap->sff_pio_task_link;
1215	struct ata_queued_cmd *qc;
1216	u8 status;
1217	int poll_next;
1218
1219	spin_lock_irq(ap->lock);
1220
1221	BUG_ON(ap->sff_pio_task_link == NULL);
1222	/* qc can be NULL if timeout occurred */
1223	qc = ata_qc_from_tag(ap, link->active_tag);
1224	if (!qc) {
1225		ap->sff_pio_task_link = NULL;
1226		goto out_unlock;
1227	}
1228
1229fsm_start:
1230	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1231
1232	/*
1233	 * This is purely heuristic.  This is a fast path.
1234	 * Sometimes when we enter, BSY will be cleared in
1235	 * a chk-status or two.  If not, the drive is probably seeking
1236	 * or something.  Snooze for a couple msecs, then
1237	 * chk-status again.  If still busy, queue delayed work.
1238	 */
1239	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1240	if (status & ATA_BUSY) {
1241		spin_unlock_irq(ap->lock);
1242		ata_msleep(ap, 2);
1243		spin_lock_irq(ap->lock);
1244
1245		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1246		if (status & ATA_BUSY) {
1247			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1248			goto out_unlock;
1249		}
1250	}
1251
1252	/*
1253	 * hsm_move() may trigger another command to be processed.
1254	 * clean the link beforehand.
1255	 */
1256	ap->sff_pio_task_link = NULL;
1257	/* move the HSM */
1258	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1259
1260	/* another command or interrupt handler
1261	 * may be running at this point.
1262	 */
1263	if (poll_next)
1264		goto fsm_start;
1265out_unlock:
1266	spin_unlock_irq(ap->lock);
1267}
1268
1269/**
1270 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1271 *	@qc: command to issue to device
1272 *
1273 *	This function issues a PIO or NODATA command to a SFF
1274 *	controller.
1275 *
1276 *	LOCKING:
1277 *	spin_lock_irqsave(host lock)
1278 *
1279 *	RETURNS:
1280 *	Zero on success, AC_ERR_* mask on failure
1281 */
1282unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1283{
1284	struct ata_port *ap = qc->ap;
1285	struct ata_link *link = qc->dev->link;
1286
1287	/* Use polling pio if the LLD doesn't handle
1288	 * interrupt driven pio and atapi CDB interrupt.
1289	 */
1290	if (ap->flags & ATA_FLAG_PIO_POLLING)
1291		qc->tf.flags |= ATA_TFLAG_POLLING;
1292
1293	/* select the device */
1294	ata_dev_select(ap, qc->dev->devno, 1, 0);
1295
1296	/* start the command */
1297	switch (qc->tf.protocol) {
1298	case ATA_PROT_NODATA:
1299		if (qc->tf.flags & ATA_TFLAG_POLLING)
1300			ata_qc_set_polling(qc);
1301
1302		ata_tf_to_host(ap, &qc->tf, qc->tag);
1303		ap->hsm_task_state = HSM_ST_LAST;
1304
1305		if (qc->tf.flags & ATA_TFLAG_POLLING)
1306			ata_sff_queue_pio_task(link, 0);
1307
1308		break;
1309
1310	case ATA_PROT_PIO:
1311		if (qc->tf.flags & ATA_TFLAG_POLLING)
1312			ata_qc_set_polling(qc);
1313
1314		ata_tf_to_host(ap, &qc->tf, qc->tag);
1315
1316		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1317			/* PIO data out protocol */
1318			ap->hsm_task_state = HSM_ST_FIRST;
1319			ata_sff_queue_pio_task(link, 0);
1320
1321			/* always send first data block using the
1322			 * ata_sff_pio_task() codepath.
1323			 */
1324		} else {
1325			/* PIO data in protocol */
1326			ap->hsm_task_state = HSM_ST;
1327
1328			if (qc->tf.flags & ATA_TFLAG_POLLING)
1329				ata_sff_queue_pio_task(link, 0);
1330
1331			/* if polling, ata_sff_pio_task() handles the
1332			 * rest.  otherwise, interrupt handler takes
1333			 * over from here.
1334			 */
1335		}
1336
1337		break;
1338
1339	case ATAPI_PROT_PIO:
1340	case ATAPI_PROT_NODATA:
1341		if (qc->tf.flags & ATA_TFLAG_POLLING)
1342			ata_qc_set_polling(qc);
1343
1344		ata_tf_to_host(ap, &qc->tf, qc->tag);
1345
1346		ap->hsm_task_state = HSM_ST_FIRST;
1347
1348		/* send cdb by polling if no cdb interrupt */
1349		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1350		    (qc->tf.flags & ATA_TFLAG_POLLING))
1351			ata_sff_queue_pio_task(link, 0);
1352		break;
1353
1354	default:
 
1355		return AC_ERR_SYSTEM;
1356	}
1357
1358	return 0;
1359}
1360EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1361
1362/**
1363 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1364 *	@qc: qc to fill result TF for
1365 *
1366 *	@qc is finished and result TF needs to be filled.  Fill it
1367 *	using ->sff_tf_read.
1368 *
1369 *	LOCKING:
1370 *	spin_lock_irqsave(host lock)
 
 
 
1371 */
1372void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1373{
1374	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
 
1375}
1376EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1377
1378static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1379{
1380	ap->stats.idle_irq++;
1381
1382#ifdef ATA_IRQ_TRAP
1383	if ((ap->stats.idle_irq % 1000) == 0) {
1384		ap->ops->sff_check_status(ap);
1385		if (ap->ops->sff_irq_clear)
1386			ap->ops->sff_irq_clear(ap);
1387		ata_port_warn(ap, "irq trap\n");
1388		return 1;
1389	}
1390#endif
1391	return 0;	/* irq not handled */
1392}
1393
1394static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1395					struct ata_queued_cmd *qc,
1396					bool hsmv_on_idle)
1397{
1398	u8 status;
1399
1400	trace_ata_sff_port_intr(qc, hsmv_on_idle);
 
1401
1402	/* Check whether we are expecting interrupt in this state */
1403	switch (ap->hsm_task_state) {
1404	case HSM_ST_FIRST:
1405		/* Some pre-ATAPI-4 devices assert INTRQ
1406		 * at this state when ready to receive CDB.
1407		 */
1408
1409		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1410		 * The flag was turned on only for atapi devices.  No
1411		 * need to check ata_is_atapi(qc->tf.protocol) again.
1412		 */
1413		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1414			return ata_sff_idle_irq(ap);
1415		break;
1416	case HSM_ST_IDLE:
1417		return ata_sff_idle_irq(ap);
1418	default:
1419		break;
1420	}
1421
1422	/* check main status, clearing INTRQ if needed */
1423	status = ata_sff_irq_status(ap);
1424	if (status & ATA_BUSY) {
1425		if (hsmv_on_idle) {
1426			/* BMDMA engine is already stopped, we're screwed */
1427			qc->err_mask |= AC_ERR_HSM;
1428			ap->hsm_task_state = HSM_ST_ERR;
1429		} else
1430			return ata_sff_idle_irq(ap);
1431	}
1432
1433	/* clear irq events */
1434	if (ap->ops->sff_irq_clear)
1435		ap->ops->sff_irq_clear(ap);
1436
1437	ata_sff_hsm_move(ap, qc, status, 0);
1438
1439	return 1;	/* irq handled */
1440}
1441
1442/**
1443 *	ata_sff_port_intr - Handle SFF port interrupt
1444 *	@ap: Port on which interrupt arrived (possibly...)
1445 *	@qc: Taskfile currently active in engine
1446 *
1447 *	Handle port interrupt for given queued command.
1448 *
1449 *	LOCKING:
1450 *	spin_lock_irqsave(host lock)
1451 *
1452 *	RETURNS:
1453 *	One if interrupt was handled, zero if not (shared irq).
1454 */
1455unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1456{
1457	return __ata_sff_port_intr(ap, qc, false);
1458}
1459EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1460
1461static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1462	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1463{
1464	struct ata_host *host = dev_instance;
1465	bool retried = false;
1466	unsigned int i;
1467	unsigned int handled, idle, polling;
1468	unsigned long flags;
1469
1470	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1471	spin_lock_irqsave(&host->lock, flags);
1472
1473retry:
1474	handled = idle = polling = 0;
1475	for (i = 0; i < host->n_ports; i++) {
1476		struct ata_port *ap = host->ports[i];
1477		struct ata_queued_cmd *qc;
1478
1479		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1480		if (qc) {
1481			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1482				handled |= port_intr(ap, qc);
1483			else
1484				polling |= 1 << i;
1485		} else
1486			idle |= 1 << i;
1487	}
1488
1489	/*
1490	 * If no port was expecting IRQ but the controller is actually
1491	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1492	 * pending status if available and clear spurious IRQ.
1493	 */
1494	if (!handled && !retried) {
1495		bool retry = false;
1496
1497		for (i = 0; i < host->n_ports; i++) {
1498			struct ata_port *ap = host->ports[i];
1499
1500			if (polling & (1 << i))
1501				continue;
1502
1503			if (!ap->ops->sff_irq_check ||
1504			    !ap->ops->sff_irq_check(ap))
1505				continue;
1506
1507			if (idle & (1 << i)) {
1508				ap->ops->sff_check_status(ap);
1509				if (ap->ops->sff_irq_clear)
1510					ap->ops->sff_irq_clear(ap);
1511			} else {
1512				/* clear INTRQ and check if BUSY cleared */
1513				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1514					retry |= true;
1515				/*
1516				 * With command in flight, we can't do
1517				 * sff_irq_clear() w/o racing with completion.
1518				 */
1519			}
1520		}
1521
1522		if (retry) {
1523			retried = true;
1524			goto retry;
1525		}
1526	}
1527
1528	spin_unlock_irqrestore(&host->lock, flags);
1529
1530	return IRQ_RETVAL(handled);
1531}
1532
1533/**
1534 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1535 *	@irq: irq line (unused)
1536 *	@dev_instance: pointer to our ata_host information structure
1537 *
1538 *	Default interrupt handler for PCI IDE devices.  Calls
1539 *	ata_sff_port_intr() for each port that is not disabled.
1540 *
1541 *	LOCKING:
1542 *	Obtains host lock during operation.
1543 *
1544 *	RETURNS:
1545 *	IRQ_NONE or IRQ_HANDLED.
1546 */
1547irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1548{
1549	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1550}
1551EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1552
1553/**
1554 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1555 *	@ap: port that appears to have timed out
1556 *
1557 *	Called from the libata error handlers when the core code suspects
1558 *	an interrupt has been lost. If it has complete anything we can and
1559 *	then return. Interface must support altstatus for this faster
1560 *	recovery to occur.
1561 *
1562 *	Locking:
1563 *	Caller holds host lock
1564 */
1565
1566void ata_sff_lost_interrupt(struct ata_port *ap)
1567{
1568	u8 status = 0;
1569	struct ata_queued_cmd *qc;
1570
1571	/* Only one outstanding command per SFF channel */
1572	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1573	/* We cannot lose an interrupt on a non-existent or polled command */
1574	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1575		return;
1576	/* See if the controller thinks it is still busy - if so the command
1577	   isn't a lost IRQ but is still in progress */
1578	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1579		return;
1580	if (status & ATA_BUSY)
1581		return;
1582
1583	/* There was a command running, we are no longer busy and we have
1584	   no interrupt. */
1585	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
 
1586	/* Run the host interrupt logic as if the interrupt had not been
1587	   lost */
1588	ata_sff_port_intr(ap, qc);
1589}
1590EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1591
1592/**
1593 *	ata_sff_freeze - Freeze SFF controller port
1594 *	@ap: port to freeze
1595 *
1596 *	Freeze SFF controller port.
1597 *
1598 *	LOCKING:
1599 *	Inherited from caller.
1600 */
1601void ata_sff_freeze(struct ata_port *ap)
1602{
1603	ap->ctl |= ATA_NIEN;
1604	ap->last_ctl = ap->ctl;
1605
1606	ata_sff_set_devctl(ap, ap->ctl);
 
1607
1608	/* Under certain circumstances, some controllers raise IRQ on
1609	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1610	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1611	 */
1612	ap->ops->sff_check_status(ap);
1613
1614	if (ap->ops->sff_irq_clear)
1615		ap->ops->sff_irq_clear(ap);
1616}
1617EXPORT_SYMBOL_GPL(ata_sff_freeze);
1618
1619/**
1620 *	ata_sff_thaw - Thaw SFF controller port
1621 *	@ap: port to thaw
1622 *
1623 *	Thaw SFF controller port.
1624 *
1625 *	LOCKING:
1626 *	Inherited from caller.
1627 */
1628void ata_sff_thaw(struct ata_port *ap)
1629{
1630	/* clear & re-enable interrupts */
1631	ap->ops->sff_check_status(ap);
1632	if (ap->ops->sff_irq_clear)
1633		ap->ops->sff_irq_clear(ap);
1634	ata_sff_irq_on(ap);
1635}
1636EXPORT_SYMBOL_GPL(ata_sff_thaw);
1637
1638/**
1639 *	ata_sff_prereset - prepare SFF link for reset
1640 *	@link: SFF link to be reset
1641 *	@deadline: deadline jiffies for the operation
1642 *
1643 *	SFF link @link is about to be reset.  Initialize it.  It first
1644 *	calls ata_std_prereset() and wait for !BSY if the port is
1645 *	being softreset.
1646 *
1647 *	LOCKING:
1648 *	Kernel thread context (may sleep)
1649 *
1650 *	RETURNS:
1651 *	Always 0.
1652 */
1653int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1654{
1655	struct ata_eh_context *ehc = &link->eh_context;
1656	int rc;
1657
1658	/* The standard prereset is best-effort and always returns 0 */
1659	ata_std_prereset(link, deadline);
 
1660
1661	/* if we're about to do hardreset, nothing more to do */
1662	if (ehc->i.action & ATA_EH_HARDRESET)
1663		return 0;
1664
1665	/* wait for !BSY if we don't know that no device is attached */
1666	if (!ata_link_offline(link)) {
1667		rc = ata_sff_wait_ready(link, deadline);
1668		if (rc && rc != -ENODEV) {
1669			ata_link_warn(link,
1670				      "device not ready (errno=%d), forcing hardreset\n",
1671				      rc);
1672			ehc->i.action |= ATA_EH_HARDRESET;
1673		}
1674	}
1675
1676	return 0;
1677}
1678EXPORT_SYMBOL_GPL(ata_sff_prereset);
1679
1680/**
1681 *	ata_devchk - PATA device presence detection
1682 *	@ap: ATA channel to examine
1683 *	@device: Device to examine (starting at zero)
1684 *
1685 *	This technique was originally described in
1686 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1687 *	later found its way into the ATA/ATAPI spec.
1688 *
1689 *	Write a pattern to the ATA shadow registers,
1690 *	and if a device is present, it will respond by
1691 *	correctly storing and echoing back the
1692 *	ATA shadow register contents.
1693 *
1694 *	RETURN:
1695 *	true if device is present, false if not.
1696 *
1697 *	LOCKING:
1698 *	caller.
1699 */
1700static bool ata_devchk(struct ata_port *ap, unsigned int device)
1701{
1702	struct ata_ioports *ioaddr = &ap->ioaddr;
1703	u8 nsect, lbal;
1704
1705	ap->ops->sff_dev_select(ap, device);
1706
1707	iowrite8(0x55, ioaddr->nsect_addr);
1708	iowrite8(0xaa, ioaddr->lbal_addr);
1709
1710	iowrite8(0xaa, ioaddr->nsect_addr);
1711	iowrite8(0x55, ioaddr->lbal_addr);
1712
1713	iowrite8(0x55, ioaddr->nsect_addr);
1714	iowrite8(0xaa, ioaddr->lbal_addr);
1715
1716	nsect = ioread8(ioaddr->nsect_addr);
1717	lbal = ioread8(ioaddr->lbal_addr);
1718
1719	if ((nsect == 0x55) && (lbal == 0xaa))
1720		return true;	/* we found a device */
1721
1722	return false;		/* nothing found */
1723}
1724
1725/**
1726 *	ata_sff_dev_classify - Parse returned ATA device signature
1727 *	@dev: ATA device to classify (starting at zero)
1728 *	@present: device seems present
1729 *	@r_err: Value of error register on completion
1730 *
1731 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1732 *	an ATA/ATAPI-defined set of values is placed in the ATA
1733 *	shadow registers, indicating the results of device detection
1734 *	and diagnostics.
1735 *
1736 *	Select the ATA device, and read the values from the ATA shadow
1737 *	registers.  Then parse according to the Error register value,
1738 *	and the spec-defined values examined by ata_dev_classify().
1739 *
1740 *	LOCKING:
1741 *	caller.
1742 *
1743 *	RETURNS:
1744 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1745 */
1746unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1747				  u8 *r_err)
1748{
1749	struct ata_port *ap = dev->link->ap;
1750	struct ata_taskfile tf;
1751	unsigned int class;
1752	u8 err;
1753
1754	ap->ops->sff_dev_select(ap, dev->devno);
1755
1756	memset(&tf, 0, sizeof(tf));
1757
1758	ap->ops->sff_tf_read(ap, &tf);
1759	err = tf.error;
1760	if (r_err)
1761		*r_err = err;
1762
1763	/* see if device passed diags: continue and warn later */
1764	if (err == 0)
1765		/* diagnostic fail : do nothing _YET_ */
1766		dev->quirks |= ATA_QUIRK_DIAGNOSTIC;
1767	else if (err == 1)
1768		/* do nothing */ ;
1769	else if ((dev->devno == 0) && (err == 0x81))
1770		/* do nothing */ ;
1771	else
1772		return ATA_DEV_NONE;
1773
1774	/* determine if device is ATA or ATAPI */
1775	class = ata_port_classify(ap, &tf);
1776	switch (class) {
1777	case ATA_DEV_UNKNOWN:
1778		/*
1779		 * If the device failed diagnostic, it's likely to
1780		 * have reported incorrect device signature too.
1781		 * Assume ATA device if the device seems present but
1782		 * device signature is invalid with diagnostic
1783		 * failure.
1784		 */
1785		if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC))
1786			class = ATA_DEV_ATA;
1787		else
1788			class = ATA_DEV_NONE;
1789		break;
1790	case ATA_DEV_ATA:
1791		if (ap->ops->sff_check_status(ap) == 0)
1792			class = ATA_DEV_NONE;
1793		break;
1794	}
1795	return class;
1796}
1797EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1798
1799/**
1800 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1801 *	@link: SFF link which is just reset
1802 *	@devmask: mask of present devices
1803 *	@deadline: deadline jiffies for the operation
1804 *
1805 *	Wait devices attached to SFF @link to become ready after
1806 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1807 *	status register too early.
1808 *
1809 *	LOCKING:
1810 *	Kernel thread context (may sleep).
1811 *
1812 *	RETURNS:
1813 *	0 on success, -ENODEV if some or all of devices in @devmask
1814 *	don't seem to exist.  -errno on other errors.
1815 */
1816int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1817			     unsigned long deadline)
1818{
1819	struct ata_port *ap = link->ap;
1820	struct ata_ioports *ioaddr = &ap->ioaddr;
1821	unsigned int dev0 = devmask & (1 << 0);
1822	unsigned int dev1 = devmask & (1 << 1);
1823	int rc, ret = 0;
1824
1825	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1826
1827	/* always check readiness of the master device */
1828	rc = ata_sff_wait_ready(link, deadline);
1829	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1830	 * and TF status is 0xff, bail out on it too.
1831	 */
1832	if (rc)
1833		return rc;
1834
1835	/* if device 1 was found in ata_devchk, wait for register
1836	 * access briefly, then wait for BSY to clear.
1837	 */
1838	if (dev1) {
1839		int i;
1840
1841		ap->ops->sff_dev_select(ap, 1);
1842
1843		/* Wait for register access.  Some ATAPI devices fail
1844		 * to set nsect/lbal after reset, so don't waste too
1845		 * much time on it.  We're gonna wait for !BSY anyway.
1846		 */
1847		for (i = 0; i < 2; i++) {
1848			u8 nsect, lbal;
1849
1850			nsect = ioread8(ioaddr->nsect_addr);
1851			lbal = ioread8(ioaddr->lbal_addr);
1852			if ((nsect == 1) && (lbal == 1))
1853				break;
1854			ata_msleep(ap, 50);	/* give drive a breather */
1855		}
1856
1857		rc = ata_sff_wait_ready(link, deadline);
1858		if (rc) {
1859			if (rc != -ENODEV)
1860				return rc;
1861			ret = rc;
1862		}
1863	}
1864
1865	/* is all this really necessary? */
1866	ap->ops->sff_dev_select(ap, 0);
1867	if (dev1)
1868		ap->ops->sff_dev_select(ap, 1);
1869	if (dev0)
1870		ap->ops->sff_dev_select(ap, 0);
1871
1872	return ret;
1873}
1874EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1875
1876static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1877			     unsigned long deadline)
1878{
1879	struct ata_ioports *ioaddr = &ap->ioaddr;
1880
 
 
1881	if (ap->ioaddr.ctl_addr) {
1882		/* software reset.  causes dev0 to be selected */
1883		iowrite8(ap->ctl, ioaddr->ctl_addr);
1884		udelay(20);	/* FIXME: flush */
1885		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1886		udelay(20);	/* FIXME: flush */
1887		iowrite8(ap->ctl, ioaddr->ctl_addr);
1888		ap->last_ctl = ap->ctl;
1889	}
1890
1891	/* wait the port to become ready */
1892	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1893}
1894
1895/**
1896 *	ata_sff_softreset - reset host port via ATA SRST
1897 *	@link: ATA link to reset
1898 *	@classes: resulting classes of attached devices
1899 *	@deadline: deadline jiffies for the operation
1900 *
1901 *	Reset host port using ATA SRST.
1902 *
1903 *	LOCKING:
1904 *	Kernel thread context (may sleep)
1905 *
1906 *	RETURNS:
1907 *	0 on success, -errno otherwise.
1908 */
1909int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1910		      unsigned long deadline)
1911{
1912	struct ata_port *ap = link->ap;
1913	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1914	unsigned int devmask = 0;
1915	int rc;
1916	u8 err;
1917
 
 
1918	/* determine if device 0/1 are present */
1919	if (ata_devchk(ap, 0))
1920		devmask |= (1 << 0);
1921	if (slave_possible && ata_devchk(ap, 1))
1922		devmask |= (1 << 1);
1923
1924	/* select device 0 again */
1925	ap->ops->sff_dev_select(ap, 0);
1926
1927	/* issue bus reset */
 
1928	rc = ata_bus_softreset(ap, devmask, deadline);
1929	/* if link is occupied, -ENODEV too is an error */
1930	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1931		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1932		return rc;
1933	}
1934
1935	/* determine by signature whether we have ATA or ATAPI devices */
1936	classes[0] = ata_sff_dev_classify(&link->device[0],
1937					  devmask & (1 << 0), &err);
1938	if (slave_possible && err != 0x81)
1939		classes[1] = ata_sff_dev_classify(&link->device[1],
1940						  devmask & (1 << 1), &err);
1941
 
1942	return 0;
1943}
1944EXPORT_SYMBOL_GPL(ata_sff_softreset);
1945
1946/**
1947 *	sata_sff_hardreset - reset host port via SATA phy reset
1948 *	@link: link to reset
1949 *	@class: resulting class of attached device
1950 *	@deadline: deadline jiffies for the operation
1951 *
1952 *	SATA phy-reset host port using DET bits of SControl register,
1953 *	wait for !BSY and classify the attached device.
1954 *
1955 *	LOCKING:
1956 *	Kernel thread context (may sleep)
1957 *
1958 *	RETURNS:
1959 *	0 on success, -errno otherwise.
1960 */
1961int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1962		       unsigned long deadline)
1963{
1964	struct ata_eh_context *ehc = &link->eh_context;
1965	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1966	bool online;
1967	int rc;
1968
1969	rc = sata_link_hardreset(link, timing, deadline, &online,
1970				 ata_sff_check_ready);
1971	if (online)
1972		*class = ata_sff_dev_classify(link->device, 1, NULL);
1973
 
1974	return rc;
1975}
1976EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1977
1978/**
1979 *	ata_sff_postreset - SFF postreset callback
1980 *	@link: the target SFF ata_link
1981 *	@classes: classes of attached devices
1982 *
1983 *	This function is invoked after a successful reset.  It first
1984 *	calls ata_std_postreset() and performs SFF specific postreset
1985 *	processing.
1986 *
1987 *	LOCKING:
1988 *	Kernel thread context (may sleep)
1989 */
1990void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1991{
1992	struct ata_port *ap = link->ap;
1993
1994	ata_std_postreset(link, classes);
1995
1996	/* is double-select really necessary? */
1997	if (classes[0] != ATA_DEV_NONE)
1998		ap->ops->sff_dev_select(ap, 1);
1999	if (classes[1] != ATA_DEV_NONE)
2000		ap->ops->sff_dev_select(ap, 0);
2001
2002	/* bail out if no device is present */
2003	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
 
2004		return;
 
2005
2006	/* set up device control */
2007	if (ata_sff_set_devctl(ap, ap->ctl))
 
2008		ap->last_ctl = ap->ctl;
 
2009}
2010EXPORT_SYMBOL_GPL(ata_sff_postreset);
2011
2012/**
2013 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2014 *	@qc: command
2015 *
2016 *	Drain the FIFO and device of any stuck data following a command
2017 *	failing to complete. In some cases this is necessary before a
2018 *	reset will recover the device.
2019 *
2020 */
2021
2022void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2023{
2024	int count;
2025	struct ata_port *ap;
2026
2027	/* We only need to flush incoming data when a command was running */
2028	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2029		return;
2030
2031	ap = qc->ap;
2032	/* Drain up to 64K of data before we give up this recovery method */
2033	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2034						&& count < 65536; count += 2)
2035		ioread16(ap->ioaddr.data_addr);
2036
 
2037	if (count)
2038		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2039
2040}
2041EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2042
2043/**
2044 *	ata_sff_error_handler - Stock error handler for SFF controller
2045 *	@ap: port to handle error for
2046 *
2047 *	Stock error handler for SFF controller.  It can handle both
2048 *	PATA and SATA controllers.  Many controllers should be able to
2049 *	use this EH as-is or with some added handling before and
2050 *	after.
2051 *
2052 *	LOCKING:
2053 *	Kernel thread context (may sleep)
2054 */
2055void ata_sff_error_handler(struct ata_port *ap)
2056{
2057	ata_reset_fn_t softreset = ap->ops->softreset;
2058	ata_reset_fn_t hardreset = ap->ops->hardreset;
2059	struct ata_queued_cmd *qc;
2060	unsigned long flags;
2061
2062	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2063	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2064		qc = NULL;
2065
2066	spin_lock_irqsave(ap->lock, flags);
2067
2068	/*
2069	 * We *MUST* do FIFO draining before we issue a reset as
2070	 * several devices helpfully clear their internal state and
2071	 * will lock solid if we touch the data port post reset. Pass
2072	 * qc in case anyone wants to do different PIO/DMA recovery or
2073	 * has per command fixups
2074	 */
2075	if (ap->ops->sff_drain_fifo)
2076		ap->ops->sff_drain_fifo(qc);
2077
2078	spin_unlock_irqrestore(ap->lock, flags);
2079
2080	/* ignore built-in hardresets if SCR access is not available */
2081	if ((hardreset == sata_std_hardreset ||
2082	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2083		hardreset = NULL;
2084
2085	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2086		  ap->ops->postreset);
2087}
2088EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2089
2090/**
2091 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2092 *	@ioaddr: IO address structure to be initialized
2093 *
2094 *	Utility function which initializes data_addr, error_addr,
2095 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2096 *	device_addr, status_addr, and command_addr to standard offsets
2097 *	relative to cmd_addr.
2098 *
2099 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2100 */
2101void ata_sff_std_ports(struct ata_ioports *ioaddr)
2102{
2103	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2104	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2105	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2106	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2107	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2108	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2109	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2110	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2111	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2112	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2113}
2114EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2115
2116#ifdef CONFIG_PCI
2117
2118static bool ata_resources_present(struct pci_dev *pdev, int port)
2119{
2120	int i;
2121
2122	/* Check the PCI resources for this channel are enabled */
2123	port *= 2;
2124	for (i = 0; i < 2; i++) {
2125		if (pci_resource_start(pdev, port + i) == 0 ||
2126		    pci_resource_len(pdev, port + i) == 0)
2127			return false;
2128	}
2129	return true;
2130}
2131
2132/**
2133 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2134 *	@host: target ATA host
2135 *
2136 *	Acquire native PCI ATA resources for @host and initialize the
2137 *	first two ports of @host accordingly.  Ports marked dummy are
2138 *	skipped and allocation failure makes the port dummy.
2139 *
2140 *	Note that native PCI resources are valid even for legacy hosts
2141 *	as we fix up pdev resources array early in boot, so this
2142 *	function can be used for both native and legacy SFF hosts.
2143 *
2144 *	LOCKING:
2145 *	Inherited from calling layer (may sleep).
2146 *
2147 *	RETURNS:
2148 *	0 if at least one port is initialized, -ENODEV if no port is
2149 *	available.
2150 */
2151int ata_pci_sff_init_host(struct ata_host *host)
2152{
2153	struct device *gdev = host->dev;
2154	struct pci_dev *pdev = to_pci_dev(gdev);
2155	unsigned int mask = 0;
2156	int i, rc;
2157
2158	/* request, iomap BARs and init port addresses accordingly */
2159	for (i = 0; i < 2; i++) {
2160		struct ata_port *ap = host->ports[i];
2161		int base = i * 2;
2162		void __iomem * const *iomap;
2163
2164		if (ata_port_is_dummy(ap))
2165			continue;
2166
2167		/* Discard disabled ports.  Some controllers show
2168		 * their unused channels this way.  Disabled ports are
2169		 * made dummy.
2170		 */
2171		if (!ata_resources_present(pdev, i)) {
2172			ap->ops = &ata_dummy_port_ops;
2173			continue;
2174		}
2175
2176		rc = pcim_iomap_regions(pdev, 0x3 << base,
2177					dev_driver_string(gdev));
2178		if (rc) {
2179			dev_warn(gdev,
2180				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2181				 i, rc);
2182			if (rc == -EBUSY)
2183				pcim_pin_device(pdev);
2184			ap->ops = &ata_dummy_port_ops;
2185			continue;
2186		}
2187		host->iomap = iomap = pcim_iomap_table(pdev);
2188
2189		ap->ioaddr.cmd_addr = iomap[base];
2190		ap->ioaddr.altstatus_addr =
2191		ap->ioaddr.ctl_addr = (void __iomem *)
2192			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2193		ata_sff_std_ports(&ap->ioaddr);
2194
2195		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2196			(unsigned long long)pci_resource_start(pdev, base),
2197			(unsigned long long)pci_resource_start(pdev, base + 1));
2198
2199		mask |= 1 << i;
2200	}
2201
2202	if (!mask) {
2203		dev_err(gdev, "no available native port\n");
2204		return -ENODEV;
2205	}
2206
2207	return 0;
2208}
2209EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2210
2211/**
2212 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2213 *	@pdev: target PCI device
2214 *	@ppi: array of port_info, must be enough for two ports
2215 *	@r_host: out argument for the initialized ATA host
2216 *
2217 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2218 *	all PCI resources and initialize it accordingly in one go.
2219 *
2220 *	LOCKING:
2221 *	Inherited from calling layer (may sleep).
2222 *
2223 *	RETURNS:
2224 *	0 on success, -errno otherwise.
2225 */
2226int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2227			     const struct ata_port_info * const *ppi,
2228			     struct ata_host **r_host)
2229{
2230	struct ata_host *host;
2231	int rc;
2232
2233	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2234		return -ENOMEM;
2235
2236	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2237	if (!host) {
2238		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2239		rc = -ENOMEM;
2240		goto err_out;
2241	}
2242
2243	rc = ata_pci_sff_init_host(host);
2244	if (rc)
2245		goto err_out;
2246
2247	devres_remove_group(&pdev->dev, NULL);
2248	*r_host = host;
2249	return 0;
2250
2251err_out:
2252	devres_release_group(&pdev->dev, NULL);
2253	return rc;
2254}
2255EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2256
2257/**
2258 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2259 *	@host: target SFF ATA host
2260 *	@irq_handler: irq_handler used when requesting IRQ(s)
2261 *	@sht: scsi_host_template to use when registering the host
2262 *
2263 *	This is the counterpart of ata_host_activate() for SFF ATA
2264 *	hosts.  This separate helper is necessary because SFF hosts
2265 *	use two separate interrupts in legacy mode.
2266 *
2267 *	LOCKING:
2268 *	Inherited from calling layer (may sleep).
2269 *
2270 *	RETURNS:
2271 *	0 on success, -errno otherwise.
2272 */
2273int ata_pci_sff_activate_host(struct ata_host *host,
2274			      irq_handler_t irq_handler,
2275			      const struct scsi_host_template *sht)
2276{
2277	struct device *dev = host->dev;
2278	struct pci_dev *pdev = to_pci_dev(dev);
2279	const char *drv_name = dev_driver_string(host->dev);
2280	int legacy_mode = 0, rc;
2281
2282	rc = ata_host_start(host);
2283	if (rc)
2284		return rc;
2285
2286	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2287		u8 tmp8, mask = 0;
2288
2289		/*
2290		 * ATA spec says we should use legacy mode when one
2291		 * port is in legacy mode, but disabled ports on some
2292		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2293		 * on which the secondary port is not wired, so
2294		 * ignore ports that are marked as 'dummy' during
2295		 * this check
2296		 */
2297		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2298		if (!ata_port_is_dummy(host->ports[0]))
2299			mask |= (1 << 0);
2300		if (!ata_port_is_dummy(host->ports[1]))
2301			mask |= (1 << 2);
2302		if ((tmp8 & mask) != mask)
2303			legacy_mode = 1;
2304	}
2305
2306	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2307		return -ENOMEM;
2308
2309	if (!legacy_mode && pdev->irq) {
2310		int i;
2311
2312		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2313				      IRQF_SHARED, drv_name, host);
2314		if (rc)
2315			goto out;
2316
2317		for (i = 0; i < 2; i++) {
2318			if (ata_port_is_dummy(host->ports[i]))
2319				continue;
2320			ata_port_desc_misc(host->ports[i], pdev->irq);
2321		}
2322	} else if (legacy_mode) {
2323		if (!ata_port_is_dummy(host->ports[0])) {
2324			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2325					      irq_handler, IRQF_SHARED,
2326					      drv_name, host);
2327			if (rc)
2328				goto out;
2329
2330			ata_port_desc_misc(host->ports[0],
2331					   ATA_PRIMARY_IRQ(pdev));
2332		}
2333
2334		if (!ata_port_is_dummy(host->ports[1])) {
2335			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2336					      irq_handler, IRQF_SHARED,
2337					      drv_name, host);
2338			if (rc)
2339				goto out;
2340
2341			ata_port_desc_misc(host->ports[1],
2342					   ATA_SECONDARY_IRQ(pdev));
2343		}
2344	}
2345
2346	rc = ata_host_register(host, sht);
2347out:
2348	if (rc == 0)
2349		devres_remove_group(dev, NULL);
2350	else
2351		devres_release_group(dev, NULL);
2352
2353	return rc;
2354}
2355EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2356
2357static const struct ata_port_info *ata_sff_find_valid_pi(
2358					const struct ata_port_info * const *ppi)
2359{
2360	int i;
2361
2362	/* look up the first valid port_info */
2363	for (i = 0; i < 2 && ppi[i]; i++)
2364		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2365			return ppi[i];
2366
2367	return NULL;
2368}
2369
2370static int ata_pci_init_one(struct pci_dev *pdev,
2371		const struct ata_port_info * const *ppi,
2372		const struct scsi_host_template *sht, void *host_priv,
2373		int hflags, bool bmdma)
2374{
2375	struct device *dev = &pdev->dev;
2376	const struct ata_port_info *pi;
2377	struct ata_host *host = NULL;
2378	int rc;
2379
 
 
2380	pi = ata_sff_find_valid_pi(ppi);
2381	if (!pi) {
2382		dev_err(&pdev->dev, "no valid port_info specified\n");
2383		return -EINVAL;
2384	}
2385
2386	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2387		return -ENOMEM;
2388
2389	rc = pcim_enable_device(pdev);
2390	if (rc)
2391		goto out;
2392
2393#ifdef CONFIG_ATA_BMDMA
2394	if (bmdma)
2395		/* prepare and activate BMDMA host */
2396		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2397	else
2398#endif
2399		/* prepare and activate SFF host */
2400		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2401	if (rc)
2402		goto out;
2403	host->private_data = host_priv;
2404	host->flags |= hflags;
2405
2406#ifdef CONFIG_ATA_BMDMA
2407	if (bmdma) {
2408		pci_set_master(pdev);
2409		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2410	} else
2411#endif
2412		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2413out:
2414	if (rc == 0)
2415		devres_remove_group(&pdev->dev, NULL);
2416	else
2417		devres_release_group(&pdev->dev, NULL);
2418
2419	return rc;
2420}
2421
2422/**
2423 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2424 *	@pdev: Controller to be initialized
2425 *	@ppi: array of port_info, must be enough for two ports
2426 *	@sht: scsi_host_template to use when registering the host
2427 *	@host_priv: host private_data
2428 *	@hflag: host flags
2429 *
2430 *	This is a helper function which can be called from a driver's
2431 *	xxx_init_one() probe function if the hardware uses traditional
2432 *	IDE taskfile registers and is PIO only.
2433 *
2434 *	ASSUMPTION:
2435 *	Nobody makes a single channel controller that appears solely as
2436 *	the secondary legacy port on PCI.
2437 *
2438 *	LOCKING:
2439 *	Inherited from PCI layer (may sleep).
2440 *
2441 *	RETURNS:
2442 *	Zero on success, negative on errno-based value on error.
2443 */
2444int ata_pci_sff_init_one(struct pci_dev *pdev,
2445		 const struct ata_port_info * const *ppi,
2446		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2447{
2448	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2449}
2450EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2451
2452#endif /* CONFIG_PCI */
2453
2454/*
2455 *	BMDMA support
2456 */
2457
2458#ifdef CONFIG_ATA_BMDMA
2459
2460const struct ata_port_operations ata_bmdma_port_ops = {
2461	.inherits		= &ata_sff_port_ops,
2462
2463	.error_handler		= ata_bmdma_error_handler,
2464	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2465
2466	.qc_prep		= ata_bmdma_qc_prep,
2467	.qc_issue		= ata_bmdma_qc_issue,
2468
2469	.sff_irq_clear		= ata_bmdma_irq_clear,
2470	.bmdma_setup		= ata_bmdma_setup,
2471	.bmdma_start		= ata_bmdma_start,
2472	.bmdma_stop		= ata_bmdma_stop,
2473	.bmdma_status		= ata_bmdma_status,
2474
2475	.port_start		= ata_bmdma_port_start,
2476};
2477EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2478
2479const struct ata_port_operations ata_bmdma32_port_ops = {
2480	.inherits		= &ata_bmdma_port_ops,
2481
2482	.sff_data_xfer		= ata_sff_data_xfer32,
2483	.port_start		= ata_bmdma_port_start32,
2484};
2485EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2486
2487/**
2488 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2489 *	@qc: Metadata associated with taskfile to be transferred
2490 *
2491 *	Fill PCI IDE PRD (scatter-gather) table with segments
2492 *	associated with the current disk command.
2493 *
2494 *	LOCKING:
2495 *	spin_lock_irqsave(host lock)
2496 *
2497 */
2498static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2499{
2500	struct ata_port *ap = qc->ap;
2501	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2502	struct scatterlist *sg;
2503	unsigned int si, pi;
2504
2505	pi = 0;
2506	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2507		u32 addr, offset;
2508		u32 sg_len, len;
2509
2510		/* determine if physical DMA addr spans 64K boundary.
2511		 * Note h/w doesn't support 64-bit, so we unconditionally
2512		 * truncate dma_addr_t to u32.
2513		 */
2514		addr = (u32) sg_dma_address(sg);
2515		sg_len = sg_dma_len(sg);
2516
2517		while (sg_len) {
2518			offset = addr & 0xffff;
2519			len = sg_len;
2520			if ((offset + sg_len) > 0x10000)
2521				len = 0x10000 - offset;
2522
2523			prd[pi].addr = cpu_to_le32(addr);
2524			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
 
2525
2526			pi++;
2527			sg_len -= len;
2528			addr += len;
2529		}
2530	}
2531
2532	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2533}
2534
2535/**
2536 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2537 *	@qc: Metadata associated with taskfile to be transferred
2538 *
2539 *	Fill PCI IDE PRD (scatter-gather) table with segments
2540 *	associated with the current disk command. Perform the fill
2541 *	so that we avoid writing any length 64K records for
2542 *	controllers that don't follow the spec.
2543 *
2544 *	LOCKING:
2545 *	spin_lock_irqsave(host lock)
2546 *
2547 */
2548static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2549{
2550	struct ata_port *ap = qc->ap;
2551	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2552	struct scatterlist *sg;
2553	unsigned int si, pi;
2554
2555	pi = 0;
2556	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2557		u32 addr, offset;
2558		u32 sg_len, len, blen;
2559
2560		/* determine if physical DMA addr spans 64K boundary.
2561		 * Note h/w doesn't support 64-bit, so we unconditionally
2562		 * truncate dma_addr_t to u32.
2563		 */
2564		addr = (u32) sg_dma_address(sg);
2565		sg_len = sg_dma_len(sg);
2566
2567		while (sg_len) {
2568			offset = addr & 0xffff;
2569			len = sg_len;
2570			if ((offset + sg_len) > 0x10000)
2571				len = 0x10000 - offset;
2572
2573			blen = len & 0xffff;
2574			prd[pi].addr = cpu_to_le32(addr);
2575			if (blen == 0) {
2576				/* Some PATA chipsets like the CS5530 can't
2577				   cope with 0x0000 meaning 64K as the spec
2578				   says */
2579				prd[pi].flags_len = cpu_to_le32(0x8000);
2580				blen = 0x8000;
2581				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2582			}
2583			prd[pi].flags_len = cpu_to_le32(blen);
 
2584
2585			pi++;
2586			sg_len -= len;
2587			addr += len;
2588		}
2589	}
2590
2591	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2592}
2593
2594/**
2595 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2596 *	@qc: Metadata associated with taskfile to be prepared
2597 *
2598 *	Prepare ATA taskfile for submission.
2599 *
2600 *	LOCKING:
2601 *	spin_lock_irqsave(host lock)
2602 */
2603enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2604{
2605	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2606		return AC_ERR_OK;
2607
2608	ata_bmdma_fill_sg(qc);
2609
2610	return AC_ERR_OK;
2611}
2612EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2613
2614/**
2615 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2616 *	@qc: Metadata associated with taskfile to be prepared
2617 *
2618 *	Prepare ATA taskfile for submission.
2619 *
2620 *	LOCKING:
2621 *	spin_lock_irqsave(host lock)
2622 */
2623enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2624{
2625	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2626		return AC_ERR_OK;
2627
2628	ata_bmdma_fill_sg_dumb(qc);
2629
2630	return AC_ERR_OK;
2631}
2632EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2633
2634/**
2635 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2636 *	@qc: command to issue to device
2637 *
2638 *	This function issues a PIO, NODATA or DMA command to a
2639 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2640 *	ata_sff_qc_issue().
2641 *
2642 *	LOCKING:
2643 *	spin_lock_irqsave(host lock)
2644 *
2645 *	RETURNS:
2646 *	Zero on success, AC_ERR_* mask on failure
2647 */
2648unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2649{
2650	struct ata_port *ap = qc->ap;
2651	struct ata_link *link = qc->dev->link;
2652
2653	/* defer PIO handling to sff_qc_issue */
2654	if (!ata_is_dma(qc->tf.protocol))
2655		return ata_sff_qc_issue(qc);
2656
2657	/* select the device */
2658	ata_dev_select(ap, qc->dev->devno, 1, 0);
2659
2660	/* start the command */
2661	switch (qc->tf.protocol) {
2662	case ATA_PROT_DMA:
2663		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2664
2665		trace_ata_tf_load(ap, &qc->tf);
2666		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2667		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2668		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2669		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2670		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2671		ap->hsm_task_state = HSM_ST_LAST;
2672		break;
2673
2674	case ATAPI_PROT_DMA:
2675		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2676
2677		trace_ata_tf_load(ap, &qc->tf);
2678		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2679		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2680		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2681		ap->hsm_task_state = HSM_ST_FIRST;
2682
2683		/* send cdb by polling if no cdb interrupt */
2684		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2685			ata_sff_queue_pio_task(link, 0);
2686		break;
2687
2688	default:
2689		WARN_ON(1);
2690		return AC_ERR_SYSTEM;
2691	}
2692
2693	return 0;
2694}
2695EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2696
2697/**
2698 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2699 *	@ap: Port on which interrupt arrived (possibly...)
2700 *	@qc: Taskfile currently active in engine
2701 *
2702 *	Handle port interrupt for given queued command.
2703 *
2704 *	LOCKING:
2705 *	spin_lock_irqsave(host lock)
2706 *
2707 *	RETURNS:
2708 *	One if interrupt was handled, zero if not (shared irq).
2709 */
2710unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2711{
2712	struct ata_eh_info *ehi = &ap->link.eh_info;
2713	u8 host_stat = 0;
2714	bool bmdma_stopped = false;
2715	unsigned int handled;
2716
2717	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2718		/* check status of DMA engine */
2719		host_stat = ap->ops->bmdma_status(ap);
2720		trace_ata_bmdma_status(ap, host_stat);
2721
2722		/* if it's not our irq... */
2723		if (!(host_stat & ATA_DMA_INTR))
2724			return ata_sff_idle_irq(ap);
2725
2726		/* before we do anything else, clear DMA-Start bit */
2727		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2728		ap->ops->bmdma_stop(qc);
2729		bmdma_stopped = true;
2730
2731		if (unlikely(host_stat & ATA_DMA_ERR)) {
2732			/* error when transferring data to/from memory */
2733			qc->err_mask |= AC_ERR_HOST_BUS;
2734			ap->hsm_task_state = HSM_ST_ERR;
2735		}
2736	}
2737
2738	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2739
2740	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2741		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2742
2743	return handled;
2744}
2745EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2746
2747/**
2748 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2749 *	@irq: irq line (unused)
2750 *	@dev_instance: pointer to our ata_host information structure
2751 *
2752 *	Default interrupt handler for PCI IDE devices.  Calls
2753 *	ata_bmdma_port_intr() for each port that is not disabled.
2754 *
2755 *	LOCKING:
2756 *	Obtains host lock during operation.
2757 *
2758 *	RETURNS:
2759 *	IRQ_NONE or IRQ_HANDLED.
2760 */
2761irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2762{
2763	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2766
2767/**
2768 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2769 *	@ap: port to handle error for
2770 *
2771 *	Stock error handler for BMDMA controller.  It can handle both
2772 *	PATA and SATA controllers.  Most BMDMA controllers should be
2773 *	able to use this EH as-is or with some added handling before
2774 *	and after.
2775 *
2776 *	LOCKING:
2777 *	Kernel thread context (may sleep)
2778 */
2779void ata_bmdma_error_handler(struct ata_port *ap)
2780{
2781	struct ata_queued_cmd *qc;
2782	unsigned long flags;
2783	bool thaw = false;
2784
2785	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2786	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2787		qc = NULL;
2788
2789	/* reset PIO HSM and stop DMA engine */
2790	spin_lock_irqsave(ap->lock, flags);
2791
2792	if (qc && ata_is_dma(qc->tf.protocol)) {
2793		u8 host_stat;
2794
2795		host_stat = ap->ops->bmdma_status(ap);
2796		trace_ata_bmdma_status(ap, host_stat);
2797
2798		/* BMDMA controllers indicate host bus error by
2799		 * setting DMA_ERR bit and timing out.  As it wasn't
2800		 * really a timeout event, adjust error mask and
2801		 * cancel frozen state.
2802		 */
2803		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2804			qc->err_mask = AC_ERR_HOST_BUS;
2805			thaw = true;
2806		}
2807
2808		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2809		ap->ops->bmdma_stop(qc);
2810
2811		/* if we're gonna thaw, make sure IRQ is clear */
2812		if (thaw) {
2813			ap->ops->sff_check_status(ap);
2814			if (ap->ops->sff_irq_clear)
2815				ap->ops->sff_irq_clear(ap);
2816		}
2817	}
2818
2819	spin_unlock_irqrestore(ap->lock, flags);
2820
2821	if (thaw)
2822		ata_eh_thaw_port(ap);
2823
2824	ata_sff_error_handler(ap);
2825}
2826EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2827
2828/**
2829 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2830 *	@qc: internal command to clean up
2831 *
2832 *	LOCKING:
2833 *	Kernel thread context (may sleep)
2834 */
2835void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2836{
2837	struct ata_port *ap = qc->ap;
2838	unsigned long flags;
2839
2840	if (ata_is_dma(qc->tf.protocol)) {
2841		spin_lock_irqsave(ap->lock, flags);
2842		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2843		ap->ops->bmdma_stop(qc);
2844		spin_unlock_irqrestore(ap->lock, flags);
2845	}
2846}
2847EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2848
2849/**
2850 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2851 *	@ap: Port associated with this ATA transaction.
2852 *
2853 *	Clear interrupt and error flags in DMA status register.
2854 *
2855 *	May be used as the irq_clear() entry in ata_port_operations.
2856 *
2857 *	LOCKING:
2858 *	spin_lock_irqsave(host lock)
2859 */
2860void ata_bmdma_irq_clear(struct ata_port *ap)
2861{
2862	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2863
2864	if (!mmio)
2865		return;
2866
2867	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2868}
2869EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2870
2871/**
2872 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2873 *	@qc: Info associated with this ATA transaction.
2874 *
2875 *	LOCKING:
2876 *	spin_lock_irqsave(host lock)
2877 */
2878void ata_bmdma_setup(struct ata_queued_cmd *qc)
2879{
2880	struct ata_port *ap = qc->ap;
2881	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2882	u8 dmactl;
2883
2884	/* load PRD table addr. */
2885	mb();	/* make sure PRD table writes are visible to controller */
2886	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2887
2888	/* specify data direction, triple-check start bit is clear */
2889	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2890	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2891	if (!rw)
2892		dmactl |= ATA_DMA_WR;
2893	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2894
2895	/* issue r/w command */
2896	ap->ops->sff_exec_command(ap, &qc->tf);
2897}
2898EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2899
2900/**
2901 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2902 *	@qc: Info associated with this ATA transaction.
2903 *
2904 *	LOCKING:
2905 *	spin_lock_irqsave(host lock)
2906 */
2907void ata_bmdma_start(struct ata_queued_cmd *qc)
2908{
2909	struct ata_port *ap = qc->ap;
2910	u8 dmactl;
2911
2912	/* start host DMA transaction */
2913	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2915
2916	/* Strictly, one may wish to issue an ioread8() here, to
2917	 * flush the mmio write.  However, control also passes
2918	 * to the hardware at this point, and it will interrupt
2919	 * us when we are to resume control.  So, in effect,
2920	 * we don't care when the mmio write flushes.
2921	 * Further, a read of the DMA status register _immediately_
2922	 * following the write may not be what certain flaky hardware
2923	 * is expected, so I think it is best to not add a readb()
2924	 * without first all the MMIO ATA cards/mobos.
2925	 * Or maybe I'm just being paranoid.
2926	 *
2927	 * FIXME: The posting of this write means I/O starts are
2928	 * unnecessarily delayed for MMIO
2929	 */
2930}
2931EXPORT_SYMBOL_GPL(ata_bmdma_start);
2932
2933/**
2934 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2935 *	@qc: Command we are ending DMA for
2936 *
2937 *	Clears the ATA_DMA_START flag in the dma control register
2938 *
2939 *	May be used as the bmdma_stop() entry in ata_port_operations.
2940 *
2941 *	LOCKING:
2942 *	spin_lock_irqsave(host lock)
2943 */
2944void ata_bmdma_stop(struct ata_queued_cmd *qc)
2945{
2946	struct ata_port *ap = qc->ap;
2947	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2948
2949	/* clear start/stop bit */
2950	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2951		 mmio + ATA_DMA_CMD);
2952
2953	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2954	ata_sff_dma_pause(ap);
2955}
2956EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2957
2958/**
2959 *	ata_bmdma_status - Read PCI IDE BMDMA status
2960 *	@ap: Port associated with this ATA transaction.
2961 *
2962 *	Read and return BMDMA status register.
2963 *
2964 *	May be used as the bmdma_status() entry in ata_port_operations.
2965 *
2966 *	LOCKING:
2967 *	spin_lock_irqsave(host lock)
2968 */
2969u8 ata_bmdma_status(struct ata_port *ap)
2970{
2971	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2972}
2973EXPORT_SYMBOL_GPL(ata_bmdma_status);
2974
2975
2976/**
2977 *	ata_bmdma_port_start - Set port up for bmdma.
2978 *	@ap: Port to initialize
2979 *
2980 *	Called just after data structures for each port are
2981 *	initialized.  Allocates space for PRD table.
2982 *
2983 *	May be used as the port_start() entry in ata_port_operations.
2984 *
2985 *	LOCKING:
2986 *	Inherited from caller.
2987 */
2988int ata_bmdma_port_start(struct ata_port *ap)
2989{
2990	if (ap->mwdma_mask || ap->udma_mask) {
2991		ap->bmdma_prd =
2992			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2993					    &ap->bmdma_prd_dma, GFP_KERNEL);
2994		if (!ap->bmdma_prd)
2995			return -ENOMEM;
2996	}
2997
2998	return 0;
2999}
3000EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3001
3002/**
3003 *	ata_bmdma_port_start32 - Set port up for dma.
3004 *	@ap: Port to initialize
3005 *
3006 *	Called just after data structures for each port are
3007 *	initialized.  Enables 32bit PIO and allocates space for PRD
3008 *	table.
3009 *
3010 *	May be used as the port_start() entry in ata_port_operations for
3011 *	devices that are capable of 32bit PIO.
3012 *
3013 *	LOCKING:
3014 *	Inherited from caller.
3015 */
3016int ata_bmdma_port_start32(struct ata_port *ap)
3017{
3018	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3019	return ata_bmdma_port_start(ap);
3020}
3021EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3022
3023#ifdef CONFIG_PCI
3024
3025/**
3026 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3027 *	@pdev: PCI device
3028 *
3029 *	Some PCI ATA devices report simplex mode but in fact can be told to
3030 *	enter non simplex mode. This implements the necessary logic to
3031 *	perform the task on such devices. Calling it on other devices will
3032 *	have -undefined- behaviour.
3033 */
3034int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3035{
3036#ifdef CONFIG_HAS_IOPORT
3037	unsigned long bmdma = pci_resource_start(pdev, 4);
3038	u8 simplex;
3039
3040	if (bmdma == 0)
3041		return -ENOENT;
3042
3043	simplex = inb(bmdma + 0x02);
3044	outb(simplex & 0x60, bmdma + 0x02);
3045	simplex = inb(bmdma + 0x02);
3046	if (simplex & 0x80)
3047		return -EOPNOTSUPP;
3048	return 0;
3049#else
3050	return -ENOENT;
3051#endif /* CONFIG_HAS_IOPORT */
3052}
3053EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3054
3055static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3056{
3057	int i;
3058
3059	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3060
3061	for (i = 0; i < 2; i++) {
3062		host->ports[i]->mwdma_mask = 0;
3063		host->ports[i]->udma_mask = 0;
3064	}
3065}
3066
3067/**
3068 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3069 *	@host: target ATA host
3070 *
3071 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3072 *
3073 *	LOCKING:
3074 *	Inherited from calling layer (may sleep).
3075 */
3076void ata_pci_bmdma_init(struct ata_host *host)
3077{
3078	struct device *gdev = host->dev;
3079	struct pci_dev *pdev = to_pci_dev(gdev);
3080	int i, rc;
3081
3082	/* No BAR4 allocation: No DMA */
3083	if (pci_resource_start(pdev, 4) == 0) {
3084		ata_bmdma_nodma(host, "BAR4 is zero");
3085		return;
3086	}
3087
3088	/*
3089	 * Some controllers require BMDMA region to be initialized
3090	 * even if DMA is not in use to clear IRQ status via
3091	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3092	 * regardless of dma masks.
3093	 */
3094	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3095	if (rc)
3096		ata_bmdma_nodma(host, "failed to set dma mask");
 
 
 
 
 
 
3097
3098	/* request and iomap DMA region */
3099	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3100	if (rc) {
3101		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3102		return;
3103	}
3104	host->iomap = pcim_iomap_table(pdev);
3105
3106	for (i = 0; i < 2; i++) {
3107		struct ata_port *ap = host->ports[i];
3108		void __iomem *bmdma = host->iomap[4] + 8 * i;
3109
3110		if (ata_port_is_dummy(ap))
3111			continue;
3112
3113		ap->ioaddr.bmdma_addr = bmdma;
3114		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3115		    (ioread8(bmdma + 2) & 0x80))
3116			host->flags |= ATA_HOST_SIMPLEX;
3117
3118		ata_port_desc(ap, "bmdma 0x%llx",
3119		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3120	}
3121}
3122EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3123
3124/**
3125 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3126 *	@pdev: target PCI device
3127 *	@ppi: array of port_info, must be enough for two ports
3128 *	@r_host: out argument for the initialized ATA host
3129 *
3130 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3131 *	resources and initialize it accordingly in one go.
3132 *
3133 *	LOCKING:
3134 *	Inherited from calling layer (may sleep).
3135 *
3136 *	RETURNS:
3137 *	0 on success, -errno otherwise.
3138 */
3139int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3140			       const struct ata_port_info * const * ppi,
3141			       struct ata_host **r_host)
3142{
3143	int rc;
3144
3145	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3146	if (rc)
3147		return rc;
3148
3149	ata_pci_bmdma_init(*r_host);
3150	return 0;
3151}
3152EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3153
3154/**
3155 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3156 *	@pdev: Controller to be initialized
3157 *	@ppi: array of port_info, must be enough for two ports
3158 *	@sht: scsi_host_template to use when registering the host
3159 *	@host_priv: host private_data
3160 *	@hflags: host flags
3161 *
3162 *	This function is similar to ata_pci_sff_init_one() but also
3163 *	takes care of BMDMA initialization.
3164 *
3165 *	LOCKING:
3166 *	Inherited from PCI layer (may sleep).
3167 *
3168 *	RETURNS:
3169 *	Zero on success, negative on errno-based value on error.
3170 */
3171int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3172			   const struct ata_port_info * const * ppi,
3173			   const struct scsi_host_template *sht, void *host_priv,
3174			   int hflags)
3175{
3176	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3177}
3178EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3179
3180#endif /* CONFIG_PCI */
3181#endif /* CONFIG_ATA_BMDMA */
3182
3183/**
3184 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3185 *	@ap: Port to initialize
3186 *
3187 *	Called on port allocation to initialize SFF/BMDMA specific
3188 *	fields.
3189 *
3190 *	LOCKING:
3191 *	None.
3192 */
3193void ata_sff_port_init(struct ata_port *ap)
3194{
3195	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3196	ap->ctl = ATA_DEVCTL_OBS;
3197	ap->last_ctl = 0xFF;
3198}
3199
3200int __init ata_sff_init(void)
3201{
3202	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3203	if (!ata_sff_wq)
3204		return -ENOMEM;
3205
3206	return 0;
3207}
3208
3209void ata_sff_exit(void)
3210{
3211	destroy_workqueue(ata_sff_wq);
3212}
v4.10.11
 
   1/*
   2 *  libata-sff.c - helper library for PCI IDE BMDMA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2006 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/gfp.h>
  37#include <linux/pci.h>
  38#include <linux/module.h>
  39#include <linux/libata.h>
  40#include <linux/highmem.h>
  41
  42#include "libata.h"
  43
  44static struct workqueue_struct *ata_sff_wq;
  45
  46const struct ata_port_operations ata_sff_port_ops = {
  47	.inherits		= &ata_base_port_ops,
  48
  49	.qc_prep		= ata_noop_qc_prep,
  50	.qc_issue		= ata_sff_qc_issue,
  51	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  52
  53	.freeze			= ata_sff_freeze,
  54	.thaw			= ata_sff_thaw,
  55	.prereset		= ata_sff_prereset,
  56	.softreset		= ata_sff_softreset,
  57	.hardreset		= sata_sff_hardreset,
  58	.postreset		= ata_sff_postreset,
  59	.error_handler		= ata_sff_error_handler,
  60
  61	.sff_dev_select		= ata_sff_dev_select,
  62	.sff_check_status	= ata_sff_check_status,
  63	.sff_tf_load		= ata_sff_tf_load,
  64	.sff_tf_read		= ata_sff_tf_read,
  65	.sff_exec_command	= ata_sff_exec_command,
  66	.sff_data_xfer		= ata_sff_data_xfer,
  67	.sff_drain_fifo		= ata_sff_drain_fifo,
  68
  69	.lost_interrupt		= ata_sff_lost_interrupt,
  70};
  71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  72
  73/**
  74 *	ata_sff_check_status - Read device status reg & clear interrupt
  75 *	@ap: port where the device is
  76 *
  77 *	Reads ATA taskfile status register for currently-selected device
  78 *	and return its value. This also clears pending interrupts
  79 *      from this device
  80 *
  81 *	LOCKING:
  82 *	Inherited from caller.
  83 */
  84u8 ata_sff_check_status(struct ata_port *ap)
  85{
  86	return ioread8(ap->ioaddr.status_addr);
  87}
  88EXPORT_SYMBOL_GPL(ata_sff_check_status);
  89
  90/**
  91 *	ata_sff_altstatus - Read device alternate status reg
  92 *	@ap: port where the device is
 
  93 *
  94 *	Reads ATA taskfile alternate status register for
  95 *	currently-selected device and return its value.
  96 *
  97 *	Note: may NOT be used as the check_altstatus() entry in
  98 *	ata_port_operations.
  99 *
 100 *	LOCKING:
 101 *	Inherited from caller.
 102 */
 103static u8 ata_sff_altstatus(struct ata_port *ap)
 104{
 105	if (ap->ops->sff_check_altstatus)
 106		return ap->ops->sff_check_altstatus(ap);
 107
 108	return ioread8(ap->ioaddr.altstatus_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 109}
 110
 111/**
 112 *	ata_sff_irq_status - Check if the device is busy
 113 *	@ap: port where the device is
 114 *
 115 *	Determine if the port is currently busy. Uses altstatus
 116 *	if available in order to avoid clearing shared IRQ status
 117 *	when finding an IRQ source. Non ctl capable devices don't
 118 *	share interrupt lines fortunately for us.
 119 *
 120 *	LOCKING:
 121 *	Inherited from caller.
 122 */
 123static u8 ata_sff_irq_status(struct ata_port *ap)
 124{
 125	u8 status;
 126
 127	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 128		status = ata_sff_altstatus(ap);
 129		/* Not us: We are busy */
 130		if (status & ATA_BUSY)
 131			return status;
 132	}
 133	/* Clear INTRQ latch */
 134	status = ap->ops->sff_check_status(ap);
 135	return status;
 136}
 137
 138/**
 139 *	ata_sff_sync - Flush writes
 140 *	@ap: Port to wait for.
 141 *
 142 *	CAUTION:
 143 *	If we have an mmio device with no ctl and no altstatus
 144 *	method this will fail. No such devices are known to exist.
 145 *
 146 *	LOCKING:
 147 *	Inherited from caller.
 148 */
 149
 150static void ata_sff_sync(struct ata_port *ap)
 151{
 152	if (ap->ops->sff_check_altstatus)
 153		ap->ops->sff_check_altstatus(ap);
 154	else if (ap->ioaddr.altstatus_addr)
 155		ioread8(ap->ioaddr.altstatus_addr);
 156}
 157
 158/**
 159 *	ata_sff_pause		-	Flush writes and wait 400nS
 160 *	@ap: Port to pause for.
 161 *
 162 *	CAUTION:
 163 *	If we have an mmio device with no ctl and no altstatus
 164 *	method this will fail. No such devices are known to exist.
 165 *
 166 *	LOCKING:
 167 *	Inherited from caller.
 168 */
 169
 170void ata_sff_pause(struct ata_port *ap)
 171{
 172	ata_sff_sync(ap);
 173	ndelay(400);
 174}
 175EXPORT_SYMBOL_GPL(ata_sff_pause);
 176
 177/**
 178 *	ata_sff_dma_pause	-	Pause before commencing DMA
 179 *	@ap: Port to pause for.
 180 *
 181 *	Perform I/O fencing and ensure sufficient cycle delays occur
 182 *	for the HDMA1:0 transition
 183 */
 184
 185void ata_sff_dma_pause(struct ata_port *ap)
 186{
 187	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 188		/* An altstatus read will cause the needed delay without
 189		   messing up the IRQ status */
 190		ata_sff_altstatus(ap);
 
 191		return;
 192	}
 193	/* There are no DMA controllers without ctl. BUG here to ensure
 194	   we never violate the HDMA1:0 transition timing and risk
 195	   corruption. */
 196	BUG();
 197}
 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 199
 200/**
 201 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
 202 *	@ap: port containing status register to be polled
 203 *	@tmout_pat: impatience timeout in msecs
 204 *	@tmout: overall timeout in msecs
 205 *
 206 *	Sleep until ATA Status register bit BSY clears,
 207 *	or a timeout occurs.
 208 *
 209 *	LOCKING:
 210 *	Kernel thread context (may sleep).
 211 *
 212 *	RETURNS:
 213 *	0 on success, -errno otherwise.
 214 */
 215int ata_sff_busy_sleep(struct ata_port *ap,
 216		       unsigned long tmout_pat, unsigned long tmout)
 217{
 218	unsigned long timer_start, timeout;
 219	u8 status;
 220
 221	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 222	timer_start = jiffies;
 223	timeout = ata_deadline(timer_start, tmout_pat);
 224	while (status != 0xff && (status & ATA_BUSY) &&
 225	       time_before(jiffies, timeout)) {
 226		ata_msleep(ap, 50);
 227		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 228	}
 229
 230	if (status != 0xff && (status & ATA_BUSY))
 231		ata_port_warn(ap,
 232			      "port is slow to respond, please be patient (Status 0x%x)\n",
 233			      status);
 234
 235	timeout = ata_deadline(timer_start, tmout);
 236	while (status != 0xff && (status & ATA_BUSY) &&
 237	       time_before(jiffies, timeout)) {
 238		ata_msleep(ap, 50);
 239		status = ap->ops->sff_check_status(ap);
 240	}
 241
 242	if (status == 0xff)
 243		return -ENODEV;
 244
 245	if (status & ATA_BUSY) {
 246		ata_port_err(ap,
 247			     "port failed to respond (%lu secs, Status 0x%x)\n",
 248			     DIV_ROUND_UP(tmout, 1000), status);
 249		return -EBUSY;
 250	}
 251
 252	return 0;
 253}
 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 255
 256static int ata_sff_check_ready(struct ata_link *link)
 257{
 258	u8 status = link->ap->ops->sff_check_status(link->ap);
 259
 260	return ata_check_ready(status);
 261}
 262
 263/**
 264 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 265 *	@link: SFF link to wait ready status for
 266 *	@deadline: deadline jiffies for the operation
 267 *
 268 *	Sleep until ATA Status register bit BSY clears, or timeout
 269 *	occurs.
 270 *
 271 *	LOCKING:
 272 *	Kernel thread context (may sleep).
 273 *
 274 *	RETURNS:
 275 *	0 on success, -errno otherwise.
 276 */
 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 278{
 279	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 280}
 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 282
 283/**
 284 *	ata_sff_set_devctl - Write device control reg
 285 *	@ap: port where the device is
 286 *	@ctl: value to write
 287 *
 288 *	Writes ATA taskfile device control register.
 289 *
 290 *	Note: may NOT be used as the sff_set_devctl() entry in
 291 *	ata_port_operations.
 292 *
 293 *	LOCKING:
 294 *	Inherited from caller.
 295 */
 296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 297{
 298	if (ap->ops->sff_set_devctl)
 299		ap->ops->sff_set_devctl(ap, ctl);
 300	else
 
 
 301		iowrite8(ctl, ap->ioaddr.ctl_addr);
 
 
 
 
 302}
 303
 304/**
 305 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 306 *	@ap: ATA channel to manipulate
 307 *	@device: ATA device (numbered from zero) to select
 308 *
 309 *	Use the method defined in the ATA specification to
 310 *	make either device 0, or device 1, active on the
 311 *	ATA channel.  Works with both PIO and MMIO.
 312 *
 313 *	May be used as the dev_select() entry in ata_port_operations.
 314 *
 315 *	LOCKING:
 316 *	caller.
 317 */
 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 319{
 320	u8 tmp;
 321
 322	if (device == 0)
 323		tmp = ATA_DEVICE_OBS;
 324	else
 325		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 326
 327	iowrite8(tmp, ap->ioaddr.device_addr);
 328	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 331
 332/**
 333 *	ata_dev_select - Select device 0/1 on ATA bus
 334 *	@ap: ATA channel to manipulate
 335 *	@device: ATA device (numbered from zero) to select
 336 *	@wait: non-zero to wait for Status register BSY bit to clear
 337 *	@can_sleep: non-zero if context allows sleeping
 338 *
 339 *	Use the method defined in the ATA specification to
 340 *	make either device 0, or device 1, active on the
 341 *	ATA channel.
 342 *
 343 *	This is a high-level version of ata_sff_dev_select(), which
 344 *	additionally provides the services of inserting the proper
 345 *	pauses and status polling, where needed.
 346 *
 347 *	LOCKING:
 348 *	caller.
 349 */
 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
 351			   unsigned int wait, unsigned int can_sleep)
 352{
 353	if (ata_msg_probe(ap))
 354		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 355			      device, wait);
 356
 357	if (wait)
 358		ata_wait_idle(ap);
 359
 360	ap->ops->sff_dev_select(ap, device);
 361
 362	if (wait) {
 363		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 364			ata_msleep(ap, 150);
 365		ata_wait_idle(ap);
 366	}
 367}
 368
 369/**
 370 *	ata_sff_irq_on - Enable interrupts on a port.
 371 *	@ap: Port on which interrupts are enabled.
 372 *
 373 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 374 *	wait for idle, clear any pending interrupts.
 375 *
 376 *	Note: may NOT be used as the sff_irq_on() entry in
 377 *	ata_port_operations.
 378 *
 379 *	LOCKING:
 380 *	Inherited from caller.
 381 */
 382void ata_sff_irq_on(struct ata_port *ap)
 383{
 384	struct ata_ioports *ioaddr = &ap->ioaddr;
 385
 386	if (ap->ops->sff_irq_on) {
 387		ap->ops->sff_irq_on(ap);
 388		return;
 389	}
 390
 391	ap->ctl &= ~ATA_NIEN;
 392	ap->last_ctl = ap->ctl;
 393
 394	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 395		ata_sff_set_devctl(ap, ap->ctl);
 396	ata_wait_idle(ap);
 397
 398	if (ap->ops->sff_irq_clear)
 399		ap->ops->sff_irq_clear(ap);
 400}
 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 402
 403/**
 404 *	ata_sff_tf_load - send taskfile registers to host controller
 405 *	@ap: Port to which output is sent
 406 *	@tf: ATA taskfile register set
 407 *
 408 *	Outputs ATA taskfile to standard ATA host controller.
 409 *
 410 *	LOCKING:
 411 *	Inherited from caller.
 412 */
 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 414{
 415	struct ata_ioports *ioaddr = &ap->ioaddr;
 416	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 417
 418	if (tf->ctl != ap->last_ctl) {
 419		if (ioaddr->ctl_addr)
 420			iowrite8(tf->ctl, ioaddr->ctl_addr);
 421		ap->last_ctl = tf->ctl;
 422		ata_wait_idle(ap);
 423	}
 424
 425	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 426		WARN_ON_ONCE(!ioaddr->ctl_addr);
 427		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 428		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 429		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 430		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 431		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 432		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 433			tf->hob_feature,
 434			tf->hob_nsect,
 435			tf->hob_lbal,
 436			tf->hob_lbam,
 437			tf->hob_lbah);
 438	}
 439
 440	if (is_addr) {
 441		iowrite8(tf->feature, ioaddr->feature_addr);
 442		iowrite8(tf->nsect, ioaddr->nsect_addr);
 443		iowrite8(tf->lbal, ioaddr->lbal_addr);
 444		iowrite8(tf->lbam, ioaddr->lbam_addr);
 445		iowrite8(tf->lbah, ioaddr->lbah_addr);
 446		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 447			tf->feature,
 448			tf->nsect,
 449			tf->lbal,
 450			tf->lbam,
 451			tf->lbah);
 452	}
 453
 454	if (tf->flags & ATA_TFLAG_DEVICE) {
 455		iowrite8(tf->device, ioaddr->device_addr);
 456		VPRINTK("device 0x%X\n", tf->device);
 457	}
 458
 459	ata_wait_idle(ap);
 460}
 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 462
 463/**
 464 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 465 *	@ap: Port from which input is read
 466 *	@tf: ATA taskfile register set for storing input
 467 *
 468 *	Reads ATA taskfile registers for currently-selected device
 469 *	into @tf. Assumes the device has a fully SFF compliant task file
 470 *	layout and behaviour. If you device does not (eg has a different
 471 *	status method) then you will need to provide a replacement tf_read
 472 *
 473 *	LOCKING:
 474 *	Inherited from caller.
 475 */
 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 477{
 478	struct ata_ioports *ioaddr = &ap->ioaddr;
 479
 480	tf->command = ata_sff_check_status(ap);
 481	tf->feature = ioread8(ioaddr->error_addr);
 482	tf->nsect = ioread8(ioaddr->nsect_addr);
 483	tf->lbal = ioread8(ioaddr->lbal_addr);
 484	tf->lbam = ioread8(ioaddr->lbam_addr);
 485	tf->lbah = ioread8(ioaddr->lbah_addr);
 486	tf->device = ioread8(ioaddr->device_addr);
 487
 488	if (tf->flags & ATA_TFLAG_LBA48) {
 489		if (likely(ioaddr->ctl_addr)) {
 490			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 491			tf->hob_feature = ioread8(ioaddr->error_addr);
 492			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 493			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 494			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 495			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 496			iowrite8(tf->ctl, ioaddr->ctl_addr);
 497			ap->last_ctl = tf->ctl;
 498		} else
 499			WARN_ON_ONCE(1);
 500	}
 501}
 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 503
 504/**
 505 *	ata_sff_exec_command - issue ATA command to host controller
 506 *	@ap: port to which command is being issued
 507 *	@tf: ATA taskfile register set
 508 *
 509 *	Issues ATA command, with proper synchronization with interrupt
 510 *	handler / other threads.
 511 *
 512 *	LOCKING:
 513 *	spin_lock_irqsave(host lock)
 514 */
 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 516{
 517	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 518
 519	iowrite8(tf->command, ap->ioaddr.command_addr);
 520	ata_sff_pause(ap);
 521}
 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 523
 524/**
 525 *	ata_tf_to_host - issue ATA taskfile to host controller
 526 *	@ap: port to which command is being issued
 527 *	@tf: ATA taskfile register set
 
 528 *
 529 *	Issues ATA taskfile register set to ATA host controller,
 530 *	with proper synchronization with interrupt handler and
 531 *	other threads.
 532 *
 533 *	LOCKING:
 534 *	spin_lock_irqsave(host lock)
 535 */
 536static inline void ata_tf_to_host(struct ata_port *ap,
 537				  const struct ata_taskfile *tf)
 
 538{
 
 539	ap->ops->sff_tf_load(ap, tf);
 
 540	ap->ops->sff_exec_command(ap, tf);
 541}
 542
 543/**
 544 *	ata_sff_data_xfer - Transfer data by PIO
 545 *	@dev: device to target
 546 *	@buf: data buffer
 547 *	@buflen: buffer length
 548 *	@rw: read/write
 549 *
 550 *	Transfer data from/to the device data register by PIO.
 551 *
 552 *	LOCKING:
 553 *	Inherited from caller.
 554 *
 555 *	RETURNS:
 556 *	Bytes consumed.
 557 */
 558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
 559			       unsigned int buflen, int rw)
 560{
 561	struct ata_port *ap = dev->link->ap;
 562	void __iomem *data_addr = ap->ioaddr.data_addr;
 563	unsigned int words = buflen >> 1;
 564
 565	/* Transfer multiple of 2 bytes */
 566	if (rw == READ)
 567		ioread16_rep(data_addr, buf, words);
 568	else
 569		iowrite16_rep(data_addr, buf, words);
 570
 571	/* Transfer trailing byte, if any. */
 572	if (unlikely(buflen & 0x01)) {
 573		unsigned char pad[2] = { };
 574
 575		/* Point buf to the tail of buffer */
 576		buf += buflen - 1;
 577
 578		/*
 579		 * Use io*16_rep() accessors here as well to avoid pointlessly
 580		 * swapping bytes to and from on the big endian machines...
 581		 */
 582		if (rw == READ) {
 583			ioread16_rep(data_addr, pad, 1);
 584			*buf = pad[0];
 585		} else {
 586			pad[0] = *buf;
 587			iowrite16_rep(data_addr, pad, 1);
 588		}
 589		words++;
 590	}
 591
 592	return words << 1;
 593}
 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 595
 596/**
 597 *	ata_sff_data_xfer32 - Transfer data by PIO
 598 *	@dev: device to target
 599 *	@buf: data buffer
 600 *	@buflen: buffer length
 601 *	@rw: read/write
 602 *
 603 *	Transfer data from/to the device data register by PIO using 32bit
 604 *	I/O operations.
 605 *
 606 *	LOCKING:
 607 *	Inherited from caller.
 608 *
 609 *	RETURNS:
 610 *	Bytes consumed.
 611 */
 612
 613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
 614			       unsigned int buflen, int rw)
 615{
 
 616	struct ata_port *ap = dev->link->ap;
 617	void __iomem *data_addr = ap->ioaddr.data_addr;
 618	unsigned int words = buflen >> 2;
 619	int slop = buflen & 3;
 620
 621	if (!(ap->pflags & ATA_PFLAG_PIO32))
 622		return ata_sff_data_xfer(dev, buf, buflen, rw);
 623
 624	/* Transfer multiple of 4 bytes */
 625	if (rw == READ)
 626		ioread32_rep(data_addr, buf, words);
 627	else
 628		iowrite32_rep(data_addr, buf, words);
 629
 630	/* Transfer trailing bytes, if any */
 631	if (unlikely(slop)) {
 632		unsigned char pad[4] = { };
 633
 634		/* Point buf to the tail of buffer */
 635		buf += buflen - slop;
 636
 637		/*
 638		 * Use io*_rep() accessors here as well to avoid pointlessly
 639		 * swapping bytes to and from on the big endian machines...
 640		 */
 641		if (rw == READ) {
 642			if (slop < 3)
 643				ioread16_rep(data_addr, pad, 1);
 644			else
 645				ioread32_rep(data_addr, pad, 1);
 646			memcpy(buf, pad, slop);
 647		} else {
 648			memcpy(pad, buf, slop);
 649			if (slop < 3)
 650				iowrite16_rep(data_addr, pad, 1);
 651			else
 652				iowrite32_rep(data_addr, pad, 1);
 653		}
 654	}
 655	return (buflen + 1) & ~1;
 656}
 657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 658
 659/**
 660 *	ata_sff_data_xfer_noirq - Transfer data by PIO
 661 *	@dev: device to target
 662 *	@buf: data buffer
 663 *	@buflen: buffer length
 664 *	@rw: read/write
 665 *
 666 *	Transfer data from/to the device data register by PIO. Do the
 667 *	transfer with interrupts disabled.
 668 *
 669 *	LOCKING:
 670 *	Inherited from caller.
 671 *
 672 *	RETURNS:
 673 *	Bytes consumed.
 674 */
 675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
 676				     unsigned int buflen, int rw)
 677{
 678	unsigned long flags;
 679	unsigned int consumed;
 680
 681	local_irq_save(flags);
 682	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
 683	local_irq_restore(flags);
 684
 685	return consumed;
 
 686}
 687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
 688
 689/**
 690 *	ata_pio_sector - Transfer a sector of data.
 691 *	@qc: Command on going
 692 *
 693 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 694 *
 695 *	LOCKING:
 696 *	Inherited from caller.
 697 */
 698static void ata_pio_sector(struct ata_queued_cmd *qc)
 699{
 700	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 701	struct ata_port *ap = qc->ap;
 702	struct page *page;
 703	unsigned int offset;
 704	unsigned char *buf;
 705
 
 
 
 
 706	if (qc->curbytes == qc->nbytes - qc->sect_size)
 707		ap->hsm_task_state = HSM_ST_LAST;
 708
 709	page = sg_page(qc->cursg);
 710	offset = qc->cursg->offset + qc->cursg_ofs;
 711
 712	/* get the current page and offset */
 713	page = nth_page(page, (offset >> PAGE_SHIFT));
 714	offset %= PAGE_SIZE;
 715
 716	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 
 717
 718	if (PageHighMem(page)) {
 719		unsigned long flags;
 720
 721		/* FIXME: use a bounce buffer */
 722		local_irq_save(flags);
 723		buf = kmap_atomic(page);
 724
 725		/* do the actual data transfer */
 726		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 727				       do_write);
 728
 729		kunmap_atomic(buf);
 730		local_irq_restore(flags);
 731	} else {
 732		buf = page_address(page);
 733		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 734				       do_write);
 735	}
 736
 737	if (!do_write && !PageSlab(page))
 738		flush_dcache_page(page);
 739
 740	qc->curbytes += qc->sect_size;
 741	qc->cursg_ofs += qc->sect_size;
 742
 743	if (qc->cursg_ofs == qc->cursg->length) {
 744		qc->cursg = sg_next(qc->cursg);
 
 
 745		qc->cursg_ofs = 0;
 746	}
 747}
 748
 749/**
 750 *	ata_pio_sectors - Transfer one or many sectors.
 751 *	@qc: Command on going
 752 *
 753 *	Transfer one or many sectors of data from/to the
 754 *	ATA device for the DRQ request.
 755 *
 756 *	LOCKING:
 757 *	Inherited from caller.
 758 */
 759static void ata_pio_sectors(struct ata_queued_cmd *qc)
 760{
 761	if (is_multi_taskfile(&qc->tf)) {
 762		/* READ/WRITE MULTIPLE */
 763		unsigned int nsect;
 764
 765		WARN_ON_ONCE(qc->dev->multi_count == 0);
 766
 767		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 768			    qc->dev->multi_count);
 769		while (nsect--)
 770			ata_pio_sector(qc);
 771	} else
 772		ata_pio_sector(qc);
 773
 774	ata_sff_sync(qc->ap); /* flush */
 775}
 776
 777/**
 778 *	atapi_send_cdb - Write CDB bytes to hardware
 779 *	@ap: Port to which ATAPI device is attached.
 780 *	@qc: Taskfile currently active
 781 *
 782 *	When device has indicated its readiness to accept
 783 *	a CDB, this function is called.  Send the CDB.
 784 *
 785 *	LOCKING:
 786 *	caller.
 787 */
 788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 789{
 790	/* send SCSI cdb */
 791	DPRINTK("send cdb\n");
 792	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 793
 794	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
 795	ata_sff_sync(ap);
 796	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 797	   or is bmdma_start guaranteed to do it ? */
 798	switch (qc->tf.protocol) {
 799	case ATAPI_PROT_PIO:
 800		ap->hsm_task_state = HSM_ST;
 801		break;
 802	case ATAPI_PROT_NODATA:
 803		ap->hsm_task_state = HSM_ST_LAST;
 804		break;
 805#ifdef CONFIG_ATA_BMDMA
 806	case ATAPI_PROT_DMA:
 807		ap->hsm_task_state = HSM_ST_LAST;
 808		/* initiate bmdma */
 
 809		ap->ops->bmdma_start(qc);
 810		break;
 811#endif /* CONFIG_ATA_BMDMA */
 812	default:
 813		BUG();
 814	}
 815}
 816
 817/**
 818 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 819 *	@qc: Command on going
 820 *	@bytes: number of bytes
 821 *
 822 *	Transfer Transfer data from/to the ATAPI device.
 823 *
 824 *	LOCKING:
 825 *	Inherited from caller.
 826 *
 827 */
 828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 829{
 830	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 831	struct ata_port *ap = qc->ap;
 832	struct ata_device *dev = qc->dev;
 833	struct ata_eh_info *ehi = &dev->link->eh_info;
 834	struct scatterlist *sg;
 835	struct page *page;
 836	unsigned char *buf;
 837	unsigned int offset, count, consumed;
 838
 839next_sg:
 840	sg = qc->cursg;
 841	if (unlikely(!sg)) {
 842		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 843				  "buf=%u cur=%u bytes=%u",
 844				  qc->nbytes, qc->curbytes, bytes);
 845		return -1;
 846	}
 847
 848	page = sg_page(sg);
 849	offset = sg->offset + qc->cursg_ofs;
 850
 851	/* get the current page and offset */
 852	page = nth_page(page, (offset >> PAGE_SHIFT));
 853	offset %= PAGE_SIZE;
 854
 855	/* don't overrun current sg */
 856	count = min(sg->length - qc->cursg_ofs, bytes);
 857
 858	/* don't cross page boundaries */
 859	count = min(count, (unsigned int)PAGE_SIZE - offset);
 860
 861	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 862
 863	if (PageHighMem(page)) {
 864		unsigned long flags;
 865
 866		/* FIXME: use bounce buffer */
 867		local_irq_save(flags);
 868		buf = kmap_atomic(page);
 869
 870		/* do the actual data transfer */
 871		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 872								count, rw);
 873
 874		kunmap_atomic(buf);
 875		local_irq_restore(flags);
 876	} else {
 877		buf = page_address(page);
 878		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 879								count, rw);
 880	}
 881
 882	bytes -= min(bytes, consumed);
 883	qc->curbytes += count;
 884	qc->cursg_ofs += count;
 885
 886	if (qc->cursg_ofs == sg->length) {
 887		qc->cursg = sg_next(qc->cursg);
 888		qc->cursg_ofs = 0;
 889	}
 890
 891	/*
 892	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 893	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 894	 * check correctly as it doesn't know if it is the last request being
 895	 * made. Somebody should implement a proper sanity check.
 896	 */
 897	if (bytes)
 898		goto next_sg;
 899	return 0;
 900}
 901
 902/**
 903 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 904 *	@qc: Command on going
 905 *
 906 *	Transfer Transfer data from/to the ATAPI device.
 907 *
 908 *	LOCKING:
 909 *	Inherited from caller.
 910 */
 911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 912{
 913	struct ata_port *ap = qc->ap;
 914	struct ata_device *dev = qc->dev;
 915	struct ata_eh_info *ehi = &dev->link->eh_info;
 916	unsigned int ireason, bc_lo, bc_hi, bytes;
 917	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 918
 919	/* Abuse qc->result_tf for temp storage of intermediate TF
 920	 * here to save some kernel stack usage.
 921	 * For normal completion, qc->result_tf is not relevant. For
 922	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 923	 * So, the correctness of qc->result_tf is not affected.
 924	 */
 925	ap->ops->sff_tf_read(ap, &qc->result_tf);
 926	ireason = qc->result_tf.nsect;
 927	bc_lo = qc->result_tf.lbam;
 928	bc_hi = qc->result_tf.lbah;
 929	bytes = (bc_hi << 8) | bc_lo;
 930
 931	/* shall be cleared to zero, indicating xfer of data */
 932	if (unlikely(ireason & ATAPI_COD))
 933		goto atapi_check;
 934
 935	/* make sure transfer direction matches expected */
 936	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 937	if (unlikely(do_write != i_write))
 938		goto atapi_check;
 939
 940	if (unlikely(!bytes))
 941		goto atapi_check;
 942
 943	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 944
 945	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 946		goto err_out;
 947	ata_sff_sync(ap); /* flush */
 948
 949	return;
 950
 951 atapi_check:
 952	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 953			  ireason, bytes);
 954 err_out:
 955	qc->err_mask |= AC_ERR_HSM;
 956	ap->hsm_task_state = HSM_ST_ERR;
 957}
 958
 959/**
 960 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 961 *	@ap: the target ata_port
 962 *	@qc: qc on going
 963 *
 964 *	RETURNS:
 965 *	1 if ok in workqueue, 0 otherwise.
 966 */
 967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 968						struct ata_queued_cmd *qc)
 969{
 970	if (qc->tf.flags & ATA_TFLAG_POLLING)
 971		return 1;
 972
 973	if (ap->hsm_task_state == HSM_ST_FIRST) {
 974		if (qc->tf.protocol == ATA_PROT_PIO &&
 975		   (qc->tf.flags & ATA_TFLAG_WRITE))
 976		    return 1;
 977
 978		if (ata_is_atapi(qc->tf.protocol) &&
 979		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 980			return 1;
 981	}
 982
 983	return 0;
 984}
 985
 986/**
 987 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 988 *	@qc: Command to complete
 989 *	@in_wq: 1 if called from workqueue, 0 otherwise
 990 *
 991 *	Finish @qc which is running on standard HSM.
 992 *
 993 *	LOCKING:
 994 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 995 *	Otherwise, none on entry and grabs host lock.
 996 */
 997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 998{
 999	struct ata_port *ap = qc->ap;
1000
1001	if (ap->ops->error_handler) {
1002		if (in_wq) {
1003			/* EH might have kicked in while host lock is
1004			 * released.
1005			 */
1006			qc = ata_qc_from_tag(ap, qc->tag);
1007			if (qc) {
1008				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009					ata_sff_irq_on(ap);
1010					ata_qc_complete(qc);
1011				} else
1012					ata_port_freeze(ap);
1013			}
1014		} else {
1015			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016				ata_qc_complete(qc);
1017			else
1018				ata_port_freeze(ap);
1019		}
1020	} else {
1021		if (in_wq) {
1022			ata_sff_irq_on(ap);
1023			ata_qc_complete(qc);
1024		} else
1025			ata_qc_complete(qc);
 
 
1026	}
1027}
1028
1029/**
1030 *	ata_sff_hsm_move - move the HSM to the next state.
1031 *	@ap: the target ata_port
1032 *	@qc: qc on going
1033 *	@status: current device status
1034 *	@in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 *	RETURNS:
1037 *	1 when poll next status needed, 0 otherwise.
1038 */
1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040		     u8 status, int in_wq)
1041{
1042	struct ata_link *link = qc->dev->link;
1043	struct ata_eh_info *ehi = &link->eh_info;
1044	int poll_next;
1045
1046	lockdep_assert_held(ap->lock);
1047
1048	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050	/* Make sure ata_sff_qc_issue() does not throw things
1051	 * like DMA polling into the workqueue. Notice that
1052	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053	 */
1054	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056fsm_start:
1057	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060	switch (ap->hsm_task_state) {
1061	case HSM_ST_FIRST:
1062		/* Send first data block or PACKET CDB */
1063
1064		/* If polling, we will stay in the work queue after
1065		 * sending the data. Otherwise, interrupt handler
1066		 * takes over after sending the data.
1067		 */
1068		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070		/* check device status */
1071		if (unlikely((status & ATA_DRQ) == 0)) {
1072			/* handle BSY=0, DRQ=0 as error */
1073			if (likely(status & (ATA_ERR | ATA_DF)))
1074				/* device stops HSM for abort/error */
1075				qc->err_mask |= AC_ERR_DEV;
1076			else {
1077				/* HSM violation. Let EH handle this */
1078				ata_ehi_push_desc(ehi,
1079					"ST_FIRST: !(DRQ|ERR|DF)");
1080				qc->err_mask |= AC_ERR_HSM;
1081			}
1082
1083			ap->hsm_task_state = HSM_ST_ERR;
1084			goto fsm_start;
1085		}
1086
1087		/* Device should not ask for data transfer (DRQ=1)
1088		 * when it finds something wrong.
1089		 * We ignore DRQ here and stop the HSM by
1090		 * changing hsm_task_state to HSM_ST_ERR and
1091		 * let the EH abort the command or reset the device.
1092		 */
1093		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094			/* Some ATAPI tape drives forget to clear the ERR bit
1095			 * when doing the next command (mostly request sense).
1096			 * We ignore ERR here to workaround and proceed sending
1097			 * the CDB.
1098			 */
1099			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100				ata_ehi_push_desc(ehi, "ST_FIRST: "
1101					"DRQ=1 with device error, "
1102					"dev_stat 0x%X", status);
1103				qc->err_mask |= AC_ERR_HSM;
1104				ap->hsm_task_state = HSM_ST_ERR;
1105				goto fsm_start;
1106			}
1107		}
1108
1109		if (qc->tf.protocol == ATA_PROT_PIO) {
1110			/* PIO data out protocol.
1111			 * send first data block.
1112			 */
1113
1114			/* ata_pio_sectors() might change the state
1115			 * to HSM_ST_LAST. so, the state is changed here
1116			 * before ata_pio_sectors().
1117			 */
1118			ap->hsm_task_state = HSM_ST;
1119			ata_pio_sectors(qc);
1120		} else
1121			/* send CDB */
1122			atapi_send_cdb(ap, qc);
1123
1124		/* if polling, ata_sff_pio_task() handles the rest.
1125		 * otherwise, interrupt handler takes over from here.
1126		 */
1127		break;
1128
1129	case HSM_ST:
1130		/* complete command or read/write the data register */
1131		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132			/* ATAPI PIO protocol */
1133			if ((status & ATA_DRQ) == 0) {
1134				/* No more data to transfer or device error.
1135				 * Device error will be tagged in HSM_ST_LAST.
1136				 */
1137				ap->hsm_task_state = HSM_ST_LAST;
1138				goto fsm_start;
1139			}
1140
1141			/* Device should not ask for data transfer (DRQ=1)
1142			 * when it finds something wrong.
1143			 * We ignore DRQ here and stop the HSM by
1144			 * changing hsm_task_state to HSM_ST_ERR and
1145			 * let the EH abort the command or reset the device.
1146			 */
1147			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149					"DRQ=1 with device error, "
1150					"dev_stat 0x%X", status);
1151				qc->err_mask |= AC_ERR_HSM;
1152				ap->hsm_task_state = HSM_ST_ERR;
1153				goto fsm_start;
1154			}
1155
1156			atapi_pio_bytes(qc);
1157
1158			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159				/* bad ireason reported by device */
1160				goto fsm_start;
1161
1162		} else {
1163			/* ATA PIO protocol */
1164			if (unlikely((status & ATA_DRQ) == 0)) {
1165				/* handle BSY=0, DRQ=0 as error */
1166				if (likely(status & (ATA_ERR | ATA_DF))) {
1167					/* device stops HSM for abort/error */
1168					qc->err_mask |= AC_ERR_DEV;
1169
1170					/* If diagnostic failed and this is
1171					 * IDENTIFY, it's likely a phantom
1172					 * device.  Mark hint.
1173					 */
1174					if (qc->dev->horkage &
1175					    ATA_HORKAGE_DIAGNOSTIC)
1176						qc->err_mask |=
1177							AC_ERR_NODEV_HINT;
1178				} else {
1179					/* HSM violation. Let EH handle this.
1180					 * Phantom devices also trigger this
1181					 * condition.  Mark hint.
1182					 */
1183					ata_ehi_push_desc(ehi, "ST-ATA: "
1184						"DRQ=0 without device error, "
1185						"dev_stat 0x%X", status);
1186					qc->err_mask |= AC_ERR_HSM |
1187							AC_ERR_NODEV_HINT;
1188				}
1189
1190				ap->hsm_task_state = HSM_ST_ERR;
1191				goto fsm_start;
1192			}
1193
1194			/* For PIO reads, some devices may ask for
1195			 * data transfer (DRQ=1) alone with ERR=1.
1196			 * We respect DRQ here and transfer one
1197			 * block of junk data before changing the
1198			 * hsm_task_state to HSM_ST_ERR.
1199			 *
1200			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201			 * sense since the data block has been
1202			 * transferred to the device.
1203			 */
1204			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205				/* data might be corrputed */
1206				qc->err_mask |= AC_ERR_DEV;
1207
1208				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209					ata_pio_sectors(qc);
1210					status = ata_wait_idle(ap);
1211				}
1212
1213				if (status & (ATA_BUSY | ATA_DRQ)) {
1214					ata_ehi_push_desc(ehi, "ST-ATA: "
1215						"BUSY|DRQ persists on ERR|DF, "
1216						"dev_stat 0x%X", status);
1217					qc->err_mask |= AC_ERR_HSM;
1218				}
1219
1220				/* There are oddball controllers with
1221				 * status register stuck at 0x7f and
1222				 * lbal/m/h at zero which makes it
1223				 * pass all other presence detection
1224				 * mechanisms we have.  Set NODEV_HINT
1225				 * for it.  Kernel bz#7241.
1226				 */
1227				if (status == 0x7f)
1228					qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230				/* ata_pio_sectors() might change the
1231				 * state to HSM_ST_LAST. so, the state
1232				 * is changed after ata_pio_sectors().
1233				 */
1234				ap->hsm_task_state = HSM_ST_ERR;
1235				goto fsm_start;
1236			}
1237
1238			ata_pio_sectors(qc);
1239
1240			if (ap->hsm_task_state == HSM_ST_LAST &&
1241			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242				/* all data read */
1243				status = ata_wait_idle(ap);
1244				goto fsm_start;
1245			}
1246		}
1247
1248		poll_next = 1;
1249		break;
1250
1251	case HSM_ST_LAST:
1252		if (unlikely(!ata_ok(status))) {
1253			qc->err_mask |= __ac_err_mask(status);
1254			ap->hsm_task_state = HSM_ST_ERR;
1255			goto fsm_start;
1256		}
1257
1258		/* no more data to transfer */
1259		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260			ap->print_id, qc->dev->devno, status);
1261
1262		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264		ap->hsm_task_state = HSM_ST_IDLE;
1265
1266		/* complete taskfile transaction */
1267		ata_hsm_qc_complete(qc, in_wq);
1268
1269		poll_next = 0;
1270		break;
1271
1272	case HSM_ST_ERR:
1273		ap->hsm_task_state = HSM_ST_IDLE;
1274
1275		/* complete taskfile transaction */
1276		ata_hsm_qc_complete(qc, in_wq);
1277
1278		poll_next = 0;
1279		break;
1280	default:
1281		poll_next = 0;
1282		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283		     ap->print_id, ap->hsm_task_state);
1284	}
1285
1286	return poll_next;
1287}
1288EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289
1290void ata_sff_queue_work(struct work_struct *work)
1291{
1292	queue_work(ata_sff_wq, work);
1293}
1294EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295
1296void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297{
1298	queue_delayed_work(ata_sff_wq, dwork, delay);
1299}
1300EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301
1302void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303{
1304	struct ata_port *ap = link->ap;
1305
1306	WARN_ON((ap->sff_pio_task_link != NULL) &&
1307		(ap->sff_pio_task_link != link));
1308	ap->sff_pio_task_link = link;
1309
1310	/* may fail if ata_sff_flush_pio_task() in progress */
1311	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312}
1313EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314
1315void ata_sff_flush_pio_task(struct ata_port *ap)
1316{
1317	DPRINTK("ENTER\n");
1318
1319	cancel_delayed_work_sync(&ap->sff_pio_task);
1320
1321	/*
1322	 * We wanna reset the HSM state to IDLE.  If we do so without
1323	 * grabbing the port lock, critical sections protected by it which
1324	 * expect the HSM state to stay stable may get surprised.  For
1325	 * example, we may set IDLE in between the time
1326	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328	 */
1329	spin_lock_irq(ap->lock);
1330	ap->hsm_task_state = HSM_ST_IDLE;
1331	spin_unlock_irq(ap->lock);
1332
1333	ap->sff_pio_task_link = NULL;
1334
1335	if (ata_msg_ctl(ap))
1336		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337}
1338
1339static void ata_sff_pio_task(struct work_struct *work)
1340{
1341	struct ata_port *ap =
1342		container_of(work, struct ata_port, sff_pio_task.work);
1343	struct ata_link *link = ap->sff_pio_task_link;
1344	struct ata_queued_cmd *qc;
1345	u8 status;
1346	int poll_next;
1347
1348	spin_lock_irq(ap->lock);
1349
1350	BUG_ON(ap->sff_pio_task_link == NULL);
1351	/* qc can be NULL if timeout occurred */
1352	qc = ata_qc_from_tag(ap, link->active_tag);
1353	if (!qc) {
1354		ap->sff_pio_task_link = NULL;
1355		goto out_unlock;
1356	}
1357
1358fsm_start:
1359	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361	/*
1362	 * This is purely heuristic.  This is a fast path.
1363	 * Sometimes when we enter, BSY will be cleared in
1364	 * a chk-status or two.  If not, the drive is probably seeking
1365	 * or something.  Snooze for a couple msecs, then
1366	 * chk-status again.  If still busy, queue delayed work.
1367	 */
1368	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369	if (status & ATA_BUSY) {
1370		spin_unlock_irq(ap->lock);
1371		ata_msleep(ap, 2);
1372		spin_lock_irq(ap->lock);
1373
1374		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375		if (status & ATA_BUSY) {
1376			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377			goto out_unlock;
1378		}
1379	}
1380
1381	/*
1382	 * hsm_move() may trigger another command to be processed.
1383	 * clean the link beforehand.
1384	 */
1385	ap->sff_pio_task_link = NULL;
1386	/* move the HSM */
1387	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388
1389	/* another command or interrupt handler
1390	 * may be running at this point.
1391	 */
1392	if (poll_next)
1393		goto fsm_start;
1394out_unlock:
1395	spin_unlock_irq(ap->lock);
1396}
1397
1398/**
1399 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1400 *	@qc: command to issue to device
1401 *
1402 *	This function issues a PIO or NODATA command to a SFF
1403 *	controller.
1404 *
1405 *	LOCKING:
1406 *	spin_lock_irqsave(host lock)
1407 *
1408 *	RETURNS:
1409 *	Zero on success, AC_ERR_* mask on failure
1410 */
1411unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412{
1413	struct ata_port *ap = qc->ap;
1414	struct ata_link *link = qc->dev->link;
1415
1416	/* Use polling pio if the LLD doesn't handle
1417	 * interrupt driven pio and atapi CDB interrupt.
1418	 */
1419	if (ap->flags & ATA_FLAG_PIO_POLLING)
1420		qc->tf.flags |= ATA_TFLAG_POLLING;
1421
1422	/* select the device */
1423	ata_dev_select(ap, qc->dev->devno, 1, 0);
1424
1425	/* start the command */
1426	switch (qc->tf.protocol) {
1427	case ATA_PROT_NODATA:
1428		if (qc->tf.flags & ATA_TFLAG_POLLING)
1429			ata_qc_set_polling(qc);
1430
1431		ata_tf_to_host(ap, &qc->tf);
1432		ap->hsm_task_state = HSM_ST_LAST;
1433
1434		if (qc->tf.flags & ATA_TFLAG_POLLING)
1435			ata_sff_queue_pio_task(link, 0);
1436
1437		break;
1438
1439	case ATA_PROT_PIO:
1440		if (qc->tf.flags & ATA_TFLAG_POLLING)
1441			ata_qc_set_polling(qc);
1442
1443		ata_tf_to_host(ap, &qc->tf);
1444
1445		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446			/* PIO data out protocol */
1447			ap->hsm_task_state = HSM_ST_FIRST;
1448			ata_sff_queue_pio_task(link, 0);
1449
1450			/* always send first data block using the
1451			 * ata_sff_pio_task() codepath.
1452			 */
1453		} else {
1454			/* PIO data in protocol */
1455			ap->hsm_task_state = HSM_ST;
1456
1457			if (qc->tf.flags & ATA_TFLAG_POLLING)
1458				ata_sff_queue_pio_task(link, 0);
1459
1460			/* if polling, ata_sff_pio_task() handles the
1461			 * rest.  otherwise, interrupt handler takes
1462			 * over from here.
1463			 */
1464		}
1465
1466		break;
1467
1468	case ATAPI_PROT_PIO:
1469	case ATAPI_PROT_NODATA:
1470		if (qc->tf.flags & ATA_TFLAG_POLLING)
1471			ata_qc_set_polling(qc);
1472
1473		ata_tf_to_host(ap, &qc->tf);
1474
1475		ap->hsm_task_state = HSM_ST_FIRST;
1476
1477		/* send cdb by polling if no cdb interrupt */
1478		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479		    (qc->tf.flags & ATA_TFLAG_POLLING))
1480			ata_sff_queue_pio_task(link, 0);
1481		break;
1482
1483	default:
1484		WARN_ON_ONCE(1);
1485		return AC_ERR_SYSTEM;
1486	}
1487
1488	return 0;
1489}
1490EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491
1492/**
1493 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494 *	@qc: qc to fill result TF for
1495 *
1496 *	@qc is finished and result TF needs to be filled.  Fill it
1497 *	using ->sff_tf_read.
1498 *
1499 *	LOCKING:
1500 *	spin_lock_irqsave(host lock)
1501 *
1502 *	RETURNS:
1503 *	true indicating that result TF is successfully filled.
1504 */
1505bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506{
1507	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508	return true;
1509}
1510EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511
1512static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513{
1514	ap->stats.idle_irq++;
1515
1516#ifdef ATA_IRQ_TRAP
1517	if ((ap->stats.idle_irq % 1000) == 0) {
1518		ap->ops->sff_check_status(ap);
1519		if (ap->ops->sff_irq_clear)
1520			ap->ops->sff_irq_clear(ap);
1521		ata_port_warn(ap, "irq trap\n");
1522		return 1;
1523	}
1524#endif
1525	return 0;	/* irq not handled */
1526}
1527
1528static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529					struct ata_queued_cmd *qc,
1530					bool hsmv_on_idle)
1531{
1532	u8 status;
1533
1534	VPRINTK("ata%u: protocol %d task_state %d\n",
1535		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536
1537	/* Check whether we are expecting interrupt in this state */
1538	switch (ap->hsm_task_state) {
1539	case HSM_ST_FIRST:
1540		/* Some pre-ATAPI-4 devices assert INTRQ
1541		 * at this state when ready to receive CDB.
1542		 */
1543
1544		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545		 * The flag was turned on only for atapi devices.  No
1546		 * need to check ata_is_atapi(qc->tf.protocol) again.
1547		 */
1548		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549			return ata_sff_idle_irq(ap);
1550		break;
1551	case HSM_ST_IDLE:
1552		return ata_sff_idle_irq(ap);
1553	default:
1554		break;
1555	}
1556
1557	/* check main status, clearing INTRQ if needed */
1558	status = ata_sff_irq_status(ap);
1559	if (status & ATA_BUSY) {
1560		if (hsmv_on_idle) {
1561			/* BMDMA engine is already stopped, we're screwed */
1562			qc->err_mask |= AC_ERR_HSM;
1563			ap->hsm_task_state = HSM_ST_ERR;
1564		} else
1565			return ata_sff_idle_irq(ap);
1566	}
1567
1568	/* clear irq events */
1569	if (ap->ops->sff_irq_clear)
1570		ap->ops->sff_irq_clear(ap);
1571
1572	ata_sff_hsm_move(ap, qc, status, 0);
1573
1574	return 1;	/* irq handled */
1575}
1576
1577/**
1578 *	ata_sff_port_intr - Handle SFF port interrupt
1579 *	@ap: Port on which interrupt arrived (possibly...)
1580 *	@qc: Taskfile currently active in engine
1581 *
1582 *	Handle port interrupt for given queued command.
1583 *
1584 *	LOCKING:
1585 *	spin_lock_irqsave(host lock)
1586 *
1587 *	RETURNS:
1588 *	One if interrupt was handled, zero if not (shared irq).
1589 */
1590unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591{
1592	return __ata_sff_port_intr(ap, qc, false);
1593}
1594EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595
1596static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598{
1599	struct ata_host *host = dev_instance;
1600	bool retried = false;
1601	unsigned int i;
1602	unsigned int handled, idle, polling;
1603	unsigned long flags;
1604
1605	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606	spin_lock_irqsave(&host->lock, flags);
1607
1608retry:
1609	handled = idle = polling = 0;
1610	for (i = 0; i < host->n_ports; i++) {
1611		struct ata_port *ap = host->ports[i];
1612		struct ata_queued_cmd *qc;
1613
1614		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615		if (qc) {
1616			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617				handled |= port_intr(ap, qc);
1618			else
1619				polling |= 1 << i;
1620		} else
1621			idle |= 1 << i;
1622	}
1623
1624	/*
1625	 * If no port was expecting IRQ but the controller is actually
1626	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1627	 * pending status if available and clear spurious IRQ.
1628	 */
1629	if (!handled && !retried) {
1630		bool retry = false;
1631
1632		for (i = 0; i < host->n_ports; i++) {
1633			struct ata_port *ap = host->ports[i];
1634
1635			if (polling & (1 << i))
1636				continue;
1637
1638			if (!ap->ops->sff_irq_check ||
1639			    !ap->ops->sff_irq_check(ap))
1640				continue;
1641
1642			if (idle & (1 << i)) {
1643				ap->ops->sff_check_status(ap);
1644				if (ap->ops->sff_irq_clear)
1645					ap->ops->sff_irq_clear(ap);
1646			} else {
1647				/* clear INTRQ and check if BUSY cleared */
1648				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649					retry |= true;
1650				/*
1651				 * With command in flight, we can't do
1652				 * sff_irq_clear() w/o racing with completion.
1653				 */
1654			}
1655		}
1656
1657		if (retry) {
1658			retried = true;
1659			goto retry;
1660		}
1661	}
1662
1663	spin_unlock_irqrestore(&host->lock, flags);
1664
1665	return IRQ_RETVAL(handled);
1666}
1667
1668/**
1669 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1670 *	@irq: irq line (unused)
1671 *	@dev_instance: pointer to our ata_host information structure
1672 *
1673 *	Default interrupt handler for PCI IDE devices.  Calls
1674 *	ata_sff_port_intr() for each port that is not disabled.
1675 *
1676 *	LOCKING:
1677 *	Obtains host lock during operation.
1678 *
1679 *	RETURNS:
1680 *	IRQ_NONE or IRQ_HANDLED.
1681 */
1682irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683{
1684	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685}
1686EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687
1688/**
1689 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1690 *	@ap: port that appears to have timed out
1691 *
1692 *	Called from the libata error handlers when the core code suspects
1693 *	an interrupt has been lost. If it has complete anything we can and
1694 *	then return. Interface must support altstatus for this faster
1695 *	recovery to occur.
1696 *
1697 *	Locking:
1698 *	Caller holds host lock
1699 */
1700
1701void ata_sff_lost_interrupt(struct ata_port *ap)
1702{
1703	u8 status;
1704	struct ata_queued_cmd *qc;
1705
1706	/* Only one outstanding command per SFF channel */
1707	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708	/* We cannot lose an interrupt on a non-existent or polled command */
1709	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710		return;
1711	/* See if the controller thinks it is still busy - if so the command
1712	   isn't a lost IRQ but is still in progress */
1713	status = ata_sff_altstatus(ap);
 
1714	if (status & ATA_BUSY)
1715		return;
1716
1717	/* There was a command running, we are no longer busy and we have
1718	   no interrupt. */
1719	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720								status);
1721	/* Run the host interrupt logic as if the interrupt had not been
1722	   lost */
1723	ata_sff_port_intr(ap, qc);
1724}
1725EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726
1727/**
1728 *	ata_sff_freeze - Freeze SFF controller port
1729 *	@ap: port to freeze
1730 *
1731 *	Freeze SFF controller port.
1732 *
1733 *	LOCKING:
1734 *	Inherited from caller.
1735 */
1736void ata_sff_freeze(struct ata_port *ap)
1737{
1738	ap->ctl |= ATA_NIEN;
1739	ap->last_ctl = ap->ctl;
1740
1741	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742		ata_sff_set_devctl(ap, ap->ctl);
1743
1744	/* Under certain circumstances, some controllers raise IRQ on
1745	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1746	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1747	 */
1748	ap->ops->sff_check_status(ap);
1749
1750	if (ap->ops->sff_irq_clear)
1751		ap->ops->sff_irq_clear(ap);
1752}
1753EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754
1755/**
1756 *	ata_sff_thaw - Thaw SFF controller port
1757 *	@ap: port to thaw
1758 *
1759 *	Thaw SFF controller port.
1760 *
1761 *	LOCKING:
1762 *	Inherited from caller.
1763 */
1764void ata_sff_thaw(struct ata_port *ap)
1765{
1766	/* clear & re-enable interrupts */
1767	ap->ops->sff_check_status(ap);
1768	if (ap->ops->sff_irq_clear)
1769		ap->ops->sff_irq_clear(ap);
1770	ata_sff_irq_on(ap);
1771}
1772EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773
1774/**
1775 *	ata_sff_prereset - prepare SFF link for reset
1776 *	@link: SFF link to be reset
1777 *	@deadline: deadline jiffies for the operation
1778 *
1779 *	SFF link @link is about to be reset.  Initialize it.  It first
1780 *	calls ata_std_prereset() and wait for !BSY if the port is
1781 *	being softreset.
1782 *
1783 *	LOCKING:
1784 *	Kernel thread context (may sleep)
1785 *
1786 *	RETURNS:
1787 *	0 on success, -errno otherwise.
1788 */
1789int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790{
1791	struct ata_eh_context *ehc = &link->eh_context;
1792	int rc;
1793
1794	rc = ata_std_prereset(link, deadline);
1795	if (rc)
1796		return rc;
1797
1798	/* if we're about to do hardreset, nothing more to do */
1799	if (ehc->i.action & ATA_EH_HARDRESET)
1800		return 0;
1801
1802	/* wait for !BSY if we don't know that no device is attached */
1803	if (!ata_link_offline(link)) {
1804		rc = ata_sff_wait_ready(link, deadline);
1805		if (rc && rc != -ENODEV) {
1806			ata_link_warn(link,
1807				      "device not ready (errno=%d), forcing hardreset\n",
1808				      rc);
1809			ehc->i.action |= ATA_EH_HARDRESET;
1810		}
1811	}
1812
1813	return 0;
1814}
1815EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816
1817/**
1818 *	ata_devchk - PATA device presence detection
1819 *	@ap: ATA channel to examine
1820 *	@device: Device to examine (starting at zero)
1821 *
1822 *	This technique was originally described in
1823 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1824 *	later found its way into the ATA/ATAPI spec.
1825 *
1826 *	Write a pattern to the ATA shadow registers,
1827 *	and if a device is present, it will respond by
1828 *	correctly storing and echoing back the
1829 *	ATA shadow register contents.
1830 *
 
 
 
1831 *	LOCKING:
1832 *	caller.
1833 */
1834static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835{
1836	struct ata_ioports *ioaddr = &ap->ioaddr;
1837	u8 nsect, lbal;
1838
1839	ap->ops->sff_dev_select(ap, device);
1840
1841	iowrite8(0x55, ioaddr->nsect_addr);
1842	iowrite8(0xaa, ioaddr->lbal_addr);
1843
1844	iowrite8(0xaa, ioaddr->nsect_addr);
1845	iowrite8(0x55, ioaddr->lbal_addr);
1846
1847	iowrite8(0x55, ioaddr->nsect_addr);
1848	iowrite8(0xaa, ioaddr->lbal_addr);
1849
1850	nsect = ioread8(ioaddr->nsect_addr);
1851	lbal = ioread8(ioaddr->lbal_addr);
1852
1853	if ((nsect == 0x55) && (lbal == 0xaa))
1854		return 1;	/* we found a device */
1855
1856	return 0;		/* nothing found */
1857}
1858
1859/**
1860 *	ata_sff_dev_classify - Parse returned ATA device signature
1861 *	@dev: ATA device to classify (starting at zero)
1862 *	@present: device seems present
1863 *	@r_err: Value of error register on completion
1864 *
1865 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866 *	an ATA/ATAPI-defined set of values is placed in the ATA
1867 *	shadow registers, indicating the results of device detection
1868 *	and diagnostics.
1869 *
1870 *	Select the ATA device, and read the values from the ATA shadow
1871 *	registers.  Then parse according to the Error register value,
1872 *	and the spec-defined values examined by ata_dev_classify().
1873 *
1874 *	LOCKING:
1875 *	caller.
1876 *
1877 *	RETURNS:
1878 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879 */
1880unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881				  u8 *r_err)
1882{
1883	struct ata_port *ap = dev->link->ap;
1884	struct ata_taskfile tf;
1885	unsigned int class;
1886	u8 err;
1887
1888	ap->ops->sff_dev_select(ap, dev->devno);
1889
1890	memset(&tf, 0, sizeof(tf));
1891
1892	ap->ops->sff_tf_read(ap, &tf);
1893	err = tf.feature;
1894	if (r_err)
1895		*r_err = err;
1896
1897	/* see if device passed diags: continue and warn later */
1898	if (err == 0)
1899		/* diagnostic fail : do nothing _YET_ */
1900		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901	else if (err == 1)
1902		/* do nothing */ ;
1903	else if ((dev->devno == 0) && (err == 0x81))
1904		/* do nothing */ ;
1905	else
1906		return ATA_DEV_NONE;
1907
1908	/* determine if device is ATA or ATAPI */
1909	class = ata_dev_classify(&tf);
1910
1911	if (class == ATA_DEV_UNKNOWN) {
1912		/* If the device failed diagnostic, it's likely to
 
1913		 * have reported incorrect device signature too.
1914		 * Assume ATA device if the device seems present but
1915		 * device signature is invalid with diagnostic
1916		 * failure.
1917		 */
1918		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919			class = ATA_DEV_ATA;
1920		else
1921			class = ATA_DEV_NONE;
1922	} else if ((class == ATA_DEV_ATA) &&
1923		   (ap->ops->sff_check_status(ap) == 0))
1924		class = ATA_DEV_NONE;
1925
 
 
1926	return class;
1927}
1928EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929
1930/**
1931 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1932 *	@link: SFF link which is just reset
1933 *	@devmask: mask of present devices
1934 *	@deadline: deadline jiffies for the operation
1935 *
1936 *	Wait devices attached to SFF @link to become ready after
1937 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1938 *	status register too early.
1939 *
1940 *	LOCKING:
1941 *	Kernel thread context (may sleep).
1942 *
1943 *	RETURNS:
1944 *	0 on success, -ENODEV if some or all of devices in @devmask
1945 *	don't seem to exist.  -errno on other errors.
1946 */
1947int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948			     unsigned long deadline)
1949{
1950	struct ata_port *ap = link->ap;
1951	struct ata_ioports *ioaddr = &ap->ioaddr;
1952	unsigned int dev0 = devmask & (1 << 0);
1953	unsigned int dev1 = devmask & (1 << 1);
1954	int rc, ret = 0;
1955
1956	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957
1958	/* always check readiness of the master device */
1959	rc = ata_sff_wait_ready(link, deadline);
1960	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961	 * and TF status is 0xff, bail out on it too.
1962	 */
1963	if (rc)
1964		return rc;
1965
1966	/* if device 1 was found in ata_devchk, wait for register
1967	 * access briefly, then wait for BSY to clear.
1968	 */
1969	if (dev1) {
1970		int i;
1971
1972		ap->ops->sff_dev_select(ap, 1);
1973
1974		/* Wait for register access.  Some ATAPI devices fail
1975		 * to set nsect/lbal after reset, so don't waste too
1976		 * much time on it.  We're gonna wait for !BSY anyway.
1977		 */
1978		for (i = 0; i < 2; i++) {
1979			u8 nsect, lbal;
1980
1981			nsect = ioread8(ioaddr->nsect_addr);
1982			lbal = ioread8(ioaddr->lbal_addr);
1983			if ((nsect == 1) && (lbal == 1))
1984				break;
1985			ata_msleep(ap, 50);	/* give drive a breather */
1986		}
1987
1988		rc = ata_sff_wait_ready(link, deadline);
1989		if (rc) {
1990			if (rc != -ENODEV)
1991				return rc;
1992			ret = rc;
1993		}
1994	}
1995
1996	/* is all this really necessary? */
1997	ap->ops->sff_dev_select(ap, 0);
1998	if (dev1)
1999		ap->ops->sff_dev_select(ap, 1);
2000	if (dev0)
2001		ap->ops->sff_dev_select(ap, 0);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006
2007static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008			     unsigned long deadline)
2009{
2010	struct ata_ioports *ioaddr = &ap->ioaddr;
2011
2012	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013
2014	if (ap->ioaddr.ctl_addr) {
2015		/* software reset.  causes dev0 to be selected */
2016		iowrite8(ap->ctl, ioaddr->ctl_addr);
2017		udelay(20);	/* FIXME: flush */
2018		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019		udelay(20);	/* FIXME: flush */
2020		iowrite8(ap->ctl, ioaddr->ctl_addr);
2021		ap->last_ctl = ap->ctl;
2022	}
2023
2024	/* wait the port to become ready */
2025	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026}
2027
2028/**
2029 *	ata_sff_softreset - reset host port via ATA SRST
2030 *	@link: ATA link to reset
2031 *	@classes: resulting classes of attached devices
2032 *	@deadline: deadline jiffies for the operation
2033 *
2034 *	Reset host port using ATA SRST.
2035 *
2036 *	LOCKING:
2037 *	Kernel thread context (may sleep)
2038 *
2039 *	RETURNS:
2040 *	0 on success, -errno otherwise.
2041 */
2042int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043		      unsigned long deadline)
2044{
2045	struct ata_port *ap = link->ap;
2046	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047	unsigned int devmask = 0;
2048	int rc;
2049	u8 err;
2050
2051	DPRINTK("ENTER\n");
2052
2053	/* determine if device 0/1 are present */
2054	if (ata_devchk(ap, 0))
2055		devmask |= (1 << 0);
2056	if (slave_possible && ata_devchk(ap, 1))
2057		devmask |= (1 << 1);
2058
2059	/* select device 0 again */
2060	ap->ops->sff_dev_select(ap, 0);
2061
2062	/* issue bus reset */
2063	DPRINTK("about to softreset, devmask=%x\n", devmask);
2064	rc = ata_bus_softreset(ap, devmask, deadline);
2065	/* if link is occupied, -ENODEV too is an error */
2066	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068		return rc;
2069	}
2070
2071	/* determine by signature whether we have ATA or ATAPI devices */
2072	classes[0] = ata_sff_dev_classify(&link->device[0],
2073					  devmask & (1 << 0), &err);
2074	if (slave_possible && err != 0x81)
2075		classes[1] = ata_sff_dev_classify(&link->device[1],
2076						  devmask & (1 << 1), &err);
2077
2078	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079	return 0;
2080}
2081EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082
2083/**
2084 *	sata_sff_hardreset - reset host port via SATA phy reset
2085 *	@link: link to reset
2086 *	@class: resulting class of attached device
2087 *	@deadline: deadline jiffies for the operation
2088 *
2089 *	SATA phy-reset host port using DET bits of SControl register,
2090 *	wait for !BSY and classify the attached device.
2091 *
2092 *	LOCKING:
2093 *	Kernel thread context (may sleep)
2094 *
2095 *	RETURNS:
2096 *	0 on success, -errno otherwise.
2097 */
2098int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099		       unsigned long deadline)
2100{
2101	struct ata_eh_context *ehc = &link->eh_context;
2102	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103	bool online;
2104	int rc;
2105
2106	rc = sata_link_hardreset(link, timing, deadline, &online,
2107				 ata_sff_check_ready);
2108	if (online)
2109		*class = ata_sff_dev_classify(link->device, 1, NULL);
2110
2111	DPRINTK("EXIT, class=%u\n", *class);
2112	return rc;
2113}
2114EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115
2116/**
2117 *	ata_sff_postreset - SFF postreset callback
2118 *	@link: the target SFF ata_link
2119 *	@classes: classes of attached devices
2120 *
2121 *	This function is invoked after a successful reset.  It first
2122 *	calls ata_std_postreset() and performs SFF specific postreset
2123 *	processing.
2124 *
2125 *	LOCKING:
2126 *	Kernel thread context (may sleep)
2127 */
2128void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129{
2130	struct ata_port *ap = link->ap;
2131
2132	ata_std_postreset(link, classes);
2133
2134	/* is double-select really necessary? */
2135	if (classes[0] != ATA_DEV_NONE)
2136		ap->ops->sff_dev_select(ap, 1);
2137	if (classes[1] != ATA_DEV_NONE)
2138		ap->ops->sff_dev_select(ap, 0);
2139
2140	/* bail out if no device is present */
2141	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142		DPRINTK("EXIT, no device\n");
2143		return;
2144	}
2145
2146	/* set up device control */
2147	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148		ata_sff_set_devctl(ap, ap->ctl);
2149		ap->last_ctl = ap->ctl;
2150	}
2151}
2152EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153
2154/**
2155 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 *	@qc: command
2157 *
2158 *	Drain the FIFO and device of any stuck data following a command
2159 *	failing to complete. In some cases this is necessary before a
2160 *	reset will recover the device.
2161 *
2162 */
2163
2164void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165{
2166	int count;
2167	struct ata_port *ap;
2168
2169	/* We only need to flush incoming data when a command was running */
2170	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171		return;
2172
2173	ap = qc->ap;
2174	/* Drain up to 64K of data before we give up this recovery method */
2175	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176						&& count < 65536; count += 2)
2177		ioread16(ap->ioaddr.data_addr);
2178
2179	/* Can become DEBUG later */
2180	if (count)
2181		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182
2183}
2184EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185
2186/**
2187 *	ata_sff_error_handler - Stock error handler for SFF controller
2188 *	@ap: port to handle error for
2189 *
2190 *	Stock error handler for SFF controller.  It can handle both
2191 *	PATA and SATA controllers.  Many controllers should be able to
2192 *	use this EH as-is or with some added handling before and
2193 *	after.
2194 *
2195 *	LOCKING:
2196 *	Kernel thread context (may sleep)
2197 */
2198void ata_sff_error_handler(struct ata_port *ap)
2199{
2200	ata_reset_fn_t softreset = ap->ops->softreset;
2201	ata_reset_fn_t hardreset = ap->ops->hardreset;
2202	struct ata_queued_cmd *qc;
2203	unsigned long flags;
2204
2205	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207		qc = NULL;
2208
2209	spin_lock_irqsave(ap->lock, flags);
2210
2211	/*
2212	 * We *MUST* do FIFO draining before we issue a reset as
2213	 * several devices helpfully clear their internal state and
2214	 * will lock solid if we touch the data port post reset. Pass
2215	 * qc in case anyone wants to do different PIO/DMA recovery or
2216	 * has per command fixups
2217	 */
2218	if (ap->ops->sff_drain_fifo)
2219		ap->ops->sff_drain_fifo(qc);
2220
2221	spin_unlock_irqrestore(ap->lock, flags);
2222
2223	/* ignore built-in hardresets if SCR access is not available */
2224	if ((hardreset == sata_std_hardreset ||
2225	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226		hardreset = NULL;
2227
2228	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229		  ap->ops->postreset);
2230}
2231EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232
2233/**
2234 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235 *	@ioaddr: IO address structure to be initialized
2236 *
2237 *	Utility function which initializes data_addr, error_addr,
2238 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239 *	device_addr, status_addr, and command_addr to standard offsets
2240 *	relative to cmd_addr.
2241 *
2242 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243 */
2244void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245{
2246	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256}
2257EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258
2259#ifdef CONFIG_PCI
2260
2261static int ata_resources_present(struct pci_dev *pdev, int port)
2262{
2263	int i;
2264
2265	/* Check the PCI resources for this channel are enabled */
2266	port = port * 2;
2267	for (i = 0; i < 2; i++) {
2268		if (pci_resource_start(pdev, port + i) == 0 ||
2269		    pci_resource_len(pdev, port + i) == 0)
2270			return 0;
2271	}
2272	return 1;
2273}
2274
2275/**
2276 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277 *	@host: target ATA host
2278 *
2279 *	Acquire native PCI ATA resources for @host and initialize the
2280 *	first two ports of @host accordingly.  Ports marked dummy are
2281 *	skipped and allocation failure makes the port dummy.
2282 *
2283 *	Note that native PCI resources are valid even for legacy hosts
2284 *	as we fix up pdev resources array early in boot, so this
2285 *	function can be used for both native and legacy SFF hosts.
2286 *
2287 *	LOCKING:
2288 *	Inherited from calling layer (may sleep).
2289 *
2290 *	RETURNS:
2291 *	0 if at least one port is initialized, -ENODEV if no port is
2292 *	available.
2293 */
2294int ata_pci_sff_init_host(struct ata_host *host)
2295{
2296	struct device *gdev = host->dev;
2297	struct pci_dev *pdev = to_pci_dev(gdev);
2298	unsigned int mask = 0;
2299	int i, rc;
2300
2301	/* request, iomap BARs and init port addresses accordingly */
2302	for (i = 0; i < 2; i++) {
2303		struct ata_port *ap = host->ports[i];
2304		int base = i * 2;
2305		void __iomem * const *iomap;
2306
2307		if (ata_port_is_dummy(ap))
2308			continue;
2309
2310		/* Discard disabled ports.  Some controllers show
2311		 * their unused channels this way.  Disabled ports are
2312		 * made dummy.
2313		 */
2314		if (!ata_resources_present(pdev, i)) {
2315			ap->ops = &ata_dummy_port_ops;
2316			continue;
2317		}
2318
2319		rc = pcim_iomap_regions(pdev, 0x3 << base,
2320					dev_driver_string(gdev));
2321		if (rc) {
2322			dev_warn(gdev,
2323				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324				 i, rc);
2325			if (rc == -EBUSY)
2326				pcim_pin_device(pdev);
2327			ap->ops = &ata_dummy_port_ops;
2328			continue;
2329		}
2330		host->iomap = iomap = pcim_iomap_table(pdev);
2331
2332		ap->ioaddr.cmd_addr = iomap[base];
2333		ap->ioaddr.altstatus_addr =
2334		ap->ioaddr.ctl_addr = (void __iomem *)
2335			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336		ata_sff_std_ports(&ap->ioaddr);
2337
2338		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339			(unsigned long long)pci_resource_start(pdev, base),
2340			(unsigned long long)pci_resource_start(pdev, base + 1));
2341
2342		mask |= 1 << i;
2343	}
2344
2345	if (!mask) {
2346		dev_err(gdev, "no available native port\n");
2347		return -ENODEV;
2348	}
2349
2350	return 0;
2351}
2352EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353
2354/**
2355 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356 *	@pdev: target PCI device
2357 *	@ppi: array of port_info, must be enough for two ports
2358 *	@r_host: out argument for the initialized ATA host
2359 *
2360 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361 *	all PCI resources and initialize it accordingly in one go.
2362 *
2363 *	LOCKING:
2364 *	Inherited from calling layer (may sleep).
2365 *
2366 *	RETURNS:
2367 *	0 on success, -errno otherwise.
2368 */
2369int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370			     const struct ata_port_info * const *ppi,
2371			     struct ata_host **r_host)
2372{
2373	struct ata_host *host;
2374	int rc;
2375
2376	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377		return -ENOMEM;
2378
2379	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380	if (!host) {
2381		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382		rc = -ENOMEM;
2383		goto err_out;
2384	}
2385
2386	rc = ata_pci_sff_init_host(host);
2387	if (rc)
2388		goto err_out;
2389
2390	devres_remove_group(&pdev->dev, NULL);
2391	*r_host = host;
2392	return 0;
2393
2394err_out:
2395	devres_release_group(&pdev->dev, NULL);
2396	return rc;
2397}
2398EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399
2400/**
2401 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402 *	@host: target SFF ATA host
2403 *	@irq_handler: irq_handler used when requesting IRQ(s)
2404 *	@sht: scsi_host_template to use when registering the host
2405 *
2406 *	This is the counterpart of ata_host_activate() for SFF ATA
2407 *	hosts.  This separate helper is necessary because SFF hosts
2408 *	use two separate interrupts in legacy mode.
2409 *
2410 *	LOCKING:
2411 *	Inherited from calling layer (may sleep).
2412 *
2413 *	RETURNS:
2414 *	0 on success, -errno otherwise.
2415 */
2416int ata_pci_sff_activate_host(struct ata_host *host,
2417			      irq_handler_t irq_handler,
2418			      struct scsi_host_template *sht)
2419{
2420	struct device *dev = host->dev;
2421	struct pci_dev *pdev = to_pci_dev(dev);
2422	const char *drv_name = dev_driver_string(host->dev);
2423	int legacy_mode = 0, rc;
2424
2425	rc = ata_host_start(host);
2426	if (rc)
2427		return rc;
2428
2429	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430		u8 tmp8, mask;
2431
2432		/* TODO: What if one channel is in native mode ... */
 
 
 
 
 
 
 
2433		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2434		mask = (1 << 2) | (1 << 0);
 
 
 
2435		if ((tmp8 & mask) != mask)
2436			legacy_mode = 1;
2437	}
2438
2439	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2440		return -ENOMEM;
2441
2442	if (!legacy_mode && pdev->irq) {
2443		int i;
2444
2445		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2446				      IRQF_SHARED, drv_name, host);
2447		if (rc)
2448			goto out;
2449
2450		for (i = 0; i < 2; i++) {
2451			if (ata_port_is_dummy(host->ports[i]))
2452				continue;
2453			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2454		}
2455	} else if (legacy_mode) {
2456		if (!ata_port_is_dummy(host->ports[0])) {
2457			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2458					      irq_handler, IRQF_SHARED,
2459					      drv_name, host);
2460			if (rc)
2461				goto out;
2462
2463			ata_port_desc(host->ports[0], "irq %d",
2464				      ATA_PRIMARY_IRQ(pdev));
2465		}
2466
2467		if (!ata_port_is_dummy(host->ports[1])) {
2468			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2469					      irq_handler, IRQF_SHARED,
2470					      drv_name, host);
2471			if (rc)
2472				goto out;
2473
2474			ata_port_desc(host->ports[1], "irq %d",
2475				      ATA_SECONDARY_IRQ(pdev));
2476		}
2477	}
2478
2479	rc = ata_host_register(host, sht);
2480out:
2481	if (rc == 0)
2482		devres_remove_group(dev, NULL);
2483	else
2484		devres_release_group(dev, NULL);
2485
2486	return rc;
2487}
2488EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2489
2490static const struct ata_port_info *ata_sff_find_valid_pi(
2491					const struct ata_port_info * const *ppi)
2492{
2493	int i;
2494
2495	/* look up the first valid port_info */
2496	for (i = 0; i < 2 && ppi[i]; i++)
2497		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2498			return ppi[i];
2499
2500	return NULL;
2501}
2502
2503static int ata_pci_init_one(struct pci_dev *pdev,
2504		const struct ata_port_info * const *ppi,
2505		struct scsi_host_template *sht, void *host_priv,
2506		int hflags, bool bmdma)
2507{
2508	struct device *dev = &pdev->dev;
2509	const struct ata_port_info *pi;
2510	struct ata_host *host = NULL;
2511	int rc;
2512
2513	DPRINTK("ENTER\n");
2514
2515	pi = ata_sff_find_valid_pi(ppi);
2516	if (!pi) {
2517		dev_err(&pdev->dev, "no valid port_info specified\n");
2518		return -EINVAL;
2519	}
2520
2521	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2522		return -ENOMEM;
2523
2524	rc = pcim_enable_device(pdev);
2525	if (rc)
2526		goto out;
2527
2528#ifdef CONFIG_ATA_BMDMA
2529	if (bmdma)
2530		/* prepare and activate BMDMA host */
2531		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2532	else
2533#endif
2534		/* prepare and activate SFF host */
2535		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2536	if (rc)
2537		goto out;
2538	host->private_data = host_priv;
2539	host->flags |= hflags;
2540
2541#ifdef CONFIG_ATA_BMDMA
2542	if (bmdma) {
2543		pci_set_master(pdev);
2544		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2545	} else
2546#endif
2547		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2548out:
2549	if (rc == 0)
2550		devres_remove_group(&pdev->dev, NULL);
2551	else
2552		devres_release_group(&pdev->dev, NULL);
2553
2554	return rc;
2555}
2556
2557/**
2558 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2559 *	@pdev: Controller to be initialized
2560 *	@ppi: array of port_info, must be enough for two ports
2561 *	@sht: scsi_host_template to use when registering the host
2562 *	@host_priv: host private_data
2563 *	@hflag: host flags
2564 *
2565 *	This is a helper function which can be called from a driver's
2566 *	xxx_init_one() probe function if the hardware uses traditional
2567 *	IDE taskfile registers and is PIO only.
2568 *
2569 *	ASSUMPTION:
2570 *	Nobody makes a single channel controller that appears solely as
2571 *	the secondary legacy port on PCI.
2572 *
2573 *	LOCKING:
2574 *	Inherited from PCI layer (may sleep).
2575 *
2576 *	RETURNS:
2577 *	Zero on success, negative on errno-based value on error.
2578 */
2579int ata_pci_sff_init_one(struct pci_dev *pdev,
2580		 const struct ata_port_info * const *ppi,
2581		 struct scsi_host_template *sht, void *host_priv, int hflag)
2582{
2583	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2584}
2585EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2586
2587#endif /* CONFIG_PCI */
2588
2589/*
2590 *	BMDMA support
2591 */
2592
2593#ifdef CONFIG_ATA_BMDMA
2594
2595const struct ata_port_operations ata_bmdma_port_ops = {
2596	.inherits		= &ata_sff_port_ops,
2597
2598	.error_handler		= ata_bmdma_error_handler,
2599	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2600
2601	.qc_prep		= ata_bmdma_qc_prep,
2602	.qc_issue		= ata_bmdma_qc_issue,
2603
2604	.sff_irq_clear		= ata_bmdma_irq_clear,
2605	.bmdma_setup		= ata_bmdma_setup,
2606	.bmdma_start		= ata_bmdma_start,
2607	.bmdma_stop		= ata_bmdma_stop,
2608	.bmdma_status		= ata_bmdma_status,
2609
2610	.port_start		= ata_bmdma_port_start,
2611};
2612EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2613
2614const struct ata_port_operations ata_bmdma32_port_ops = {
2615	.inherits		= &ata_bmdma_port_ops,
2616
2617	.sff_data_xfer		= ata_sff_data_xfer32,
2618	.port_start		= ata_bmdma_port_start32,
2619};
2620EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2621
2622/**
2623 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2624 *	@qc: Metadata associated with taskfile to be transferred
2625 *
2626 *	Fill PCI IDE PRD (scatter-gather) table with segments
2627 *	associated with the current disk command.
2628 *
2629 *	LOCKING:
2630 *	spin_lock_irqsave(host lock)
2631 *
2632 */
2633static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2634{
2635	struct ata_port *ap = qc->ap;
2636	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2637	struct scatterlist *sg;
2638	unsigned int si, pi;
2639
2640	pi = 0;
2641	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2642		u32 addr, offset;
2643		u32 sg_len, len;
2644
2645		/* determine if physical DMA addr spans 64K boundary.
2646		 * Note h/w doesn't support 64-bit, so we unconditionally
2647		 * truncate dma_addr_t to u32.
2648		 */
2649		addr = (u32) sg_dma_address(sg);
2650		sg_len = sg_dma_len(sg);
2651
2652		while (sg_len) {
2653			offset = addr & 0xffff;
2654			len = sg_len;
2655			if ((offset + sg_len) > 0x10000)
2656				len = 0x10000 - offset;
2657
2658			prd[pi].addr = cpu_to_le32(addr);
2659			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2660			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2661
2662			pi++;
2663			sg_len -= len;
2664			addr += len;
2665		}
2666	}
2667
2668	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2669}
2670
2671/**
2672 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2673 *	@qc: Metadata associated with taskfile to be transferred
2674 *
2675 *	Fill PCI IDE PRD (scatter-gather) table with segments
2676 *	associated with the current disk command. Perform the fill
2677 *	so that we avoid writing any length 64K records for
2678 *	controllers that don't follow the spec.
2679 *
2680 *	LOCKING:
2681 *	spin_lock_irqsave(host lock)
2682 *
2683 */
2684static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2685{
2686	struct ata_port *ap = qc->ap;
2687	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2688	struct scatterlist *sg;
2689	unsigned int si, pi;
2690
2691	pi = 0;
2692	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2693		u32 addr, offset;
2694		u32 sg_len, len, blen;
2695
2696		/* determine if physical DMA addr spans 64K boundary.
2697		 * Note h/w doesn't support 64-bit, so we unconditionally
2698		 * truncate dma_addr_t to u32.
2699		 */
2700		addr = (u32) sg_dma_address(sg);
2701		sg_len = sg_dma_len(sg);
2702
2703		while (sg_len) {
2704			offset = addr & 0xffff;
2705			len = sg_len;
2706			if ((offset + sg_len) > 0x10000)
2707				len = 0x10000 - offset;
2708
2709			blen = len & 0xffff;
2710			prd[pi].addr = cpu_to_le32(addr);
2711			if (blen == 0) {
2712				/* Some PATA chipsets like the CS5530 can't
2713				   cope with 0x0000 meaning 64K as the spec
2714				   says */
2715				prd[pi].flags_len = cpu_to_le32(0x8000);
2716				blen = 0x8000;
2717				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2718			}
2719			prd[pi].flags_len = cpu_to_le32(blen);
2720			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2721
2722			pi++;
2723			sg_len -= len;
2724			addr += len;
2725		}
2726	}
2727
2728	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2729}
2730
2731/**
2732 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2733 *	@qc: Metadata associated with taskfile to be prepared
2734 *
2735 *	Prepare ATA taskfile for submission.
2736 *
2737 *	LOCKING:
2738 *	spin_lock_irqsave(host lock)
2739 */
2740void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2741{
2742	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743		return;
2744
2745	ata_bmdma_fill_sg(qc);
 
 
2746}
2747EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2748
2749/**
2750 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2751 *	@qc: Metadata associated with taskfile to be prepared
2752 *
2753 *	Prepare ATA taskfile for submission.
2754 *
2755 *	LOCKING:
2756 *	spin_lock_irqsave(host lock)
2757 */
2758void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2759{
2760	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2761		return;
2762
2763	ata_bmdma_fill_sg_dumb(qc);
 
 
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2766
2767/**
2768 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2769 *	@qc: command to issue to device
2770 *
2771 *	This function issues a PIO, NODATA or DMA command to a
2772 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2773 *	ata_sff_qc_issue().
2774 *
2775 *	LOCKING:
2776 *	spin_lock_irqsave(host lock)
2777 *
2778 *	RETURNS:
2779 *	Zero on success, AC_ERR_* mask on failure
2780 */
2781unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2782{
2783	struct ata_port *ap = qc->ap;
2784	struct ata_link *link = qc->dev->link;
2785
2786	/* defer PIO handling to sff_qc_issue */
2787	if (!ata_is_dma(qc->tf.protocol))
2788		return ata_sff_qc_issue(qc);
2789
2790	/* select the device */
2791	ata_dev_select(ap, qc->dev->devno, 1, 0);
2792
2793	/* start the command */
2794	switch (qc->tf.protocol) {
2795	case ATA_PROT_DMA:
2796		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2797
 
2798		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2799		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 
2800		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2801		ap->hsm_task_state = HSM_ST_LAST;
2802		break;
2803
2804	case ATAPI_PROT_DMA:
2805		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806
 
2807		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2808		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2809		ap->hsm_task_state = HSM_ST_FIRST;
2810
2811		/* send cdb by polling if no cdb interrupt */
2812		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2813			ata_sff_queue_pio_task(link, 0);
2814		break;
2815
2816	default:
2817		WARN_ON(1);
2818		return AC_ERR_SYSTEM;
2819	}
2820
2821	return 0;
2822}
2823EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2824
2825/**
2826 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2827 *	@ap: Port on which interrupt arrived (possibly...)
2828 *	@qc: Taskfile currently active in engine
2829 *
2830 *	Handle port interrupt for given queued command.
2831 *
2832 *	LOCKING:
2833 *	spin_lock_irqsave(host lock)
2834 *
2835 *	RETURNS:
2836 *	One if interrupt was handled, zero if not (shared irq).
2837 */
2838unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2839{
2840	struct ata_eh_info *ehi = &ap->link.eh_info;
2841	u8 host_stat = 0;
2842	bool bmdma_stopped = false;
2843	unsigned int handled;
2844
2845	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2846		/* check status of DMA engine */
2847		host_stat = ap->ops->bmdma_status(ap);
2848		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2849
2850		/* if it's not our irq... */
2851		if (!(host_stat & ATA_DMA_INTR))
2852			return ata_sff_idle_irq(ap);
2853
2854		/* before we do anything else, clear DMA-Start bit */
 
2855		ap->ops->bmdma_stop(qc);
2856		bmdma_stopped = true;
2857
2858		if (unlikely(host_stat & ATA_DMA_ERR)) {
2859			/* error when transferring data to/from memory */
2860			qc->err_mask |= AC_ERR_HOST_BUS;
2861			ap->hsm_task_state = HSM_ST_ERR;
2862		}
2863	}
2864
2865	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2866
2867	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2868		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2869
2870	return handled;
2871}
2872EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2873
2874/**
2875 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2876 *	@irq: irq line (unused)
2877 *	@dev_instance: pointer to our ata_host information structure
2878 *
2879 *	Default interrupt handler for PCI IDE devices.  Calls
2880 *	ata_bmdma_port_intr() for each port that is not disabled.
2881 *
2882 *	LOCKING:
2883 *	Obtains host lock during operation.
2884 *
2885 *	RETURNS:
2886 *	IRQ_NONE or IRQ_HANDLED.
2887 */
2888irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2889{
2890	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2891}
2892EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2893
2894/**
2895 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2896 *	@ap: port to handle error for
2897 *
2898 *	Stock error handler for BMDMA controller.  It can handle both
2899 *	PATA and SATA controllers.  Most BMDMA controllers should be
2900 *	able to use this EH as-is or with some added handling before
2901 *	and after.
2902 *
2903 *	LOCKING:
2904 *	Kernel thread context (may sleep)
2905 */
2906void ata_bmdma_error_handler(struct ata_port *ap)
2907{
2908	struct ata_queued_cmd *qc;
2909	unsigned long flags;
2910	bool thaw = false;
2911
2912	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2913	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2914		qc = NULL;
2915
2916	/* reset PIO HSM and stop DMA engine */
2917	spin_lock_irqsave(ap->lock, flags);
2918
2919	if (qc && ata_is_dma(qc->tf.protocol)) {
2920		u8 host_stat;
2921
2922		host_stat = ap->ops->bmdma_status(ap);
 
2923
2924		/* BMDMA controllers indicate host bus error by
2925		 * setting DMA_ERR bit and timing out.  As it wasn't
2926		 * really a timeout event, adjust error mask and
2927		 * cancel frozen state.
2928		 */
2929		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2930			qc->err_mask = AC_ERR_HOST_BUS;
2931			thaw = true;
2932		}
2933
 
2934		ap->ops->bmdma_stop(qc);
2935
2936		/* if we're gonna thaw, make sure IRQ is clear */
2937		if (thaw) {
2938			ap->ops->sff_check_status(ap);
2939			if (ap->ops->sff_irq_clear)
2940				ap->ops->sff_irq_clear(ap);
2941		}
2942	}
2943
2944	spin_unlock_irqrestore(ap->lock, flags);
2945
2946	if (thaw)
2947		ata_eh_thaw_port(ap);
2948
2949	ata_sff_error_handler(ap);
2950}
2951EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2952
2953/**
2954 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2955 *	@qc: internal command to clean up
2956 *
2957 *	LOCKING:
2958 *	Kernel thread context (may sleep)
2959 */
2960void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2961{
2962	struct ata_port *ap = qc->ap;
2963	unsigned long flags;
2964
2965	if (ata_is_dma(qc->tf.protocol)) {
2966		spin_lock_irqsave(ap->lock, flags);
 
2967		ap->ops->bmdma_stop(qc);
2968		spin_unlock_irqrestore(ap->lock, flags);
2969	}
2970}
2971EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2972
2973/**
2974 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2975 *	@ap: Port associated with this ATA transaction.
2976 *
2977 *	Clear interrupt and error flags in DMA status register.
2978 *
2979 *	May be used as the irq_clear() entry in ata_port_operations.
2980 *
2981 *	LOCKING:
2982 *	spin_lock_irqsave(host lock)
2983 */
2984void ata_bmdma_irq_clear(struct ata_port *ap)
2985{
2986	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2987
2988	if (!mmio)
2989		return;
2990
2991	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2992}
2993EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2994
2995/**
2996 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2997 *	@qc: Info associated with this ATA transaction.
2998 *
2999 *	LOCKING:
3000 *	spin_lock_irqsave(host lock)
3001 */
3002void ata_bmdma_setup(struct ata_queued_cmd *qc)
3003{
3004	struct ata_port *ap = qc->ap;
3005	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3006	u8 dmactl;
3007
3008	/* load PRD table addr. */
3009	mb();	/* make sure PRD table writes are visible to controller */
3010	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3011
3012	/* specify data direction, triple-check start bit is clear */
3013	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3014	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3015	if (!rw)
3016		dmactl |= ATA_DMA_WR;
3017	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3018
3019	/* issue r/w command */
3020	ap->ops->sff_exec_command(ap, &qc->tf);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3023
3024/**
3025 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3026 *	@qc: Info associated with this ATA transaction.
3027 *
3028 *	LOCKING:
3029 *	spin_lock_irqsave(host lock)
3030 */
3031void ata_bmdma_start(struct ata_queued_cmd *qc)
3032{
3033	struct ata_port *ap = qc->ap;
3034	u8 dmactl;
3035
3036	/* start host DMA transaction */
3037	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039
3040	/* Strictly, one may wish to issue an ioread8() here, to
3041	 * flush the mmio write.  However, control also passes
3042	 * to the hardware at this point, and it will interrupt
3043	 * us when we are to resume control.  So, in effect,
3044	 * we don't care when the mmio write flushes.
3045	 * Further, a read of the DMA status register _immediately_
3046	 * following the write may not be what certain flaky hardware
3047	 * is expected, so I think it is best to not add a readb()
3048	 * without first all the MMIO ATA cards/mobos.
3049	 * Or maybe I'm just being paranoid.
3050	 *
3051	 * FIXME: The posting of this write means I/O starts are
3052	 * unnecessarily delayed for MMIO
3053	 */
3054}
3055EXPORT_SYMBOL_GPL(ata_bmdma_start);
3056
3057/**
3058 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3059 *	@qc: Command we are ending DMA for
3060 *
3061 *	Clears the ATA_DMA_START flag in the dma control register
3062 *
3063 *	May be used as the bmdma_stop() entry in ata_port_operations.
3064 *
3065 *	LOCKING:
3066 *	spin_lock_irqsave(host lock)
3067 */
3068void ata_bmdma_stop(struct ata_queued_cmd *qc)
3069{
3070	struct ata_port *ap = qc->ap;
3071	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3072
3073	/* clear start/stop bit */
3074	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3075		 mmio + ATA_DMA_CMD);
3076
3077	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3078	ata_sff_dma_pause(ap);
3079}
3080EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3081
3082/**
3083 *	ata_bmdma_status - Read PCI IDE BMDMA status
3084 *	@ap: Port associated with this ATA transaction.
3085 *
3086 *	Read and return BMDMA status register.
3087 *
3088 *	May be used as the bmdma_status() entry in ata_port_operations.
3089 *
3090 *	LOCKING:
3091 *	spin_lock_irqsave(host lock)
3092 */
3093u8 ata_bmdma_status(struct ata_port *ap)
3094{
3095	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3096}
3097EXPORT_SYMBOL_GPL(ata_bmdma_status);
3098
3099
3100/**
3101 *	ata_bmdma_port_start - Set port up for bmdma.
3102 *	@ap: Port to initialize
3103 *
3104 *	Called just after data structures for each port are
3105 *	initialized.  Allocates space for PRD table.
3106 *
3107 *	May be used as the port_start() entry in ata_port_operations.
3108 *
3109 *	LOCKING:
3110 *	Inherited from caller.
3111 */
3112int ata_bmdma_port_start(struct ata_port *ap)
3113{
3114	if (ap->mwdma_mask || ap->udma_mask) {
3115		ap->bmdma_prd =
3116			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3117					    &ap->bmdma_prd_dma, GFP_KERNEL);
3118		if (!ap->bmdma_prd)
3119			return -ENOMEM;
3120	}
3121
3122	return 0;
3123}
3124EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3125
3126/**
3127 *	ata_bmdma_port_start32 - Set port up for dma.
3128 *	@ap: Port to initialize
3129 *
3130 *	Called just after data structures for each port are
3131 *	initialized.  Enables 32bit PIO and allocates space for PRD
3132 *	table.
3133 *
3134 *	May be used as the port_start() entry in ata_port_operations for
3135 *	devices that are capable of 32bit PIO.
3136 *
3137 *	LOCKING:
3138 *	Inherited from caller.
3139 */
3140int ata_bmdma_port_start32(struct ata_port *ap)
3141{
3142	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3143	return ata_bmdma_port_start(ap);
3144}
3145EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3146
3147#ifdef CONFIG_PCI
3148
3149/**
3150 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3151 *	@pdev: PCI device
3152 *
3153 *	Some PCI ATA devices report simplex mode but in fact can be told to
3154 *	enter non simplex mode. This implements the necessary logic to
3155 *	perform the task on such devices. Calling it on other devices will
3156 *	have -undefined- behaviour.
3157 */
3158int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3159{
 
3160	unsigned long bmdma = pci_resource_start(pdev, 4);
3161	u8 simplex;
3162
3163	if (bmdma == 0)
3164		return -ENOENT;
3165
3166	simplex = inb(bmdma + 0x02);
3167	outb(simplex & 0x60, bmdma + 0x02);
3168	simplex = inb(bmdma + 0x02);
3169	if (simplex & 0x80)
3170		return -EOPNOTSUPP;
3171	return 0;
 
 
 
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3174
3175static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3176{
3177	int i;
3178
3179	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3180
3181	for (i = 0; i < 2; i++) {
3182		host->ports[i]->mwdma_mask = 0;
3183		host->ports[i]->udma_mask = 0;
3184	}
3185}
3186
3187/**
3188 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3189 *	@host: target ATA host
3190 *
3191 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3192 *
3193 *	LOCKING:
3194 *	Inherited from calling layer (may sleep).
3195 */
3196void ata_pci_bmdma_init(struct ata_host *host)
3197{
3198	struct device *gdev = host->dev;
3199	struct pci_dev *pdev = to_pci_dev(gdev);
3200	int i, rc;
3201
3202	/* No BAR4 allocation: No DMA */
3203	if (pci_resource_start(pdev, 4) == 0) {
3204		ata_bmdma_nodma(host, "BAR4 is zero");
3205		return;
3206	}
3207
3208	/*
3209	 * Some controllers require BMDMA region to be initialized
3210	 * even if DMA is not in use to clear IRQ status via
3211	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3212	 * regardless of dma masks.
3213	 */
3214	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3215	if (rc)
3216		ata_bmdma_nodma(host, "failed to set dma mask");
3217	if (!rc) {
3218		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3219		if (rc)
3220			ata_bmdma_nodma(host,
3221					"failed to set consistent dma mask");
3222	}
3223
3224	/* request and iomap DMA region */
3225	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3226	if (rc) {
3227		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3228		return;
3229	}
3230	host->iomap = pcim_iomap_table(pdev);
3231
3232	for (i = 0; i < 2; i++) {
3233		struct ata_port *ap = host->ports[i];
3234		void __iomem *bmdma = host->iomap[4] + 8 * i;
3235
3236		if (ata_port_is_dummy(ap))
3237			continue;
3238
3239		ap->ioaddr.bmdma_addr = bmdma;
3240		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3241		    (ioread8(bmdma + 2) & 0x80))
3242			host->flags |= ATA_HOST_SIMPLEX;
3243
3244		ata_port_desc(ap, "bmdma 0x%llx",
3245		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3246	}
3247}
3248EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3249
3250/**
3251 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3252 *	@pdev: target PCI device
3253 *	@ppi: array of port_info, must be enough for two ports
3254 *	@r_host: out argument for the initialized ATA host
3255 *
3256 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3257 *	resources and initialize it accordingly in one go.
3258 *
3259 *	LOCKING:
3260 *	Inherited from calling layer (may sleep).
3261 *
3262 *	RETURNS:
3263 *	0 on success, -errno otherwise.
3264 */
3265int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3266			       const struct ata_port_info * const * ppi,
3267			       struct ata_host **r_host)
3268{
3269	int rc;
3270
3271	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3272	if (rc)
3273		return rc;
3274
3275	ata_pci_bmdma_init(*r_host);
3276	return 0;
3277}
3278EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3279
3280/**
3281 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3282 *	@pdev: Controller to be initialized
3283 *	@ppi: array of port_info, must be enough for two ports
3284 *	@sht: scsi_host_template to use when registering the host
3285 *	@host_priv: host private_data
3286 *	@hflags: host flags
3287 *
3288 *	This function is similar to ata_pci_sff_init_one() but also
3289 *	takes care of BMDMA initialization.
3290 *
3291 *	LOCKING:
3292 *	Inherited from PCI layer (may sleep).
3293 *
3294 *	RETURNS:
3295 *	Zero on success, negative on errno-based value on error.
3296 */
3297int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3298			   const struct ata_port_info * const * ppi,
3299			   struct scsi_host_template *sht, void *host_priv,
3300			   int hflags)
3301{
3302	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3303}
3304EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3305
3306#endif /* CONFIG_PCI */
3307#endif /* CONFIG_ATA_BMDMA */
3308
3309/**
3310 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3311 *	@ap: Port to initialize
3312 *
3313 *	Called on port allocation to initialize SFF/BMDMA specific
3314 *	fields.
3315 *
3316 *	LOCKING:
3317 *	None.
3318 */
3319void ata_sff_port_init(struct ata_port *ap)
3320{
3321	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3322	ap->ctl = ATA_DEVCTL_OBS;
3323	ap->last_ctl = 0xFF;
3324}
3325
3326int __init ata_sff_init(void)
3327{
3328	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3329	if (!ata_sff_wq)
3330		return -ENOMEM;
3331
3332	return 0;
3333}
3334
3335void ata_sff_exit(void)
3336{
3337	destroy_workqueue(ata_sff_wq);
3338}