Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76 tristate
77 select CRYPTO_SIG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85 tristate
86 select CRYPTO_SKCIPHER2
87 select CRYPTO_ALGAPI
88 select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91 tristate
92 select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95 tristate
96 select CRYPTO_HASH2
97 select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100 tristate
101 select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104 tristate
105 select CRYPTO_RNG2
106 select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109 tristate
110 select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113 tristate
114 select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117 tristate
118 select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121 tristate
122 select CRYPTO_AKCIPHER2
123 select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126 tristate
127 select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130 tristate
131 select CRYPTO_ALGAPI
132 select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135 tristate
136 select CRYPTO_ALGAPI2
137 select SGL_ALLOC
138
139config CRYPTO_ACOMP
140 tristate
141 select CRYPTO_ALGAPI
142 select CRYPTO_ACOMP2
143
144config CRYPTO_MANAGER
145 tristate "Cryptographic algorithm manager"
146 select CRYPTO_MANAGER2
147 help
148 Create default cryptographic template instantiations such as
149 cbc(aes).
150
151config CRYPTO_MANAGER2
152 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
153 select CRYPTO_ACOMP2
154 select CRYPTO_AEAD2
155 select CRYPTO_AKCIPHER2
156 select CRYPTO_SIG2
157 select CRYPTO_HASH2
158 select CRYPTO_KPP2
159 select CRYPTO_RNG2
160 select CRYPTO_SKCIPHER2
161
162config CRYPTO_USER
163 tristate "Userspace cryptographic algorithm configuration"
164 depends on NET
165 select CRYPTO_MANAGER
166 help
167 Userspace configuration for cryptographic instantiations such as
168 cbc(aes).
169
170config CRYPTO_MANAGER_DISABLE_TESTS
171 bool "Disable run-time self tests"
172 default y
173 help
174 Disable run-time self tests that normally take place at
175 algorithm registration.
176
177config CRYPTO_MANAGER_EXTRA_TESTS
178 bool "Enable extra run-time crypto self tests"
179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
180 help
181 Enable extra run-time self tests of registered crypto algorithms,
182 including randomized fuzz tests.
183
184 This is intended for developer use only, as these tests take much
185 longer to run than the normal self tests.
186
187config CRYPTO_NULL
188 tristate "Null algorithms"
189 select CRYPTO_NULL2
190 help
191 These are 'Null' algorithms, used by IPsec, which do nothing.
192
193config CRYPTO_NULL2
194 tristate
195 select CRYPTO_ALGAPI2
196 select CRYPTO_SKCIPHER2
197 select CRYPTO_HASH2
198
199config CRYPTO_PCRYPT
200 tristate "Parallel crypto engine"
201 depends on SMP
202 select PADATA
203 select CRYPTO_MANAGER
204 select CRYPTO_AEAD
205 help
206 This converts an arbitrary crypto algorithm into a parallel
207 algorithm that executes in kernel threads.
208
209config CRYPTO_CRYPTD
210 tristate "Software async crypto daemon"
211 select CRYPTO_SKCIPHER
212 select CRYPTO_HASH
213 select CRYPTO_MANAGER
214 help
215 This is a generic software asynchronous crypto daemon that
216 converts an arbitrary synchronous software crypto algorithm
217 into an asynchronous algorithm that executes in a kernel thread.
218
219config CRYPTO_AUTHENC
220 tristate "Authenc support"
221 select CRYPTO_AEAD
222 select CRYPTO_SKCIPHER
223 select CRYPTO_MANAGER
224 select CRYPTO_HASH
225 select CRYPTO_NULL
226 help
227 Authenc: Combined mode wrapper for IPsec.
228
229 This is required for IPSec ESP (XFRM_ESP).
230
231config CRYPTO_TEST
232 tristate "Testing module"
233 depends on m || EXPERT
234 select CRYPTO_MANAGER
235 help
236 Quick & dirty crypto test module.
237
238config CRYPTO_SIMD
239 tristate
240 select CRYPTO_CRYPTD
241
242config CRYPTO_ENGINE
243 tristate
244
245endmenu
246
247menu "Public-key cryptography"
248
249config CRYPTO_RSA
250 tristate "RSA (Rivest-Shamir-Adleman)"
251 select CRYPTO_AKCIPHER
252 select CRYPTO_MANAGER
253 select CRYPTO_SIG
254 select MPILIB
255 select ASN1
256 help
257 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
258
259config CRYPTO_DH
260 tristate "DH (Diffie-Hellman)"
261 select CRYPTO_KPP
262 select MPILIB
263 help
264 DH (Diffie-Hellman) key exchange algorithm
265
266config CRYPTO_DH_RFC7919_GROUPS
267 bool "RFC 7919 FFDHE groups"
268 depends on CRYPTO_DH
269 select CRYPTO_RNG_DEFAULT
270 help
271 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
272 defined in RFC7919.
273
274 Support these finite-field groups in DH key exchanges:
275 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
276
277 If unsure, say N.
278
279config CRYPTO_ECC
280 tristate
281 select CRYPTO_RNG_DEFAULT
282
283config CRYPTO_ECDH
284 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
285 select CRYPTO_ECC
286 select CRYPTO_KPP
287 help
288 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
289 using curves P-192, P-256, and P-384 (FIPS 186)
290
291config CRYPTO_ECDSA
292 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
293 select CRYPTO_ECC
294 select CRYPTO_SIG
295 select ASN1
296 help
297 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
298 ISO/IEC 14888-3)
299 using curves P-192, P-256, P-384 and P-521
300
301 Only signature verification is implemented.
302
303config CRYPTO_ECRDSA
304 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
305 select CRYPTO_ECC
306 select CRYPTO_SIG
307 select CRYPTO_STREEBOG
308 select OID_REGISTRY
309 select ASN1
310 help
311 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
312 RFC 7091, ISO/IEC 14888-3)
313
314 One of the Russian cryptographic standard algorithms (called GOST
315 algorithms). Only signature verification is implemented.
316
317config CRYPTO_CURVE25519
318 tristate "Curve25519"
319 select CRYPTO_KPP
320 select CRYPTO_LIB_CURVE25519_GENERIC
321 help
322 Curve25519 elliptic curve (RFC7748)
323
324endmenu
325
326menu "Block ciphers"
327
328config CRYPTO_AES
329 tristate "AES (Advanced Encryption Standard)"
330 select CRYPTO_ALGAPI
331 select CRYPTO_LIB_AES
332 help
333 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
334
335 Rijndael appears to be consistently a very good performer in
336 both hardware and software across a wide range of computing
337 environments regardless of its use in feedback or non-feedback
338 modes. Its key setup time is excellent, and its key agility is
339 good. Rijndael's very low memory requirements make it very well
340 suited for restricted-space environments, in which it also
341 demonstrates excellent performance. Rijndael's operations are
342 among the easiest to defend against power and timing attacks.
343
344 The AES specifies three key sizes: 128, 192 and 256 bits
345
346config CRYPTO_AES_TI
347 tristate "AES (Advanced Encryption Standard) (fixed time)"
348 select CRYPTO_ALGAPI
349 select CRYPTO_LIB_AES
350 help
351 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
352
353 This is a generic implementation of AES that attempts to eliminate
354 data dependent latencies as much as possible without affecting
355 performance too much. It is intended for use by the generic CCM
356 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
357 solely on encryption (although decryption is supported as well, but
358 with a more dramatic performance hit)
359
360 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
361 8 for decryption), this implementation only uses just two S-boxes of
362 256 bytes each, and attempts to eliminate data dependent latencies by
363 prefetching the entire table into the cache at the start of each
364 block. Interrupts are also disabled to avoid races where cachelines
365 are evicted when the CPU is interrupted to do something else.
366
367config CRYPTO_ANUBIS
368 tristate "Anubis"
369 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
370 select CRYPTO_ALGAPI
371 help
372 Anubis cipher algorithm
373
374 Anubis is a variable key length cipher which can use keys from
375 128 bits to 320 bits in length. It was evaluated as a entrant
376 in the NESSIE competition.
377
378 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
379 for further information.
380
381config CRYPTO_ARIA
382 tristate "ARIA"
383 select CRYPTO_ALGAPI
384 help
385 ARIA cipher algorithm (RFC5794)
386
387 ARIA is a standard encryption algorithm of the Republic of Korea.
388 The ARIA specifies three key sizes and rounds.
389 128-bit: 12 rounds.
390 192-bit: 14 rounds.
391 256-bit: 16 rounds.
392
393 See:
394 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
395
396config CRYPTO_BLOWFISH
397 tristate "Blowfish"
398 select CRYPTO_ALGAPI
399 select CRYPTO_BLOWFISH_COMMON
400 help
401 Blowfish cipher algorithm, by Bruce Schneier
402
403 This is a variable key length cipher which can use keys from 32
404 bits to 448 bits in length. It's fast, simple and specifically
405 designed for use on "large microprocessors".
406
407 See https://www.schneier.com/blowfish.html for further information.
408
409config CRYPTO_BLOWFISH_COMMON
410 tristate
411 help
412 Common parts of the Blowfish cipher algorithm shared by the
413 generic c and the assembler implementations.
414
415config CRYPTO_CAMELLIA
416 tristate "Camellia"
417 select CRYPTO_ALGAPI
418 help
419 Camellia cipher algorithms (ISO/IEC 18033-3)
420
421 Camellia is a symmetric key block cipher developed jointly
422 at NTT and Mitsubishi Electric Corporation.
423
424 The Camellia specifies three key sizes: 128, 192 and 256 bits.
425
426 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
427
428config CRYPTO_CAST_COMMON
429 tristate
430 help
431 Common parts of the CAST cipher algorithms shared by the
432 generic c and the assembler implementations.
433
434config CRYPTO_CAST5
435 tristate "CAST5 (CAST-128)"
436 select CRYPTO_ALGAPI
437 select CRYPTO_CAST_COMMON
438 help
439 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
440
441config CRYPTO_CAST6
442 tristate "CAST6 (CAST-256)"
443 select CRYPTO_ALGAPI
444 select CRYPTO_CAST_COMMON
445 help
446 CAST6 (CAST-256) encryption algorithm (RFC2612)
447
448config CRYPTO_DES
449 tristate "DES and Triple DES EDE"
450 select CRYPTO_ALGAPI
451 select CRYPTO_LIB_DES
452 help
453 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
454 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
455 cipher algorithms
456
457config CRYPTO_FCRYPT
458 tristate "FCrypt"
459 select CRYPTO_ALGAPI
460 select CRYPTO_SKCIPHER
461 help
462 FCrypt algorithm used by RxRPC
463
464 See https://ota.polyonymo.us/fcrypt-paper.txt
465
466config CRYPTO_KHAZAD
467 tristate "Khazad"
468 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
469 select CRYPTO_ALGAPI
470 help
471 Khazad cipher algorithm
472
473 Khazad was a finalist in the initial NESSIE competition. It is
474 an algorithm optimized for 64-bit processors with good performance
475 on 32-bit processors. Khazad uses an 128 bit key size.
476
477 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
478 for further information.
479
480config CRYPTO_SEED
481 tristate "SEED"
482 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
483 select CRYPTO_ALGAPI
484 help
485 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
486
487 SEED is a 128-bit symmetric key block cipher that has been
488 developed by KISA (Korea Information Security Agency) as a
489 national standard encryption algorithm of the Republic of Korea.
490 It is a 16 round block cipher with the key size of 128 bit.
491
492 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
493 for further information.
494
495config CRYPTO_SERPENT
496 tristate "Serpent"
497 select CRYPTO_ALGAPI
498 help
499 Serpent cipher algorithm, by Anderson, Biham & Knudsen
500
501 Keys are allowed to be from 0 to 256 bits in length, in steps
502 of 8 bits.
503
504 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
505
506config CRYPTO_SM4
507 tristate
508
509config CRYPTO_SM4_GENERIC
510 tristate "SM4 (ShangMi 4)"
511 select CRYPTO_ALGAPI
512 select CRYPTO_SM4
513 help
514 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
515 ISO/IEC 18033-3:2010/Amd 1:2021)
516
517 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
518 Organization of State Commercial Administration of China (OSCCA)
519 as an authorized cryptographic algorithms for the use within China.
520
521 SMS4 was originally created for use in protecting wireless
522 networks, and is mandated in the Chinese National Standard for
523 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
524 (GB.15629.11-2003).
525
526 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
527 standardized through TC 260 of the Standardization Administration
528 of the People's Republic of China (SAC).
529
530 The input, output, and key of SMS4 are each 128 bits.
531
532 See https://eprint.iacr.org/2008/329.pdf for further information.
533
534 If unsure, say N.
535
536config CRYPTO_TEA
537 tristate "TEA, XTEA and XETA"
538 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
539 select CRYPTO_ALGAPI
540 help
541 TEA (Tiny Encryption Algorithm) cipher algorithms
542
543 Tiny Encryption Algorithm is a simple cipher that uses
544 many rounds for security. It is very fast and uses
545 little memory.
546
547 Xtendend Tiny Encryption Algorithm is a modification to
548 the TEA algorithm to address a potential key weakness
549 in the TEA algorithm.
550
551 Xtendend Encryption Tiny Algorithm is a mis-implementation
552 of the XTEA algorithm for compatibility purposes.
553
554config CRYPTO_TWOFISH
555 tristate "Twofish"
556 select CRYPTO_ALGAPI
557 select CRYPTO_TWOFISH_COMMON
558 help
559 Twofish cipher algorithm
560
561 Twofish was submitted as an AES (Advanced Encryption Standard)
562 candidate cipher by researchers at CounterPane Systems. It is a
563 16 round block cipher supporting key sizes of 128, 192, and 256
564 bits.
565
566 See https://www.schneier.com/twofish.html for further information.
567
568config CRYPTO_TWOFISH_COMMON
569 tristate
570 help
571 Common parts of the Twofish cipher algorithm shared by the
572 generic c and the assembler implementations.
573
574endmenu
575
576menu "Length-preserving ciphers and modes"
577
578config CRYPTO_ADIANTUM
579 tristate "Adiantum"
580 select CRYPTO_CHACHA20
581 select CRYPTO_LIB_POLY1305_GENERIC
582 select CRYPTO_NHPOLY1305
583 select CRYPTO_MANAGER
584 help
585 Adiantum tweakable, length-preserving encryption mode
586
587 Designed for fast and secure disk encryption, especially on
588 CPUs without dedicated crypto instructions. It encrypts
589 each sector using the XChaCha12 stream cipher, two passes of
590 an ε-almost-∆-universal hash function, and an invocation of
591 the AES-256 block cipher on a single 16-byte block. On CPUs
592 without AES instructions, Adiantum is much faster than
593 AES-XTS.
594
595 Adiantum's security is provably reducible to that of its
596 underlying stream and block ciphers, subject to a security
597 bound. Unlike XTS, Adiantum is a true wide-block encryption
598 mode, so it actually provides an even stronger notion of
599 security than XTS, subject to the security bound.
600
601 If unsure, say N.
602
603config CRYPTO_ARC4
604 tristate "ARC4 (Alleged Rivest Cipher 4)"
605 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
606 select CRYPTO_SKCIPHER
607 select CRYPTO_LIB_ARC4
608 help
609 ARC4 cipher algorithm
610
611 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
612 bits in length. This algorithm is required for driver-based
613 WEP, but it should not be for other purposes because of the
614 weakness of the algorithm.
615
616config CRYPTO_CHACHA20
617 tristate "ChaCha"
618 select CRYPTO_LIB_CHACHA_GENERIC
619 select CRYPTO_SKCIPHER
620 help
621 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
622
623 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
624 Bernstein and further specified in RFC7539 for use in IETF protocols.
625 This is the portable C implementation of ChaCha20. See
626 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
627
628 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
629 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
630 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
631 while provably retaining ChaCha20's security. See
632 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
633
634 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
635 reduced security margin but increased performance. It can be needed
636 in some performance-sensitive scenarios.
637
638config CRYPTO_CBC
639 tristate "CBC (Cipher Block Chaining)"
640 select CRYPTO_SKCIPHER
641 select CRYPTO_MANAGER
642 help
643 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
644
645 This block cipher mode is required for IPSec ESP (XFRM_ESP).
646
647config CRYPTO_CTR
648 tristate "CTR (Counter)"
649 select CRYPTO_SKCIPHER
650 select CRYPTO_MANAGER
651 help
652 CTR (Counter) mode (NIST SP800-38A)
653
654config CRYPTO_CTS
655 tristate "CTS (Cipher Text Stealing)"
656 select CRYPTO_SKCIPHER
657 select CRYPTO_MANAGER
658 help
659 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
660 Addendum to SP800-38A (October 2010))
661
662 This mode is required for Kerberos gss mechanism support
663 for AES encryption.
664
665config CRYPTO_ECB
666 tristate "ECB (Electronic Codebook)"
667 select CRYPTO_SKCIPHER2
668 select CRYPTO_MANAGER
669 help
670 ECB (Electronic Codebook) mode (NIST SP800-38A)
671
672config CRYPTO_HCTR2
673 tristate "HCTR2"
674 select CRYPTO_XCTR
675 select CRYPTO_POLYVAL
676 select CRYPTO_MANAGER
677 help
678 HCTR2 length-preserving encryption mode
679
680 A mode for storage encryption that is efficient on processors with
681 instructions to accelerate AES and carryless multiplication, e.g.
682 x86 processors with AES-NI and CLMUL, and ARM processors with the
683 ARMv8 crypto extensions.
684
685 See https://eprint.iacr.org/2021/1441
686
687config CRYPTO_KEYWRAP
688 tristate "KW (AES Key Wrap)"
689 select CRYPTO_SKCIPHER
690 select CRYPTO_MANAGER
691 help
692 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
693 and RFC3394) without padding.
694
695config CRYPTO_LRW
696 tristate "LRW (Liskov Rivest Wagner)"
697 select CRYPTO_LIB_GF128MUL
698 select CRYPTO_SKCIPHER
699 select CRYPTO_MANAGER
700 select CRYPTO_ECB
701 help
702 LRW (Liskov Rivest Wagner) mode
703
704 A tweakable, non malleable, non movable
705 narrow block cipher mode for dm-crypt. Use it with cipher
706 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
707 The first 128, 192 or 256 bits in the key are used for AES and the
708 rest is used to tie each cipher block to its logical position.
709
710 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
711
712config CRYPTO_PCBC
713 tristate "PCBC (Propagating Cipher Block Chaining)"
714 select CRYPTO_SKCIPHER
715 select CRYPTO_MANAGER
716 help
717 PCBC (Propagating Cipher Block Chaining) mode
718
719 This block cipher mode is required for RxRPC.
720
721config CRYPTO_XCTR
722 tristate
723 select CRYPTO_SKCIPHER
724 select CRYPTO_MANAGER
725 help
726 XCTR (XOR Counter) mode for HCTR2
727
728 This blockcipher mode is a variant of CTR mode using XORs and little-endian
729 addition rather than big-endian arithmetic.
730
731 XCTR mode is used to implement HCTR2.
732
733config CRYPTO_XTS
734 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
735 select CRYPTO_SKCIPHER
736 select CRYPTO_MANAGER
737 select CRYPTO_ECB
738 help
739 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
740 and IEEE 1619)
741
742 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
743 implementation currently can't handle a sectorsize which is not a
744 multiple of 16 bytes.
745
746config CRYPTO_NHPOLY1305
747 tristate
748 select CRYPTO_HASH
749 select CRYPTO_LIB_POLY1305_GENERIC
750
751endmenu
752
753menu "AEAD (authenticated encryption with associated data) ciphers"
754
755config CRYPTO_AEGIS128
756 tristate "AEGIS-128"
757 select CRYPTO_AEAD
758 select CRYPTO_AES # for AES S-box tables
759 help
760 AEGIS-128 AEAD algorithm
761
762config CRYPTO_AEGIS128_SIMD
763 bool "AEGIS-128 (arm NEON, arm64 NEON)"
764 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
765 default y
766 help
767 AEGIS-128 AEAD algorithm
768
769 Architecture: arm or arm64 using:
770 - NEON (Advanced SIMD) extension
771
772config CRYPTO_CHACHA20POLY1305
773 tristate "ChaCha20-Poly1305"
774 select CRYPTO_CHACHA20
775 select CRYPTO_POLY1305
776 select CRYPTO_AEAD
777 select CRYPTO_MANAGER
778 help
779 ChaCha20 stream cipher and Poly1305 authenticator combined
780 mode (RFC8439)
781
782config CRYPTO_CCM
783 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
784 select CRYPTO_CTR
785 select CRYPTO_HASH
786 select CRYPTO_AEAD
787 select CRYPTO_MANAGER
788 help
789 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
790 authenticated encryption mode (NIST SP800-38C)
791
792config CRYPTO_GCM
793 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
794 select CRYPTO_CTR
795 select CRYPTO_AEAD
796 select CRYPTO_GHASH
797 select CRYPTO_NULL
798 select CRYPTO_MANAGER
799 help
800 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
801 (GCM Message Authentication Code) (NIST SP800-38D)
802
803 This is required for IPSec ESP (XFRM_ESP).
804
805config CRYPTO_GENIV
806 tristate
807 select CRYPTO_AEAD
808 select CRYPTO_NULL
809 select CRYPTO_MANAGER
810 select CRYPTO_RNG_DEFAULT
811
812config CRYPTO_SEQIV
813 tristate "Sequence Number IV Generator"
814 select CRYPTO_GENIV
815 help
816 Sequence Number IV generator
817
818 This IV generator generates an IV based on a sequence number by
819 xoring it with a salt. This algorithm is mainly useful for CTR.
820
821 This is required for IPsec ESP (XFRM_ESP).
822
823config CRYPTO_ECHAINIV
824 tristate "Encrypted Chain IV Generator"
825 select CRYPTO_GENIV
826 help
827 Encrypted Chain IV generator
828
829 This IV generator generates an IV based on the encryption of
830 a sequence number xored with a salt. This is the default
831 algorithm for CBC.
832
833config CRYPTO_ESSIV
834 tristate "Encrypted Salt-Sector IV Generator"
835 select CRYPTO_AUTHENC
836 help
837 Encrypted Salt-Sector IV generator
838
839 This IV generator is used in some cases by fscrypt and/or
840 dm-crypt. It uses the hash of the block encryption key as the
841 symmetric key for a block encryption pass applied to the input
842 IV, making low entropy IV sources more suitable for block
843 encryption.
844
845 This driver implements a crypto API template that can be
846 instantiated either as an skcipher or as an AEAD (depending on the
847 type of the first template argument), and which defers encryption
848 and decryption requests to the encapsulated cipher after applying
849 ESSIV to the input IV. Note that in the AEAD case, it is assumed
850 that the keys are presented in the same format used by the authenc
851 template, and that the IV appears at the end of the authenticated
852 associated data (AAD) region (which is how dm-crypt uses it.)
853
854 Note that the use of ESSIV is not recommended for new deployments,
855 and so this only needs to be enabled when interoperability with
856 existing encrypted volumes of filesystems is required, or when
857 building for a particular system that requires it (e.g., when
858 the SoC in question has accelerated CBC but not XTS, making CBC
859 combined with ESSIV the only feasible mode for h/w accelerated
860 block encryption)
861
862endmenu
863
864menu "Hashes, digests, and MACs"
865
866config CRYPTO_BLAKE2B
867 tristate "BLAKE2b"
868 select CRYPTO_HASH
869 help
870 BLAKE2b cryptographic hash function (RFC 7693)
871
872 BLAKE2b is optimized for 64-bit platforms and can produce digests
873 of any size between 1 and 64 bytes. The keyed hash is also implemented.
874
875 This module provides the following algorithms:
876 - blake2b-160
877 - blake2b-256
878 - blake2b-384
879 - blake2b-512
880
881 Used by the btrfs filesystem.
882
883 See https://blake2.net for further information.
884
885config CRYPTO_CMAC
886 tristate "CMAC (Cipher-based MAC)"
887 select CRYPTO_HASH
888 select CRYPTO_MANAGER
889 help
890 CMAC (Cipher-based Message Authentication Code) authentication
891 mode (NIST SP800-38B and IETF RFC4493)
892
893config CRYPTO_GHASH
894 tristate "GHASH"
895 select CRYPTO_HASH
896 select CRYPTO_LIB_GF128MUL
897 help
898 GCM GHASH function (NIST SP800-38D)
899
900config CRYPTO_HMAC
901 tristate "HMAC (Keyed-Hash MAC)"
902 select CRYPTO_HASH
903 select CRYPTO_MANAGER
904 help
905 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
906 RFC2104)
907
908 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
909
910config CRYPTO_MD4
911 tristate "MD4"
912 select CRYPTO_HASH
913 help
914 MD4 message digest algorithm (RFC1320)
915
916config CRYPTO_MD5
917 tristate "MD5"
918 select CRYPTO_HASH
919 help
920 MD5 message digest algorithm (RFC1321)
921
922config CRYPTO_MICHAEL_MIC
923 tristate "Michael MIC"
924 select CRYPTO_HASH
925 help
926 Michael MIC (Message Integrity Code) (IEEE 802.11i)
927
928 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
929 known as WPA (Wif-Fi Protected Access).
930
931 This algorithm is required for TKIP, but it should not be used for
932 other purposes because of the weakness of the algorithm.
933
934config CRYPTO_POLYVAL
935 tristate
936 select CRYPTO_HASH
937 select CRYPTO_LIB_GF128MUL
938 help
939 POLYVAL hash function for HCTR2
940
941 This is used in HCTR2. It is not a general-purpose
942 cryptographic hash function.
943
944config CRYPTO_POLY1305
945 tristate "Poly1305"
946 select CRYPTO_HASH
947 select CRYPTO_LIB_POLY1305_GENERIC
948 help
949 Poly1305 authenticator algorithm (RFC7539)
950
951 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
952 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
953 in IETF protocols. This is the portable C implementation of Poly1305.
954
955config CRYPTO_RMD160
956 tristate "RIPEMD-160"
957 select CRYPTO_HASH
958 help
959 RIPEMD-160 hash function (ISO/IEC 10118-3)
960
961 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
962 to be used as a secure replacement for the 128-bit hash functions
963 MD4, MD5 and its predecessor RIPEMD
964 (not to be confused with RIPEMD-128).
965
966 Its speed is comparable to SHA-1 and there are no known attacks
967 against RIPEMD-160.
968
969 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
970 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
971 for further information.
972
973config CRYPTO_SHA1
974 tristate "SHA-1"
975 select CRYPTO_HASH
976 select CRYPTO_LIB_SHA1
977 help
978 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
979
980config CRYPTO_SHA256
981 tristate "SHA-224 and SHA-256"
982 select CRYPTO_HASH
983 select CRYPTO_LIB_SHA256
984 help
985 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
986
987 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
988 Used by the btrfs filesystem, Ceph, NFS, and SMB.
989
990config CRYPTO_SHA512
991 tristate "SHA-384 and SHA-512"
992 select CRYPTO_HASH
993 help
994 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
995
996config CRYPTO_SHA3
997 tristate "SHA-3"
998 select CRYPTO_HASH
999 help
1000 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003 tristate
1004
1005config CRYPTO_SM3_GENERIC
1006 tristate "SM3 (ShangMi 3)"
1007 select CRYPTO_HASH
1008 select CRYPTO_SM3
1009 help
1010 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012 This is part of the Chinese Commercial Cryptography suite.
1013
1014 References:
1015 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019 tristate "Streebog"
1020 select CRYPTO_HASH
1021 help
1022 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024 This is one of the Russian cryptographic standard algorithms (called
1025 GOST algorithms). This setting enables two hash algorithms with
1026 256 and 512 bits output.
1027
1028 References:
1029 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030 https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033 tristate "VMAC"
1034 select CRYPTO_HASH
1035 select CRYPTO_MANAGER
1036 help
1037 VMAC is a message authentication algorithm designed for
1038 very high speed on 64-bit architectures.
1039
1040 See https://fastcrypto.org/vmac for further information.
1041
1042config CRYPTO_WP512
1043 tristate "Whirlpool"
1044 select CRYPTO_HASH
1045 help
1046 Whirlpool hash function (ISO/IEC 10118-3)
1047
1048 512, 384 and 256-bit hashes.
1049
1050 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051
1052 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053 for further information.
1054
1055config CRYPTO_XCBC
1056 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057 select CRYPTO_HASH
1058 select CRYPTO_MANAGER
1059 help
1060 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061 Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064 tristate "xxHash"
1065 select CRYPTO_HASH
1066 select XXHASH
1067 help
1068 xxHash non-cryptographic hash algorithm
1069
1070 Extremely fast, working at speeds close to RAM limits.
1071
1072 Used by the btrfs filesystem.
1073
1074endmenu
1075
1076menu "CRCs (cyclic redundancy checks)"
1077
1078config CRYPTO_CRC32C
1079 tristate "CRC32c"
1080 select CRYPTO_HASH
1081 select CRC32
1082 help
1083 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1084
1085 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089 iSCSI.
1090
1091 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1092
1093config CRYPTO_CRC32
1094 tristate "CRC32"
1095 select CRYPTO_HASH
1096 select CRC32
1097 help
1098 CRC32 CRC algorithm (IEEE 802.3)
1099
1100 Used by RoCEv2 and f2fs.
1101
1102config CRYPTO_CRCT10DIF
1103 tristate "CRCT10DIF"
1104 select CRYPTO_HASH
1105 help
1106 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1107
1108 CRC algorithm used by the SCSI Block Commands standard.
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111 tristate "CRC64 based on Rocksoft Model algorithm"
1112 depends on CRC64
1113 select CRYPTO_HASH
1114 help
1115 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1118
1119 See https://zlib.net/crc_v3.txt
1120
1121endmenu
1122
1123menu "Compression"
1124
1125config CRYPTO_DEFLATE
1126 tristate "Deflate"
1127 select CRYPTO_ALGAPI
1128 select CRYPTO_ACOMP2
1129 select ZLIB_INFLATE
1130 select ZLIB_DEFLATE
1131 help
1132 Deflate compression algorithm (RFC1951)
1133
1134 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1135
1136config CRYPTO_LZO
1137 tristate "LZO"
1138 select CRYPTO_ALGAPI
1139 select CRYPTO_ACOMP2
1140 select LZO_COMPRESS
1141 select LZO_DECOMPRESS
1142 help
1143 LZO compression algorithm
1144
1145 See https://www.oberhumer.com/opensource/lzo/ for further information.
1146
1147config CRYPTO_842
1148 tristate "842"
1149 select CRYPTO_ALGAPI
1150 select CRYPTO_ACOMP2
1151 select 842_COMPRESS
1152 select 842_DECOMPRESS
1153 help
1154 842 compression algorithm by IBM
1155
1156 See https://github.com/plauth/lib842 for further information.
1157
1158config CRYPTO_LZ4
1159 tristate "LZ4"
1160 select CRYPTO_ALGAPI
1161 select CRYPTO_ACOMP2
1162 select LZ4_COMPRESS
1163 select LZ4_DECOMPRESS
1164 help
1165 LZ4 compression algorithm
1166
1167 See https://github.com/lz4/lz4 for further information.
1168
1169config CRYPTO_LZ4HC
1170 tristate "LZ4HC"
1171 select CRYPTO_ALGAPI
1172 select CRYPTO_ACOMP2
1173 select LZ4HC_COMPRESS
1174 select LZ4_DECOMPRESS
1175 help
1176 LZ4 high compression mode algorithm
1177
1178 See https://github.com/lz4/lz4 for further information.
1179
1180config CRYPTO_ZSTD
1181 tristate "Zstd"
1182 select CRYPTO_ALGAPI
1183 select CRYPTO_ACOMP2
1184 select ZSTD_COMPRESS
1185 select ZSTD_DECOMPRESS
1186 help
1187 zstd compression algorithm
1188
1189 See https://github.com/facebook/zstd for further information.
1190
1191endmenu
1192
1193menu "Random number generation"
1194
1195config CRYPTO_ANSI_CPRNG
1196 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197 select CRYPTO_AES
1198 select CRYPTO_RNG
1199 help
1200 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202 This uses the AES cipher algorithm.
1203
1204 Note that this option must be enabled if CRYPTO_FIPS is selected
1205
1206menuconfig CRYPTO_DRBG_MENU
1207 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1208 help
1209 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211 In the following submenu, one or more of the DRBG types must be selected.
1212
1213if CRYPTO_DRBG_MENU
1214
1215config CRYPTO_DRBG_HMAC
1216 bool
1217 default y
1218 select CRYPTO_HMAC
1219 select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222 bool "Hash_DRBG"
1223 select CRYPTO_SHA256
1224 help
1225 Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1228
1229config CRYPTO_DRBG_CTR
1230 bool "CTR_DRBG"
1231 select CRYPTO_AES
1232 select CRYPTO_CTR
1233 help
1234 CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236 This uses the AES cipher algorithm with the counter block mode.
1237
1238config CRYPTO_DRBG
1239 tristate
1240 default CRYPTO_DRBG_MENU
1241 select CRYPTO_RNG
1242 select CRYPTO_JITTERENTROPY
1243
1244endif # if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_JITTERENTROPY
1247 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248 select CRYPTO_RNG
1249 select CRYPTO_SHA3
1250 help
1251 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254 compliant with NIST SP800-90B) intended to provide a seed to a
1255 deterministic RNG (e.g., per NIST SP800-90C).
1256 This RNG does not perform any cryptographic whitening of the generated
1257 random numbers.
1258
1259 See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265 prompt "CPU Jitter RNG Memory Size"
1266 default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267 help
1268 The Jitter RNG measures the execution time of memory accesses.
1269 Multiple consecutive memory accesses are performed. If the memory
1270 size fits into a cache (e.g. L1), only the memory access timing
1271 to that cache is measured. The closer the cache is to the CPU
1272 the less variations are measured and thus the less entropy is
1273 obtained. Thus, if the memory size fits into the L1 cache, the
1274 obtained entropy is less than if the memory size fits within
1275 L1 + L2, which in turn is less if the memory fits into
1276 L1 + L2 + L3. Thus, by selecting a different memory size,
1277 the entropy rate produced by the Jitter RNG can be modified.
1278
1279 config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280 bool "2048 Bytes (default)"
1281
1282 config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283 bool "128 kBytes"
1284
1285 config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286 bool "1024 kBytes"
1287
1288 config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289 bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293 int
1294 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300 int
1301 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307 int "CPU Jitter RNG Oversampling Rate"
1308 range 1 15
1309 default 3
1310 help
1311 The Jitter RNG allows the specification of an oversampling rate (OSR).
1312 The Jitter RNG operation requires a fixed amount of timing
1313 measurements to produce one output block of random numbers. The
1314 OSR value is multiplied with the amount of timing measurements to
1315 generate one output block. Thus, the timing measurement is oversampled
1316 by the OSR factor. The oversampling allows the Jitter RNG to operate
1317 on hardware whose timers deliver limited amount of entropy (e.g.
1318 the timer is coarse) by setting the OSR to a higher value. The
1319 trade-off, however, is that the Jitter RNG now requires more time
1320 to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323 bool "CPU Jitter RNG Test Interface"
1324 help
1325 The test interface allows a privileged process to capture
1326 the raw unconditioned high resolution time stamp noise that
1327 is collected by the Jitter RNG for statistical analysis. As
1328 this data is used at the same time to generate random bits,
1329 the Jitter RNG operates in an insecure mode as long as the
1330 recording is enabled. This interface therefore is only
1331 intended for testing purposes and is not suitable for
1332 production systems.
1333
1334 The raw noise data can be obtained using the jent_raw_hires
1335 debugfs file. Using the option
1336 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337 the first 1000 entropy events since boot can be sampled.
1338
1339 If unsure, select N.
1340
1341endif # if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346 int
1347 default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350 int
1351 default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354 int
1355 default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358 bool
1359
1360endif # if !(CRYPTO_FIPS && EXPERT)
1361endif # if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364 tristate
1365 select CRYPTO_HMAC
1366 select CRYPTO_SHA256
1367
1368endmenu
1369menu "Userspace interface"
1370
1371config CRYPTO_USER_API
1372 tristate
1373
1374config CRYPTO_USER_API_HASH
1375 tristate "Hash algorithms"
1376 depends on NET
1377 select CRYPTO_HASH
1378 select CRYPTO_USER_API
1379 help
1380 Enable the userspace interface for hash algorithms.
1381
1382 See Documentation/crypto/userspace-if.rst and
1383 https://www.chronox.de/libkcapi/html/index.html
1384
1385config CRYPTO_USER_API_SKCIPHER
1386 tristate "Symmetric key cipher algorithms"
1387 depends on NET
1388 select CRYPTO_SKCIPHER
1389 select CRYPTO_USER_API
1390 help
1391 Enable the userspace interface for symmetric key cipher algorithms.
1392
1393 See Documentation/crypto/userspace-if.rst and
1394 https://www.chronox.de/libkcapi/html/index.html
1395
1396config CRYPTO_USER_API_RNG
1397 tristate "RNG (random number generator) algorithms"
1398 depends on NET
1399 select CRYPTO_RNG
1400 select CRYPTO_USER_API
1401 help
1402 Enable the userspace interface for RNG (random number generator)
1403 algorithms.
1404
1405 See Documentation/crypto/userspace-if.rst and
1406 https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409 bool "Enable CAVP testing of DRBG"
1410 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411 help
1412 Enable extra APIs in the userspace interface for NIST CAVP
1413 (Cryptographic Algorithm Validation Program) testing:
1414 - resetting DRBG entropy
1415 - providing Additional Data
1416
1417 This should only be enabled for CAVP testing. You should say
1418 no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421 tristate "AEAD cipher algorithms"
1422 depends on NET
1423 select CRYPTO_AEAD
1424 select CRYPTO_SKCIPHER
1425 select CRYPTO_NULL
1426 select CRYPTO_USER_API
1427 help
1428 Enable the userspace interface for AEAD cipher algorithms.
1429
1430 See Documentation/crypto/userspace-if.rst and
1431 https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434 bool "Obsolete cryptographic algorithms"
1435 depends on CRYPTO_USER_API
1436 default y
1437 help
1438 Allow obsolete cryptographic algorithms to be selected that have
1439 already been phased out from internal use by the kernel, and are
1440 only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445 bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_BLKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139if CRYPTO_MANAGER2
140
141config CRYPTO_MANAGER_DISABLE_TESTS
142 bool "Disable run-time self tests"
143 default y
144 help
145 Disable run-time self tests that normally take place at
146 algorithm registration.
147
148config CRYPTO_MANAGER_EXTRA_TESTS
149 bool "Enable extra run-time crypto self tests"
150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151 help
152 Enable extra run-time self tests of registered crypto algorithms,
153 including randomized fuzz tests.
154
155 This is intended for developer use only, as these tests take much
156 longer to run than the normal self tests.
157
158endif # if CRYPTO_MANAGER2
159
160config CRYPTO_GF128MUL
161 tristate
162
163config CRYPTO_NULL
164 tristate "Null algorithms"
165 select CRYPTO_NULL2
166 help
167 These are 'Null' algorithms, used by IPsec, which do nothing.
168
169config CRYPTO_NULL2
170 tristate
171 select CRYPTO_ALGAPI2
172 select CRYPTO_BLKCIPHER2
173 select CRYPTO_HASH2
174
175config CRYPTO_PCRYPT
176 tristate "Parallel crypto engine"
177 depends on SMP
178 select PADATA
179 select CRYPTO_MANAGER
180 select CRYPTO_AEAD
181 help
182 This converts an arbitrary crypto algorithm into a parallel
183 algorithm that executes in kernel threads.
184
185config CRYPTO_CRYPTD
186 tristate "Software async crypto daemon"
187 select CRYPTO_BLKCIPHER
188 select CRYPTO_HASH
189 select CRYPTO_MANAGER
190 help
191 This is a generic software asynchronous crypto daemon that
192 converts an arbitrary synchronous software crypto algorithm
193 into an asynchronous algorithm that executes in a kernel thread.
194
195config CRYPTO_AUTHENC
196 tristate "Authenc support"
197 select CRYPTO_AEAD
198 select CRYPTO_BLKCIPHER
199 select CRYPTO_MANAGER
200 select CRYPTO_HASH
201 select CRYPTO_NULL
202 help
203 Authenc: Combined mode wrapper for IPsec.
204 This is required for IPSec.
205
206config CRYPTO_TEST
207 tristate "Testing module"
208 depends on m
209 select CRYPTO_MANAGER
210 help
211 Quick & dirty crypto test module.
212
213config CRYPTO_SIMD
214 tristate
215 select CRYPTO_CRYPTD
216
217config CRYPTO_GLUE_HELPER_X86
218 tristate
219 depends on X86
220 select CRYPTO_BLKCIPHER
221
222config CRYPTO_ENGINE
223 tristate
224
225comment "Public-key cryptography"
226
227config CRYPTO_RSA
228 tristate "RSA algorithm"
229 select CRYPTO_AKCIPHER
230 select CRYPTO_MANAGER
231 select MPILIB
232 select ASN1
233 help
234 Generic implementation of the RSA public key algorithm.
235
236config CRYPTO_DH
237 tristate "Diffie-Hellman algorithm"
238 select CRYPTO_KPP
239 select MPILIB
240 help
241 Generic implementation of the Diffie-Hellman algorithm.
242
243config CRYPTO_ECC
244 tristate
245
246config CRYPTO_ECDH
247 tristate "ECDH algorithm"
248 select CRYPTO_ECC
249 select CRYPTO_KPP
250 select CRYPTO_RNG_DEFAULT
251 help
252 Generic implementation of the ECDH algorithm
253
254config CRYPTO_ECRDSA
255 tristate "EC-RDSA (GOST 34.10) algorithm"
256 select CRYPTO_ECC
257 select CRYPTO_AKCIPHER
258 select CRYPTO_STREEBOG
259 select OID_REGISTRY
260 select ASN1
261 help
262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264 standard algorithms (called GOST algorithms). Only signature verification
265 is implemented.
266
267comment "Authenticated Encryption with Associated Data"
268
269config CRYPTO_CCM
270 tristate "CCM support"
271 select CRYPTO_CTR
272 select CRYPTO_HASH
273 select CRYPTO_AEAD
274 select CRYPTO_MANAGER
275 help
276 Support for Counter with CBC MAC. Required for IPsec.
277
278config CRYPTO_GCM
279 tristate "GCM/GMAC support"
280 select CRYPTO_CTR
281 select CRYPTO_AEAD
282 select CRYPTO_GHASH
283 select CRYPTO_NULL
284 select CRYPTO_MANAGER
285 help
286 Support for Galois/Counter Mode (GCM) and Galois Message
287 Authentication Code (GMAC). Required for IPSec.
288
289config CRYPTO_CHACHA20POLY1305
290 tristate "ChaCha20-Poly1305 AEAD support"
291 select CRYPTO_CHACHA20
292 select CRYPTO_POLY1305
293 select CRYPTO_AEAD
294 select CRYPTO_MANAGER
295 help
296 ChaCha20-Poly1305 AEAD support, RFC7539.
297
298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
299 with the Poly1305 authenticator. It is defined in RFC7539 for use in
300 IETF protocols.
301
302config CRYPTO_AEGIS128
303 tristate "AEGIS-128 AEAD algorithm"
304 select CRYPTO_AEAD
305 select CRYPTO_AES # for AES S-box tables
306 help
307 Support for the AEGIS-128 dedicated AEAD algorithm.
308
309config CRYPTO_AEGIS128_SIMD
310 bool "Support SIMD acceleration for AEGIS-128"
311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312 default y
313
314config CRYPTO_AEGIS128_AESNI_SSE2
315 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
316 depends on X86 && 64BIT
317 select CRYPTO_AEAD
318 select CRYPTO_SIMD
319 help
320 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
321
322config CRYPTO_SEQIV
323 tristate "Sequence Number IV Generator"
324 select CRYPTO_AEAD
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_NULL
327 select CRYPTO_RNG_DEFAULT
328 select CRYPTO_MANAGER
329 help
330 This IV generator generates an IV based on a sequence number by
331 xoring it with a salt. This algorithm is mainly useful for CTR
332
333config CRYPTO_ECHAINIV
334 tristate "Encrypted Chain IV Generator"
335 select CRYPTO_AEAD
336 select CRYPTO_NULL
337 select CRYPTO_RNG_DEFAULT
338 select CRYPTO_MANAGER
339 help
340 This IV generator generates an IV based on the encryption of
341 a sequence number xored with a salt. This is the default
342 algorithm for CBC.
343
344comment "Block modes"
345
346config CRYPTO_CBC
347 tristate "CBC support"
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
350 help
351 CBC: Cipher Block Chaining mode
352 This block cipher algorithm is required for IPSec.
353
354config CRYPTO_CFB
355 tristate "CFB support"
356 select CRYPTO_BLKCIPHER
357 select CRYPTO_MANAGER
358 help
359 CFB: Cipher FeedBack mode
360 This block cipher algorithm is required for TPM2 Cryptography.
361
362config CRYPTO_CTR
363 tristate "CTR support"
364 select CRYPTO_BLKCIPHER
365 select CRYPTO_SEQIV
366 select CRYPTO_MANAGER
367 help
368 CTR: Counter mode
369 This block cipher algorithm is required for IPSec.
370
371config CRYPTO_CTS
372 tristate "CTS support"
373 select CRYPTO_BLKCIPHER
374 select CRYPTO_MANAGER
375 help
376 CTS: Cipher Text Stealing
377 This is the Cipher Text Stealing mode as described by
378 Section 8 of rfc2040 and referenced by rfc3962
379 (rfc3962 includes errata information in its Appendix A) or
380 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
381 This mode is required for Kerberos gss mechanism support
382 for AES encryption.
383
384 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
385
386config CRYPTO_ECB
387 tristate "ECB support"
388 select CRYPTO_BLKCIPHER
389 select CRYPTO_MANAGER
390 help
391 ECB: Electronic CodeBook mode
392 This is the simplest block cipher algorithm. It simply encrypts
393 the input block by block.
394
395config CRYPTO_LRW
396 tristate "LRW support"
397 select CRYPTO_BLKCIPHER
398 select CRYPTO_MANAGER
399 select CRYPTO_GF128MUL
400 help
401 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
402 narrow block cipher mode for dm-crypt. Use it with cipher
403 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
404 The first 128, 192 or 256 bits in the key are used for AES and the
405 rest is used to tie each cipher block to its logical position.
406
407config CRYPTO_OFB
408 tristate "OFB support"
409 select CRYPTO_BLKCIPHER
410 select CRYPTO_MANAGER
411 help
412 OFB: the Output Feedback mode makes a block cipher into a synchronous
413 stream cipher. It generates keystream blocks, which are then XORed
414 with the plaintext blocks to get the ciphertext. Flipping a bit in the
415 ciphertext produces a flipped bit in the plaintext at the same
416 location. This property allows many error correcting codes to function
417 normally even when applied before encryption.
418
419config CRYPTO_PCBC
420 tristate "PCBC support"
421 select CRYPTO_BLKCIPHER
422 select CRYPTO_MANAGER
423 help
424 PCBC: Propagating Cipher Block Chaining mode
425 This block cipher algorithm is required for RxRPC.
426
427config CRYPTO_XTS
428 tristate "XTS support"
429 select CRYPTO_BLKCIPHER
430 select CRYPTO_MANAGER
431 select CRYPTO_ECB
432 help
433 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
434 key size 256, 384 or 512 bits. This implementation currently
435 can't handle a sectorsize which is not a multiple of 16 bytes.
436
437config CRYPTO_KEYWRAP
438 tristate "Key wrapping support"
439 select CRYPTO_BLKCIPHER
440 select CRYPTO_MANAGER
441 help
442 Support for key wrapping (NIST SP800-38F / RFC3394) without
443 padding.
444
445config CRYPTO_NHPOLY1305
446 tristate
447 select CRYPTO_HASH
448 select CRYPTO_POLY1305
449
450config CRYPTO_NHPOLY1305_SSE2
451 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
452 depends on X86 && 64BIT
453 select CRYPTO_NHPOLY1305
454 help
455 SSE2 optimized implementation of the hash function used by the
456 Adiantum encryption mode.
457
458config CRYPTO_NHPOLY1305_AVX2
459 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
460 depends on X86 && 64BIT
461 select CRYPTO_NHPOLY1305
462 help
463 AVX2 optimized implementation of the hash function used by the
464 Adiantum encryption mode.
465
466config CRYPTO_ADIANTUM
467 tristate "Adiantum support"
468 select CRYPTO_CHACHA20
469 select CRYPTO_POLY1305
470 select CRYPTO_NHPOLY1305
471 select CRYPTO_MANAGER
472 help
473 Adiantum is a tweakable, length-preserving encryption mode
474 designed for fast and secure disk encryption, especially on
475 CPUs without dedicated crypto instructions. It encrypts
476 each sector using the XChaCha12 stream cipher, two passes of
477 an ε-almost-∆-universal hash function, and an invocation of
478 the AES-256 block cipher on a single 16-byte block. On CPUs
479 without AES instructions, Adiantum is much faster than
480 AES-XTS.
481
482 Adiantum's security is provably reducible to that of its
483 underlying stream and block ciphers, subject to a security
484 bound. Unlike XTS, Adiantum is a true wide-block encryption
485 mode, so it actually provides an even stronger notion of
486 security than XTS, subject to the security bound.
487
488 If unsure, say N.
489
490config CRYPTO_ESSIV
491 tristate "ESSIV support for block encryption"
492 select CRYPTO_AUTHENC
493 help
494 Encrypted salt-sector initialization vector (ESSIV) is an IV
495 generation method that is used in some cases by fscrypt and/or
496 dm-crypt. It uses the hash of the block encryption key as the
497 symmetric key for a block encryption pass applied to the input
498 IV, making low entropy IV sources more suitable for block
499 encryption.
500
501 This driver implements a crypto API template that can be
502 instantiated either as a skcipher or as a aead (depending on the
503 type of the first template argument), and which defers encryption
504 and decryption requests to the encapsulated cipher after applying
505 ESSIV to the input IV. Note that in the aead case, it is assumed
506 that the keys are presented in the same format used by the authenc
507 template, and that the IV appears at the end of the authenticated
508 associated data (AAD) region (which is how dm-crypt uses it.)
509
510 Note that the use of ESSIV is not recommended for new deployments,
511 and so this only needs to be enabled when interoperability with
512 existing encrypted volumes of filesystems is required, or when
513 building for a particular system that requires it (e.g., when
514 the SoC in question has accelerated CBC but not XTS, making CBC
515 combined with ESSIV the only feasible mode for h/w accelerated
516 block encryption)
517
518comment "Hash modes"
519
520config CRYPTO_CMAC
521 tristate "CMAC support"
522 select CRYPTO_HASH
523 select CRYPTO_MANAGER
524 help
525 Cipher-based Message Authentication Code (CMAC) specified by
526 The National Institute of Standards and Technology (NIST).
527
528 https://tools.ietf.org/html/rfc4493
529 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
530
531config CRYPTO_HMAC
532 tristate "HMAC support"
533 select CRYPTO_HASH
534 select CRYPTO_MANAGER
535 help
536 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
537 This is required for IPSec.
538
539config CRYPTO_XCBC
540 tristate "XCBC support"
541 select CRYPTO_HASH
542 select CRYPTO_MANAGER
543 help
544 XCBC: Keyed-Hashing with encryption algorithm
545 http://www.ietf.org/rfc/rfc3566.txt
546 http://csrc.nist.gov/encryption/modes/proposedmodes/
547 xcbc-mac/xcbc-mac-spec.pdf
548
549config CRYPTO_VMAC
550 tristate "VMAC support"
551 select CRYPTO_HASH
552 select CRYPTO_MANAGER
553 help
554 VMAC is a message authentication algorithm designed for
555 very high speed on 64-bit architectures.
556
557 See also:
558 <http://fastcrypto.org/vmac>
559
560comment "Digest"
561
562config CRYPTO_CRC32C
563 tristate "CRC32c CRC algorithm"
564 select CRYPTO_HASH
565 select CRC32
566 help
567 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
568 by iSCSI for header and data digests and by others.
569 See Castagnoli93. Module will be crc32c.
570
571config CRYPTO_CRC32C_INTEL
572 tristate "CRC32c INTEL hardware acceleration"
573 depends on X86
574 select CRYPTO_HASH
575 help
576 In Intel processor with SSE4.2 supported, the processor will
577 support CRC32C implementation using hardware accelerated CRC32
578 instruction. This option will create 'crc32c-intel' module,
579 which will enable any routine to use the CRC32 instruction to
580 gain performance compared with software implementation.
581 Module will be crc32c-intel.
582
583config CRYPTO_CRC32C_VPMSUM
584 tristate "CRC32c CRC algorithm (powerpc64)"
585 depends on PPC64 && ALTIVEC
586 select CRYPTO_HASH
587 select CRC32
588 help
589 CRC32c algorithm implemented using vector polynomial multiply-sum
590 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
591 and newer processors for improved performance.
592
593
594config CRYPTO_CRC32C_SPARC64
595 tristate "CRC32c CRC algorithm (SPARC64)"
596 depends on SPARC64
597 select CRYPTO_HASH
598 select CRC32
599 help
600 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
601 when available.
602
603config CRYPTO_CRC32
604 tristate "CRC32 CRC algorithm"
605 select CRYPTO_HASH
606 select CRC32
607 help
608 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
609 Shash crypto api wrappers to crc32_le function.
610
611config CRYPTO_CRC32_PCLMUL
612 tristate "CRC32 PCLMULQDQ hardware acceleration"
613 depends on X86
614 select CRYPTO_HASH
615 select CRC32
616 help
617 From Intel Westmere and AMD Bulldozer processor with SSE4.2
618 and PCLMULQDQ supported, the processor will support
619 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
620 instruction. This option will create 'crc32-pclmul' module,
621 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
622 and gain better performance as compared with the table implementation.
623
624config CRYPTO_CRC32_MIPS
625 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
626 depends on MIPS_CRC_SUPPORT
627 select CRYPTO_HASH
628 help
629 CRC32c and CRC32 CRC algorithms implemented using mips crypto
630 instructions, when available.
631
632
633config CRYPTO_XXHASH
634 tristate "xxHash hash algorithm"
635 select CRYPTO_HASH
636 select XXHASH
637 help
638 xxHash non-cryptographic hash algorithm. Extremely fast, working at
639 speeds close to RAM limits.
640
641config CRYPTO_CRCT10DIF
642 tristate "CRCT10DIF algorithm"
643 select CRYPTO_HASH
644 help
645 CRC T10 Data Integrity Field computation is being cast as
646 a crypto transform. This allows for faster crc t10 diff
647 transforms to be used if they are available.
648
649config CRYPTO_CRCT10DIF_PCLMUL
650 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
651 depends on X86 && 64BIT && CRC_T10DIF
652 select CRYPTO_HASH
653 help
654 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
655 CRC T10 DIF PCLMULQDQ computation can be hardware
656 accelerated PCLMULQDQ instruction. This option will create
657 'crct10dif-pclmul' module, which is faster when computing the
658 crct10dif checksum as compared with the generic table implementation.
659
660config CRYPTO_CRCT10DIF_VPMSUM
661 tristate "CRC32T10DIF powerpc64 hardware acceleration"
662 depends on PPC64 && ALTIVEC && CRC_T10DIF
663 select CRYPTO_HASH
664 help
665 CRC10T10DIF algorithm implemented using vector polynomial
666 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
667 POWER8 and newer processors for improved performance.
668
669config CRYPTO_VPMSUM_TESTER
670 tristate "Powerpc64 vpmsum hardware acceleration tester"
671 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
672 help
673 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
674 POWER8 vpmsum instructions.
675 Unless you are testing these algorithms, you don't need this.
676
677config CRYPTO_GHASH
678 tristate "GHASH hash function"
679 select CRYPTO_GF128MUL
680 select CRYPTO_HASH
681 help
682 GHASH is the hash function used in GCM (Galois/Counter Mode).
683 It is not a general-purpose cryptographic hash function.
684
685config CRYPTO_POLY1305
686 tristate "Poly1305 authenticator algorithm"
687 select CRYPTO_HASH
688 help
689 Poly1305 authenticator algorithm, RFC7539.
690
691 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
692 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
693 in IETF protocols. This is the portable C implementation of Poly1305.
694
695config CRYPTO_POLY1305_X86_64
696 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
697 depends on X86 && 64BIT
698 select CRYPTO_POLY1305
699 help
700 Poly1305 authenticator algorithm, RFC7539.
701
702 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
703 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
704 in IETF protocols. This is the x86_64 assembler implementation using SIMD
705 instructions.
706
707config CRYPTO_MD4
708 tristate "MD4 digest algorithm"
709 select CRYPTO_HASH
710 help
711 MD4 message digest algorithm (RFC1320).
712
713config CRYPTO_MD5
714 tristate "MD5 digest algorithm"
715 select CRYPTO_HASH
716 help
717 MD5 message digest algorithm (RFC1321).
718
719config CRYPTO_MD5_OCTEON
720 tristate "MD5 digest algorithm (OCTEON)"
721 depends on CPU_CAVIUM_OCTEON
722 select CRYPTO_MD5
723 select CRYPTO_HASH
724 help
725 MD5 message digest algorithm (RFC1321) implemented
726 using OCTEON crypto instructions, when available.
727
728config CRYPTO_MD5_PPC
729 tristate "MD5 digest algorithm (PPC)"
730 depends on PPC
731 select CRYPTO_HASH
732 help
733 MD5 message digest algorithm (RFC1321) implemented
734 in PPC assembler.
735
736config CRYPTO_MD5_SPARC64
737 tristate "MD5 digest algorithm (SPARC64)"
738 depends on SPARC64
739 select CRYPTO_MD5
740 select CRYPTO_HASH
741 help
742 MD5 message digest algorithm (RFC1321) implemented
743 using sparc64 crypto instructions, when available.
744
745config CRYPTO_MICHAEL_MIC
746 tristate "Michael MIC keyed digest algorithm"
747 select CRYPTO_HASH
748 help
749 Michael MIC is used for message integrity protection in TKIP
750 (IEEE 802.11i). This algorithm is required for TKIP, but it
751 should not be used for other purposes because of the weakness
752 of the algorithm.
753
754config CRYPTO_RMD128
755 tristate "RIPEMD-128 digest algorithm"
756 select CRYPTO_HASH
757 help
758 RIPEMD-128 (ISO/IEC 10118-3:2004).
759
760 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
761 be used as a secure replacement for RIPEMD. For other use cases,
762 RIPEMD-160 should be used.
763
764 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766
767config CRYPTO_RMD160
768 tristate "RIPEMD-160 digest algorithm"
769 select CRYPTO_HASH
770 help
771 RIPEMD-160 (ISO/IEC 10118-3:2004).
772
773 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
774 to be used as a secure replacement for the 128-bit hash functions
775 MD4, MD5 and it's predecessor RIPEMD
776 (not to be confused with RIPEMD-128).
777
778 It's speed is comparable to SHA1 and there are no known attacks
779 against RIPEMD-160.
780
781 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
782 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
783
784config CRYPTO_RMD256
785 tristate "RIPEMD-256 digest algorithm"
786 select CRYPTO_HASH
787 help
788 RIPEMD-256 is an optional extension of RIPEMD-128 with a
789 256 bit hash. It is intended for applications that require
790 longer hash-results, without needing a larger security level
791 (than RIPEMD-128).
792
793 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
794 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
795
796config CRYPTO_RMD320
797 tristate "RIPEMD-320 digest algorithm"
798 select CRYPTO_HASH
799 help
800 RIPEMD-320 is an optional extension of RIPEMD-160 with a
801 320 bit hash. It is intended for applications that require
802 longer hash-results, without needing a larger security level
803 (than RIPEMD-160).
804
805 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
806 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
807
808config CRYPTO_SHA1
809 tristate "SHA1 digest algorithm"
810 select CRYPTO_HASH
811 help
812 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
813
814config CRYPTO_SHA1_SSSE3
815 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
816 depends on X86 && 64BIT
817 select CRYPTO_SHA1
818 select CRYPTO_HASH
819 help
820 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
821 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
822 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
823 when available.
824
825config CRYPTO_SHA256_SSSE3
826 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
827 depends on X86 && 64BIT
828 select CRYPTO_SHA256
829 select CRYPTO_HASH
830 help
831 SHA-256 secure hash standard (DFIPS 180-2) implemented
832 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
833 Extensions version 1 (AVX1), or Advanced Vector Extensions
834 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
835 Instructions) when available.
836
837config CRYPTO_SHA512_SSSE3
838 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
839 depends on X86 && 64BIT
840 select CRYPTO_SHA512
841 select CRYPTO_HASH
842 help
843 SHA-512 secure hash standard (DFIPS 180-2) implemented
844 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
845 Extensions version 1 (AVX1), or Advanced Vector Extensions
846 version 2 (AVX2) instructions, when available.
847
848config CRYPTO_SHA1_OCTEON
849 tristate "SHA1 digest algorithm (OCTEON)"
850 depends on CPU_CAVIUM_OCTEON
851 select CRYPTO_SHA1
852 select CRYPTO_HASH
853 help
854 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
855 using OCTEON crypto instructions, when available.
856
857config CRYPTO_SHA1_SPARC64
858 tristate "SHA1 digest algorithm (SPARC64)"
859 depends on SPARC64
860 select CRYPTO_SHA1
861 select CRYPTO_HASH
862 help
863 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
864 using sparc64 crypto instructions, when available.
865
866config CRYPTO_SHA1_PPC
867 tristate "SHA1 digest algorithm (powerpc)"
868 depends on PPC
869 help
870 This is the powerpc hardware accelerated implementation of the
871 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
872
873config CRYPTO_SHA1_PPC_SPE
874 tristate "SHA1 digest algorithm (PPC SPE)"
875 depends on PPC && SPE
876 help
877 SHA-1 secure hash standard (DFIPS 180-4) implemented
878 using powerpc SPE SIMD instruction set.
879
880config CRYPTO_LIB_SHA256
881 tristate
882
883config CRYPTO_SHA256
884 tristate "SHA224 and SHA256 digest algorithm"
885 select CRYPTO_HASH
886 select CRYPTO_LIB_SHA256
887 help
888 SHA256 secure hash standard (DFIPS 180-2).
889
890 This version of SHA implements a 256 bit hash with 128 bits of
891 security against collision attacks.
892
893 This code also includes SHA-224, a 224 bit hash with 112 bits
894 of security against collision attacks.
895
896config CRYPTO_SHA256_PPC_SPE
897 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
898 depends on PPC && SPE
899 select CRYPTO_SHA256
900 select CRYPTO_HASH
901 help
902 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
903 implemented using powerpc SPE SIMD instruction set.
904
905config CRYPTO_SHA256_OCTEON
906 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
907 depends on CPU_CAVIUM_OCTEON
908 select CRYPTO_SHA256
909 select CRYPTO_HASH
910 help
911 SHA-256 secure hash standard (DFIPS 180-2) implemented
912 using OCTEON crypto instructions, when available.
913
914config CRYPTO_SHA256_SPARC64
915 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
916 depends on SPARC64
917 select CRYPTO_SHA256
918 select CRYPTO_HASH
919 help
920 SHA-256 secure hash standard (DFIPS 180-2) implemented
921 using sparc64 crypto instructions, when available.
922
923config CRYPTO_SHA512
924 tristate "SHA384 and SHA512 digest algorithms"
925 select CRYPTO_HASH
926 help
927 SHA512 secure hash standard (DFIPS 180-2).
928
929 This version of SHA implements a 512 bit hash with 256 bits of
930 security against collision attacks.
931
932 This code also includes SHA-384, a 384 bit hash with 192 bits
933 of security against collision attacks.
934
935config CRYPTO_SHA512_OCTEON
936 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
937 depends on CPU_CAVIUM_OCTEON
938 select CRYPTO_SHA512
939 select CRYPTO_HASH
940 help
941 SHA-512 secure hash standard (DFIPS 180-2) implemented
942 using OCTEON crypto instructions, when available.
943
944config CRYPTO_SHA512_SPARC64
945 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
946 depends on SPARC64
947 select CRYPTO_SHA512
948 select CRYPTO_HASH
949 help
950 SHA-512 secure hash standard (DFIPS 180-2) implemented
951 using sparc64 crypto instructions, when available.
952
953config CRYPTO_SHA3
954 tristate "SHA3 digest algorithm"
955 select CRYPTO_HASH
956 help
957 SHA-3 secure hash standard (DFIPS 202). It's based on
958 cryptographic sponge function family called Keccak.
959
960 References:
961 http://keccak.noekeon.org/
962
963config CRYPTO_SM3
964 tristate "SM3 digest algorithm"
965 select CRYPTO_HASH
966 help
967 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
968 It is part of the Chinese Commercial Cryptography suite.
969
970 References:
971 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
972 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
973
974config CRYPTO_STREEBOG
975 tristate "Streebog Hash Function"
976 select CRYPTO_HASH
977 help
978 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
979 cryptographic standard algorithms (called GOST algorithms).
980 This setting enables two hash algorithms with 256 and 512 bits output.
981
982 References:
983 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
984 https://tools.ietf.org/html/rfc6986
985
986config CRYPTO_TGR192
987 tristate "Tiger digest algorithms"
988 select CRYPTO_HASH
989 help
990 Tiger hash algorithm 192, 160 and 128-bit hashes
991
992 Tiger is a hash function optimized for 64-bit processors while
993 still having decent performance on 32-bit processors.
994 Tiger was developed by Ross Anderson and Eli Biham.
995
996 See also:
997 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
998
999config CRYPTO_WP512
1000 tristate "Whirlpool digest algorithms"
1001 select CRYPTO_HASH
1002 help
1003 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1004
1005 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1006 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1007
1008 See also:
1009 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1010
1011config CRYPTO_GHASH_CLMUL_NI_INTEL
1012 tristate "GHASH hash function (CLMUL-NI accelerated)"
1013 depends on X86 && 64BIT
1014 select CRYPTO_CRYPTD
1015 help
1016 This is the x86_64 CLMUL-NI accelerated implementation of
1017 GHASH, the hash function used in GCM (Galois/Counter mode).
1018
1019comment "Ciphers"
1020
1021config CRYPTO_LIB_AES
1022 tristate
1023
1024config CRYPTO_AES
1025 tristate "AES cipher algorithms"
1026 select CRYPTO_ALGAPI
1027 select CRYPTO_LIB_AES
1028 help
1029 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1030 algorithm.
1031
1032 Rijndael appears to be consistently a very good performer in
1033 both hardware and software across a wide range of computing
1034 environments regardless of its use in feedback or non-feedback
1035 modes. Its key setup time is excellent, and its key agility is
1036 good. Rijndael's very low memory requirements make it very well
1037 suited for restricted-space environments, in which it also
1038 demonstrates excellent performance. Rijndael's operations are
1039 among the easiest to defend against power and timing attacks.
1040
1041 The AES specifies three key sizes: 128, 192 and 256 bits
1042
1043 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1044
1045config CRYPTO_AES_TI
1046 tristate "Fixed time AES cipher"
1047 select CRYPTO_ALGAPI
1048 select CRYPTO_LIB_AES
1049 help
1050 This is a generic implementation of AES that attempts to eliminate
1051 data dependent latencies as much as possible without affecting
1052 performance too much. It is intended for use by the generic CCM
1053 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1054 solely on encryption (although decryption is supported as well, but
1055 with a more dramatic performance hit)
1056
1057 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1058 8 for decryption), this implementation only uses just two S-boxes of
1059 256 bytes each, and attempts to eliminate data dependent latencies by
1060 prefetching the entire table into the cache at the start of each
1061 block. Interrupts are also disabled to avoid races where cachelines
1062 are evicted when the CPU is interrupted to do something else.
1063
1064config CRYPTO_AES_NI_INTEL
1065 tristate "AES cipher algorithms (AES-NI)"
1066 depends on X86
1067 select CRYPTO_AEAD
1068 select CRYPTO_LIB_AES
1069 select CRYPTO_ALGAPI
1070 select CRYPTO_BLKCIPHER
1071 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1072 select CRYPTO_SIMD
1073 help
1074 Use Intel AES-NI instructions for AES algorithm.
1075
1076 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1077 algorithm.
1078
1079 Rijndael appears to be consistently a very good performer in
1080 both hardware and software across a wide range of computing
1081 environments regardless of its use in feedback or non-feedback
1082 modes. Its key setup time is excellent, and its key agility is
1083 good. Rijndael's very low memory requirements make it very well
1084 suited for restricted-space environments, in which it also
1085 demonstrates excellent performance. Rijndael's operations are
1086 among the easiest to defend against power and timing attacks.
1087
1088 The AES specifies three key sizes: 128, 192 and 256 bits
1089
1090 See <http://csrc.nist.gov/encryption/aes/> for more information.
1091
1092 In addition to AES cipher algorithm support, the acceleration
1093 for some popular block cipher mode is supported too, including
1094 ECB, CBC, LRW, XTS. The 64 bit version has additional
1095 acceleration for CTR.
1096
1097config CRYPTO_AES_SPARC64
1098 tristate "AES cipher algorithms (SPARC64)"
1099 depends on SPARC64
1100 select CRYPTO_CRYPTD
1101 select CRYPTO_ALGAPI
1102 help
1103 Use SPARC64 crypto opcodes for AES algorithm.
1104
1105 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1106 algorithm.
1107
1108 Rijndael appears to be consistently a very good performer in
1109 both hardware and software across a wide range of computing
1110 environments regardless of its use in feedback or non-feedback
1111 modes. Its key setup time is excellent, and its key agility is
1112 good. Rijndael's very low memory requirements make it very well
1113 suited for restricted-space environments, in which it also
1114 demonstrates excellent performance. Rijndael's operations are
1115 among the easiest to defend against power and timing attacks.
1116
1117 The AES specifies three key sizes: 128, 192 and 256 bits
1118
1119 See <http://csrc.nist.gov/encryption/aes/> for more information.
1120
1121 In addition to AES cipher algorithm support, the acceleration
1122 for some popular block cipher mode is supported too, including
1123 ECB and CBC.
1124
1125config CRYPTO_AES_PPC_SPE
1126 tristate "AES cipher algorithms (PPC SPE)"
1127 depends on PPC && SPE
1128 help
1129 AES cipher algorithms (FIPS-197). Additionally the acceleration
1130 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1131 This module should only be used for low power (router) devices
1132 without hardware AES acceleration (e.g. caam crypto). It reduces the
1133 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1134 timining attacks. Nevertheless it might be not as secure as other
1135 architecture specific assembler implementations that work on 1KB
1136 tables or 256 bytes S-boxes.
1137
1138config CRYPTO_ANUBIS
1139 tristate "Anubis cipher algorithm"
1140 select CRYPTO_ALGAPI
1141 help
1142 Anubis cipher algorithm.
1143
1144 Anubis is a variable key length cipher which can use keys from
1145 128 bits to 320 bits in length. It was evaluated as a entrant
1146 in the NESSIE competition.
1147
1148 See also:
1149 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1150 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1151
1152config CRYPTO_LIB_ARC4
1153 tristate
1154
1155config CRYPTO_ARC4
1156 tristate "ARC4 cipher algorithm"
1157 select CRYPTO_BLKCIPHER
1158 select CRYPTO_LIB_ARC4
1159 help
1160 ARC4 cipher algorithm.
1161
1162 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1163 bits in length. This algorithm is required for driver-based
1164 WEP, but it should not be for other purposes because of the
1165 weakness of the algorithm.
1166
1167config CRYPTO_BLOWFISH
1168 tristate "Blowfish cipher algorithm"
1169 select CRYPTO_ALGAPI
1170 select CRYPTO_BLOWFISH_COMMON
1171 help
1172 Blowfish cipher algorithm, by Bruce Schneier.
1173
1174 This is a variable key length cipher which can use keys from 32
1175 bits to 448 bits in length. It's fast, simple and specifically
1176 designed for use on "large microprocessors".
1177
1178 See also:
1179 <http://www.schneier.com/blowfish.html>
1180
1181config CRYPTO_BLOWFISH_COMMON
1182 tristate
1183 help
1184 Common parts of the Blowfish cipher algorithm shared by the
1185 generic c and the assembler implementations.
1186
1187 See also:
1188 <http://www.schneier.com/blowfish.html>
1189
1190config CRYPTO_BLOWFISH_X86_64
1191 tristate "Blowfish cipher algorithm (x86_64)"
1192 depends on X86 && 64BIT
1193 select CRYPTO_BLKCIPHER
1194 select CRYPTO_BLOWFISH_COMMON
1195 help
1196 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1197
1198 This is a variable key length cipher which can use keys from 32
1199 bits to 448 bits in length. It's fast, simple and specifically
1200 designed for use on "large microprocessors".
1201
1202 See also:
1203 <http://www.schneier.com/blowfish.html>
1204
1205config CRYPTO_CAMELLIA
1206 tristate "Camellia cipher algorithms"
1207 depends on CRYPTO
1208 select CRYPTO_ALGAPI
1209 help
1210 Camellia cipher algorithms module.
1211
1212 Camellia is a symmetric key block cipher developed jointly
1213 at NTT and Mitsubishi Electric Corporation.
1214
1215 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1216
1217 See also:
1218 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1219
1220config CRYPTO_CAMELLIA_X86_64
1221 tristate "Camellia cipher algorithm (x86_64)"
1222 depends on X86 && 64BIT
1223 depends on CRYPTO
1224 select CRYPTO_BLKCIPHER
1225 select CRYPTO_GLUE_HELPER_X86
1226 help
1227 Camellia cipher algorithm module (x86_64).
1228
1229 Camellia is a symmetric key block cipher developed jointly
1230 at NTT and Mitsubishi Electric Corporation.
1231
1232 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1233
1234 See also:
1235 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1236
1237config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1238 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1239 depends on X86 && 64BIT
1240 depends on CRYPTO
1241 select CRYPTO_BLKCIPHER
1242 select CRYPTO_CAMELLIA_X86_64
1243 select CRYPTO_GLUE_HELPER_X86
1244 select CRYPTO_SIMD
1245 select CRYPTO_XTS
1246 help
1247 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1248
1249 Camellia is a symmetric key block cipher developed jointly
1250 at NTT and Mitsubishi Electric Corporation.
1251
1252 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1253
1254 See also:
1255 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1256
1257config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1258 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1259 depends on X86 && 64BIT
1260 depends on CRYPTO
1261 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1262 help
1263 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1264
1265 Camellia is a symmetric key block cipher developed jointly
1266 at NTT and Mitsubishi Electric Corporation.
1267
1268 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1269
1270 See also:
1271 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1272
1273config CRYPTO_CAMELLIA_SPARC64
1274 tristate "Camellia cipher algorithm (SPARC64)"
1275 depends on SPARC64
1276 depends on CRYPTO
1277 select CRYPTO_ALGAPI
1278 help
1279 Camellia cipher algorithm module (SPARC64).
1280
1281 Camellia is a symmetric key block cipher developed jointly
1282 at NTT and Mitsubishi Electric Corporation.
1283
1284 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285
1286 See also:
1287 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288
1289config CRYPTO_CAST_COMMON
1290 tristate
1291 help
1292 Common parts of the CAST cipher algorithms shared by the
1293 generic c and the assembler implementations.
1294
1295config CRYPTO_CAST5
1296 tristate "CAST5 (CAST-128) cipher algorithm"
1297 select CRYPTO_ALGAPI
1298 select CRYPTO_CAST_COMMON
1299 help
1300 The CAST5 encryption algorithm (synonymous with CAST-128) is
1301 described in RFC2144.
1302
1303config CRYPTO_CAST5_AVX_X86_64
1304 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1305 depends on X86 && 64BIT
1306 select CRYPTO_BLKCIPHER
1307 select CRYPTO_CAST5
1308 select CRYPTO_CAST_COMMON
1309 select CRYPTO_SIMD
1310 help
1311 The CAST5 encryption algorithm (synonymous with CAST-128) is
1312 described in RFC2144.
1313
1314 This module provides the Cast5 cipher algorithm that processes
1315 sixteen blocks parallel using the AVX instruction set.
1316
1317config CRYPTO_CAST6
1318 tristate "CAST6 (CAST-256) cipher algorithm"
1319 select CRYPTO_ALGAPI
1320 select CRYPTO_CAST_COMMON
1321 help
1322 The CAST6 encryption algorithm (synonymous with CAST-256) is
1323 described in RFC2612.
1324
1325config CRYPTO_CAST6_AVX_X86_64
1326 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1327 depends on X86 && 64BIT
1328 select CRYPTO_BLKCIPHER
1329 select CRYPTO_CAST6
1330 select CRYPTO_CAST_COMMON
1331 select CRYPTO_GLUE_HELPER_X86
1332 select CRYPTO_SIMD
1333 select CRYPTO_XTS
1334 help
1335 The CAST6 encryption algorithm (synonymous with CAST-256) is
1336 described in RFC2612.
1337
1338 This module provides the Cast6 cipher algorithm that processes
1339 eight blocks parallel using the AVX instruction set.
1340
1341config CRYPTO_LIB_DES
1342 tristate
1343
1344config CRYPTO_DES
1345 tristate "DES and Triple DES EDE cipher algorithms"
1346 select CRYPTO_ALGAPI
1347 select CRYPTO_LIB_DES
1348 help
1349 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1350
1351config CRYPTO_DES_SPARC64
1352 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1353 depends on SPARC64
1354 select CRYPTO_ALGAPI
1355 select CRYPTO_LIB_DES
1356 help
1357 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1358 optimized using SPARC64 crypto opcodes.
1359
1360config CRYPTO_DES3_EDE_X86_64
1361 tristate "Triple DES EDE cipher algorithm (x86-64)"
1362 depends on X86 && 64BIT
1363 select CRYPTO_BLKCIPHER
1364 select CRYPTO_LIB_DES
1365 help
1366 Triple DES EDE (FIPS 46-3) algorithm.
1367
1368 This module provides implementation of the Triple DES EDE cipher
1369 algorithm that is optimized for x86-64 processors. Two versions of
1370 algorithm are provided; regular processing one input block and
1371 one that processes three blocks parallel.
1372
1373config CRYPTO_FCRYPT
1374 tristate "FCrypt cipher algorithm"
1375 select CRYPTO_ALGAPI
1376 select CRYPTO_BLKCIPHER
1377 help
1378 FCrypt algorithm used by RxRPC.
1379
1380config CRYPTO_KHAZAD
1381 tristate "Khazad cipher algorithm"
1382 select CRYPTO_ALGAPI
1383 help
1384 Khazad cipher algorithm.
1385
1386 Khazad was a finalist in the initial NESSIE competition. It is
1387 an algorithm optimized for 64-bit processors with good performance
1388 on 32-bit processors. Khazad uses an 128 bit key size.
1389
1390 See also:
1391 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1392
1393config CRYPTO_SALSA20
1394 tristate "Salsa20 stream cipher algorithm"
1395 select CRYPTO_BLKCIPHER
1396 help
1397 Salsa20 stream cipher algorithm.
1398
1399 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1400 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1401
1402 The Salsa20 stream cipher algorithm is designed by Daniel J.
1403 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1404
1405config CRYPTO_CHACHA20
1406 tristate "ChaCha stream cipher algorithms"
1407 select CRYPTO_BLKCIPHER
1408 help
1409 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1410
1411 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1412 Bernstein and further specified in RFC7539 for use in IETF protocols.
1413 This is the portable C implementation of ChaCha20. See also:
1414 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1415
1416 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1417 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1418 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1419 while provably retaining ChaCha20's security. See also:
1420 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1421
1422 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1423 reduced security margin but increased performance. It can be needed
1424 in some performance-sensitive scenarios.
1425
1426config CRYPTO_CHACHA20_X86_64
1427 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1428 depends on X86 && 64BIT
1429 select CRYPTO_BLKCIPHER
1430 select CRYPTO_CHACHA20
1431 help
1432 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1433 XChaCha20, and XChaCha12 stream ciphers.
1434
1435config CRYPTO_SEED
1436 tristate "SEED cipher algorithm"
1437 select CRYPTO_ALGAPI
1438 help
1439 SEED cipher algorithm (RFC4269).
1440
1441 SEED is a 128-bit symmetric key block cipher that has been
1442 developed by KISA (Korea Information Security Agency) as a
1443 national standard encryption algorithm of the Republic of Korea.
1444 It is a 16 round block cipher with the key size of 128 bit.
1445
1446 See also:
1447 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1448
1449config CRYPTO_SERPENT
1450 tristate "Serpent cipher algorithm"
1451 select CRYPTO_ALGAPI
1452 help
1453 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1454
1455 Keys are allowed to be from 0 to 256 bits in length, in steps
1456 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1457 variant of Serpent for compatibility with old kerneli.org code.
1458
1459 See also:
1460 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1461
1462config CRYPTO_SERPENT_SSE2_X86_64
1463 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1464 depends on X86 && 64BIT
1465 select CRYPTO_BLKCIPHER
1466 select CRYPTO_GLUE_HELPER_X86
1467 select CRYPTO_SERPENT
1468 select CRYPTO_SIMD
1469 help
1470 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1471
1472 Keys are allowed to be from 0 to 256 bits in length, in steps
1473 of 8 bits.
1474
1475 This module provides Serpent cipher algorithm that processes eight
1476 blocks parallel using SSE2 instruction set.
1477
1478 See also:
1479 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480
1481config CRYPTO_SERPENT_SSE2_586
1482 tristate "Serpent cipher algorithm (i586/SSE2)"
1483 depends on X86 && !64BIT
1484 select CRYPTO_BLKCIPHER
1485 select CRYPTO_GLUE_HELPER_X86
1486 select CRYPTO_SERPENT
1487 select CRYPTO_SIMD
1488 help
1489 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1490
1491 Keys are allowed to be from 0 to 256 bits in length, in steps
1492 of 8 bits.
1493
1494 This module provides Serpent cipher algorithm that processes four
1495 blocks parallel using SSE2 instruction set.
1496
1497 See also:
1498 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1499
1500config CRYPTO_SERPENT_AVX_X86_64
1501 tristate "Serpent cipher algorithm (x86_64/AVX)"
1502 depends on X86 && 64BIT
1503 select CRYPTO_BLKCIPHER
1504 select CRYPTO_GLUE_HELPER_X86
1505 select CRYPTO_SERPENT
1506 select CRYPTO_SIMD
1507 select CRYPTO_XTS
1508 help
1509 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510
1511 Keys are allowed to be from 0 to 256 bits in length, in steps
1512 of 8 bits.
1513
1514 This module provides the Serpent cipher algorithm that processes
1515 eight blocks parallel using the AVX instruction set.
1516
1517 See also:
1518 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520config CRYPTO_SERPENT_AVX2_X86_64
1521 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1522 depends on X86 && 64BIT
1523 select CRYPTO_SERPENT_AVX_X86_64
1524 help
1525 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1526
1527 Keys are allowed to be from 0 to 256 bits in length, in steps
1528 of 8 bits.
1529
1530 This module provides Serpent cipher algorithm that processes 16
1531 blocks parallel using AVX2 instruction set.
1532
1533 See also:
1534 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1535
1536config CRYPTO_SM4
1537 tristate "SM4 cipher algorithm"
1538 select CRYPTO_ALGAPI
1539 help
1540 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1541
1542 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1543 Organization of State Commercial Administration of China (OSCCA)
1544 as an authorized cryptographic algorithms for the use within China.
1545
1546 SMS4 was originally created for use in protecting wireless
1547 networks, and is mandated in the Chinese National Standard for
1548 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1549 (GB.15629.11-2003).
1550
1551 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1552 standardized through TC 260 of the Standardization Administration
1553 of the People's Republic of China (SAC).
1554
1555 The input, output, and key of SMS4 are each 128 bits.
1556
1557 See also: <https://eprint.iacr.org/2008/329.pdf>
1558
1559 If unsure, say N.
1560
1561config CRYPTO_TEA
1562 tristate "TEA, XTEA and XETA cipher algorithms"
1563 select CRYPTO_ALGAPI
1564 help
1565 TEA cipher algorithm.
1566
1567 Tiny Encryption Algorithm is a simple cipher that uses
1568 many rounds for security. It is very fast and uses
1569 little memory.
1570
1571 Xtendend Tiny Encryption Algorithm is a modification to
1572 the TEA algorithm to address a potential key weakness
1573 in the TEA algorithm.
1574
1575 Xtendend Encryption Tiny Algorithm is a mis-implementation
1576 of the XTEA algorithm for compatibility purposes.
1577
1578config CRYPTO_TWOFISH
1579 tristate "Twofish cipher algorithm"
1580 select CRYPTO_ALGAPI
1581 select CRYPTO_TWOFISH_COMMON
1582 help
1583 Twofish cipher algorithm.
1584
1585 Twofish was submitted as an AES (Advanced Encryption Standard)
1586 candidate cipher by researchers at CounterPane Systems. It is a
1587 16 round block cipher supporting key sizes of 128, 192, and 256
1588 bits.
1589
1590 See also:
1591 <http://www.schneier.com/twofish.html>
1592
1593config CRYPTO_TWOFISH_COMMON
1594 tristate
1595 help
1596 Common parts of the Twofish cipher algorithm shared by the
1597 generic c and the assembler implementations.
1598
1599config CRYPTO_TWOFISH_586
1600 tristate "Twofish cipher algorithms (i586)"
1601 depends on (X86 || UML_X86) && !64BIT
1602 select CRYPTO_ALGAPI
1603 select CRYPTO_TWOFISH_COMMON
1604 help
1605 Twofish cipher algorithm.
1606
1607 Twofish was submitted as an AES (Advanced Encryption Standard)
1608 candidate cipher by researchers at CounterPane Systems. It is a
1609 16 round block cipher supporting key sizes of 128, 192, and 256
1610 bits.
1611
1612 See also:
1613 <http://www.schneier.com/twofish.html>
1614
1615config CRYPTO_TWOFISH_X86_64
1616 tristate "Twofish cipher algorithm (x86_64)"
1617 depends on (X86 || UML_X86) && 64BIT
1618 select CRYPTO_ALGAPI
1619 select CRYPTO_TWOFISH_COMMON
1620 help
1621 Twofish cipher algorithm (x86_64).
1622
1623 Twofish was submitted as an AES (Advanced Encryption Standard)
1624 candidate cipher by researchers at CounterPane Systems. It is a
1625 16 round block cipher supporting key sizes of 128, 192, and 256
1626 bits.
1627
1628 See also:
1629 <http://www.schneier.com/twofish.html>
1630
1631config CRYPTO_TWOFISH_X86_64_3WAY
1632 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1633 depends on X86 && 64BIT
1634 select CRYPTO_BLKCIPHER
1635 select CRYPTO_TWOFISH_COMMON
1636 select CRYPTO_TWOFISH_X86_64
1637 select CRYPTO_GLUE_HELPER_X86
1638 help
1639 Twofish cipher algorithm (x86_64, 3-way parallel).
1640
1641 Twofish was submitted as an AES (Advanced Encryption Standard)
1642 candidate cipher by researchers at CounterPane Systems. It is a
1643 16 round block cipher supporting key sizes of 128, 192, and 256
1644 bits.
1645
1646 This module provides Twofish cipher algorithm that processes three
1647 blocks parallel, utilizing resources of out-of-order CPUs better.
1648
1649 See also:
1650 <http://www.schneier.com/twofish.html>
1651
1652config CRYPTO_TWOFISH_AVX_X86_64
1653 tristate "Twofish cipher algorithm (x86_64/AVX)"
1654 depends on X86 && 64BIT
1655 select CRYPTO_BLKCIPHER
1656 select CRYPTO_GLUE_HELPER_X86
1657 select CRYPTO_SIMD
1658 select CRYPTO_TWOFISH_COMMON
1659 select CRYPTO_TWOFISH_X86_64
1660 select CRYPTO_TWOFISH_X86_64_3WAY
1661 help
1662 Twofish cipher algorithm (x86_64/AVX).
1663
1664 Twofish was submitted as an AES (Advanced Encryption Standard)
1665 candidate cipher by researchers at CounterPane Systems. It is a
1666 16 round block cipher supporting key sizes of 128, 192, and 256
1667 bits.
1668
1669 This module provides the Twofish cipher algorithm that processes
1670 eight blocks parallel using the AVX Instruction Set.
1671
1672 See also:
1673 <http://www.schneier.com/twofish.html>
1674
1675comment "Compression"
1676
1677config CRYPTO_DEFLATE
1678 tristate "Deflate compression algorithm"
1679 select CRYPTO_ALGAPI
1680 select CRYPTO_ACOMP2
1681 select ZLIB_INFLATE
1682 select ZLIB_DEFLATE
1683 help
1684 This is the Deflate algorithm (RFC1951), specified for use in
1685 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1686
1687 You will most probably want this if using IPSec.
1688
1689config CRYPTO_LZO
1690 tristate "LZO compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZO_COMPRESS
1694 select LZO_DECOMPRESS
1695 help
1696 This is the LZO algorithm.
1697
1698config CRYPTO_842
1699 tristate "842 compression algorithm"
1700 select CRYPTO_ALGAPI
1701 select CRYPTO_ACOMP2
1702 select 842_COMPRESS
1703 select 842_DECOMPRESS
1704 help
1705 This is the 842 algorithm.
1706
1707config CRYPTO_LZ4
1708 tristate "LZ4 compression algorithm"
1709 select CRYPTO_ALGAPI
1710 select CRYPTO_ACOMP2
1711 select LZ4_COMPRESS
1712 select LZ4_DECOMPRESS
1713 help
1714 This is the LZ4 algorithm.
1715
1716config CRYPTO_LZ4HC
1717 tristate "LZ4HC compression algorithm"
1718 select CRYPTO_ALGAPI
1719 select CRYPTO_ACOMP2
1720 select LZ4HC_COMPRESS
1721 select LZ4_DECOMPRESS
1722 help
1723 This is the LZ4 high compression mode algorithm.
1724
1725config CRYPTO_ZSTD
1726 tristate "Zstd compression algorithm"
1727 select CRYPTO_ALGAPI
1728 select CRYPTO_ACOMP2
1729 select ZSTD_COMPRESS
1730 select ZSTD_DECOMPRESS
1731 help
1732 This is the zstd algorithm.
1733
1734comment "Random Number Generation"
1735
1736config CRYPTO_ANSI_CPRNG
1737 tristate "Pseudo Random Number Generation for Cryptographic modules"
1738 select CRYPTO_AES
1739 select CRYPTO_RNG
1740 help
1741 This option enables the generic pseudo random number generator
1742 for cryptographic modules. Uses the Algorithm specified in
1743 ANSI X9.31 A.2.4. Note that this option must be enabled if
1744 CRYPTO_FIPS is selected
1745
1746menuconfig CRYPTO_DRBG_MENU
1747 tristate "NIST SP800-90A DRBG"
1748 help
1749 NIST SP800-90A compliant DRBG. In the following submenu, one or
1750 more of the DRBG types must be selected.
1751
1752if CRYPTO_DRBG_MENU
1753
1754config CRYPTO_DRBG_HMAC
1755 bool
1756 default y
1757 select CRYPTO_HMAC
1758 select CRYPTO_SHA256
1759
1760config CRYPTO_DRBG_HASH
1761 bool "Enable Hash DRBG"
1762 select CRYPTO_SHA256
1763 help
1764 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1765
1766config CRYPTO_DRBG_CTR
1767 bool "Enable CTR DRBG"
1768 select CRYPTO_AES
1769 depends on CRYPTO_CTR
1770 help
1771 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1772
1773config CRYPTO_DRBG
1774 tristate
1775 default CRYPTO_DRBG_MENU
1776 select CRYPTO_RNG
1777 select CRYPTO_JITTERENTROPY
1778
1779endif # if CRYPTO_DRBG_MENU
1780
1781config CRYPTO_JITTERENTROPY
1782 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1783 select CRYPTO_RNG
1784 help
1785 The Jitterentropy RNG is a noise that is intended
1786 to provide seed to another RNG. The RNG does not
1787 perform any cryptographic whitening of the generated
1788 random numbers. This Jitterentropy RNG registers with
1789 the kernel crypto API and can be used by any caller.
1790
1791config CRYPTO_USER_API
1792 tristate
1793
1794config CRYPTO_USER_API_HASH
1795 tristate "User-space interface for hash algorithms"
1796 depends on NET
1797 select CRYPTO_HASH
1798 select CRYPTO_USER_API
1799 help
1800 This option enables the user-spaces interface for hash
1801 algorithms.
1802
1803config CRYPTO_USER_API_SKCIPHER
1804 tristate "User-space interface for symmetric key cipher algorithms"
1805 depends on NET
1806 select CRYPTO_BLKCIPHER
1807 select CRYPTO_USER_API
1808 help
1809 This option enables the user-spaces interface for symmetric
1810 key cipher algorithms.
1811
1812config CRYPTO_USER_API_RNG
1813 tristate "User-space interface for random number generator algorithms"
1814 depends on NET
1815 select CRYPTO_RNG
1816 select CRYPTO_USER_API
1817 help
1818 This option enables the user-spaces interface for random
1819 number generator algorithms.
1820
1821config CRYPTO_USER_API_AEAD
1822 tristate "User-space interface for AEAD cipher algorithms"
1823 depends on NET
1824 select CRYPTO_AEAD
1825 select CRYPTO_BLKCIPHER
1826 select CRYPTO_NULL
1827 select CRYPTO_USER_API
1828 help
1829 This option enables the user-spaces interface for AEAD
1830 cipher algorithms.
1831
1832config CRYPTO_STATS
1833 bool "Crypto usage statistics for User-space"
1834 depends on CRYPTO_USER
1835 help
1836 This option enables the gathering of crypto stats.
1837 This will collect:
1838 - encrypt/decrypt size and numbers of symmeric operations
1839 - compress/decompress size and numbers of compress operations
1840 - size and numbers of hash operations
1841 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1842 - generate/seed numbers for rng operations
1843
1844config CRYPTO_HASH_INFO
1845 bool
1846
1847source "drivers/crypto/Kconfig"
1848source "crypto/asymmetric_keys/Kconfig"
1849source "certs/Kconfig"
1850
1851endif # if CRYPTO