Linux Audio

Check our new training course

Loading...
v6.13.7
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
 
 
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 
 
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 
 
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 
 
 
 
 
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 242config CRYPTO_ENGINE
 243	tristate
 
 
 244
 245endmenu
 
 246
 247menu "Public-key cryptography"
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select CRYPTO_SIG
 254	select MPILIB
 255	select ASN1
 256	help
 257	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 258
 259config CRYPTO_DH
 260	tristate "DH (Diffie-Hellman)"
 261	select CRYPTO_KPP
 262	select MPILIB
 263	help
 264	  DH (Diffie-Hellman) key exchange algorithm
 265
 266config CRYPTO_DH_RFC7919_GROUPS
 267	bool "RFC 7919 FFDHE groups"
 268	depends on CRYPTO_DH
 269	select CRYPTO_RNG_DEFAULT
 270	help
 271	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 272	  defined in RFC7919.
 273
 274	  Support these finite-field groups in DH key exchanges:
 275	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 276
 277	  If unsure, say N.
 278
 279config CRYPTO_ECC
 280	tristate
 281	select CRYPTO_RNG_DEFAULT
 282
 283config CRYPTO_ECDH
 284	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 285	select CRYPTO_ECC
 286	select CRYPTO_KPP
 
 287	help
 288	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 289	  using curves P-192, P-256, and P-384 (FIPS 186)
 290
 291config CRYPTO_ECDSA
 292	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 293	select CRYPTO_ECC
 294	select CRYPTO_SIG
 295	select ASN1
 296	help
 297	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 298	  ISO/IEC 14888-3)
 299	  using curves P-192, P-256, P-384 and P-521
 300
 301	  Only signature verification is implemented.
 302
 303config CRYPTO_ECRDSA
 304	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 305	select CRYPTO_ECC
 306	select CRYPTO_SIG
 307	select CRYPTO_STREEBOG
 308	select OID_REGISTRY
 309	select ASN1
 310	help
 311	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 312	  RFC 7091, ISO/IEC 14888-3)
 
 
 313
 314	  One of the Russian cryptographic standard algorithms (called GOST
 315	  algorithms). Only signature verification is implemented.
 316
 317config CRYPTO_CURVE25519
 318	tristate "Curve25519"
 319	select CRYPTO_KPP
 320	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 321	help
 322	  Curve25519 elliptic curve (RFC7748)
 323
 324endmenu
 
 
 
 
 
 
 
 
 
 325
 326menu "Block ciphers"
 
 
 
 
 
 
 
 327
 328config CRYPTO_AES
 329	tristate "AES (Advanced Encryption Standard)"
 330	select CRYPTO_ALGAPI
 331	select CRYPTO_LIB_AES
 
 
 
 
 332	help
 333	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 334
 335	  Rijndael appears to be consistently a very good performer in
 336	  both hardware and software across a wide range of computing
 337	  environments regardless of its use in feedback or non-feedback
 338	  modes. Its key setup time is excellent, and its key agility is
 339	  good. Rijndael's very low memory requirements make it very well
 340	  suited for restricted-space environments, in which it also
 341	  demonstrates excellent performance. Rijndael's operations are
 342	  among the easiest to defend against power and timing attacks.
 343
 344	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 
 345
 346config CRYPTO_AES_TI
 347	tristate "AES (Advanced Encryption Standard) (fixed time)"
 348	select CRYPTO_ALGAPI
 349	select CRYPTO_LIB_AES
 
 
 
 350	help
 351	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 352
 353	  This is a generic implementation of AES that attempts to eliminate
 354	  data dependent latencies as much as possible without affecting
 355	  performance too much. It is intended for use by the generic CCM
 356	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 357	  solely on encryption (although decryption is supported as well, but
 358	  with a more dramatic performance hit)
 
 
 
 
 359
 360	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 361	  8 for decryption), this implementation only uses just two S-boxes of
 362	  256 bytes each, and attempts to eliminate data dependent latencies by
 363	  prefetching the entire table into the cache at the start of each
 364	  block. Interrupts are also disabled to avoid races where cachelines
 365	  are evicted when the CPU is interrupted to do something else.
 366
 367config CRYPTO_ANUBIS
 368	tristate "Anubis"
 369	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 370	select CRYPTO_ALGAPI
 371	help
 372	  Anubis cipher algorithm
 
 373
 374	  Anubis is a variable key length cipher which can use keys from
 375	  128 bits to 320 bits in length.  It was evaluated as a entrant
 376	  in the NESSIE competition.
 
 
 
 
 377
 378	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 379	  for further information.
 
 
 
 
 
 
 380
 381config CRYPTO_ARIA
 382	tristate "ARIA"
 383	select CRYPTO_ALGAPI
 
 384	help
 385	  ARIA cipher algorithm (RFC5794)
 
 
 
 
 
 
 386
 387	  ARIA is a standard encryption algorithm of the Republic of Korea.
 388	  The ARIA specifies three key sizes and rounds.
 389	  128-bit: 12 rounds.
 390	  192-bit: 14 rounds.
 391	  256-bit: 16 rounds.
 392
 393	  See:
 394	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 
 
 
 
 
 
 395
 396config CRYPTO_BLOWFISH
 397	tristate "Blowfish"
 398	select CRYPTO_ALGAPI
 399	select CRYPTO_BLOWFISH_COMMON
 
 400	help
 401	  Blowfish cipher algorithm, by Bruce Schneier
 
 
 
 
 402
 403	  This is a variable key length cipher which can use keys from 32
 404	  bits to 448 bits in length.  It's fast, simple and specifically
 405	  designed for use on "large microprocessors".
 
 
 
 
 
 
 
 
 406
 407	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 
 
 408
 409config CRYPTO_BLOWFISH_COMMON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410	tristate
 
 
 
 
 
 
 
 411	help
 412	  Common parts of the Blowfish cipher algorithm shared by the
 413	  generic c and the assembler implementations.
 414
 415config CRYPTO_CAMELLIA
 416	tristate "Camellia"
 417	select CRYPTO_ALGAPI
 
 418	help
 419	  Camellia cipher algorithms (ISO/IEC 18033-3)
 
 420
 421	  Camellia is a symmetric key block cipher developed jointly
 422	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 423
 424	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 425
 426	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 427
 428config CRYPTO_CAST_COMMON
 429	tristate
 
 430	help
 431	  Common parts of the CAST cipher algorithms shared by the
 432	  generic c and the assembler implementations.
 
 
 
 
 433
 434config CRYPTO_CAST5
 435	tristate "CAST5 (CAST-128)"
 436	select CRYPTO_ALGAPI
 437	select CRYPTO_CAST_COMMON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438	help
 439	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 
 440
 441config CRYPTO_CAST6
 442	tristate "CAST6 (CAST-256)"
 443	select CRYPTO_ALGAPI
 444	select CRYPTO_CAST_COMMON
 
 
 
 445	help
 446	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 
 447
 448config CRYPTO_DES
 449	tristate "DES and Triple DES EDE"
 450	select CRYPTO_ALGAPI
 451	select CRYPTO_LIB_DES
 452	help
 453	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 454	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 455	  cipher algorithms
 
 456
 457config CRYPTO_FCRYPT
 458	tristate "FCrypt"
 459	select CRYPTO_ALGAPI
 460	select CRYPTO_SKCIPHER
 461	help
 462	  FCrypt algorithm used by RxRPC
 
 463
 464	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 465
 466config CRYPTO_KHAZAD
 467	tristate "Khazad"
 468	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 469	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	help
 471	  Khazad cipher algorithm
 
 
 472
 473	  Khazad was a finalist in the initial NESSIE competition.  It is
 474	  an algorithm optimized for 64-bit processors with good performance
 475	  on 32-bit processors.  Khazad uses an 128 bit key size.
 476
 477	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 478	  for further information.
 
 
 
 
 
 
 479
 480config CRYPTO_SEED
 481	tristate "SEED"
 482	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 483	select CRYPTO_ALGAPI
 484	help
 485	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 
 486
 487	  SEED is a 128-bit symmetric key block cipher that has been
 488	  developed by KISA (Korea Information Security Agency) as a
 489	  national standard encryption algorithm of the Republic of Korea.
 490	  It is a 16 round block cipher with the key size of 128 bit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 492	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 493	  for further information.
 494
 495config CRYPTO_SERPENT
 496	tristate "Serpent"
 497	select CRYPTO_ALGAPI
 
 498	help
 499	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 500
 501	  Keys are allowed to be from 0 to 256 bits in length, in steps
 502	  of 8 bits.
 
 
 
 
 
 503
 504	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 
 
 
 
 
 
 
 
 
 505
 506config CRYPTO_SM4
 507	tristate
 
 
 
 
 
 
 508
 509config CRYPTO_SM4_GENERIC
 510	tristate "SM4 (ShangMi 4)"
 511	select CRYPTO_ALGAPI
 512	select CRYPTO_SM4
 513	help
 514	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 515	  ISO/IEC 18033-3:2010/Amd 1:2021)
 
 516
 517	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 518	  Organization of State Commercial Administration of China (OSCCA)
 519	  as an authorized cryptographic algorithms for the use within China.
 
 
 
 
 520
 521	  SMS4 was originally created for use in protecting wireless
 522	  networks, and is mandated in the Chinese National Standard for
 523	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 524	  (GB.15629.11-2003).
 
 525
 526	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 527	  standardized through TC 260 of the Standardization Administration
 528	  of the People's Republic of China (SAC).
 529
 530	  The input, output, and key of SMS4 are each 128 bits.
 
 
 
 
 
 531
 532	  See https://eprint.iacr.org/2008/329.pdf for further information.
 
 
 
 533
 534	  If unsure, say N.
 
 
 
 
 535
 536config CRYPTO_TEA
 537	tristate "TEA, XTEA and XETA"
 538	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 539	select CRYPTO_ALGAPI
 540	help
 541	  TEA (Tiny Encryption Algorithm) cipher algorithms
 542
 543	  Tiny Encryption Algorithm is a simple cipher that uses
 544	  many rounds for security.  It is very fast and uses
 545	  little memory.
 
 
 
 
 
 546
 547	  Xtendend Tiny Encryption Algorithm is a modification to
 548	  the TEA algorithm to address a potential key weakness
 549	  in the TEA algorithm.
 
 
 
 
 550
 551	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 552	  of the XTEA algorithm for compatibility purposes.
 
 
 
 
 
 
 553
 554config CRYPTO_TWOFISH
 555	tristate "Twofish"
 556	select CRYPTO_ALGAPI
 557	select CRYPTO_TWOFISH_COMMON
 558	help
 559	  Twofish cipher algorithm
 
 
 
 560
 561	  Twofish was submitted as an AES (Advanced Encryption Standard)
 562	  candidate cipher by researchers at CounterPane Systems.  It is a
 563	  16 round block cipher supporting key sizes of 128, 192, and 256
 564	  bits.
 
 565
 566	  See https://www.schneier.com/twofish.html for further information.
 
 
 567
 568config CRYPTO_TWOFISH_COMMON
 569	tristate
 
 
 
 
 570	help
 571	  Common parts of the Twofish cipher algorithm shared by the
 572	  generic c and the assembler implementations.
 
 
 
 
 573
 574endmenu
 
 575
 576menu "Length-preserving ciphers and modes"
 
 577
 578config CRYPTO_ADIANTUM
 579	tristate "Adiantum"
 580	select CRYPTO_CHACHA20
 581	select CRYPTO_LIB_POLY1305_GENERIC
 582	select CRYPTO_NHPOLY1305
 583	select CRYPTO_MANAGER
 584	help
 585	  Adiantum tweakable, length-preserving encryption mode
 
 
 
 586
 587	  Designed for fast and secure disk encryption, especially on
 588	  CPUs without dedicated crypto instructions.  It encrypts
 589	  each sector using the XChaCha12 stream cipher, two passes of
 590	  an ε-almost-∆-universal hash function, and an invocation of
 591	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 592	  without AES instructions, Adiantum is much faster than
 593	  AES-XTS.
 594
 595	  Adiantum's security is provably reducible to that of its
 596	  underlying stream and block ciphers, subject to a security
 597	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 598	  mode, so it actually provides an even stronger notion of
 599	  security than XTS, subject to the security bound.
 
 
 
 600
 601	  If unsure, say N.
 
 602
 603config CRYPTO_ARC4
 604	tristate "ARC4 (Alleged Rivest Cipher 4)"
 605	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 606	select CRYPTO_SKCIPHER
 607	select CRYPTO_LIB_ARC4
 608	help
 609	  ARC4 cipher algorithm
 610
 611	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 612	  bits in length.  This algorithm is required for driver-based
 613	  WEP, but it should not be for other purposes because of the
 614	  weakness of the algorithm.
 
 
 
 
 
 
 615
 616config CRYPTO_CHACHA20
 617	tristate "ChaCha"
 618	select CRYPTO_LIB_CHACHA_GENERIC
 619	select CRYPTO_SKCIPHER
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	help
 621	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 
 
 
 622
 623	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 624	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 625	  This is the portable C implementation of ChaCha20.  See
 626	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 
 
 
 
 627
 628	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 629	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 630	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 631	  while provably retaining ChaCha20's security.  See
 632	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 
 
 
 633
 634	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 635	  reduced security margin but increased performance.  It can be needed
 636	  in some performance-sensitive scenarios.
 
 
 
 637
 638config CRYPTO_CBC
 639	tristate "CBC (Cipher Block Chaining)"
 640	select CRYPTO_SKCIPHER
 641	select CRYPTO_MANAGER
 642	help
 643	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 
 644
 645	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 646
 647config CRYPTO_CTR
 648	tristate "CTR (Counter)"
 649	select CRYPTO_SKCIPHER
 650	select CRYPTO_MANAGER
 651	help
 652	  CTR (Counter) mode (NIST SP800-38A)
 653
 654config CRYPTO_CTS
 655	tristate "CTS (Cipher Text Stealing)"
 656	select CRYPTO_SKCIPHER
 657	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 658	help
 659	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 660	  Addendum to SP800-38A (October 2010))
 661
 662	  This mode is required for Kerberos gss mechanism support
 663	  for AES encryption.
 
 
 
 
 
 
 664
 665config CRYPTO_ECB
 666	tristate "ECB (Electronic Codebook)"
 667	select CRYPTO_SKCIPHER2
 668	select CRYPTO_MANAGER
 
 669	help
 670	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 
 671
 672config CRYPTO_HCTR2
 673	tristate "HCTR2"
 674	select CRYPTO_XCTR
 675	select CRYPTO_POLYVAL
 676	select CRYPTO_MANAGER
 677	help
 678	  HCTR2 length-preserving encryption mode
 679
 680	  A mode for storage encryption that is efficient on processors with
 681	  instructions to accelerate AES and carryless multiplication, e.g.
 682	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 683	  ARMv8 crypto extensions.
 684
 685	  See https://eprint.iacr.org/2021/1441
 
 686
 687config CRYPTO_KEYWRAP
 688	tristate "KW (AES Key Wrap)"
 689	select CRYPTO_SKCIPHER
 690	select CRYPTO_MANAGER
 
 691	help
 692	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 693	  and RFC3394) without padding.
 694
 695config CRYPTO_LRW
 696	tristate "LRW (Liskov Rivest Wagner)"
 697	select CRYPTO_LIB_GF128MUL
 698	select CRYPTO_SKCIPHER
 699	select CRYPTO_MANAGER
 700	select CRYPTO_ECB
 701	help
 702	  LRW (Liskov Rivest Wagner) mode
 
 703
 704	  A tweakable, non malleable, non movable
 705	  narrow block cipher mode for dm-crypt.  Use it with cipher
 706	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 707	  The first 128, 192 or 256 bits in the key are used for AES and the
 708	  rest is used to tie each cipher block to its logical position.
 
 
 
 
 709
 710	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 
 
 
 
 711
 712config CRYPTO_PCBC
 713	tristate "PCBC (Propagating Cipher Block Chaining)"
 714	select CRYPTO_SKCIPHER
 715	select CRYPTO_MANAGER
 
 
 
 716	help
 717	  PCBC (Propagating Cipher Block Chaining) mode
 
 
 718
 719	  This block cipher mode is required for RxRPC.
 
 
 720
 721config CRYPTO_XCTR
 722	tristate
 723	select CRYPTO_SKCIPHER
 724	select CRYPTO_MANAGER
 725	help
 726	  XCTR (XOR Counter) mode for HCTR2
 727
 728	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 729	  addition rather than big-endian arithmetic.
 
 730
 731	  XCTR mode is used to implement HCTR2.
 
 732
 733config CRYPTO_XTS
 734	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 735	select CRYPTO_SKCIPHER
 736	select CRYPTO_MANAGER
 737	select CRYPTO_ECB
 738	help
 739	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 740	  and IEEE 1619)
 741
 742	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 743	  implementation currently can't handle a sectorsize which is not a
 744	  multiple of 16 bytes.
 745
 746config CRYPTO_NHPOLY1305
 747	tristate
 748	select CRYPTO_HASH
 749	select CRYPTO_LIB_POLY1305_GENERIC
 750
 751endmenu
 
 
 
 
 
 
 752
 753menu "AEAD (authenticated encryption with associated data) ciphers"
 754
 755config CRYPTO_AEGIS128
 756	tristate "AEGIS-128"
 757	select CRYPTO_AEAD
 758	select CRYPTO_AES  # for AES S-box tables
 
 
 
 759	help
 760	  AEGIS-128 AEAD algorithm
 
 761
 762config CRYPTO_AEGIS128_SIMD
 763	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 764	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 765	default y
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	help
 767	  AEGIS-128 AEAD algorithm
 
 
 
 
 
 768
 769	  Architecture: arm or arm64 using:
 770	  - NEON (Advanced SIMD) extension
 
 
 
 
 771
 772config CRYPTO_CHACHA20POLY1305
 773	tristate "ChaCha20-Poly1305"
 774	select CRYPTO_CHACHA20
 775	select CRYPTO_POLY1305
 776	select CRYPTO_AEAD
 777	select CRYPTO_MANAGER
 
 
 
 
 778	help
 779	  ChaCha20 stream cipher and Poly1305 authenticator combined
 780	  mode (RFC8439)
 781
 782config CRYPTO_CCM
 783	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 784	select CRYPTO_CTR
 785	select CRYPTO_HASH
 786	select CRYPTO_AEAD
 787	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788	help
 789	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 790	  authenticated encryption mode (NIST SP800-38C)
 791
 792config CRYPTO_GCM
 793	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 794	select CRYPTO_CTR
 795	select CRYPTO_AEAD
 796	select CRYPTO_GHASH
 797	select CRYPTO_NULL
 798	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799	help
 800	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 801	  (GCM Message Authentication Code) (NIST SP800-38D)
 
 
 
 802
 803	  This is required for IPSec ESP (XFRM_ESP).
 
 
 804
 805config CRYPTO_GENIV
 806	tristate
 807	select CRYPTO_AEAD
 808	select CRYPTO_NULL
 809	select CRYPTO_MANAGER
 810	select CRYPTO_RNG_DEFAULT
 811
 812config CRYPTO_SEQIV
 813	tristate "Sequence Number IV Generator"
 814	select CRYPTO_GENIV
 
 815	help
 816	  Sequence Number IV generator
 817
 818	  This IV generator generates an IV based on a sequence number by
 819	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 
 
 
 
 
 
 
 
 
 820
 821	  This is required for IPsec ESP (XFRM_ESP).
 
 
 822
 823config CRYPTO_ECHAINIV
 824	tristate "Encrypted Chain IV Generator"
 825	select CRYPTO_GENIV
 
 
 826	help
 827	  Encrypted Chain IV generator
 
 828
 829	  This IV generator generates an IV based on the encryption of
 830	  a sequence number xored with a salt.  This is the default
 831	  algorithm for CBC.
 832
 833config CRYPTO_ESSIV
 834	tristate "Encrypted Salt-Sector IV Generator"
 835	select CRYPTO_AUTHENC
 
 
 836	help
 837	  Encrypted Salt-Sector IV generator
 838
 839	  This IV generator is used in some cases by fscrypt and/or
 840	  dm-crypt. It uses the hash of the block encryption key as the
 841	  symmetric key for a block encryption pass applied to the input
 842	  IV, making low entropy IV sources more suitable for block
 843	  encryption.
 844
 845	  This driver implements a crypto API template that can be
 846	  instantiated either as an skcipher or as an AEAD (depending on the
 847	  type of the first template argument), and which defers encryption
 848	  and decryption requests to the encapsulated cipher after applying
 849	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 850	  that the keys are presented in the same format used by the authenc
 851	  template, and that the IV appears at the end of the authenticated
 852	  associated data (AAD) region (which is how dm-crypt uses it.)
 853
 854	  Note that the use of ESSIV is not recommended for new deployments,
 855	  and so this only needs to be enabled when interoperability with
 856	  existing encrypted volumes of filesystems is required, or when
 857	  building for a particular system that requires it (e.g., when
 858	  the SoC in question has accelerated CBC but not XTS, making CBC
 859	  combined with ESSIV the only feasible mode for h/w accelerated
 860	  block encryption)
 
 
 861
 862endmenu
 863
 864menu "Hashes, digests, and MACs"
 
 865
 866config CRYPTO_BLAKE2B
 867	tristate "BLAKE2b"
 868	select CRYPTO_HASH
 
 
 
 869	help
 870	  BLAKE2b cryptographic hash function (RFC 7693)
 871
 872	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 873	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 874
 875	  This module provides the following algorithms:
 876	  - blake2b-160
 877	  - blake2b-256
 878	  - blake2b-384
 879	  - blake2b-512
 880
 881	  Used by the btrfs filesystem.
 882
 883	  See https://blake2.net for further information.
 
 884
 885config CRYPTO_CMAC
 886	tristate "CMAC (Cipher-based MAC)"
 887	select CRYPTO_HASH
 888	select CRYPTO_MANAGER
 
 
 
 
 
 889	help
 890	  CMAC (Cipher-based Message Authentication Code) authentication
 891	  mode (NIST SP800-38B and IETF RFC4493)
 892
 893config CRYPTO_GHASH
 894	tristate "GHASH"
 895	select CRYPTO_HASH
 896	select CRYPTO_LIB_GF128MUL
 
 
 
 
 
 
 
 
 
 897	help
 898	  GCM GHASH function (NIST SP800-38D)
 899
 900config CRYPTO_HMAC
 901	tristate "HMAC (Keyed-Hash MAC)"
 902	select CRYPTO_HASH
 903	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 904	help
 905	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 906	  RFC2104)
 907
 908	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 909
 910config CRYPTO_MD4
 911	tristate "MD4"
 912	select CRYPTO_HASH
 
 
 
 
 913	help
 914	  MD4 message digest algorithm (RFC1320)
 
 915
 916config CRYPTO_MD5
 917	tristate "MD5"
 918	select CRYPTO_HASH
 
 919	help
 920	  MD5 message digest algorithm (RFC1321)
 
 921
 922config CRYPTO_MICHAEL_MIC
 923	tristate "Michael MIC"
 924	select CRYPTO_HASH
 
 
 
 
 925	help
 926	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 
 927
 928	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 929	  known as WPA (Wif-Fi Protected Access).
 930
 931	  This algorithm is required for TKIP, but it should not be used for
 932	  other purposes because of the weakness of the algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934config CRYPTO_POLYVAL
 
 
 
 935	tristate
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_GF128MUL
 
 
 
 938	help
 939	  POLYVAL hash function for HCTR2
 940
 941	  This is used in HCTR2.  It is not a general-purpose
 942	  cryptographic hash function.
 
 
 
 
 
 
 943
 944config CRYPTO_POLY1305
 945	tristate "Poly1305"
 946	select CRYPTO_HASH
 947	select CRYPTO_LIB_POLY1305_GENERIC
 
 948	help
 949	  Poly1305 authenticator algorithm (RFC7539)
 950
 951	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 952	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 953	  in IETF protocols. This is the portable C implementation of Poly1305.
 
 954
 955config CRYPTO_RMD160
 956	tristate "RIPEMD-160"
 957	select CRYPTO_HASH
 
 958	help
 959	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 960
 961	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 962	  to be used as a secure replacement for the 128-bit hash functions
 963	  MD4, MD5 and its predecessor RIPEMD
 964	  (not to be confused with RIPEMD-128).
 
 965
 966	  Its speed is comparable to SHA-1 and there are no known attacks
 967	  against RIPEMD-160.
 
 968
 969	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 970	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 971	  for further information.
 972
 973config CRYPTO_SHA1
 974	tristate "SHA-1"
 975	select CRYPTO_HASH
 976	select CRYPTO_LIB_SHA1
 977	help
 978	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 979
 980config CRYPTO_SHA256
 981	tristate "SHA-224 and SHA-256"
 982	select CRYPTO_HASH
 983	select CRYPTO_LIB_SHA256
 
 
 
 
 
 984	help
 985	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 986
 987	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 988	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 
 
 989
 990config CRYPTO_SHA512
 991	tristate "SHA-384 and SHA-512"
 992	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 993	help
 994	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 995
 996config CRYPTO_SHA3
 997	tristate "SHA-3"
 998	select CRYPTO_HASH
 999	help
1000	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003	tristate
 
 
1004
1005config CRYPTO_SM3_GENERIC
1006	tristate "SM3 (ShangMi 3)"
1007	select CRYPTO_HASH
1008	select CRYPTO_SM3
 
 
1009	help
1010	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012	  This is part of the Chinese Commercial Cryptography suite.
 
 
1013
1014	  References:
1015	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019	tristate "Streebog"
1020	select CRYPTO_HASH
 
 
 
 
1021	help
1022	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024	  This is one of the Russian cryptographic standard algorithms (called
1025	  GOST algorithms). This setting enables two hash algorithms with
1026	  256 and 512 bits output.
1027
1028	  References:
1029	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030	  https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033	tristate "VMAC"
1034	select CRYPTO_HASH
1035	select CRYPTO_MANAGER
 
 
 
 
 
 
1036	help
1037	  VMAC is a message authentication algorithm designed for
1038	  very high speed on 64-bit architectures.
1039
1040	  See https://fastcrypto.org/vmac for further information.
 
1041
1042config CRYPTO_WP512
1043	tristate "Whirlpool"
1044	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
1045	help
1046	  Whirlpool hash function (ISO/IEC 10118-3)
1047
1048	  512, 384 and 256-bit hashes.
 
1049
1050	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1051
1052	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053	  for further information.
1054
1055config CRYPTO_XCBC
1056	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057	select CRYPTO_HASH
1058	select CRYPTO_MANAGER
1059	help
1060	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061	  Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064	tristate "xxHash"
1065	select CRYPTO_HASH
1066	select XXHASH
 
 
 
 
 
 
 
 
1067	help
1068	  xxHash non-cryptographic hash algorithm
1069
1070	  Extremely fast, working at speeds close to RAM limits.
 
 
1071
1072	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
1073
1074endmenu
1075
1076menu "CRCs (cyclic redundancy checks)"
1077
1078config CRYPTO_CRC32C
1079	tristate "CRC32c"
1080	select CRYPTO_HASH
1081	select CRC32
 
1082	help
1083	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1084
1085	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089	  iSCSI.
 
 
1090
1091	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1092
1093config CRYPTO_CRC32
1094	tristate "CRC32"
1095	select CRYPTO_HASH
1096	select CRC32
1097	help
1098	  CRC32 CRC algorithm (IEEE 802.3)
 
 
 
 
 
1099
1100	  Used by RoCEv2 and f2fs.
 
1101
1102config CRYPTO_CRCT10DIF
1103	tristate "CRCT10DIF"
1104	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1105	help
1106	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
 
 
 
 
 
1107
1108	  CRC algorithm used by the SCSI Block Commands standard.
 
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111	tristate "CRC64 based on Rocksoft Model algorithm"
1112	depends on CRC64
1113	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114	help
1115	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1118
1119	  See https://zlib.net/crc_v3.txt
 
1120
1121endmenu
 
1122
1123menu "Compression"
1124
1125config CRYPTO_DEFLATE
1126	tristate "Deflate"
1127	select CRYPTO_ALGAPI
1128	select CRYPTO_ACOMP2
1129	select ZLIB_INFLATE
1130	select ZLIB_DEFLATE
1131	help
1132	  Deflate compression algorithm (RFC1951)
 
1133
1134	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1135
1136config CRYPTO_LZO
1137	tristate "LZO"
1138	select CRYPTO_ALGAPI
1139	select CRYPTO_ACOMP2
1140	select LZO_COMPRESS
1141	select LZO_DECOMPRESS
1142	help
1143	  LZO compression algorithm
1144
1145	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1146
1147config CRYPTO_842
1148	tristate "842"
1149	select CRYPTO_ALGAPI
1150	select CRYPTO_ACOMP2
1151	select 842_COMPRESS
1152	select 842_DECOMPRESS
1153	help
1154	  842 compression algorithm by IBM
1155
1156	  See https://github.com/plauth/lib842 for further information.
1157
1158config CRYPTO_LZ4
1159	tristate "LZ4"
1160	select CRYPTO_ALGAPI
1161	select CRYPTO_ACOMP2
1162	select LZ4_COMPRESS
1163	select LZ4_DECOMPRESS
1164	help
1165	  LZ4 compression algorithm
1166
1167	  See https://github.com/lz4/lz4 for further information.
1168
1169config CRYPTO_LZ4HC
1170	tristate "LZ4HC"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_ACOMP2
1173	select LZ4HC_COMPRESS
1174	select LZ4_DECOMPRESS
1175	help
1176	  LZ4 high compression mode algorithm
1177
1178	  See https://github.com/lz4/lz4 for further information.
1179
1180config CRYPTO_ZSTD
1181	tristate "Zstd"
1182	select CRYPTO_ALGAPI
1183	select CRYPTO_ACOMP2
1184	select ZSTD_COMPRESS
1185	select ZSTD_DECOMPRESS
1186	help
1187	  zstd compression algorithm
1188
1189	  See https://github.com/facebook/zstd for further information.
1190
1191endmenu
1192
1193menu "Random number generation"
1194
1195config CRYPTO_ANSI_CPRNG
1196	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197	select CRYPTO_AES
1198	select CRYPTO_RNG
1199	help
1200	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202	  This uses the AES cipher algorithm.
1203
1204	  Note that this option must be enabled if CRYPTO_FIPS is selected
1205
1206menuconfig CRYPTO_DRBG_MENU
1207	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1208	help
1209	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211	  In the following submenu, one or more of the DRBG types must be selected.
1212
1213if CRYPTO_DRBG_MENU
1214
1215config CRYPTO_DRBG_HMAC
1216	bool
1217	default y
1218	select CRYPTO_HMAC
1219	select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222	bool "Hash_DRBG"
1223	select CRYPTO_SHA256
1224	help
1225	  Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1228
1229config CRYPTO_DRBG_CTR
1230	bool "CTR_DRBG"
1231	select CRYPTO_AES
1232	select CRYPTO_CTR
1233	help
1234	  CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236	  This uses the AES cipher algorithm with the counter block mode.
1237
1238config CRYPTO_DRBG
1239	tristate
1240	default CRYPTO_DRBG_MENU
1241	select CRYPTO_RNG
1242	select CRYPTO_JITTERENTROPY
1243
1244endif	# if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_JITTERENTROPY
1247	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248	select CRYPTO_RNG
1249	select CRYPTO_SHA3
1250	help
1251	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254	  compliant with NIST SP800-90B) intended to provide a seed to a
1255	  deterministic RNG (e.g., per NIST SP800-90C).
1256	  This RNG does not perform any cryptographic whitening of the generated
1257	  random numbers.
1258
1259	  See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265	prompt "CPU Jitter RNG Memory Size"
1266	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267	help
1268	  The Jitter RNG measures the execution time of memory accesses.
1269	  Multiple consecutive memory accesses are performed. If the memory
1270	  size fits into a cache (e.g. L1), only the memory access timing
1271	  to that cache is measured. The closer the cache is to the CPU
1272	  the less variations are measured and thus the less entropy is
1273	  obtained. Thus, if the memory size fits into the L1 cache, the
1274	  obtained entropy is less than if the memory size fits within
1275	  L1 + L2, which in turn is less if the memory fits into
1276	  L1 + L2 + L3. Thus, by selecting a different memory size,
1277	  the entropy rate produced by the Jitter RNG can be modified.
1278
1279	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280		bool "2048 Bytes (default)"
1281
1282	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283		bool "128 kBytes"
1284
1285	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286		bool "1024 kBytes"
1287
1288	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289		bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293	int
1294	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300	int
1301	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307	int "CPU Jitter RNG Oversampling Rate"
1308	range 1 15
1309	default 3
1310	help
1311	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1312	  The Jitter RNG operation requires a fixed amount of timing
1313	  measurements to produce one output block of random numbers. The
1314	  OSR value is multiplied with the amount of timing measurements to
1315	  generate one output block. Thus, the timing measurement is oversampled
1316	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1317	  on hardware whose timers deliver limited amount of entropy (e.g.
1318	  the timer is coarse) by setting the OSR to a higher value. The
1319	  trade-off, however, is that the Jitter RNG now requires more time
1320	  to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323	bool "CPU Jitter RNG Test Interface"
1324	help
1325	  The test interface allows a privileged process to capture
1326	  the raw unconditioned high resolution time stamp noise that
1327	  is collected by the Jitter RNG for statistical analysis. As
1328	  this data is used at the same time to generate random bits,
1329	  the Jitter RNG operates in an insecure mode as long as the
1330	  recording is enabled. This interface therefore is only
1331	  intended for testing purposes and is not suitable for
1332	  production systems.
1333
1334	  The raw noise data can be obtained using the jent_raw_hires
1335	  debugfs file. Using the option
1336	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337	  the first 1000 entropy events since boot can be sampled.
1338
1339	  If unsure, select N.
1340
1341endif	# if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346	int
1347	default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350	int
1351	default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354	int
1355	default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358	bool
1359
1360endif	# if !(CRYPTO_FIPS && EXPERT)
1361endif	# if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364	tristate
1365	select CRYPTO_HMAC
1366	select CRYPTO_SHA256
1367
1368endmenu
1369menu "Userspace interface"
1370
1371config CRYPTO_USER_API
1372	tristate
1373
1374config CRYPTO_USER_API_HASH
1375	tristate "Hash algorithms"
1376	depends on NET
1377	select CRYPTO_HASH
1378	select CRYPTO_USER_API
1379	help
1380	  Enable the userspace interface for hash algorithms.
1381
1382	  See Documentation/crypto/userspace-if.rst and
1383	  https://www.chronox.de/libkcapi/html/index.html
1384
1385config CRYPTO_USER_API_SKCIPHER
1386	tristate "Symmetric key cipher algorithms"
1387	depends on NET
1388	select CRYPTO_SKCIPHER
1389	select CRYPTO_USER_API
1390	help
1391	  Enable the userspace interface for symmetric key cipher algorithms.
1392
1393	  See Documentation/crypto/userspace-if.rst and
1394	  https://www.chronox.de/libkcapi/html/index.html
1395
1396config CRYPTO_USER_API_RNG
1397	tristate "RNG (random number generator) algorithms"
1398	depends on NET
1399	select CRYPTO_RNG
1400	select CRYPTO_USER_API
1401	help
1402	  Enable the userspace interface for RNG (random number generator)
1403	  algorithms.
1404
1405	  See Documentation/crypto/userspace-if.rst and
1406	  https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409	bool "Enable CAVP testing of DRBG"
1410	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411	help
1412	  Enable extra APIs in the userspace interface for NIST CAVP
1413	  (Cryptographic Algorithm Validation Program) testing:
1414	  - resetting DRBG entropy
1415	  - providing Additional Data
1416
1417	  This should only be enabled for CAVP testing. You should say
1418	  no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421	tristate "AEAD cipher algorithms"
1422	depends on NET
1423	select CRYPTO_AEAD
1424	select CRYPTO_SKCIPHER
1425	select CRYPTO_NULL
1426	select CRYPTO_USER_API
1427	help
1428	  Enable the userspace interface for AEAD cipher algorithms.
 
1429
1430	  See Documentation/crypto/userspace-if.rst and
1431	  https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434	bool "Obsolete cryptographic algorithms"
1435	depends on CRYPTO_USER_API
1436	default y
1437	help
1438	  Allow obsolete cryptographic algorithms to be selected that have
1439	  already been phased out from internal use by the kernel, and are
1440	  only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445	bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif	# if CRYPTO
v5.4
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
 
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_BLKCIPHER
 
 
 
 
 
 
 
 
 
  56	tristate
  57	select CRYPTO_BLKCIPHER2
  58	select CRYPTO_ALGAPI
 
  59
  60config CRYPTO_BLKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 124	select CRYPTO_AEAD2
 
 
 125	select CRYPTO_HASH2
 126	select CRYPTO_BLKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139if CRYPTO_MANAGER2
 140
 141config CRYPTO_MANAGER_DISABLE_TESTS
 142	bool "Disable run-time self tests"
 143	default y
 144	help
 145	  Disable run-time self tests that normally take place at
 146	  algorithm registration.
 147
 148config CRYPTO_MANAGER_EXTRA_TESTS
 149	bool "Enable extra run-time crypto self tests"
 150	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
 151	help
 152	  Enable extra run-time self tests of registered crypto algorithms,
 153	  including randomized fuzz tests.
 154
 155	  This is intended for developer use only, as these tests take much
 156	  longer to run than the normal self tests.
 157
 158endif	# if CRYPTO_MANAGER2
 159
 160config CRYPTO_GF128MUL
 161	tristate
 162
 163config CRYPTO_NULL
 164	tristate "Null algorithms"
 165	select CRYPTO_NULL2
 166	help
 167	  These are 'Null' algorithms, used by IPsec, which do nothing.
 168
 169config CRYPTO_NULL2
 170	tristate
 171	select CRYPTO_ALGAPI2
 172	select CRYPTO_BLKCIPHER2
 173	select CRYPTO_HASH2
 174
 175config CRYPTO_PCRYPT
 176	tristate "Parallel crypto engine"
 177	depends on SMP
 178	select PADATA
 179	select CRYPTO_MANAGER
 180	select CRYPTO_AEAD
 181	help
 182	  This converts an arbitrary crypto algorithm into a parallel
 183	  algorithm that executes in kernel threads.
 184
 185config CRYPTO_CRYPTD
 186	tristate "Software async crypto daemon"
 187	select CRYPTO_BLKCIPHER
 188	select CRYPTO_HASH
 189	select CRYPTO_MANAGER
 190	help
 191	  This is a generic software asynchronous crypto daemon that
 192	  converts an arbitrary synchronous software crypto algorithm
 193	  into an asynchronous algorithm that executes in a kernel thread.
 194
 195config CRYPTO_AUTHENC
 196	tristate "Authenc support"
 197	select CRYPTO_AEAD
 198	select CRYPTO_BLKCIPHER
 199	select CRYPTO_MANAGER
 200	select CRYPTO_HASH
 201	select CRYPTO_NULL
 202	help
 203	  Authenc: Combined mode wrapper for IPsec.
 204	  This is required for IPSec.
 
 205
 206config CRYPTO_TEST
 207	tristate "Testing module"
 208	depends on m
 209	select CRYPTO_MANAGER
 210	help
 211	  Quick & dirty crypto test module.
 212
 213config CRYPTO_SIMD
 214	tristate
 215	select CRYPTO_CRYPTD
 216
 217config CRYPTO_GLUE_HELPER_X86
 218	tristate
 219	depends on X86
 220	select CRYPTO_BLKCIPHER
 221
 222config CRYPTO_ENGINE
 223	tristate
 224
 225comment "Public-key cryptography"
 226
 227config CRYPTO_RSA
 228	tristate "RSA algorithm"
 229	select CRYPTO_AKCIPHER
 230	select CRYPTO_MANAGER
 
 231	select MPILIB
 232	select ASN1
 233	help
 234	  Generic implementation of the RSA public key algorithm.
 235
 236config CRYPTO_DH
 237	tristate "Diffie-Hellman algorithm"
 238	select CRYPTO_KPP
 239	select MPILIB
 240	help
 241	  Generic implementation of the Diffie-Hellman algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 243config CRYPTO_ECC
 244	tristate
 
 245
 246config CRYPTO_ECDH
 247	tristate "ECDH algorithm"
 248	select CRYPTO_ECC
 249	select CRYPTO_KPP
 250	select CRYPTO_RNG_DEFAULT
 251	help
 252	  Generic implementation of the ECDH algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254config CRYPTO_ECRDSA
 255	tristate "EC-RDSA (GOST 34.10) algorithm"
 256	select CRYPTO_ECC
 257	select CRYPTO_AKCIPHER
 258	select CRYPTO_STREEBOG
 259	select OID_REGISTRY
 260	select ASN1
 261	help
 262	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 263	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 264	  standard algorithms (called GOST algorithms). Only signature verification
 265	  is implemented.
 266
 267comment "Authenticated Encryption with Associated Data"
 
 268
 269config CRYPTO_CCM
 270	tristate "CCM support"
 271	select CRYPTO_CTR
 272	select CRYPTO_HASH
 273	select CRYPTO_AEAD
 274	select CRYPTO_MANAGER
 275	help
 276	  Support for Counter with CBC MAC. Required for IPsec.
 277
 278config CRYPTO_GCM
 279	tristate "GCM/GMAC support"
 280	select CRYPTO_CTR
 281	select CRYPTO_AEAD
 282	select CRYPTO_GHASH
 283	select CRYPTO_NULL
 284	select CRYPTO_MANAGER
 285	help
 286	  Support for Galois/Counter Mode (GCM) and Galois Message
 287	  Authentication Code (GMAC). Required for IPSec.
 288
 289config CRYPTO_CHACHA20POLY1305
 290	tristate "ChaCha20-Poly1305 AEAD support"
 291	select CRYPTO_CHACHA20
 292	select CRYPTO_POLY1305
 293	select CRYPTO_AEAD
 294	select CRYPTO_MANAGER
 295	help
 296	  ChaCha20-Poly1305 AEAD support, RFC7539.
 297
 298	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 299	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 300	  IETF protocols.
 301
 302config CRYPTO_AEGIS128
 303	tristate "AEGIS-128 AEAD algorithm"
 304	select CRYPTO_AEAD
 305	select CRYPTO_AES  # for AES S-box tables
 306	help
 307	 Support for the AEGIS-128 dedicated AEAD algorithm.
 308
 309config CRYPTO_AEGIS128_SIMD
 310	bool "Support SIMD acceleration for AEGIS-128"
 311	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 312	default y
 
 
 
 
 313
 314config CRYPTO_AEGIS128_AESNI_SSE2
 315	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 316	depends on X86 && 64BIT
 317	select CRYPTO_AEAD
 318	select CRYPTO_SIMD
 319	help
 320	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 321
 322config CRYPTO_SEQIV
 323	tristate "Sequence Number IV Generator"
 324	select CRYPTO_AEAD
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_NULL
 327	select CRYPTO_RNG_DEFAULT
 328	select CRYPTO_MANAGER
 329	help
 330	  This IV generator generates an IV based on a sequence number by
 331	  xoring it with a salt.  This algorithm is mainly useful for CTR
 332
 333config CRYPTO_ECHAINIV
 334	tristate "Encrypted Chain IV Generator"
 335	select CRYPTO_AEAD
 336	select CRYPTO_NULL
 337	select CRYPTO_RNG_DEFAULT
 338	select CRYPTO_MANAGER
 339	help
 340	  This IV generator generates an IV based on the encryption of
 341	  a sequence number xored with a salt.  This is the default
 342	  algorithm for CBC.
 343
 344comment "Block modes"
 
 
 
 
 
 345
 346config CRYPTO_CBC
 347	tristate "CBC support"
 348	select CRYPTO_BLKCIPHER
 349	select CRYPTO_MANAGER
 350	help
 351	  CBC: Cipher Block Chaining mode
 352	  This block cipher algorithm is required for IPSec.
 353
 354config CRYPTO_CFB
 355	tristate "CFB support"
 356	select CRYPTO_BLKCIPHER
 357	select CRYPTO_MANAGER
 358	help
 359	  CFB: Cipher FeedBack mode
 360	  This block cipher algorithm is required for TPM2 Cryptography.
 361
 362config CRYPTO_CTR
 363	tristate "CTR support"
 364	select CRYPTO_BLKCIPHER
 365	select CRYPTO_SEQIV
 366	select CRYPTO_MANAGER
 367	help
 368	  CTR: Counter mode
 369	  This block cipher algorithm is required for IPSec.
 370
 371config CRYPTO_CTS
 372	tristate "CTS support"
 373	select CRYPTO_BLKCIPHER
 374	select CRYPTO_MANAGER
 375	help
 376	  CTS: Cipher Text Stealing
 377	  This is the Cipher Text Stealing mode as described by
 378	  Section 8 of rfc2040 and referenced by rfc3962
 379	  (rfc3962 includes errata information in its Appendix A) or
 380	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 381	  This mode is required for Kerberos gss mechanism support
 382	  for AES encryption.
 383
 384	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 
 
 
 
 385
 386config CRYPTO_ECB
 387	tristate "ECB support"
 388	select CRYPTO_BLKCIPHER
 389	select CRYPTO_MANAGER
 390	help
 391	  ECB: Electronic CodeBook mode
 392	  This is the simplest block cipher algorithm.  It simply encrypts
 393	  the input block by block.
 394
 395config CRYPTO_LRW
 396	tristate "LRW support"
 397	select CRYPTO_BLKCIPHER
 398	select CRYPTO_MANAGER
 399	select CRYPTO_GF128MUL
 400	help
 401	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 402	  narrow block cipher mode for dm-crypt.  Use it with cipher
 403	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 404	  The first 128, 192 or 256 bits in the key are used for AES and the
 405	  rest is used to tie each cipher block to its logical position.
 406
 407config CRYPTO_OFB
 408	tristate "OFB support"
 409	select CRYPTO_BLKCIPHER
 410	select CRYPTO_MANAGER
 411	help
 412	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 413	  stream cipher. It generates keystream blocks, which are then XORed
 414	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 415	  ciphertext produces a flipped bit in the plaintext at the same
 416	  location. This property allows many error correcting codes to function
 417	  normally even when applied before encryption.
 418
 419config CRYPTO_PCBC
 420	tristate "PCBC support"
 421	select CRYPTO_BLKCIPHER
 422	select CRYPTO_MANAGER
 423	help
 424	  PCBC: Propagating Cipher Block Chaining mode
 425	  This block cipher algorithm is required for RxRPC.
 426
 427config CRYPTO_XTS
 428	tristate "XTS support"
 429	select CRYPTO_BLKCIPHER
 430	select CRYPTO_MANAGER
 431	select CRYPTO_ECB
 432	help
 433	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 434	  key size 256, 384 or 512 bits. This implementation currently
 435	  can't handle a sectorsize which is not a multiple of 16 bytes.
 436
 437config CRYPTO_KEYWRAP
 438	tristate "Key wrapping support"
 439	select CRYPTO_BLKCIPHER
 440	select CRYPTO_MANAGER
 441	help
 442	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 443	  padding.
 444
 445config CRYPTO_NHPOLY1305
 446	tristate
 447	select CRYPTO_HASH
 448	select CRYPTO_POLY1305
 449
 450config CRYPTO_NHPOLY1305_SSE2
 451	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 452	depends on X86 && 64BIT
 453	select CRYPTO_NHPOLY1305
 454	help
 455	  SSE2 optimized implementation of the hash function used by the
 456	  Adiantum encryption mode.
 457
 458config CRYPTO_NHPOLY1305_AVX2
 459	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 460	depends on X86 && 64BIT
 461	select CRYPTO_NHPOLY1305
 462	help
 463	  AVX2 optimized implementation of the hash function used by the
 464	  Adiantum encryption mode.
 465
 466config CRYPTO_ADIANTUM
 467	tristate "Adiantum support"
 468	select CRYPTO_CHACHA20
 469	select CRYPTO_POLY1305
 470	select CRYPTO_NHPOLY1305
 471	select CRYPTO_MANAGER
 472	help
 473	  Adiantum is a tweakable, length-preserving encryption mode
 474	  designed for fast and secure disk encryption, especially on
 475	  CPUs without dedicated crypto instructions.  It encrypts
 476	  each sector using the XChaCha12 stream cipher, two passes of
 477	  an ε-almost-∆-universal hash function, and an invocation of
 478	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 479	  without AES instructions, Adiantum is much faster than
 480	  AES-XTS.
 481
 482	  Adiantum's security is provably reducible to that of its
 483	  underlying stream and block ciphers, subject to a security
 484	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 485	  mode, so it actually provides an even stronger notion of
 486	  security than XTS, subject to the security bound.
 487
 488	  If unsure, say N.
 489
 490config CRYPTO_ESSIV
 491	tristate "ESSIV support for block encryption"
 492	select CRYPTO_AUTHENC
 493	help
 494	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 495	  generation method that is used in some cases by fscrypt and/or
 496	  dm-crypt. It uses the hash of the block encryption key as the
 497	  symmetric key for a block encryption pass applied to the input
 498	  IV, making low entropy IV sources more suitable for block
 499	  encryption.
 500
 501	  This driver implements a crypto API template that can be
 502	  instantiated either as a skcipher or as a aead (depending on the
 503	  type of the first template argument), and which defers encryption
 504	  and decryption requests to the encapsulated cipher after applying
 505	  ESSIV to the input IV. Note that in the aead case, it is assumed
 506	  that the keys are presented in the same format used by the authenc
 507	  template, and that the IV appears at the end of the authenticated
 508	  associated data (AAD) region (which is how dm-crypt uses it.)
 509
 510	  Note that the use of ESSIV is not recommended for new deployments,
 511	  and so this only needs to be enabled when interoperability with
 512	  existing encrypted volumes of filesystems is required, or when
 513	  building for a particular system that requires it (e.g., when
 514	  the SoC in question has accelerated CBC but not XTS, making CBC
 515	  combined with ESSIV the only feasible mode for h/w accelerated
 516	  block encryption)
 517
 518comment "Hash modes"
 519
 520config CRYPTO_CMAC
 521	tristate "CMAC support"
 522	select CRYPTO_HASH
 523	select CRYPTO_MANAGER
 524	help
 525	  Cipher-based Message Authentication Code (CMAC) specified by
 526	  The National Institute of Standards and Technology (NIST).
 527
 528	  https://tools.ietf.org/html/rfc4493
 529	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 530
 531config CRYPTO_HMAC
 532	tristate "HMAC support"
 533	select CRYPTO_HASH
 534	select CRYPTO_MANAGER
 535	help
 536	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 537	  This is required for IPSec.
 538
 539config CRYPTO_XCBC
 540	tristate "XCBC support"
 541	select CRYPTO_HASH
 542	select CRYPTO_MANAGER
 543	help
 544	  XCBC: Keyed-Hashing with encryption algorithm
 545		http://www.ietf.org/rfc/rfc3566.txt
 546		http://csrc.nist.gov/encryption/modes/proposedmodes/
 547		 xcbc-mac/xcbc-mac-spec.pdf
 548
 549config CRYPTO_VMAC
 550	tristate "VMAC support"
 551	select CRYPTO_HASH
 552	select CRYPTO_MANAGER
 553	help
 554	  VMAC is a message authentication algorithm designed for
 555	  very high speed on 64-bit architectures.
 556
 557	  See also:
 558	  <http://fastcrypto.org/vmac>
 559
 560comment "Digest"
 561
 562config CRYPTO_CRC32C
 563	tristate "CRC32c CRC algorithm"
 564	select CRYPTO_HASH
 565	select CRC32
 566	help
 567	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 568	  by iSCSI for header and data digests and by others.
 569	  See Castagnoli93.  Module will be crc32c.
 570
 571config CRYPTO_CRC32C_INTEL
 572	tristate "CRC32c INTEL hardware acceleration"
 573	depends on X86
 574	select CRYPTO_HASH
 575	help
 576	  In Intel processor with SSE4.2 supported, the processor will
 577	  support CRC32C implementation using hardware accelerated CRC32
 578	  instruction. This option will create 'crc32c-intel' module,
 579	  which will enable any routine to use the CRC32 instruction to
 580	  gain performance compared with software implementation.
 581	  Module will be crc32c-intel.
 582
 583config CRYPTO_CRC32C_VPMSUM
 584	tristate "CRC32c CRC algorithm (powerpc64)"
 585	depends on PPC64 && ALTIVEC
 586	select CRYPTO_HASH
 587	select CRC32
 588	help
 589	  CRC32c algorithm implemented using vector polynomial multiply-sum
 590	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 591	  and newer processors for improved performance.
 592
 
 
 
 593
 594config CRYPTO_CRC32C_SPARC64
 595	tristate "CRC32c CRC algorithm (SPARC64)"
 596	depends on SPARC64
 597	select CRYPTO_HASH
 598	select CRC32
 599	help
 600	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 601	  when available.
 602
 603config CRYPTO_CRC32
 604	tristate "CRC32 CRC algorithm"
 605	select CRYPTO_HASH
 606	select CRC32
 607	help
 608	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 609	  Shash crypto api wrappers to crc32_le function.
 610
 611config CRYPTO_CRC32_PCLMUL
 612	tristate "CRC32 PCLMULQDQ hardware acceleration"
 613	depends on X86
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 618	  and PCLMULQDQ supported, the processor will support
 619	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 620	  instruction. This option will create 'crc32-pclmul' module,
 621	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 622	  and gain better performance as compared with the table implementation.
 623
 624config CRYPTO_CRC32_MIPS
 625	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 626	depends on MIPS_CRC_SUPPORT
 627	select CRYPTO_HASH
 628	help
 629	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 630	  instructions, when available.
 631
 
 
 632
 633config CRYPTO_XXHASH
 634	tristate "xxHash hash algorithm"
 635	select CRYPTO_HASH
 636	select XXHASH
 637	help
 638	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 639	  speeds close to RAM limits.
 640
 641config CRYPTO_CRCT10DIF
 642	tristate "CRCT10DIF algorithm"
 643	select CRYPTO_HASH
 644	help
 645	  CRC T10 Data Integrity Field computation is being cast as
 646	  a crypto transform.  This allows for faster crc t10 diff
 647	  transforms to be used if they are available.
 648
 649config CRYPTO_CRCT10DIF_PCLMUL
 650	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 651	depends on X86 && 64BIT && CRC_T10DIF
 652	select CRYPTO_HASH
 653	help
 654	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 655	  CRC T10 DIF PCLMULQDQ computation can be hardware
 656	  accelerated PCLMULQDQ instruction. This option will create
 657	  'crct10dif-pclmul' module, which is faster when computing the
 658	  crct10dif checksum as compared with the generic table implementation.
 659
 660config CRYPTO_CRCT10DIF_VPMSUM
 661	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 662	depends on PPC64 && ALTIVEC && CRC_T10DIF
 663	select CRYPTO_HASH
 664	help
 665	  CRC10T10DIF algorithm implemented using vector polynomial
 666	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 667	  POWER8 and newer processors for improved performance.
 668
 669config CRYPTO_VPMSUM_TESTER
 670	tristate "Powerpc64 vpmsum hardware acceleration tester"
 671	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 
 672	help
 673	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 674	  POWER8 vpmsum instructions.
 675	  Unless you are testing these algorithms, you don't need this.
 676
 677config CRYPTO_GHASH
 678	tristate "GHASH hash function"
 679	select CRYPTO_GF128MUL
 680	select CRYPTO_HASH
 681	help
 682	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 683	  It is not a general-purpose cryptographic hash function.
 684
 685config CRYPTO_POLY1305
 686	tristate "Poly1305 authenticator algorithm"
 687	select CRYPTO_HASH
 688	help
 689	  Poly1305 authenticator algorithm, RFC7539.
 690
 691	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 692	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 693	  in IETF protocols. This is the portable C implementation of Poly1305.
 694
 695config CRYPTO_POLY1305_X86_64
 696	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 697	depends on X86 && 64BIT
 698	select CRYPTO_POLY1305
 699	help
 700	  Poly1305 authenticator algorithm, RFC7539.
 701
 702	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 703	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 704	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 705	  instructions.
 706
 707config CRYPTO_MD4
 708	tristate "MD4 digest algorithm"
 709	select CRYPTO_HASH
 710	help
 711	  MD4 message digest algorithm (RFC1320).
 712
 713config CRYPTO_MD5
 714	tristate "MD5 digest algorithm"
 715	select CRYPTO_HASH
 
 716	help
 717	  MD5 message digest algorithm (RFC1321).
 718
 719config CRYPTO_MD5_OCTEON
 720	tristate "MD5 digest algorithm (OCTEON)"
 721	depends on CPU_CAVIUM_OCTEON
 722	select CRYPTO_MD5
 723	select CRYPTO_HASH
 724	help
 725	  MD5 message digest algorithm (RFC1321) implemented
 726	  using OCTEON crypto instructions, when available.
 727
 728config CRYPTO_MD5_PPC
 729	tristate "MD5 digest algorithm (PPC)"
 730	depends on PPC
 731	select CRYPTO_HASH
 732	help
 733	  MD5 message digest algorithm (RFC1321) implemented
 734	  in PPC assembler.
 735
 736config CRYPTO_MD5_SPARC64
 737	tristate "MD5 digest algorithm (SPARC64)"
 738	depends on SPARC64
 739	select CRYPTO_MD5
 740	select CRYPTO_HASH
 741	help
 742	  MD5 message digest algorithm (RFC1321) implemented
 743	  using sparc64 crypto instructions, when available.
 744
 745config CRYPTO_MICHAEL_MIC
 746	tristate "Michael MIC keyed digest algorithm"
 747	select CRYPTO_HASH
 
 748	help
 749	  Michael MIC is used for message integrity protection in TKIP
 750	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 751	  should not be used for other purposes because of the weakness
 752	  of the algorithm.
 753
 754config CRYPTO_RMD128
 755	tristate "RIPEMD-128 digest algorithm"
 756	select CRYPTO_HASH
 757	help
 758	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 759
 760	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 761	  be used as a secure replacement for RIPEMD. For other use cases,
 762	  RIPEMD-160 should be used.
 763
 764	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 765	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 766
 767config CRYPTO_RMD160
 768	tristate "RIPEMD-160 digest algorithm"
 769	select CRYPTO_HASH
 770	help
 771	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 772
 773	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 774	  to be used as a secure replacement for the 128-bit hash functions
 775	  MD4, MD5 and it's predecessor RIPEMD
 776	  (not to be confused with RIPEMD-128).
 777
 778	  It's speed is comparable to SHA1 and there are no known attacks
 779	  against RIPEMD-160.
 780
 781	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 782	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 783
 784config CRYPTO_RMD256
 785	tristate "RIPEMD-256 digest algorithm"
 786	select CRYPTO_HASH
 
 
 
 787	help
 788	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 789	  256 bit hash. It is intended for applications that require
 790	  longer hash-results, without needing a larger security level
 791	  (than RIPEMD-128).
 792
 793	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 794	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 
 
 795
 796config CRYPTO_RMD320
 797	tristate "RIPEMD-320 digest algorithm"
 798	select CRYPTO_HASH
 799	help
 800	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 801	  320 bit hash. It is intended for applications that require
 802	  longer hash-results, without needing a larger security level
 803	  (than RIPEMD-160).
 804
 805	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 806	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 807
 808config CRYPTO_SHA1
 809	tristate "SHA1 digest algorithm"
 810	select CRYPTO_HASH
 
 
 811	help
 812	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 813
 814config CRYPTO_SHA1_SSSE3
 815	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 816	depends on X86 && 64BIT
 817	select CRYPTO_SHA1
 818	select CRYPTO_HASH
 819	help
 820	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 821	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 822	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 823	  when available.
 824
 825config CRYPTO_SHA256_SSSE3
 826	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 827	depends on X86 && 64BIT
 828	select CRYPTO_SHA256
 829	select CRYPTO_HASH
 830	help
 831	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 832	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 833	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 834	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 835	  Instructions) when available.
 836
 837config CRYPTO_SHA512_SSSE3
 838	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 839	depends on X86 && 64BIT
 840	select CRYPTO_SHA512
 841	select CRYPTO_HASH
 842	help
 843	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 844	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 845	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 846	  version 2 (AVX2) instructions, when available.
 847
 848config CRYPTO_SHA1_OCTEON
 849	tristate "SHA1 digest algorithm (OCTEON)"
 850	depends on CPU_CAVIUM_OCTEON
 851	select CRYPTO_SHA1
 852	select CRYPTO_HASH
 853	help
 854	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 855	  using OCTEON crypto instructions, when available.
 856
 857config CRYPTO_SHA1_SPARC64
 858	tristate "SHA1 digest algorithm (SPARC64)"
 859	depends on SPARC64
 860	select CRYPTO_SHA1
 861	select CRYPTO_HASH
 862	help
 863	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 864	  using sparc64 crypto instructions, when available.
 865
 866config CRYPTO_SHA1_PPC
 867	tristate "SHA1 digest algorithm (powerpc)"
 868	depends on PPC
 869	help
 870	  This is the powerpc hardware accelerated implementation of the
 871	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 872
 873config CRYPTO_SHA1_PPC_SPE
 874	tristate "SHA1 digest algorithm (PPC SPE)"
 875	depends on PPC && SPE
 
 876	help
 877	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 878	  using powerpc SPE SIMD instruction set.
 879
 880config CRYPTO_LIB_SHA256
 881	tristate
 882
 883config CRYPTO_SHA256
 884	tristate "SHA224 and SHA256 digest algorithm"
 885	select CRYPTO_HASH
 886	select CRYPTO_LIB_SHA256
 887	help
 888	  SHA256 secure hash standard (DFIPS 180-2).
 889
 890	  This version of SHA implements a 256 bit hash with 128 bits of
 891	  security against collision attacks.
 892
 893	  This code also includes SHA-224, a 224 bit hash with 112 bits
 894	  of security against collision attacks.
 895
 896config CRYPTO_SHA256_PPC_SPE
 897	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 898	depends on PPC && SPE
 899	select CRYPTO_SHA256
 900	select CRYPTO_HASH
 901	help
 902	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 903	  implemented using powerpc SPE SIMD instruction set.
 904
 905config CRYPTO_SHA256_OCTEON
 906	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 907	depends on CPU_CAVIUM_OCTEON
 908	select CRYPTO_SHA256
 909	select CRYPTO_HASH
 910	help
 911	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 912	  using OCTEON crypto instructions, when available.
 913
 914config CRYPTO_SHA256_SPARC64
 915	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 916	depends on SPARC64
 917	select CRYPTO_SHA256
 918	select CRYPTO_HASH
 919	help
 920	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 921	  using sparc64 crypto instructions, when available.
 922
 923config CRYPTO_SHA512
 924	tristate "SHA384 and SHA512 digest algorithms"
 925	select CRYPTO_HASH
 
 
 926	help
 927	  SHA512 secure hash standard (DFIPS 180-2).
 928
 929	  This version of SHA implements a 512 bit hash with 256 bits of
 930	  security against collision attacks.
 
 
 931
 932	  This code also includes SHA-384, a 384 bit hash with 192 bits
 933	  of security against collision attacks.
 934
 935config CRYPTO_SHA512_OCTEON
 936	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 937	depends on CPU_CAVIUM_OCTEON
 938	select CRYPTO_SHA512
 939	select CRYPTO_HASH
 940	help
 941	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 942	  using OCTEON crypto instructions, when available.
 943
 944config CRYPTO_SHA512_SPARC64
 945	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 946	depends on SPARC64
 947	select CRYPTO_SHA512
 948	select CRYPTO_HASH
 
 949	help
 950	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 951	  using sparc64 crypto instructions, when available.
 952
 953config CRYPTO_SHA3
 954	tristate "SHA3 digest algorithm"
 955	select CRYPTO_HASH
 956	help
 957	  SHA-3 secure hash standard (DFIPS 202). It's based on
 958	  cryptographic sponge function family called Keccak.
 959
 960	  References:
 961	  http://keccak.noekeon.org/
 962
 963config CRYPTO_SM3
 964	tristate "SM3 digest algorithm"
 965	select CRYPTO_HASH
 966	help
 967	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
 968	  It is part of the Chinese Commercial Cryptography suite.
 969
 970	  References:
 971	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
 972	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
 973
 974config CRYPTO_STREEBOG
 975	tristate "Streebog Hash Function"
 976	select CRYPTO_HASH
 977	help
 978	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
 979	  cryptographic standard algorithms (called GOST algorithms).
 980	  This setting enables two hash algorithms with 256 and 512 bits output.
 981
 982	  References:
 983	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
 984	  https://tools.ietf.org/html/rfc6986
 985
 986config CRYPTO_TGR192
 987	tristate "Tiger digest algorithms"
 988	select CRYPTO_HASH
 
 989	help
 990	  Tiger hash algorithm 192, 160 and 128-bit hashes
 991
 992	  Tiger is a hash function optimized for 64-bit processors while
 993	  still having decent performance on 32-bit processors.
 994	  Tiger was developed by Ross Anderson and Eli Biham.
 995
 996	  See also:
 997	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 998
 999config CRYPTO_WP512
1000	tristate "Whirlpool digest algorithms"
1001	select CRYPTO_HASH
 
 
1002	help
1003	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 
1004
1005	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1006	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 
1007
1008	  See also:
1009	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 
 
1010
1011config CRYPTO_GHASH_CLMUL_NI_INTEL
1012	tristate "GHASH hash function (CLMUL-NI accelerated)"
1013	depends on X86 && 64BIT
1014	select CRYPTO_CRYPTD
1015	help
1016	  This is the x86_64 CLMUL-NI accelerated implementation of
1017	  GHASH, the hash function used in GCM (Galois/Counter mode).
1018
1019comment "Ciphers"
1020
1021config CRYPTO_LIB_AES
1022	tristate
1023
1024config CRYPTO_AES
1025	tristate "AES cipher algorithms"
1026	select CRYPTO_ALGAPI
1027	select CRYPTO_LIB_AES
1028	help
1029	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1030	  algorithm.
1031
1032	  Rijndael appears to be consistently a very good performer in
1033	  both hardware and software across a wide range of computing
1034	  environments regardless of its use in feedback or non-feedback
1035	  modes. Its key setup time is excellent, and its key agility is
1036	  good. Rijndael's very low memory requirements make it very well
1037	  suited for restricted-space environments, in which it also
1038	  demonstrates excellent performance. Rijndael's operations are
1039	  among the easiest to defend against power and timing attacks.
1040
1041	  The AES specifies three key sizes: 128, 192 and 256 bits
1042
1043	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1044
1045config CRYPTO_AES_TI
1046	tristate "Fixed time AES cipher"
1047	select CRYPTO_ALGAPI
1048	select CRYPTO_LIB_AES
1049	help
1050	  This is a generic implementation of AES that attempts to eliminate
1051	  data dependent latencies as much as possible without affecting
1052	  performance too much. It is intended for use by the generic CCM
1053	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1054	  solely on encryption (although decryption is supported as well, but
1055	  with a more dramatic performance hit)
1056
1057	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1058	  8 for decryption), this implementation only uses just two S-boxes of
1059	  256 bytes each, and attempts to eliminate data dependent latencies by
1060	  prefetching the entire table into the cache at the start of each
1061	  block. Interrupts are also disabled to avoid races where cachelines
1062	  are evicted when the CPU is interrupted to do something else.
1063
1064config CRYPTO_AES_NI_INTEL
1065	tristate "AES cipher algorithms (AES-NI)"
1066	depends on X86
 
1067	select CRYPTO_AEAD
1068	select CRYPTO_LIB_AES
1069	select CRYPTO_ALGAPI
1070	select CRYPTO_BLKCIPHER
1071	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1072	select CRYPTO_SIMD
1073	help
1074	  Use Intel AES-NI instructions for AES algorithm.
 
1075
1076	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1077	  algorithm.
1078
1079	  Rijndael appears to be consistently a very good performer in
1080	  both hardware and software across a wide range of computing
1081	  environments regardless of its use in feedback or non-feedback
1082	  modes. Its key setup time is excellent, and its key agility is
1083	  good. Rijndael's very low memory requirements make it very well
1084	  suited for restricted-space environments, in which it also
1085	  demonstrates excellent performance. Rijndael's operations are
1086	  among the easiest to defend against power and timing attacks.
1087
1088	  The AES specifies three key sizes: 128, 192 and 256 bits
1089
1090	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1091
1092	  In addition to AES cipher algorithm support, the acceleration
1093	  for some popular block cipher mode is supported too, including
1094	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1095	  acceleration for CTR.
1096
1097config CRYPTO_AES_SPARC64
1098	tristate "AES cipher algorithms (SPARC64)"
1099	depends on SPARC64
1100	select CRYPTO_CRYPTD
1101	select CRYPTO_ALGAPI
1102	help
1103	  Use SPARC64 crypto opcodes for AES algorithm.
 
1104
1105	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1106	  algorithm.
1107
1108	  Rijndael appears to be consistently a very good performer in
1109	  both hardware and software across a wide range of computing
1110	  environments regardless of its use in feedback or non-feedback
1111	  modes. Its key setup time is excellent, and its key agility is
1112	  good. Rijndael's very low memory requirements make it very well
1113	  suited for restricted-space environments, in which it also
1114	  demonstrates excellent performance. Rijndael's operations are
1115	  among the easiest to defend against power and timing attacks.
1116
1117	  The AES specifies three key sizes: 128, 192 and 256 bits
1118
1119	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1120
1121	  In addition to AES cipher algorithm support, the acceleration
1122	  for some popular block cipher mode is supported too, including
1123	  ECB and CBC.
1124
1125config CRYPTO_AES_PPC_SPE
1126	tristate "AES cipher algorithms (PPC SPE)"
1127	depends on PPC && SPE
1128	help
1129	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1130	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1131	  This module should only be used for low power (router) devices
1132	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1133	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1134	  timining attacks. Nevertheless it might be not as secure as other
1135	  architecture specific assembler implementations that work on 1KB
1136	  tables or 256 bytes S-boxes.
1137
1138config CRYPTO_ANUBIS
1139	tristate "Anubis cipher algorithm"
1140	select CRYPTO_ALGAPI
1141	help
1142	  Anubis cipher algorithm.
1143
1144	  Anubis is a variable key length cipher which can use keys from
1145	  128 bits to 320 bits in length.  It was evaluated as a entrant
1146	  in the NESSIE competition.
1147
1148	  See also:
1149	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1150	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1151
1152config CRYPTO_LIB_ARC4
1153	tristate
 
 
 
 
1154
1155config CRYPTO_ARC4
1156	tristate "ARC4 cipher algorithm"
1157	select CRYPTO_BLKCIPHER
1158	select CRYPTO_LIB_ARC4
1159	help
1160	  ARC4 cipher algorithm.
1161
1162	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1163	  bits in length.  This algorithm is required for driver-based
1164	  WEP, but it should not be for other purposes because of the
1165	  weakness of the algorithm.
1166
1167config CRYPTO_BLOWFISH
1168	tristate "Blowfish cipher algorithm"
1169	select CRYPTO_ALGAPI
1170	select CRYPTO_BLOWFISH_COMMON
1171	help
1172	  Blowfish cipher algorithm, by Bruce Schneier.
1173
1174	  This is a variable key length cipher which can use keys from 32
1175	  bits to 448 bits in length.  It's fast, simple and specifically
1176	  designed for use on "large microprocessors".
1177
1178	  See also:
1179	  <http://www.schneier.com/blowfish.html>
1180
1181config CRYPTO_BLOWFISH_COMMON
1182	tristate
1183	help
1184	  Common parts of the Blowfish cipher algorithm shared by the
1185	  generic c and the assembler implementations.
1186
1187	  See also:
1188	  <http://www.schneier.com/blowfish.html>
 
1189
1190config CRYPTO_BLOWFISH_X86_64
1191	tristate "Blowfish cipher algorithm (x86_64)"
1192	depends on X86 && 64BIT
1193	select CRYPTO_BLKCIPHER
1194	select CRYPTO_BLOWFISH_COMMON
1195	help
1196	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1197
1198	  This is a variable key length cipher which can use keys from 32
1199	  bits to 448 bits in length.  It's fast, simple and specifically
1200	  designed for use on "large microprocessors".
 
 
1201
1202	  See also:
1203	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 
 
1204
1205config CRYPTO_CAMELLIA
1206	tristate "Camellia cipher algorithms"
1207	depends on CRYPTO
1208	select CRYPTO_ALGAPI
1209	help
1210	  Camellia cipher algorithms module.
1211
1212	  Camellia is a symmetric key block cipher developed jointly
1213	  at NTT and Mitsubishi Electric Corporation.
1214
1215	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1216
1217	  See also:
1218	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1219
1220config CRYPTO_CAMELLIA_X86_64
1221	tristate "Camellia cipher algorithm (x86_64)"
1222	depends on X86 && 64BIT
1223	depends on CRYPTO
1224	select CRYPTO_BLKCIPHER
1225	select CRYPTO_GLUE_HELPER_X86
1226	help
1227	  Camellia cipher algorithm module (x86_64).
1228
1229	  Camellia is a symmetric key block cipher developed jointly
1230	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
1231
1232	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1233
1234	  See also:
1235	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1236
1237config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1238	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1239	depends on X86 && 64BIT
1240	depends on CRYPTO
1241	select CRYPTO_BLKCIPHER
1242	select CRYPTO_CAMELLIA_X86_64
1243	select CRYPTO_GLUE_HELPER_X86
1244	select CRYPTO_SIMD
1245	select CRYPTO_XTS
1246	help
1247	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 
1248
1249	  Camellia is a symmetric key block cipher developed jointly
1250	  at NTT and Mitsubishi Electric Corporation.
1251
1252	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1253
1254	  See also:
1255	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1256
1257config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1258	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1259	depends on X86 && 64BIT
1260	depends on CRYPTO
1261	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1262	help
1263	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1264
1265	  Camellia is a symmetric key block cipher developed jointly
1266	  at NTT and Mitsubishi Electric Corporation.
1267
1268	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1269
1270	  See also:
1271	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1272
1273config CRYPTO_CAMELLIA_SPARC64
1274	tristate "Camellia cipher algorithm (SPARC64)"
1275	depends on SPARC64
1276	depends on CRYPTO
1277	select CRYPTO_ALGAPI
1278	help
1279	  Camellia cipher algorithm module (SPARC64).
 
1280
1281	  Camellia is a symmetric key block cipher developed jointly
1282	  at NTT and Mitsubishi Electric Corporation.
1283
1284	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285
1286	  See also:
1287	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288
1289config CRYPTO_CAST_COMMON
1290	tristate
1291	help
1292	  Common parts of the CAST cipher algorithms shared by the
1293	  generic c and the assembler implementations.
1294
1295config CRYPTO_CAST5
1296	tristate "CAST5 (CAST-128) cipher algorithm"
1297	select CRYPTO_ALGAPI
1298	select CRYPTO_CAST_COMMON
1299	help
1300	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1301	  described in RFC2144.
1302
1303config CRYPTO_CAST5_AVX_X86_64
1304	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1305	depends on X86 && 64BIT
1306	select CRYPTO_BLKCIPHER
1307	select CRYPTO_CAST5
1308	select CRYPTO_CAST_COMMON
1309	select CRYPTO_SIMD
1310	help
1311	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1312	  described in RFC2144.
1313
1314	  This module provides the Cast5 cipher algorithm that processes
1315	  sixteen blocks parallel using the AVX instruction set.
1316
1317config CRYPTO_CAST6
1318	tristate "CAST6 (CAST-256) cipher algorithm"
1319	select CRYPTO_ALGAPI
1320	select CRYPTO_CAST_COMMON
1321	help
1322	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1323	  described in RFC2612.
1324
1325config CRYPTO_CAST6_AVX_X86_64
1326	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1327	depends on X86 && 64BIT
1328	select CRYPTO_BLKCIPHER
1329	select CRYPTO_CAST6
1330	select CRYPTO_CAST_COMMON
1331	select CRYPTO_GLUE_HELPER_X86
1332	select CRYPTO_SIMD
1333	select CRYPTO_XTS
1334	help
1335	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1336	  described in RFC2612.
1337
1338	  This module provides the Cast6 cipher algorithm that processes
1339	  eight blocks parallel using the AVX instruction set.
1340
1341config CRYPTO_LIB_DES
1342	tristate
1343
1344config CRYPTO_DES
1345	tristate "DES and Triple DES EDE cipher algorithms"
1346	select CRYPTO_ALGAPI
1347	select CRYPTO_LIB_DES
1348	help
1349	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1350
1351config CRYPTO_DES_SPARC64
1352	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1353	depends on SPARC64
1354	select CRYPTO_ALGAPI
1355	select CRYPTO_LIB_DES
1356	help
1357	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1358	  optimized using SPARC64 crypto opcodes.
1359
1360config CRYPTO_DES3_EDE_X86_64
1361	tristate "Triple DES EDE cipher algorithm (x86-64)"
1362	depends on X86 && 64BIT
1363	select CRYPTO_BLKCIPHER
1364	select CRYPTO_LIB_DES
1365	help
1366	  Triple DES EDE (FIPS 46-3) algorithm.
1367
1368	  This module provides implementation of the Triple DES EDE cipher
1369	  algorithm that is optimized for x86-64 processors. Two versions of
1370	  algorithm are provided; regular processing one input block and
1371	  one that processes three blocks parallel.
1372
1373config CRYPTO_FCRYPT
1374	tristate "FCrypt cipher algorithm"
1375	select CRYPTO_ALGAPI
1376	select CRYPTO_BLKCIPHER
1377	help
1378	  FCrypt algorithm used by RxRPC.
1379
1380config CRYPTO_KHAZAD
1381	tristate "Khazad cipher algorithm"
1382	select CRYPTO_ALGAPI
1383	help
1384	  Khazad cipher algorithm.
1385
1386	  Khazad was a finalist in the initial NESSIE competition.  It is
1387	  an algorithm optimized for 64-bit processors with good performance
1388	  on 32-bit processors.  Khazad uses an 128 bit key size.
1389
1390	  See also:
1391	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
 
1392
1393config CRYPTO_SALSA20
1394	tristate "Salsa20 stream cipher algorithm"
1395	select CRYPTO_BLKCIPHER
 
1396	help
1397	  Salsa20 stream cipher algorithm.
1398
1399	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1400	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1401
1402	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1403	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1404
1405config CRYPTO_CHACHA20
1406	tristate "ChaCha stream cipher algorithms"
1407	select CRYPTO_BLKCIPHER
1408	help
1409	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1410
1411	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1412	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1413	  This is the portable C implementation of ChaCha20.  See also:
1414	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1415
1416	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1417	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1418	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1419	  while provably retaining ChaCha20's security.  See also:
1420	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1421
1422	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1423	  reduced security margin but increased performance.  It can be needed
1424	  in some performance-sensitive scenarios.
1425
1426config CRYPTO_CHACHA20_X86_64
1427	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1428	depends on X86 && 64BIT
1429	select CRYPTO_BLKCIPHER
1430	select CRYPTO_CHACHA20
1431	help
1432	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1433	  XChaCha20, and XChaCha12 stream ciphers.
1434
1435config CRYPTO_SEED
1436	tristate "SEED cipher algorithm"
1437	select CRYPTO_ALGAPI
1438	help
1439	  SEED cipher algorithm (RFC4269).
1440
1441	  SEED is a 128-bit symmetric key block cipher that has been
1442	  developed by KISA (Korea Information Security Agency) as a
1443	  national standard encryption algorithm of the Republic of Korea.
1444	  It is a 16 round block cipher with the key size of 128 bit.
1445
1446	  See also:
1447	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1448
1449config CRYPTO_SERPENT
1450	tristate "Serpent cipher algorithm"
1451	select CRYPTO_ALGAPI
1452	help
1453	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1454
1455	  Keys are allowed to be from 0 to 256 bits in length, in steps
1456	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1457	  variant of Serpent for compatibility with old kerneli.org code.
1458
1459	  See also:
1460	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1461
1462config CRYPTO_SERPENT_SSE2_X86_64
1463	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1464	depends on X86 && 64BIT
1465	select CRYPTO_BLKCIPHER
1466	select CRYPTO_GLUE_HELPER_X86
1467	select CRYPTO_SERPENT
1468	select CRYPTO_SIMD
1469	help
1470	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1471
1472	  Keys are allowed to be from 0 to 256 bits in length, in steps
1473	  of 8 bits.
 
1474
1475	  This module provides Serpent cipher algorithm that processes eight
1476	  blocks parallel using SSE2 instruction set.
 
1477
1478	  See also:
1479	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480
1481config CRYPTO_SERPENT_SSE2_586
1482	tristate "Serpent cipher algorithm (i586/SSE2)"
1483	depends on X86 && !64BIT
1484	select CRYPTO_BLKCIPHER
1485	select CRYPTO_GLUE_HELPER_X86
1486	select CRYPTO_SERPENT
1487	select CRYPTO_SIMD
1488	help
1489	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
1490
1491	  Keys are allowed to be from 0 to 256 bits in length, in steps
1492	  of 8 bits.
1493
1494	  This module provides Serpent cipher algorithm that processes four
1495	  blocks parallel using SSE2 instruction set.
1496
1497	  See also:
1498	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1499
1500config CRYPTO_SERPENT_AVX_X86_64
1501	tristate "Serpent cipher algorithm (x86_64/AVX)"
1502	depends on X86 && 64BIT
1503	select CRYPTO_BLKCIPHER
1504	select CRYPTO_GLUE_HELPER_X86
1505	select CRYPTO_SERPENT
1506	select CRYPTO_SIMD
1507	select CRYPTO_XTS
1508	help
1509	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510
1511	  Keys are allowed to be from 0 to 256 bits in length, in steps
1512	  of 8 bits.
1513
1514	  This module provides the Serpent cipher algorithm that processes
1515	  eight blocks parallel using the AVX instruction set.
1516
1517	  See also:
1518	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520config CRYPTO_SERPENT_AVX2_X86_64
1521	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1522	depends on X86 && 64BIT
1523	select CRYPTO_SERPENT_AVX_X86_64
1524	help
1525	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
1526
1527	  Keys are allowed to be from 0 to 256 bits in length, in steps
1528	  of 8 bits.
1529
1530	  This module provides Serpent cipher algorithm that processes 16
1531	  blocks parallel using AVX2 instruction set.
1532
1533	  See also:
1534	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1535
1536config CRYPTO_SM4
1537	tristate "SM4 cipher algorithm"
1538	select CRYPTO_ALGAPI
1539	help
1540	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1541
1542	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1543	  Organization of State Commercial Administration of China (OSCCA)
1544	  as an authorized cryptographic algorithms for the use within China.
1545
1546	  SMS4 was originally created for use in protecting wireless
1547	  networks, and is mandated in the Chinese National Standard for
1548	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1549	  (GB.15629.11-2003).
1550
1551	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1552	  standardized through TC 260 of the Standardization Administration
1553	  of the People's Republic of China (SAC).
1554
1555	  The input, output, and key of SMS4 are each 128 bits.
1556
1557	  See also: <https://eprint.iacr.org/2008/329.pdf>
1558
1559	  If unsure, say N.
1560
1561config CRYPTO_TEA
1562	tristate "TEA, XTEA and XETA cipher algorithms"
1563	select CRYPTO_ALGAPI
1564	help
1565	  TEA cipher algorithm.
1566
1567	  Tiny Encryption Algorithm is a simple cipher that uses
1568	  many rounds for security.  It is very fast and uses
1569	  little memory.
1570
1571	  Xtendend Tiny Encryption Algorithm is a modification to
1572	  the TEA algorithm to address a potential key weakness
1573	  in the TEA algorithm.
1574
1575	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1576	  of the XTEA algorithm for compatibility purposes.
1577
1578config CRYPTO_TWOFISH
1579	tristate "Twofish cipher algorithm"
1580	select CRYPTO_ALGAPI
1581	select CRYPTO_TWOFISH_COMMON
1582	help
1583	  Twofish cipher algorithm.
1584
1585	  Twofish was submitted as an AES (Advanced Encryption Standard)
1586	  candidate cipher by researchers at CounterPane Systems.  It is a
1587	  16 round block cipher supporting key sizes of 128, 192, and 256
1588	  bits.
1589
1590	  See also:
1591	  <http://www.schneier.com/twofish.html>
1592
1593config CRYPTO_TWOFISH_COMMON
1594	tristate
1595	help
1596	  Common parts of the Twofish cipher algorithm shared by the
1597	  generic c and the assembler implementations.
1598
1599config CRYPTO_TWOFISH_586
1600	tristate "Twofish cipher algorithms (i586)"
1601	depends on (X86 || UML_X86) && !64BIT
1602	select CRYPTO_ALGAPI
1603	select CRYPTO_TWOFISH_COMMON
1604	help
1605	  Twofish cipher algorithm.
1606
1607	  Twofish was submitted as an AES (Advanced Encryption Standard)
1608	  candidate cipher by researchers at CounterPane Systems.  It is a
1609	  16 round block cipher supporting key sizes of 128, 192, and 256
1610	  bits.
1611
1612	  See also:
1613	  <http://www.schneier.com/twofish.html>
1614
1615config CRYPTO_TWOFISH_X86_64
1616	tristate "Twofish cipher algorithm (x86_64)"
1617	depends on (X86 || UML_X86) && 64BIT
1618	select CRYPTO_ALGAPI
1619	select CRYPTO_TWOFISH_COMMON
1620	help
1621	  Twofish cipher algorithm (x86_64).
1622
1623	  Twofish was submitted as an AES (Advanced Encryption Standard)
1624	  candidate cipher by researchers at CounterPane Systems.  It is a
1625	  16 round block cipher supporting key sizes of 128, 192, and 256
1626	  bits.
1627
1628	  See also:
1629	  <http://www.schneier.com/twofish.html>
1630
1631config CRYPTO_TWOFISH_X86_64_3WAY
1632	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1633	depends on X86 && 64BIT
1634	select CRYPTO_BLKCIPHER
1635	select CRYPTO_TWOFISH_COMMON
1636	select CRYPTO_TWOFISH_X86_64
1637	select CRYPTO_GLUE_HELPER_X86
1638	help
1639	  Twofish cipher algorithm (x86_64, 3-way parallel).
1640
1641	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642	  candidate cipher by researchers at CounterPane Systems.  It is a
1643	  16 round block cipher supporting key sizes of 128, 192, and 256
1644	  bits.
1645
1646	  This module provides Twofish cipher algorithm that processes three
1647	  blocks parallel, utilizing resources of out-of-order CPUs better.
1648
1649	  See also:
1650	  <http://www.schneier.com/twofish.html>
1651
1652config CRYPTO_TWOFISH_AVX_X86_64
1653	tristate "Twofish cipher algorithm (x86_64/AVX)"
1654	depends on X86 && 64BIT
1655	select CRYPTO_BLKCIPHER
1656	select CRYPTO_GLUE_HELPER_X86
1657	select CRYPTO_SIMD
1658	select CRYPTO_TWOFISH_COMMON
1659	select CRYPTO_TWOFISH_X86_64
1660	select CRYPTO_TWOFISH_X86_64_3WAY
1661	help
1662	  Twofish cipher algorithm (x86_64/AVX).
1663
1664	  Twofish was submitted as an AES (Advanced Encryption Standard)
1665	  candidate cipher by researchers at CounterPane Systems.  It is a
1666	  16 round block cipher supporting key sizes of 128, 192, and 256
1667	  bits.
1668
1669	  This module provides the Twofish cipher algorithm that processes
1670	  eight blocks parallel using the AVX Instruction Set.
1671
1672	  See also:
1673	  <http://www.schneier.com/twofish.html>
1674
1675comment "Compression"
1676
1677config CRYPTO_DEFLATE
1678	tristate "Deflate compression algorithm"
1679	select CRYPTO_ALGAPI
1680	select CRYPTO_ACOMP2
1681	select ZLIB_INFLATE
1682	select ZLIB_DEFLATE
1683	help
1684	  This is the Deflate algorithm (RFC1951), specified for use in
1685	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1686
1687	  You will most probably want this if using IPSec.
1688
1689config CRYPTO_LZO
1690	tristate "LZO compression algorithm"
1691	select CRYPTO_ALGAPI
1692	select CRYPTO_ACOMP2
1693	select LZO_COMPRESS
1694	select LZO_DECOMPRESS
1695	help
1696	  This is the LZO algorithm.
 
 
1697
1698config CRYPTO_842
1699	tristate "842 compression algorithm"
1700	select CRYPTO_ALGAPI
1701	select CRYPTO_ACOMP2
1702	select 842_COMPRESS
1703	select 842_DECOMPRESS
1704	help
1705	  This is the 842 algorithm.
 
 
1706
1707config CRYPTO_LZ4
1708	tristate "LZ4 compression algorithm"
1709	select CRYPTO_ALGAPI
1710	select CRYPTO_ACOMP2
1711	select LZ4_COMPRESS
1712	select LZ4_DECOMPRESS
1713	help
1714	  This is the LZ4 algorithm.
 
 
1715
1716config CRYPTO_LZ4HC
1717	tristate "LZ4HC compression algorithm"
1718	select CRYPTO_ALGAPI
1719	select CRYPTO_ACOMP2
1720	select LZ4HC_COMPRESS
1721	select LZ4_DECOMPRESS
1722	help
1723	  This is the LZ4 high compression mode algorithm.
 
 
1724
1725config CRYPTO_ZSTD
1726	tristate "Zstd compression algorithm"
1727	select CRYPTO_ALGAPI
1728	select CRYPTO_ACOMP2
1729	select ZSTD_COMPRESS
1730	select ZSTD_DECOMPRESS
1731	help
1732	  This is the zstd algorithm.
1733
1734comment "Random Number Generation"
 
 
 
 
1735
1736config CRYPTO_ANSI_CPRNG
1737	tristate "Pseudo Random Number Generation for Cryptographic modules"
1738	select CRYPTO_AES
1739	select CRYPTO_RNG
1740	help
1741	  This option enables the generic pseudo random number generator
1742	  for cryptographic modules.  Uses the Algorithm specified in
1743	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1744	  CRYPTO_FIPS is selected
 
1745
1746menuconfig CRYPTO_DRBG_MENU
1747	tristate "NIST SP800-90A DRBG"
1748	help
1749	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1750	  more of the DRBG types must be selected.
 
1751
1752if CRYPTO_DRBG_MENU
1753
1754config CRYPTO_DRBG_HMAC
1755	bool
1756	default y
1757	select CRYPTO_HMAC
1758	select CRYPTO_SHA256
1759
1760config CRYPTO_DRBG_HASH
1761	bool "Enable Hash DRBG"
1762	select CRYPTO_SHA256
1763	help
1764	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1765
1766config CRYPTO_DRBG_CTR
1767	bool "Enable CTR DRBG"
1768	select CRYPTO_AES
1769	depends on CRYPTO_CTR
1770	help
1771	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1772
1773config CRYPTO_DRBG
1774	tristate
1775	default CRYPTO_DRBG_MENU
1776	select CRYPTO_RNG
1777	select CRYPTO_JITTERENTROPY
1778
1779endif	# if CRYPTO_DRBG_MENU
1780
1781config CRYPTO_JITTERENTROPY
1782	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1783	select CRYPTO_RNG
 
1784	help
1785	  The Jitterentropy RNG is a noise that is intended
1786	  to provide seed to another RNG. The RNG does not
1787	  perform any cryptographic whitening of the generated
1788	  random numbers. This Jitterentropy RNG registers with
1789	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791config CRYPTO_USER_API
1792	tristate
1793
1794config CRYPTO_USER_API_HASH
1795	tristate "User-space interface for hash algorithms"
1796	depends on NET
1797	select CRYPTO_HASH
1798	select CRYPTO_USER_API
1799	help
1800	  This option enables the user-spaces interface for hash
1801	  algorithms.
 
 
1802
1803config CRYPTO_USER_API_SKCIPHER
1804	tristate "User-space interface for symmetric key cipher algorithms"
1805	depends on NET
1806	select CRYPTO_BLKCIPHER
1807	select CRYPTO_USER_API
1808	help
1809	  This option enables the user-spaces interface for symmetric
1810	  key cipher algorithms.
 
 
1811
1812config CRYPTO_USER_API_RNG
1813	tristate "User-space interface for random number generator algorithms"
1814	depends on NET
1815	select CRYPTO_RNG
1816	select CRYPTO_USER_API
1817	help
1818	  This option enables the user-spaces interface for random
1819	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820
1821config CRYPTO_USER_API_AEAD
1822	tristate "User-space interface for AEAD cipher algorithms"
1823	depends on NET
1824	select CRYPTO_AEAD
1825	select CRYPTO_BLKCIPHER
1826	select CRYPTO_NULL
1827	select CRYPTO_USER_API
1828	help
1829	  This option enables the user-spaces interface for AEAD
1830	  cipher algorithms.
1831
1832config CRYPTO_STATS
1833	bool "Crypto usage statistics for User-space"
1834	depends on CRYPTO_USER
1835	help
1836	  This option enables the gathering of crypto stats.
1837	  This will collect:
1838	  - encrypt/decrypt size and numbers of symmeric operations
1839	  - compress/decompress size and numbers of compress operations
1840	  - size and numbers of hash operations
1841	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1842	  - generate/seed numbers for rng operations
 
 
1843
1844config CRYPTO_HASH_INFO
1845	bool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846
1847source "drivers/crypto/Kconfig"
1848source "crypto/asymmetric_keys/Kconfig"
1849source "certs/Kconfig"
1850
1851endif	# if CRYPTO