Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 
 
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 
 
 
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 242config CRYPTO_ENGINE
 243	tristate
 244
 245endmenu
 246
 247menu "Public-key cryptography"
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select CRYPTO_SIG
 254	select MPILIB
 255	select ASN1
 256	help
 257	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 258
 259config CRYPTO_DH
 260	tristate "DH (Diffie-Hellman)"
 261	select CRYPTO_KPP
 262	select MPILIB
 263	help
 264	  DH (Diffie-Hellman) key exchange algorithm
 265
 266config CRYPTO_DH_RFC7919_GROUPS
 267	bool "RFC 7919 FFDHE groups"
 268	depends on CRYPTO_DH
 269	select CRYPTO_RNG_DEFAULT
 270	help
 271	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 272	  defined in RFC7919.
 273
 274	  Support these finite-field groups in DH key exchanges:
 275	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 276
 277	  If unsure, say N.
 278
 279config CRYPTO_ECC
 280	tristate
 281	select CRYPTO_RNG_DEFAULT
 282
 283config CRYPTO_ECDH
 284	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 285	select CRYPTO_ECC
 286	select CRYPTO_KPP
 287	help
 288	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 289	  using curves P-192, P-256, and P-384 (FIPS 186)
 290
 291config CRYPTO_ECDSA
 292	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 293	select CRYPTO_ECC
 294	select CRYPTO_SIG
 295	select ASN1
 296	help
 297	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 298	  ISO/IEC 14888-3)
 299	  using curves P-192, P-256, P-384 and P-521
 300
 301	  Only signature verification is implemented.
 302
 303config CRYPTO_ECRDSA
 304	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 305	select CRYPTO_ECC
 306	select CRYPTO_SIG
 307	select CRYPTO_STREEBOG
 308	select OID_REGISTRY
 309	select ASN1
 310	help
 311	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 312	  RFC 7091, ISO/IEC 14888-3)
 313
 314	  One of the Russian cryptographic standard algorithms (called GOST
 315	  algorithms). Only signature verification is implemented.
 316
 317config CRYPTO_CURVE25519
 318	tristate "Curve25519"
 319	select CRYPTO_KPP
 320	select CRYPTO_LIB_CURVE25519_GENERIC
 321	help
 322	  Curve25519 elliptic curve (RFC7748)
 323
 324endmenu
 325
 326menu "Block ciphers"
 327
 328config CRYPTO_AES
 329	tristate "AES (Advanced Encryption Standard)"
 330	select CRYPTO_ALGAPI
 331	select CRYPTO_LIB_AES
 332	help
 333	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 334
 335	  Rijndael appears to be consistently a very good performer in
 336	  both hardware and software across a wide range of computing
 337	  environments regardless of its use in feedback or non-feedback
 338	  modes. Its key setup time is excellent, and its key agility is
 339	  good. Rijndael's very low memory requirements make it very well
 340	  suited for restricted-space environments, in which it also
 341	  demonstrates excellent performance. Rijndael's operations are
 342	  among the easiest to defend against power and timing attacks.
 343
 344	  The AES specifies three key sizes: 128, 192 and 256 bits
 345
 346config CRYPTO_AES_TI
 347	tristate "AES (Advanced Encryption Standard) (fixed time)"
 348	select CRYPTO_ALGAPI
 349	select CRYPTO_LIB_AES
 350	help
 351	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 352
 353	  This is a generic implementation of AES that attempts to eliminate
 354	  data dependent latencies as much as possible without affecting
 355	  performance too much. It is intended for use by the generic CCM
 356	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 357	  solely on encryption (although decryption is supported as well, but
 358	  with a more dramatic performance hit)
 359
 360	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 361	  8 for decryption), this implementation only uses just two S-boxes of
 362	  256 bytes each, and attempts to eliminate data dependent latencies by
 363	  prefetching the entire table into the cache at the start of each
 364	  block. Interrupts are also disabled to avoid races where cachelines
 365	  are evicted when the CPU is interrupted to do something else.
 366
 367config CRYPTO_ANUBIS
 368	tristate "Anubis"
 369	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 370	select CRYPTO_ALGAPI
 371	help
 372	  Anubis cipher algorithm
 373
 374	  Anubis is a variable key length cipher which can use keys from
 375	  128 bits to 320 bits in length.  It was evaluated as a entrant
 376	  in the NESSIE competition.
 377
 378	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 379	  for further information.
 380
 381config CRYPTO_ARIA
 382	tristate "ARIA"
 383	select CRYPTO_ALGAPI
 384	help
 385	  ARIA cipher algorithm (RFC5794)
 386
 387	  ARIA is a standard encryption algorithm of the Republic of Korea.
 388	  The ARIA specifies three key sizes and rounds.
 389	  128-bit: 12 rounds.
 390	  192-bit: 14 rounds.
 391	  256-bit: 16 rounds.
 392
 393	  See:
 394	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 395
 396config CRYPTO_BLOWFISH
 397	tristate "Blowfish"
 398	select CRYPTO_ALGAPI
 399	select CRYPTO_BLOWFISH_COMMON
 400	help
 401	  Blowfish cipher algorithm, by Bruce Schneier
 402
 403	  This is a variable key length cipher which can use keys from 32
 404	  bits to 448 bits in length.  It's fast, simple and specifically
 405	  designed for use on "large microprocessors".
 406
 407	  See https://www.schneier.com/blowfish.html for further information.
 408
 409config CRYPTO_BLOWFISH_COMMON
 410	tristate
 411	help
 412	  Common parts of the Blowfish cipher algorithm shared by the
 413	  generic c and the assembler implementations.
 414
 415config CRYPTO_CAMELLIA
 416	tristate "Camellia"
 417	select CRYPTO_ALGAPI
 418	help
 419	  Camellia cipher algorithms (ISO/IEC 18033-3)
 420
 421	  Camellia is a symmetric key block cipher developed jointly
 422	  at NTT and Mitsubishi Electric Corporation.
 423
 424	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 425
 426	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 427
 428config CRYPTO_CAST_COMMON
 429	tristate
 430	help
 431	  Common parts of the CAST cipher algorithms shared by the
 432	  generic c and the assembler implementations.
 433
 434config CRYPTO_CAST5
 435	tristate "CAST5 (CAST-128)"
 436	select CRYPTO_ALGAPI
 437	select CRYPTO_CAST_COMMON
 438	help
 439	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 440
 441config CRYPTO_CAST6
 442	tristate "CAST6 (CAST-256)"
 443	select CRYPTO_ALGAPI
 444	select CRYPTO_CAST_COMMON
 445	help
 446	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 447
 448config CRYPTO_DES
 449	tristate "DES and Triple DES EDE"
 450	select CRYPTO_ALGAPI
 451	select CRYPTO_LIB_DES
 452	help
 453	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 454	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 455	  cipher algorithms
 456
 457config CRYPTO_FCRYPT
 458	tristate "FCrypt"
 459	select CRYPTO_ALGAPI
 460	select CRYPTO_SKCIPHER
 461	help
 462	  FCrypt algorithm used by RxRPC
 463
 464	  See https://ota.polyonymo.us/fcrypt-paper.txt
 465
 466config CRYPTO_KHAZAD
 467	tristate "Khazad"
 468	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 469	select CRYPTO_ALGAPI
 470	help
 471	  Khazad cipher algorithm
 472
 473	  Khazad was a finalist in the initial NESSIE competition.  It is
 474	  an algorithm optimized for 64-bit processors with good performance
 475	  on 32-bit processors.  Khazad uses an 128 bit key size.
 476
 477	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 478	  for further information.
 479
 480config CRYPTO_SEED
 481	tristate "SEED"
 482	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 483	select CRYPTO_ALGAPI
 484	help
 485	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 486
 487	  SEED is a 128-bit symmetric key block cipher that has been
 488	  developed by KISA (Korea Information Security Agency) as a
 489	  national standard encryption algorithm of the Republic of Korea.
 490	  It is a 16 round block cipher with the key size of 128 bit.
 491
 492	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 493	  for further information.
 494
 495config CRYPTO_SERPENT
 496	tristate "Serpent"
 497	select CRYPTO_ALGAPI
 498	help
 499	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 500
 501	  Keys are allowed to be from 0 to 256 bits in length, in steps
 502	  of 8 bits.
 503
 504	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 505
 506config CRYPTO_SM4
 507	tristate
 508
 509config CRYPTO_SM4_GENERIC
 510	tristate "SM4 (ShangMi 4)"
 511	select CRYPTO_ALGAPI
 512	select CRYPTO_SM4
 513	help
 514	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 515	  ISO/IEC 18033-3:2010/Amd 1:2021)
 516
 517	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 518	  Organization of State Commercial Administration of China (OSCCA)
 519	  as an authorized cryptographic algorithms for the use within China.
 520
 521	  SMS4 was originally created for use in protecting wireless
 522	  networks, and is mandated in the Chinese National Standard for
 523	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 524	  (GB.15629.11-2003).
 525
 526	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 527	  standardized through TC 260 of the Standardization Administration
 528	  of the People's Republic of China (SAC).
 529
 530	  The input, output, and key of SMS4 are each 128 bits.
 531
 532	  See https://eprint.iacr.org/2008/329.pdf for further information.
 533
 534	  If unsure, say N.
 535
 536config CRYPTO_TEA
 537	tristate "TEA, XTEA and XETA"
 538	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 539	select CRYPTO_ALGAPI
 540	help
 541	  TEA (Tiny Encryption Algorithm) cipher algorithms
 542
 543	  Tiny Encryption Algorithm is a simple cipher that uses
 544	  many rounds for security.  It is very fast and uses
 545	  little memory.
 546
 547	  Xtendend Tiny Encryption Algorithm is a modification to
 548	  the TEA algorithm to address a potential key weakness
 549	  in the TEA algorithm.
 550
 551	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 552	  of the XTEA algorithm for compatibility purposes.
 553
 554config CRYPTO_TWOFISH
 555	tristate "Twofish"
 556	select CRYPTO_ALGAPI
 557	select CRYPTO_TWOFISH_COMMON
 558	help
 559	  Twofish cipher algorithm
 560
 561	  Twofish was submitted as an AES (Advanced Encryption Standard)
 562	  candidate cipher by researchers at CounterPane Systems.  It is a
 563	  16 round block cipher supporting key sizes of 128, 192, and 256
 564	  bits.
 565
 566	  See https://www.schneier.com/twofish.html for further information.
 567
 568config CRYPTO_TWOFISH_COMMON
 569	tristate
 570	help
 571	  Common parts of the Twofish cipher algorithm shared by the
 572	  generic c and the assembler implementations.
 573
 574endmenu
 575
 576menu "Length-preserving ciphers and modes"
 577
 578config CRYPTO_ADIANTUM
 579	tristate "Adiantum"
 580	select CRYPTO_CHACHA20
 581	select CRYPTO_LIB_POLY1305_GENERIC
 582	select CRYPTO_NHPOLY1305
 583	select CRYPTO_MANAGER
 584	help
 585	  Adiantum tweakable, length-preserving encryption mode
 
 586
 587	  Designed for fast and secure disk encryption, especially on
 588	  CPUs without dedicated crypto instructions.  It encrypts
 589	  each sector using the XChaCha12 stream cipher, two passes of
 590	  an ε-almost-∆-universal hash function, and an invocation of
 591	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 592	  without AES instructions, Adiantum is much faster than
 593	  AES-XTS.
 594
 595	  Adiantum's security is provably reducible to that of its
 596	  underlying stream and block ciphers, subject to a security
 597	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 598	  mode, so it actually provides an even stronger notion of
 599	  security than XTS, subject to the security bound.
 600
 601	  If unsure, say N.
 602
 603config CRYPTO_ARC4
 604	tristate "ARC4 (Alleged Rivest Cipher 4)"
 605	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 606	select CRYPTO_SKCIPHER
 607	select CRYPTO_LIB_ARC4
 608	help
 609	  ARC4 cipher algorithm
 610
 611	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 612	  bits in length.  This algorithm is required for driver-based
 613	  WEP, but it should not be for other purposes because of the
 614	  weakness of the algorithm.
 615
 616config CRYPTO_CHACHA20
 617	tristate "ChaCha"
 618	select CRYPTO_LIB_CHACHA_GENERIC
 619	select CRYPTO_SKCIPHER
 620	help
 621	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 622
 623	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 624	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 625	  This is the portable C implementation of ChaCha20.  See
 626	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 627
 628	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 629	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 630	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 631	  while provably retaining ChaCha20's security.  See
 632	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 633
 634	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 635	  reduced security margin but increased performance.  It can be needed
 636	  in some performance-sensitive scenarios.
 637
 638config CRYPTO_CBC
 639	tristate "CBC (Cipher Block Chaining)"
 640	select CRYPTO_SKCIPHER
 641	select CRYPTO_MANAGER
 642	help
 643	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 644
 645	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 646
 647config CRYPTO_CTR
 648	tristate "CTR (Counter)"
 649	select CRYPTO_SKCIPHER
 
 650	select CRYPTO_MANAGER
 651	help
 652	  CTR (Counter) mode (NIST SP800-38A)
 
 653
 654config CRYPTO_CTS
 655	tristate "CTS (Cipher Text Stealing)"
 656	select CRYPTO_SKCIPHER
 657	select CRYPTO_MANAGER
 658	help
 659	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 660	  Addendum to SP800-38A (October 2010))
 661
 
 662	  This mode is required for Kerberos gss mechanism support
 663	  for AES encryption.
 664
 665config CRYPTO_ECB
 666	tristate "ECB (Electronic Codebook)"
 667	select CRYPTO_SKCIPHER2
 668	select CRYPTO_MANAGER
 669	help
 670	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 671
 672config CRYPTO_HCTR2
 673	tristate "HCTR2"
 674	select CRYPTO_XCTR
 675	select CRYPTO_POLYVAL
 676	select CRYPTO_MANAGER
 677	help
 678	  HCTR2 length-preserving encryption mode
 679
 680	  A mode for storage encryption that is efficient on processors with
 681	  instructions to accelerate AES and carryless multiplication, e.g.
 682	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 683	  ARMv8 crypto extensions.
 684
 685	  See https://eprint.iacr.org/2021/1441
 686
 687config CRYPTO_KEYWRAP
 688	tristate "KW (AES Key Wrap)"
 689	select CRYPTO_SKCIPHER
 690	select CRYPTO_MANAGER
 691	help
 692	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 693	  and RFC3394) without padding.
 694
 695config CRYPTO_LRW
 696	tristate "LRW (Liskov Rivest Wagner)"
 697	select CRYPTO_LIB_GF128MUL
 698	select CRYPTO_SKCIPHER
 699	select CRYPTO_MANAGER
 700	select CRYPTO_ECB
 701	help
 702	  LRW (Liskov Rivest Wagner) mode
 703
 704	  A tweakable, non malleable, non movable
 705	  narrow block cipher mode for dm-crypt.  Use it with cipher
 706	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 707	  The first 128, 192 or 256 bits in the key are used for AES and the
 708	  rest is used to tie each cipher block to its logical position.
 709
 710	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 711
 712config CRYPTO_PCBC
 713	tristate "PCBC (Propagating Cipher Block Chaining)"
 714	select CRYPTO_SKCIPHER
 715	select CRYPTO_MANAGER
 716	help
 717	  PCBC (Propagating Cipher Block Chaining) mode
 718
 719	  This block cipher mode is required for RxRPC.
 720
 721config CRYPTO_XCTR
 722	tristate
 723	select CRYPTO_SKCIPHER
 724	select CRYPTO_MANAGER
 725	help
 726	  XCTR (XOR Counter) mode for HCTR2
 727
 728	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 729	  addition rather than big-endian arithmetic.
 730
 731	  XCTR mode is used to implement HCTR2.
 732
 733config CRYPTO_XTS
 734	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 735	select CRYPTO_SKCIPHER
 
 736	select CRYPTO_MANAGER
 737	select CRYPTO_ECB
 738	help
 739	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 740	  and IEEE 1619)
 
 741
 742	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 743	  implementation currently can't handle a sectorsize which is not a
 744	  multiple of 16 bytes.
 745
 746config CRYPTO_NHPOLY1305
 747	tristate
 748	select CRYPTO_HASH
 749	select CRYPTO_LIB_POLY1305_GENERIC
 750
 751endmenu
 752
 753menu "AEAD (authenticated encryption with associated data) ciphers"
 754
 755config CRYPTO_AEGIS128
 756	tristate "AEGIS-128"
 757	select CRYPTO_AEAD
 758	select CRYPTO_AES  # for AES S-box tables
 759	help
 760	  AEGIS-128 AEAD algorithm
 761
 762config CRYPTO_AEGIS128_SIMD
 763	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 764	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 765	default y
 766	help
 767	  AEGIS-128 AEAD algorithm
 768
 769	  Architecture: arm or arm64 using:
 770	  - NEON (Advanced SIMD) extension
 771
 772config CRYPTO_CHACHA20POLY1305
 773	tristate "ChaCha20-Poly1305"
 774	select CRYPTO_CHACHA20
 775	select CRYPTO_POLY1305
 776	select CRYPTO_AEAD
 777	select CRYPTO_MANAGER
 778	help
 779	  ChaCha20 stream cipher and Poly1305 authenticator combined
 780	  mode (RFC8439)
 781
 782config CRYPTO_CCM
 783	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 784	select CRYPTO_CTR
 785	select CRYPTO_HASH
 786	select CRYPTO_AEAD
 787	select CRYPTO_MANAGER
 788	help
 789	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 790	  authenticated encryption mode (NIST SP800-38C)
 791
 792config CRYPTO_GCM
 793	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 794	select CRYPTO_CTR
 795	select CRYPTO_AEAD
 796	select CRYPTO_GHASH
 797	select CRYPTO_NULL
 798	select CRYPTO_MANAGER
 799	help
 800	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 801	  (GCM Message Authentication Code) (NIST SP800-38D)
 
 
 802
 803	  This is required for IPSec ESP (XFRM_ESP).
 804
 805config CRYPTO_GENIV
 806	tristate
 807	select CRYPTO_AEAD
 808	select CRYPTO_NULL
 809	select CRYPTO_MANAGER
 810	select CRYPTO_RNG_DEFAULT
 811
 812config CRYPTO_SEQIV
 813	tristate "Sequence Number IV Generator"
 814	select CRYPTO_GENIV
 815	help
 816	  Sequence Number IV generator
 817
 818	  This IV generator generates an IV based on a sequence number by
 819	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 820
 821	  This is required for IPsec ESP (XFRM_ESP).
 822
 823config CRYPTO_ECHAINIV
 824	tristate "Encrypted Chain IV Generator"
 825	select CRYPTO_GENIV
 826	help
 827	  Encrypted Chain IV generator
 828
 829	  This IV generator generates an IV based on the encryption of
 830	  a sequence number xored with a salt.  This is the default
 831	  algorithm for CBC.
 832
 833config CRYPTO_ESSIV
 834	tristate "Encrypted Salt-Sector IV Generator"
 835	select CRYPTO_AUTHENC
 836	help
 837	  Encrypted Salt-Sector IV generator
 838
 839	  This IV generator is used in some cases by fscrypt and/or
 840	  dm-crypt. It uses the hash of the block encryption key as the
 841	  symmetric key for a block encryption pass applied to the input
 842	  IV, making low entropy IV sources more suitable for block
 843	  encryption.
 844
 845	  This driver implements a crypto API template that can be
 846	  instantiated either as an skcipher or as an AEAD (depending on the
 847	  type of the first template argument), and which defers encryption
 848	  and decryption requests to the encapsulated cipher after applying
 849	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 850	  that the keys are presented in the same format used by the authenc
 851	  template, and that the IV appears at the end of the authenticated
 852	  associated data (AAD) region (which is how dm-crypt uses it.)
 853
 854	  Note that the use of ESSIV is not recommended for new deployments,
 855	  and so this only needs to be enabled when interoperability with
 856	  existing encrypted volumes of filesystems is required, or when
 857	  building for a particular system that requires it (e.g., when
 858	  the SoC in question has accelerated CBC but not XTS, making CBC
 859	  combined with ESSIV the only feasible mode for h/w accelerated
 860	  block encryption)
 861
 862endmenu
 
 863
 864menu "Hashes, digests, and MACs"
 865
 866config CRYPTO_BLAKE2B
 867	tristate "BLAKE2b"
 868	select CRYPTO_HASH
 869	help
 870	  BLAKE2b cryptographic hash function (RFC 7693)
 871
 872	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 873	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 874
 875	  This module provides the following algorithms:
 876	  - blake2b-160
 877	  - blake2b-256
 878	  - blake2b-384
 879	  - blake2b-512
 880
 881	  Used by the btrfs filesystem.
 882
 883	  See https://blake2.net for further information.
 884
 885config CRYPTO_CMAC
 886	tristate "CMAC (Cipher-based MAC)"
 887	select CRYPTO_HASH
 888	select CRYPTO_MANAGER
 889	help
 890	  CMAC (Cipher-based Message Authentication Code) authentication
 891	  mode (NIST SP800-38B and IETF RFC4493)
 
 
 
 
 892
 893config CRYPTO_GHASH
 894	tristate "GHASH"
 895	select CRYPTO_HASH
 896	select CRYPTO_LIB_GF128MUL
 897	help
 898	  GCM GHASH function (NIST SP800-38D)
 899
 900config CRYPTO_HMAC
 901	tristate "HMAC (Keyed-Hash MAC)"
 902	select CRYPTO_HASH
 903	select CRYPTO_MANAGER
 904	help
 905	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 906	  RFC2104)
 907
 908	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 909
 910config CRYPTO_MD4
 911	tristate "MD4"
 912	select CRYPTO_HASH
 913	help
 914	  MD4 message digest algorithm (RFC1320)
 915
 916config CRYPTO_MD5
 917	tristate "MD5"
 918	select CRYPTO_HASH
 919	help
 920	  MD5 message digest algorithm (RFC1321)
 921
 922config CRYPTO_MICHAEL_MIC
 923	tristate "Michael MIC"
 924	select CRYPTO_HASH
 925	help
 926	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 
 
 
 927
 928	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 929	  known as WPA (Wif-Fi Protected Access).
 930
 931	  This algorithm is required for TKIP, but it should not be used for
 932	  other purposes because of the weakness of the algorithm.
 933
 934config CRYPTO_POLYVAL
 935	tristate
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_GF128MUL
 938	help
 939	  POLYVAL hash function for HCTR2
 940
 941	  This is used in HCTR2.  It is not a general-purpose
 942	  cryptographic hash function.
 
 943
 944config CRYPTO_POLY1305
 945	tristate "Poly1305"
 946	select CRYPTO_HASH
 947	select CRYPTO_LIB_POLY1305_GENERIC
 948	help
 949	  Poly1305 authenticator algorithm (RFC7539)
 950
 951	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 952	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 953	  in IETF protocols. This is the portable C implementation of Poly1305.
 954
 955config CRYPTO_RMD160
 956	tristate "RIPEMD-160"
 957	select CRYPTO_HASH
 958	help
 959	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 960
 961	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 962	  to be used as a secure replacement for the 128-bit hash functions
 963	  MD4, MD5 and its predecessor RIPEMD
 964	  (not to be confused with RIPEMD-128).
 965
 966	  Its speed is comparable to SHA-1 and there are no known attacks
 967	  against RIPEMD-160.
 968
 969	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 970	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 971	  for further information.
 972
 973config CRYPTO_SHA1
 974	tristate "SHA-1"
 975	select CRYPTO_HASH
 976	select CRYPTO_LIB_SHA1
 977	help
 978	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 979
 980config CRYPTO_SHA256
 981	tristate "SHA-224 and SHA-256"
 982	select CRYPTO_HASH
 983	select CRYPTO_LIB_SHA256
 984	help
 985	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
 986
 987	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 988	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 989
 990config CRYPTO_SHA512
 991	tristate "SHA-384 and SHA-512"
 992	select CRYPTO_HASH
 993	help
 994	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
 995
 996config CRYPTO_SHA3
 997	tristate "SHA-3"
 
 
 
 998	select CRYPTO_HASH
 999	help
1000	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003	tristate
1004
1005config CRYPTO_SM3_GENERIC
1006	tristate "SM3 (ShangMi 3)"
1007	select CRYPTO_HASH
1008	select CRYPTO_SM3
1009	help
1010	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012	  This is part of the Chinese Commercial Cryptography suite.
 
1013
1014	  References:
1015	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019	tristate "Streebog"
1020	select CRYPTO_HASH
1021	help
1022	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024	  This is one of the Russian cryptographic standard algorithms (called
1025	  GOST algorithms). This setting enables two hash algorithms with
1026	  256 and 512 bits output.
1027
1028	  References:
1029	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030	  https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033	tristate "VMAC"
1034	select CRYPTO_HASH
1035	select CRYPTO_MANAGER
1036	help
1037	  VMAC is a message authentication algorithm designed for
1038	  very high speed on 64-bit architectures.
1039
1040	  See https://fastcrypto.org/vmac for further information.
 
 
 
 
 
1041
1042config CRYPTO_WP512
1043	tristate "Whirlpool"
1044	select CRYPTO_HASH
1045	help
1046	  Whirlpool hash function (ISO/IEC 10118-3)
1047
1048	  512, 384 and 256-bit hashes.
1049
1050	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1051
1052	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053	  for further information.
1054
1055config CRYPTO_XCBC
1056	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057	select CRYPTO_HASH
1058	select CRYPTO_MANAGER
 
1059	help
1060	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061	  Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064	tristate "xxHash"
1065	select CRYPTO_HASH
1066	select XXHASH
1067	help
1068	  xxHash non-cryptographic hash algorithm
1069
1070	  Extremely fast, working at speeds close to RAM limits.
 
 
 
 
 
1071
1072	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
1073
1074endmenu
1075
1076menu "CRCs (cyclic redundancy checks)"
1077
1078config CRYPTO_CRC32C
1079	tristate "CRC32c"
1080	select CRYPTO_HASH
1081	select CRC32
 
1082	help
1083	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
 
1084
1085	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089	  iSCSI.
 
 
 
1090
1091	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1092
1093config CRYPTO_CRC32
1094	tristate "CRC32"
1095	select CRYPTO_HASH
1096	select CRC32
 
 
 
1097	help
1098	  CRC32 CRC algorithm (IEEE 802.3)
 
1099
1100	  Used by RoCEv2 and f2fs.
 
 
 
 
 
 
 
1101
1102config CRYPTO_CRCT10DIF
1103	tristate "CRCT10DIF"
1104	select CRYPTO_HASH
1105	help
1106	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1107
1108	  CRC algorithm used by the SCSI Block Commands standard.
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111	tristate "CRC64 based on Rocksoft Model algorithm"
1112	depends on CRC64
1113	select CRYPTO_HASH
 
 
 
1114	help
1115	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
 
 
 
 
 
 
 
1118
1119	  See https://zlib.net/crc_v3.txt
1120
1121endmenu
1122
1123menu "Compression"
 
 
 
1124
1125config CRYPTO_DEFLATE
1126	tristate "Deflate"
1127	select CRYPTO_ALGAPI
1128	select CRYPTO_ACOMP2
1129	select ZLIB_INFLATE
1130	select ZLIB_DEFLATE
1131	help
1132	  Deflate compression algorithm (RFC1951)
 
 
 
 
1133
1134	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
 
 
1135
1136config CRYPTO_LZO
1137	tristate "LZO"
1138	select CRYPTO_ALGAPI
1139	select CRYPTO_ACOMP2
1140	select LZO_COMPRESS
1141	select LZO_DECOMPRESS
1142	help
1143	  LZO compression algorithm
1144
1145	  See https://www.oberhumer.com/opensource/lzo/ for further information.
 
 
 
1146
1147config CRYPTO_842
1148	tristate "842"
1149	select CRYPTO_ALGAPI
1150	select CRYPTO_ACOMP2
1151	select 842_COMPRESS
1152	select 842_DECOMPRESS
1153	help
1154	  842 compression algorithm by IBM
1155
1156	  See https://github.com/plauth/lib842 for further information.
 
 
1157
1158config CRYPTO_LZ4
1159	tristate "LZ4"
 
 
 
 
1160	select CRYPTO_ALGAPI
1161	select CRYPTO_ACOMP2
1162	select LZ4_COMPRESS
1163	select LZ4_DECOMPRESS
1164	help
1165	  LZ4 compression algorithm
 
 
 
 
 
 
 
 
1166
1167	  See https://github.com/lz4/lz4 for further information.
 
 
 
 
 
1168
1169config CRYPTO_LZ4HC
1170	tristate "LZ4HC"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_ACOMP2
1173	select LZ4HC_COMPRESS
1174	select LZ4_DECOMPRESS
1175	help
1176	  LZ4 high compression mode algorithm
 
1177
1178	  See https://github.com/lz4/lz4 for further information.
 
 
 
 
1179
1180config CRYPTO_ZSTD
1181	tristate "Zstd"
1182	select CRYPTO_ALGAPI
1183	select CRYPTO_ACOMP2
1184	select ZSTD_COMPRESS
1185	select ZSTD_DECOMPRESS
1186	help
1187	  zstd compression algorithm
1188
1189	  See https://github.com/facebook/zstd for further information.
 
 
 
 
1190
1191endmenu
 
 
1192
1193menu "Random number generation"
 
1194
1195config CRYPTO_ANSI_CPRNG
1196	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197	select CRYPTO_AES
1198	select CRYPTO_RNG
1199	help
1200	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202	  This uses the AES cipher algorithm.
 
1203
1204	  Note that this option must be enabled if CRYPTO_FIPS is selected
 
1205
1206menuconfig CRYPTO_DRBG_MENU
1207	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
 
 
 
1208	help
1209	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211	  In the following submenu, one or more of the DRBG types must be selected.
 
1212
1213if CRYPTO_DRBG_MENU
 
1214
1215config CRYPTO_DRBG_HMAC
1216	bool
1217	default y
1218	select CRYPTO_HMAC
1219	select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222	bool "Hash_DRBG"
1223	select CRYPTO_SHA256
1224	help
1225	  Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
 
1228
1229config CRYPTO_DRBG_CTR
1230	bool "CTR_DRBG"
1231	select CRYPTO_AES
1232	select CRYPTO_CTR
 
 
1233	help
1234	  CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236	  This uses the AES cipher algorithm with the counter block mode.
 
 
 
1237
1238config CRYPTO_DRBG
1239	tristate
1240	default CRYPTO_DRBG_MENU
1241	select CRYPTO_RNG
1242	select CRYPTO_JITTERENTROPY
1243
1244endif	# if CRYPTO_DRBG_MENU
 
 
 
 
1245
1246config CRYPTO_JITTERENTROPY
1247	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248	select CRYPTO_RNG
1249	select CRYPTO_SHA3
 
 
 
 
 
 
1250	help
1251	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254	  compliant with NIST SP800-90B) intended to provide a seed to a
1255	  deterministic RNG (e.g., per NIST SP800-90C).
1256	  This RNG does not perform any cryptographic whitening of the generated
1257	  random numbers.
1258
1259	  See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265	prompt "CPU Jitter RNG Memory Size"
1266	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267	help
1268	  The Jitter RNG measures the execution time of memory accesses.
1269	  Multiple consecutive memory accesses are performed. If the memory
1270	  size fits into a cache (e.g. L1), only the memory access timing
1271	  to that cache is measured. The closer the cache is to the CPU
1272	  the less variations are measured and thus the less entropy is
1273	  obtained. Thus, if the memory size fits into the L1 cache, the
1274	  obtained entropy is less than if the memory size fits within
1275	  L1 + L2, which in turn is less if the memory fits into
1276	  L1 + L2 + L3. Thus, by selecting a different memory size,
1277	  the entropy rate produced by the Jitter RNG can be modified.
1278
1279	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280		bool "2048 Bytes (default)"
1281
1282	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283		bool "128 kBytes"
1284
1285	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286		bool "1024 kBytes"
1287
1288	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289		bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293	int
1294	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300	int
1301	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307	int "CPU Jitter RNG Oversampling Rate"
1308	range 1 15
1309	default 3
1310	help
1311	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1312	  The Jitter RNG operation requires a fixed amount of timing
1313	  measurements to produce one output block of random numbers. The
1314	  OSR value is multiplied with the amount of timing measurements to
1315	  generate one output block. Thus, the timing measurement is oversampled
1316	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1317	  on hardware whose timers deliver limited amount of entropy (e.g.
1318	  the timer is coarse) by setting the OSR to a higher value. The
1319	  trade-off, however, is that the Jitter RNG now requires more time
1320	  to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323	bool "CPU Jitter RNG Test Interface"
1324	help
1325	  The test interface allows a privileged process to capture
1326	  the raw unconditioned high resolution time stamp noise that
1327	  is collected by the Jitter RNG for statistical analysis. As
1328	  this data is used at the same time to generate random bits,
1329	  the Jitter RNG operates in an insecure mode as long as the
1330	  recording is enabled. This interface therefore is only
1331	  intended for testing purposes and is not suitable for
1332	  production systems.
1333
1334	  The raw noise data can be obtained using the jent_raw_hires
1335	  debugfs file. Using the option
1336	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337	  the first 1000 entropy events since boot can be sampled.
1338
1339	  If unsure, select N.
1340
1341endif	# if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346	int
1347	default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350	int
1351	default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354	int
1355	default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358	bool
 
1359
1360endif	# if !(CRYPTO_FIPS && EXPERT)
1361endif	# if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364	tristate
1365	select CRYPTO_HMAC
1366	select CRYPTO_SHA256
 
 
1367
1368endmenu
1369menu "Userspace interface"
 
 
1370
1371config CRYPTO_USER_API
 
 
 
1372	tristate
 
 
 
1373
1374config CRYPTO_USER_API_HASH
1375	tristate "Hash algorithms"
1376	depends on NET
1377	select CRYPTO_HASH
1378	select CRYPTO_USER_API
1379	help
1380	  Enable the userspace interface for hash algorithms.
1381
1382	  See Documentation/crypto/userspace-if.rst and
1383	  https://www.chronox.de/libkcapi/html/index.html
 
 
1384
1385config CRYPTO_USER_API_SKCIPHER
1386	tristate "Symmetric key cipher algorithms"
1387	depends on NET
1388	select CRYPTO_SKCIPHER
1389	select CRYPTO_USER_API
 
 
 
1390	help
1391	  Enable the userspace interface for symmetric key cipher algorithms.
1392
1393	  See Documentation/crypto/userspace-if.rst and
1394	  https://www.chronox.de/libkcapi/html/index.html
 
 
1395
1396config CRYPTO_USER_API_RNG
1397	tristate "RNG (random number generator) algorithms"
1398	depends on NET
1399	select CRYPTO_RNG
1400	select CRYPTO_USER_API
 
 
 
 
 
1401	help
1402	  Enable the userspace interface for RNG (random number generator)
1403	  algorithms.
1404
1405	  See Documentation/crypto/userspace-if.rst and
1406	  https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409	bool "Enable CAVP testing of DRBG"
1410	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411	help
1412	  Enable extra APIs in the userspace interface for NIST CAVP
1413	  (Cryptographic Algorithm Validation Program) testing:
1414	  - resetting DRBG entropy
1415	  - providing Additional Data
 
 
 
 
 
 
 
 
1416
1417	  This should only be enabled for CAVP testing. You should say
1418	  no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421	tristate "AEAD cipher algorithms"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422	depends on NET
1423	select CRYPTO_AEAD
1424	select CRYPTO_SKCIPHER
1425	select CRYPTO_NULL
1426	select CRYPTO_USER_API
1427	help
1428	  Enable the userspace interface for AEAD cipher algorithms.
1429
1430	  See Documentation/crypto/userspace-if.rst and
1431	  https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434	bool "Obsolete cryptographic algorithms"
1435	depends on CRYPTO_USER_API
1436	default y
 
1437	help
1438	  Allow obsolete cryptographic algorithms to be selected that have
1439	  already been phased out from internal use by the kernel, and are
1440	  only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445	bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif	# if CRYPTO
v3.1
 
  1#
  2# Generic algorithms support
  3#
  4config XOR_BLOCKS
  5	tristate
  6
  7#
  8# async_tx api: hardware offloaded memory transfer/transform support
  9#
 10source "crypto/async_tx/Kconfig"
 11
 12#
 13# Cryptographic API Configuration
 14#
 15menuconfig CRYPTO
 16	tristate "Cryptographic API"
 
 17	help
 18	  This option provides the core Cryptographic API.
 19
 20if CRYPTO
 21
 22comment "Crypto core or helper"
 23
 24config CRYPTO_FIPS
 25	bool "FIPS 200 compliance"
 26	depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
 
 27	help
 28	  This options enables the fips boot option which is
 29	  required if you want to system to operate in a FIPS 200
 30	  certification.  You should say no unless you know what
 31	  this is.
 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33config CRYPTO_ALGAPI
 34	tristate
 35	select CRYPTO_ALGAPI2
 36	help
 37	  This option provides the API for cryptographic algorithms.
 38
 39config CRYPTO_ALGAPI2
 40	tristate
 41
 42config CRYPTO_AEAD
 43	tristate
 44	select CRYPTO_AEAD2
 45	select CRYPTO_ALGAPI
 46
 47config CRYPTO_AEAD2
 48	tristate
 49	select CRYPTO_ALGAPI2
 50
 51config CRYPTO_BLKCIPHER
 52	tristate
 53	select CRYPTO_BLKCIPHER2
 54	select CRYPTO_ALGAPI
 55
 56config CRYPTO_BLKCIPHER2
 
 
 
 
 
 
 
 
 
 
 57	tristate
 58	select CRYPTO_ALGAPI2
 59	select CRYPTO_RNG2
 60	select CRYPTO_WORKQUEUE
 61
 62config CRYPTO_HASH
 63	tristate
 64	select CRYPTO_HASH2
 65	select CRYPTO_ALGAPI
 66
 67config CRYPTO_HASH2
 68	tristate
 69	select CRYPTO_ALGAPI2
 70
 71config CRYPTO_RNG
 72	tristate
 73	select CRYPTO_RNG2
 74	select CRYPTO_ALGAPI
 75
 76config CRYPTO_RNG2
 77	tristate
 78	select CRYPTO_ALGAPI2
 79
 80config CRYPTO_PCOMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81	tristate
 82	select CRYPTO_PCOMP2
 83	select CRYPTO_ALGAPI
 
 84
 85config CRYPTO_PCOMP2
 86	tristate
 87	select CRYPTO_ALGAPI2
 
 
 
 
 
 
 88
 89config CRYPTO_MANAGER
 90	tristate "Cryptographic algorithm manager"
 91	select CRYPTO_MANAGER2
 92	help
 93	  Create default cryptographic template instantiations such as
 94	  cbc(aes).
 95
 96config CRYPTO_MANAGER2
 97	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 98	select CRYPTO_AEAD2
 
 
 99	select CRYPTO_HASH2
100	select CRYPTO_BLKCIPHER2
101	select CRYPTO_PCOMP2
 
 
 
 
 
 
 
 
 
102
103config CRYPTO_MANAGER_DISABLE_TESTS
104	bool "Disable run-time self tests"
105	default y
106	depends on CRYPTO_MANAGER2
107	help
108	  Disable run-time self tests that normally take place at
109	  algorithm registration.
110
111config CRYPTO_GF128MUL
112	tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
 
113	help
114	  Efficient table driven implementation of multiplications in the
115	  field GF(2^128).  This is needed by some cypher modes. This
116	  option will be selected automatically if you select such a
117	  cipher mode.  Only select this option by hand if you expect to load
118	  an external module that requires these functions.
119
120config CRYPTO_NULL
121	tristate "Null algorithms"
122	select CRYPTO_ALGAPI
123	select CRYPTO_BLKCIPHER
124	select CRYPTO_HASH
125	help
126	  These are 'Null' algorithms, used by IPsec, which do nothing.
127
 
 
 
 
 
 
128config CRYPTO_PCRYPT
129	tristate "Parallel crypto engine (EXPERIMENTAL)"
130	depends on SMP && EXPERIMENTAL
131	select PADATA
132	select CRYPTO_MANAGER
133	select CRYPTO_AEAD
134	help
135	  This converts an arbitrary crypto algorithm into a parallel
136	  algorithm that executes in kernel threads.
137
138config CRYPTO_WORKQUEUE
139       tristate
140
141config CRYPTO_CRYPTD
142	tristate "Software async crypto daemon"
143	select CRYPTO_BLKCIPHER
144	select CRYPTO_HASH
145	select CRYPTO_MANAGER
146	select CRYPTO_WORKQUEUE
147	help
148	  This is a generic software asynchronous crypto daemon that
149	  converts an arbitrary synchronous software crypto algorithm
150	  into an asynchronous algorithm that executes in a kernel thread.
151
152config CRYPTO_AUTHENC
153	tristate "Authenc support"
154	select CRYPTO_AEAD
155	select CRYPTO_BLKCIPHER
156	select CRYPTO_MANAGER
157	select CRYPTO_HASH
 
158	help
159	  Authenc: Combined mode wrapper for IPsec.
160	  This is required for IPSec.
 
161
162config CRYPTO_TEST
163	tristate "Testing module"
164	depends on m
165	select CRYPTO_MANAGER
166	help
167	  Quick & dirty crypto test module.
168
169comment "Authenticated Encryption with Associated Data"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
171config CRYPTO_CCM
172	tristate "CCM support"
173	select CRYPTO_CTR
174	select CRYPTO_AEAD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175	help
176	  Support for Counter with CBC MAC. Required for IPsec.
 
 
 
177
178config CRYPTO_GCM
179	tristate "GCM/GMAC support"
180	select CRYPTO_CTR
181	select CRYPTO_AEAD
182	select CRYPTO_GHASH
 
 
 
183	help
184	  Support for Galois/Counter Mode (GCM) and Galois Message
185	  Authentication Code (GMAC). Required for IPSec.
186
187config CRYPTO_SEQIV
188	tristate "Sequence Number IV Generator"
189	select CRYPTO_AEAD
190	select CRYPTO_BLKCIPHER
191	select CRYPTO_RNG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192	help
193	  This IV generator generates an IV based on a sequence number by
194	  xoring it with a salt.  This algorithm is mainly useful for CTR
 
 
 
 
195
196comment "Block modes"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198config CRYPTO_CBC
199	tristate "CBC support"
200	select CRYPTO_BLKCIPHER
201	select CRYPTO_MANAGER
202	help
203	  CBC: Cipher Block Chaining mode
204	  This block cipher algorithm is required for IPSec.
 
205
206config CRYPTO_CTR
207	tristate "CTR support"
208	select CRYPTO_BLKCIPHER
209	select CRYPTO_SEQIV
210	select CRYPTO_MANAGER
211	help
212	  CTR: Counter mode
213	  This block cipher algorithm is required for IPSec.
214
215config CRYPTO_CTS
216	tristate "CTS support"
217	select CRYPTO_BLKCIPHER
 
218	help
219	  CTS: Cipher Text Stealing
220	  This is the Cipher Text Stealing mode as described by
221	  Section 8 of rfc2040 and referenced by rfc3962.
222	  (rfc3962 includes errata information in its Appendix A)
223	  This mode is required for Kerberos gss mechanism support
224	  for AES encryption.
225
226config CRYPTO_ECB
227	tristate "ECB support"
228	select CRYPTO_BLKCIPHER
229	select CRYPTO_MANAGER
230	help
231	  ECB: Electronic CodeBook mode
232	  This is the simplest block cipher algorithm.  It simply encrypts
233	  the input block by block.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
235config CRYPTO_LRW
236	tristate "LRW support (EXPERIMENTAL)"
237	depends on EXPERIMENTAL
238	select CRYPTO_BLKCIPHER
239	select CRYPTO_MANAGER
240	select CRYPTO_GF128MUL
241	help
242	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 
 
243	  narrow block cipher mode for dm-crypt.  Use it with cipher
244	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
245	  The first 128, 192 or 256 bits in the key are used for AES and the
246	  rest is used to tie each cipher block to its logical position.
247
 
 
248config CRYPTO_PCBC
249	tristate "PCBC support"
250	select CRYPTO_BLKCIPHER
251	select CRYPTO_MANAGER
252	help
253	  PCBC: Propagating Cipher Block Chaining mode
254	  This block cipher algorithm is required for RxRPC.
 
 
 
 
 
 
 
 
 
 
 
 
 
255
256config CRYPTO_XTS
257	tristate "XTS support (EXPERIMENTAL)"
258	depends on EXPERIMENTAL
259	select CRYPTO_BLKCIPHER
260	select CRYPTO_MANAGER
261	select CRYPTO_GF128MUL
262	help
263	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
264	  key size 256, 384 or 512 bits. This implementation currently
265	  can't handle a sectorsize which is not a multiple of 16 bytes.
266
267comment "Hash modes"
 
 
268
269config CRYPTO_HMAC
270	tristate "HMAC support"
271	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272	select CRYPTO_MANAGER
273	help
274	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
275	  This is required for IPSec.
276
277config CRYPTO_XCBC
278	tristate "XCBC support"
279	depends on EXPERIMENTAL
280	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
281	select CRYPTO_MANAGER
282	help
283	  XCBC: Keyed-Hashing with encryption algorithm
284		http://www.ietf.org/rfc/rfc3566.txt
285		http://csrc.nist.gov/encryption/modes/proposedmodes/
286		 xcbc-mac/xcbc-mac-spec.pdf
287
288config CRYPTO_VMAC
289	tristate "VMAC support"
290	depends on EXPERIMENTAL
291	select CRYPTO_HASH
 
 
292	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293	help
294	  VMAC is a message authentication algorithm designed for
295	  very high speed on 64-bit architectures.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
297	  See also:
298	  <http://fastcrypto.org/vmac>
299
300comment "Digest"
301
302config CRYPTO_CRC32C
303	tristate "CRC32c CRC algorithm"
304	select CRYPTO_HASH
305	help
306	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
307	  by iSCSI for header and data digests and by others.
308	  See Castagnoli93.  Module will be crc32c.
 
 
 
 
 
 
 
 
 
309
310config CRYPTO_CRC32C_INTEL
311	tristate "CRC32c INTEL hardware acceleration"
312	depends on X86
 
313	select CRYPTO_HASH
 
314	help
315	  In Intel processor with SSE4.2 supported, the processor will
316	  support CRC32C implementation using hardware accelerated CRC32
317	  instruction. This option will create 'crc32c-intel' module,
318	  which will enable any routine to use the CRC32 instruction to
319	  gain performance compared with software implementation.
320	  Module will be crc32c-intel.
321
322config CRYPTO_GHASH
323	tristate "GHASH digest algorithm"
324	select CRYPTO_SHASH
325	select CRYPTO_GF128MUL
 
 
 
 
 
 
 
326	help
327	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 
 
 
328
329config CRYPTO_MD4
330	tristate "MD4 digest algorithm"
331	select CRYPTO_HASH
332	help
333	  MD4 message digest algorithm (RFC1320).
334
335config CRYPTO_MD5
336	tristate "MD5 digest algorithm"
337	select CRYPTO_HASH
338	help
339	  MD5 message digest algorithm (RFC1321).
340
341config CRYPTO_MICHAEL_MIC
342	tristate "Michael MIC keyed digest algorithm"
343	select CRYPTO_HASH
344	help
345	  Michael MIC is used for message integrity protection in TKIP
346	  (IEEE 802.11i). This algorithm is required for TKIP, but it
347	  should not be used for other purposes because of the weakness
348	  of the algorithm.
349
350config CRYPTO_RMD128
351	tristate "RIPEMD-128 digest algorithm"
 
 
 
 
 
 
352	select CRYPTO_HASH
 
353	help
354	  RIPEMD-128 (ISO/IEC 10118-3:2004).
355
356	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
357	  be used as a secure replacement for RIPEMD. For other use cases,
358	  RIPEMD-160 should be used.
359
360	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
361	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 
 
 
 
 
362
363config CRYPTO_RMD160
364	tristate "RIPEMD-160 digest algorithm"
365	select CRYPTO_HASH
366	help
367	  RIPEMD-160 (ISO/IEC 10118-3:2004).
368
369	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
370	  to be used as a secure replacement for the 128-bit hash functions
371	  MD4, MD5 and it's predecessor RIPEMD
372	  (not to be confused with RIPEMD-128).
373
374	  It's speed is comparable to SHA1 and there are no known attacks
375	  against RIPEMD-160.
376
377	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
378	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 
 
 
 
 
379
380config CRYPTO_RMD256
381	tristate "RIPEMD-256 digest algorithm"
382	select CRYPTO_HASH
 
383	help
384	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
385	  256 bit hash. It is intended for applications that require
386	  longer hash-results, without needing a larger security level
387	  (than RIPEMD-128).
388
389	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
390	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
391
392config CRYPTO_RMD320
393	tristate "RIPEMD-320 digest algorithm"
394	select CRYPTO_HASH
395	help
396	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
397	  320 bit hash. It is intended for applications that require
398	  longer hash-results, without needing a larger security level
399	  (than RIPEMD-160).
400
401	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
402	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
403
404config CRYPTO_SHA1
405	tristate "SHA1 digest algorithm"
406	select CRYPTO_HASH
407	help
408	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
409
410config CRYPTO_SHA256
411	tristate "SHA224 and SHA256 digest algorithm"
 
 
 
412	select CRYPTO_HASH
 
413	help
414	  SHA256 secure hash standard (DFIPS 180-2).
415
416	  This version of SHA implements a 256 bit hash with 128 bits of
417	  security against collision attacks.
418
419	  This code also includes SHA-224, a 224 bit hash with 112 bits
420	  of security against collision attacks.
 
421
422config CRYPTO_SHA512
423	tristate "SHA384 and SHA512 digest algorithms"
424	select CRYPTO_HASH
425	help
426	  SHA512 secure hash standard (DFIPS 180-2).
427
428	  This version of SHA implements a 512 bit hash with 256 bits of
429	  security against collision attacks.
 
430
431	  This code also includes SHA-384, a 384 bit hash with 192 bits
432	  of security against collision attacks.
 
433
434config CRYPTO_TGR192
435	tristate "Tiger digest algorithms"
436	select CRYPTO_HASH
 
437	help
438	  Tiger hash algorithm 192, 160 and 128-bit hashes
 
439
440	  Tiger is a hash function optimized for 64-bit processors while
441	  still having decent performance on 32-bit processors.
442	  Tiger was developed by Ross Anderson and Eli Biham.
443
444	  See also:
445	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
446
447config CRYPTO_WP512
448	tristate "Whirlpool digest algorithms"
449	select CRYPTO_HASH
450	help
451	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 
 
452
453	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
454	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
455
456	  See also:
457	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
458
459config CRYPTO_GHASH_CLMUL_NI_INTEL
460	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
461	depends on X86 && 64BIT
462	select CRYPTO_SHASH
463	select CRYPTO_CRYPTD
464	help
465	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
466	  The implementation is accelerated by CLMUL-NI of Intel.
467
468comment "Ciphers"
 
 
 
 
 
469
470config CRYPTO_AES
471	tristate "AES cipher algorithms"
472	select CRYPTO_ALGAPI
473	help
474	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
475	  algorithm.
476
477	  Rijndael appears to be consistently a very good performer in
478	  both hardware and software across a wide range of computing
479	  environments regardless of its use in feedback or non-feedback
480	  modes. Its key setup time is excellent, and its key agility is
481	  good. Rijndael's very low memory requirements make it very well
482	  suited for restricted-space environments, in which it also
483	  demonstrates excellent performance. Rijndael's operations are
484	  among the easiest to defend against power and timing attacks.
485
486	  The AES specifies three key sizes: 128, 192 and 256 bits
487
488	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
489
490config CRYPTO_AES_586
491	tristate "AES cipher algorithms (i586)"
492	depends on (X86 || UML_X86) && !64BIT
493	select CRYPTO_ALGAPI
494	select CRYPTO_AES
495	help
496	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
497	  algorithm.
498
499	  Rijndael appears to be consistently a very good performer in
500	  both hardware and software across a wide range of computing
501	  environments regardless of its use in feedback or non-feedback
502	  modes. Its key setup time is excellent, and its key agility is
503	  good. Rijndael's very low memory requirements make it very well
504	  suited for restricted-space environments, in which it also
505	  demonstrates excellent performance. Rijndael's operations are
506	  among the easiest to defend against power and timing attacks.
507
508	  The AES specifies three key sizes: 128, 192 and 256 bits
509
510	  See <http://csrc.nist.gov/encryption/aes/> for more information.
511
512config CRYPTO_AES_X86_64
513	tristate "AES cipher algorithms (x86_64)"
514	depends on (X86 || UML_X86) && 64BIT
515	select CRYPTO_ALGAPI
516	select CRYPTO_AES
517	help
518	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
519	  algorithm.
520
521	  Rijndael appears to be consistently a very good performer in
522	  both hardware and software across a wide range of computing
523	  environments regardless of its use in feedback or non-feedback
524	  modes. Its key setup time is excellent, and its key agility is
525	  good. Rijndael's very low memory requirements make it very well
526	  suited for restricted-space environments, in which it also
527	  demonstrates excellent performance. Rijndael's operations are
528	  among the easiest to defend against power and timing attacks.
529
530	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
531
532	  See <http://csrc.nist.gov/encryption/aes/> for more information.
533
534config CRYPTO_AES_NI_INTEL
535	tristate "AES cipher algorithms (AES-NI)"
536	depends on X86
537	select CRYPTO_AES_X86_64 if 64BIT
538	select CRYPTO_AES_586 if !64BIT
539	select CRYPTO_CRYPTD
540	select CRYPTO_ALGAPI
541	help
542	  Use Intel AES-NI instructions for AES algorithm.
543
544	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
545	  algorithm.
546
547	  Rijndael appears to be consistently a very good performer in
548	  both hardware and software across a wide range of computing
549	  environments regardless of its use in feedback or non-feedback
550	  modes. Its key setup time is excellent, and its key agility is
551	  good. Rijndael's very low memory requirements make it very well
552	  suited for restricted-space environments, in which it also
553	  demonstrates excellent performance. Rijndael's operations are
554	  among the easiest to defend against power and timing attacks.
555
556	  The AES specifies three key sizes: 128, 192 and 256 bits
557
558	  See <http://csrc.nist.gov/encryption/aes/> for more information.
559
560	  In addition to AES cipher algorithm support, the acceleration
561	  for some popular block cipher mode is supported too, including
562	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
563	  acceleration for CTR.
564
565config CRYPTO_ANUBIS
566	tristate "Anubis cipher algorithm"
567	select CRYPTO_ALGAPI
 
 
 
568	help
569	  Anubis cipher algorithm.
570
571	  Anubis is a variable key length cipher which can use keys from
572	  128 bits to 320 bits in length.  It was evaluated as a entrant
573	  in the NESSIE competition.
574
575	  See also:
576	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
577	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
578
579config CRYPTO_ARC4
580	tristate "ARC4 cipher algorithm"
581	select CRYPTO_ALGAPI
 
 
 
582	help
583	  ARC4 cipher algorithm.
584
585	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
586	  bits in length.  This algorithm is required for driver-based
587	  WEP, but it should not be for other purposes because of the
588	  weakness of the algorithm.
589
590config CRYPTO_BLOWFISH
591	tristate "Blowfish cipher algorithm"
592	select CRYPTO_ALGAPI
 
 
 
593	help
594	  Blowfish cipher algorithm, by Bruce Schneier.
595
596	  This is a variable key length cipher which can use keys from 32
597	  bits to 448 bits in length.  It's fast, simple and specifically
598	  designed for use on "large microprocessors".
599
600	  See also:
601	  <http://www.schneier.com/blowfish.html>
602
603config CRYPTO_CAMELLIA
604	tristate "Camellia cipher algorithms"
605	depends on CRYPTO
606	select CRYPTO_ALGAPI
 
 
 
607	help
608	  Camellia cipher algorithms module.
609
610	  Camellia is a symmetric key block cipher developed jointly
611	  at NTT and Mitsubishi Electric Corporation.
612
613	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
614
615	  See also:
616	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
617
618config CRYPTO_CAST5
619	tristate "CAST5 (CAST-128) cipher algorithm"
620	select CRYPTO_ALGAPI
621	help
622	  The CAST5 encryption algorithm (synonymous with CAST-128) is
623	  described in RFC2144.
624
625config CRYPTO_CAST6
626	tristate "CAST6 (CAST-256) cipher algorithm"
627	select CRYPTO_ALGAPI
 
 
 
628	help
629	  The CAST6 encryption algorithm (synonymous with CAST-256) is
630	  described in RFC2612.
631
632config CRYPTO_DES
633	tristate "DES and Triple DES EDE cipher algorithms"
634	select CRYPTO_ALGAPI
635	help
636	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
637
638config CRYPTO_FCRYPT
639	tristate "FCrypt cipher algorithm"
640	select CRYPTO_ALGAPI
641	select CRYPTO_BLKCIPHER
 
 
642	help
643	  FCrypt algorithm used by RxRPC.
644
645config CRYPTO_KHAZAD
646	tristate "Khazad cipher algorithm"
647	select CRYPTO_ALGAPI
648	help
649	  Khazad cipher algorithm.
650
651	  Khazad was a finalist in the initial NESSIE competition.  It is
652	  an algorithm optimized for 64-bit processors with good performance
653	  on 32-bit processors.  Khazad uses an 128 bit key size.
654
655	  See also:
656	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
657
658config CRYPTO_SALSA20
659	tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
660	depends on EXPERIMENTAL
661	select CRYPTO_BLKCIPHER
662	help
663	  Salsa20 stream cipher algorithm.
664
665	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
666	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
667
668	  The Salsa20 stream cipher algorithm is designed by Daniel J.
669	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
670
671config CRYPTO_SALSA20_586
672	tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
673	depends on (X86 || UML_X86) && !64BIT
674	depends on EXPERIMENTAL
675	select CRYPTO_BLKCIPHER
676	help
677	  Salsa20 stream cipher algorithm.
678
679	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
680	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
681
682	  The Salsa20 stream cipher algorithm is designed by Daniel J.
683	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
684
685config CRYPTO_SALSA20_X86_64
686	tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
687	depends on (X86 || UML_X86) && 64BIT
688	depends on EXPERIMENTAL
689	select CRYPTO_BLKCIPHER
 
 
 
 
690	help
691	  Salsa20 stream cipher algorithm.
692
693	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
694	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
695
696	  The Salsa20 stream cipher algorithm is designed by Daniel J.
697	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
698
699config CRYPTO_SEED
700	tristate "SEED cipher algorithm"
701	select CRYPTO_ALGAPI
702	help
703	  SEED cipher algorithm (RFC4269).
704
705	  SEED is a 128-bit symmetric key block cipher that has been
706	  developed by KISA (Korea Information Security Agency) as a
707	  national standard encryption algorithm of the Republic of Korea.
708	  It is a 16 round block cipher with the key size of 128 bit.
709
710	  See also:
711	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
 
 
 
712
713config CRYPTO_SERPENT
714	tristate "Serpent cipher algorithm"
715	select CRYPTO_ALGAPI
716	help
717	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
718
719	  Keys are allowed to be from 0 to 256 bits in length, in steps
720	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
721	  variant of Serpent for compatibility with old kerneli.org code.
722
723	  See also:
724	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
725
726config CRYPTO_TEA
727	tristate "TEA, XTEA and XETA cipher algorithms"
728	select CRYPTO_ALGAPI
729	help
730	  TEA cipher algorithm.
731
732	  Tiny Encryption Algorithm is a simple cipher that uses
733	  many rounds for security.  It is very fast and uses
734	  little memory.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735
736	  Xtendend Tiny Encryption Algorithm is a modification to
737	  the TEA algorithm to address a potential key weakness
738	  in the TEA algorithm.
739
740	  Xtendend Encryption Tiny Algorithm is a mis-implementation
741	  of the XTEA algorithm for compatibility purposes.
742
743config CRYPTO_TWOFISH
744	tristate "Twofish cipher algorithm"
745	select CRYPTO_ALGAPI
746	select CRYPTO_TWOFISH_COMMON
747	help
748	  Twofish cipher algorithm.
749
750	  Twofish was submitted as an AES (Advanced Encryption Standard)
751	  candidate cipher by researchers at CounterPane Systems.  It is a
752	  16 round block cipher supporting key sizes of 128, 192, and 256
753	  bits.
754
755	  See also:
756	  <http://www.schneier.com/twofish.html>
757
758config CRYPTO_TWOFISH_COMMON
759	tristate
760	help
761	  Common parts of the Twofish cipher algorithm shared by the
762	  generic c and the assembler implementations.
763
764config CRYPTO_TWOFISH_586
765	tristate "Twofish cipher algorithms (i586)"
766	depends on (X86 || UML_X86) && !64BIT
767	select CRYPTO_ALGAPI
768	select CRYPTO_TWOFISH_COMMON
769	help
770	  Twofish cipher algorithm.
771
772	  Twofish was submitted as an AES (Advanced Encryption Standard)
773	  candidate cipher by researchers at CounterPane Systems.  It is a
774	  16 round block cipher supporting key sizes of 128, 192, and 256
775	  bits.
776
777	  See also:
778	  <http://www.schneier.com/twofish.html>
779
780config CRYPTO_TWOFISH_X86_64
781	tristate "Twofish cipher algorithm (x86_64)"
782	depends on (X86 || UML_X86) && 64BIT
783	select CRYPTO_ALGAPI
784	select CRYPTO_TWOFISH_COMMON
785	help
786	  Twofish cipher algorithm (x86_64).
787
788	  Twofish was submitted as an AES (Advanced Encryption Standard)
789	  candidate cipher by researchers at CounterPane Systems.  It is a
790	  16 round block cipher supporting key sizes of 128, 192, and 256
791	  bits.
792
793	  See also:
794	  <http://www.schneier.com/twofish.html>
795
796comment "Compression"
797
798config CRYPTO_DEFLATE
799	tristate "Deflate compression algorithm"
800	select CRYPTO_ALGAPI
801	select ZLIB_INFLATE
802	select ZLIB_DEFLATE
803	help
804	  This is the Deflate algorithm (RFC1951), specified for use in
805	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
806
807	  You will most probably want this if using IPSec.
 
808
809config CRYPTO_ZLIB
810	tristate "Zlib compression algorithm"
811	select CRYPTO_PCOMP
812	select ZLIB_INFLATE
813	select ZLIB_DEFLATE
814	select NLATTR
815	help
816	  This is the zlib algorithm.
817
818config CRYPTO_LZO
819	tristate "LZO compression algorithm"
820	select CRYPTO_ALGAPI
821	select LZO_COMPRESS
822	select LZO_DECOMPRESS
823	help
824	  This is the LZO algorithm.
825
826comment "Random Number Generation"
 
827
828config CRYPTO_ANSI_CPRNG
829	tristate "Pseudo Random Number Generation for Cryptographic modules"
830	default m
831	select CRYPTO_AES
832	select CRYPTO_RNG
833	help
834	  This option enables the generic pseudo random number generator
835	  for cryptographic modules.  Uses the Algorithm specified in
836	  ANSI X9.31 A.2.4. Note that this option must be enabled if
837	  CRYPTO_FIPS is selected
838
839config CRYPTO_USER_API
840	tristate
841
842config CRYPTO_USER_API_HASH
843	tristate "User-space interface for hash algorithms"
844	depends on NET
845	select CRYPTO_HASH
 
 
846	select CRYPTO_USER_API
847	help
848	  This option enables the user-spaces interface for hash
849	  algorithms.
 
 
850
851config CRYPTO_USER_API_SKCIPHER
852	tristate "User-space interface for symmetric key cipher algorithms"
853	depends on NET
854	select CRYPTO_BLKCIPHER
855	select CRYPTO_USER_API
856	help
857	  This option enables the user-spaces interface for symmetric
858	  key cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859
860source "drivers/crypto/Kconfig"
 
 
861
862endif	# if CRYPTO