Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	if (mrq->cmd && mrq->cmd->has_ext_addr)
 340		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
 341
 342	init_completion(&mrq->cmd_completion);
 343
 344	mmc_retune_hold(host);
 345
 346	if (mmc_card_removed(host->card))
 347		return -ENOMEDIUM;
 348
 349	mmc_mrq_pr_debug(host, mrq, false);
 350
 351	WARN_ON(!host->claimed);
 352
 353	err = mmc_mrq_prep(host, mrq);
 354	if (err)
 355		return err;
 356
 357	if (host->uhs2_sd_tran)
 358		mmc_uhs2_prepare_cmd(host, mrq);
 359
 360	led_trigger_event(host->led, LED_FULL);
 361	__mmc_start_request(host, mrq);
 362
 363	return 0;
 364}
 365EXPORT_SYMBOL(mmc_start_request);
 366
 367static void mmc_wait_done(struct mmc_request *mrq)
 368{
 369	complete(&mrq->completion);
 370}
 371
 372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 373{
 374	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 375
 376	/*
 377	 * If there is an ongoing transfer, wait for the command line to become
 378	 * available.
 379	 */
 380	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 381		wait_for_completion(&ongoing_mrq->cmd_completion);
 382}
 383
 384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 385{
 386	int err;
 387
 388	mmc_wait_ongoing_tfr_cmd(host);
 389
 390	init_completion(&mrq->completion);
 391	mrq->done = mmc_wait_done;
 392
 393	err = mmc_start_request(host, mrq);
 394	if (err) {
 395		mrq->cmd->error = err;
 396		mmc_complete_cmd(mrq);
 397		complete(&mrq->completion);
 398	}
 399
 400	return err;
 401}
 402
 403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 404{
 405	struct mmc_command *cmd;
 406
 407	while (1) {
 408		wait_for_completion(&mrq->completion);
 409
 410		cmd = mrq->cmd;
 411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412		if (!cmd->error || !cmd->retries ||
 413		    mmc_card_removed(host->card))
 414			break;
 415
 416		mmc_retune_recheck(host);
 417
 418		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 419			 mmc_hostname(host), cmd->opcode, cmd->error);
 420		cmd->retries--;
 421		cmd->error = 0;
 422		__mmc_start_request(host, mrq);
 423	}
 424
 425	mmc_retune_release(host);
 426}
 427EXPORT_SYMBOL(mmc_wait_for_req_done);
 428
 429/*
 430 * mmc_cqe_start_req - Start a CQE request.
 431 * @host: MMC host to start the request
 432 * @mrq: request to start
 433 *
 434 * Start the request, re-tuning if needed and it is possible. Returns an error
 435 * code if the request fails to start or -EBUSY if CQE is busy.
 436 */
 437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 438{
 439	int err;
 440
 441	/*
 442	 * CQE cannot process re-tuning commands. Caller must hold retuning
 443	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 444	 * active requests i.e. this is the first.  Note, re-tuning will call
 445	 * ->cqe_off().
 446	 */
 447	err = mmc_retune(host);
 448	if (err)
 449		goto out_err;
 450
 451	mrq->host = host;
 452
 453	mmc_mrq_pr_debug(host, mrq, true);
 454
 455	err = mmc_mrq_prep(host, mrq);
 456	if (err)
 457		goto out_err;
 458
 459	if (host->uhs2_sd_tran)
 460		mmc_uhs2_prepare_cmd(host, mrq);
 461
 462	err = host->cqe_ops->cqe_request(host, mrq);
 463	if (err)
 464		goto out_err;
 465
 466	trace_mmc_request_start(host, mrq);
 467
 468	return 0;
 469
 470out_err:
 471	if (mrq->cmd) {
 472		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 473			 mmc_hostname(host), mrq->cmd->opcode, err);
 474	} else {
 475		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 476			 mmc_hostname(host), mrq->tag, err);
 477	}
 478	return err;
 479}
 480EXPORT_SYMBOL(mmc_cqe_start_req);
 481
 482/**
 483 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 484 *	@host: MMC host which completed request
 485 *	@mrq: MMC request which completed
 486 *
 487 *	CQE drivers should call this function when they have completed
 488 *	their processing of a request.
 489 */
 490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 491{
 492	mmc_should_fail_request(host, mrq);
 493
 494	/* Flag re-tuning needed on CRC errors */
 495	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 496	    (mrq->data && mrq->data->error == -EILSEQ))
 497		mmc_retune_needed(host);
 498
 499	trace_mmc_request_done(host, mrq);
 500
 501	if (mrq->cmd) {
 502		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 503			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 504	} else {
 505		pr_debug("%s: CQE transfer done tag %d\n",
 506			 mmc_hostname(host), mrq->tag);
 507	}
 508
 509	if (mrq->data) {
 510		pr_debug("%s:     %d bytes transferred: %d\n",
 511			 mmc_hostname(host),
 512			 mrq->data->bytes_xfered, mrq->data->error);
 513	}
 514
 515	mrq->done(mrq);
 516}
 517EXPORT_SYMBOL(mmc_cqe_request_done);
 518
 519/**
 520 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 521 *	@host: MMC host
 522 *	@mrq: MMC request to be processed
 523 */
 524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 525{
 526	if (host->cqe_ops->cqe_post_req)
 527		host->cqe_ops->cqe_post_req(host, mrq);
 528}
 529EXPORT_SYMBOL(mmc_cqe_post_req);
 530
 531/* Arbitrary 1 second timeout */
 532#define MMC_CQE_RECOVERY_TIMEOUT	1000
 533
 534/*
 535 * mmc_cqe_recovery - Recover from CQE errors.
 536 * @host: MMC host to recover
 537 *
 538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 539 * in eMMC, and discarding the queue in CQE. CQE must call
 540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 541 * fails to discard its queue.
 542 */
 543int mmc_cqe_recovery(struct mmc_host *host)
 544{
 545	struct mmc_command cmd;
 546	int err;
 547
 548	mmc_retune_hold_now(host);
 549
 550	/*
 551	 * Recovery is expected seldom, if at all, but it reduces performance,
 552	 * so make sure it is not completely silent.
 553	 */
 554	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 555
 556	host->cqe_ops->cqe_recovery_start(host);
 557
 558	memset(&cmd, 0, sizeof(cmd));
 559	cmd.opcode       = MMC_STOP_TRANSMISSION;
 560	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 561	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 562	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 563	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 564
 565	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
 566
 567	memset(&cmd, 0, sizeof(cmd));
 568	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 569	cmd.arg          = 1; /* Discard entire queue */
 570	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 571	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 572	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 573	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 574
 575	host->cqe_ops->cqe_recovery_finish(host);
 576
 577	if (err)
 578		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 579
 580	mmc_retune_release(host);
 581
 582	return err;
 583}
 584EXPORT_SYMBOL(mmc_cqe_recovery);
 585
 586/**
 587 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 588 *	@host: MMC host
 589 *	@mrq: MMC request
 590 *
 591 *	mmc_is_req_done() is used with requests that have
 592 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 593 *	starting a request and before waiting for it to complete. That is,
 594 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 595 *	and before mmc_wait_for_req_done(). If it is called at other times the
 596 *	result is not meaningful.
 597 */
 598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 599{
 600	return completion_done(&mrq->completion);
 601}
 602EXPORT_SYMBOL(mmc_is_req_done);
 603
 604/**
 605 *	mmc_wait_for_req - start a request and wait for completion
 606 *	@host: MMC host to start command
 607 *	@mrq: MMC request to start
 608 *
 609 *	Start a new MMC custom command request for a host, and wait
 610 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 611 *	requests, the transfer is ongoing and the caller can issue further
 612 *	commands that do not use the data lines, and then wait by calling
 613 *	mmc_wait_for_req_done().
 614 *	Does not attempt to parse the response.
 615 */
 616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 617{
 618	__mmc_start_req(host, mrq);
 619
 620	if (!mrq->cap_cmd_during_tfr)
 621		mmc_wait_for_req_done(host, mrq);
 622}
 623EXPORT_SYMBOL(mmc_wait_for_req);
 624
 625/**
 626 *	mmc_wait_for_cmd - start a command and wait for completion
 627 *	@host: MMC host to start command
 628 *	@cmd: MMC command to start
 629 *	@retries: maximum number of retries
 630 *
 631 *	Start a new MMC command for a host, and wait for the command
 632 *	to complete.  Return any error that occurred while the command
 633 *	was executing.  Do not attempt to parse the response.
 634 */
 635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 636{
 637	struct mmc_request mrq = {};
 638
 639	WARN_ON(!host->claimed);
 640
 641	memset(cmd->resp, 0, sizeof(cmd->resp));
 642	cmd->retries = retries;
 643
 644	mrq.cmd = cmd;
 645	cmd->data = NULL;
 646
 647	mmc_wait_for_req(host, &mrq);
 648
 649	return cmd->error;
 650}
 651
 652EXPORT_SYMBOL(mmc_wait_for_cmd);
 653
 654/**
 655 *	mmc_set_data_timeout - set the timeout for a data command
 656 *	@data: data phase for command
 657 *	@card: the MMC card associated with the data transfer
 658 *
 659 *	Computes the data timeout parameters according to the
 660 *	correct algorithm given the card type.
 661 */
 662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 663{
 664	unsigned int mult;
 665
 666	/*
 667	 * SDIO cards only define an upper 1 s limit on access.
 668	 */
 669	if (mmc_card_sdio(card)) {
 670		data->timeout_ns = 1000000000;
 671		data->timeout_clks = 0;
 672		return;
 673	}
 674
 675	/*
 676	 * SD cards use a 100 multiplier rather than 10
 677	 */
 678	mult = mmc_card_sd(card) ? 100 : 10;
 679
 680	/*
 681	 * Scale up the multiplier (and therefore the timeout) by
 682	 * the r2w factor for writes.
 683	 */
 684	if (data->flags & MMC_DATA_WRITE)
 685		mult <<= card->csd.r2w_factor;
 686
 687	data->timeout_ns = card->csd.taac_ns * mult;
 688	data->timeout_clks = card->csd.taac_clks * mult;
 689
 690	/*
 691	 * SD cards also have an upper limit on the timeout.
 692	 */
 693	if (mmc_card_sd(card)) {
 694		unsigned int timeout_us, limit_us;
 695
 696		timeout_us = data->timeout_ns / 1000;
 697		if (card->host->ios.clock)
 698			timeout_us += data->timeout_clks * 1000 /
 699				(card->host->ios.clock / 1000);
 700
 701		if (data->flags & MMC_DATA_WRITE)
 702			/*
 703			 * The MMC spec "It is strongly recommended
 704			 * for hosts to implement more than 500ms
 705			 * timeout value even if the card indicates
 706			 * the 250ms maximum busy length."  Even the
 707			 * previous value of 300ms is known to be
 708			 * insufficient for some cards.
 709			 */
 710			limit_us = 3000000;
 711		else
 712			limit_us = 100000;
 713
 714		/*
 715		 * SDHC cards always use these fixed values.
 716		 */
 717		if (timeout_us > limit_us) {
 718			data->timeout_ns = limit_us * 1000;
 719			data->timeout_clks = 0;
 720		}
 721
 722		/* assign limit value if invalid */
 723		if (timeout_us == 0)
 724			data->timeout_ns = limit_us * 1000;
 725	}
 726
 727	/*
 728	 * Some cards require longer data read timeout than indicated in CSD.
 729	 * Address this by setting the read timeout to a "reasonably high"
 730	 * value. For the cards tested, 600ms has proven enough. If necessary,
 731	 * this value can be increased if other problematic cards require this.
 732	 */
 733	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 734		data->timeout_ns = 600000000;
 735		data->timeout_clks = 0;
 736	}
 737
 738	/*
 739	 * Some cards need very high timeouts if driven in SPI mode.
 740	 * The worst observed timeout was 900ms after writing a
 741	 * continuous stream of data until the internal logic
 742	 * overflowed.
 743	 */
 744	if (mmc_host_is_spi(card->host)) {
 745		if (data->flags & MMC_DATA_WRITE) {
 746			if (data->timeout_ns < 1000000000)
 747				data->timeout_ns = 1000000000;	/* 1s */
 748		} else {
 749			if (data->timeout_ns < 100000000)
 750				data->timeout_ns =  100000000;	/* 100ms */
 751		}
 752	}
 753}
 754EXPORT_SYMBOL(mmc_set_data_timeout);
 755
 756/*
 757 * Allow claiming an already claimed host if the context is the same or there is
 758 * no context but the task is the same.
 759 */
 760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 761				   struct task_struct *task)
 762{
 763	return host->claimer == ctx ||
 764	       (!ctx && task && host->claimer->task == task);
 765}
 766
 767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 768				       struct mmc_ctx *ctx,
 769				       struct task_struct *task)
 770{
 771	if (!host->claimer) {
 772		if (ctx)
 773			host->claimer = ctx;
 774		else
 775			host->claimer = &host->default_ctx;
 776	}
 777	if (task)
 778		host->claimer->task = task;
 779}
 780
 781/**
 782 *	__mmc_claim_host - exclusively claim a host
 783 *	@host: mmc host to claim
 784 *	@ctx: context that claims the host or NULL in which case the default
 785 *	context will be used
 786 *	@abort: whether or not the operation should be aborted
 787 *
 788 *	Claim a host for a set of operations.  If @abort is non null and
 789 *	dereference a non-zero value then this will return prematurely with
 790 *	that non-zero value without acquiring the lock.  Returns zero
 791 *	with the lock held otherwise.
 792 */
 793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 794		     atomic_t *abort)
 795{
 796	struct task_struct *task = ctx ? NULL : current;
 797	DECLARE_WAITQUEUE(wait, current);
 798	unsigned long flags;
 799	int stop;
 800	bool pm = false;
 801
 802	might_sleep();
 803
 804	add_wait_queue(&host->wq, &wait);
 805	spin_lock_irqsave(&host->lock, flags);
 806	while (1) {
 807		set_current_state(TASK_UNINTERRUPTIBLE);
 808		stop = abort ? atomic_read(abort) : 0;
 809		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 810			break;
 811		spin_unlock_irqrestore(&host->lock, flags);
 812		schedule();
 813		spin_lock_irqsave(&host->lock, flags);
 814	}
 815	set_current_state(TASK_RUNNING);
 816	if (!stop) {
 817		host->claimed = 1;
 818		mmc_ctx_set_claimer(host, ctx, task);
 819		host->claim_cnt += 1;
 820		if (host->claim_cnt == 1)
 821			pm = true;
 822	} else
 823		wake_up(&host->wq);
 824	spin_unlock_irqrestore(&host->lock, flags);
 825	remove_wait_queue(&host->wq, &wait);
 826
 827	if (pm)
 828		pm_runtime_get_sync(mmc_dev(host));
 829
 830	return stop;
 831}
 832EXPORT_SYMBOL(__mmc_claim_host);
 833
 834/**
 835 *	mmc_release_host - release a host
 836 *	@host: mmc host to release
 837 *
 838 *	Release a MMC host, allowing others to claim the host
 839 *	for their operations.
 840 */
 841void mmc_release_host(struct mmc_host *host)
 842{
 843	unsigned long flags;
 844
 845	WARN_ON(!host->claimed);
 846
 847	spin_lock_irqsave(&host->lock, flags);
 848	if (--host->claim_cnt) {
 849		/* Release for nested claim */
 850		spin_unlock_irqrestore(&host->lock, flags);
 851	} else {
 852		host->claimed = 0;
 853		host->claimer->task = NULL;
 854		host->claimer = NULL;
 855		spin_unlock_irqrestore(&host->lock, flags);
 856		wake_up(&host->wq);
 857		pm_runtime_mark_last_busy(mmc_dev(host));
 858		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 859			pm_runtime_put_sync_suspend(mmc_dev(host));
 860		else
 861			pm_runtime_put_autosuspend(mmc_dev(host));
 862	}
 863}
 864EXPORT_SYMBOL(mmc_release_host);
 865
 866/*
 867 * This is a helper function, which fetches a runtime pm reference for the
 868 * card device and also claims the host.
 869 */
 870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 871{
 872	pm_runtime_get_sync(&card->dev);
 873	__mmc_claim_host(card->host, ctx, NULL);
 874}
 875EXPORT_SYMBOL(mmc_get_card);
 876
 877/*
 878 * This is a helper function, which releases the host and drops the runtime
 879 * pm reference for the card device.
 880 */
 881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 882{
 883	struct mmc_host *host = card->host;
 884
 885	WARN_ON(ctx && host->claimer != ctx);
 886
 887	mmc_release_host(host);
 888	pm_runtime_mark_last_busy(&card->dev);
 889	pm_runtime_put_autosuspend(&card->dev);
 890}
 891EXPORT_SYMBOL(mmc_put_card);
 892
 893/*
 894 * Internal function that does the actual ios call to the host driver,
 895 * optionally printing some debug output.
 896 */
 897static inline void mmc_set_ios(struct mmc_host *host)
 898{
 899	struct mmc_ios *ios = &host->ios;
 900
 901	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 902		"width %u timing %u\n",
 903		 mmc_hostname(host), ios->clock, ios->bus_mode,
 904		 ios->power_mode, ios->chip_select, ios->vdd,
 905		 1 << ios->bus_width, ios->timing);
 906
 907	host->ops->set_ios(host, ios);
 908}
 909
 910/*
 911 * Control chip select pin on a host.
 912 */
 913void mmc_set_chip_select(struct mmc_host *host, int mode)
 914{
 915	host->ios.chip_select = mode;
 916	mmc_set_ios(host);
 917}
 918
 919/*
 920 * Sets the host clock to the highest possible frequency that
 921 * is below "hz".
 922 */
 923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 924{
 925	WARN_ON(hz && hz < host->f_min);
 926
 927	if (hz > host->f_max)
 928		hz = host->f_max;
 929
 930	host->ios.clock = hz;
 931	mmc_set_ios(host);
 932}
 933
 934int mmc_execute_tuning(struct mmc_card *card)
 935{
 936	struct mmc_host *host = card->host;
 937	u32 opcode;
 938	int err;
 939
 940	if (!host->ops->execute_tuning)
 941		return 0;
 942
 943	if (host->cqe_on)
 944		host->cqe_ops->cqe_off(host);
 945
 946	if (mmc_card_mmc(card))
 947		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 948	else
 949		opcode = MMC_SEND_TUNING_BLOCK;
 950
 951	err = host->ops->execute_tuning(host, opcode);
 952	if (!err) {
 953		mmc_retune_clear(host);
 954		mmc_retune_enable(host);
 955		return 0;
 956	}
 957
 958	/* Only print error when we don't check for card removal */
 959	if (!host->detect_change) {
 960		pr_err("%s: tuning execution failed: %d\n",
 961			mmc_hostname(host), err);
 962		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 963	}
 964
 965	return err;
 966}
 967
 968/*
 969 * Change the bus mode (open drain/push-pull) of a host.
 970 */
 971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 972{
 973	host->ios.bus_mode = mode;
 974	mmc_set_ios(host);
 975}
 976
 977/*
 978 * Change data bus width of a host.
 979 */
 980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 981{
 982	host->ios.bus_width = width;
 983	mmc_set_ios(host);
 984}
 985
 986/*
 987 * Set initial state after a power cycle or a hw_reset.
 988 */
 989void mmc_set_initial_state(struct mmc_host *host)
 990{
 991	if (host->cqe_on)
 992		host->cqe_ops->cqe_off(host);
 993
 994	mmc_retune_disable(host);
 995
 996	if (mmc_host_is_spi(host))
 997		host->ios.chip_select = MMC_CS_HIGH;
 998	else
 999		host->ios.chip_select = MMC_CS_DONTCARE;
1000	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001	host->ios.bus_width = MMC_BUS_WIDTH_1;
1002	host->ios.timing = MMC_TIMING_LEGACY;
1003	host->ios.drv_type = 0;
1004	host->ios.enhanced_strobe = false;
1005
1006	/*
1007	 * Make sure we are in non-enhanced strobe mode before we
1008	 * actually enable it in ext_csd.
1009	 */
1010	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011	     host->ops->hs400_enhanced_strobe)
1012		host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014	mmc_set_ios(host);
1015
1016	mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd:	voltage (mV)
1022 * @low_bits:	prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036	const int max_bit = ilog2(MMC_VDD_35_36);
1037	int bit;
1038
1039	if (vdd < 1650 || vdd > 3600)
1040		return -EINVAL;
1041
1042	if (vdd >= 1650 && vdd <= 1950)
1043		return ilog2(MMC_VDD_165_195);
1044
1045	if (low_bits)
1046		vdd -= 1;
1047
1048	/* Base 2000 mV, step 100 mV, bit's base 8. */
1049	bit = (vdd - 2000) / 100 + 8;
1050	if (bit > max_bit)
1051		return max_bit;
1052	return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min:	minimum voltage value (mV)
1058 * @vdd_max:	maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070	u32 mask = 0;
1071
1072	if (vdd_max < vdd_min)
1073		return 0;
1074
1075	/* Prefer high bits for the boundary vdd_max values. */
1076	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077	if (vdd_max < 0)
1078		return 0;
1079
1080	/* Prefer low bits for the boundary vdd_min values. */
1081	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082	if (vdd_min < 0)
1083		return 0;
1084
1085	/* Fill the mask, from max bit to min bit. */
1086	while (vdd_max >= vdd_min)
1087		mask |= 1 << vdd_max--;
1088
1089	return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094	u32 reg;
1095	int ret;
1096
1097	ret = of_property_read_u32(node, "reg", &reg);
1098	if (ret < 0)
1099		return ret;
1100
1101	return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105		unsigned func_num)
1106{
1107	struct device_node *node;
1108
1109	if (!host->parent || !host->parent->of_node)
1110		return NULL;
1111
1112	for_each_child_of_node(host->parent->of_node, node) {
1113		if (mmc_of_get_func_num(node) == func_num)
1114			return node;
1115	}
1116
1117	return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126	int bit;
1127
1128	/*
1129	 * Sanity check the voltages that the card claims to
1130	 * support.
1131	 */
1132	if (ocr & 0x7F) {
1133		dev_warn(mmc_dev(host),
1134		"card claims to support voltages below defined range\n");
1135		ocr &= ~0x7F;
1136	}
1137
1138	ocr &= host->ocr_avail;
1139	if (!ocr) {
1140		dev_warn(mmc_dev(host), "no support for card's volts\n");
1141		return 0;
1142	}
1143
1144	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145		bit = ffs(ocr) - 1;
1146		ocr &= 3 << bit;
1147		mmc_power_cycle(host, ocr);
1148	} else {
1149		bit = fls(ocr) - 1;
1150		/*
1151		 * The bit variable represents the highest voltage bit set in
1152		 * the OCR register.
1153		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154		 * we must shift the mask '3' with (bit - 1).
1155		 */
1156		ocr &= 3 << (bit - 1);
1157		if (bit != host->ios.vdd)
1158			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159	}
1160
1161	return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166	int err = 0;
1167	int old_signal_voltage = host->ios.signal_voltage;
1168
1169	host->ios.signal_voltage = signal_voltage;
1170	if (host->ops->start_signal_voltage_switch)
1171		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173	if (err)
1174		host->ios.signal_voltage = old_signal_voltage;
1175
1176	return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193	u32 clock;
1194
1195	/*
1196	 * During a signal voltage level switch, the clock must be gated
1197	 * for 5 ms according to the SD spec
1198	 */
1199	clock = host->ios.clock;
1200	host->ios.clock = 0;
1201	mmc_set_ios(host);
1202
1203	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204		return -EAGAIN;
1205
1206	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207	mmc_delay(10);
1208	host->ios.clock = clock;
1209	mmc_set_ios(host);
1210
1211	return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216	struct mmc_command cmd = {};
1217	int err = 0;
1218
1219	/*
1220	 * If we cannot switch voltages, return failure so the caller
1221	 * can continue without UHS mode
1222	 */
1223	if (!host->ops->start_signal_voltage_switch)
1224		return -EPERM;
1225	if (!host->ops->card_busy)
1226		pr_warn("%s: cannot verify signal voltage switch\n",
1227			mmc_hostname(host));
1228
1229	cmd.opcode = SD_SWITCH_VOLTAGE;
1230	cmd.arg = 0;
1231	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233	err = mmc_wait_for_cmd(host, &cmd, 0);
1234	if (err)
1235		goto power_cycle;
1236
1237	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238		return -EIO;
1239
1240	/*
1241	 * The card should drive cmd and dat[0:3] low immediately
1242	 * after the response of cmd11, but wait 1 ms to be sure
1243	 */
1244	mmc_delay(1);
1245	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246		err = -EAGAIN;
1247		goto power_cycle;
1248	}
1249
1250	if (mmc_host_set_uhs_voltage(host)) {
1251		/*
1252		 * Voltages may not have been switched, but we've already
1253		 * sent CMD11, so a power cycle is required anyway
1254		 */
1255		err = -EAGAIN;
1256		goto power_cycle;
1257	}
1258
1259	/* Wait for at least 1 ms according to spec */
1260	mmc_delay(1);
1261
1262	/*
1263	 * Failure to switch is indicated by the card holding
1264	 * dat[0:3] low
1265	 */
1266	if (host->ops->card_busy && host->ops->card_busy(host))
1267		err = -EAGAIN;
1268
1269power_cycle:
1270	if (err) {
1271		pr_debug("%s: Signal voltage switch failed, "
1272			"power cycling card\n", mmc_hostname(host));
1273		mmc_power_cycle(host, ocr);
1274	}
1275
1276	return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284	host->ios.timing = timing;
1285	mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293	host->ios.drv_type = drv_type;
1294	mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298			      int card_drv_type, int *drv_type)
1299{
1300	struct mmc_host *host = card->host;
1301	int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303	*drv_type = 0;
1304
1305	if (!host->ops->select_drive_strength)
1306		return 0;
1307
1308	/* Use SD definition of driver strength for hosts */
1309	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310		host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313		host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316		host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318	/*
1319	 * The drive strength that the hardware can support
1320	 * depends on the board design.  Pass the appropriate
1321	 * information and let the hardware specific code
1322	 * return what is possible given the options
1323	 */
1324	return host->ops->select_drive_strength(card, max_dtr,
1325						host_drv_type,
1326						card_drv_type,
1327						drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack.  This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise.  Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343	if (host->ios.power_mode == MMC_POWER_ON)
1344		return;
1345
1346	mmc_pwrseq_pre_power_on(host);
1347
1348	host->ios.vdd = fls(ocr) - 1;
1349	host->ios.power_mode = MMC_POWER_UP;
1350	/* Set initial state and call mmc_set_ios */
1351	mmc_set_initial_state(host);
1352
1353	mmc_set_initial_signal_voltage(host);
1354
1355	/*
1356	 * This delay should be sufficient to allow the power supply
1357	 * to reach the minimum voltage.
1358	 */
1359	mmc_delay(host->ios.power_delay_ms);
1360
1361	mmc_pwrseq_post_power_on(host);
1362
1363	host->ios.clock = host->f_init;
1364
1365	host->ios.power_mode = MMC_POWER_ON;
1366	mmc_set_ios(host);
1367
1368	/*
1369	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370	 * time required to reach a stable voltage.
1371	 */
1372	mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377	if (host->ios.power_mode == MMC_POWER_OFF)
1378		return;
1379
1380	mmc_pwrseq_power_off(host);
1381
1382	host->ios.clock = 0;
1383	host->ios.vdd = 0;
1384
1385	host->ios.power_mode = MMC_POWER_OFF;
1386	/* Set initial state and call mmc_set_ios */
1387	mmc_set_initial_state(host);
1388
1389	/*
1390	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391	 * XO-1.5, require a short delay after poweroff before the card
1392	 * can be successfully turned on again.
1393	 */
1394	mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399	mmc_power_off(host);
1400	/* Wait at least 1 ms according to SD spec */
1401	mmc_delay(1);
1402	mmc_power_up(host, ocr);
1403}
1404
1405/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
 
 
 
 
 
 
 
 
 
1411	host->bus_ops = ops;
 
 
 
 
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419	host->bus_ops = NULL;
 
 
 
 
 
 
 
 
 
 
 
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
 
1423{
1424	/*
1425	 * Prevent system sleep for 5s to allow user space to consume the
1426	 * corresponding uevent. This is especially useful, when CD irq is used
1427	 * as a system wakeup, but doesn't hurt in other cases.
1428	 */
1429	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430		__pm_wakeup_event(host->ws, 5000);
 
1431
1432	host->detect_change = 1;
1433	mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 *	mmc_detect_change - process change of state on a MMC socket
1438 *	@host: host which changed state.
1439 *	@delay: optional delay to wait before detection (jiffies)
1440 *
1441 *	MMC drivers should call this when they detect a card has been
1442 *	inserted or removed. The MMC layer will confirm that any
1443 *	present card is still functional, and initialize any newly
1444 *	inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448	_mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454	unsigned int sz;
1455
1456	if (is_power_of_2(card->erase_size))
1457		card->erase_shift = ffs(card->erase_size) - 1;
1458	else
1459		card->erase_shift = 0;
1460
1461	/*
1462	 * It is possible to erase an arbitrarily large area of an SD or MMC
1463	 * card.  That is not desirable because it can take a long time
1464	 * (minutes) potentially delaying more important I/O, and also the
1465	 * timeout calculations become increasingly hugely over-estimated.
1466	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467	 * to that size and alignment.
1468	 *
1469	 * For SD cards that define Allocation Unit size, limit erases to one
1470	 * Allocation Unit at a time.
1471	 * For MMC, have a stab at ai good value and for modern cards it will
1472	 * end up being 4MiB. Note that if the value is too small, it can end
1473	 * up taking longer to erase. Also note, erase_size is already set to
1474	 * High Capacity Erase Size if available when this function is called.
1475	 */
1476	if (mmc_card_sd(card) && card->ssr.au) {
1477		card->pref_erase = card->ssr.au;
1478		card->erase_shift = ffs(card->ssr.au) - 1;
1479	} else if (card->erase_size) {
1480		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481		if (sz < 128)
1482			card->pref_erase = 512 * 1024 / 512;
1483		else if (sz < 512)
1484			card->pref_erase = 1024 * 1024 / 512;
1485		else if (sz < 1024)
1486			card->pref_erase = 2 * 1024 * 1024 / 512;
1487		else
1488			card->pref_erase = 4 * 1024 * 1024 / 512;
1489		if (card->pref_erase < card->erase_size)
1490			card->pref_erase = card->erase_size;
1491		else {
1492			sz = card->pref_erase % card->erase_size;
1493			if (sz)
1494				card->pref_erase += card->erase_size - sz;
1495		}
1496	} else
1497		card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506				          unsigned int arg, unsigned int qty)
1507{
1508	unsigned int erase_timeout;
1509
1510	if (arg == MMC_DISCARD_ARG ||
1511	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512		erase_timeout = card->ext_csd.trim_timeout;
1513	} else if (card->ext_csd.erase_group_def & 1) {
1514		/* High Capacity Erase Group Size uses HC timeouts */
1515		if (arg == MMC_TRIM_ARG)
1516			erase_timeout = card->ext_csd.trim_timeout;
1517		else
1518			erase_timeout = card->ext_csd.hc_erase_timeout;
1519	} else {
1520		/* CSD Erase Group Size uses write timeout */
1521		unsigned int mult = (10 << card->csd.r2w_factor);
1522		unsigned int timeout_clks = card->csd.taac_clks * mult;
1523		unsigned int timeout_us;
1524
1525		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526		if (card->csd.taac_ns < 1000000)
1527			timeout_us = (card->csd.taac_ns * mult) / 1000;
1528		else
1529			timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531		/*
1532		 * ios.clock is only a target.  The real clock rate might be
1533		 * less but not that much less, so fudge it by multiplying by 2.
1534		 */
1535		timeout_clks <<= 1;
1536		timeout_us += (timeout_clks * 1000) /
1537			      (card->host->ios.clock / 1000);
1538
1539		erase_timeout = timeout_us / 1000;
1540
1541		/*
1542		 * Theoretically, the calculation could underflow so round up
1543		 * to 1ms in that case.
1544		 */
1545		if (!erase_timeout)
1546			erase_timeout = 1;
1547	}
1548
1549	/* Multiplier for secure operations */
1550	if (arg & MMC_SECURE_ARGS) {
1551		if (arg == MMC_SECURE_ERASE_ARG)
1552			erase_timeout *= card->ext_csd.sec_erase_mult;
1553		else
1554			erase_timeout *= card->ext_csd.sec_trim_mult;
1555	}
1556
1557	erase_timeout *= qty;
1558
1559	/*
1560	 * Ensure at least a 1 second timeout for SPI as per
1561	 * 'mmc_set_data_timeout()'
1562	 */
1563	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564		erase_timeout = 1000;
1565
1566	return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570					 unsigned int arg,
1571					 unsigned int qty)
1572{
1573	unsigned int erase_timeout;
1574
1575	/* for DISCARD none of the below calculation applies.
1576	 * the busy timeout is 250msec per discard command.
1577	 */
1578	if (arg == SD_DISCARD_ARG)
1579		return SD_DISCARD_TIMEOUT_MS;
1580
1581	if (card->ssr.erase_timeout) {
1582		/* Erase timeout specified in SD Status Register (SSR) */
1583		erase_timeout = card->ssr.erase_timeout * qty +
1584				card->ssr.erase_offset;
1585	} else {
1586		/*
1587		 * Erase timeout not specified in SD Status Register (SSR) so
1588		 * use 250ms per write block.
1589		 */
1590		erase_timeout = 250 * qty;
1591	}
1592
1593	/* Must not be less than 1 second */
1594	if (erase_timeout < 1000)
1595		erase_timeout = 1000;
1596
1597	return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601				      unsigned int arg,
1602				      unsigned int qty)
1603{
1604	if (mmc_card_sd(card))
1605		return mmc_sd_erase_timeout(card, arg, qty);
1606	else
1607		return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611			sector_t to, unsigned int arg)
1612{
1613	struct mmc_command cmd = {};
1614	unsigned int qty = 0, busy_timeout = 0;
1615	bool use_r1b_resp;
 
 
1616	int err;
1617
1618	mmc_retune_hold(card->host);
1619
1620	/*
1621	 * qty is used to calculate the erase timeout which depends on how many
1622	 * erase groups (or allocation units in SD terminology) are affected.
1623	 * We count erasing part of an erase group as one erase group.
1624	 * For SD, the allocation units are always a power of 2.  For MMC, the
1625	 * erase group size is almost certainly also power of 2, but it does not
1626	 * seem to insist on that in the JEDEC standard, so we fall back to
1627	 * division in that case.  SD may not specify an allocation unit size,
1628	 * in which case the timeout is based on the number of write blocks.
1629	 *
1630	 * Note that the timeout for secure trim 2 will only be correct if the
1631	 * number of erase groups specified is the same as the total of all
1632	 * preceding secure trim 1 commands.  Since the power may have been
1633	 * lost since the secure trim 1 commands occurred, it is generally
1634	 * impossible to calculate the secure trim 2 timeout correctly.
1635	 */
1636	if (card->erase_shift)
1637		qty += ((to >> card->erase_shift) -
1638			(from >> card->erase_shift)) + 1;
1639	else if (mmc_card_sd(card))
1640		qty += to - from + 1;
1641	else
1642		qty += (mmc_sector_div(to, card->erase_size) -
1643			mmc_sector_div(from, card->erase_size)) + 1;
1644
1645	if (!mmc_card_blockaddr(card)) {
1646		from <<= 9;
1647		to <<= 9;
1648	}
1649
1650	if (mmc_card_sd(card))
1651		cmd.opcode = SD_ERASE_WR_BLK_START;
1652	else
1653		cmd.opcode = MMC_ERASE_GROUP_START;
1654	cmd.arg = from;
1655	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657	if (mmc_card_ult_capacity(card)) {
1658		cmd.ext_addr = from >> 32;
1659		cmd.has_ext_addr = true;
1660	}
1661
1662	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663	if (err) {
1664		pr_err("mmc_erase: group start error %d, "
1665		       "status %#x\n", err, cmd.resp[0]);
1666		err = -EIO;
1667		goto out;
1668	}
1669
1670	memset(&cmd, 0, sizeof(struct mmc_command));
1671	if (mmc_card_sd(card))
1672		cmd.opcode = SD_ERASE_WR_BLK_END;
1673	else
1674		cmd.opcode = MMC_ERASE_GROUP_END;
1675	cmd.arg = to;
1676	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678	if (mmc_card_ult_capacity(card)) {
1679		cmd.ext_addr = to >> 32;
1680		cmd.has_ext_addr = true;
1681	}
1682
1683	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684	if (err) {
1685		pr_err("mmc_erase: group end error %d, status %#x\n",
1686		       err, cmd.resp[0]);
1687		err = -EIO;
1688		goto out;
1689	}
1690
1691	memset(&cmd, 0, sizeof(struct mmc_command));
1692	cmd.opcode = MMC_ERASE;
1693	cmd.arg = arg;
1694	busy_timeout = mmc_erase_timeout(card, arg, qty);
1695	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698	if (err) {
1699		pr_err("mmc_erase: erase error %d, status %#x\n",
1700		       err, cmd.resp[0]);
1701		err = -EIO;
1702		goto out;
1703	}
1704
1705	if (mmc_host_is_spi(card->host))
1706		goto out;
1707
1708	/*
1709	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710	 * shall be avoided.
1711	 */
1712	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713		goto out;
1714
1715	/* Let's poll to find out when the erase operation completes. */
1716	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717
1718out:
1719	mmc_retune_release(card->host);
1720	return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724					 sector_t *from,
1725					 sector_t *to,
1726					 unsigned int nr)
1727{
1728	sector_t from_new = *from;
1729	unsigned int nr_new = nr, rem;
1730
1731	/*
1732	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733	 * to align the erase size efficiently.
1734	 */
1735	if (is_power_of_2(card->erase_size)) {
1736		sector_t temp = from_new;
1737
1738		from_new = round_up(temp, card->erase_size);
1739		rem = from_new - temp;
1740
1741		if (nr_new > rem)
1742			nr_new -= rem;
1743		else
1744			return 0;
1745
1746		nr_new = round_down(nr_new, card->erase_size);
1747	} else {
1748		rem = mmc_sector_mod(from_new, card->erase_size);
1749		if (rem) {
1750			rem = card->erase_size - rem;
1751			from_new += rem;
1752			if (nr_new > rem)
1753				nr_new -= rem;
1754			else
1755				return 0;
1756		}
1757
1758		rem = nr_new % card->erase_size;
1759		if (rem)
1760			nr_new -= rem;
1761	}
1762
1763	if (nr_new == 0)
1764		return 0;
1765
1766	*to = from_new + nr_new;
1767	*from = from_new;
1768
1769	return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782	      unsigned int arg)
1783{
1784	unsigned int rem;
1785	sector_t to = from + nr;
1786
1787	int err;
1788
1789	if (!(card->csd.cmdclass & CCC_ERASE))
 
1790		return -EOPNOTSUPP;
1791
1792	if (!card->erase_size)
1793		return -EOPNOTSUPP;
1794
1795	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796		return -EOPNOTSUPP;
1797
1798	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800		return -EOPNOTSUPP;
1801
1802	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804		return -EOPNOTSUPP;
1805
1806	if (arg == MMC_SECURE_ERASE_ARG) {
1807		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808			return -EINVAL;
1809	}
1810
1811	if (arg == MMC_ERASE_ARG)
1812		nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814	if (nr == 0)
1815		return 0;
1816
1817	if (to <= from)
1818		return -EINVAL;
1819
1820	/* 'from' and 'to' are inclusive */
1821	to -= 1;
1822
1823	/*
1824	 * Special case where only one erase-group fits in the timeout budget:
1825	 * If the region crosses an erase-group boundary on this particular
1826	 * case, we will be trimming more than one erase-group which, does not
1827	 * fit in the timeout budget of the controller, so we need to split it
1828	 * and call mmc_do_erase() twice if necessary. This special case is
1829	 * identified by the card->eg_boundary flag.
1830	 */
1831	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833		err = mmc_do_erase(card, from, from + rem - 1, arg);
1834		from += rem;
1835		if ((err) || (to <= from))
1836			return err;
1837	}
1838
1839	return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1846		return 1;
1847	return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855		return 1;
1856	return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862	/*
1863	 * As there's no way to detect the discard support bit at v4.5
1864	 * use the s/w feature support filed.
1865	 */
1866	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867		return 1;
1868	return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875		return 0;
1876	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877		return 1;
1878	return 0;
1879}
 
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885		return 1;
1886	return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891			    unsigned int nr)
1892{
1893	if (!card->erase_size)
1894		return 0;
1895	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896		return 0;
1897	return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902					    unsigned int arg)
1903{
1904	struct mmc_host *host = card->host;
1905	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906	unsigned int last_timeout = 0;
1907	unsigned int max_busy_timeout = host->max_busy_timeout ?
1908			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910	if (card->erase_shift) {
1911		max_qty = UINT_MAX >> card->erase_shift;
1912		min_qty = card->pref_erase >> card->erase_shift;
1913	} else if (mmc_card_sd(card)) {
1914		max_qty = UINT_MAX;
1915		min_qty = card->pref_erase;
1916	} else {
1917		max_qty = UINT_MAX / card->erase_size;
1918		min_qty = card->pref_erase / card->erase_size;
1919	}
1920
1921	/*
1922	 * We should not only use 'host->max_busy_timeout' as the limitation
1923	 * when deciding the max discard sectors. We should set a balance value
1924	 * to improve the erase speed, and it can not get too long timeout at
1925	 * the same time.
1926	 *
1927	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928	 * matter what size of 'host->max_busy_timeout', but if the
1929	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930	 * then we can continue to increase the max discard sectors until we
1931	 * get a balance value. In cases when the 'host->max_busy_timeout'
1932	 * isn't specified, use the default max erase timeout.
1933	 */
1934	do {
1935		y = 0;
1936		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937			timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939			if (qty + x > min_qty && timeout > max_busy_timeout)
1940				break;
1941
1942			if (timeout < last_timeout)
1943				break;
1944			last_timeout = timeout;
1945			y = x;
1946		}
1947		qty += y;
1948	} while (y);
1949
1950	if (!qty)
1951		return 0;
1952
1953	/*
1954	 * When specifying a sector range to trim, chances are we might cross
1955	 * an erase-group boundary even if the amount of sectors is less than
1956	 * one erase-group.
1957	 * If we can only fit one erase-group in the controller timeout budget,
1958	 * we have to care that erase-group boundaries are not crossed by a
1959	 * single trim operation. We flag that special case with "eg_boundary".
1960	 * In all other cases we can just decrement qty and pretend that we
1961	 * always touch (qty + 1) erase-groups as a simple optimization.
1962	 */
1963	if (qty == 1)
1964		card->eg_boundary = 1;
1965	else
1966		qty--;
1967
1968	/* Convert qty to sectors */
1969	if (card->erase_shift)
1970		max_discard = qty << card->erase_shift;
1971	else if (mmc_card_sd(card))
1972		max_discard = qty + 1;
1973	else
1974		max_discard = qty * card->erase_size;
1975
1976	return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981	struct mmc_host *host = card->host;
1982	unsigned int max_discard, max_trim;
1983
1984	/*
1985	 * Without erase_group_def set, MMC erase timeout depends on clock
1986	 * frequence which can change.  In that case, the best choice is
1987	 * just the preferred erase size.
1988	 */
1989	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990		return card->pref_erase;
1991
1992	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993	if (mmc_can_trim(card)) {
1994		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995		if (max_trim < max_discard || max_discard == 0)
1996			max_discard = max_trim;
1997	} else if (max_discard < card->erase_size) {
1998		max_discard = 0;
1999	}
2000	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003	return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009	return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015	struct mmc_command cmd = {};
2016
2017	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2019		return 0;
2020
2021	cmd.opcode = MMC_SET_BLOCKLEN;
2022	cmd.arg = blocklen;
2023	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024	return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030	mmc_pwrseq_reset(host);
2031
2032	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033		return;
2034	host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049	struct mmc_host *host = card->host;
2050	int ret;
2051
 
 
 
 
 
 
 
 
 
2052	ret = host->bus_ops->hw_reset(host);
2053	if (ret < 0)
 
 
2054		pr_warn("%s: tried to HW reset card, got error %d\n",
2055			mmc_hostname(host), ret);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063	struct mmc_host *host = card->host;
2064	int ret;
2065
2066	if (!host->bus_ops->sw_reset)
 
 
 
 
 
2067		return -EOPNOTSUPP;
 
2068
2069	ret = host->bus_ops->sw_reset(host);
 
 
2070	if (ret)
2071		pr_warn("%s: tried to SW reset card, got error %d\n",
2072			mmc_hostname(host), ret);
2073
2074	return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080	host->f_init = freq;
2081
2082	pr_debug("%s: %s: trying to init card at %u Hz\n",
2083		mmc_hostname(host), __func__, host->f_init);
2084
2085	mmc_power_up(host, host->ocr_avail);
2086
2087	/*
2088	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089	 * do a hardware reset if possible.
2090	 */
2091	mmc_hw_reset_for_init(host);
2092
2093	/*
2094	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2095	 * if the card is being re-initialized, just send it.  CMD52
2096	 * should be ignored by SD/eMMC cards.
2097	 * Skip it if we already know that we do not support SDIO commands
2098	 */
2099	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100		sdio_reset(host);
2101
2102	mmc_go_idle(host);
2103
2104	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106			goto out;
2107		if (mmc_card_sd_express(host))
2108			return 0;
2109	}
2110
2111	/* Order's important: probe SDIO, then SD, then MMC */
2112	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113		if (!mmc_attach_sdio(host))
2114			return 0;
2115
2116	if (!(host->caps2 & MMC_CAP2_NO_SD))
2117		if (!mmc_attach_sd(host))
2118			return 0;
2119
2120	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121		if (!mmc_attach_mmc(host))
2122			return 0;
2123
2124out:
2125	mmc_power_off(host);
2126	return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	int ret;
2132
2133	if (!host->card || mmc_card_removed(host->card))
2134		return 1;
2135
2136	ret = host->bus_ops->alive(host);
2137
2138	/*
2139	 * Card detect status and alive check may be out of sync if card is
2140	 * removed slowly, when card detect switch changes while card/slot
2141	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143	 * detect work 200ms later for this case.
2144	 */
2145	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146		mmc_detect_change(host, msecs_to_jiffies(200));
2147		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148	}
2149
2150	if (ret) {
2151		mmc_card_set_removed(host->card);
2152		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153	}
2154
2155	return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160	struct mmc_card *card = host->card;
2161	int ret;
2162
2163	WARN_ON(!host->claimed);
2164
2165	if (!card)
2166		return 1;
2167
2168	if (!mmc_card_is_removable(host))
2169		return 0;
2170
2171	ret = mmc_card_removed(card);
2172	/*
2173	 * The card will be considered unchanged unless we have been asked to
2174	 * detect a change or host requires polling to provide card detection.
2175	 */
2176	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177		return ret;
2178
2179	host->detect_change = 0;
2180	if (!ret) {
2181		ret = _mmc_detect_card_removed(host);
2182		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183			/*
2184			 * Schedule a detect work as soon as possible to let a
2185			 * rescan handle the card removal.
2186			 */
2187			cancel_delayed_work(&host->detect);
2188			_mmc_detect_change(host, 0, false);
2189		}
2190	}
2191
2192	return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198	unsigned int boot_sectors_num;
2199
2200	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201		return -EOPNOTSUPP;
2202
2203	/* filter out unrelated cards */
2204	if (card->ext_csd.rev < 3 ||
2205	    !mmc_card_mmc(card) ||
2206	    !mmc_card_is_blockaddr(card) ||
2207	     mmc_card_is_removable(card->host))
2208		return -ENOENT;
2209
2210	/*
2211	 * eMMC storage has two special boot partitions in addition to the
2212	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213	 * accesses, this means that the partition table addresses are shifted
2214	 * by the size of boot partitions.  In accordance with the eMMC
2215	 * specification, the boot partition size is calculated as follows:
2216	 *
2217	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2218	 *
2219	 * Calculate number of sectors occupied by the both boot partitions.
2220	 */
2221	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224	/* Defined by NVIDIA and used by Android devices. */
2225	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227	return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233	struct mmc_host *host =
2234		container_of(work, struct mmc_host, detect.work);
2235	int i;
2236
2237	if (host->rescan_disable)
2238		return;
2239
2240	/* If there is a non-removable card registered, only scan once */
2241	if (!mmc_card_is_removable(host) && host->rescan_entered)
2242		return;
2243	host->rescan_entered = 1;
2244
2245	if (host->trigger_card_event && host->ops->card_event) {
2246		mmc_claim_host(host);
2247		host->ops->card_event(host);
2248		mmc_release_host(host);
2249		host->trigger_card_event = false;
2250	}
2251
2252	/* Verify a registered card to be functional, else remove it. */
2253	if (host->bus_ops)
 
 
 
 
 
2254		host->bus_ops->detect(host);
2255
2256	host->detect_change = 0;
2257
 
 
 
 
 
 
 
2258	/* if there still is a card present, stop here */
2259	if (host->bus_ops != NULL)
 
2260		goto out;
 
 
 
 
 
 
 
2261
2262	mmc_claim_host(host);
2263	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264			host->ops->get_cd(host) == 0) {
2265		mmc_power_off(host);
2266		mmc_release_host(host);
2267		goto out;
2268	}
2269
2270	/* If an SD express card is present, then leave it as is. */
2271	if (mmc_card_sd_express(host)) {
2272		mmc_release_host(host);
2273		goto out;
2274	}
2275
2276	/*
2277	 * Ideally we should favor initialization of legacy SD cards and defer
2278	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279	 * announce their support for UHS-II in the response to the ACMD41,
2280	 * while initializing the legacy SD interface. Therefore, let's start
2281	 * with UHS-II for now.
2282	 */
2283	if (!mmc_attach_sd_uhs2(host)) {
2284		mmc_release_host(host);
2285		goto out;
2286	}
2287
2288	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289		unsigned int freq = freqs[i];
2290		if (freq > host->f_max) {
2291			if (i + 1 < ARRAY_SIZE(freqs))
2292				continue;
2293			freq = host->f_max;
2294		}
2295		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296			break;
2297		if (freqs[i] <= host->f_min)
2298			break;
2299	}
2300
2301	/* A non-removable card should have been detected by now. */
2302	if (!mmc_card_is_removable(host) && !host->bus_ops)
2303		pr_info("%s: Failed to initialize a non-removable card",
2304			mmc_hostname(host));
2305
2306	/*
2307	 * Ignore the command timeout errors observed during
2308	 * the card init as those are excepted.
2309	 */
2310	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311	mmc_release_host(host);
2312
2313 out:
2314	if (host->caps & MMC_CAP_NEEDS_POLL)
2315		mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320	bool power_up = !(host->caps2 &
2321			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324	host->rescan_disable = 0;
 
2325
2326	if (power_up) {
2327		mmc_claim_host(host);
2328		mmc_power_up(host, host->ocr_avail);
2329		mmc_release_host(host);
2330	}
2331
2332	mmc_gpiod_request_cd_irq(host);
2333	_mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338	if (host->rescan_disable)
2339		return;
2340
2341	if (host->slot.cd_irq >= 0) {
2342		mmc_gpio_set_cd_wake(host, false);
2343		disable_irq(host->slot.cd_irq);
2344	}
2345
2346	host->rescan_disable = 1;
2347	cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352	__mmc_stop_host(host);
2353
2354	/* clear pm flags now and let card drivers set them as needed */
2355	host->pm_flags = 0;
2356
2357	if (host->bus_ops) {
 
2358		/* Calling bus_ops->remove() with a claimed host can deadlock */
2359		host->bus_ops->remove(host);
2360		mmc_claim_host(host);
2361		mmc_detach_bus(host);
2362		mmc_power_off(host);
2363		mmc_release_host(host);
 
2364		return;
2365	}
 
2366
2367	mmc_claim_host(host);
2368	mmc_power_off(host);
2369	mmc_release_host(host);
2370}
2371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372static int __init mmc_init(void)
2373{
2374	int ret;
2375
2376	ret = mmc_register_bus();
2377	if (ret)
2378		return ret;
2379
2380	ret = mmc_register_host_class();
2381	if (ret)
2382		goto unregister_bus;
2383
2384	ret = sdio_register_bus();
2385	if (ret)
2386		goto unregister_host_class;
2387
2388	return 0;
2389
2390unregister_host_class:
2391	mmc_unregister_host_class();
2392unregister_bus:
2393	mmc_unregister_bus();
2394	return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399	sdio_unregister_bus();
2400	mmc_unregister_host_class();
2401	mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
 
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  50#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  51#define SD_DISCARD_TIMEOUT_MS	(250)
  52
  53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  54
  55/*
  56 * Enabling software CRCs on the data blocks can be a significant (30%)
  57 * performance cost, and for other reasons may not always be desired.
  58 * So we allow it it to be disabled.
  59 */
  60bool use_spi_crc = 1;
  61module_param(use_spi_crc, bool, 0);
  62
  63static int mmc_schedule_delayed_work(struct delayed_work *work,
  64				     unsigned long delay)
  65{
  66	/*
  67	 * We use the system_freezable_wq, because of two reasons.
  68	 * First, it allows several works (not the same work item) to be
  69	 * executed simultaneously. Second, the queue becomes frozen when
  70	 * userspace becomes frozen during system PM.
  71	 */
  72	return queue_delayed_work(system_freezable_wq, work, delay);
  73}
  74
  75#ifdef CONFIG_FAIL_MMC_REQUEST
  76
  77/*
  78 * Internal function. Inject random data errors.
  79 * If mmc_data is NULL no errors are injected.
  80 */
  81static void mmc_should_fail_request(struct mmc_host *host,
  82				    struct mmc_request *mrq)
  83{
  84	struct mmc_command *cmd = mrq->cmd;
  85	struct mmc_data *data = mrq->data;
  86	static const int data_errors[] = {
  87		-ETIMEDOUT,
  88		-EILSEQ,
  89		-EIO,
  90	};
  91
  92	if (!data)
  93		return;
  94
  95	if ((cmd && cmd->error) || data->error ||
  96	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  97		return;
  98
  99	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 100	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 101}
 102
 103#else /* CONFIG_FAIL_MMC_REQUEST */
 104
 105static inline void mmc_should_fail_request(struct mmc_host *host,
 106					   struct mmc_request *mrq)
 107{
 108}
 109
 110#endif /* CONFIG_FAIL_MMC_REQUEST */
 111
 112static inline void mmc_complete_cmd(struct mmc_request *mrq)
 113{
 114	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 115		complete_all(&mrq->cmd_completion);
 116}
 117
 118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 119{
 120	if (!mrq->cap_cmd_during_tfr)
 121		return;
 122
 123	mmc_complete_cmd(mrq);
 124
 125	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 126		 mmc_hostname(host), mrq->cmd->opcode);
 127}
 128EXPORT_SYMBOL(mmc_command_done);
 129
 130/**
 131 *	mmc_request_done - finish processing an MMC request
 132 *	@host: MMC host which completed request
 133 *	@mrq: MMC request which request
 134 *
 135 *	MMC drivers should call this function when they have completed
 136 *	their processing of a request.
 137 */
 138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 139{
 140	struct mmc_command *cmd = mrq->cmd;
 141	int err = cmd->error;
 142
 143	/* Flag re-tuning needed on CRC errors */
 144	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 145	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 
 
 
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 
 
 
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		/*
 407		 * If host has timed out waiting for the sanitize
 408		 * to complete, card might be still in programming state
 409		 * so let's try to bring the card out of programming
 410		 * state.
 411		 */
 412		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 413			if (!mmc_interrupt_hpi(host->card)) {
 414				pr_warn("%s: %s: Interrupted sanitize\n",
 415					mmc_hostname(host), __func__);
 416				cmd->error = 0;
 417				break;
 418			} else {
 419				pr_err("%s: %s: Failed to interrupt sanitize\n",
 420				       mmc_hostname(host), __func__);
 421			}
 422		}
 423		if (!cmd->error || !cmd->retries ||
 424		    mmc_card_removed(host->card))
 425			break;
 426
 427		mmc_retune_recheck(host);
 428
 429		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 430			 mmc_hostname(host), cmd->opcode, cmd->error);
 431		cmd->retries--;
 432		cmd->error = 0;
 433		__mmc_start_request(host, mrq);
 434	}
 435
 436	mmc_retune_release(host);
 437}
 438EXPORT_SYMBOL(mmc_wait_for_req_done);
 439
 440/*
 441 * mmc_cqe_start_req - Start a CQE request.
 442 * @host: MMC host to start the request
 443 * @mrq: request to start
 444 *
 445 * Start the request, re-tuning if needed and it is possible. Returns an error
 446 * code if the request fails to start or -EBUSY if CQE is busy.
 447 */
 448int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 449{
 450	int err;
 451
 452	/*
 453	 * CQE cannot process re-tuning commands. Caller must hold retuning
 454	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 455	 * active requests i.e. this is the first.  Note, re-tuning will call
 456	 * ->cqe_off().
 457	 */
 458	err = mmc_retune(host);
 459	if (err)
 460		goto out_err;
 461
 462	mrq->host = host;
 463
 464	mmc_mrq_pr_debug(host, mrq, true);
 465
 466	err = mmc_mrq_prep(host, mrq);
 467	if (err)
 468		goto out_err;
 469
 
 
 
 470	err = host->cqe_ops->cqe_request(host, mrq);
 471	if (err)
 472		goto out_err;
 473
 474	trace_mmc_request_start(host, mrq);
 475
 476	return 0;
 477
 478out_err:
 479	if (mrq->cmd) {
 480		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 481			 mmc_hostname(host), mrq->cmd->opcode, err);
 482	} else {
 483		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 484			 mmc_hostname(host), mrq->tag, err);
 485	}
 486	return err;
 487}
 488EXPORT_SYMBOL(mmc_cqe_start_req);
 489
 490/**
 491 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 492 *	@host: MMC host which completed request
 493 *	@mrq: MMC request which completed
 494 *
 495 *	CQE drivers should call this function when they have completed
 496 *	their processing of a request.
 497 */
 498void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 499{
 500	mmc_should_fail_request(host, mrq);
 501
 502	/* Flag re-tuning needed on CRC errors */
 503	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 504	    (mrq->data && mrq->data->error == -EILSEQ))
 505		mmc_retune_needed(host);
 506
 507	trace_mmc_request_done(host, mrq);
 508
 509	if (mrq->cmd) {
 510		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 511			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 512	} else {
 513		pr_debug("%s: CQE transfer done tag %d\n",
 514			 mmc_hostname(host), mrq->tag);
 515	}
 516
 517	if (mrq->data) {
 518		pr_debug("%s:     %d bytes transferred: %d\n",
 519			 mmc_hostname(host),
 520			 mrq->data->bytes_xfered, mrq->data->error);
 521	}
 522
 523	mrq->done(mrq);
 524}
 525EXPORT_SYMBOL(mmc_cqe_request_done);
 526
 527/**
 528 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 529 *	@host: MMC host
 530 *	@mrq: MMC request to be processed
 531 */
 532void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 533{
 534	if (host->cqe_ops->cqe_post_req)
 535		host->cqe_ops->cqe_post_req(host, mrq);
 536}
 537EXPORT_SYMBOL(mmc_cqe_post_req);
 538
 539/* Arbitrary 1 second timeout */
 540#define MMC_CQE_RECOVERY_TIMEOUT	1000
 541
 542/*
 543 * mmc_cqe_recovery - Recover from CQE errors.
 544 * @host: MMC host to recover
 545 *
 546 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 547 * in eMMC, and discarding the queue in CQE. CQE must call
 548 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 549 * fails to discard its queue.
 550 */
 551int mmc_cqe_recovery(struct mmc_host *host)
 552{
 553	struct mmc_command cmd;
 554	int err;
 555
 556	mmc_retune_hold_now(host);
 557
 558	/*
 559	 * Recovery is expected seldom, if at all, but it reduces performance,
 560	 * so make sure it is not completely silent.
 561	 */
 562	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 563
 564	host->cqe_ops->cqe_recovery_start(host);
 565
 566	memset(&cmd, 0, sizeof(cmd));
 567	cmd.opcode       = MMC_STOP_TRANSMISSION,
 568	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 569	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 570	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 571	mmc_wait_for_cmd(host, &cmd, 0);
 
 
 572
 573	memset(&cmd, 0, sizeof(cmd));
 574	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 575	cmd.arg          = 1; /* Discard entire queue */
 576	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 577	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 578	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 579	err = mmc_wait_for_cmd(host, &cmd, 0);
 580
 581	host->cqe_ops->cqe_recovery_finish(host);
 582
 
 
 
 583	mmc_retune_release(host);
 584
 585	return err;
 586}
 587EXPORT_SYMBOL(mmc_cqe_recovery);
 588
 589/**
 590 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 591 *	@host: MMC host
 592 *	@mrq: MMC request
 593 *
 594 *	mmc_is_req_done() is used with requests that have
 595 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 596 *	starting a request and before waiting for it to complete. That is,
 597 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 598 *	and before mmc_wait_for_req_done(). If it is called at other times the
 599 *	result is not meaningful.
 600 */
 601bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 602{
 603	return completion_done(&mrq->completion);
 604}
 605EXPORT_SYMBOL(mmc_is_req_done);
 606
 607/**
 608 *	mmc_wait_for_req - start a request and wait for completion
 609 *	@host: MMC host to start command
 610 *	@mrq: MMC request to start
 611 *
 612 *	Start a new MMC custom command request for a host, and wait
 613 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 614 *	requests, the transfer is ongoing and the caller can issue further
 615 *	commands that do not use the data lines, and then wait by calling
 616 *	mmc_wait_for_req_done().
 617 *	Does not attempt to parse the response.
 618 */
 619void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 620{
 621	__mmc_start_req(host, mrq);
 622
 623	if (!mrq->cap_cmd_during_tfr)
 624		mmc_wait_for_req_done(host, mrq);
 625}
 626EXPORT_SYMBOL(mmc_wait_for_req);
 627
 628/**
 629 *	mmc_wait_for_cmd - start a command and wait for completion
 630 *	@host: MMC host to start command
 631 *	@cmd: MMC command to start
 632 *	@retries: maximum number of retries
 633 *
 634 *	Start a new MMC command for a host, and wait for the command
 635 *	to complete.  Return any error that occurred while the command
 636 *	was executing.  Do not attempt to parse the response.
 637 */
 638int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 639{
 640	struct mmc_request mrq = {};
 641
 642	WARN_ON(!host->claimed);
 643
 644	memset(cmd->resp, 0, sizeof(cmd->resp));
 645	cmd->retries = retries;
 646
 647	mrq.cmd = cmd;
 648	cmd->data = NULL;
 649
 650	mmc_wait_for_req(host, &mrq);
 651
 652	return cmd->error;
 653}
 654
 655EXPORT_SYMBOL(mmc_wait_for_cmd);
 656
 657/**
 658 *	mmc_set_data_timeout - set the timeout for a data command
 659 *	@data: data phase for command
 660 *	@card: the MMC card associated with the data transfer
 661 *
 662 *	Computes the data timeout parameters according to the
 663 *	correct algorithm given the card type.
 664 */
 665void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 666{
 667	unsigned int mult;
 668
 669	/*
 670	 * SDIO cards only define an upper 1 s limit on access.
 671	 */
 672	if (mmc_card_sdio(card)) {
 673		data->timeout_ns = 1000000000;
 674		data->timeout_clks = 0;
 675		return;
 676	}
 677
 678	/*
 679	 * SD cards use a 100 multiplier rather than 10
 680	 */
 681	mult = mmc_card_sd(card) ? 100 : 10;
 682
 683	/*
 684	 * Scale up the multiplier (and therefore the timeout) by
 685	 * the r2w factor for writes.
 686	 */
 687	if (data->flags & MMC_DATA_WRITE)
 688		mult <<= card->csd.r2w_factor;
 689
 690	data->timeout_ns = card->csd.taac_ns * mult;
 691	data->timeout_clks = card->csd.taac_clks * mult;
 692
 693	/*
 694	 * SD cards also have an upper limit on the timeout.
 695	 */
 696	if (mmc_card_sd(card)) {
 697		unsigned int timeout_us, limit_us;
 698
 699		timeout_us = data->timeout_ns / 1000;
 700		if (card->host->ios.clock)
 701			timeout_us += data->timeout_clks * 1000 /
 702				(card->host->ios.clock / 1000);
 703
 704		if (data->flags & MMC_DATA_WRITE)
 705			/*
 706			 * The MMC spec "It is strongly recommended
 707			 * for hosts to implement more than 500ms
 708			 * timeout value even if the card indicates
 709			 * the 250ms maximum busy length."  Even the
 710			 * previous value of 300ms is known to be
 711			 * insufficient for some cards.
 712			 */
 713			limit_us = 3000000;
 714		else
 715			limit_us = 100000;
 716
 717		/*
 718		 * SDHC cards always use these fixed values.
 719		 */
 720		if (timeout_us > limit_us) {
 721			data->timeout_ns = limit_us * 1000;
 722			data->timeout_clks = 0;
 723		}
 724
 725		/* assign limit value if invalid */
 726		if (timeout_us == 0)
 727			data->timeout_ns = limit_us * 1000;
 728	}
 729
 730	/*
 731	 * Some cards require longer data read timeout than indicated in CSD.
 732	 * Address this by setting the read timeout to a "reasonably high"
 733	 * value. For the cards tested, 600ms has proven enough. If necessary,
 734	 * this value can be increased if other problematic cards require this.
 735	 */
 736	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 737		data->timeout_ns = 600000000;
 738		data->timeout_clks = 0;
 739	}
 740
 741	/*
 742	 * Some cards need very high timeouts if driven in SPI mode.
 743	 * The worst observed timeout was 900ms after writing a
 744	 * continuous stream of data until the internal logic
 745	 * overflowed.
 746	 */
 747	if (mmc_host_is_spi(card->host)) {
 748		if (data->flags & MMC_DATA_WRITE) {
 749			if (data->timeout_ns < 1000000000)
 750				data->timeout_ns = 1000000000;	/* 1s */
 751		} else {
 752			if (data->timeout_ns < 100000000)
 753				data->timeout_ns =  100000000;	/* 100ms */
 754		}
 755	}
 756}
 757EXPORT_SYMBOL(mmc_set_data_timeout);
 758
 759/*
 760 * Allow claiming an already claimed host if the context is the same or there is
 761 * no context but the task is the same.
 762 */
 763static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 764				   struct task_struct *task)
 765{
 766	return host->claimer == ctx ||
 767	       (!ctx && task && host->claimer->task == task);
 768}
 769
 770static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 771				       struct mmc_ctx *ctx,
 772				       struct task_struct *task)
 773{
 774	if (!host->claimer) {
 775		if (ctx)
 776			host->claimer = ctx;
 777		else
 778			host->claimer = &host->default_ctx;
 779	}
 780	if (task)
 781		host->claimer->task = task;
 782}
 783
 784/**
 785 *	__mmc_claim_host - exclusively claim a host
 786 *	@host: mmc host to claim
 787 *	@ctx: context that claims the host or NULL in which case the default
 788 *	context will be used
 789 *	@abort: whether or not the operation should be aborted
 790 *
 791 *	Claim a host for a set of operations.  If @abort is non null and
 792 *	dereference a non-zero value then this will return prematurely with
 793 *	that non-zero value without acquiring the lock.  Returns zero
 794 *	with the lock held otherwise.
 795 */
 796int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 797		     atomic_t *abort)
 798{
 799	struct task_struct *task = ctx ? NULL : current;
 800	DECLARE_WAITQUEUE(wait, current);
 801	unsigned long flags;
 802	int stop;
 803	bool pm = false;
 804
 805	might_sleep();
 806
 807	add_wait_queue(&host->wq, &wait);
 808	spin_lock_irqsave(&host->lock, flags);
 809	while (1) {
 810		set_current_state(TASK_UNINTERRUPTIBLE);
 811		stop = abort ? atomic_read(abort) : 0;
 812		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 813			break;
 814		spin_unlock_irqrestore(&host->lock, flags);
 815		schedule();
 816		spin_lock_irqsave(&host->lock, flags);
 817	}
 818	set_current_state(TASK_RUNNING);
 819	if (!stop) {
 820		host->claimed = 1;
 821		mmc_ctx_set_claimer(host, ctx, task);
 822		host->claim_cnt += 1;
 823		if (host->claim_cnt == 1)
 824			pm = true;
 825	} else
 826		wake_up(&host->wq);
 827	spin_unlock_irqrestore(&host->lock, flags);
 828	remove_wait_queue(&host->wq, &wait);
 829
 830	if (pm)
 831		pm_runtime_get_sync(mmc_dev(host));
 832
 833	return stop;
 834}
 835EXPORT_SYMBOL(__mmc_claim_host);
 836
 837/**
 838 *	mmc_release_host - release a host
 839 *	@host: mmc host to release
 840 *
 841 *	Release a MMC host, allowing others to claim the host
 842 *	for their operations.
 843 */
 844void mmc_release_host(struct mmc_host *host)
 845{
 846	unsigned long flags;
 847
 848	WARN_ON(!host->claimed);
 849
 850	spin_lock_irqsave(&host->lock, flags);
 851	if (--host->claim_cnt) {
 852		/* Release for nested claim */
 853		spin_unlock_irqrestore(&host->lock, flags);
 854	} else {
 855		host->claimed = 0;
 856		host->claimer->task = NULL;
 857		host->claimer = NULL;
 858		spin_unlock_irqrestore(&host->lock, flags);
 859		wake_up(&host->wq);
 860		pm_runtime_mark_last_busy(mmc_dev(host));
 861		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 862			pm_runtime_put_sync_suspend(mmc_dev(host));
 863		else
 864			pm_runtime_put_autosuspend(mmc_dev(host));
 865	}
 866}
 867EXPORT_SYMBOL(mmc_release_host);
 868
 869/*
 870 * This is a helper function, which fetches a runtime pm reference for the
 871 * card device and also claims the host.
 872 */
 873void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 874{
 875	pm_runtime_get_sync(&card->dev);
 876	__mmc_claim_host(card->host, ctx, NULL);
 877}
 878EXPORT_SYMBOL(mmc_get_card);
 879
 880/*
 881 * This is a helper function, which releases the host and drops the runtime
 882 * pm reference for the card device.
 883 */
 884void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 885{
 886	struct mmc_host *host = card->host;
 887
 888	WARN_ON(ctx && host->claimer != ctx);
 889
 890	mmc_release_host(host);
 891	pm_runtime_mark_last_busy(&card->dev);
 892	pm_runtime_put_autosuspend(&card->dev);
 893}
 894EXPORT_SYMBOL(mmc_put_card);
 895
 896/*
 897 * Internal function that does the actual ios call to the host driver,
 898 * optionally printing some debug output.
 899 */
 900static inline void mmc_set_ios(struct mmc_host *host)
 901{
 902	struct mmc_ios *ios = &host->ios;
 903
 904	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 905		"width %u timing %u\n",
 906		 mmc_hostname(host), ios->clock, ios->bus_mode,
 907		 ios->power_mode, ios->chip_select, ios->vdd,
 908		 1 << ios->bus_width, ios->timing);
 909
 910	host->ops->set_ios(host, ios);
 911}
 912
 913/*
 914 * Control chip select pin on a host.
 915 */
 916void mmc_set_chip_select(struct mmc_host *host, int mode)
 917{
 918	host->ios.chip_select = mode;
 919	mmc_set_ios(host);
 920}
 921
 922/*
 923 * Sets the host clock to the highest possible frequency that
 924 * is below "hz".
 925 */
 926void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 927{
 928	WARN_ON(hz && hz < host->f_min);
 929
 930	if (hz > host->f_max)
 931		hz = host->f_max;
 932
 933	host->ios.clock = hz;
 934	mmc_set_ios(host);
 935}
 936
 937int mmc_execute_tuning(struct mmc_card *card)
 938{
 939	struct mmc_host *host = card->host;
 940	u32 opcode;
 941	int err;
 942
 943	if (!host->ops->execute_tuning)
 944		return 0;
 945
 946	if (host->cqe_on)
 947		host->cqe_ops->cqe_off(host);
 948
 949	if (mmc_card_mmc(card))
 950		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 951	else
 952		opcode = MMC_SEND_TUNING_BLOCK;
 953
 954	err = host->ops->execute_tuning(host, opcode);
 
 
 
 
 
 955
 956	if (err)
 
 957		pr_err("%s: tuning execution failed: %d\n",
 958			mmc_hostname(host), err);
 959	else
 960		mmc_retune_enable(host);
 961
 962	return err;
 963}
 964
 965/*
 966 * Change the bus mode (open drain/push-pull) of a host.
 967 */
 968void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 969{
 970	host->ios.bus_mode = mode;
 971	mmc_set_ios(host);
 972}
 973
 974/*
 975 * Change data bus width of a host.
 976 */
 977void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 978{
 979	host->ios.bus_width = width;
 980	mmc_set_ios(host);
 981}
 982
 983/*
 984 * Set initial state after a power cycle or a hw_reset.
 985 */
 986void mmc_set_initial_state(struct mmc_host *host)
 987{
 988	if (host->cqe_on)
 989		host->cqe_ops->cqe_off(host);
 990
 991	mmc_retune_disable(host);
 992
 993	if (mmc_host_is_spi(host))
 994		host->ios.chip_select = MMC_CS_HIGH;
 995	else
 996		host->ios.chip_select = MMC_CS_DONTCARE;
 997	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 998	host->ios.bus_width = MMC_BUS_WIDTH_1;
 999	host->ios.timing = MMC_TIMING_LEGACY;
1000	host->ios.drv_type = 0;
1001	host->ios.enhanced_strobe = false;
1002
1003	/*
1004	 * Make sure we are in non-enhanced strobe mode before we
1005	 * actually enable it in ext_csd.
1006	 */
1007	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008	     host->ops->hs400_enhanced_strobe)
1009		host->ops->hs400_enhanced_strobe(host, &host->ios);
1010
1011	mmc_set_ios(host);
 
 
1012}
1013
1014/**
1015 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1016 * @vdd:	voltage (mV)
1017 * @low_bits:	prefer low bits in boundary cases
1018 *
1019 * This function returns the OCR bit number according to the provided @vdd
1020 * value. If conversion is not possible a negative errno value returned.
1021 *
1022 * Depending on the @low_bits flag the function prefers low or high OCR bits
1023 * on boundary voltages. For example,
1024 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1025 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1026 *
1027 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1028 */
1029static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1030{
1031	const int max_bit = ilog2(MMC_VDD_35_36);
1032	int bit;
1033
1034	if (vdd < 1650 || vdd > 3600)
1035		return -EINVAL;
1036
1037	if (vdd >= 1650 && vdd <= 1950)
1038		return ilog2(MMC_VDD_165_195);
1039
1040	if (low_bits)
1041		vdd -= 1;
1042
1043	/* Base 2000 mV, step 100 mV, bit's base 8. */
1044	bit = (vdd - 2000) / 100 + 8;
1045	if (bit > max_bit)
1046		return max_bit;
1047	return bit;
1048}
1049
1050/**
1051 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1052 * @vdd_min:	minimum voltage value (mV)
1053 * @vdd_max:	maximum voltage value (mV)
1054 *
1055 * This function returns the OCR mask bits according to the provided @vdd_min
1056 * and @vdd_max values. If conversion is not possible the function returns 0.
1057 *
1058 * Notes wrt boundary cases:
1059 * This function sets the OCR bits for all boundary voltages, for example
1060 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1061 * MMC_VDD_34_35 mask.
1062 */
1063u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1064{
1065	u32 mask = 0;
1066
1067	if (vdd_max < vdd_min)
1068		return 0;
1069
1070	/* Prefer high bits for the boundary vdd_max values. */
1071	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1072	if (vdd_max < 0)
1073		return 0;
1074
1075	/* Prefer low bits for the boundary vdd_min values. */
1076	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1077	if (vdd_min < 0)
1078		return 0;
1079
1080	/* Fill the mask, from max bit to min bit. */
1081	while (vdd_max >= vdd_min)
1082		mask |= 1 << vdd_max--;
1083
1084	return mask;
1085}
1086
1087static int mmc_of_get_func_num(struct device_node *node)
1088{
1089	u32 reg;
1090	int ret;
1091
1092	ret = of_property_read_u32(node, "reg", &reg);
1093	if (ret < 0)
1094		return ret;
1095
1096	return reg;
1097}
1098
1099struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1100		unsigned func_num)
1101{
1102	struct device_node *node;
1103
1104	if (!host->parent || !host->parent->of_node)
1105		return NULL;
1106
1107	for_each_child_of_node(host->parent->of_node, node) {
1108		if (mmc_of_get_func_num(node) == func_num)
1109			return node;
1110	}
1111
1112	return NULL;
1113}
1114
1115/*
1116 * Mask off any voltages we don't support and select
1117 * the lowest voltage
1118 */
1119u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1120{
1121	int bit;
1122
1123	/*
1124	 * Sanity check the voltages that the card claims to
1125	 * support.
1126	 */
1127	if (ocr & 0x7F) {
1128		dev_warn(mmc_dev(host),
1129		"card claims to support voltages below defined range\n");
1130		ocr &= ~0x7F;
1131	}
1132
1133	ocr &= host->ocr_avail;
1134	if (!ocr) {
1135		dev_warn(mmc_dev(host), "no support for card's volts\n");
1136		return 0;
1137	}
1138
1139	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1140		bit = ffs(ocr) - 1;
1141		ocr &= 3 << bit;
1142		mmc_power_cycle(host, ocr);
1143	} else {
1144		bit = fls(ocr) - 1;
1145		ocr &= 3 << bit;
 
 
 
 
 
 
1146		if (bit != host->ios.vdd)
1147			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1148	}
1149
1150	return ocr;
1151}
1152
1153int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1154{
1155	int err = 0;
1156	int old_signal_voltage = host->ios.signal_voltage;
1157
1158	host->ios.signal_voltage = signal_voltage;
1159	if (host->ops->start_signal_voltage_switch)
1160		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1161
1162	if (err)
1163		host->ios.signal_voltage = old_signal_voltage;
1164
1165	return err;
1166
1167}
1168
1169void mmc_set_initial_signal_voltage(struct mmc_host *host)
1170{
1171	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1172	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1173		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1174	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1175		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1176	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1177		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1178}
1179
1180int mmc_host_set_uhs_voltage(struct mmc_host *host)
1181{
1182	u32 clock;
1183
1184	/*
1185	 * During a signal voltage level switch, the clock must be gated
1186	 * for 5 ms according to the SD spec
1187	 */
1188	clock = host->ios.clock;
1189	host->ios.clock = 0;
1190	mmc_set_ios(host);
1191
1192	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1193		return -EAGAIN;
1194
1195	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1196	mmc_delay(10);
1197	host->ios.clock = clock;
1198	mmc_set_ios(host);
1199
1200	return 0;
1201}
1202
1203int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1204{
1205	struct mmc_command cmd = {};
1206	int err = 0;
1207
1208	/*
1209	 * If we cannot switch voltages, return failure so the caller
1210	 * can continue without UHS mode
1211	 */
1212	if (!host->ops->start_signal_voltage_switch)
1213		return -EPERM;
1214	if (!host->ops->card_busy)
1215		pr_warn("%s: cannot verify signal voltage switch\n",
1216			mmc_hostname(host));
1217
1218	cmd.opcode = SD_SWITCH_VOLTAGE;
1219	cmd.arg = 0;
1220	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1221
1222	err = mmc_wait_for_cmd(host, &cmd, 0);
1223	if (err)
1224		return err;
1225
1226	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1227		return -EIO;
1228
1229	/*
1230	 * The card should drive cmd and dat[0:3] low immediately
1231	 * after the response of cmd11, but wait 1 ms to be sure
1232	 */
1233	mmc_delay(1);
1234	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1235		err = -EAGAIN;
1236		goto power_cycle;
1237	}
1238
1239	if (mmc_host_set_uhs_voltage(host)) {
1240		/*
1241		 * Voltages may not have been switched, but we've already
1242		 * sent CMD11, so a power cycle is required anyway
1243		 */
1244		err = -EAGAIN;
1245		goto power_cycle;
1246	}
1247
1248	/* Wait for at least 1 ms according to spec */
1249	mmc_delay(1);
1250
1251	/*
1252	 * Failure to switch is indicated by the card holding
1253	 * dat[0:3] low
1254	 */
1255	if (host->ops->card_busy && host->ops->card_busy(host))
1256		err = -EAGAIN;
1257
1258power_cycle:
1259	if (err) {
1260		pr_debug("%s: Signal voltage switch failed, "
1261			"power cycling card\n", mmc_hostname(host));
1262		mmc_power_cycle(host, ocr);
1263	}
1264
1265	return err;
1266}
1267
1268/*
1269 * Select timing parameters for host.
1270 */
1271void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1272{
1273	host->ios.timing = timing;
1274	mmc_set_ios(host);
1275}
1276
1277/*
1278 * Select appropriate driver type for host.
1279 */
1280void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1281{
1282	host->ios.drv_type = drv_type;
1283	mmc_set_ios(host);
1284}
1285
1286int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1287			      int card_drv_type, int *drv_type)
1288{
1289	struct mmc_host *host = card->host;
1290	int host_drv_type = SD_DRIVER_TYPE_B;
1291
1292	*drv_type = 0;
1293
1294	if (!host->ops->select_drive_strength)
1295		return 0;
1296
1297	/* Use SD definition of driver strength for hosts */
1298	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1299		host_drv_type |= SD_DRIVER_TYPE_A;
1300
1301	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1302		host_drv_type |= SD_DRIVER_TYPE_C;
1303
1304	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1305		host_drv_type |= SD_DRIVER_TYPE_D;
1306
1307	/*
1308	 * The drive strength that the hardware can support
1309	 * depends on the board design.  Pass the appropriate
1310	 * information and let the hardware specific code
1311	 * return what is possible given the options
1312	 */
1313	return host->ops->select_drive_strength(card, max_dtr,
1314						host_drv_type,
1315						card_drv_type,
1316						drv_type);
1317}
1318
1319/*
1320 * Apply power to the MMC stack.  This is a two-stage process.
1321 * First, we enable power to the card without the clock running.
1322 * We then wait a bit for the power to stabilise.  Finally,
1323 * enable the bus drivers and clock to the card.
1324 *
1325 * We must _NOT_ enable the clock prior to power stablising.
1326 *
1327 * If a host does all the power sequencing itself, ignore the
1328 * initial MMC_POWER_UP stage.
1329 */
1330void mmc_power_up(struct mmc_host *host, u32 ocr)
1331{
1332	if (host->ios.power_mode == MMC_POWER_ON)
1333		return;
1334
1335	mmc_pwrseq_pre_power_on(host);
1336
1337	host->ios.vdd = fls(ocr) - 1;
1338	host->ios.power_mode = MMC_POWER_UP;
1339	/* Set initial state and call mmc_set_ios */
1340	mmc_set_initial_state(host);
1341
1342	mmc_set_initial_signal_voltage(host);
1343
1344	/*
1345	 * This delay should be sufficient to allow the power supply
1346	 * to reach the minimum voltage.
1347	 */
1348	mmc_delay(host->ios.power_delay_ms);
1349
1350	mmc_pwrseq_post_power_on(host);
1351
1352	host->ios.clock = host->f_init;
1353
1354	host->ios.power_mode = MMC_POWER_ON;
1355	mmc_set_ios(host);
1356
1357	/*
1358	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1359	 * time required to reach a stable voltage.
1360	 */
1361	mmc_delay(host->ios.power_delay_ms);
1362}
1363
1364void mmc_power_off(struct mmc_host *host)
1365{
1366	if (host->ios.power_mode == MMC_POWER_OFF)
1367		return;
1368
1369	mmc_pwrseq_power_off(host);
1370
1371	host->ios.clock = 0;
1372	host->ios.vdd = 0;
1373
1374	host->ios.power_mode = MMC_POWER_OFF;
1375	/* Set initial state and call mmc_set_ios */
1376	mmc_set_initial_state(host);
1377
1378	/*
1379	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1380	 * XO-1.5, require a short delay after poweroff before the card
1381	 * can be successfully turned on again.
1382	 */
1383	mmc_delay(1);
1384}
1385
1386void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1387{
1388	mmc_power_off(host);
1389	/* Wait at least 1 ms according to SD spec */
1390	mmc_delay(1);
1391	mmc_power_up(host, ocr);
1392}
1393
1394/*
1395 * Cleanup when the last reference to the bus operator is dropped.
1396 */
1397static void __mmc_release_bus(struct mmc_host *host)
1398{
1399	WARN_ON(!host->bus_dead);
1400
1401	host->bus_ops = NULL;
1402}
1403
1404/*
1405 * Increase reference count of bus operator
1406 */
1407static inline void mmc_bus_get(struct mmc_host *host)
1408{
1409	unsigned long flags;
1410
1411	spin_lock_irqsave(&host->lock, flags);
1412	host->bus_refs++;
1413	spin_unlock_irqrestore(&host->lock, flags);
1414}
1415
1416/*
1417 * Decrease reference count of bus operator and free it if
1418 * it is the last reference.
1419 */
1420static inline void mmc_bus_put(struct mmc_host *host)
1421{
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&host->lock, flags);
1425	host->bus_refs--;
1426	if ((host->bus_refs == 0) && host->bus_ops)
1427		__mmc_release_bus(host);
1428	spin_unlock_irqrestore(&host->lock, flags);
1429}
1430
1431/*
1432 * Assign a mmc bus handler to a host. Only one bus handler may control a
1433 * host at any given time.
1434 */
1435void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1436{
1437	unsigned long flags;
1438
1439	WARN_ON(!host->claimed);
1440
1441	spin_lock_irqsave(&host->lock, flags);
1442
1443	WARN_ON(host->bus_ops);
1444	WARN_ON(host->bus_refs);
1445
1446	host->bus_ops = ops;
1447	host->bus_refs = 1;
1448	host->bus_dead = 0;
1449
1450	spin_unlock_irqrestore(&host->lock, flags);
1451}
1452
1453/*
1454 * Remove the current bus handler from a host.
1455 */
1456void mmc_detach_bus(struct mmc_host *host)
1457{
1458	unsigned long flags;
1459
1460	WARN_ON(!host->claimed);
1461	WARN_ON(!host->bus_ops);
1462
1463	spin_lock_irqsave(&host->lock, flags);
1464
1465	host->bus_dead = 1;
1466
1467	spin_unlock_irqrestore(&host->lock, flags);
1468
1469	mmc_bus_put(host);
1470}
1471
1472static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1473				bool cd_irq)
1474{
1475	/*
1476	 * If the device is configured as wakeup, we prevent a new sleep for
1477	 * 5 s to give provision for user space to consume the event.
 
1478	 */
1479	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1480		device_can_wakeup(mmc_dev(host)))
1481		pm_wakeup_event(mmc_dev(host), 5000);
1482
1483	host->detect_change = 1;
1484	mmc_schedule_delayed_work(&host->detect, delay);
1485}
1486
1487/**
1488 *	mmc_detect_change - process change of state on a MMC socket
1489 *	@host: host which changed state.
1490 *	@delay: optional delay to wait before detection (jiffies)
1491 *
1492 *	MMC drivers should call this when they detect a card has been
1493 *	inserted or removed. The MMC layer will confirm that any
1494 *	present card is still functional, and initialize any newly
1495 *	inserted.
1496 */
1497void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1498{
1499	_mmc_detect_change(host, delay, true);
1500}
1501EXPORT_SYMBOL(mmc_detect_change);
1502
1503void mmc_init_erase(struct mmc_card *card)
1504{
1505	unsigned int sz;
1506
1507	if (is_power_of_2(card->erase_size))
1508		card->erase_shift = ffs(card->erase_size) - 1;
1509	else
1510		card->erase_shift = 0;
1511
1512	/*
1513	 * It is possible to erase an arbitrarily large area of an SD or MMC
1514	 * card.  That is not desirable because it can take a long time
1515	 * (minutes) potentially delaying more important I/O, and also the
1516	 * timeout calculations become increasingly hugely over-estimated.
1517	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1518	 * to that size and alignment.
1519	 *
1520	 * For SD cards that define Allocation Unit size, limit erases to one
1521	 * Allocation Unit at a time.
1522	 * For MMC, have a stab at ai good value and for modern cards it will
1523	 * end up being 4MiB. Note that if the value is too small, it can end
1524	 * up taking longer to erase. Also note, erase_size is already set to
1525	 * High Capacity Erase Size if available when this function is called.
1526	 */
1527	if (mmc_card_sd(card) && card->ssr.au) {
1528		card->pref_erase = card->ssr.au;
1529		card->erase_shift = ffs(card->ssr.au) - 1;
1530	} else if (card->erase_size) {
1531		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1532		if (sz < 128)
1533			card->pref_erase = 512 * 1024 / 512;
1534		else if (sz < 512)
1535			card->pref_erase = 1024 * 1024 / 512;
1536		else if (sz < 1024)
1537			card->pref_erase = 2 * 1024 * 1024 / 512;
1538		else
1539			card->pref_erase = 4 * 1024 * 1024 / 512;
1540		if (card->pref_erase < card->erase_size)
1541			card->pref_erase = card->erase_size;
1542		else {
1543			sz = card->pref_erase % card->erase_size;
1544			if (sz)
1545				card->pref_erase += card->erase_size - sz;
1546		}
1547	} else
1548		card->pref_erase = 0;
1549}
1550
 
 
 
 
 
1551static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1552				          unsigned int arg, unsigned int qty)
1553{
1554	unsigned int erase_timeout;
1555
1556	if (arg == MMC_DISCARD_ARG ||
1557	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1558		erase_timeout = card->ext_csd.trim_timeout;
1559	} else if (card->ext_csd.erase_group_def & 1) {
1560		/* High Capacity Erase Group Size uses HC timeouts */
1561		if (arg == MMC_TRIM_ARG)
1562			erase_timeout = card->ext_csd.trim_timeout;
1563		else
1564			erase_timeout = card->ext_csd.hc_erase_timeout;
1565	} else {
1566		/* CSD Erase Group Size uses write timeout */
1567		unsigned int mult = (10 << card->csd.r2w_factor);
1568		unsigned int timeout_clks = card->csd.taac_clks * mult;
1569		unsigned int timeout_us;
1570
1571		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1572		if (card->csd.taac_ns < 1000000)
1573			timeout_us = (card->csd.taac_ns * mult) / 1000;
1574		else
1575			timeout_us = (card->csd.taac_ns / 1000) * mult;
1576
1577		/*
1578		 * ios.clock is only a target.  The real clock rate might be
1579		 * less but not that much less, so fudge it by multiplying by 2.
1580		 */
1581		timeout_clks <<= 1;
1582		timeout_us += (timeout_clks * 1000) /
1583			      (card->host->ios.clock / 1000);
1584
1585		erase_timeout = timeout_us / 1000;
1586
1587		/*
1588		 * Theoretically, the calculation could underflow so round up
1589		 * to 1ms in that case.
1590		 */
1591		if (!erase_timeout)
1592			erase_timeout = 1;
1593	}
1594
1595	/* Multiplier for secure operations */
1596	if (arg & MMC_SECURE_ARGS) {
1597		if (arg == MMC_SECURE_ERASE_ARG)
1598			erase_timeout *= card->ext_csd.sec_erase_mult;
1599		else
1600			erase_timeout *= card->ext_csd.sec_trim_mult;
1601	}
1602
1603	erase_timeout *= qty;
1604
1605	/*
1606	 * Ensure at least a 1 second timeout for SPI as per
1607	 * 'mmc_set_data_timeout()'
1608	 */
1609	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1610		erase_timeout = 1000;
1611
1612	return erase_timeout;
1613}
1614
1615static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1616					 unsigned int arg,
1617					 unsigned int qty)
1618{
1619	unsigned int erase_timeout;
1620
1621	/* for DISCARD none of the below calculation applies.
1622	 * the busy timeout is 250msec per discard command.
1623	 */
1624	if (arg == SD_DISCARD_ARG)
1625		return SD_DISCARD_TIMEOUT_MS;
1626
1627	if (card->ssr.erase_timeout) {
1628		/* Erase timeout specified in SD Status Register (SSR) */
1629		erase_timeout = card->ssr.erase_timeout * qty +
1630				card->ssr.erase_offset;
1631	} else {
1632		/*
1633		 * Erase timeout not specified in SD Status Register (SSR) so
1634		 * use 250ms per write block.
1635		 */
1636		erase_timeout = 250 * qty;
1637	}
1638
1639	/* Must not be less than 1 second */
1640	if (erase_timeout < 1000)
1641		erase_timeout = 1000;
1642
1643	return erase_timeout;
1644}
1645
1646static unsigned int mmc_erase_timeout(struct mmc_card *card,
1647				      unsigned int arg,
1648				      unsigned int qty)
1649{
1650	if (mmc_card_sd(card))
1651		return mmc_sd_erase_timeout(card, arg, qty);
1652	else
1653		return mmc_mmc_erase_timeout(card, arg, qty);
1654}
1655
1656static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1657			unsigned int to, unsigned int arg)
1658{
1659	struct mmc_command cmd = {};
1660	unsigned int qty = 0, busy_timeout = 0;
1661	bool use_r1b_resp = false;
1662	unsigned long timeout;
1663	int loop_udelay=64, udelay_max=32768;
1664	int err;
1665
1666	mmc_retune_hold(card->host);
1667
1668	/*
1669	 * qty is used to calculate the erase timeout which depends on how many
1670	 * erase groups (or allocation units in SD terminology) are affected.
1671	 * We count erasing part of an erase group as one erase group.
1672	 * For SD, the allocation units are always a power of 2.  For MMC, the
1673	 * erase group size is almost certainly also power of 2, but it does not
1674	 * seem to insist on that in the JEDEC standard, so we fall back to
1675	 * division in that case.  SD may not specify an allocation unit size,
1676	 * in which case the timeout is based on the number of write blocks.
1677	 *
1678	 * Note that the timeout for secure trim 2 will only be correct if the
1679	 * number of erase groups specified is the same as the total of all
1680	 * preceding secure trim 1 commands.  Since the power may have been
1681	 * lost since the secure trim 1 commands occurred, it is generally
1682	 * impossible to calculate the secure trim 2 timeout correctly.
1683	 */
1684	if (card->erase_shift)
1685		qty += ((to >> card->erase_shift) -
1686			(from >> card->erase_shift)) + 1;
1687	else if (mmc_card_sd(card))
1688		qty += to - from + 1;
1689	else
1690		qty += ((to / card->erase_size) -
1691			(from / card->erase_size)) + 1;
1692
1693	if (!mmc_card_blockaddr(card)) {
1694		from <<= 9;
1695		to <<= 9;
1696	}
1697
1698	if (mmc_card_sd(card))
1699		cmd.opcode = SD_ERASE_WR_BLK_START;
1700	else
1701		cmd.opcode = MMC_ERASE_GROUP_START;
1702	cmd.arg = from;
1703	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
1704	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1705	if (err) {
1706		pr_err("mmc_erase: group start error %d, "
1707		       "status %#x\n", err, cmd.resp[0]);
1708		err = -EIO;
1709		goto out;
1710	}
1711
1712	memset(&cmd, 0, sizeof(struct mmc_command));
1713	if (mmc_card_sd(card))
1714		cmd.opcode = SD_ERASE_WR_BLK_END;
1715	else
1716		cmd.opcode = MMC_ERASE_GROUP_END;
1717	cmd.arg = to;
1718	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
1719	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1720	if (err) {
1721		pr_err("mmc_erase: group end error %d, status %#x\n",
1722		       err, cmd.resp[0]);
1723		err = -EIO;
1724		goto out;
1725	}
1726
1727	memset(&cmd, 0, sizeof(struct mmc_command));
1728	cmd.opcode = MMC_ERASE;
1729	cmd.arg = arg;
1730	busy_timeout = mmc_erase_timeout(card, arg, qty);
1731	/*
1732	 * If the host controller supports busy signalling and the timeout for
1733	 * the erase operation does not exceed the max_busy_timeout, we should
1734	 * use R1B response. Or we need to prevent the host from doing hw busy
1735	 * detection, which is done by converting to a R1 response instead.
1736	 */
1737	if (card->host->max_busy_timeout &&
1738	    busy_timeout > card->host->max_busy_timeout) {
1739		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1740	} else {
1741		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1742		cmd.busy_timeout = busy_timeout;
1743		use_r1b_resp = true;
1744	}
1745
1746	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1747	if (err) {
1748		pr_err("mmc_erase: erase error %d, status %#x\n",
1749		       err, cmd.resp[0]);
1750		err = -EIO;
1751		goto out;
1752	}
1753
1754	if (mmc_host_is_spi(card->host))
1755		goto out;
1756
1757	/*
1758	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1759	 * shall be avoided.
1760	 */
1761	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1762		goto out;
1763
1764	timeout = jiffies + msecs_to_jiffies(busy_timeout);
1765	do {
1766		memset(&cmd, 0, sizeof(struct mmc_command));
1767		cmd.opcode = MMC_SEND_STATUS;
1768		cmd.arg = card->rca << 16;
1769		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1770		/* Do not retry else we can't see errors */
1771		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1772		if (err || R1_STATUS(cmd.resp[0])) {
1773			pr_err("error %d requesting status %#x\n",
1774				err, cmd.resp[0]);
1775			err = -EIO;
1776			goto out;
1777		}
1778
1779		/* Timeout if the device never becomes ready for data and
1780		 * never leaves the program state.
1781		 */
1782		if (time_after(jiffies, timeout)) {
1783			pr_err("%s: Card stuck in programming state! %s\n",
1784				mmc_hostname(card->host), __func__);
1785			err =  -EIO;
1786			goto out;
1787		}
1788		if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
1789		    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
1790			break;
1791
1792		usleep_range(loop_udelay, loop_udelay*2);
1793		if (loop_udelay < udelay_max)
1794			loop_udelay *= 2;
1795	} while (1);
1796
1797out:
1798	mmc_retune_release(card->host);
1799	return err;
1800}
1801
1802static unsigned int mmc_align_erase_size(struct mmc_card *card,
1803					 unsigned int *from,
1804					 unsigned int *to,
1805					 unsigned int nr)
1806{
1807	unsigned int from_new = *from, nr_new = nr, rem;
 
1808
1809	/*
1810	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1811	 * to align the erase size efficiently.
1812	 */
1813	if (is_power_of_2(card->erase_size)) {
1814		unsigned int temp = from_new;
1815
1816		from_new = round_up(temp, card->erase_size);
1817		rem = from_new - temp;
1818
1819		if (nr_new > rem)
1820			nr_new -= rem;
1821		else
1822			return 0;
1823
1824		nr_new = round_down(nr_new, card->erase_size);
1825	} else {
1826		rem = from_new % card->erase_size;
1827		if (rem) {
1828			rem = card->erase_size - rem;
1829			from_new += rem;
1830			if (nr_new > rem)
1831				nr_new -= rem;
1832			else
1833				return 0;
1834		}
1835
1836		rem = nr_new % card->erase_size;
1837		if (rem)
1838			nr_new -= rem;
1839	}
1840
1841	if (nr_new == 0)
1842		return 0;
1843
1844	*to = from_new + nr_new;
1845	*from = from_new;
1846
1847	return nr_new;
1848}
1849
1850/**
1851 * mmc_erase - erase sectors.
1852 * @card: card to erase
1853 * @from: first sector to erase
1854 * @nr: number of sectors to erase
1855 * @arg: erase command argument
1856 *
1857 * Caller must claim host before calling this function.
1858 */
1859int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1860	      unsigned int arg)
1861{
1862	unsigned int rem, to = from + nr;
 
 
1863	int err;
1864
1865	if (!(card->host->caps & MMC_CAP_ERASE) ||
1866	    !(card->csd.cmdclass & CCC_ERASE))
1867		return -EOPNOTSUPP;
1868
1869	if (!card->erase_size)
1870		return -EOPNOTSUPP;
1871
1872	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1873		return -EOPNOTSUPP;
1874
1875	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1876	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1877		return -EOPNOTSUPP;
1878
1879	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1880	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1881		return -EOPNOTSUPP;
1882
1883	if (arg == MMC_SECURE_ERASE_ARG) {
1884		if (from % card->erase_size || nr % card->erase_size)
1885			return -EINVAL;
1886	}
1887
1888	if (arg == MMC_ERASE_ARG)
1889		nr = mmc_align_erase_size(card, &from, &to, nr);
1890
1891	if (nr == 0)
1892		return 0;
1893
1894	if (to <= from)
1895		return -EINVAL;
1896
1897	/* 'from' and 'to' are inclusive */
1898	to -= 1;
1899
1900	/*
1901	 * Special case where only one erase-group fits in the timeout budget:
1902	 * If the region crosses an erase-group boundary on this particular
1903	 * case, we will be trimming more than one erase-group which, does not
1904	 * fit in the timeout budget of the controller, so we need to split it
1905	 * and call mmc_do_erase() twice if necessary. This special case is
1906	 * identified by the card->eg_boundary flag.
1907	 */
1908	rem = card->erase_size - (from % card->erase_size);
1909	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1910		err = mmc_do_erase(card, from, from + rem - 1, arg);
1911		from += rem;
1912		if ((err) || (to <= from))
1913			return err;
1914	}
1915
1916	return mmc_do_erase(card, from, to, arg);
1917}
1918EXPORT_SYMBOL(mmc_erase);
1919
1920int mmc_can_erase(struct mmc_card *card)
1921{
1922	if ((card->host->caps & MMC_CAP_ERASE) &&
1923	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1924		return 1;
1925	return 0;
1926}
1927EXPORT_SYMBOL(mmc_can_erase);
1928
1929int mmc_can_trim(struct mmc_card *card)
1930{
1931	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1932	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1933		return 1;
1934	return 0;
1935}
1936EXPORT_SYMBOL(mmc_can_trim);
1937
1938int mmc_can_discard(struct mmc_card *card)
1939{
1940	/*
1941	 * As there's no way to detect the discard support bit at v4.5
1942	 * use the s/w feature support filed.
1943	 */
1944	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1945		return 1;
1946	return 0;
1947}
1948EXPORT_SYMBOL(mmc_can_discard);
1949
1950int mmc_can_sanitize(struct mmc_card *card)
1951{
1952	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1953		return 0;
1954	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1955		return 1;
1956	return 0;
1957}
1958EXPORT_SYMBOL(mmc_can_sanitize);
1959
1960int mmc_can_secure_erase_trim(struct mmc_card *card)
1961{
1962	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1963	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1964		return 1;
1965	return 0;
1966}
1967EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1968
1969int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1970			    unsigned int nr)
1971{
1972	if (!card->erase_size)
1973		return 0;
1974	if (from % card->erase_size || nr % card->erase_size)
1975		return 0;
1976	return 1;
1977}
1978EXPORT_SYMBOL(mmc_erase_group_aligned);
1979
1980static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1981					    unsigned int arg)
1982{
1983	struct mmc_host *host = card->host;
1984	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1985	unsigned int last_timeout = 0;
1986	unsigned int max_busy_timeout = host->max_busy_timeout ?
1987			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1988
1989	if (card->erase_shift) {
1990		max_qty = UINT_MAX >> card->erase_shift;
1991		min_qty = card->pref_erase >> card->erase_shift;
1992	} else if (mmc_card_sd(card)) {
1993		max_qty = UINT_MAX;
1994		min_qty = card->pref_erase;
1995	} else {
1996		max_qty = UINT_MAX / card->erase_size;
1997		min_qty = card->pref_erase / card->erase_size;
1998	}
1999
2000	/*
2001	 * We should not only use 'host->max_busy_timeout' as the limitation
2002	 * when deciding the max discard sectors. We should set a balance value
2003	 * to improve the erase speed, and it can not get too long timeout at
2004	 * the same time.
2005	 *
2006	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2007	 * matter what size of 'host->max_busy_timeout', but if the
2008	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2009	 * then we can continue to increase the max discard sectors until we
2010	 * get a balance value. In cases when the 'host->max_busy_timeout'
2011	 * isn't specified, use the default max erase timeout.
2012	 */
2013	do {
2014		y = 0;
2015		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2016			timeout = mmc_erase_timeout(card, arg, qty + x);
2017
2018			if (qty + x > min_qty && timeout > max_busy_timeout)
2019				break;
2020
2021			if (timeout < last_timeout)
2022				break;
2023			last_timeout = timeout;
2024			y = x;
2025		}
2026		qty += y;
2027	} while (y);
2028
2029	if (!qty)
2030		return 0;
2031
2032	/*
2033	 * When specifying a sector range to trim, chances are we might cross
2034	 * an erase-group boundary even if the amount of sectors is less than
2035	 * one erase-group.
2036	 * If we can only fit one erase-group in the controller timeout budget,
2037	 * we have to care that erase-group boundaries are not crossed by a
2038	 * single trim operation. We flag that special case with "eg_boundary".
2039	 * In all other cases we can just decrement qty and pretend that we
2040	 * always touch (qty + 1) erase-groups as a simple optimization.
2041	 */
2042	if (qty == 1)
2043		card->eg_boundary = 1;
2044	else
2045		qty--;
2046
2047	/* Convert qty to sectors */
2048	if (card->erase_shift)
2049		max_discard = qty << card->erase_shift;
2050	else if (mmc_card_sd(card))
2051		max_discard = qty + 1;
2052	else
2053		max_discard = qty * card->erase_size;
2054
2055	return max_discard;
2056}
2057
2058unsigned int mmc_calc_max_discard(struct mmc_card *card)
2059{
2060	struct mmc_host *host = card->host;
2061	unsigned int max_discard, max_trim;
2062
2063	/*
2064	 * Without erase_group_def set, MMC erase timeout depends on clock
2065	 * frequence which can change.  In that case, the best choice is
2066	 * just the preferred erase size.
2067	 */
2068	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2069		return card->pref_erase;
2070
2071	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2072	if (mmc_can_trim(card)) {
2073		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2074		if (max_trim < max_discard || max_discard == 0)
2075			max_discard = max_trim;
2076	} else if (max_discard < card->erase_size) {
2077		max_discard = 0;
2078	}
2079	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2080		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2081		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2082	return max_discard;
2083}
2084EXPORT_SYMBOL(mmc_calc_max_discard);
2085
2086bool mmc_card_is_blockaddr(struct mmc_card *card)
2087{
2088	return card ? mmc_card_blockaddr(card) : false;
2089}
2090EXPORT_SYMBOL(mmc_card_is_blockaddr);
2091
2092int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2093{
2094	struct mmc_command cmd = {};
2095
2096	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2097	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2098		return 0;
2099
2100	cmd.opcode = MMC_SET_BLOCKLEN;
2101	cmd.arg = blocklen;
2102	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2103	return mmc_wait_for_cmd(card->host, &cmd, 5);
2104}
2105EXPORT_SYMBOL(mmc_set_blocklen);
2106
2107static void mmc_hw_reset_for_init(struct mmc_host *host)
2108{
2109	mmc_pwrseq_reset(host);
2110
2111	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2112		return;
2113	host->ops->hw_reset(host);
2114}
2115
2116int mmc_hw_reset(struct mmc_host *host)
 
 
 
 
 
 
 
 
 
 
2117{
 
2118	int ret;
2119
2120	if (!host->card)
2121		return -EINVAL;
2122
2123	mmc_bus_get(host);
2124	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2125		mmc_bus_put(host);
2126		return -EOPNOTSUPP;
2127	}
2128
2129	ret = host->bus_ops->hw_reset(host);
2130	mmc_bus_put(host);
2131
2132	if (ret)
2133		pr_warn("%s: tried to HW reset card, got error %d\n",
2134			mmc_hostname(host), ret);
2135
2136	return ret;
2137}
2138EXPORT_SYMBOL(mmc_hw_reset);
2139
2140int mmc_sw_reset(struct mmc_host *host)
2141{
 
2142	int ret;
2143
2144	if (!host->card)
2145		return -EINVAL;
2146
2147	mmc_bus_get(host);
2148	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2149		mmc_bus_put(host);
2150		return -EOPNOTSUPP;
2151	}
2152
2153	ret = host->bus_ops->sw_reset(host);
2154	mmc_bus_put(host);
2155
2156	if (ret)
2157		pr_warn("%s: tried to SW reset card, got error %d\n",
2158			mmc_hostname(host), ret);
2159
2160	return ret;
2161}
2162EXPORT_SYMBOL(mmc_sw_reset);
2163
2164static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2165{
2166	host->f_init = freq;
2167
2168	pr_debug("%s: %s: trying to init card at %u Hz\n",
2169		mmc_hostname(host), __func__, host->f_init);
2170
2171	mmc_power_up(host, host->ocr_avail);
2172
2173	/*
2174	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2175	 * do a hardware reset if possible.
2176	 */
2177	mmc_hw_reset_for_init(host);
2178
2179	/*
2180	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2181	 * if the card is being re-initialized, just send it.  CMD52
2182	 * should be ignored by SD/eMMC cards.
2183	 * Skip it if we already know that we do not support SDIO commands
2184	 */
2185	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2186		sdio_reset(host);
2187
2188	mmc_go_idle(host);
2189
2190	if (!(host->caps2 & MMC_CAP2_NO_SD))
2191		mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
2192
2193	/* Order's important: probe SDIO, then SD, then MMC */
2194	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2195		if (!mmc_attach_sdio(host))
2196			return 0;
2197
2198	if (!(host->caps2 & MMC_CAP2_NO_SD))
2199		if (!mmc_attach_sd(host))
2200			return 0;
2201
2202	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2203		if (!mmc_attach_mmc(host))
2204			return 0;
2205
 
2206	mmc_power_off(host);
2207	return -EIO;
2208}
2209
2210int _mmc_detect_card_removed(struct mmc_host *host)
2211{
2212	int ret;
2213
2214	if (!host->card || mmc_card_removed(host->card))
2215		return 1;
2216
2217	ret = host->bus_ops->alive(host);
2218
2219	/*
2220	 * Card detect status and alive check may be out of sync if card is
2221	 * removed slowly, when card detect switch changes while card/slot
2222	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2223	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2224	 * detect work 200ms later for this case.
2225	 */
2226	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2227		mmc_detect_change(host, msecs_to_jiffies(200));
2228		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2229	}
2230
2231	if (ret) {
2232		mmc_card_set_removed(host->card);
2233		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2234	}
2235
2236	return ret;
2237}
2238
2239int mmc_detect_card_removed(struct mmc_host *host)
2240{
2241	struct mmc_card *card = host->card;
2242	int ret;
2243
2244	WARN_ON(!host->claimed);
2245
2246	if (!card)
2247		return 1;
2248
2249	if (!mmc_card_is_removable(host))
2250		return 0;
2251
2252	ret = mmc_card_removed(card);
2253	/*
2254	 * The card will be considered unchanged unless we have been asked to
2255	 * detect a change or host requires polling to provide card detection.
2256	 */
2257	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2258		return ret;
2259
2260	host->detect_change = 0;
2261	if (!ret) {
2262		ret = _mmc_detect_card_removed(host);
2263		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2264			/*
2265			 * Schedule a detect work as soon as possible to let a
2266			 * rescan handle the card removal.
2267			 */
2268			cancel_delayed_work(&host->detect);
2269			_mmc_detect_change(host, 0, false);
2270		}
2271	}
2272
2273	return ret;
2274}
2275EXPORT_SYMBOL(mmc_detect_card_removed);
2276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277void mmc_rescan(struct work_struct *work)
2278{
2279	struct mmc_host *host =
2280		container_of(work, struct mmc_host, detect.work);
2281	int i;
2282
2283	if (host->rescan_disable)
2284		return;
2285
2286	/* If there is a non-removable card registered, only scan once */
2287	if (!mmc_card_is_removable(host) && host->rescan_entered)
2288		return;
2289	host->rescan_entered = 1;
2290
2291	if (host->trigger_card_event && host->ops->card_event) {
2292		mmc_claim_host(host);
2293		host->ops->card_event(host);
2294		mmc_release_host(host);
2295		host->trigger_card_event = false;
2296	}
2297
2298	mmc_bus_get(host);
2299
2300	/*
2301	 * if there is a _removable_ card registered, check whether it is
2302	 * still present
2303	 */
2304	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2305		host->bus_ops->detect(host);
2306
2307	host->detect_change = 0;
2308
2309	/*
2310	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2311	 * the card is no longer present.
2312	 */
2313	mmc_bus_put(host);
2314	mmc_bus_get(host);
2315
2316	/* if there still is a card present, stop here */
2317	if (host->bus_ops != NULL) {
2318		mmc_bus_put(host);
2319		goto out;
2320	}
2321
2322	/*
2323	 * Only we can add a new handler, so it's safe to
2324	 * release the lock here.
2325	 */
2326	mmc_bus_put(host);
2327
2328	mmc_claim_host(host);
2329	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2330			host->ops->get_cd(host) == 0) {
2331		mmc_power_off(host);
2332		mmc_release_host(host);
2333		goto out;
2334	}
2335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2337		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2338			break;
2339		if (freqs[i] <= host->f_min)
2340			break;
2341	}
 
 
 
 
 
 
 
 
 
 
 
2342	mmc_release_host(host);
2343
2344 out:
2345	if (host->caps & MMC_CAP_NEEDS_POLL)
2346		mmc_schedule_delayed_work(&host->detect, HZ);
2347}
2348
2349void mmc_start_host(struct mmc_host *host)
2350{
2351	host->f_init = max(freqs[0], host->f_min);
 
 
 
2352	host->rescan_disable = 0;
2353	host->ios.power_mode = MMC_POWER_UNDEFINED;
2354
2355	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2356		mmc_claim_host(host);
2357		mmc_power_up(host, host->ocr_avail);
2358		mmc_release_host(host);
2359	}
2360
2361	mmc_gpiod_request_cd_irq(host);
2362	_mmc_detect_change(host, 0, false);
2363}
2364
2365void mmc_stop_host(struct mmc_host *host)
2366{
 
 
 
2367	if (host->slot.cd_irq >= 0) {
2368		mmc_gpio_set_cd_wake(host, false);
2369		disable_irq(host->slot.cd_irq);
2370	}
2371
2372	host->rescan_disable = 1;
2373	cancel_delayed_work_sync(&host->detect);
 
 
 
 
 
2374
2375	/* clear pm flags now and let card drivers set them as needed */
2376	host->pm_flags = 0;
2377
2378	mmc_bus_get(host);
2379	if (host->bus_ops && !host->bus_dead) {
2380		/* Calling bus_ops->remove() with a claimed host can deadlock */
2381		host->bus_ops->remove(host);
2382		mmc_claim_host(host);
2383		mmc_detach_bus(host);
2384		mmc_power_off(host);
2385		mmc_release_host(host);
2386		mmc_bus_put(host);
2387		return;
2388	}
2389	mmc_bus_put(host);
2390
2391	mmc_claim_host(host);
2392	mmc_power_off(host);
2393	mmc_release_host(host);
2394}
2395
2396#ifdef CONFIG_PM_SLEEP
2397/* Do the card removal on suspend if card is assumed removeable
2398 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2399   to sync the card.
2400*/
2401static int mmc_pm_notify(struct notifier_block *notify_block,
2402			unsigned long mode, void *unused)
2403{
2404	struct mmc_host *host = container_of(
2405		notify_block, struct mmc_host, pm_notify);
2406	unsigned long flags;
2407	int err = 0;
2408
2409	switch (mode) {
2410	case PM_HIBERNATION_PREPARE:
2411	case PM_SUSPEND_PREPARE:
2412	case PM_RESTORE_PREPARE:
2413		spin_lock_irqsave(&host->lock, flags);
2414		host->rescan_disable = 1;
2415		spin_unlock_irqrestore(&host->lock, flags);
2416		cancel_delayed_work_sync(&host->detect);
2417
2418		if (!host->bus_ops)
2419			break;
2420
2421		/* Validate prerequisites for suspend */
2422		if (host->bus_ops->pre_suspend)
2423			err = host->bus_ops->pre_suspend(host);
2424		if (!err)
2425			break;
2426
2427		if (!mmc_card_is_removable(host)) {
2428			dev_warn(mmc_dev(host),
2429				 "pre_suspend failed for non-removable host: "
2430				 "%d\n", err);
2431			/* Avoid removing non-removable hosts */
2432			break;
2433		}
2434
2435		/* Calling bus_ops->remove() with a claimed host can deadlock */
2436		host->bus_ops->remove(host);
2437		mmc_claim_host(host);
2438		mmc_detach_bus(host);
2439		mmc_power_off(host);
2440		mmc_release_host(host);
2441		host->pm_flags = 0;
2442		break;
2443
2444	case PM_POST_SUSPEND:
2445	case PM_POST_HIBERNATION:
2446	case PM_POST_RESTORE:
2447
2448		spin_lock_irqsave(&host->lock, flags);
2449		host->rescan_disable = 0;
2450		spin_unlock_irqrestore(&host->lock, flags);
2451		_mmc_detect_change(host, 0, false);
2452
2453	}
2454
2455	return 0;
2456}
2457
2458void mmc_register_pm_notifier(struct mmc_host *host)
2459{
2460	host->pm_notify.notifier_call = mmc_pm_notify;
2461	register_pm_notifier(&host->pm_notify);
2462}
2463
2464void mmc_unregister_pm_notifier(struct mmc_host *host)
2465{
2466	unregister_pm_notifier(&host->pm_notify);
2467}
2468#endif
2469
2470static int __init mmc_init(void)
2471{
2472	int ret;
2473
2474	ret = mmc_register_bus();
2475	if (ret)
2476		return ret;
2477
2478	ret = mmc_register_host_class();
2479	if (ret)
2480		goto unregister_bus;
2481
2482	ret = sdio_register_bus();
2483	if (ret)
2484		goto unregister_host_class;
2485
2486	return 0;
2487
2488unregister_host_class:
2489	mmc_unregister_host_class();
2490unregister_bus:
2491	mmc_unregister_bus();
2492	return ret;
2493}
2494
2495static void __exit mmc_exit(void)
2496{
2497	sdio_unregister_bus();
2498	mmc_unregister_host_class();
2499	mmc_unregister_bus();
2500}
2501
2502subsys_initcall(mmc_init);
2503module_exit(mmc_exit);
2504
 
2505MODULE_LICENSE("GPL");