Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
 
 
 
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	if (mrq->cmd && mrq->cmd->has_ext_addr)
 340		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
 341
 342	init_completion(&mrq->cmd_completion);
 343
 344	mmc_retune_hold(host);
 345
 346	if (mmc_card_removed(host->card))
 347		return -ENOMEDIUM;
 348
 349	mmc_mrq_pr_debug(host, mrq, false);
 350
 351	WARN_ON(!host->claimed);
 352
 353	err = mmc_mrq_prep(host, mrq);
 354	if (err)
 355		return err;
 356
 357	if (host->uhs2_sd_tran)
 358		mmc_uhs2_prepare_cmd(host, mrq);
 359
 360	led_trigger_event(host->led, LED_FULL);
 361	__mmc_start_request(host, mrq);
 362
 363	return 0;
 364}
 365EXPORT_SYMBOL(mmc_start_request);
 366
 367static void mmc_wait_done(struct mmc_request *mrq)
 368{
 369	complete(&mrq->completion);
 370}
 371
 372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 373{
 374	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 375
 376	/*
 377	 * If there is an ongoing transfer, wait for the command line to become
 378	 * available.
 379	 */
 380	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 381		wait_for_completion(&ongoing_mrq->cmd_completion);
 382}
 383
 384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 385{
 386	int err;
 387
 388	mmc_wait_ongoing_tfr_cmd(host);
 389
 390	init_completion(&mrq->completion);
 391	mrq->done = mmc_wait_done;
 392
 393	err = mmc_start_request(host, mrq);
 394	if (err) {
 395		mrq->cmd->error = err;
 396		mmc_complete_cmd(mrq);
 397		complete(&mrq->completion);
 398	}
 399
 400	return err;
 401}
 402
 403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 404{
 405	struct mmc_command *cmd;
 406
 407	while (1) {
 408		wait_for_completion(&mrq->completion);
 409
 410		cmd = mrq->cmd;
 411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412		if (!cmd->error || !cmd->retries ||
 413		    mmc_card_removed(host->card))
 414			break;
 415
 416		mmc_retune_recheck(host);
 417
 418		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 419			 mmc_hostname(host), cmd->opcode, cmd->error);
 420		cmd->retries--;
 421		cmd->error = 0;
 422		__mmc_start_request(host, mrq);
 423	}
 424
 425	mmc_retune_release(host);
 426}
 427EXPORT_SYMBOL(mmc_wait_for_req_done);
 428
 429/*
 430 * mmc_cqe_start_req - Start a CQE request.
 431 * @host: MMC host to start the request
 432 * @mrq: request to start
 433 *
 434 * Start the request, re-tuning if needed and it is possible. Returns an error
 435 * code if the request fails to start or -EBUSY if CQE is busy.
 436 */
 437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 438{
 439	int err;
 440
 441	/*
 442	 * CQE cannot process re-tuning commands. Caller must hold retuning
 443	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 444	 * active requests i.e. this is the first.  Note, re-tuning will call
 445	 * ->cqe_off().
 446	 */
 447	err = mmc_retune(host);
 448	if (err)
 449		goto out_err;
 450
 451	mrq->host = host;
 452
 453	mmc_mrq_pr_debug(host, mrq, true);
 454
 455	err = mmc_mrq_prep(host, mrq);
 456	if (err)
 457		goto out_err;
 458
 459	if (host->uhs2_sd_tran)
 460		mmc_uhs2_prepare_cmd(host, mrq);
 461
 462	err = host->cqe_ops->cqe_request(host, mrq);
 463	if (err)
 464		goto out_err;
 465
 466	trace_mmc_request_start(host, mrq);
 467
 468	return 0;
 469
 470out_err:
 471	if (mrq->cmd) {
 472		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 473			 mmc_hostname(host), mrq->cmd->opcode, err);
 474	} else {
 475		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 476			 mmc_hostname(host), mrq->tag, err);
 477	}
 478	return err;
 479}
 480EXPORT_SYMBOL(mmc_cqe_start_req);
 481
 482/**
 483 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 484 *	@host: MMC host which completed request
 485 *	@mrq: MMC request which completed
 486 *
 487 *	CQE drivers should call this function when they have completed
 488 *	their processing of a request.
 489 */
 490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 491{
 492	mmc_should_fail_request(host, mrq);
 493
 494	/* Flag re-tuning needed on CRC errors */
 495	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 496	    (mrq->data && mrq->data->error == -EILSEQ))
 497		mmc_retune_needed(host);
 498
 499	trace_mmc_request_done(host, mrq);
 500
 501	if (mrq->cmd) {
 502		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 503			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 504	} else {
 505		pr_debug("%s: CQE transfer done tag %d\n",
 506			 mmc_hostname(host), mrq->tag);
 507	}
 508
 509	if (mrq->data) {
 510		pr_debug("%s:     %d bytes transferred: %d\n",
 511			 mmc_hostname(host),
 512			 mrq->data->bytes_xfered, mrq->data->error);
 513	}
 514
 515	mrq->done(mrq);
 516}
 517EXPORT_SYMBOL(mmc_cqe_request_done);
 518
 519/**
 520 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 521 *	@host: MMC host
 522 *	@mrq: MMC request to be processed
 523 */
 524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 525{
 526	if (host->cqe_ops->cqe_post_req)
 527		host->cqe_ops->cqe_post_req(host, mrq);
 528}
 529EXPORT_SYMBOL(mmc_cqe_post_req);
 530
 531/* Arbitrary 1 second timeout */
 532#define MMC_CQE_RECOVERY_TIMEOUT	1000
 533
 534/*
 535 * mmc_cqe_recovery - Recover from CQE errors.
 536 * @host: MMC host to recover
 537 *
 538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 539 * in eMMC, and discarding the queue in CQE. CQE must call
 540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 541 * fails to discard its queue.
 542 */
 543int mmc_cqe_recovery(struct mmc_host *host)
 544{
 545	struct mmc_command cmd;
 546	int err;
 547
 548	mmc_retune_hold_now(host);
 549
 550	/*
 551	 * Recovery is expected seldom, if at all, but it reduces performance,
 552	 * so make sure it is not completely silent.
 553	 */
 554	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 555
 556	host->cqe_ops->cqe_recovery_start(host);
 557
 558	memset(&cmd, 0, sizeof(cmd));
 559	cmd.opcode       = MMC_STOP_TRANSMISSION;
 560	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 561	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 562	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 563	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 564
 565	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
 566
 567	memset(&cmd, 0, sizeof(cmd));
 568	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 569	cmd.arg          = 1; /* Discard entire queue */
 570	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 571	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 572	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 573	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 574
 575	host->cqe_ops->cqe_recovery_finish(host);
 576
 577	if (err)
 578		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 579
 580	mmc_retune_release(host);
 581
 582	return err;
 583}
 584EXPORT_SYMBOL(mmc_cqe_recovery);
 585
 586/**
 587 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 588 *	@host: MMC host
 589 *	@mrq: MMC request
 590 *
 591 *	mmc_is_req_done() is used with requests that have
 592 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 593 *	starting a request and before waiting for it to complete. That is,
 594 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 595 *	and before mmc_wait_for_req_done(). If it is called at other times the
 596 *	result is not meaningful.
 597 */
 598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 599{
 600	return completion_done(&mrq->completion);
 601}
 602EXPORT_SYMBOL(mmc_is_req_done);
 603
 604/**
 605 *	mmc_wait_for_req - start a request and wait for completion
 606 *	@host: MMC host to start command
 607 *	@mrq: MMC request to start
 608 *
 609 *	Start a new MMC custom command request for a host, and wait
 610 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 611 *	requests, the transfer is ongoing and the caller can issue further
 612 *	commands that do not use the data lines, and then wait by calling
 613 *	mmc_wait_for_req_done().
 614 *	Does not attempt to parse the response.
 615 */
 616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 617{
 618	__mmc_start_req(host, mrq);
 619
 620	if (!mrq->cap_cmd_during_tfr)
 621		mmc_wait_for_req_done(host, mrq);
 622}
 623EXPORT_SYMBOL(mmc_wait_for_req);
 624
 625/**
 626 *	mmc_wait_for_cmd - start a command and wait for completion
 627 *	@host: MMC host to start command
 628 *	@cmd: MMC command to start
 629 *	@retries: maximum number of retries
 630 *
 631 *	Start a new MMC command for a host, and wait for the command
 632 *	to complete.  Return any error that occurred while the command
 633 *	was executing.  Do not attempt to parse the response.
 634 */
 635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 636{
 637	struct mmc_request mrq = {};
 638
 639	WARN_ON(!host->claimed);
 640
 641	memset(cmd->resp, 0, sizeof(cmd->resp));
 642	cmd->retries = retries;
 643
 644	mrq.cmd = cmd;
 645	cmd->data = NULL;
 646
 647	mmc_wait_for_req(host, &mrq);
 648
 649	return cmd->error;
 650}
 651
 652EXPORT_SYMBOL(mmc_wait_for_cmd);
 653
 654/**
 655 *	mmc_set_data_timeout - set the timeout for a data command
 656 *	@data: data phase for command
 657 *	@card: the MMC card associated with the data transfer
 658 *
 659 *	Computes the data timeout parameters according to the
 660 *	correct algorithm given the card type.
 661 */
 662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 663{
 664	unsigned int mult;
 665
 666	/*
 667	 * SDIO cards only define an upper 1 s limit on access.
 668	 */
 669	if (mmc_card_sdio(card)) {
 670		data->timeout_ns = 1000000000;
 671		data->timeout_clks = 0;
 672		return;
 673	}
 674
 675	/*
 676	 * SD cards use a 100 multiplier rather than 10
 677	 */
 678	mult = mmc_card_sd(card) ? 100 : 10;
 679
 680	/*
 681	 * Scale up the multiplier (and therefore the timeout) by
 682	 * the r2w factor for writes.
 683	 */
 684	if (data->flags & MMC_DATA_WRITE)
 685		mult <<= card->csd.r2w_factor;
 686
 687	data->timeout_ns = card->csd.taac_ns * mult;
 688	data->timeout_clks = card->csd.taac_clks * mult;
 689
 690	/*
 691	 * SD cards also have an upper limit on the timeout.
 692	 */
 693	if (mmc_card_sd(card)) {
 694		unsigned int timeout_us, limit_us;
 695
 696		timeout_us = data->timeout_ns / 1000;
 697		if (card->host->ios.clock)
 698			timeout_us += data->timeout_clks * 1000 /
 699				(card->host->ios.clock / 1000);
 700
 701		if (data->flags & MMC_DATA_WRITE)
 702			/*
 703			 * The MMC spec "It is strongly recommended
 704			 * for hosts to implement more than 500ms
 705			 * timeout value even if the card indicates
 706			 * the 250ms maximum busy length."  Even the
 707			 * previous value of 300ms is known to be
 708			 * insufficient for some cards.
 709			 */
 710			limit_us = 3000000;
 711		else
 712			limit_us = 100000;
 713
 714		/*
 715		 * SDHC cards always use these fixed values.
 716		 */
 717		if (timeout_us > limit_us) {
 718			data->timeout_ns = limit_us * 1000;
 719			data->timeout_clks = 0;
 720		}
 721
 722		/* assign limit value if invalid */
 723		if (timeout_us == 0)
 724			data->timeout_ns = limit_us * 1000;
 725	}
 726
 727	/*
 728	 * Some cards require longer data read timeout than indicated in CSD.
 729	 * Address this by setting the read timeout to a "reasonably high"
 730	 * value. For the cards tested, 600ms has proven enough. If necessary,
 731	 * this value can be increased if other problematic cards require this.
 732	 */
 733	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 734		data->timeout_ns = 600000000;
 735		data->timeout_clks = 0;
 736	}
 737
 738	/*
 739	 * Some cards need very high timeouts if driven in SPI mode.
 740	 * The worst observed timeout was 900ms after writing a
 741	 * continuous stream of data until the internal logic
 742	 * overflowed.
 743	 */
 744	if (mmc_host_is_spi(card->host)) {
 745		if (data->flags & MMC_DATA_WRITE) {
 746			if (data->timeout_ns < 1000000000)
 747				data->timeout_ns = 1000000000;	/* 1s */
 748		} else {
 749			if (data->timeout_ns < 100000000)
 750				data->timeout_ns =  100000000;	/* 100ms */
 751		}
 752	}
 753}
 754EXPORT_SYMBOL(mmc_set_data_timeout);
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756/*
 757 * Allow claiming an already claimed host if the context is the same or there is
 758 * no context but the task is the same.
 759 */
 760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 761				   struct task_struct *task)
 762{
 763	return host->claimer == ctx ||
 764	       (!ctx && task && host->claimer->task == task);
 765}
 766
 767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 768				       struct mmc_ctx *ctx,
 769				       struct task_struct *task)
 770{
 771	if (!host->claimer) {
 772		if (ctx)
 773			host->claimer = ctx;
 774		else
 775			host->claimer = &host->default_ctx;
 776	}
 777	if (task)
 778		host->claimer->task = task;
 779}
 780
 781/**
 782 *	__mmc_claim_host - exclusively claim a host
 783 *	@host: mmc host to claim
 784 *	@ctx: context that claims the host or NULL in which case the default
 785 *	context will be used
 786 *	@abort: whether or not the operation should be aborted
 787 *
 788 *	Claim a host for a set of operations.  If @abort is non null and
 789 *	dereference a non-zero value then this will return prematurely with
 790 *	that non-zero value without acquiring the lock.  Returns zero
 791 *	with the lock held otherwise.
 792 */
 793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 794		     atomic_t *abort)
 795{
 796	struct task_struct *task = ctx ? NULL : current;
 797	DECLARE_WAITQUEUE(wait, current);
 798	unsigned long flags;
 799	int stop;
 800	bool pm = false;
 801
 802	might_sleep();
 803
 804	add_wait_queue(&host->wq, &wait);
 805	spin_lock_irqsave(&host->lock, flags);
 806	while (1) {
 807		set_current_state(TASK_UNINTERRUPTIBLE);
 808		stop = abort ? atomic_read(abort) : 0;
 809		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 810			break;
 811		spin_unlock_irqrestore(&host->lock, flags);
 812		schedule();
 813		spin_lock_irqsave(&host->lock, flags);
 814	}
 815	set_current_state(TASK_RUNNING);
 816	if (!stop) {
 817		host->claimed = 1;
 818		mmc_ctx_set_claimer(host, ctx, task);
 819		host->claim_cnt += 1;
 820		if (host->claim_cnt == 1)
 821			pm = true;
 822	} else
 823		wake_up(&host->wq);
 824	spin_unlock_irqrestore(&host->lock, flags);
 825	remove_wait_queue(&host->wq, &wait);
 826
 827	if (pm)
 828		pm_runtime_get_sync(mmc_dev(host));
 829
 830	return stop;
 831}
 832EXPORT_SYMBOL(__mmc_claim_host);
 833
 834/**
 835 *	mmc_release_host - release a host
 836 *	@host: mmc host to release
 837 *
 838 *	Release a MMC host, allowing others to claim the host
 839 *	for their operations.
 840 */
 841void mmc_release_host(struct mmc_host *host)
 842{
 843	unsigned long flags;
 844
 845	WARN_ON(!host->claimed);
 846
 847	spin_lock_irqsave(&host->lock, flags);
 848	if (--host->claim_cnt) {
 849		/* Release for nested claim */
 850		spin_unlock_irqrestore(&host->lock, flags);
 851	} else {
 852		host->claimed = 0;
 853		host->claimer->task = NULL;
 854		host->claimer = NULL;
 855		spin_unlock_irqrestore(&host->lock, flags);
 856		wake_up(&host->wq);
 857		pm_runtime_mark_last_busy(mmc_dev(host));
 858		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 859			pm_runtime_put_sync_suspend(mmc_dev(host));
 860		else
 861			pm_runtime_put_autosuspend(mmc_dev(host));
 862	}
 863}
 864EXPORT_SYMBOL(mmc_release_host);
 865
 866/*
 867 * This is a helper function, which fetches a runtime pm reference for the
 868 * card device and also claims the host.
 869 */
 870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 871{
 872	pm_runtime_get_sync(&card->dev);
 873	__mmc_claim_host(card->host, ctx, NULL);
 874}
 875EXPORT_SYMBOL(mmc_get_card);
 876
 877/*
 878 * This is a helper function, which releases the host and drops the runtime
 879 * pm reference for the card device.
 880 */
 881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 882{
 883	struct mmc_host *host = card->host;
 884
 885	WARN_ON(ctx && host->claimer != ctx);
 886
 887	mmc_release_host(host);
 888	pm_runtime_mark_last_busy(&card->dev);
 889	pm_runtime_put_autosuspend(&card->dev);
 890}
 891EXPORT_SYMBOL(mmc_put_card);
 892
 893/*
 894 * Internal function that does the actual ios call to the host driver,
 895 * optionally printing some debug output.
 896 */
 897static inline void mmc_set_ios(struct mmc_host *host)
 898{
 899	struct mmc_ios *ios = &host->ios;
 900
 901	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 902		"width %u timing %u\n",
 903		 mmc_hostname(host), ios->clock, ios->bus_mode,
 904		 ios->power_mode, ios->chip_select, ios->vdd,
 905		 1 << ios->bus_width, ios->timing);
 906
 907	host->ops->set_ios(host, ios);
 908}
 909
 910/*
 911 * Control chip select pin on a host.
 912 */
 913void mmc_set_chip_select(struct mmc_host *host, int mode)
 914{
 915	host->ios.chip_select = mode;
 916	mmc_set_ios(host);
 917}
 918
 919/*
 920 * Sets the host clock to the highest possible frequency that
 921 * is below "hz".
 922 */
 923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 924{
 925	WARN_ON(hz && hz < host->f_min);
 926
 927	if (hz > host->f_max)
 928		hz = host->f_max;
 929
 930	host->ios.clock = hz;
 931	mmc_set_ios(host);
 932}
 933
 934int mmc_execute_tuning(struct mmc_card *card)
 935{
 936	struct mmc_host *host = card->host;
 937	u32 opcode;
 938	int err;
 939
 940	if (!host->ops->execute_tuning)
 941		return 0;
 942
 943	if (host->cqe_on)
 944		host->cqe_ops->cqe_off(host);
 945
 946	if (mmc_card_mmc(card))
 947		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 948	else
 949		opcode = MMC_SEND_TUNING_BLOCK;
 950
 951	err = host->ops->execute_tuning(host, opcode);
 952	if (!err) {
 953		mmc_retune_clear(host);
 954		mmc_retune_enable(host);
 955		return 0;
 956	}
 957
 958	/* Only print error when we don't check for card removal */
 959	if (!host->detect_change) {
 960		pr_err("%s: tuning execution failed: %d\n",
 961			mmc_hostname(host), err);
 962		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 963	}
 964
 965	return err;
 966}
 967
 968/*
 969 * Change the bus mode (open drain/push-pull) of a host.
 970 */
 971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 972{
 973	host->ios.bus_mode = mode;
 974	mmc_set_ios(host);
 975}
 976
 977/*
 978 * Change data bus width of a host.
 979 */
 980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 981{
 982	host->ios.bus_width = width;
 983	mmc_set_ios(host);
 984}
 985
 986/*
 987 * Set initial state after a power cycle or a hw_reset.
 988 */
 989void mmc_set_initial_state(struct mmc_host *host)
 990{
 991	if (host->cqe_on)
 992		host->cqe_ops->cqe_off(host);
 993
 994	mmc_retune_disable(host);
 995
 996	if (mmc_host_is_spi(host))
 997		host->ios.chip_select = MMC_CS_HIGH;
 998	else
 999		host->ios.chip_select = MMC_CS_DONTCARE;
1000	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001	host->ios.bus_width = MMC_BUS_WIDTH_1;
1002	host->ios.timing = MMC_TIMING_LEGACY;
1003	host->ios.drv_type = 0;
1004	host->ios.enhanced_strobe = false;
1005
1006	/*
1007	 * Make sure we are in non-enhanced strobe mode before we
1008	 * actually enable it in ext_csd.
1009	 */
1010	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011	     host->ops->hs400_enhanced_strobe)
1012		host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014	mmc_set_ios(host);
1015
1016	mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd:	voltage (mV)
1022 * @low_bits:	prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036	const int max_bit = ilog2(MMC_VDD_35_36);
1037	int bit;
1038
1039	if (vdd < 1650 || vdd > 3600)
1040		return -EINVAL;
1041
1042	if (vdd >= 1650 && vdd <= 1950)
1043		return ilog2(MMC_VDD_165_195);
1044
1045	if (low_bits)
1046		vdd -= 1;
1047
1048	/* Base 2000 mV, step 100 mV, bit's base 8. */
1049	bit = (vdd - 2000) / 100 + 8;
1050	if (bit > max_bit)
1051		return max_bit;
1052	return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min:	minimum voltage value (mV)
1058 * @vdd_max:	maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070	u32 mask = 0;
1071
1072	if (vdd_max < vdd_min)
1073		return 0;
1074
1075	/* Prefer high bits for the boundary vdd_max values. */
1076	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077	if (vdd_max < 0)
1078		return 0;
1079
1080	/* Prefer low bits for the boundary vdd_min values. */
1081	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082	if (vdd_min < 0)
1083		return 0;
1084
1085	/* Fill the mask, from max bit to min bit. */
1086	while (vdd_max >= vdd_min)
1087		mask |= 1 << vdd_max--;
1088
1089	return mask;
1090}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094	u32 reg;
1095	int ret;
1096
1097	ret = of_property_read_u32(node, "reg", &reg);
1098	if (ret < 0)
1099		return ret;
1100
1101	return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105		unsigned func_num)
1106{
1107	struct device_node *node;
1108
1109	if (!host->parent || !host->parent->of_node)
1110		return NULL;
1111
1112	for_each_child_of_node(host->parent->of_node, node) {
1113		if (mmc_of_get_func_num(node) == func_num)
1114			return node;
1115	}
1116
1117	return NULL;
1118}
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126	int bit;
1127
1128	/*
1129	 * Sanity check the voltages that the card claims to
1130	 * support.
1131	 */
1132	if (ocr & 0x7F) {
1133		dev_warn(mmc_dev(host),
1134		"card claims to support voltages below defined range\n");
1135		ocr &= ~0x7F;
1136	}
1137
1138	ocr &= host->ocr_avail;
1139	if (!ocr) {
1140		dev_warn(mmc_dev(host), "no support for card's volts\n");
1141		return 0;
1142	}
1143
1144	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145		bit = ffs(ocr) - 1;
1146		ocr &= 3 << bit;
1147		mmc_power_cycle(host, ocr);
1148	} else {
1149		bit = fls(ocr) - 1;
1150		/*
1151		 * The bit variable represents the highest voltage bit set in
1152		 * the OCR register.
1153		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154		 * we must shift the mask '3' with (bit - 1).
1155		 */
1156		ocr &= 3 << (bit - 1);
1157		if (bit != host->ios.vdd)
1158			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159	}
1160
1161	return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166	int err = 0;
1167	int old_signal_voltage = host->ios.signal_voltage;
1168
1169	host->ios.signal_voltage = signal_voltage;
1170	if (host->ops->start_signal_voltage_switch)
1171		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173	if (err)
1174		host->ios.signal_voltage = old_signal_voltage;
1175
1176	return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193	u32 clock;
1194
1195	/*
1196	 * During a signal voltage level switch, the clock must be gated
1197	 * for 5 ms according to the SD spec
1198	 */
1199	clock = host->ios.clock;
1200	host->ios.clock = 0;
1201	mmc_set_ios(host);
1202
1203	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204		return -EAGAIN;
1205
1206	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207	mmc_delay(10);
1208	host->ios.clock = clock;
1209	mmc_set_ios(host);
1210
1211	return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216	struct mmc_command cmd = {};
1217	int err = 0;
1218
1219	/*
1220	 * If we cannot switch voltages, return failure so the caller
1221	 * can continue without UHS mode
1222	 */
1223	if (!host->ops->start_signal_voltage_switch)
1224		return -EPERM;
1225	if (!host->ops->card_busy)
1226		pr_warn("%s: cannot verify signal voltage switch\n",
1227			mmc_hostname(host));
1228
1229	cmd.opcode = SD_SWITCH_VOLTAGE;
1230	cmd.arg = 0;
1231	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233	err = mmc_wait_for_cmd(host, &cmd, 0);
1234	if (err)
1235		goto power_cycle;
1236
1237	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238		return -EIO;
1239
1240	/*
1241	 * The card should drive cmd and dat[0:3] low immediately
1242	 * after the response of cmd11, but wait 1 ms to be sure
1243	 */
1244	mmc_delay(1);
1245	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246		err = -EAGAIN;
1247		goto power_cycle;
1248	}
1249
1250	if (mmc_host_set_uhs_voltage(host)) {
1251		/*
1252		 * Voltages may not have been switched, but we've already
1253		 * sent CMD11, so a power cycle is required anyway
1254		 */
1255		err = -EAGAIN;
1256		goto power_cycle;
1257	}
1258
1259	/* Wait for at least 1 ms according to spec */
1260	mmc_delay(1);
1261
1262	/*
1263	 * Failure to switch is indicated by the card holding
1264	 * dat[0:3] low
1265	 */
1266	if (host->ops->card_busy && host->ops->card_busy(host))
1267		err = -EAGAIN;
1268
1269power_cycle:
1270	if (err) {
1271		pr_debug("%s: Signal voltage switch failed, "
1272			"power cycling card\n", mmc_hostname(host));
1273		mmc_power_cycle(host, ocr);
1274	}
1275
1276	return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284	host->ios.timing = timing;
1285	mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293	host->ios.drv_type = drv_type;
1294	mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298			      int card_drv_type, int *drv_type)
1299{
1300	struct mmc_host *host = card->host;
1301	int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303	*drv_type = 0;
1304
1305	if (!host->ops->select_drive_strength)
1306		return 0;
1307
1308	/* Use SD definition of driver strength for hosts */
1309	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310		host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313		host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316		host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318	/*
1319	 * The drive strength that the hardware can support
1320	 * depends on the board design.  Pass the appropriate
1321	 * information and let the hardware specific code
1322	 * return what is possible given the options
1323	 */
1324	return host->ops->select_drive_strength(card, max_dtr,
1325						host_drv_type,
1326						card_drv_type,
1327						drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack.  This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise.  Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343	if (host->ios.power_mode == MMC_POWER_ON)
1344		return;
1345
1346	mmc_pwrseq_pre_power_on(host);
1347
1348	host->ios.vdd = fls(ocr) - 1;
1349	host->ios.power_mode = MMC_POWER_UP;
1350	/* Set initial state and call mmc_set_ios */
1351	mmc_set_initial_state(host);
1352
1353	mmc_set_initial_signal_voltage(host);
 
 
 
 
 
 
1354
1355	/*
1356	 * This delay should be sufficient to allow the power supply
1357	 * to reach the minimum voltage.
1358	 */
1359	mmc_delay(host->ios.power_delay_ms);
1360
1361	mmc_pwrseq_post_power_on(host);
1362
1363	host->ios.clock = host->f_init;
1364
1365	host->ios.power_mode = MMC_POWER_ON;
1366	mmc_set_ios(host);
1367
1368	/*
1369	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370	 * time required to reach a stable voltage.
1371	 */
1372	mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377	if (host->ios.power_mode == MMC_POWER_OFF)
1378		return;
1379
1380	mmc_pwrseq_power_off(host);
1381
1382	host->ios.clock = 0;
1383	host->ios.vdd = 0;
1384
1385	host->ios.power_mode = MMC_POWER_OFF;
1386	/* Set initial state and call mmc_set_ios */
1387	mmc_set_initial_state(host);
1388
1389	/*
1390	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391	 * XO-1.5, require a short delay after poweroff before the card
1392	 * can be successfully turned on again.
1393	 */
1394	mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399	mmc_power_off(host);
1400	/* Wait at least 1 ms according to SD spec */
1401	mmc_delay(1);
1402	mmc_power_up(host, ocr);
1403}
1404
1405/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
 
 
 
 
 
 
 
 
 
1411	host->bus_ops = ops;
 
 
 
 
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419	host->bus_ops = NULL;
 
 
 
 
 
 
 
 
 
 
 
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
 
1423{
1424	/*
1425	 * Prevent system sleep for 5s to allow user space to consume the
1426	 * corresponding uevent. This is especially useful, when CD irq is used
1427	 * as a system wakeup, but doesn't hurt in other cases.
1428	 */
1429	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430		__pm_wakeup_event(host->ws, 5000);
 
1431
1432	host->detect_change = 1;
1433	mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 *	mmc_detect_change - process change of state on a MMC socket
1438 *	@host: host which changed state.
1439 *	@delay: optional delay to wait before detection (jiffies)
1440 *
1441 *	MMC drivers should call this when they detect a card has been
1442 *	inserted or removed. The MMC layer will confirm that any
1443 *	present card is still functional, and initialize any newly
1444 *	inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448	_mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454	unsigned int sz;
1455
1456	if (is_power_of_2(card->erase_size))
1457		card->erase_shift = ffs(card->erase_size) - 1;
1458	else
1459		card->erase_shift = 0;
1460
1461	/*
1462	 * It is possible to erase an arbitrarily large area of an SD or MMC
1463	 * card.  That is not desirable because it can take a long time
1464	 * (minutes) potentially delaying more important I/O, and also the
1465	 * timeout calculations become increasingly hugely over-estimated.
1466	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467	 * to that size and alignment.
1468	 *
1469	 * For SD cards that define Allocation Unit size, limit erases to one
1470	 * Allocation Unit at a time.
1471	 * For MMC, have a stab at ai good value and for modern cards it will
1472	 * end up being 4MiB. Note that if the value is too small, it can end
1473	 * up taking longer to erase. Also note, erase_size is already set to
1474	 * High Capacity Erase Size if available when this function is called.
1475	 */
1476	if (mmc_card_sd(card) && card->ssr.au) {
1477		card->pref_erase = card->ssr.au;
1478		card->erase_shift = ffs(card->ssr.au) - 1;
1479	} else if (card->erase_size) {
1480		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481		if (sz < 128)
1482			card->pref_erase = 512 * 1024 / 512;
1483		else if (sz < 512)
1484			card->pref_erase = 1024 * 1024 / 512;
1485		else if (sz < 1024)
1486			card->pref_erase = 2 * 1024 * 1024 / 512;
1487		else
1488			card->pref_erase = 4 * 1024 * 1024 / 512;
1489		if (card->pref_erase < card->erase_size)
1490			card->pref_erase = card->erase_size;
1491		else {
1492			sz = card->pref_erase % card->erase_size;
1493			if (sz)
1494				card->pref_erase += card->erase_size - sz;
1495		}
1496	} else
1497		card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506				          unsigned int arg, unsigned int qty)
1507{
1508	unsigned int erase_timeout;
1509
1510	if (arg == MMC_DISCARD_ARG ||
1511	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512		erase_timeout = card->ext_csd.trim_timeout;
1513	} else if (card->ext_csd.erase_group_def & 1) {
1514		/* High Capacity Erase Group Size uses HC timeouts */
1515		if (arg == MMC_TRIM_ARG)
1516			erase_timeout = card->ext_csd.trim_timeout;
1517		else
1518			erase_timeout = card->ext_csd.hc_erase_timeout;
1519	} else {
1520		/* CSD Erase Group Size uses write timeout */
1521		unsigned int mult = (10 << card->csd.r2w_factor);
1522		unsigned int timeout_clks = card->csd.taac_clks * mult;
1523		unsigned int timeout_us;
1524
1525		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526		if (card->csd.taac_ns < 1000000)
1527			timeout_us = (card->csd.taac_ns * mult) / 1000;
1528		else
1529			timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531		/*
1532		 * ios.clock is only a target.  The real clock rate might be
1533		 * less but not that much less, so fudge it by multiplying by 2.
1534		 */
1535		timeout_clks <<= 1;
1536		timeout_us += (timeout_clks * 1000) /
1537			      (card->host->ios.clock / 1000);
1538
1539		erase_timeout = timeout_us / 1000;
1540
1541		/*
1542		 * Theoretically, the calculation could underflow so round up
1543		 * to 1ms in that case.
1544		 */
1545		if (!erase_timeout)
1546			erase_timeout = 1;
1547	}
1548
1549	/* Multiplier for secure operations */
1550	if (arg & MMC_SECURE_ARGS) {
1551		if (arg == MMC_SECURE_ERASE_ARG)
1552			erase_timeout *= card->ext_csd.sec_erase_mult;
1553		else
1554			erase_timeout *= card->ext_csd.sec_trim_mult;
1555	}
1556
1557	erase_timeout *= qty;
1558
1559	/*
1560	 * Ensure at least a 1 second timeout for SPI as per
1561	 * 'mmc_set_data_timeout()'
1562	 */
1563	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564		erase_timeout = 1000;
1565
1566	return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570					 unsigned int arg,
1571					 unsigned int qty)
1572{
1573	unsigned int erase_timeout;
1574
1575	/* for DISCARD none of the below calculation applies.
1576	 * the busy timeout is 250msec per discard command.
1577	 */
1578	if (arg == SD_DISCARD_ARG)
1579		return SD_DISCARD_TIMEOUT_MS;
1580
1581	if (card->ssr.erase_timeout) {
1582		/* Erase timeout specified in SD Status Register (SSR) */
1583		erase_timeout = card->ssr.erase_timeout * qty +
1584				card->ssr.erase_offset;
1585	} else {
1586		/*
1587		 * Erase timeout not specified in SD Status Register (SSR) so
1588		 * use 250ms per write block.
1589		 */
1590		erase_timeout = 250 * qty;
1591	}
1592
1593	/* Must not be less than 1 second */
1594	if (erase_timeout < 1000)
1595		erase_timeout = 1000;
1596
1597	return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601				      unsigned int arg,
1602				      unsigned int qty)
1603{
1604	if (mmc_card_sd(card))
1605		return mmc_sd_erase_timeout(card, arg, qty);
1606	else
1607		return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611			sector_t to, unsigned int arg)
1612{
1613	struct mmc_command cmd = {};
1614	unsigned int qty = 0, busy_timeout = 0;
1615	bool use_r1b_resp;
 
1616	int err;
1617
1618	mmc_retune_hold(card->host);
1619
1620	/*
1621	 * qty is used to calculate the erase timeout which depends on how many
1622	 * erase groups (or allocation units in SD terminology) are affected.
1623	 * We count erasing part of an erase group as one erase group.
1624	 * For SD, the allocation units are always a power of 2.  For MMC, the
1625	 * erase group size is almost certainly also power of 2, but it does not
1626	 * seem to insist on that in the JEDEC standard, so we fall back to
1627	 * division in that case.  SD may not specify an allocation unit size,
1628	 * in which case the timeout is based on the number of write blocks.
1629	 *
1630	 * Note that the timeout for secure trim 2 will only be correct if the
1631	 * number of erase groups specified is the same as the total of all
1632	 * preceding secure trim 1 commands.  Since the power may have been
1633	 * lost since the secure trim 1 commands occurred, it is generally
1634	 * impossible to calculate the secure trim 2 timeout correctly.
1635	 */
1636	if (card->erase_shift)
1637		qty += ((to >> card->erase_shift) -
1638			(from >> card->erase_shift)) + 1;
1639	else if (mmc_card_sd(card))
1640		qty += to - from + 1;
1641	else
1642		qty += (mmc_sector_div(to, card->erase_size) -
1643			mmc_sector_div(from, card->erase_size)) + 1;
1644
1645	if (!mmc_card_blockaddr(card)) {
1646		from <<= 9;
1647		to <<= 9;
1648	}
1649
1650	if (mmc_card_sd(card))
1651		cmd.opcode = SD_ERASE_WR_BLK_START;
1652	else
1653		cmd.opcode = MMC_ERASE_GROUP_START;
1654	cmd.arg = from;
1655	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657	if (mmc_card_ult_capacity(card)) {
1658		cmd.ext_addr = from >> 32;
1659		cmd.has_ext_addr = true;
1660	}
1661
1662	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663	if (err) {
1664		pr_err("mmc_erase: group start error %d, "
1665		       "status %#x\n", err, cmd.resp[0]);
1666		err = -EIO;
1667		goto out;
1668	}
1669
1670	memset(&cmd, 0, sizeof(struct mmc_command));
1671	if (mmc_card_sd(card))
1672		cmd.opcode = SD_ERASE_WR_BLK_END;
1673	else
1674		cmd.opcode = MMC_ERASE_GROUP_END;
1675	cmd.arg = to;
1676	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678	if (mmc_card_ult_capacity(card)) {
1679		cmd.ext_addr = to >> 32;
1680		cmd.has_ext_addr = true;
1681	}
1682
1683	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684	if (err) {
1685		pr_err("mmc_erase: group end error %d, status %#x\n",
1686		       err, cmd.resp[0]);
1687		err = -EIO;
1688		goto out;
1689	}
1690
1691	memset(&cmd, 0, sizeof(struct mmc_command));
1692	cmd.opcode = MMC_ERASE;
1693	cmd.arg = arg;
1694	busy_timeout = mmc_erase_timeout(card, arg, qty);
1695	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698	if (err) {
1699		pr_err("mmc_erase: erase error %d, status %#x\n",
1700		       err, cmd.resp[0]);
1701		err = -EIO;
1702		goto out;
1703	}
1704
1705	if (mmc_host_is_spi(card->host))
1706		goto out;
1707
1708	/*
1709	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710	 * shall be avoided.
1711	 */
1712	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713		goto out;
1714
1715	/* Let's poll to find out when the erase operation completes. */
1716	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
 
 
 
 
 
 
 
 
 
 
 
 
1717
 
 
 
 
 
 
 
 
 
 
 
 
1718out:
1719	mmc_retune_release(card->host);
1720	return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724					 sector_t *from,
1725					 sector_t *to,
1726					 unsigned int nr)
1727{
1728	sector_t from_new = *from;
1729	unsigned int nr_new = nr, rem;
1730
1731	/*
1732	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733	 * to align the erase size efficiently.
1734	 */
1735	if (is_power_of_2(card->erase_size)) {
1736		sector_t temp = from_new;
1737
1738		from_new = round_up(temp, card->erase_size);
1739		rem = from_new - temp;
1740
1741		if (nr_new > rem)
1742			nr_new -= rem;
1743		else
1744			return 0;
1745
1746		nr_new = round_down(nr_new, card->erase_size);
1747	} else {
1748		rem = mmc_sector_mod(from_new, card->erase_size);
1749		if (rem) {
1750			rem = card->erase_size - rem;
1751			from_new += rem;
1752			if (nr_new > rem)
1753				nr_new -= rem;
1754			else
1755				return 0;
1756		}
1757
1758		rem = nr_new % card->erase_size;
1759		if (rem)
1760			nr_new -= rem;
1761	}
1762
1763	if (nr_new == 0)
1764		return 0;
1765
1766	*to = from_new + nr_new;
1767	*from = from_new;
1768
1769	return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782	      unsigned int arg)
1783{
1784	unsigned int rem;
1785	sector_t to = from + nr;
1786
1787	int err;
1788
1789	if (!(card->csd.cmdclass & CCC_ERASE))
 
1790		return -EOPNOTSUPP;
1791
1792	if (!card->erase_size)
1793		return -EOPNOTSUPP;
1794
1795	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796		return -EOPNOTSUPP;
1797
1798	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800		return -EOPNOTSUPP;
1801
1802	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804		return -EOPNOTSUPP;
1805
1806	if (arg == MMC_SECURE_ERASE_ARG) {
1807		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808			return -EINVAL;
1809	}
1810
1811	if (arg == MMC_ERASE_ARG)
1812		nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814	if (nr == 0)
1815		return 0;
1816
1817	if (to <= from)
1818		return -EINVAL;
1819
1820	/* 'from' and 'to' are inclusive */
1821	to -= 1;
1822
1823	/*
1824	 * Special case where only one erase-group fits in the timeout budget:
1825	 * If the region crosses an erase-group boundary on this particular
1826	 * case, we will be trimming more than one erase-group which, does not
1827	 * fit in the timeout budget of the controller, so we need to split it
1828	 * and call mmc_do_erase() twice if necessary. This special case is
1829	 * identified by the card->eg_boundary flag.
1830	 */
1831	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833		err = mmc_do_erase(card, from, from + rem - 1, arg);
1834		from += rem;
1835		if ((err) || (to <= from))
1836			return err;
1837	}
1838
1839	return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1846		return 1;
1847	return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855		return 1;
1856	return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862	/*
1863	 * As there's no way to detect the discard support bit at v4.5
1864	 * use the s/w feature support filed.
1865	 */
1866	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867		return 1;
1868	return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875		return 0;
1876	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877		return 1;
1878	return 0;
1879}
 
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885		return 1;
1886	return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891			    unsigned int nr)
1892{
1893	if (!card->erase_size)
1894		return 0;
1895	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896		return 0;
1897	return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902					    unsigned int arg)
1903{
1904	struct mmc_host *host = card->host;
1905	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906	unsigned int last_timeout = 0;
1907	unsigned int max_busy_timeout = host->max_busy_timeout ?
1908			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910	if (card->erase_shift) {
1911		max_qty = UINT_MAX >> card->erase_shift;
1912		min_qty = card->pref_erase >> card->erase_shift;
1913	} else if (mmc_card_sd(card)) {
1914		max_qty = UINT_MAX;
1915		min_qty = card->pref_erase;
1916	} else {
1917		max_qty = UINT_MAX / card->erase_size;
1918		min_qty = card->pref_erase / card->erase_size;
1919	}
1920
1921	/*
1922	 * We should not only use 'host->max_busy_timeout' as the limitation
1923	 * when deciding the max discard sectors. We should set a balance value
1924	 * to improve the erase speed, and it can not get too long timeout at
1925	 * the same time.
1926	 *
1927	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928	 * matter what size of 'host->max_busy_timeout', but if the
1929	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930	 * then we can continue to increase the max discard sectors until we
1931	 * get a balance value. In cases when the 'host->max_busy_timeout'
1932	 * isn't specified, use the default max erase timeout.
1933	 */
1934	do {
1935		y = 0;
1936		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937			timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939			if (qty + x > min_qty && timeout > max_busy_timeout)
1940				break;
1941
1942			if (timeout < last_timeout)
1943				break;
1944			last_timeout = timeout;
1945			y = x;
1946		}
1947		qty += y;
1948	} while (y);
1949
1950	if (!qty)
1951		return 0;
1952
1953	/*
1954	 * When specifying a sector range to trim, chances are we might cross
1955	 * an erase-group boundary even if the amount of sectors is less than
1956	 * one erase-group.
1957	 * If we can only fit one erase-group in the controller timeout budget,
1958	 * we have to care that erase-group boundaries are not crossed by a
1959	 * single trim operation. We flag that special case with "eg_boundary".
1960	 * In all other cases we can just decrement qty and pretend that we
1961	 * always touch (qty + 1) erase-groups as a simple optimization.
1962	 */
1963	if (qty == 1)
1964		card->eg_boundary = 1;
1965	else
1966		qty--;
1967
1968	/* Convert qty to sectors */
1969	if (card->erase_shift)
1970		max_discard = qty << card->erase_shift;
1971	else if (mmc_card_sd(card))
1972		max_discard = qty + 1;
1973	else
1974		max_discard = qty * card->erase_size;
1975
1976	return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981	struct mmc_host *host = card->host;
1982	unsigned int max_discard, max_trim;
1983
1984	/*
1985	 * Without erase_group_def set, MMC erase timeout depends on clock
1986	 * frequence which can change.  In that case, the best choice is
1987	 * just the preferred erase size.
1988	 */
1989	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990		return card->pref_erase;
1991
1992	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993	if (mmc_can_trim(card)) {
1994		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995		if (max_trim < max_discard || max_discard == 0)
1996			max_discard = max_trim;
1997	} else if (max_discard < card->erase_size) {
1998		max_discard = 0;
1999	}
2000	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003	return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009	return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015	struct mmc_command cmd = {};
2016
2017	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2019		return 0;
2020
2021	cmd.opcode = MMC_SET_BLOCKLEN;
2022	cmd.arg = blocklen;
2023	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024	return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
 
2029{
2030	mmc_pwrseq_reset(host);
2031
2032	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033		return;
2034	host->ops->card_hw_reset(host);
 
 
 
2035}
 
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049	struct mmc_host *host = card->host;
2050	int ret;
2051
2052	ret = host->bus_ops->hw_reset(host);
2053	if (ret < 0)
2054		pr_warn("%s: tried to HW reset card, got error %d\n",
2055			mmc_hostname(host), ret);
2056
2057	return ret;
 
 
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063	struct mmc_host *host = card->host;
2064	int ret;
2065
2066	if (!host->bus_ops->sw_reset)
 
 
 
 
 
2067		return -EOPNOTSUPP;
 
 
 
 
2068
2069	ret = host->bus_ops->sw_reset(host);
2070	if (ret)
2071		pr_warn("%s: tried to SW reset card, got error %d\n",
2072			mmc_hostname(host), ret);
2073
2074	return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080	host->f_init = freq;
2081
2082	pr_debug("%s: %s: trying to init card at %u Hz\n",
2083		mmc_hostname(host), __func__, host->f_init);
2084
2085	mmc_power_up(host, host->ocr_avail);
2086
2087	/*
2088	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089	 * do a hardware reset if possible.
2090	 */
2091	mmc_hw_reset_for_init(host);
2092
2093	/*
2094	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2095	 * if the card is being re-initialized, just send it.  CMD52
2096	 * should be ignored by SD/eMMC cards.
2097	 * Skip it if we already know that we do not support SDIO commands
2098	 */
2099	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100		sdio_reset(host);
2101
2102	mmc_go_idle(host);
2103
2104	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106			goto out;
2107		if (mmc_card_sd_express(host))
2108			return 0;
2109	}
2110
2111	/* Order's important: probe SDIO, then SD, then MMC */
2112	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113		if (!mmc_attach_sdio(host))
2114			return 0;
2115
2116	if (!(host->caps2 & MMC_CAP2_NO_SD))
2117		if (!mmc_attach_sd(host))
2118			return 0;
2119
2120	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121		if (!mmc_attach_mmc(host))
2122			return 0;
2123
2124out:
2125	mmc_power_off(host);
2126	return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	int ret;
2132
2133	if (!host->card || mmc_card_removed(host->card))
2134		return 1;
2135
2136	ret = host->bus_ops->alive(host);
2137
2138	/*
2139	 * Card detect status and alive check may be out of sync if card is
2140	 * removed slowly, when card detect switch changes while card/slot
2141	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143	 * detect work 200ms later for this case.
2144	 */
2145	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146		mmc_detect_change(host, msecs_to_jiffies(200));
2147		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148	}
2149
2150	if (ret) {
2151		mmc_card_set_removed(host->card);
2152		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153	}
2154
2155	return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160	struct mmc_card *card = host->card;
2161	int ret;
2162
2163	WARN_ON(!host->claimed);
2164
2165	if (!card)
2166		return 1;
2167
2168	if (!mmc_card_is_removable(host))
2169		return 0;
2170
2171	ret = mmc_card_removed(card);
2172	/*
2173	 * The card will be considered unchanged unless we have been asked to
2174	 * detect a change or host requires polling to provide card detection.
2175	 */
2176	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177		return ret;
2178
2179	host->detect_change = 0;
2180	if (!ret) {
2181		ret = _mmc_detect_card_removed(host);
2182		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183			/*
2184			 * Schedule a detect work as soon as possible to let a
2185			 * rescan handle the card removal.
2186			 */
2187			cancel_delayed_work(&host->detect);
2188			_mmc_detect_change(host, 0, false);
2189		}
2190	}
2191
2192	return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198	unsigned int boot_sectors_num;
2199
2200	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201		return -EOPNOTSUPP;
2202
2203	/* filter out unrelated cards */
2204	if (card->ext_csd.rev < 3 ||
2205	    !mmc_card_mmc(card) ||
2206	    !mmc_card_is_blockaddr(card) ||
2207	     mmc_card_is_removable(card->host))
2208		return -ENOENT;
2209
2210	/*
2211	 * eMMC storage has two special boot partitions in addition to the
2212	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213	 * accesses, this means that the partition table addresses are shifted
2214	 * by the size of boot partitions.  In accordance with the eMMC
2215	 * specification, the boot partition size is calculated as follows:
2216	 *
2217	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2218	 *
2219	 * Calculate number of sectors occupied by the both boot partitions.
2220	 */
2221	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224	/* Defined by NVIDIA and used by Android devices. */
2225	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227	return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233	struct mmc_host *host =
2234		container_of(work, struct mmc_host, detect.work);
2235	int i;
2236
2237	if (host->rescan_disable)
2238		return;
2239
2240	/* If there is a non-removable card registered, only scan once */
2241	if (!mmc_card_is_removable(host) && host->rescan_entered)
2242		return;
2243	host->rescan_entered = 1;
2244
2245	if (host->trigger_card_event && host->ops->card_event) {
2246		mmc_claim_host(host);
2247		host->ops->card_event(host);
2248		mmc_release_host(host);
2249		host->trigger_card_event = false;
2250	}
2251
2252	/* Verify a registered card to be functional, else remove it. */
2253	if (host->bus_ops)
 
 
 
 
 
2254		host->bus_ops->detect(host);
2255
2256	host->detect_change = 0;
2257
 
 
 
 
 
 
 
2258	/* if there still is a card present, stop here */
2259	if (host->bus_ops != NULL)
 
2260		goto out;
 
 
 
 
 
 
 
2261
2262	mmc_claim_host(host);
2263	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264			host->ops->get_cd(host) == 0) {
2265		mmc_power_off(host);
2266		mmc_release_host(host);
2267		goto out;
2268	}
2269
2270	/* If an SD express card is present, then leave it as is. */
2271	if (mmc_card_sd_express(host)) {
2272		mmc_release_host(host);
2273		goto out;
2274	}
2275
2276	/*
2277	 * Ideally we should favor initialization of legacy SD cards and defer
2278	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279	 * announce their support for UHS-II in the response to the ACMD41,
2280	 * while initializing the legacy SD interface. Therefore, let's start
2281	 * with UHS-II for now.
2282	 */
2283	if (!mmc_attach_sd_uhs2(host)) {
2284		mmc_release_host(host);
2285		goto out;
2286	}
2287
2288	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289		unsigned int freq = freqs[i];
2290		if (freq > host->f_max) {
2291			if (i + 1 < ARRAY_SIZE(freqs))
2292				continue;
2293			freq = host->f_max;
2294		}
2295		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296			break;
2297		if (freqs[i] <= host->f_min)
2298			break;
2299	}
2300
2301	/* A non-removable card should have been detected by now. */
2302	if (!mmc_card_is_removable(host) && !host->bus_ops)
2303		pr_info("%s: Failed to initialize a non-removable card",
2304			mmc_hostname(host));
2305
2306	/*
2307	 * Ignore the command timeout errors observed during
2308	 * the card init as those are excepted.
2309	 */
2310	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311	mmc_release_host(host);
2312
2313 out:
2314	if (host->caps & MMC_CAP_NEEDS_POLL)
2315		mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320	bool power_up = !(host->caps2 &
2321			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324	host->rescan_disable = 0;
 
2325
2326	if (power_up) {
2327		mmc_claim_host(host);
2328		mmc_power_up(host, host->ocr_avail);
2329		mmc_release_host(host);
2330	}
2331
2332	mmc_gpiod_request_cd_irq(host);
2333	_mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338	if (host->rescan_disable)
2339		return;
2340
2341	if (host->slot.cd_irq >= 0) {
2342		mmc_gpio_set_cd_wake(host, false);
2343		disable_irq(host->slot.cd_irq);
2344	}
2345
2346	host->rescan_disable = 1;
2347	cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352	__mmc_stop_host(host);
2353
2354	/* clear pm flags now and let card drivers set them as needed */
2355	host->pm_flags = 0;
2356
2357	if (host->bus_ops) {
 
2358		/* Calling bus_ops->remove() with a claimed host can deadlock */
2359		host->bus_ops->remove(host);
2360		mmc_claim_host(host);
2361		mmc_detach_bus(host);
2362		mmc_power_off(host);
2363		mmc_release_host(host);
 
2364		return;
2365	}
 
2366
2367	mmc_claim_host(host);
2368	mmc_power_off(host);
2369	mmc_release_host(host);
2370}
2371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372static int __init mmc_init(void)
2373{
2374	int ret;
2375
2376	ret = mmc_register_bus();
2377	if (ret)
2378		return ret;
2379
2380	ret = mmc_register_host_class();
2381	if (ret)
2382		goto unregister_bus;
2383
2384	ret = sdio_register_bus();
2385	if (ret)
2386		goto unregister_host_class;
2387
2388	return 0;
2389
2390unregister_host_class:
2391	mmc_unregister_host_class();
2392unregister_bus:
2393	mmc_unregister_bus();
2394	return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399	sdio_unregister_bus();
2400	mmc_unregister_host_class();
2401	mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
  43#include "card.h"
 
  44#include "bus.h"
  45#include "host.h"
  46#include "sdio_bus.h"
  47#include "pwrseq.h"
  48
  49#include "mmc_ops.h"
  50#include "sd_ops.h"
  51#include "sdio_ops.h"
  52
  53/* If the device is not responding */
  54#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  55
  56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  57#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
 
  58
  59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  60
  61/*
  62 * Enabling software CRCs on the data blocks can be a significant (30%)
  63 * performance cost, and for other reasons may not always be desired.
  64 * So we allow it it to be disabled.
  65 */
  66bool use_spi_crc = 1;
  67module_param(use_spi_crc, bool, 0);
  68
  69static int mmc_schedule_delayed_work(struct delayed_work *work,
  70				     unsigned long delay)
  71{
  72	/*
  73	 * We use the system_freezable_wq, because of two reasons.
  74	 * First, it allows several works (not the same work item) to be
  75	 * executed simultaneously. Second, the queue becomes frozen when
  76	 * userspace becomes frozen during system PM.
  77	 */
  78	return queue_delayed_work(system_freezable_wq, work, delay);
  79}
  80
  81#ifdef CONFIG_FAIL_MMC_REQUEST
  82
  83/*
  84 * Internal function. Inject random data errors.
  85 * If mmc_data is NULL no errors are injected.
  86 */
  87static void mmc_should_fail_request(struct mmc_host *host,
  88				    struct mmc_request *mrq)
  89{
  90	struct mmc_command *cmd = mrq->cmd;
  91	struct mmc_data *data = mrq->data;
  92	static const int data_errors[] = {
  93		-ETIMEDOUT,
  94		-EILSEQ,
  95		-EIO,
  96	};
  97
  98	if (!data)
  99		return;
 100
 101	if (cmd->error || data->error ||
 102	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 103		return;
 104
 105	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 106	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 107}
 108
 109#else /* CONFIG_FAIL_MMC_REQUEST */
 110
 111static inline void mmc_should_fail_request(struct mmc_host *host,
 112					   struct mmc_request *mrq)
 113{
 114}
 115
 116#endif /* CONFIG_FAIL_MMC_REQUEST */
 117
 118static inline void mmc_complete_cmd(struct mmc_request *mrq)
 119{
 120	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 121		complete_all(&mrq->cmd_completion);
 122}
 123
 124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 125{
 126	if (!mrq->cap_cmd_during_tfr)
 127		return;
 128
 129	mmc_complete_cmd(mrq);
 130
 131	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 132		 mmc_hostname(host), mrq->cmd->opcode);
 133}
 134EXPORT_SYMBOL(mmc_command_done);
 135
 136/**
 137 *	mmc_request_done - finish processing an MMC request
 138 *	@host: MMC host which completed request
 139 *	@mrq: MMC request which request
 140 *
 141 *	MMC drivers should call this function when they have completed
 142 *	their processing of a request.
 143 */
 144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 145{
 146	struct mmc_command *cmd = mrq->cmd;
 147	int err = cmd->error;
 148
 149	/* Flag re-tuning needed on CRC errors */
 150	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 151	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 152	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 153	    (mrq->data && mrq->data->error == -EILSEQ) ||
 154	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 155		mmc_retune_needed(host);
 156
 157	if (err && cmd->retries && mmc_host_is_spi(host)) {
 158		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 159			cmd->retries = 0;
 160	}
 161
 162	if (host->ongoing_mrq == mrq)
 163		host->ongoing_mrq = NULL;
 164
 165	mmc_complete_cmd(mrq);
 166
 167	trace_mmc_request_done(host, mrq);
 168
 169	/*
 170	 * We list various conditions for the command to be considered
 171	 * properly done:
 172	 *
 173	 * - There was no error, OK fine then
 174	 * - We are not doing some kind of retry
 175	 * - The card was removed (...so just complete everything no matter
 176	 *   if there are errors or retries)
 177	 */
 178	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 179		mmc_should_fail_request(host, mrq);
 180
 181		if (!host->ongoing_mrq)
 182			led_trigger_event(host->led, LED_OFF);
 183
 184		if (mrq->sbc) {
 185			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 186				mmc_hostname(host), mrq->sbc->opcode,
 187				mrq->sbc->error,
 188				mrq->sbc->resp[0], mrq->sbc->resp[1],
 189				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 190		}
 191
 192		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 193			mmc_hostname(host), cmd->opcode, err,
 194			cmd->resp[0], cmd->resp[1],
 195			cmd->resp[2], cmd->resp[3]);
 196
 197		if (mrq->data) {
 198			pr_debug("%s:     %d bytes transferred: %d\n",
 199				mmc_hostname(host),
 200				mrq->data->bytes_xfered, mrq->data->error);
 201		}
 202
 203		if (mrq->stop) {
 204			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 205				mmc_hostname(host), mrq->stop->opcode,
 206				mrq->stop->error,
 207				mrq->stop->resp[0], mrq->stop->resp[1],
 208				mrq->stop->resp[2], mrq->stop->resp[3]);
 209		}
 210	}
 211	/*
 212	 * Request starter must handle retries - see
 213	 * mmc_wait_for_req_done().
 214	 */
 215	if (mrq->done)
 216		mrq->done(mrq);
 217}
 218
 219EXPORT_SYMBOL(mmc_request_done);
 220
 221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223	int err;
 224
 225	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 226	err = mmc_retune(host);
 227	if (err) {
 228		mrq->cmd->error = err;
 229		mmc_request_done(host, mrq);
 230		return;
 231	}
 232
 233	/*
 234	 * For sdio rw commands we must wait for card busy otherwise some
 235	 * sdio devices won't work properly.
 236	 * And bypass I/O abort, reset and bus suspend operations.
 237	 */
 238	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 239	    host->ops->card_busy) {
 240		int tries = 500; /* Wait aprox 500ms at maximum */
 241
 242		while (host->ops->card_busy(host) && --tries)
 243			mmc_delay(1);
 244
 245		if (tries == 0) {
 246			mrq->cmd->error = -EBUSY;
 247			mmc_request_done(host, mrq);
 248			return;
 249		}
 250	}
 251
 252	if (mrq->cap_cmd_during_tfr) {
 253		host->ongoing_mrq = mrq;
 254		/*
 255		 * Retry path could come through here without having waiting on
 256		 * cmd_completion, so ensure it is reinitialised.
 257		 */
 258		reinit_completion(&mrq->cmd_completion);
 259	}
 260
 261	trace_mmc_request_start(host, mrq);
 262
 263	if (host->cqe_on)
 264		host->cqe_ops->cqe_off(host);
 265
 266	host->ops->request(host, mrq);
 267}
 268
 269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 270			     bool cqe)
 271{
 272	if (mrq->sbc) {
 273		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 274			 mmc_hostname(host), mrq->sbc->opcode,
 275			 mrq->sbc->arg, mrq->sbc->flags);
 276	}
 277
 278	if (mrq->cmd) {
 279		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 280			 mmc_hostname(host), cqe ? "CQE direct " : "",
 281			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 282	} else if (cqe) {
 283		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 284			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 285	}
 286
 287	if (mrq->data) {
 288		pr_debug("%s:     blksz %d blocks %d flags %08x "
 289			"tsac %d ms nsac %d\n",
 290			mmc_hostname(host), mrq->data->blksz,
 291			mrq->data->blocks, mrq->data->flags,
 292			mrq->data->timeout_ns / 1000000,
 293			mrq->data->timeout_clks);
 294	}
 295
 296	if (mrq->stop) {
 297		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 298			 mmc_hostname(host), mrq->stop->opcode,
 299			 mrq->stop->arg, mrq->stop->flags);
 300	}
 301}
 302
 303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 304{
 305	unsigned int i, sz = 0;
 306	struct scatterlist *sg;
 307
 308	if (mrq->cmd) {
 309		mrq->cmd->error = 0;
 310		mrq->cmd->mrq = mrq;
 311		mrq->cmd->data = mrq->data;
 312	}
 313	if (mrq->sbc) {
 314		mrq->sbc->error = 0;
 315		mrq->sbc->mrq = mrq;
 316	}
 317	if (mrq->data) {
 318		if (mrq->data->blksz > host->max_blk_size ||
 319		    mrq->data->blocks > host->max_blk_count ||
 320		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 321			return -EINVAL;
 322
 323		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 324			sz += sg->length;
 325		if (sz != mrq->data->blocks * mrq->data->blksz)
 326			return -EINVAL;
 327
 328		mrq->data->error = 0;
 329		mrq->data->mrq = mrq;
 330		if (mrq->stop) {
 331			mrq->data->stop = mrq->stop;
 332			mrq->stop->error = 0;
 333			mrq->stop->mrq = mrq;
 334		}
 335	}
 336
 337	return 0;
 338}
 339
 340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 341{
 342	int err;
 343
 
 
 
 344	init_completion(&mrq->cmd_completion);
 345
 346	mmc_retune_hold(host);
 347
 348	if (mmc_card_removed(host->card))
 349		return -ENOMEDIUM;
 350
 351	mmc_mrq_pr_debug(host, mrq, false);
 352
 353	WARN_ON(!host->claimed);
 354
 355	err = mmc_mrq_prep(host, mrq);
 356	if (err)
 357		return err;
 358
 
 
 
 359	led_trigger_event(host->led, LED_FULL);
 360	__mmc_start_request(host, mrq);
 361
 362	return 0;
 363}
 364EXPORT_SYMBOL(mmc_start_request);
 365
 366static void mmc_wait_done(struct mmc_request *mrq)
 367{
 368	complete(&mrq->completion);
 369}
 370
 371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 372{
 373	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 374
 375	/*
 376	 * If there is an ongoing transfer, wait for the command line to become
 377	 * available.
 378	 */
 379	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 380		wait_for_completion(&ongoing_mrq->cmd_completion);
 381}
 382
 383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 384{
 385	int err;
 386
 387	mmc_wait_ongoing_tfr_cmd(host);
 388
 389	init_completion(&mrq->completion);
 390	mrq->done = mmc_wait_done;
 391
 392	err = mmc_start_request(host, mrq);
 393	if (err) {
 394		mrq->cmd->error = err;
 395		mmc_complete_cmd(mrq);
 396		complete(&mrq->completion);
 397	}
 398
 399	return err;
 400}
 401
 402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 403{
 404	struct mmc_command *cmd;
 405
 406	while (1) {
 407		wait_for_completion(&mrq->completion);
 408
 409		cmd = mrq->cmd;
 410
 411		/*
 412		 * If host has timed out waiting for the sanitize
 413		 * to complete, card might be still in programming state
 414		 * so let's try to bring the card out of programming
 415		 * state.
 416		 */
 417		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 418			if (!mmc_interrupt_hpi(host->card)) {
 419				pr_warn("%s: %s: Interrupted sanitize\n",
 420					mmc_hostname(host), __func__);
 421				cmd->error = 0;
 422				break;
 423			} else {
 424				pr_err("%s: %s: Failed to interrupt sanitize\n",
 425				       mmc_hostname(host), __func__);
 426			}
 427		}
 428		if (!cmd->error || !cmd->retries ||
 429		    mmc_card_removed(host->card))
 430			break;
 431
 432		mmc_retune_recheck(host);
 433
 434		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 435			 mmc_hostname(host), cmd->opcode, cmd->error);
 436		cmd->retries--;
 437		cmd->error = 0;
 438		__mmc_start_request(host, mrq);
 439	}
 440
 441	mmc_retune_release(host);
 442}
 443EXPORT_SYMBOL(mmc_wait_for_req_done);
 444
 445/*
 446 * mmc_cqe_start_req - Start a CQE request.
 447 * @host: MMC host to start the request
 448 * @mrq: request to start
 449 *
 450 * Start the request, re-tuning if needed and it is possible. Returns an error
 451 * code if the request fails to start or -EBUSY if CQE is busy.
 452 */
 453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 454{
 455	int err;
 456
 457	/*
 458	 * CQE cannot process re-tuning commands. Caller must hold retuning
 459	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 460	 * active requests i.e. this is the first.  Note, re-tuning will call
 461	 * ->cqe_off().
 462	 */
 463	err = mmc_retune(host);
 464	if (err)
 465		goto out_err;
 466
 467	mrq->host = host;
 468
 469	mmc_mrq_pr_debug(host, mrq, true);
 470
 471	err = mmc_mrq_prep(host, mrq);
 472	if (err)
 473		goto out_err;
 474
 
 
 
 475	err = host->cqe_ops->cqe_request(host, mrq);
 476	if (err)
 477		goto out_err;
 478
 479	trace_mmc_request_start(host, mrq);
 480
 481	return 0;
 482
 483out_err:
 484	if (mrq->cmd) {
 485		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 486			 mmc_hostname(host), mrq->cmd->opcode, err);
 487	} else {
 488		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 489			 mmc_hostname(host), mrq->tag, err);
 490	}
 491	return err;
 492}
 493EXPORT_SYMBOL(mmc_cqe_start_req);
 494
 495/**
 496 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 497 *	@host: MMC host which completed request
 498 *	@mrq: MMC request which completed
 499 *
 500 *	CQE drivers should call this function when they have completed
 501 *	their processing of a request.
 502 */
 503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 504{
 505	mmc_should_fail_request(host, mrq);
 506
 507	/* Flag re-tuning needed on CRC errors */
 508	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 509	    (mrq->data && mrq->data->error == -EILSEQ))
 510		mmc_retune_needed(host);
 511
 512	trace_mmc_request_done(host, mrq);
 513
 514	if (mrq->cmd) {
 515		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 516			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 517	} else {
 518		pr_debug("%s: CQE transfer done tag %d\n",
 519			 mmc_hostname(host), mrq->tag);
 520	}
 521
 522	if (mrq->data) {
 523		pr_debug("%s:     %d bytes transferred: %d\n",
 524			 mmc_hostname(host),
 525			 mrq->data->bytes_xfered, mrq->data->error);
 526	}
 527
 528	mrq->done(mrq);
 529}
 530EXPORT_SYMBOL(mmc_cqe_request_done);
 531
 532/**
 533 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 534 *	@host: MMC host
 535 *	@mrq: MMC request to be processed
 536 */
 537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 538{
 539	if (host->cqe_ops->cqe_post_req)
 540		host->cqe_ops->cqe_post_req(host, mrq);
 541}
 542EXPORT_SYMBOL(mmc_cqe_post_req);
 543
 544/* Arbitrary 1 second timeout */
 545#define MMC_CQE_RECOVERY_TIMEOUT	1000
 546
 547/*
 548 * mmc_cqe_recovery - Recover from CQE errors.
 549 * @host: MMC host to recover
 550 *
 551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 552 * in eMMC, and discarding the queue in CQE. CQE must call
 553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 554 * fails to discard its queue.
 555 */
 556int mmc_cqe_recovery(struct mmc_host *host)
 557{
 558	struct mmc_command cmd;
 559	int err;
 560
 561	mmc_retune_hold_now(host);
 562
 563	/*
 564	 * Recovery is expected seldom, if at all, but it reduces performance,
 565	 * so make sure it is not completely silent.
 566	 */
 567	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 568
 569	host->cqe_ops->cqe_recovery_start(host);
 570
 571	memset(&cmd, 0, sizeof(cmd));
 572	cmd.opcode       = MMC_STOP_TRANSMISSION,
 573	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 574	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 575	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 576	mmc_wait_for_cmd(host, &cmd, 0);
 
 
 577
 578	memset(&cmd, 0, sizeof(cmd));
 579	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 580	cmd.arg          = 1; /* Discard entire queue */
 581	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 582	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 583	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 584	err = mmc_wait_for_cmd(host, &cmd, 0);
 585
 586	host->cqe_ops->cqe_recovery_finish(host);
 587
 
 
 
 588	mmc_retune_release(host);
 589
 590	return err;
 591}
 592EXPORT_SYMBOL(mmc_cqe_recovery);
 593
 594/**
 595 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 596 *	@host: MMC host
 597 *	@mrq: MMC request
 598 *
 599 *	mmc_is_req_done() is used with requests that have
 600 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 601 *	starting a request and before waiting for it to complete. That is,
 602 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 603 *	and before mmc_wait_for_req_done(). If it is called at other times the
 604 *	result is not meaningful.
 605 */
 606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 607{
 608	return completion_done(&mrq->completion);
 609}
 610EXPORT_SYMBOL(mmc_is_req_done);
 611
 612/**
 613 *	mmc_wait_for_req - start a request and wait for completion
 614 *	@host: MMC host to start command
 615 *	@mrq: MMC request to start
 616 *
 617 *	Start a new MMC custom command request for a host, and wait
 618 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 619 *	requests, the transfer is ongoing and the caller can issue further
 620 *	commands that do not use the data lines, and then wait by calling
 621 *	mmc_wait_for_req_done().
 622 *	Does not attempt to parse the response.
 623 */
 624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 625{
 626	__mmc_start_req(host, mrq);
 627
 628	if (!mrq->cap_cmd_during_tfr)
 629		mmc_wait_for_req_done(host, mrq);
 630}
 631EXPORT_SYMBOL(mmc_wait_for_req);
 632
 633/**
 634 *	mmc_wait_for_cmd - start a command and wait for completion
 635 *	@host: MMC host to start command
 636 *	@cmd: MMC command to start
 637 *	@retries: maximum number of retries
 638 *
 639 *	Start a new MMC command for a host, and wait for the command
 640 *	to complete.  Return any error that occurred while the command
 641 *	was executing.  Do not attempt to parse the response.
 642 */
 643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 644{
 645	struct mmc_request mrq = {};
 646
 647	WARN_ON(!host->claimed);
 648
 649	memset(cmd->resp, 0, sizeof(cmd->resp));
 650	cmd->retries = retries;
 651
 652	mrq.cmd = cmd;
 653	cmd->data = NULL;
 654
 655	mmc_wait_for_req(host, &mrq);
 656
 657	return cmd->error;
 658}
 659
 660EXPORT_SYMBOL(mmc_wait_for_cmd);
 661
 662/**
 663 *	mmc_set_data_timeout - set the timeout for a data command
 664 *	@data: data phase for command
 665 *	@card: the MMC card associated with the data transfer
 666 *
 667 *	Computes the data timeout parameters according to the
 668 *	correct algorithm given the card type.
 669 */
 670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 671{
 672	unsigned int mult;
 673
 674	/*
 675	 * SDIO cards only define an upper 1 s limit on access.
 676	 */
 677	if (mmc_card_sdio(card)) {
 678		data->timeout_ns = 1000000000;
 679		data->timeout_clks = 0;
 680		return;
 681	}
 682
 683	/*
 684	 * SD cards use a 100 multiplier rather than 10
 685	 */
 686	mult = mmc_card_sd(card) ? 100 : 10;
 687
 688	/*
 689	 * Scale up the multiplier (and therefore the timeout) by
 690	 * the r2w factor for writes.
 691	 */
 692	if (data->flags & MMC_DATA_WRITE)
 693		mult <<= card->csd.r2w_factor;
 694
 695	data->timeout_ns = card->csd.taac_ns * mult;
 696	data->timeout_clks = card->csd.taac_clks * mult;
 697
 698	/*
 699	 * SD cards also have an upper limit on the timeout.
 700	 */
 701	if (mmc_card_sd(card)) {
 702		unsigned int timeout_us, limit_us;
 703
 704		timeout_us = data->timeout_ns / 1000;
 705		if (card->host->ios.clock)
 706			timeout_us += data->timeout_clks * 1000 /
 707				(card->host->ios.clock / 1000);
 708
 709		if (data->flags & MMC_DATA_WRITE)
 710			/*
 711			 * The MMC spec "It is strongly recommended
 712			 * for hosts to implement more than 500ms
 713			 * timeout value even if the card indicates
 714			 * the 250ms maximum busy length."  Even the
 715			 * previous value of 300ms is known to be
 716			 * insufficient for some cards.
 717			 */
 718			limit_us = 3000000;
 719		else
 720			limit_us = 100000;
 721
 722		/*
 723		 * SDHC cards always use these fixed values.
 724		 */
 725		if (timeout_us > limit_us) {
 726			data->timeout_ns = limit_us * 1000;
 727			data->timeout_clks = 0;
 728		}
 729
 730		/* assign limit value if invalid */
 731		if (timeout_us == 0)
 732			data->timeout_ns = limit_us * 1000;
 733	}
 734
 735	/*
 736	 * Some cards require longer data read timeout than indicated in CSD.
 737	 * Address this by setting the read timeout to a "reasonably high"
 738	 * value. For the cards tested, 600ms has proven enough. If necessary,
 739	 * this value can be increased if other problematic cards require this.
 740	 */
 741	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 742		data->timeout_ns = 600000000;
 743		data->timeout_clks = 0;
 744	}
 745
 746	/*
 747	 * Some cards need very high timeouts if driven in SPI mode.
 748	 * The worst observed timeout was 900ms after writing a
 749	 * continuous stream of data until the internal logic
 750	 * overflowed.
 751	 */
 752	if (mmc_host_is_spi(card->host)) {
 753		if (data->flags & MMC_DATA_WRITE) {
 754			if (data->timeout_ns < 1000000000)
 755				data->timeout_ns = 1000000000;	/* 1s */
 756		} else {
 757			if (data->timeout_ns < 100000000)
 758				data->timeout_ns =  100000000;	/* 100ms */
 759		}
 760	}
 761}
 762EXPORT_SYMBOL(mmc_set_data_timeout);
 763
 764/**
 765 *	mmc_align_data_size - pads a transfer size to a more optimal value
 766 *	@card: the MMC card associated with the data transfer
 767 *	@sz: original transfer size
 768 *
 769 *	Pads the original data size with a number of extra bytes in
 770 *	order to avoid controller bugs and/or performance hits
 771 *	(e.g. some controllers revert to PIO for certain sizes).
 772 *
 773 *	Returns the improved size, which might be unmodified.
 774 *
 775 *	Note that this function is only relevant when issuing a
 776 *	single scatter gather entry.
 777 */
 778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 779{
 780	/*
 781	 * FIXME: We don't have a system for the controller to tell
 782	 * the core about its problems yet, so for now we just 32-bit
 783	 * align the size.
 784	 */
 785	sz = ((sz + 3) / 4) * 4;
 786
 787	return sz;
 788}
 789EXPORT_SYMBOL(mmc_align_data_size);
 790
 791/*
 792 * Allow claiming an already claimed host if the context is the same or there is
 793 * no context but the task is the same.
 794 */
 795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 796				   struct task_struct *task)
 797{
 798	return host->claimer == ctx ||
 799	       (!ctx && task && host->claimer->task == task);
 800}
 801
 802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 803				       struct mmc_ctx *ctx,
 804				       struct task_struct *task)
 805{
 806	if (!host->claimer) {
 807		if (ctx)
 808			host->claimer = ctx;
 809		else
 810			host->claimer = &host->default_ctx;
 811	}
 812	if (task)
 813		host->claimer->task = task;
 814}
 815
 816/**
 817 *	__mmc_claim_host - exclusively claim a host
 818 *	@host: mmc host to claim
 819 *	@ctx: context that claims the host or NULL in which case the default
 820 *	context will be used
 821 *	@abort: whether or not the operation should be aborted
 822 *
 823 *	Claim a host for a set of operations.  If @abort is non null and
 824 *	dereference a non-zero value then this will return prematurely with
 825 *	that non-zero value without acquiring the lock.  Returns zero
 826 *	with the lock held otherwise.
 827 */
 828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 829		     atomic_t *abort)
 830{
 831	struct task_struct *task = ctx ? NULL : current;
 832	DECLARE_WAITQUEUE(wait, current);
 833	unsigned long flags;
 834	int stop;
 835	bool pm = false;
 836
 837	might_sleep();
 838
 839	add_wait_queue(&host->wq, &wait);
 840	spin_lock_irqsave(&host->lock, flags);
 841	while (1) {
 842		set_current_state(TASK_UNINTERRUPTIBLE);
 843		stop = abort ? atomic_read(abort) : 0;
 844		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 845			break;
 846		spin_unlock_irqrestore(&host->lock, flags);
 847		schedule();
 848		spin_lock_irqsave(&host->lock, flags);
 849	}
 850	set_current_state(TASK_RUNNING);
 851	if (!stop) {
 852		host->claimed = 1;
 853		mmc_ctx_set_claimer(host, ctx, task);
 854		host->claim_cnt += 1;
 855		if (host->claim_cnt == 1)
 856			pm = true;
 857	} else
 858		wake_up(&host->wq);
 859	spin_unlock_irqrestore(&host->lock, flags);
 860	remove_wait_queue(&host->wq, &wait);
 861
 862	if (pm)
 863		pm_runtime_get_sync(mmc_dev(host));
 864
 865	return stop;
 866}
 867EXPORT_SYMBOL(__mmc_claim_host);
 868
 869/**
 870 *	mmc_release_host - release a host
 871 *	@host: mmc host to release
 872 *
 873 *	Release a MMC host, allowing others to claim the host
 874 *	for their operations.
 875 */
 876void mmc_release_host(struct mmc_host *host)
 877{
 878	unsigned long flags;
 879
 880	WARN_ON(!host->claimed);
 881
 882	spin_lock_irqsave(&host->lock, flags);
 883	if (--host->claim_cnt) {
 884		/* Release for nested claim */
 885		spin_unlock_irqrestore(&host->lock, flags);
 886	} else {
 887		host->claimed = 0;
 888		host->claimer->task = NULL;
 889		host->claimer = NULL;
 890		spin_unlock_irqrestore(&host->lock, flags);
 891		wake_up(&host->wq);
 892		pm_runtime_mark_last_busy(mmc_dev(host));
 893		pm_runtime_put_autosuspend(mmc_dev(host));
 
 
 
 894	}
 895}
 896EXPORT_SYMBOL(mmc_release_host);
 897
 898/*
 899 * This is a helper function, which fetches a runtime pm reference for the
 900 * card device and also claims the host.
 901 */
 902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 903{
 904	pm_runtime_get_sync(&card->dev);
 905	__mmc_claim_host(card->host, ctx, NULL);
 906}
 907EXPORT_SYMBOL(mmc_get_card);
 908
 909/*
 910 * This is a helper function, which releases the host and drops the runtime
 911 * pm reference for the card device.
 912 */
 913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 914{
 915	struct mmc_host *host = card->host;
 916
 917	WARN_ON(ctx && host->claimer != ctx);
 918
 919	mmc_release_host(host);
 920	pm_runtime_mark_last_busy(&card->dev);
 921	pm_runtime_put_autosuspend(&card->dev);
 922}
 923EXPORT_SYMBOL(mmc_put_card);
 924
 925/*
 926 * Internal function that does the actual ios call to the host driver,
 927 * optionally printing some debug output.
 928 */
 929static inline void mmc_set_ios(struct mmc_host *host)
 930{
 931	struct mmc_ios *ios = &host->ios;
 932
 933	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 934		"width %u timing %u\n",
 935		 mmc_hostname(host), ios->clock, ios->bus_mode,
 936		 ios->power_mode, ios->chip_select, ios->vdd,
 937		 1 << ios->bus_width, ios->timing);
 938
 939	host->ops->set_ios(host, ios);
 940}
 941
 942/*
 943 * Control chip select pin on a host.
 944 */
 945void mmc_set_chip_select(struct mmc_host *host, int mode)
 946{
 947	host->ios.chip_select = mode;
 948	mmc_set_ios(host);
 949}
 950
 951/*
 952 * Sets the host clock to the highest possible frequency that
 953 * is below "hz".
 954 */
 955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 956{
 957	WARN_ON(hz && hz < host->f_min);
 958
 959	if (hz > host->f_max)
 960		hz = host->f_max;
 961
 962	host->ios.clock = hz;
 963	mmc_set_ios(host);
 964}
 965
 966int mmc_execute_tuning(struct mmc_card *card)
 967{
 968	struct mmc_host *host = card->host;
 969	u32 opcode;
 970	int err;
 971
 972	if (!host->ops->execute_tuning)
 973		return 0;
 974
 975	if (host->cqe_on)
 976		host->cqe_ops->cqe_off(host);
 977
 978	if (mmc_card_mmc(card))
 979		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 980	else
 981		opcode = MMC_SEND_TUNING_BLOCK;
 982
 983	err = host->ops->execute_tuning(host, opcode);
 
 
 
 
 
 984
 985	if (err)
 
 986		pr_err("%s: tuning execution failed: %d\n",
 987			mmc_hostname(host), err);
 988	else
 989		mmc_retune_enable(host);
 990
 991	return err;
 992}
 993
 994/*
 995 * Change the bus mode (open drain/push-pull) of a host.
 996 */
 997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 998{
 999	host->ios.bus_mode = mode;
1000	mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008	host->ios.bus_width = width;
1009	mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017	if (host->cqe_on)
1018		host->cqe_ops->cqe_off(host);
1019
1020	mmc_retune_disable(host);
1021
1022	if (mmc_host_is_spi(host))
1023		host->ios.chip_select = MMC_CS_HIGH;
1024	else
1025		host->ios.chip_select = MMC_CS_DONTCARE;
1026	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027	host->ios.bus_width = MMC_BUS_WIDTH_1;
1028	host->ios.timing = MMC_TIMING_LEGACY;
1029	host->ios.drv_type = 0;
1030	host->ios.enhanced_strobe = false;
1031
1032	/*
1033	 * Make sure we are in non-enhanced strobe mode before we
1034	 * actually enable it in ext_csd.
1035	 */
1036	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037	     host->ops->hs400_enhanced_strobe)
1038		host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040	mmc_set_ios(host);
 
 
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd:	voltage (mV)
1046 * @low_bits:	prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060	const int max_bit = ilog2(MMC_VDD_35_36);
1061	int bit;
1062
1063	if (vdd < 1650 || vdd > 3600)
1064		return -EINVAL;
1065
1066	if (vdd >= 1650 && vdd <= 1950)
1067		return ilog2(MMC_VDD_165_195);
1068
1069	if (low_bits)
1070		vdd -= 1;
1071
1072	/* Base 2000 mV, step 100 mV, bit's base 8. */
1073	bit = (vdd - 2000) / 100 + 8;
1074	if (bit > max_bit)
1075		return max_bit;
1076	return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min:	minimum voltage value (mV)
1082 * @vdd_max:	maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094	u32 mask = 0;
1095
1096	if (vdd_max < vdd_min)
1097		return 0;
1098
1099	/* Prefer high bits for the boundary vdd_max values. */
1100	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101	if (vdd_max < 0)
1102		return 0;
1103
1104	/* Prefer low bits for the boundary vdd_min values. */
1105	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106	if (vdd_min < 0)
1107		return 0;
1108
1109	/* Fill the mask, from max bit to min bit. */
1110	while (vdd_max >= vdd_min)
1111		mask |= 1 << vdd_max--;
1112
1113	return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130	const u32 *voltage_ranges;
1131	int num_ranges, i;
1132
1133	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135	if (!voltage_ranges) {
1136		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137		return 0;
1138	}
1139	if (!num_ranges) {
1140		pr_err("%pOF: voltage-ranges empty\n", np);
1141		return -EINVAL;
1142	}
1143
1144	for (i = 0; i < num_ranges; i++) {
1145		const int j = i * 2;
1146		u32 ocr_mask;
1147
1148		ocr_mask = mmc_vddrange_to_ocrmask(
1149				be32_to_cpu(voltage_ranges[j]),
1150				be32_to_cpu(voltage_ranges[j + 1]));
1151		if (!ocr_mask) {
1152			pr_err("%pOF: voltage-range #%d is invalid\n",
1153				np, i);
1154			return -EINVAL;
1155		}
1156		*mask |= ocr_mask;
1157	}
1158
1159	return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167	u32 reg;
1168	int ret;
1169
1170	ret = of_property_read_u32(node, "reg", &reg);
1171	if (ret < 0)
1172		return ret;
1173
1174	return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178		unsigned func_num)
1179{
1180	struct device_node *node;
1181
1182	if (!host->parent || !host->parent->of_node)
1183		return NULL;
1184
1185	for_each_child_of_node(host->parent->of_node, node) {
1186		if (mmc_of_get_func_num(node) == func_num)
1187			return node;
1188	}
1189
1190	return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit:	OCR bit number
1198 * @min_uV:	minimum voltage value (mV)
1199 * @max_uV:	maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206	int		tmp;
1207
1208	if (!vdd_bit)
1209		return -EINVAL;
1210
1211	/*
1212	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213	 * bits this regulator doesn't quite support ... don't
1214	 * be too picky, most cards and regulators are OK with
1215	 * a 0.1V range goof (it's a small error percentage).
1216	 */
1217	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218	if (tmp == 0) {
1219		*min_uV = 1650 * 1000;
1220		*max_uV = 1950 * 1000;
1221	} else {
1222		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223		*max_uV = *min_uV + 100 * 1000;
1224	}
1225
1226	return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator.  This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240	int			result = 0;
1241	int			count;
1242	int			i;
1243	int			vdd_uV;
1244	int			vdd_mV;
1245
1246	count = regulator_count_voltages(supply);
1247	if (count < 0)
1248		return count;
1249
1250	for (i = 0; i < count; i++) {
1251		vdd_uV = regulator_list_voltage(supply, i);
1252		if (vdd_uV <= 0)
1253			continue;
1254
1255		vdd_mV = vdd_uV / 1000;
1256		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257	}
1258
1259	if (!result) {
1260		vdd_uV = regulator_get_voltage(supply);
1261		if (vdd_uV <= 0)
1262			return vdd_uV;
1263
1264		vdd_mV = vdd_uV / 1000;
1265		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266	}
1267
1268	return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage.  This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285			struct regulator *supply,
1286			unsigned short vdd_bit)
1287{
1288	int			result = 0;
1289	int			min_uV, max_uV;
1290
1291	if (vdd_bit) {
1292		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294		result = regulator_set_voltage(supply, min_uV, max_uV);
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314						  int min_uV, int target_uV,
1315						  int max_uV)
1316{
1317	/*
1318	 * Check if supported first to avoid errors since we may try several
1319	 * signal levels during power up and don't want to show errors.
1320	 */
1321	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322		return -EINVAL;
1323
1324	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325					     max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage.  This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347	struct device *dev = mmc_dev(mmc);
1348	int ret, volt, min_uV, max_uV;
1349
1350	/* If no vqmmc supply then we can't change the voltage */
1351	if (IS_ERR(mmc->supply.vqmmc))
1352		return -EINVAL;
1353
1354	switch (ios->signal_voltage) {
1355	case MMC_SIGNAL_VOLTAGE_120:
1356		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357						1100000, 1200000, 1300000);
1358	case MMC_SIGNAL_VOLTAGE_180:
1359		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360						1700000, 1800000, 1950000);
1361	case MMC_SIGNAL_VOLTAGE_330:
1362		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363		if (ret < 0)
1364			return ret;
1365
1366		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367			__func__, volt, max_uV);
1368
1369		min_uV = max(volt - 300000, 2700000);
1370		max_uV = min(max_uV + 200000, 3600000);
1371
1372		/*
1373		 * Due to a limitation in the current implementation of
1374		 * regulator_set_voltage_triplet() which is taking the lowest
1375		 * voltage possible if below the target, search for a suitable
1376		 * voltage in two steps and try to stay close to vmmc
1377		 * with a 0.3V tolerance at first.
1378		 */
1379		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380						min_uV, volt, max_uV))
1381			return 0;
1382
1383		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384						2700000, volt, 3600000);
1385	default:
1386		return -EINVAL;
1387	}
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405	struct device *dev = mmc_dev(mmc);
1406	int ret;
1407
1408	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411	if (IS_ERR(mmc->supply.vmmc)) {
1412		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413			return -EPROBE_DEFER;
1414		dev_dbg(dev, "No vmmc regulator found\n");
1415	} else {
1416		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417		if (ret > 0)
1418			mmc->ocr_avail = ret;
1419		else
1420			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421	}
1422
1423	if (IS_ERR(mmc->supply.vqmmc)) {
1424		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425			return -EPROBE_DEFER;
1426		dev_dbg(dev, "No vqmmc regulator found\n");
1427	}
1428
1429	return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439	int bit;
1440
1441	/*
1442	 * Sanity check the voltages that the card claims to
1443	 * support.
1444	 */
1445	if (ocr & 0x7F) {
1446		dev_warn(mmc_dev(host),
1447		"card claims to support voltages below defined range\n");
1448		ocr &= ~0x7F;
1449	}
1450
1451	ocr &= host->ocr_avail;
1452	if (!ocr) {
1453		dev_warn(mmc_dev(host), "no support for card's volts\n");
1454		return 0;
1455	}
1456
1457	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458		bit = ffs(ocr) - 1;
1459		ocr &= 3 << bit;
1460		mmc_power_cycle(host, ocr);
1461	} else {
1462		bit = fls(ocr) - 1;
1463		ocr &= 3 << bit;
 
 
 
 
 
 
1464		if (bit != host->ios.vdd)
1465			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466	}
1467
1468	return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473	int err = 0;
1474	int old_signal_voltage = host->ios.signal_voltage;
1475
1476	host->ios.signal_voltage = signal_voltage;
1477	if (host->ops->start_signal_voltage_switch)
1478		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480	if (err)
1481		host->ios.signal_voltage = old_signal_voltage;
1482
1483	return err;
1484
1485}
1486
 
 
 
 
 
 
 
 
 
 
 
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
1489	u32 clock;
1490
1491	/*
1492	 * During a signal voltage level switch, the clock must be gated
1493	 * for 5 ms according to the SD spec
1494	 */
1495	clock = host->ios.clock;
1496	host->ios.clock = 0;
1497	mmc_set_ios(host);
1498
1499	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500		return -EAGAIN;
1501
1502	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503	mmc_delay(10);
1504	host->ios.clock = clock;
1505	mmc_set_ios(host);
1506
1507	return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512	struct mmc_command cmd = {};
1513	int err = 0;
1514
1515	/*
1516	 * If we cannot switch voltages, return failure so the caller
1517	 * can continue without UHS mode
1518	 */
1519	if (!host->ops->start_signal_voltage_switch)
1520		return -EPERM;
1521	if (!host->ops->card_busy)
1522		pr_warn("%s: cannot verify signal voltage switch\n",
1523			mmc_hostname(host));
1524
1525	cmd.opcode = SD_SWITCH_VOLTAGE;
1526	cmd.arg = 0;
1527	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529	err = mmc_wait_for_cmd(host, &cmd, 0);
1530	if (err)
1531		return err;
1532
1533	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534		return -EIO;
1535
1536	/*
1537	 * The card should drive cmd and dat[0:3] low immediately
1538	 * after the response of cmd11, but wait 1 ms to be sure
1539	 */
1540	mmc_delay(1);
1541	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542		err = -EAGAIN;
1543		goto power_cycle;
1544	}
1545
1546	if (mmc_host_set_uhs_voltage(host)) {
1547		/*
1548		 * Voltages may not have been switched, but we've already
1549		 * sent CMD11, so a power cycle is required anyway
1550		 */
1551		err = -EAGAIN;
1552		goto power_cycle;
1553	}
1554
1555	/* Wait for at least 1 ms according to spec */
1556	mmc_delay(1);
1557
1558	/*
1559	 * Failure to switch is indicated by the card holding
1560	 * dat[0:3] low
1561	 */
1562	if (host->ops->card_busy && host->ops->card_busy(host))
1563		err = -EAGAIN;
1564
1565power_cycle:
1566	if (err) {
1567		pr_debug("%s: Signal voltage switch failed, "
1568			"power cycling card\n", mmc_hostname(host));
1569		mmc_power_cycle(host, ocr);
1570	}
1571
1572	return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
1580	host->ios.timing = timing;
1581	mmc_set_ios(host);
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
1589	host->ios.drv_type = drv_type;
1590	mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594			      int card_drv_type, int *drv_type)
1595{
1596	struct mmc_host *host = card->host;
1597	int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599	*drv_type = 0;
1600
1601	if (!host->ops->select_drive_strength)
1602		return 0;
1603
1604	/* Use SD definition of driver strength for hosts */
1605	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606		host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609		host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612		host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614	/*
1615	 * The drive strength that the hardware can support
1616	 * depends on the board design.  Pass the appropriate
1617	 * information and let the hardware specific code
1618	 * return what is possible given the options
1619	 */
1620	return host->ops->select_drive_strength(card, max_dtr,
1621						host_drv_type,
1622						card_drv_type,
1623						drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack.  This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise.  Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639	if (host->ios.power_mode == MMC_POWER_ON)
1640		return;
1641
1642	mmc_pwrseq_pre_power_on(host);
1643
1644	host->ios.vdd = fls(ocr) - 1;
1645	host->ios.power_mode = MMC_POWER_UP;
1646	/* Set initial state and call mmc_set_ios */
1647	mmc_set_initial_state(host);
1648
1649	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657	/*
1658	 * This delay should be sufficient to allow the power supply
1659	 * to reach the minimum voltage.
1660	 */
1661	mmc_delay(10);
1662
1663	mmc_pwrseq_post_power_on(host);
1664
1665	host->ios.clock = host->f_init;
1666
1667	host->ios.power_mode = MMC_POWER_ON;
1668	mmc_set_ios(host);
1669
1670	/*
1671	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672	 * time required to reach a stable voltage.
1673	 */
1674	mmc_delay(10);
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679	if (host->ios.power_mode == MMC_POWER_OFF)
1680		return;
1681
1682	mmc_pwrseq_power_off(host);
1683
1684	host->ios.clock = 0;
1685	host->ios.vdd = 0;
1686
1687	host->ios.power_mode = MMC_POWER_OFF;
1688	/* Set initial state and call mmc_set_ios */
1689	mmc_set_initial_state(host);
1690
1691	/*
1692	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693	 * XO-1.5, require a short delay after poweroff before the card
1694	 * can be successfully turned on again.
1695	 */
1696	mmc_delay(1);
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701	mmc_power_off(host);
1702	/* Wait at least 1 ms according to SD spec */
1703	mmc_delay(1);
1704	mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712	WARN_ON(!host->bus_dead);
1713
1714	host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&host->lock, flags);
1725	host->bus_refs++;
1726	spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735	unsigned long flags;
1736
1737	spin_lock_irqsave(&host->lock, flags);
1738	host->bus_refs--;
1739	if ((host->bus_refs == 0) && host->bus_ops)
1740		__mmc_release_bus(host);
1741	spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750	unsigned long flags;
1751
1752	WARN_ON(!host->claimed);
1753
1754	spin_lock_irqsave(&host->lock, flags);
1755
1756	WARN_ON(host->bus_ops);
1757	WARN_ON(host->bus_refs);
1758
1759	host->bus_ops = ops;
1760	host->bus_refs = 1;
1761	host->bus_dead = 0;
1762
1763	spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771	unsigned long flags;
1772
1773	WARN_ON(!host->claimed);
1774	WARN_ON(!host->bus_ops);
1775
1776	spin_lock_irqsave(&host->lock, flags);
1777
1778	host->bus_dead = 1;
1779
1780	spin_unlock_irqrestore(&host->lock, flags);
1781
1782	mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786				bool cd_irq)
1787{
1788	/*
1789	 * If the device is configured as wakeup, we prevent a new sleep for
1790	 * 5 s to give provision for user space to consume the event.
 
1791	 */
1792	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793		device_can_wakeup(mmc_dev(host)))
1794		pm_wakeup_event(mmc_dev(host), 5000);
1795
1796	host->detect_change = 1;
1797	mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 *	mmc_detect_change - process change of state on a MMC socket
1802 *	@host: host which changed state.
1803 *	@delay: optional delay to wait before detection (jiffies)
1804 *
1805 *	MMC drivers should call this when they detect a card has been
1806 *	inserted or removed. The MMC layer will confirm that any
1807 *	present card is still functional, and initialize any newly
1808 *	inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812	_mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818	unsigned int sz;
1819
1820	if (is_power_of_2(card->erase_size))
1821		card->erase_shift = ffs(card->erase_size) - 1;
1822	else
1823		card->erase_shift = 0;
1824
1825	/*
1826	 * It is possible to erase an arbitrarily large area of an SD or MMC
1827	 * card.  That is not desirable because it can take a long time
1828	 * (minutes) potentially delaying more important I/O, and also the
1829	 * timeout calculations become increasingly hugely over-estimated.
1830	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831	 * to that size and alignment.
1832	 *
1833	 * For SD cards that define Allocation Unit size, limit erases to one
1834	 * Allocation Unit at a time.
1835	 * For MMC, have a stab at ai good value and for modern cards it will
1836	 * end up being 4MiB. Note that if the value is too small, it can end
1837	 * up taking longer to erase. Also note, erase_size is already set to
1838	 * High Capacity Erase Size if available when this function is called.
1839	 */
1840	if (mmc_card_sd(card) && card->ssr.au) {
1841		card->pref_erase = card->ssr.au;
1842		card->erase_shift = ffs(card->ssr.au) - 1;
1843	} else if (card->erase_size) {
1844		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845		if (sz < 128)
1846			card->pref_erase = 512 * 1024 / 512;
1847		else if (sz < 512)
1848			card->pref_erase = 1024 * 1024 / 512;
1849		else if (sz < 1024)
1850			card->pref_erase = 2 * 1024 * 1024 / 512;
1851		else
1852			card->pref_erase = 4 * 1024 * 1024 / 512;
1853		if (card->pref_erase < card->erase_size)
1854			card->pref_erase = card->erase_size;
1855		else {
1856			sz = card->pref_erase % card->erase_size;
1857			if (sz)
1858				card->pref_erase += card->erase_size - sz;
1859		}
1860	} else
1861		card->pref_erase = 0;
1862}
1863
 
 
 
 
 
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865				          unsigned int arg, unsigned int qty)
1866{
1867	unsigned int erase_timeout;
1868
1869	if (arg == MMC_DISCARD_ARG ||
1870	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871		erase_timeout = card->ext_csd.trim_timeout;
1872	} else if (card->ext_csd.erase_group_def & 1) {
1873		/* High Capacity Erase Group Size uses HC timeouts */
1874		if (arg == MMC_TRIM_ARG)
1875			erase_timeout = card->ext_csd.trim_timeout;
1876		else
1877			erase_timeout = card->ext_csd.hc_erase_timeout;
1878	} else {
1879		/* CSD Erase Group Size uses write timeout */
1880		unsigned int mult = (10 << card->csd.r2w_factor);
1881		unsigned int timeout_clks = card->csd.taac_clks * mult;
1882		unsigned int timeout_us;
1883
1884		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885		if (card->csd.taac_ns < 1000000)
1886			timeout_us = (card->csd.taac_ns * mult) / 1000;
1887		else
1888			timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890		/*
1891		 * ios.clock is only a target.  The real clock rate might be
1892		 * less but not that much less, so fudge it by multiplying by 2.
1893		 */
1894		timeout_clks <<= 1;
1895		timeout_us += (timeout_clks * 1000) /
1896			      (card->host->ios.clock / 1000);
1897
1898		erase_timeout = timeout_us / 1000;
1899
1900		/*
1901		 * Theoretically, the calculation could underflow so round up
1902		 * to 1ms in that case.
1903		 */
1904		if (!erase_timeout)
1905			erase_timeout = 1;
1906	}
1907
1908	/* Multiplier for secure operations */
1909	if (arg & MMC_SECURE_ARGS) {
1910		if (arg == MMC_SECURE_ERASE_ARG)
1911			erase_timeout *= card->ext_csd.sec_erase_mult;
1912		else
1913			erase_timeout *= card->ext_csd.sec_trim_mult;
1914	}
1915
1916	erase_timeout *= qty;
1917
1918	/*
1919	 * Ensure at least a 1 second timeout for SPI as per
1920	 * 'mmc_set_data_timeout()'
1921	 */
1922	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923		erase_timeout = 1000;
1924
1925	return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929					 unsigned int arg,
1930					 unsigned int qty)
1931{
1932	unsigned int erase_timeout;
1933
 
 
 
 
 
 
1934	if (card->ssr.erase_timeout) {
1935		/* Erase timeout specified in SD Status Register (SSR) */
1936		erase_timeout = card->ssr.erase_timeout * qty +
1937				card->ssr.erase_offset;
1938	} else {
1939		/*
1940		 * Erase timeout not specified in SD Status Register (SSR) so
1941		 * use 250ms per write block.
1942		 */
1943		erase_timeout = 250 * qty;
1944	}
1945
1946	/* Must not be less than 1 second */
1947	if (erase_timeout < 1000)
1948		erase_timeout = 1000;
1949
1950	return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954				      unsigned int arg,
1955				      unsigned int qty)
1956{
1957	if (mmc_card_sd(card))
1958		return mmc_sd_erase_timeout(card, arg, qty);
1959	else
1960		return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964			unsigned int to, unsigned int arg)
1965{
1966	struct mmc_command cmd = {};
1967	unsigned int qty = 0, busy_timeout = 0;
1968	bool use_r1b_resp = false;
1969	unsigned long timeout;
1970	int err;
1971
1972	mmc_retune_hold(card->host);
1973
1974	/*
1975	 * qty is used to calculate the erase timeout which depends on how many
1976	 * erase groups (or allocation units in SD terminology) are affected.
1977	 * We count erasing part of an erase group as one erase group.
1978	 * For SD, the allocation units are always a power of 2.  For MMC, the
1979	 * erase group size is almost certainly also power of 2, but it does not
1980	 * seem to insist on that in the JEDEC standard, so we fall back to
1981	 * division in that case.  SD may not specify an allocation unit size,
1982	 * in which case the timeout is based on the number of write blocks.
1983	 *
1984	 * Note that the timeout for secure trim 2 will only be correct if the
1985	 * number of erase groups specified is the same as the total of all
1986	 * preceding secure trim 1 commands.  Since the power may have been
1987	 * lost since the secure trim 1 commands occurred, it is generally
1988	 * impossible to calculate the secure trim 2 timeout correctly.
1989	 */
1990	if (card->erase_shift)
1991		qty += ((to >> card->erase_shift) -
1992			(from >> card->erase_shift)) + 1;
1993	else if (mmc_card_sd(card))
1994		qty += to - from + 1;
1995	else
1996		qty += ((to / card->erase_size) -
1997			(from / card->erase_size)) + 1;
1998
1999	if (!mmc_card_blockaddr(card)) {
2000		from <<= 9;
2001		to <<= 9;
2002	}
2003
2004	if (mmc_card_sd(card))
2005		cmd.opcode = SD_ERASE_WR_BLK_START;
2006	else
2007		cmd.opcode = MMC_ERASE_GROUP_START;
2008	cmd.arg = from;
2009	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
2010	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011	if (err) {
2012		pr_err("mmc_erase: group start error %d, "
2013		       "status %#x\n", err, cmd.resp[0]);
2014		err = -EIO;
2015		goto out;
2016	}
2017
2018	memset(&cmd, 0, sizeof(struct mmc_command));
2019	if (mmc_card_sd(card))
2020		cmd.opcode = SD_ERASE_WR_BLK_END;
2021	else
2022		cmd.opcode = MMC_ERASE_GROUP_END;
2023	cmd.arg = to;
2024	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
2025	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026	if (err) {
2027		pr_err("mmc_erase: group end error %d, status %#x\n",
2028		       err, cmd.resp[0]);
2029		err = -EIO;
2030		goto out;
2031	}
2032
2033	memset(&cmd, 0, sizeof(struct mmc_command));
2034	cmd.opcode = MMC_ERASE;
2035	cmd.arg = arg;
2036	busy_timeout = mmc_erase_timeout(card, arg, qty);
2037	/*
2038	 * If the host controller supports busy signalling and the timeout for
2039	 * the erase operation does not exceed the max_busy_timeout, we should
2040	 * use R1B response. Or we need to prevent the host from doing hw busy
2041	 * detection, which is done by converting to a R1 response instead.
2042	 */
2043	if (card->host->max_busy_timeout &&
2044	    busy_timeout > card->host->max_busy_timeout) {
2045		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046	} else {
2047		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048		cmd.busy_timeout = busy_timeout;
2049		use_r1b_resp = true;
2050	}
2051
2052	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053	if (err) {
2054		pr_err("mmc_erase: erase error %d, status %#x\n",
2055		       err, cmd.resp[0]);
2056		err = -EIO;
2057		goto out;
2058	}
2059
2060	if (mmc_host_is_spi(card->host))
2061		goto out;
2062
2063	/*
2064	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065	 * shall be avoided.
2066	 */
2067	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068		goto out;
2069
2070	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071	do {
2072		memset(&cmd, 0, sizeof(struct mmc_command));
2073		cmd.opcode = MMC_SEND_STATUS;
2074		cmd.arg = card->rca << 16;
2075		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076		/* Do not retry else we can't see errors */
2077		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078		if (err || (cmd.resp[0] & 0xFDF92000)) {
2079			pr_err("error %d requesting status %#x\n",
2080				err, cmd.resp[0]);
2081			err = -EIO;
2082			goto out;
2083		}
2084
2085		/* Timeout if the device never becomes ready for data and
2086		 * never leaves the program state.
2087		 */
2088		if (time_after(jiffies, timeout)) {
2089			pr_err("%s: Card stuck in programming state! %s\n",
2090				mmc_hostname(card->host), __func__);
2091			err =  -EIO;
2092			goto out;
2093		}
2094
2095	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098	mmc_retune_release(card->host);
2099	return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103					 unsigned int *from,
2104					 unsigned int *to,
2105					 unsigned int nr)
2106{
2107	unsigned int from_new = *from, nr_new = nr, rem;
 
2108
2109	/*
2110	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111	 * to align the erase size efficiently.
2112	 */
2113	if (is_power_of_2(card->erase_size)) {
2114		unsigned int temp = from_new;
2115
2116		from_new = round_up(temp, card->erase_size);
2117		rem = from_new - temp;
2118
2119		if (nr_new > rem)
2120			nr_new -= rem;
2121		else
2122			return 0;
2123
2124		nr_new = round_down(nr_new, card->erase_size);
2125	} else {
2126		rem = from_new % card->erase_size;
2127		if (rem) {
2128			rem = card->erase_size - rem;
2129			from_new += rem;
2130			if (nr_new > rem)
2131				nr_new -= rem;
2132			else
2133				return 0;
2134		}
2135
2136		rem = nr_new % card->erase_size;
2137		if (rem)
2138			nr_new -= rem;
2139	}
2140
2141	if (nr_new == 0)
2142		return 0;
2143
2144	*to = from_new + nr_new;
2145	*from = from_new;
2146
2147	return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160	      unsigned int arg)
2161{
2162	unsigned int rem, to = from + nr;
 
 
2163	int err;
2164
2165	if (!(card->host->caps & MMC_CAP_ERASE) ||
2166	    !(card->csd.cmdclass & CCC_ERASE))
2167		return -EOPNOTSUPP;
2168
2169	if (!card->erase_size)
2170		return -EOPNOTSUPP;
2171
2172	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173		return -EOPNOTSUPP;
2174
2175	if ((arg & MMC_SECURE_ARGS) &&
2176	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177		return -EOPNOTSUPP;
2178
2179	if ((arg & MMC_TRIM_ARGS) &&
2180	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181		return -EOPNOTSUPP;
2182
2183	if (arg == MMC_SECURE_ERASE_ARG) {
2184		if (from % card->erase_size || nr % card->erase_size)
2185			return -EINVAL;
2186	}
2187
2188	if (arg == MMC_ERASE_ARG)
2189		nr = mmc_align_erase_size(card, &from, &to, nr);
2190
2191	if (nr == 0)
2192		return 0;
2193
2194	if (to <= from)
2195		return -EINVAL;
2196
2197	/* 'from' and 'to' are inclusive */
2198	to -= 1;
2199
2200	/*
2201	 * Special case where only one erase-group fits in the timeout budget:
2202	 * If the region crosses an erase-group boundary on this particular
2203	 * case, we will be trimming more than one erase-group which, does not
2204	 * fit in the timeout budget of the controller, so we need to split it
2205	 * and call mmc_do_erase() twice if necessary. This special case is
2206	 * identified by the card->eg_boundary flag.
2207	 */
2208	rem = card->erase_size - (from % card->erase_size);
2209	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210		err = mmc_do_erase(card, from, from + rem - 1, arg);
2211		from += rem;
2212		if ((err) || (to <= from))
2213			return err;
2214	}
2215
2216	return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222	if ((card->host->caps & MMC_CAP_ERASE) &&
2223	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224		return 1;
2225	return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233		return 1;
2234	return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240	/*
2241	 * As there's no way to detect the discard support bit at v4.5
2242	 * use the s/w feature support filed.
2243	 */
2244	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245		return 1;
2246	return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253		return 0;
2254	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255		return 1;
2256	return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264		return 1;
2265	return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270			    unsigned int nr)
2271{
2272	if (!card->erase_size)
2273		return 0;
2274	if (from % card->erase_size || nr % card->erase_size)
2275		return 0;
2276	return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281					    unsigned int arg)
2282{
2283	struct mmc_host *host = card->host;
2284	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285	unsigned int last_timeout = 0;
2286	unsigned int max_busy_timeout = host->max_busy_timeout ?
2287			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289	if (card->erase_shift) {
2290		max_qty = UINT_MAX >> card->erase_shift;
2291		min_qty = card->pref_erase >> card->erase_shift;
2292	} else if (mmc_card_sd(card)) {
2293		max_qty = UINT_MAX;
2294		min_qty = card->pref_erase;
2295	} else {
2296		max_qty = UINT_MAX / card->erase_size;
2297		min_qty = card->pref_erase / card->erase_size;
2298	}
2299
2300	/*
2301	 * We should not only use 'host->max_busy_timeout' as the limitation
2302	 * when deciding the max discard sectors. We should set a balance value
2303	 * to improve the erase speed, and it can not get too long timeout at
2304	 * the same time.
2305	 *
2306	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307	 * matter what size of 'host->max_busy_timeout', but if the
2308	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309	 * then we can continue to increase the max discard sectors until we
2310	 * get a balance value. In cases when the 'host->max_busy_timeout'
2311	 * isn't specified, use the default max erase timeout.
2312	 */
2313	do {
2314		y = 0;
2315		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316			timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318			if (qty + x > min_qty && timeout > max_busy_timeout)
2319				break;
2320
2321			if (timeout < last_timeout)
2322				break;
2323			last_timeout = timeout;
2324			y = x;
2325		}
2326		qty += y;
2327	} while (y);
2328
2329	if (!qty)
2330		return 0;
2331
2332	/*
2333	 * When specifying a sector range to trim, chances are we might cross
2334	 * an erase-group boundary even if the amount of sectors is less than
2335	 * one erase-group.
2336	 * If we can only fit one erase-group in the controller timeout budget,
2337	 * we have to care that erase-group boundaries are not crossed by a
2338	 * single trim operation. We flag that special case with "eg_boundary".
2339	 * In all other cases we can just decrement qty and pretend that we
2340	 * always touch (qty + 1) erase-groups as a simple optimization.
2341	 */
2342	if (qty == 1)
2343		card->eg_boundary = 1;
2344	else
2345		qty--;
2346
2347	/* Convert qty to sectors */
2348	if (card->erase_shift)
2349		max_discard = qty << card->erase_shift;
2350	else if (mmc_card_sd(card))
2351		max_discard = qty + 1;
2352	else
2353		max_discard = qty * card->erase_size;
2354
2355	return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360	struct mmc_host *host = card->host;
2361	unsigned int max_discard, max_trim;
2362
2363	/*
2364	 * Without erase_group_def set, MMC erase timeout depends on clock
2365	 * frequence which can change.  In that case, the best choice is
2366	 * just the preferred erase size.
2367	 */
2368	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369		return card->pref_erase;
2370
2371	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372	if (max_discard && mmc_can_trim(card)) {
2373		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374		if (max_trim < max_discard)
2375			max_discard = max_trim;
2376	} else if (max_discard < card->erase_size) {
2377		max_discard = 0;
2378	}
2379	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382	return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388	return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394	struct mmc_command cmd = {};
2395
2396	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2398		return 0;
2399
2400	cmd.opcode = MMC_SET_BLOCKLEN;
2401	cmd.arg = blocklen;
2402	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403	return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408			bool is_rel_write)
2409{
2410	struct mmc_command cmd = {};
2411
2412	cmd.opcode = MMC_SET_BLOCK_COUNT;
2413	cmd.arg = blockcount & 0x0000FFFF;
2414	if (is_rel_write)
2415		cmd.arg |= 1 << 31;
2416	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417	return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
 
 
 
 
 
 
 
 
 
 
2422{
2423	mmc_pwrseq_reset(host);
 
 
 
 
 
 
2424
2425	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426		return;
2427	host->ops->hw_reset(host);
2428}
 
2429
2430int mmc_hw_reset(struct mmc_host *host)
2431{
 
2432	int ret;
2433
2434	if (!host->card)
2435		return -EINVAL;
2436
2437	mmc_bus_get(host);
2438	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439		mmc_bus_put(host);
2440		return -EOPNOTSUPP;
2441	}
2442
2443	ret = host->bus_ops->reset(host);
2444	mmc_bus_put(host);
2445
 
2446	if (ret)
2447		pr_warn("%s: tried to reset card, got error %d\n",
2448			mmc_hostname(host), ret);
2449
2450	return ret;
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456	host->f_init = freq;
2457
2458	pr_debug("%s: %s: trying to init card at %u Hz\n",
2459		mmc_hostname(host), __func__, host->f_init);
2460
2461	mmc_power_up(host, host->ocr_avail);
2462
2463	/*
2464	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465	 * do a hardware reset if possible.
2466	 */
2467	mmc_hw_reset_for_init(host);
2468
2469	/*
2470	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2471	 * if the card is being re-initialized, just send it.  CMD52
2472	 * should be ignored by SD/eMMC cards.
2473	 * Skip it if we already know that we do not support SDIO commands
2474	 */
2475	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476		sdio_reset(host);
2477
2478	mmc_go_idle(host);
2479
2480	if (!(host->caps2 & MMC_CAP2_NO_SD))
2481		mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
2482
2483	/* Order's important: probe SDIO, then SD, then MMC */
2484	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485		if (!mmc_attach_sdio(host))
2486			return 0;
2487
2488	if (!(host->caps2 & MMC_CAP2_NO_SD))
2489		if (!mmc_attach_sd(host))
2490			return 0;
2491
2492	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493		if (!mmc_attach_mmc(host))
2494			return 0;
2495
 
2496	mmc_power_off(host);
2497	return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502	int ret;
2503
2504	if (!host->card || mmc_card_removed(host->card))
2505		return 1;
2506
2507	ret = host->bus_ops->alive(host);
2508
2509	/*
2510	 * Card detect status and alive check may be out of sync if card is
2511	 * removed slowly, when card detect switch changes while card/slot
2512	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514	 * detect work 200ms later for this case.
2515	 */
2516	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517		mmc_detect_change(host, msecs_to_jiffies(200));
2518		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519	}
2520
2521	if (ret) {
2522		mmc_card_set_removed(host->card);
2523		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524	}
2525
2526	return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531	struct mmc_card *card = host->card;
2532	int ret;
2533
2534	WARN_ON(!host->claimed);
2535
2536	if (!card)
2537		return 1;
2538
2539	if (!mmc_card_is_removable(host))
2540		return 0;
2541
2542	ret = mmc_card_removed(card);
2543	/*
2544	 * The card will be considered unchanged unless we have been asked to
2545	 * detect a change or host requires polling to provide card detection.
2546	 */
2547	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548		return ret;
2549
2550	host->detect_change = 0;
2551	if (!ret) {
2552		ret = _mmc_detect_card_removed(host);
2553		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554			/*
2555			 * Schedule a detect work as soon as possible to let a
2556			 * rescan handle the card removal.
2557			 */
2558			cancel_delayed_work(&host->detect);
2559			_mmc_detect_change(host, 0, false);
2560		}
2561	}
2562
2563	return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567void mmc_rescan(struct work_struct *work)
2568{
2569	struct mmc_host *host =
2570		container_of(work, struct mmc_host, detect.work);
2571	int i;
2572
2573	if (host->rescan_disable)
2574		return;
2575
2576	/* If there is a non-removable card registered, only scan once */
2577	if (!mmc_card_is_removable(host) && host->rescan_entered)
2578		return;
2579	host->rescan_entered = 1;
2580
2581	if (host->trigger_card_event && host->ops->card_event) {
2582		mmc_claim_host(host);
2583		host->ops->card_event(host);
2584		mmc_release_host(host);
2585		host->trigger_card_event = false;
2586	}
2587
2588	mmc_bus_get(host);
2589
2590	/*
2591	 * if there is a _removable_ card registered, check whether it is
2592	 * still present
2593	 */
2594	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595		host->bus_ops->detect(host);
2596
2597	host->detect_change = 0;
2598
2599	/*
2600	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601	 * the card is no longer present.
2602	 */
2603	mmc_bus_put(host);
2604	mmc_bus_get(host);
2605
2606	/* if there still is a card present, stop here */
2607	if (host->bus_ops != NULL) {
2608		mmc_bus_put(host);
2609		goto out;
2610	}
2611
2612	/*
2613	 * Only we can add a new handler, so it's safe to
2614	 * release the lock here.
2615	 */
2616	mmc_bus_put(host);
2617
2618	mmc_claim_host(host);
2619	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620			host->ops->get_cd(host) == 0) {
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		goto out;
2624	}
2625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2628			break;
2629		if (freqs[i] <= host->f_min)
2630			break;
2631	}
 
 
 
 
 
 
 
 
 
 
 
2632	mmc_release_host(host);
2633
2634 out:
2635	if (host->caps & MMC_CAP_NEEDS_POLL)
2636		mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641	host->f_init = max(freqs[0], host->f_min);
 
 
 
2642	host->rescan_disable = 0;
2643	host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646		mmc_claim_host(host);
2647		mmc_power_up(host, host->ocr_avail);
2648		mmc_release_host(host);
2649	}
2650
2651	mmc_gpiod_request_cd_irq(host);
2652	_mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
 
 
 
2657	if (host->slot.cd_irq >= 0) {
2658		mmc_gpio_set_cd_wake(host, false);
2659		disable_irq(host->slot.cd_irq);
2660	}
2661
2662	host->rescan_disable = 1;
2663	cancel_delayed_work_sync(&host->detect);
 
 
 
 
 
2664
2665	/* clear pm flags now and let card drivers set them as needed */
2666	host->pm_flags = 0;
2667
2668	mmc_bus_get(host);
2669	if (host->bus_ops && !host->bus_dead) {
2670		/* Calling bus_ops->remove() with a claimed host can deadlock */
2671		host->bus_ops->remove(host);
2672		mmc_claim_host(host);
2673		mmc_detach_bus(host);
2674		mmc_power_off(host);
2675		mmc_release_host(host);
2676		mmc_bus_put(host);
2677		return;
2678	}
2679	mmc_bus_put(host);
2680
2681	mmc_claim_host(host);
2682	mmc_power_off(host);
2683	mmc_release_host(host);
2684}
2685
2686int mmc_power_save_host(struct mmc_host *host)
2687{
2688	int ret = 0;
2689
2690	pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2691
2692	mmc_bus_get(host);
2693
2694	if (!host->bus_ops || host->bus_dead) {
2695		mmc_bus_put(host);
2696		return -EINVAL;
2697	}
2698
2699	if (host->bus_ops->power_save)
2700		ret = host->bus_ops->power_save(host);
2701
2702	mmc_bus_put(host);
2703
2704	mmc_power_off(host);
2705
2706	return ret;
2707}
2708EXPORT_SYMBOL(mmc_power_save_host);
2709
2710int mmc_power_restore_host(struct mmc_host *host)
2711{
2712	int ret;
2713
2714	pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2715
2716	mmc_bus_get(host);
2717
2718	if (!host->bus_ops || host->bus_dead) {
2719		mmc_bus_put(host);
2720		return -EINVAL;
2721	}
2722
2723	mmc_power_up(host, host->card->ocr);
2724	ret = host->bus_ops->power_restore(host);
2725
2726	mmc_bus_put(host);
2727
2728	return ret;
2729}
2730EXPORT_SYMBOL(mmc_power_restore_host);
2731
2732#ifdef CONFIG_PM_SLEEP
2733/* Do the card removal on suspend if card is assumed removeable
2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735   to sync the card.
2736*/
2737static int mmc_pm_notify(struct notifier_block *notify_block,
2738			unsigned long mode, void *unused)
2739{
2740	struct mmc_host *host = container_of(
2741		notify_block, struct mmc_host, pm_notify);
2742	unsigned long flags;
2743	int err = 0;
2744
2745	switch (mode) {
2746	case PM_HIBERNATION_PREPARE:
2747	case PM_SUSPEND_PREPARE:
2748	case PM_RESTORE_PREPARE:
2749		spin_lock_irqsave(&host->lock, flags);
2750		host->rescan_disable = 1;
2751		spin_unlock_irqrestore(&host->lock, flags);
2752		cancel_delayed_work_sync(&host->detect);
2753
2754		if (!host->bus_ops)
2755			break;
2756
2757		/* Validate prerequisites for suspend */
2758		if (host->bus_ops->pre_suspend)
2759			err = host->bus_ops->pre_suspend(host);
2760		if (!err)
2761			break;
2762
2763		if (!mmc_card_is_removable(host)) {
2764			dev_warn(mmc_dev(host),
2765				 "pre_suspend failed for non-removable host: "
2766				 "%d\n", err);
2767			/* Avoid removing non-removable hosts */
2768			break;
2769		}
2770
2771		/* Calling bus_ops->remove() with a claimed host can deadlock */
2772		host->bus_ops->remove(host);
2773		mmc_claim_host(host);
2774		mmc_detach_bus(host);
2775		mmc_power_off(host);
2776		mmc_release_host(host);
2777		host->pm_flags = 0;
2778		break;
2779
2780	case PM_POST_SUSPEND:
2781	case PM_POST_HIBERNATION:
2782	case PM_POST_RESTORE:
2783
2784		spin_lock_irqsave(&host->lock, flags);
2785		host->rescan_disable = 0;
2786		spin_unlock_irqrestore(&host->lock, flags);
2787		_mmc_detect_change(host, 0, false);
2788
2789	}
2790
2791	return 0;
2792}
2793
2794void mmc_register_pm_notifier(struct mmc_host *host)
2795{
2796	host->pm_notify.notifier_call = mmc_pm_notify;
2797	register_pm_notifier(&host->pm_notify);
2798}
2799
2800void mmc_unregister_pm_notifier(struct mmc_host *host)
2801{
2802	unregister_pm_notifier(&host->pm_notify);
2803}
2804#endif
2805
2806static int __init mmc_init(void)
2807{
2808	int ret;
2809
2810	ret = mmc_register_bus();
2811	if (ret)
2812		return ret;
2813
2814	ret = mmc_register_host_class();
2815	if (ret)
2816		goto unregister_bus;
2817
2818	ret = sdio_register_bus();
2819	if (ret)
2820		goto unregister_host_class;
2821
2822	return 0;
2823
2824unregister_host_class:
2825	mmc_unregister_host_class();
2826unregister_bus:
2827	mmc_unregister_bus();
2828	return ret;
2829}
2830
2831static void __exit mmc_exit(void)
2832{
2833	sdio_unregister_bus();
2834	mmc_unregister_host_class();
2835	mmc_unregister_bus();
2836}
2837
2838subsys_initcall(mmc_init);
2839module_exit(mmc_exit);
2840
 
2841MODULE_LICENSE("GPL");