Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 if (mrq->cmd && mrq->cmd->has_ext_addr)
340 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341
342 init_completion(&mrq->cmd_completion);
343
344 mmc_retune_hold(host);
345
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
348
349 mmc_mrq_pr_debug(host, mrq, false);
350
351 WARN_ON(!host->claimed);
352
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
356
357 if (host->uhs2_sd_tran)
358 mmc_uhs2_prepare_cmd(host, mrq);
359
360 led_trigger_event(host->led, LED_FULL);
361 __mmc_start_request(host, mrq);
362
363 return 0;
364}
365EXPORT_SYMBOL(mmc_start_request);
366
367static void mmc_wait_done(struct mmc_request *mrq)
368{
369 complete(&mrq->completion);
370}
371
372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373{
374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375
376 /*
377 * If there is an ongoing transfer, wait for the command line to become
378 * available.
379 */
380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 wait_for_completion(&ongoing_mrq->cmd_completion);
382}
383
384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385{
386 int err;
387
388 mmc_wait_ongoing_tfr_cmd(host);
389
390 init_completion(&mrq->completion);
391 mrq->done = mmc_wait_done;
392
393 err = mmc_start_request(host, mrq);
394 if (err) {
395 mrq->cmd->error = err;
396 mmc_complete_cmd(mrq);
397 complete(&mrq->completion);
398 }
399
400 return err;
401}
402
403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404{
405 struct mmc_command *cmd;
406
407 while (1) {
408 wait_for_completion(&mrq->completion);
409
410 cmd = mrq->cmd;
411
412 if (!cmd->error || !cmd->retries ||
413 mmc_card_removed(host->card))
414 break;
415
416 mmc_retune_recheck(host);
417
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host), cmd->opcode, cmd->error);
420 cmd->retries--;
421 cmd->error = 0;
422 __mmc_start_request(host, mrq);
423 }
424
425 mmc_retune_release(host);
426}
427EXPORT_SYMBOL(mmc_wait_for_req_done);
428
429/*
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
433 *
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
436 */
437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438{
439 int err;
440
441 /*
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
445 * ->cqe_off().
446 */
447 err = mmc_retune(host);
448 if (err)
449 goto out_err;
450
451 mrq->host = host;
452
453 mmc_mrq_pr_debug(host, mrq, true);
454
455 err = mmc_mrq_prep(host, mrq);
456 if (err)
457 goto out_err;
458
459 if (host->uhs2_sd_tran)
460 mmc_uhs2_prepare_cmd(host, mrq);
461
462 err = host->cqe_ops->cqe_request(host, mrq);
463 if (err)
464 goto out_err;
465
466 trace_mmc_request_start(host, mrq);
467
468 return 0;
469
470out_err:
471 if (mrq->cmd) {
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host), mrq->cmd->opcode, err);
474 } else {
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host), mrq->tag, err);
477 }
478 return err;
479}
480EXPORT_SYMBOL(mmc_cqe_start_req);
481
482/**
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
486 *
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
489 */
490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491{
492 mmc_should_fail_request(host, mrq);
493
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 (mrq->data && mrq->data->error == -EILSEQ))
497 mmc_retune_needed(host);
498
499 trace_mmc_request_done(host, mrq);
500
501 if (mrq->cmd) {
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 } else {
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host), mrq->tag);
507 }
508
509 if (mrq->data) {
510 pr_debug("%s: %d bytes transferred: %d\n",
511 mmc_hostname(host),
512 mrq->data->bytes_xfered, mrq->data->error);
513 }
514
515 mrq->done(mrq);
516}
517EXPORT_SYMBOL(mmc_cqe_request_done);
518
519/**
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @host: MMC host
522 * @mrq: MMC request to be processed
523 */
524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525{
526 if (host->cqe_ops->cqe_post_req)
527 host->cqe_ops->cqe_post_req(host, mrq);
528}
529EXPORT_SYMBOL(mmc_cqe_post_req);
530
531/* Arbitrary 1 second timeout */
532#define MMC_CQE_RECOVERY_TIMEOUT 1000
533
534/*
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
537 *
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
542 */
543int mmc_cqe_recovery(struct mmc_host *host)
544{
545 struct mmc_command cmd;
546 int err;
547
548 mmc_retune_hold_now(host);
549
550 /*
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
553 */
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555
556 host->cqe_ops->cqe_recovery_start(host);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_STOP_TRANSMISSION;
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564
565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566
567 memset(&cmd, 0, sizeof(cmd));
568 cmd.opcode = MMC_CMDQ_TASK_MGMT;
569 cmd.arg = 1; /* Discard entire queue */
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574
575 host->cqe_ops->cqe_recovery_finish(host);
576
577 if (err)
578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579
580 mmc_retune_release(host);
581
582 return err;
583}
584EXPORT_SYMBOL(mmc_cqe_recovery);
585
586/**
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * @host: MMC host
589 * @mrq: MMC request
590 *
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
597 */
598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599{
600 return completion_done(&mrq->completion);
601}
602EXPORT_SYMBOL(mmc_is_req_done);
603
604/**
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
608 *
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
615 */
616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617{
618 __mmc_start_req(host, mrq);
619
620 if (!mrq->cap_cmd_during_tfr)
621 mmc_wait_for_req_done(host, mrq);
622}
623EXPORT_SYMBOL(mmc_wait_for_req);
624
625/**
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
630 *
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
634 */
635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636{
637 struct mmc_request mrq = {};
638
639 WARN_ON(!host->claimed);
640
641 memset(cmd->resp, 0, sizeof(cmd->resp));
642 cmd->retries = retries;
643
644 mrq.cmd = cmd;
645 cmd->data = NULL;
646
647 mmc_wait_for_req(host, &mrq);
648
649 return cmd->error;
650}
651
652EXPORT_SYMBOL(mmc_wait_for_cmd);
653
654/**
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
658 *
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
661 */
662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663{
664 unsigned int mult;
665
666 /*
667 * SDIO cards only define an upper 1 s limit on access.
668 */
669 if (mmc_card_sdio(card)) {
670 data->timeout_ns = 1000000000;
671 data->timeout_clks = 0;
672 return;
673 }
674
675 /*
676 * SD cards use a 100 multiplier rather than 10
677 */
678 mult = mmc_card_sd(card) ? 100 : 10;
679
680 /*
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
683 */
684 if (data->flags & MMC_DATA_WRITE)
685 mult <<= card->csd.r2w_factor;
686
687 data->timeout_ns = card->csd.taac_ns * mult;
688 data->timeout_clks = card->csd.taac_clks * mult;
689
690 /*
691 * SD cards also have an upper limit on the timeout.
692 */
693 if (mmc_card_sd(card)) {
694 unsigned int timeout_us, limit_us;
695
696 timeout_us = data->timeout_ns / 1000;
697 if (card->host->ios.clock)
698 timeout_us += data->timeout_clks * 1000 /
699 (card->host->ios.clock / 1000);
700
701 if (data->flags & MMC_DATA_WRITE)
702 /*
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
709 */
710 limit_us = 3000000;
711 else
712 limit_us = 100000;
713
714 /*
715 * SDHC cards always use these fixed values.
716 */
717 if (timeout_us > limit_us) {
718 data->timeout_ns = limit_us * 1000;
719 data->timeout_clks = 0;
720 }
721
722 /* assign limit value if invalid */
723 if (timeout_us == 0)
724 data->timeout_ns = limit_us * 1000;
725 }
726
727 /*
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
732 */
733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 data->timeout_ns = 600000000;
735 data->timeout_clks = 0;
736 }
737
738 /*
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
742 * overflowed.
743 */
744 if (mmc_host_is_spi(card->host)) {
745 if (data->flags & MMC_DATA_WRITE) {
746 if (data->timeout_ns < 1000000000)
747 data->timeout_ns = 1000000000; /* 1s */
748 } else {
749 if (data->timeout_ns < 100000000)
750 data->timeout_ns = 100000000; /* 100ms */
751 }
752 }
753}
754EXPORT_SYMBOL(mmc_set_data_timeout);
755
756/*
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
759 */
760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 struct task_struct *task)
762{
763 return host->claimer == ctx ||
764 (!ctx && task && host->claimer->task == task);
765}
766
767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 struct mmc_ctx *ctx,
769 struct task_struct *task)
770{
771 if (!host->claimer) {
772 if (ctx)
773 host->claimer = ctx;
774 else
775 host->claimer = &host->default_ctx;
776 }
777 if (task)
778 host->claimer->task = task;
779}
780
781/**
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
787 *
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
792 */
793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 atomic_t *abort)
795{
796 struct task_struct *task = ctx ? NULL : current;
797 DECLARE_WAITQUEUE(wait, current);
798 unsigned long flags;
799 int stop;
800 bool pm = false;
801
802 might_sleep();
803
804 add_wait_queue(&host->wq, &wait);
805 spin_lock_irqsave(&host->lock, flags);
806 while (1) {
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 stop = abort ? atomic_read(abort) : 0;
809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 break;
811 spin_unlock_irqrestore(&host->lock, flags);
812 schedule();
813 spin_lock_irqsave(&host->lock, flags);
814 }
815 set_current_state(TASK_RUNNING);
816 if (!stop) {
817 host->claimed = 1;
818 mmc_ctx_set_claimer(host, ctx, task);
819 host->claim_cnt += 1;
820 if (host->claim_cnt == 1)
821 pm = true;
822 } else
823 wake_up(&host->wq);
824 spin_unlock_irqrestore(&host->lock, flags);
825 remove_wait_queue(&host->wq, &wait);
826
827 if (pm)
828 pm_runtime_get_sync(mmc_dev(host));
829
830 return stop;
831}
832EXPORT_SYMBOL(__mmc_claim_host);
833
834/**
835 * mmc_release_host - release a host
836 * @host: mmc host to release
837 *
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
840 */
841void mmc_release_host(struct mmc_host *host)
842{
843 unsigned long flags;
844
845 WARN_ON(!host->claimed);
846
847 spin_lock_irqsave(&host->lock, flags);
848 if (--host->claim_cnt) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host->lock, flags);
851 } else {
852 host->claimed = 0;
853 host->claimer->task = NULL;
854 host->claimer = NULL;
855 spin_unlock_irqrestore(&host->lock, flags);
856 wake_up(&host->wq);
857 pm_runtime_mark_last_busy(mmc_dev(host));
858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 pm_runtime_put_sync_suspend(mmc_dev(host));
860 else
861 pm_runtime_put_autosuspend(mmc_dev(host));
862 }
863}
864EXPORT_SYMBOL(mmc_release_host);
865
866/*
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
869 */
870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871{
872 pm_runtime_get_sync(&card->dev);
873 __mmc_claim_host(card->host, ctx, NULL);
874}
875EXPORT_SYMBOL(mmc_get_card);
876
877/*
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
880 */
881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882{
883 struct mmc_host *host = card->host;
884
885 WARN_ON(ctx && host->claimer != ctx);
886
887 mmc_release_host(host);
888 pm_runtime_mark_last_busy(&card->dev);
889 pm_runtime_put_autosuspend(&card->dev);
890}
891EXPORT_SYMBOL(mmc_put_card);
892
893/*
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
896 */
897static inline void mmc_set_ios(struct mmc_host *host)
898{
899 struct mmc_ios *ios = &host->ios;
900
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host), ios->clock, ios->bus_mode,
904 ios->power_mode, ios->chip_select, ios->vdd,
905 1 << ios->bus_width, ios->timing);
906
907 host->ops->set_ios(host, ios);
908}
909
910/*
911 * Control chip select pin on a host.
912 */
913void mmc_set_chip_select(struct mmc_host *host, int mode)
914{
915 host->ios.chip_select = mode;
916 mmc_set_ios(host);
917}
918
919/*
920 * Sets the host clock to the highest possible frequency that
921 * is below "hz".
922 */
923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924{
925 WARN_ON(hz && hz < host->f_min);
926
927 if (hz > host->f_max)
928 hz = host->f_max;
929
930 host->ios.clock = hz;
931 mmc_set_ios(host);
932}
933
934int mmc_execute_tuning(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 opcode;
938 int err;
939
940 if (!host->ops->execute_tuning)
941 return 0;
942
943 if (host->cqe_on)
944 host->cqe_ops->cqe_off(host);
945
946 if (mmc_card_mmc(card))
947 opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 else
949 opcode = MMC_SEND_TUNING_BLOCK;
950
951 err = host->ops->execute_tuning(host, opcode);
952 if (!err) {
953 mmc_retune_clear(host);
954 mmc_retune_enable(host);
955 return 0;
956 }
957
958 /* Only print error when we don't check for card removal */
959 if (!host->detect_change) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host), err);
962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 }
964
965 return err;
966}
967
968/*
969 * Change the bus mode (open drain/push-pull) of a host.
970 */
971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972{
973 host->ios.bus_mode = mode;
974 mmc_set_ios(host);
975}
976
977/*
978 * Change data bus width of a host.
979 */
980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981{
982 host->ios.bus_width = width;
983 mmc_set_ios(host);
984}
985
986/*
987 * Set initial state after a power cycle or a hw_reset.
988 */
989void mmc_set_initial_state(struct mmc_host *host)
990{
991 if (host->cqe_on)
992 host->cqe_ops->cqe_off(host);
993
994 mmc_retune_disable(host);
995
996 if (mmc_host_is_spi(host))
997 host->ios.chip_select = MMC_CS_HIGH;
998 else
999 host->ios.chip_select = MMC_CS_DONTCARE;
1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 host->ios.timing = MMC_TIMING_LEGACY;
1003 host->ios.drv_type = 0;
1004 host->ios.enhanced_strobe = false;
1005
1006 /*
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1009 */
1010 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 host->ops->hs400_enhanced_strobe)
1012 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014 mmc_set_ios(host);
1015
1016 mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036 const int max_bit = ilog2(MMC_VDD_35_36);
1037 int bit;
1038
1039 if (vdd < 1650 || vdd > 3600)
1040 return -EINVAL;
1041
1042 if (vdd >= 1650 && vdd <= 1950)
1043 return ilog2(MMC_VDD_165_195);
1044
1045 if (low_bits)
1046 vdd -= 1;
1047
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit = (vdd - 2000) / 100 + 8;
1050 if (bit > max_bit)
1051 return max_bit;
1052 return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070 u32 mask = 0;
1071
1072 if (vdd_max < vdd_min)
1073 return 0;
1074
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 if (vdd_max < 0)
1078 return 0;
1079
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 if (vdd_min < 0)
1083 return 0;
1084
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max >= vdd_min)
1087 mask |= 1 << vdd_max--;
1088
1089 return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094 u32 reg;
1095 int ret;
1096
1097 ret = of_property_read_u32(node, "reg", ®);
1098 if (ret < 0)
1099 return ret;
1100
1101 return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 unsigned func_num)
1106{
1107 struct device_node *node;
1108
1109 if (!host->parent || !host->parent->of_node)
1110 return NULL;
1111
1112 for_each_child_of_node(host->parent->of_node, node) {
1113 if (mmc_of_get_func_num(node) == func_num)
1114 return node;
1115 }
1116
1117 return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126 int bit;
1127
1128 /*
1129 * Sanity check the voltages that the card claims to
1130 * support.
1131 */
1132 if (ocr & 0x7F) {
1133 dev_warn(mmc_dev(host),
1134 "card claims to support voltages below defined range\n");
1135 ocr &= ~0x7F;
1136 }
1137
1138 ocr &= host->ocr_avail;
1139 if (!ocr) {
1140 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 return 0;
1142 }
1143
1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 bit = ffs(ocr) - 1;
1146 ocr &= 3 << bit;
1147 mmc_power_cycle(host, ocr);
1148 } else {
1149 bit = fls(ocr) - 1;
1150 /*
1151 * The bit variable represents the highest voltage bit set in
1152 * the OCR register.
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1155 */
1156 ocr &= 3 << (bit - 1);
1157 if (bit != host->ios.vdd)
1158 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 }
1160
1161 return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166 int err = 0;
1167 int old_signal_voltage = host->ios.signal_voltage;
1168
1169 host->ios.signal_voltage = signal_voltage;
1170 if (host->ops->start_signal_voltage_switch)
1171 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173 if (err)
1174 host->ios.signal_voltage = old_signal_voltage;
1175
1176 return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193 u32 clock;
1194
1195 /*
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1198 */
1199 clock = host->ios.clock;
1200 host->ios.clock = 0;
1201 mmc_set_ios(host);
1202
1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 return -EAGAIN;
1205
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 mmc_delay(10);
1208 host->ios.clock = clock;
1209 mmc_set_ios(host);
1210
1211 return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216 struct mmc_command cmd = {};
1217 int err = 0;
1218
1219 /*
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1222 */
1223 if (!host->ops->start_signal_voltage_switch)
1224 return -EPERM;
1225 if (!host->ops->card_busy)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host));
1228
1229 cmd.opcode = SD_SWITCH_VOLTAGE;
1230 cmd.arg = 0;
1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (err)
1235 goto power_cycle;
1236
1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 return -EIO;
1239
1240 /*
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1243 */
1244 mmc_delay(1);
1245 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 if (mmc_host_set_uhs_voltage(host)) {
1251 /*
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1254 */
1255 err = -EAGAIN;
1256 goto power_cycle;
1257 }
1258
1259 /* Wait for at least 1 ms according to spec */
1260 mmc_delay(1);
1261
1262 /*
1263 * Failure to switch is indicated by the card holding
1264 * dat[0:3] low
1265 */
1266 if (host->ops->card_busy && host->ops->card_busy(host))
1267 err = -EAGAIN;
1268
1269power_cycle:
1270 if (err) {
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host));
1273 mmc_power_cycle(host, ocr);
1274 }
1275
1276 return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284 host->ios.timing = timing;
1285 mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293 host->ios.drv_type = drv_type;
1294 mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 int card_drv_type, int *drv_type)
1299{
1300 struct mmc_host *host = card->host;
1301 int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303 *drv_type = 0;
1304
1305 if (!host->ops->select_drive_strength)
1306 return 0;
1307
1308 /* Use SD definition of driver strength for hosts */
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318 /*
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1323 */
1324 return host->ops->select_drive_strength(card, max_dtr,
1325 host_drv_type,
1326 card_drv_type,
1327 drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343 if (host->ios.power_mode == MMC_POWER_ON)
1344 return;
1345
1346 mmc_pwrseq_pre_power_on(host);
1347
1348 host->ios.vdd = fls(ocr) - 1;
1349 host->ios.power_mode = MMC_POWER_UP;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host);
1352
1353 mmc_set_initial_signal_voltage(host);
1354
1355 /*
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360
1361 mmc_pwrseq_post_power_on(host);
1362
1363 host->ios.clock = host->f_init;
1364
1365 host->ios.power_mode = MMC_POWER_ON;
1366 mmc_set_ios(host);
1367
1368 /*
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1371 */
1372 mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377 if (host->ios.power_mode == MMC_POWER_OFF)
1378 return;
1379
1380 mmc_pwrseq_power_off(host);
1381
1382 host->ios.clock = 0;
1383 host->ios.vdd = 0;
1384
1385 host->ios.power_mode = MMC_POWER_OFF;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host);
1388
1389 /*
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1393 */
1394 mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399 mmc_power_off(host);
1400 /* Wait at least 1 ms according to SD spec */
1401 mmc_delay(1);
1402 mmc_power_up(host, ocr);
1403}
1404
1405/*
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
1411 host->bus_ops = ops;
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419 host->bus_ops = NULL;
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423{
1424 /*
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1428 */
1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 __pm_wakeup_event(host->ws, 5000);
1431
1432 host->detect_change = 1;
1433 mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1440 *
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1444 * inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448 _mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454 unsigned int sz;
1455
1456 if (is_power_of_2(card->erase_size))
1457 card->erase_shift = ffs(card->erase_size) - 1;
1458 else
1459 card->erase_shift = 0;
1460
1461 /*
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1468 *
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1475 */
1476 if (mmc_card_sd(card) && card->ssr.au) {
1477 card->pref_erase = card->ssr.au;
1478 card->erase_shift = ffs(card->ssr.au) - 1;
1479 } else if (card->erase_size) {
1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 if (sz < 128)
1482 card->pref_erase = 512 * 1024 / 512;
1483 else if (sz < 512)
1484 card->pref_erase = 1024 * 1024 / 512;
1485 else if (sz < 1024)
1486 card->pref_erase = 2 * 1024 * 1024 / 512;
1487 else
1488 card->pref_erase = 4 * 1024 * 1024 / 512;
1489 if (card->pref_erase < card->erase_size)
1490 card->pref_erase = card->erase_size;
1491 else {
1492 sz = card->pref_erase % card->erase_size;
1493 if (sz)
1494 card->pref_erase += card->erase_size - sz;
1495 }
1496 } else
1497 card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 unsigned int arg, unsigned int qty)
1507{
1508 unsigned int erase_timeout;
1509
1510 if (arg == MMC_DISCARD_ARG ||
1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 } else if (card->ext_csd.erase_group_def & 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg == MMC_TRIM_ARG)
1516 erase_timeout = card->ext_csd.trim_timeout;
1517 else
1518 erase_timeout = card->ext_csd.hc_erase_timeout;
1519 } else {
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult = (10 << card->csd.r2w_factor);
1522 unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 unsigned int timeout_us;
1524
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card->csd.taac_ns < 1000000)
1527 timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 else
1529 timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531 /*
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1534 */
1535 timeout_clks <<= 1;
1536 timeout_us += (timeout_clks * 1000) /
1537 (card->host->ios.clock / 1000);
1538
1539 erase_timeout = timeout_us / 1000;
1540
1541 /*
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1544 */
1545 if (!erase_timeout)
1546 erase_timeout = 1;
1547 }
1548
1549 /* Multiplier for secure operations */
1550 if (arg & MMC_SECURE_ARGS) {
1551 if (arg == MMC_SECURE_ERASE_ARG)
1552 erase_timeout *= card->ext_csd.sec_erase_mult;
1553 else
1554 erase_timeout *= card->ext_csd.sec_trim_mult;
1555 }
1556
1557 erase_timeout *= qty;
1558
1559 /*
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1562 */
1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 erase_timeout = 1000;
1565
1566 return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int arg,
1571 unsigned int qty)
1572{
1573 unsigned int erase_timeout;
1574
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1577 */
1578 if (arg == SD_DISCARD_ARG)
1579 return SD_DISCARD_TIMEOUT_MS;
1580
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1586 /*
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1589 */
1590 erase_timeout = 250 * qty;
1591 }
1592
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603{
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 sector_t to, unsigned int arg)
1612{
1613 struct mmc_command cmd = {};
1614 unsigned int qty = 0, busy_timeout = 0;
1615 bool use_r1b_resp;
1616 int err;
1617
1618 mmc_retune_hold(card->host);
1619
1620 /*
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1629 *
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1635 */
1636 if (card->erase_shift)
1637 qty += ((to >> card->erase_shift) -
1638 (from >> card->erase_shift)) + 1;
1639 else if (mmc_card_sd(card))
1640 qty += to - from + 1;
1641 else
1642 qty += (mmc_sector_div(to, card->erase_size) -
1643 mmc_sector_div(from, card->erase_size)) + 1;
1644
1645 if (!mmc_card_blockaddr(card)) {
1646 from <<= 9;
1647 to <<= 9;
1648 }
1649
1650 if (mmc_card_sd(card))
1651 cmd.opcode = SD_ERASE_WR_BLK_START;
1652 else
1653 cmd.opcode = MMC_ERASE_GROUP_START;
1654 cmd.arg = from;
1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657 if (mmc_card_ult_capacity(card)) {
1658 cmd.ext_addr = from >> 32;
1659 cmd.has_ext_addr = true;
1660 }
1661
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 if (mmc_card_sd(card))
1672 cmd.opcode = SD_ERASE_WR_BLK_END;
1673 else
1674 cmd.opcode = MMC_ERASE_GROUP_END;
1675 cmd.arg = to;
1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678 if (mmc_card_ult_capacity(card)) {
1679 cmd.ext_addr = to >> 32;
1680 cmd.has_ext_addr = true;
1681 }
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 memset(&cmd, 0, sizeof(struct mmc_command));
1692 cmd.opcode = MMC_ERASE;
1693 cmd.arg = arg;
1694 busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696
1697 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 if (err) {
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1700 err, cmd.resp[0]);
1701 err = -EIO;
1702 goto out;
1703 }
1704
1705 if (mmc_host_is_spi(card->host))
1706 goto out;
1707
1708 /*
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 * shall be avoided.
1711 */
1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 goto out;
1714
1715 /* Let's poll to find out when the erase operation completes. */
1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717
1718out:
1719 mmc_retune_release(card->host);
1720 return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 sector_t *from,
1725 sector_t *to,
1726 unsigned int nr)
1727{
1728 sector_t from_new = *from;
1729 unsigned int nr_new = nr, rem;
1730
1731 /*
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1734 */
1735 if (is_power_of_2(card->erase_size)) {
1736 sector_t temp = from_new;
1737
1738 from_new = round_up(temp, card->erase_size);
1739 rem = from_new - temp;
1740
1741 if (nr_new > rem)
1742 nr_new -= rem;
1743 else
1744 return 0;
1745
1746 nr_new = round_down(nr_new, card->erase_size);
1747 } else {
1748 rem = mmc_sector_mod(from_new, card->erase_size);
1749 if (rem) {
1750 rem = card->erase_size - rem;
1751 from_new += rem;
1752 if (nr_new > rem)
1753 nr_new -= rem;
1754 else
1755 return 0;
1756 }
1757
1758 rem = nr_new % card->erase_size;
1759 if (rem)
1760 nr_new -= rem;
1761 }
1762
1763 if (nr_new == 0)
1764 return 0;
1765
1766 *to = from_new + nr_new;
1767 *from = from_new;
1768
1769 return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 unsigned int arg)
1783{
1784 unsigned int rem;
1785 sector_t to = from + nr;
1786
1787 int err;
1788
1789 if (!(card->csd.cmdclass & CCC_ERASE))
1790 return -EOPNOTSUPP;
1791
1792 if (!card->erase_size)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 return -EOPNOTSUPP;
1805
1806 if (arg == MMC_SECURE_ERASE_ARG) {
1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 return -EINVAL;
1809 }
1810
1811 if (arg == MMC_ERASE_ARG)
1812 nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814 if (nr == 0)
1815 return 0;
1816
1817 if (to <= from)
1818 return -EINVAL;
1819
1820 /* 'from' and 'to' are inclusive */
1821 to -= 1;
1822
1823 /*
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1830 */
1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 from += rem;
1835 if ((err) || (to <= from))
1836 return err;
1837 }
1838
1839 return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 return 1;
1847 return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862 /*
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1865 */
1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 return 1;
1868 return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 return 0;
1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 return 1;
1878 return 0;
1879}
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 return 1;
1886 return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 unsigned int nr)
1892{
1893 if (!card->erase_size)
1894 return 0;
1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 return 0;
1897 return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 unsigned int arg)
1903{
1904 struct mmc_host *host = card->host;
1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 unsigned int last_timeout = 0;
1907 unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910 if (card->erase_shift) {
1911 max_qty = UINT_MAX >> card->erase_shift;
1912 min_qty = card->pref_erase >> card->erase_shift;
1913 } else if (mmc_card_sd(card)) {
1914 max_qty = UINT_MAX;
1915 min_qty = card->pref_erase;
1916 } else {
1917 max_qty = UINT_MAX / card->erase_size;
1918 min_qty = card->pref_erase / card->erase_size;
1919 }
1920
1921 /*
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1925 * the same time.
1926 *
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1933 */
1934 do {
1935 y = 0;
1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939 if (qty + x > min_qty && timeout > max_busy_timeout)
1940 break;
1941
1942 if (timeout < last_timeout)
1943 break;
1944 last_timeout = timeout;
1945 y = x;
1946 }
1947 qty += y;
1948 } while (y);
1949
1950 if (!qty)
1951 return 0;
1952
1953 /*
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1956 * one erase-group.
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1962 */
1963 if (qty == 1)
1964 card->eg_boundary = 1;
1965 else
1966 qty--;
1967
1968 /* Convert qty to sectors */
1969 if (card->erase_shift)
1970 max_discard = qty << card->erase_shift;
1971 else if (mmc_card_sd(card))
1972 max_discard = qty + 1;
1973 else
1974 max_discard = qty * card->erase_size;
1975
1976 return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981 struct mmc_host *host = card->host;
1982 unsigned int max_discard, max_trim;
1983
1984 /*
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1988 */
1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 return card->pref_erase;
1991
1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 if (mmc_can_trim(card)) {
1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 if (max_trim < max_discard || max_discard == 0)
1996 max_discard = max_trim;
1997 } else if (max_discard < card->erase_size) {
1998 max_discard = 0;
1999 }
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009 return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015 struct mmc_command cmd = {};
2016
2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 return 0;
2020
2021 cmd.opcode = MMC_SET_BLOCKLEN;
2022 cmd.arg = blocklen;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030 mmc_pwrseq_reset(host);
2031
2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 return;
2034 host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049 struct mmc_host *host = card->host;
2050 int ret;
2051
2052 ret = host->bus_ops->hw_reset(host);
2053 if (ret < 0)
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063 struct mmc_host *host = card->host;
2064 int ret;
2065
2066 if (!host->bus_ops->sw_reset)
2067 return -EOPNOTSUPP;
2068
2069 ret = host->bus_ops->sw_reset(host);
2070 if (ret)
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host), ret);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080 host->f_init = freq;
2081
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host), __func__, host->f_init);
2084
2085 mmc_power_up(host, host->ocr_avail);
2086
2087 /*
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2090 */
2091 mmc_hw_reset_for_init(host);
2092
2093 /*
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2098 */
2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 sdio_reset(host);
2101
2102 mmc_go_idle(host);
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 goto out;
2107 if (mmc_card_sd_express(host))
2108 return 0;
2109 }
2110
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 if (!mmc_attach_sdio(host))
2114 return 0;
2115
2116 if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 if (!mmc_attach_sd(host))
2118 return 0;
2119
2120 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 if (!mmc_attach_mmc(host))
2122 return 0;
2123
2124out:
2125 mmc_power_off(host);
2126 return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 int ret;
2132
2133 if (!host->card || mmc_card_removed(host->card))
2134 return 1;
2135
2136 ret = host->bus_ops->alive(host);
2137
2138 /*
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2144 */
2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 mmc_detect_change(host, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 }
2149
2150 if (ret) {
2151 mmc_card_set_removed(host->card);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 }
2154
2155 return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160 struct mmc_card *card = host->card;
2161 int ret;
2162
2163 WARN_ON(!host->claimed);
2164
2165 if (!card)
2166 return 1;
2167
2168 if (!mmc_card_is_removable(host))
2169 return 0;
2170
2171 ret = mmc_card_removed(card);
2172 /*
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2175 */
2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 return ret;
2178
2179 host->detect_change = 0;
2180 if (!ret) {
2181 ret = _mmc_detect_card_removed(host);
2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 /*
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2186 */
2187 cancel_delayed_work(&host->detect);
2188 _mmc_detect_change(host, 0, false);
2189 }
2190 }
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198 unsigned int boot_sectors_num;
2199
2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 return -EOPNOTSUPP;
2202
2203 /* filter out unrelated cards */
2204 if (card->ext_csd.rev < 3 ||
2205 !mmc_card_mmc(card) ||
2206 !mmc_card_is_blockaddr(card) ||
2207 mmc_card_is_removable(card->host))
2208 return -ENOENT;
2209
2210 /*
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2216 *
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2218 *
2219 * Calculate number of sectors occupied by the both boot partitions.
2220 */
2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227 return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233 struct mmc_host *host =
2234 container_of(work, struct mmc_host, detect.work);
2235 int i;
2236
2237 if (host->rescan_disable)
2238 return;
2239
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 return;
2243 host->rescan_entered = 1;
2244
2245 if (host->trigger_card_event && host->ops->card_event) {
2246 mmc_claim_host(host);
2247 host->ops->card_event(host);
2248 mmc_release_host(host);
2249 host->trigger_card_event = false;
2250 }
2251
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops)
2254 host->bus_ops->detect(host);
2255
2256 host->detect_change = 0;
2257
2258 /* if there still is a card present, stop here */
2259 if (host->bus_ops != NULL)
2260 goto out;
2261
2262 mmc_claim_host(host);
2263 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 host->ops->get_cd(host) == 0) {
2265 mmc_power_off(host);
2266 mmc_release_host(host);
2267 goto out;
2268 }
2269
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 /*
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2282 */
2283 if (!mmc_attach_sd_uhs2(host)) {
2284 mmc_release_host(host);
2285 goto out;
2286 }
2287
2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 unsigned int freq = freqs[i];
2290 if (freq > host->f_max) {
2291 if (i + 1 < ARRAY_SIZE(freqs))
2292 continue;
2293 freq = host->f_max;
2294 }
2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 break;
2297 if (freqs[i] <= host->f_min)
2298 break;
2299 }
2300
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host));
2305
2306 /*
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2309 */
2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 mmc_release_host(host);
2312
2313 out:
2314 if (host->caps & MMC_CAP_NEEDS_POLL)
2315 mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320 bool power_up = !(host->caps2 &
2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 host->rescan_disable = 0;
2325
2326 if (power_up) {
2327 mmc_claim_host(host);
2328 mmc_power_up(host, host->ocr_avail);
2329 mmc_release_host(host);
2330 }
2331
2332 mmc_gpiod_request_cd_irq(host);
2333 _mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338 if (host->rescan_disable)
2339 return;
2340
2341 if (host->slot.cd_irq >= 0) {
2342 mmc_gpio_set_cd_wake(host, false);
2343 disable_irq(host->slot.cd_irq);
2344 }
2345
2346 host->rescan_disable = 1;
2347 cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352 __mmc_stop_host(host);
2353
2354 /* clear pm flags now and let card drivers set them as needed */
2355 host->pm_flags = 0;
2356
2357 if (host->bus_ops) {
2358 /* Calling bus_ops->remove() with a claimed host can deadlock */
2359 host->bus_ops->remove(host);
2360 mmc_claim_host(host);
2361 mmc_detach_bus(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 return;
2365 }
2366
2367 mmc_claim_host(host);
2368 mmc_power_off(host);
2369 mmc_release_host(host);
2370}
2371
2372static int __init mmc_init(void)
2373{
2374 int ret;
2375
2376 ret = mmc_register_bus();
2377 if (ret)
2378 return ret;
2379
2380 ret = mmc_register_host_class();
2381 if (ret)
2382 goto unregister_bus;
2383
2384 ret = sdio_register_bus();
2385 if (ret)
2386 goto unregister_host_class;
2387
2388 return 0;
2389
2390unregister_host_class:
2391 mmc_unregister_host_class();
2392unregister_bus:
2393 mmc_unregister_bus();
2394 return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399 sdio_unregister_bus();
2400 mmc_unregister_host_class();
2401 mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "card.h"
44#include "bus.h"
45#include "host.h"
46#include "sdio_bus.h"
47#include "pwrseq.h"
48
49#include "mmc_ops.h"
50#include "sd_ops.h"
51#include "sdio_ops.h"
52
53/* If the device is not responding */
54#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
55
56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
57#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
58
59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66bool use_spi_crc = 1;
67module_param(use_spi_crc, bool, 0);
68
69static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
71{
72 /*
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
77 */
78 return queue_delayed_work(system_freezable_wq, work, delay);
79}
80
81#ifdef CONFIG_FAIL_MMC_REQUEST
82
83/*
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
86 */
87static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
89{
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
96 };
97
98 if (!data)
99 return;
100
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
104
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107}
108
109#else /* CONFIG_FAIL_MMC_REQUEST */
110
111static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
113{
114}
115
116#endif /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_complete_cmd(struct mmc_request *mrq)
119{
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
122}
123
124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125{
126 if (!mrq->cap_cmd_during_tfr)
127 return;
128
129 mmc_complete_cmd(mrq);
130
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
133}
134EXPORT_SYMBOL(mmc_command_done);
135
136/**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
156
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
160 }
161
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
164
165 mmc_complete_cmd(mrq);
166
167 trace_mmc_request_done(host, mrq);
168
169 /*
170 * We list various conditions for the command to be considered
171 * properly done:
172 *
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
177 */
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
180
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
183
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 }
191
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
196
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
201 }
202
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
209 }
210 }
211 /*
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
214 */
215 if (mrq->done)
216 mrq->done(mrq);
217}
218
219EXPORT_SYMBOL(mmc_request_done);
220
221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
237 */
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
241
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
244
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
249 }
250 }
251
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
254 /*
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
257 */
258 reinit_completion(&mrq->cmd_completion);
259 }
260
261 trace_mmc_request_start(host, mrq);
262
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
265
266 host->ops->request(host, mrq);
267}
268
269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 bool cqe)
271{
272 if (mrq->sbc) {
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host), mrq->sbc->opcode,
275 mrq->sbc->arg, mrq->sbc->flags);
276 }
277
278 if (mrq->cmd) {
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host), cqe ? "CQE direct " : "",
281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 } else if (cqe) {
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 }
286
287 if (mrq->data) {
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host), mrq->data->blksz,
291 mrq->data->blocks, mrq->data->flags,
292 mrq->data->timeout_ns / 1000000,
293 mrq->data->timeout_clks);
294 }
295
296 if (mrq->stop) {
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host), mrq->stop->opcode,
299 mrq->stop->arg, mrq->stop->flags);
300 }
301}
302
303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304{
305 unsigned int i, sz = 0;
306 struct scatterlist *sg;
307
308 if (mrq->cmd) {
309 mrq->cmd->error = 0;
310 mrq->cmd->mrq = mrq;
311 mrq->cmd->data = mrq->data;
312 }
313 if (mrq->sbc) {
314 mrq->sbc->error = 0;
315 mrq->sbc->mrq = mrq;
316 }
317 if (mrq->data) {
318 if (mrq->data->blksz > host->max_blk_size ||
319 mrq->data->blocks > host->max_blk_count ||
320 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 return -EINVAL;
322
323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 sz += sg->length;
325 if (sz != mrq->data->blocks * mrq->data->blksz)
326 return -EINVAL;
327
328 mrq->data->error = 0;
329 mrq->data->mrq = mrq;
330 if (mrq->stop) {
331 mrq->data->stop = mrq->stop;
332 mrq->stop->error = 0;
333 mrq->stop->mrq = mrq;
334 }
335 }
336
337 return 0;
338}
339
340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341{
342 int err;
343
344 init_completion(&mrq->cmd_completion);
345
346 mmc_retune_hold(host);
347
348 if (mmc_card_removed(host->card))
349 return -ENOMEDIUM;
350
351 mmc_mrq_pr_debug(host, mrq, false);
352
353 WARN_ON(!host->claimed);
354
355 err = mmc_mrq_prep(host, mrq);
356 if (err)
357 return err;
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363}
364EXPORT_SYMBOL(mmc_start_request);
365
366static void mmc_wait_done(struct mmc_request *mrq)
367{
368 complete(&mrq->completion);
369}
370
371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372{
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381}
382
383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384{
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400}
401
402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403{
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 /*
412 * If host has timed out waiting for the sanitize
413 * to complete, card might be still in programming state
414 * so let's try to bring the card out of programming
415 * state.
416 */
417 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
418 if (!mmc_interrupt_hpi(host->card)) {
419 pr_warn("%s: %s: Interrupted sanitize\n",
420 mmc_hostname(host), __func__);
421 cmd->error = 0;
422 break;
423 } else {
424 pr_err("%s: %s: Failed to interrupt sanitize\n",
425 mmc_hostname(host), __func__);
426 }
427 }
428 if (!cmd->error || !cmd->retries ||
429 mmc_card_removed(host->card))
430 break;
431
432 mmc_retune_recheck(host);
433
434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 mmc_hostname(host), cmd->opcode, cmd->error);
436 cmd->retries--;
437 cmd->error = 0;
438 __mmc_start_request(host, mrq);
439 }
440
441 mmc_retune_release(host);
442}
443EXPORT_SYMBOL(mmc_wait_for_req_done);
444
445/*
446 * mmc_cqe_start_req - Start a CQE request.
447 * @host: MMC host to start the request
448 * @mrq: request to start
449 *
450 * Start the request, re-tuning if needed and it is possible. Returns an error
451 * code if the request fails to start or -EBUSY if CQE is busy.
452 */
453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
454{
455 int err;
456
457 /*
458 * CQE cannot process re-tuning commands. Caller must hold retuning
459 * while CQE is in use. Re-tuning can happen here only when CQE has no
460 * active requests i.e. this is the first. Note, re-tuning will call
461 * ->cqe_off().
462 */
463 err = mmc_retune(host);
464 if (err)
465 goto out_err;
466
467 mrq->host = host;
468
469 mmc_mrq_pr_debug(host, mrq, true);
470
471 err = mmc_mrq_prep(host, mrq);
472 if (err)
473 goto out_err;
474
475 err = host->cqe_ops->cqe_request(host, mrq);
476 if (err)
477 goto out_err;
478
479 trace_mmc_request_start(host, mrq);
480
481 return 0;
482
483out_err:
484 if (mrq->cmd) {
485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 mmc_hostname(host), mrq->cmd->opcode, err);
487 } else {
488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 mmc_hostname(host), mrq->tag, err);
490 }
491 return err;
492}
493EXPORT_SYMBOL(mmc_cqe_start_req);
494
495/**
496 * mmc_cqe_request_done - CQE has finished processing an MMC request
497 * @host: MMC host which completed request
498 * @mrq: MMC request which completed
499 *
500 * CQE drivers should call this function when they have completed
501 * their processing of a request.
502 */
503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
504{
505 mmc_should_fail_request(host, mrq);
506
507 /* Flag re-tuning needed on CRC errors */
508 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
509 (mrq->data && mrq->data->error == -EILSEQ))
510 mmc_retune_needed(host);
511
512 trace_mmc_request_done(host, mrq);
513
514 if (mrq->cmd) {
515 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
517 } else {
518 pr_debug("%s: CQE transfer done tag %d\n",
519 mmc_hostname(host), mrq->tag);
520 }
521
522 if (mrq->data) {
523 pr_debug("%s: %d bytes transferred: %d\n",
524 mmc_hostname(host),
525 mrq->data->bytes_xfered, mrq->data->error);
526 }
527
528 mrq->done(mrq);
529}
530EXPORT_SYMBOL(mmc_cqe_request_done);
531
532/**
533 * mmc_cqe_post_req - CQE post process of a completed MMC request
534 * @host: MMC host
535 * @mrq: MMC request to be processed
536 */
537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
538{
539 if (host->cqe_ops->cqe_post_req)
540 host->cqe_ops->cqe_post_req(host, mrq);
541}
542EXPORT_SYMBOL(mmc_cqe_post_req);
543
544/* Arbitrary 1 second timeout */
545#define MMC_CQE_RECOVERY_TIMEOUT 1000
546
547/*
548 * mmc_cqe_recovery - Recover from CQE errors.
549 * @host: MMC host to recover
550 *
551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552 * in eMMC, and discarding the queue in CQE. CQE must call
553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554 * fails to discard its queue.
555 */
556int mmc_cqe_recovery(struct mmc_host *host)
557{
558 struct mmc_command cmd;
559 int err;
560
561 mmc_retune_hold_now(host);
562
563 /*
564 * Recovery is expected seldom, if at all, but it reduces performance,
565 * so make sure it is not completely silent.
566 */
567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
568
569 host->cqe_ops->cqe_recovery_start(host);
570
571 memset(&cmd, 0, sizeof(cmd));
572 cmd.opcode = MMC_STOP_TRANSMISSION,
573 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
574 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
575 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
576 mmc_wait_for_cmd(host, &cmd, 0);
577
578 memset(&cmd, 0, sizeof(cmd));
579 cmd.opcode = MMC_CMDQ_TASK_MGMT;
580 cmd.arg = 1; /* Discard entire queue */
581 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
582 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
583 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
584 err = mmc_wait_for_cmd(host, &cmd, 0);
585
586 host->cqe_ops->cqe_recovery_finish(host);
587
588 mmc_retune_release(host);
589
590 return err;
591}
592EXPORT_SYMBOL(mmc_cqe_recovery);
593
594/**
595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * @host: MMC host
597 * @mrq: MMC request
598 *
599 * mmc_is_req_done() is used with requests that have
600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601 * starting a request and before waiting for it to complete. That is,
602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603 * and before mmc_wait_for_req_done(). If it is called at other times the
604 * result is not meaningful.
605 */
606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
607{
608 return completion_done(&mrq->completion);
609}
610EXPORT_SYMBOL(mmc_is_req_done);
611
612/**
613 * mmc_wait_for_req - start a request and wait for completion
614 * @host: MMC host to start command
615 * @mrq: MMC request to start
616 *
617 * Start a new MMC custom command request for a host, and wait
618 * for the command to complete. In the case of 'cap_cmd_during_tfr'
619 * requests, the transfer is ongoing and the caller can issue further
620 * commands that do not use the data lines, and then wait by calling
621 * mmc_wait_for_req_done().
622 * Does not attempt to parse the response.
623 */
624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
625{
626 __mmc_start_req(host, mrq);
627
628 if (!mrq->cap_cmd_during_tfr)
629 mmc_wait_for_req_done(host, mrq);
630}
631EXPORT_SYMBOL(mmc_wait_for_req);
632
633/**
634 * mmc_wait_for_cmd - start a command and wait for completion
635 * @host: MMC host to start command
636 * @cmd: MMC command to start
637 * @retries: maximum number of retries
638 *
639 * Start a new MMC command for a host, and wait for the command
640 * to complete. Return any error that occurred while the command
641 * was executing. Do not attempt to parse the response.
642 */
643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
644{
645 struct mmc_request mrq = {};
646
647 WARN_ON(!host->claimed);
648
649 memset(cmd->resp, 0, sizeof(cmd->resp));
650 cmd->retries = retries;
651
652 mrq.cmd = cmd;
653 cmd->data = NULL;
654
655 mmc_wait_for_req(host, &mrq);
656
657 return cmd->error;
658}
659
660EXPORT_SYMBOL(mmc_wait_for_cmd);
661
662/**
663 * mmc_set_data_timeout - set the timeout for a data command
664 * @data: data phase for command
665 * @card: the MMC card associated with the data transfer
666 *
667 * Computes the data timeout parameters according to the
668 * correct algorithm given the card type.
669 */
670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
671{
672 unsigned int mult;
673
674 /*
675 * SDIO cards only define an upper 1 s limit on access.
676 */
677 if (mmc_card_sdio(card)) {
678 data->timeout_ns = 1000000000;
679 data->timeout_clks = 0;
680 return;
681 }
682
683 /*
684 * SD cards use a 100 multiplier rather than 10
685 */
686 mult = mmc_card_sd(card) ? 100 : 10;
687
688 /*
689 * Scale up the multiplier (and therefore the timeout) by
690 * the r2w factor for writes.
691 */
692 if (data->flags & MMC_DATA_WRITE)
693 mult <<= card->csd.r2w_factor;
694
695 data->timeout_ns = card->csd.taac_ns * mult;
696 data->timeout_clks = card->csd.taac_clks * mult;
697
698 /*
699 * SD cards also have an upper limit on the timeout.
700 */
701 if (mmc_card_sd(card)) {
702 unsigned int timeout_us, limit_us;
703
704 timeout_us = data->timeout_ns / 1000;
705 if (card->host->ios.clock)
706 timeout_us += data->timeout_clks * 1000 /
707 (card->host->ios.clock / 1000);
708
709 if (data->flags & MMC_DATA_WRITE)
710 /*
711 * The MMC spec "It is strongly recommended
712 * for hosts to implement more than 500ms
713 * timeout value even if the card indicates
714 * the 250ms maximum busy length." Even the
715 * previous value of 300ms is known to be
716 * insufficient for some cards.
717 */
718 limit_us = 3000000;
719 else
720 limit_us = 100000;
721
722 /*
723 * SDHC cards always use these fixed values.
724 */
725 if (timeout_us > limit_us) {
726 data->timeout_ns = limit_us * 1000;
727 data->timeout_clks = 0;
728 }
729
730 /* assign limit value if invalid */
731 if (timeout_us == 0)
732 data->timeout_ns = limit_us * 1000;
733 }
734
735 /*
736 * Some cards require longer data read timeout than indicated in CSD.
737 * Address this by setting the read timeout to a "reasonably high"
738 * value. For the cards tested, 600ms has proven enough. If necessary,
739 * this value can be increased if other problematic cards require this.
740 */
741 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
742 data->timeout_ns = 600000000;
743 data->timeout_clks = 0;
744 }
745
746 /*
747 * Some cards need very high timeouts if driven in SPI mode.
748 * The worst observed timeout was 900ms after writing a
749 * continuous stream of data until the internal logic
750 * overflowed.
751 */
752 if (mmc_host_is_spi(card->host)) {
753 if (data->flags & MMC_DATA_WRITE) {
754 if (data->timeout_ns < 1000000000)
755 data->timeout_ns = 1000000000; /* 1s */
756 } else {
757 if (data->timeout_ns < 100000000)
758 data->timeout_ns = 100000000; /* 100ms */
759 }
760 }
761}
762EXPORT_SYMBOL(mmc_set_data_timeout);
763
764/**
765 * mmc_align_data_size - pads a transfer size to a more optimal value
766 * @card: the MMC card associated with the data transfer
767 * @sz: original transfer size
768 *
769 * Pads the original data size with a number of extra bytes in
770 * order to avoid controller bugs and/or performance hits
771 * (e.g. some controllers revert to PIO for certain sizes).
772 *
773 * Returns the improved size, which might be unmodified.
774 *
775 * Note that this function is only relevant when issuing a
776 * single scatter gather entry.
777 */
778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
779{
780 /*
781 * FIXME: We don't have a system for the controller to tell
782 * the core about its problems yet, so for now we just 32-bit
783 * align the size.
784 */
785 sz = ((sz + 3) / 4) * 4;
786
787 return sz;
788}
789EXPORT_SYMBOL(mmc_align_data_size);
790
791/*
792 * Allow claiming an already claimed host if the context is the same or there is
793 * no context but the task is the same.
794 */
795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
796 struct task_struct *task)
797{
798 return host->claimer == ctx ||
799 (!ctx && task && host->claimer->task == task);
800}
801
802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
803 struct mmc_ctx *ctx,
804 struct task_struct *task)
805{
806 if (!host->claimer) {
807 if (ctx)
808 host->claimer = ctx;
809 else
810 host->claimer = &host->default_ctx;
811 }
812 if (task)
813 host->claimer->task = task;
814}
815
816/**
817 * __mmc_claim_host - exclusively claim a host
818 * @host: mmc host to claim
819 * @ctx: context that claims the host or NULL in which case the default
820 * context will be used
821 * @abort: whether or not the operation should be aborted
822 *
823 * Claim a host for a set of operations. If @abort is non null and
824 * dereference a non-zero value then this will return prematurely with
825 * that non-zero value without acquiring the lock. Returns zero
826 * with the lock held otherwise.
827 */
828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
829 atomic_t *abort)
830{
831 struct task_struct *task = ctx ? NULL : current;
832 DECLARE_WAITQUEUE(wait, current);
833 unsigned long flags;
834 int stop;
835 bool pm = false;
836
837 might_sleep();
838
839 add_wait_queue(&host->wq, &wait);
840 spin_lock_irqsave(&host->lock, flags);
841 while (1) {
842 set_current_state(TASK_UNINTERRUPTIBLE);
843 stop = abort ? atomic_read(abort) : 0;
844 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
845 break;
846 spin_unlock_irqrestore(&host->lock, flags);
847 schedule();
848 spin_lock_irqsave(&host->lock, flags);
849 }
850 set_current_state(TASK_RUNNING);
851 if (!stop) {
852 host->claimed = 1;
853 mmc_ctx_set_claimer(host, ctx, task);
854 host->claim_cnt += 1;
855 if (host->claim_cnt == 1)
856 pm = true;
857 } else
858 wake_up(&host->wq);
859 spin_unlock_irqrestore(&host->lock, flags);
860 remove_wait_queue(&host->wq, &wait);
861
862 if (pm)
863 pm_runtime_get_sync(mmc_dev(host));
864
865 return stop;
866}
867EXPORT_SYMBOL(__mmc_claim_host);
868
869/**
870 * mmc_release_host - release a host
871 * @host: mmc host to release
872 *
873 * Release a MMC host, allowing others to claim the host
874 * for their operations.
875 */
876void mmc_release_host(struct mmc_host *host)
877{
878 unsigned long flags;
879
880 WARN_ON(!host->claimed);
881
882 spin_lock_irqsave(&host->lock, flags);
883 if (--host->claim_cnt) {
884 /* Release for nested claim */
885 spin_unlock_irqrestore(&host->lock, flags);
886 } else {
887 host->claimed = 0;
888 host->claimer->task = NULL;
889 host->claimer = NULL;
890 spin_unlock_irqrestore(&host->lock, flags);
891 wake_up(&host->wq);
892 pm_runtime_mark_last_busy(mmc_dev(host));
893 pm_runtime_put_autosuspend(mmc_dev(host));
894 }
895}
896EXPORT_SYMBOL(mmc_release_host);
897
898/*
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
901 */
902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903{
904 pm_runtime_get_sync(&card->dev);
905 __mmc_claim_host(card->host, ctx, NULL);
906}
907EXPORT_SYMBOL(mmc_get_card);
908
909/*
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
912 */
913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914{
915 struct mmc_host *host = card->host;
916
917 WARN_ON(ctx && host->claimer != ctx);
918
919 mmc_release_host(host);
920 pm_runtime_mark_last_busy(&card->dev);
921 pm_runtime_put_autosuspend(&card->dev);
922}
923EXPORT_SYMBOL(mmc_put_card);
924
925/*
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
928 */
929static inline void mmc_set_ios(struct mmc_host *host)
930{
931 struct mmc_ios *ios = &host->ios;
932
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host), ios->clock, ios->bus_mode,
936 ios->power_mode, ios->chip_select, ios->vdd,
937 1 << ios->bus_width, ios->timing);
938
939 host->ops->set_ios(host, ios);
940}
941
942/*
943 * Control chip select pin on a host.
944 */
945void mmc_set_chip_select(struct mmc_host *host, int mode)
946{
947 host->ios.chip_select = mode;
948 mmc_set_ios(host);
949}
950
951/*
952 * Sets the host clock to the highest possible frequency that
953 * is below "hz".
954 */
955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956{
957 WARN_ON(hz && hz < host->f_min);
958
959 if (hz > host->f_max)
960 hz = host->f_max;
961
962 host->ios.clock = hz;
963 mmc_set_ios(host);
964}
965
966int mmc_execute_tuning(struct mmc_card *card)
967{
968 struct mmc_host *host = card->host;
969 u32 opcode;
970 int err;
971
972 if (!host->ops->execute_tuning)
973 return 0;
974
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 if (mmc_card_mmc(card))
979 opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 else
981 opcode = MMC_SEND_TUNING_BLOCK;
982
983 err = host->ops->execute_tuning(host, opcode);
984
985 if (err)
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host), err);
988 else
989 mmc_retune_enable(host);
990
991 return err;
992}
993
994/*
995 * Change the bus mode (open drain/push-pull) of a host.
996 */
997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998{
999 host->ios.bus_mode = mode;
1000 mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008 host->ios.bus_width = width;
1009 mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017 if (host->cqe_on)
1018 host->cqe_ops->cqe_off(host);
1019
1020 mmc_retune_disable(host);
1021
1022 if (mmc_host_is_spi(host))
1023 host->ios.chip_select = MMC_CS_HIGH;
1024 else
1025 host->ios.chip_select = MMC_CS_DONTCARE;
1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 host->ios.timing = MMC_TIMING_LEGACY;
1029 host->ios.drv_type = 0;
1030 host->ios.enhanced_strobe = false;
1031
1032 /*
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1035 */
1036 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 host->ops->hs400_enhanced_strobe)
1038 host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040 mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060 const int max_bit = ilog2(MMC_VDD_35_36);
1061 int bit;
1062
1063 if (vdd < 1650 || vdd > 3600)
1064 return -EINVAL;
1065
1066 if (vdd >= 1650 && vdd <= 1950)
1067 return ilog2(MMC_VDD_165_195);
1068
1069 if (low_bits)
1070 vdd -= 1;
1071
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit = (vdd - 2000) / 100 + 8;
1074 if (bit > max_bit)
1075 return max_bit;
1076 return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094 u32 mask = 0;
1095
1096 if (vdd_max < vdd_min)
1097 return 0;
1098
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 if (vdd_max < 0)
1102 return 0;
1103
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 if (vdd_min < 0)
1107 return 0;
1108
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max >= vdd_min)
1111 mask |= 1 << vdd_max--;
1112
1113 return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130 const u32 *voltage_ranges;
1131 int num_ranges, i;
1132
1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 if (!voltage_ranges) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 return 0;
1138 }
1139 if (!num_ranges) {
1140 pr_err("%pOF: voltage-ranges empty\n", np);
1141 return -EINVAL;
1142 }
1143
1144 for (i = 0; i < num_ranges; i++) {
1145 const int j = i * 2;
1146 u32 ocr_mask;
1147
1148 ocr_mask = mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges[j]),
1150 be32_to_cpu(voltage_ranges[j + 1]));
1151 if (!ocr_mask) {
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1153 np, i);
1154 return -EINVAL;
1155 }
1156 *mask |= ocr_mask;
1157 }
1158
1159 return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167 u32 reg;
1168 int ret;
1169
1170 ret = of_property_read_u32(node, "reg", ®);
1171 if (ret < 0)
1172 return ret;
1173
1174 return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 unsigned func_num)
1179{
1180 struct device_node *node;
1181
1182 if (!host->parent || !host->parent->of_node)
1183 return NULL;
1184
1185 for_each_child_of_node(host->parent->of_node, node) {
1186 if (mmc_of_get_func_num(node) == func_num)
1187 return node;
1188 }
1189
1190 return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206 int tmp;
1207
1208 if (!vdd_bit)
1209 return -EINVAL;
1210
1211 /*
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1216 */
1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 if (tmp == 0) {
1219 *min_uV = 1650 * 1000;
1220 *max_uV = 1950 * 1000;
1221 } else {
1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 *max_uV = *min_uV + 100 * 1000;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240 int result = 0;
1241 int count;
1242 int i;
1243 int vdd_uV;
1244 int vdd_mV;
1245
1246 count = regulator_count_voltages(supply);
1247 if (count < 0)
1248 return count;
1249
1250 for (i = 0; i < count; i++) {
1251 vdd_uV = regulator_list_voltage(supply, i);
1252 if (vdd_uV <= 0)
1253 continue;
1254
1255 vdd_mV = vdd_uV / 1000;
1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 }
1258
1259 if (!result) {
1260 vdd_uV = regulator_get_voltage(supply);
1261 if (vdd_uV <= 0)
1262 return vdd_uV;
1263
1264 vdd_mV = vdd_uV / 1000;
1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 }
1267
1268 return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 struct regulator *supply,
1286 unsigned short vdd_bit)
1287{
1288 int result = 0;
1289 int min_uV, max_uV;
1290
1291 if (vdd_bit) {
1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294 result = regulator_set_voltage(supply, min_uV, max_uV);
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 int min_uV, int target_uV,
1315 int max_uV)
1316{
1317 /*
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1320 */
1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 return -EINVAL;
1323
1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347 struct device *dev = mmc_dev(mmc);
1348 int ret, volt, min_uV, max_uV;
1349
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc->supply.vqmmc))
1352 return -EINVAL;
1353
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_120:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180:
1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330:
1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 if (ret < 0)
1364 return ret;
1365
1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__, volt, max_uV);
1368
1369 min_uV = max(volt - 300000, 2700000);
1370 max_uV = min(max_uV + 200000, 3600000);
1371
1372 /*
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1378 */
1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 min_uV, volt, max_uV))
1381 return 0;
1382
1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 2700000, volt, 3600000);
1385 default:
1386 return -EINVAL;
1387 }
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485}
1486
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
1489 u32 clock;
1490
1491 /*
1492 * During a signal voltage level switch, the clock must be gated
1493 * for 5 ms according to the SD spec
1494 */
1495 clock = host->ios.clock;
1496 host->ios.clock = 0;
1497 mmc_set_ios(host);
1498
1499 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500 return -EAGAIN;
1501
1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503 mmc_delay(10);
1504 host->ios.clock = clock;
1505 mmc_set_ios(host);
1506
1507 return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512 struct mmc_command cmd = {};
1513 int err = 0;
1514
1515 /*
1516 * If we cannot switch voltages, return failure so the caller
1517 * can continue without UHS mode
1518 */
1519 if (!host->ops->start_signal_voltage_switch)
1520 return -EPERM;
1521 if (!host->ops->card_busy)
1522 pr_warn("%s: cannot verify signal voltage switch\n",
1523 mmc_hostname(host));
1524
1525 cmd.opcode = SD_SWITCH_VOLTAGE;
1526 cmd.arg = 0;
1527 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529 err = mmc_wait_for_cmd(host, &cmd, 0);
1530 if (err)
1531 return err;
1532
1533 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534 return -EIO;
1535
1536 /*
1537 * The card should drive cmd and dat[0:3] low immediately
1538 * after the response of cmd11, but wait 1 ms to be sure
1539 */
1540 mmc_delay(1);
1541 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542 err = -EAGAIN;
1543 goto power_cycle;
1544 }
1545
1546 if (mmc_host_set_uhs_voltage(host)) {
1547 /*
1548 * Voltages may not have been switched, but we've already
1549 * sent CMD11, so a power cycle is required anyway
1550 */
1551 err = -EAGAIN;
1552 goto power_cycle;
1553 }
1554
1555 /* Wait for at least 1 ms according to spec */
1556 mmc_delay(1);
1557
1558 /*
1559 * Failure to switch is indicated by the card holding
1560 * dat[0:3] low
1561 */
1562 if (host->ops->card_busy && host->ops->card_busy(host))
1563 err = -EAGAIN;
1564
1565power_cycle:
1566 if (err) {
1567 pr_debug("%s: Signal voltage switch failed, "
1568 "power cycling card\n", mmc_hostname(host));
1569 mmc_power_cycle(host, ocr);
1570 }
1571
1572 return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
1580 host->ios.timing = timing;
1581 mmc_set_ios(host);
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
1589 host->ios.drv_type = drv_type;
1590 mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594 int card_drv_type, int *drv_type)
1595{
1596 struct mmc_host *host = card->host;
1597 int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599 *drv_type = 0;
1600
1601 if (!host->ops->select_drive_strength)
1602 return 0;
1603
1604 /* Use SD definition of driver strength for hosts */
1605 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606 host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609 host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612 host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614 /*
1615 * The drive strength that the hardware can support
1616 * depends on the board design. Pass the appropriate
1617 * information and let the hardware specific code
1618 * return what is possible given the options
1619 */
1620 return host->ops->select_drive_strength(card, max_dtr,
1621 host_drv_type,
1622 card_drv_type,
1623 drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack. This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise. Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639 if (host->ios.power_mode == MMC_POWER_ON)
1640 return;
1641
1642 mmc_pwrseq_pre_power_on(host);
1643
1644 host->ios.vdd = fls(ocr) - 1;
1645 host->ios.power_mode = MMC_POWER_UP;
1646 /* Set initial state and call mmc_set_ios */
1647 mmc_set_initial_state(host);
1648
1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657 /*
1658 * This delay should be sufficient to allow the power supply
1659 * to reach the minimum voltage.
1660 */
1661 mmc_delay(10);
1662
1663 mmc_pwrseq_post_power_on(host);
1664
1665 host->ios.clock = host->f_init;
1666
1667 host->ios.power_mode = MMC_POWER_ON;
1668 mmc_set_ios(host);
1669
1670 /*
1671 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 * time required to reach a stable voltage.
1673 */
1674 mmc_delay(10);
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679 if (host->ios.power_mode == MMC_POWER_OFF)
1680 return;
1681
1682 mmc_pwrseq_power_off(host);
1683
1684 host->ios.clock = 0;
1685 host->ios.vdd = 0;
1686
1687 host->ios.power_mode = MMC_POWER_OFF;
1688 /* Set initial state and call mmc_set_ios */
1689 mmc_set_initial_state(host);
1690
1691 /*
1692 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 * XO-1.5, require a short delay after poweroff before the card
1694 * can be successfully turned on again.
1695 */
1696 mmc_delay(1);
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701 mmc_power_off(host);
1702 /* Wait at least 1 ms according to SD spec */
1703 mmc_delay(1);
1704 mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712 WARN_ON(!host->bus_dead);
1713
1714 host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&host->lock, flags);
1725 host->bus_refs++;
1726 spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&host->lock, flags);
1738 host->bus_refs--;
1739 if ((host->bus_refs == 0) && host->bus_ops)
1740 __mmc_release_bus(host);
1741 spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750 unsigned long flags;
1751
1752 WARN_ON(!host->claimed);
1753
1754 spin_lock_irqsave(&host->lock, flags);
1755
1756 WARN_ON(host->bus_ops);
1757 WARN_ON(host->bus_refs);
1758
1759 host->bus_ops = ops;
1760 host->bus_refs = 1;
1761 host->bus_dead = 0;
1762
1763 spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771 unsigned long flags;
1772
1773 WARN_ON(!host->claimed);
1774 WARN_ON(!host->bus_ops);
1775
1776 spin_lock_irqsave(&host->lock, flags);
1777
1778 host->bus_dead = 1;
1779
1780 spin_unlock_irqrestore(&host->lock, flags);
1781
1782 mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786 bool cd_irq)
1787{
1788 /*
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1791 */
1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 device_can_wakeup(mmc_dev(host)))
1794 pm_wakeup_event(mmc_dev(host), 5000);
1795
1796 host->detect_change = 1;
1797 mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1804 *
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1808 * inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812 _mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818 unsigned int sz;
1819
1820 if (is_power_of_2(card->erase_size))
1821 card->erase_shift = ffs(card->erase_size) - 1;
1822 else
1823 card->erase_shift = 0;
1824
1825 /*
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1832 *
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time.
1835 * For MMC, have a stab at ai good value and for modern cards it will
1836 * end up being 4MiB. Note that if the value is too small, it can end
1837 * up taking longer to erase. Also note, erase_size is already set to
1838 * High Capacity Erase Size if available when this function is called.
1839 */
1840 if (mmc_card_sd(card) && card->ssr.au) {
1841 card->pref_erase = card->ssr.au;
1842 card->erase_shift = ffs(card->ssr.au) - 1;
1843 } else if (card->erase_size) {
1844 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845 if (sz < 128)
1846 card->pref_erase = 512 * 1024 / 512;
1847 else if (sz < 512)
1848 card->pref_erase = 1024 * 1024 / 512;
1849 else if (sz < 1024)
1850 card->pref_erase = 2 * 1024 * 1024 / 512;
1851 else
1852 card->pref_erase = 4 * 1024 * 1024 / 512;
1853 if (card->pref_erase < card->erase_size)
1854 card->pref_erase = card->erase_size;
1855 else {
1856 sz = card->pref_erase % card->erase_size;
1857 if (sz)
1858 card->pref_erase += card->erase_size - sz;
1859 }
1860 } else
1861 card->pref_erase = 0;
1862}
1863
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865 unsigned int arg, unsigned int qty)
1866{
1867 unsigned int erase_timeout;
1868
1869 if (arg == MMC_DISCARD_ARG ||
1870 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871 erase_timeout = card->ext_csd.trim_timeout;
1872 } else if (card->ext_csd.erase_group_def & 1) {
1873 /* High Capacity Erase Group Size uses HC timeouts */
1874 if (arg == MMC_TRIM_ARG)
1875 erase_timeout = card->ext_csd.trim_timeout;
1876 else
1877 erase_timeout = card->ext_csd.hc_erase_timeout;
1878 } else {
1879 /* CSD Erase Group Size uses write timeout */
1880 unsigned int mult = (10 << card->csd.r2w_factor);
1881 unsigned int timeout_clks = card->csd.taac_clks * mult;
1882 unsigned int timeout_us;
1883
1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 if (card->csd.taac_ns < 1000000)
1886 timeout_us = (card->csd.taac_ns * mult) / 1000;
1887 else
1888 timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890 /*
1891 * ios.clock is only a target. The real clock rate might be
1892 * less but not that much less, so fudge it by multiplying by 2.
1893 */
1894 timeout_clks <<= 1;
1895 timeout_us += (timeout_clks * 1000) /
1896 (card->host->ios.clock / 1000);
1897
1898 erase_timeout = timeout_us / 1000;
1899
1900 /*
1901 * Theoretically, the calculation could underflow so round up
1902 * to 1ms in that case.
1903 */
1904 if (!erase_timeout)
1905 erase_timeout = 1;
1906 }
1907
1908 /* Multiplier for secure operations */
1909 if (arg & MMC_SECURE_ARGS) {
1910 if (arg == MMC_SECURE_ERASE_ARG)
1911 erase_timeout *= card->ext_csd.sec_erase_mult;
1912 else
1913 erase_timeout *= card->ext_csd.sec_trim_mult;
1914 }
1915
1916 erase_timeout *= qty;
1917
1918 /*
1919 * Ensure at least a 1 second timeout for SPI as per
1920 * 'mmc_set_data_timeout()'
1921 */
1922 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923 erase_timeout = 1000;
1924
1925 return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929 unsigned int arg,
1930 unsigned int qty)
1931{
1932 unsigned int erase_timeout;
1933
1934 if (card->ssr.erase_timeout) {
1935 /* Erase timeout specified in SD Status Register (SSR) */
1936 erase_timeout = card->ssr.erase_timeout * qty +
1937 card->ssr.erase_offset;
1938 } else {
1939 /*
1940 * Erase timeout not specified in SD Status Register (SSR) so
1941 * use 250ms per write block.
1942 */
1943 erase_timeout = 250 * qty;
1944 }
1945
1946 /* Must not be less than 1 second */
1947 if (erase_timeout < 1000)
1948 erase_timeout = 1000;
1949
1950 return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg,
1955 unsigned int qty)
1956{
1957 if (mmc_card_sd(card))
1958 return mmc_sd_erase_timeout(card, arg, qty);
1959 else
1960 return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964 unsigned int to, unsigned int arg)
1965{
1966 struct mmc_command cmd = {};
1967 unsigned int qty = 0, busy_timeout = 0;
1968 bool use_r1b_resp = false;
1969 unsigned long timeout;
1970 int err;
1971
1972 mmc_retune_hold(card->host);
1973
1974 /*
1975 * qty is used to calculate the erase timeout which depends on how many
1976 * erase groups (or allocation units in SD terminology) are affected.
1977 * We count erasing part of an erase group as one erase group.
1978 * For SD, the allocation units are always a power of 2. For MMC, the
1979 * erase group size is almost certainly also power of 2, but it does not
1980 * seem to insist on that in the JEDEC standard, so we fall back to
1981 * division in that case. SD may not specify an allocation unit size,
1982 * in which case the timeout is based on the number of write blocks.
1983 *
1984 * Note that the timeout for secure trim 2 will only be correct if the
1985 * number of erase groups specified is the same as the total of all
1986 * preceding secure trim 1 commands. Since the power may have been
1987 * lost since the secure trim 1 commands occurred, it is generally
1988 * impossible to calculate the secure trim 2 timeout correctly.
1989 */
1990 if (card->erase_shift)
1991 qty += ((to >> card->erase_shift) -
1992 (from >> card->erase_shift)) + 1;
1993 else if (mmc_card_sd(card))
1994 qty += to - from + 1;
1995 else
1996 qty += ((to / card->erase_size) -
1997 (from / card->erase_size)) + 1;
1998
1999 if (!mmc_card_blockaddr(card)) {
2000 from <<= 9;
2001 to <<= 9;
2002 }
2003
2004 if (mmc_card_sd(card))
2005 cmd.opcode = SD_ERASE_WR_BLK_START;
2006 else
2007 cmd.opcode = MMC_ERASE_GROUP_START;
2008 cmd.arg = from;
2009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011 if (err) {
2012 pr_err("mmc_erase: group start error %d, "
2013 "status %#x\n", err, cmd.resp[0]);
2014 err = -EIO;
2015 goto out;
2016 }
2017
2018 memset(&cmd, 0, sizeof(struct mmc_command));
2019 if (mmc_card_sd(card))
2020 cmd.opcode = SD_ERASE_WR_BLK_END;
2021 else
2022 cmd.opcode = MMC_ERASE_GROUP_END;
2023 cmd.arg = to;
2024 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026 if (err) {
2027 pr_err("mmc_erase: group end error %d, status %#x\n",
2028 err, cmd.resp[0]);
2029 err = -EIO;
2030 goto out;
2031 }
2032
2033 memset(&cmd, 0, sizeof(struct mmc_command));
2034 cmd.opcode = MMC_ERASE;
2035 cmd.arg = arg;
2036 busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 /*
2038 * If the host controller supports busy signalling and the timeout for
2039 * the erase operation does not exceed the max_busy_timeout, we should
2040 * use R1B response. Or we need to prevent the host from doing hw busy
2041 * detection, which is done by converting to a R1 response instead.
2042 */
2043 if (card->host->max_busy_timeout &&
2044 busy_timeout > card->host->max_busy_timeout) {
2045 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046 } else {
2047 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048 cmd.busy_timeout = busy_timeout;
2049 use_r1b_resp = true;
2050 }
2051
2052 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 if (err) {
2054 pr_err("mmc_erase: erase error %d, status %#x\n",
2055 err, cmd.resp[0]);
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 if (mmc_host_is_spi(card->host))
2061 goto out;
2062
2063 /*
2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065 * shall be avoided.
2066 */
2067 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068 goto out;
2069
2070 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071 do {
2072 memset(&cmd, 0, sizeof(struct mmc_command));
2073 cmd.opcode = MMC_SEND_STATUS;
2074 cmd.arg = card->rca << 16;
2075 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076 /* Do not retry else we can't see errors */
2077 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 if (err || (cmd.resp[0] & 0xFDF92000)) {
2079 pr_err("error %d requesting status %#x\n",
2080 err, cmd.resp[0]);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 /* Timeout if the device never becomes ready for data and
2086 * never leaves the program state.
2087 */
2088 if (time_after(jiffies, timeout)) {
2089 pr_err("%s: Card stuck in programming state! %s\n",
2090 mmc_hostname(card->host), __func__);
2091 err = -EIO;
2092 goto out;
2093 }
2094
2095 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098 mmc_retune_release(card->host);
2099 return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103 unsigned int *from,
2104 unsigned int *to,
2105 unsigned int nr)
2106{
2107 unsigned int from_new = *from, nr_new = nr, rem;
2108
2109 /*
2110 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 * to align the erase size efficiently.
2112 */
2113 if (is_power_of_2(card->erase_size)) {
2114 unsigned int temp = from_new;
2115
2116 from_new = round_up(temp, card->erase_size);
2117 rem = from_new - temp;
2118
2119 if (nr_new > rem)
2120 nr_new -= rem;
2121 else
2122 return 0;
2123
2124 nr_new = round_down(nr_new, card->erase_size);
2125 } else {
2126 rem = from_new % card->erase_size;
2127 if (rem) {
2128 rem = card->erase_size - rem;
2129 from_new += rem;
2130 if (nr_new > rem)
2131 nr_new -= rem;
2132 else
2133 return 0;
2134 }
2135
2136 rem = nr_new % card->erase_size;
2137 if (rem)
2138 nr_new -= rem;
2139 }
2140
2141 if (nr_new == 0)
2142 return 0;
2143
2144 *to = from_new + nr_new;
2145 *from = from_new;
2146
2147 return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160 unsigned int arg)
2161{
2162 unsigned int rem, to = from + nr;
2163 int err;
2164
2165 if (!(card->host->caps & MMC_CAP_ERASE) ||
2166 !(card->csd.cmdclass & CCC_ERASE))
2167 return -EOPNOTSUPP;
2168
2169 if (!card->erase_size)
2170 return -EOPNOTSUPP;
2171
2172 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173 return -EOPNOTSUPP;
2174
2175 if ((arg & MMC_SECURE_ARGS) &&
2176 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177 return -EOPNOTSUPP;
2178
2179 if ((arg & MMC_TRIM_ARGS) &&
2180 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181 return -EOPNOTSUPP;
2182
2183 if (arg == MMC_SECURE_ERASE_ARG) {
2184 if (from % card->erase_size || nr % card->erase_size)
2185 return -EINVAL;
2186 }
2187
2188 if (arg == MMC_ERASE_ARG)
2189 nr = mmc_align_erase_size(card, &from, &to, nr);
2190
2191 if (nr == 0)
2192 return 0;
2193
2194 if (to <= from)
2195 return -EINVAL;
2196
2197 /* 'from' and 'to' are inclusive */
2198 to -= 1;
2199
2200 /*
2201 * Special case where only one erase-group fits in the timeout budget:
2202 * If the region crosses an erase-group boundary on this particular
2203 * case, we will be trimming more than one erase-group which, does not
2204 * fit in the timeout budget of the controller, so we need to split it
2205 * and call mmc_do_erase() twice if necessary. This special case is
2206 * identified by the card->eg_boundary flag.
2207 */
2208 rem = card->erase_size - (from % card->erase_size);
2209 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210 err = mmc_do_erase(card, from, from + rem - 1, arg);
2211 from += rem;
2212 if ((err) || (to <= from))
2213 return err;
2214 }
2215
2216 return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222 if ((card->host->caps & MMC_CAP_ERASE) &&
2223 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224 return 1;
2225 return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233 return 1;
2234 return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240 /*
2241 * As there's no way to detect the discard support bit at v4.5
2242 * use the s/w feature support filed.
2243 */
2244 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245 return 1;
2246 return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253 return 0;
2254 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255 return 1;
2256 return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264 return 1;
2265 return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270 unsigned int nr)
2271{
2272 if (!card->erase_size)
2273 return 0;
2274 if (from % card->erase_size || nr % card->erase_size)
2275 return 0;
2276 return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281 unsigned int arg)
2282{
2283 struct mmc_host *host = card->host;
2284 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285 unsigned int last_timeout = 0;
2286 unsigned int max_busy_timeout = host->max_busy_timeout ?
2287 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289 if (card->erase_shift) {
2290 max_qty = UINT_MAX >> card->erase_shift;
2291 min_qty = card->pref_erase >> card->erase_shift;
2292 } else if (mmc_card_sd(card)) {
2293 max_qty = UINT_MAX;
2294 min_qty = card->pref_erase;
2295 } else {
2296 max_qty = UINT_MAX / card->erase_size;
2297 min_qty = card->pref_erase / card->erase_size;
2298 }
2299
2300 /*
2301 * We should not only use 'host->max_busy_timeout' as the limitation
2302 * when deciding the max discard sectors. We should set a balance value
2303 * to improve the erase speed, and it can not get too long timeout at
2304 * the same time.
2305 *
2306 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 * matter what size of 'host->max_busy_timeout', but if the
2308 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 * then we can continue to increase the max discard sectors until we
2310 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 * isn't specified, use the default max erase timeout.
2312 */
2313 do {
2314 y = 0;
2315 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316 timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318 if (qty + x > min_qty && timeout > max_busy_timeout)
2319 break;
2320
2321 if (timeout < last_timeout)
2322 break;
2323 last_timeout = timeout;
2324 y = x;
2325 }
2326 qty += y;
2327 } while (y);
2328
2329 if (!qty)
2330 return 0;
2331
2332 /*
2333 * When specifying a sector range to trim, chances are we might cross
2334 * an erase-group boundary even if the amount of sectors is less than
2335 * one erase-group.
2336 * If we can only fit one erase-group in the controller timeout budget,
2337 * we have to care that erase-group boundaries are not crossed by a
2338 * single trim operation. We flag that special case with "eg_boundary".
2339 * In all other cases we can just decrement qty and pretend that we
2340 * always touch (qty + 1) erase-groups as a simple optimization.
2341 */
2342 if (qty == 1)
2343 card->eg_boundary = 1;
2344 else
2345 qty--;
2346
2347 /* Convert qty to sectors */
2348 if (card->erase_shift)
2349 max_discard = qty << card->erase_shift;
2350 else if (mmc_card_sd(card))
2351 max_discard = qty + 1;
2352 else
2353 max_discard = qty * card->erase_size;
2354
2355 return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360 struct mmc_host *host = card->host;
2361 unsigned int max_discard, max_trim;
2362
2363 /*
2364 * Without erase_group_def set, MMC erase timeout depends on clock
2365 * frequence which can change. In that case, the best choice is
2366 * just the preferred erase size.
2367 */
2368 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369 return card->pref_erase;
2370
2371 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372 if (max_discard && mmc_can_trim(card)) {
2373 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374 if (max_trim < max_discard)
2375 max_discard = max_trim;
2376 } else if (max_discard < card->erase_size) {
2377 max_discard = 0;
2378 }
2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382 return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388 return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394 struct mmc_command cmd = {};
2395
2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397 mmc_card_hs400(card) || mmc_card_hs400es(card))
2398 return 0;
2399
2400 cmd.opcode = MMC_SET_BLOCKLEN;
2401 cmd.arg = blocklen;
2402 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403 return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408 bool is_rel_write)
2409{
2410 struct mmc_command cmd = {};
2411
2412 cmd.opcode = MMC_SET_BLOCK_COUNT;
2413 cmd.arg = blockcount & 0x0000FFFF;
2414 if (is_rel_write)
2415 cmd.arg |= 1 << 31;
2416 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417 return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
2422{
2423 mmc_pwrseq_reset(host);
2424
2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 return;
2427 host->ops->hw_reset(host);
2428}
2429
2430int mmc_hw_reset(struct mmc_host *host)
2431{
2432 int ret;
2433
2434 if (!host->card)
2435 return -EINVAL;
2436
2437 mmc_bus_get(host);
2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 mmc_bus_put(host);
2440 return -EOPNOTSUPP;
2441 }
2442
2443 ret = host->bus_ops->reset(host);
2444 mmc_bus_put(host);
2445
2446 if (ret)
2447 pr_warn("%s: tried to reset card, got error %d\n",
2448 mmc_hostname(host), ret);
2449
2450 return ret;
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456 host->f_init = freq;
2457
2458 pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host), __func__, host->f_init);
2460
2461 mmc_power_up(host, host->ocr_avail);
2462
2463 /*
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2466 */
2467 mmc_hw_reset_for_init(host);
2468
2469 /*
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2474 */
2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 sdio_reset(host);
2477
2478 mmc_go_idle(host);
2479
2480 if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 mmc_send_if_cond(host, host->ocr_avail);
2482
2483 /* Order's important: probe SDIO, then SD, then MMC */
2484 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485 if (!mmc_attach_sdio(host))
2486 return 0;
2487
2488 if (!(host->caps2 & MMC_CAP2_NO_SD))
2489 if (!mmc_attach_sd(host))
2490 return 0;
2491
2492 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493 if (!mmc_attach_mmc(host))
2494 return 0;
2495
2496 mmc_power_off(host);
2497 return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502 int ret;
2503
2504 if (!host->card || mmc_card_removed(host->card))
2505 return 1;
2506
2507 ret = host->bus_ops->alive(host);
2508
2509 /*
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2515 */
2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 mmc_detect_change(host, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 }
2520
2521 if (ret) {
2522 mmc_card_set_removed(host->card);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 }
2525
2526 return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531 struct mmc_card *card = host->card;
2532 int ret;
2533
2534 WARN_ON(!host->claimed);
2535
2536 if (!card)
2537 return 1;
2538
2539 if (!mmc_card_is_removable(host))
2540 return 0;
2541
2542 ret = mmc_card_removed(card);
2543 /*
2544 * The card will be considered unchanged unless we have been asked to
2545 * detect a change or host requires polling to provide card detection.
2546 */
2547 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548 return ret;
2549
2550 host->detect_change = 0;
2551 if (!ret) {
2552 ret = _mmc_detect_card_removed(host);
2553 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554 /*
2555 * Schedule a detect work as soon as possible to let a
2556 * rescan handle the card removal.
2557 */
2558 cancel_delayed_work(&host->detect);
2559 _mmc_detect_change(host, 0, false);
2560 }
2561 }
2562
2563 return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
2567void mmc_rescan(struct work_struct *work)
2568{
2569 struct mmc_host *host =
2570 container_of(work, struct mmc_host, detect.work);
2571 int i;
2572
2573 if (host->rescan_disable)
2574 return;
2575
2576 /* If there is a non-removable card registered, only scan once */
2577 if (!mmc_card_is_removable(host) && host->rescan_entered)
2578 return;
2579 host->rescan_entered = 1;
2580
2581 if (host->trigger_card_event && host->ops->card_event) {
2582 mmc_claim_host(host);
2583 host->ops->card_event(host);
2584 mmc_release_host(host);
2585 host->trigger_card_event = false;
2586 }
2587
2588 mmc_bus_get(host);
2589
2590 /*
2591 * if there is a _removable_ card registered, check whether it is
2592 * still present
2593 */
2594 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595 host->bus_ops->detect(host);
2596
2597 host->detect_change = 0;
2598
2599 /*
2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 * the card is no longer present.
2602 */
2603 mmc_bus_put(host);
2604 mmc_bus_get(host);
2605
2606 /* if there still is a card present, stop here */
2607 if (host->bus_ops != NULL) {
2608 mmc_bus_put(host);
2609 goto out;
2610 }
2611
2612 /*
2613 * Only we can add a new handler, so it's safe to
2614 * release the lock here.
2615 */
2616 mmc_bus_put(host);
2617
2618 mmc_claim_host(host);
2619 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620 host->ops->get_cd(host) == 0) {
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 goto out;
2624 }
2625
2626 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628 break;
2629 if (freqs[i] <= host->f_min)
2630 break;
2631 }
2632 mmc_release_host(host);
2633
2634 out:
2635 if (host->caps & MMC_CAP_NEEDS_POLL)
2636 mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641 host->f_init = max(freqs[0], host->f_min);
2642 host->rescan_disable = 0;
2643 host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646 mmc_claim_host(host);
2647 mmc_power_up(host, host->ocr_avail);
2648 mmc_release_host(host);
2649 }
2650
2651 mmc_gpiod_request_cd_irq(host);
2652 _mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
2657 if (host->slot.cd_irq >= 0) {
2658 mmc_gpio_set_cd_wake(host, false);
2659 disable_irq(host->slot.cd_irq);
2660 }
2661
2662 host->rescan_disable = 1;
2663 cancel_delayed_work_sync(&host->detect);
2664
2665 /* clear pm flags now and let card drivers set them as needed */
2666 host->pm_flags = 0;
2667
2668 mmc_bus_get(host);
2669 if (host->bus_ops && !host->bus_dead) {
2670 /* Calling bus_ops->remove() with a claimed host can deadlock */
2671 host->bus_ops->remove(host);
2672 mmc_claim_host(host);
2673 mmc_detach_bus(host);
2674 mmc_power_off(host);
2675 mmc_release_host(host);
2676 mmc_bus_put(host);
2677 return;
2678 }
2679 mmc_bus_put(host);
2680
2681 mmc_claim_host(host);
2682 mmc_power_off(host);
2683 mmc_release_host(host);
2684}
2685
2686int mmc_power_save_host(struct mmc_host *host)
2687{
2688 int ret = 0;
2689
2690 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2691
2692 mmc_bus_get(host);
2693
2694 if (!host->bus_ops || host->bus_dead) {
2695 mmc_bus_put(host);
2696 return -EINVAL;
2697 }
2698
2699 if (host->bus_ops->power_save)
2700 ret = host->bus_ops->power_save(host);
2701
2702 mmc_bus_put(host);
2703
2704 mmc_power_off(host);
2705
2706 return ret;
2707}
2708EXPORT_SYMBOL(mmc_power_save_host);
2709
2710int mmc_power_restore_host(struct mmc_host *host)
2711{
2712 int ret;
2713
2714 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2715
2716 mmc_bus_get(host);
2717
2718 if (!host->bus_ops || host->bus_dead) {
2719 mmc_bus_put(host);
2720 return -EINVAL;
2721 }
2722
2723 mmc_power_up(host, host->card->ocr);
2724 ret = host->bus_ops->power_restore(host);
2725
2726 mmc_bus_put(host);
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL(mmc_power_restore_host);
2731
2732#ifdef CONFIG_PM_SLEEP
2733/* Do the card removal on suspend if card is assumed removeable
2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735 to sync the card.
2736*/
2737static int mmc_pm_notify(struct notifier_block *notify_block,
2738 unsigned long mode, void *unused)
2739{
2740 struct mmc_host *host = container_of(
2741 notify_block, struct mmc_host, pm_notify);
2742 unsigned long flags;
2743 int err = 0;
2744
2745 switch (mode) {
2746 case PM_HIBERNATION_PREPARE:
2747 case PM_SUSPEND_PREPARE:
2748 case PM_RESTORE_PREPARE:
2749 spin_lock_irqsave(&host->lock, flags);
2750 host->rescan_disable = 1;
2751 spin_unlock_irqrestore(&host->lock, flags);
2752 cancel_delayed_work_sync(&host->detect);
2753
2754 if (!host->bus_ops)
2755 break;
2756
2757 /* Validate prerequisites for suspend */
2758 if (host->bus_ops->pre_suspend)
2759 err = host->bus_ops->pre_suspend(host);
2760 if (!err)
2761 break;
2762
2763 if (!mmc_card_is_removable(host)) {
2764 dev_warn(mmc_dev(host),
2765 "pre_suspend failed for non-removable host: "
2766 "%d\n", err);
2767 /* Avoid removing non-removable hosts */
2768 break;
2769 }
2770
2771 /* Calling bus_ops->remove() with a claimed host can deadlock */
2772 host->bus_ops->remove(host);
2773 mmc_claim_host(host);
2774 mmc_detach_bus(host);
2775 mmc_power_off(host);
2776 mmc_release_host(host);
2777 host->pm_flags = 0;
2778 break;
2779
2780 case PM_POST_SUSPEND:
2781 case PM_POST_HIBERNATION:
2782 case PM_POST_RESTORE:
2783
2784 spin_lock_irqsave(&host->lock, flags);
2785 host->rescan_disable = 0;
2786 spin_unlock_irqrestore(&host->lock, flags);
2787 _mmc_detect_change(host, 0, false);
2788
2789 }
2790
2791 return 0;
2792}
2793
2794void mmc_register_pm_notifier(struct mmc_host *host)
2795{
2796 host->pm_notify.notifier_call = mmc_pm_notify;
2797 register_pm_notifier(&host->pm_notify);
2798}
2799
2800void mmc_unregister_pm_notifier(struct mmc_host *host)
2801{
2802 unregister_pm_notifier(&host->pm_notify);
2803}
2804#endif
2805
2806static int __init mmc_init(void)
2807{
2808 int ret;
2809
2810 ret = mmc_register_bus();
2811 if (ret)
2812 return ret;
2813
2814 ret = mmc_register_host_class();
2815 if (ret)
2816 goto unregister_bus;
2817
2818 ret = sdio_register_bus();
2819 if (ret)
2820 goto unregister_host_class;
2821
2822 return 0;
2823
2824unregister_host_class:
2825 mmc_unregister_host_class();
2826unregister_bus:
2827 mmc_unregister_bus();
2828 return ret;
2829}
2830
2831static void __exit mmc_exit(void)
2832{
2833 sdio_unregister_bus();
2834 mmc_unregister_host_class();
2835 mmc_unregister_bus();
2836}
2837
2838subsys_initcall(mmc_init);
2839module_exit(mmc_exit);
2840
2841MODULE_LICENSE("GPL");