Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 if (mrq->cmd && mrq->cmd->has_ext_addr)
340 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341
342 init_completion(&mrq->cmd_completion);
343
344 mmc_retune_hold(host);
345
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
348
349 mmc_mrq_pr_debug(host, mrq, false);
350
351 WARN_ON(!host->claimed);
352
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
356
357 if (host->uhs2_sd_tran)
358 mmc_uhs2_prepare_cmd(host, mrq);
359
360 led_trigger_event(host->led, LED_FULL);
361 __mmc_start_request(host, mrq);
362
363 return 0;
364}
365EXPORT_SYMBOL(mmc_start_request);
366
367static void mmc_wait_done(struct mmc_request *mrq)
368{
369 complete(&mrq->completion);
370}
371
372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373{
374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375
376 /*
377 * If there is an ongoing transfer, wait for the command line to become
378 * available.
379 */
380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 wait_for_completion(&ongoing_mrq->cmd_completion);
382}
383
384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385{
386 int err;
387
388 mmc_wait_ongoing_tfr_cmd(host);
389
390 init_completion(&mrq->completion);
391 mrq->done = mmc_wait_done;
392
393 err = mmc_start_request(host, mrq);
394 if (err) {
395 mrq->cmd->error = err;
396 mmc_complete_cmd(mrq);
397 complete(&mrq->completion);
398 }
399
400 return err;
401}
402
403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404{
405 struct mmc_command *cmd;
406
407 while (1) {
408 wait_for_completion(&mrq->completion);
409
410 cmd = mrq->cmd;
411
412 if (!cmd->error || !cmd->retries ||
413 mmc_card_removed(host->card))
414 break;
415
416 mmc_retune_recheck(host);
417
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host), cmd->opcode, cmd->error);
420 cmd->retries--;
421 cmd->error = 0;
422 __mmc_start_request(host, mrq);
423 }
424
425 mmc_retune_release(host);
426}
427EXPORT_SYMBOL(mmc_wait_for_req_done);
428
429/*
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
433 *
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
436 */
437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438{
439 int err;
440
441 /*
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
445 * ->cqe_off().
446 */
447 err = mmc_retune(host);
448 if (err)
449 goto out_err;
450
451 mrq->host = host;
452
453 mmc_mrq_pr_debug(host, mrq, true);
454
455 err = mmc_mrq_prep(host, mrq);
456 if (err)
457 goto out_err;
458
459 if (host->uhs2_sd_tran)
460 mmc_uhs2_prepare_cmd(host, mrq);
461
462 err = host->cqe_ops->cqe_request(host, mrq);
463 if (err)
464 goto out_err;
465
466 trace_mmc_request_start(host, mrq);
467
468 return 0;
469
470out_err:
471 if (mrq->cmd) {
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host), mrq->cmd->opcode, err);
474 } else {
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host), mrq->tag, err);
477 }
478 return err;
479}
480EXPORT_SYMBOL(mmc_cqe_start_req);
481
482/**
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
486 *
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
489 */
490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491{
492 mmc_should_fail_request(host, mrq);
493
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 (mrq->data && mrq->data->error == -EILSEQ))
497 mmc_retune_needed(host);
498
499 trace_mmc_request_done(host, mrq);
500
501 if (mrq->cmd) {
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 } else {
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host), mrq->tag);
507 }
508
509 if (mrq->data) {
510 pr_debug("%s: %d bytes transferred: %d\n",
511 mmc_hostname(host),
512 mrq->data->bytes_xfered, mrq->data->error);
513 }
514
515 mrq->done(mrq);
516}
517EXPORT_SYMBOL(mmc_cqe_request_done);
518
519/**
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @host: MMC host
522 * @mrq: MMC request to be processed
523 */
524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525{
526 if (host->cqe_ops->cqe_post_req)
527 host->cqe_ops->cqe_post_req(host, mrq);
528}
529EXPORT_SYMBOL(mmc_cqe_post_req);
530
531/* Arbitrary 1 second timeout */
532#define MMC_CQE_RECOVERY_TIMEOUT 1000
533
534/*
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
537 *
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
542 */
543int mmc_cqe_recovery(struct mmc_host *host)
544{
545 struct mmc_command cmd;
546 int err;
547
548 mmc_retune_hold_now(host);
549
550 /*
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
553 */
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555
556 host->cqe_ops->cqe_recovery_start(host);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_STOP_TRANSMISSION;
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564
565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566
567 memset(&cmd, 0, sizeof(cmd));
568 cmd.opcode = MMC_CMDQ_TASK_MGMT;
569 cmd.arg = 1; /* Discard entire queue */
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574
575 host->cqe_ops->cqe_recovery_finish(host);
576
577 if (err)
578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579
580 mmc_retune_release(host);
581
582 return err;
583}
584EXPORT_SYMBOL(mmc_cqe_recovery);
585
586/**
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * @host: MMC host
589 * @mrq: MMC request
590 *
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
597 */
598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599{
600 return completion_done(&mrq->completion);
601}
602EXPORT_SYMBOL(mmc_is_req_done);
603
604/**
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
608 *
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
615 */
616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617{
618 __mmc_start_req(host, mrq);
619
620 if (!mrq->cap_cmd_during_tfr)
621 mmc_wait_for_req_done(host, mrq);
622}
623EXPORT_SYMBOL(mmc_wait_for_req);
624
625/**
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
630 *
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
634 */
635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636{
637 struct mmc_request mrq = {};
638
639 WARN_ON(!host->claimed);
640
641 memset(cmd->resp, 0, sizeof(cmd->resp));
642 cmd->retries = retries;
643
644 mrq.cmd = cmd;
645 cmd->data = NULL;
646
647 mmc_wait_for_req(host, &mrq);
648
649 return cmd->error;
650}
651
652EXPORT_SYMBOL(mmc_wait_for_cmd);
653
654/**
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
658 *
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
661 */
662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663{
664 unsigned int mult;
665
666 /*
667 * SDIO cards only define an upper 1 s limit on access.
668 */
669 if (mmc_card_sdio(card)) {
670 data->timeout_ns = 1000000000;
671 data->timeout_clks = 0;
672 return;
673 }
674
675 /*
676 * SD cards use a 100 multiplier rather than 10
677 */
678 mult = mmc_card_sd(card) ? 100 : 10;
679
680 /*
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
683 */
684 if (data->flags & MMC_DATA_WRITE)
685 mult <<= card->csd.r2w_factor;
686
687 data->timeout_ns = card->csd.taac_ns * mult;
688 data->timeout_clks = card->csd.taac_clks * mult;
689
690 /*
691 * SD cards also have an upper limit on the timeout.
692 */
693 if (mmc_card_sd(card)) {
694 unsigned int timeout_us, limit_us;
695
696 timeout_us = data->timeout_ns / 1000;
697 if (card->host->ios.clock)
698 timeout_us += data->timeout_clks * 1000 /
699 (card->host->ios.clock / 1000);
700
701 if (data->flags & MMC_DATA_WRITE)
702 /*
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
709 */
710 limit_us = 3000000;
711 else
712 limit_us = 100000;
713
714 /*
715 * SDHC cards always use these fixed values.
716 */
717 if (timeout_us > limit_us) {
718 data->timeout_ns = limit_us * 1000;
719 data->timeout_clks = 0;
720 }
721
722 /* assign limit value if invalid */
723 if (timeout_us == 0)
724 data->timeout_ns = limit_us * 1000;
725 }
726
727 /*
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
732 */
733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 data->timeout_ns = 600000000;
735 data->timeout_clks = 0;
736 }
737
738 /*
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
742 * overflowed.
743 */
744 if (mmc_host_is_spi(card->host)) {
745 if (data->flags & MMC_DATA_WRITE) {
746 if (data->timeout_ns < 1000000000)
747 data->timeout_ns = 1000000000; /* 1s */
748 } else {
749 if (data->timeout_ns < 100000000)
750 data->timeout_ns = 100000000; /* 100ms */
751 }
752 }
753}
754EXPORT_SYMBOL(mmc_set_data_timeout);
755
756/*
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
759 */
760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 struct task_struct *task)
762{
763 return host->claimer == ctx ||
764 (!ctx && task && host->claimer->task == task);
765}
766
767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 struct mmc_ctx *ctx,
769 struct task_struct *task)
770{
771 if (!host->claimer) {
772 if (ctx)
773 host->claimer = ctx;
774 else
775 host->claimer = &host->default_ctx;
776 }
777 if (task)
778 host->claimer->task = task;
779}
780
781/**
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
787 *
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
792 */
793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 atomic_t *abort)
795{
796 struct task_struct *task = ctx ? NULL : current;
797 DECLARE_WAITQUEUE(wait, current);
798 unsigned long flags;
799 int stop;
800 bool pm = false;
801
802 might_sleep();
803
804 add_wait_queue(&host->wq, &wait);
805 spin_lock_irqsave(&host->lock, flags);
806 while (1) {
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 stop = abort ? atomic_read(abort) : 0;
809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 break;
811 spin_unlock_irqrestore(&host->lock, flags);
812 schedule();
813 spin_lock_irqsave(&host->lock, flags);
814 }
815 set_current_state(TASK_RUNNING);
816 if (!stop) {
817 host->claimed = 1;
818 mmc_ctx_set_claimer(host, ctx, task);
819 host->claim_cnt += 1;
820 if (host->claim_cnt == 1)
821 pm = true;
822 } else
823 wake_up(&host->wq);
824 spin_unlock_irqrestore(&host->lock, flags);
825 remove_wait_queue(&host->wq, &wait);
826
827 if (pm)
828 pm_runtime_get_sync(mmc_dev(host));
829
830 return stop;
831}
832EXPORT_SYMBOL(__mmc_claim_host);
833
834/**
835 * mmc_release_host - release a host
836 * @host: mmc host to release
837 *
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
840 */
841void mmc_release_host(struct mmc_host *host)
842{
843 unsigned long flags;
844
845 WARN_ON(!host->claimed);
846
847 spin_lock_irqsave(&host->lock, flags);
848 if (--host->claim_cnt) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host->lock, flags);
851 } else {
852 host->claimed = 0;
853 host->claimer->task = NULL;
854 host->claimer = NULL;
855 spin_unlock_irqrestore(&host->lock, flags);
856 wake_up(&host->wq);
857 pm_runtime_mark_last_busy(mmc_dev(host));
858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 pm_runtime_put_sync_suspend(mmc_dev(host));
860 else
861 pm_runtime_put_autosuspend(mmc_dev(host));
862 }
863}
864EXPORT_SYMBOL(mmc_release_host);
865
866/*
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
869 */
870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871{
872 pm_runtime_get_sync(&card->dev);
873 __mmc_claim_host(card->host, ctx, NULL);
874}
875EXPORT_SYMBOL(mmc_get_card);
876
877/*
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
880 */
881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882{
883 struct mmc_host *host = card->host;
884
885 WARN_ON(ctx && host->claimer != ctx);
886
887 mmc_release_host(host);
888 pm_runtime_mark_last_busy(&card->dev);
889 pm_runtime_put_autosuspend(&card->dev);
890}
891EXPORT_SYMBOL(mmc_put_card);
892
893/*
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
896 */
897static inline void mmc_set_ios(struct mmc_host *host)
898{
899 struct mmc_ios *ios = &host->ios;
900
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host), ios->clock, ios->bus_mode,
904 ios->power_mode, ios->chip_select, ios->vdd,
905 1 << ios->bus_width, ios->timing);
906
907 host->ops->set_ios(host, ios);
908}
909
910/*
911 * Control chip select pin on a host.
912 */
913void mmc_set_chip_select(struct mmc_host *host, int mode)
914{
915 host->ios.chip_select = mode;
916 mmc_set_ios(host);
917}
918
919/*
920 * Sets the host clock to the highest possible frequency that
921 * is below "hz".
922 */
923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924{
925 WARN_ON(hz && hz < host->f_min);
926
927 if (hz > host->f_max)
928 hz = host->f_max;
929
930 host->ios.clock = hz;
931 mmc_set_ios(host);
932}
933
934int mmc_execute_tuning(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 opcode;
938 int err;
939
940 if (!host->ops->execute_tuning)
941 return 0;
942
943 if (host->cqe_on)
944 host->cqe_ops->cqe_off(host);
945
946 if (mmc_card_mmc(card))
947 opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 else
949 opcode = MMC_SEND_TUNING_BLOCK;
950
951 err = host->ops->execute_tuning(host, opcode);
952 if (!err) {
953 mmc_retune_clear(host);
954 mmc_retune_enable(host);
955 return 0;
956 }
957
958 /* Only print error when we don't check for card removal */
959 if (!host->detect_change) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host), err);
962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 }
964
965 return err;
966}
967
968/*
969 * Change the bus mode (open drain/push-pull) of a host.
970 */
971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972{
973 host->ios.bus_mode = mode;
974 mmc_set_ios(host);
975}
976
977/*
978 * Change data bus width of a host.
979 */
980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981{
982 host->ios.bus_width = width;
983 mmc_set_ios(host);
984}
985
986/*
987 * Set initial state after a power cycle or a hw_reset.
988 */
989void mmc_set_initial_state(struct mmc_host *host)
990{
991 if (host->cqe_on)
992 host->cqe_ops->cqe_off(host);
993
994 mmc_retune_disable(host);
995
996 if (mmc_host_is_spi(host))
997 host->ios.chip_select = MMC_CS_HIGH;
998 else
999 host->ios.chip_select = MMC_CS_DONTCARE;
1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 host->ios.timing = MMC_TIMING_LEGACY;
1003 host->ios.drv_type = 0;
1004 host->ios.enhanced_strobe = false;
1005
1006 /*
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1009 */
1010 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 host->ops->hs400_enhanced_strobe)
1012 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014 mmc_set_ios(host);
1015
1016 mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036 const int max_bit = ilog2(MMC_VDD_35_36);
1037 int bit;
1038
1039 if (vdd < 1650 || vdd > 3600)
1040 return -EINVAL;
1041
1042 if (vdd >= 1650 && vdd <= 1950)
1043 return ilog2(MMC_VDD_165_195);
1044
1045 if (low_bits)
1046 vdd -= 1;
1047
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit = (vdd - 2000) / 100 + 8;
1050 if (bit > max_bit)
1051 return max_bit;
1052 return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070 u32 mask = 0;
1071
1072 if (vdd_max < vdd_min)
1073 return 0;
1074
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 if (vdd_max < 0)
1078 return 0;
1079
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 if (vdd_min < 0)
1083 return 0;
1084
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max >= vdd_min)
1087 mask |= 1 << vdd_max--;
1088
1089 return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094 u32 reg;
1095 int ret;
1096
1097 ret = of_property_read_u32(node, "reg", ®);
1098 if (ret < 0)
1099 return ret;
1100
1101 return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 unsigned func_num)
1106{
1107 struct device_node *node;
1108
1109 if (!host->parent || !host->parent->of_node)
1110 return NULL;
1111
1112 for_each_child_of_node(host->parent->of_node, node) {
1113 if (mmc_of_get_func_num(node) == func_num)
1114 return node;
1115 }
1116
1117 return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126 int bit;
1127
1128 /*
1129 * Sanity check the voltages that the card claims to
1130 * support.
1131 */
1132 if (ocr & 0x7F) {
1133 dev_warn(mmc_dev(host),
1134 "card claims to support voltages below defined range\n");
1135 ocr &= ~0x7F;
1136 }
1137
1138 ocr &= host->ocr_avail;
1139 if (!ocr) {
1140 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 return 0;
1142 }
1143
1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 bit = ffs(ocr) - 1;
1146 ocr &= 3 << bit;
1147 mmc_power_cycle(host, ocr);
1148 } else {
1149 bit = fls(ocr) - 1;
1150 /*
1151 * The bit variable represents the highest voltage bit set in
1152 * the OCR register.
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1155 */
1156 ocr &= 3 << (bit - 1);
1157 if (bit != host->ios.vdd)
1158 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 }
1160
1161 return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166 int err = 0;
1167 int old_signal_voltage = host->ios.signal_voltage;
1168
1169 host->ios.signal_voltage = signal_voltage;
1170 if (host->ops->start_signal_voltage_switch)
1171 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173 if (err)
1174 host->ios.signal_voltage = old_signal_voltage;
1175
1176 return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193 u32 clock;
1194
1195 /*
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1198 */
1199 clock = host->ios.clock;
1200 host->ios.clock = 0;
1201 mmc_set_ios(host);
1202
1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 return -EAGAIN;
1205
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 mmc_delay(10);
1208 host->ios.clock = clock;
1209 mmc_set_ios(host);
1210
1211 return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216 struct mmc_command cmd = {};
1217 int err = 0;
1218
1219 /*
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1222 */
1223 if (!host->ops->start_signal_voltage_switch)
1224 return -EPERM;
1225 if (!host->ops->card_busy)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host));
1228
1229 cmd.opcode = SD_SWITCH_VOLTAGE;
1230 cmd.arg = 0;
1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (err)
1235 goto power_cycle;
1236
1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 return -EIO;
1239
1240 /*
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1243 */
1244 mmc_delay(1);
1245 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 if (mmc_host_set_uhs_voltage(host)) {
1251 /*
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1254 */
1255 err = -EAGAIN;
1256 goto power_cycle;
1257 }
1258
1259 /* Wait for at least 1 ms according to spec */
1260 mmc_delay(1);
1261
1262 /*
1263 * Failure to switch is indicated by the card holding
1264 * dat[0:3] low
1265 */
1266 if (host->ops->card_busy && host->ops->card_busy(host))
1267 err = -EAGAIN;
1268
1269power_cycle:
1270 if (err) {
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host));
1273 mmc_power_cycle(host, ocr);
1274 }
1275
1276 return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284 host->ios.timing = timing;
1285 mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293 host->ios.drv_type = drv_type;
1294 mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 int card_drv_type, int *drv_type)
1299{
1300 struct mmc_host *host = card->host;
1301 int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303 *drv_type = 0;
1304
1305 if (!host->ops->select_drive_strength)
1306 return 0;
1307
1308 /* Use SD definition of driver strength for hosts */
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318 /*
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1323 */
1324 return host->ops->select_drive_strength(card, max_dtr,
1325 host_drv_type,
1326 card_drv_type,
1327 drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343 if (host->ios.power_mode == MMC_POWER_ON)
1344 return;
1345
1346 mmc_pwrseq_pre_power_on(host);
1347
1348 host->ios.vdd = fls(ocr) - 1;
1349 host->ios.power_mode = MMC_POWER_UP;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host);
1352
1353 mmc_set_initial_signal_voltage(host);
1354
1355 /*
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360
1361 mmc_pwrseq_post_power_on(host);
1362
1363 host->ios.clock = host->f_init;
1364
1365 host->ios.power_mode = MMC_POWER_ON;
1366 mmc_set_ios(host);
1367
1368 /*
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1371 */
1372 mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377 if (host->ios.power_mode == MMC_POWER_OFF)
1378 return;
1379
1380 mmc_pwrseq_power_off(host);
1381
1382 host->ios.clock = 0;
1383 host->ios.vdd = 0;
1384
1385 host->ios.power_mode = MMC_POWER_OFF;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host);
1388
1389 /*
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1393 */
1394 mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399 mmc_power_off(host);
1400 /* Wait at least 1 ms according to SD spec */
1401 mmc_delay(1);
1402 mmc_power_up(host, ocr);
1403}
1404
1405/*
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
1411 host->bus_ops = ops;
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419 host->bus_ops = NULL;
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423{
1424 /*
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1428 */
1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 __pm_wakeup_event(host->ws, 5000);
1431
1432 host->detect_change = 1;
1433 mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1440 *
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1444 * inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448 _mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454 unsigned int sz;
1455
1456 if (is_power_of_2(card->erase_size))
1457 card->erase_shift = ffs(card->erase_size) - 1;
1458 else
1459 card->erase_shift = 0;
1460
1461 /*
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1468 *
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1475 */
1476 if (mmc_card_sd(card) && card->ssr.au) {
1477 card->pref_erase = card->ssr.au;
1478 card->erase_shift = ffs(card->ssr.au) - 1;
1479 } else if (card->erase_size) {
1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 if (sz < 128)
1482 card->pref_erase = 512 * 1024 / 512;
1483 else if (sz < 512)
1484 card->pref_erase = 1024 * 1024 / 512;
1485 else if (sz < 1024)
1486 card->pref_erase = 2 * 1024 * 1024 / 512;
1487 else
1488 card->pref_erase = 4 * 1024 * 1024 / 512;
1489 if (card->pref_erase < card->erase_size)
1490 card->pref_erase = card->erase_size;
1491 else {
1492 sz = card->pref_erase % card->erase_size;
1493 if (sz)
1494 card->pref_erase += card->erase_size - sz;
1495 }
1496 } else
1497 card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 unsigned int arg, unsigned int qty)
1507{
1508 unsigned int erase_timeout;
1509
1510 if (arg == MMC_DISCARD_ARG ||
1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 } else if (card->ext_csd.erase_group_def & 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg == MMC_TRIM_ARG)
1516 erase_timeout = card->ext_csd.trim_timeout;
1517 else
1518 erase_timeout = card->ext_csd.hc_erase_timeout;
1519 } else {
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult = (10 << card->csd.r2w_factor);
1522 unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 unsigned int timeout_us;
1524
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card->csd.taac_ns < 1000000)
1527 timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 else
1529 timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531 /*
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1534 */
1535 timeout_clks <<= 1;
1536 timeout_us += (timeout_clks * 1000) /
1537 (card->host->ios.clock / 1000);
1538
1539 erase_timeout = timeout_us / 1000;
1540
1541 /*
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1544 */
1545 if (!erase_timeout)
1546 erase_timeout = 1;
1547 }
1548
1549 /* Multiplier for secure operations */
1550 if (arg & MMC_SECURE_ARGS) {
1551 if (arg == MMC_SECURE_ERASE_ARG)
1552 erase_timeout *= card->ext_csd.sec_erase_mult;
1553 else
1554 erase_timeout *= card->ext_csd.sec_trim_mult;
1555 }
1556
1557 erase_timeout *= qty;
1558
1559 /*
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1562 */
1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 erase_timeout = 1000;
1565
1566 return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int arg,
1571 unsigned int qty)
1572{
1573 unsigned int erase_timeout;
1574
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1577 */
1578 if (arg == SD_DISCARD_ARG)
1579 return SD_DISCARD_TIMEOUT_MS;
1580
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1586 /*
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1589 */
1590 erase_timeout = 250 * qty;
1591 }
1592
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603{
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 sector_t to, unsigned int arg)
1612{
1613 struct mmc_command cmd = {};
1614 unsigned int qty = 0, busy_timeout = 0;
1615 bool use_r1b_resp;
1616 int err;
1617
1618 mmc_retune_hold(card->host);
1619
1620 /*
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1629 *
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1635 */
1636 if (card->erase_shift)
1637 qty += ((to >> card->erase_shift) -
1638 (from >> card->erase_shift)) + 1;
1639 else if (mmc_card_sd(card))
1640 qty += to - from + 1;
1641 else
1642 qty += (mmc_sector_div(to, card->erase_size) -
1643 mmc_sector_div(from, card->erase_size)) + 1;
1644
1645 if (!mmc_card_blockaddr(card)) {
1646 from <<= 9;
1647 to <<= 9;
1648 }
1649
1650 if (mmc_card_sd(card))
1651 cmd.opcode = SD_ERASE_WR_BLK_START;
1652 else
1653 cmd.opcode = MMC_ERASE_GROUP_START;
1654 cmd.arg = from;
1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657 if (mmc_card_ult_capacity(card)) {
1658 cmd.ext_addr = from >> 32;
1659 cmd.has_ext_addr = true;
1660 }
1661
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 if (mmc_card_sd(card))
1672 cmd.opcode = SD_ERASE_WR_BLK_END;
1673 else
1674 cmd.opcode = MMC_ERASE_GROUP_END;
1675 cmd.arg = to;
1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678 if (mmc_card_ult_capacity(card)) {
1679 cmd.ext_addr = to >> 32;
1680 cmd.has_ext_addr = true;
1681 }
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 memset(&cmd, 0, sizeof(struct mmc_command));
1692 cmd.opcode = MMC_ERASE;
1693 cmd.arg = arg;
1694 busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696
1697 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 if (err) {
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1700 err, cmd.resp[0]);
1701 err = -EIO;
1702 goto out;
1703 }
1704
1705 if (mmc_host_is_spi(card->host))
1706 goto out;
1707
1708 /*
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 * shall be avoided.
1711 */
1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 goto out;
1714
1715 /* Let's poll to find out when the erase operation completes. */
1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717
1718out:
1719 mmc_retune_release(card->host);
1720 return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 sector_t *from,
1725 sector_t *to,
1726 unsigned int nr)
1727{
1728 sector_t from_new = *from;
1729 unsigned int nr_new = nr, rem;
1730
1731 /*
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1734 */
1735 if (is_power_of_2(card->erase_size)) {
1736 sector_t temp = from_new;
1737
1738 from_new = round_up(temp, card->erase_size);
1739 rem = from_new - temp;
1740
1741 if (nr_new > rem)
1742 nr_new -= rem;
1743 else
1744 return 0;
1745
1746 nr_new = round_down(nr_new, card->erase_size);
1747 } else {
1748 rem = mmc_sector_mod(from_new, card->erase_size);
1749 if (rem) {
1750 rem = card->erase_size - rem;
1751 from_new += rem;
1752 if (nr_new > rem)
1753 nr_new -= rem;
1754 else
1755 return 0;
1756 }
1757
1758 rem = nr_new % card->erase_size;
1759 if (rem)
1760 nr_new -= rem;
1761 }
1762
1763 if (nr_new == 0)
1764 return 0;
1765
1766 *to = from_new + nr_new;
1767 *from = from_new;
1768
1769 return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 unsigned int arg)
1783{
1784 unsigned int rem;
1785 sector_t to = from + nr;
1786
1787 int err;
1788
1789 if (!(card->csd.cmdclass & CCC_ERASE))
1790 return -EOPNOTSUPP;
1791
1792 if (!card->erase_size)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 return -EOPNOTSUPP;
1805
1806 if (arg == MMC_SECURE_ERASE_ARG) {
1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 return -EINVAL;
1809 }
1810
1811 if (arg == MMC_ERASE_ARG)
1812 nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814 if (nr == 0)
1815 return 0;
1816
1817 if (to <= from)
1818 return -EINVAL;
1819
1820 /* 'from' and 'to' are inclusive */
1821 to -= 1;
1822
1823 /*
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1830 */
1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 from += rem;
1835 if ((err) || (to <= from))
1836 return err;
1837 }
1838
1839 return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 return 1;
1847 return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862 /*
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1865 */
1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 return 1;
1868 return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 return 0;
1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 return 1;
1878 return 0;
1879}
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 return 1;
1886 return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 unsigned int nr)
1892{
1893 if (!card->erase_size)
1894 return 0;
1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 return 0;
1897 return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 unsigned int arg)
1903{
1904 struct mmc_host *host = card->host;
1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 unsigned int last_timeout = 0;
1907 unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910 if (card->erase_shift) {
1911 max_qty = UINT_MAX >> card->erase_shift;
1912 min_qty = card->pref_erase >> card->erase_shift;
1913 } else if (mmc_card_sd(card)) {
1914 max_qty = UINT_MAX;
1915 min_qty = card->pref_erase;
1916 } else {
1917 max_qty = UINT_MAX / card->erase_size;
1918 min_qty = card->pref_erase / card->erase_size;
1919 }
1920
1921 /*
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1925 * the same time.
1926 *
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1933 */
1934 do {
1935 y = 0;
1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939 if (qty + x > min_qty && timeout > max_busy_timeout)
1940 break;
1941
1942 if (timeout < last_timeout)
1943 break;
1944 last_timeout = timeout;
1945 y = x;
1946 }
1947 qty += y;
1948 } while (y);
1949
1950 if (!qty)
1951 return 0;
1952
1953 /*
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1956 * one erase-group.
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1962 */
1963 if (qty == 1)
1964 card->eg_boundary = 1;
1965 else
1966 qty--;
1967
1968 /* Convert qty to sectors */
1969 if (card->erase_shift)
1970 max_discard = qty << card->erase_shift;
1971 else if (mmc_card_sd(card))
1972 max_discard = qty + 1;
1973 else
1974 max_discard = qty * card->erase_size;
1975
1976 return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981 struct mmc_host *host = card->host;
1982 unsigned int max_discard, max_trim;
1983
1984 /*
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1988 */
1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 return card->pref_erase;
1991
1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 if (mmc_can_trim(card)) {
1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 if (max_trim < max_discard || max_discard == 0)
1996 max_discard = max_trim;
1997 } else if (max_discard < card->erase_size) {
1998 max_discard = 0;
1999 }
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009 return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015 struct mmc_command cmd = {};
2016
2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 return 0;
2020
2021 cmd.opcode = MMC_SET_BLOCKLEN;
2022 cmd.arg = blocklen;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030 mmc_pwrseq_reset(host);
2031
2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 return;
2034 host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049 struct mmc_host *host = card->host;
2050 int ret;
2051
2052 ret = host->bus_ops->hw_reset(host);
2053 if (ret < 0)
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063 struct mmc_host *host = card->host;
2064 int ret;
2065
2066 if (!host->bus_ops->sw_reset)
2067 return -EOPNOTSUPP;
2068
2069 ret = host->bus_ops->sw_reset(host);
2070 if (ret)
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host), ret);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080 host->f_init = freq;
2081
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host), __func__, host->f_init);
2084
2085 mmc_power_up(host, host->ocr_avail);
2086
2087 /*
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2090 */
2091 mmc_hw_reset_for_init(host);
2092
2093 /*
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2098 */
2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 sdio_reset(host);
2101
2102 mmc_go_idle(host);
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 goto out;
2107 if (mmc_card_sd_express(host))
2108 return 0;
2109 }
2110
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 if (!mmc_attach_sdio(host))
2114 return 0;
2115
2116 if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 if (!mmc_attach_sd(host))
2118 return 0;
2119
2120 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 if (!mmc_attach_mmc(host))
2122 return 0;
2123
2124out:
2125 mmc_power_off(host);
2126 return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 int ret;
2132
2133 if (!host->card || mmc_card_removed(host->card))
2134 return 1;
2135
2136 ret = host->bus_ops->alive(host);
2137
2138 /*
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2144 */
2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 mmc_detect_change(host, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 }
2149
2150 if (ret) {
2151 mmc_card_set_removed(host->card);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 }
2154
2155 return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160 struct mmc_card *card = host->card;
2161 int ret;
2162
2163 WARN_ON(!host->claimed);
2164
2165 if (!card)
2166 return 1;
2167
2168 if (!mmc_card_is_removable(host))
2169 return 0;
2170
2171 ret = mmc_card_removed(card);
2172 /*
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2175 */
2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 return ret;
2178
2179 host->detect_change = 0;
2180 if (!ret) {
2181 ret = _mmc_detect_card_removed(host);
2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 /*
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2186 */
2187 cancel_delayed_work(&host->detect);
2188 _mmc_detect_change(host, 0, false);
2189 }
2190 }
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198 unsigned int boot_sectors_num;
2199
2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 return -EOPNOTSUPP;
2202
2203 /* filter out unrelated cards */
2204 if (card->ext_csd.rev < 3 ||
2205 !mmc_card_mmc(card) ||
2206 !mmc_card_is_blockaddr(card) ||
2207 mmc_card_is_removable(card->host))
2208 return -ENOENT;
2209
2210 /*
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2216 *
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2218 *
2219 * Calculate number of sectors occupied by the both boot partitions.
2220 */
2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227 return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233 struct mmc_host *host =
2234 container_of(work, struct mmc_host, detect.work);
2235 int i;
2236
2237 if (host->rescan_disable)
2238 return;
2239
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 return;
2243 host->rescan_entered = 1;
2244
2245 if (host->trigger_card_event && host->ops->card_event) {
2246 mmc_claim_host(host);
2247 host->ops->card_event(host);
2248 mmc_release_host(host);
2249 host->trigger_card_event = false;
2250 }
2251
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops)
2254 host->bus_ops->detect(host);
2255
2256 host->detect_change = 0;
2257
2258 /* if there still is a card present, stop here */
2259 if (host->bus_ops != NULL)
2260 goto out;
2261
2262 mmc_claim_host(host);
2263 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 host->ops->get_cd(host) == 0) {
2265 mmc_power_off(host);
2266 mmc_release_host(host);
2267 goto out;
2268 }
2269
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 /*
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2282 */
2283 if (!mmc_attach_sd_uhs2(host)) {
2284 mmc_release_host(host);
2285 goto out;
2286 }
2287
2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 unsigned int freq = freqs[i];
2290 if (freq > host->f_max) {
2291 if (i + 1 < ARRAY_SIZE(freqs))
2292 continue;
2293 freq = host->f_max;
2294 }
2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 break;
2297 if (freqs[i] <= host->f_min)
2298 break;
2299 }
2300
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host));
2305
2306 /*
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2309 */
2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 mmc_release_host(host);
2312
2313 out:
2314 if (host->caps & MMC_CAP_NEEDS_POLL)
2315 mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320 bool power_up = !(host->caps2 &
2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 host->rescan_disable = 0;
2325
2326 if (power_up) {
2327 mmc_claim_host(host);
2328 mmc_power_up(host, host->ocr_avail);
2329 mmc_release_host(host);
2330 }
2331
2332 mmc_gpiod_request_cd_irq(host);
2333 _mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338 if (host->rescan_disable)
2339 return;
2340
2341 if (host->slot.cd_irq >= 0) {
2342 mmc_gpio_set_cd_wake(host, false);
2343 disable_irq(host->slot.cd_irq);
2344 }
2345
2346 host->rescan_disable = 1;
2347 cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352 __mmc_stop_host(host);
2353
2354 /* clear pm flags now and let card drivers set them as needed */
2355 host->pm_flags = 0;
2356
2357 if (host->bus_ops) {
2358 /* Calling bus_ops->remove() with a claimed host can deadlock */
2359 host->bus_ops->remove(host);
2360 mmc_claim_host(host);
2361 mmc_detach_bus(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 return;
2365 }
2366
2367 mmc_claim_host(host);
2368 mmc_power_off(host);
2369 mmc_release_host(host);
2370}
2371
2372static int __init mmc_init(void)
2373{
2374 int ret;
2375
2376 ret = mmc_register_bus();
2377 if (ret)
2378 return ret;
2379
2380 ret = mmc_register_host_class();
2381 if (ret)
2382 goto unregister_bus;
2383
2384 ret = sdio_register_bus();
2385 if (ret)
2386 goto unregister_host_class;
2387
2388 return 0;
2389
2390unregister_host_class:
2391 mmc_unregister_host_class();
2392unregister_bus:
2393 mmc_unregister_bus();
2394 return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399 sdio_unregister_bus();
2400 mmc_unregister_host_class();
2401 mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "bus.h"
44#include "host.h"
45#include "sdio_bus.h"
46#include "pwrseq.h"
47
48#include "mmc_ops.h"
49#include "sd_ops.h"
50#include "sdio_ops.h"
51
52/* If the device is not responding */
53#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55/*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61/* The max erase timeout, used when host->max_busy_timeout isn't specified */
62#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
63
64static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
65
66/*
67 * Enabling software CRCs on the data blocks can be a significant (30%)
68 * performance cost, and for other reasons may not always be desired.
69 * So we allow it it to be disabled.
70 */
71bool use_spi_crc = 1;
72module_param(use_spi_crc, bool, 0);
73
74static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76{
77 /*
78 * We use the system_freezable_wq, because of two reasons.
79 * First, it allows several works (not the same work item) to be
80 * executed simultaneously. Second, the queue becomes frozen when
81 * userspace becomes frozen during system PM.
82 */
83 return queue_delayed_work(system_freezable_wq, work, delay);
84}
85
86#ifdef CONFIG_FAIL_MMC_REQUEST
87
88/*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112}
113
114#else /* CONFIG_FAIL_MMC_REQUEST */
115
116static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118{
119}
120
121#endif /* CONFIG_FAIL_MMC_REQUEST */
122
123static inline void mmc_complete_cmd(struct mmc_request *mrq)
124{
125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
126 complete_all(&mrq->cmd_completion);
127}
128
129void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
130{
131 if (!mrq->cap_cmd_during_tfr)
132 return;
133
134 mmc_complete_cmd(mrq);
135
136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
137 mmc_hostname(host), mrq->cmd->opcode);
138}
139EXPORT_SYMBOL(mmc_command_done);
140
141/**
142 * mmc_request_done - finish processing an MMC request
143 * @host: MMC host which completed request
144 * @mrq: MMC request which request
145 *
146 * MMC drivers should call this function when they have completed
147 * their processing of a request.
148 */
149void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
150{
151 struct mmc_command *cmd = mrq->cmd;
152 int err = cmd->error;
153
154 /* Flag re-tuning needed on CRC errors */
155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
158 (mrq->data && mrq->data->error == -EILSEQ) ||
159 (mrq->stop && mrq->stop->error == -EILSEQ)))
160 mmc_retune_needed(host);
161
162 if (err && cmd->retries && mmc_host_is_spi(host)) {
163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
164 cmd->retries = 0;
165 }
166
167 if (host->ongoing_mrq == mrq)
168 host->ongoing_mrq = NULL;
169
170 mmc_complete_cmd(mrq);
171
172 trace_mmc_request_done(host, mrq);
173
174 if (err && cmd->retries && !mmc_card_removed(host->card)) {
175 /*
176 * Request starter must handle retries - see
177 * mmc_wait_for_req_done().
178 */
179 if (mrq->done)
180 mrq->done(mrq);
181 } else {
182 mmc_should_fail_request(host, mrq);
183
184 if (!host->ongoing_mrq)
185 led_trigger_event(host->led, LED_OFF);
186
187 if (mrq->sbc) {
188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), mrq->sbc->opcode,
190 mrq->sbc->error,
191 mrq->sbc->resp[0], mrq->sbc->resp[1],
192 mrq->sbc->resp[2], mrq->sbc->resp[3]);
193 }
194
195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
196 mmc_hostname(host), cmd->opcode, err,
197 cmd->resp[0], cmd->resp[1],
198 cmd->resp[2], cmd->resp[3]);
199
200 if (mrq->data) {
201 pr_debug("%s: %d bytes transferred: %d\n",
202 mmc_hostname(host),
203 mrq->data->bytes_xfered, mrq->data->error);
204 }
205
206 if (mrq->stop) {
207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
208 mmc_hostname(host), mrq->stop->opcode,
209 mrq->stop->error,
210 mrq->stop->resp[0], mrq->stop->resp[1],
211 mrq->stop->resp[2], mrq->stop->resp[3]);
212 }
213
214 if (mrq->done)
215 mrq->done(mrq);
216 }
217}
218
219EXPORT_SYMBOL(mmc_request_done);
220
221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 */
237 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
238 int tries = 500; /* Wait aprox 500ms at maximum */
239
240 while (host->ops->card_busy(host) && --tries)
241 mmc_delay(1);
242
243 if (tries == 0) {
244 mrq->cmd->error = -EBUSY;
245 mmc_request_done(host, mrq);
246 return;
247 }
248 }
249
250 if (mrq->cap_cmd_during_tfr) {
251 host->ongoing_mrq = mrq;
252 /*
253 * Retry path could come through here without having waiting on
254 * cmd_completion, so ensure it is reinitialised.
255 */
256 reinit_completion(&mrq->cmd_completion);
257 }
258
259 trace_mmc_request_start(host, mrq);
260
261 host->ops->request(host, mrq);
262}
263
264static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
265{
266#ifdef CONFIG_MMC_DEBUG
267 unsigned int i, sz;
268 struct scatterlist *sg;
269#endif
270 mmc_retune_hold(host);
271
272 if (mmc_card_removed(host->card))
273 return -ENOMEDIUM;
274
275 if (mrq->sbc) {
276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
277 mmc_hostname(host), mrq->sbc->opcode,
278 mrq->sbc->arg, mrq->sbc->flags);
279 }
280
281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
282 mmc_hostname(host), mrq->cmd->opcode,
283 mrq->cmd->arg, mrq->cmd->flags);
284
285 if (mrq->data) {
286 pr_debug("%s: blksz %d blocks %d flags %08x "
287 "tsac %d ms nsac %d\n",
288 mmc_hostname(host), mrq->data->blksz,
289 mrq->data->blocks, mrq->data->flags,
290 mrq->data->timeout_ns / 1000000,
291 mrq->data->timeout_clks);
292 }
293
294 if (mrq->stop) {
295 pr_debug("%s: CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host), mrq->stop->opcode,
297 mrq->stop->arg, mrq->stop->flags);
298 }
299
300 WARN_ON(!host->claimed);
301
302 mrq->cmd->error = 0;
303 mrq->cmd->mrq = mrq;
304 if (mrq->sbc) {
305 mrq->sbc->error = 0;
306 mrq->sbc->mrq = mrq;
307 }
308 if (mrq->data) {
309 if (mrq->data->blksz > host->max_blk_size ||
310 mrq->data->blocks > host->max_blk_count ||
311 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
312 return -EINVAL;
313#ifdef CONFIG_MMC_DEBUG
314 sz = 0;
315 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
316 sz += sg->length;
317 if (sz != mrq->data->blocks * mrq->data->blksz)
318 return -EINVAL;
319#endif
320
321 mrq->cmd->data = mrq->data;
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330 led_trigger_event(host->led, LED_FULL);
331 __mmc_start_request(host, mrq);
332
333 return 0;
334}
335
336/**
337 * mmc_start_bkops - start BKOPS for supported cards
338 * @card: MMC card to start BKOPS
339 * @form_exception: A flag to indicate if this function was
340 * called due to an exception raised by the card
341 *
342 * Start background operations whenever requested.
343 * When the urgent BKOPS bit is set in a R1 command response
344 * then background operations should be started immediately.
345*/
346void mmc_start_bkops(struct mmc_card *card, bool from_exception)
347{
348 int err;
349 int timeout;
350 bool use_busy_signal;
351
352 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
353 return;
354
355 err = mmc_read_bkops_status(card);
356 if (err) {
357 pr_err("%s: Failed to read bkops status: %d\n",
358 mmc_hostname(card->host), err);
359 return;
360 }
361
362 if (!card->ext_csd.raw_bkops_status)
363 return;
364
365 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
366 from_exception)
367 return;
368
369 mmc_claim_host(card->host);
370 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
371 timeout = MMC_BKOPS_MAX_TIMEOUT;
372 use_busy_signal = true;
373 } else {
374 timeout = 0;
375 use_busy_signal = false;
376 }
377
378 mmc_retune_hold(card->host);
379
380 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
381 EXT_CSD_BKOPS_START, 1, timeout, 0,
382 use_busy_signal, true, false);
383 if (err) {
384 pr_warn("%s: Error %d starting bkops\n",
385 mmc_hostname(card->host), err);
386 mmc_retune_release(card->host);
387 goto out;
388 }
389
390 /*
391 * For urgent bkops status (LEVEL_2 and more)
392 * bkops executed synchronously, otherwise
393 * the operation is in progress
394 */
395 if (!use_busy_signal)
396 mmc_card_set_doing_bkops(card);
397 else
398 mmc_retune_release(card->host);
399out:
400 mmc_release_host(card->host);
401}
402EXPORT_SYMBOL(mmc_start_bkops);
403
404/*
405 * mmc_wait_data_done() - done callback for data request
406 * @mrq: done data request
407 *
408 * Wakes up mmc context, passed as a callback to host controller driver
409 */
410static void mmc_wait_data_done(struct mmc_request *mrq)
411{
412 struct mmc_context_info *context_info = &mrq->host->context_info;
413
414 context_info->is_done_rcv = true;
415 wake_up_interruptible(&context_info->wait);
416}
417
418static void mmc_wait_done(struct mmc_request *mrq)
419{
420 complete(&mrq->completion);
421}
422
423static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
424{
425 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
426
427 /*
428 * If there is an ongoing transfer, wait for the command line to become
429 * available.
430 */
431 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
432 wait_for_completion(&ongoing_mrq->cmd_completion);
433}
434
435/*
436 *__mmc_start_data_req() - starts data request
437 * @host: MMC host to start the request
438 * @mrq: data request to start
439 *
440 * Sets the done callback to be called when request is completed by the card.
441 * Starts data mmc request execution
442 * If an ongoing transfer is already in progress, wait for the command line
443 * to become available before sending another command.
444 */
445static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
446{
447 int err;
448
449 mmc_wait_ongoing_tfr_cmd(host);
450
451 mrq->done = mmc_wait_data_done;
452 mrq->host = host;
453
454 init_completion(&mrq->cmd_completion);
455
456 err = mmc_start_request(host, mrq);
457 if (err) {
458 mrq->cmd->error = err;
459 mmc_complete_cmd(mrq);
460 mmc_wait_data_done(mrq);
461 }
462
463 return err;
464}
465
466static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
467{
468 int err;
469
470 mmc_wait_ongoing_tfr_cmd(host);
471
472 init_completion(&mrq->completion);
473 mrq->done = mmc_wait_done;
474
475 init_completion(&mrq->cmd_completion);
476
477 err = mmc_start_request(host, mrq);
478 if (err) {
479 mrq->cmd->error = err;
480 mmc_complete_cmd(mrq);
481 complete(&mrq->completion);
482 }
483
484 return err;
485}
486
487/*
488 * mmc_wait_for_data_req_done() - wait for request completed
489 * @host: MMC host to prepare the command.
490 * @mrq: MMC request to wait for
491 *
492 * Blocks MMC context till host controller will ack end of data request
493 * execution or new request notification arrives from the block layer.
494 * Handles command retries.
495 *
496 * Returns enum mmc_blk_status after checking errors.
497 */
498static enum mmc_blk_status mmc_wait_for_data_req_done(struct mmc_host *host,
499 struct mmc_request *mrq)
500{
501 struct mmc_command *cmd;
502 struct mmc_context_info *context_info = &host->context_info;
503 enum mmc_blk_status status;
504
505 while (1) {
506 wait_event_interruptible(context_info->wait,
507 (context_info->is_done_rcv ||
508 context_info->is_new_req));
509
510 if (context_info->is_done_rcv) {
511 context_info->is_done_rcv = false;
512 cmd = mrq->cmd;
513
514 if (!cmd->error || !cmd->retries ||
515 mmc_card_removed(host->card)) {
516 status = host->areq->err_check(host->card,
517 host->areq);
518 break; /* return status */
519 } else {
520 mmc_retune_recheck(host);
521 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
522 mmc_hostname(host),
523 cmd->opcode, cmd->error);
524 cmd->retries--;
525 cmd->error = 0;
526 __mmc_start_request(host, mrq);
527 continue; /* wait for done/new event again */
528 }
529 }
530
531 return MMC_BLK_NEW_REQUEST;
532 }
533 mmc_retune_release(host);
534 return status;
535}
536
537void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
538{
539 struct mmc_command *cmd;
540
541 while (1) {
542 wait_for_completion(&mrq->completion);
543
544 cmd = mrq->cmd;
545
546 /*
547 * If host has timed out waiting for the sanitize
548 * to complete, card might be still in programming state
549 * so let's try to bring the card out of programming
550 * state.
551 */
552 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
553 if (!mmc_interrupt_hpi(host->card)) {
554 pr_warn("%s: %s: Interrupted sanitize\n",
555 mmc_hostname(host), __func__);
556 cmd->error = 0;
557 break;
558 } else {
559 pr_err("%s: %s: Failed to interrupt sanitize\n",
560 mmc_hostname(host), __func__);
561 }
562 }
563 if (!cmd->error || !cmd->retries ||
564 mmc_card_removed(host->card))
565 break;
566
567 mmc_retune_recheck(host);
568
569 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
570 mmc_hostname(host), cmd->opcode, cmd->error);
571 cmd->retries--;
572 cmd->error = 0;
573 __mmc_start_request(host, mrq);
574 }
575
576 mmc_retune_release(host);
577}
578EXPORT_SYMBOL(mmc_wait_for_req_done);
579
580/**
581 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
582 * @host: MMC host
583 * @mrq: MMC request
584 *
585 * mmc_is_req_done() is used with requests that have
586 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
587 * starting a request and before waiting for it to complete. That is,
588 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
589 * and before mmc_wait_for_req_done(). If it is called at other times the
590 * result is not meaningful.
591 */
592bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
593{
594 if (host->areq)
595 return host->context_info.is_done_rcv;
596 else
597 return completion_done(&mrq->completion);
598}
599EXPORT_SYMBOL(mmc_is_req_done);
600
601/**
602 * mmc_pre_req - Prepare for a new request
603 * @host: MMC host to prepare command
604 * @mrq: MMC request to prepare for
605 *
606 * mmc_pre_req() is called in prior to mmc_start_req() to let
607 * host prepare for the new request. Preparation of a request may be
608 * performed while another request is running on the host.
609 */
610static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
611{
612 if (host->ops->pre_req)
613 host->ops->pre_req(host, mrq);
614}
615
616/**
617 * mmc_post_req - Post process a completed request
618 * @host: MMC host to post process command
619 * @mrq: MMC request to post process for
620 * @err: Error, if non zero, clean up any resources made in pre_req
621 *
622 * Let the host post process a completed request. Post processing of
623 * a request may be performed while another reuqest is running.
624 */
625static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
626 int err)
627{
628 if (host->ops->post_req)
629 host->ops->post_req(host, mrq, err);
630}
631
632/**
633 * mmc_start_req - start a non-blocking request
634 * @host: MMC host to start command
635 * @areq: async request to start
636 * @error: out parameter returns 0 for success, otherwise non zero
637 *
638 * Start a new MMC custom command request for a host.
639 * If there is on ongoing async request wait for completion
640 * of that request and start the new one and return.
641 * Does not wait for the new request to complete.
642 *
643 * Returns the completed request, NULL in case of none completed.
644 * Wait for the an ongoing request (previoulsy started) to complete and
645 * return the completed request. If there is no ongoing request, NULL
646 * is returned without waiting. NULL is not an error condition.
647 */
648struct mmc_async_req *mmc_start_req(struct mmc_host *host,
649 struct mmc_async_req *areq,
650 enum mmc_blk_status *ret_stat)
651{
652 enum mmc_blk_status status = MMC_BLK_SUCCESS;
653 int start_err = 0;
654 struct mmc_async_req *data = host->areq;
655
656 /* Prepare a new request */
657 if (areq)
658 mmc_pre_req(host, areq->mrq);
659
660 if (host->areq) {
661 status = mmc_wait_for_data_req_done(host, host->areq->mrq);
662 if (status == MMC_BLK_NEW_REQUEST) {
663 if (ret_stat)
664 *ret_stat = status;
665 /*
666 * The previous request was not completed,
667 * nothing to return
668 */
669 return NULL;
670 }
671 /*
672 * Check BKOPS urgency for each R1 response
673 */
674 if (host->card && mmc_card_mmc(host->card) &&
675 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
676 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
677 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
678
679 /* Cancel the prepared request */
680 if (areq)
681 mmc_post_req(host, areq->mrq, -EINVAL);
682
683 mmc_start_bkops(host->card, true);
684
685 /* prepare the request again */
686 if (areq)
687 mmc_pre_req(host, areq->mrq);
688 }
689 }
690
691 if (status == MMC_BLK_SUCCESS && areq)
692 start_err = __mmc_start_data_req(host, areq->mrq);
693
694 if (host->areq)
695 mmc_post_req(host, host->areq->mrq, 0);
696
697 /* Cancel a prepared request if it was not started. */
698 if ((status != MMC_BLK_SUCCESS || start_err) && areq)
699 mmc_post_req(host, areq->mrq, -EINVAL);
700
701 if (status != MMC_BLK_SUCCESS)
702 host->areq = NULL;
703 else
704 host->areq = areq;
705
706 if (ret_stat)
707 *ret_stat = status;
708 return data;
709}
710EXPORT_SYMBOL(mmc_start_req);
711
712/**
713 * mmc_wait_for_req - start a request and wait for completion
714 * @host: MMC host to start command
715 * @mrq: MMC request to start
716 *
717 * Start a new MMC custom command request for a host, and wait
718 * for the command to complete. In the case of 'cap_cmd_during_tfr'
719 * requests, the transfer is ongoing and the caller can issue further
720 * commands that do not use the data lines, and then wait by calling
721 * mmc_wait_for_req_done().
722 * Does not attempt to parse the response.
723 */
724void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
725{
726 __mmc_start_req(host, mrq);
727
728 if (!mrq->cap_cmd_during_tfr)
729 mmc_wait_for_req_done(host, mrq);
730}
731EXPORT_SYMBOL(mmc_wait_for_req);
732
733/**
734 * mmc_interrupt_hpi - Issue for High priority Interrupt
735 * @card: the MMC card associated with the HPI transfer
736 *
737 * Issued High Priority Interrupt, and check for card status
738 * until out-of prg-state.
739 */
740int mmc_interrupt_hpi(struct mmc_card *card)
741{
742 int err;
743 u32 status;
744 unsigned long prg_wait;
745
746 if (!card->ext_csd.hpi_en) {
747 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
748 return 1;
749 }
750
751 mmc_claim_host(card->host);
752 err = mmc_send_status(card, &status);
753 if (err) {
754 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
755 goto out;
756 }
757
758 switch (R1_CURRENT_STATE(status)) {
759 case R1_STATE_IDLE:
760 case R1_STATE_READY:
761 case R1_STATE_STBY:
762 case R1_STATE_TRAN:
763 /*
764 * In idle and transfer states, HPI is not needed and the caller
765 * can issue the next intended command immediately
766 */
767 goto out;
768 case R1_STATE_PRG:
769 break;
770 default:
771 /* In all other states, it's illegal to issue HPI */
772 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
773 mmc_hostname(card->host), R1_CURRENT_STATE(status));
774 err = -EINVAL;
775 goto out;
776 }
777
778 err = mmc_send_hpi_cmd(card, &status);
779 if (err)
780 goto out;
781
782 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
783 do {
784 err = mmc_send_status(card, &status);
785
786 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
787 break;
788 if (time_after(jiffies, prg_wait))
789 err = -ETIMEDOUT;
790 } while (!err);
791
792out:
793 mmc_release_host(card->host);
794 return err;
795}
796EXPORT_SYMBOL(mmc_interrupt_hpi);
797
798/**
799 * mmc_wait_for_cmd - start a command and wait for completion
800 * @host: MMC host to start command
801 * @cmd: MMC command to start
802 * @retries: maximum number of retries
803 *
804 * Start a new MMC command for a host, and wait for the command
805 * to complete. Return any error that occurred while the command
806 * was executing. Do not attempt to parse the response.
807 */
808int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
809{
810 struct mmc_request mrq = {NULL};
811
812 WARN_ON(!host->claimed);
813
814 memset(cmd->resp, 0, sizeof(cmd->resp));
815 cmd->retries = retries;
816
817 mrq.cmd = cmd;
818 cmd->data = NULL;
819
820 mmc_wait_for_req(host, &mrq);
821
822 return cmd->error;
823}
824
825EXPORT_SYMBOL(mmc_wait_for_cmd);
826
827/**
828 * mmc_stop_bkops - stop ongoing BKOPS
829 * @card: MMC card to check BKOPS
830 *
831 * Send HPI command to stop ongoing background operations to
832 * allow rapid servicing of foreground operations, e.g. read/
833 * writes. Wait until the card comes out of the programming state
834 * to avoid errors in servicing read/write requests.
835 */
836int mmc_stop_bkops(struct mmc_card *card)
837{
838 int err = 0;
839
840 err = mmc_interrupt_hpi(card);
841
842 /*
843 * If err is EINVAL, we can't issue an HPI.
844 * It should complete the BKOPS.
845 */
846 if (!err || (err == -EINVAL)) {
847 mmc_card_clr_doing_bkops(card);
848 mmc_retune_release(card->host);
849 err = 0;
850 }
851
852 return err;
853}
854EXPORT_SYMBOL(mmc_stop_bkops);
855
856int mmc_read_bkops_status(struct mmc_card *card)
857{
858 int err;
859 u8 *ext_csd;
860
861 mmc_claim_host(card->host);
862 err = mmc_get_ext_csd(card, &ext_csd);
863 mmc_release_host(card->host);
864 if (err)
865 return err;
866
867 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
868 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
869 kfree(ext_csd);
870 return 0;
871}
872EXPORT_SYMBOL(mmc_read_bkops_status);
873
874/**
875 * mmc_set_data_timeout - set the timeout for a data command
876 * @data: data phase for command
877 * @card: the MMC card associated with the data transfer
878 *
879 * Computes the data timeout parameters according to the
880 * correct algorithm given the card type.
881 */
882void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
883{
884 unsigned int mult;
885
886 /*
887 * SDIO cards only define an upper 1 s limit on access.
888 */
889 if (mmc_card_sdio(card)) {
890 data->timeout_ns = 1000000000;
891 data->timeout_clks = 0;
892 return;
893 }
894
895 /*
896 * SD cards use a 100 multiplier rather than 10
897 */
898 mult = mmc_card_sd(card) ? 100 : 10;
899
900 /*
901 * Scale up the multiplier (and therefore the timeout) by
902 * the r2w factor for writes.
903 */
904 if (data->flags & MMC_DATA_WRITE)
905 mult <<= card->csd.r2w_factor;
906
907 data->timeout_ns = card->csd.tacc_ns * mult;
908 data->timeout_clks = card->csd.tacc_clks * mult;
909
910 /*
911 * SD cards also have an upper limit on the timeout.
912 */
913 if (mmc_card_sd(card)) {
914 unsigned int timeout_us, limit_us;
915
916 timeout_us = data->timeout_ns / 1000;
917 if (card->host->ios.clock)
918 timeout_us += data->timeout_clks * 1000 /
919 (card->host->ios.clock / 1000);
920
921 if (data->flags & MMC_DATA_WRITE)
922 /*
923 * The MMC spec "It is strongly recommended
924 * for hosts to implement more than 500ms
925 * timeout value even if the card indicates
926 * the 250ms maximum busy length." Even the
927 * previous value of 300ms is known to be
928 * insufficient for some cards.
929 */
930 limit_us = 3000000;
931 else
932 limit_us = 100000;
933
934 /*
935 * SDHC cards always use these fixed values.
936 */
937 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
938 data->timeout_ns = limit_us * 1000;
939 data->timeout_clks = 0;
940 }
941
942 /* assign limit value if invalid */
943 if (timeout_us == 0)
944 data->timeout_ns = limit_us * 1000;
945 }
946
947 /*
948 * Some cards require longer data read timeout than indicated in CSD.
949 * Address this by setting the read timeout to a "reasonably high"
950 * value. For the cards tested, 600ms has proven enough. If necessary,
951 * this value can be increased if other problematic cards require this.
952 */
953 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
954 data->timeout_ns = 600000000;
955 data->timeout_clks = 0;
956 }
957
958 /*
959 * Some cards need very high timeouts if driven in SPI mode.
960 * The worst observed timeout was 900ms after writing a
961 * continuous stream of data until the internal logic
962 * overflowed.
963 */
964 if (mmc_host_is_spi(card->host)) {
965 if (data->flags & MMC_DATA_WRITE) {
966 if (data->timeout_ns < 1000000000)
967 data->timeout_ns = 1000000000; /* 1s */
968 } else {
969 if (data->timeout_ns < 100000000)
970 data->timeout_ns = 100000000; /* 100ms */
971 }
972 }
973}
974EXPORT_SYMBOL(mmc_set_data_timeout);
975
976/**
977 * mmc_align_data_size - pads a transfer size to a more optimal value
978 * @card: the MMC card associated with the data transfer
979 * @sz: original transfer size
980 *
981 * Pads the original data size with a number of extra bytes in
982 * order to avoid controller bugs and/or performance hits
983 * (e.g. some controllers revert to PIO for certain sizes).
984 *
985 * Returns the improved size, which might be unmodified.
986 *
987 * Note that this function is only relevant when issuing a
988 * single scatter gather entry.
989 */
990unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
991{
992 /*
993 * FIXME: We don't have a system for the controller to tell
994 * the core about its problems yet, so for now we just 32-bit
995 * align the size.
996 */
997 sz = ((sz + 3) / 4) * 4;
998
999 return sz;
1000}
1001EXPORT_SYMBOL(mmc_align_data_size);
1002
1003/**
1004 * __mmc_claim_host - exclusively claim a host
1005 * @host: mmc host to claim
1006 * @abort: whether or not the operation should be aborted
1007 *
1008 * Claim a host for a set of operations. If @abort is non null and
1009 * dereference a non-zero value then this will return prematurely with
1010 * that non-zero value without acquiring the lock. Returns zero
1011 * with the lock held otherwise.
1012 */
1013int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1014{
1015 DECLARE_WAITQUEUE(wait, current);
1016 unsigned long flags;
1017 int stop;
1018 bool pm = false;
1019
1020 might_sleep();
1021
1022 add_wait_queue(&host->wq, &wait);
1023 spin_lock_irqsave(&host->lock, flags);
1024 while (1) {
1025 set_current_state(TASK_UNINTERRUPTIBLE);
1026 stop = abort ? atomic_read(abort) : 0;
1027 if (stop || !host->claimed || host->claimer == current)
1028 break;
1029 spin_unlock_irqrestore(&host->lock, flags);
1030 schedule();
1031 spin_lock_irqsave(&host->lock, flags);
1032 }
1033 set_current_state(TASK_RUNNING);
1034 if (!stop) {
1035 host->claimed = 1;
1036 host->claimer = current;
1037 host->claim_cnt += 1;
1038 if (host->claim_cnt == 1)
1039 pm = true;
1040 } else
1041 wake_up(&host->wq);
1042 spin_unlock_irqrestore(&host->lock, flags);
1043 remove_wait_queue(&host->wq, &wait);
1044
1045 if (pm)
1046 pm_runtime_get_sync(mmc_dev(host));
1047
1048 return stop;
1049}
1050EXPORT_SYMBOL(__mmc_claim_host);
1051
1052/**
1053 * mmc_release_host - release a host
1054 * @host: mmc host to release
1055 *
1056 * Release a MMC host, allowing others to claim the host
1057 * for their operations.
1058 */
1059void mmc_release_host(struct mmc_host *host)
1060{
1061 unsigned long flags;
1062
1063 WARN_ON(!host->claimed);
1064
1065 spin_lock_irqsave(&host->lock, flags);
1066 if (--host->claim_cnt) {
1067 /* Release for nested claim */
1068 spin_unlock_irqrestore(&host->lock, flags);
1069 } else {
1070 host->claimed = 0;
1071 host->claimer = NULL;
1072 spin_unlock_irqrestore(&host->lock, flags);
1073 wake_up(&host->wq);
1074 pm_runtime_mark_last_busy(mmc_dev(host));
1075 pm_runtime_put_autosuspend(mmc_dev(host));
1076 }
1077}
1078EXPORT_SYMBOL(mmc_release_host);
1079
1080/*
1081 * This is a helper function, which fetches a runtime pm reference for the
1082 * card device and also claims the host.
1083 */
1084void mmc_get_card(struct mmc_card *card)
1085{
1086 pm_runtime_get_sync(&card->dev);
1087 mmc_claim_host(card->host);
1088}
1089EXPORT_SYMBOL(mmc_get_card);
1090
1091/*
1092 * This is a helper function, which releases the host and drops the runtime
1093 * pm reference for the card device.
1094 */
1095void mmc_put_card(struct mmc_card *card)
1096{
1097 mmc_release_host(card->host);
1098 pm_runtime_mark_last_busy(&card->dev);
1099 pm_runtime_put_autosuspend(&card->dev);
1100}
1101EXPORT_SYMBOL(mmc_put_card);
1102
1103/*
1104 * Internal function that does the actual ios call to the host driver,
1105 * optionally printing some debug output.
1106 */
1107static inline void mmc_set_ios(struct mmc_host *host)
1108{
1109 struct mmc_ios *ios = &host->ios;
1110
1111 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1112 "width %u timing %u\n",
1113 mmc_hostname(host), ios->clock, ios->bus_mode,
1114 ios->power_mode, ios->chip_select, ios->vdd,
1115 1 << ios->bus_width, ios->timing);
1116
1117 host->ops->set_ios(host, ios);
1118}
1119
1120/*
1121 * Control chip select pin on a host.
1122 */
1123void mmc_set_chip_select(struct mmc_host *host, int mode)
1124{
1125 host->ios.chip_select = mode;
1126 mmc_set_ios(host);
1127}
1128
1129/*
1130 * Sets the host clock to the highest possible frequency that
1131 * is below "hz".
1132 */
1133void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1134{
1135 WARN_ON(hz && hz < host->f_min);
1136
1137 if (hz > host->f_max)
1138 hz = host->f_max;
1139
1140 host->ios.clock = hz;
1141 mmc_set_ios(host);
1142}
1143
1144int mmc_execute_tuning(struct mmc_card *card)
1145{
1146 struct mmc_host *host = card->host;
1147 u32 opcode;
1148 int err;
1149
1150 if (!host->ops->execute_tuning)
1151 return 0;
1152
1153 if (mmc_card_mmc(card))
1154 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1155 else
1156 opcode = MMC_SEND_TUNING_BLOCK;
1157
1158 err = host->ops->execute_tuning(host, opcode);
1159
1160 if (err)
1161 pr_err("%s: tuning execution failed: %d\n",
1162 mmc_hostname(host), err);
1163 else
1164 mmc_retune_enable(host);
1165
1166 return err;
1167}
1168
1169/*
1170 * Change the bus mode (open drain/push-pull) of a host.
1171 */
1172void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1173{
1174 host->ios.bus_mode = mode;
1175 mmc_set_ios(host);
1176}
1177
1178/*
1179 * Change data bus width of a host.
1180 */
1181void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1182{
1183 host->ios.bus_width = width;
1184 mmc_set_ios(host);
1185}
1186
1187/*
1188 * Set initial state after a power cycle or a hw_reset.
1189 */
1190void mmc_set_initial_state(struct mmc_host *host)
1191{
1192 mmc_retune_disable(host);
1193
1194 if (mmc_host_is_spi(host))
1195 host->ios.chip_select = MMC_CS_HIGH;
1196 else
1197 host->ios.chip_select = MMC_CS_DONTCARE;
1198 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1199 host->ios.bus_width = MMC_BUS_WIDTH_1;
1200 host->ios.timing = MMC_TIMING_LEGACY;
1201 host->ios.drv_type = 0;
1202 host->ios.enhanced_strobe = false;
1203
1204 /*
1205 * Make sure we are in non-enhanced strobe mode before we
1206 * actually enable it in ext_csd.
1207 */
1208 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1209 host->ops->hs400_enhanced_strobe)
1210 host->ops->hs400_enhanced_strobe(host, &host->ios);
1211
1212 mmc_set_ios(host);
1213}
1214
1215/**
1216 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1217 * @vdd: voltage (mV)
1218 * @low_bits: prefer low bits in boundary cases
1219 *
1220 * This function returns the OCR bit number according to the provided @vdd
1221 * value. If conversion is not possible a negative errno value returned.
1222 *
1223 * Depending on the @low_bits flag the function prefers low or high OCR bits
1224 * on boundary voltages. For example,
1225 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1226 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1227 *
1228 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1229 */
1230static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1231{
1232 const int max_bit = ilog2(MMC_VDD_35_36);
1233 int bit;
1234
1235 if (vdd < 1650 || vdd > 3600)
1236 return -EINVAL;
1237
1238 if (vdd >= 1650 && vdd <= 1950)
1239 return ilog2(MMC_VDD_165_195);
1240
1241 if (low_bits)
1242 vdd -= 1;
1243
1244 /* Base 2000 mV, step 100 mV, bit's base 8. */
1245 bit = (vdd - 2000) / 100 + 8;
1246 if (bit > max_bit)
1247 return max_bit;
1248 return bit;
1249}
1250
1251/**
1252 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1253 * @vdd_min: minimum voltage value (mV)
1254 * @vdd_max: maximum voltage value (mV)
1255 *
1256 * This function returns the OCR mask bits according to the provided @vdd_min
1257 * and @vdd_max values. If conversion is not possible the function returns 0.
1258 *
1259 * Notes wrt boundary cases:
1260 * This function sets the OCR bits for all boundary voltages, for example
1261 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1262 * MMC_VDD_34_35 mask.
1263 */
1264u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1265{
1266 u32 mask = 0;
1267
1268 if (vdd_max < vdd_min)
1269 return 0;
1270
1271 /* Prefer high bits for the boundary vdd_max values. */
1272 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1273 if (vdd_max < 0)
1274 return 0;
1275
1276 /* Prefer low bits for the boundary vdd_min values. */
1277 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1278 if (vdd_min < 0)
1279 return 0;
1280
1281 /* Fill the mask, from max bit to min bit. */
1282 while (vdd_max >= vdd_min)
1283 mask |= 1 << vdd_max--;
1284
1285 return mask;
1286}
1287EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1288
1289#ifdef CONFIG_OF
1290
1291/**
1292 * mmc_of_parse_voltage - return mask of supported voltages
1293 * @np: The device node need to be parsed.
1294 * @mask: mask of voltages available for MMC/SD/SDIO
1295 *
1296 * Parse the "voltage-ranges" DT property, returning zero if it is not
1297 * found, negative errno if the voltage-range specification is invalid,
1298 * or one if the voltage-range is specified and successfully parsed.
1299 */
1300int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1301{
1302 const u32 *voltage_ranges;
1303 int num_ranges, i;
1304
1305 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1306 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1307 if (!voltage_ranges) {
1308 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1309 return 0;
1310 }
1311 if (!num_ranges) {
1312 pr_err("%s: voltage-ranges empty\n", np->full_name);
1313 return -EINVAL;
1314 }
1315
1316 for (i = 0; i < num_ranges; i++) {
1317 const int j = i * 2;
1318 u32 ocr_mask;
1319
1320 ocr_mask = mmc_vddrange_to_ocrmask(
1321 be32_to_cpu(voltage_ranges[j]),
1322 be32_to_cpu(voltage_ranges[j + 1]));
1323 if (!ocr_mask) {
1324 pr_err("%s: voltage-range #%d is invalid\n",
1325 np->full_name, i);
1326 return -EINVAL;
1327 }
1328 *mask |= ocr_mask;
1329 }
1330
1331 return 1;
1332}
1333EXPORT_SYMBOL(mmc_of_parse_voltage);
1334
1335#endif /* CONFIG_OF */
1336
1337static int mmc_of_get_func_num(struct device_node *node)
1338{
1339 u32 reg;
1340 int ret;
1341
1342 ret = of_property_read_u32(node, "reg", ®);
1343 if (ret < 0)
1344 return ret;
1345
1346 return reg;
1347}
1348
1349struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1350 unsigned func_num)
1351{
1352 struct device_node *node;
1353
1354 if (!host->parent || !host->parent->of_node)
1355 return NULL;
1356
1357 for_each_child_of_node(host->parent->of_node, node) {
1358 if (mmc_of_get_func_num(node) == func_num)
1359 return node;
1360 }
1361
1362 return NULL;
1363}
1364
1365#ifdef CONFIG_REGULATOR
1366
1367/**
1368 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1369 * @vdd_bit: OCR bit number
1370 * @min_uV: minimum voltage value (mV)
1371 * @max_uV: maximum voltage value (mV)
1372 *
1373 * This function returns the voltage range according to the provided OCR
1374 * bit number. If conversion is not possible a negative errno value returned.
1375 */
1376static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1377{
1378 int tmp;
1379
1380 if (!vdd_bit)
1381 return -EINVAL;
1382
1383 /*
1384 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1385 * bits this regulator doesn't quite support ... don't
1386 * be too picky, most cards and regulators are OK with
1387 * a 0.1V range goof (it's a small error percentage).
1388 */
1389 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1390 if (tmp == 0) {
1391 *min_uV = 1650 * 1000;
1392 *max_uV = 1950 * 1000;
1393 } else {
1394 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1395 *max_uV = *min_uV + 100 * 1000;
1396 }
1397
1398 return 0;
1399}
1400
1401/**
1402 * mmc_regulator_get_ocrmask - return mask of supported voltages
1403 * @supply: regulator to use
1404 *
1405 * This returns either a negative errno, or a mask of voltages that
1406 * can be provided to MMC/SD/SDIO devices using the specified voltage
1407 * regulator. This would normally be called before registering the
1408 * MMC host adapter.
1409 */
1410int mmc_regulator_get_ocrmask(struct regulator *supply)
1411{
1412 int result = 0;
1413 int count;
1414 int i;
1415 int vdd_uV;
1416 int vdd_mV;
1417
1418 count = regulator_count_voltages(supply);
1419 if (count < 0)
1420 return count;
1421
1422 for (i = 0; i < count; i++) {
1423 vdd_uV = regulator_list_voltage(supply, i);
1424 if (vdd_uV <= 0)
1425 continue;
1426
1427 vdd_mV = vdd_uV / 1000;
1428 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1429 }
1430
1431 if (!result) {
1432 vdd_uV = regulator_get_voltage(supply);
1433 if (vdd_uV <= 0)
1434 return vdd_uV;
1435
1436 vdd_mV = vdd_uV / 1000;
1437 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1438 }
1439
1440 return result;
1441}
1442EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1443
1444/**
1445 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1446 * @mmc: the host to regulate
1447 * @supply: regulator to use
1448 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1449 *
1450 * Returns zero on success, else negative errno.
1451 *
1452 * MMC host drivers may use this to enable or disable a regulator using
1453 * a particular supply voltage. This would normally be called from the
1454 * set_ios() method.
1455 */
1456int mmc_regulator_set_ocr(struct mmc_host *mmc,
1457 struct regulator *supply,
1458 unsigned short vdd_bit)
1459{
1460 int result = 0;
1461 int min_uV, max_uV;
1462
1463 if (vdd_bit) {
1464 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1465
1466 result = regulator_set_voltage(supply, min_uV, max_uV);
1467 if (result == 0 && !mmc->regulator_enabled) {
1468 result = regulator_enable(supply);
1469 if (!result)
1470 mmc->regulator_enabled = true;
1471 }
1472 } else if (mmc->regulator_enabled) {
1473 result = regulator_disable(supply);
1474 if (result == 0)
1475 mmc->regulator_enabled = false;
1476 }
1477
1478 if (result)
1479 dev_err(mmc_dev(mmc),
1480 "could not set regulator OCR (%d)\n", result);
1481 return result;
1482}
1483EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1484
1485static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1486 int min_uV, int target_uV,
1487 int max_uV)
1488{
1489 /*
1490 * Check if supported first to avoid errors since we may try several
1491 * signal levels during power up and don't want to show errors.
1492 */
1493 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1494 return -EINVAL;
1495
1496 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1497 max_uV);
1498}
1499
1500/**
1501 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1502 *
1503 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1504 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1505 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1506 * SD card spec also define VQMMC in terms of VMMC.
1507 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1508 *
1509 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1510 * requested voltage. This is definitely a good idea for UHS where there's a
1511 * separate regulator on the card that's trying to make 1.8V and it's best if
1512 * we match.
1513 *
1514 * This function is expected to be used by a controller's
1515 * start_signal_voltage_switch() function.
1516 */
1517int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1518{
1519 struct device *dev = mmc_dev(mmc);
1520 int ret, volt, min_uV, max_uV;
1521
1522 /* If no vqmmc supply then we can't change the voltage */
1523 if (IS_ERR(mmc->supply.vqmmc))
1524 return -EINVAL;
1525
1526 switch (ios->signal_voltage) {
1527 case MMC_SIGNAL_VOLTAGE_120:
1528 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1529 1100000, 1200000, 1300000);
1530 case MMC_SIGNAL_VOLTAGE_180:
1531 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1532 1700000, 1800000, 1950000);
1533 case MMC_SIGNAL_VOLTAGE_330:
1534 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1535 if (ret < 0)
1536 return ret;
1537
1538 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1539 __func__, volt, max_uV);
1540
1541 min_uV = max(volt - 300000, 2700000);
1542 max_uV = min(max_uV + 200000, 3600000);
1543
1544 /*
1545 * Due to a limitation in the current implementation of
1546 * regulator_set_voltage_triplet() which is taking the lowest
1547 * voltage possible if below the target, search for a suitable
1548 * voltage in two steps and try to stay close to vmmc
1549 * with a 0.3V tolerance at first.
1550 */
1551 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1552 min_uV, volt, max_uV))
1553 return 0;
1554
1555 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1556 2700000, volt, 3600000);
1557 default:
1558 return -EINVAL;
1559 }
1560}
1561EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1562
1563#endif /* CONFIG_REGULATOR */
1564
1565int mmc_regulator_get_supply(struct mmc_host *mmc)
1566{
1567 struct device *dev = mmc_dev(mmc);
1568 int ret;
1569
1570 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1571 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1572
1573 if (IS_ERR(mmc->supply.vmmc)) {
1574 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1575 return -EPROBE_DEFER;
1576 dev_dbg(dev, "No vmmc regulator found\n");
1577 } else {
1578 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1579 if (ret > 0)
1580 mmc->ocr_avail = ret;
1581 else
1582 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1583 }
1584
1585 if (IS_ERR(mmc->supply.vqmmc)) {
1586 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1587 return -EPROBE_DEFER;
1588 dev_dbg(dev, "No vqmmc regulator found\n");
1589 }
1590
1591 return 0;
1592}
1593EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1594
1595/*
1596 * Mask off any voltages we don't support and select
1597 * the lowest voltage
1598 */
1599u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1600{
1601 int bit;
1602
1603 /*
1604 * Sanity check the voltages that the card claims to
1605 * support.
1606 */
1607 if (ocr & 0x7F) {
1608 dev_warn(mmc_dev(host),
1609 "card claims to support voltages below defined range\n");
1610 ocr &= ~0x7F;
1611 }
1612
1613 ocr &= host->ocr_avail;
1614 if (!ocr) {
1615 dev_warn(mmc_dev(host), "no support for card's volts\n");
1616 return 0;
1617 }
1618
1619 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1620 bit = ffs(ocr) - 1;
1621 ocr &= 3 << bit;
1622 mmc_power_cycle(host, ocr);
1623 } else {
1624 bit = fls(ocr) - 1;
1625 ocr &= 3 << bit;
1626 if (bit != host->ios.vdd)
1627 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1628 }
1629
1630 return ocr;
1631}
1632
1633int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1634{
1635 int err = 0;
1636 int old_signal_voltage = host->ios.signal_voltage;
1637
1638 host->ios.signal_voltage = signal_voltage;
1639 if (host->ops->start_signal_voltage_switch)
1640 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1641
1642 if (err)
1643 host->ios.signal_voltage = old_signal_voltage;
1644
1645 return err;
1646
1647}
1648
1649int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1650{
1651 struct mmc_command cmd = {0};
1652 int err = 0;
1653 u32 clock;
1654
1655 /*
1656 * Send CMD11 only if the request is to switch the card to
1657 * 1.8V signalling.
1658 */
1659 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1660 return __mmc_set_signal_voltage(host, signal_voltage);
1661
1662 /*
1663 * If we cannot switch voltages, return failure so the caller
1664 * can continue without UHS mode
1665 */
1666 if (!host->ops->start_signal_voltage_switch)
1667 return -EPERM;
1668 if (!host->ops->card_busy)
1669 pr_warn("%s: cannot verify signal voltage switch\n",
1670 mmc_hostname(host));
1671
1672 cmd.opcode = SD_SWITCH_VOLTAGE;
1673 cmd.arg = 0;
1674 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1675
1676 err = mmc_wait_for_cmd(host, &cmd, 0);
1677 if (err)
1678 return err;
1679
1680 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1681 return -EIO;
1682
1683 /*
1684 * The card should drive cmd and dat[0:3] low immediately
1685 * after the response of cmd11, but wait 1 ms to be sure
1686 */
1687 mmc_delay(1);
1688 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1689 err = -EAGAIN;
1690 goto power_cycle;
1691 }
1692 /*
1693 * During a signal voltage level switch, the clock must be gated
1694 * for 5 ms according to the SD spec
1695 */
1696 clock = host->ios.clock;
1697 host->ios.clock = 0;
1698 mmc_set_ios(host);
1699
1700 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1701 /*
1702 * Voltages may not have been switched, but we've already
1703 * sent CMD11, so a power cycle is required anyway
1704 */
1705 err = -EAGAIN;
1706 goto power_cycle;
1707 }
1708
1709 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1710 mmc_delay(10);
1711 host->ios.clock = clock;
1712 mmc_set_ios(host);
1713
1714 /* Wait for at least 1 ms according to spec */
1715 mmc_delay(1);
1716
1717 /*
1718 * Failure to switch is indicated by the card holding
1719 * dat[0:3] low
1720 */
1721 if (host->ops->card_busy && host->ops->card_busy(host))
1722 err = -EAGAIN;
1723
1724power_cycle:
1725 if (err) {
1726 pr_debug("%s: Signal voltage switch failed, "
1727 "power cycling card\n", mmc_hostname(host));
1728 mmc_power_cycle(host, ocr);
1729 }
1730
1731 return err;
1732}
1733
1734/*
1735 * Select timing parameters for host.
1736 */
1737void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1738{
1739 host->ios.timing = timing;
1740 mmc_set_ios(host);
1741}
1742
1743/*
1744 * Select appropriate driver type for host.
1745 */
1746void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1747{
1748 host->ios.drv_type = drv_type;
1749 mmc_set_ios(host);
1750}
1751
1752int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1753 int card_drv_type, int *drv_type)
1754{
1755 struct mmc_host *host = card->host;
1756 int host_drv_type = SD_DRIVER_TYPE_B;
1757
1758 *drv_type = 0;
1759
1760 if (!host->ops->select_drive_strength)
1761 return 0;
1762
1763 /* Use SD definition of driver strength for hosts */
1764 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1765 host_drv_type |= SD_DRIVER_TYPE_A;
1766
1767 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1768 host_drv_type |= SD_DRIVER_TYPE_C;
1769
1770 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1771 host_drv_type |= SD_DRIVER_TYPE_D;
1772
1773 /*
1774 * The drive strength that the hardware can support
1775 * depends on the board design. Pass the appropriate
1776 * information and let the hardware specific code
1777 * return what is possible given the options
1778 */
1779 return host->ops->select_drive_strength(card, max_dtr,
1780 host_drv_type,
1781 card_drv_type,
1782 drv_type);
1783}
1784
1785/*
1786 * Apply power to the MMC stack. This is a two-stage process.
1787 * First, we enable power to the card without the clock running.
1788 * We then wait a bit for the power to stabilise. Finally,
1789 * enable the bus drivers and clock to the card.
1790 *
1791 * We must _NOT_ enable the clock prior to power stablising.
1792 *
1793 * If a host does all the power sequencing itself, ignore the
1794 * initial MMC_POWER_UP stage.
1795 */
1796void mmc_power_up(struct mmc_host *host, u32 ocr)
1797{
1798 if (host->ios.power_mode == MMC_POWER_ON)
1799 return;
1800
1801 mmc_pwrseq_pre_power_on(host);
1802
1803 host->ios.vdd = fls(ocr) - 1;
1804 host->ios.power_mode = MMC_POWER_UP;
1805 /* Set initial state and call mmc_set_ios */
1806 mmc_set_initial_state(host);
1807
1808 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1809 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1810 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1811 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1812 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1813 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1814 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1815
1816 /*
1817 * This delay should be sufficient to allow the power supply
1818 * to reach the minimum voltage.
1819 */
1820 mmc_delay(10);
1821
1822 mmc_pwrseq_post_power_on(host);
1823
1824 host->ios.clock = host->f_init;
1825
1826 host->ios.power_mode = MMC_POWER_ON;
1827 mmc_set_ios(host);
1828
1829 /*
1830 * This delay must be at least 74 clock sizes, or 1 ms, or the
1831 * time required to reach a stable voltage.
1832 */
1833 mmc_delay(10);
1834}
1835
1836void mmc_power_off(struct mmc_host *host)
1837{
1838 if (host->ios.power_mode == MMC_POWER_OFF)
1839 return;
1840
1841 mmc_pwrseq_power_off(host);
1842
1843 host->ios.clock = 0;
1844 host->ios.vdd = 0;
1845
1846 host->ios.power_mode = MMC_POWER_OFF;
1847 /* Set initial state and call mmc_set_ios */
1848 mmc_set_initial_state(host);
1849
1850 /*
1851 * Some configurations, such as the 802.11 SDIO card in the OLPC
1852 * XO-1.5, require a short delay after poweroff before the card
1853 * can be successfully turned on again.
1854 */
1855 mmc_delay(1);
1856}
1857
1858void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1859{
1860 mmc_power_off(host);
1861 /* Wait at least 1 ms according to SD spec */
1862 mmc_delay(1);
1863 mmc_power_up(host, ocr);
1864}
1865
1866/*
1867 * Cleanup when the last reference to the bus operator is dropped.
1868 */
1869static void __mmc_release_bus(struct mmc_host *host)
1870{
1871 WARN_ON(!host->bus_dead);
1872
1873 host->bus_ops = NULL;
1874}
1875
1876/*
1877 * Increase reference count of bus operator
1878 */
1879static inline void mmc_bus_get(struct mmc_host *host)
1880{
1881 unsigned long flags;
1882
1883 spin_lock_irqsave(&host->lock, flags);
1884 host->bus_refs++;
1885 spin_unlock_irqrestore(&host->lock, flags);
1886}
1887
1888/*
1889 * Decrease reference count of bus operator and free it if
1890 * it is the last reference.
1891 */
1892static inline void mmc_bus_put(struct mmc_host *host)
1893{
1894 unsigned long flags;
1895
1896 spin_lock_irqsave(&host->lock, flags);
1897 host->bus_refs--;
1898 if ((host->bus_refs == 0) && host->bus_ops)
1899 __mmc_release_bus(host);
1900 spin_unlock_irqrestore(&host->lock, flags);
1901}
1902
1903/*
1904 * Assign a mmc bus handler to a host. Only one bus handler may control a
1905 * host at any given time.
1906 */
1907void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1908{
1909 unsigned long flags;
1910
1911 WARN_ON(!host->claimed);
1912
1913 spin_lock_irqsave(&host->lock, flags);
1914
1915 WARN_ON(host->bus_ops);
1916 WARN_ON(host->bus_refs);
1917
1918 host->bus_ops = ops;
1919 host->bus_refs = 1;
1920 host->bus_dead = 0;
1921
1922 spin_unlock_irqrestore(&host->lock, flags);
1923}
1924
1925/*
1926 * Remove the current bus handler from a host.
1927 */
1928void mmc_detach_bus(struct mmc_host *host)
1929{
1930 unsigned long flags;
1931
1932 WARN_ON(!host->claimed);
1933 WARN_ON(!host->bus_ops);
1934
1935 spin_lock_irqsave(&host->lock, flags);
1936
1937 host->bus_dead = 1;
1938
1939 spin_unlock_irqrestore(&host->lock, flags);
1940
1941 mmc_bus_put(host);
1942}
1943
1944static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1945 bool cd_irq)
1946{
1947#ifdef CONFIG_MMC_DEBUG
1948 unsigned long flags;
1949 spin_lock_irqsave(&host->lock, flags);
1950 WARN_ON(host->removed);
1951 spin_unlock_irqrestore(&host->lock, flags);
1952#endif
1953
1954 /*
1955 * If the device is configured as wakeup, we prevent a new sleep for
1956 * 5 s to give provision for user space to consume the event.
1957 */
1958 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1959 device_can_wakeup(mmc_dev(host)))
1960 pm_wakeup_event(mmc_dev(host), 5000);
1961
1962 host->detect_change = 1;
1963 mmc_schedule_delayed_work(&host->detect, delay);
1964}
1965
1966/**
1967 * mmc_detect_change - process change of state on a MMC socket
1968 * @host: host which changed state.
1969 * @delay: optional delay to wait before detection (jiffies)
1970 *
1971 * MMC drivers should call this when they detect a card has been
1972 * inserted or removed. The MMC layer will confirm that any
1973 * present card is still functional, and initialize any newly
1974 * inserted.
1975 */
1976void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1977{
1978 _mmc_detect_change(host, delay, true);
1979}
1980EXPORT_SYMBOL(mmc_detect_change);
1981
1982void mmc_init_erase(struct mmc_card *card)
1983{
1984 unsigned int sz;
1985
1986 if (is_power_of_2(card->erase_size))
1987 card->erase_shift = ffs(card->erase_size) - 1;
1988 else
1989 card->erase_shift = 0;
1990
1991 /*
1992 * It is possible to erase an arbitrarily large area of an SD or MMC
1993 * card. That is not desirable because it can take a long time
1994 * (minutes) potentially delaying more important I/O, and also the
1995 * timeout calculations become increasingly hugely over-estimated.
1996 * Consequently, 'pref_erase' is defined as a guide to limit erases
1997 * to that size and alignment.
1998 *
1999 * For SD cards that define Allocation Unit size, limit erases to one
2000 * Allocation Unit at a time.
2001 * For MMC, have a stab at ai good value and for modern cards it will
2002 * end up being 4MiB. Note that if the value is too small, it can end
2003 * up taking longer to erase. Also note, erase_size is already set to
2004 * High Capacity Erase Size if available when this function is called.
2005 */
2006 if (mmc_card_sd(card) && card->ssr.au) {
2007 card->pref_erase = card->ssr.au;
2008 card->erase_shift = ffs(card->ssr.au) - 1;
2009 } else if (card->erase_size) {
2010 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2011 if (sz < 128)
2012 card->pref_erase = 512 * 1024 / 512;
2013 else if (sz < 512)
2014 card->pref_erase = 1024 * 1024 / 512;
2015 else if (sz < 1024)
2016 card->pref_erase = 2 * 1024 * 1024 / 512;
2017 else
2018 card->pref_erase = 4 * 1024 * 1024 / 512;
2019 if (card->pref_erase < card->erase_size)
2020 card->pref_erase = card->erase_size;
2021 else {
2022 sz = card->pref_erase % card->erase_size;
2023 if (sz)
2024 card->pref_erase += card->erase_size - sz;
2025 }
2026 } else
2027 card->pref_erase = 0;
2028}
2029
2030static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2031 unsigned int arg, unsigned int qty)
2032{
2033 unsigned int erase_timeout;
2034
2035 if (arg == MMC_DISCARD_ARG ||
2036 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2037 erase_timeout = card->ext_csd.trim_timeout;
2038 } else if (card->ext_csd.erase_group_def & 1) {
2039 /* High Capacity Erase Group Size uses HC timeouts */
2040 if (arg == MMC_TRIM_ARG)
2041 erase_timeout = card->ext_csd.trim_timeout;
2042 else
2043 erase_timeout = card->ext_csd.hc_erase_timeout;
2044 } else {
2045 /* CSD Erase Group Size uses write timeout */
2046 unsigned int mult = (10 << card->csd.r2w_factor);
2047 unsigned int timeout_clks = card->csd.tacc_clks * mult;
2048 unsigned int timeout_us;
2049
2050 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2051 if (card->csd.tacc_ns < 1000000)
2052 timeout_us = (card->csd.tacc_ns * mult) / 1000;
2053 else
2054 timeout_us = (card->csd.tacc_ns / 1000) * mult;
2055
2056 /*
2057 * ios.clock is only a target. The real clock rate might be
2058 * less but not that much less, so fudge it by multiplying by 2.
2059 */
2060 timeout_clks <<= 1;
2061 timeout_us += (timeout_clks * 1000) /
2062 (card->host->ios.clock / 1000);
2063
2064 erase_timeout = timeout_us / 1000;
2065
2066 /*
2067 * Theoretically, the calculation could underflow so round up
2068 * to 1ms in that case.
2069 */
2070 if (!erase_timeout)
2071 erase_timeout = 1;
2072 }
2073
2074 /* Multiplier for secure operations */
2075 if (arg & MMC_SECURE_ARGS) {
2076 if (arg == MMC_SECURE_ERASE_ARG)
2077 erase_timeout *= card->ext_csd.sec_erase_mult;
2078 else
2079 erase_timeout *= card->ext_csd.sec_trim_mult;
2080 }
2081
2082 erase_timeout *= qty;
2083
2084 /*
2085 * Ensure at least a 1 second timeout for SPI as per
2086 * 'mmc_set_data_timeout()'
2087 */
2088 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2089 erase_timeout = 1000;
2090
2091 return erase_timeout;
2092}
2093
2094static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2095 unsigned int arg,
2096 unsigned int qty)
2097{
2098 unsigned int erase_timeout;
2099
2100 if (card->ssr.erase_timeout) {
2101 /* Erase timeout specified in SD Status Register (SSR) */
2102 erase_timeout = card->ssr.erase_timeout * qty +
2103 card->ssr.erase_offset;
2104 } else {
2105 /*
2106 * Erase timeout not specified in SD Status Register (SSR) so
2107 * use 250ms per write block.
2108 */
2109 erase_timeout = 250 * qty;
2110 }
2111
2112 /* Must not be less than 1 second */
2113 if (erase_timeout < 1000)
2114 erase_timeout = 1000;
2115
2116 return erase_timeout;
2117}
2118
2119static unsigned int mmc_erase_timeout(struct mmc_card *card,
2120 unsigned int arg,
2121 unsigned int qty)
2122{
2123 if (mmc_card_sd(card))
2124 return mmc_sd_erase_timeout(card, arg, qty);
2125 else
2126 return mmc_mmc_erase_timeout(card, arg, qty);
2127}
2128
2129static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2130 unsigned int to, unsigned int arg)
2131{
2132 struct mmc_command cmd = {0};
2133 unsigned int qty = 0, busy_timeout = 0;
2134 bool use_r1b_resp = false;
2135 unsigned long timeout;
2136 int err;
2137
2138 mmc_retune_hold(card->host);
2139
2140 /*
2141 * qty is used to calculate the erase timeout which depends on how many
2142 * erase groups (or allocation units in SD terminology) are affected.
2143 * We count erasing part of an erase group as one erase group.
2144 * For SD, the allocation units are always a power of 2. For MMC, the
2145 * erase group size is almost certainly also power of 2, but it does not
2146 * seem to insist on that in the JEDEC standard, so we fall back to
2147 * division in that case. SD may not specify an allocation unit size,
2148 * in which case the timeout is based on the number of write blocks.
2149 *
2150 * Note that the timeout for secure trim 2 will only be correct if the
2151 * number of erase groups specified is the same as the total of all
2152 * preceding secure trim 1 commands. Since the power may have been
2153 * lost since the secure trim 1 commands occurred, it is generally
2154 * impossible to calculate the secure trim 2 timeout correctly.
2155 */
2156 if (card->erase_shift)
2157 qty += ((to >> card->erase_shift) -
2158 (from >> card->erase_shift)) + 1;
2159 else if (mmc_card_sd(card))
2160 qty += to - from + 1;
2161 else
2162 qty += ((to / card->erase_size) -
2163 (from / card->erase_size)) + 1;
2164
2165 if (!mmc_card_blockaddr(card)) {
2166 from <<= 9;
2167 to <<= 9;
2168 }
2169
2170 if (mmc_card_sd(card))
2171 cmd.opcode = SD_ERASE_WR_BLK_START;
2172 else
2173 cmd.opcode = MMC_ERASE_GROUP_START;
2174 cmd.arg = from;
2175 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2176 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2177 if (err) {
2178 pr_err("mmc_erase: group start error %d, "
2179 "status %#x\n", err, cmd.resp[0]);
2180 err = -EIO;
2181 goto out;
2182 }
2183
2184 memset(&cmd, 0, sizeof(struct mmc_command));
2185 if (mmc_card_sd(card))
2186 cmd.opcode = SD_ERASE_WR_BLK_END;
2187 else
2188 cmd.opcode = MMC_ERASE_GROUP_END;
2189 cmd.arg = to;
2190 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2191 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2192 if (err) {
2193 pr_err("mmc_erase: group end error %d, status %#x\n",
2194 err, cmd.resp[0]);
2195 err = -EIO;
2196 goto out;
2197 }
2198
2199 memset(&cmd, 0, sizeof(struct mmc_command));
2200 cmd.opcode = MMC_ERASE;
2201 cmd.arg = arg;
2202 busy_timeout = mmc_erase_timeout(card, arg, qty);
2203 /*
2204 * If the host controller supports busy signalling and the timeout for
2205 * the erase operation does not exceed the max_busy_timeout, we should
2206 * use R1B response. Or we need to prevent the host from doing hw busy
2207 * detection, which is done by converting to a R1 response instead.
2208 */
2209 if (card->host->max_busy_timeout &&
2210 busy_timeout > card->host->max_busy_timeout) {
2211 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2212 } else {
2213 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2214 cmd.busy_timeout = busy_timeout;
2215 use_r1b_resp = true;
2216 }
2217
2218 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2219 if (err) {
2220 pr_err("mmc_erase: erase error %d, status %#x\n",
2221 err, cmd.resp[0]);
2222 err = -EIO;
2223 goto out;
2224 }
2225
2226 if (mmc_host_is_spi(card->host))
2227 goto out;
2228
2229 /*
2230 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2231 * shall be avoided.
2232 */
2233 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2234 goto out;
2235
2236 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2237 do {
2238 memset(&cmd, 0, sizeof(struct mmc_command));
2239 cmd.opcode = MMC_SEND_STATUS;
2240 cmd.arg = card->rca << 16;
2241 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2242 /* Do not retry else we can't see errors */
2243 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2244 if (err || (cmd.resp[0] & 0xFDF92000)) {
2245 pr_err("error %d requesting status %#x\n",
2246 err, cmd.resp[0]);
2247 err = -EIO;
2248 goto out;
2249 }
2250
2251 /* Timeout if the device never becomes ready for data and
2252 * never leaves the program state.
2253 */
2254 if (time_after(jiffies, timeout)) {
2255 pr_err("%s: Card stuck in programming state! %s\n",
2256 mmc_hostname(card->host), __func__);
2257 err = -EIO;
2258 goto out;
2259 }
2260
2261 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2262 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2263out:
2264 mmc_retune_release(card->host);
2265 return err;
2266}
2267
2268static unsigned int mmc_align_erase_size(struct mmc_card *card,
2269 unsigned int *from,
2270 unsigned int *to,
2271 unsigned int nr)
2272{
2273 unsigned int from_new = *from, nr_new = nr, rem;
2274
2275 /*
2276 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2277 * to align the erase size efficiently.
2278 */
2279 if (is_power_of_2(card->erase_size)) {
2280 unsigned int temp = from_new;
2281
2282 from_new = round_up(temp, card->erase_size);
2283 rem = from_new - temp;
2284
2285 if (nr_new > rem)
2286 nr_new -= rem;
2287 else
2288 return 0;
2289
2290 nr_new = round_down(nr_new, card->erase_size);
2291 } else {
2292 rem = from_new % card->erase_size;
2293 if (rem) {
2294 rem = card->erase_size - rem;
2295 from_new += rem;
2296 if (nr_new > rem)
2297 nr_new -= rem;
2298 else
2299 return 0;
2300 }
2301
2302 rem = nr_new % card->erase_size;
2303 if (rem)
2304 nr_new -= rem;
2305 }
2306
2307 if (nr_new == 0)
2308 return 0;
2309
2310 *to = from_new + nr_new;
2311 *from = from_new;
2312
2313 return nr_new;
2314}
2315
2316/**
2317 * mmc_erase - erase sectors.
2318 * @card: card to erase
2319 * @from: first sector to erase
2320 * @nr: number of sectors to erase
2321 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2322 *
2323 * Caller must claim host before calling this function.
2324 */
2325int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2326 unsigned int arg)
2327{
2328 unsigned int rem, to = from + nr;
2329 int err;
2330
2331 if (!(card->host->caps & MMC_CAP_ERASE) ||
2332 !(card->csd.cmdclass & CCC_ERASE))
2333 return -EOPNOTSUPP;
2334
2335 if (!card->erase_size)
2336 return -EOPNOTSUPP;
2337
2338 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2339 return -EOPNOTSUPP;
2340
2341 if ((arg & MMC_SECURE_ARGS) &&
2342 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2343 return -EOPNOTSUPP;
2344
2345 if ((arg & MMC_TRIM_ARGS) &&
2346 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2347 return -EOPNOTSUPP;
2348
2349 if (arg == MMC_SECURE_ERASE_ARG) {
2350 if (from % card->erase_size || nr % card->erase_size)
2351 return -EINVAL;
2352 }
2353
2354 if (arg == MMC_ERASE_ARG)
2355 nr = mmc_align_erase_size(card, &from, &to, nr);
2356
2357 if (nr == 0)
2358 return 0;
2359
2360 if (to <= from)
2361 return -EINVAL;
2362
2363 /* 'from' and 'to' are inclusive */
2364 to -= 1;
2365
2366 /*
2367 * Special case where only one erase-group fits in the timeout budget:
2368 * If the region crosses an erase-group boundary on this particular
2369 * case, we will be trimming more than one erase-group which, does not
2370 * fit in the timeout budget of the controller, so we need to split it
2371 * and call mmc_do_erase() twice if necessary. This special case is
2372 * identified by the card->eg_boundary flag.
2373 */
2374 rem = card->erase_size - (from % card->erase_size);
2375 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2376 err = mmc_do_erase(card, from, from + rem - 1, arg);
2377 from += rem;
2378 if ((err) || (to <= from))
2379 return err;
2380 }
2381
2382 return mmc_do_erase(card, from, to, arg);
2383}
2384EXPORT_SYMBOL(mmc_erase);
2385
2386int mmc_can_erase(struct mmc_card *card)
2387{
2388 if ((card->host->caps & MMC_CAP_ERASE) &&
2389 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2390 return 1;
2391 return 0;
2392}
2393EXPORT_SYMBOL(mmc_can_erase);
2394
2395int mmc_can_trim(struct mmc_card *card)
2396{
2397 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2398 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2399 return 1;
2400 return 0;
2401}
2402EXPORT_SYMBOL(mmc_can_trim);
2403
2404int mmc_can_discard(struct mmc_card *card)
2405{
2406 /*
2407 * As there's no way to detect the discard support bit at v4.5
2408 * use the s/w feature support filed.
2409 */
2410 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2411 return 1;
2412 return 0;
2413}
2414EXPORT_SYMBOL(mmc_can_discard);
2415
2416int mmc_can_sanitize(struct mmc_card *card)
2417{
2418 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2419 return 0;
2420 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2421 return 1;
2422 return 0;
2423}
2424EXPORT_SYMBOL(mmc_can_sanitize);
2425
2426int mmc_can_secure_erase_trim(struct mmc_card *card)
2427{
2428 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2429 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2430 return 1;
2431 return 0;
2432}
2433EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2434
2435int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2436 unsigned int nr)
2437{
2438 if (!card->erase_size)
2439 return 0;
2440 if (from % card->erase_size || nr % card->erase_size)
2441 return 0;
2442 return 1;
2443}
2444EXPORT_SYMBOL(mmc_erase_group_aligned);
2445
2446static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2447 unsigned int arg)
2448{
2449 struct mmc_host *host = card->host;
2450 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2451 unsigned int last_timeout = 0;
2452 unsigned int max_busy_timeout = host->max_busy_timeout ?
2453 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2454
2455 if (card->erase_shift) {
2456 max_qty = UINT_MAX >> card->erase_shift;
2457 min_qty = card->pref_erase >> card->erase_shift;
2458 } else if (mmc_card_sd(card)) {
2459 max_qty = UINT_MAX;
2460 min_qty = card->pref_erase;
2461 } else {
2462 max_qty = UINT_MAX / card->erase_size;
2463 min_qty = card->pref_erase / card->erase_size;
2464 }
2465
2466 /*
2467 * We should not only use 'host->max_busy_timeout' as the limitation
2468 * when deciding the max discard sectors. We should set a balance value
2469 * to improve the erase speed, and it can not get too long timeout at
2470 * the same time.
2471 *
2472 * Here we set 'card->pref_erase' as the minimal discard sectors no
2473 * matter what size of 'host->max_busy_timeout', but if the
2474 * 'host->max_busy_timeout' is large enough for more discard sectors,
2475 * then we can continue to increase the max discard sectors until we
2476 * get a balance value. In cases when the 'host->max_busy_timeout'
2477 * isn't specified, use the default max erase timeout.
2478 */
2479 do {
2480 y = 0;
2481 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2482 timeout = mmc_erase_timeout(card, arg, qty + x);
2483
2484 if (qty + x > min_qty && timeout > max_busy_timeout)
2485 break;
2486
2487 if (timeout < last_timeout)
2488 break;
2489 last_timeout = timeout;
2490 y = x;
2491 }
2492 qty += y;
2493 } while (y);
2494
2495 if (!qty)
2496 return 0;
2497
2498 /*
2499 * When specifying a sector range to trim, chances are we might cross
2500 * an erase-group boundary even if the amount of sectors is less than
2501 * one erase-group.
2502 * If we can only fit one erase-group in the controller timeout budget,
2503 * we have to care that erase-group boundaries are not crossed by a
2504 * single trim operation. We flag that special case with "eg_boundary".
2505 * In all other cases we can just decrement qty and pretend that we
2506 * always touch (qty + 1) erase-groups as a simple optimization.
2507 */
2508 if (qty == 1)
2509 card->eg_boundary = 1;
2510 else
2511 qty--;
2512
2513 /* Convert qty to sectors */
2514 if (card->erase_shift)
2515 max_discard = qty << card->erase_shift;
2516 else if (mmc_card_sd(card))
2517 max_discard = qty + 1;
2518 else
2519 max_discard = qty * card->erase_size;
2520
2521 return max_discard;
2522}
2523
2524unsigned int mmc_calc_max_discard(struct mmc_card *card)
2525{
2526 struct mmc_host *host = card->host;
2527 unsigned int max_discard, max_trim;
2528
2529 /*
2530 * Without erase_group_def set, MMC erase timeout depends on clock
2531 * frequence which can change. In that case, the best choice is
2532 * just the preferred erase size.
2533 */
2534 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2535 return card->pref_erase;
2536
2537 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2538 if (mmc_can_trim(card)) {
2539 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2540 if (max_trim < max_discard)
2541 max_discard = max_trim;
2542 } else if (max_discard < card->erase_size) {
2543 max_discard = 0;
2544 }
2545 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2546 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2547 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2548 return max_discard;
2549}
2550EXPORT_SYMBOL(mmc_calc_max_discard);
2551
2552int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2553{
2554 struct mmc_command cmd = {0};
2555
2556 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2557 mmc_card_hs400(card) || mmc_card_hs400es(card))
2558 return 0;
2559
2560 cmd.opcode = MMC_SET_BLOCKLEN;
2561 cmd.arg = blocklen;
2562 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2563 return mmc_wait_for_cmd(card->host, &cmd, 5);
2564}
2565EXPORT_SYMBOL(mmc_set_blocklen);
2566
2567int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2568 bool is_rel_write)
2569{
2570 struct mmc_command cmd = {0};
2571
2572 cmd.opcode = MMC_SET_BLOCK_COUNT;
2573 cmd.arg = blockcount & 0x0000FFFF;
2574 if (is_rel_write)
2575 cmd.arg |= 1 << 31;
2576 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2577 return mmc_wait_for_cmd(card->host, &cmd, 5);
2578}
2579EXPORT_SYMBOL(mmc_set_blockcount);
2580
2581static void mmc_hw_reset_for_init(struct mmc_host *host)
2582{
2583 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2584 return;
2585 host->ops->hw_reset(host);
2586}
2587
2588int mmc_hw_reset(struct mmc_host *host)
2589{
2590 int ret;
2591
2592 if (!host->card)
2593 return -EINVAL;
2594
2595 mmc_bus_get(host);
2596 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2597 mmc_bus_put(host);
2598 return -EOPNOTSUPP;
2599 }
2600
2601 ret = host->bus_ops->reset(host);
2602 mmc_bus_put(host);
2603
2604 if (ret)
2605 pr_warn("%s: tried to reset card, got error %d\n",
2606 mmc_hostname(host), ret);
2607
2608 return ret;
2609}
2610EXPORT_SYMBOL(mmc_hw_reset);
2611
2612static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2613{
2614 host->f_init = freq;
2615
2616#ifdef CONFIG_MMC_DEBUG
2617 pr_info("%s: %s: trying to init card at %u Hz\n",
2618 mmc_hostname(host), __func__, host->f_init);
2619#endif
2620 mmc_power_up(host, host->ocr_avail);
2621
2622 /*
2623 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2624 * do a hardware reset if possible.
2625 */
2626 mmc_hw_reset_for_init(host);
2627
2628 /*
2629 * sdio_reset sends CMD52 to reset card. Since we do not know
2630 * if the card is being re-initialized, just send it. CMD52
2631 * should be ignored by SD/eMMC cards.
2632 * Skip it if we already know that we do not support SDIO commands
2633 */
2634 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2635 sdio_reset(host);
2636
2637 mmc_go_idle(host);
2638
2639 if (!(host->caps2 & MMC_CAP2_NO_SD))
2640 mmc_send_if_cond(host, host->ocr_avail);
2641
2642 /* Order's important: probe SDIO, then SD, then MMC */
2643 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2644 if (!mmc_attach_sdio(host))
2645 return 0;
2646
2647 if (!(host->caps2 & MMC_CAP2_NO_SD))
2648 if (!mmc_attach_sd(host))
2649 return 0;
2650
2651 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2652 if (!mmc_attach_mmc(host))
2653 return 0;
2654
2655 mmc_power_off(host);
2656 return -EIO;
2657}
2658
2659int _mmc_detect_card_removed(struct mmc_host *host)
2660{
2661 int ret;
2662
2663 if (!host->card || mmc_card_removed(host->card))
2664 return 1;
2665
2666 ret = host->bus_ops->alive(host);
2667
2668 /*
2669 * Card detect status and alive check may be out of sync if card is
2670 * removed slowly, when card detect switch changes while card/slot
2671 * pads are still contacted in hardware (refer to "SD Card Mechanical
2672 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2673 * detect work 200ms later for this case.
2674 */
2675 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2676 mmc_detect_change(host, msecs_to_jiffies(200));
2677 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2678 }
2679
2680 if (ret) {
2681 mmc_card_set_removed(host->card);
2682 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2683 }
2684
2685 return ret;
2686}
2687
2688int mmc_detect_card_removed(struct mmc_host *host)
2689{
2690 struct mmc_card *card = host->card;
2691 int ret;
2692
2693 WARN_ON(!host->claimed);
2694
2695 if (!card)
2696 return 1;
2697
2698 if (!mmc_card_is_removable(host))
2699 return 0;
2700
2701 ret = mmc_card_removed(card);
2702 /*
2703 * The card will be considered unchanged unless we have been asked to
2704 * detect a change or host requires polling to provide card detection.
2705 */
2706 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2707 return ret;
2708
2709 host->detect_change = 0;
2710 if (!ret) {
2711 ret = _mmc_detect_card_removed(host);
2712 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2713 /*
2714 * Schedule a detect work as soon as possible to let a
2715 * rescan handle the card removal.
2716 */
2717 cancel_delayed_work(&host->detect);
2718 _mmc_detect_change(host, 0, false);
2719 }
2720 }
2721
2722 return ret;
2723}
2724EXPORT_SYMBOL(mmc_detect_card_removed);
2725
2726void mmc_rescan(struct work_struct *work)
2727{
2728 struct mmc_host *host =
2729 container_of(work, struct mmc_host, detect.work);
2730 int i;
2731
2732 if (host->rescan_disable)
2733 return;
2734
2735 /* If there is a non-removable card registered, only scan once */
2736 if (!mmc_card_is_removable(host) && host->rescan_entered)
2737 return;
2738 host->rescan_entered = 1;
2739
2740 if (host->trigger_card_event && host->ops->card_event) {
2741 mmc_claim_host(host);
2742 host->ops->card_event(host);
2743 mmc_release_host(host);
2744 host->trigger_card_event = false;
2745 }
2746
2747 mmc_bus_get(host);
2748
2749 /*
2750 * if there is a _removable_ card registered, check whether it is
2751 * still present
2752 */
2753 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2754 host->bus_ops->detect(host);
2755
2756 host->detect_change = 0;
2757
2758 /*
2759 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2760 * the card is no longer present.
2761 */
2762 mmc_bus_put(host);
2763 mmc_bus_get(host);
2764
2765 /* if there still is a card present, stop here */
2766 if (host->bus_ops != NULL) {
2767 mmc_bus_put(host);
2768 goto out;
2769 }
2770
2771 /*
2772 * Only we can add a new handler, so it's safe to
2773 * release the lock here.
2774 */
2775 mmc_bus_put(host);
2776
2777 mmc_claim_host(host);
2778 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2779 host->ops->get_cd(host) == 0) {
2780 mmc_power_off(host);
2781 mmc_release_host(host);
2782 goto out;
2783 }
2784
2785 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2786 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2787 break;
2788 if (freqs[i] <= host->f_min)
2789 break;
2790 }
2791 mmc_release_host(host);
2792
2793 out:
2794 if (host->caps & MMC_CAP_NEEDS_POLL)
2795 mmc_schedule_delayed_work(&host->detect, HZ);
2796}
2797
2798void mmc_start_host(struct mmc_host *host)
2799{
2800 host->f_init = max(freqs[0], host->f_min);
2801 host->rescan_disable = 0;
2802 host->ios.power_mode = MMC_POWER_UNDEFINED;
2803
2804 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2805 mmc_claim_host(host);
2806 mmc_power_up(host, host->ocr_avail);
2807 mmc_release_host(host);
2808 }
2809
2810 mmc_gpiod_request_cd_irq(host);
2811 _mmc_detect_change(host, 0, false);
2812}
2813
2814void mmc_stop_host(struct mmc_host *host)
2815{
2816#ifdef CONFIG_MMC_DEBUG
2817 unsigned long flags;
2818 spin_lock_irqsave(&host->lock, flags);
2819 host->removed = 1;
2820 spin_unlock_irqrestore(&host->lock, flags);
2821#endif
2822 if (host->slot.cd_irq >= 0)
2823 disable_irq(host->slot.cd_irq);
2824
2825 host->rescan_disable = 1;
2826 cancel_delayed_work_sync(&host->detect);
2827
2828 /* clear pm flags now and let card drivers set them as needed */
2829 host->pm_flags = 0;
2830
2831 mmc_bus_get(host);
2832 if (host->bus_ops && !host->bus_dead) {
2833 /* Calling bus_ops->remove() with a claimed host can deadlock */
2834 host->bus_ops->remove(host);
2835 mmc_claim_host(host);
2836 mmc_detach_bus(host);
2837 mmc_power_off(host);
2838 mmc_release_host(host);
2839 mmc_bus_put(host);
2840 return;
2841 }
2842 mmc_bus_put(host);
2843
2844 mmc_claim_host(host);
2845 mmc_power_off(host);
2846 mmc_release_host(host);
2847}
2848
2849int mmc_power_save_host(struct mmc_host *host)
2850{
2851 int ret = 0;
2852
2853#ifdef CONFIG_MMC_DEBUG
2854 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2855#endif
2856
2857 mmc_bus_get(host);
2858
2859 if (!host->bus_ops || host->bus_dead) {
2860 mmc_bus_put(host);
2861 return -EINVAL;
2862 }
2863
2864 if (host->bus_ops->power_save)
2865 ret = host->bus_ops->power_save(host);
2866
2867 mmc_bus_put(host);
2868
2869 mmc_power_off(host);
2870
2871 return ret;
2872}
2873EXPORT_SYMBOL(mmc_power_save_host);
2874
2875int mmc_power_restore_host(struct mmc_host *host)
2876{
2877 int ret;
2878
2879#ifdef CONFIG_MMC_DEBUG
2880 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2881#endif
2882
2883 mmc_bus_get(host);
2884
2885 if (!host->bus_ops || host->bus_dead) {
2886 mmc_bus_put(host);
2887 return -EINVAL;
2888 }
2889
2890 mmc_power_up(host, host->card->ocr);
2891 ret = host->bus_ops->power_restore(host);
2892
2893 mmc_bus_put(host);
2894
2895 return ret;
2896}
2897EXPORT_SYMBOL(mmc_power_restore_host);
2898
2899/*
2900 * Flush the cache to the non-volatile storage.
2901 */
2902int mmc_flush_cache(struct mmc_card *card)
2903{
2904 int err = 0;
2905
2906 if (mmc_card_mmc(card) &&
2907 (card->ext_csd.cache_size > 0) &&
2908 (card->ext_csd.cache_ctrl & 1)) {
2909 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2910 EXT_CSD_FLUSH_CACHE, 1, 0);
2911 if (err)
2912 pr_err("%s: cache flush error %d\n",
2913 mmc_hostname(card->host), err);
2914 }
2915
2916 return err;
2917}
2918EXPORT_SYMBOL(mmc_flush_cache);
2919
2920#ifdef CONFIG_PM_SLEEP
2921/* Do the card removal on suspend if card is assumed removeable
2922 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2923 to sync the card.
2924*/
2925static int mmc_pm_notify(struct notifier_block *notify_block,
2926 unsigned long mode, void *unused)
2927{
2928 struct mmc_host *host = container_of(
2929 notify_block, struct mmc_host, pm_notify);
2930 unsigned long flags;
2931 int err = 0;
2932
2933 switch (mode) {
2934 case PM_HIBERNATION_PREPARE:
2935 case PM_SUSPEND_PREPARE:
2936 case PM_RESTORE_PREPARE:
2937 spin_lock_irqsave(&host->lock, flags);
2938 host->rescan_disable = 1;
2939 spin_unlock_irqrestore(&host->lock, flags);
2940 cancel_delayed_work_sync(&host->detect);
2941
2942 if (!host->bus_ops)
2943 break;
2944
2945 /* Validate prerequisites for suspend */
2946 if (host->bus_ops->pre_suspend)
2947 err = host->bus_ops->pre_suspend(host);
2948 if (!err)
2949 break;
2950
2951 /* Calling bus_ops->remove() with a claimed host can deadlock */
2952 host->bus_ops->remove(host);
2953 mmc_claim_host(host);
2954 mmc_detach_bus(host);
2955 mmc_power_off(host);
2956 mmc_release_host(host);
2957 host->pm_flags = 0;
2958 break;
2959
2960 case PM_POST_SUSPEND:
2961 case PM_POST_HIBERNATION:
2962 case PM_POST_RESTORE:
2963
2964 spin_lock_irqsave(&host->lock, flags);
2965 host->rescan_disable = 0;
2966 spin_unlock_irqrestore(&host->lock, flags);
2967 _mmc_detect_change(host, 0, false);
2968
2969 }
2970
2971 return 0;
2972}
2973
2974void mmc_register_pm_notifier(struct mmc_host *host)
2975{
2976 host->pm_notify.notifier_call = mmc_pm_notify;
2977 register_pm_notifier(&host->pm_notify);
2978}
2979
2980void mmc_unregister_pm_notifier(struct mmc_host *host)
2981{
2982 unregister_pm_notifier(&host->pm_notify);
2983}
2984#endif
2985
2986/**
2987 * mmc_init_context_info() - init synchronization context
2988 * @host: mmc host
2989 *
2990 * Init struct context_info needed to implement asynchronous
2991 * request mechanism, used by mmc core, host driver and mmc requests
2992 * supplier.
2993 */
2994void mmc_init_context_info(struct mmc_host *host)
2995{
2996 host->context_info.is_new_req = false;
2997 host->context_info.is_done_rcv = false;
2998 host->context_info.is_waiting_last_req = false;
2999 init_waitqueue_head(&host->context_info.wait);
3000}
3001
3002static int __init mmc_init(void)
3003{
3004 int ret;
3005
3006 ret = mmc_register_bus();
3007 if (ret)
3008 return ret;
3009
3010 ret = mmc_register_host_class();
3011 if (ret)
3012 goto unregister_bus;
3013
3014 ret = sdio_register_bus();
3015 if (ret)
3016 goto unregister_host_class;
3017
3018 return 0;
3019
3020unregister_host_class:
3021 mmc_unregister_host_class();
3022unregister_bus:
3023 mmc_unregister_bus();
3024 return ret;
3025}
3026
3027static void __exit mmc_exit(void)
3028{
3029 sdio_unregister_bus();
3030 mmc_unregister_host_class();
3031 mmc_unregister_bus();
3032}
3033
3034subsys_initcall(mmc_init);
3035module_exit(mmc_exit);
3036
3037MODULE_LICENSE("GPL");