Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142{
143 unsigned int nofs_flag;
144 struct inode *inode;
145
146 /*
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
152 */
153 nofs_flag = memalloc_nofs_save();
154 inode = btrfs_iget(objectid, root);
155 memalloc_nofs_restore(nofs_flag);
156
157 return inode;
158}
159
160/*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
165static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct btrfs_log_ctx *ctx)
168{
169 struct btrfs_fs_info *fs_info = root->fs_info;
170 struct btrfs_root *tree_root = fs_info->tree_root;
171 const bool zoned = btrfs_is_zoned(fs_info);
172 int ret = 0;
173 bool created = false;
174
175 /*
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
178 */
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 mutex_lock(&tree_root->log_mutex);
181 if (!fs_info->log_root_tree) {
182 ret = btrfs_init_log_root_tree(trans, fs_info);
183 if (!ret) {
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 created = true;
186 }
187 }
188 mutex_unlock(&tree_root->log_mutex);
189 if (ret)
190 return ret;
191 }
192
193 mutex_lock(&root->log_mutex);
194
195again:
196 if (root->log_root) {
197 int index = (root->log_transid + 1) % 2;
198
199 if (btrfs_need_log_full_commit(trans)) {
200 ret = BTRFS_LOG_FORCE_COMMIT;
201 goto out;
202 }
203
204 if (zoned && atomic_read(&root->log_commit[index])) {
205 wait_log_commit(root, root->log_transid - 1);
206 goto again;
207 }
208
209 if (!root->log_start_pid) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
212 } else if (root->log_start_pid != current->pid) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 }
215 } else {
216 /*
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
220 * writing.
221 */
222 if (zoned && !created) {
223 ret = BTRFS_LOG_FORCE_COMMIT;
224 goto out;
225 }
226
227 ret = btrfs_add_log_tree(trans, root);
228 if (ret)
229 goto out;
230
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 root->log_start_pid = current->pid;
234 }
235
236 atomic_inc(&root->log_writers);
237 if (!ctx->logging_new_name) {
238 int index = root->log_transid % 2;
239 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 ctx->log_transid = root->log_transid;
241 }
242
243out:
244 mutex_unlock(&root->log_mutex);
245 return ret;
246}
247
248/*
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
251 * in progress
252 */
253static int join_running_log_trans(struct btrfs_root *root)
254{
255 const bool zoned = btrfs_is_zoned(root->fs_info);
256 int ret = -ENOENT;
257
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 return ret;
260
261 mutex_lock(&root->log_mutex);
262again:
263 if (root->log_root) {
264 int index = (root->log_transid + 1) % 2;
265
266 ret = 0;
267 if (zoned && atomic_read(&root->log_commit[index])) {
268 wait_log_commit(root, root->log_transid - 1);
269 goto again;
270 }
271 atomic_inc(&root->log_writers);
272 }
273 mutex_unlock(&root->log_mutex);
274 return ret;
275}
276
277/*
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
281 */
282void btrfs_pin_log_trans(struct btrfs_root *root)
283{
284 atomic_inc(&root->log_writers);
285}
286
287/*
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
290 */
291void btrfs_end_log_trans(struct btrfs_root *root)
292{
293 if (atomic_dec_and_test(&root->log_writers)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root->log_writer_wait);
296 }
297}
298
299/*
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
304 */
305struct walk_control {
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
308 */
309 int free;
310
311 /* pin only walk, we record which extents on disk belong to the
312 * log trees
313 */
314 int pin;
315
316 /* what stage of the replay code we're currently in */
317 int stage;
318
319 /*
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
323 */
324 bool ignore_cur_inode;
325
326 /* the root we are currently replaying */
327 struct btrfs_root *replay_dest;
328
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle *trans;
331
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
335 * inside it
336 */
337 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 struct walk_control *wc, u64 gen, int level);
339};
340
341/*
342 * process_func used to pin down extents, write them or wait on them
343 */
344static int process_one_buffer(struct btrfs_root *log,
345 struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level)
347{
348 struct btrfs_fs_info *fs_info = log->fs_info;
349 int ret = 0;
350
351 /*
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
354 */
355 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 struct btrfs_tree_parent_check check = {
357 .level = level,
358 .transid = gen
359 };
360
361 ret = btrfs_read_extent_buffer(eb, &check);
362 if (ret)
363 return ret;
364 }
365
366 if (wc->pin) {
367 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 if (ret)
369 return ret;
370
371 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 btrfs_header_level(eb) == 0)
373 ret = btrfs_exclude_logged_extents(eb);
374 }
375 return ret;
376}
377
378/*
379 * Item overwrite used by replay and tree logging. eb, slot and key all refer
380 * to the src data we are copying out.
381 *
382 * root is the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and
384 * will be released on exit).
385 *
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
389 *
390 * If the key isn't in the destination yet, a new item is inserted.
391 */
392static int overwrite_item(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root,
394 struct btrfs_path *path,
395 struct extent_buffer *eb, int slot,
396 struct btrfs_key *key)
397{
398 int ret;
399 u32 item_size;
400 u64 saved_i_size = 0;
401 int save_old_i_size = 0;
402 unsigned long src_ptr;
403 unsigned long dst_ptr;
404 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
405
406 /*
407 * This is only used during log replay, so the root is always from a
408 * fs/subvolume tree. In case we ever need to support a log root, then
409 * we'll have to clone the leaf in the path, release the path and use
410 * the leaf before writing into the log tree. See the comments at
411 * copy_items() for more details.
412 */
413 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
414
415 item_size = btrfs_item_size(eb, slot);
416 src_ptr = btrfs_item_ptr_offset(eb, slot);
417
418 /* Look for the key in the destination tree. */
419 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
420 if (ret < 0)
421 return ret;
422
423 if (ret == 0) {
424 char *src_copy;
425 char *dst_copy;
426 u32 dst_size = btrfs_item_size(path->nodes[0],
427 path->slots[0]);
428 if (dst_size != item_size)
429 goto insert;
430
431 if (item_size == 0) {
432 btrfs_release_path(path);
433 return 0;
434 }
435 dst_copy = kmalloc(item_size, GFP_NOFS);
436 src_copy = kmalloc(item_size, GFP_NOFS);
437 if (!dst_copy || !src_copy) {
438 btrfs_release_path(path);
439 kfree(dst_copy);
440 kfree(src_copy);
441 return -ENOMEM;
442 }
443
444 read_extent_buffer(eb, src_copy, src_ptr, item_size);
445
446 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
447 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
448 item_size);
449 ret = memcmp(dst_copy, src_copy, item_size);
450
451 kfree(dst_copy);
452 kfree(src_copy);
453 /*
454 * they have the same contents, just return, this saves
455 * us from cowing blocks in the destination tree and doing
456 * extra writes that may not have been done by a previous
457 * sync
458 */
459 if (ret == 0) {
460 btrfs_release_path(path);
461 return 0;
462 }
463
464 /*
465 * We need to load the old nbytes into the inode so when we
466 * replay the extents we've logged we get the right nbytes.
467 */
468 if (inode_item) {
469 struct btrfs_inode_item *item;
470 u64 nbytes;
471 u32 mode;
472
473 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
474 struct btrfs_inode_item);
475 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
476 item = btrfs_item_ptr(eb, slot,
477 struct btrfs_inode_item);
478 btrfs_set_inode_nbytes(eb, item, nbytes);
479
480 /*
481 * If this is a directory we need to reset the i_size to
482 * 0 so that we can set it up properly when replaying
483 * the rest of the items in this log.
484 */
485 mode = btrfs_inode_mode(eb, item);
486 if (S_ISDIR(mode))
487 btrfs_set_inode_size(eb, item, 0);
488 }
489 } else if (inode_item) {
490 struct btrfs_inode_item *item;
491 u32 mode;
492
493 /*
494 * New inode, set nbytes to 0 so that the nbytes comes out
495 * properly when we replay the extents.
496 */
497 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
498 btrfs_set_inode_nbytes(eb, item, 0);
499
500 /*
501 * If this is a directory we need to reset the i_size to 0 so
502 * that we can set it up properly when replaying the rest of
503 * the items in this log.
504 */
505 mode = btrfs_inode_mode(eb, item);
506 if (S_ISDIR(mode))
507 btrfs_set_inode_size(eb, item, 0);
508 }
509insert:
510 btrfs_release_path(path);
511 /* try to insert the key into the destination tree */
512 path->skip_release_on_error = 1;
513 ret = btrfs_insert_empty_item(trans, root, path,
514 key, item_size);
515 path->skip_release_on_error = 0;
516
517 /* make sure any existing item is the correct size */
518 if (ret == -EEXIST || ret == -EOVERFLOW) {
519 u32 found_size;
520 found_size = btrfs_item_size(path->nodes[0],
521 path->slots[0]);
522 if (found_size > item_size)
523 btrfs_truncate_item(trans, path, item_size, 1);
524 else if (found_size < item_size)
525 btrfs_extend_item(trans, path, item_size - found_size);
526 } else if (ret) {
527 return ret;
528 }
529 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
530 path->slots[0]);
531
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
535 *
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
539 * as it goes
540 */
541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 struct btrfs_inode_item *src_item;
543 struct btrfs_inode_item *dst_item;
544
545 src_item = (struct btrfs_inode_item *)src_ptr;
546 dst_item = (struct btrfs_inode_item *)dst_ptr;
547
548 if (btrfs_inode_generation(eb, src_item) == 0) {
549 struct extent_buffer *dst_eb = path->nodes[0];
550 const u64 ino_size = btrfs_inode_size(eb, src_item);
551
552 /*
553 * For regular files an ino_size == 0 is used only when
554 * logging that an inode exists, as part of a directory
555 * fsync, and the inode wasn't fsynced before. In this
556 * case don't set the size of the inode in the fs/subvol
557 * tree, otherwise we would be throwing valid data away.
558 */
559 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
560 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
561 ino_size != 0)
562 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
563 goto no_copy;
564 }
565
566 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
567 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
568 save_old_i_size = 1;
569 saved_i_size = btrfs_inode_size(path->nodes[0],
570 dst_item);
571 }
572 }
573
574 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
575 src_ptr, item_size);
576
577 if (save_old_i_size) {
578 struct btrfs_inode_item *dst_item;
579 dst_item = (struct btrfs_inode_item *)dst_ptr;
580 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
581 }
582
583 /* make sure the generation is filled in */
584 if (key->type == BTRFS_INODE_ITEM_KEY) {
585 struct btrfs_inode_item *dst_item;
586 dst_item = (struct btrfs_inode_item *)dst_ptr;
587 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
588 btrfs_set_inode_generation(path->nodes[0], dst_item,
589 trans->transid);
590 }
591 }
592no_copy:
593 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
594 btrfs_release_path(path);
595 return 0;
596}
597
598static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
599 struct fscrypt_str *name)
600{
601 char *buf;
602
603 buf = kmalloc(len, GFP_NOFS);
604 if (!buf)
605 return -ENOMEM;
606
607 read_extent_buffer(eb, buf, (unsigned long)start, len);
608 name->name = buf;
609 name->len = len;
610 return 0;
611}
612
613/*
614 * simple helper to read an inode off the disk from a given root
615 * This can only be called for subvolume roots and not for the log
616 */
617static noinline struct inode *read_one_inode(struct btrfs_root *root,
618 u64 objectid)
619{
620 struct inode *inode;
621
622 inode = btrfs_iget_logging(objectid, root);
623 if (IS_ERR(inode))
624 inode = NULL;
625 return inode;
626}
627
628/* replays a single extent in 'eb' at 'slot' with 'key' into the
629 * subvolume 'root'. path is released on entry and should be released
630 * on exit.
631 *
632 * extents in the log tree have not been allocated out of the extent
633 * tree yet. So, this completes the allocation, taking a reference
634 * as required if the extent already exists or creating a new extent
635 * if it isn't in the extent allocation tree yet.
636 *
637 * The extent is inserted into the file, dropping any existing extents
638 * from the file that overlap the new one.
639 */
640static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct btrfs_path *path,
643 struct extent_buffer *eb, int slot,
644 struct btrfs_key *key)
645{
646 struct btrfs_drop_extents_args drop_args = { 0 };
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 int found_type;
649 u64 extent_end;
650 u64 start = key->offset;
651 u64 nbytes = 0;
652 struct btrfs_file_extent_item *item;
653 struct inode *inode = NULL;
654 unsigned long size;
655 int ret = 0;
656
657 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
658 found_type = btrfs_file_extent_type(eb, item);
659
660 if (found_type == BTRFS_FILE_EXTENT_REG ||
661 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 nbytes = btrfs_file_extent_num_bytes(eb, item);
663 extent_end = start + nbytes;
664
665 /*
666 * We don't add to the inodes nbytes if we are prealloc or a
667 * hole.
668 */
669 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
670 nbytes = 0;
671 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672 size = btrfs_file_extent_ram_bytes(eb, item);
673 nbytes = btrfs_file_extent_ram_bytes(eb, item);
674 extent_end = ALIGN(start + size,
675 fs_info->sectorsize);
676 } else {
677 ret = 0;
678 goto out;
679 }
680
681 inode = read_one_inode(root, key->objectid);
682 if (!inode) {
683 ret = -EIO;
684 goto out;
685 }
686
687 /*
688 * first check to see if we already have this extent in the
689 * file. This must be done before the btrfs_drop_extents run
690 * so we don't try to drop this extent.
691 */
692 ret = btrfs_lookup_file_extent(trans, root, path,
693 btrfs_ino(BTRFS_I(inode)), start, 0);
694
695 if (ret == 0 &&
696 (found_type == BTRFS_FILE_EXTENT_REG ||
697 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698 struct btrfs_file_extent_item cmp1;
699 struct btrfs_file_extent_item cmp2;
700 struct btrfs_file_extent_item *existing;
701 struct extent_buffer *leaf;
702
703 leaf = path->nodes[0];
704 existing = btrfs_item_ptr(leaf, path->slots[0],
705 struct btrfs_file_extent_item);
706
707 read_extent_buffer(eb, &cmp1, (unsigned long)item,
708 sizeof(cmp1));
709 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710 sizeof(cmp2));
711
712 /*
713 * we already have a pointer to this exact extent,
714 * we don't have to do anything
715 */
716 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717 btrfs_release_path(path);
718 goto out;
719 }
720 }
721 btrfs_release_path(path);
722
723 /* drop any overlapping extents */
724 drop_args.start = start;
725 drop_args.end = extent_end;
726 drop_args.drop_cache = true;
727 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728 if (ret)
729 goto out;
730
731 if (found_type == BTRFS_FILE_EXTENT_REG ||
732 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733 u64 offset;
734 unsigned long dest_offset;
735 struct btrfs_key ins;
736
737 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738 btrfs_fs_incompat(fs_info, NO_HOLES))
739 goto update_inode;
740
741 ret = btrfs_insert_empty_item(trans, root, path, key,
742 sizeof(*item));
743 if (ret)
744 goto out;
745 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746 path->slots[0]);
747 copy_extent_buffer(path->nodes[0], eb, dest_offset,
748 (unsigned long)item, sizeof(*item));
749
750 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752 ins.type = BTRFS_EXTENT_ITEM_KEY;
753 offset = key->offset - btrfs_file_extent_offset(eb, item);
754
755 /*
756 * Manually record dirty extent, as here we did a shallow
757 * file extent item copy and skip normal backref update,
758 * but modifying extent tree all by ourselves.
759 * So need to manually record dirty extent for qgroup,
760 * as the owner of the file extent changed from log tree
761 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762 */
763 ret = btrfs_qgroup_trace_extent(trans,
764 btrfs_file_extent_disk_bytenr(eb, item),
765 btrfs_file_extent_disk_num_bytes(eb, item));
766 if (ret < 0)
767 goto out;
768
769 if (ins.objectid > 0) {
770 u64 csum_start;
771 u64 csum_end;
772 LIST_HEAD(ordered_sums);
773
774 /*
775 * is this extent already allocated in the extent
776 * allocation tree? If so, just add a reference
777 */
778 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
779 ins.offset);
780 if (ret < 0) {
781 goto out;
782 } else if (ret == 0) {
783 struct btrfs_ref ref = {
784 .action = BTRFS_ADD_DELAYED_REF,
785 .bytenr = ins.objectid,
786 .num_bytes = ins.offset,
787 .owning_root = btrfs_root_id(root),
788 .ref_root = btrfs_root_id(root),
789 };
790 btrfs_init_data_ref(&ref, key->objectid, offset,
791 0, false);
792 ret = btrfs_inc_extent_ref(trans, &ref);
793 if (ret)
794 goto out;
795 } else {
796 /*
797 * insert the extent pointer in the extent
798 * allocation tree
799 */
800 ret = btrfs_alloc_logged_file_extent(trans,
801 btrfs_root_id(root),
802 key->objectid, offset, &ins);
803 if (ret)
804 goto out;
805 }
806 btrfs_release_path(path);
807
808 if (btrfs_file_extent_compression(eb, item)) {
809 csum_start = ins.objectid;
810 csum_end = csum_start + ins.offset;
811 } else {
812 csum_start = ins.objectid +
813 btrfs_file_extent_offset(eb, item);
814 csum_end = csum_start +
815 btrfs_file_extent_num_bytes(eb, item);
816 }
817
818 ret = btrfs_lookup_csums_list(root->log_root,
819 csum_start, csum_end - 1,
820 &ordered_sums, false);
821 if (ret < 0)
822 goto out;
823 ret = 0;
824 /*
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
836 *
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
840 *
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
844 *
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
848 * of the extent:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 *
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
854 *
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 *
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
862 *
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 *
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
872 */
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 struct btrfs_root *csum_root;
876
877 sums = list_entry(ordered_sums.next,
878 struct btrfs_ordered_sum,
879 list);
880 csum_root = btrfs_csum_root(fs_info,
881 sums->logical);
882 if (!ret)
883 ret = btrfs_del_csums(trans, csum_root,
884 sums->logical,
885 sums->len);
886 if (!ret)
887 ret = btrfs_csum_file_blocks(trans,
888 csum_root,
889 sums);
890 list_del(&sums->list);
891 kfree(sums);
892 }
893 if (ret)
894 goto out;
895 } else {
896 btrfs_release_path(path);
897 }
898 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 /* inline extents are easy, we just overwrite them */
900 ret = overwrite_item(trans, root, path, eb, slot, key);
901 if (ret)
902 goto out;
903 }
904
905 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 extent_end - start);
907 if (ret)
908 goto out;
909
910update_inode:
911 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 ret = btrfs_update_inode(trans, BTRFS_I(inode));
913out:
914 iput(inode);
915 return ret;
916}
917
918static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 struct btrfs_inode *dir,
920 struct btrfs_inode *inode,
921 const struct fscrypt_str *name)
922{
923 int ret;
924
925 ret = btrfs_unlink_inode(trans, dir, inode, name);
926 if (ret)
927 return ret;
928 /*
929 * Whenever we need to check if a name exists or not, we check the
930 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 * that future checks for a name during log replay see that the name
932 * does not exists anymore.
933 */
934 return btrfs_run_delayed_items(trans);
935}
936
937/*
938 * when cleaning up conflicts between the directory names in the
939 * subvolume, directory names in the log and directory names in the
940 * inode back references, we may have to unlink inodes from directories.
941 *
942 * This is a helper function to do the unlink of a specific directory
943 * item
944 */
945static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 struct btrfs_path *path,
947 struct btrfs_inode *dir,
948 struct btrfs_dir_item *di)
949{
950 struct btrfs_root *root = dir->root;
951 struct inode *inode;
952 struct fscrypt_str name;
953 struct extent_buffer *leaf;
954 struct btrfs_key location;
955 int ret;
956
957 leaf = path->nodes[0];
958
959 btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 if (ret)
962 return -ENOMEM;
963
964 btrfs_release_path(path);
965
966 inode = read_one_inode(root, location.objectid);
967 if (!inode) {
968 ret = -EIO;
969 goto out;
970 }
971
972 ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 if (ret)
974 goto out;
975
976 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977out:
978 kfree(name.name);
979 iput(inode);
980 return ret;
981}
982
983/*
984 * See if a given name and sequence number found in an inode back reference are
985 * already in a directory and correctly point to this inode.
986 *
987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988 * exists.
989 */
990static noinline int inode_in_dir(struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 dirid, u64 objectid, u64 index,
993 struct fscrypt_str *name)
994{
995 struct btrfs_dir_item *di;
996 struct btrfs_key location;
997 int ret = 0;
998
999 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 index, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid != objectid)
1007 goto out;
1008 } else {
1009 goto out;
1010 }
1011
1012 btrfs_release_path(path);
1013 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 if (IS_ERR(di)) {
1015 ret = PTR_ERR(di);
1016 goto out;
1017 } else if (di) {
1018 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 if (location.objectid == objectid)
1020 ret = 1;
1021 }
1022out:
1023 btrfs_release_path(path);
1024 return ret;
1025}
1026
1027/*
1028 * helper function to check a log tree for a named back reference in
1029 * an inode. This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1031 *
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1036 */
1037static noinline int backref_in_log(struct btrfs_root *log,
1038 struct btrfs_key *key,
1039 u64 ref_objectid,
1040 const struct fscrypt_str *name)
1041{
1042 struct btrfs_path *path;
1043 int ret;
1044
1045 path = btrfs_alloc_path();
1046 if (!path)
1047 return -ENOMEM;
1048
1049 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 if (ret < 0) {
1051 goto out;
1052 } else if (ret == 1) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 path->slots[0],
1060 ref_objectid, name);
1061 else
1062 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 path->slots[0], name);
1064out:
1065 btrfs_free_path(path);
1066 return ret;
1067}
1068
1069static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root,
1071 struct btrfs_path *path,
1072 struct btrfs_root *log_root,
1073 struct btrfs_inode *dir,
1074 struct btrfs_inode *inode,
1075 u64 inode_objectid, u64 parent_objectid,
1076 u64 ref_index, struct fscrypt_str *name)
1077{
1078 int ret;
1079 struct extent_buffer *leaf;
1080 struct btrfs_dir_item *di;
1081 struct btrfs_key search_key;
1082 struct btrfs_inode_extref *extref;
1083
1084again:
1085 /* Search old style refs */
1086 search_key.objectid = inode_objectid;
1087 search_key.type = BTRFS_INODE_REF_KEY;
1088 search_key.offset = parent_objectid;
1089 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 if (ret == 0) {
1091 struct btrfs_inode_ref *victim_ref;
1092 unsigned long ptr;
1093 unsigned long ptr_end;
1094
1095 leaf = path->nodes[0];
1096
1097 /* are we trying to overwrite a back ref for the root directory
1098 * if so, just jump out, we're done
1099 */
1100 if (search_key.objectid == search_key.offset)
1101 return 1;
1102
1103 /* check all the names in this back reference to see
1104 * if they are in the log. if so, we allow them to stay
1105 * otherwise they must be unlinked as a conflict
1106 */
1107 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109 while (ptr < ptr_end) {
1110 struct fscrypt_str victim_name;
1111
1112 victim_ref = (struct btrfs_inode_ref *)ptr;
1113 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114 btrfs_inode_ref_name_len(leaf, victim_ref),
1115 &victim_name);
1116 if (ret)
1117 return ret;
1118
1119 ret = backref_in_log(log_root, &search_key,
1120 parent_objectid, &victim_name);
1121 if (ret < 0) {
1122 kfree(victim_name.name);
1123 return ret;
1124 } else if (!ret) {
1125 inc_nlink(&inode->vfs_inode);
1126 btrfs_release_path(path);
1127
1128 ret = unlink_inode_for_log_replay(trans, dir, inode,
1129 &victim_name);
1130 kfree(victim_name.name);
1131 if (ret)
1132 return ret;
1133 goto again;
1134 }
1135 kfree(victim_name.name);
1136
1137 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138 }
1139 }
1140 btrfs_release_path(path);
1141
1142 /* Same search but for extended refs */
1143 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144 inode_objectid, parent_objectid, 0,
1145 0);
1146 if (IS_ERR(extref)) {
1147 return PTR_ERR(extref);
1148 } else if (extref) {
1149 u32 item_size;
1150 u32 cur_offset = 0;
1151 unsigned long base;
1152 struct inode *victim_parent;
1153
1154 leaf = path->nodes[0];
1155
1156 item_size = btrfs_item_size(leaf, path->slots[0]);
1157 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158
1159 while (cur_offset < item_size) {
1160 struct fscrypt_str victim_name;
1161
1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163
1164 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165 goto next;
1166
1167 ret = read_alloc_one_name(leaf, &extref->name,
1168 btrfs_inode_extref_name_len(leaf, extref),
1169 &victim_name);
1170 if (ret)
1171 return ret;
1172
1173 search_key.objectid = inode_objectid;
1174 search_key.type = BTRFS_INODE_EXTREF_KEY;
1175 search_key.offset = btrfs_extref_hash(parent_objectid,
1176 victim_name.name,
1177 victim_name.len);
1178 ret = backref_in_log(log_root, &search_key,
1179 parent_objectid, &victim_name);
1180 if (ret < 0) {
1181 kfree(victim_name.name);
1182 return ret;
1183 } else if (!ret) {
1184 ret = -ENOENT;
1185 victim_parent = read_one_inode(root,
1186 parent_objectid);
1187 if (victim_parent) {
1188 inc_nlink(&inode->vfs_inode);
1189 btrfs_release_path(path);
1190
1191 ret = unlink_inode_for_log_replay(trans,
1192 BTRFS_I(victim_parent),
1193 inode, &victim_name);
1194 }
1195 iput(victim_parent);
1196 kfree(victim_name.name);
1197 if (ret)
1198 return ret;
1199 goto again;
1200 }
1201 kfree(victim_name.name);
1202next:
1203 cur_offset += victim_name.len + sizeof(*extref);
1204 }
1205 }
1206 btrfs_release_path(path);
1207
1208 /* look for a conflicting sequence number */
1209 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210 ref_index, name, 0);
1211 if (IS_ERR(di)) {
1212 return PTR_ERR(di);
1213 } else if (di) {
1214 ret = drop_one_dir_item(trans, path, dir, di);
1215 if (ret)
1216 return ret;
1217 }
1218 btrfs_release_path(path);
1219
1220 /* look for a conflicting name */
1221 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222 if (IS_ERR(di)) {
1223 return PTR_ERR(di);
1224 } else if (di) {
1225 ret = drop_one_dir_item(trans, path, dir, di);
1226 if (ret)
1227 return ret;
1228 }
1229 btrfs_release_path(path);
1230
1231 return 0;
1232}
1233
1234static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235 struct fscrypt_str *name, u64 *index,
1236 u64 *parent_objectid)
1237{
1238 struct btrfs_inode_extref *extref;
1239 int ret;
1240
1241 extref = (struct btrfs_inode_extref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, &extref->name,
1244 btrfs_inode_extref_name_len(eb, extref), name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_extref_index(eb, extref);
1250 if (parent_objectid)
1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253 return 0;
1254}
1255
1256static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 struct fscrypt_str *name, u64 *index)
1258{
1259 struct btrfs_inode_ref *ref;
1260 int ret;
1261
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265 name);
1266 if (ret)
1267 return ret;
1268
1269 if (index)
1270 *index = btrfs_inode_ref_index(eb, ref);
1271
1272 return 0;
1273}
1274
1275/*
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1281 */
1282static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283 struct btrfs_root *root,
1284 struct btrfs_path *path,
1285 struct btrfs_inode *inode,
1286 struct extent_buffer *log_eb,
1287 int log_slot,
1288 struct btrfs_key *key)
1289{
1290 int ret;
1291 unsigned long ref_ptr;
1292 unsigned long ref_end;
1293 struct extent_buffer *eb;
1294
1295again:
1296 btrfs_release_path(path);
1297 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298 if (ret > 0) {
1299 ret = 0;
1300 goto out;
1301 }
1302 if (ret < 0)
1303 goto out;
1304
1305 eb = path->nodes[0];
1306 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308 while (ref_ptr < ref_end) {
1309 struct fscrypt_str name;
1310 u64 parent_id;
1311
1312 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313 ret = extref_get_fields(eb, ref_ptr, &name,
1314 NULL, &parent_id);
1315 } else {
1316 parent_id = key->offset;
1317 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318 }
1319 if (ret)
1320 goto out;
1321
1322 if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 parent_id, &name);
1325 else
1326 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327
1328 if (!ret) {
1329 struct inode *dir;
1330
1331 btrfs_release_path(path);
1332 dir = read_one_inode(root, parent_id);
1333 if (!dir) {
1334 ret = -ENOENT;
1335 kfree(name.name);
1336 goto out;
1337 }
1338 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339 inode, &name);
1340 kfree(name.name);
1341 iput(dir);
1342 if (ret)
1343 goto out;
1344 goto again;
1345 }
1346
1347 kfree(name.name);
1348 ref_ptr += name.len;
1349 if (key->type == BTRFS_INODE_EXTREF_KEY)
1350 ref_ptr += sizeof(struct btrfs_inode_extref);
1351 else
1352 ref_ptr += sizeof(struct btrfs_inode_ref);
1353 }
1354 ret = 0;
1355 out:
1356 btrfs_release_path(path);
1357 return ret;
1358}
1359
1360/*
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function. (it should be released on return).
1365 */
1366static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_root *log,
1369 struct btrfs_path *path,
1370 struct extent_buffer *eb, int slot,
1371 struct btrfs_key *key)
1372{
1373 struct inode *dir = NULL;
1374 struct inode *inode = NULL;
1375 unsigned long ref_ptr;
1376 unsigned long ref_end;
1377 struct fscrypt_str name = { 0 };
1378 int ret;
1379 int log_ref_ver = 0;
1380 u64 parent_objectid;
1381 u64 inode_objectid;
1382 u64 ref_index = 0;
1383 int ref_struct_size;
1384
1385 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387
1388 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389 struct btrfs_inode_extref *r;
1390
1391 ref_struct_size = sizeof(struct btrfs_inode_extref);
1392 log_ref_ver = 1;
1393 r = (struct btrfs_inode_extref *)ref_ptr;
1394 parent_objectid = btrfs_inode_extref_parent(eb, r);
1395 } else {
1396 ref_struct_size = sizeof(struct btrfs_inode_ref);
1397 parent_objectid = key->offset;
1398 }
1399 inode_objectid = key->objectid;
1400
1401 /*
1402 * it is possible that we didn't log all the parent directories
1403 * for a given inode. If we don't find the dir, just don't
1404 * copy the back ref in. The link count fixup code will take
1405 * care of the rest
1406 */
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412
1413 inode = read_one_inode(root, inode_objectid);
1414 if (!inode) {
1415 ret = -EIO;
1416 goto out;
1417 }
1418
1419 while (ref_ptr < ref_end) {
1420 if (log_ref_ver) {
1421 ret = extref_get_fields(eb, ref_ptr, &name,
1422 &ref_index, &parent_objectid);
1423 /*
1424 * parent object can change from one array
1425 * item to another.
1426 */
1427 if (!dir)
1428 dir = read_one_inode(root, parent_objectid);
1429 if (!dir) {
1430 ret = -ENOENT;
1431 goto out;
1432 }
1433 } else {
1434 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435 }
1436 if (ret)
1437 goto out;
1438
1439 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441 if (ret < 0) {
1442 goto out;
1443 } else if (ret == 0) {
1444 /*
1445 * look for a conflicting back reference in the
1446 * metadata. if we find one we have to unlink that name
1447 * of the file before we add our new link. Later on, we
1448 * overwrite any existing back reference, and we don't
1449 * want to create dangling pointers in the directory.
1450 */
1451 ret = __add_inode_ref(trans, root, path, log,
1452 BTRFS_I(dir), BTRFS_I(inode),
1453 inode_objectid, parent_objectid,
1454 ref_index, &name);
1455 if (ret) {
1456 if (ret == 1)
1457 ret = 0;
1458 goto out;
1459 }
1460
1461 /* insert our name */
1462 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463 &name, 0, ref_index);
1464 if (ret)
1465 goto out;
1466
1467 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1468 if (ret)
1469 goto out;
1470 }
1471 /* Else, ret == 1, we already have a perfect match, we're done. */
1472
1473 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474 kfree(name.name);
1475 name.name = NULL;
1476 if (log_ref_ver) {
1477 iput(dir);
1478 dir = NULL;
1479 }
1480 }
1481
1482 /*
1483 * Before we overwrite the inode reference item in the subvolume tree
1484 * with the item from the log tree, we must unlink all names from the
1485 * parent directory that are in the subvolume's tree inode reference
1486 * item, otherwise we end up with an inconsistent subvolume tree where
1487 * dir index entries exist for a name but there is no inode reference
1488 * item with the same name.
1489 */
1490 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491 key);
1492 if (ret)
1493 goto out;
1494
1495 /* finally write the back reference in the inode */
1496 ret = overwrite_item(trans, root, path, eb, slot, key);
1497out:
1498 btrfs_release_path(path);
1499 kfree(name.name);
1500 iput(dir);
1501 iput(inode);
1502 return ret;
1503}
1504
1505static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret = 0;
1508 int name_len;
1509 unsigned int nlink = 0;
1510 u32 item_size;
1511 u32 cur_offset = 0;
1512 u64 inode_objectid = btrfs_ino(inode);
1513 u64 offset = 0;
1514 unsigned long ptr;
1515 struct btrfs_inode_extref *extref;
1516 struct extent_buffer *leaf;
1517
1518 while (1) {
1519 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1520 path, &extref, &offset);
1521 if (ret)
1522 break;
1523
1524 leaf = path->nodes[0];
1525 item_size = btrfs_item_size(leaf, path->slots[0]);
1526 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527 cur_offset = 0;
1528
1529 while (cur_offset < item_size) {
1530 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1531 name_len = btrfs_inode_extref_name_len(leaf, extref);
1532
1533 nlink++;
1534
1535 cur_offset += name_len + sizeof(*extref);
1536 }
1537
1538 offset++;
1539 btrfs_release_path(path);
1540 }
1541 btrfs_release_path(path);
1542
1543 if (ret < 0 && ret != -ENOENT)
1544 return ret;
1545 return nlink;
1546}
1547
1548static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1549{
1550 int ret;
1551 struct btrfs_key key;
1552 unsigned int nlink = 0;
1553 unsigned long ptr;
1554 unsigned long ptr_end;
1555 int name_len;
1556 u64 ino = btrfs_ino(inode);
1557
1558 key.objectid = ino;
1559 key.type = BTRFS_INODE_REF_KEY;
1560 key.offset = (u64)-1;
1561
1562 while (1) {
1563 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1564 if (ret < 0)
1565 break;
1566 if (ret > 0) {
1567 if (path->slots[0] == 0)
1568 break;
1569 path->slots[0]--;
1570 }
1571process_slot:
1572 btrfs_item_key_to_cpu(path->nodes[0], &key,
1573 path->slots[0]);
1574 if (key.objectid != ino ||
1575 key.type != BTRFS_INODE_REF_KEY)
1576 break;
1577 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579 path->slots[0]);
1580 while (ptr < ptr_end) {
1581 struct btrfs_inode_ref *ref;
1582
1583 ref = (struct btrfs_inode_ref *)ptr;
1584 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585 ref);
1586 ptr = (unsigned long)(ref + 1) + name_len;
1587 nlink++;
1588 }
1589
1590 if (key.offset == 0)
1591 break;
1592 if (path->slots[0] > 0) {
1593 path->slots[0]--;
1594 goto process_slot;
1595 }
1596 key.offset--;
1597 btrfs_release_path(path);
1598 }
1599 btrfs_release_path(path);
1600
1601 return nlink;
1602}
1603
1604/*
1605 * There are a few corners where the link count of the file can't
1606 * be properly maintained during replay. So, instead of adding
1607 * lots of complexity to the log code, we just scan the backrefs
1608 * for any file that has been through replay.
1609 *
1610 * The scan will update the link count on the inode to reflect the
1611 * number of back refs found. If it goes down to zero, the iput
1612 * will free the inode.
1613 */
1614static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1615 struct inode *inode)
1616{
1617 struct btrfs_root *root = BTRFS_I(inode)->root;
1618 struct btrfs_path *path;
1619 int ret;
1620 u64 nlink = 0;
1621 u64 ino = btrfs_ino(BTRFS_I(inode));
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 ret = count_inode_refs(BTRFS_I(inode), path);
1628 if (ret < 0)
1629 goto out;
1630
1631 nlink = ret;
1632
1633 ret = count_inode_extrefs(BTRFS_I(inode), path);
1634 if (ret < 0)
1635 goto out;
1636
1637 nlink += ret;
1638
1639 ret = 0;
1640
1641 if (nlink != inode->i_nlink) {
1642 set_nlink(inode, nlink);
1643 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1644 if (ret)
1645 goto out;
1646 }
1647 if (S_ISDIR(inode->i_mode))
1648 BTRFS_I(inode)->index_cnt = (u64)-1;
1649
1650 if (inode->i_nlink == 0) {
1651 if (S_ISDIR(inode->i_mode)) {
1652 ret = replay_dir_deletes(trans, root, NULL, path,
1653 ino, 1);
1654 if (ret)
1655 goto out;
1656 }
1657 ret = btrfs_insert_orphan_item(trans, root, ino);
1658 if (ret == -EEXIST)
1659 ret = 0;
1660 }
1661
1662out:
1663 btrfs_free_path(path);
1664 return ret;
1665}
1666
1667static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path)
1670{
1671 int ret;
1672 struct btrfs_key key;
1673 struct inode *inode;
1674
1675 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1676 key.type = BTRFS_ORPHAN_ITEM_KEY;
1677 key.offset = (u64)-1;
1678 while (1) {
1679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1680 if (ret < 0)
1681 break;
1682
1683 if (ret == 1) {
1684 ret = 0;
1685 if (path->slots[0] == 0)
1686 break;
1687 path->slots[0]--;
1688 }
1689
1690 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1691 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1692 key.type != BTRFS_ORPHAN_ITEM_KEY)
1693 break;
1694
1695 ret = btrfs_del_item(trans, root, path);
1696 if (ret)
1697 break;
1698
1699 btrfs_release_path(path);
1700 inode = read_one_inode(root, key.offset);
1701 if (!inode) {
1702 ret = -EIO;
1703 break;
1704 }
1705
1706 ret = fixup_inode_link_count(trans, inode);
1707 iput(inode);
1708 if (ret)
1709 break;
1710
1711 /*
1712 * fixup on a directory may create new entries,
1713 * make sure we always look for the highset possible
1714 * offset
1715 */
1716 key.offset = (u64)-1;
1717 }
1718 btrfs_release_path(path);
1719 return ret;
1720}
1721
1722
1723/*
1724 * record a given inode in the fixup dir so we can check its link
1725 * count when replay is done. The link count is incremented here
1726 * so the inode won't go away until we check it
1727 */
1728static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 u64 objectid)
1732{
1733 struct btrfs_key key;
1734 int ret = 0;
1735 struct inode *inode;
1736
1737 inode = read_one_inode(root, objectid);
1738 if (!inode)
1739 return -EIO;
1740
1741 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1742 key.type = BTRFS_ORPHAN_ITEM_KEY;
1743 key.offset = objectid;
1744
1745 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1746
1747 btrfs_release_path(path);
1748 if (ret == 0) {
1749 if (!inode->i_nlink)
1750 set_nlink(inode, 1);
1751 else
1752 inc_nlink(inode);
1753 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1754 } else if (ret == -EEXIST) {
1755 ret = 0;
1756 }
1757 iput(inode);
1758
1759 return ret;
1760}
1761
1762/*
1763 * when replaying the log for a directory, we only insert names
1764 * for inodes that actually exist. This means an fsync on a directory
1765 * does not implicitly fsync all the new files in it
1766 */
1767static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 u64 dirid, u64 index,
1770 const struct fscrypt_str *name,
1771 struct btrfs_key *location)
1772{
1773 struct inode *inode;
1774 struct inode *dir;
1775 int ret;
1776
1777 inode = read_one_inode(root, location->objectid);
1778 if (!inode)
1779 return -ENOENT;
1780
1781 dir = read_one_inode(root, dirid);
1782 if (!dir) {
1783 iput(inode);
1784 return -EIO;
1785 }
1786
1787 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1788 1, index);
1789
1790 /* FIXME, put inode into FIXUP list */
1791
1792 iput(inode);
1793 iput(dir);
1794 return ret;
1795}
1796
1797static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1798 struct btrfs_inode *dir,
1799 struct btrfs_path *path,
1800 struct btrfs_dir_item *dst_di,
1801 const struct btrfs_key *log_key,
1802 u8 log_flags,
1803 bool exists)
1804{
1805 struct btrfs_key found_key;
1806
1807 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1808 /* The existing dentry points to the same inode, don't delete it. */
1809 if (found_key.objectid == log_key->objectid &&
1810 found_key.type == log_key->type &&
1811 found_key.offset == log_key->offset &&
1812 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1813 return 1;
1814
1815 /*
1816 * Don't drop the conflicting directory entry if the inode for the new
1817 * entry doesn't exist.
1818 */
1819 if (!exists)
1820 return 0;
1821
1822 return drop_one_dir_item(trans, path, dir, dst_di);
1823}
1824
1825/*
1826 * take a single entry in a log directory item and replay it into
1827 * the subvolume.
1828 *
1829 * if a conflicting item exists in the subdirectory already,
1830 * the inode it points to is unlinked and put into the link count
1831 * fix up tree.
1832 *
1833 * If a name from the log points to a file or directory that does
1834 * not exist in the FS, it is skipped. fsyncs on directories
1835 * do not force down inodes inside that directory, just changes to the
1836 * names or unlinks in a directory.
1837 *
1838 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839 * non-existing inode) and 1 if the name was replayed.
1840 */
1841static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root,
1843 struct btrfs_path *path,
1844 struct extent_buffer *eb,
1845 struct btrfs_dir_item *di,
1846 struct btrfs_key *key)
1847{
1848 struct fscrypt_str name = { 0 };
1849 struct btrfs_dir_item *dir_dst_di;
1850 struct btrfs_dir_item *index_dst_di;
1851 bool dir_dst_matches = false;
1852 bool index_dst_matches = false;
1853 struct btrfs_key log_key;
1854 struct btrfs_key search_key;
1855 struct inode *dir;
1856 u8 log_flags;
1857 bool exists;
1858 int ret;
1859 bool update_size = true;
1860 bool name_added = false;
1861
1862 dir = read_one_inode(root, key->objectid);
1863 if (!dir)
1864 return -EIO;
1865
1866 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1867 if (ret)
1868 goto out;
1869
1870 log_flags = btrfs_dir_flags(eb, di);
1871 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1872 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1873 btrfs_release_path(path);
1874 if (ret < 0)
1875 goto out;
1876 exists = (ret == 0);
1877 ret = 0;
1878
1879 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1880 &name, 1);
1881 if (IS_ERR(dir_dst_di)) {
1882 ret = PTR_ERR(dir_dst_di);
1883 goto out;
1884 } else if (dir_dst_di) {
1885 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1886 dir_dst_di, &log_key,
1887 log_flags, exists);
1888 if (ret < 0)
1889 goto out;
1890 dir_dst_matches = (ret == 1);
1891 }
1892
1893 btrfs_release_path(path);
1894
1895 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1896 key->objectid, key->offset,
1897 &name, 1);
1898 if (IS_ERR(index_dst_di)) {
1899 ret = PTR_ERR(index_dst_di);
1900 goto out;
1901 } else if (index_dst_di) {
1902 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 index_dst_di, &log_key,
1904 log_flags, exists);
1905 if (ret < 0)
1906 goto out;
1907 index_dst_matches = (ret == 1);
1908 }
1909
1910 btrfs_release_path(path);
1911
1912 if (dir_dst_matches && index_dst_matches) {
1913 ret = 0;
1914 update_size = false;
1915 goto out;
1916 }
1917
1918 /*
1919 * Check if the inode reference exists in the log for the given name,
1920 * inode and parent inode
1921 */
1922 search_key.objectid = log_key.objectid;
1923 search_key.type = BTRFS_INODE_REF_KEY;
1924 search_key.offset = key->objectid;
1925 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1926 if (ret < 0) {
1927 goto out;
1928 } else if (ret) {
1929 /* The dentry will be added later. */
1930 ret = 0;
1931 update_size = false;
1932 goto out;
1933 }
1934
1935 search_key.objectid = log_key.objectid;
1936 search_key.type = BTRFS_INODE_EXTREF_KEY;
1937 search_key.offset = key->objectid;
1938 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1939 if (ret < 0) {
1940 goto out;
1941 } else if (ret) {
1942 /* The dentry will be added later. */
1943 ret = 0;
1944 update_size = false;
1945 goto out;
1946 }
1947 btrfs_release_path(path);
1948 ret = insert_one_name(trans, root, key->objectid, key->offset,
1949 &name, &log_key);
1950 if (ret && ret != -ENOENT && ret != -EEXIST)
1951 goto out;
1952 if (!ret)
1953 name_added = true;
1954 update_size = false;
1955 ret = 0;
1956
1957out:
1958 if (!ret && update_size) {
1959 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1960 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1961 }
1962 kfree(name.name);
1963 iput(dir);
1964 if (!ret && name_added)
1965 ret = 1;
1966 return ret;
1967}
1968
1969/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1970static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 struct btrfs_path *path,
1973 struct extent_buffer *eb, int slot,
1974 struct btrfs_key *key)
1975{
1976 int ret;
1977 struct btrfs_dir_item *di;
1978
1979 /* We only log dir index keys, which only contain a single dir item. */
1980 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1981
1982 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1983 ret = replay_one_name(trans, root, path, eb, di, key);
1984 if (ret < 0)
1985 return ret;
1986
1987 /*
1988 * If this entry refers to a non-directory (directories can not have a
1989 * link count > 1) and it was added in the transaction that was not
1990 * committed, make sure we fixup the link count of the inode the entry
1991 * points to. Otherwise something like the following would result in a
1992 * directory pointing to an inode with a wrong link that does not account
1993 * for this dir entry:
1994 *
1995 * mkdir testdir
1996 * touch testdir/foo
1997 * touch testdir/bar
1998 * sync
1999 *
2000 * ln testdir/bar testdir/bar_link
2001 * ln testdir/foo testdir/foo_link
2002 * xfs_io -c "fsync" testdir/bar
2003 *
2004 * <power failure>
2005 *
2006 * mount fs, log replay happens
2007 *
2008 * File foo would remain with a link count of 1 when it has two entries
2009 * pointing to it in the directory testdir. This would make it impossible
2010 * to ever delete the parent directory has it would result in stale
2011 * dentries that can never be deleted.
2012 */
2013 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2014 struct btrfs_path *fixup_path;
2015 struct btrfs_key di_key;
2016
2017 fixup_path = btrfs_alloc_path();
2018 if (!fixup_path)
2019 return -ENOMEM;
2020
2021 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2022 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2023 btrfs_free_path(fixup_path);
2024 }
2025
2026 return ret;
2027}
2028
2029/*
2030 * directory replay has two parts. There are the standard directory
2031 * items in the log copied from the subvolume, and range items
2032 * created in the log while the subvolume was logged.
2033 *
2034 * The range items tell us which parts of the key space the log
2035 * is authoritative for. During replay, if a key in the subvolume
2036 * directory is in a logged range item, but not actually in the log
2037 * that means it was deleted from the directory before the fsync
2038 * and should be removed.
2039 */
2040static noinline int find_dir_range(struct btrfs_root *root,
2041 struct btrfs_path *path,
2042 u64 dirid,
2043 u64 *start_ret, u64 *end_ret)
2044{
2045 struct btrfs_key key;
2046 u64 found_end;
2047 struct btrfs_dir_log_item *item;
2048 int ret;
2049 int nritems;
2050
2051 if (*start_ret == (u64)-1)
2052 return 1;
2053
2054 key.objectid = dirid;
2055 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2056 key.offset = *start_ret;
2057
2058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059 if (ret < 0)
2060 goto out;
2061 if (ret > 0) {
2062 if (path->slots[0] == 0)
2063 goto out;
2064 path->slots[0]--;
2065 }
2066 if (ret != 0)
2067 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2068
2069 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2070 ret = 1;
2071 goto next;
2072 }
2073 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2074 struct btrfs_dir_log_item);
2075 found_end = btrfs_dir_log_end(path->nodes[0], item);
2076
2077 if (*start_ret >= key.offset && *start_ret <= found_end) {
2078 ret = 0;
2079 *start_ret = key.offset;
2080 *end_ret = found_end;
2081 goto out;
2082 }
2083 ret = 1;
2084next:
2085 /* check the next slot in the tree to see if it is a valid item */
2086 nritems = btrfs_header_nritems(path->nodes[0]);
2087 path->slots[0]++;
2088 if (path->slots[0] >= nritems) {
2089 ret = btrfs_next_leaf(root, path);
2090 if (ret)
2091 goto out;
2092 }
2093
2094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095
2096 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2097 ret = 1;
2098 goto out;
2099 }
2100 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101 struct btrfs_dir_log_item);
2102 found_end = btrfs_dir_log_end(path->nodes[0], item);
2103 *start_ret = key.offset;
2104 *end_ret = found_end;
2105 ret = 0;
2106out:
2107 btrfs_release_path(path);
2108 return ret;
2109}
2110
2111/*
2112 * this looks for a given directory item in the log. If the directory
2113 * item is not in the log, the item is removed and the inode it points
2114 * to is unlinked
2115 */
2116static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2117 struct btrfs_root *log,
2118 struct btrfs_path *path,
2119 struct btrfs_path *log_path,
2120 struct inode *dir,
2121 struct btrfs_key *dir_key)
2122{
2123 struct btrfs_root *root = BTRFS_I(dir)->root;
2124 int ret;
2125 struct extent_buffer *eb;
2126 int slot;
2127 struct btrfs_dir_item *di;
2128 struct fscrypt_str name = { 0 };
2129 struct inode *inode = NULL;
2130 struct btrfs_key location;
2131
2132 /*
2133 * Currently we only log dir index keys. Even if we replay a log created
2134 * by an older kernel that logged both dir index and dir item keys, all
2135 * we need to do is process the dir index keys, we (and our caller) can
2136 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2137 */
2138 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2139
2140 eb = path->nodes[0];
2141 slot = path->slots[0];
2142 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2143 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2144 if (ret)
2145 goto out;
2146
2147 if (log) {
2148 struct btrfs_dir_item *log_di;
2149
2150 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2151 dir_key->objectid,
2152 dir_key->offset, &name, 0);
2153 if (IS_ERR(log_di)) {
2154 ret = PTR_ERR(log_di);
2155 goto out;
2156 } else if (log_di) {
2157 /* The dentry exists in the log, we have nothing to do. */
2158 ret = 0;
2159 goto out;
2160 }
2161 }
2162
2163 btrfs_dir_item_key_to_cpu(eb, di, &location);
2164 btrfs_release_path(path);
2165 btrfs_release_path(log_path);
2166 inode = read_one_inode(root, location.objectid);
2167 if (!inode) {
2168 ret = -EIO;
2169 goto out;
2170 }
2171
2172 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2173 if (ret)
2174 goto out;
2175
2176 inc_nlink(inode);
2177 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2178 &name);
2179 /*
2180 * Unlike dir item keys, dir index keys can only have one name (entry) in
2181 * them, as there are no key collisions since each key has a unique offset
2182 * (an index number), so we're done.
2183 */
2184out:
2185 btrfs_release_path(path);
2186 btrfs_release_path(log_path);
2187 kfree(name.name);
2188 iput(inode);
2189 return ret;
2190}
2191
2192static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 struct btrfs_root *log,
2195 struct btrfs_path *path,
2196 const u64 ino)
2197{
2198 struct btrfs_key search_key;
2199 struct btrfs_path *log_path;
2200 int i;
2201 int nritems;
2202 int ret;
2203
2204 log_path = btrfs_alloc_path();
2205 if (!log_path)
2206 return -ENOMEM;
2207
2208 search_key.objectid = ino;
2209 search_key.type = BTRFS_XATTR_ITEM_KEY;
2210 search_key.offset = 0;
2211again:
2212 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2213 if (ret < 0)
2214 goto out;
2215process_leaf:
2216 nritems = btrfs_header_nritems(path->nodes[0]);
2217 for (i = path->slots[0]; i < nritems; i++) {
2218 struct btrfs_key key;
2219 struct btrfs_dir_item *di;
2220 struct btrfs_dir_item *log_di;
2221 u32 total_size;
2222 u32 cur;
2223
2224 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2225 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2226 ret = 0;
2227 goto out;
2228 }
2229
2230 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2231 total_size = btrfs_item_size(path->nodes[0], i);
2232 cur = 0;
2233 while (cur < total_size) {
2234 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2235 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2236 u32 this_len = sizeof(*di) + name_len + data_len;
2237 char *name;
2238
2239 name = kmalloc(name_len, GFP_NOFS);
2240 if (!name) {
2241 ret = -ENOMEM;
2242 goto out;
2243 }
2244 read_extent_buffer(path->nodes[0], name,
2245 (unsigned long)(di + 1), name_len);
2246
2247 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2248 name, name_len, 0);
2249 btrfs_release_path(log_path);
2250 if (!log_di) {
2251 /* Doesn't exist in log tree, so delete it. */
2252 btrfs_release_path(path);
2253 di = btrfs_lookup_xattr(trans, root, path, ino,
2254 name, name_len, -1);
2255 kfree(name);
2256 if (IS_ERR(di)) {
2257 ret = PTR_ERR(di);
2258 goto out;
2259 }
2260 ASSERT(di);
2261 ret = btrfs_delete_one_dir_name(trans, root,
2262 path, di);
2263 if (ret)
2264 goto out;
2265 btrfs_release_path(path);
2266 search_key = key;
2267 goto again;
2268 }
2269 kfree(name);
2270 if (IS_ERR(log_di)) {
2271 ret = PTR_ERR(log_di);
2272 goto out;
2273 }
2274 cur += this_len;
2275 di = (struct btrfs_dir_item *)((char *)di + this_len);
2276 }
2277 }
2278 ret = btrfs_next_leaf(root, path);
2279 if (ret > 0)
2280 ret = 0;
2281 else if (ret == 0)
2282 goto process_leaf;
2283out:
2284 btrfs_free_path(log_path);
2285 btrfs_release_path(path);
2286 return ret;
2287}
2288
2289
2290/*
2291 * deletion replay happens before we copy any new directory items
2292 * out of the log or out of backreferences from inodes. It
2293 * scans the log to find ranges of keys that log is authoritative for,
2294 * and then scans the directory to find items in those ranges that are
2295 * not present in the log.
2296 *
2297 * Anything we don't find in the log is unlinked and removed from the
2298 * directory.
2299 */
2300static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_root *log,
2303 struct btrfs_path *path,
2304 u64 dirid, int del_all)
2305{
2306 u64 range_start;
2307 u64 range_end;
2308 int ret = 0;
2309 struct btrfs_key dir_key;
2310 struct btrfs_key found_key;
2311 struct btrfs_path *log_path;
2312 struct inode *dir;
2313
2314 dir_key.objectid = dirid;
2315 dir_key.type = BTRFS_DIR_INDEX_KEY;
2316 log_path = btrfs_alloc_path();
2317 if (!log_path)
2318 return -ENOMEM;
2319
2320 dir = read_one_inode(root, dirid);
2321 /* it isn't an error if the inode isn't there, that can happen
2322 * because we replay the deletes before we copy in the inode item
2323 * from the log
2324 */
2325 if (!dir) {
2326 btrfs_free_path(log_path);
2327 return 0;
2328 }
2329
2330 range_start = 0;
2331 range_end = 0;
2332 while (1) {
2333 if (del_all)
2334 range_end = (u64)-1;
2335 else {
2336 ret = find_dir_range(log, path, dirid,
2337 &range_start, &range_end);
2338 if (ret < 0)
2339 goto out;
2340 else if (ret > 0)
2341 break;
2342 }
2343
2344 dir_key.offset = range_start;
2345 while (1) {
2346 int nritems;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 0, 0);
2349 if (ret < 0)
2350 goto out;
2351
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
2355 if (ret == 1)
2356 break;
2357 else if (ret < 0)
2358 goto out;
2359 }
2360 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361 path->slots[0]);
2362 if (found_key.objectid != dirid ||
2363 found_key.type != dir_key.type) {
2364 ret = 0;
2365 goto out;
2366 }
2367
2368 if (found_key.offset > range_end)
2369 break;
2370
2371 ret = check_item_in_log(trans, log, path,
2372 log_path, dir,
2373 &found_key);
2374 if (ret)
2375 goto out;
2376 if (found_key.offset == (u64)-1)
2377 break;
2378 dir_key.offset = found_key.offset + 1;
2379 }
2380 btrfs_release_path(path);
2381 if (range_end == (u64)-1)
2382 break;
2383 range_start = range_end + 1;
2384 }
2385 ret = 0;
2386out:
2387 btrfs_release_path(path);
2388 btrfs_free_path(log_path);
2389 iput(dir);
2390 return ret;
2391}
2392
2393/*
2394 * the process_func used to replay items from the log tree. This
2395 * gets called in two different stages. The first stage just looks
2396 * for inodes and makes sure they are all copied into the subvolume.
2397 *
2398 * The second stage copies all the other item types from the log into
2399 * the subvolume. The two stage approach is slower, but gets rid of
2400 * lots of complexity around inodes referencing other inodes that exist
2401 * only in the log (references come from either directory items or inode
2402 * back refs).
2403 */
2404static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2405 struct walk_control *wc, u64 gen, int level)
2406{
2407 int nritems;
2408 struct btrfs_tree_parent_check check = {
2409 .transid = gen,
2410 .level = level
2411 };
2412 struct btrfs_path *path;
2413 struct btrfs_root *root = wc->replay_dest;
2414 struct btrfs_key key;
2415 int i;
2416 int ret;
2417
2418 ret = btrfs_read_extent_buffer(eb, &check);
2419 if (ret)
2420 return ret;
2421
2422 level = btrfs_header_level(eb);
2423
2424 if (level != 0)
2425 return 0;
2426
2427 path = btrfs_alloc_path();
2428 if (!path)
2429 return -ENOMEM;
2430
2431 nritems = btrfs_header_nritems(eb);
2432 for (i = 0; i < nritems; i++) {
2433 btrfs_item_key_to_cpu(eb, &key, i);
2434
2435 /* inode keys are done during the first stage */
2436 if (key.type == BTRFS_INODE_ITEM_KEY &&
2437 wc->stage == LOG_WALK_REPLAY_INODES) {
2438 struct btrfs_inode_item *inode_item;
2439 u32 mode;
2440
2441 inode_item = btrfs_item_ptr(eb, i,
2442 struct btrfs_inode_item);
2443 /*
2444 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445 * and never got linked before the fsync, skip it, as
2446 * replaying it is pointless since it would be deleted
2447 * later. We skip logging tmpfiles, but it's always
2448 * possible we are replaying a log created with a kernel
2449 * that used to log tmpfiles.
2450 */
2451 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2452 wc->ignore_cur_inode = true;
2453 continue;
2454 } else {
2455 wc->ignore_cur_inode = false;
2456 }
2457 ret = replay_xattr_deletes(wc->trans, root, log,
2458 path, key.objectid);
2459 if (ret)
2460 break;
2461 mode = btrfs_inode_mode(eb, inode_item);
2462 if (S_ISDIR(mode)) {
2463 ret = replay_dir_deletes(wc->trans,
2464 root, log, path, key.objectid, 0);
2465 if (ret)
2466 break;
2467 }
2468 ret = overwrite_item(wc->trans, root, path,
2469 eb, i, &key);
2470 if (ret)
2471 break;
2472
2473 /*
2474 * Before replaying extents, truncate the inode to its
2475 * size. We need to do it now and not after log replay
2476 * because before an fsync we can have prealloc extents
2477 * added beyond the inode's i_size. If we did it after,
2478 * through orphan cleanup for example, we would drop
2479 * those prealloc extents just after replaying them.
2480 */
2481 if (S_ISREG(mode)) {
2482 struct btrfs_drop_extents_args drop_args = { 0 };
2483 struct inode *inode;
2484 u64 from;
2485
2486 inode = read_one_inode(root, key.objectid);
2487 if (!inode) {
2488 ret = -EIO;
2489 break;
2490 }
2491 from = ALIGN(i_size_read(inode),
2492 root->fs_info->sectorsize);
2493 drop_args.start = from;
2494 drop_args.end = (u64)-1;
2495 drop_args.drop_cache = true;
2496 ret = btrfs_drop_extents(wc->trans, root,
2497 BTRFS_I(inode),
2498 &drop_args);
2499 if (!ret) {
2500 inode_sub_bytes(inode,
2501 drop_args.bytes_found);
2502 /* Update the inode's nbytes. */
2503 ret = btrfs_update_inode(wc->trans,
2504 BTRFS_I(inode));
2505 }
2506 iput(inode);
2507 if (ret)
2508 break;
2509 }
2510
2511 ret = link_to_fixup_dir(wc->trans, root,
2512 path, key.objectid);
2513 if (ret)
2514 break;
2515 }
2516
2517 if (wc->ignore_cur_inode)
2518 continue;
2519
2520 if (key.type == BTRFS_DIR_INDEX_KEY &&
2521 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2522 ret = replay_one_dir_item(wc->trans, root, path,
2523 eb, i, &key);
2524 if (ret)
2525 break;
2526 }
2527
2528 if (wc->stage < LOG_WALK_REPLAY_ALL)
2529 continue;
2530
2531 /* these keys are simply copied */
2532 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2533 ret = overwrite_item(wc->trans, root, path,
2534 eb, i, &key);
2535 if (ret)
2536 break;
2537 } else if (key.type == BTRFS_INODE_REF_KEY ||
2538 key.type == BTRFS_INODE_EXTREF_KEY) {
2539 ret = add_inode_ref(wc->trans, root, log, path,
2540 eb, i, &key);
2541 if (ret && ret != -ENOENT)
2542 break;
2543 ret = 0;
2544 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2545 ret = replay_one_extent(wc->trans, root, path,
2546 eb, i, &key);
2547 if (ret)
2548 break;
2549 }
2550 /*
2551 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554 * older kernel with such keys, ignore them.
2555 */
2556 }
2557 btrfs_free_path(path);
2558 return ret;
2559}
2560
2561/*
2562 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2563 */
2564static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2565{
2566 struct btrfs_block_group *cache;
2567
2568 cache = btrfs_lookup_block_group(fs_info, start);
2569 if (!cache) {
2570 btrfs_err(fs_info, "unable to find block group for %llu", start);
2571 return;
2572 }
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->reserved -= fs_info->nodesize;
2577 cache->space_info->bytes_reserved -= fs_info->nodesize;
2578 spin_unlock(&cache->lock);
2579 spin_unlock(&cache->space_info->lock);
2580
2581 btrfs_put_block_group(cache);
2582}
2583
2584static int clean_log_buffer(struct btrfs_trans_handle *trans,
2585 struct extent_buffer *eb)
2586{
2587 int ret;
2588
2589 btrfs_tree_lock(eb);
2590 btrfs_clear_buffer_dirty(trans, eb);
2591 wait_on_extent_buffer_writeback(eb);
2592 btrfs_tree_unlock(eb);
2593
2594 if (trans) {
2595 ret = btrfs_pin_reserved_extent(trans, eb);
2596 if (ret)
2597 return ret;
2598 } else {
2599 unaccount_log_buffer(eb->fs_info, eb->start);
2600 }
2601
2602 return 0;
2603}
2604
2605static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path, int *level,
2608 struct walk_control *wc)
2609{
2610 struct btrfs_fs_info *fs_info = root->fs_info;
2611 u64 bytenr;
2612 u64 ptr_gen;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2615 int ret = 0;
2616
2617 while (*level > 0) {
2618 struct btrfs_tree_parent_check check = { 0 };
2619
2620 cur = path->nodes[*level];
2621
2622 WARN_ON(btrfs_header_level(cur) != *level);
2623
2624 if (path->slots[*level] >=
2625 btrfs_header_nritems(cur))
2626 break;
2627
2628 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2629 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2630 check.transid = ptr_gen;
2631 check.level = *level - 1;
2632 check.has_first_key = true;
2633 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2634
2635 next = btrfs_find_create_tree_block(fs_info, bytenr,
2636 btrfs_header_owner(cur),
2637 *level - 1);
2638 if (IS_ERR(next))
2639 return PTR_ERR(next);
2640
2641 if (*level == 1) {
2642 ret = wc->process_func(root, next, wc, ptr_gen,
2643 *level - 1);
2644 if (ret) {
2645 free_extent_buffer(next);
2646 return ret;
2647 }
2648
2649 path->slots[*level]++;
2650 if (wc->free) {
2651 ret = btrfs_read_extent_buffer(next, &check);
2652 if (ret) {
2653 free_extent_buffer(next);
2654 return ret;
2655 }
2656
2657 ret = clean_log_buffer(trans, next);
2658 if (ret) {
2659 free_extent_buffer(next);
2660 return ret;
2661 }
2662 }
2663 free_extent_buffer(next);
2664 continue;
2665 }
2666 ret = btrfs_read_extent_buffer(next, &check);
2667 if (ret) {
2668 free_extent_buffer(next);
2669 return ret;
2670 }
2671
2672 if (path->nodes[*level-1])
2673 free_extent_buffer(path->nodes[*level-1]);
2674 path->nodes[*level-1] = next;
2675 *level = btrfs_header_level(next);
2676 path->slots[*level] = 0;
2677 cond_resched();
2678 }
2679 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2680
2681 cond_resched();
2682 return 0;
2683}
2684
2685static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_path *path, int *level,
2688 struct walk_control *wc)
2689{
2690 int i;
2691 int slot;
2692 int ret;
2693
2694 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2695 slot = path->slots[i];
2696 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2697 path->slots[i]++;
2698 *level = i;
2699 WARN_ON(*level == 0);
2700 return 0;
2701 } else {
2702 ret = wc->process_func(root, path->nodes[*level], wc,
2703 btrfs_header_generation(path->nodes[*level]),
2704 *level);
2705 if (ret)
2706 return ret;
2707
2708 if (wc->free) {
2709 ret = clean_log_buffer(trans, path->nodes[*level]);
2710 if (ret)
2711 return ret;
2712 }
2713 free_extent_buffer(path->nodes[*level]);
2714 path->nodes[*level] = NULL;
2715 *level = i + 1;
2716 }
2717 }
2718 return 1;
2719}
2720
2721/*
2722 * drop the reference count on the tree rooted at 'snap'. This traverses
2723 * the tree freeing any blocks that have a ref count of zero after being
2724 * decremented.
2725 */
2726static int walk_log_tree(struct btrfs_trans_handle *trans,
2727 struct btrfs_root *log, struct walk_control *wc)
2728{
2729 int ret = 0;
2730 int wret;
2731 int level;
2732 struct btrfs_path *path;
2733 int orig_level;
2734
2735 path = btrfs_alloc_path();
2736 if (!path)
2737 return -ENOMEM;
2738
2739 level = btrfs_header_level(log->node);
2740 orig_level = level;
2741 path->nodes[level] = log->node;
2742 atomic_inc(&log->node->refs);
2743 path->slots[level] = 0;
2744
2745 while (1) {
2746 wret = walk_down_log_tree(trans, log, path, &level, wc);
2747 if (wret > 0)
2748 break;
2749 if (wret < 0) {
2750 ret = wret;
2751 goto out;
2752 }
2753
2754 wret = walk_up_log_tree(trans, log, path, &level, wc);
2755 if (wret > 0)
2756 break;
2757 if (wret < 0) {
2758 ret = wret;
2759 goto out;
2760 }
2761 }
2762
2763 /* was the root node processed? if not, catch it here */
2764 if (path->nodes[orig_level]) {
2765 ret = wc->process_func(log, path->nodes[orig_level], wc,
2766 btrfs_header_generation(path->nodes[orig_level]),
2767 orig_level);
2768 if (ret)
2769 goto out;
2770 if (wc->free)
2771 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2772 }
2773
2774out:
2775 btrfs_free_path(path);
2776 return ret;
2777}
2778
2779/*
2780 * helper function to update the item for a given subvolumes log root
2781 * in the tree of log roots
2782 */
2783static int update_log_root(struct btrfs_trans_handle *trans,
2784 struct btrfs_root *log,
2785 struct btrfs_root_item *root_item)
2786{
2787 struct btrfs_fs_info *fs_info = log->fs_info;
2788 int ret;
2789
2790 if (log->log_transid == 1) {
2791 /* insert root item on the first sync */
2792 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793 &log->root_key, root_item);
2794 } else {
2795 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796 &log->root_key, root_item);
2797 }
2798 return ret;
2799}
2800
2801static void wait_log_commit(struct btrfs_root *root, int transid)
2802{
2803 DEFINE_WAIT(wait);
2804 int index = transid % 2;
2805
2806 /*
2807 * we only allow two pending log transactions at a time,
2808 * so we know that if ours is more than 2 older than the
2809 * current transaction, we're done
2810 */
2811 for (;;) {
2812 prepare_to_wait(&root->log_commit_wait[index],
2813 &wait, TASK_UNINTERRUPTIBLE);
2814
2815 if (!(root->log_transid_committed < transid &&
2816 atomic_read(&root->log_commit[index])))
2817 break;
2818
2819 mutex_unlock(&root->log_mutex);
2820 schedule();
2821 mutex_lock(&root->log_mutex);
2822 }
2823 finish_wait(&root->log_commit_wait[index], &wait);
2824}
2825
2826static void wait_for_writer(struct btrfs_root *root)
2827{
2828 DEFINE_WAIT(wait);
2829
2830 for (;;) {
2831 prepare_to_wait(&root->log_writer_wait, &wait,
2832 TASK_UNINTERRUPTIBLE);
2833 if (!atomic_read(&root->log_writers))
2834 break;
2835
2836 mutex_unlock(&root->log_mutex);
2837 schedule();
2838 mutex_lock(&root->log_mutex);
2839 }
2840 finish_wait(&root->log_writer_wait, &wait);
2841}
2842
2843void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2844{
2845 ctx->log_ret = 0;
2846 ctx->log_transid = 0;
2847 ctx->log_new_dentries = false;
2848 ctx->logging_new_name = false;
2849 ctx->logging_new_delayed_dentries = false;
2850 ctx->logged_before = false;
2851 ctx->inode = inode;
2852 INIT_LIST_HEAD(&ctx->list);
2853 INIT_LIST_HEAD(&ctx->ordered_extents);
2854 INIT_LIST_HEAD(&ctx->conflict_inodes);
2855 ctx->num_conflict_inodes = 0;
2856 ctx->logging_conflict_inodes = false;
2857 ctx->scratch_eb = NULL;
2858}
2859
2860void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2861{
2862 struct btrfs_inode *inode = ctx->inode;
2863
2864 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2865 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2866 return;
2867
2868 /*
2869 * Don't care about allocation failure. This is just for optimization,
2870 * if we fail to allocate here, we will try again later if needed.
2871 */
2872 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2873}
2874
2875void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2876{
2877 struct btrfs_ordered_extent *ordered;
2878 struct btrfs_ordered_extent *tmp;
2879
2880 btrfs_assert_inode_locked(ctx->inode);
2881
2882 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2883 list_del_init(&ordered->log_list);
2884 btrfs_put_ordered_extent(ordered);
2885 }
2886}
2887
2888
2889static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2890 struct btrfs_log_ctx *ctx)
2891{
2892 mutex_lock(&root->log_mutex);
2893 list_del_init(&ctx->list);
2894 mutex_unlock(&root->log_mutex);
2895}
2896
2897/*
2898 * Invoked in log mutex context, or be sure there is no other task which
2899 * can access the list.
2900 */
2901static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2902 int index, int error)
2903{
2904 struct btrfs_log_ctx *ctx;
2905 struct btrfs_log_ctx *safe;
2906
2907 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2908 list_del_init(&ctx->list);
2909 ctx->log_ret = error;
2910 }
2911}
2912
2913/*
2914 * Sends a given tree log down to the disk and updates the super blocks to
2915 * record it. When this call is done, you know that any inodes previously
2916 * logged are safely on disk only if it returns 0.
2917 *
2918 * Any other return value means you need to call btrfs_commit_transaction.
2919 * Some of the edge cases for fsyncing directories that have had unlinks
2920 * or renames done in the past mean that sometimes the only safe
2921 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2922 * that has happened.
2923 */
2924int btrfs_sync_log(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2926{
2927 int index1;
2928 int index2;
2929 int mark;
2930 int ret;
2931 struct btrfs_fs_info *fs_info = root->fs_info;
2932 struct btrfs_root *log = root->log_root;
2933 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2934 struct btrfs_root_item new_root_item;
2935 int log_transid = 0;
2936 struct btrfs_log_ctx root_log_ctx;
2937 struct blk_plug plug;
2938 u64 log_root_start;
2939 u64 log_root_level;
2940
2941 mutex_lock(&root->log_mutex);
2942 log_transid = ctx->log_transid;
2943 if (root->log_transid_committed >= log_transid) {
2944 mutex_unlock(&root->log_mutex);
2945 return ctx->log_ret;
2946 }
2947
2948 index1 = log_transid % 2;
2949 if (atomic_read(&root->log_commit[index1])) {
2950 wait_log_commit(root, log_transid);
2951 mutex_unlock(&root->log_mutex);
2952 return ctx->log_ret;
2953 }
2954 ASSERT(log_transid == root->log_transid);
2955 atomic_set(&root->log_commit[index1], 1);
2956
2957 /* wait for previous tree log sync to complete */
2958 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2959 wait_log_commit(root, log_transid - 1);
2960
2961 while (1) {
2962 int batch = atomic_read(&root->log_batch);
2963 /* when we're on an ssd, just kick the log commit out */
2964 if (!btrfs_test_opt(fs_info, SSD) &&
2965 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2966 mutex_unlock(&root->log_mutex);
2967 schedule_timeout_uninterruptible(1);
2968 mutex_lock(&root->log_mutex);
2969 }
2970 wait_for_writer(root);
2971 if (batch == atomic_read(&root->log_batch))
2972 break;
2973 }
2974
2975 /* bail out if we need to do a full commit */
2976 if (btrfs_need_log_full_commit(trans)) {
2977 ret = BTRFS_LOG_FORCE_COMMIT;
2978 mutex_unlock(&root->log_mutex);
2979 goto out;
2980 }
2981
2982 if (log_transid % 2 == 0)
2983 mark = EXTENT_DIRTY;
2984 else
2985 mark = EXTENT_NEW;
2986
2987 /* we start IO on all the marked extents here, but we don't actually
2988 * wait for them until later.
2989 */
2990 blk_start_plug(&plug);
2991 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2992 /*
2993 * -EAGAIN happens when someone, e.g., a concurrent transaction
2994 * commit, writes a dirty extent in this tree-log commit. This
2995 * concurrent write will create a hole writing out the extents,
2996 * and we cannot proceed on a zoned filesystem, requiring
2997 * sequential writing. While we can bail out to a full commit
2998 * here, but we can continue hoping the concurrent writing fills
2999 * the hole.
3000 */
3001 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3002 ret = 0;
3003 if (ret) {
3004 blk_finish_plug(&plug);
3005 btrfs_set_log_full_commit(trans);
3006 mutex_unlock(&root->log_mutex);
3007 goto out;
3008 }
3009
3010 /*
3011 * We _must_ update under the root->log_mutex in order to make sure we
3012 * have a consistent view of the log root we are trying to commit at
3013 * this moment.
3014 *
3015 * We _must_ copy this into a local copy, because we are not holding the
3016 * log_root_tree->log_mutex yet. This is important because when we
3017 * commit the log_root_tree we must have a consistent view of the
3018 * log_root_tree when we update the super block to point at the
3019 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3020 * with the commit and possibly point at the new block which we may not
3021 * have written out.
3022 */
3023 btrfs_set_root_node(&log->root_item, log->node);
3024 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3025
3026 btrfs_set_root_log_transid(root, root->log_transid + 1);
3027 log->log_transid = root->log_transid;
3028 root->log_start_pid = 0;
3029 /*
3030 * IO has been started, blocks of the log tree have WRITTEN flag set
3031 * in their headers. new modifications of the log will be written to
3032 * new positions. so it's safe to allow log writers to go in.
3033 */
3034 mutex_unlock(&root->log_mutex);
3035
3036 if (btrfs_is_zoned(fs_info)) {
3037 mutex_lock(&fs_info->tree_root->log_mutex);
3038 if (!log_root_tree->node) {
3039 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3040 if (ret) {
3041 mutex_unlock(&fs_info->tree_root->log_mutex);
3042 blk_finish_plug(&plug);
3043 goto out;
3044 }
3045 }
3046 mutex_unlock(&fs_info->tree_root->log_mutex);
3047 }
3048
3049 btrfs_init_log_ctx(&root_log_ctx, NULL);
3050
3051 mutex_lock(&log_root_tree->log_mutex);
3052
3053 index2 = log_root_tree->log_transid % 2;
3054 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3055 root_log_ctx.log_transid = log_root_tree->log_transid;
3056
3057 /*
3058 * Now we are safe to update the log_root_tree because we're under the
3059 * log_mutex, and we're a current writer so we're holding the commit
3060 * open until we drop the log_mutex.
3061 */
3062 ret = update_log_root(trans, log, &new_root_item);
3063 if (ret) {
3064 list_del_init(&root_log_ctx.list);
3065 blk_finish_plug(&plug);
3066 btrfs_set_log_full_commit(trans);
3067 if (ret != -ENOSPC)
3068 btrfs_err(fs_info,
3069 "failed to update log for root %llu ret %d",
3070 btrfs_root_id(root), ret);
3071 btrfs_wait_tree_log_extents(log, mark);
3072 mutex_unlock(&log_root_tree->log_mutex);
3073 goto out;
3074 }
3075
3076 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3077 blk_finish_plug(&plug);
3078 list_del_init(&root_log_ctx.list);
3079 mutex_unlock(&log_root_tree->log_mutex);
3080 ret = root_log_ctx.log_ret;
3081 goto out;
3082 }
3083
3084 if (atomic_read(&log_root_tree->log_commit[index2])) {
3085 blk_finish_plug(&plug);
3086 ret = btrfs_wait_tree_log_extents(log, mark);
3087 wait_log_commit(log_root_tree,
3088 root_log_ctx.log_transid);
3089 mutex_unlock(&log_root_tree->log_mutex);
3090 if (!ret)
3091 ret = root_log_ctx.log_ret;
3092 goto out;
3093 }
3094 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3095 atomic_set(&log_root_tree->log_commit[index2], 1);
3096
3097 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3098 wait_log_commit(log_root_tree,
3099 root_log_ctx.log_transid - 1);
3100 }
3101
3102 /*
3103 * now that we've moved on to the tree of log tree roots,
3104 * check the full commit flag again
3105 */
3106 if (btrfs_need_log_full_commit(trans)) {
3107 blk_finish_plug(&plug);
3108 btrfs_wait_tree_log_extents(log, mark);
3109 mutex_unlock(&log_root_tree->log_mutex);
3110 ret = BTRFS_LOG_FORCE_COMMIT;
3111 goto out_wake_log_root;
3112 }
3113
3114 ret = btrfs_write_marked_extents(fs_info,
3115 &log_root_tree->dirty_log_pages,
3116 EXTENT_DIRTY | EXTENT_NEW);
3117 blk_finish_plug(&plug);
3118 /*
3119 * As described above, -EAGAIN indicates a hole in the extents. We
3120 * cannot wait for these write outs since the waiting cause a
3121 * deadlock. Bail out to the full commit instead.
3122 */
3123 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3124 btrfs_set_log_full_commit(trans);
3125 btrfs_wait_tree_log_extents(log, mark);
3126 mutex_unlock(&log_root_tree->log_mutex);
3127 goto out_wake_log_root;
3128 } else if (ret) {
3129 btrfs_set_log_full_commit(trans);
3130 mutex_unlock(&log_root_tree->log_mutex);
3131 goto out_wake_log_root;
3132 }
3133 ret = btrfs_wait_tree_log_extents(log, mark);
3134 if (!ret)
3135 ret = btrfs_wait_tree_log_extents(log_root_tree,
3136 EXTENT_NEW | EXTENT_DIRTY);
3137 if (ret) {
3138 btrfs_set_log_full_commit(trans);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out_wake_log_root;
3141 }
3142
3143 log_root_start = log_root_tree->node->start;
3144 log_root_level = btrfs_header_level(log_root_tree->node);
3145 log_root_tree->log_transid++;
3146 mutex_unlock(&log_root_tree->log_mutex);
3147
3148 /*
3149 * Here we are guaranteed that nobody is going to write the superblock
3150 * for the current transaction before us and that neither we do write
3151 * our superblock before the previous transaction finishes its commit
3152 * and writes its superblock, because:
3153 *
3154 * 1) We are holding a handle on the current transaction, so no body
3155 * can commit it until we release the handle;
3156 *
3157 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158 * if the previous transaction is still committing, and hasn't yet
3159 * written its superblock, we wait for it to do it, because a
3160 * transaction commit acquires the tree_log_mutex when the commit
3161 * begins and releases it only after writing its superblock.
3162 */
3163 mutex_lock(&fs_info->tree_log_mutex);
3164
3165 /*
3166 * The previous transaction writeout phase could have failed, and thus
3167 * marked the fs in an error state. We must not commit here, as we
3168 * could have updated our generation in the super_for_commit and
3169 * writing the super here would result in transid mismatches. If there
3170 * is an error here just bail.
3171 */
3172 if (BTRFS_FS_ERROR(fs_info)) {
3173 ret = -EIO;
3174 btrfs_set_log_full_commit(trans);
3175 btrfs_abort_transaction(trans, ret);
3176 mutex_unlock(&fs_info->tree_log_mutex);
3177 goto out_wake_log_root;
3178 }
3179
3180 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3181 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3182 ret = write_all_supers(fs_info, 1);
3183 mutex_unlock(&fs_info->tree_log_mutex);
3184 if (ret) {
3185 btrfs_set_log_full_commit(trans);
3186 btrfs_abort_transaction(trans, ret);
3187 goto out_wake_log_root;
3188 }
3189
3190 /*
3191 * We know there can only be one task here, since we have not yet set
3192 * root->log_commit[index1] to 0 and any task attempting to sync the
3193 * log must wait for the previous log transaction to commit if it's
3194 * still in progress or wait for the current log transaction commit if
3195 * someone else already started it. We use <= and not < because the
3196 * first log transaction has an ID of 0.
3197 */
3198 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3199 btrfs_set_root_last_log_commit(root, log_transid);
3200
3201out_wake_log_root:
3202 mutex_lock(&log_root_tree->log_mutex);
3203 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3204
3205 log_root_tree->log_transid_committed++;
3206 atomic_set(&log_root_tree->log_commit[index2], 0);
3207 mutex_unlock(&log_root_tree->log_mutex);
3208
3209 /*
3210 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211 * all the updates above are seen by the woken threads. It might not be
3212 * necessary, but proving that seems to be hard.
3213 */
3214 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3215out:
3216 mutex_lock(&root->log_mutex);
3217 btrfs_remove_all_log_ctxs(root, index1, ret);
3218 root->log_transid_committed++;
3219 atomic_set(&root->log_commit[index1], 0);
3220 mutex_unlock(&root->log_mutex);
3221
3222 /*
3223 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224 * all the updates above are seen by the woken threads. It might not be
3225 * necessary, but proving that seems to be hard.
3226 */
3227 cond_wake_up(&root->log_commit_wait[index1]);
3228 return ret;
3229}
3230
3231static void free_log_tree(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log)
3233{
3234 int ret;
3235 struct walk_control wc = {
3236 .free = 1,
3237 .process_func = process_one_buffer
3238 };
3239
3240 if (log->node) {
3241 ret = walk_log_tree(trans, log, &wc);
3242 if (ret) {
3243 /*
3244 * We weren't able to traverse the entire log tree, the
3245 * typical scenario is getting an -EIO when reading an
3246 * extent buffer of the tree, due to a previous writeback
3247 * failure of it.
3248 */
3249 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3250 &log->fs_info->fs_state);
3251
3252 /*
3253 * Some extent buffers of the log tree may still be dirty
3254 * and not yet written back to storage, because we may
3255 * have updates to a log tree without syncing a log tree,
3256 * such as during rename and link operations. So flush
3257 * them out and wait for their writeback to complete, so
3258 * that we properly cleanup their state and pages.
3259 */
3260 btrfs_write_marked_extents(log->fs_info,
3261 &log->dirty_log_pages,
3262 EXTENT_DIRTY | EXTENT_NEW);
3263 btrfs_wait_tree_log_extents(log,
3264 EXTENT_DIRTY | EXTENT_NEW);
3265
3266 if (trans)
3267 btrfs_abort_transaction(trans, ret);
3268 else
3269 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3270 }
3271 }
3272
3273 extent_io_tree_release(&log->dirty_log_pages);
3274 extent_io_tree_release(&log->log_csum_range);
3275
3276 btrfs_put_root(log);
3277}
3278
3279/*
3280 * free all the extents used by the tree log. This should be called
3281 * at commit time of the full transaction
3282 */
3283int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3284{
3285 if (root->log_root) {
3286 free_log_tree(trans, root->log_root);
3287 root->log_root = NULL;
3288 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3289 }
3290 return 0;
3291}
3292
3293int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3294 struct btrfs_fs_info *fs_info)
3295{
3296 if (fs_info->log_root_tree) {
3297 free_log_tree(trans, fs_info->log_root_tree);
3298 fs_info->log_root_tree = NULL;
3299 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3300 }
3301 return 0;
3302}
3303
3304/*
3305 * Check if an inode was logged in the current transaction. This correctly deals
3306 * with the case where the inode was logged but has a logged_trans of 0, which
3307 * happens if the inode is evicted and loaded again, as logged_trans is an in
3308 * memory only field (not persisted).
3309 *
3310 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3311 * and < 0 on error.
3312 */
3313static int inode_logged(const struct btrfs_trans_handle *trans,
3314 struct btrfs_inode *inode,
3315 struct btrfs_path *path_in)
3316{
3317 struct btrfs_path *path = path_in;
3318 struct btrfs_key key;
3319 int ret;
3320
3321 if (inode->logged_trans == trans->transid)
3322 return 1;
3323
3324 /*
3325 * If logged_trans is not 0, then we know the inode logged was not logged
3326 * in this transaction, so we can return false right away.
3327 */
3328 if (inode->logged_trans > 0)
3329 return 0;
3330
3331 /*
3332 * If no log tree was created for this root in this transaction, then
3333 * the inode can not have been logged in this transaction. In that case
3334 * set logged_trans to anything greater than 0 and less than the current
3335 * transaction's ID, to avoid the search below in a future call in case
3336 * a log tree gets created after this.
3337 */
3338 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3339 inode->logged_trans = trans->transid - 1;
3340 return 0;
3341 }
3342
3343 /*
3344 * We have a log tree and the inode's logged_trans is 0. We can't tell
3345 * for sure if the inode was logged before in this transaction by looking
3346 * only at logged_trans. We could be pessimistic and assume it was, but
3347 * that can lead to unnecessarily logging an inode during rename and link
3348 * operations, and then further updating the log in followup rename and
3349 * link operations, specially if it's a directory, which adds latency
3350 * visible to applications doing a series of rename or link operations.
3351 *
3352 * A logged_trans of 0 here can mean several things:
3353 *
3354 * 1) The inode was never logged since the filesystem was mounted, and may
3355 * or may have not been evicted and loaded again;
3356 *
3357 * 2) The inode was logged in a previous transaction, then evicted and
3358 * then loaded again;
3359 *
3360 * 3) The inode was logged in the current transaction, then evicted and
3361 * then loaded again.
3362 *
3363 * For cases 1) and 2) we don't want to return true, but we need to detect
3364 * case 3) and return true. So we do a search in the log root for the inode
3365 * item.
3366 */
3367 key.objectid = btrfs_ino(inode);
3368 key.type = BTRFS_INODE_ITEM_KEY;
3369 key.offset = 0;
3370
3371 if (!path) {
3372 path = btrfs_alloc_path();
3373 if (!path)
3374 return -ENOMEM;
3375 }
3376
3377 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3378
3379 if (path_in)
3380 btrfs_release_path(path);
3381 else
3382 btrfs_free_path(path);
3383
3384 /*
3385 * Logging an inode always results in logging its inode item. So if we
3386 * did not find the item we know the inode was not logged for sure.
3387 */
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret > 0) {
3391 /*
3392 * Set logged_trans to a value greater than 0 and less then the
3393 * current transaction to avoid doing the search in future calls.
3394 */
3395 inode->logged_trans = trans->transid - 1;
3396 return 0;
3397 }
3398
3399 /*
3400 * The inode was previously logged and then evicted, set logged_trans to
3401 * the current transacion's ID, to avoid future tree searches as long as
3402 * the inode is not evicted again.
3403 */
3404 inode->logged_trans = trans->transid;
3405
3406 /*
3407 * If it's a directory, then we must set last_dir_index_offset to the
3408 * maximum possible value, so that the next attempt to log the inode does
3409 * not skip checking if dir index keys found in modified subvolume tree
3410 * leaves have been logged before, otherwise it would result in attempts
3411 * to insert duplicate dir index keys in the log tree. This must be done
3412 * because last_dir_index_offset is an in-memory only field, not persisted
3413 * in the inode item or any other on-disk structure, so its value is lost
3414 * once the inode is evicted.
3415 */
3416 if (S_ISDIR(inode->vfs_inode.i_mode))
3417 inode->last_dir_index_offset = (u64)-1;
3418
3419 return 1;
3420}
3421
3422/*
3423 * Delete a directory entry from the log if it exists.
3424 *
3425 * Returns < 0 on error
3426 * 1 if the entry does not exists
3427 * 0 if the entry existed and was successfully deleted
3428 */
3429static int del_logged_dentry(struct btrfs_trans_handle *trans,
3430 struct btrfs_root *log,
3431 struct btrfs_path *path,
3432 u64 dir_ino,
3433 const struct fscrypt_str *name,
3434 u64 index)
3435{
3436 struct btrfs_dir_item *di;
3437
3438 /*
3439 * We only log dir index items of a directory, so we don't need to look
3440 * for dir item keys.
3441 */
3442 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3443 index, name, -1);
3444 if (IS_ERR(di))
3445 return PTR_ERR(di);
3446 else if (!di)
3447 return 1;
3448
3449 /*
3450 * We do not need to update the size field of the directory's
3451 * inode item because on log replay we update the field to reflect
3452 * all existing entries in the directory (see overwrite_item()).
3453 */
3454 return btrfs_delete_one_dir_name(trans, log, path, di);
3455}
3456
3457/*
3458 * If both a file and directory are logged, and unlinks or renames are
3459 * mixed in, we have a few interesting corners:
3460 *
3461 * create file X in dir Y
3462 * link file X to X.link in dir Y
3463 * fsync file X
3464 * unlink file X but leave X.link
3465 * fsync dir Y
3466 *
3467 * After a crash we would expect only X.link to exist. But file X
3468 * didn't get fsync'd again so the log has back refs for X and X.link.
3469 *
3470 * We solve this by removing directory entries and inode backrefs from the
3471 * log when a file that was logged in the current transaction is
3472 * unlinked. Any later fsync will include the updated log entries, and
3473 * we'll be able to reconstruct the proper directory items from backrefs.
3474 *
3475 * This optimizations allows us to avoid relogging the entire inode
3476 * or the entire directory.
3477 */
3478void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *root,
3480 const struct fscrypt_str *name,
3481 struct btrfs_inode *dir, u64 index)
3482{
3483 struct btrfs_path *path;
3484 int ret;
3485
3486 ret = inode_logged(trans, dir, NULL);
3487 if (ret == 0)
3488 return;
3489 else if (ret < 0) {
3490 btrfs_set_log_full_commit(trans);
3491 return;
3492 }
3493
3494 ret = join_running_log_trans(root);
3495 if (ret)
3496 return;
3497
3498 mutex_lock(&dir->log_mutex);
3499
3500 path = btrfs_alloc_path();
3501 if (!path) {
3502 ret = -ENOMEM;
3503 goto out_unlock;
3504 }
3505
3506 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3507 name, index);
3508 btrfs_free_path(path);
3509out_unlock:
3510 mutex_unlock(&dir->log_mutex);
3511 if (ret < 0)
3512 btrfs_set_log_full_commit(trans);
3513 btrfs_end_log_trans(root);
3514}
3515
3516/* see comments for btrfs_del_dir_entries_in_log */
3517void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *root,
3519 const struct fscrypt_str *name,
3520 struct btrfs_inode *inode, u64 dirid)
3521{
3522 struct btrfs_root *log;
3523 u64 index;
3524 int ret;
3525
3526 ret = inode_logged(trans, inode, NULL);
3527 if (ret == 0)
3528 return;
3529 else if (ret < 0) {
3530 btrfs_set_log_full_commit(trans);
3531 return;
3532 }
3533
3534 ret = join_running_log_trans(root);
3535 if (ret)
3536 return;
3537 log = root->log_root;
3538 mutex_lock(&inode->log_mutex);
3539
3540 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3541 dirid, &index);
3542 mutex_unlock(&inode->log_mutex);
3543 if (ret < 0 && ret != -ENOENT)
3544 btrfs_set_log_full_commit(trans);
3545 btrfs_end_log_trans(root);
3546}
3547
3548/*
3549 * creates a range item in the log for 'dirid'. first_offset and
3550 * last_offset tell us which parts of the key space the log should
3551 * be considered authoritative for.
3552 */
3553static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *log,
3555 struct btrfs_path *path,
3556 u64 dirid,
3557 u64 first_offset, u64 last_offset)
3558{
3559 int ret;
3560 struct btrfs_key key;
3561 struct btrfs_dir_log_item *item;
3562
3563 key.objectid = dirid;
3564 key.offset = first_offset;
3565 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3566 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3567 /*
3568 * -EEXIST is fine and can happen sporadically when we are logging a
3569 * directory and have concurrent insertions in the subvolume's tree for
3570 * items from other inodes and that result in pushing off some dir items
3571 * from one leaf to another in order to accommodate for the new items.
3572 * This results in logging the same dir index range key.
3573 */
3574 if (ret && ret != -EEXIST)
3575 return ret;
3576
3577 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3578 struct btrfs_dir_log_item);
3579 if (ret == -EEXIST) {
3580 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3581
3582 /*
3583 * btrfs_del_dir_entries_in_log() might have been called during
3584 * an unlink between the initial insertion of this key and the
3585 * current update, or we might be logging a single entry deletion
3586 * during a rename, so set the new last_offset to the max value.
3587 */
3588 last_offset = max(last_offset, curr_end);
3589 }
3590 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3591 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3592 btrfs_release_path(path);
3593 return 0;
3594}
3595
3596static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3597 struct btrfs_inode *inode,
3598 struct extent_buffer *src,
3599 struct btrfs_path *dst_path,
3600 int start_slot,
3601 int count)
3602{
3603 struct btrfs_root *log = inode->root->log_root;
3604 char *ins_data = NULL;
3605 struct btrfs_item_batch batch;
3606 struct extent_buffer *dst;
3607 unsigned long src_offset;
3608 unsigned long dst_offset;
3609 u64 last_index;
3610 struct btrfs_key key;
3611 u32 item_size;
3612 int ret;
3613 int i;
3614
3615 ASSERT(count > 0);
3616 batch.nr = count;
3617
3618 if (count == 1) {
3619 btrfs_item_key_to_cpu(src, &key, start_slot);
3620 item_size = btrfs_item_size(src, start_slot);
3621 batch.keys = &key;
3622 batch.data_sizes = &item_size;
3623 batch.total_data_size = item_size;
3624 } else {
3625 struct btrfs_key *ins_keys;
3626 u32 *ins_sizes;
3627
3628 ins_data = kmalloc(count * sizeof(u32) +
3629 count * sizeof(struct btrfs_key), GFP_NOFS);
3630 if (!ins_data)
3631 return -ENOMEM;
3632
3633 ins_sizes = (u32 *)ins_data;
3634 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3635 batch.keys = ins_keys;
3636 batch.data_sizes = ins_sizes;
3637 batch.total_data_size = 0;
3638
3639 for (i = 0; i < count; i++) {
3640 const int slot = start_slot + i;
3641
3642 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3643 ins_sizes[i] = btrfs_item_size(src, slot);
3644 batch.total_data_size += ins_sizes[i];
3645 }
3646 }
3647
3648 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3649 if (ret)
3650 goto out;
3651
3652 dst = dst_path->nodes[0];
3653 /*
3654 * Copy all the items in bulk, in a single copy operation. Item data is
3655 * organized such that it's placed at the end of a leaf and from right
3656 * to left. For example, the data for the second item ends at an offset
3657 * that matches the offset where the data for the first item starts, the
3658 * data for the third item ends at an offset that matches the offset
3659 * where the data of the second items starts, and so on.
3660 * Therefore our source and destination start offsets for copy match the
3661 * offsets of the last items (highest slots).
3662 */
3663 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3664 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3665 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3666 btrfs_release_path(dst_path);
3667
3668 last_index = batch.keys[count - 1].offset;
3669 ASSERT(last_index > inode->last_dir_index_offset);
3670
3671 /*
3672 * If for some unexpected reason the last item's index is not greater
3673 * than the last index we logged, warn and force a transaction commit.
3674 */
3675 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3676 ret = BTRFS_LOG_FORCE_COMMIT;
3677 else
3678 inode->last_dir_index_offset = last_index;
3679
3680 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3681 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3682out:
3683 kfree(ins_data);
3684
3685 return ret;
3686}
3687
3688static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3689{
3690 const int slot = path->slots[0];
3691
3692 if (ctx->scratch_eb) {
3693 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3694 } else {
3695 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3696 if (!ctx->scratch_eb)
3697 return -ENOMEM;
3698 }
3699
3700 btrfs_release_path(path);
3701 path->nodes[0] = ctx->scratch_eb;
3702 path->slots[0] = slot;
3703 /*
3704 * Add extra ref to scratch eb so that it is not freed when callers
3705 * release the path, so we can reuse it later if needed.
3706 */
3707 atomic_inc(&ctx->scratch_eb->refs);
3708
3709 return 0;
3710}
3711
3712static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3713 struct btrfs_inode *inode,
3714 struct btrfs_path *path,
3715 struct btrfs_path *dst_path,
3716 struct btrfs_log_ctx *ctx,
3717 u64 *last_old_dentry_offset)
3718{
3719 struct btrfs_root *log = inode->root->log_root;
3720 struct extent_buffer *src;
3721 const int nritems = btrfs_header_nritems(path->nodes[0]);
3722 const u64 ino = btrfs_ino(inode);
3723 bool last_found = false;
3724 int batch_start = 0;
3725 int batch_size = 0;
3726 int ret;
3727
3728 /*
3729 * We need to clone the leaf, release the read lock on it, and use the
3730 * clone before modifying the log tree. See the comment at copy_items()
3731 * about why we need to do this.
3732 */
3733 ret = clone_leaf(path, ctx);
3734 if (ret < 0)
3735 return ret;
3736
3737 src = path->nodes[0];
3738
3739 for (int i = path->slots[0]; i < nritems; i++) {
3740 struct btrfs_dir_item *di;
3741 struct btrfs_key key;
3742 int ret;
3743
3744 btrfs_item_key_to_cpu(src, &key, i);
3745
3746 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747 last_found = true;
3748 break;
3749 }
3750
3751 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3752
3753 /*
3754 * Skip ranges of items that consist only of dir item keys created
3755 * in past transactions. However if we find a gap, we must log a
3756 * dir index range item for that gap, so that index keys in that
3757 * gap are deleted during log replay.
3758 */
3759 if (btrfs_dir_transid(src, di) < trans->transid) {
3760 if (key.offset > *last_old_dentry_offset + 1) {
3761 ret = insert_dir_log_key(trans, log, dst_path,
3762 ino, *last_old_dentry_offset + 1,
3763 key.offset - 1);
3764 if (ret < 0)
3765 return ret;
3766 }
3767
3768 *last_old_dentry_offset = key.offset;
3769 continue;
3770 }
3771
3772 /* If we logged this dir index item before, we can skip it. */
3773 if (key.offset <= inode->last_dir_index_offset)
3774 continue;
3775
3776 /*
3777 * We must make sure that when we log a directory entry, the
3778 * corresponding inode, after log replay, has a matching link
3779 * count. For example:
3780 *
3781 * touch foo
3782 * mkdir mydir
3783 * sync
3784 * ln foo mydir/bar
3785 * xfs_io -c "fsync" mydir
3786 * <crash>
3787 * <mount fs and log replay>
3788 *
3789 * Would result in a fsync log that when replayed, our file inode
3790 * would have a link count of 1, but we get two directory entries
3791 * pointing to the same inode. After removing one of the names,
3792 * it would not be possible to remove the other name, which
3793 * resulted always in stale file handle errors, and would not be
3794 * possible to rmdir the parent directory, since its i_size could
3795 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796 * resulting in -ENOTEMPTY errors.
3797 */
3798 if (!ctx->log_new_dentries) {
3799 struct btrfs_key di_key;
3800
3801 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3802 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3803 ctx->log_new_dentries = true;
3804 }
3805
3806 if (batch_size == 0)
3807 batch_start = i;
3808 batch_size++;
3809 }
3810
3811 if (batch_size > 0) {
3812 int ret;
3813
3814 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3815 batch_start, batch_size);
3816 if (ret < 0)
3817 return ret;
3818 }
3819
3820 return last_found ? 1 : 0;
3821}
3822
3823/*
3824 * log all the items included in the current transaction for a given
3825 * directory. This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3827 */
3828static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3829 struct btrfs_inode *inode,
3830 struct btrfs_path *path,
3831 struct btrfs_path *dst_path,
3832 struct btrfs_log_ctx *ctx,
3833 u64 min_offset, u64 *last_offset_ret)
3834{
3835 struct btrfs_key min_key;
3836 struct btrfs_root *root = inode->root;
3837 struct btrfs_root *log = root->log_root;
3838 int ret;
3839 u64 last_old_dentry_offset = min_offset - 1;
3840 u64 last_offset = (u64)-1;
3841 u64 ino = btrfs_ino(inode);
3842
3843 min_key.objectid = ino;
3844 min_key.type = BTRFS_DIR_INDEX_KEY;
3845 min_key.offset = min_offset;
3846
3847 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3848
3849 /*
3850 * we didn't find anything from this transaction, see if there
3851 * is anything at all
3852 */
3853 if (ret != 0 || min_key.objectid != ino ||
3854 min_key.type != BTRFS_DIR_INDEX_KEY) {
3855 min_key.objectid = ino;
3856 min_key.type = BTRFS_DIR_INDEX_KEY;
3857 min_key.offset = (u64)-1;
3858 btrfs_release_path(path);
3859 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3860 if (ret < 0) {
3861 btrfs_release_path(path);
3862 return ret;
3863 }
3864 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865
3866 /* if ret == 0 there are items for this type,
3867 * create a range to tell us the last key of this type.
3868 * otherwise, there are no items in this directory after
3869 * *min_offset, and we create a range to indicate that.
3870 */
3871 if (ret == 0) {
3872 struct btrfs_key tmp;
3873
3874 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875 path->slots[0]);
3876 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877 last_old_dentry_offset = tmp.offset;
3878 } else if (ret > 0) {
3879 ret = 0;
3880 }
3881
3882 goto done;
3883 }
3884
3885 /* go backward to find any previous key */
3886 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3887 if (ret == 0) {
3888 struct btrfs_key tmp;
3889
3890 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3891 /*
3892 * The dir index key before the first one we found that needs to
3893 * be logged might be in a previous leaf, and there might be a
3894 * gap between these keys, meaning that we had deletions that
3895 * happened. So the key range item we log (key type
3896 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897 * previous key's offset plus 1, so that those deletes are replayed.
3898 */
3899 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900 last_old_dentry_offset = tmp.offset;
3901 } else if (ret < 0) {
3902 goto done;
3903 }
3904
3905 btrfs_release_path(path);
3906
3907 /*
3908 * Find the first key from this transaction again or the one we were at
3909 * in the loop below in case we had to reschedule. We may be logging the
3910 * directory without holding its VFS lock, which happen when logging new
3911 * dentries (through log_new_dir_dentries()) or in some cases when we
3912 * need to log the parent directory of an inode. This means a dir index
3913 * key might be deleted from the inode's root, and therefore we may not
3914 * find it anymore. If we can't find it, just move to the next key. We
3915 * can not bail out and ignore, because if we do that we will simply
3916 * not log dir index keys that come after the one that was just deleted
3917 * and we can end up logging a dir index range that ends at (u64)-1
3918 * (@last_offset is initialized to that), resulting in removing dir
3919 * entries we should not remove at log replay time.
3920 */
3921search:
3922 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3923 if (ret > 0) {
3924 ret = btrfs_next_item(root, path);
3925 if (ret > 0) {
3926 /* There are no more keys in the inode's root. */
3927 ret = 0;
3928 goto done;
3929 }
3930 }
3931 if (ret < 0)
3932 goto done;
3933
3934 /*
3935 * we have a block from this transaction, log every item in it
3936 * from our directory
3937 */
3938 while (1) {
3939 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3940 &last_old_dentry_offset);
3941 if (ret != 0) {
3942 if (ret > 0)
3943 ret = 0;
3944 goto done;
3945 }
3946 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3947
3948 /*
3949 * look ahead to the next item and see if it is also
3950 * from this directory and from this transaction
3951 */
3952 ret = btrfs_next_leaf(root, path);
3953 if (ret) {
3954 if (ret == 1) {
3955 last_offset = (u64)-1;
3956 ret = 0;
3957 }
3958 goto done;
3959 }
3960 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3961 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3962 last_offset = (u64)-1;
3963 goto done;
3964 }
3965 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3966 /*
3967 * The next leaf was not changed in the current transaction
3968 * and has at least one dir index key.
3969 * We check for the next key because there might have been
3970 * one or more deletions between the last key we logged and
3971 * that next key. So the key range item we log (key type
3972 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973 * offset minus 1, so that those deletes are replayed.
3974 */
3975 last_offset = min_key.offset - 1;
3976 goto done;
3977 }
3978 if (need_resched()) {
3979 btrfs_release_path(path);
3980 cond_resched();
3981 goto search;
3982 }
3983 }
3984done:
3985 btrfs_release_path(path);
3986 btrfs_release_path(dst_path);
3987
3988 if (ret == 0) {
3989 *last_offset_ret = last_offset;
3990 /*
3991 * In case the leaf was changed in the current transaction but
3992 * all its dir items are from a past transaction, the last item
3993 * in the leaf is a dir item and there's no gap between that last
3994 * dir item and the first one on the next leaf (which did not
3995 * change in the current transaction), then we don't need to log
3996 * a range, last_old_dentry_offset is == to last_offset.
3997 */
3998 ASSERT(last_old_dentry_offset <= last_offset);
3999 if (last_old_dentry_offset < last_offset)
4000 ret = insert_dir_log_key(trans, log, path, ino,
4001 last_old_dentry_offset + 1,
4002 last_offset);
4003 }
4004
4005 return ret;
4006}
4007
4008/*
4009 * If the inode was logged before and it was evicted, then its
4010 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011 * key offset. If that's the case, search for it and update the inode. This
4012 * is to avoid lookups in the log tree every time we try to insert a dir index
4013 * key from a leaf changed in the current transaction, and to allow us to always
4014 * do batch insertions of dir index keys.
4015 */
4016static int update_last_dir_index_offset(struct btrfs_inode *inode,
4017 struct btrfs_path *path,
4018 const struct btrfs_log_ctx *ctx)
4019{
4020 const u64 ino = btrfs_ino(inode);
4021 struct btrfs_key key;
4022 int ret;
4023
4024 lockdep_assert_held(&inode->log_mutex);
4025
4026 if (inode->last_dir_index_offset != (u64)-1)
4027 return 0;
4028
4029 if (!ctx->logged_before) {
4030 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4031 return 0;
4032 }
4033
4034 key.objectid = ino;
4035 key.type = BTRFS_DIR_INDEX_KEY;
4036 key.offset = (u64)-1;
4037
4038 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4039 /*
4040 * An error happened or we actually have an index key with an offset
4041 * value of (u64)-1. Bail out, we're done.
4042 */
4043 if (ret <= 0)
4044 goto out;
4045
4046 ret = 0;
4047 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4048
4049 /*
4050 * No dir index items, bail out and leave last_dir_index_offset with
4051 * the value right before the first valid index value.
4052 */
4053 if (path->slots[0] == 0)
4054 goto out;
4055
4056 /*
4057 * btrfs_search_slot() left us at one slot beyond the slot with the last
4058 * index key, or beyond the last key of the directory that is not an
4059 * index key. If we have an index key before, set last_dir_index_offset
4060 * to its offset value, otherwise leave it with a value right before the
4061 * first valid index value, as it means we have an empty directory.
4062 */
4063 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4064 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4065 inode->last_dir_index_offset = key.offset;
4066
4067out:
4068 btrfs_release_path(path);
4069
4070 return ret;
4071}
4072
4073/*
4074 * logging directories is very similar to logging inodes, We find all the items
4075 * from the current transaction and write them to the log.
4076 *
4077 * The recovery code scans the directory in the subvolume, and if it finds a
4078 * key in the range logged that is not present in the log tree, then it means
4079 * that dir entry was unlinked during the transaction.
4080 *
4081 * In order for that scan to work, we must include one key smaller than
4082 * the smallest logged by this transaction and one key larger than the largest
4083 * key logged by this transaction.
4084 */
4085static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4086 struct btrfs_inode *inode,
4087 struct btrfs_path *path,
4088 struct btrfs_path *dst_path,
4089 struct btrfs_log_ctx *ctx)
4090{
4091 u64 min_key;
4092 u64 max_key;
4093 int ret;
4094
4095 ret = update_last_dir_index_offset(inode, path, ctx);
4096 if (ret)
4097 return ret;
4098
4099 min_key = BTRFS_DIR_START_INDEX;
4100 max_key = 0;
4101
4102 while (1) {
4103 ret = log_dir_items(trans, inode, path, dst_path,
4104 ctx, min_key, &max_key);
4105 if (ret)
4106 return ret;
4107 if (max_key == (u64)-1)
4108 break;
4109 min_key = max_key + 1;
4110 }
4111
4112 return 0;
4113}
4114
4115/*
4116 * a helper function to drop items from the log before we relog an
4117 * inode. max_key_type indicates the highest item type to remove.
4118 * This cannot be run for file data extents because it does not
4119 * free the extents they point to.
4120 */
4121static int drop_inode_items(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *log,
4123 struct btrfs_path *path,
4124 struct btrfs_inode *inode,
4125 int max_key_type)
4126{
4127 int ret;
4128 struct btrfs_key key;
4129 struct btrfs_key found_key;
4130 int start_slot;
4131
4132 key.objectid = btrfs_ino(inode);
4133 key.type = max_key_type;
4134 key.offset = (u64)-1;
4135
4136 while (1) {
4137 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4138 if (ret < 0) {
4139 break;
4140 } else if (ret > 0) {
4141 if (path->slots[0] == 0)
4142 break;
4143 path->slots[0]--;
4144 }
4145
4146 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4147 path->slots[0]);
4148
4149 if (found_key.objectid != key.objectid)
4150 break;
4151
4152 found_key.offset = 0;
4153 found_key.type = 0;
4154 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4155 if (ret < 0)
4156 break;
4157
4158 ret = btrfs_del_items(trans, log, path, start_slot,
4159 path->slots[0] - start_slot + 1);
4160 /*
4161 * If start slot isn't 0 then we don't need to re-search, we've
4162 * found the last guy with the objectid in this tree.
4163 */
4164 if (ret || start_slot != 0)
4165 break;
4166 btrfs_release_path(path);
4167 }
4168 btrfs_release_path(path);
4169 if (ret > 0)
4170 ret = 0;
4171 return ret;
4172}
4173
4174static int truncate_inode_items(struct btrfs_trans_handle *trans,
4175 struct btrfs_root *log_root,
4176 struct btrfs_inode *inode,
4177 u64 new_size, u32 min_type)
4178{
4179 struct btrfs_truncate_control control = {
4180 .new_size = new_size,
4181 .ino = btrfs_ino(inode),
4182 .min_type = min_type,
4183 .skip_ref_updates = true,
4184 };
4185
4186 return btrfs_truncate_inode_items(trans, log_root, &control);
4187}
4188
4189static void fill_inode_item(struct btrfs_trans_handle *trans,
4190 struct extent_buffer *leaf,
4191 struct btrfs_inode_item *item,
4192 struct inode *inode, int log_inode_only,
4193 u64 logged_isize)
4194{
4195 struct btrfs_map_token token;
4196 u64 flags;
4197
4198 btrfs_init_map_token(&token, leaf);
4199
4200 if (log_inode_only) {
4201 /* set the generation to zero so the recover code
4202 * can tell the difference between an logging
4203 * just to say 'this inode exists' and a logging
4204 * to say 'update this inode with these values'
4205 */
4206 btrfs_set_token_inode_generation(&token, item, 0);
4207 btrfs_set_token_inode_size(&token, item, logged_isize);
4208 } else {
4209 btrfs_set_token_inode_generation(&token, item,
4210 BTRFS_I(inode)->generation);
4211 btrfs_set_token_inode_size(&token, item, inode->i_size);
4212 }
4213
4214 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4215 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4216 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4217 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4218
4219 btrfs_set_token_timespec_sec(&token, &item->atime,
4220 inode_get_atime_sec(inode));
4221 btrfs_set_token_timespec_nsec(&token, &item->atime,
4222 inode_get_atime_nsec(inode));
4223
4224 btrfs_set_token_timespec_sec(&token, &item->mtime,
4225 inode_get_mtime_sec(inode));
4226 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4227 inode_get_mtime_nsec(inode));
4228
4229 btrfs_set_token_timespec_sec(&token, &item->ctime,
4230 inode_get_ctime_sec(inode));
4231 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4232 inode_get_ctime_nsec(inode));
4233
4234 /*
4235 * We do not need to set the nbytes field, in fact during a fast fsync
4236 * its value may not even be correct, since a fast fsync does not wait
4237 * for ordered extent completion, which is where we update nbytes, it
4238 * only waits for writeback to complete. During log replay as we find
4239 * file extent items and replay them, we adjust the nbytes field of the
4240 * inode item in subvolume tree as needed (see overwrite_item()).
4241 */
4242
4243 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4244 btrfs_set_token_inode_transid(&token, item, trans->transid);
4245 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4246 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4247 BTRFS_I(inode)->ro_flags);
4248 btrfs_set_token_inode_flags(&token, item, flags);
4249 btrfs_set_token_inode_block_group(&token, item, 0);
4250}
4251
4252static int log_inode_item(struct btrfs_trans_handle *trans,
4253 struct btrfs_root *log, struct btrfs_path *path,
4254 struct btrfs_inode *inode, bool inode_item_dropped)
4255{
4256 struct btrfs_inode_item *inode_item;
4257 struct btrfs_key key;
4258 int ret;
4259
4260 btrfs_get_inode_key(inode, &key);
4261 /*
4262 * If we are doing a fast fsync and the inode was logged before in the
4263 * current transaction, then we know the inode was previously logged and
4264 * it exists in the log tree. For performance reasons, in this case use
4265 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267 * contention in case there are concurrent fsyncs for other inodes of the
4268 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269 * already exists can also result in unnecessarily splitting a leaf.
4270 */
4271 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4272 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4273 ASSERT(ret <= 0);
4274 if (ret > 0)
4275 ret = -ENOENT;
4276 } else {
4277 /*
4278 * This means it is the first fsync in the current transaction,
4279 * so the inode item is not in the log and we need to insert it.
4280 * We can never get -EEXIST because we are only called for a fast
4281 * fsync and in case an inode eviction happens after the inode was
4282 * logged before in the current transaction, when we load again
4283 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284 * flags and set ->logged_trans to 0.
4285 */
4286 ret = btrfs_insert_empty_item(trans, log, path, &key,
4287 sizeof(*inode_item));
4288 ASSERT(ret != -EEXIST);
4289 }
4290 if (ret)
4291 return ret;
4292 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4293 struct btrfs_inode_item);
4294 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4295 0, 0);
4296 btrfs_release_path(path);
4297 return 0;
4298}
4299
4300static int log_csums(struct btrfs_trans_handle *trans,
4301 struct btrfs_inode *inode,
4302 struct btrfs_root *log_root,
4303 struct btrfs_ordered_sum *sums)
4304{
4305 const u64 lock_end = sums->logical + sums->len - 1;
4306 struct extent_state *cached_state = NULL;
4307 int ret;
4308
4309 /*
4310 * If this inode was not used for reflink operations in the current
4311 * transaction with new extents, then do the fast path, no need to
4312 * worry about logging checksum items with overlapping ranges.
4313 */
4314 if (inode->last_reflink_trans < trans->transid)
4315 return btrfs_csum_file_blocks(trans, log_root, sums);
4316
4317 /*
4318 * Serialize logging for checksums. This is to avoid racing with the
4319 * same checksum being logged by another task that is logging another
4320 * file which happens to refer to the same extent as well. Such races
4321 * can leave checksum items in the log with overlapping ranges.
4322 */
4323 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4324 &cached_state);
4325 if (ret)
4326 return ret;
4327 /*
4328 * Due to extent cloning, we might have logged a csum item that covers a
4329 * subrange of a cloned extent, and later we can end up logging a csum
4330 * item for a larger subrange of the same extent or the entire range.
4331 * This would leave csum items in the log tree that cover the same range
4332 * and break the searches for checksums in the log tree, resulting in
4333 * some checksums missing in the fs/subvolume tree. So just delete (or
4334 * trim and adjust) any existing csum items in the log for this range.
4335 */
4336 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4337 if (!ret)
4338 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4339
4340 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4341 &cached_state);
4342
4343 return ret;
4344}
4345
4346static noinline int copy_items(struct btrfs_trans_handle *trans,
4347 struct btrfs_inode *inode,
4348 struct btrfs_path *dst_path,
4349 struct btrfs_path *src_path,
4350 int start_slot, int nr, int inode_only,
4351 u64 logged_isize, struct btrfs_log_ctx *ctx)
4352{
4353 struct btrfs_root *log = inode->root->log_root;
4354 struct btrfs_file_extent_item *extent;
4355 struct extent_buffer *src;
4356 int ret;
4357 struct btrfs_key *ins_keys;
4358 u32 *ins_sizes;
4359 struct btrfs_item_batch batch;
4360 char *ins_data;
4361 int dst_index;
4362 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4363 const u64 i_size = i_size_read(&inode->vfs_inode);
4364
4365 /*
4366 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367 * use the clone. This is because otherwise we would be changing the log
4368 * tree, to insert items from the subvolume tree or insert csum items,
4369 * while holding a read lock on a leaf from the subvolume tree, which
4370 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4371 *
4372 * 1) Modifying the log tree triggers an extent buffer allocation while
4373 * holding a write lock on a parent extent buffer from the log tree.
4374 * Allocating the pages for an extent buffer, or the extent buffer
4375 * struct, can trigger inode eviction and finally the inode eviction
4376 * will trigger a release/remove of a delayed node, which requires
4377 * taking the delayed node's mutex;
4378 *
4379 * 2) Allocating a metadata extent for a log tree can trigger the async
4380 * reclaim thread and make us wait for it to release enough space and
4381 * unblock our reservation ticket. The reclaim thread can start
4382 * flushing delayed items, and that in turn results in the need to
4383 * lock delayed node mutexes and in the need to write lock extent
4384 * buffers of a subvolume tree - all this while holding a write lock
4385 * on the parent extent buffer in the log tree.
4386 *
4387 * So one task in scenario 1) running in parallel with another task in
4388 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389 * node mutex while having a read lock on a leaf from the subvolume,
4390 * while the other is holding the delayed node's mutex and wants to
4391 * write lock the same subvolume leaf for flushing delayed items.
4392 */
4393 ret = clone_leaf(src_path, ctx);
4394 if (ret < 0)
4395 return ret;
4396
4397 src = src_path->nodes[0];
4398
4399 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4400 nr * sizeof(u32), GFP_NOFS);
4401 if (!ins_data)
4402 return -ENOMEM;
4403
4404 ins_sizes = (u32 *)ins_data;
4405 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4406 batch.keys = ins_keys;
4407 batch.data_sizes = ins_sizes;
4408 batch.total_data_size = 0;
4409 batch.nr = 0;
4410
4411 dst_index = 0;
4412 for (int i = 0; i < nr; i++) {
4413 const int src_slot = start_slot + i;
4414 struct btrfs_root *csum_root;
4415 struct btrfs_ordered_sum *sums;
4416 struct btrfs_ordered_sum *sums_next;
4417 LIST_HEAD(ordered_sums);
4418 u64 disk_bytenr;
4419 u64 disk_num_bytes;
4420 u64 extent_offset;
4421 u64 extent_num_bytes;
4422 bool is_old_extent;
4423
4424 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4425
4426 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4427 goto add_to_batch;
4428
4429 extent = btrfs_item_ptr(src, src_slot,
4430 struct btrfs_file_extent_item);
4431
4432 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4433 trans->transid);
4434
4435 /*
4436 * Don't copy extents from past generations. That would make us
4437 * log a lot more metadata for common cases like doing only a
4438 * few random writes into a file and then fsync it for the first
4439 * time or after the full sync flag is set on the inode. We can
4440 * get leaves full of extent items, most of which are from past
4441 * generations, so we can skip them - as long as the inode has
4442 * not been the target of a reflink operation in this transaction,
4443 * as in that case it might have had file extent items with old
4444 * generations copied into it. We also must always log prealloc
4445 * extents that start at or beyond eof, otherwise we would lose
4446 * them on log replay.
4447 */
4448 if (is_old_extent &&
4449 ins_keys[dst_index].offset < i_size &&
4450 inode->last_reflink_trans < trans->transid)
4451 continue;
4452
4453 if (skip_csum)
4454 goto add_to_batch;
4455
4456 /* Only regular extents have checksums. */
4457 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4458 goto add_to_batch;
4459
4460 /*
4461 * If it's an extent created in a past transaction, then its
4462 * checksums are already accessible from the committed csum tree,
4463 * no need to log them.
4464 */
4465 if (is_old_extent)
4466 goto add_to_batch;
4467
4468 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4469 /* If it's an explicit hole, there are no checksums. */
4470 if (disk_bytenr == 0)
4471 goto add_to_batch;
4472
4473 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4474
4475 if (btrfs_file_extent_compression(src, extent)) {
4476 extent_offset = 0;
4477 extent_num_bytes = disk_num_bytes;
4478 } else {
4479 extent_offset = btrfs_file_extent_offset(src, extent);
4480 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4481 }
4482
4483 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4484 disk_bytenr += extent_offset;
4485 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4486 disk_bytenr + extent_num_bytes - 1,
4487 &ordered_sums, false);
4488 if (ret < 0)
4489 goto out;
4490 ret = 0;
4491
4492 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4493 if (!ret)
4494 ret = log_csums(trans, inode, log, sums);
4495 list_del(&sums->list);
4496 kfree(sums);
4497 }
4498 if (ret)
4499 goto out;
4500
4501add_to_batch:
4502 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4503 batch.total_data_size += ins_sizes[dst_index];
4504 batch.nr++;
4505 dst_index++;
4506 }
4507
4508 /*
4509 * We have a leaf full of old extent items that don't need to be logged,
4510 * so we don't need to do anything.
4511 */
4512 if (batch.nr == 0)
4513 goto out;
4514
4515 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4516 if (ret)
4517 goto out;
4518
4519 dst_index = 0;
4520 for (int i = 0; i < nr; i++) {
4521 const int src_slot = start_slot + i;
4522 const int dst_slot = dst_path->slots[0] + dst_index;
4523 struct btrfs_key key;
4524 unsigned long src_offset;
4525 unsigned long dst_offset;
4526
4527 /*
4528 * We're done, all the remaining items in the source leaf
4529 * correspond to old file extent items.
4530 */
4531 if (dst_index >= batch.nr)
4532 break;
4533
4534 btrfs_item_key_to_cpu(src, &key, src_slot);
4535
4536 if (key.type != BTRFS_EXTENT_DATA_KEY)
4537 goto copy_item;
4538
4539 extent = btrfs_item_ptr(src, src_slot,
4540 struct btrfs_file_extent_item);
4541
4542 /* See the comment in the previous loop, same logic. */
4543 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4544 key.offset < i_size &&
4545 inode->last_reflink_trans < trans->transid)
4546 continue;
4547
4548copy_item:
4549 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4550 src_offset = btrfs_item_ptr_offset(src, src_slot);
4551
4552 if (key.type == BTRFS_INODE_ITEM_KEY) {
4553 struct btrfs_inode_item *inode_item;
4554
4555 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4556 struct btrfs_inode_item);
4557 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4558 &inode->vfs_inode,
4559 inode_only == LOG_INODE_EXISTS,
4560 logged_isize);
4561 } else {
4562 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4563 src_offset, ins_sizes[dst_index]);
4564 }
4565
4566 dst_index++;
4567 }
4568
4569 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4570 btrfs_release_path(dst_path);
4571out:
4572 kfree(ins_data);
4573
4574 return ret;
4575}
4576
4577static int extent_cmp(void *priv, const struct list_head *a,
4578 const struct list_head *b)
4579{
4580 const struct extent_map *em1, *em2;
4581
4582 em1 = list_entry(a, struct extent_map, list);
4583 em2 = list_entry(b, struct extent_map, list);
4584
4585 if (em1->start < em2->start)
4586 return -1;
4587 else if (em1->start > em2->start)
4588 return 1;
4589 return 0;
4590}
4591
4592static int log_extent_csums(struct btrfs_trans_handle *trans,
4593 struct btrfs_inode *inode,
4594 struct btrfs_root *log_root,
4595 const struct extent_map *em,
4596 struct btrfs_log_ctx *ctx)
4597{
4598 struct btrfs_ordered_extent *ordered;
4599 struct btrfs_root *csum_root;
4600 u64 block_start;
4601 u64 csum_offset;
4602 u64 csum_len;
4603 u64 mod_start = em->start;
4604 u64 mod_len = em->len;
4605 LIST_HEAD(ordered_sums);
4606 int ret = 0;
4607
4608 if (inode->flags & BTRFS_INODE_NODATASUM ||
4609 (em->flags & EXTENT_FLAG_PREALLOC) ||
4610 em->disk_bytenr == EXTENT_MAP_HOLE)
4611 return 0;
4612
4613 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4614 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4615 const u64 mod_end = mod_start + mod_len;
4616 struct btrfs_ordered_sum *sums;
4617
4618 if (mod_len == 0)
4619 break;
4620
4621 if (ordered_end <= mod_start)
4622 continue;
4623 if (mod_end <= ordered->file_offset)
4624 break;
4625
4626 /*
4627 * We are going to copy all the csums on this ordered extent, so
4628 * go ahead and adjust mod_start and mod_len in case this ordered
4629 * extent has already been logged.
4630 */
4631 if (ordered->file_offset > mod_start) {
4632 if (ordered_end >= mod_end)
4633 mod_len = ordered->file_offset - mod_start;
4634 /*
4635 * If we have this case
4636 *
4637 * |--------- logged extent ---------|
4638 * |----- ordered extent ----|
4639 *
4640 * Just don't mess with mod_start and mod_len, we'll
4641 * just end up logging more csums than we need and it
4642 * will be ok.
4643 */
4644 } else {
4645 if (ordered_end < mod_end) {
4646 mod_len = mod_end - ordered_end;
4647 mod_start = ordered_end;
4648 } else {
4649 mod_len = 0;
4650 }
4651 }
4652
4653 /*
4654 * To keep us from looping for the above case of an ordered
4655 * extent that falls inside of the logged extent.
4656 */
4657 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4658 continue;
4659
4660 list_for_each_entry(sums, &ordered->list, list) {
4661 ret = log_csums(trans, inode, log_root, sums);
4662 if (ret)
4663 return ret;
4664 }
4665 }
4666
4667 /* We're done, found all csums in the ordered extents. */
4668 if (mod_len == 0)
4669 return 0;
4670
4671 /* If we're compressed we have to save the entire range of csums. */
4672 if (extent_map_is_compressed(em)) {
4673 csum_offset = 0;
4674 csum_len = em->disk_num_bytes;
4675 } else {
4676 csum_offset = mod_start - em->start;
4677 csum_len = mod_len;
4678 }
4679
4680 /* block start is already adjusted for the file extent offset. */
4681 block_start = extent_map_block_start(em);
4682 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4683 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4684 block_start + csum_offset + csum_len - 1,
4685 &ordered_sums, false);
4686 if (ret < 0)
4687 return ret;
4688 ret = 0;
4689
4690 while (!list_empty(&ordered_sums)) {
4691 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4692 struct btrfs_ordered_sum,
4693 list);
4694 if (!ret)
4695 ret = log_csums(trans, inode, log_root, sums);
4696 list_del(&sums->list);
4697 kfree(sums);
4698 }
4699
4700 return ret;
4701}
4702
4703static int log_one_extent(struct btrfs_trans_handle *trans,
4704 struct btrfs_inode *inode,
4705 const struct extent_map *em,
4706 struct btrfs_path *path,
4707 struct btrfs_log_ctx *ctx)
4708{
4709 struct btrfs_drop_extents_args drop_args = { 0 };
4710 struct btrfs_root *log = inode->root->log_root;
4711 struct btrfs_file_extent_item fi = { 0 };
4712 struct extent_buffer *leaf;
4713 struct btrfs_key key;
4714 enum btrfs_compression_type compress_type;
4715 u64 extent_offset = em->offset;
4716 u64 block_start = extent_map_block_start(em);
4717 u64 block_len;
4718 int ret;
4719
4720 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4721 if (em->flags & EXTENT_FLAG_PREALLOC)
4722 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4723 else
4724 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4725
4726 block_len = em->disk_num_bytes;
4727 compress_type = extent_map_compression(em);
4728 if (compress_type != BTRFS_COMPRESS_NONE) {
4729 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4730 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4732 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4733 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4734 }
4735
4736 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4737 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4738 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4739 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4740
4741 ret = log_extent_csums(trans, inode, log, em, ctx);
4742 if (ret)
4743 return ret;
4744
4745 /*
4746 * If this is the first time we are logging the inode in the current
4747 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748 * because it does a deletion search, which always acquires write locks
4749 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750 * but also adds significant contention in a log tree, since log trees
4751 * are small, with a root at level 2 or 3 at most, due to their short
4752 * life span.
4753 */
4754 if (ctx->logged_before) {
4755 drop_args.path = path;
4756 drop_args.start = em->start;
4757 drop_args.end = em->start + em->len;
4758 drop_args.replace_extent = true;
4759 drop_args.extent_item_size = sizeof(fi);
4760 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4761 if (ret)
4762 return ret;
4763 }
4764
4765 if (!drop_args.extent_inserted) {
4766 key.objectid = btrfs_ino(inode);
4767 key.type = BTRFS_EXTENT_DATA_KEY;
4768 key.offset = em->start;
4769
4770 ret = btrfs_insert_empty_item(trans, log, path, &key,
4771 sizeof(fi));
4772 if (ret)
4773 return ret;
4774 }
4775 leaf = path->nodes[0];
4776 write_extent_buffer(leaf, &fi,
4777 btrfs_item_ptr_offset(leaf, path->slots[0]),
4778 sizeof(fi));
4779 btrfs_mark_buffer_dirty(trans, leaf);
4780
4781 btrfs_release_path(path);
4782
4783 return ret;
4784}
4785
4786/*
4787 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788 * lose them after doing a full/fast fsync and replaying the log. We scan the
4789 * subvolume's root instead of iterating the inode's extent map tree because
4790 * otherwise we can log incorrect extent items based on extent map conversion.
4791 * That can happen due to the fact that extent maps are merged when they
4792 * are not in the extent map tree's list of modified extents.
4793 */
4794static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4795 struct btrfs_inode *inode,
4796 struct btrfs_path *path,
4797 struct btrfs_log_ctx *ctx)
4798{
4799 struct btrfs_root *root = inode->root;
4800 struct btrfs_key key;
4801 const u64 i_size = i_size_read(&inode->vfs_inode);
4802 const u64 ino = btrfs_ino(inode);
4803 struct btrfs_path *dst_path = NULL;
4804 bool dropped_extents = false;
4805 u64 truncate_offset = i_size;
4806 struct extent_buffer *leaf;
4807 int slot;
4808 int ins_nr = 0;
4809 int start_slot = 0;
4810 int ret;
4811
4812 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4813 return 0;
4814
4815 key.objectid = ino;
4816 key.type = BTRFS_EXTENT_DATA_KEY;
4817 key.offset = i_size;
4818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4819 if (ret < 0)
4820 goto out;
4821
4822 /*
4823 * We must check if there is a prealloc extent that starts before the
4824 * i_size and crosses the i_size boundary. This is to ensure later we
4825 * truncate down to the end of that extent and not to the i_size, as
4826 * otherwise we end up losing part of the prealloc extent after a log
4827 * replay and with an implicit hole if there is another prealloc extent
4828 * that starts at an offset beyond i_size.
4829 */
4830 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4831 if (ret < 0)
4832 goto out;
4833
4834 if (ret == 0) {
4835 struct btrfs_file_extent_item *ei;
4836
4837 leaf = path->nodes[0];
4838 slot = path->slots[0];
4839 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4840
4841 if (btrfs_file_extent_type(leaf, ei) ==
4842 BTRFS_FILE_EXTENT_PREALLOC) {
4843 u64 extent_end;
4844
4845 btrfs_item_key_to_cpu(leaf, &key, slot);
4846 extent_end = key.offset +
4847 btrfs_file_extent_num_bytes(leaf, ei);
4848
4849 if (extent_end > i_size)
4850 truncate_offset = extent_end;
4851 }
4852 } else {
4853 ret = 0;
4854 }
4855
4856 while (true) {
4857 leaf = path->nodes[0];
4858 slot = path->slots[0];
4859
4860 if (slot >= btrfs_header_nritems(leaf)) {
4861 if (ins_nr > 0) {
4862 ret = copy_items(trans, inode, dst_path, path,
4863 start_slot, ins_nr, 1, 0, ctx);
4864 if (ret < 0)
4865 goto out;
4866 ins_nr = 0;
4867 }
4868 ret = btrfs_next_leaf(root, path);
4869 if (ret < 0)
4870 goto out;
4871 if (ret > 0) {
4872 ret = 0;
4873 break;
4874 }
4875 continue;
4876 }
4877
4878 btrfs_item_key_to_cpu(leaf, &key, slot);
4879 if (key.objectid > ino)
4880 break;
4881 if (WARN_ON_ONCE(key.objectid < ino) ||
4882 key.type < BTRFS_EXTENT_DATA_KEY ||
4883 key.offset < i_size) {
4884 path->slots[0]++;
4885 continue;
4886 }
4887 /*
4888 * Avoid overlapping items in the log tree. The first time we
4889 * get here, get rid of everything from a past fsync. After
4890 * that, if the current extent starts before the end of the last
4891 * extent we copied, truncate the last one. This can happen if
4892 * an ordered extent completion modifies the subvolume tree
4893 * while btrfs_next_leaf() has the tree unlocked.
4894 */
4895 if (!dropped_extents || key.offset < truncate_offset) {
4896 ret = truncate_inode_items(trans, root->log_root, inode,
4897 min(key.offset, truncate_offset),
4898 BTRFS_EXTENT_DATA_KEY);
4899 if (ret)
4900 goto out;
4901 dropped_extents = true;
4902 }
4903 truncate_offset = btrfs_file_extent_end(path);
4904 if (ins_nr == 0)
4905 start_slot = slot;
4906 ins_nr++;
4907 path->slots[0]++;
4908 if (!dst_path) {
4909 dst_path = btrfs_alloc_path();
4910 if (!dst_path) {
4911 ret = -ENOMEM;
4912 goto out;
4913 }
4914 }
4915 }
4916 if (ins_nr > 0)
4917 ret = copy_items(trans, inode, dst_path, path,
4918 start_slot, ins_nr, 1, 0, ctx);
4919out:
4920 btrfs_release_path(path);
4921 btrfs_free_path(dst_path);
4922 return ret;
4923}
4924
4925static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4926 struct btrfs_inode *inode,
4927 struct btrfs_path *path,
4928 struct btrfs_log_ctx *ctx)
4929{
4930 struct btrfs_ordered_extent *ordered;
4931 struct btrfs_ordered_extent *tmp;
4932 struct extent_map *em, *n;
4933 LIST_HEAD(extents);
4934 struct extent_map_tree *tree = &inode->extent_tree;
4935 int ret = 0;
4936 int num = 0;
4937
4938 write_lock(&tree->lock);
4939
4940 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4941 list_del_init(&em->list);
4942 /*
4943 * Just an arbitrary number, this can be really CPU intensive
4944 * once we start getting a lot of extents, and really once we
4945 * have a bunch of extents we just want to commit since it will
4946 * be faster.
4947 */
4948 if (++num > 32768) {
4949 list_del_init(&tree->modified_extents);
4950 ret = -EFBIG;
4951 goto process;
4952 }
4953
4954 if (em->generation < trans->transid)
4955 continue;
4956
4957 /* We log prealloc extents beyond eof later. */
4958 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4959 em->start >= i_size_read(&inode->vfs_inode))
4960 continue;
4961
4962 /* Need a ref to keep it from getting evicted from cache */
4963 refcount_inc(&em->refs);
4964 em->flags |= EXTENT_FLAG_LOGGING;
4965 list_add_tail(&em->list, &extents);
4966 num++;
4967 }
4968
4969 list_sort(NULL, &extents, extent_cmp);
4970process:
4971 while (!list_empty(&extents)) {
4972 em = list_entry(extents.next, struct extent_map, list);
4973
4974 list_del_init(&em->list);
4975
4976 /*
4977 * If we had an error we just need to delete everybody from our
4978 * private list.
4979 */
4980 if (ret) {
4981 clear_em_logging(inode, em);
4982 free_extent_map(em);
4983 continue;
4984 }
4985
4986 write_unlock(&tree->lock);
4987
4988 ret = log_one_extent(trans, inode, em, path, ctx);
4989 write_lock(&tree->lock);
4990 clear_em_logging(inode, em);
4991 free_extent_map(em);
4992 }
4993 WARN_ON(!list_empty(&extents));
4994 write_unlock(&tree->lock);
4995
4996 if (!ret)
4997 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4998 if (ret)
4999 return ret;
5000
5001 /*
5002 * We have logged all extents successfully, now make sure the commit of
5003 * the current transaction waits for the ordered extents to complete
5004 * before it commits and wipes out the log trees, otherwise we would
5005 * lose data if an ordered extents completes after the transaction
5006 * commits and a power failure happens after the transaction commit.
5007 */
5008 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5009 list_del_init(&ordered->log_list);
5010 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5011
5012 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5013 spin_lock_irq(&inode->ordered_tree_lock);
5014 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5015 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5016 atomic_inc(&trans->transaction->pending_ordered);
5017 }
5018 spin_unlock_irq(&inode->ordered_tree_lock);
5019 }
5020 btrfs_put_ordered_extent(ordered);
5021 }
5022
5023 return 0;
5024}
5025
5026static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5027 struct btrfs_path *path, u64 *size_ret)
5028{
5029 struct btrfs_key key;
5030 int ret;
5031
5032 key.objectid = btrfs_ino(inode);
5033 key.type = BTRFS_INODE_ITEM_KEY;
5034 key.offset = 0;
5035
5036 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5037 if (ret < 0) {
5038 return ret;
5039 } else if (ret > 0) {
5040 *size_ret = 0;
5041 } else {
5042 struct btrfs_inode_item *item;
5043
5044 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5045 struct btrfs_inode_item);
5046 *size_ret = btrfs_inode_size(path->nodes[0], item);
5047 /*
5048 * If the in-memory inode's i_size is smaller then the inode
5049 * size stored in the btree, return the inode's i_size, so
5050 * that we get a correct inode size after replaying the log
5051 * when before a power failure we had a shrinking truncate
5052 * followed by addition of a new name (rename / new hard link).
5053 * Otherwise return the inode size from the btree, to avoid
5054 * data loss when replaying a log due to previously doing a
5055 * write that expands the inode's size and logging a new name
5056 * immediately after.
5057 */
5058 if (*size_ret > inode->vfs_inode.i_size)
5059 *size_ret = inode->vfs_inode.i_size;
5060 }
5061
5062 btrfs_release_path(path);
5063 return 0;
5064}
5065
5066/*
5067 * At the moment we always log all xattrs. This is to figure out at log replay
5068 * time which xattrs must have their deletion replayed. If a xattr is missing
5069 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070 * because if a xattr is deleted, the inode is fsynced and a power failure
5071 * happens, causing the log to be replayed the next time the fs is mounted,
5072 * we want the xattr to not exist anymore (same behaviour as other filesystems
5073 * with a journal, ext3/4, xfs, f2fs, etc).
5074 */
5075static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5076 struct btrfs_inode *inode,
5077 struct btrfs_path *path,
5078 struct btrfs_path *dst_path,
5079 struct btrfs_log_ctx *ctx)
5080{
5081 struct btrfs_root *root = inode->root;
5082 int ret;
5083 struct btrfs_key key;
5084 const u64 ino = btrfs_ino(inode);
5085 int ins_nr = 0;
5086 int start_slot = 0;
5087 bool found_xattrs = false;
5088
5089 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5090 return 0;
5091
5092 key.objectid = ino;
5093 key.type = BTRFS_XATTR_ITEM_KEY;
5094 key.offset = 0;
5095
5096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097 if (ret < 0)
5098 return ret;
5099
5100 while (true) {
5101 int slot = path->slots[0];
5102 struct extent_buffer *leaf = path->nodes[0];
5103 int nritems = btrfs_header_nritems(leaf);
5104
5105 if (slot >= nritems) {
5106 if (ins_nr > 0) {
5107 ret = copy_items(trans, inode, dst_path, path,
5108 start_slot, ins_nr, 1, 0, ctx);
5109 if (ret < 0)
5110 return ret;
5111 ins_nr = 0;
5112 }
5113 ret = btrfs_next_leaf(root, path);
5114 if (ret < 0)
5115 return ret;
5116 else if (ret > 0)
5117 break;
5118 continue;
5119 }
5120
5121 btrfs_item_key_to_cpu(leaf, &key, slot);
5122 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5123 break;
5124
5125 if (ins_nr == 0)
5126 start_slot = slot;
5127 ins_nr++;
5128 path->slots[0]++;
5129 found_xattrs = true;
5130 cond_resched();
5131 }
5132 if (ins_nr > 0) {
5133 ret = copy_items(trans, inode, dst_path, path,
5134 start_slot, ins_nr, 1, 0, ctx);
5135 if (ret < 0)
5136 return ret;
5137 }
5138
5139 if (!found_xattrs)
5140 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5141
5142 return 0;
5143}
5144
5145/*
5146 * When using the NO_HOLES feature if we punched a hole that causes the
5147 * deletion of entire leafs or all the extent items of the first leaf (the one
5148 * that contains the inode item and references) we may end up not processing
5149 * any extents, because there are no leafs with a generation matching the
5150 * current transaction that have extent items for our inode. So we need to find
5151 * if any holes exist and then log them. We also need to log holes after any
5152 * truncate operation that changes the inode's size.
5153 */
5154static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5155 struct btrfs_inode *inode,
5156 struct btrfs_path *path)
5157{
5158 struct btrfs_root *root = inode->root;
5159 struct btrfs_fs_info *fs_info = root->fs_info;
5160 struct btrfs_key key;
5161 const u64 ino = btrfs_ino(inode);
5162 const u64 i_size = i_size_read(&inode->vfs_inode);
5163 u64 prev_extent_end = 0;
5164 int ret;
5165
5166 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5167 return 0;
5168
5169 key.objectid = ino;
5170 key.type = BTRFS_EXTENT_DATA_KEY;
5171 key.offset = 0;
5172
5173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5174 if (ret < 0)
5175 return ret;
5176
5177 while (true) {
5178 struct extent_buffer *leaf = path->nodes[0];
5179
5180 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5181 ret = btrfs_next_leaf(root, path);
5182 if (ret < 0)
5183 return ret;
5184 if (ret > 0) {
5185 ret = 0;
5186 break;
5187 }
5188 leaf = path->nodes[0];
5189 }
5190
5191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5192 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5193 break;
5194
5195 /* We have a hole, log it. */
5196 if (prev_extent_end < key.offset) {
5197 const u64 hole_len = key.offset - prev_extent_end;
5198
5199 /*
5200 * Release the path to avoid deadlocks with other code
5201 * paths that search the root while holding locks on
5202 * leafs from the log root.
5203 */
5204 btrfs_release_path(path);
5205 ret = btrfs_insert_hole_extent(trans, root->log_root,
5206 ino, prev_extent_end,
5207 hole_len);
5208 if (ret < 0)
5209 return ret;
5210
5211 /*
5212 * Search for the same key again in the root. Since it's
5213 * an extent item and we are holding the inode lock, the
5214 * key must still exist. If it doesn't just emit warning
5215 * and return an error to fall back to a transaction
5216 * commit.
5217 */
5218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5219 if (ret < 0)
5220 return ret;
5221 if (WARN_ON(ret > 0))
5222 return -ENOENT;
5223 leaf = path->nodes[0];
5224 }
5225
5226 prev_extent_end = btrfs_file_extent_end(path);
5227 path->slots[0]++;
5228 cond_resched();
5229 }
5230
5231 if (prev_extent_end < i_size) {
5232 u64 hole_len;
5233
5234 btrfs_release_path(path);
5235 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5236 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5237 prev_extent_end, hole_len);
5238 if (ret < 0)
5239 return ret;
5240 }
5241
5242 return 0;
5243}
5244
5245/*
5246 * When we are logging a new inode X, check if it doesn't have a reference that
5247 * matches the reference from some other inode Y created in a past transaction
5248 * and that was renamed in the current transaction. If we don't do this, then at
5249 * log replay time we can lose inode Y (and all its files if it's a directory):
5250 *
5251 * mkdir /mnt/x
5252 * echo "hello world" > /mnt/x/foobar
5253 * sync
5254 * mv /mnt/x /mnt/y
5255 * mkdir /mnt/x # or touch /mnt/x
5256 * xfs_io -c fsync /mnt/x
5257 * <power fail>
5258 * mount fs, trigger log replay
5259 *
5260 * After the log replay procedure, we would lose the first directory and all its
5261 * files (file foobar).
5262 * For the case where inode Y is not a directory we simply end up losing it:
5263 *
5264 * echo "123" > /mnt/foo
5265 * sync
5266 * mv /mnt/foo /mnt/bar
5267 * echo "abc" > /mnt/foo
5268 * xfs_io -c fsync /mnt/foo
5269 * <power fail>
5270 *
5271 * We also need this for cases where a snapshot entry is replaced by some other
5272 * entry (file or directory) otherwise we end up with an unreplayable log due to
5273 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274 * if it were a regular entry:
5275 *
5276 * mkdir /mnt/x
5277 * btrfs subvolume snapshot /mnt /mnt/x/snap
5278 * btrfs subvolume delete /mnt/x/snap
5279 * rmdir /mnt/x
5280 * mkdir /mnt/x
5281 * fsync /mnt/x or fsync some new file inside it
5282 * <power fail>
5283 *
5284 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285 * the same transaction.
5286 */
5287static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5288 const int slot,
5289 const struct btrfs_key *key,
5290 struct btrfs_inode *inode,
5291 u64 *other_ino, u64 *other_parent)
5292{
5293 int ret;
5294 struct btrfs_path *search_path;
5295 char *name = NULL;
5296 u32 name_len = 0;
5297 u32 item_size = btrfs_item_size(eb, slot);
5298 u32 cur_offset = 0;
5299 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5300
5301 search_path = btrfs_alloc_path();
5302 if (!search_path)
5303 return -ENOMEM;
5304 search_path->search_commit_root = 1;
5305 search_path->skip_locking = 1;
5306
5307 while (cur_offset < item_size) {
5308 u64 parent;
5309 u32 this_name_len;
5310 u32 this_len;
5311 unsigned long name_ptr;
5312 struct btrfs_dir_item *di;
5313 struct fscrypt_str name_str;
5314
5315 if (key->type == BTRFS_INODE_REF_KEY) {
5316 struct btrfs_inode_ref *iref;
5317
5318 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5319 parent = key->offset;
5320 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5321 name_ptr = (unsigned long)(iref + 1);
5322 this_len = sizeof(*iref) + this_name_len;
5323 } else {
5324 struct btrfs_inode_extref *extref;
5325
5326 extref = (struct btrfs_inode_extref *)(ptr +
5327 cur_offset);
5328 parent = btrfs_inode_extref_parent(eb, extref);
5329 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5330 name_ptr = (unsigned long)&extref->name;
5331 this_len = sizeof(*extref) + this_name_len;
5332 }
5333
5334 if (this_name_len > name_len) {
5335 char *new_name;
5336
5337 new_name = krealloc(name, this_name_len, GFP_NOFS);
5338 if (!new_name) {
5339 ret = -ENOMEM;
5340 goto out;
5341 }
5342 name_len = this_name_len;
5343 name = new_name;
5344 }
5345
5346 read_extent_buffer(eb, name, name_ptr, this_name_len);
5347
5348 name_str.name = name;
5349 name_str.len = this_name_len;
5350 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5351 parent, &name_str, 0);
5352 if (di && !IS_ERR(di)) {
5353 struct btrfs_key di_key;
5354
5355 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5356 di, &di_key);
5357 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5358 if (di_key.objectid != key->objectid) {
5359 ret = 1;
5360 *other_ino = di_key.objectid;
5361 *other_parent = parent;
5362 } else {
5363 ret = 0;
5364 }
5365 } else {
5366 ret = -EAGAIN;
5367 }
5368 goto out;
5369 } else if (IS_ERR(di)) {
5370 ret = PTR_ERR(di);
5371 goto out;
5372 }
5373 btrfs_release_path(search_path);
5374
5375 cur_offset += this_len;
5376 }
5377 ret = 0;
5378out:
5379 btrfs_free_path(search_path);
5380 kfree(name);
5381 return ret;
5382}
5383
5384/*
5385 * Check if we need to log an inode. This is used in contexts where while
5386 * logging an inode we need to log another inode (either that it exists or in
5387 * full mode). This is used instead of btrfs_inode_in_log() because the later
5388 * requires the inode to be in the log and have the log transaction committed,
5389 * while here we do not care if the log transaction was already committed - our
5390 * caller will commit the log later - and we want to avoid logging an inode
5391 * multiple times when multiple tasks have joined the same log transaction.
5392 */
5393static bool need_log_inode(const struct btrfs_trans_handle *trans,
5394 struct btrfs_inode *inode)
5395{
5396 /*
5397 * If a directory was not modified, no dentries added or removed, we can
5398 * and should avoid logging it.
5399 */
5400 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5401 return false;
5402
5403 /*
5404 * If this inode does not have new/updated/deleted xattrs since the last
5405 * time it was logged and is flagged as logged in the current transaction,
5406 * we can skip logging it. As for new/deleted names, those are updated in
5407 * the log by link/unlink/rename operations.
5408 * In case the inode was logged and then evicted and reloaded, its
5409 * logged_trans will be 0, in which case we have to fully log it since
5410 * logged_trans is a transient field, not persisted.
5411 */
5412 if (inode_logged(trans, inode, NULL) == 1 &&
5413 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5414 return false;
5415
5416 return true;
5417}
5418
5419struct btrfs_dir_list {
5420 u64 ino;
5421 struct list_head list;
5422};
5423
5424/*
5425 * Log the inodes of the new dentries of a directory.
5426 * See process_dir_items_leaf() for details about why it is needed.
5427 * This is a recursive operation - if an existing dentry corresponds to a
5428 * directory, that directory's new entries are logged too (same behaviour as
5429 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431 * complains about the following circular lock dependency / possible deadlock:
5432 *
5433 * CPU0 CPU1
5434 * ---- ----
5435 * lock(&type->i_mutex_dir_key#3/2);
5436 * lock(sb_internal#2);
5437 * lock(&type->i_mutex_dir_key#3/2);
5438 * lock(&sb->s_type->i_mutex_key#14);
5439 *
5440 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441 * sb_start_intwrite() in btrfs_start_transaction().
5442 * Not acquiring the VFS lock of the inodes is still safe because:
5443 *
5444 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445 * that while logging the inode new references (names) are added or removed
5446 * from the inode, leaving the logged inode item with a link count that does
5447 * not match the number of logged inode reference items. This is fine because
5448 * at log replay time we compute the real number of links and correct the
5449 * link count in the inode item (see replay_one_buffer() and
5450 * link_to_fixup_dir());
5451 *
5452 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453 * while logging the inode's items new index items (key type
5454 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455 * has a size that doesn't match the sum of the lengths of all the logged
5456 * names - this is ok, not a problem, because at log replay time we set the
5457 * directory's i_size to the correct value (see replay_one_name() and
5458 * overwrite_item()).
5459 */
5460static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5461 struct btrfs_inode *start_inode,
5462 struct btrfs_log_ctx *ctx)
5463{
5464 struct btrfs_root *root = start_inode->root;
5465 struct btrfs_path *path;
5466 LIST_HEAD(dir_list);
5467 struct btrfs_dir_list *dir_elem;
5468 u64 ino = btrfs_ino(start_inode);
5469 struct btrfs_inode *curr_inode = start_inode;
5470 int ret = 0;
5471
5472 /*
5473 * If we are logging a new name, as part of a link or rename operation,
5474 * don't bother logging new dentries, as we just want to log the names
5475 * of an inode and that any new parents exist.
5476 */
5477 if (ctx->logging_new_name)
5478 return 0;
5479
5480 path = btrfs_alloc_path();
5481 if (!path)
5482 return -ENOMEM;
5483
5484 /* Pairs with btrfs_add_delayed_iput below. */
5485 ihold(&curr_inode->vfs_inode);
5486
5487 while (true) {
5488 struct inode *vfs_inode;
5489 struct btrfs_key key;
5490 struct btrfs_key found_key;
5491 u64 next_index;
5492 bool continue_curr_inode = true;
5493 int iter_ret;
5494
5495 key.objectid = ino;
5496 key.type = BTRFS_DIR_INDEX_KEY;
5497 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5498 next_index = key.offset;
5499again:
5500 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5501 struct extent_buffer *leaf = path->nodes[0];
5502 struct btrfs_dir_item *di;
5503 struct btrfs_key di_key;
5504 struct inode *di_inode;
5505 int log_mode = LOG_INODE_EXISTS;
5506 int type;
5507
5508 if (found_key.objectid != ino ||
5509 found_key.type != BTRFS_DIR_INDEX_KEY) {
5510 continue_curr_inode = false;
5511 break;
5512 }
5513
5514 next_index = found_key.offset + 1;
5515
5516 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5517 type = btrfs_dir_ftype(leaf, di);
5518 if (btrfs_dir_transid(leaf, di) < trans->transid)
5519 continue;
5520 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5521 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5522 continue;
5523
5524 btrfs_release_path(path);
5525 di_inode = btrfs_iget_logging(di_key.objectid, root);
5526 if (IS_ERR(di_inode)) {
5527 ret = PTR_ERR(di_inode);
5528 goto out;
5529 }
5530
5531 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5532 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5533 break;
5534 }
5535
5536 ctx->log_new_dentries = false;
5537 if (type == BTRFS_FT_DIR)
5538 log_mode = LOG_INODE_ALL;
5539 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5540 log_mode, ctx);
5541 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5542 if (ret)
5543 goto out;
5544 if (ctx->log_new_dentries) {
5545 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5546 if (!dir_elem) {
5547 ret = -ENOMEM;
5548 goto out;
5549 }
5550 dir_elem->ino = di_key.objectid;
5551 list_add_tail(&dir_elem->list, &dir_list);
5552 }
5553 break;
5554 }
5555
5556 btrfs_release_path(path);
5557
5558 if (iter_ret < 0) {
5559 ret = iter_ret;
5560 goto out;
5561 } else if (iter_ret > 0) {
5562 continue_curr_inode = false;
5563 } else {
5564 key = found_key;
5565 }
5566
5567 if (continue_curr_inode && key.offset < (u64)-1) {
5568 key.offset++;
5569 goto again;
5570 }
5571
5572 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5573
5574 if (list_empty(&dir_list))
5575 break;
5576
5577 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5578 ino = dir_elem->ino;
5579 list_del(&dir_elem->list);
5580 kfree(dir_elem);
5581
5582 btrfs_add_delayed_iput(curr_inode);
5583 curr_inode = NULL;
5584
5585 vfs_inode = btrfs_iget_logging(ino, root);
5586 if (IS_ERR(vfs_inode)) {
5587 ret = PTR_ERR(vfs_inode);
5588 break;
5589 }
5590 curr_inode = BTRFS_I(vfs_inode);
5591 }
5592out:
5593 btrfs_free_path(path);
5594 if (curr_inode)
5595 btrfs_add_delayed_iput(curr_inode);
5596
5597 if (ret) {
5598 struct btrfs_dir_list *next;
5599
5600 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5601 kfree(dir_elem);
5602 }
5603
5604 return ret;
5605}
5606
5607struct btrfs_ino_list {
5608 u64 ino;
5609 u64 parent;
5610 struct list_head list;
5611};
5612
5613static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5614{
5615 struct btrfs_ino_list *curr;
5616 struct btrfs_ino_list *next;
5617
5618 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5619 list_del(&curr->list);
5620 kfree(curr);
5621 }
5622}
5623
5624static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5625 struct btrfs_path *path)
5626{
5627 struct btrfs_key key;
5628 int ret;
5629
5630 key.objectid = ino;
5631 key.type = BTRFS_INODE_ITEM_KEY;
5632 key.offset = 0;
5633
5634 path->search_commit_root = 1;
5635 path->skip_locking = 1;
5636
5637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 if (WARN_ON_ONCE(ret > 0)) {
5639 /*
5640 * We have previously found the inode through the commit root
5641 * so this should not happen. If it does, just error out and
5642 * fallback to a transaction commit.
5643 */
5644 ret = -ENOENT;
5645 } else if (ret == 0) {
5646 struct btrfs_inode_item *item;
5647
5648 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5649 struct btrfs_inode_item);
5650 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5651 ret = 1;
5652 }
5653
5654 btrfs_release_path(path);
5655 path->search_commit_root = 0;
5656 path->skip_locking = 0;
5657
5658 return ret;
5659}
5660
5661static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5662 struct btrfs_root *root,
5663 struct btrfs_path *path,
5664 u64 ino, u64 parent,
5665 struct btrfs_log_ctx *ctx)
5666{
5667 struct btrfs_ino_list *ino_elem;
5668 struct inode *inode;
5669
5670 /*
5671 * It's rare to have a lot of conflicting inodes, in practice it is not
5672 * common to have more than 1 or 2. We don't want to collect too many,
5673 * as we could end up logging too many inodes (even if only in
5674 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5675 * commits.
5676 */
5677 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5678 return BTRFS_LOG_FORCE_COMMIT;
5679
5680 inode = btrfs_iget_logging(ino, root);
5681 /*
5682 * If the other inode that had a conflicting dir entry was deleted in
5683 * the current transaction then we either:
5684 *
5685 * 1) Log the parent directory (later after adding it to the list) if
5686 * the inode is a directory. This is because it may be a deleted
5687 * subvolume/snapshot or it may be a regular directory that had
5688 * deleted subvolumes/snapshots (or subdirectories that had them),
5689 * and at the moment we can't deal with dropping subvolumes/snapshots
5690 * during log replay. So we just log the parent, which will result in
5691 * a fallback to a transaction commit if we are dealing with those
5692 * cases (last_unlink_trans will match the current transaction);
5693 *
5694 * 2) Do nothing if it's not a directory. During log replay we simply
5695 * unlink the conflicting dentry from the parent directory and then
5696 * add the dentry for our inode. Like this we can avoid logging the
5697 * parent directory (and maybe fallback to a transaction commit in
5698 * case it has a last_unlink_trans == trans->transid, due to moving
5699 * some inode from it to some other directory).
5700 */
5701 if (IS_ERR(inode)) {
5702 int ret = PTR_ERR(inode);
5703
5704 if (ret != -ENOENT)
5705 return ret;
5706
5707 ret = conflicting_inode_is_dir(root, ino, path);
5708 /* Not a directory or we got an error. */
5709 if (ret <= 0)
5710 return ret;
5711
5712 /* Conflicting inode is a directory, so we'll log its parent. */
5713 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5714 if (!ino_elem)
5715 return -ENOMEM;
5716 ino_elem->ino = ino;
5717 ino_elem->parent = parent;
5718 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5719 ctx->num_conflict_inodes++;
5720
5721 return 0;
5722 }
5723
5724 /*
5725 * If the inode was already logged skip it - otherwise we can hit an
5726 * infinite loop. Example:
5727 *
5728 * From the commit root (previous transaction) we have the following
5729 * inodes:
5730 *
5731 * inode 257 a directory
5732 * inode 258 with references "zz" and "zz_link" on inode 257
5733 * inode 259 with reference "a" on inode 257
5734 *
5735 * And in the current (uncommitted) transaction we have:
5736 *
5737 * inode 257 a directory, unchanged
5738 * inode 258 with references "a" and "a2" on inode 257
5739 * inode 259 with reference "zz_link" on inode 257
5740 * inode 261 with reference "zz" on inode 257
5741 *
5742 * When logging inode 261 the following infinite loop could
5743 * happen if we don't skip already logged inodes:
5744 *
5745 * - we detect inode 258 as a conflicting inode, with inode 261
5746 * on reference "zz", and log it;
5747 *
5748 * - we detect inode 259 as a conflicting inode, with inode 258
5749 * on reference "a", and log it;
5750 *
5751 * - we detect inode 258 as a conflicting inode, with inode 259
5752 * on reference "zz_link", and log it - again! After this we
5753 * repeat the above steps forever.
5754 *
5755 * Here we can use need_log_inode() because we only need to log the
5756 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757 * so that the log ends up with the new name and without the old name.
5758 */
5759 if (!need_log_inode(trans, BTRFS_I(inode))) {
5760 btrfs_add_delayed_iput(BTRFS_I(inode));
5761 return 0;
5762 }
5763
5764 btrfs_add_delayed_iput(BTRFS_I(inode));
5765
5766 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5767 if (!ino_elem)
5768 return -ENOMEM;
5769 ino_elem->ino = ino;
5770 ino_elem->parent = parent;
5771 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5772 ctx->num_conflict_inodes++;
5773
5774 return 0;
5775}
5776
5777static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5778 struct btrfs_root *root,
5779 struct btrfs_log_ctx *ctx)
5780{
5781 int ret = 0;
5782
5783 /*
5784 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785 * otherwise we could have unbounded recursion of btrfs_log_inode()
5786 * calls. This check guarantees we can have only 1 level of recursion.
5787 */
5788 if (ctx->logging_conflict_inodes)
5789 return 0;
5790
5791 ctx->logging_conflict_inodes = true;
5792
5793 /*
5794 * New conflicting inodes may be found and added to the list while we
5795 * are logging a conflicting inode, so keep iterating while the list is
5796 * not empty.
5797 */
5798 while (!list_empty(&ctx->conflict_inodes)) {
5799 struct btrfs_ino_list *curr;
5800 struct inode *inode;
5801 u64 ino;
5802 u64 parent;
5803
5804 curr = list_first_entry(&ctx->conflict_inodes,
5805 struct btrfs_ino_list, list);
5806 ino = curr->ino;
5807 parent = curr->parent;
5808 list_del(&curr->list);
5809 kfree(curr);
5810
5811 inode = btrfs_iget_logging(ino, root);
5812 /*
5813 * If the other inode that had a conflicting dir entry was
5814 * deleted in the current transaction, we need to log its parent
5815 * directory. See the comment at add_conflicting_inode().
5816 */
5817 if (IS_ERR(inode)) {
5818 ret = PTR_ERR(inode);
5819 if (ret != -ENOENT)
5820 break;
5821
5822 inode = btrfs_iget_logging(parent, root);
5823 if (IS_ERR(inode)) {
5824 ret = PTR_ERR(inode);
5825 break;
5826 }
5827
5828 /*
5829 * Always log the directory, we cannot make this
5830 * conditional on need_log_inode() because the directory
5831 * might have been logged in LOG_INODE_EXISTS mode or
5832 * the dir index of the conflicting inode is not in a
5833 * dir index key range logged for the directory. So we
5834 * must make sure the deletion is recorded.
5835 */
5836 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5837 LOG_INODE_ALL, ctx);
5838 btrfs_add_delayed_iput(BTRFS_I(inode));
5839 if (ret)
5840 break;
5841 continue;
5842 }
5843
5844 /*
5845 * Here we can use need_log_inode() because we only need to log
5846 * the inode in LOG_INODE_EXISTS mode and rename operations
5847 * update the log, so that the log ends up with the new name and
5848 * without the old name.
5849 *
5850 * We did this check at add_conflicting_inode(), but here we do
5851 * it again because if some other task logged the inode after
5852 * that, we can avoid doing it again.
5853 */
5854 if (!need_log_inode(trans, BTRFS_I(inode))) {
5855 btrfs_add_delayed_iput(BTRFS_I(inode));
5856 continue;
5857 }
5858
5859 /*
5860 * We are safe logging the other inode without acquiring its
5861 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862 * are safe against concurrent renames of the other inode as
5863 * well because during a rename we pin the log and update the
5864 * log with the new name before we unpin it.
5865 */
5866 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5867 btrfs_add_delayed_iput(BTRFS_I(inode));
5868 if (ret)
5869 break;
5870 }
5871
5872 ctx->logging_conflict_inodes = false;
5873 if (ret)
5874 free_conflicting_inodes(ctx);
5875
5876 return ret;
5877}
5878
5879static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5880 struct btrfs_inode *inode,
5881 struct btrfs_key *min_key,
5882 const struct btrfs_key *max_key,
5883 struct btrfs_path *path,
5884 struct btrfs_path *dst_path,
5885 const u64 logged_isize,
5886 const int inode_only,
5887 struct btrfs_log_ctx *ctx,
5888 bool *need_log_inode_item)
5889{
5890 const u64 i_size = i_size_read(&inode->vfs_inode);
5891 struct btrfs_root *root = inode->root;
5892 int ins_start_slot = 0;
5893 int ins_nr = 0;
5894 int ret;
5895
5896 while (1) {
5897 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5898 if (ret < 0)
5899 return ret;
5900 if (ret > 0) {
5901 ret = 0;
5902 break;
5903 }
5904again:
5905 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906 if (min_key->objectid != max_key->objectid)
5907 break;
5908 if (min_key->type > max_key->type)
5909 break;
5910
5911 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5912 *need_log_inode_item = false;
5913 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5914 min_key->offset >= i_size) {
5915 /*
5916 * Extents at and beyond eof are logged with
5917 * btrfs_log_prealloc_extents().
5918 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919 * and no keys greater than that, so bail out.
5920 */
5921 break;
5922 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5923 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5924 (inode->generation == trans->transid ||
5925 ctx->logging_conflict_inodes)) {
5926 u64 other_ino = 0;
5927 u64 other_parent = 0;
5928
5929 ret = btrfs_check_ref_name_override(path->nodes[0],
5930 path->slots[0], min_key, inode,
5931 &other_ino, &other_parent);
5932 if (ret < 0) {
5933 return ret;
5934 } else if (ret > 0 &&
5935 other_ino != btrfs_ino(ctx->inode)) {
5936 if (ins_nr > 0) {
5937 ins_nr++;
5938 } else {
5939 ins_nr = 1;
5940 ins_start_slot = path->slots[0];
5941 }
5942 ret = copy_items(trans, inode, dst_path, path,
5943 ins_start_slot, ins_nr,
5944 inode_only, logged_isize, ctx);
5945 if (ret < 0)
5946 return ret;
5947 ins_nr = 0;
5948
5949 btrfs_release_path(path);
5950 ret = add_conflicting_inode(trans, root, path,
5951 other_ino,
5952 other_parent, ctx);
5953 if (ret)
5954 return ret;
5955 goto next_key;
5956 }
5957 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5958 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5959 if (ins_nr == 0)
5960 goto next_slot;
5961 ret = copy_items(trans, inode, dst_path, path,
5962 ins_start_slot,
5963 ins_nr, inode_only, logged_isize, ctx);
5964 if (ret < 0)
5965 return ret;
5966 ins_nr = 0;
5967 goto next_slot;
5968 }
5969
5970 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5971 ins_nr++;
5972 goto next_slot;
5973 } else if (!ins_nr) {
5974 ins_start_slot = path->slots[0];
5975 ins_nr = 1;
5976 goto next_slot;
5977 }
5978
5979 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5980 ins_nr, inode_only, logged_isize, ctx);
5981 if (ret < 0)
5982 return ret;
5983 ins_nr = 1;
5984 ins_start_slot = path->slots[0];
5985next_slot:
5986 path->slots[0]++;
5987 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5988 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5989 path->slots[0]);
5990 goto again;
5991 }
5992 if (ins_nr) {
5993 ret = copy_items(trans, inode, dst_path, path,
5994 ins_start_slot, ins_nr, inode_only,
5995 logged_isize, ctx);
5996 if (ret < 0)
5997 return ret;
5998 ins_nr = 0;
5999 }
6000 btrfs_release_path(path);
6001next_key:
6002 if (min_key->offset < (u64)-1) {
6003 min_key->offset++;
6004 } else if (min_key->type < max_key->type) {
6005 min_key->type++;
6006 min_key->offset = 0;
6007 } else {
6008 break;
6009 }
6010
6011 /*
6012 * We may process many leaves full of items for our inode, so
6013 * avoid monopolizing a cpu for too long by rescheduling while
6014 * not holding locks on any tree.
6015 */
6016 cond_resched();
6017 }
6018 if (ins_nr) {
6019 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6020 ins_nr, inode_only, logged_isize, ctx);
6021 if (ret)
6022 return ret;
6023 }
6024
6025 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6026 /*
6027 * Release the path because otherwise we might attempt to double
6028 * lock the same leaf with btrfs_log_prealloc_extents() below.
6029 */
6030 btrfs_release_path(path);
6031 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6032 }
6033
6034 return ret;
6035}
6036
6037static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6038 struct btrfs_root *log,
6039 struct btrfs_path *path,
6040 const struct btrfs_item_batch *batch,
6041 const struct btrfs_delayed_item *first_item)
6042{
6043 const struct btrfs_delayed_item *curr = first_item;
6044 int ret;
6045
6046 ret = btrfs_insert_empty_items(trans, log, path, batch);
6047 if (ret)
6048 return ret;
6049
6050 for (int i = 0; i < batch->nr; i++) {
6051 char *data_ptr;
6052
6053 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6054 write_extent_buffer(path->nodes[0], &curr->data,
6055 (unsigned long)data_ptr, curr->data_len);
6056 curr = list_next_entry(curr, log_list);
6057 path->slots[0]++;
6058 }
6059
6060 btrfs_release_path(path);
6061
6062 return 0;
6063}
6064
6065static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6066 struct btrfs_inode *inode,
6067 struct btrfs_path *path,
6068 const struct list_head *delayed_ins_list,
6069 struct btrfs_log_ctx *ctx)
6070{
6071 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072 const int max_batch_size = 195;
6073 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6074 const u64 ino = btrfs_ino(inode);
6075 struct btrfs_root *log = inode->root->log_root;
6076 struct btrfs_item_batch batch = {
6077 .nr = 0,
6078 .total_data_size = 0,
6079 };
6080 const struct btrfs_delayed_item *first = NULL;
6081 const struct btrfs_delayed_item *curr;
6082 char *ins_data;
6083 struct btrfs_key *ins_keys;
6084 u32 *ins_sizes;
6085 u64 curr_batch_size = 0;
6086 int batch_idx = 0;
6087 int ret;
6088
6089 /* We are adding dir index items to the log tree. */
6090 lockdep_assert_held(&inode->log_mutex);
6091
6092 /*
6093 * We collect delayed items before copying index keys from the subvolume
6094 * to the log tree. However just after we collected them, they may have
6095 * been flushed (all of them or just some of them), and therefore we
6096 * could have copied them from the subvolume tree to the log tree.
6097 * So find the first delayed item that was not yet logged (they are
6098 * sorted by index number).
6099 */
6100 list_for_each_entry(curr, delayed_ins_list, log_list) {
6101 if (curr->index > inode->last_dir_index_offset) {
6102 first = curr;
6103 break;
6104 }
6105 }
6106
6107 /* Empty list or all delayed items were already logged. */
6108 if (!first)
6109 return 0;
6110
6111 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6112 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6113 if (!ins_data)
6114 return -ENOMEM;
6115 ins_sizes = (u32 *)ins_data;
6116 batch.data_sizes = ins_sizes;
6117 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6118 batch.keys = ins_keys;
6119
6120 curr = first;
6121 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6122 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6123
6124 if (curr_batch_size + curr_size > leaf_data_size ||
6125 batch.nr == max_batch_size) {
6126 ret = insert_delayed_items_batch(trans, log, path,
6127 &batch, first);
6128 if (ret)
6129 goto out;
6130 batch_idx = 0;
6131 batch.nr = 0;
6132 batch.total_data_size = 0;
6133 curr_batch_size = 0;
6134 first = curr;
6135 }
6136
6137 ins_sizes[batch_idx] = curr->data_len;
6138 ins_keys[batch_idx].objectid = ino;
6139 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6140 ins_keys[batch_idx].offset = curr->index;
6141 curr_batch_size += curr_size;
6142 batch.total_data_size += curr->data_len;
6143 batch.nr++;
6144 batch_idx++;
6145 curr = list_next_entry(curr, log_list);
6146 }
6147
6148 ASSERT(batch.nr >= 1);
6149 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6150
6151 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6152 log_list);
6153 inode->last_dir_index_offset = curr->index;
6154out:
6155 kfree(ins_data);
6156
6157 return ret;
6158}
6159
6160static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6161 struct btrfs_inode *inode,
6162 struct btrfs_path *path,
6163 const struct list_head *delayed_del_list,
6164 struct btrfs_log_ctx *ctx)
6165{
6166 const u64 ino = btrfs_ino(inode);
6167 const struct btrfs_delayed_item *curr;
6168
6169 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170 log_list);
6171
6172 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173 u64 first_dir_index = curr->index;
6174 u64 last_dir_index;
6175 const struct btrfs_delayed_item *next;
6176 int ret;
6177
6178 /*
6179 * Find a range of consecutive dir index items to delete. Like
6180 * this we log a single dir range item spanning several contiguous
6181 * dir items instead of logging one range item per dir index item.
6182 */
6183 next = list_next_entry(curr, log_list);
6184 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6185 if (next->index != curr->index + 1)
6186 break;
6187 curr = next;
6188 next = list_next_entry(next, log_list);
6189 }
6190
6191 last_dir_index = curr->index;
6192 ASSERT(last_dir_index >= first_dir_index);
6193
6194 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6195 ino, first_dir_index, last_dir_index);
6196 if (ret)
6197 return ret;
6198 curr = list_next_entry(curr, log_list);
6199 }
6200
6201 return 0;
6202}
6203
6204static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6205 struct btrfs_inode *inode,
6206 struct btrfs_path *path,
6207 const struct list_head *delayed_del_list,
6208 const struct btrfs_delayed_item *first,
6209 const struct btrfs_delayed_item **last_ret)
6210{
6211 const struct btrfs_delayed_item *next;
6212 struct extent_buffer *leaf = path->nodes[0];
6213 const int last_slot = btrfs_header_nritems(leaf) - 1;
6214 int slot = path->slots[0] + 1;
6215 const u64 ino = btrfs_ino(inode);
6216
6217 next = list_next_entry(first, log_list);
6218
6219 while (slot < last_slot &&
6220 !list_entry_is_head(next, delayed_del_list, log_list)) {
6221 struct btrfs_key key;
6222
6223 btrfs_item_key_to_cpu(leaf, &key, slot);
6224 if (key.objectid != ino ||
6225 key.type != BTRFS_DIR_INDEX_KEY ||
6226 key.offset != next->index)
6227 break;
6228
6229 slot++;
6230 *last_ret = next;
6231 next = list_next_entry(next, log_list);
6232 }
6233
6234 return btrfs_del_items(trans, inode->root->log_root, path,
6235 path->slots[0], slot - path->slots[0]);
6236}
6237
6238static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6239 struct btrfs_inode *inode,
6240 struct btrfs_path *path,
6241 const struct list_head *delayed_del_list,
6242 struct btrfs_log_ctx *ctx)
6243{
6244 struct btrfs_root *log = inode->root->log_root;
6245 const struct btrfs_delayed_item *curr;
6246 u64 last_range_start = 0;
6247 u64 last_range_end = 0;
6248 struct btrfs_key key;
6249
6250 key.objectid = btrfs_ino(inode);
6251 key.type = BTRFS_DIR_INDEX_KEY;
6252 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6253 log_list);
6254
6255 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6256 const struct btrfs_delayed_item *last = curr;
6257 u64 first_dir_index = curr->index;
6258 u64 last_dir_index;
6259 bool deleted_items = false;
6260 int ret;
6261
6262 key.offset = curr->index;
6263 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6264 if (ret < 0) {
6265 return ret;
6266 } else if (ret == 0) {
6267 ret = batch_delete_dir_index_items(trans, inode, path,
6268 delayed_del_list, curr,
6269 &last);
6270 if (ret)
6271 return ret;
6272 deleted_items = true;
6273 }
6274
6275 btrfs_release_path(path);
6276
6277 /*
6278 * If we deleted items from the leaf, it means we have a range
6279 * item logging their range, so no need to add one or update an
6280 * existing one. Otherwise we have to log a dir range item.
6281 */
6282 if (deleted_items)
6283 goto next_batch;
6284
6285 last_dir_index = last->index;
6286 ASSERT(last_dir_index >= first_dir_index);
6287 /*
6288 * If this range starts right after where the previous one ends,
6289 * then we want to reuse the previous range item and change its
6290 * end offset to the end of this range. This is just to minimize
6291 * leaf space usage, by avoiding adding a new range item.
6292 */
6293 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6294 first_dir_index = last_range_start;
6295
6296 ret = insert_dir_log_key(trans, log, path, key.objectid,
6297 first_dir_index, last_dir_index);
6298 if (ret)
6299 return ret;
6300
6301 last_range_start = first_dir_index;
6302 last_range_end = last_dir_index;
6303next_batch:
6304 curr = list_next_entry(last, log_list);
6305 }
6306
6307 return 0;
6308}
6309
6310static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6311 struct btrfs_inode *inode,
6312 struct btrfs_path *path,
6313 const struct list_head *delayed_del_list,
6314 struct btrfs_log_ctx *ctx)
6315{
6316 /*
6317 * We are deleting dir index items from the log tree or adding range
6318 * items to it.
6319 */
6320 lockdep_assert_held(&inode->log_mutex);
6321
6322 if (list_empty(delayed_del_list))
6323 return 0;
6324
6325 if (ctx->logged_before)
6326 return log_delayed_deletions_incremental(trans, inode, path,
6327 delayed_del_list, ctx);
6328
6329 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6330 ctx);
6331}
6332
6333/*
6334 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6335 * items instead of the subvolume tree.
6336 */
6337static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6338 struct btrfs_inode *inode,
6339 const struct list_head *delayed_ins_list,
6340 struct btrfs_log_ctx *ctx)
6341{
6342 const bool orig_log_new_dentries = ctx->log_new_dentries;
6343 struct btrfs_delayed_item *item;
6344 int ret = 0;
6345
6346 /*
6347 * No need for the log mutex, plus to avoid potential deadlocks or
6348 * lockdep annotations due to nesting of delayed inode mutexes and log
6349 * mutexes.
6350 */
6351 lockdep_assert_not_held(&inode->log_mutex);
6352
6353 ASSERT(!ctx->logging_new_delayed_dentries);
6354 ctx->logging_new_delayed_dentries = true;
6355
6356 list_for_each_entry(item, delayed_ins_list, log_list) {
6357 struct btrfs_dir_item *dir_item;
6358 struct inode *di_inode;
6359 struct btrfs_key key;
6360 int log_mode = LOG_INODE_EXISTS;
6361
6362 dir_item = (struct btrfs_dir_item *)item->data;
6363 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6364
6365 if (key.type == BTRFS_ROOT_ITEM_KEY)
6366 continue;
6367
6368 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6369 if (IS_ERR(di_inode)) {
6370 ret = PTR_ERR(di_inode);
6371 break;
6372 }
6373
6374 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6375 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6376 continue;
6377 }
6378
6379 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6380 log_mode = LOG_INODE_ALL;
6381
6382 ctx->log_new_dentries = false;
6383 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6384
6385 if (!ret && ctx->log_new_dentries)
6386 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6387
6388 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6389
6390 if (ret)
6391 break;
6392 }
6393
6394 ctx->log_new_dentries = orig_log_new_dentries;
6395 ctx->logging_new_delayed_dentries = false;
6396
6397 return ret;
6398}
6399
6400/* log a single inode in the tree log.
6401 * At least one parent directory for this inode must exist in the tree
6402 * or be logged already.
6403 *
6404 * Any items from this inode changed by the current transaction are copied
6405 * to the log tree. An extra reference is taken on any extents in this
6406 * file, allowing us to avoid a whole pile of corner cases around logging
6407 * blocks that have been removed from the tree.
6408 *
6409 * See LOG_INODE_ALL and related defines for a description of what inode_only
6410 * does.
6411 *
6412 * This handles both files and directories.
6413 */
6414static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6415 struct btrfs_inode *inode,
6416 int inode_only,
6417 struct btrfs_log_ctx *ctx)
6418{
6419 struct btrfs_path *path;
6420 struct btrfs_path *dst_path;
6421 struct btrfs_key min_key;
6422 struct btrfs_key max_key;
6423 struct btrfs_root *log = inode->root->log_root;
6424 int ret;
6425 bool fast_search = false;
6426 u64 ino = btrfs_ino(inode);
6427 struct extent_map_tree *em_tree = &inode->extent_tree;
6428 u64 logged_isize = 0;
6429 bool need_log_inode_item = true;
6430 bool xattrs_logged = false;
6431 bool inode_item_dropped = true;
6432 bool full_dir_logging = false;
6433 LIST_HEAD(delayed_ins_list);
6434 LIST_HEAD(delayed_del_list);
6435
6436 path = btrfs_alloc_path();
6437 if (!path)
6438 return -ENOMEM;
6439 dst_path = btrfs_alloc_path();
6440 if (!dst_path) {
6441 btrfs_free_path(path);
6442 return -ENOMEM;
6443 }
6444
6445 min_key.objectid = ino;
6446 min_key.type = BTRFS_INODE_ITEM_KEY;
6447 min_key.offset = 0;
6448
6449 max_key.objectid = ino;
6450
6451
6452 /* today the code can only do partial logging of directories */
6453 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6454 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6455 &inode->runtime_flags) &&
6456 inode_only >= LOG_INODE_EXISTS))
6457 max_key.type = BTRFS_XATTR_ITEM_KEY;
6458 else
6459 max_key.type = (u8)-1;
6460 max_key.offset = (u64)-1;
6461
6462 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6463 full_dir_logging = true;
6464
6465 /*
6466 * If we are logging a directory while we are logging dentries of the
6467 * delayed items of some other inode, then we need to flush the delayed
6468 * items of this directory and not log the delayed items directly. This
6469 * is to prevent more than one level of recursion into btrfs_log_inode()
6470 * by having something like this:
6471 *
6472 * $ mkdir -p a/b/c/d/e/f/g/h/...
6473 * $ xfs_io -c "fsync" a
6474 *
6475 * Where all directories in the path did not exist before and are
6476 * created in the current transaction.
6477 * So in such a case we directly log the delayed items of the main
6478 * directory ("a") without flushing them first, while for each of its
6479 * subdirectories we flush their delayed items before logging them.
6480 * This prevents a potential unbounded recursion like this:
6481 *
6482 * btrfs_log_inode()
6483 * log_new_delayed_dentries()
6484 * btrfs_log_inode()
6485 * log_new_delayed_dentries()
6486 * btrfs_log_inode()
6487 * log_new_delayed_dentries()
6488 * (...)
6489 *
6490 * We have thresholds for the maximum number of delayed items to have in
6491 * memory, and once they are hit, the items are flushed asynchronously.
6492 * However the limit is quite high, so lets prevent deep levels of
6493 * recursion to happen by limiting the maximum depth to be 1.
6494 */
6495 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6496 ret = btrfs_commit_inode_delayed_items(trans, inode);
6497 if (ret)
6498 goto out;
6499 }
6500
6501 mutex_lock(&inode->log_mutex);
6502
6503 /*
6504 * For symlinks, we must always log their content, which is stored in an
6505 * inline extent, otherwise we could end up with an empty symlink after
6506 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6507 * one attempts to create an empty symlink).
6508 * We don't need to worry about flushing delalloc, because when we create
6509 * the inline extent when the symlink is created (we never have delalloc
6510 * for symlinks).
6511 */
6512 if (S_ISLNK(inode->vfs_inode.i_mode))
6513 inode_only = LOG_INODE_ALL;
6514
6515 /*
6516 * Before logging the inode item, cache the value returned by
6517 * inode_logged(), because after that we have the need to figure out if
6518 * the inode was previously logged in this transaction.
6519 */
6520 ret = inode_logged(trans, inode, path);
6521 if (ret < 0)
6522 goto out_unlock;
6523 ctx->logged_before = (ret == 1);
6524 ret = 0;
6525
6526 /*
6527 * This is for cases where logging a directory could result in losing a
6528 * a file after replaying the log. For example, if we move a file from a
6529 * directory A to a directory B, then fsync directory A, we have no way
6530 * to known the file was moved from A to B, so logging just A would
6531 * result in losing the file after a log replay.
6532 */
6533 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6534 ret = BTRFS_LOG_FORCE_COMMIT;
6535 goto out_unlock;
6536 }
6537
6538 /*
6539 * a brute force approach to making sure we get the most uptodate
6540 * copies of everything.
6541 */
6542 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6543 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6544 if (ctx->logged_before)
6545 ret = drop_inode_items(trans, log, path, inode,
6546 BTRFS_XATTR_ITEM_KEY);
6547 } else {
6548 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6549 /*
6550 * Make sure the new inode item we write to the log has
6551 * the same isize as the current one (if it exists).
6552 * This is necessary to prevent data loss after log
6553 * replay, and also to prevent doing a wrong expanding
6554 * truncate - for e.g. create file, write 4K into offset
6555 * 0, fsync, write 4K into offset 4096, add hard link,
6556 * fsync some other file (to sync log), power fail - if
6557 * we use the inode's current i_size, after log replay
6558 * we get a 8Kb file, with the last 4Kb extent as a hole
6559 * (zeroes), as if an expanding truncate happened,
6560 * instead of getting a file of 4Kb only.
6561 */
6562 ret = logged_inode_size(log, inode, path, &logged_isize);
6563 if (ret)
6564 goto out_unlock;
6565 }
6566 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6567 &inode->runtime_flags)) {
6568 if (inode_only == LOG_INODE_EXISTS) {
6569 max_key.type = BTRFS_XATTR_ITEM_KEY;
6570 if (ctx->logged_before)
6571 ret = drop_inode_items(trans, log, path,
6572 inode, max_key.type);
6573 } else {
6574 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6575 &inode->runtime_flags);
6576 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6577 &inode->runtime_flags);
6578 if (ctx->logged_before)
6579 ret = truncate_inode_items(trans, log,
6580 inode, 0, 0);
6581 }
6582 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6583 &inode->runtime_flags) ||
6584 inode_only == LOG_INODE_EXISTS) {
6585 if (inode_only == LOG_INODE_ALL)
6586 fast_search = true;
6587 max_key.type = BTRFS_XATTR_ITEM_KEY;
6588 if (ctx->logged_before)
6589 ret = drop_inode_items(trans, log, path, inode,
6590 max_key.type);
6591 } else {
6592 if (inode_only == LOG_INODE_ALL)
6593 fast_search = true;
6594 inode_item_dropped = false;
6595 goto log_extents;
6596 }
6597
6598 }
6599 if (ret)
6600 goto out_unlock;
6601
6602 /*
6603 * If we are logging a directory in full mode, collect the delayed items
6604 * before iterating the subvolume tree, so that we don't miss any new
6605 * dir index items in case they get flushed while or right after we are
6606 * iterating the subvolume tree.
6607 */
6608 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6609 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6610 &delayed_del_list);
6611
6612 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6613 path, dst_path, logged_isize,
6614 inode_only, ctx,
6615 &need_log_inode_item);
6616 if (ret)
6617 goto out_unlock;
6618
6619 btrfs_release_path(path);
6620 btrfs_release_path(dst_path);
6621 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6622 if (ret)
6623 goto out_unlock;
6624 xattrs_logged = true;
6625 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6626 btrfs_release_path(path);
6627 btrfs_release_path(dst_path);
6628 ret = btrfs_log_holes(trans, inode, path);
6629 if (ret)
6630 goto out_unlock;
6631 }
6632log_extents:
6633 btrfs_release_path(path);
6634 btrfs_release_path(dst_path);
6635 if (need_log_inode_item) {
6636 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6637 if (ret)
6638 goto out_unlock;
6639 /*
6640 * If we are doing a fast fsync and the inode was logged before
6641 * in this transaction, we don't need to log the xattrs because
6642 * they were logged before. If xattrs were added, changed or
6643 * deleted since the last time we logged the inode, then we have
6644 * already logged them because the inode had the runtime flag
6645 * BTRFS_INODE_COPY_EVERYTHING set.
6646 */
6647 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6648 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6649 if (ret)
6650 goto out_unlock;
6651 btrfs_release_path(path);
6652 }
6653 }
6654 if (fast_search) {
6655 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6656 if (ret)
6657 goto out_unlock;
6658 } else if (inode_only == LOG_INODE_ALL) {
6659 struct extent_map *em, *n;
6660
6661 write_lock(&em_tree->lock);
6662 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6663 list_del_init(&em->list);
6664 write_unlock(&em_tree->lock);
6665 }
6666
6667 if (full_dir_logging) {
6668 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6669 if (ret)
6670 goto out_unlock;
6671 ret = log_delayed_insertion_items(trans, inode, path,
6672 &delayed_ins_list, ctx);
6673 if (ret)
6674 goto out_unlock;
6675 ret = log_delayed_deletion_items(trans, inode, path,
6676 &delayed_del_list, ctx);
6677 if (ret)
6678 goto out_unlock;
6679 }
6680
6681 spin_lock(&inode->lock);
6682 inode->logged_trans = trans->transid;
6683 /*
6684 * Don't update last_log_commit if we logged that an inode exists.
6685 * We do this for three reasons:
6686 *
6687 * 1) We might have had buffered writes to this inode that were
6688 * flushed and had their ordered extents completed in this
6689 * transaction, but we did not previously log the inode with
6690 * LOG_INODE_ALL. Later the inode was evicted and after that
6691 * it was loaded again and this LOG_INODE_EXISTS log operation
6692 * happened. We must make sure that if an explicit fsync against
6693 * the inode is performed later, it logs the new extents, an
6694 * updated inode item, etc, and syncs the log. The same logic
6695 * applies to direct IO writes instead of buffered writes.
6696 *
6697 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6698 * is logged with an i_size of 0 or whatever value was logged
6699 * before. If later the i_size of the inode is increased by a
6700 * truncate operation, the log is synced through an fsync of
6701 * some other inode and then finally an explicit fsync against
6702 * this inode is made, we must make sure this fsync logs the
6703 * inode with the new i_size, the hole between old i_size and
6704 * the new i_size, and syncs the log.
6705 *
6706 * 3) If we are logging that an ancestor inode exists as part of
6707 * logging a new name from a link or rename operation, don't update
6708 * its last_log_commit - otherwise if an explicit fsync is made
6709 * against an ancestor, the fsync considers the inode in the log
6710 * and doesn't sync the log, resulting in the ancestor missing after
6711 * a power failure unless the log was synced as part of an fsync
6712 * against any other unrelated inode.
6713 */
6714 if (inode_only != LOG_INODE_EXISTS)
6715 inode->last_log_commit = inode->last_sub_trans;
6716 spin_unlock(&inode->lock);
6717
6718 /*
6719 * Reset the last_reflink_trans so that the next fsync does not need to
6720 * go through the slower path when logging extents and their checksums.
6721 */
6722 if (inode_only == LOG_INODE_ALL)
6723 inode->last_reflink_trans = 0;
6724
6725out_unlock:
6726 mutex_unlock(&inode->log_mutex);
6727out:
6728 btrfs_free_path(path);
6729 btrfs_free_path(dst_path);
6730
6731 if (ret)
6732 free_conflicting_inodes(ctx);
6733 else
6734 ret = log_conflicting_inodes(trans, inode->root, ctx);
6735
6736 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6737 if (!ret)
6738 ret = log_new_delayed_dentries(trans, inode,
6739 &delayed_ins_list, ctx);
6740
6741 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6742 &delayed_del_list);
6743 }
6744
6745 return ret;
6746}
6747
6748static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6749 struct btrfs_inode *inode,
6750 struct btrfs_log_ctx *ctx)
6751{
6752 int ret;
6753 struct btrfs_path *path;
6754 struct btrfs_key key;
6755 struct btrfs_root *root = inode->root;
6756 const u64 ino = btrfs_ino(inode);
6757
6758 path = btrfs_alloc_path();
6759 if (!path)
6760 return -ENOMEM;
6761 path->skip_locking = 1;
6762 path->search_commit_root = 1;
6763
6764 key.objectid = ino;
6765 key.type = BTRFS_INODE_REF_KEY;
6766 key.offset = 0;
6767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6768 if (ret < 0)
6769 goto out;
6770
6771 while (true) {
6772 struct extent_buffer *leaf = path->nodes[0];
6773 int slot = path->slots[0];
6774 u32 cur_offset = 0;
6775 u32 item_size;
6776 unsigned long ptr;
6777
6778 if (slot >= btrfs_header_nritems(leaf)) {
6779 ret = btrfs_next_leaf(root, path);
6780 if (ret < 0)
6781 goto out;
6782 else if (ret > 0)
6783 break;
6784 continue;
6785 }
6786
6787 btrfs_item_key_to_cpu(leaf, &key, slot);
6788 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6789 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6790 break;
6791
6792 item_size = btrfs_item_size(leaf, slot);
6793 ptr = btrfs_item_ptr_offset(leaf, slot);
6794 while (cur_offset < item_size) {
6795 struct btrfs_key inode_key;
6796 struct inode *dir_inode;
6797
6798 inode_key.type = BTRFS_INODE_ITEM_KEY;
6799 inode_key.offset = 0;
6800
6801 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6802 struct btrfs_inode_extref *extref;
6803
6804 extref = (struct btrfs_inode_extref *)
6805 (ptr + cur_offset);
6806 inode_key.objectid = btrfs_inode_extref_parent(
6807 leaf, extref);
6808 cur_offset += sizeof(*extref);
6809 cur_offset += btrfs_inode_extref_name_len(leaf,
6810 extref);
6811 } else {
6812 inode_key.objectid = key.offset;
6813 cur_offset = item_size;
6814 }
6815
6816 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6817 /*
6818 * If the parent inode was deleted, return an error to
6819 * fallback to a transaction commit. This is to prevent
6820 * getting an inode that was moved from one parent A to
6821 * a parent B, got its former parent A deleted and then
6822 * it got fsync'ed, from existing at both parents after
6823 * a log replay (and the old parent still existing).
6824 * Example:
6825 *
6826 * mkdir /mnt/A
6827 * mkdir /mnt/B
6828 * touch /mnt/B/bar
6829 * sync
6830 * mv /mnt/B/bar /mnt/A/bar
6831 * mv -T /mnt/A /mnt/B
6832 * fsync /mnt/B/bar
6833 * <power fail>
6834 *
6835 * If we ignore the old parent B which got deleted,
6836 * after a log replay we would have file bar linked
6837 * at both parents and the old parent B would still
6838 * exist.
6839 */
6840 if (IS_ERR(dir_inode)) {
6841 ret = PTR_ERR(dir_inode);
6842 goto out;
6843 }
6844
6845 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6846 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6847 continue;
6848 }
6849
6850 ctx->log_new_dentries = false;
6851 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6852 LOG_INODE_ALL, ctx);
6853 if (!ret && ctx->log_new_dentries)
6854 ret = log_new_dir_dentries(trans,
6855 BTRFS_I(dir_inode), ctx);
6856 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6857 if (ret)
6858 goto out;
6859 }
6860 path->slots[0]++;
6861 }
6862 ret = 0;
6863out:
6864 btrfs_free_path(path);
6865 return ret;
6866}
6867
6868static int log_new_ancestors(struct btrfs_trans_handle *trans,
6869 struct btrfs_root *root,
6870 struct btrfs_path *path,
6871 struct btrfs_log_ctx *ctx)
6872{
6873 struct btrfs_key found_key;
6874
6875 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6876
6877 while (true) {
6878 struct extent_buffer *leaf;
6879 int slot;
6880 struct btrfs_key search_key;
6881 struct inode *inode;
6882 u64 ino;
6883 int ret = 0;
6884
6885 btrfs_release_path(path);
6886
6887 ino = found_key.offset;
6888
6889 search_key.objectid = found_key.offset;
6890 search_key.type = BTRFS_INODE_ITEM_KEY;
6891 search_key.offset = 0;
6892 inode = btrfs_iget_logging(ino, root);
6893 if (IS_ERR(inode))
6894 return PTR_ERR(inode);
6895
6896 if (BTRFS_I(inode)->generation >= trans->transid &&
6897 need_log_inode(trans, BTRFS_I(inode)))
6898 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6899 LOG_INODE_EXISTS, ctx);
6900 btrfs_add_delayed_iput(BTRFS_I(inode));
6901 if (ret)
6902 return ret;
6903
6904 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6905 break;
6906
6907 search_key.type = BTRFS_INODE_REF_KEY;
6908 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6909 if (ret < 0)
6910 return ret;
6911
6912 leaf = path->nodes[0];
6913 slot = path->slots[0];
6914 if (slot >= btrfs_header_nritems(leaf)) {
6915 ret = btrfs_next_leaf(root, path);
6916 if (ret < 0)
6917 return ret;
6918 else if (ret > 0)
6919 return -ENOENT;
6920 leaf = path->nodes[0];
6921 slot = path->slots[0];
6922 }
6923
6924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6925 if (found_key.objectid != search_key.objectid ||
6926 found_key.type != BTRFS_INODE_REF_KEY)
6927 return -ENOENT;
6928 }
6929 return 0;
6930}
6931
6932static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6933 struct btrfs_inode *inode,
6934 struct dentry *parent,
6935 struct btrfs_log_ctx *ctx)
6936{
6937 struct btrfs_root *root = inode->root;
6938 struct dentry *old_parent = NULL;
6939 struct super_block *sb = inode->vfs_inode.i_sb;
6940 int ret = 0;
6941
6942 while (true) {
6943 if (!parent || d_really_is_negative(parent) ||
6944 sb != parent->d_sb)
6945 break;
6946
6947 inode = BTRFS_I(d_inode(parent));
6948 if (root != inode->root)
6949 break;
6950
6951 if (inode->generation >= trans->transid &&
6952 need_log_inode(trans, inode)) {
6953 ret = btrfs_log_inode(trans, inode,
6954 LOG_INODE_EXISTS, ctx);
6955 if (ret)
6956 break;
6957 }
6958 if (IS_ROOT(parent))
6959 break;
6960
6961 parent = dget_parent(parent);
6962 dput(old_parent);
6963 old_parent = parent;
6964 }
6965 dput(old_parent);
6966
6967 return ret;
6968}
6969
6970static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6971 struct btrfs_inode *inode,
6972 struct dentry *parent,
6973 struct btrfs_log_ctx *ctx)
6974{
6975 struct btrfs_root *root = inode->root;
6976 const u64 ino = btrfs_ino(inode);
6977 struct btrfs_path *path;
6978 struct btrfs_key search_key;
6979 int ret;
6980
6981 /*
6982 * For a single hard link case, go through a fast path that does not
6983 * need to iterate the fs/subvolume tree.
6984 */
6985 if (inode->vfs_inode.i_nlink < 2)
6986 return log_new_ancestors_fast(trans, inode, parent, ctx);
6987
6988 path = btrfs_alloc_path();
6989 if (!path)
6990 return -ENOMEM;
6991
6992 search_key.objectid = ino;
6993 search_key.type = BTRFS_INODE_REF_KEY;
6994 search_key.offset = 0;
6995again:
6996 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6997 if (ret < 0)
6998 goto out;
6999 if (ret == 0)
7000 path->slots[0]++;
7001
7002 while (true) {
7003 struct extent_buffer *leaf = path->nodes[0];
7004 int slot = path->slots[0];
7005 struct btrfs_key found_key;
7006
7007 if (slot >= btrfs_header_nritems(leaf)) {
7008 ret = btrfs_next_leaf(root, path);
7009 if (ret < 0)
7010 goto out;
7011 else if (ret > 0)
7012 break;
7013 continue;
7014 }
7015
7016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7017 if (found_key.objectid != ino ||
7018 found_key.type > BTRFS_INODE_EXTREF_KEY)
7019 break;
7020
7021 /*
7022 * Don't deal with extended references because they are rare
7023 * cases and too complex to deal with (we would need to keep
7024 * track of which subitem we are processing for each item in
7025 * this loop, etc). So just return some error to fallback to
7026 * a transaction commit.
7027 */
7028 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7029 ret = -EMLINK;
7030 goto out;
7031 }
7032
7033 /*
7034 * Logging ancestors needs to do more searches on the fs/subvol
7035 * tree, so it releases the path as needed to avoid deadlocks.
7036 * Keep track of the last inode ref key and resume from that key
7037 * after logging all new ancestors for the current hard link.
7038 */
7039 memcpy(&search_key, &found_key, sizeof(search_key));
7040
7041 ret = log_new_ancestors(trans, root, path, ctx);
7042 if (ret)
7043 goto out;
7044 btrfs_release_path(path);
7045 goto again;
7046 }
7047 ret = 0;
7048out:
7049 btrfs_free_path(path);
7050 return ret;
7051}
7052
7053/*
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log. A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7058 */
7059static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7060 struct btrfs_inode *inode,
7061 struct dentry *parent,
7062 int inode_only,
7063 struct btrfs_log_ctx *ctx)
7064{
7065 struct btrfs_root *root = inode->root;
7066 struct btrfs_fs_info *fs_info = root->fs_info;
7067 int ret = 0;
7068 bool log_dentries = false;
7069
7070 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7071 ret = BTRFS_LOG_FORCE_COMMIT;
7072 goto end_no_trans;
7073 }
7074
7075 if (btrfs_root_refs(&root->root_item) == 0) {
7076 ret = BTRFS_LOG_FORCE_COMMIT;
7077 goto end_no_trans;
7078 }
7079
7080 /*
7081 * If we're logging an inode from a subvolume created in the current
7082 * transaction we must force a commit since the root is not persisted.
7083 */
7084 if (btrfs_root_generation(&root->root_item) == trans->transid) {
7085 ret = BTRFS_LOG_FORCE_COMMIT;
7086 goto end_no_trans;
7087 }
7088
7089 /*
7090 * Skip already logged inodes or inodes corresponding to tmpfiles
7091 * (since logging them is pointless, a link count of 0 means they
7092 * will never be accessible).
7093 */
7094 if ((btrfs_inode_in_log(inode, trans->transid) &&
7095 list_empty(&ctx->ordered_extents)) ||
7096 inode->vfs_inode.i_nlink == 0) {
7097 ret = BTRFS_NO_LOG_SYNC;
7098 goto end_no_trans;
7099 }
7100
7101 ret = start_log_trans(trans, root, ctx);
7102 if (ret)
7103 goto end_no_trans;
7104
7105 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7106 if (ret)
7107 goto end_trans;
7108
7109 /*
7110 * for regular files, if its inode is already on disk, we don't
7111 * have to worry about the parents at all. This is because
7112 * we can use the last_unlink_trans field to record renames
7113 * and other fun in this file.
7114 */
7115 if (S_ISREG(inode->vfs_inode.i_mode) &&
7116 inode->generation < trans->transid &&
7117 inode->last_unlink_trans < trans->transid) {
7118 ret = 0;
7119 goto end_trans;
7120 }
7121
7122 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7123 log_dentries = true;
7124
7125 /*
7126 * On unlink we must make sure all our current and old parent directory
7127 * inodes are fully logged. This is to prevent leaving dangling
7128 * directory index entries in directories that were our parents but are
7129 * not anymore. Not doing this results in old parent directory being
7130 * impossible to delete after log replay (rmdir will always fail with
7131 * error -ENOTEMPTY).
7132 *
7133 * Example 1:
7134 *
7135 * mkdir testdir
7136 * touch testdir/foo
7137 * ln testdir/foo testdir/bar
7138 * sync
7139 * unlink testdir/bar
7140 * xfs_io -c fsync testdir/foo
7141 * <power failure>
7142 * mount fs, triggers log replay
7143 *
7144 * If we don't log the parent directory (testdir), after log replay the
7145 * directory still has an entry pointing to the file inode using the bar
7146 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7147 * the file inode has a link count of 1.
7148 *
7149 * Example 2:
7150 *
7151 * mkdir testdir
7152 * touch foo
7153 * ln foo testdir/foo2
7154 * ln foo testdir/foo3
7155 * sync
7156 * unlink testdir/foo3
7157 * xfs_io -c fsync foo
7158 * <power failure>
7159 * mount fs, triggers log replay
7160 *
7161 * Similar as the first example, after log replay the parent directory
7162 * testdir still has an entry pointing to the inode file with name foo3
7163 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7164 * and has a link count of 2.
7165 */
7166 if (inode->last_unlink_trans >= trans->transid) {
7167 ret = btrfs_log_all_parents(trans, inode, ctx);
7168 if (ret)
7169 goto end_trans;
7170 }
7171
7172 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7173 if (ret)
7174 goto end_trans;
7175
7176 if (log_dentries)
7177 ret = log_new_dir_dentries(trans, inode, ctx);
7178 else
7179 ret = 0;
7180end_trans:
7181 if (ret < 0) {
7182 btrfs_set_log_full_commit(trans);
7183 ret = BTRFS_LOG_FORCE_COMMIT;
7184 }
7185
7186 if (ret)
7187 btrfs_remove_log_ctx(root, ctx);
7188 btrfs_end_log_trans(root);
7189end_no_trans:
7190 return ret;
7191}
7192
7193/*
7194 * it is not safe to log dentry if the chunk root has added new
7195 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7196 * If this returns 1, you must commit the transaction to safely get your
7197 * data on disk.
7198 */
7199int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7200 struct dentry *dentry,
7201 struct btrfs_log_ctx *ctx)
7202{
7203 struct dentry *parent = dget_parent(dentry);
7204 int ret;
7205
7206 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7207 LOG_INODE_ALL, ctx);
7208 dput(parent);
7209
7210 return ret;
7211}
7212
7213/*
7214 * should be called during mount to recover any replay any log trees
7215 * from the FS
7216 */
7217int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7218{
7219 int ret;
7220 struct btrfs_path *path;
7221 struct btrfs_trans_handle *trans;
7222 struct btrfs_key key;
7223 struct btrfs_key found_key;
7224 struct btrfs_root *log;
7225 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7226 struct walk_control wc = {
7227 .process_func = process_one_buffer,
7228 .stage = LOG_WALK_PIN_ONLY,
7229 };
7230
7231 path = btrfs_alloc_path();
7232 if (!path)
7233 return -ENOMEM;
7234
7235 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7236
7237 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7238 if (IS_ERR(trans)) {
7239 ret = PTR_ERR(trans);
7240 goto error;
7241 }
7242
7243 wc.trans = trans;
7244 wc.pin = 1;
7245
7246 ret = walk_log_tree(trans, log_root_tree, &wc);
7247 if (ret) {
7248 btrfs_abort_transaction(trans, ret);
7249 goto error;
7250 }
7251
7252again:
7253 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7254 key.offset = (u64)-1;
7255 key.type = BTRFS_ROOT_ITEM_KEY;
7256
7257 while (1) {
7258 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7259
7260 if (ret < 0) {
7261 btrfs_abort_transaction(trans, ret);
7262 goto error;
7263 }
7264 if (ret > 0) {
7265 if (path->slots[0] == 0)
7266 break;
7267 path->slots[0]--;
7268 }
7269 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7270 path->slots[0]);
7271 btrfs_release_path(path);
7272 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7273 break;
7274
7275 log = btrfs_read_tree_root(log_root_tree, &found_key);
7276 if (IS_ERR(log)) {
7277 ret = PTR_ERR(log);
7278 btrfs_abort_transaction(trans, ret);
7279 goto error;
7280 }
7281
7282 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7283 true);
7284 if (IS_ERR(wc.replay_dest)) {
7285 ret = PTR_ERR(wc.replay_dest);
7286
7287 /*
7288 * We didn't find the subvol, likely because it was
7289 * deleted. This is ok, simply skip this log and go to
7290 * the next one.
7291 *
7292 * We need to exclude the root because we can't have
7293 * other log replays overwriting this log as we'll read
7294 * it back in a few more times. This will keep our
7295 * block from being modified, and we'll just bail for
7296 * each subsequent pass.
7297 */
7298 if (ret == -ENOENT)
7299 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7300 btrfs_put_root(log);
7301
7302 if (!ret)
7303 goto next;
7304 btrfs_abort_transaction(trans, ret);
7305 goto error;
7306 }
7307
7308 wc.replay_dest->log_root = log;
7309 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7310 if (ret)
7311 /* The loop needs to continue due to the root refs */
7312 btrfs_abort_transaction(trans, ret);
7313 else
7314 ret = walk_log_tree(trans, log, &wc);
7315
7316 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7317 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7318 path);
7319 if (ret)
7320 btrfs_abort_transaction(trans, ret);
7321 }
7322
7323 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7324 struct btrfs_root *root = wc.replay_dest;
7325
7326 btrfs_release_path(path);
7327
7328 /*
7329 * We have just replayed everything, and the highest
7330 * objectid of fs roots probably has changed in case
7331 * some inode_item's got replayed.
7332 *
7333 * root->objectid_mutex is not acquired as log replay
7334 * could only happen during mount.
7335 */
7336 ret = btrfs_init_root_free_objectid(root);
7337 if (ret)
7338 btrfs_abort_transaction(trans, ret);
7339 }
7340
7341 wc.replay_dest->log_root = NULL;
7342 btrfs_put_root(wc.replay_dest);
7343 btrfs_put_root(log);
7344
7345 if (ret)
7346 goto error;
7347next:
7348 if (found_key.offset == 0)
7349 break;
7350 key.offset = found_key.offset - 1;
7351 }
7352 btrfs_release_path(path);
7353
7354 /* step one is to pin it all, step two is to replay just inodes */
7355 if (wc.pin) {
7356 wc.pin = 0;
7357 wc.process_func = replay_one_buffer;
7358 wc.stage = LOG_WALK_REPLAY_INODES;
7359 goto again;
7360 }
7361 /* step three is to replay everything */
7362 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7363 wc.stage++;
7364 goto again;
7365 }
7366
7367 btrfs_free_path(path);
7368
7369 /* step 4: commit the transaction, which also unpins the blocks */
7370 ret = btrfs_commit_transaction(trans);
7371 if (ret)
7372 return ret;
7373
7374 log_root_tree->log_root = NULL;
7375 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7376 btrfs_put_root(log_root_tree);
7377
7378 return 0;
7379error:
7380 if (wc.trans)
7381 btrfs_end_transaction(wc.trans);
7382 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7383 btrfs_free_path(path);
7384 return ret;
7385}
7386
7387/*
7388 * there are some corner cases where we want to force a full
7389 * commit instead of allowing a directory to be logged.
7390 *
7391 * They revolve around files there were unlinked from the directory, and
7392 * this function updates the parent directory so that a full commit is
7393 * properly done if it is fsync'd later after the unlinks are done.
7394 *
7395 * Must be called before the unlink operations (updates to the subvolume tree,
7396 * inodes, etc) are done.
7397 */
7398void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7399 struct btrfs_inode *dir, struct btrfs_inode *inode,
7400 bool for_rename)
7401{
7402 /*
7403 * when we're logging a file, if it hasn't been renamed
7404 * or unlinked, and its inode is fully committed on disk,
7405 * we don't have to worry about walking up the directory chain
7406 * to log its parents.
7407 *
7408 * So, we use the last_unlink_trans field to put this transid
7409 * into the file. When the file is logged we check it and
7410 * don't log the parents if the file is fully on disk.
7411 */
7412 mutex_lock(&inode->log_mutex);
7413 inode->last_unlink_trans = trans->transid;
7414 mutex_unlock(&inode->log_mutex);
7415
7416 if (!for_rename)
7417 return;
7418
7419 /*
7420 * If this directory was already logged, any new names will be logged
7421 * with btrfs_log_new_name() and old names will be deleted from the log
7422 * tree with btrfs_del_dir_entries_in_log() or with
7423 * btrfs_del_inode_ref_in_log().
7424 */
7425 if (inode_logged(trans, dir, NULL) == 1)
7426 return;
7427
7428 /*
7429 * If the inode we're about to unlink was logged before, the log will be
7430 * properly updated with the new name with btrfs_log_new_name() and the
7431 * old name removed with btrfs_del_dir_entries_in_log() or with
7432 * btrfs_del_inode_ref_in_log().
7433 */
7434 if (inode_logged(trans, inode, NULL) == 1)
7435 return;
7436
7437 /*
7438 * when renaming files across directories, if the directory
7439 * there we're unlinking from gets fsync'd later on, there's
7440 * no way to find the destination directory later and fsync it
7441 * properly. So, we have to be conservative and force commits
7442 * so the new name gets discovered.
7443 */
7444 mutex_lock(&dir->log_mutex);
7445 dir->last_unlink_trans = trans->transid;
7446 mutex_unlock(&dir->log_mutex);
7447}
7448
7449/*
7450 * Make sure that if someone attempts to fsync the parent directory of a deleted
7451 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7452 * that after replaying the log tree of the parent directory's root we will not
7453 * see the snapshot anymore and at log replay time we will not see any log tree
7454 * corresponding to the deleted snapshot's root, which could lead to replaying
7455 * it after replaying the log tree of the parent directory (which would replay
7456 * the snapshot delete operation).
7457 *
7458 * Must be called before the actual snapshot destroy operation (updates to the
7459 * parent root and tree of tree roots trees, etc) are done.
7460 */
7461void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7462 struct btrfs_inode *dir)
7463{
7464 mutex_lock(&dir->log_mutex);
7465 dir->last_unlink_trans = trans->transid;
7466 mutex_unlock(&dir->log_mutex);
7467}
7468
7469/*
7470 * Call this when creating a subvolume in a directory.
7471 * Because we don't commit a transaction when creating a subvolume, we can't
7472 * allow the directory pointing to the subvolume to be logged with an entry that
7473 * points to an unpersisted root if we are still in the transaction used to
7474 * create the subvolume, so make any attempt to log the directory to result in a
7475 * full log sync.
7476 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7477 * for full commit when renaming a subvolume.
7478 */
7479void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7480 struct btrfs_inode *dir)
7481{
7482 mutex_lock(&dir->log_mutex);
7483 dir->last_unlink_trans = trans->transid;
7484 mutex_unlock(&dir->log_mutex);
7485}
7486
7487/*
7488 * Update the log after adding a new name for an inode.
7489 *
7490 * @trans: Transaction handle.
7491 * @old_dentry: The dentry associated with the old name and the old
7492 * parent directory.
7493 * @old_dir: The inode of the previous parent directory for the case
7494 * of a rename. For a link operation, it must be NULL.
7495 * @old_dir_index: The index number associated with the old name, meaningful
7496 * only for rename operations (when @old_dir is not NULL).
7497 * Ignored for link operations.
7498 * @parent: The dentry associated with the directory under which the
7499 * new name is located.
7500 *
7501 * Call this after adding a new name for an inode, as a result of a link or
7502 * rename operation, and it will properly update the log to reflect the new name.
7503 */
7504void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7505 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7506 u64 old_dir_index, struct dentry *parent)
7507{
7508 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7509 struct btrfs_root *root = inode->root;
7510 struct btrfs_log_ctx ctx;
7511 bool log_pinned = false;
7512 int ret;
7513
7514 /*
7515 * this will force the logging code to walk the dentry chain
7516 * up for the file
7517 */
7518 if (!S_ISDIR(inode->vfs_inode.i_mode))
7519 inode->last_unlink_trans = trans->transid;
7520
7521 /*
7522 * if this inode hasn't been logged and directory we're renaming it
7523 * from hasn't been logged, we don't need to log it
7524 */
7525 ret = inode_logged(trans, inode, NULL);
7526 if (ret < 0) {
7527 goto out;
7528 } else if (ret == 0) {
7529 if (!old_dir)
7530 return;
7531 /*
7532 * If the inode was not logged and we are doing a rename (old_dir is not
7533 * NULL), check if old_dir was logged - if it was not we can return and
7534 * do nothing.
7535 */
7536 ret = inode_logged(trans, old_dir, NULL);
7537 if (ret < 0)
7538 goto out;
7539 else if (ret == 0)
7540 return;
7541 }
7542 ret = 0;
7543
7544 /*
7545 * If we are doing a rename (old_dir is not NULL) from a directory that
7546 * was previously logged, make sure that on log replay we get the old
7547 * dir entry deleted. This is needed because we will also log the new
7548 * name of the renamed inode, so we need to make sure that after log
7549 * replay we don't end up with both the new and old dir entries existing.
7550 */
7551 if (old_dir && old_dir->logged_trans == trans->transid) {
7552 struct btrfs_root *log = old_dir->root->log_root;
7553 struct btrfs_path *path;
7554 struct fscrypt_name fname;
7555
7556 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7557
7558 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7559 &old_dentry->d_name, 0, &fname);
7560 if (ret)
7561 goto out;
7562 /*
7563 * We have two inodes to update in the log, the old directory and
7564 * the inode that got renamed, so we must pin the log to prevent
7565 * anyone from syncing the log until we have updated both inodes
7566 * in the log.
7567 */
7568 ret = join_running_log_trans(root);
7569 /*
7570 * At least one of the inodes was logged before, so this should
7571 * not fail, but if it does, it's not serious, just bail out and
7572 * mark the log for a full commit.
7573 */
7574 if (WARN_ON_ONCE(ret < 0)) {
7575 fscrypt_free_filename(&fname);
7576 goto out;
7577 }
7578
7579 log_pinned = true;
7580
7581 path = btrfs_alloc_path();
7582 if (!path) {
7583 ret = -ENOMEM;
7584 fscrypt_free_filename(&fname);
7585 goto out;
7586 }
7587
7588 /*
7589 * Other concurrent task might be logging the old directory,
7590 * as it can be triggered when logging other inode that had or
7591 * still has a dentry in the old directory. We lock the old
7592 * directory's log_mutex to ensure the deletion of the old
7593 * name is persisted, because during directory logging we
7594 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7595 * the old name's dir index item is in the delayed items, so
7596 * it could be missed by an in progress directory logging.
7597 */
7598 mutex_lock(&old_dir->log_mutex);
7599 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7600 &fname.disk_name, old_dir_index);
7601 if (ret > 0) {
7602 /*
7603 * The dentry does not exist in the log, so record its
7604 * deletion.
7605 */
7606 btrfs_release_path(path);
7607 ret = insert_dir_log_key(trans, log, path,
7608 btrfs_ino(old_dir),
7609 old_dir_index, old_dir_index);
7610 }
7611 mutex_unlock(&old_dir->log_mutex);
7612
7613 btrfs_free_path(path);
7614 fscrypt_free_filename(&fname);
7615 if (ret < 0)
7616 goto out;
7617 }
7618
7619 btrfs_init_log_ctx(&ctx, inode);
7620 ctx.logging_new_name = true;
7621 btrfs_init_log_ctx_scratch_eb(&ctx);
7622 /*
7623 * We don't care about the return value. If we fail to log the new name
7624 * then we know the next attempt to sync the log will fallback to a full
7625 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7626 * we don't need to worry about getting a log committed that has an
7627 * inconsistent state after a rename operation.
7628 */
7629 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7630 free_extent_buffer(ctx.scratch_eb);
7631 ASSERT(list_empty(&ctx.conflict_inodes));
7632out:
7633 /*
7634 * If an error happened mark the log for a full commit because it's not
7635 * consistent and up to date or we couldn't find out if one of the
7636 * inodes was logged before in this transaction. Do it before unpinning
7637 * the log, to avoid any races with someone else trying to commit it.
7638 */
7639 if (ret < 0)
7640 btrfs_set_log_full_commit(trans);
7641 if (log_pinned)
7642 btrfs_end_log_trans(root);
7643}
7644
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "block-group.h"
21#include "space-info.h"
22#include "zoned.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 struct btrfs_log_ctx *ctx);
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108static void wait_log_commit(struct btrfs_root *root, int transid);
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
141{
142 struct btrfs_fs_info *fs_info = root->fs_info;
143 struct btrfs_root *tree_root = fs_info->tree_root;
144 const bool zoned = btrfs_is_zoned(fs_info);
145 int ret = 0;
146 bool created = false;
147
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 if (!ret) {
157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 created = true;
159 }
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
166 mutex_lock(&root->log_mutex);
167
168again:
169 if (root->log_root) {
170 int index = (root->log_transid + 1) % 2;
171
172 if (btrfs_need_log_full_commit(trans)) {
173 ret = -EAGAIN;
174 goto out;
175 }
176
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
182 if (!root->log_start_pid) {
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 } else if (root->log_start_pid != current->pid) {
186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 }
188 } else {
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
200 ret = btrfs_add_log_tree(trans, root);
201 if (ret)
202 goto out;
203
204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
207 }
208
209 atomic_inc(&root->log_writers);
210 if (ctx && !ctx->logging_new_name) {
211 int index = root->log_transid % 2;
212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 ctx->log_transid = root->log_transid;
214 }
215
216out:
217 mutex_unlock(&root->log_mutex);
218 return ret;
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
228 const bool zoned = btrfs_is_zoned(root->fs_info);
229 int ret = -ENOENT;
230
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
234 mutex_lock(&root->log_mutex);
235again:
236 if (root->log_root) {
237 int index = (root->log_transid + 1) % 2;
238
239 ret = 0;
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
244 atomic_inc(&root->log_writers);
245 }
246 mutex_unlock(&root->log_mutex);
247 return ret;
248}
249
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
255void btrfs_pin_log_trans(struct btrfs_root *root)
256{
257 atomic_inc(&root->log_writers);
258}
259
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
264void btrfs_end_log_trans(struct btrfs_root *root)
265{
266 if (atomic_dec_and_test(&root->log_writers)) {
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
269 }
270}
271
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 struct walk_control *wc, u64 gen, int level);
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
341 struct walk_control *wc, u64 gen, int level)
342{
343 struct btrfs_fs_info *fs_info = log->fs_info;
344 int ret = 0;
345
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 ret = btrfs_read_buffer(eb, gen, level, NULL);
352 if (ret)
353 return ret;
354 }
355
356 if (wc->pin)
357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 eb->len);
359
360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 if (wc->pin && btrfs_header_level(eb) == 0)
362 ret = btrfs_exclude_logged_extents(eb);
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
368 return ret;
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 if (ret < 0)
409 return ret;
410
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
420 btrfs_release_path(path);
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
425 if (!dst_copy || !src_copy) {
426 btrfs_release_path(path);
427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
448 btrfs_release_path(path);
449 return 0;
450 }
451
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
459 u32 mode;
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
479 u32 mode;
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
496 }
497insert:
498 btrfs_release_path(path);
499 /* try to insert the key into the destination tree */
500 path->skip_release_on_error = 1;
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
503 path->skip_release_on_error = 0;
504
505 /* make sure any existing item is the correct size */
506 if (ret == -EEXIST || ret == -EOVERFLOW) {
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
510 if (found_size > item_size)
511 btrfs_truncate_item(path, item_size, 1);
512 else if (found_size < item_size)
513 btrfs_extend_item(path, item_size - found_size);
514 } else if (ret) {
515 return ret;
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
538 const u64 ino_size = btrfs_inode_size(eb, src_item);
539
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 goto no_copy;
552 }
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
583 btrfs_release_path(path);
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
595
596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 if (IS_ERR(inode))
598 inode = NULL;
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
620 struct btrfs_drop_extents_args drop_args = { 0 };
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 int found_type;
623 u64 extent_end;
624 u64 start = key->offset;
625 u64 nbytes = 0;
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
634 if (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 size = btrfs_file_extent_ram_bytes(eb, item);
647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 extent_end = ALIGN(start + size,
649 fs_info->sectorsize);
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
668
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 btrfs_release_path(path);
692 goto out;
693 }
694 }
695 btrfs_release_path(path);
696
697 /* drop any overlapping extents */
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 if (ret)
703 goto out;
704
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 u64 offset;
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
717 if (ret)
718 goto out;
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
727 offset = key->offset - btrfs_file_extent_offset(eb, item);
728
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
737 ret = btrfs_qgroup_trace_extent(trans,
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
744 if (ins.objectid > 0) {
745 struct btrfs_ref ref = { 0 };
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
749
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 ins.offset);
756 if (ret < 0) {
757 goto out;
758 } else if (ret == 0) {
759 btrfs_init_generic_ref(&ref,
760 BTRFS_ADD_DELAYED_REF,
761 ins.objectid, ins.offset, 0);
762 btrfs_init_data_ref(&ref,
763 root->root_key.objectid,
764 key->objectid, offset);
765 ret = btrfs_inc_extent_ref(trans, &ref);
766 if (ret)
767 goto out;
768 } else {
769 /*
770 * insert the extent pointer in the extent
771 * allocation tree
772 */
773 ret = btrfs_alloc_logged_file_extent(trans,
774 root->root_key.objectid,
775 key->objectid, offset, &ins);
776 if (ret)
777 goto out;
778 }
779 btrfs_release_path(path);
780
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
784 } else {
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
789 }
790
791 ret = btrfs_lookup_csums_range(root->log_root,
792 csum_start, csum_end - 1,
793 &ordered_sums, 0);
794 if (ret)
795 goto out;
796 /*
797 * Now delete all existing cums in the csum root that
798 * cover our range. We do this because we can have an
799 * extent that is completely referenced by one file
800 * extent item and partially referenced by another
801 * file extent item (like after using the clone or
802 * extent_same ioctls). In this case if we end up doing
803 * the replay of the one that partially references the
804 * extent first, and we do not do the csum deletion
805 * below, we can get 2 csum items in the csum tree that
806 * overlap each other. For example, imagine our log has
807 * the two following file extent items:
808 *
809 * key (257 EXTENT_DATA 409600)
810 * extent data disk byte 12845056 nr 102400
811 * extent data offset 20480 nr 20480 ram 102400
812 *
813 * key (257 EXTENT_DATA 819200)
814 * extent data disk byte 12845056 nr 102400
815 * extent data offset 0 nr 102400 ram 102400
816 *
817 * Where the second one fully references the 100K extent
818 * that starts at disk byte 12845056, and the log tree
819 * has a single csum item that covers the entire range
820 * of the extent:
821 *
822 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 *
824 * After the first file extent item is replayed, the
825 * csum tree gets the following csum item:
826 *
827 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 *
829 * Which covers the 20K sub-range starting at offset 20K
830 * of our extent. Now when we replay the second file
831 * extent item, if we do not delete existing csum items
832 * that cover any of its blocks, we end up getting two
833 * csum items in our csum tree that overlap each other:
834 *
835 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which is a problem, because after this anyone trying
839 * to lookup up for the checksum of any block of our
840 * extent starting at an offset of 40K or higher, will
841 * end up looking at the second csum item only, which
842 * does not contain the checksum for any block starting
843 * at offset 40K or higher of our extent.
844 */
845 while (!list_empty(&ordered_sums)) {
846 struct btrfs_ordered_sum *sums;
847 sums = list_entry(ordered_sums.next,
848 struct btrfs_ordered_sum,
849 list);
850 if (!ret)
851 ret = btrfs_del_csums(trans,
852 fs_info->csum_root,
853 sums->bytenr,
854 sums->len);
855 if (!ret)
856 ret = btrfs_csum_file_blocks(trans,
857 fs_info->csum_root, sums);
858 list_del(&sums->list);
859 kfree(sums);
860 }
861 if (ret)
862 goto out;
863 } else {
864 btrfs_release_path(path);
865 }
866 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 /* inline extents are easy, we just overwrite them */
868 ret = overwrite_item(trans, root, path, eb, slot, key);
869 if (ret)
870 goto out;
871 }
872
873 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 extent_end - start);
875 if (ret)
876 goto out;
877
878update_inode:
879 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881out:
882 if (inode)
883 iput(inode);
884 return ret;
885}
886
887/*
888 * when cleaning up conflicts between the directory names in the
889 * subvolume, directory names in the log and directory names in the
890 * inode back references, we may have to unlink inodes from directories.
891 *
892 * This is a helper function to do the unlink of a specific directory
893 * item
894 */
895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
898 struct btrfs_inode *dir,
899 struct btrfs_dir_item *di)
900{
901 struct inode *inode;
902 char *name;
903 int name_len;
904 struct extent_buffer *leaf;
905 struct btrfs_key location;
906 int ret;
907
908 leaf = path->nodes[0];
909
910 btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 name_len = btrfs_dir_name_len(leaf, di);
912 name = kmalloc(name_len, GFP_NOFS);
913 if (!name)
914 return -ENOMEM;
915
916 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917 btrfs_release_path(path);
918
919 inode = read_one_inode(root, location.objectid);
920 if (!inode) {
921 ret = -EIO;
922 goto out;
923 }
924
925 ret = link_to_fixup_dir(trans, root, path, location.objectid);
926 if (ret)
927 goto out;
928
929 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
930 name_len);
931 if (ret)
932 goto out;
933 else
934 ret = btrfs_run_delayed_items(trans);
935out:
936 kfree(name);
937 iput(inode);
938 return ret;
939}
940
941/*
942 * See if a given name and sequence number found in an inode back reference are
943 * already in a directory and correctly point to this inode.
944 *
945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
946 * exists.
947 */
948static noinline int inode_in_dir(struct btrfs_root *root,
949 struct btrfs_path *path,
950 u64 dirid, u64 objectid, u64 index,
951 const char *name, int name_len)
952{
953 struct btrfs_dir_item *di;
954 struct btrfs_key location;
955 int ret = 0;
956
957 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
958 index, name, name_len, 0);
959 if (IS_ERR(di)) {
960 if (PTR_ERR(di) != -ENOENT)
961 ret = PTR_ERR(di);
962 goto out;
963 } else if (di) {
964 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
965 if (location.objectid != objectid)
966 goto out;
967 } else {
968 goto out;
969 }
970
971 btrfs_release_path(path);
972 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
973 if (IS_ERR(di)) {
974 ret = PTR_ERR(di);
975 goto out;
976 } else if (di) {
977 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
978 if (location.objectid == objectid)
979 ret = 1;
980 }
981out:
982 btrfs_release_path(path);
983 return ret;
984}
985
986/*
987 * helper function to check a log tree for a named back reference in
988 * an inode. This is used to decide if a back reference that is
989 * found in the subvolume conflicts with what we find in the log.
990 *
991 * inode backreferences may have multiple refs in a single item,
992 * during replay we process one reference at a time, and we don't
993 * want to delete valid links to a file from the subvolume if that
994 * link is also in the log.
995 */
996static noinline int backref_in_log(struct btrfs_root *log,
997 struct btrfs_key *key,
998 u64 ref_objectid,
999 const char *name, int namelen)
1000{
1001 struct btrfs_path *path;
1002 int ret;
1003
1004 path = btrfs_alloc_path();
1005 if (!path)
1006 return -ENOMEM;
1007
1008 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1009 if (ret < 0) {
1010 goto out;
1011 } else if (ret == 1) {
1012 ret = 0;
1013 goto out;
1014 }
1015
1016 if (key->type == BTRFS_INODE_EXTREF_KEY)
1017 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1018 path->slots[0],
1019 ref_objectid,
1020 name, namelen);
1021 else
1022 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1023 path->slots[0],
1024 name, namelen);
1025out:
1026 btrfs_free_path(path);
1027 return ret;
1028}
1029
1030static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 struct btrfs_root *log_root,
1034 struct btrfs_inode *dir,
1035 struct btrfs_inode *inode,
1036 u64 inode_objectid, u64 parent_objectid,
1037 u64 ref_index, char *name, int namelen,
1038 int *search_done)
1039{
1040 int ret;
1041 char *victim_name;
1042 int victim_name_len;
1043 struct extent_buffer *leaf;
1044 struct btrfs_dir_item *di;
1045 struct btrfs_key search_key;
1046 struct btrfs_inode_extref *extref;
1047
1048again:
1049 /* Search old style refs */
1050 search_key.objectid = inode_objectid;
1051 search_key.type = BTRFS_INODE_REF_KEY;
1052 search_key.offset = parent_objectid;
1053 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1054 if (ret == 0) {
1055 struct btrfs_inode_ref *victim_ref;
1056 unsigned long ptr;
1057 unsigned long ptr_end;
1058
1059 leaf = path->nodes[0];
1060
1061 /* are we trying to overwrite a back ref for the root directory
1062 * if so, just jump out, we're done
1063 */
1064 if (search_key.objectid == search_key.offset)
1065 return 1;
1066
1067 /* check all the names in this back reference to see
1068 * if they are in the log. if so, we allow them to stay
1069 * otherwise they must be unlinked as a conflict
1070 */
1071 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1072 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1073 while (ptr < ptr_end) {
1074 victim_ref = (struct btrfs_inode_ref *)ptr;
1075 victim_name_len = btrfs_inode_ref_name_len(leaf,
1076 victim_ref);
1077 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078 if (!victim_name)
1079 return -ENOMEM;
1080
1081 read_extent_buffer(leaf, victim_name,
1082 (unsigned long)(victim_ref + 1),
1083 victim_name_len);
1084
1085 ret = backref_in_log(log_root, &search_key,
1086 parent_objectid, victim_name,
1087 victim_name_len);
1088 if (ret < 0) {
1089 kfree(victim_name);
1090 return ret;
1091 } else if (!ret) {
1092 inc_nlink(&inode->vfs_inode);
1093 btrfs_release_path(path);
1094
1095 ret = btrfs_unlink_inode(trans, root, dir, inode,
1096 victim_name, victim_name_len);
1097 kfree(victim_name);
1098 if (ret)
1099 return ret;
1100 ret = btrfs_run_delayed_items(trans);
1101 if (ret)
1102 return ret;
1103 *search_done = 1;
1104 goto again;
1105 }
1106 kfree(victim_name);
1107
1108 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1109 }
1110
1111 /*
1112 * NOTE: we have searched root tree and checked the
1113 * corresponding ref, it does not need to check again.
1114 */
1115 *search_done = 1;
1116 }
1117 btrfs_release_path(path);
1118
1119 /* Same search but for extended refs */
1120 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1121 inode_objectid, parent_objectid, 0,
1122 0);
1123 if (!IS_ERR_OR_NULL(extref)) {
1124 u32 item_size;
1125 u32 cur_offset = 0;
1126 unsigned long base;
1127 struct inode *victim_parent;
1128
1129 leaf = path->nodes[0];
1130
1131 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1132 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133
1134 while (cur_offset < item_size) {
1135 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136
1137 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138
1139 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1140 goto next;
1141
1142 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1143 if (!victim_name)
1144 return -ENOMEM;
1145 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1146 victim_name_len);
1147
1148 search_key.objectid = inode_objectid;
1149 search_key.type = BTRFS_INODE_EXTREF_KEY;
1150 search_key.offset = btrfs_extref_hash(parent_objectid,
1151 victim_name,
1152 victim_name_len);
1153 ret = backref_in_log(log_root, &search_key,
1154 parent_objectid, victim_name,
1155 victim_name_len);
1156 if (ret < 0) {
1157 return ret;
1158 } else if (!ret) {
1159 ret = -ENOENT;
1160 victim_parent = read_one_inode(root,
1161 parent_objectid);
1162 if (victim_parent) {
1163 inc_nlink(&inode->vfs_inode);
1164 btrfs_release_path(path);
1165
1166 ret = btrfs_unlink_inode(trans, root,
1167 BTRFS_I(victim_parent),
1168 inode,
1169 victim_name,
1170 victim_name_len);
1171 if (!ret)
1172 ret = btrfs_run_delayed_items(
1173 trans);
1174 }
1175 iput(victim_parent);
1176 kfree(victim_name);
1177 if (ret)
1178 return ret;
1179 *search_done = 1;
1180 goto again;
1181 }
1182 kfree(victim_name);
1183next:
1184 cur_offset += victim_name_len + sizeof(*extref);
1185 }
1186 *search_done = 1;
1187 }
1188 btrfs_release_path(path);
1189
1190 /* look for a conflicting sequence number */
1191 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1192 ref_index, name, namelen, 0);
1193 if (IS_ERR(di)) {
1194 if (PTR_ERR(di) != -ENOENT)
1195 return PTR_ERR(di);
1196 } else if (di) {
1197 ret = drop_one_dir_item(trans, root, path, dir, di);
1198 if (ret)
1199 return ret;
1200 }
1201 btrfs_release_path(path);
1202
1203 /* look for a conflicting name */
1204 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1205 name, namelen, 0);
1206 if (IS_ERR(di)) {
1207 return PTR_ERR(di);
1208 } else if (di) {
1209 ret = drop_one_dir_item(trans, root, path, dir, di);
1210 if (ret)
1211 return ret;
1212 }
1213 btrfs_release_path(path);
1214
1215 return 0;
1216}
1217
1218static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1219 u32 *namelen, char **name, u64 *index,
1220 u64 *parent_objectid)
1221{
1222 struct btrfs_inode_extref *extref;
1223
1224 extref = (struct btrfs_inode_extref *)ref_ptr;
1225
1226 *namelen = btrfs_inode_extref_name_len(eb, extref);
1227 *name = kmalloc(*namelen, GFP_NOFS);
1228 if (*name == NULL)
1229 return -ENOMEM;
1230
1231 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1232 *namelen);
1233
1234 if (index)
1235 *index = btrfs_inode_extref_index(eb, extref);
1236 if (parent_objectid)
1237 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238
1239 return 0;
1240}
1241
1242static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 u32 *namelen, char **name, u64 *index)
1244{
1245 struct btrfs_inode_ref *ref;
1246
1247 ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249 *namelen = btrfs_inode_ref_name_len(eb, ref);
1250 *name = kmalloc(*namelen, GFP_NOFS);
1251 if (*name == NULL)
1252 return -ENOMEM;
1253
1254 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
1258
1259 return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 char *name = NULL;
1297 int namelen;
1298 u64 parent_id;
1299
1300 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1301 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302 NULL, &parent_id);
1303 } else {
1304 parent_id = key->offset;
1305 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1306 NULL);
1307 }
1308 if (ret)
1309 goto out;
1310
1311 if (key->type == BTRFS_INODE_EXTREF_KEY)
1312 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313 parent_id, name,
1314 namelen);
1315 else
1316 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1317 name, namelen);
1318
1319 if (!ret) {
1320 struct inode *dir;
1321
1322 btrfs_release_path(path);
1323 dir = read_one_inode(root, parent_id);
1324 if (!dir) {
1325 ret = -ENOENT;
1326 kfree(name);
1327 goto out;
1328 }
1329 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1330 inode, name, namelen);
1331 kfree(name);
1332 iput(dir);
1333 if (ret)
1334 goto out;
1335 goto again;
1336 }
1337
1338 kfree(name);
1339 ref_ptr += namelen;
1340 if (key->type == BTRFS_INODE_EXTREF_KEY)
1341 ref_ptr += sizeof(struct btrfs_inode_extref);
1342 else
1343 ref_ptr += sizeof(struct btrfs_inode_ref);
1344 }
1345 ret = 0;
1346 out:
1347 btrfs_release_path(path);
1348 return ret;
1349}
1350
1351static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1352 const u8 ref_type, const char *name,
1353 const int namelen)
1354{
1355 struct btrfs_key key;
1356 struct btrfs_path *path;
1357 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358 int ret;
1359
1360 path = btrfs_alloc_path();
1361 if (!path)
1362 return -ENOMEM;
1363
1364 key.objectid = btrfs_ino(BTRFS_I(inode));
1365 key.type = ref_type;
1366 if (key.type == BTRFS_INODE_REF_KEY)
1367 key.offset = parent_id;
1368 else
1369 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1370
1371 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1372 if (ret < 0)
1373 goto out;
1374 if (ret > 0) {
1375 ret = 0;
1376 goto out;
1377 }
1378 if (key.type == BTRFS_INODE_EXTREF_KEY)
1379 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1380 path->slots[0], parent_id, name, namelen);
1381 else
1382 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1383 name, namelen);
1384
1385out:
1386 btrfs_free_path(path);
1387 return ret;
1388}
1389
1390static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1391 struct inode *dir, struct inode *inode, const char *name,
1392 int namelen, u64 ref_index)
1393{
1394 struct btrfs_dir_item *dir_item;
1395 struct btrfs_key key;
1396 struct btrfs_path *path;
1397 struct inode *other_inode = NULL;
1398 int ret;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
1404 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1405 btrfs_ino(BTRFS_I(dir)),
1406 name, namelen, 0);
1407 if (!dir_item) {
1408 btrfs_release_path(path);
1409 goto add_link;
1410 } else if (IS_ERR(dir_item)) {
1411 ret = PTR_ERR(dir_item);
1412 goto out;
1413 }
1414
1415 /*
1416 * Our inode's dentry collides with the dentry of another inode which is
1417 * in the log but not yet processed since it has a higher inode number.
1418 * So delete that other dentry.
1419 */
1420 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1421 btrfs_release_path(path);
1422 other_inode = read_one_inode(root, key.objectid);
1423 if (!other_inode) {
1424 ret = -ENOENT;
1425 goto out;
1426 }
1427 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1428 name, namelen);
1429 if (ret)
1430 goto out;
1431 /*
1432 * If we dropped the link count to 0, bump it so that later the iput()
1433 * on the inode will not free it. We will fixup the link count later.
1434 */
1435 if (other_inode->i_nlink == 0)
1436 inc_nlink(other_inode);
1437
1438 ret = btrfs_run_delayed_items(trans);
1439 if (ret)
1440 goto out;
1441add_link:
1442 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1443 name, namelen, 0, ref_index);
1444out:
1445 iput(other_inode);
1446 btrfs_free_path(path);
1447
1448 return ret;
1449}
1450
1451/*
1452 * replay one inode back reference item found in the log tree.
1453 * eb, slot and key refer to the buffer and key found in the log tree.
1454 * root is the destination we are replaying into, and path is for temp
1455 * use by this function. (it should be released on return).
1456 */
1457static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_root *log,
1460 struct btrfs_path *path,
1461 struct extent_buffer *eb, int slot,
1462 struct btrfs_key *key)
1463{
1464 struct inode *dir = NULL;
1465 struct inode *inode = NULL;
1466 unsigned long ref_ptr;
1467 unsigned long ref_end;
1468 char *name = NULL;
1469 int namelen;
1470 int ret;
1471 int search_done = 0;
1472 int log_ref_ver = 0;
1473 u64 parent_objectid;
1474 u64 inode_objectid;
1475 u64 ref_index = 0;
1476 int ref_struct_size;
1477
1478 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1479 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1480
1481 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1482 struct btrfs_inode_extref *r;
1483
1484 ref_struct_size = sizeof(struct btrfs_inode_extref);
1485 log_ref_ver = 1;
1486 r = (struct btrfs_inode_extref *)ref_ptr;
1487 parent_objectid = btrfs_inode_extref_parent(eb, r);
1488 } else {
1489 ref_struct_size = sizeof(struct btrfs_inode_ref);
1490 parent_objectid = key->offset;
1491 }
1492 inode_objectid = key->objectid;
1493
1494 /*
1495 * it is possible that we didn't log all the parent directories
1496 * for a given inode. If we don't find the dir, just don't
1497 * copy the back ref in. The link count fixup code will take
1498 * care of the rest
1499 */
1500 dir = read_one_inode(root, parent_objectid);
1501 if (!dir) {
1502 ret = -ENOENT;
1503 goto out;
1504 }
1505
1506 inode = read_one_inode(root, inode_objectid);
1507 if (!inode) {
1508 ret = -EIO;
1509 goto out;
1510 }
1511
1512 while (ref_ptr < ref_end) {
1513 if (log_ref_ver) {
1514 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1515 &ref_index, &parent_objectid);
1516 /*
1517 * parent object can change from one array
1518 * item to another.
1519 */
1520 if (!dir)
1521 dir = read_one_inode(root, parent_objectid);
1522 if (!dir) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526 } else {
1527 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1528 &ref_index);
1529 }
1530 if (ret)
1531 goto out;
1532
1533 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1534 btrfs_ino(BTRFS_I(inode)), ref_index,
1535 name, namelen);
1536 if (ret < 0) {
1537 goto out;
1538 } else if (ret == 0) {
1539 /*
1540 * look for a conflicting back reference in the
1541 * metadata. if we find one we have to unlink that name
1542 * of the file before we add our new link. Later on, we
1543 * overwrite any existing back reference, and we don't
1544 * want to create dangling pointers in the directory.
1545 */
1546
1547 if (!search_done) {
1548 ret = __add_inode_ref(trans, root, path, log,
1549 BTRFS_I(dir),
1550 BTRFS_I(inode),
1551 inode_objectid,
1552 parent_objectid,
1553 ref_index, name, namelen,
1554 &search_done);
1555 if (ret) {
1556 if (ret == 1)
1557 ret = 0;
1558 goto out;
1559 }
1560 }
1561
1562 /*
1563 * If a reference item already exists for this inode
1564 * with the same parent and name, but different index,
1565 * drop it and the corresponding directory index entries
1566 * from the parent before adding the new reference item
1567 * and dir index entries, otherwise we would fail with
1568 * -EEXIST returned from btrfs_add_link() below.
1569 */
1570 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571 name, namelen);
1572 if (ret > 0) {
1573 ret = btrfs_unlink_inode(trans, root,
1574 BTRFS_I(dir),
1575 BTRFS_I(inode),
1576 name, namelen);
1577 /*
1578 * If we dropped the link count to 0, bump it so
1579 * that later the iput() on the inode will not
1580 * free it. We will fixup the link count later.
1581 */
1582 if (!ret && inode->i_nlink == 0)
1583 inc_nlink(inode);
1584 }
1585 if (ret < 0)
1586 goto out;
1587
1588 /* insert our name */
1589 ret = add_link(trans, root, dir, inode, name, namelen,
1590 ref_index);
1591 if (ret)
1592 goto out;
1593
1594 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1595 if (ret)
1596 goto out;
1597 }
1598 /* Else, ret == 1, we already have a perfect match, we're done. */
1599
1600 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1601 kfree(name);
1602 name = NULL;
1603 if (log_ref_ver) {
1604 iput(dir);
1605 dir = NULL;
1606 }
1607 }
1608
1609 /*
1610 * Before we overwrite the inode reference item in the subvolume tree
1611 * with the item from the log tree, we must unlink all names from the
1612 * parent directory that are in the subvolume's tree inode reference
1613 * item, otherwise we end up with an inconsistent subvolume tree where
1614 * dir index entries exist for a name but there is no inode reference
1615 * item with the same name.
1616 */
1617 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1618 key);
1619 if (ret)
1620 goto out;
1621
1622 /* finally write the back reference in the inode */
1623 ret = overwrite_item(trans, root, path, eb, slot, key);
1624out:
1625 btrfs_release_path(path);
1626 kfree(name);
1627 iput(dir);
1628 iput(inode);
1629 return ret;
1630}
1631
1632static int count_inode_extrefs(struct btrfs_root *root,
1633 struct btrfs_inode *inode, struct btrfs_path *path)
1634{
1635 int ret = 0;
1636 int name_len;
1637 unsigned int nlink = 0;
1638 u32 item_size;
1639 u32 cur_offset = 0;
1640 u64 inode_objectid = btrfs_ino(inode);
1641 u64 offset = 0;
1642 unsigned long ptr;
1643 struct btrfs_inode_extref *extref;
1644 struct extent_buffer *leaf;
1645
1646 while (1) {
1647 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1648 &extref, &offset);
1649 if (ret)
1650 break;
1651
1652 leaf = path->nodes[0];
1653 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655 cur_offset = 0;
1656
1657 while (cur_offset < item_size) {
1658 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1659 name_len = btrfs_inode_extref_name_len(leaf, extref);
1660
1661 nlink++;
1662
1663 cur_offset += name_len + sizeof(*extref);
1664 }
1665
1666 offset++;
1667 btrfs_release_path(path);
1668 }
1669 btrfs_release_path(path);
1670
1671 if (ret < 0 && ret != -ENOENT)
1672 return ret;
1673 return nlink;
1674}
1675
1676static int count_inode_refs(struct btrfs_root *root,
1677 struct btrfs_inode *inode, struct btrfs_path *path)
1678{
1679 int ret;
1680 struct btrfs_key key;
1681 unsigned int nlink = 0;
1682 unsigned long ptr;
1683 unsigned long ptr_end;
1684 int name_len;
1685 u64 ino = btrfs_ino(inode);
1686
1687 key.objectid = ino;
1688 key.type = BTRFS_INODE_REF_KEY;
1689 key.offset = (u64)-1;
1690
1691 while (1) {
1692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1693 if (ret < 0)
1694 break;
1695 if (ret > 0) {
1696 if (path->slots[0] == 0)
1697 break;
1698 path->slots[0]--;
1699 }
1700process_slot:
1701 btrfs_item_key_to_cpu(path->nodes[0], &key,
1702 path->slots[0]);
1703 if (key.objectid != ino ||
1704 key.type != BTRFS_INODE_REF_KEY)
1705 break;
1706 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1707 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1708 path->slots[0]);
1709 while (ptr < ptr_end) {
1710 struct btrfs_inode_ref *ref;
1711
1712 ref = (struct btrfs_inode_ref *)ptr;
1713 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1714 ref);
1715 ptr = (unsigned long)(ref + 1) + name_len;
1716 nlink++;
1717 }
1718
1719 if (key.offset == 0)
1720 break;
1721 if (path->slots[0] > 0) {
1722 path->slots[0]--;
1723 goto process_slot;
1724 }
1725 key.offset--;
1726 btrfs_release_path(path);
1727 }
1728 btrfs_release_path(path);
1729
1730 return nlink;
1731}
1732
1733/*
1734 * There are a few corners where the link count of the file can't
1735 * be properly maintained during replay. So, instead of adding
1736 * lots of complexity to the log code, we just scan the backrefs
1737 * for any file that has been through replay.
1738 *
1739 * The scan will update the link count on the inode to reflect the
1740 * number of back refs found. If it goes down to zero, the iput
1741 * will free the inode.
1742 */
1743static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1744 struct btrfs_root *root,
1745 struct inode *inode)
1746{
1747 struct btrfs_path *path;
1748 int ret;
1749 u64 nlink = 0;
1750 u64 ino = btrfs_ino(BTRFS_I(inode));
1751
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 ret = count_inode_refs(root, BTRFS_I(inode), path);
1757 if (ret < 0)
1758 goto out;
1759
1760 nlink = ret;
1761
1762 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1763 if (ret < 0)
1764 goto out;
1765
1766 nlink += ret;
1767
1768 ret = 0;
1769
1770 if (nlink != inode->i_nlink) {
1771 set_nlink(inode, nlink);
1772 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1773 if (ret)
1774 goto out;
1775 }
1776 BTRFS_I(inode)->index_cnt = (u64)-1;
1777
1778 if (inode->i_nlink == 0) {
1779 if (S_ISDIR(inode->i_mode)) {
1780 ret = replay_dir_deletes(trans, root, NULL, path,
1781 ino, 1);
1782 if (ret)
1783 goto out;
1784 }
1785 ret = btrfs_insert_orphan_item(trans, root, ino);
1786 if (ret == -EEXIST)
1787 ret = 0;
1788 }
1789
1790out:
1791 btrfs_free_path(path);
1792 return ret;
1793}
1794
1795static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 struct btrfs_path *path)
1798{
1799 int ret;
1800 struct btrfs_key key;
1801 struct inode *inode;
1802
1803 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1804 key.type = BTRFS_ORPHAN_ITEM_KEY;
1805 key.offset = (u64)-1;
1806 while (1) {
1807 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1808 if (ret < 0)
1809 break;
1810
1811 if (ret == 1) {
1812 ret = 0;
1813 if (path->slots[0] == 0)
1814 break;
1815 path->slots[0]--;
1816 }
1817
1818 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1820 key.type != BTRFS_ORPHAN_ITEM_KEY)
1821 break;
1822
1823 ret = btrfs_del_item(trans, root, path);
1824 if (ret)
1825 break;
1826
1827 btrfs_release_path(path);
1828 inode = read_one_inode(root, key.offset);
1829 if (!inode) {
1830 ret = -EIO;
1831 break;
1832 }
1833
1834 ret = fixup_inode_link_count(trans, root, inode);
1835 iput(inode);
1836 if (ret)
1837 break;
1838
1839 /*
1840 * fixup on a directory may create new entries,
1841 * make sure we always look for the highset possible
1842 * offset
1843 */
1844 key.offset = (u64)-1;
1845 }
1846 btrfs_release_path(path);
1847 return ret;
1848}
1849
1850
1851/*
1852 * record a given inode in the fixup dir so we can check its link
1853 * count when replay is done. The link count is incremented here
1854 * so the inode won't go away until we check it
1855 */
1856static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1857 struct btrfs_root *root,
1858 struct btrfs_path *path,
1859 u64 objectid)
1860{
1861 struct btrfs_key key;
1862 int ret = 0;
1863 struct inode *inode;
1864
1865 inode = read_one_inode(root, objectid);
1866 if (!inode)
1867 return -EIO;
1868
1869 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1870 key.type = BTRFS_ORPHAN_ITEM_KEY;
1871 key.offset = objectid;
1872
1873 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1874
1875 btrfs_release_path(path);
1876 if (ret == 0) {
1877 if (!inode->i_nlink)
1878 set_nlink(inode, 1);
1879 else
1880 inc_nlink(inode);
1881 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1882 } else if (ret == -EEXIST) {
1883 ret = 0;
1884 }
1885 iput(inode);
1886
1887 return ret;
1888}
1889
1890/*
1891 * when replaying the log for a directory, we only insert names
1892 * for inodes that actually exist. This means an fsync on a directory
1893 * does not implicitly fsync all the new files in it
1894 */
1895static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root,
1897 u64 dirid, u64 index,
1898 char *name, int name_len,
1899 struct btrfs_key *location)
1900{
1901 struct inode *inode;
1902 struct inode *dir;
1903 int ret;
1904
1905 inode = read_one_inode(root, location->objectid);
1906 if (!inode)
1907 return -ENOENT;
1908
1909 dir = read_one_inode(root, dirid);
1910 if (!dir) {
1911 iput(inode);
1912 return -EIO;
1913 }
1914
1915 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1916 name_len, 1, index);
1917
1918 /* FIXME, put inode into FIXUP list */
1919
1920 iput(inode);
1921 iput(dir);
1922 return ret;
1923}
1924
1925/*
1926 * take a single entry in a log directory item and replay it into
1927 * the subvolume.
1928 *
1929 * if a conflicting item exists in the subdirectory already,
1930 * the inode it points to is unlinked and put into the link count
1931 * fix up tree.
1932 *
1933 * If a name from the log points to a file or directory that does
1934 * not exist in the FS, it is skipped. fsyncs on directories
1935 * do not force down inodes inside that directory, just changes to the
1936 * names or unlinks in a directory.
1937 *
1938 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1939 * non-existing inode) and 1 if the name was replayed.
1940 */
1941static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct extent_buffer *eb,
1945 struct btrfs_dir_item *di,
1946 struct btrfs_key *key)
1947{
1948 char *name;
1949 int name_len;
1950 struct btrfs_dir_item *dst_di;
1951 struct btrfs_key found_key;
1952 struct btrfs_key log_key;
1953 struct inode *dir;
1954 u8 log_type;
1955 bool exists;
1956 int ret;
1957 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1958 bool name_added = false;
1959
1960 dir = read_one_inode(root, key->objectid);
1961 if (!dir)
1962 return -EIO;
1963
1964 name_len = btrfs_dir_name_len(eb, di);
1965 name = kmalloc(name_len, GFP_NOFS);
1966 if (!name) {
1967 ret = -ENOMEM;
1968 goto out;
1969 }
1970
1971 log_type = btrfs_dir_type(eb, di);
1972 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973 name_len);
1974
1975 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1976 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1977 btrfs_release_path(path);
1978 if (ret < 0)
1979 goto out;
1980 exists = (ret == 0);
1981 ret = 0;
1982
1983 if (key->type == BTRFS_DIR_ITEM_KEY) {
1984 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1985 name, name_len, 1);
1986 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1987 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1988 key->objectid,
1989 key->offset, name,
1990 name_len, 1);
1991 } else {
1992 /* Corruption */
1993 ret = -EINVAL;
1994 goto out;
1995 }
1996
1997 if (dst_di == ERR_PTR(-ENOENT))
1998 dst_di = NULL;
1999
2000 if (IS_ERR(dst_di)) {
2001 ret = PTR_ERR(dst_di);
2002 goto out;
2003 } else if (!dst_di) {
2004 /* we need a sequence number to insert, so we only
2005 * do inserts for the BTRFS_DIR_INDEX_KEY types
2006 */
2007 if (key->type != BTRFS_DIR_INDEX_KEY)
2008 goto out;
2009 goto insert;
2010 }
2011
2012 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2013 /* the existing item matches the logged item */
2014 if (found_key.objectid == log_key.objectid &&
2015 found_key.type == log_key.type &&
2016 found_key.offset == log_key.offset &&
2017 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2018 update_size = false;
2019 goto out;
2020 }
2021
2022 /*
2023 * don't drop the conflicting directory entry if the inode
2024 * for the new entry doesn't exist
2025 */
2026 if (!exists)
2027 goto out;
2028
2029 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2030 if (ret)
2031 goto out;
2032
2033 if (key->type == BTRFS_DIR_INDEX_KEY)
2034 goto insert;
2035out:
2036 btrfs_release_path(path);
2037 if (!ret && update_size) {
2038 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2039 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2040 }
2041 kfree(name);
2042 iput(dir);
2043 if (!ret && name_added)
2044 ret = 1;
2045 return ret;
2046
2047insert:
2048 /*
2049 * Check if the inode reference exists in the log for the given name,
2050 * inode and parent inode
2051 */
2052 found_key.objectid = log_key.objectid;
2053 found_key.type = BTRFS_INODE_REF_KEY;
2054 found_key.offset = key->objectid;
2055 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2056 if (ret < 0) {
2057 goto out;
2058 } else if (ret) {
2059 /* The dentry will be added later. */
2060 ret = 0;
2061 update_size = false;
2062 goto out;
2063 }
2064
2065 found_key.objectid = log_key.objectid;
2066 found_key.type = BTRFS_INODE_EXTREF_KEY;
2067 found_key.offset = key->objectid;
2068 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2069 name_len);
2070 if (ret < 0) {
2071 goto out;
2072 } else if (ret) {
2073 /* The dentry will be added later. */
2074 ret = 0;
2075 update_size = false;
2076 goto out;
2077 }
2078 btrfs_release_path(path);
2079 ret = insert_one_name(trans, root, key->objectid, key->offset,
2080 name, name_len, &log_key);
2081 if (ret && ret != -ENOENT && ret != -EEXIST)
2082 goto out;
2083 if (!ret)
2084 name_added = true;
2085 update_size = false;
2086 ret = 0;
2087 goto out;
2088}
2089
2090/*
2091 * find all the names in a directory item and reconcile them into
2092 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2093 * one name in a directory item, but the same code gets used for
2094 * both directory index types
2095 */
2096static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_path *path,
2099 struct extent_buffer *eb, int slot,
2100 struct btrfs_key *key)
2101{
2102 int ret = 0;
2103 u32 item_size = btrfs_item_size_nr(eb, slot);
2104 struct btrfs_dir_item *di;
2105 int name_len;
2106 unsigned long ptr;
2107 unsigned long ptr_end;
2108 struct btrfs_path *fixup_path = NULL;
2109
2110 ptr = btrfs_item_ptr_offset(eb, slot);
2111 ptr_end = ptr + item_size;
2112 while (ptr < ptr_end) {
2113 di = (struct btrfs_dir_item *)ptr;
2114 name_len = btrfs_dir_name_len(eb, di);
2115 ret = replay_one_name(trans, root, path, eb, di, key);
2116 if (ret < 0)
2117 break;
2118 ptr = (unsigned long)(di + 1);
2119 ptr += name_len;
2120
2121 /*
2122 * If this entry refers to a non-directory (directories can not
2123 * have a link count > 1) and it was added in the transaction
2124 * that was not committed, make sure we fixup the link count of
2125 * the inode it the entry points to. Otherwise something like
2126 * the following would result in a directory pointing to an
2127 * inode with a wrong link that does not account for this dir
2128 * entry:
2129 *
2130 * mkdir testdir
2131 * touch testdir/foo
2132 * touch testdir/bar
2133 * sync
2134 *
2135 * ln testdir/bar testdir/bar_link
2136 * ln testdir/foo testdir/foo_link
2137 * xfs_io -c "fsync" testdir/bar
2138 *
2139 * <power failure>
2140 *
2141 * mount fs, log replay happens
2142 *
2143 * File foo would remain with a link count of 1 when it has two
2144 * entries pointing to it in the directory testdir. This would
2145 * make it impossible to ever delete the parent directory has
2146 * it would result in stale dentries that can never be deleted.
2147 */
2148 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149 struct btrfs_key di_key;
2150
2151 if (!fixup_path) {
2152 fixup_path = btrfs_alloc_path();
2153 if (!fixup_path) {
2154 ret = -ENOMEM;
2155 break;
2156 }
2157 }
2158
2159 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160 ret = link_to_fixup_dir(trans, root, fixup_path,
2161 di_key.objectid);
2162 if (ret)
2163 break;
2164 }
2165 ret = 0;
2166 }
2167 btrfs_free_path(fixup_path);
2168 return ret;
2169}
2170
2171/*
2172 * directory replay has two parts. There are the standard directory
2173 * items in the log copied from the subvolume, and range items
2174 * created in the log while the subvolume was logged.
2175 *
2176 * The range items tell us which parts of the key space the log
2177 * is authoritative for. During replay, if a key in the subvolume
2178 * directory is in a logged range item, but not actually in the log
2179 * that means it was deleted from the directory before the fsync
2180 * and should be removed.
2181 */
2182static noinline int find_dir_range(struct btrfs_root *root,
2183 struct btrfs_path *path,
2184 u64 dirid, int key_type,
2185 u64 *start_ret, u64 *end_ret)
2186{
2187 struct btrfs_key key;
2188 u64 found_end;
2189 struct btrfs_dir_log_item *item;
2190 int ret;
2191 int nritems;
2192
2193 if (*start_ret == (u64)-1)
2194 return 1;
2195
2196 key.objectid = dirid;
2197 key.type = key_type;
2198 key.offset = *start_ret;
2199
2200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203 if (ret > 0) {
2204 if (path->slots[0] == 0)
2205 goto out;
2206 path->slots[0]--;
2207 }
2208 if (ret != 0)
2209 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210
2211 if (key.type != key_type || key.objectid != dirid) {
2212 ret = 1;
2213 goto next;
2214 }
2215 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216 struct btrfs_dir_log_item);
2217 found_end = btrfs_dir_log_end(path->nodes[0], item);
2218
2219 if (*start_ret >= key.offset && *start_ret <= found_end) {
2220 ret = 0;
2221 *start_ret = key.offset;
2222 *end_ret = found_end;
2223 goto out;
2224 }
2225 ret = 1;
2226next:
2227 /* check the next slot in the tree to see if it is a valid item */
2228 nritems = btrfs_header_nritems(path->nodes[0]);
2229 path->slots[0]++;
2230 if (path->slots[0] >= nritems) {
2231 ret = btrfs_next_leaf(root, path);
2232 if (ret)
2233 goto out;
2234 }
2235
2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
2238 if (key.type != key_type || key.objectid != dirid) {
2239 ret = 1;
2240 goto out;
2241 }
2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 struct btrfs_dir_log_item);
2244 found_end = btrfs_dir_log_end(path->nodes[0], item);
2245 *start_ret = key.offset;
2246 *end_ret = found_end;
2247 ret = 0;
2248out:
2249 btrfs_release_path(path);
2250 return ret;
2251}
2252
2253/*
2254 * this looks for a given directory item in the log. If the directory
2255 * item is not in the log, the item is removed and the inode it points
2256 * to is unlinked
2257 */
2258static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259 struct btrfs_root *root,
2260 struct btrfs_root *log,
2261 struct btrfs_path *path,
2262 struct btrfs_path *log_path,
2263 struct inode *dir,
2264 struct btrfs_key *dir_key)
2265{
2266 int ret;
2267 struct extent_buffer *eb;
2268 int slot;
2269 u32 item_size;
2270 struct btrfs_dir_item *di;
2271 struct btrfs_dir_item *log_di;
2272 int name_len;
2273 unsigned long ptr;
2274 unsigned long ptr_end;
2275 char *name;
2276 struct inode *inode;
2277 struct btrfs_key location;
2278
2279again:
2280 eb = path->nodes[0];
2281 slot = path->slots[0];
2282 item_size = btrfs_item_size_nr(eb, slot);
2283 ptr = btrfs_item_ptr_offset(eb, slot);
2284 ptr_end = ptr + item_size;
2285 while (ptr < ptr_end) {
2286 di = (struct btrfs_dir_item *)ptr;
2287 name_len = btrfs_dir_name_len(eb, di);
2288 name = kmalloc(name_len, GFP_NOFS);
2289 if (!name) {
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294 name_len);
2295 log_di = NULL;
2296 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298 dir_key->objectid,
2299 name, name_len, 0);
2300 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301 log_di = btrfs_lookup_dir_index_item(trans, log,
2302 log_path,
2303 dir_key->objectid,
2304 dir_key->offset,
2305 name, name_len, 0);
2306 }
2307 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2308 btrfs_dir_item_key_to_cpu(eb, di, &location);
2309 btrfs_release_path(path);
2310 btrfs_release_path(log_path);
2311 inode = read_one_inode(root, location.objectid);
2312 if (!inode) {
2313 kfree(name);
2314 return -EIO;
2315 }
2316
2317 ret = link_to_fixup_dir(trans, root,
2318 path, location.objectid);
2319 if (ret) {
2320 kfree(name);
2321 iput(inode);
2322 goto out;
2323 }
2324
2325 inc_nlink(inode);
2326 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327 BTRFS_I(inode), name, name_len);
2328 if (!ret)
2329 ret = btrfs_run_delayed_items(trans);
2330 kfree(name);
2331 iput(inode);
2332 if (ret)
2333 goto out;
2334
2335 /* there might still be more names under this key
2336 * check and repeat if required
2337 */
2338 ret = btrfs_search_slot(NULL, root, dir_key, path,
2339 0, 0);
2340 if (ret == 0)
2341 goto again;
2342 ret = 0;
2343 goto out;
2344 } else if (IS_ERR(log_di)) {
2345 kfree(name);
2346 return PTR_ERR(log_di);
2347 }
2348 btrfs_release_path(log_path);
2349 kfree(name);
2350
2351 ptr = (unsigned long)(di + 1);
2352 ptr += name_len;
2353 }
2354 ret = 0;
2355out:
2356 btrfs_release_path(path);
2357 btrfs_release_path(log_path);
2358 return ret;
2359}
2360
2361static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root,
2363 struct btrfs_root *log,
2364 struct btrfs_path *path,
2365 const u64 ino)
2366{
2367 struct btrfs_key search_key;
2368 struct btrfs_path *log_path;
2369 int i;
2370 int nritems;
2371 int ret;
2372
2373 log_path = btrfs_alloc_path();
2374 if (!log_path)
2375 return -ENOMEM;
2376
2377 search_key.objectid = ino;
2378 search_key.type = BTRFS_XATTR_ITEM_KEY;
2379 search_key.offset = 0;
2380again:
2381 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382 if (ret < 0)
2383 goto out;
2384process_leaf:
2385 nritems = btrfs_header_nritems(path->nodes[0]);
2386 for (i = path->slots[0]; i < nritems; i++) {
2387 struct btrfs_key key;
2388 struct btrfs_dir_item *di;
2389 struct btrfs_dir_item *log_di;
2390 u32 total_size;
2391 u32 cur;
2392
2393 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395 ret = 0;
2396 goto out;
2397 }
2398
2399 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400 total_size = btrfs_item_size_nr(path->nodes[0], i);
2401 cur = 0;
2402 while (cur < total_size) {
2403 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405 u32 this_len = sizeof(*di) + name_len + data_len;
2406 char *name;
2407
2408 name = kmalloc(name_len, GFP_NOFS);
2409 if (!name) {
2410 ret = -ENOMEM;
2411 goto out;
2412 }
2413 read_extent_buffer(path->nodes[0], name,
2414 (unsigned long)(di + 1), name_len);
2415
2416 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417 name, name_len, 0);
2418 btrfs_release_path(log_path);
2419 if (!log_di) {
2420 /* Doesn't exist in log tree, so delete it. */
2421 btrfs_release_path(path);
2422 di = btrfs_lookup_xattr(trans, root, path, ino,
2423 name, name_len, -1);
2424 kfree(name);
2425 if (IS_ERR(di)) {
2426 ret = PTR_ERR(di);
2427 goto out;
2428 }
2429 ASSERT(di);
2430 ret = btrfs_delete_one_dir_name(trans, root,
2431 path, di);
2432 if (ret)
2433 goto out;
2434 btrfs_release_path(path);
2435 search_key = key;
2436 goto again;
2437 }
2438 kfree(name);
2439 if (IS_ERR(log_di)) {
2440 ret = PTR_ERR(log_di);
2441 goto out;
2442 }
2443 cur += this_len;
2444 di = (struct btrfs_dir_item *)((char *)di + this_len);
2445 }
2446 }
2447 ret = btrfs_next_leaf(root, path);
2448 if (ret > 0)
2449 ret = 0;
2450 else if (ret == 0)
2451 goto process_leaf;
2452out:
2453 btrfs_free_path(log_path);
2454 btrfs_release_path(path);
2455 return ret;
2456}
2457
2458
2459/*
2460 * deletion replay happens before we copy any new directory items
2461 * out of the log or out of backreferences from inodes. It
2462 * scans the log to find ranges of keys that log is authoritative for,
2463 * and then scans the directory to find items in those ranges that are
2464 * not present in the log.
2465 *
2466 * Anything we don't find in the log is unlinked and removed from the
2467 * directory.
2468 */
2469static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 struct btrfs_root *log,
2472 struct btrfs_path *path,
2473 u64 dirid, int del_all)
2474{
2475 u64 range_start;
2476 u64 range_end;
2477 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478 int ret = 0;
2479 struct btrfs_key dir_key;
2480 struct btrfs_key found_key;
2481 struct btrfs_path *log_path;
2482 struct inode *dir;
2483
2484 dir_key.objectid = dirid;
2485 dir_key.type = BTRFS_DIR_ITEM_KEY;
2486 log_path = btrfs_alloc_path();
2487 if (!log_path)
2488 return -ENOMEM;
2489
2490 dir = read_one_inode(root, dirid);
2491 /* it isn't an error if the inode isn't there, that can happen
2492 * because we replay the deletes before we copy in the inode item
2493 * from the log
2494 */
2495 if (!dir) {
2496 btrfs_free_path(log_path);
2497 return 0;
2498 }
2499again:
2500 range_start = 0;
2501 range_end = 0;
2502 while (1) {
2503 if (del_all)
2504 range_end = (u64)-1;
2505 else {
2506 ret = find_dir_range(log, path, dirid, key_type,
2507 &range_start, &range_end);
2508 if (ret != 0)
2509 break;
2510 }
2511
2512 dir_key.offset = range_start;
2513 while (1) {
2514 int nritems;
2515 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2516 0, 0);
2517 if (ret < 0)
2518 goto out;
2519
2520 nritems = btrfs_header_nritems(path->nodes[0]);
2521 if (path->slots[0] >= nritems) {
2522 ret = btrfs_next_leaf(root, path);
2523 if (ret == 1)
2524 break;
2525 else if (ret < 0)
2526 goto out;
2527 }
2528 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2529 path->slots[0]);
2530 if (found_key.objectid != dirid ||
2531 found_key.type != dir_key.type)
2532 goto next_type;
2533
2534 if (found_key.offset > range_end)
2535 break;
2536
2537 ret = check_item_in_log(trans, root, log, path,
2538 log_path, dir,
2539 &found_key);
2540 if (ret)
2541 goto out;
2542 if (found_key.offset == (u64)-1)
2543 break;
2544 dir_key.offset = found_key.offset + 1;
2545 }
2546 btrfs_release_path(path);
2547 if (range_end == (u64)-1)
2548 break;
2549 range_start = range_end + 1;
2550 }
2551
2552next_type:
2553 ret = 0;
2554 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2555 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2556 dir_key.type = BTRFS_DIR_INDEX_KEY;
2557 btrfs_release_path(path);
2558 goto again;
2559 }
2560out:
2561 btrfs_release_path(path);
2562 btrfs_free_path(log_path);
2563 iput(dir);
2564 return ret;
2565}
2566
2567/*
2568 * the process_func used to replay items from the log tree. This
2569 * gets called in two different stages. The first stage just looks
2570 * for inodes and makes sure they are all copied into the subvolume.
2571 *
2572 * The second stage copies all the other item types from the log into
2573 * the subvolume. The two stage approach is slower, but gets rid of
2574 * lots of complexity around inodes referencing other inodes that exist
2575 * only in the log (references come from either directory items or inode
2576 * back refs).
2577 */
2578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2579 struct walk_control *wc, u64 gen, int level)
2580{
2581 int nritems;
2582 struct btrfs_path *path;
2583 struct btrfs_root *root = wc->replay_dest;
2584 struct btrfs_key key;
2585 int i;
2586 int ret;
2587
2588 ret = btrfs_read_buffer(eb, gen, level, NULL);
2589 if (ret)
2590 return ret;
2591
2592 level = btrfs_header_level(eb);
2593
2594 if (level != 0)
2595 return 0;
2596
2597 path = btrfs_alloc_path();
2598 if (!path)
2599 return -ENOMEM;
2600
2601 nritems = btrfs_header_nritems(eb);
2602 for (i = 0; i < nritems; i++) {
2603 btrfs_item_key_to_cpu(eb, &key, i);
2604
2605 /* inode keys are done during the first stage */
2606 if (key.type == BTRFS_INODE_ITEM_KEY &&
2607 wc->stage == LOG_WALK_REPLAY_INODES) {
2608 struct btrfs_inode_item *inode_item;
2609 u32 mode;
2610
2611 inode_item = btrfs_item_ptr(eb, i,
2612 struct btrfs_inode_item);
2613 /*
2614 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2615 * and never got linked before the fsync, skip it, as
2616 * replaying it is pointless since it would be deleted
2617 * later. We skip logging tmpfiles, but it's always
2618 * possible we are replaying a log created with a kernel
2619 * that used to log tmpfiles.
2620 */
2621 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2622 wc->ignore_cur_inode = true;
2623 continue;
2624 } else {
2625 wc->ignore_cur_inode = false;
2626 }
2627 ret = replay_xattr_deletes(wc->trans, root, log,
2628 path, key.objectid);
2629 if (ret)
2630 break;
2631 mode = btrfs_inode_mode(eb, inode_item);
2632 if (S_ISDIR(mode)) {
2633 ret = replay_dir_deletes(wc->trans,
2634 root, log, path, key.objectid, 0);
2635 if (ret)
2636 break;
2637 }
2638 ret = overwrite_item(wc->trans, root, path,
2639 eb, i, &key);
2640 if (ret)
2641 break;
2642
2643 /*
2644 * Before replaying extents, truncate the inode to its
2645 * size. We need to do it now and not after log replay
2646 * because before an fsync we can have prealloc extents
2647 * added beyond the inode's i_size. If we did it after,
2648 * through orphan cleanup for example, we would drop
2649 * those prealloc extents just after replaying them.
2650 */
2651 if (S_ISREG(mode)) {
2652 struct btrfs_drop_extents_args drop_args = { 0 };
2653 struct inode *inode;
2654 u64 from;
2655
2656 inode = read_one_inode(root, key.objectid);
2657 if (!inode) {
2658 ret = -EIO;
2659 break;
2660 }
2661 from = ALIGN(i_size_read(inode),
2662 root->fs_info->sectorsize);
2663 drop_args.start = from;
2664 drop_args.end = (u64)-1;
2665 drop_args.drop_cache = true;
2666 ret = btrfs_drop_extents(wc->trans, root,
2667 BTRFS_I(inode),
2668 &drop_args);
2669 if (!ret) {
2670 inode_sub_bytes(inode,
2671 drop_args.bytes_found);
2672 /* Update the inode's nbytes. */
2673 ret = btrfs_update_inode(wc->trans,
2674 root, BTRFS_I(inode));
2675 }
2676 iput(inode);
2677 if (ret)
2678 break;
2679 }
2680
2681 ret = link_to_fixup_dir(wc->trans, root,
2682 path, key.objectid);
2683 if (ret)
2684 break;
2685 }
2686
2687 if (wc->ignore_cur_inode)
2688 continue;
2689
2690 if (key.type == BTRFS_DIR_INDEX_KEY &&
2691 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2692 ret = replay_one_dir_item(wc->trans, root, path,
2693 eb, i, &key);
2694 if (ret)
2695 break;
2696 }
2697
2698 if (wc->stage < LOG_WALK_REPLAY_ALL)
2699 continue;
2700
2701 /* these keys are simply copied */
2702 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2703 ret = overwrite_item(wc->trans, root, path,
2704 eb, i, &key);
2705 if (ret)
2706 break;
2707 } else if (key.type == BTRFS_INODE_REF_KEY ||
2708 key.type == BTRFS_INODE_EXTREF_KEY) {
2709 ret = add_inode_ref(wc->trans, root, log, path,
2710 eb, i, &key);
2711 if (ret && ret != -ENOENT)
2712 break;
2713 ret = 0;
2714 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2715 ret = replay_one_extent(wc->trans, root, path,
2716 eb, i, &key);
2717 if (ret)
2718 break;
2719 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2720 ret = replay_one_dir_item(wc->trans, root, path,
2721 eb, i, &key);
2722 if (ret)
2723 break;
2724 }
2725 }
2726 btrfs_free_path(path);
2727 return ret;
2728}
2729
2730/*
2731 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2732 */
2733static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2734{
2735 struct btrfs_block_group *cache;
2736
2737 cache = btrfs_lookup_block_group(fs_info, start);
2738 if (!cache) {
2739 btrfs_err(fs_info, "unable to find block group for %llu", start);
2740 return;
2741 }
2742
2743 spin_lock(&cache->space_info->lock);
2744 spin_lock(&cache->lock);
2745 cache->reserved -= fs_info->nodesize;
2746 cache->space_info->bytes_reserved -= fs_info->nodesize;
2747 spin_unlock(&cache->lock);
2748 spin_unlock(&cache->space_info->lock);
2749
2750 btrfs_put_block_group(cache);
2751}
2752
2753static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root,
2755 struct btrfs_path *path, int *level,
2756 struct walk_control *wc)
2757{
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 u64 bytenr;
2760 u64 ptr_gen;
2761 struct extent_buffer *next;
2762 struct extent_buffer *cur;
2763 u32 blocksize;
2764 int ret = 0;
2765
2766 while (*level > 0) {
2767 struct btrfs_key first_key;
2768
2769 cur = path->nodes[*level];
2770
2771 WARN_ON(btrfs_header_level(cur) != *level);
2772
2773 if (path->slots[*level] >=
2774 btrfs_header_nritems(cur))
2775 break;
2776
2777 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2778 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2779 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2780 blocksize = fs_info->nodesize;
2781
2782 next = btrfs_find_create_tree_block(fs_info, bytenr,
2783 btrfs_header_owner(cur),
2784 *level - 1);
2785 if (IS_ERR(next))
2786 return PTR_ERR(next);
2787
2788 if (*level == 1) {
2789 ret = wc->process_func(root, next, wc, ptr_gen,
2790 *level - 1);
2791 if (ret) {
2792 free_extent_buffer(next);
2793 return ret;
2794 }
2795
2796 path->slots[*level]++;
2797 if (wc->free) {
2798 ret = btrfs_read_buffer(next, ptr_gen,
2799 *level - 1, &first_key);
2800 if (ret) {
2801 free_extent_buffer(next);
2802 return ret;
2803 }
2804
2805 if (trans) {
2806 btrfs_tree_lock(next);
2807 btrfs_clean_tree_block(next);
2808 btrfs_wait_tree_block_writeback(next);
2809 btrfs_tree_unlock(next);
2810 ret = btrfs_pin_reserved_extent(trans,
2811 bytenr, blocksize);
2812 if (ret) {
2813 free_extent_buffer(next);
2814 return ret;
2815 }
2816 btrfs_redirty_list_add(
2817 trans->transaction, next);
2818 } else {
2819 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2820 clear_extent_buffer_dirty(next);
2821 unaccount_log_buffer(fs_info, bytenr);
2822 }
2823 }
2824 free_extent_buffer(next);
2825 continue;
2826 }
2827 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2828 if (ret) {
2829 free_extent_buffer(next);
2830 return ret;
2831 }
2832
2833 if (path->nodes[*level-1])
2834 free_extent_buffer(path->nodes[*level-1]);
2835 path->nodes[*level-1] = next;
2836 *level = btrfs_header_level(next);
2837 path->slots[*level] = 0;
2838 cond_resched();
2839 }
2840 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841
2842 cond_resched();
2843 return 0;
2844}
2845
2846static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2847 struct btrfs_root *root,
2848 struct btrfs_path *path, int *level,
2849 struct walk_control *wc)
2850{
2851 struct btrfs_fs_info *fs_info = root->fs_info;
2852 int i;
2853 int slot;
2854 int ret;
2855
2856 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2857 slot = path->slots[i];
2858 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2859 path->slots[i]++;
2860 *level = i;
2861 WARN_ON(*level == 0);
2862 return 0;
2863 } else {
2864 ret = wc->process_func(root, path->nodes[*level], wc,
2865 btrfs_header_generation(path->nodes[*level]),
2866 *level);
2867 if (ret)
2868 return ret;
2869
2870 if (wc->free) {
2871 struct extent_buffer *next;
2872
2873 next = path->nodes[*level];
2874
2875 if (trans) {
2876 btrfs_tree_lock(next);
2877 btrfs_clean_tree_block(next);
2878 btrfs_wait_tree_block_writeback(next);
2879 btrfs_tree_unlock(next);
2880 ret = btrfs_pin_reserved_extent(trans,
2881 path->nodes[*level]->start,
2882 path->nodes[*level]->len);
2883 if (ret)
2884 return ret;
2885 } else {
2886 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2887 clear_extent_buffer_dirty(next);
2888
2889 unaccount_log_buffer(fs_info,
2890 path->nodes[*level]->start);
2891 }
2892 }
2893 free_extent_buffer(path->nodes[*level]);
2894 path->nodes[*level] = NULL;
2895 *level = i + 1;
2896 }
2897 }
2898 return 1;
2899}
2900
2901/*
2902 * drop the reference count on the tree rooted at 'snap'. This traverses
2903 * the tree freeing any blocks that have a ref count of zero after being
2904 * decremented.
2905 */
2906static int walk_log_tree(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *log, struct walk_control *wc)
2908{
2909 struct btrfs_fs_info *fs_info = log->fs_info;
2910 int ret = 0;
2911 int wret;
2912 int level;
2913 struct btrfs_path *path;
2914 int orig_level;
2915
2916 path = btrfs_alloc_path();
2917 if (!path)
2918 return -ENOMEM;
2919
2920 level = btrfs_header_level(log->node);
2921 orig_level = level;
2922 path->nodes[level] = log->node;
2923 atomic_inc(&log->node->refs);
2924 path->slots[level] = 0;
2925
2926 while (1) {
2927 wret = walk_down_log_tree(trans, log, path, &level, wc);
2928 if (wret > 0)
2929 break;
2930 if (wret < 0) {
2931 ret = wret;
2932 goto out;
2933 }
2934
2935 wret = walk_up_log_tree(trans, log, path, &level, wc);
2936 if (wret > 0)
2937 break;
2938 if (wret < 0) {
2939 ret = wret;
2940 goto out;
2941 }
2942 }
2943
2944 /* was the root node processed? if not, catch it here */
2945 if (path->nodes[orig_level]) {
2946 ret = wc->process_func(log, path->nodes[orig_level], wc,
2947 btrfs_header_generation(path->nodes[orig_level]),
2948 orig_level);
2949 if (ret)
2950 goto out;
2951 if (wc->free) {
2952 struct extent_buffer *next;
2953
2954 next = path->nodes[orig_level];
2955
2956 if (trans) {
2957 btrfs_tree_lock(next);
2958 btrfs_clean_tree_block(next);
2959 btrfs_wait_tree_block_writeback(next);
2960 btrfs_tree_unlock(next);
2961 ret = btrfs_pin_reserved_extent(trans,
2962 next->start, next->len);
2963 if (ret)
2964 goto out;
2965 } else {
2966 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2967 clear_extent_buffer_dirty(next);
2968 unaccount_log_buffer(fs_info, next->start);
2969 }
2970 }
2971 }
2972
2973out:
2974 btrfs_free_path(path);
2975 return ret;
2976}
2977
2978/*
2979 * helper function to update the item for a given subvolumes log root
2980 * in the tree of log roots
2981 */
2982static int update_log_root(struct btrfs_trans_handle *trans,
2983 struct btrfs_root *log,
2984 struct btrfs_root_item *root_item)
2985{
2986 struct btrfs_fs_info *fs_info = log->fs_info;
2987 int ret;
2988
2989 if (log->log_transid == 1) {
2990 /* insert root item on the first sync */
2991 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2992 &log->root_key, root_item);
2993 } else {
2994 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2995 &log->root_key, root_item);
2996 }
2997 return ret;
2998}
2999
3000static void wait_log_commit(struct btrfs_root *root, int transid)
3001{
3002 DEFINE_WAIT(wait);
3003 int index = transid % 2;
3004
3005 /*
3006 * we only allow two pending log transactions at a time,
3007 * so we know that if ours is more than 2 older than the
3008 * current transaction, we're done
3009 */
3010 for (;;) {
3011 prepare_to_wait(&root->log_commit_wait[index],
3012 &wait, TASK_UNINTERRUPTIBLE);
3013
3014 if (!(root->log_transid_committed < transid &&
3015 atomic_read(&root->log_commit[index])))
3016 break;
3017
3018 mutex_unlock(&root->log_mutex);
3019 schedule();
3020 mutex_lock(&root->log_mutex);
3021 }
3022 finish_wait(&root->log_commit_wait[index], &wait);
3023}
3024
3025static void wait_for_writer(struct btrfs_root *root)
3026{
3027 DEFINE_WAIT(wait);
3028
3029 for (;;) {
3030 prepare_to_wait(&root->log_writer_wait, &wait,
3031 TASK_UNINTERRUPTIBLE);
3032 if (!atomic_read(&root->log_writers))
3033 break;
3034
3035 mutex_unlock(&root->log_mutex);
3036 schedule();
3037 mutex_lock(&root->log_mutex);
3038 }
3039 finish_wait(&root->log_writer_wait, &wait);
3040}
3041
3042static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3043 struct btrfs_log_ctx *ctx)
3044{
3045 if (!ctx)
3046 return;
3047
3048 mutex_lock(&root->log_mutex);
3049 list_del_init(&ctx->list);
3050 mutex_unlock(&root->log_mutex);
3051}
3052
3053/*
3054 * Invoked in log mutex context, or be sure there is no other task which
3055 * can access the list.
3056 */
3057static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3058 int index, int error)
3059{
3060 struct btrfs_log_ctx *ctx;
3061 struct btrfs_log_ctx *safe;
3062
3063 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3064 list_del_init(&ctx->list);
3065 ctx->log_ret = error;
3066 }
3067
3068 INIT_LIST_HEAD(&root->log_ctxs[index]);
3069}
3070
3071/*
3072 * btrfs_sync_log does sends a given tree log down to the disk and
3073 * updates the super blocks to record it. When this call is done,
3074 * you know that any inodes previously logged are safely on disk only
3075 * if it returns 0.
3076 *
3077 * Any other return value means you need to call btrfs_commit_transaction.
3078 * Some of the edge cases for fsyncing directories that have had unlinks
3079 * or renames done in the past mean that sometimes the only safe
3080 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3081 * that has happened.
3082 */
3083int btrfs_sync_log(struct btrfs_trans_handle *trans,
3084 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3085{
3086 int index1;
3087 int index2;
3088 int mark;
3089 int ret;
3090 struct btrfs_fs_info *fs_info = root->fs_info;
3091 struct btrfs_root *log = root->log_root;
3092 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3093 struct btrfs_root_item new_root_item;
3094 int log_transid = 0;
3095 struct btrfs_log_ctx root_log_ctx;
3096 struct blk_plug plug;
3097 u64 log_root_start;
3098 u64 log_root_level;
3099
3100 mutex_lock(&root->log_mutex);
3101 log_transid = ctx->log_transid;
3102 if (root->log_transid_committed >= log_transid) {
3103 mutex_unlock(&root->log_mutex);
3104 return ctx->log_ret;
3105 }
3106
3107 index1 = log_transid % 2;
3108 if (atomic_read(&root->log_commit[index1])) {
3109 wait_log_commit(root, log_transid);
3110 mutex_unlock(&root->log_mutex);
3111 return ctx->log_ret;
3112 }
3113 ASSERT(log_transid == root->log_transid);
3114 atomic_set(&root->log_commit[index1], 1);
3115
3116 /* wait for previous tree log sync to complete */
3117 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3118 wait_log_commit(root, log_transid - 1);
3119
3120 while (1) {
3121 int batch = atomic_read(&root->log_batch);
3122 /* when we're on an ssd, just kick the log commit out */
3123 if (!btrfs_test_opt(fs_info, SSD) &&
3124 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3125 mutex_unlock(&root->log_mutex);
3126 schedule_timeout_uninterruptible(1);
3127 mutex_lock(&root->log_mutex);
3128 }
3129 wait_for_writer(root);
3130 if (batch == atomic_read(&root->log_batch))
3131 break;
3132 }
3133
3134 /* bail out if we need to do a full commit */
3135 if (btrfs_need_log_full_commit(trans)) {
3136 ret = -EAGAIN;
3137 mutex_unlock(&root->log_mutex);
3138 goto out;
3139 }
3140
3141 if (log_transid % 2 == 0)
3142 mark = EXTENT_DIRTY;
3143 else
3144 mark = EXTENT_NEW;
3145
3146 /* we start IO on all the marked extents here, but we don't actually
3147 * wait for them until later.
3148 */
3149 blk_start_plug(&plug);
3150 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3151 /*
3152 * -EAGAIN happens when someone, e.g., a concurrent transaction
3153 * commit, writes a dirty extent in this tree-log commit. This
3154 * concurrent write will create a hole writing out the extents,
3155 * and we cannot proceed on a zoned filesystem, requiring
3156 * sequential writing. While we can bail out to a full commit
3157 * here, but we can continue hoping the concurrent writing fills
3158 * the hole.
3159 */
3160 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3161 ret = 0;
3162 if (ret) {
3163 blk_finish_plug(&plug);
3164 btrfs_abort_transaction(trans, ret);
3165 btrfs_set_log_full_commit(trans);
3166 mutex_unlock(&root->log_mutex);
3167 goto out;
3168 }
3169
3170 /*
3171 * We _must_ update under the root->log_mutex in order to make sure we
3172 * have a consistent view of the log root we are trying to commit at
3173 * this moment.
3174 *
3175 * We _must_ copy this into a local copy, because we are not holding the
3176 * log_root_tree->log_mutex yet. This is important because when we
3177 * commit the log_root_tree we must have a consistent view of the
3178 * log_root_tree when we update the super block to point at the
3179 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3180 * with the commit and possibly point at the new block which we may not
3181 * have written out.
3182 */
3183 btrfs_set_root_node(&log->root_item, log->node);
3184 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3185
3186 root->log_transid++;
3187 log->log_transid = root->log_transid;
3188 root->log_start_pid = 0;
3189 /*
3190 * IO has been started, blocks of the log tree have WRITTEN flag set
3191 * in their headers. new modifications of the log will be written to
3192 * new positions. so it's safe to allow log writers to go in.
3193 */
3194 mutex_unlock(&root->log_mutex);
3195
3196 if (btrfs_is_zoned(fs_info)) {
3197 mutex_lock(&fs_info->tree_root->log_mutex);
3198 if (!log_root_tree->node) {
3199 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3200 if (ret) {
3201 mutex_unlock(&fs_info->tree_root->log_mutex);
3202 goto out;
3203 }
3204 }
3205 mutex_unlock(&fs_info->tree_root->log_mutex);
3206 }
3207
3208 btrfs_init_log_ctx(&root_log_ctx, NULL);
3209
3210 mutex_lock(&log_root_tree->log_mutex);
3211
3212 index2 = log_root_tree->log_transid % 2;
3213 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3214 root_log_ctx.log_transid = log_root_tree->log_transid;
3215
3216 /*
3217 * Now we are safe to update the log_root_tree because we're under the
3218 * log_mutex, and we're a current writer so we're holding the commit
3219 * open until we drop the log_mutex.
3220 */
3221 ret = update_log_root(trans, log, &new_root_item);
3222 if (ret) {
3223 if (!list_empty(&root_log_ctx.list))
3224 list_del_init(&root_log_ctx.list);
3225
3226 blk_finish_plug(&plug);
3227 btrfs_set_log_full_commit(trans);
3228
3229 if (ret != -ENOSPC) {
3230 btrfs_abort_transaction(trans, ret);
3231 mutex_unlock(&log_root_tree->log_mutex);
3232 goto out;
3233 }
3234 btrfs_wait_tree_log_extents(log, mark);
3235 mutex_unlock(&log_root_tree->log_mutex);
3236 ret = -EAGAIN;
3237 goto out;
3238 }
3239
3240 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3241 blk_finish_plug(&plug);
3242 list_del_init(&root_log_ctx.list);
3243 mutex_unlock(&log_root_tree->log_mutex);
3244 ret = root_log_ctx.log_ret;
3245 goto out;
3246 }
3247
3248 index2 = root_log_ctx.log_transid % 2;
3249 if (atomic_read(&log_root_tree->log_commit[index2])) {
3250 blk_finish_plug(&plug);
3251 ret = btrfs_wait_tree_log_extents(log, mark);
3252 wait_log_commit(log_root_tree,
3253 root_log_ctx.log_transid);
3254 mutex_unlock(&log_root_tree->log_mutex);
3255 if (!ret)
3256 ret = root_log_ctx.log_ret;
3257 goto out;
3258 }
3259 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3260 atomic_set(&log_root_tree->log_commit[index2], 1);
3261
3262 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3263 wait_log_commit(log_root_tree,
3264 root_log_ctx.log_transid - 1);
3265 }
3266
3267 /*
3268 * now that we've moved on to the tree of log tree roots,
3269 * check the full commit flag again
3270 */
3271 if (btrfs_need_log_full_commit(trans)) {
3272 blk_finish_plug(&plug);
3273 btrfs_wait_tree_log_extents(log, mark);
3274 mutex_unlock(&log_root_tree->log_mutex);
3275 ret = -EAGAIN;
3276 goto out_wake_log_root;
3277 }
3278
3279 ret = btrfs_write_marked_extents(fs_info,
3280 &log_root_tree->dirty_log_pages,
3281 EXTENT_DIRTY | EXTENT_NEW);
3282 blk_finish_plug(&plug);
3283 /*
3284 * As described above, -EAGAIN indicates a hole in the extents. We
3285 * cannot wait for these write outs since the waiting cause a
3286 * deadlock. Bail out to the full commit instead.
3287 */
3288 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3289 btrfs_set_log_full_commit(trans);
3290 btrfs_wait_tree_log_extents(log, mark);
3291 mutex_unlock(&log_root_tree->log_mutex);
3292 goto out_wake_log_root;
3293 } else if (ret) {
3294 btrfs_set_log_full_commit(trans);
3295 btrfs_abort_transaction(trans, ret);
3296 mutex_unlock(&log_root_tree->log_mutex);
3297 goto out_wake_log_root;
3298 }
3299 ret = btrfs_wait_tree_log_extents(log, mark);
3300 if (!ret)
3301 ret = btrfs_wait_tree_log_extents(log_root_tree,
3302 EXTENT_NEW | EXTENT_DIRTY);
3303 if (ret) {
3304 btrfs_set_log_full_commit(trans);
3305 mutex_unlock(&log_root_tree->log_mutex);
3306 goto out_wake_log_root;
3307 }
3308
3309 log_root_start = log_root_tree->node->start;
3310 log_root_level = btrfs_header_level(log_root_tree->node);
3311 log_root_tree->log_transid++;
3312 mutex_unlock(&log_root_tree->log_mutex);
3313
3314 /*
3315 * Here we are guaranteed that nobody is going to write the superblock
3316 * for the current transaction before us and that neither we do write
3317 * our superblock before the previous transaction finishes its commit
3318 * and writes its superblock, because:
3319 *
3320 * 1) We are holding a handle on the current transaction, so no body
3321 * can commit it until we release the handle;
3322 *
3323 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3324 * if the previous transaction is still committing, and hasn't yet
3325 * written its superblock, we wait for it to do it, because a
3326 * transaction commit acquires the tree_log_mutex when the commit
3327 * begins and releases it only after writing its superblock.
3328 */
3329 mutex_lock(&fs_info->tree_log_mutex);
3330
3331 /*
3332 * The previous transaction writeout phase could have failed, and thus
3333 * marked the fs in an error state. We must not commit here, as we
3334 * could have updated our generation in the super_for_commit and
3335 * writing the super here would result in transid mismatches. If there
3336 * is an error here just bail.
3337 */
3338 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3339 ret = -EIO;
3340 btrfs_set_log_full_commit(trans);
3341 btrfs_abort_transaction(trans, ret);
3342 mutex_unlock(&fs_info->tree_log_mutex);
3343 goto out_wake_log_root;
3344 }
3345
3346 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3347 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3348 ret = write_all_supers(fs_info, 1);
3349 mutex_unlock(&fs_info->tree_log_mutex);
3350 if (ret) {
3351 btrfs_set_log_full_commit(trans);
3352 btrfs_abort_transaction(trans, ret);
3353 goto out_wake_log_root;
3354 }
3355
3356 mutex_lock(&root->log_mutex);
3357 if (root->last_log_commit < log_transid)
3358 root->last_log_commit = log_transid;
3359 mutex_unlock(&root->log_mutex);
3360
3361out_wake_log_root:
3362 mutex_lock(&log_root_tree->log_mutex);
3363 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364
3365 log_root_tree->log_transid_committed++;
3366 atomic_set(&log_root_tree->log_commit[index2], 0);
3367 mutex_unlock(&log_root_tree->log_mutex);
3368
3369 /*
3370 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3371 * all the updates above are seen by the woken threads. It might not be
3372 * necessary, but proving that seems to be hard.
3373 */
3374 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3375out:
3376 mutex_lock(&root->log_mutex);
3377 btrfs_remove_all_log_ctxs(root, index1, ret);
3378 root->log_transid_committed++;
3379 atomic_set(&root->log_commit[index1], 0);
3380 mutex_unlock(&root->log_mutex);
3381
3382 /*
3383 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3384 * all the updates above are seen by the woken threads. It might not be
3385 * necessary, but proving that seems to be hard.
3386 */
3387 cond_wake_up(&root->log_commit_wait[index1]);
3388 return ret;
3389}
3390
3391static void free_log_tree(struct btrfs_trans_handle *trans,
3392 struct btrfs_root *log)
3393{
3394 int ret;
3395 struct walk_control wc = {
3396 .free = 1,
3397 .process_func = process_one_buffer
3398 };
3399
3400 if (log->node) {
3401 ret = walk_log_tree(trans, log, &wc);
3402 if (ret) {
3403 if (trans)
3404 btrfs_abort_transaction(trans, ret);
3405 else
3406 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3407 }
3408 }
3409
3410 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3411 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3412 extent_io_tree_release(&log->log_csum_range);
3413
3414 if (trans && log->node)
3415 btrfs_redirty_list_add(trans->transaction, log->node);
3416 btrfs_put_root(log);
3417}
3418
3419/*
3420 * free all the extents used by the tree log. This should be called
3421 * at commit time of the full transaction
3422 */
3423int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424{
3425 if (root->log_root) {
3426 free_log_tree(trans, root->log_root);
3427 root->log_root = NULL;
3428 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3429 }
3430 return 0;
3431}
3432
3433int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3434 struct btrfs_fs_info *fs_info)
3435{
3436 if (fs_info->log_root_tree) {
3437 free_log_tree(trans, fs_info->log_root_tree);
3438 fs_info->log_root_tree = NULL;
3439 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3440 }
3441 return 0;
3442}
3443
3444/*
3445 * Check if an inode was logged in the current transaction. We can't always rely
3446 * on an inode's logged_trans value, because it's an in-memory only field and
3447 * therefore not persisted. This means that its value is lost if the inode gets
3448 * evicted and loaded again from disk (in which case it has a value of 0, and
3449 * certainly it is smaller then any possible transaction ID), when that happens
3450 * the full_sync flag is set in the inode's runtime flags, so on that case we
3451 * assume eviction happened and ignore the logged_trans value, assuming the
3452 * worst case, that the inode was logged before in the current transaction.
3453 */
3454static bool inode_logged(struct btrfs_trans_handle *trans,
3455 struct btrfs_inode *inode)
3456{
3457 if (inode->logged_trans == trans->transid)
3458 return true;
3459
3460 if (inode->last_trans == trans->transid &&
3461 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3462 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3463 return true;
3464
3465 return false;
3466}
3467
3468/*
3469 * If both a file and directory are logged, and unlinks or renames are
3470 * mixed in, we have a few interesting corners:
3471 *
3472 * create file X in dir Y
3473 * link file X to X.link in dir Y
3474 * fsync file X
3475 * unlink file X but leave X.link
3476 * fsync dir Y
3477 *
3478 * After a crash we would expect only X.link to exist. But file X
3479 * didn't get fsync'd again so the log has back refs for X and X.link.
3480 *
3481 * We solve this by removing directory entries and inode backrefs from the
3482 * log when a file that was logged in the current transaction is
3483 * unlinked. Any later fsync will include the updated log entries, and
3484 * we'll be able to reconstruct the proper directory items from backrefs.
3485 *
3486 * This optimizations allows us to avoid relogging the entire inode
3487 * or the entire directory.
3488 */
3489int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 const char *name, int name_len,
3492 struct btrfs_inode *dir, u64 index)
3493{
3494 struct btrfs_root *log;
3495 struct btrfs_dir_item *di;
3496 struct btrfs_path *path;
3497 int ret;
3498 int err = 0;
3499 u64 dir_ino = btrfs_ino(dir);
3500
3501 if (!inode_logged(trans, dir))
3502 return 0;
3503
3504 ret = join_running_log_trans(root);
3505 if (ret)
3506 return 0;
3507
3508 mutex_lock(&dir->log_mutex);
3509
3510 log = root->log_root;
3511 path = btrfs_alloc_path();
3512 if (!path) {
3513 err = -ENOMEM;
3514 goto out_unlock;
3515 }
3516
3517 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3518 name, name_len, -1);
3519 if (IS_ERR(di)) {
3520 err = PTR_ERR(di);
3521 goto fail;
3522 }
3523 if (di) {
3524 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3525 if (ret) {
3526 err = ret;
3527 goto fail;
3528 }
3529 }
3530 btrfs_release_path(path);
3531 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3532 index, name, name_len, -1);
3533 if (IS_ERR(di)) {
3534 err = PTR_ERR(di);
3535 goto fail;
3536 }
3537 if (di) {
3538 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3539 if (ret) {
3540 err = ret;
3541 goto fail;
3542 }
3543 }
3544
3545 /*
3546 * We do not need to update the size field of the directory's inode item
3547 * because on log replay we update the field to reflect all existing
3548 * entries in the directory (see overwrite_item()).
3549 */
3550fail:
3551 btrfs_free_path(path);
3552out_unlock:
3553 mutex_unlock(&dir->log_mutex);
3554 if (err == -ENOSPC) {
3555 btrfs_set_log_full_commit(trans);
3556 err = 0;
3557 } else if (err < 0 && err != -ENOENT) {
3558 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3559 btrfs_abort_transaction(trans, err);
3560 }
3561
3562 btrfs_end_log_trans(root);
3563
3564 return err;
3565}
3566
3567/* see comments for btrfs_del_dir_entries_in_log */
3568int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3569 struct btrfs_root *root,
3570 const char *name, int name_len,
3571 struct btrfs_inode *inode, u64 dirid)
3572{
3573 struct btrfs_root *log;
3574 u64 index;
3575 int ret;
3576
3577 if (!inode_logged(trans, inode))
3578 return 0;
3579
3580 ret = join_running_log_trans(root);
3581 if (ret)
3582 return 0;
3583 log = root->log_root;
3584 mutex_lock(&inode->log_mutex);
3585
3586 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3587 dirid, &index);
3588 mutex_unlock(&inode->log_mutex);
3589 if (ret == -ENOSPC) {
3590 btrfs_set_log_full_commit(trans);
3591 ret = 0;
3592 } else if (ret < 0 && ret != -ENOENT)
3593 btrfs_abort_transaction(trans, ret);
3594 btrfs_end_log_trans(root);
3595
3596 return ret;
3597}
3598
3599/*
3600 * creates a range item in the log for 'dirid'. first_offset and
3601 * last_offset tell us which parts of the key space the log should
3602 * be considered authoritative for.
3603 */
3604static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log,
3606 struct btrfs_path *path,
3607 int key_type, u64 dirid,
3608 u64 first_offset, u64 last_offset)
3609{
3610 int ret;
3611 struct btrfs_key key;
3612 struct btrfs_dir_log_item *item;
3613
3614 key.objectid = dirid;
3615 key.offset = first_offset;
3616 if (key_type == BTRFS_DIR_ITEM_KEY)
3617 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3618 else
3619 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3620 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3621 if (ret)
3622 return ret;
3623
3624 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3625 struct btrfs_dir_log_item);
3626 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3627 btrfs_mark_buffer_dirty(path->nodes[0]);
3628 btrfs_release_path(path);
3629 return 0;
3630}
3631
3632/*
3633 * log all the items included in the current transaction for a given
3634 * directory. This also creates the range items in the log tree required
3635 * to replay anything deleted before the fsync
3636 */
3637static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3638 struct btrfs_root *root, struct btrfs_inode *inode,
3639 struct btrfs_path *path,
3640 struct btrfs_path *dst_path, int key_type,
3641 struct btrfs_log_ctx *ctx,
3642 u64 min_offset, u64 *last_offset_ret)
3643{
3644 struct btrfs_key min_key;
3645 struct btrfs_root *log = root->log_root;
3646 struct extent_buffer *src;
3647 int err = 0;
3648 int ret;
3649 int i;
3650 int nritems;
3651 u64 first_offset = min_offset;
3652 u64 last_offset = (u64)-1;
3653 u64 ino = btrfs_ino(inode);
3654
3655 log = root->log_root;
3656
3657 min_key.objectid = ino;
3658 min_key.type = key_type;
3659 min_key.offset = min_offset;
3660
3661 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3662
3663 /*
3664 * we didn't find anything from this transaction, see if there
3665 * is anything at all
3666 */
3667 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3668 min_key.objectid = ino;
3669 min_key.type = key_type;
3670 min_key.offset = (u64)-1;
3671 btrfs_release_path(path);
3672 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3673 if (ret < 0) {
3674 btrfs_release_path(path);
3675 return ret;
3676 }
3677 ret = btrfs_previous_item(root, path, ino, key_type);
3678
3679 /* if ret == 0 there are items for this type,
3680 * create a range to tell us the last key of this type.
3681 * otherwise, there are no items in this directory after
3682 * *min_offset, and we create a range to indicate that.
3683 */
3684 if (ret == 0) {
3685 struct btrfs_key tmp;
3686 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3687 path->slots[0]);
3688 if (key_type == tmp.type)
3689 first_offset = max(min_offset, tmp.offset) + 1;
3690 }
3691 goto done;
3692 }
3693
3694 /* go backward to find any previous key */
3695 ret = btrfs_previous_item(root, path, ino, key_type);
3696 if (ret == 0) {
3697 struct btrfs_key tmp;
3698 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3699 if (key_type == tmp.type) {
3700 first_offset = tmp.offset;
3701 ret = overwrite_item(trans, log, dst_path,
3702 path->nodes[0], path->slots[0],
3703 &tmp);
3704 if (ret) {
3705 err = ret;
3706 goto done;
3707 }
3708 }
3709 }
3710 btrfs_release_path(path);
3711
3712 /*
3713 * Find the first key from this transaction again. See the note for
3714 * log_new_dir_dentries, if we're logging a directory recursively we
3715 * won't be holding its i_mutex, which means we can modify the directory
3716 * while we're logging it. If we remove an entry between our first
3717 * search and this search we'll not find the key again and can just
3718 * bail.
3719 */
3720search:
3721 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3722 if (ret != 0)
3723 goto done;
3724
3725 /*
3726 * we have a block from this transaction, log every item in it
3727 * from our directory
3728 */
3729 while (1) {
3730 struct btrfs_key tmp;
3731 src = path->nodes[0];
3732 nritems = btrfs_header_nritems(src);
3733 for (i = path->slots[0]; i < nritems; i++) {
3734 struct btrfs_dir_item *di;
3735
3736 btrfs_item_key_to_cpu(src, &min_key, i);
3737
3738 if (min_key.objectid != ino || min_key.type != key_type)
3739 goto done;
3740
3741 if (need_resched()) {
3742 btrfs_release_path(path);
3743 cond_resched();
3744 goto search;
3745 }
3746
3747 ret = overwrite_item(trans, log, dst_path, src, i,
3748 &min_key);
3749 if (ret) {
3750 err = ret;
3751 goto done;
3752 }
3753
3754 /*
3755 * We must make sure that when we log a directory entry,
3756 * the corresponding inode, after log replay, has a
3757 * matching link count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our
3768 * file inode would have a link count of 1, but we get
3769 * two directory entries pointing to the same inode.
3770 * After removing one of the names, it would not be
3771 * possible to remove the other name, which resulted
3772 * always in stale file handle errors, and would not
3773 * be possible to rmdir the parent directory, since
3774 * its i_size could never decrement to the value
3775 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3776 */
3777 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3778 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3779 if (ctx &&
3780 (btrfs_dir_transid(src, di) == trans->transid ||
3781 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782 tmp.type != BTRFS_ROOT_ITEM_KEY)
3783 ctx->log_new_dentries = true;
3784 }
3785 path->slots[0] = nritems;
3786
3787 /*
3788 * look ahead to the next item and see if it is also
3789 * from this directory and from this transaction
3790 */
3791 ret = btrfs_next_leaf(root, path);
3792 if (ret) {
3793 if (ret == 1)
3794 last_offset = (u64)-1;
3795 else
3796 err = ret;
3797 goto done;
3798 }
3799 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3800 if (tmp.objectid != ino || tmp.type != key_type) {
3801 last_offset = (u64)-1;
3802 goto done;
3803 }
3804 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3805 ret = overwrite_item(trans, log, dst_path,
3806 path->nodes[0], path->slots[0],
3807 &tmp);
3808 if (ret)
3809 err = ret;
3810 else
3811 last_offset = tmp.offset;
3812 goto done;
3813 }
3814 }
3815done:
3816 btrfs_release_path(path);
3817 btrfs_release_path(dst_path);
3818
3819 if (err == 0) {
3820 *last_offset_ret = last_offset;
3821 /*
3822 * insert the log range keys to indicate where the log
3823 * is valid
3824 */
3825 ret = insert_dir_log_key(trans, log, path, key_type,
3826 ino, first_offset, last_offset);
3827 if (ret)
3828 err = ret;
3829 }
3830 return err;
3831}
3832
3833/*
3834 * logging directories is very similar to logging inodes, We find all the items
3835 * from the current transaction and write them to the log.
3836 *
3837 * The recovery code scans the directory in the subvolume, and if it finds a
3838 * key in the range logged that is not present in the log tree, then it means
3839 * that dir entry was unlinked during the transaction.
3840 *
3841 * In order for that scan to work, we must include one key smaller than
3842 * the smallest logged by this transaction and one key larger than the largest
3843 * key logged by this transaction.
3844 */
3845static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root, struct btrfs_inode *inode,
3847 struct btrfs_path *path,
3848 struct btrfs_path *dst_path,
3849 struct btrfs_log_ctx *ctx)
3850{
3851 u64 min_key;
3852 u64 max_key;
3853 int ret;
3854 int key_type = BTRFS_DIR_ITEM_KEY;
3855
3856again:
3857 min_key = 0;
3858 max_key = 0;
3859 while (1) {
3860 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3861 ctx, min_key, &max_key);
3862 if (ret)
3863 return ret;
3864 if (max_key == (u64)-1)
3865 break;
3866 min_key = max_key + 1;
3867 }
3868
3869 if (key_type == BTRFS_DIR_ITEM_KEY) {
3870 key_type = BTRFS_DIR_INDEX_KEY;
3871 goto again;
3872 }
3873 return 0;
3874}
3875
3876/*
3877 * a helper function to drop items from the log before we relog an
3878 * inode. max_key_type indicates the highest item type to remove.
3879 * This cannot be run for file data extents because it does not
3880 * free the extents they point to.
3881 */
3882static int drop_objectid_items(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *log,
3884 struct btrfs_path *path,
3885 u64 objectid, int max_key_type)
3886{
3887 int ret;
3888 struct btrfs_key key;
3889 struct btrfs_key found_key;
3890 int start_slot;
3891
3892 key.objectid = objectid;
3893 key.type = max_key_type;
3894 key.offset = (u64)-1;
3895
3896 while (1) {
3897 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3898 BUG_ON(ret == 0); /* Logic error */
3899 if (ret < 0)
3900 break;
3901
3902 if (path->slots[0] == 0)
3903 break;
3904
3905 path->slots[0]--;
3906 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3907 path->slots[0]);
3908
3909 if (found_key.objectid != objectid)
3910 break;
3911
3912 found_key.offset = 0;
3913 found_key.type = 0;
3914 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3915 if (ret < 0)
3916 break;
3917
3918 ret = btrfs_del_items(trans, log, path, start_slot,
3919 path->slots[0] - start_slot + 1);
3920 /*
3921 * If start slot isn't 0 then we don't need to re-search, we've
3922 * found the last guy with the objectid in this tree.
3923 */
3924 if (ret || start_slot != 0)
3925 break;
3926 btrfs_release_path(path);
3927 }
3928 btrfs_release_path(path);
3929 if (ret > 0)
3930 ret = 0;
3931 return ret;
3932}
3933
3934static void fill_inode_item(struct btrfs_trans_handle *trans,
3935 struct extent_buffer *leaf,
3936 struct btrfs_inode_item *item,
3937 struct inode *inode, int log_inode_only,
3938 u64 logged_isize)
3939{
3940 struct btrfs_map_token token;
3941
3942 btrfs_init_map_token(&token, leaf);
3943
3944 if (log_inode_only) {
3945 /* set the generation to zero so the recover code
3946 * can tell the difference between an logging
3947 * just to say 'this inode exists' and a logging
3948 * to say 'update this inode with these values'
3949 */
3950 btrfs_set_token_inode_generation(&token, item, 0);
3951 btrfs_set_token_inode_size(&token, item, logged_isize);
3952 } else {
3953 btrfs_set_token_inode_generation(&token, item,
3954 BTRFS_I(inode)->generation);
3955 btrfs_set_token_inode_size(&token, item, inode->i_size);
3956 }
3957
3958 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3959 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3960 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3961 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3962
3963 btrfs_set_token_timespec_sec(&token, &item->atime,
3964 inode->i_atime.tv_sec);
3965 btrfs_set_token_timespec_nsec(&token, &item->atime,
3966 inode->i_atime.tv_nsec);
3967
3968 btrfs_set_token_timespec_sec(&token, &item->mtime,
3969 inode->i_mtime.tv_sec);
3970 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3971 inode->i_mtime.tv_nsec);
3972
3973 btrfs_set_token_timespec_sec(&token, &item->ctime,
3974 inode->i_ctime.tv_sec);
3975 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3976 inode->i_ctime.tv_nsec);
3977
3978 /*
3979 * We do not need to set the nbytes field, in fact during a fast fsync
3980 * its value may not even be correct, since a fast fsync does not wait
3981 * for ordered extent completion, which is where we update nbytes, it
3982 * only waits for writeback to complete. During log replay as we find
3983 * file extent items and replay them, we adjust the nbytes field of the
3984 * inode item in subvolume tree as needed (see overwrite_item()).
3985 */
3986
3987 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3988 btrfs_set_token_inode_transid(&token, item, trans->transid);
3989 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3990 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3991 btrfs_set_token_inode_block_group(&token, item, 0);
3992}
3993
3994static int log_inode_item(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *log, struct btrfs_path *path,
3996 struct btrfs_inode *inode)
3997{
3998 struct btrfs_inode_item *inode_item;
3999 int ret;
4000
4001 ret = btrfs_insert_empty_item(trans, log, path,
4002 &inode->location, sizeof(*inode_item));
4003 if (ret && ret != -EEXIST)
4004 return ret;
4005 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4006 struct btrfs_inode_item);
4007 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4008 0, 0);
4009 btrfs_release_path(path);
4010 return 0;
4011}
4012
4013static int log_csums(struct btrfs_trans_handle *trans,
4014 struct btrfs_inode *inode,
4015 struct btrfs_root *log_root,
4016 struct btrfs_ordered_sum *sums)
4017{
4018 const u64 lock_end = sums->bytenr + sums->len - 1;
4019 struct extent_state *cached_state = NULL;
4020 int ret;
4021
4022 /*
4023 * If this inode was not used for reflink operations in the current
4024 * transaction with new extents, then do the fast path, no need to
4025 * worry about logging checksum items with overlapping ranges.
4026 */
4027 if (inode->last_reflink_trans < trans->transid)
4028 return btrfs_csum_file_blocks(trans, log_root, sums);
4029
4030 /*
4031 * Serialize logging for checksums. This is to avoid racing with the
4032 * same checksum being logged by another task that is logging another
4033 * file which happens to refer to the same extent as well. Such races
4034 * can leave checksum items in the log with overlapping ranges.
4035 */
4036 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4037 lock_end, &cached_state);
4038 if (ret)
4039 return ret;
4040 /*
4041 * Due to extent cloning, we might have logged a csum item that covers a
4042 * subrange of a cloned extent, and later we can end up logging a csum
4043 * item for a larger subrange of the same extent or the entire range.
4044 * This would leave csum items in the log tree that cover the same range
4045 * and break the searches for checksums in the log tree, resulting in
4046 * some checksums missing in the fs/subvolume tree. So just delete (or
4047 * trim and adjust) any existing csum items in the log for this range.
4048 */
4049 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4050 if (!ret)
4051 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4052
4053 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4054 &cached_state);
4055
4056 return ret;
4057}
4058
4059static noinline int copy_items(struct btrfs_trans_handle *trans,
4060 struct btrfs_inode *inode,
4061 struct btrfs_path *dst_path,
4062 struct btrfs_path *src_path,
4063 int start_slot, int nr, int inode_only,
4064 u64 logged_isize)
4065{
4066 struct btrfs_fs_info *fs_info = trans->fs_info;
4067 unsigned long src_offset;
4068 unsigned long dst_offset;
4069 struct btrfs_root *log = inode->root->log_root;
4070 struct btrfs_file_extent_item *extent;
4071 struct btrfs_inode_item *inode_item;
4072 struct extent_buffer *src = src_path->nodes[0];
4073 int ret;
4074 struct btrfs_key *ins_keys;
4075 u32 *ins_sizes;
4076 char *ins_data;
4077 int i;
4078 struct list_head ordered_sums;
4079 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4080
4081 INIT_LIST_HEAD(&ordered_sums);
4082
4083 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4084 nr * sizeof(u32), GFP_NOFS);
4085 if (!ins_data)
4086 return -ENOMEM;
4087
4088 ins_sizes = (u32 *)ins_data;
4089 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4090
4091 for (i = 0; i < nr; i++) {
4092 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4093 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4094 }
4095 ret = btrfs_insert_empty_items(trans, log, dst_path,
4096 ins_keys, ins_sizes, nr);
4097 if (ret) {
4098 kfree(ins_data);
4099 return ret;
4100 }
4101
4102 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4103 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4104 dst_path->slots[0]);
4105
4106 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4107
4108 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4109 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4110 dst_path->slots[0],
4111 struct btrfs_inode_item);
4112 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4113 &inode->vfs_inode,
4114 inode_only == LOG_INODE_EXISTS,
4115 logged_isize);
4116 } else {
4117 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4118 src_offset, ins_sizes[i]);
4119 }
4120
4121 /* take a reference on file data extents so that truncates
4122 * or deletes of this inode don't have to relog the inode
4123 * again
4124 */
4125 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4126 !skip_csum) {
4127 int found_type;
4128 extent = btrfs_item_ptr(src, start_slot + i,
4129 struct btrfs_file_extent_item);
4130
4131 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4132 continue;
4133
4134 found_type = btrfs_file_extent_type(src, extent);
4135 if (found_type == BTRFS_FILE_EXTENT_REG) {
4136 u64 ds, dl, cs, cl;
4137 ds = btrfs_file_extent_disk_bytenr(src,
4138 extent);
4139 /* ds == 0 is a hole */
4140 if (ds == 0)
4141 continue;
4142
4143 dl = btrfs_file_extent_disk_num_bytes(src,
4144 extent);
4145 cs = btrfs_file_extent_offset(src, extent);
4146 cl = btrfs_file_extent_num_bytes(src,
4147 extent);
4148 if (btrfs_file_extent_compression(src,
4149 extent)) {
4150 cs = 0;
4151 cl = dl;
4152 }
4153
4154 ret = btrfs_lookup_csums_range(
4155 fs_info->csum_root,
4156 ds + cs, ds + cs + cl - 1,
4157 &ordered_sums, 0);
4158 if (ret)
4159 break;
4160 }
4161 }
4162 }
4163
4164 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4165 btrfs_release_path(dst_path);
4166 kfree(ins_data);
4167
4168 /*
4169 * we have to do this after the loop above to avoid changing the
4170 * log tree while trying to change the log tree.
4171 */
4172 while (!list_empty(&ordered_sums)) {
4173 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174 struct btrfs_ordered_sum,
4175 list);
4176 if (!ret)
4177 ret = log_csums(trans, inode, log, sums);
4178 list_del(&sums->list);
4179 kfree(sums);
4180 }
4181
4182 return ret;
4183}
4184
4185static int extent_cmp(void *priv, const struct list_head *a,
4186 const struct list_head *b)
4187{
4188 struct extent_map *em1, *em2;
4189
4190 em1 = list_entry(a, struct extent_map, list);
4191 em2 = list_entry(b, struct extent_map, list);
4192
4193 if (em1->start < em2->start)
4194 return -1;
4195 else if (em1->start > em2->start)
4196 return 1;
4197 return 0;
4198}
4199
4200static int log_extent_csums(struct btrfs_trans_handle *trans,
4201 struct btrfs_inode *inode,
4202 struct btrfs_root *log_root,
4203 const struct extent_map *em,
4204 struct btrfs_log_ctx *ctx)
4205{
4206 struct btrfs_ordered_extent *ordered;
4207 u64 csum_offset;
4208 u64 csum_len;
4209 u64 mod_start = em->mod_start;
4210 u64 mod_len = em->mod_len;
4211 LIST_HEAD(ordered_sums);
4212 int ret = 0;
4213
4214 if (inode->flags & BTRFS_INODE_NODATASUM ||
4215 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4216 em->block_start == EXTENT_MAP_HOLE)
4217 return 0;
4218
4219 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4220 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4221 const u64 mod_end = mod_start + mod_len;
4222 struct btrfs_ordered_sum *sums;
4223
4224 if (mod_len == 0)
4225 break;
4226
4227 if (ordered_end <= mod_start)
4228 continue;
4229 if (mod_end <= ordered->file_offset)
4230 break;
4231
4232 /*
4233 * We are going to copy all the csums on this ordered extent, so
4234 * go ahead and adjust mod_start and mod_len in case this ordered
4235 * extent has already been logged.
4236 */
4237 if (ordered->file_offset > mod_start) {
4238 if (ordered_end >= mod_end)
4239 mod_len = ordered->file_offset - mod_start;
4240 /*
4241 * If we have this case
4242 *
4243 * |--------- logged extent ---------|
4244 * |----- ordered extent ----|
4245 *
4246 * Just don't mess with mod_start and mod_len, we'll
4247 * just end up logging more csums than we need and it
4248 * will be ok.
4249 */
4250 } else {
4251 if (ordered_end < mod_end) {
4252 mod_len = mod_end - ordered_end;
4253 mod_start = ordered_end;
4254 } else {
4255 mod_len = 0;
4256 }
4257 }
4258
4259 /*
4260 * To keep us from looping for the above case of an ordered
4261 * extent that falls inside of the logged extent.
4262 */
4263 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4264 continue;
4265
4266 list_for_each_entry(sums, &ordered->list, list) {
4267 ret = log_csums(trans, inode, log_root, sums);
4268 if (ret)
4269 return ret;
4270 }
4271 }
4272
4273 /* We're done, found all csums in the ordered extents. */
4274 if (mod_len == 0)
4275 return 0;
4276
4277 /* If we're compressed we have to save the entire range of csums. */
4278 if (em->compress_type) {
4279 csum_offset = 0;
4280 csum_len = max(em->block_len, em->orig_block_len);
4281 } else {
4282 csum_offset = mod_start - em->start;
4283 csum_len = mod_len;
4284 }
4285
4286 /* block start is already adjusted for the file extent offset. */
4287 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4288 em->block_start + csum_offset,
4289 em->block_start + csum_offset +
4290 csum_len - 1, &ordered_sums, 0);
4291 if (ret)
4292 return ret;
4293
4294 while (!list_empty(&ordered_sums)) {
4295 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4296 struct btrfs_ordered_sum,
4297 list);
4298 if (!ret)
4299 ret = log_csums(trans, inode, log_root, sums);
4300 list_del(&sums->list);
4301 kfree(sums);
4302 }
4303
4304 return ret;
4305}
4306
4307static int log_one_extent(struct btrfs_trans_handle *trans,
4308 struct btrfs_inode *inode, struct btrfs_root *root,
4309 const struct extent_map *em,
4310 struct btrfs_path *path,
4311 struct btrfs_log_ctx *ctx)
4312{
4313 struct btrfs_drop_extents_args drop_args = { 0 };
4314 struct btrfs_root *log = root->log_root;
4315 struct btrfs_file_extent_item *fi;
4316 struct extent_buffer *leaf;
4317 struct btrfs_map_token token;
4318 struct btrfs_key key;
4319 u64 extent_offset = em->start - em->orig_start;
4320 u64 block_len;
4321 int ret;
4322
4323 ret = log_extent_csums(trans, inode, log, em, ctx);
4324 if (ret)
4325 return ret;
4326
4327 drop_args.path = path;
4328 drop_args.start = em->start;
4329 drop_args.end = em->start + em->len;
4330 drop_args.replace_extent = true;
4331 drop_args.extent_item_size = sizeof(*fi);
4332 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4333 if (ret)
4334 return ret;
4335
4336 if (!drop_args.extent_inserted) {
4337 key.objectid = btrfs_ino(inode);
4338 key.type = BTRFS_EXTENT_DATA_KEY;
4339 key.offset = em->start;
4340
4341 ret = btrfs_insert_empty_item(trans, log, path, &key,
4342 sizeof(*fi));
4343 if (ret)
4344 return ret;
4345 }
4346 leaf = path->nodes[0];
4347 btrfs_init_map_token(&token, leaf);
4348 fi = btrfs_item_ptr(leaf, path->slots[0],
4349 struct btrfs_file_extent_item);
4350
4351 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4352 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4353 btrfs_set_token_file_extent_type(&token, fi,
4354 BTRFS_FILE_EXTENT_PREALLOC);
4355 else
4356 btrfs_set_token_file_extent_type(&token, fi,
4357 BTRFS_FILE_EXTENT_REG);
4358
4359 block_len = max(em->block_len, em->orig_block_len);
4360 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4361 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4362 em->block_start);
4363 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4364 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4365 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4366 em->block_start -
4367 extent_offset);
4368 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4369 } else {
4370 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4371 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4372 }
4373
4374 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4375 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4376 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4377 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4378 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4379 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4380 btrfs_mark_buffer_dirty(leaf);
4381
4382 btrfs_release_path(path);
4383
4384 return ret;
4385}
4386
4387/*
4388 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4389 * lose them after doing a fast fsync and replaying the log. We scan the
4390 * subvolume's root instead of iterating the inode's extent map tree because
4391 * otherwise we can log incorrect extent items based on extent map conversion.
4392 * That can happen due to the fact that extent maps are merged when they
4393 * are not in the extent map tree's list of modified extents.
4394 */
4395static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4396 struct btrfs_inode *inode,
4397 struct btrfs_path *path)
4398{
4399 struct btrfs_root *root = inode->root;
4400 struct btrfs_key key;
4401 const u64 i_size = i_size_read(&inode->vfs_inode);
4402 const u64 ino = btrfs_ino(inode);
4403 struct btrfs_path *dst_path = NULL;
4404 bool dropped_extents = false;
4405 u64 truncate_offset = i_size;
4406 struct extent_buffer *leaf;
4407 int slot;
4408 int ins_nr = 0;
4409 int start_slot;
4410 int ret;
4411
4412 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4413 return 0;
4414
4415 key.objectid = ino;
4416 key.type = BTRFS_EXTENT_DATA_KEY;
4417 key.offset = i_size;
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 if (ret < 0)
4420 goto out;
4421
4422 /*
4423 * We must check if there is a prealloc extent that starts before the
4424 * i_size and crosses the i_size boundary. This is to ensure later we
4425 * truncate down to the end of that extent and not to the i_size, as
4426 * otherwise we end up losing part of the prealloc extent after a log
4427 * replay and with an implicit hole if there is another prealloc extent
4428 * that starts at an offset beyond i_size.
4429 */
4430 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4431 if (ret < 0)
4432 goto out;
4433
4434 if (ret == 0) {
4435 struct btrfs_file_extent_item *ei;
4436
4437 leaf = path->nodes[0];
4438 slot = path->slots[0];
4439 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4440
4441 if (btrfs_file_extent_type(leaf, ei) ==
4442 BTRFS_FILE_EXTENT_PREALLOC) {
4443 u64 extent_end;
4444
4445 btrfs_item_key_to_cpu(leaf, &key, slot);
4446 extent_end = key.offset +
4447 btrfs_file_extent_num_bytes(leaf, ei);
4448
4449 if (extent_end > i_size)
4450 truncate_offset = extent_end;
4451 }
4452 } else {
4453 ret = 0;
4454 }
4455
4456 while (true) {
4457 leaf = path->nodes[0];
4458 slot = path->slots[0];
4459
4460 if (slot >= btrfs_header_nritems(leaf)) {
4461 if (ins_nr > 0) {
4462 ret = copy_items(trans, inode, dst_path, path,
4463 start_slot, ins_nr, 1, 0);
4464 if (ret < 0)
4465 goto out;
4466 ins_nr = 0;
4467 }
4468 ret = btrfs_next_leaf(root, path);
4469 if (ret < 0)
4470 goto out;
4471 if (ret > 0) {
4472 ret = 0;
4473 break;
4474 }
4475 continue;
4476 }
4477
4478 btrfs_item_key_to_cpu(leaf, &key, slot);
4479 if (key.objectid > ino)
4480 break;
4481 if (WARN_ON_ONCE(key.objectid < ino) ||
4482 key.type < BTRFS_EXTENT_DATA_KEY ||
4483 key.offset < i_size) {
4484 path->slots[0]++;
4485 continue;
4486 }
4487 if (!dropped_extents) {
4488 /*
4489 * Avoid logging extent items logged in past fsync calls
4490 * and leading to duplicate keys in the log tree.
4491 */
4492 do {
4493 ret = btrfs_truncate_inode_items(trans,
4494 root->log_root,
4495 inode, truncate_offset,
4496 BTRFS_EXTENT_DATA_KEY,
4497 NULL);
4498 } while (ret == -EAGAIN);
4499 if (ret)
4500 goto out;
4501 dropped_extents = true;
4502 }
4503 if (ins_nr == 0)
4504 start_slot = slot;
4505 ins_nr++;
4506 path->slots[0]++;
4507 if (!dst_path) {
4508 dst_path = btrfs_alloc_path();
4509 if (!dst_path) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513 }
4514 }
4515 if (ins_nr > 0)
4516 ret = copy_items(trans, inode, dst_path, path,
4517 start_slot, ins_nr, 1, 0);
4518out:
4519 btrfs_release_path(path);
4520 btrfs_free_path(dst_path);
4521 return ret;
4522}
4523
4524static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4525 struct btrfs_root *root,
4526 struct btrfs_inode *inode,
4527 struct btrfs_path *path,
4528 struct btrfs_log_ctx *ctx)
4529{
4530 struct btrfs_ordered_extent *ordered;
4531 struct btrfs_ordered_extent *tmp;
4532 struct extent_map *em, *n;
4533 struct list_head extents;
4534 struct extent_map_tree *tree = &inode->extent_tree;
4535 int ret = 0;
4536 int num = 0;
4537
4538 INIT_LIST_HEAD(&extents);
4539
4540 write_lock(&tree->lock);
4541
4542 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4543 list_del_init(&em->list);
4544 /*
4545 * Just an arbitrary number, this can be really CPU intensive
4546 * once we start getting a lot of extents, and really once we
4547 * have a bunch of extents we just want to commit since it will
4548 * be faster.
4549 */
4550 if (++num > 32768) {
4551 list_del_init(&tree->modified_extents);
4552 ret = -EFBIG;
4553 goto process;
4554 }
4555
4556 if (em->generation < trans->transid)
4557 continue;
4558
4559 /* We log prealloc extents beyond eof later. */
4560 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4561 em->start >= i_size_read(&inode->vfs_inode))
4562 continue;
4563
4564 /* Need a ref to keep it from getting evicted from cache */
4565 refcount_inc(&em->refs);
4566 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4567 list_add_tail(&em->list, &extents);
4568 num++;
4569 }
4570
4571 list_sort(NULL, &extents, extent_cmp);
4572process:
4573 while (!list_empty(&extents)) {
4574 em = list_entry(extents.next, struct extent_map, list);
4575
4576 list_del_init(&em->list);
4577
4578 /*
4579 * If we had an error we just need to delete everybody from our
4580 * private list.
4581 */
4582 if (ret) {
4583 clear_em_logging(tree, em);
4584 free_extent_map(em);
4585 continue;
4586 }
4587
4588 write_unlock(&tree->lock);
4589
4590 ret = log_one_extent(trans, inode, root, em, path, ctx);
4591 write_lock(&tree->lock);
4592 clear_em_logging(tree, em);
4593 free_extent_map(em);
4594 }
4595 WARN_ON(!list_empty(&extents));
4596 write_unlock(&tree->lock);
4597
4598 btrfs_release_path(path);
4599 if (!ret)
4600 ret = btrfs_log_prealloc_extents(trans, inode, path);
4601 if (ret)
4602 return ret;
4603
4604 /*
4605 * We have logged all extents successfully, now make sure the commit of
4606 * the current transaction waits for the ordered extents to complete
4607 * before it commits and wipes out the log trees, otherwise we would
4608 * lose data if an ordered extents completes after the transaction
4609 * commits and a power failure happens after the transaction commit.
4610 */
4611 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4612 list_del_init(&ordered->log_list);
4613 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4614
4615 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4616 spin_lock_irq(&inode->ordered_tree.lock);
4617 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4618 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4619 atomic_inc(&trans->transaction->pending_ordered);
4620 }
4621 spin_unlock_irq(&inode->ordered_tree.lock);
4622 }
4623 btrfs_put_ordered_extent(ordered);
4624 }
4625
4626 return 0;
4627}
4628
4629static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4630 struct btrfs_path *path, u64 *size_ret)
4631{
4632 struct btrfs_key key;
4633 int ret;
4634
4635 key.objectid = btrfs_ino(inode);
4636 key.type = BTRFS_INODE_ITEM_KEY;
4637 key.offset = 0;
4638
4639 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4640 if (ret < 0) {
4641 return ret;
4642 } else if (ret > 0) {
4643 *size_ret = 0;
4644 } else {
4645 struct btrfs_inode_item *item;
4646
4647 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4648 struct btrfs_inode_item);
4649 *size_ret = btrfs_inode_size(path->nodes[0], item);
4650 /*
4651 * If the in-memory inode's i_size is smaller then the inode
4652 * size stored in the btree, return the inode's i_size, so
4653 * that we get a correct inode size after replaying the log
4654 * when before a power failure we had a shrinking truncate
4655 * followed by addition of a new name (rename / new hard link).
4656 * Otherwise return the inode size from the btree, to avoid
4657 * data loss when replaying a log due to previously doing a
4658 * write that expands the inode's size and logging a new name
4659 * immediately after.
4660 */
4661 if (*size_ret > inode->vfs_inode.i_size)
4662 *size_ret = inode->vfs_inode.i_size;
4663 }
4664
4665 btrfs_release_path(path);
4666 return 0;
4667}
4668
4669/*
4670 * At the moment we always log all xattrs. This is to figure out at log replay
4671 * time which xattrs must have their deletion replayed. If a xattr is missing
4672 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4673 * because if a xattr is deleted, the inode is fsynced and a power failure
4674 * happens, causing the log to be replayed the next time the fs is mounted,
4675 * we want the xattr to not exist anymore (same behaviour as other filesystems
4676 * with a journal, ext3/4, xfs, f2fs, etc).
4677 */
4678static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4679 struct btrfs_root *root,
4680 struct btrfs_inode *inode,
4681 struct btrfs_path *path,
4682 struct btrfs_path *dst_path)
4683{
4684 int ret;
4685 struct btrfs_key key;
4686 const u64 ino = btrfs_ino(inode);
4687 int ins_nr = 0;
4688 int start_slot = 0;
4689 bool found_xattrs = false;
4690
4691 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4692 return 0;
4693
4694 key.objectid = ino;
4695 key.type = BTRFS_XATTR_ITEM_KEY;
4696 key.offset = 0;
4697
4698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699 if (ret < 0)
4700 return ret;
4701
4702 while (true) {
4703 int slot = path->slots[0];
4704 struct extent_buffer *leaf = path->nodes[0];
4705 int nritems = btrfs_header_nritems(leaf);
4706
4707 if (slot >= nritems) {
4708 if (ins_nr > 0) {
4709 ret = copy_items(trans, inode, dst_path, path,
4710 start_slot, ins_nr, 1, 0);
4711 if (ret < 0)
4712 return ret;
4713 ins_nr = 0;
4714 }
4715 ret = btrfs_next_leaf(root, path);
4716 if (ret < 0)
4717 return ret;
4718 else if (ret > 0)
4719 break;
4720 continue;
4721 }
4722
4723 btrfs_item_key_to_cpu(leaf, &key, slot);
4724 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4725 break;
4726
4727 if (ins_nr == 0)
4728 start_slot = slot;
4729 ins_nr++;
4730 path->slots[0]++;
4731 found_xattrs = true;
4732 cond_resched();
4733 }
4734 if (ins_nr > 0) {
4735 ret = copy_items(trans, inode, dst_path, path,
4736 start_slot, ins_nr, 1, 0);
4737 if (ret < 0)
4738 return ret;
4739 }
4740
4741 if (!found_xattrs)
4742 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4743
4744 return 0;
4745}
4746
4747/*
4748 * When using the NO_HOLES feature if we punched a hole that causes the
4749 * deletion of entire leafs or all the extent items of the first leaf (the one
4750 * that contains the inode item and references) we may end up not processing
4751 * any extents, because there are no leafs with a generation matching the
4752 * current transaction that have extent items for our inode. So we need to find
4753 * if any holes exist and then log them. We also need to log holes after any
4754 * truncate operation that changes the inode's size.
4755 */
4756static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4757 struct btrfs_root *root,
4758 struct btrfs_inode *inode,
4759 struct btrfs_path *path)
4760{
4761 struct btrfs_fs_info *fs_info = root->fs_info;
4762 struct btrfs_key key;
4763 const u64 ino = btrfs_ino(inode);
4764 const u64 i_size = i_size_read(&inode->vfs_inode);
4765 u64 prev_extent_end = 0;
4766 int ret;
4767
4768 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4769 return 0;
4770
4771 key.objectid = ino;
4772 key.type = BTRFS_EXTENT_DATA_KEY;
4773 key.offset = 0;
4774
4775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4776 if (ret < 0)
4777 return ret;
4778
4779 while (true) {
4780 struct extent_buffer *leaf = path->nodes[0];
4781
4782 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4783 ret = btrfs_next_leaf(root, path);
4784 if (ret < 0)
4785 return ret;
4786 if (ret > 0) {
4787 ret = 0;
4788 break;
4789 }
4790 leaf = path->nodes[0];
4791 }
4792
4793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4794 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4795 break;
4796
4797 /* We have a hole, log it. */
4798 if (prev_extent_end < key.offset) {
4799 const u64 hole_len = key.offset - prev_extent_end;
4800
4801 /*
4802 * Release the path to avoid deadlocks with other code
4803 * paths that search the root while holding locks on
4804 * leafs from the log root.
4805 */
4806 btrfs_release_path(path);
4807 ret = btrfs_insert_file_extent(trans, root->log_root,
4808 ino, prev_extent_end, 0,
4809 0, hole_len, 0, hole_len,
4810 0, 0, 0);
4811 if (ret < 0)
4812 return ret;
4813
4814 /*
4815 * Search for the same key again in the root. Since it's
4816 * an extent item and we are holding the inode lock, the
4817 * key must still exist. If it doesn't just emit warning
4818 * and return an error to fall back to a transaction
4819 * commit.
4820 */
4821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822 if (ret < 0)
4823 return ret;
4824 if (WARN_ON(ret > 0))
4825 return -ENOENT;
4826 leaf = path->nodes[0];
4827 }
4828
4829 prev_extent_end = btrfs_file_extent_end(path);
4830 path->slots[0]++;
4831 cond_resched();
4832 }
4833
4834 if (prev_extent_end < i_size) {
4835 u64 hole_len;
4836
4837 btrfs_release_path(path);
4838 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4839 ret = btrfs_insert_file_extent(trans, root->log_root,
4840 ino, prev_extent_end, 0, 0,
4841 hole_len, 0, hole_len,
4842 0, 0, 0);
4843 if (ret < 0)
4844 return ret;
4845 }
4846
4847 return 0;
4848}
4849
4850/*
4851 * When we are logging a new inode X, check if it doesn't have a reference that
4852 * matches the reference from some other inode Y created in a past transaction
4853 * and that was renamed in the current transaction. If we don't do this, then at
4854 * log replay time we can lose inode Y (and all its files if it's a directory):
4855 *
4856 * mkdir /mnt/x
4857 * echo "hello world" > /mnt/x/foobar
4858 * sync
4859 * mv /mnt/x /mnt/y
4860 * mkdir /mnt/x # or touch /mnt/x
4861 * xfs_io -c fsync /mnt/x
4862 * <power fail>
4863 * mount fs, trigger log replay
4864 *
4865 * After the log replay procedure, we would lose the first directory and all its
4866 * files (file foobar).
4867 * For the case where inode Y is not a directory we simply end up losing it:
4868 *
4869 * echo "123" > /mnt/foo
4870 * sync
4871 * mv /mnt/foo /mnt/bar
4872 * echo "abc" > /mnt/foo
4873 * xfs_io -c fsync /mnt/foo
4874 * <power fail>
4875 *
4876 * We also need this for cases where a snapshot entry is replaced by some other
4877 * entry (file or directory) otherwise we end up with an unreplayable log due to
4878 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4879 * if it were a regular entry:
4880 *
4881 * mkdir /mnt/x
4882 * btrfs subvolume snapshot /mnt /mnt/x/snap
4883 * btrfs subvolume delete /mnt/x/snap
4884 * rmdir /mnt/x
4885 * mkdir /mnt/x
4886 * fsync /mnt/x or fsync some new file inside it
4887 * <power fail>
4888 *
4889 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4890 * the same transaction.
4891 */
4892static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4893 const int slot,
4894 const struct btrfs_key *key,
4895 struct btrfs_inode *inode,
4896 u64 *other_ino, u64 *other_parent)
4897{
4898 int ret;
4899 struct btrfs_path *search_path;
4900 char *name = NULL;
4901 u32 name_len = 0;
4902 u32 item_size = btrfs_item_size_nr(eb, slot);
4903 u32 cur_offset = 0;
4904 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4905
4906 search_path = btrfs_alloc_path();
4907 if (!search_path)
4908 return -ENOMEM;
4909 search_path->search_commit_root = 1;
4910 search_path->skip_locking = 1;
4911
4912 while (cur_offset < item_size) {
4913 u64 parent;
4914 u32 this_name_len;
4915 u32 this_len;
4916 unsigned long name_ptr;
4917 struct btrfs_dir_item *di;
4918
4919 if (key->type == BTRFS_INODE_REF_KEY) {
4920 struct btrfs_inode_ref *iref;
4921
4922 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4923 parent = key->offset;
4924 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4925 name_ptr = (unsigned long)(iref + 1);
4926 this_len = sizeof(*iref) + this_name_len;
4927 } else {
4928 struct btrfs_inode_extref *extref;
4929
4930 extref = (struct btrfs_inode_extref *)(ptr +
4931 cur_offset);
4932 parent = btrfs_inode_extref_parent(eb, extref);
4933 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4934 name_ptr = (unsigned long)&extref->name;
4935 this_len = sizeof(*extref) + this_name_len;
4936 }
4937
4938 if (this_name_len > name_len) {
4939 char *new_name;
4940
4941 new_name = krealloc(name, this_name_len, GFP_NOFS);
4942 if (!new_name) {
4943 ret = -ENOMEM;
4944 goto out;
4945 }
4946 name_len = this_name_len;
4947 name = new_name;
4948 }
4949
4950 read_extent_buffer(eb, name, name_ptr, this_name_len);
4951 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4952 parent, name, this_name_len, 0);
4953 if (di && !IS_ERR(di)) {
4954 struct btrfs_key di_key;
4955
4956 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4957 di, &di_key);
4958 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4959 if (di_key.objectid != key->objectid) {
4960 ret = 1;
4961 *other_ino = di_key.objectid;
4962 *other_parent = parent;
4963 } else {
4964 ret = 0;
4965 }
4966 } else {
4967 ret = -EAGAIN;
4968 }
4969 goto out;
4970 } else if (IS_ERR(di)) {
4971 ret = PTR_ERR(di);
4972 goto out;
4973 }
4974 btrfs_release_path(search_path);
4975
4976 cur_offset += this_len;
4977 }
4978 ret = 0;
4979out:
4980 btrfs_free_path(search_path);
4981 kfree(name);
4982 return ret;
4983}
4984
4985struct btrfs_ino_list {
4986 u64 ino;
4987 u64 parent;
4988 struct list_head list;
4989};
4990
4991static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4992 struct btrfs_root *root,
4993 struct btrfs_path *path,
4994 struct btrfs_log_ctx *ctx,
4995 u64 ino, u64 parent)
4996{
4997 struct btrfs_ino_list *ino_elem;
4998 LIST_HEAD(inode_list);
4999 int ret = 0;
5000
5001 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5002 if (!ino_elem)
5003 return -ENOMEM;
5004 ino_elem->ino = ino;
5005 ino_elem->parent = parent;
5006 list_add_tail(&ino_elem->list, &inode_list);
5007
5008 while (!list_empty(&inode_list)) {
5009 struct btrfs_fs_info *fs_info = root->fs_info;
5010 struct btrfs_key key;
5011 struct inode *inode;
5012
5013 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5014 list);
5015 ino = ino_elem->ino;
5016 parent = ino_elem->parent;
5017 list_del(&ino_elem->list);
5018 kfree(ino_elem);
5019 if (ret)
5020 continue;
5021
5022 btrfs_release_path(path);
5023
5024 inode = btrfs_iget(fs_info->sb, ino, root);
5025 /*
5026 * If the other inode that had a conflicting dir entry was
5027 * deleted in the current transaction, we need to log its parent
5028 * directory.
5029 */
5030 if (IS_ERR(inode)) {
5031 ret = PTR_ERR(inode);
5032 if (ret == -ENOENT) {
5033 inode = btrfs_iget(fs_info->sb, parent, root);
5034 if (IS_ERR(inode)) {
5035 ret = PTR_ERR(inode);
5036 } else {
5037 ret = btrfs_log_inode(trans, root,
5038 BTRFS_I(inode),
5039 LOG_OTHER_INODE_ALL,
5040 ctx);
5041 btrfs_add_delayed_iput(inode);
5042 }
5043 }
5044 continue;
5045 }
5046 /*
5047 * If the inode was already logged skip it - otherwise we can
5048 * hit an infinite loop. Example:
5049 *
5050 * From the commit root (previous transaction) we have the
5051 * following inodes:
5052 *
5053 * inode 257 a directory
5054 * inode 258 with references "zz" and "zz_link" on inode 257
5055 * inode 259 with reference "a" on inode 257
5056 *
5057 * And in the current (uncommitted) transaction we have:
5058 *
5059 * inode 257 a directory, unchanged
5060 * inode 258 with references "a" and "a2" on inode 257
5061 * inode 259 with reference "zz_link" on inode 257
5062 * inode 261 with reference "zz" on inode 257
5063 *
5064 * When logging inode 261 the following infinite loop could
5065 * happen if we don't skip already logged inodes:
5066 *
5067 * - we detect inode 258 as a conflicting inode, with inode 261
5068 * on reference "zz", and log it;
5069 *
5070 * - we detect inode 259 as a conflicting inode, with inode 258
5071 * on reference "a", and log it;
5072 *
5073 * - we detect inode 258 as a conflicting inode, with inode 259
5074 * on reference "zz_link", and log it - again! After this we
5075 * repeat the above steps forever.
5076 */
5077 spin_lock(&BTRFS_I(inode)->lock);
5078 /*
5079 * Check the inode's logged_trans only instead of
5080 * btrfs_inode_in_log(). This is because the last_log_commit of
5081 * the inode is not updated when we only log that it exists and
5082 * it has the full sync bit set (see btrfs_log_inode()).
5083 */
5084 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5085 spin_unlock(&BTRFS_I(inode)->lock);
5086 btrfs_add_delayed_iput(inode);
5087 continue;
5088 }
5089 spin_unlock(&BTRFS_I(inode)->lock);
5090 /*
5091 * We are safe logging the other inode without acquiring its
5092 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5093 * are safe against concurrent renames of the other inode as
5094 * well because during a rename we pin the log and update the
5095 * log with the new name before we unpin it.
5096 */
5097 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5098 LOG_OTHER_INODE, ctx);
5099 if (ret) {
5100 btrfs_add_delayed_iput(inode);
5101 continue;
5102 }
5103
5104 key.objectid = ino;
5105 key.type = BTRFS_INODE_REF_KEY;
5106 key.offset = 0;
5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 if (ret < 0) {
5109 btrfs_add_delayed_iput(inode);
5110 continue;
5111 }
5112
5113 while (true) {
5114 struct extent_buffer *leaf = path->nodes[0];
5115 int slot = path->slots[0];
5116 u64 other_ino = 0;
5117 u64 other_parent = 0;
5118
5119 if (slot >= btrfs_header_nritems(leaf)) {
5120 ret = btrfs_next_leaf(root, path);
5121 if (ret < 0) {
5122 break;
5123 } else if (ret > 0) {
5124 ret = 0;
5125 break;
5126 }
5127 continue;
5128 }
5129
5130 btrfs_item_key_to_cpu(leaf, &key, slot);
5131 if (key.objectid != ino ||
5132 (key.type != BTRFS_INODE_REF_KEY &&
5133 key.type != BTRFS_INODE_EXTREF_KEY)) {
5134 ret = 0;
5135 break;
5136 }
5137
5138 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5139 BTRFS_I(inode), &other_ino,
5140 &other_parent);
5141 if (ret < 0)
5142 break;
5143 if (ret > 0) {
5144 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5145 if (!ino_elem) {
5146 ret = -ENOMEM;
5147 break;
5148 }
5149 ino_elem->ino = other_ino;
5150 ino_elem->parent = other_parent;
5151 list_add_tail(&ino_elem->list, &inode_list);
5152 ret = 0;
5153 }
5154 path->slots[0]++;
5155 }
5156 btrfs_add_delayed_iput(inode);
5157 }
5158
5159 return ret;
5160}
5161
5162static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5163 struct btrfs_inode *inode,
5164 struct btrfs_key *min_key,
5165 const struct btrfs_key *max_key,
5166 struct btrfs_path *path,
5167 struct btrfs_path *dst_path,
5168 const u64 logged_isize,
5169 const bool recursive_logging,
5170 const int inode_only,
5171 struct btrfs_log_ctx *ctx,
5172 bool *need_log_inode_item)
5173{
5174 struct btrfs_root *root = inode->root;
5175 int ins_start_slot = 0;
5176 int ins_nr = 0;
5177 int ret;
5178
5179 while (1) {
5180 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5181 if (ret < 0)
5182 return ret;
5183 if (ret > 0) {
5184 ret = 0;
5185 break;
5186 }
5187again:
5188 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5189 if (min_key->objectid != max_key->objectid)
5190 break;
5191 if (min_key->type > max_key->type)
5192 break;
5193
5194 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5195 *need_log_inode_item = false;
5196
5197 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5198 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5199 inode->generation == trans->transid &&
5200 !recursive_logging) {
5201 u64 other_ino = 0;
5202 u64 other_parent = 0;
5203
5204 ret = btrfs_check_ref_name_override(path->nodes[0],
5205 path->slots[0], min_key, inode,
5206 &other_ino, &other_parent);
5207 if (ret < 0) {
5208 return ret;
5209 } else if (ret > 0 && ctx &&
5210 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5211 if (ins_nr > 0) {
5212 ins_nr++;
5213 } else {
5214 ins_nr = 1;
5215 ins_start_slot = path->slots[0];
5216 }
5217 ret = copy_items(trans, inode, dst_path, path,
5218 ins_start_slot, ins_nr,
5219 inode_only, logged_isize);
5220 if (ret < 0)
5221 return ret;
5222 ins_nr = 0;
5223
5224 ret = log_conflicting_inodes(trans, root, path,
5225 ctx, other_ino, other_parent);
5226 if (ret)
5227 return ret;
5228 btrfs_release_path(path);
5229 goto next_key;
5230 }
5231 }
5232
5233 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5235 if (ins_nr == 0)
5236 goto next_slot;
5237 ret = copy_items(trans, inode, dst_path, path,
5238 ins_start_slot,
5239 ins_nr, inode_only, logged_isize);
5240 if (ret < 0)
5241 return ret;
5242 ins_nr = 0;
5243 goto next_slot;
5244 }
5245
5246 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5247 ins_nr++;
5248 goto next_slot;
5249 } else if (!ins_nr) {
5250 ins_start_slot = path->slots[0];
5251 ins_nr = 1;
5252 goto next_slot;
5253 }
5254
5255 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5256 ins_nr, inode_only, logged_isize);
5257 if (ret < 0)
5258 return ret;
5259 ins_nr = 1;
5260 ins_start_slot = path->slots[0];
5261next_slot:
5262 path->slots[0]++;
5263 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5264 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5265 path->slots[0]);
5266 goto again;
5267 }
5268 if (ins_nr) {
5269 ret = copy_items(trans, inode, dst_path, path,
5270 ins_start_slot, ins_nr, inode_only,
5271 logged_isize);
5272 if (ret < 0)
5273 return ret;
5274 ins_nr = 0;
5275 }
5276 btrfs_release_path(path);
5277next_key:
5278 if (min_key->offset < (u64)-1) {
5279 min_key->offset++;
5280 } else if (min_key->type < max_key->type) {
5281 min_key->type++;
5282 min_key->offset = 0;
5283 } else {
5284 break;
5285 }
5286 }
5287 if (ins_nr)
5288 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289 ins_nr, inode_only, logged_isize);
5290
5291 return ret;
5292}
5293
5294/* log a single inode in the tree log.
5295 * At least one parent directory for this inode must exist in the tree
5296 * or be logged already.
5297 *
5298 * Any items from this inode changed by the current transaction are copied
5299 * to the log tree. An extra reference is taken on any extents in this
5300 * file, allowing us to avoid a whole pile of corner cases around logging
5301 * blocks that have been removed from the tree.
5302 *
5303 * See LOG_INODE_ALL and related defines for a description of what inode_only
5304 * does.
5305 *
5306 * This handles both files and directories.
5307 */
5308static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5309 struct btrfs_root *root, struct btrfs_inode *inode,
5310 int inode_only,
5311 struct btrfs_log_ctx *ctx)
5312{
5313 struct btrfs_path *path;
5314 struct btrfs_path *dst_path;
5315 struct btrfs_key min_key;
5316 struct btrfs_key max_key;
5317 struct btrfs_root *log = root->log_root;
5318 int err = 0;
5319 int ret = 0;
5320 bool fast_search = false;
5321 u64 ino = btrfs_ino(inode);
5322 struct extent_map_tree *em_tree = &inode->extent_tree;
5323 u64 logged_isize = 0;
5324 bool need_log_inode_item = true;
5325 bool xattrs_logged = false;
5326 bool recursive_logging = false;
5327
5328 path = btrfs_alloc_path();
5329 if (!path)
5330 return -ENOMEM;
5331 dst_path = btrfs_alloc_path();
5332 if (!dst_path) {
5333 btrfs_free_path(path);
5334 return -ENOMEM;
5335 }
5336
5337 min_key.objectid = ino;
5338 min_key.type = BTRFS_INODE_ITEM_KEY;
5339 min_key.offset = 0;
5340
5341 max_key.objectid = ino;
5342
5343
5344 /* today the code can only do partial logging of directories */
5345 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5346 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5347 &inode->runtime_flags) &&
5348 inode_only >= LOG_INODE_EXISTS))
5349 max_key.type = BTRFS_XATTR_ITEM_KEY;
5350 else
5351 max_key.type = (u8)-1;
5352 max_key.offset = (u64)-1;
5353
5354 /*
5355 * Only run delayed items if we are a directory. We want to make sure
5356 * all directory indexes hit the fs/subvolume tree so we can find them
5357 * and figure out which index ranges have to be logged.
5358 *
5359 * Otherwise commit the delayed inode only if the full sync flag is set,
5360 * as we want to make sure an up to date version is in the subvolume
5361 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5362 * it to the log tree. For a non full sync, we always log the inode item
5363 * based on the in-memory struct btrfs_inode which is always up to date.
5364 */
5365 if (S_ISDIR(inode->vfs_inode.i_mode))
5366 ret = btrfs_commit_inode_delayed_items(trans, inode);
5367 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5368 ret = btrfs_commit_inode_delayed_inode(inode);
5369
5370 if (ret) {
5371 btrfs_free_path(path);
5372 btrfs_free_path(dst_path);
5373 return ret;
5374 }
5375
5376 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5377 recursive_logging = true;
5378 if (inode_only == LOG_OTHER_INODE)
5379 inode_only = LOG_INODE_EXISTS;
5380 else
5381 inode_only = LOG_INODE_ALL;
5382 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5383 } else {
5384 mutex_lock(&inode->log_mutex);
5385 }
5386
5387 /*
5388 * This is for cases where logging a directory could result in losing a
5389 * a file after replaying the log. For example, if we move a file from a
5390 * directory A to a directory B, then fsync directory A, we have no way
5391 * to known the file was moved from A to B, so logging just A would
5392 * result in losing the file after a log replay.
5393 */
5394 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5395 inode_only == LOG_INODE_ALL &&
5396 inode->last_unlink_trans >= trans->transid) {
5397 btrfs_set_log_full_commit(trans);
5398 err = 1;
5399 goto out_unlock;
5400 }
5401
5402 /*
5403 * a brute force approach to making sure we get the most uptodate
5404 * copies of everything.
5405 */
5406 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5407 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5408
5409 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5410 if (inode_only == LOG_INODE_EXISTS)
5411 max_key_type = BTRFS_XATTR_ITEM_KEY;
5412 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5413 } else {
5414 if (inode_only == LOG_INODE_EXISTS) {
5415 /*
5416 * Make sure the new inode item we write to the log has
5417 * the same isize as the current one (if it exists).
5418 * This is necessary to prevent data loss after log
5419 * replay, and also to prevent doing a wrong expanding
5420 * truncate - for e.g. create file, write 4K into offset
5421 * 0, fsync, write 4K into offset 4096, add hard link,
5422 * fsync some other file (to sync log), power fail - if
5423 * we use the inode's current i_size, after log replay
5424 * we get a 8Kb file, with the last 4Kb extent as a hole
5425 * (zeroes), as if an expanding truncate happened,
5426 * instead of getting a file of 4Kb only.
5427 */
5428 err = logged_inode_size(log, inode, path, &logged_isize);
5429 if (err)
5430 goto out_unlock;
5431 }
5432 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5433 &inode->runtime_flags)) {
5434 if (inode_only == LOG_INODE_EXISTS) {
5435 max_key.type = BTRFS_XATTR_ITEM_KEY;
5436 ret = drop_objectid_items(trans, log, path, ino,
5437 max_key.type);
5438 } else {
5439 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5440 &inode->runtime_flags);
5441 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5442 &inode->runtime_flags);
5443 while(1) {
5444 ret = btrfs_truncate_inode_items(trans,
5445 log, inode, 0, 0, NULL);
5446 if (ret != -EAGAIN)
5447 break;
5448 }
5449 }
5450 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5451 &inode->runtime_flags) ||
5452 inode_only == LOG_INODE_EXISTS) {
5453 if (inode_only == LOG_INODE_ALL)
5454 fast_search = true;
5455 max_key.type = BTRFS_XATTR_ITEM_KEY;
5456 ret = drop_objectid_items(trans, log, path, ino,
5457 max_key.type);
5458 } else {
5459 if (inode_only == LOG_INODE_ALL)
5460 fast_search = true;
5461 goto log_extents;
5462 }
5463
5464 }
5465 if (ret) {
5466 err = ret;
5467 goto out_unlock;
5468 }
5469
5470 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5471 path, dst_path, logged_isize,
5472 recursive_logging, inode_only, ctx,
5473 &need_log_inode_item);
5474 if (err)
5475 goto out_unlock;
5476
5477 btrfs_release_path(path);
5478 btrfs_release_path(dst_path);
5479 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5480 if (err)
5481 goto out_unlock;
5482 xattrs_logged = true;
5483 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5484 btrfs_release_path(path);
5485 btrfs_release_path(dst_path);
5486 err = btrfs_log_holes(trans, root, inode, path);
5487 if (err)
5488 goto out_unlock;
5489 }
5490log_extents:
5491 btrfs_release_path(path);
5492 btrfs_release_path(dst_path);
5493 if (need_log_inode_item) {
5494 err = log_inode_item(trans, log, dst_path, inode);
5495 if (err)
5496 goto out_unlock;
5497 /*
5498 * If we are doing a fast fsync and the inode was logged before
5499 * in this transaction, we don't need to log the xattrs because
5500 * they were logged before. If xattrs were added, changed or
5501 * deleted since the last time we logged the inode, then we have
5502 * already logged them because the inode had the runtime flag
5503 * BTRFS_INODE_COPY_EVERYTHING set.
5504 */
5505 if (!xattrs_logged && inode->logged_trans < trans->transid) {
5506 err = btrfs_log_all_xattrs(trans, root, inode, path,
5507 dst_path);
5508 if (err)
5509 goto out_unlock;
5510 btrfs_release_path(path);
5511 }
5512 }
5513 if (fast_search) {
5514 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5515 ctx);
5516 if (ret) {
5517 err = ret;
5518 goto out_unlock;
5519 }
5520 } else if (inode_only == LOG_INODE_ALL) {
5521 struct extent_map *em, *n;
5522
5523 write_lock(&em_tree->lock);
5524 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5525 list_del_init(&em->list);
5526 write_unlock(&em_tree->lock);
5527 }
5528
5529 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5530 ret = log_directory_changes(trans, root, inode, path, dst_path,
5531 ctx);
5532 if (ret) {
5533 err = ret;
5534 goto out_unlock;
5535 }
5536 }
5537
5538 /*
5539 * If we are logging that an ancestor inode exists as part of logging a
5540 * new name from a link or rename operation, don't mark the inode as
5541 * logged - otherwise if an explicit fsync is made against an ancestor,
5542 * the fsync considers the inode in the log and doesn't sync the log,
5543 * resulting in the ancestor missing after a power failure unless the
5544 * log was synced as part of an fsync against any other unrelated inode.
5545 * So keep it simple for this case and just don't flag the ancestors as
5546 * logged.
5547 */
5548 if (!ctx ||
5549 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5550 &inode->vfs_inode != ctx->inode)) {
5551 spin_lock(&inode->lock);
5552 inode->logged_trans = trans->transid;
5553 /*
5554 * Don't update last_log_commit if we logged that an inode exists.
5555 * We do this for two reasons:
5556 *
5557 * 1) We might have had buffered writes to this inode that were
5558 * flushed and had their ordered extents completed in this
5559 * transaction, but we did not previously log the inode with
5560 * LOG_INODE_ALL. Later the inode was evicted and after that
5561 * it was loaded again and this LOG_INODE_EXISTS log operation
5562 * happened. We must make sure that if an explicit fsync against
5563 * the inode is performed later, it logs the new extents, an
5564 * updated inode item, etc, and syncs the log. The same logic
5565 * applies to direct IO writes instead of buffered writes.
5566 *
5567 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5568 * is logged with an i_size of 0 or whatever value was logged
5569 * before. If later the i_size of the inode is increased by a
5570 * truncate operation, the log is synced through an fsync of
5571 * some other inode and then finally an explicit fsync against
5572 * this inode is made, we must make sure this fsync logs the
5573 * inode with the new i_size, the hole between old i_size and
5574 * the new i_size, and syncs the log.
5575 */
5576 if (inode_only != LOG_INODE_EXISTS)
5577 inode->last_log_commit = inode->last_sub_trans;
5578 spin_unlock(&inode->lock);
5579 }
5580out_unlock:
5581 mutex_unlock(&inode->log_mutex);
5582
5583 btrfs_free_path(path);
5584 btrfs_free_path(dst_path);
5585 return err;
5586}
5587
5588/*
5589 * Check if we need to log an inode. This is used in contexts where while
5590 * logging an inode we need to log another inode (either that it exists or in
5591 * full mode). This is used instead of btrfs_inode_in_log() because the later
5592 * requires the inode to be in the log and have the log transaction committed,
5593 * while here we do not care if the log transaction was already committed - our
5594 * caller will commit the log later - and we want to avoid logging an inode
5595 * multiple times when multiple tasks have joined the same log transaction.
5596 */
5597static bool need_log_inode(struct btrfs_trans_handle *trans,
5598 struct btrfs_inode *inode)
5599{
5600 /*
5601 * If this inode does not have new/updated/deleted xattrs since the last
5602 * time it was logged and is flagged as logged in the current transaction,
5603 * we can skip logging it. As for new/deleted names, those are updated in
5604 * the log by link/unlink/rename operations.
5605 * In case the inode was logged and then evicted and reloaded, its
5606 * logged_trans will be 0, in which case we have to fully log it since
5607 * logged_trans is a transient field, not persisted.
5608 */
5609 if (inode->logged_trans == trans->transid &&
5610 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5611 return false;
5612
5613 return true;
5614}
5615
5616struct btrfs_dir_list {
5617 u64 ino;
5618 struct list_head list;
5619};
5620
5621/*
5622 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5623 * details about the why it is needed.
5624 * This is a recursive operation - if an existing dentry corresponds to a
5625 * directory, that directory's new entries are logged too (same behaviour as
5626 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5627 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5628 * complains about the following circular lock dependency / possible deadlock:
5629 *
5630 * CPU0 CPU1
5631 * ---- ----
5632 * lock(&type->i_mutex_dir_key#3/2);
5633 * lock(sb_internal#2);
5634 * lock(&type->i_mutex_dir_key#3/2);
5635 * lock(&sb->s_type->i_mutex_key#14);
5636 *
5637 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5638 * sb_start_intwrite() in btrfs_start_transaction().
5639 * Not locking i_mutex of the inodes is still safe because:
5640 *
5641 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5642 * that while logging the inode new references (names) are added or removed
5643 * from the inode, leaving the logged inode item with a link count that does
5644 * not match the number of logged inode reference items. This is fine because
5645 * at log replay time we compute the real number of links and correct the
5646 * link count in the inode item (see replay_one_buffer() and
5647 * link_to_fixup_dir());
5648 *
5649 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5650 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5651 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5652 * has a size that doesn't match the sum of the lengths of all the logged
5653 * names. This does not result in a problem because if a dir_item key is
5654 * logged but its matching dir_index key is not logged, at log replay time we
5655 * don't use it to replay the respective name (see replay_one_name()). On the
5656 * other hand if only the dir_index key ends up being logged, the respective
5657 * name is added to the fs/subvol tree with both the dir_item and dir_index
5658 * keys created (see replay_one_name()).
5659 * The directory's inode item with a wrong i_size is not a problem as well,
5660 * since we don't use it at log replay time to set the i_size in the inode
5661 * item of the fs/subvol tree (see overwrite_item()).
5662 */
5663static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 struct btrfs_inode *start_inode,
5666 struct btrfs_log_ctx *ctx)
5667{
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 struct btrfs_root *log = root->log_root;
5670 struct btrfs_path *path;
5671 LIST_HEAD(dir_list);
5672 struct btrfs_dir_list *dir_elem;
5673 int ret = 0;
5674
5675 path = btrfs_alloc_path();
5676 if (!path)
5677 return -ENOMEM;
5678
5679 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5680 if (!dir_elem) {
5681 btrfs_free_path(path);
5682 return -ENOMEM;
5683 }
5684 dir_elem->ino = btrfs_ino(start_inode);
5685 list_add_tail(&dir_elem->list, &dir_list);
5686
5687 while (!list_empty(&dir_list)) {
5688 struct extent_buffer *leaf;
5689 struct btrfs_key min_key;
5690 int nritems;
5691 int i;
5692
5693 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5694 list);
5695 if (ret)
5696 goto next_dir_inode;
5697
5698 min_key.objectid = dir_elem->ino;
5699 min_key.type = BTRFS_DIR_ITEM_KEY;
5700 min_key.offset = 0;
5701again:
5702 btrfs_release_path(path);
5703 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5704 if (ret < 0) {
5705 goto next_dir_inode;
5706 } else if (ret > 0) {
5707 ret = 0;
5708 goto next_dir_inode;
5709 }
5710
5711process_leaf:
5712 leaf = path->nodes[0];
5713 nritems = btrfs_header_nritems(leaf);
5714 for (i = path->slots[0]; i < nritems; i++) {
5715 struct btrfs_dir_item *di;
5716 struct btrfs_key di_key;
5717 struct inode *di_inode;
5718 struct btrfs_dir_list *new_dir_elem;
5719 int log_mode = LOG_INODE_EXISTS;
5720 int type;
5721
5722 btrfs_item_key_to_cpu(leaf, &min_key, i);
5723 if (min_key.objectid != dir_elem->ino ||
5724 min_key.type != BTRFS_DIR_ITEM_KEY)
5725 goto next_dir_inode;
5726
5727 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5728 type = btrfs_dir_type(leaf, di);
5729 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5730 type != BTRFS_FT_DIR)
5731 continue;
5732 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5733 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5734 continue;
5735
5736 btrfs_release_path(path);
5737 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5738 if (IS_ERR(di_inode)) {
5739 ret = PTR_ERR(di_inode);
5740 goto next_dir_inode;
5741 }
5742
5743 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5744 btrfs_add_delayed_iput(di_inode);
5745 break;
5746 }
5747
5748 ctx->log_new_dentries = false;
5749 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5750 log_mode = LOG_INODE_ALL;
5751 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5752 log_mode, ctx);
5753 btrfs_add_delayed_iput(di_inode);
5754 if (ret)
5755 goto next_dir_inode;
5756 if (ctx->log_new_dentries) {
5757 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5758 GFP_NOFS);
5759 if (!new_dir_elem) {
5760 ret = -ENOMEM;
5761 goto next_dir_inode;
5762 }
5763 new_dir_elem->ino = di_key.objectid;
5764 list_add_tail(&new_dir_elem->list, &dir_list);
5765 }
5766 break;
5767 }
5768 if (i == nritems) {
5769 ret = btrfs_next_leaf(log, path);
5770 if (ret < 0) {
5771 goto next_dir_inode;
5772 } else if (ret > 0) {
5773 ret = 0;
5774 goto next_dir_inode;
5775 }
5776 goto process_leaf;
5777 }
5778 if (min_key.offset < (u64)-1) {
5779 min_key.offset++;
5780 goto again;
5781 }
5782next_dir_inode:
5783 list_del(&dir_elem->list);
5784 kfree(dir_elem);
5785 }
5786
5787 btrfs_free_path(path);
5788 return ret;
5789}
5790
5791static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5792 struct btrfs_inode *inode,
5793 struct btrfs_log_ctx *ctx)
5794{
5795 struct btrfs_fs_info *fs_info = trans->fs_info;
5796 int ret;
5797 struct btrfs_path *path;
5798 struct btrfs_key key;
5799 struct btrfs_root *root = inode->root;
5800 const u64 ino = btrfs_ino(inode);
5801
5802 path = btrfs_alloc_path();
5803 if (!path)
5804 return -ENOMEM;
5805 path->skip_locking = 1;
5806 path->search_commit_root = 1;
5807
5808 key.objectid = ino;
5809 key.type = BTRFS_INODE_REF_KEY;
5810 key.offset = 0;
5811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5812 if (ret < 0)
5813 goto out;
5814
5815 while (true) {
5816 struct extent_buffer *leaf = path->nodes[0];
5817 int slot = path->slots[0];
5818 u32 cur_offset = 0;
5819 u32 item_size;
5820 unsigned long ptr;
5821
5822 if (slot >= btrfs_header_nritems(leaf)) {
5823 ret = btrfs_next_leaf(root, path);
5824 if (ret < 0)
5825 goto out;
5826 else if (ret > 0)
5827 break;
5828 continue;
5829 }
5830
5831 btrfs_item_key_to_cpu(leaf, &key, slot);
5832 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5833 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5834 break;
5835
5836 item_size = btrfs_item_size_nr(leaf, slot);
5837 ptr = btrfs_item_ptr_offset(leaf, slot);
5838 while (cur_offset < item_size) {
5839 struct btrfs_key inode_key;
5840 struct inode *dir_inode;
5841
5842 inode_key.type = BTRFS_INODE_ITEM_KEY;
5843 inode_key.offset = 0;
5844
5845 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5846 struct btrfs_inode_extref *extref;
5847
5848 extref = (struct btrfs_inode_extref *)
5849 (ptr + cur_offset);
5850 inode_key.objectid = btrfs_inode_extref_parent(
5851 leaf, extref);
5852 cur_offset += sizeof(*extref);
5853 cur_offset += btrfs_inode_extref_name_len(leaf,
5854 extref);
5855 } else {
5856 inode_key.objectid = key.offset;
5857 cur_offset = item_size;
5858 }
5859
5860 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5861 root);
5862 /*
5863 * If the parent inode was deleted, return an error to
5864 * fallback to a transaction commit. This is to prevent
5865 * getting an inode that was moved from one parent A to
5866 * a parent B, got its former parent A deleted and then
5867 * it got fsync'ed, from existing at both parents after
5868 * a log replay (and the old parent still existing).
5869 * Example:
5870 *
5871 * mkdir /mnt/A
5872 * mkdir /mnt/B
5873 * touch /mnt/B/bar
5874 * sync
5875 * mv /mnt/B/bar /mnt/A/bar
5876 * mv -T /mnt/A /mnt/B
5877 * fsync /mnt/B/bar
5878 * <power fail>
5879 *
5880 * If we ignore the old parent B which got deleted,
5881 * after a log replay we would have file bar linked
5882 * at both parents and the old parent B would still
5883 * exist.
5884 */
5885 if (IS_ERR(dir_inode)) {
5886 ret = PTR_ERR(dir_inode);
5887 goto out;
5888 }
5889
5890 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5891 btrfs_add_delayed_iput(dir_inode);
5892 continue;
5893 }
5894
5895 if (ctx)
5896 ctx->log_new_dentries = false;
5897 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5898 LOG_INODE_ALL, ctx);
5899 if (!ret && ctx && ctx->log_new_dentries)
5900 ret = log_new_dir_dentries(trans, root,
5901 BTRFS_I(dir_inode), ctx);
5902 btrfs_add_delayed_iput(dir_inode);
5903 if (ret)
5904 goto out;
5905 }
5906 path->slots[0]++;
5907 }
5908 ret = 0;
5909out:
5910 btrfs_free_path(path);
5911 return ret;
5912}
5913
5914static int log_new_ancestors(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root,
5916 struct btrfs_path *path,
5917 struct btrfs_log_ctx *ctx)
5918{
5919 struct btrfs_key found_key;
5920
5921 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5922
5923 while (true) {
5924 struct btrfs_fs_info *fs_info = root->fs_info;
5925 struct extent_buffer *leaf = path->nodes[0];
5926 int slot = path->slots[0];
5927 struct btrfs_key search_key;
5928 struct inode *inode;
5929 u64 ino;
5930 int ret = 0;
5931
5932 btrfs_release_path(path);
5933
5934 ino = found_key.offset;
5935
5936 search_key.objectid = found_key.offset;
5937 search_key.type = BTRFS_INODE_ITEM_KEY;
5938 search_key.offset = 0;
5939 inode = btrfs_iget(fs_info->sb, ino, root);
5940 if (IS_ERR(inode))
5941 return PTR_ERR(inode);
5942
5943 if (BTRFS_I(inode)->generation >= trans->transid &&
5944 need_log_inode(trans, BTRFS_I(inode)))
5945 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5946 LOG_INODE_EXISTS, ctx);
5947 btrfs_add_delayed_iput(inode);
5948 if (ret)
5949 return ret;
5950
5951 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5952 break;
5953
5954 search_key.type = BTRFS_INODE_REF_KEY;
5955 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5956 if (ret < 0)
5957 return ret;
5958
5959 leaf = path->nodes[0];
5960 slot = path->slots[0];
5961 if (slot >= btrfs_header_nritems(leaf)) {
5962 ret = btrfs_next_leaf(root, path);
5963 if (ret < 0)
5964 return ret;
5965 else if (ret > 0)
5966 return -ENOENT;
5967 leaf = path->nodes[0];
5968 slot = path->slots[0];
5969 }
5970
5971 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972 if (found_key.objectid != search_key.objectid ||
5973 found_key.type != BTRFS_INODE_REF_KEY)
5974 return -ENOENT;
5975 }
5976 return 0;
5977}
5978
5979static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5980 struct btrfs_inode *inode,
5981 struct dentry *parent,
5982 struct btrfs_log_ctx *ctx)
5983{
5984 struct btrfs_root *root = inode->root;
5985 struct dentry *old_parent = NULL;
5986 struct super_block *sb = inode->vfs_inode.i_sb;
5987 int ret = 0;
5988
5989 while (true) {
5990 if (!parent || d_really_is_negative(parent) ||
5991 sb != parent->d_sb)
5992 break;
5993
5994 inode = BTRFS_I(d_inode(parent));
5995 if (root != inode->root)
5996 break;
5997
5998 if (inode->generation >= trans->transid &&
5999 need_log_inode(trans, inode)) {
6000 ret = btrfs_log_inode(trans, root, inode,
6001 LOG_INODE_EXISTS, ctx);
6002 if (ret)
6003 break;
6004 }
6005 if (IS_ROOT(parent))
6006 break;
6007
6008 parent = dget_parent(parent);
6009 dput(old_parent);
6010 old_parent = parent;
6011 }
6012 dput(old_parent);
6013
6014 return ret;
6015}
6016
6017static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6018 struct btrfs_inode *inode,
6019 struct dentry *parent,
6020 struct btrfs_log_ctx *ctx)
6021{
6022 struct btrfs_root *root = inode->root;
6023 const u64 ino = btrfs_ino(inode);
6024 struct btrfs_path *path;
6025 struct btrfs_key search_key;
6026 int ret;
6027
6028 /*
6029 * For a single hard link case, go through a fast path that does not
6030 * need to iterate the fs/subvolume tree.
6031 */
6032 if (inode->vfs_inode.i_nlink < 2)
6033 return log_new_ancestors_fast(trans, inode, parent, ctx);
6034
6035 path = btrfs_alloc_path();
6036 if (!path)
6037 return -ENOMEM;
6038
6039 search_key.objectid = ino;
6040 search_key.type = BTRFS_INODE_REF_KEY;
6041 search_key.offset = 0;
6042again:
6043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6044 if (ret < 0)
6045 goto out;
6046 if (ret == 0)
6047 path->slots[0]++;
6048
6049 while (true) {
6050 struct extent_buffer *leaf = path->nodes[0];
6051 int slot = path->slots[0];
6052 struct btrfs_key found_key;
6053
6054 if (slot >= btrfs_header_nritems(leaf)) {
6055 ret = btrfs_next_leaf(root, path);
6056 if (ret < 0)
6057 goto out;
6058 else if (ret > 0)
6059 break;
6060 continue;
6061 }
6062
6063 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064 if (found_key.objectid != ino ||
6065 found_key.type > BTRFS_INODE_EXTREF_KEY)
6066 break;
6067
6068 /*
6069 * Don't deal with extended references because they are rare
6070 * cases and too complex to deal with (we would need to keep
6071 * track of which subitem we are processing for each item in
6072 * this loop, etc). So just return some error to fallback to
6073 * a transaction commit.
6074 */
6075 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6076 ret = -EMLINK;
6077 goto out;
6078 }
6079
6080 /*
6081 * Logging ancestors needs to do more searches on the fs/subvol
6082 * tree, so it releases the path as needed to avoid deadlocks.
6083 * Keep track of the last inode ref key and resume from that key
6084 * after logging all new ancestors for the current hard link.
6085 */
6086 memcpy(&search_key, &found_key, sizeof(search_key));
6087
6088 ret = log_new_ancestors(trans, root, path, ctx);
6089 if (ret)
6090 goto out;
6091 btrfs_release_path(path);
6092 goto again;
6093 }
6094 ret = 0;
6095out:
6096 btrfs_free_path(path);
6097 return ret;
6098}
6099
6100/*
6101 * helper function around btrfs_log_inode to make sure newly created
6102 * parent directories also end up in the log. A minimal inode and backref
6103 * only logging is done of any parent directories that are older than
6104 * the last committed transaction
6105 */
6106static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6107 struct btrfs_inode *inode,
6108 struct dentry *parent,
6109 int inode_only,
6110 struct btrfs_log_ctx *ctx)
6111{
6112 struct btrfs_root *root = inode->root;
6113 struct btrfs_fs_info *fs_info = root->fs_info;
6114 int ret = 0;
6115 bool log_dentries = false;
6116
6117 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6118 ret = 1;
6119 goto end_no_trans;
6120 }
6121
6122 if (btrfs_root_refs(&root->root_item) == 0) {
6123 ret = 1;
6124 goto end_no_trans;
6125 }
6126
6127 /*
6128 * Skip already logged inodes or inodes corresponding to tmpfiles
6129 * (since logging them is pointless, a link count of 0 means they
6130 * will never be accessible).
6131 */
6132 if ((btrfs_inode_in_log(inode, trans->transid) &&
6133 list_empty(&ctx->ordered_extents)) ||
6134 inode->vfs_inode.i_nlink == 0) {
6135 ret = BTRFS_NO_LOG_SYNC;
6136 goto end_no_trans;
6137 }
6138
6139 ret = start_log_trans(trans, root, ctx);
6140 if (ret)
6141 goto end_no_trans;
6142
6143 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6144 if (ret)
6145 goto end_trans;
6146
6147 /*
6148 * for regular files, if its inode is already on disk, we don't
6149 * have to worry about the parents at all. This is because
6150 * we can use the last_unlink_trans field to record renames
6151 * and other fun in this file.
6152 */
6153 if (S_ISREG(inode->vfs_inode.i_mode) &&
6154 inode->generation < trans->transid &&
6155 inode->last_unlink_trans < trans->transid) {
6156 ret = 0;
6157 goto end_trans;
6158 }
6159
6160 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6161 log_dentries = true;
6162
6163 /*
6164 * On unlink we must make sure all our current and old parent directory
6165 * inodes are fully logged. This is to prevent leaving dangling
6166 * directory index entries in directories that were our parents but are
6167 * not anymore. Not doing this results in old parent directory being
6168 * impossible to delete after log replay (rmdir will always fail with
6169 * error -ENOTEMPTY).
6170 *
6171 * Example 1:
6172 *
6173 * mkdir testdir
6174 * touch testdir/foo
6175 * ln testdir/foo testdir/bar
6176 * sync
6177 * unlink testdir/bar
6178 * xfs_io -c fsync testdir/foo
6179 * <power failure>
6180 * mount fs, triggers log replay
6181 *
6182 * If we don't log the parent directory (testdir), after log replay the
6183 * directory still has an entry pointing to the file inode using the bar
6184 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6185 * the file inode has a link count of 1.
6186 *
6187 * Example 2:
6188 *
6189 * mkdir testdir
6190 * touch foo
6191 * ln foo testdir/foo2
6192 * ln foo testdir/foo3
6193 * sync
6194 * unlink testdir/foo3
6195 * xfs_io -c fsync foo
6196 * <power failure>
6197 * mount fs, triggers log replay
6198 *
6199 * Similar as the first example, after log replay the parent directory
6200 * testdir still has an entry pointing to the inode file with name foo3
6201 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6202 * and has a link count of 2.
6203 */
6204 if (inode->last_unlink_trans >= trans->transid) {
6205 ret = btrfs_log_all_parents(trans, inode, ctx);
6206 if (ret)
6207 goto end_trans;
6208 }
6209
6210 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6211 if (ret)
6212 goto end_trans;
6213
6214 if (log_dentries)
6215 ret = log_new_dir_dentries(trans, root, inode, ctx);
6216 else
6217 ret = 0;
6218end_trans:
6219 if (ret < 0) {
6220 btrfs_set_log_full_commit(trans);
6221 ret = 1;
6222 }
6223
6224 if (ret)
6225 btrfs_remove_log_ctx(root, ctx);
6226 btrfs_end_log_trans(root);
6227end_no_trans:
6228 return ret;
6229}
6230
6231/*
6232 * it is not safe to log dentry if the chunk root has added new
6233 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6234 * If this returns 1, you must commit the transaction to safely get your
6235 * data on disk.
6236 */
6237int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6238 struct dentry *dentry,
6239 struct btrfs_log_ctx *ctx)
6240{
6241 struct dentry *parent = dget_parent(dentry);
6242 int ret;
6243
6244 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6245 LOG_INODE_ALL, ctx);
6246 dput(parent);
6247
6248 return ret;
6249}
6250
6251/*
6252 * should be called during mount to recover any replay any log trees
6253 * from the FS
6254 */
6255int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6256{
6257 int ret;
6258 struct btrfs_path *path;
6259 struct btrfs_trans_handle *trans;
6260 struct btrfs_key key;
6261 struct btrfs_key found_key;
6262 struct btrfs_root *log;
6263 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6264 struct walk_control wc = {
6265 .process_func = process_one_buffer,
6266 .stage = LOG_WALK_PIN_ONLY,
6267 };
6268
6269 path = btrfs_alloc_path();
6270 if (!path)
6271 return -ENOMEM;
6272
6273 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6274
6275 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6276 if (IS_ERR(trans)) {
6277 ret = PTR_ERR(trans);
6278 goto error;
6279 }
6280
6281 wc.trans = trans;
6282 wc.pin = 1;
6283
6284 ret = walk_log_tree(trans, log_root_tree, &wc);
6285 if (ret) {
6286 btrfs_handle_fs_error(fs_info, ret,
6287 "Failed to pin buffers while recovering log root tree.");
6288 goto error;
6289 }
6290
6291again:
6292 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6293 key.offset = (u64)-1;
6294 key.type = BTRFS_ROOT_ITEM_KEY;
6295
6296 while (1) {
6297 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6298
6299 if (ret < 0) {
6300 btrfs_handle_fs_error(fs_info, ret,
6301 "Couldn't find tree log root.");
6302 goto error;
6303 }
6304 if (ret > 0) {
6305 if (path->slots[0] == 0)
6306 break;
6307 path->slots[0]--;
6308 }
6309 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6310 path->slots[0]);
6311 btrfs_release_path(path);
6312 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6313 break;
6314
6315 log = btrfs_read_tree_root(log_root_tree, &found_key);
6316 if (IS_ERR(log)) {
6317 ret = PTR_ERR(log);
6318 btrfs_handle_fs_error(fs_info, ret,
6319 "Couldn't read tree log root.");
6320 goto error;
6321 }
6322
6323 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6324 true);
6325 if (IS_ERR(wc.replay_dest)) {
6326 ret = PTR_ERR(wc.replay_dest);
6327
6328 /*
6329 * We didn't find the subvol, likely because it was
6330 * deleted. This is ok, simply skip this log and go to
6331 * the next one.
6332 *
6333 * We need to exclude the root because we can't have
6334 * other log replays overwriting this log as we'll read
6335 * it back in a few more times. This will keep our
6336 * block from being modified, and we'll just bail for
6337 * each subsequent pass.
6338 */
6339 if (ret == -ENOENT)
6340 ret = btrfs_pin_extent_for_log_replay(trans,
6341 log->node->start,
6342 log->node->len);
6343 btrfs_put_root(log);
6344
6345 if (!ret)
6346 goto next;
6347 btrfs_handle_fs_error(fs_info, ret,
6348 "Couldn't read target root for tree log recovery.");
6349 goto error;
6350 }
6351
6352 wc.replay_dest->log_root = log;
6353 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6354 if (ret)
6355 /* The loop needs to continue due to the root refs */
6356 btrfs_handle_fs_error(fs_info, ret,
6357 "failed to record the log root in transaction");
6358 else
6359 ret = walk_log_tree(trans, log, &wc);
6360
6361 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363 path);
6364 }
6365
6366 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367 struct btrfs_root *root = wc.replay_dest;
6368
6369 btrfs_release_path(path);
6370
6371 /*
6372 * We have just replayed everything, and the highest
6373 * objectid of fs roots probably has changed in case
6374 * some inode_item's got replayed.
6375 *
6376 * root->objectid_mutex is not acquired as log replay
6377 * could only happen during mount.
6378 */
6379 ret = btrfs_init_root_free_objectid(root);
6380 }
6381
6382 wc.replay_dest->log_root = NULL;
6383 btrfs_put_root(wc.replay_dest);
6384 btrfs_put_root(log);
6385
6386 if (ret)
6387 goto error;
6388next:
6389 if (found_key.offset == 0)
6390 break;
6391 key.offset = found_key.offset - 1;
6392 }
6393 btrfs_release_path(path);
6394
6395 /* step one is to pin it all, step two is to replay just inodes */
6396 if (wc.pin) {
6397 wc.pin = 0;
6398 wc.process_func = replay_one_buffer;
6399 wc.stage = LOG_WALK_REPLAY_INODES;
6400 goto again;
6401 }
6402 /* step three is to replay everything */
6403 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6404 wc.stage++;
6405 goto again;
6406 }
6407
6408 btrfs_free_path(path);
6409
6410 /* step 4: commit the transaction, which also unpins the blocks */
6411 ret = btrfs_commit_transaction(trans);
6412 if (ret)
6413 return ret;
6414
6415 log_root_tree->log_root = NULL;
6416 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6417 btrfs_put_root(log_root_tree);
6418
6419 return 0;
6420error:
6421 if (wc.trans)
6422 btrfs_end_transaction(wc.trans);
6423 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6424 btrfs_free_path(path);
6425 return ret;
6426}
6427
6428/*
6429 * there are some corner cases where we want to force a full
6430 * commit instead of allowing a directory to be logged.
6431 *
6432 * They revolve around files there were unlinked from the directory, and
6433 * this function updates the parent directory so that a full commit is
6434 * properly done if it is fsync'd later after the unlinks are done.
6435 *
6436 * Must be called before the unlink operations (updates to the subvolume tree,
6437 * inodes, etc) are done.
6438 */
6439void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6440 struct btrfs_inode *dir, struct btrfs_inode *inode,
6441 int for_rename)
6442{
6443 /*
6444 * when we're logging a file, if it hasn't been renamed
6445 * or unlinked, and its inode is fully committed on disk,
6446 * we don't have to worry about walking up the directory chain
6447 * to log its parents.
6448 *
6449 * So, we use the last_unlink_trans field to put this transid
6450 * into the file. When the file is logged we check it and
6451 * don't log the parents if the file is fully on disk.
6452 */
6453 mutex_lock(&inode->log_mutex);
6454 inode->last_unlink_trans = trans->transid;
6455 mutex_unlock(&inode->log_mutex);
6456
6457 /*
6458 * if this directory was already logged any new
6459 * names for this file/dir will get recorded
6460 */
6461 if (dir->logged_trans == trans->transid)
6462 return;
6463
6464 /*
6465 * if the inode we're about to unlink was logged,
6466 * the log will be properly updated for any new names
6467 */
6468 if (inode->logged_trans == trans->transid)
6469 return;
6470
6471 /*
6472 * when renaming files across directories, if the directory
6473 * there we're unlinking from gets fsync'd later on, there's
6474 * no way to find the destination directory later and fsync it
6475 * properly. So, we have to be conservative and force commits
6476 * so the new name gets discovered.
6477 */
6478 if (for_rename)
6479 goto record;
6480
6481 /* we can safely do the unlink without any special recording */
6482 return;
6483
6484record:
6485 mutex_lock(&dir->log_mutex);
6486 dir->last_unlink_trans = trans->transid;
6487 mutex_unlock(&dir->log_mutex);
6488}
6489
6490/*
6491 * Make sure that if someone attempts to fsync the parent directory of a deleted
6492 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6493 * that after replaying the log tree of the parent directory's root we will not
6494 * see the snapshot anymore and at log replay time we will not see any log tree
6495 * corresponding to the deleted snapshot's root, which could lead to replaying
6496 * it after replaying the log tree of the parent directory (which would replay
6497 * the snapshot delete operation).
6498 *
6499 * Must be called before the actual snapshot destroy operation (updates to the
6500 * parent root and tree of tree roots trees, etc) are done.
6501 */
6502void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6503 struct btrfs_inode *dir)
6504{
6505 mutex_lock(&dir->log_mutex);
6506 dir->last_unlink_trans = trans->transid;
6507 mutex_unlock(&dir->log_mutex);
6508}
6509
6510/*
6511 * Call this after adding a new name for a file and it will properly
6512 * update the log to reflect the new name.
6513 */
6514void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6515 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6516 struct dentry *parent)
6517{
6518 struct btrfs_log_ctx ctx;
6519
6520 /*
6521 * this will force the logging code to walk the dentry chain
6522 * up for the file
6523 */
6524 if (!S_ISDIR(inode->vfs_inode.i_mode))
6525 inode->last_unlink_trans = trans->transid;
6526
6527 /*
6528 * if this inode hasn't been logged and directory we're renaming it
6529 * from hasn't been logged, we don't need to log it
6530 */
6531 if (!inode_logged(trans, inode) &&
6532 (!old_dir || !inode_logged(trans, old_dir)))
6533 return;
6534
6535 /*
6536 * If we are doing a rename (old_dir is not NULL) from a directory that
6537 * was previously logged, make sure the next log attempt on the directory
6538 * is not skipped and logs the inode again. This is because the log may
6539 * not currently be authoritative for a range including the old
6540 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6541 * sure after a log replay we do not end up with both the new and old
6542 * dentries around (in case the inode is a directory we would have a
6543 * directory with two hard links and 2 inode references for different
6544 * parents). The next log attempt of old_dir will happen at
6545 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6546 * below, because we have previously set inode->last_unlink_trans to the
6547 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6548 * case inode is a directory.
6549 */
6550 if (old_dir)
6551 old_dir->logged_trans = 0;
6552
6553 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6554 ctx.logging_new_name = true;
6555 /*
6556 * We don't care about the return value. If we fail to log the new name
6557 * then we know the next attempt to sync the log will fallback to a full
6558 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6559 * we don't need to worry about getting a log committed that has an
6560 * inconsistent state after a rename operation.
6561 */
6562 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6563}
6564