Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142{
143 unsigned int nofs_flag;
144 struct inode *inode;
145
146 /*
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
152 */
153 nofs_flag = memalloc_nofs_save();
154 inode = btrfs_iget(objectid, root);
155 memalloc_nofs_restore(nofs_flag);
156
157 return inode;
158}
159
160/*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
165static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct btrfs_log_ctx *ctx)
168{
169 struct btrfs_fs_info *fs_info = root->fs_info;
170 struct btrfs_root *tree_root = fs_info->tree_root;
171 const bool zoned = btrfs_is_zoned(fs_info);
172 int ret = 0;
173 bool created = false;
174
175 /*
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
178 */
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 mutex_lock(&tree_root->log_mutex);
181 if (!fs_info->log_root_tree) {
182 ret = btrfs_init_log_root_tree(trans, fs_info);
183 if (!ret) {
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 created = true;
186 }
187 }
188 mutex_unlock(&tree_root->log_mutex);
189 if (ret)
190 return ret;
191 }
192
193 mutex_lock(&root->log_mutex);
194
195again:
196 if (root->log_root) {
197 int index = (root->log_transid + 1) % 2;
198
199 if (btrfs_need_log_full_commit(trans)) {
200 ret = BTRFS_LOG_FORCE_COMMIT;
201 goto out;
202 }
203
204 if (zoned && atomic_read(&root->log_commit[index])) {
205 wait_log_commit(root, root->log_transid - 1);
206 goto again;
207 }
208
209 if (!root->log_start_pid) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
212 } else if (root->log_start_pid != current->pid) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 }
215 } else {
216 /*
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
220 * writing.
221 */
222 if (zoned && !created) {
223 ret = BTRFS_LOG_FORCE_COMMIT;
224 goto out;
225 }
226
227 ret = btrfs_add_log_tree(trans, root);
228 if (ret)
229 goto out;
230
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 root->log_start_pid = current->pid;
234 }
235
236 atomic_inc(&root->log_writers);
237 if (!ctx->logging_new_name) {
238 int index = root->log_transid % 2;
239 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 ctx->log_transid = root->log_transid;
241 }
242
243out:
244 mutex_unlock(&root->log_mutex);
245 return ret;
246}
247
248/*
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
251 * in progress
252 */
253static int join_running_log_trans(struct btrfs_root *root)
254{
255 const bool zoned = btrfs_is_zoned(root->fs_info);
256 int ret = -ENOENT;
257
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 return ret;
260
261 mutex_lock(&root->log_mutex);
262again:
263 if (root->log_root) {
264 int index = (root->log_transid + 1) % 2;
265
266 ret = 0;
267 if (zoned && atomic_read(&root->log_commit[index])) {
268 wait_log_commit(root, root->log_transid - 1);
269 goto again;
270 }
271 atomic_inc(&root->log_writers);
272 }
273 mutex_unlock(&root->log_mutex);
274 return ret;
275}
276
277/*
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
281 */
282void btrfs_pin_log_trans(struct btrfs_root *root)
283{
284 atomic_inc(&root->log_writers);
285}
286
287/*
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
290 */
291void btrfs_end_log_trans(struct btrfs_root *root)
292{
293 if (atomic_dec_and_test(&root->log_writers)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root->log_writer_wait);
296 }
297}
298
299/*
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
304 */
305struct walk_control {
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
308 */
309 int free;
310
311 /* pin only walk, we record which extents on disk belong to the
312 * log trees
313 */
314 int pin;
315
316 /* what stage of the replay code we're currently in */
317 int stage;
318
319 /*
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
323 */
324 bool ignore_cur_inode;
325
326 /* the root we are currently replaying */
327 struct btrfs_root *replay_dest;
328
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle *trans;
331
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
335 * inside it
336 */
337 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 struct walk_control *wc, u64 gen, int level);
339};
340
341/*
342 * process_func used to pin down extents, write them or wait on them
343 */
344static int process_one_buffer(struct btrfs_root *log,
345 struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level)
347{
348 struct btrfs_fs_info *fs_info = log->fs_info;
349 int ret = 0;
350
351 /*
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
354 */
355 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 struct btrfs_tree_parent_check check = {
357 .level = level,
358 .transid = gen
359 };
360
361 ret = btrfs_read_extent_buffer(eb, &check);
362 if (ret)
363 return ret;
364 }
365
366 if (wc->pin) {
367 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 if (ret)
369 return ret;
370
371 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 btrfs_header_level(eb) == 0)
373 ret = btrfs_exclude_logged_extents(eb);
374 }
375 return ret;
376}
377
378/*
379 * Item overwrite used by replay and tree logging. eb, slot and key all refer
380 * to the src data we are copying out.
381 *
382 * root is the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and
384 * will be released on exit).
385 *
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
389 *
390 * If the key isn't in the destination yet, a new item is inserted.
391 */
392static int overwrite_item(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root,
394 struct btrfs_path *path,
395 struct extent_buffer *eb, int slot,
396 struct btrfs_key *key)
397{
398 int ret;
399 u32 item_size;
400 u64 saved_i_size = 0;
401 int save_old_i_size = 0;
402 unsigned long src_ptr;
403 unsigned long dst_ptr;
404 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
405
406 /*
407 * This is only used during log replay, so the root is always from a
408 * fs/subvolume tree. In case we ever need to support a log root, then
409 * we'll have to clone the leaf in the path, release the path and use
410 * the leaf before writing into the log tree. See the comments at
411 * copy_items() for more details.
412 */
413 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
414
415 item_size = btrfs_item_size(eb, slot);
416 src_ptr = btrfs_item_ptr_offset(eb, slot);
417
418 /* Look for the key in the destination tree. */
419 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
420 if (ret < 0)
421 return ret;
422
423 if (ret == 0) {
424 char *src_copy;
425 char *dst_copy;
426 u32 dst_size = btrfs_item_size(path->nodes[0],
427 path->slots[0]);
428 if (dst_size != item_size)
429 goto insert;
430
431 if (item_size == 0) {
432 btrfs_release_path(path);
433 return 0;
434 }
435 dst_copy = kmalloc(item_size, GFP_NOFS);
436 src_copy = kmalloc(item_size, GFP_NOFS);
437 if (!dst_copy || !src_copy) {
438 btrfs_release_path(path);
439 kfree(dst_copy);
440 kfree(src_copy);
441 return -ENOMEM;
442 }
443
444 read_extent_buffer(eb, src_copy, src_ptr, item_size);
445
446 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
447 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
448 item_size);
449 ret = memcmp(dst_copy, src_copy, item_size);
450
451 kfree(dst_copy);
452 kfree(src_copy);
453 /*
454 * they have the same contents, just return, this saves
455 * us from cowing blocks in the destination tree and doing
456 * extra writes that may not have been done by a previous
457 * sync
458 */
459 if (ret == 0) {
460 btrfs_release_path(path);
461 return 0;
462 }
463
464 /*
465 * We need to load the old nbytes into the inode so when we
466 * replay the extents we've logged we get the right nbytes.
467 */
468 if (inode_item) {
469 struct btrfs_inode_item *item;
470 u64 nbytes;
471 u32 mode;
472
473 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
474 struct btrfs_inode_item);
475 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
476 item = btrfs_item_ptr(eb, slot,
477 struct btrfs_inode_item);
478 btrfs_set_inode_nbytes(eb, item, nbytes);
479
480 /*
481 * If this is a directory we need to reset the i_size to
482 * 0 so that we can set it up properly when replaying
483 * the rest of the items in this log.
484 */
485 mode = btrfs_inode_mode(eb, item);
486 if (S_ISDIR(mode))
487 btrfs_set_inode_size(eb, item, 0);
488 }
489 } else if (inode_item) {
490 struct btrfs_inode_item *item;
491 u32 mode;
492
493 /*
494 * New inode, set nbytes to 0 so that the nbytes comes out
495 * properly when we replay the extents.
496 */
497 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
498 btrfs_set_inode_nbytes(eb, item, 0);
499
500 /*
501 * If this is a directory we need to reset the i_size to 0 so
502 * that we can set it up properly when replaying the rest of
503 * the items in this log.
504 */
505 mode = btrfs_inode_mode(eb, item);
506 if (S_ISDIR(mode))
507 btrfs_set_inode_size(eb, item, 0);
508 }
509insert:
510 btrfs_release_path(path);
511 /* try to insert the key into the destination tree */
512 path->skip_release_on_error = 1;
513 ret = btrfs_insert_empty_item(trans, root, path,
514 key, item_size);
515 path->skip_release_on_error = 0;
516
517 /* make sure any existing item is the correct size */
518 if (ret == -EEXIST || ret == -EOVERFLOW) {
519 u32 found_size;
520 found_size = btrfs_item_size(path->nodes[0],
521 path->slots[0]);
522 if (found_size > item_size)
523 btrfs_truncate_item(trans, path, item_size, 1);
524 else if (found_size < item_size)
525 btrfs_extend_item(trans, path, item_size - found_size);
526 } else if (ret) {
527 return ret;
528 }
529 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
530 path->slots[0]);
531
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
535 *
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
539 * as it goes
540 */
541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 struct btrfs_inode_item *src_item;
543 struct btrfs_inode_item *dst_item;
544
545 src_item = (struct btrfs_inode_item *)src_ptr;
546 dst_item = (struct btrfs_inode_item *)dst_ptr;
547
548 if (btrfs_inode_generation(eb, src_item) == 0) {
549 struct extent_buffer *dst_eb = path->nodes[0];
550 const u64 ino_size = btrfs_inode_size(eb, src_item);
551
552 /*
553 * For regular files an ino_size == 0 is used only when
554 * logging that an inode exists, as part of a directory
555 * fsync, and the inode wasn't fsynced before. In this
556 * case don't set the size of the inode in the fs/subvol
557 * tree, otherwise we would be throwing valid data away.
558 */
559 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
560 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
561 ino_size != 0)
562 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
563 goto no_copy;
564 }
565
566 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
567 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
568 save_old_i_size = 1;
569 saved_i_size = btrfs_inode_size(path->nodes[0],
570 dst_item);
571 }
572 }
573
574 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
575 src_ptr, item_size);
576
577 if (save_old_i_size) {
578 struct btrfs_inode_item *dst_item;
579 dst_item = (struct btrfs_inode_item *)dst_ptr;
580 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
581 }
582
583 /* make sure the generation is filled in */
584 if (key->type == BTRFS_INODE_ITEM_KEY) {
585 struct btrfs_inode_item *dst_item;
586 dst_item = (struct btrfs_inode_item *)dst_ptr;
587 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
588 btrfs_set_inode_generation(path->nodes[0], dst_item,
589 trans->transid);
590 }
591 }
592no_copy:
593 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
594 btrfs_release_path(path);
595 return 0;
596}
597
598static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
599 struct fscrypt_str *name)
600{
601 char *buf;
602
603 buf = kmalloc(len, GFP_NOFS);
604 if (!buf)
605 return -ENOMEM;
606
607 read_extent_buffer(eb, buf, (unsigned long)start, len);
608 name->name = buf;
609 name->len = len;
610 return 0;
611}
612
613/*
614 * simple helper to read an inode off the disk from a given root
615 * This can only be called for subvolume roots and not for the log
616 */
617static noinline struct inode *read_one_inode(struct btrfs_root *root,
618 u64 objectid)
619{
620 struct inode *inode;
621
622 inode = btrfs_iget_logging(objectid, root);
623 if (IS_ERR(inode))
624 inode = NULL;
625 return inode;
626}
627
628/* replays a single extent in 'eb' at 'slot' with 'key' into the
629 * subvolume 'root'. path is released on entry and should be released
630 * on exit.
631 *
632 * extents in the log tree have not been allocated out of the extent
633 * tree yet. So, this completes the allocation, taking a reference
634 * as required if the extent already exists or creating a new extent
635 * if it isn't in the extent allocation tree yet.
636 *
637 * The extent is inserted into the file, dropping any existing extents
638 * from the file that overlap the new one.
639 */
640static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct btrfs_path *path,
643 struct extent_buffer *eb, int slot,
644 struct btrfs_key *key)
645{
646 struct btrfs_drop_extents_args drop_args = { 0 };
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 int found_type;
649 u64 extent_end;
650 u64 start = key->offset;
651 u64 nbytes = 0;
652 struct btrfs_file_extent_item *item;
653 struct inode *inode = NULL;
654 unsigned long size;
655 int ret = 0;
656
657 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
658 found_type = btrfs_file_extent_type(eb, item);
659
660 if (found_type == BTRFS_FILE_EXTENT_REG ||
661 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 nbytes = btrfs_file_extent_num_bytes(eb, item);
663 extent_end = start + nbytes;
664
665 /*
666 * We don't add to the inodes nbytes if we are prealloc or a
667 * hole.
668 */
669 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
670 nbytes = 0;
671 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672 size = btrfs_file_extent_ram_bytes(eb, item);
673 nbytes = btrfs_file_extent_ram_bytes(eb, item);
674 extent_end = ALIGN(start + size,
675 fs_info->sectorsize);
676 } else {
677 ret = 0;
678 goto out;
679 }
680
681 inode = read_one_inode(root, key->objectid);
682 if (!inode) {
683 ret = -EIO;
684 goto out;
685 }
686
687 /*
688 * first check to see if we already have this extent in the
689 * file. This must be done before the btrfs_drop_extents run
690 * so we don't try to drop this extent.
691 */
692 ret = btrfs_lookup_file_extent(trans, root, path,
693 btrfs_ino(BTRFS_I(inode)), start, 0);
694
695 if (ret == 0 &&
696 (found_type == BTRFS_FILE_EXTENT_REG ||
697 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698 struct btrfs_file_extent_item cmp1;
699 struct btrfs_file_extent_item cmp2;
700 struct btrfs_file_extent_item *existing;
701 struct extent_buffer *leaf;
702
703 leaf = path->nodes[0];
704 existing = btrfs_item_ptr(leaf, path->slots[0],
705 struct btrfs_file_extent_item);
706
707 read_extent_buffer(eb, &cmp1, (unsigned long)item,
708 sizeof(cmp1));
709 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710 sizeof(cmp2));
711
712 /*
713 * we already have a pointer to this exact extent,
714 * we don't have to do anything
715 */
716 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717 btrfs_release_path(path);
718 goto out;
719 }
720 }
721 btrfs_release_path(path);
722
723 /* drop any overlapping extents */
724 drop_args.start = start;
725 drop_args.end = extent_end;
726 drop_args.drop_cache = true;
727 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728 if (ret)
729 goto out;
730
731 if (found_type == BTRFS_FILE_EXTENT_REG ||
732 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733 u64 offset;
734 unsigned long dest_offset;
735 struct btrfs_key ins;
736
737 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738 btrfs_fs_incompat(fs_info, NO_HOLES))
739 goto update_inode;
740
741 ret = btrfs_insert_empty_item(trans, root, path, key,
742 sizeof(*item));
743 if (ret)
744 goto out;
745 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746 path->slots[0]);
747 copy_extent_buffer(path->nodes[0], eb, dest_offset,
748 (unsigned long)item, sizeof(*item));
749
750 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752 ins.type = BTRFS_EXTENT_ITEM_KEY;
753 offset = key->offset - btrfs_file_extent_offset(eb, item);
754
755 /*
756 * Manually record dirty extent, as here we did a shallow
757 * file extent item copy and skip normal backref update,
758 * but modifying extent tree all by ourselves.
759 * So need to manually record dirty extent for qgroup,
760 * as the owner of the file extent changed from log tree
761 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762 */
763 ret = btrfs_qgroup_trace_extent(trans,
764 btrfs_file_extent_disk_bytenr(eb, item),
765 btrfs_file_extent_disk_num_bytes(eb, item));
766 if (ret < 0)
767 goto out;
768
769 if (ins.objectid > 0) {
770 u64 csum_start;
771 u64 csum_end;
772 LIST_HEAD(ordered_sums);
773
774 /*
775 * is this extent already allocated in the extent
776 * allocation tree? If so, just add a reference
777 */
778 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
779 ins.offset);
780 if (ret < 0) {
781 goto out;
782 } else if (ret == 0) {
783 struct btrfs_ref ref = {
784 .action = BTRFS_ADD_DELAYED_REF,
785 .bytenr = ins.objectid,
786 .num_bytes = ins.offset,
787 .owning_root = btrfs_root_id(root),
788 .ref_root = btrfs_root_id(root),
789 };
790 btrfs_init_data_ref(&ref, key->objectid, offset,
791 0, false);
792 ret = btrfs_inc_extent_ref(trans, &ref);
793 if (ret)
794 goto out;
795 } else {
796 /*
797 * insert the extent pointer in the extent
798 * allocation tree
799 */
800 ret = btrfs_alloc_logged_file_extent(trans,
801 btrfs_root_id(root),
802 key->objectid, offset, &ins);
803 if (ret)
804 goto out;
805 }
806 btrfs_release_path(path);
807
808 if (btrfs_file_extent_compression(eb, item)) {
809 csum_start = ins.objectid;
810 csum_end = csum_start + ins.offset;
811 } else {
812 csum_start = ins.objectid +
813 btrfs_file_extent_offset(eb, item);
814 csum_end = csum_start +
815 btrfs_file_extent_num_bytes(eb, item);
816 }
817
818 ret = btrfs_lookup_csums_list(root->log_root,
819 csum_start, csum_end - 1,
820 &ordered_sums, false);
821 if (ret < 0)
822 goto out;
823 ret = 0;
824 /*
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
836 *
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
840 *
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
844 *
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
848 * of the extent:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 *
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
854 *
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 *
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
862 *
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 *
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
872 */
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 struct btrfs_root *csum_root;
876
877 sums = list_entry(ordered_sums.next,
878 struct btrfs_ordered_sum,
879 list);
880 csum_root = btrfs_csum_root(fs_info,
881 sums->logical);
882 if (!ret)
883 ret = btrfs_del_csums(trans, csum_root,
884 sums->logical,
885 sums->len);
886 if (!ret)
887 ret = btrfs_csum_file_blocks(trans,
888 csum_root,
889 sums);
890 list_del(&sums->list);
891 kfree(sums);
892 }
893 if (ret)
894 goto out;
895 } else {
896 btrfs_release_path(path);
897 }
898 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 /* inline extents are easy, we just overwrite them */
900 ret = overwrite_item(trans, root, path, eb, slot, key);
901 if (ret)
902 goto out;
903 }
904
905 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 extent_end - start);
907 if (ret)
908 goto out;
909
910update_inode:
911 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 ret = btrfs_update_inode(trans, BTRFS_I(inode));
913out:
914 iput(inode);
915 return ret;
916}
917
918static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 struct btrfs_inode *dir,
920 struct btrfs_inode *inode,
921 const struct fscrypt_str *name)
922{
923 int ret;
924
925 ret = btrfs_unlink_inode(trans, dir, inode, name);
926 if (ret)
927 return ret;
928 /*
929 * Whenever we need to check if a name exists or not, we check the
930 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 * that future checks for a name during log replay see that the name
932 * does not exists anymore.
933 */
934 return btrfs_run_delayed_items(trans);
935}
936
937/*
938 * when cleaning up conflicts between the directory names in the
939 * subvolume, directory names in the log and directory names in the
940 * inode back references, we may have to unlink inodes from directories.
941 *
942 * This is a helper function to do the unlink of a specific directory
943 * item
944 */
945static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 struct btrfs_path *path,
947 struct btrfs_inode *dir,
948 struct btrfs_dir_item *di)
949{
950 struct btrfs_root *root = dir->root;
951 struct inode *inode;
952 struct fscrypt_str name;
953 struct extent_buffer *leaf;
954 struct btrfs_key location;
955 int ret;
956
957 leaf = path->nodes[0];
958
959 btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 if (ret)
962 return -ENOMEM;
963
964 btrfs_release_path(path);
965
966 inode = read_one_inode(root, location.objectid);
967 if (!inode) {
968 ret = -EIO;
969 goto out;
970 }
971
972 ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 if (ret)
974 goto out;
975
976 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977out:
978 kfree(name.name);
979 iput(inode);
980 return ret;
981}
982
983/*
984 * See if a given name and sequence number found in an inode back reference are
985 * already in a directory and correctly point to this inode.
986 *
987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988 * exists.
989 */
990static noinline int inode_in_dir(struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 dirid, u64 objectid, u64 index,
993 struct fscrypt_str *name)
994{
995 struct btrfs_dir_item *di;
996 struct btrfs_key location;
997 int ret = 0;
998
999 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 index, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid != objectid)
1007 goto out;
1008 } else {
1009 goto out;
1010 }
1011
1012 btrfs_release_path(path);
1013 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 if (IS_ERR(di)) {
1015 ret = PTR_ERR(di);
1016 goto out;
1017 } else if (di) {
1018 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 if (location.objectid == objectid)
1020 ret = 1;
1021 }
1022out:
1023 btrfs_release_path(path);
1024 return ret;
1025}
1026
1027/*
1028 * helper function to check a log tree for a named back reference in
1029 * an inode. This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1031 *
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1036 */
1037static noinline int backref_in_log(struct btrfs_root *log,
1038 struct btrfs_key *key,
1039 u64 ref_objectid,
1040 const struct fscrypt_str *name)
1041{
1042 struct btrfs_path *path;
1043 int ret;
1044
1045 path = btrfs_alloc_path();
1046 if (!path)
1047 return -ENOMEM;
1048
1049 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 if (ret < 0) {
1051 goto out;
1052 } else if (ret == 1) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 path->slots[0],
1060 ref_objectid, name);
1061 else
1062 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 path->slots[0], name);
1064out:
1065 btrfs_free_path(path);
1066 return ret;
1067}
1068
1069static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root,
1071 struct btrfs_path *path,
1072 struct btrfs_root *log_root,
1073 struct btrfs_inode *dir,
1074 struct btrfs_inode *inode,
1075 u64 inode_objectid, u64 parent_objectid,
1076 u64 ref_index, struct fscrypt_str *name)
1077{
1078 int ret;
1079 struct extent_buffer *leaf;
1080 struct btrfs_dir_item *di;
1081 struct btrfs_key search_key;
1082 struct btrfs_inode_extref *extref;
1083
1084again:
1085 /* Search old style refs */
1086 search_key.objectid = inode_objectid;
1087 search_key.type = BTRFS_INODE_REF_KEY;
1088 search_key.offset = parent_objectid;
1089 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 if (ret == 0) {
1091 struct btrfs_inode_ref *victim_ref;
1092 unsigned long ptr;
1093 unsigned long ptr_end;
1094
1095 leaf = path->nodes[0];
1096
1097 /* are we trying to overwrite a back ref for the root directory
1098 * if so, just jump out, we're done
1099 */
1100 if (search_key.objectid == search_key.offset)
1101 return 1;
1102
1103 /* check all the names in this back reference to see
1104 * if they are in the log. if so, we allow them to stay
1105 * otherwise they must be unlinked as a conflict
1106 */
1107 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109 while (ptr < ptr_end) {
1110 struct fscrypt_str victim_name;
1111
1112 victim_ref = (struct btrfs_inode_ref *)ptr;
1113 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114 btrfs_inode_ref_name_len(leaf, victim_ref),
1115 &victim_name);
1116 if (ret)
1117 return ret;
1118
1119 ret = backref_in_log(log_root, &search_key,
1120 parent_objectid, &victim_name);
1121 if (ret < 0) {
1122 kfree(victim_name.name);
1123 return ret;
1124 } else if (!ret) {
1125 inc_nlink(&inode->vfs_inode);
1126 btrfs_release_path(path);
1127
1128 ret = unlink_inode_for_log_replay(trans, dir, inode,
1129 &victim_name);
1130 kfree(victim_name.name);
1131 if (ret)
1132 return ret;
1133 goto again;
1134 }
1135 kfree(victim_name.name);
1136
1137 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138 }
1139 }
1140 btrfs_release_path(path);
1141
1142 /* Same search but for extended refs */
1143 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144 inode_objectid, parent_objectid, 0,
1145 0);
1146 if (IS_ERR(extref)) {
1147 return PTR_ERR(extref);
1148 } else if (extref) {
1149 u32 item_size;
1150 u32 cur_offset = 0;
1151 unsigned long base;
1152 struct inode *victim_parent;
1153
1154 leaf = path->nodes[0];
1155
1156 item_size = btrfs_item_size(leaf, path->slots[0]);
1157 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158
1159 while (cur_offset < item_size) {
1160 struct fscrypt_str victim_name;
1161
1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163
1164 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165 goto next;
1166
1167 ret = read_alloc_one_name(leaf, &extref->name,
1168 btrfs_inode_extref_name_len(leaf, extref),
1169 &victim_name);
1170 if (ret)
1171 return ret;
1172
1173 search_key.objectid = inode_objectid;
1174 search_key.type = BTRFS_INODE_EXTREF_KEY;
1175 search_key.offset = btrfs_extref_hash(parent_objectid,
1176 victim_name.name,
1177 victim_name.len);
1178 ret = backref_in_log(log_root, &search_key,
1179 parent_objectid, &victim_name);
1180 if (ret < 0) {
1181 kfree(victim_name.name);
1182 return ret;
1183 } else if (!ret) {
1184 ret = -ENOENT;
1185 victim_parent = read_one_inode(root,
1186 parent_objectid);
1187 if (victim_parent) {
1188 inc_nlink(&inode->vfs_inode);
1189 btrfs_release_path(path);
1190
1191 ret = unlink_inode_for_log_replay(trans,
1192 BTRFS_I(victim_parent),
1193 inode, &victim_name);
1194 }
1195 iput(victim_parent);
1196 kfree(victim_name.name);
1197 if (ret)
1198 return ret;
1199 goto again;
1200 }
1201 kfree(victim_name.name);
1202next:
1203 cur_offset += victim_name.len + sizeof(*extref);
1204 }
1205 }
1206 btrfs_release_path(path);
1207
1208 /* look for a conflicting sequence number */
1209 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210 ref_index, name, 0);
1211 if (IS_ERR(di)) {
1212 return PTR_ERR(di);
1213 } else if (di) {
1214 ret = drop_one_dir_item(trans, path, dir, di);
1215 if (ret)
1216 return ret;
1217 }
1218 btrfs_release_path(path);
1219
1220 /* look for a conflicting name */
1221 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222 if (IS_ERR(di)) {
1223 return PTR_ERR(di);
1224 } else if (di) {
1225 ret = drop_one_dir_item(trans, path, dir, di);
1226 if (ret)
1227 return ret;
1228 }
1229 btrfs_release_path(path);
1230
1231 return 0;
1232}
1233
1234static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235 struct fscrypt_str *name, u64 *index,
1236 u64 *parent_objectid)
1237{
1238 struct btrfs_inode_extref *extref;
1239 int ret;
1240
1241 extref = (struct btrfs_inode_extref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, &extref->name,
1244 btrfs_inode_extref_name_len(eb, extref), name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_extref_index(eb, extref);
1250 if (parent_objectid)
1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253 return 0;
1254}
1255
1256static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 struct fscrypt_str *name, u64 *index)
1258{
1259 struct btrfs_inode_ref *ref;
1260 int ret;
1261
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265 name);
1266 if (ret)
1267 return ret;
1268
1269 if (index)
1270 *index = btrfs_inode_ref_index(eb, ref);
1271
1272 return 0;
1273}
1274
1275/*
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1281 */
1282static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283 struct btrfs_root *root,
1284 struct btrfs_path *path,
1285 struct btrfs_inode *inode,
1286 struct extent_buffer *log_eb,
1287 int log_slot,
1288 struct btrfs_key *key)
1289{
1290 int ret;
1291 unsigned long ref_ptr;
1292 unsigned long ref_end;
1293 struct extent_buffer *eb;
1294
1295again:
1296 btrfs_release_path(path);
1297 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298 if (ret > 0) {
1299 ret = 0;
1300 goto out;
1301 }
1302 if (ret < 0)
1303 goto out;
1304
1305 eb = path->nodes[0];
1306 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308 while (ref_ptr < ref_end) {
1309 struct fscrypt_str name;
1310 u64 parent_id;
1311
1312 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313 ret = extref_get_fields(eb, ref_ptr, &name,
1314 NULL, &parent_id);
1315 } else {
1316 parent_id = key->offset;
1317 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318 }
1319 if (ret)
1320 goto out;
1321
1322 if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 parent_id, &name);
1325 else
1326 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327
1328 if (!ret) {
1329 struct inode *dir;
1330
1331 btrfs_release_path(path);
1332 dir = read_one_inode(root, parent_id);
1333 if (!dir) {
1334 ret = -ENOENT;
1335 kfree(name.name);
1336 goto out;
1337 }
1338 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339 inode, &name);
1340 kfree(name.name);
1341 iput(dir);
1342 if (ret)
1343 goto out;
1344 goto again;
1345 }
1346
1347 kfree(name.name);
1348 ref_ptr += name.len;
1349 if (key->type == BTRFS_INODE_EXTREF_KEY)
1350 ref_ptr += sizeof(struct btrfs_inode_extref);
1351 else
1352 ref_ptr += sizeof(struct btrfs_inode_ref);
1353 }
1354 ret = 0;
1355 out:
1356 btrfs_release_path(path);
1357 return ret;
1358}
1359
1360/*
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function. (it should be released on return).
1365 */
1366static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_root *log,
1369 struct btrfs_path *path,
1370 struct extent_buffer *eb, int slot,
1371 struct btrfs_key *key)
1372{
1373 struct inode *dir = NULL;
1374 struct inode *inode = NULL;
1375 unsigned long ref_ptr;
1376 unsigned long ref_end;
1377 struct fscrypt_str name = { 0 };
1378 int ret;
1379 int log_ref_ver = 0;
1380 u64 parent_objectid;
1381 u64 inode_objectid;
1382 u64 ref_index = 0;
1383 int ref_struct_size;
1384
1385 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387
1388 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389 struct btrfs_inode_extref *r;
1390
1391 ref_struct_size = sizeof(struct btrfs_inode_extref);
1392 log_ref_ver = 1;
1393 r = (struct btrfs_inode_extref *)ref_ptr;
1394 parent_objectid = btrfs_inode_extref_parent(eb, r);
1395 } else {
1396 ref_struct_size = sizeof(struct btrfs_inode_ref);
1397 parent_objectid = key->offset;
1398 }
1399 inode_objectid = key->objectid;
1400
1401 /*
1402 * it is possible that we didn't log all the parent directories
1403 * for a given inode. If we don't find the dir, just don't
1404 * copy the back ref in. The link count fixup code will take
1405 * care of the rest
1406 */
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412
1413 inode = read_one_inode(root, inode_objectid);
1414 if (!inode) {
1415 ret = -EIO;
1416 goto out;
1417 }
1418
1419 while (ref_ptr < ref_end) {
1420 if (log_ref_ver) {
1421 ret = extref_get_fields(eb, ref_ptr, &name,
1422 &ref_index, &parent_objectid);
1423 /*
1424 * parent object can change from one array
1425 * item to another.
1426 */
1427 if (!dir)
1428 dir = read_one_inode(root, parent_objectid);
1429 if (!dir) {
1430 ret = -ENOENT;
1431 goto out;
1432 }
1433 } else {
1434 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435 }
1436 if (ret)
1437 goto out;
1438
1439 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441 if (ret < 0) {
1442 goto out;
1443 } else if (ret == 0) {
1444 /*
1445 * look for a conflicting back reference in the
1446 * metadata. if we find one we have to unlink that name
1447 * of the file before we add our new link. Later on, we
1448 * overwrite any existing back reference, and we don't
1449 * want to create dangling pointers in the directory.
1450 */
1451 ret = __add_inode_ref(trans, root, path, log,
1452 BTRFS_I(dir), BTRFS_I(inode),
1453 inode_objectid, parent_objectid,
1454 ref_index, &name);
1455 if (ret) {
1456 if (ret == 1)
1457 ret = 0;
1458 goto out;
1459 }
1460
1461 /* insert our name */
1462 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463 &name, 0, ref_index);
1464 if (ret)
1465 goto out;
1466
1467 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1468 if (ret)
1469 goto out;
1470 }
1471 /* Else, ret == 1, we already have a perfect match, we're done. */
1472
1473 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474 kfree(name.name);
1475 name.name = NULL;
1476 if (log_ref_ver) {
1477 iput(dir);
1478 dir = NULL;
1479 }
1480 }
1481
1482 /*
1483 * Before we overwrite the inode reference item in the subvolume tree
1484 * with the item from the log tree, we must unlink all names from the
1485 * parent directory that are in the subvolume's tree inode reference
1486 * item, otherwise we end up with an inconsistent subvolume tree where
1487 * dir index entries exist for a name but there is no inode reference
1488 * item with the same name.
1489 */
1490 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491 key);
1492 if (ret)
1493 goto out;
1494
1495 /* finally write the back reference in the inode */
1496 ret = overwrite_item(trans, root, path, eb, slot, key);
1497out:
1498 btrfs_release_path(path);
1499 kfree(name.name);
1500 iput(dir);
1501 iput(inode);
1502 return ret;
1503}
1504
1505static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret = 0;
1508 int name_len;
1509 unsigned int nlink = 0;
1510 u32 item_size;
1511 u32 cur_offset = 0;
1512 u64 inode_objectid = btrfs_ino(inode);
1513 u64 offset = 0;
1514 unsigned long ptr;
1515 struct btrfs_inode_extref *extref;
1516 struct extent_buffer *leaf;
1517
1518 while (1) {
1519 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1520 path, &extref, &offset);
1521 if (ret)
1522 break;
1523
1524 leaf = path->nodes[0];
1525 item_size = btrfs_item_size(leaf, path->slots[0]);
1526 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527 cur_offset = 0;
1528
1529 while (cur_offset < item_size) {
1530 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1531 name_len = btrfs_inode_extref_name_len(leaf, extref);
1532
1533 nlink++;
1534
1535 cur_offset += name_len + sizeof(*extref);
1536 }
1537
1538 offset++;
1539 btrfs_release_path(path);
1540 }
1541 btrfs_release_path(path);
1542
1543 if (ret < 0 && ret != -ENOENT)
1544 return ret;
1545 return nlink;
1546}
1547
1548static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1549{
1550 int ret;
1551 struct btrfs_key key;
1552 unsigned int nlink = 0;
1553 unsigned long ptr;
1554 unsigned long ptr_end;
1555 int name_len;
1556 u64 ino = btrfs_ino(inode);
1557
1558 key.objectid = ino;
1559 key.type = BTRFS_INODE_REF_KEY;
1560 key.offset = (u64)-1;
1561
1562 while (1) {
1563 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1564 if (ret < 0)
1565 break;
1566 if (ret > 0) {
1567 if (path->slots[0] == 0)
1568 break;
1569 path->slots[0]--;
1570 }
1571process_slot:
1572 btrfs_item_key_to_cpu(path->nodes[0], &key,
1573 path->slots[0]);
1574 if (key.objectid != ino ||
1575 key.type != BTRFS_INODE_REF_KEY)
1576 break;
1577 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579 path->slots[0]);
1580 while (ptr < ptr_end) {
1581 struct btrfs_inode_ref *ref;
1582
1583 ref = (struct btrfs_inode_ref *)ptr;
1584 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585 ref);
1586 ptr = (unsigned long)(ref + 1) + name_len;
1587 nlink++;
1588 }
1589
1590 if (key.offset == 0)
1591 break;
1592 if (path->slots[0] > 0) {
1593 path->slots[0]--;
1594 goto process_slot;
1595 }
1596 key.offset--;
1597 btrfs_release_path(path);
1598 }
1599 btrfs_release_path(path);
1600
1601 return nlink;
1602}
1603
1604/*
1605 * There are a few corners where the link count of the file can't
1606 * be properly maintained during replay. So, instead of adding
1607 * lots of complexity to the log code, we just scan the backrefs
1608 * for any file that has been through replay.
1609 *
1610 * The scan will update the link count on the inode to reflect the
1611 * number of back refs found. If it goes down to zero, the iput
1612 * will free the inode.
1613 */
1614static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1615 struct inode *inode)
1616{
1617 struct btrfs_root *root = BTRFS_I(inode)->root;
1618 struct btrfs_path *path;
1619 int ret;
1620 u64 nlink = 0;
1621 u64 ino = btrfs_ino(BTRFS_I(inode));
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 ret = count_inode_refs(BTRFS_I(inode), path);
1628 if (ret < 0)
1629 goto out;
1630
1631 nlink = ret;
1632
1633 ret = count_inode_extrefs(BTRFS_I(inode), path);
1634 if (ret < 0)
1635 goto out;
1636
1637 nlink += ret;
1638
1639 ret = 0;
1640
1641 if (nlink != inode->i_nlink) {
1642 set_nlink(inode, nlink);
1643 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1644 if (ret)
1645 goto out;
1646 }
1647 if (S_ISDIR(inode->i_mode))
1648 BTRFS_I(inode)->index_cnt = (u64)-1;
1649
1650 if (inode->i_nlink == 0) {
1651 if (S_ISDIR(inode->i_mode)) {
1652 ret = replay_dir_deletes(trans, root, NULL, path,
1653 ino, 1);
1654 if (ret)
1655 goto out;
1656 }
1657 ret = btrfs_insert_orphan_item(trans, root, ino);
1658 if (ret == -EEXIST)
1659 ret = 0;
1660 }
1661
1662out:
1663 btrfs_free_path(path);
1664 return ret;
1665}
1666
1667static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path)
1670{
1671 int ret;
1672 struct btrfs_key key;
1673 struct inode *inode;
1674
1675 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1676 key.type = BTRFS_ORPHAN_ITEM_KEY;
1677 key.offset = (u64)-1;
1678 while (1) {
1679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1680 if (ret < 0)
1681 break;
1682
1683 if (ret == 1) {
1684 ret = 0;
1685 if (path->slots[0] == 0)
1686 break;
1687 path->slots[0]--;
1688 }
1689
1690 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1691 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1692 key.type != BTRFS_ORPHAN_ITEM_KEY)
1693 break;
1694
1695 ret = btrfs_del_item(trans, root, path);
1696 if (ret)
1697 break;
1698
1699 btrfs_release_path(path);
1700 inode = read_one_inode(root, key.offset);
1701 if (!inode) {
1702 ret = -EIO;
1703 break;
1704 }
1705
1706 ret = fixup_inode_link_count(trans, inode);
1707 iput(inode);
1708 if (ret)
1709 break;
1710
1711 /*
1712 * fixup on a directory may create new entries,
1713 * make sure we always look for the highset possible
1714 * offset
1715 */
1716 key.offset = (u64)-1;
1717 }
1718 btrfs_release_path(path);
1719 return ret;
1720}
1721
1722
1723/*
1724 * record a given inode in the fixup dir so we can check its link
1725 * count when replay is done. The link count is incremented here
1726 * so the inode won't go away until we check it
1727 */
1728static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 u64 objectid)
1732{
1733 struct btrfs_key key;
1734 int ret = 0;
1735 struct inode *inode;
1736
1737 inode = read_one_inode(root, objectid);
1738 if (!inode)
1739 return -EIO;
1740
1741 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1742 key.type = BTRFS_ORPHAN_ITEM_KEY;
1743 key.offset = objectid;
1744
1745 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1746
1747 btrfs_release_path(path);
1748 if (ret == 0) {
1749 if (!inode->i_nlink)
1750 set_nlink(inode, 1);
1751 else
1752 inc_nlink(inode);
1753 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1754 } else if (ret == -EEXIST) {
1755 ret = 0;
1756 }
1757 iput(inode);
1758
1759 return ret;
1760}
1761
1762/*
1763 * when replaying the log for a directory, we only insert names
1764 * for inodes that actually exist. This means an fsync on a directory
1765 * does not implicitly fsync all the new files in it
1766 */
1767static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 u64 dirid, u64 index,
1770 const struct fscrypt_str *name,
1771 struct btrfs_key *location)
1772{
1773 struct inode *inode;
1774 struct inode *dir;
1775 int ret;
1776
1777 inode = read_one_inode(root, location->objectid);
1778 if (!inode)
1779 return -ENOENT;
1780
1781 dir = read_one_inode(root, dirid);
1782 if (!dir) {
1783 iput(inode);
1784 return -EIO;
1785 }
1786
1787 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1788 1, index);
1789
1790 /* FIXME, put inode into FIXUP list */
1791
1792 iput(inode);
1793 iput(dir);
1794 return ret;
1795}
1796
1797static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1798 struct btrfs_inode *dir,
1799 struct btrfs_path *path,
1800 struct btrfs_dir_item *dst_di,
1801 const struct btrfs_key *log_key,
1802 u8 log_flags,
1803 bool exists)
1804{
1805 struct btrfs_key found_key;
1806
1807 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1808 /* The existing dentry points to the same inode, don't delete it. */
1809 if (found_key.objectid == log_key->objectid &&
1810 found_key.type == log_key->type &&
1811 found_key.offset == log_key->offset &&
1812 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1813 return 1;
1814
1815 /*
1816 * Don't drop the conflicting directory entry if the inode for the new
1817 * entry doesn't exist.
1818 */
1819 if (!exists)
1820 return 0;
1821
1822 return drop_one_dir_item(trans, path, dir, dst_di);
1823}
1824
1825/*
1826 * take a single entry in a log directory item and replay it into
1827 * the subvolume.
1828 *
1829 * if a conflicting item exists in the subdirectory already,
1830 * the inode it points to is unlinked and put into the link count
1831 * fix up tree.
1832 *
1833 * If a name from the log points to a file or directory that does
1834 * not exist in the FS, it is skipped. fsyncs on directories
1835 * do not force down inodes inside that directory, just changes to the
1836 * names or unlinks in a directory.
1837 *
1838 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839 * non-existing inode) and 1 if the name was replayed.
1840 */
1841static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root,
1843 struct btrfs_path *path,
1844 struct extent_buffer *eb,
1845 struct btrfs_dir_item *di,
1846 struct btrfs_key *key)
1847{
1848 struct fscrypt_str name = { 0 };
1849 struct btrfs_dir_item *dir_dst_di;
1850 struct btrfs_dir_item *index_dst_di;
1851 bool dir_dst_matches = false;
1852 bool index_dst_matches = false;
1853 struct btrfs_key log_key;
1854 struct btrfs_key search_key;
1855 struct inode *dir;
1856 u8 log_flags;
1857 bool exists;
1858 int ret;
1859 bool update_size = true;
1860 bool name_added = false;
1861
1862 dir = read_one_inode(root, key->objectid);
1863 if (!dir)
1864 return -EIO;
1865
1866 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1867 if (ret)
1868 goto out;
1869
1870 log_flags = btrfs_dir_flags(eb, di);
1871 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1872 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1873 btrfs_release_path(path);
1874 if (ret < 0)
1875 goto out;
1876 exists = (ret == 0);
1877 ret = 0;
1878
1879 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1880 &name, 1);
1881 if (IS_ERR(dir_dst_di)) {
1882 ret = PTR_ERR(dir_dst_di);
1883 goto out;
1884 } else if (dir_dst_di) {
1885 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1886 dir_dst_di, &log_key,
1887 log_flags, exists);
1888 if (ret < 0)
1889 goto out;
1890 dir_dst_matches = (ret == 1);
1891 }
1892
1893 btrfs_release_path(path);
1894
1895 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1896 key->objectid, key->offset,
1897 &name, 1);
1898 if (IS_ERR(index_dst_di)) {
1899 ret = PTR_ERR(index_dst_di);
1900 goto out;
1901 } else if (index_dst_di) {
1902 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 index_dst_di, &log_key,
1904 log_flags, exists);
1905 if (ret < 0)
1906 goto out;
1907 index_dst_matches = (ret == 1);
1908 }
1909
1910 btrfs_release_path(path);
1911
1912 if (dir_dst_matches && index_dst_matches) {
1913 ret = 0;
1914 update_size = false;
1915 goto out;
1916 }
1917
1918 /*
1919 * Check if the inode reference exists in the log for the given name,
1920 * inode and parent inode
1921 */
1922 search_key.objectid = log_key.objectid;
1923 search_key.type = BTRFS_INODE_REF_KEY;
1924 search_key.offset = key->objectid;
1925 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1926 if (ret < 0) {
1927 goto out;
1928 } else if (ret) {
1929 /* The dentry will be added later. */
1930 ret = 0;
1931 update_size = false;
1932 goto out;
1933 }
1934
1935 search_key.objectid = log_key.objectid;
1936 search_key.type = BTRFS_INODE_EXTREF_KEY;
1937 search_key.offset = key->objectid;
1938 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1939 if (ret < 0) {
1940 goto out;
1941 } else if (ret) {
1942 /* The dentry will be added later. */
1943 ret = 0;
1944 update_size = false;
1945 goto out;
1946 }
1947 btrfs_release_path(path);
1948 ret = insert_one_name(trans, root, key->objectid, key->offset,
1949 &name, &log_key);
1950 if (ret && ret != -ENOENT && ret != -EEXIST)
1951 goto out;
1952 if (!ret)
1953 name_added = true;
1954 update_size = false;
1955 ret = 0;
1956
1957out:
1958 if (!ret && update_size) {
1959 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1960 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1961 }
1962 kfree(name.name);
1963 iput(dir);
1964 if (!ret && name_added)
1965 ret = 1;
1966 return ret;
1967}
1968
1969/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1970static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 struct btrfs_path *path,
1973 struct extent_buffer *eb, int slot,
1974 struct btrfs_key *key)
1975{
1976 int ret;
1977 struct btrfs_dir_item *di;
1978
1979 /* We only log dir index keys, which only contain a single dir item. */
1980 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1981
1982 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1983 ret = replay_one_name(trans, root, path, eb, di, key);
1984 if (ret < 0)
1985 return ret;
1986
1987 /*
1988 * If this entry refers to a non-directory (directories can not have a
1989 * link count > 1) and it was added in the transaction that was not
1990 * committed, make sure we fixup the link count of the inode the entry
1991 * points to. Otherwise something like the following would result in a
1992 * directory pointing to an inode with a wrong link that does not account
1993 * for this dir entry:
1994 *
1995 * mkdir testdir
1996 * touch testdir/foo
1997 * touch testdir/bar
1998 * sync
1999 *
2000 * ln testdir/bar testdir/bar_link
2001 * ln testdir/foo testdir/foo_link
2002 * xfs_io -c "fsync" testdir/bar
2003 *
2004 * <power failure>
2005 *
2006 * mount fs, log replay happens
2007 *
2008 * File foo would remain with a link count of 1 when it has two entries
2009 * pointing to it in the directory testdir. This would make it impossible
2010 * to ever delete the parent directory has it would result in stale
2011 * dentries that can never be deleted.
2012 */
2013 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2014 struct btrfs_path *fixup_path;
2015 struct btrfs_key di_key;
2016
2017 fixup_path = btrfs_alloc_path();
2018 if (!fixup_path)
2019 return -ENOMEM;
2020
2021 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2022 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2023 btrfs_free_path(fixup_path);
2024 }
2025
2026 return ret;
2027}
2028
2029/*
2030 * directory replay has two parts. There are the standard directory
2031 * items in the log copied from the subvolume, and range items
2032 * created in the log while the subvolume was logged.
2033 *
2034 * The range items tell us which parts of the key space the log
2035 * is authoritative for. During replay, if a key in the subvolume
2036 * directory is in a logged range item, but not actually in the log
2037 * that means it was deleted from the directory before the fsync
2038 * and should be removed.
2039 */
2040static noinline int find_dir_range(struct btrfs_root *root,
2041 struct btrfs_path *path,
2042 u64 dirid,
2043 u64 *start_ret, u64 *end_ret)
2044{
2045 struct btrfs_key key;
2046 u64 found_end;
2047 struct btrfs_dir_log_item *item;
2048 int ret;
2049 int nritems;
2050
2051 if (*start_ret == (u64)-1)
2052 return 1;
2053
2054 key.objectid = dirid;
2055 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2056 key.offset = *start_ret;
2057
2058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059 if (ret < 0)
2060 goto out;
2061 if (ret > 0) {
2062 if (path->slots[0] == 0)
2063 goto out;
2064 path->slots[0]--;
2065 }
2066 if (ret != 0)
2067 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2068
2069 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2070 ret = 1;
2071 goto next;
2072 }
2073 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2074 struct btrfs_dir_log_item);
2075 found_end = btrfs_dir_log_end(path->nodes[0], item);
2076
2077 if (*start_ret >= key.offset && *start_ret <= found_end) {
2078 ret = 0;
2079 *start_ret = key.offset;
2080 *end_ret = found_end;
2081 goto out;
2082 }
2083 ret = 1;
2084next:
2085 /* check the next slot in the tree to see if it is a valid item */
2086 nritems = btrfs_header_nritems(path->nodes[0]);
2087 path->slots[0]++;
2088 if (path->slots[0] >= nritems) {
2089 ret = btrfs_next_leaf(root, path);
2090 if (ret)
2091 goto out;
2092 }
2093
2094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095
2096 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2097 ret = 1;
2098 goto out;
2099 }
2100 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101 struct btrfs_dir_log_item);
2102 found_end = btrfs_dir_log_end(path->nodes[0], item);
2103 *start_ret = key.offset;
2104 *end_ret = found_end;
2105 ret = 0;
2106out:
2107 btrfs_release_path(path);
2108 return ret;
2109}
2110
2111/*
2112 * this looks for a given directory item in the log. If the directory
2113 * item is not in the log, the item is removed and the inode it points
2114 * to is unlinked
2115 */
2116static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2117 struct btrfs_root *log,
2118 struct btrfs_path *path,
2119 struct btrfs_path *log_path,
2120 struct inode *dir,
2121 struct btrfs_key *dir_key)
2122{
2123 struct btrfs_root *root = BTRFS_I(dir)->root;
2124 int ret;
2125 struct extent_buffer *eb;
2126 int slot;
2127 struct btrfs_dir_item *di;
2128 struct fscrypt_str name = { 0 };
2129 struct inode *inode = NULL;
2130 struct btrfs_key location;
2131
2132 /*
2133 * Currently we only log dir index keys. Even if we replay a log created
2134 * by an older kernel that logged both dir index and dir item keys, all
2135 * we need to do is process the dir index keys, we (and our caller) can
2136 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2137 */
2138 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2139
2140 eb = path->nodes[0];
2141 slot = path->slots[0];
2142 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2143 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2144 if (ret)
2145 goto out;
2146
2147 if (log) {
2148 struct btrfs_dir_item *log_di;
2149
2150 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2151 dir_key->objectid,
2152 dir_key->offset, &name, 0);
2153 if (IS_ERR(log_di)) {
2154 ret = PTR_ERR(log_di);
2155 goto out;
2156 } else if (log_di) {
2157 /* The dentry exists in the log, we have nothing to do. */
2158 ret = 0;
2159 goto out;
2160 }
2161 }
2162
2163 btrfs_dir_item_key_to_cpu(eb, di, &location);
2164 btrfs_release_path(path);
2165 btrfs_release_path(log_path);
2166 inode = read_one_inode(root, location.objectid);
2167 if (!inode) {
2168 ret = -EIO;
2169 goto out;
2170 }
2171
2172 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2173 if (ret)
2174 goto out;
2175
2176 inc_nlink(inode);
2177 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2178 &name);
2179 /*
2180 * Unlike dir item keys, dir index keys can only have one name (entry) in
2181 * them, as there are no key collisions since each key has a unique offset
2182 * (an index number), so we're done.
2183 */
2184out:
2185 btrfs_release_path(path);
2186 btrfs_release_path(log_path);
2187 kfree(name.name);
2188 iput(inode);
2189 return ret;
2190}
2191
2192static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 struct btrfs_root *log,
2195 struct btrfs_path *path,
2196 const u64 ino)
2197{
2198 struct btrfs_key search_key;
2199 struct btrfs_path *log_path;
2200 int i;
2201 int nritems;
2202 int ret;
2203
2204 log_path = btrfs_alloc_path();
2205 if (!log_path)
2206 return -ENOMEM;
2207
2208 search_key.objectid = ino;
2209 search_key.type = BTRFS_XATTR_ITEM_KEY;
2210 search_key.offset = 0;
2211again:
2212 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2213 if (ret < 0)
2214 goto out;
2215process_leaf:
2216 nritems = btrfs_header_nritems(path->nodes[0]);
2217 for (i = path->slots[0]; i < nritems; i++) {
2218 struct btrfs_key key;
2219 struct btrfs_dir_item *di;
2220 struct btrfs_dir_item *log_di;
2221 u32 total_size;
2222 u32 cur;
2223
2224 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2225 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2226 ret = 0;
2227 goto out;
2228 }
2229
2230 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2231 total_size = btrfs_item_size(path->nodes[0], i);
2232 cur = 0;
2233 while (cur < total_size) {
2234 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2235 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2236 u32 this_len = sizeof(*di) + name_len + data_len;
2237 char *name;
2238
2239 name = kmalloc(name_len, GFP_NOFS);
2240 if (!name) {
2241 ret = -ENOMEM;
2242 goto out;
2243 }
2244 read_extent_buffer(path->nodes[0], name,
2245 (unsigned long)(di + 1), name_len);
2246
2247 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2248 name, name_len, 0);
2249 btrfs_release_path(log_path);
2250 if (!log_di) {
2251 /* Doesn't exist in log tree, so delete it. */
2252 btrfs_release_path(path);
2253 di = btrfs_lookup_xattr(trans, root, path, ino,
2254 name, name_len, -1);
2255 kfree(name);
2256 if (IS_ERR(di)) {
2257 ret = PTR_ERR(di);
2258 goto out;
2259 }
2260 ASSERT(di);
2261 ret = btrfs_delete_one_dir_name(trans, root,
2262 path, di);
2263 if (ret)
2264 goto out;
2265 btrfs_release_path(path);
2266 search_key = key;
2267 goto again;
2268 }
2269 kfree(name);
2270 if (IS_ERR(log_di)) {
2271 ret = PTR_ERR(log_di);
2272 goto out;
2273 }
2274 cur += this_len;
2275 di = (struct btrfs_dir_item *)((char *)di + this_len);
2276 }
2277 }
2278 ret = btrfs_next_leaf(root, path);
2279 if (ret > 0)
2280 ret = 0;
2281 else if (ret == 0)
2282 goto process_leaf;
2283out:
2284 btrfs_free_path(log_path);
2285 btrfs_release_path(path);
2286 return ret;
2287}
2288
2289
2290/*
2291 * deletion replay happens before we copy any new directory items
2292 * out of the log or out of backreferences from inodes. It
2293 * scans the log to find ranges of keys that log is authoritative for,
2294 * and then scans the directory to find items in those ranges that are
2295 * not present in the log.
2296 *
2297 * Anything we don't find in the log is unlinked and removed from the
2298 * directory.
2299 */
2300static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_root *log,
2303 struct btrfs_path *path,
2304 u64 dirid, int del_all)
2305{
2306 u64 range_start;
2307 u64 range_end;
2308 int ret = 0;
2309 struct btrfs_key dir_key;
2310 struct btrfs_key found_key;
2311 struct btrfs_path *log_path;
2312 struct inode *dir;
2313
2314 dir_key.objectid = dirid;
2315 dir_key.type = BTRFS_DIR_INDEX_KEY;
2316 log_path = btrfs_alloc_path();
2317 if (!log_path)
2318 return -ENOMEM;
2319
2320 dir = read_one_inode(root, dirid);
2321 /* it isn't an error if the inode isn't there, that can happen
2322 * because we replay the deletes before we copy in the inode item
2323 * from the log
2324 */
2325 if (!dir) {
2326 btrfs_free_path(log_path);
2327 return 0;
2328 }
2329
2330 range_start = 0;
2331 range_end = 0;
2332 while (1) {
2333 if (del_all)
2334 range_end = (u64)-1;
2335 else {
2336 ret = find_dir_range(log, path, dirid,
2337 &range_start, &range_end);
2338 if (ret < 0)
2339 goto out;
2340 else if (ret > 0)
2341 break;
2342 }
2343
2344 dir_key.offset = range_start;
2345 while (1) {
2346 int nritems;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 0, 0);
2349 if (ret < 0)
2350 goto out;
2351
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
2355 if (ret == 1)
2356 break;
2357 else if (ret < 0)
2358 goto out;
2359 }
2360 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361 path->slots[0]);
2362 if (found_key.objectid != dirid ||
2363 found_key.type != dir_key.type) {
2364 ret = 0;
2365 goto out;
2366 }
2367
2368 if (found_key.offset > range_end)
2369 break;
2370
2371 ret = check_item_in_log(trans, log, path,
2372 log_path, dir,
2373 &found_key);
2374 if (ret)
2375 goto out;
2376 if (found_key.offset == (u64)-1)
2377 break;
2378 dir_key.offset = found_key.offset + 1;
2379 }
2380 btrfs_release_path(path);
2381 if (range_end == (u64)-1)
2382 break;
2383 range_start = range_end + 1;
2384 }
2385 ret = 0;
2386out:
2387 btrfs_release_path(path);
2388 btrfs_free_path(log_path);
2389 iput(dir);
2390 return ret;
2391}
2392
2393/*
2394 * the process_func used to replay items from the log tree. This
2395 * gets called in two different stages. The first stage just looks
2396 * for inodes and makes sure they are all copied into the subvolume.
2397 *
2398 * The second stage copies all the other item types from the log into
2399 * the subvolume. The two stage approach is slower, but gets rid of
2400 * lots of complexity around inodes referencing other inodes that exist
2401 * only in the log (references come from either directory items or inode
2402 * back refs).
2403 */
2404static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2405 struct walk_control *wc, u64 gen, int level)
2406{
2407 int nritems;
2408 struct btrfs_tree_parent_check check = {
2409 .transid = gen,
2410 .level = level
2411 };
2412 struct btrfs_path *path;
2413 struct btrfs_root *root = wc->replay_dest;
2414 struct btrfs_key key;
2415 int i;
2416 int ret;
2417
2418 ret = btrfs_read_extent_buffer(eb, &check);
2419 if (ret)
2420 return ret;
2421
2422 level = btrfs_header_level(eb);
2423
2424 if (level != 0)
2425 return 0;
2426
2427 path = btrfs_alloc_path();
2428 if (!path)
2429 return -ENOMEM;
2430
2431 nritems = btrfs_header_nritems(eb);
2432 for (i = 0; i < nritems; i++) {
2433 btrfs_item_key_to_cpu(eb, &key, i);
2434
2435 /* inode keys are done during the first stage */
2436 if (key.type == BTRFS_INODE_ITEM_KEY &&
2437 wc->stage == LOG_WALK_REPLAY_INODES) {
2438 struct btrfs_inode_item *inode_item;
2439 u32 mode;
2440
2441 inode_item = btrfs_item_ptr(eb, i,
2442 struct btrfs_inode_item);
2443 /*
2444 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445 * and never got linked before the fsync, skip it, as
2446 * replaying it is pointless since it would be deleted
2447 * later. We skip logging tmpfiles, but it's always
2448 * possible we are replaying a log created with a kernel
2449 * that used to log tmpfiles.
2450 */
2451 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2452 wc->ignore_cur_inode = true;
2453 continue;
2454 } else {
2455 wc->ignore_cur_inode = false;
2456 }
2457 ret = replay_xattr_deletes(wc->trans, root, log,
2458 path, key.objectid);
2459 if (ret)
2460 break;
2461 mode = btrfs_inode_mode(eb, inode_item);
2462 if (S_ISDIR(mode)) {
2463 ret = replay_dir_deletes(wc->trans,
2464 root, log, path, key.objectid, 0);
2465 if (ret)
2466 break;
2467 }
2468 ret = overwrite_item(wc->trans, root, path,
2469 eb, i, &key);
2470 if (ret)
2471 break;
2472
2473 /*
2474 * Before replaying extents, truncate the inode to its
2475 * size. We need to do it now and not after log replay
2476 * because before an fsync we can have prealloc extents
2477 * added beyond the inode's i_size. If we did it after,
2478 * through orphan cleanup for example, we would drop
2479 * those prealloc extents just after replaying them.
2480 */
2481 if (S_ISREG(mode)) {
2482 struct btrfs_drop_extents_args drop_args = { 0 };
2483 struct inode *inode;
2484 u64 from;
2485
2486 inode = read_one_inode(root, key.objectid);
2487 if (!inode) {
2488 ret = -EIO;
2489 break;
2490 }
2491 from = ALIGN(i_size_read(inode),
2492 root->fs_info->sectorsize);
2493 drop_args.start = from;
2494 drop_args.end = (u64)-1;
2495 drop_args.drop_cache = true;
2496 ret = btrfs_drop_extents(wc->trans, root,
2497 BTRFS_I(inode),
2498 &drop_args);
2499 if (!ret) {
2500 inode_sub_bytes(inode,
2501 drop_args.bytes_found);
2502 /* Update the inode's nbytes. */
2503 ret = btrfs_update_inode(wc->trans,
2504 BTRFS_I(inode));
2505 }
2506 iput(inode);
2507 if (ret)
2508 break;
2509 }
2510
2511 ret = link_to_fixup_dir(wc->trans, root,
2512 path, key.objectid);
2513 if (ret)
2514 break;
2515 }
2516
2517 if (wc->ignore_cur_inode)
2518 continue;
2519
2520 if (key.type == BTRFS_DIR_INDEX_KEY &&
2521 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2522 ret = replay_one_dir_item(wc->trans, root, path,
2523 eb, i, &key);
2524 if (ret)
2525 break;
2526 }
2527
2528 if (wc->stage < LOG_WALK_REPLAY_ALL)
2529 continue;
2530
2531 /* these keys are simply copied */
2532 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2533 ret = overwrite_item(wc->trans, root, path,
2534 eb, i, &key);
2535 if (ret)
2536 break;
2537 } else if (key.type == BTRFS_INODE_REF_KEY ||
2538 key.type == BTRFS_INODE_EXTREF_KEY) {
2539 ret = add_inode_ref(wc->trans, root, log, path,
2540 eb, i, &key);
2541 if (ret && ret != -ENOENT)
2542 break;
2543 ret = 0;
2544 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2545 ret = replay_one_extent(wc->trans, root, path,
2546 eb, i, &key);
2547 if (ret)
2548 break;
2549 }
2550 /*
2551 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554 * older kernel with such keys, ignore them.
2555 */
2556 }
2557 btrfs_free_path(path);
2558 return ret;
2559}
2560
2561/*
2562 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2563 */
2564static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2565{
2566 struct btrfs_block_group *cache;
2567
2568 cache = btrfs_lookup_block_group(fs_info, start);
2569 if (!cache) {
2570 btrfs_err(fs_info, "unable to find block group for %llu", start);
2571 return;
2572 }
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->reserved -= fs_info->nodesize;
2577 cache->space_info->bytes_reserved -= fs_info->nodesize;
2578 spin_unlock(&cache->lock);
2579 spin_unlock(&cache->space_info->lock);
2580
2581 btrfs_put_block_group(cache);
2582}
2583
2584static int clean_log_buffer(struct btrfs_trans_handle *trans,
2585 struct extent_buffer *eb)
2586{
2587 int ret;
2588
2589 btrfs_tree_lock(eb);
2590 btrfs_clear_buffer_dirty(trans, eb);
2591 wait_on_extent_buffer_writeback(eb);
2592 btrfs_tree_unlock(eb);
2593
2594 if (trans) {
2595 ret = btrfs_pin_reserved_extent(trans, eb);
2596 if (ret)
2597 return ret;
2598 } else {
2599 unaccount_log_buffer(eb->fs_info, eb->start);
2600 }
2601
2602 return 0;
2603}
2604
2605static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path, int *level,
2608 struct walk_control *wc)
2609{
2610 struct btrfs_fs_info *fs_info = root->fs_info;
2611 u64 bytenr;
2612 u64 ptr_gen;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2615 int ret = 0;
2616
2617 while (*level > 0) {
2618 struct btrfs_tree_parent_check check = { 0 };
2619
2620 cur = path->nodes[*level];
2621
2622 WARN_ON(btrfs_header_level(cur) != *level);
2623
2624 if (path->slots[*level] >=
2625 btrfs_header_nritems(cur))
2626 break;
2627
2628 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2629 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2630 check.transid = ptr_gen;
2631 check.level = *level - 1;
2632 check.has_first_key = true;
2633 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2634
2635 next = btrfs_find_create_tree_block(fs_info, bytenr,
2636 btrfs_header_owner(cur),
2637 *level - 1);
2638 if (IS_ERR(next))
2639 return PTR_ERR(next);
2640
2641 if (*level == 1) {
2642 ret = wc->process_func(root, next, wc, ptr_gen,
2643 *level - 1);
2644 if (ret) {
2645 free_extent_buffer(next);
2646 return ret;
2647 }
2648
2649 path->slots[*level]++;
2650 if (wc->free) {
2651 ret = btrfs_read_extent_buffer(next, &check);
2652 if (ret) {
2653 free_extent_buffer(next);
2654 return ret;
2655 }
2656
2657 ret = clean_log_buffer(trans, next);
2658 if (ret) {
2659 free_extent_buffer(next);
2660 return ret;
2661 }
2662 }
2663 free_extent_buffer(next);
2664 continue;
2665 }
2666 ret = btrfs_read_extent_buffer(next, &check);
2667 if (ret) {
2668 free_extent_buffer(next);
2669 return ret;
2670 }
2671
2672 if (path->nodes[*level-1])
2673 free_extent_buffer(path->nodes[*level-1]);
2674 path->nodes[*level-1] = next;
2675 *level = btrfs_header_level(next);
2676 path->slots[*level] = 0;
2677 cond_resched();
2678 }
2679 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2680
2681 cond_resched();
2682 return 0;
2683}
2684
2685static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_path *path, int *level,
2688 struct walk_control *wc)
2689{
2690 int i;
2691 int slot;
2692 int ret;
2693
2694 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2695 slot = path->slots[i];
2696 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2697 path->slots[i]++;
2698 *level = i;
2699 WARN_ON(*level == 0);
2700 return 0;
2701 } else {
2702 ret = wc->process_func(root, path->nodes[*level], wc,
2703 btrfs_header_generation(path->nodes[*level]),
2704 *level);
2705 if (ret)
2706 return ret;
2707
2708 if (wc->free) {
2709 ret = clean_log_buffer(trans, path->nodes[*level]);
2710 if (ret)
2711 return ret;
2712 }
2713 free_extent_buffer(path->nodes[*level]);
2714 path->nodes[*level] = NULL;
2715 *level = i + 1;
2716 }
2717 }
2718 return 1;
2719}
2720
2721/*
2722 * drop the reference count on the tree rooted at 'snap'. This traverses
2723 * the tree freeing any blocks that have a ref count of zero after being
2724 * decremented.
2725 */
2726static int walk_log_tree(struct btrfs_trans_handle *trans,
2727 struct btrfs_root *log, struct walk_control *wc)
2728{
2729 int ret = 0;
2730 int wret;
2731 int level;
2732 struct btrfs_path *path;
2733 int orig_level;
2734
2735 path = btrfs_alloc_path();
2736 if (!path)
2737 return -ENOMEM;
2738
2739 level = btrfs_header_level(log->node);
2740 orig_level = level;
2741 path->nodes[level] = log->node;
2742 atomic_inc(&log->node->refs);
2743 path->slots[level] = 0;
2744
2745 while (1) {
2746 wret = walk_down_log_tree(trans, log, path, &level, wc);
2747 if (wret > 0)
2748 break;
2749 if (wret < 0) {
2750 ret = wret;
2751 goto out;
2752 }
2753
2754 wret = walk_up_log_tree(trans, log, path, &level, wc);
2755 if (wret > 0)
2756 break;
2757 if (wret < 0) {
2758 ret = wret;
2759 goto out;
2760 }
2761 }
2762
2763 /* was the root node processed? if not, catch it here */
2764 if (path->nodes[orig_level]) {
2765 ret = wc->process_func(log, path->nodes[orig_level], wc,
2766 btrfs_header_generation(path->nodes[orig_level]),
2767 orig_level);
2768 if (ret)
2769 goto out;
2770 if (wc->free)
2771 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2772 }
2773
2774out:
2775 btrfs_free_path(path);
2776 return ret;
2777}
2778
2779/*
2780 * helper function to update the item for a given subvolumes log root
2781 * in the tree of log roots
2782 */
2783static int update_log_root(struct btrfs_trans_handle *trans,
2784 struct btrfs_root *log,
2785 struct btrfs_root_item *root_item)
2786{
2787 struct btrfs_fs_info *fs_info = log->fs_info;
2788 int ret;
2789
2790 if (log->log_transid == 1) {
2791 /* insert root item on the first sync */
2792 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793 &log->root_key, root_item);
2794 } else {
2795 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796 &log->root_key, root_item);
2797 }
2798 return ret;
2799}
2800
2801static void wait_log_commit(struct btrfs_root *root, int transid)
2802{
2803 DEFINE_WAIT(wait);
2804 int index = transid % 2;
2805
2806 /*
2807 * we only allow two pending log transactions at a time,
2808 * so we know that if ours is more than 2 older than the
2809 * current transaction, we're done
2810 */
2811 for (;;) {
2812 prepare_to_wait(&root->log_commit_wait[index],
2813 &wait, TASK_UNINTERRUPTIBLE);
2814
2815 if (!(root->log_transid_committed < transid &&
2816 atomic_read(&root->log_commit[index])))
2817 break;
2818
2819 mutex_unlock(&root->log_mutex);
2820 schedule();
2821 mutex_lock(&root->log_mutex);
2822 }
2823 finish_wait(&root->log_commit_wait[index], &wait);
2824}
2825
2826static void wait_for_writer(struct btrfs_root *root)
2827{
2828 DEFINE_WAIT(wait);
2829
2830 for (;;) {
2831 prepare_to_wait(&root->log_writer_wait, &wait,
2832 TASK_UNINTERRUPTIBLE);
2833 if (!atomic_read(&root->log_writers))
2834 break;
2835
2836 mutex_unlock(&root->log_mutex);
2837 schedule();
2838 mutex_lock(&root->log_mutex);
2839 }
2840 finish_wait(&root->log_writer_wait, &wait);
2841}
2842
2843void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2844{
2845 ctx->log_ret = 0;
2846 ctx->log_transid = 0;
2847 ctx->log_new_dentries = false;
2848 ctx->logging_new_name = false;
2849 ctx->logging_new_delayed_dentries = false;
2850 ctx->logged_before = false;
2851 ctx->inode = inode;
2852 INIT_LIST_HEAD(&ctx->list);
2853 INIT_LIST_HEAD(&ctx->ordered_extents);
2854 INIT_LIST_HEAD(&ctx->conflict_inodes);
2855 ctx->num_conflict_inodes = 0;
2856 ctx->logging_conflict_inodes = false;
2857 ctx->scratch_eb = NULL;
2858}
2859
2860void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2861{
2862 struct btrfs_inode *inode = ctx->inode;
2863
2864 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2865 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2866 return;
2867
2868 /*
2869 * Don't care about allocation failure. This is just for optimization,
2870 * if we fail to allocate here, we will try again later if needed.
2871 */
2872 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2873}
2874
2875void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2876{
2877 struct btrfs_ordered_extent *ordered;
2878 struct btrfs_ordered_extent *tmp;
2879
2880 btrfs_assert_inode_locked(ctx->inode);
2881
2882 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2883 list_del_init(&ordered->log_list);
2884 btrfs_put_ordered_extent(ordered);
2885 }
2886}
2887
2888
2889static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2890 struct btrfs_log_ctx *ctx)
2891{
2892 mutex_lock(&root->log_mutex);
2893 list_del_init(&ctx->list);
2894 mutex_unlock(&root->log_mutex);
2895}
2896
2897/*
2898 * Invoked in log mutex context, or be sure there is no other task which
2899 * can access the list.
2900 */
2901static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2902 int index, int error)
2903{
2904 struct btrfs_log_ctx *ctx;
2905 struct btrfs_log_ctx *safe;
2906
2907 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2908 list_del_init(&ctx->list);
2909 ctx->log_ret = error;
2910 }
2911}
2912
2913/*
2914 * Sends a given tree log down to the disk and updates the super blocks to
2915 * record it. When this call is done, you know that any inodes previously
2916 * logged are safely on disk only if it returns 0.
2917 *
2918 * Any other return value means you need to call btrfs_commit_transaction.
2919 * Some of the edge cases for fsyncing directories that have had unlinks
2920 * or renames done in the past mean that sometimes the only safe
2921 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2922 * that has happened.
2923 */
2924int btrfs_sync_log(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2926{
2927 int index1;
2928 int index2;
2929 int mark;
2930 int ret;
2931 struct btrfs_fs_info *fs_info = root->fs_info;
2932 struct btrfs_root *log = root->log_root;
2933 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2934 struct btrfs_root_item new_root_item;
2935 int log_transid = 0;
2936 struct btrfs_log_ctx root_log_ctx;
2937 struct blk_plug plug;
2938 u64 log_root_start;
2939 u64 log_root_level;
2940
2941 mutex_lock(&root->log_mutex);
2942 log_transid = ctx->log_transid;
2943 if (root->log_transid_committed >= log_transid) {
2944 mutex_unlock(&root->log_mutex);
2945 return ctx->log_ret;
2946 }
2947
2948 index1 = log_transid % 2;
2949 if (atomic_read(&root->log_commit[index1])) {
2950 wait_log_commit(root, log_transid);
2951 mutex_unlock(&root->log_mutex);
2952 return ctx->log_ret;
2953 }
2954 ASSERT(log_transid == root->log_transid);
2955 atomic_set(&root->log_commit[index1], 1);
2956
2957 /* wait for previous tree log sync to complete */
2958 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2959 wait_log_commit(root, log_transid - 1);
2960
2961 while (1) {
2962 int batch = atomic_read(&root->log_batch);
2963 /* when we're on an ssd, just kick the log commit out */
2964 if (!btrfs_test_opt(fs_info, SSD) &&
2965 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2966 mutex_unlock(&root->log_mutex);
2967 schedule_timeout_uninterruptible(1);
2968 mutex_lock(&root->log_mutex);
2969 }
2970 wait_for_writer(root);
2971 if (batch == atomic_read(&root->log_batch))
2972 break;
2973 }
2974
2975 /* bail out if we need to do a full commit */
2976 if (btrfs_need_log_full_commit(trans)) {
2977 ret = BTRFS_LOG_FORCE_COMMIT;
2978 mutex_unlock(&root->log_mutex);
2979 goto out;
2980 }
2981
2982 if (log_transid % 2 == 0)
2983 mark = EXTENT_DIRTY;
2984 else
2985 mark = EXTENT_NEW;
2986
2987 /* we start IO on all the marked extents here, but we don't actually
2988 * wait for them until later.
2989 */
2990 blk_start_plug(&plug);
2991 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2992 /*
2993 * -EAGAIN happens when someone, e.g., a concurrent transaction
2994 * commit, writes a dirty extent in this tree-log commit. This
2995 * concurrent write will create a hole writing out the extents,
2996 * and we cannot proceed on a zoned filesystem, requiring
2997 * sequential writing. While we can bail out to a full commit
2998 * here, but we can continue hoping the concurrent writing fills
2999 * the hole.
3000 */
3001 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3002 ret = 0;
3003 if (ret) {
3004 blk_finish_plug(&plug);
3005 btrfs_set_log_full_commit(trans);
3006 mutex_unlock(&root->log_mutex);
3007 goto out;
3008 }
3009
3010 /*
3011 * We _must_ update under the root->log_mutex in order to make sure we
3012 * have a consistent view of the log root we are trying to commit at
3013 * this moment.
3014 *
3015 * We _must_ copy this into a local copy, because we are not holding the
3016 * log_root_tree->log_mutex yet. This is important because when we
3017 * commit the log_root_tree we must have a consistent view of the
3018 * log_root_tree when we update the super block to point at the
3019 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3020 * with the commit and possibly point at the new block which we may not
3021 * have written out.
3022 */
3023 btrfs_set_root_node(&log->root_item, log->node);
3024 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3025
3026 btrfs_set_root_log_transid(root, root->log_transid + 1);
3027 log->log_transid = root->log_transid;
3028 root->log_start_pid = 0;
3029 /*
3030 * IO has been started, blocks of the log tree have WRITTEN flag set
3031 * in their headers. new modifications of the log will be written to
3032 * new positions. so it's safe to allow log writers to go in.
3033 */
3034 mutex_unlock(&root->log_mutex);
3035
3036 if (btrfs_is_zoned(fs_info)) {
3037 mutex_lock(&fs_info->tree_root->log_mutex);
3038 if (!log_root_tree->node) {
3039 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3040 if (ret) {
3041 mutex_unlock(&fs_info->tree_root->log_mutex);
3042 blk_finish_plug(&plug);
3043 goto out;
3044 }
3045 }
3046 mutex_unlock(&fs_info->tree_root->log_mutex);
3047 }
3048
3049 btrfs_init_log_ctx(&root_log_ctx, NULL);
3050
3051 mutex_lock(&log_root_tree->log_mutex);
3052
3053 index2 = log_root_tree->log_transid % 2;
3054 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3055 root_log_ctx.log_transid = log_root_tree->log_transid;
3056
3057 /*
3058 * Now we are safe to update the log_root_tree because we're under the
3059 * log_mutex, and we're a current writer so we're holding the commit
3060 * open until we drop the log_mutex.
3061 */
3062 ret = update_log_root(trans, log, &new_root_item);
3063 if (ret) {
3064 list_del_init(&root_log_ctx.list);
3065 blk_finish_plug(&plug);
3066 btrfs_set_log_full_commit(trans);
3067 if (ret != -ENOSPC)
3068 btrfs_err(fs_info,
3069 "failed to update log for root %llu ret %d",
3070 btrfs_root_id(root), ret);
3071 btrfs_wait_tree_log_extents(log, mark);
3072 mutex_unlock(&log_root_tree->log_mutex);
3073 goto out;
3074 }
3075
3076 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3077 blk_finish_plug(&plug);
3078 list_del_init(&root_log_ctx.list);
3079 mutex_unlock(&log_root_tree->log_mutex);
3080 ret = root_log_ctx.log_ret;
3081 goto out;
3082 }
3083
3084 if (atomic_read(&log_root_tree->log_commit[index2])) {
3085 blk_finish_plug(&plug);
3086 ret = btrfs_wait_tree_log_extents(log, mark);
3087 wait_log_commit(log_root_tree,
3088 root_log_ctx.log_transid);
3089 mutex_unlock(&log_root_tree->log_mutex);
3090 if (!ret)
3091 ret = root_log_ctx.log_ret;
3092 goto out;
3093 }
3094 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3095 atomic_set(&log_root_tree->log_commit[index2], 1);
3096
3097 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3098 wait_log_commit(log_root_tree,
3099 root_log_ctx.log_transid - 1);
3100 }
3101
3102 /*
3103 * now that we've moved on to the tree of log tree roots,
3104 * check the full commit flag again
3105 */
3106 if (btrfs_need_log_full_commit(trans)) {
3107 blk_finish_plug(&plug);
3108 btrfs_wait_tree_log_extents(log, mark);
3109 mutex_unlock(&log_root_tree->log_mutex);
3110 ret = BTRFS_LOG_FORCE_COMMIT;
3111 goto out_wake_log_root;
3112 }
3113
3114 ret = btrfs_write_marked_extents(fs_info,
3115 &log_root_tree->dirty_log_pages,
3116 EXTENT_DIRTY | EXTENT_NEW);
3117 blk_finish_plug(&plug);
3118 /*
3119 * As described above, -EAGAIN indicates a hole in the extents. We
3120 * cannot wait for these write outs since the waiting cause a
3121 * deadlock. Bail out to the full commit instead.
3122 */
3123 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3124 btrfs_set_log_full_commit(trans);
3125 btrfs_wait_tree_log_extents(log, mark);
3126 mutex_unlock(&log_root_tree->log_mutex);
3127 goto out_wake_log_root;
3128 } else if (ret) {
3129 btrfs_set_log_full_commit(trans);
3130 mutex_unlock(&log_root_tree->log_mutex);
3131 goto out_wake_log_root;
3132 }
3133 ret = btrfs_wait_tree_log_extents(log, mark);
3134 if (!ret)
3135 ret = btrfs_wait_tree_log_extents(log_root_tree,
3136 EXTENT_NEW | EXTENT_DIRTY);
3137 if (ret) {
3138 btrfs_set_log_full_commit(trans);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out_wake_log_root;
3141 }
3142
3143 log_root_start = log_root_tree->node->start;
3144 log_root_level = btrfs_header_level(log_root_tree->node);
3145 log_root_tree->log_transid++;
3146 mutex_unlock(&log_root_tree->log_mutex);
3147
3148 /*
3149 * Here we are guaranteed that nobody is going to write the superblock
3150 * for the current transaction before us and that neither we do write
3151 * our superblock before the previous transaction finishes its commit
3152 * and writes its superblock, because:
3153 *
3154 * 1) We are holding a handle on the current transaction, so no body
3155 * can commit it until we release the handle;
3156 *
3157 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158 * if the previous transaction is still committing, and hasn't yet
3159 * written its superblock, we wait for it to do it, because a
3160 * transaction commit acquires the tree_log_mutex when the commit
3161 * begins and releases it only after writing its superblock.
3162 */
3163 mutex_lock(&fs_info->tree_log_mutex);
3164
3165 /*
3166 * The previous transaction writeout phase could have failed, and thus
3167 * marked the fs in an error state. We must not commit here, as we
3168 * could have updated our generation in the super_for_commit and
3169 * writing the super here would result in transid mismatches. If there
3170 * is an error here just bail.
3171 */
3172 if (BTRFS_FS_ERROR(fs_info)) {
3173 ret = -EIO;
3174 btrfs_set_log_full_commit(trans);
3175 btrfs_abort_transaction(trans, ret);
3176 mutex_unlock(&fs_info->tree_log_mutex);
3177 goto out_wake_log_root;
3178 }
3179
3180 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3181 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3182 ret = write_all_supers(fs_info, 1);
3183 mutex_unlock(&fs_info->tree_log_mutex);
3184 if (ret) {
3185 btrfs_set_log_full_commit(trans);
3186 btrfs_abort_transaction(trans, ret);
3187 goto out_wake_log_root;
3188 }
3189
3190 /*
3191 * We know there can only be one task here, since we have not yet set
3192 * root->log_commit[index1] to 0 and any task attempting to sync the
3193 * log must wait for the previous log transaction to commit if it's
3194 * still in progress or wait for the current log transaction commit if
3195 * someone else already started it. We use <= and not < because the
3196 * first log transaction has an ID of 0.
3197 */
3198 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3199 btrfs_set_root_last_log_commit(root, log_transid);
3200
3201out_wake_log_root:
3202 mutex_lock(&log_root_tree->log_mutex);
3203 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3204
3205 log_root_tree->log_transid_committed++;
3206 atomic_set(&log_root_tree->log_commit[index2], 0);
3207 mutex_unlock(&log_root_tree->log_mutex);
3208
3209 /*
3210 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211 * all the updates above are seen by the woken threads. It might not be
3212 * necessary, but proving that seems to be hard.
3213 */
3214 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3215out:
3216 mutex_lock(&root->log_mutex);
3217 btrfs_remove_all_log_ctxs(root, index1, ret);
3218 root->log_transid_committed++;
3219 atomic_set(&root->log_commit[index1], 0);
3220 mutex_unlock(&root->log_mutex);
3221
3222 /*
3223 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224 * all the updates above are seen by the woken threads. It might not be
3225 * necessary, but proving that seems to be hard.
3226 */
3227 cond_wake_up(&root->log_commit_wait[index1]);
3228 return ret;
3229}
3230
3231static void free_log_tree(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log)
3233{
3234 int ret;
3235 struct walk_control wc = {
3236 .free = 1,
3237 .process_func = process_one_buffer
3238 };
3239
3240 if (log->node) {
3241 ret = walk_log_tree(trans, log, &wc);
3242 if (ret) {
3243 /*
3244 * We weren't able to traverse the entire log tree, the
3245 * typical scenario is getting an -EIO when reading an
3246 * extent buffer of the tree, due to a previous writeback
3247 * failure of it.
3248 */
3249 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3250 &log->fs_info->fs_state);
3251
3252 /*
3253 * Some extent buffers of the log tree may still be dirty
3254 * and not yet written back to storage, because we may
3255 * have updates to a log tree without syncing a log tree,
3256 * such as during rename and link operations. So flush
3257 * them out and wait for their writeback to complete, so
3258 * that we properly cleanup their state and pages.
3259 */
3260 btrfs_write_marked_extents(log->fs_info,
3261 &log->dirty_log_pages,
3262 EXTENT_DIRTY | EXTENT_NEW);
3263 btrfs_wait_tree_log_extents(log,
3264 EXTENT_DIRTY | EXTENT_NEW);
3265
3266 if (trans)
3267 btrfs_abort_transaction(trans, ret);
3268 else
3269 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3270 }
3271 }
3272
3273 extent_io_tree_release(&log->dirty_log_pages);
3274 extent_io_tree_release(&log->log_csum_range);
3275
3276 btrfs_put_root(log);
3277}
3278
3279/*
3280 * free all the extents used by the tree log. This should be called
3281 * at commit time of the full transaction
3282 */
3283int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3284{
3285 if (root->log_root) {
3286 free_log_tree(trans, root->log_root);
3287 root->log_root = NULL;
3288 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3289 }
3290 return 0;
3291}
3292
3293int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3294 struct btrfs_fs_info *fs_info)
3295{
3296 if (fs_info->log_root_tree) {
3297 free_log_tree(trans, fs_info->log_root_tree);
3298 fs_info->log_root_tree = NULL;
3299 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3300 }
3301 return 0;
3302}
3303
3304/*
3305 * Check if an inode was logged in the current transaction. This correctly deals
3306 * with the case where the inode was logged but has a logged_trans of 0, which
3307 * happens if the inode is evicted and loaded again, as logged_trans is an in
3308 * memory only field (not persisted).
3309 *
3310 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3311 * and < 0 on error.
3312 */
3313static int inode_logged(const struct btrfs_trans_handle *trans,
3314 struct btrfs_inode *inode,
3315 struct btrfs_path *path_in)
3316{
3317 struct btrfs_path *path = path_in;
3318 struct btrfs_key key;
3319 int ret;
3320
3321 if (inode->logged_trans == trans->transid)
3322 return 1;
3323
3324 /*
3325 * If logged_trans is not 0, then we know the inode logged was not logged
3326 * in this transaction, so we can return false right away.
3327 */
3328 if (inode->logged_trans > 0)
3329 return 0;
3330
3331 /*
3332 * If no log tree was created for this root in this transaction, then
3333 * the inode can not have been logged in this transaction. In that case
3334 * set logged_trans to anything greater than 0 and less than the current
3335 * transaction's ID, to avoid the search below in a future call in case
3336 * a log tree gets created after this.
3337 */
3338 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3339 inode->logged_trans = trans->transid - 1;
3340 return 0;
3341 }
3342
3343 /*
3344 * We have a log tree and the inode's logged_trans is 0. We can't tell
3345 * for sure if the inode was logged before in this transaction by looking
3346 * only at logged_trans. We could be pessimistic and assume it was, but
3347 * that can lead to unnecessarily logging an inode during rename and link
3348 * operations, and then further updating the log in followup rename and
3349 * link operations, specially if it's a directory, which adds latency
3350 * visible to applications doing a series of rename or link operations.
3351 *
3352 * A logged_trans of 0 here can mean several things:
3353 *
3354 * 1) The inode was never logged since the filesystem was mounted, and may
3355 * or may have not been evicted and loaded again;
3356 *
3357 * 2) The inode was logged in a previous transaction, then evicted and
3358 * then loaded again;
3359 *
3360 * 3) The inode was logged in the current transaction, then evicted and
3361 * then loaded again.
3362 *
3363 * For cases 1) and 2) we don't want to return true, but we need to detect
3364 * case 3) and return true. So we do a search in the log root for the inode
3365 * item.
3366 */
3367 key.objectid = btrfs_ino(inode);
3368 key.type = BTRFS_INODE_ITEM_KEY;
3369 key.offset = 0;
3370
3371 if (!path) {
3372 path = btrfs_alloc_path();
3373 if (!path)
3374 return -ENOMEM;
3375 }
3376
3377 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3378
3379 if (path_in)
3380 btrfs_release_path(path);
3381 else
3382 btrfs_free_path(path);
3383
3384 /*
3385 * Logging an inode always results in logging its inode item. So if we
3386 * did not find the item we know the inode was not logged for sure.
3387 */
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret > 0) {
3391 /*
3392 * Set logged_trans to a value greater than 0 and less then the
3393 * current transaction to avoid doing the search in future calls.
3394 */
3395 inode->logged_trans = trans->transid - 1;
3396 return 0;
3397 }
3398
3399 /*
3400 * The inode was previously logged and then evicted, set logged_trans to
3401 * the current transacion's ID, to avoid future tree searches as long as
3402 * the inode is not evicted again.
3403 */
3404 inode->logged_trans = trans->transid;
3405
3406 /*
3407 * If it's a directory, then we must set last_dir_index_offset to the
3408 * maximum possible value, so that the next attempt to log the inode does
3409 * not skip checking if dir index keys found in modified subvolume tree
3410 * leaves have been logged before, otherwise it would result in attempts
3411 * to insert duplicate dir index keys in the log tree. This must be done
3412 * because last_dir_index_offset is an in-memory only field, not persisted
3413 * in the inode item or any other on-disk structure, so its value is lost
3414 * once the inode is evicted.
3415 */
3416 if (S_ISDIR(inode->vfs_inode.i_mode))
3417 inode->last_dir_index_offset = (u64)-1;
3418
3419 return 1;
3420}
3421
3422/*
3423 * Delete a directory entry from the log if it exists.
3424 *
3425 * Returns < 0 on error
3426 * 1 if the entry does not exists
3427 * 0 if the entry existed and was successfully deleted
3428 */
3429static int del_logged_dentry(struct btrfs_trans_handle *trans,
3430 struct btrfs_root *log,
3431 struct btrfs_path *path,
3432 u64 dir_ino,
3433 const struct fscrypt_str *name,
3434 u64 index)
3435{
3436 struct btrfs_dir_item *di;
3437
3438 /*
3439 * We only log dir index items of a directory, so we don't need to look
3440 * for dir item keys.
3441 */
3442 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3443 index, name, -1);
3444 if (IS_ERR(di))
3445 return PTR_ERR(di);
3446 else if (!di)
3447 return 1;
3448
3449 /*
3450 * We do not need to update the size field of the directory's
3451 * inode item because on log replay we update the field to reflect
3452 * all existing entries in the directory (see overwrite_item()).
3453 */
3454 return btrfs_delete_one_dir_name(trans, log, path, di);
3455}
3456
3457/*
3458 * If both a file and directory are logged, and unlinks or renames are
3459 * mixed in, we have a few interesting corners:
3460 *
3461 * create file X in dir Y
3462 * link file X to X.link in dir Y
3463 * fsync file X
3464 * unlink file X but leave X.link
3465 * fsync dir Y
3466 *
3467 * After a crash we would expect only X.link to exist. But file X
3468 * didn't get fsync'd again so the log has back refs for X and X.link.
3469 *
3470 * We solve this by removing directory entries and inode backrefs from the
3471 * log when a file that was logged in the current transaction is
3472 * unlinked. Any later fsync will include the updated log entries, and
3473 * we'll be able to reconstruct the proper directory items from backrefs.
3474 *
3475 * This optimizations allows us to avoid relogging the entire inode
3476 * or the entire directory.
3477 */
3478void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *root,
3480 const struct fscrypt_str *name,
3481 struct btrfs_inode *dir, u64 index)
3482{
3483 struct btrfs_path *path;
3484 int ret;
3485
3486 ret = inode_logged(trans, dir, NULL);
3487 if (ret == 0)
3488 return;
3489 else if (ret < 0) {
3490 btrfs_set_log_full_commit(trans);
3491 return;
3492 }
3493
3494 ret = join_running_log_trans(root);
3495 if (ret)
3496 return;
3497
3498 mutex_lock(&dir->log_mutex);
3499
3500 path = btrfs_alloc_path();
3501 if (!path) {
3502 ret = -ENOMEM;
3503 goto out_unlock;
3504 }
3505
3506 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3507 name, index);
3508 btrfs_free_path(path);
3509out_unlock:
3510 mutex_unlock(&dir->log_mutex);
3511 if (ret < 0)
3512 btrfs_set_log_full_commit(trans);
3513 btrfs_end_log_trans(root);
3514}
3515
3516/* see comments for btrfs_del_dir_entries_in_log */
3517void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *root,
3519 const struct fscrypt_str *name,
3520 struct btrfs_inode *inode, u64 dirid)
3521{
3522 struct btrfs_root *log;
3523 u64 index;
3524 int ret;
3525
3526 ret = inode_logged(trans, inode, NULL);
3527 if (ret == 0)
3528 return;
3529 else if (ret < 0) {
3530 btrfs_set_log_full_commit(trans);
3531 return;
3532 }
3533
3534 ret = join_running_log_trans(root);
3535 if (ret)
3536 return;
3537 log = root->log_root;
3538 mutex_lock(&inode->log_mutex);
3539
3540 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3541 dirid, &index);
3542 mutex_unlock(&inode->log_mutex);
3543 if (ret < 0 && ret != -ENOENT)
3544 btrfs_set_log_full_commit(trans);
3545 btrfs_end_log_trans(root);
3546}
3547
3548/*
3549 * creates a range item in the log for 'dirid'. first_offset and
3550 * last_offset tell us which parts of the key space the log should
3551 * be considered authoritative for.
3552 */
3553static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *log,
3555 struct btrfs_path *path,
3556 u64 dirid,
3557 u64 first_offset, u64 last_offset)
3558{
3559 int ret;
3560 struct btrfs_key key;
3561 struct btrfs_dir_log_item *item;
3562
3563 key.objectid = dirid;
3564 key.offset = first_offset;
3565 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3566 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3567 /*
3568 * -EEXIST is fine and can happen sporadically when we are logging a
3569 * directory and have concurrent insertions in the subvolume's tree for
3570 * items from other inodes and that result in pushing off some dir items
3571 * from one leaf to another in order to accommodate for the new items.
3572 * This results in logging the same dir index range key.
3573 */
3574 if (ret && ret != -EEXIST)
3575 return ret;
3576
3577 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3578 struct btrfs_dir_log_item);
3579 if (ret == -EEXIST) {
3580 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3581
3582 /*
3583 * btrfs_del_dir_entries_in_log() might have been called during
3584 * an unlink between the initial insertion of this key and the
3585 * current update, or we might be logging a single entry deletion
3586 * during a rename, so set the new last_offset to the max value.
3587 */
3588 last_offset = max(last_offset, curr_end);
3589 }
3590 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3591 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3592 btrfs_release_path(path);
3593 return 0;
3594}
3595
3596static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3597 struct btrfs_inode *inode,
3598 struct extent_buffer *src,
3599 struct btrfs_path *dst_path,
3600 int start_slot,
3601 int count)
3602{
3603 struct btrfs_root *log = inode->root->log_root;
3604 char *ins_data = NULL;
3605 struct btrfs_item_batch batch;
3606 struct extent_buffer *dst;
3607 unsigned long src_offset;
3608 unsigned long dst_offset;
3609 u64 last_index;
3610 struct btrfs_key key;
3611 u32 item_size;
3612 int ret;
3613 int i;
3614
3615 ASSERT(count > 0);
3616 batch.nr = count;
3617
3618 if (count == 1) {
3619 btrfs_item_key_to_cpu(src, &key, start_slot);
3620 item_size = btrfs_item_size(src, start_slot);
3621 batch.keys = &key;
3622 batch.data_sizes = &item_size;
3623 batch.total_data_size = item_size;
3624 } else {
3625 struct btrfs_key *ins_keys;
3626 u32 *ins_sizes;
3627
3628 ins_data = kmalloc(count * sizeof(u32) +
3629 count * sizeof(struct btrfs_key), GFP_NOFS);
3630 if (!ins_data)
3631 return -ENOMEM;
3632
3633 ins_sizes = (u32 *)ins_data;
3634 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3635 batch.keys = ins_keys;
3636 batch.data_sizes = ins_sizes;
3637 batch.total_data_size = 0;
3638
3639 for (i = 0; i < count; i++) {
3640 const int slot = start_slot + i;
3641
3642 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3643 ins_sizes[i] = btrfs_item_size(src, slot);
3644 batch.total_data_size += ins_sizes[i];
3645 }
3646 }
3647
3648 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3649 if (ret)
3650 goto out;
3651
3652 dst = dst_path->nodes[0];
3653 /*
3654 * Copy all the items in bulk, in a single copy operation. Item data is
3655 * organized such that it's placed at the end of a leaf and from right
3656 * to left. For example, the data for the second item ends at an offset
3657 * that matches the offset where the data for the first item starts, the
3658 * data for the third item ends at an offset that matches the offset
3659 * where the data of the second items starts, and so on.
3660 * Therefore our source and destination start offsets for copy match the
3661 * offsets of the last items (highest slots).
3662 */
3663 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3664 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3665 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3666 btrfs_release_path(dst_path);
3667
3668 last_index = batch.keys[count - 1].offset;
3669 ASSERT(last_index > inode->last_dir_index_offset);
3670
3671 /*
3672 * If for some unexpected reason the last item's index is not greater
3673 * than the last index we logged, warn and force a transaction commit.
3674 */
3675 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3676 ret = BTRFS_LOG_FORCE_COMMIT;
3677 else
3678 inode->last_dir_index_offset = last_index;
3679
3680 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3681 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3682out:
3683 kfree(ins_data);
3684
3685 return ret;
3686}
3687
3688static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3689{
3690 const int slot = path->slots[0];
3691
3692 if (ctx->scratch_eb) {
3693 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3694 } else {
3695 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3696 if (!ctx->scratch_eb)
3697 return -ENOMEM;
3698 }
3699
3700 btrfs_release_path(path);
3701 path->nodes[0] = ctx->scratch_eb;
3702 path->slots[0] = slot;
3703 /*
3704 * Add extra ref to scratch eb so that it is not freed when callers
3705 * release the path, so we can reuse it later if needed.
3706 */
3707 atomic_inc(&ctx->scratch_eb->refs);
3708
3709 return 0;
3710}
3711
3712static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3713 struct btrfs_inode *inode,
3714 struct btrfs_path *path,
3715 struct btrfs_path *dst_path,
3716 struct btrfs_log_ctx *ctx,
3717 u64 *last_old_dentry_offset)
3718{
3719 struct btrfs_root *log = inode->root->log_root;
3720 struct extent_buffer *src;
3721 const int nritems = btrfs_header_nritems(path->nodes[0]);
3722 const u64 ino = btrfs_ino(inode);
3723 bool last_found = false;
3724 int batch_start = 0;
3725 int batch_size = 0;
3726 int ret;
3727
3728 /*
3729 * We need to clone the leaf, release the read lock on it, and use the
3730 * clone before modifying the log tree. See the comment at copy_items()
3731 * about why we need to do this.
3732 */
3733 ret = clone_leaf(path, ctx);
3734 if (ret < 0)
3735 return ret;
3736
3737 src = path->nodes[0];
3738
3739 for (int i = path->slots[0]; i < nritems; i++) {
3740 struct btrfs_dir_item *di;
3741 struct btrfs_key key;
3742 int ret;
3743
3744 btrfs_item_key_to_cpu(src, &key, i);
3745
3746 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747 last_found = true;
3748 break;
3749 }
3750
3751 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3752
3753 /*
3754 * Skip ranges of items that consist only of dir item keys created
3755 * in past transactions. However if we find a gap, we must log a
3756 * dir index range item for that gap, so that index keys in that
3757 * gap are deleted during log replay.
3758 */
3759 if (btrfs_dir_transid(src, di) < trans->transid) {
3760 if (key.offset > *last_old_dentry_offset + 1) {
3761 ret = insert_dir_log_key(trans, log, dst_path,
3762 ino, *last_old_dentry_offset + 1,
3763 key.offset - 1);
3764 if (ret < 0)
3765 return ret;
3766 }
3767
3768 *last_old_dentry_offset = key.offset;
3769 continue;
3770 }
3771
3772 /* If we logged this dir index item before, we can skip it. */
3773 if (key.offset <= inode->last_dir_index_offset)
3774 continue;
3775
3776 /*
3777 * We must make sure that when we log a directory entry, the
3778 * corresponding inode, after log replay, has a matching link
3779 * count. For example:
3780 *
3781 * touch foo
3782 * mkdir mydir
3783 * sync
3784 * ln foo mydir/bar
3785 * xfs_io -c "fsync" mydir
3786 * <crash>
3787 * <mount fs and log replay>
3788 *
3789 * Would result in a fsync log that when replayed, our file inode
3790 * would have a link count of 1, but we get two directory entries
3791 * pointing to the same inode. After removing one of the names,
3792 * it would not be possible to remove the other name, which
3793 * resulted always in stale file handle errors, and would not be
3794 * possible to rmdir the parent directory, since its i_size could
3795 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796 * resulting in -ENOTEMPTY errors.
3797 */
3798 if (!ctx->log_new_dentries) {
3799 struct btrfs_key di_key;
3800
3801 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3802 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3803 ctx->log_new_dentries = true;
3804 }
3805
3806 if (batch_size == 0)
3807 batch_start = i;
3808 batch_size++;
3809 }
3810
3811 if (batch_size > 0) {
3812 int ret;
3813
3814 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3815 batch_start, batch_size);
3816 if (ret < 0)
3817 return ret;
3818 }
3819
3820 return last_found ? 1 : 0;
3821}
3822
3823/*
3824 * log all the items included in the current transaction for a given
3825 * directory. This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3827 */
3828static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3829 struct btrfs_inode *inode,
3830 struct btrfs_path *path,
3831 struct btrfs_path *dst_path,
3832 struct btrfs_log_ctx *ctx,
3833 u64 min_offset, u64 *last_offset_ret)
3834{
3835 struct btrfs_key min_key;
3836 struct btrfs_root *root = inode->root;
3837 struct btrfs_root *log = root->log_root;
3838 int ret;
3839 u64 last_old_dentry_offset = min_offset - 1;
3840 u64 last_offset = (u64)-1;
3841 u64 ino = btrfs_ino(inode);
3842
3843 min_key.objectid = ino;
3844 min_key.type = BTRFS_DIR_INDEX_KEY;
3845 min_key.offset = min_offset;
3846
3847 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3848
3849 /*
3850 * we didn't find anything from this transaction, see if there
3851 * is anything at all
3852 */
3853 if (ret != 0 || min_key.objectid != ino ||
3854 min_key.type != BTRFS_DIR_INDEX_KEY) {
3855 min_key.objectid = ino;
3856 min_key.type = BTRFS_DIR_INDEX_KEY;
3857 min_key.offset = (u64)-1;
3858 btrfs_release_path(path);
3859 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3860 if (ret < 0) {
3861 btrfs_release_path(path);
3862 return ret;
3863 }
3864 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865
3866 /* if ret == 0 there are items for this type,
3867 * create a range to tell us the last key of this type.
3868 * otherwise, there are no items in this directory after
3869 * *min_offset, and we create a range to indicate that.
3870 */
3871 if (ret == 0) {
3872 struct btrfs_key tmp;
3873
3874 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875 path->slots[0]);
3876 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877 last_old_dentry_offset = tmp.offset;
3878 } else if (ret > 0) {
3879 ret = 0;
3880 }
3881
3882 goto done;
3883 }
3884
3885 /* go backward to find any previous key */
3886 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3887 if (ret == 0) {
3888 struct btrfs_key tmp;
3889
3890 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3891 /*
3892 * The dir index key before the first one we found that needs to
3893 * be logged might be in a previous leaf, and there might be a
3894 * gap between these keys, meaning that we had deletions that
3895 * happened. So the key range item we log (key type
3896 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897 * previous key's offset plus 1, so that those deletes are replayed.
3898 */
3899 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900 last_old_dentry_offset = tmp.offset;
3901 } else if (ret < 0) {
3902 goto done;
3903 }
3904
3905 btrfs_release_path(path);
3906
3907 /*
3908 * Find the first key from this transaction again or the one we were at
3909 * in the loop below in case we had to reschedule. We may be logging the
3910 * directory without holding its VFS lock, which happen when logging new
3911 * dentries (through log_new_dir_dentries()) or in some cases when we
3912 * need to log the parent directory of an inode. This means a dir index
3913 * key might be deleted from the inode's root, and therefore we may not
3914 * find it anymore. If we can't find it, just move to the next key. We
3915 * can not bail out and ignore, because if we do that we will simply
3916 * not log dir index keys that come after the one that was just deleted
3917 * and we can end up logging a dir index range that ends at (u64)-1
3918 * (@last_offset is initialized to that), resulting in removing dir
3919 * entries we should not remove at log replay time.
3920 */
3921search:
3922 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3923 if (ret > 0) {
3924 ret = btrfs_next_item(root, path);
3925 if (ret > 0) {
3926 /* There are no more keys in the inode's root. */
3927 ret = 0;
3928 goto done;
3929 }
3930 }
3931 if (ret < 0)
3932 goto done;
3933
3934 /*
3935 * we have a block from this transaction, log every item in it
3936 * from our directory
3937 */
3938 while (1) {
3939 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3940 &last_old_dentry_offset);
3941 if (ret != 0) {
3942 if (ret > 0)
3943 ret = 0;
3944 goto done;
3945 }
3946 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3947
3948 /*
3949 * look ahead to the next item and see if it is also
3950 * from this directory and from this transaction
3951 */
3952 ret = btrfs_next_leaf(root, path);
3953 if (ret) {
3954 if (ret == 1) {
3955 last_offset = (u64)-1;
3956 ret = 0;
3957 }
3958 goto done;
3959 }
3960 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3961 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3962 last_offset = (u64)-1;
3963 goto done;
3964 }
3965 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3966 /*
3967 * The next leaf was not changed in the current transaction
3968 * and has at least one dir index key.
3969 * We check for the next key because there might have been
3970 * one or more deletions between the last key we logged and
3971 * that next key. So the key range item we log (key type
3972 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973 * offset minus 1, so that those deletes are replayed.
3974 */
3975 last_offset = min_key.offset - 1;
3976 goto done;
3977 }
3978 if (need_resched()) {
3979 btrfs_release_path(path);
3980 cond_resched();
3981 goto search;
3982 }
3983 }
3984done:
3985 btrfs_release_path(path);
3986 btrfs_release_path(dst_path);
3987
3988 if (ret == 0) {
3989 *last_offset_ret = last_offset;
3990 /*
3991 * In case the leaf was changed in the current transaction but
3992 * all its dir items are from a past transaction, the last item
3993 * in the leaf is a dir item and there's no gap between that last
3994 * dir item and the first one on the next leaf (which did not
3995 * change in the current transaction), then we don't need to log
3996 * a range, last_old_dentry_offset is == to last_offset.
3997 */
3998 ASSERT(last_old_dentry_offset <= last_offset);
3999 if (last_old_dentry_offset < last_offset)
4000 ret = insert_dir_log_key(trans, log, path, ino,
4001 last_old_dentry_offset + 1,
4002 last_offset);
4003 }
4004
4005 return ret;
4006}
4007
4008/*
4009 * If the inode was logged before and it was evicted, then its
4010 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011 * key offset. If that's the case, search for it and update the inode. This
4012 * is to avoid lookups in the log tree every time we try to insert a dir index
4013 * key from a leaf changed in the current transaction, and to allow us to always
4014 * do batch insertions of dir index keys.
4015 */
4016static int update_last_dir_index_offset(struct btrfs_inode *inode,
4017 struct btrfs_path *path,
4018 const struct btrfs_log_ctx *ctx)
4019{
4020 const u64 ino = btrfs_ino(inode);
4021 struct btrfs_key key;
4022 int ret;
4023
4024 lockdep_assert_held(&inode->log_mutex);
4025
4026 if (inode->last_dir_index_offset != (u64)-1)
4027 return 0;
4028
4029 if (!ctx->logged_before) {
4030 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4031 return 0;
4032 }
4033
4034 key.objectid = ino;
4035 key.type = BTRFS_DIR_INDEX_KEY;
4036 key.offset = (u64)-1;
4037
4038 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4039 /*
4040 * An error happened or we actually have an index key with an offset
4041 * value of (u64)-1. Bail out, we're done.
4042 */
4043 if (ret <= 0)
4044 goto out;
4045
4046 ret = 0;
4047 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4048
4049 /*
4050 * No dir index items, bail out and leave last_dir_index_offset with
4051 * the value right before the first valid index value.
4052 */
4053 if (path->slots[0] == 0)
4054 goto out;
4055
4056 /*
4057 * btrfs_search_slot() left us at one slot beyond the slot with the last
4058 * index key, or beyond the last key of the directory that is not an
4059 * index key. If we have an index key before, set last_dir_index_offset
4060 * to its offset value, otherwise leave it with a value right before the
4061 * first valid index value, as it means we have an empty directory.
4062 */
4063 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4064 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4065 inode->last_dir_index_offset = key.offset;
4066
4067out:
4068 btrfs_release_path(path);
4069
4070 return ret;
4071}
4072
4073/*
4074 * logging directories is very similar to logging inodes, We find all the items
4075 * from the current transaction and write them to the log.
4076 *
4077 * The recovery code scans the directory in the subvolume, and if it finds a
4078 * key in the range logged that is not present in the log tree, then it means
4079 * that dir entry was unlinked during the transaction.
4080 *
4081 * In order for that scan to work, we must include one key smaller than
4082 * the smallest logged by this transaction and one key larger than the largest
4083 * key logged by this transaction.
4084 */
4085static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4086 struct btrfs_inode *inode,
4087 struct btrfs_path *path,
4088 struct btrfs_path *dst_path,
4089 struct btrfs_log_ctx *ctx)
4090{
4091 u64 min_key;
4092 u64 max_key;
4093 int ret;
4094
4095 ret = update_last_dir_index_offset(inode, path, ctx);
4096 if (ret)
4097 return ret;
4098
4099 min_key = BTRFS_DIR_START_INDEX;
4100 max_key = 0;
4101
4102 while (1) {
4103 ret = log_dir_items(trans, inode, path, dst_path,
4104 ctx, min_key, &max_key);
4105 if (ret)
4106 return ret;
4107 if (max_key == (u64)-1)
4108 break;
4109 min_key = max_key + 1;
4110 }
4111
4112 return 0;
4113}
4114
4115/*
4116 * a helper function to drop items from the log before we relog an
4117 * inode. max_key_type indicates the highest item type to remove.
4118 * This cannot be run for file data extents because it does not
4119 * free the extents they point to.
4120 */
4121static int drop_inode_items(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *log,
4123 struct btrfs_path *path,
4124 struct btrfs_inode *inode,
4125 int max_key_type)
4126{
4127 int ret;
4128 struct btrfs_key key;
4129 struct btrfs_key found_key;
4130 int start_slot;
4131
4132 key.objectid = btrfs_ino(inode);
4133 key.type = max_key_type;
4134 key.offset = (u64)-1;
4135
4136 while (1) {
4137 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4138 if (ret < 0) {
4139 break;
4140 } else if (ret > 0) {
4141 if (path->slots[0] == 0)
4142 break;
4143 path->slots[0]--;
4144 }
4145
4146 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4147 path->slots[0]);
4148
4149 if (found_key.objectid != key.objectid)
4150 break;
4151
4152 found_key.offset = 0;
4153 found_key.type = 0;
4154 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4155 if (ret < 0)
4156 break;
4157
4158 ret = btrfs_del_items(trans, log, path, start_slot,
4159 path->slots[0] - start_slot + 1);
4160 /*
4161 * If start slot isn't 0 then we don't need to re-search, we've
4162 * found the last guy with the objectid in this tree.
4163 */
4164 if (ret || start_slot != 0)
4165 break;
4166 btrfs_release_path(path);
4167 }
4168 btrfs_release_path(path);
4169 if (ret > 0)
4170 ret = 0;
4171 return ret;
4172}
4173
4174static int truncate_inode_items(struct btrfs_trans_handle *trans,
4175 struct btrfs_root *log_root,
4176 struct btrfs_inode *inode,
4177 u64 new_size, u32 min_type)
4178{
4179 struct btrfs_truncate_control control = {
4180 .new_size = new_size,
4181 .ino = btrfs_ino(inode),
4182 .min_type = min_type,
4183 .skip_ref_updates = true,
4184 };
4185
4186 return btrfs_truncate_inode_items(trans, log_root, &control);
4187}
4188
4189static void fill_inode_item(struct btrfs_trans_handle *trans,
4190 struct extent_buffer *leaf,
4191 struct btrfs_inode_item *item,
4192 struct inode *inode, int log_inode_only,
4193 u64 logged_isize)
4194{
4195 struct btrfs_map_token token;
4196 u64 flags;
4197
4198 btrfs_init_map_token(&token, leaf);
4199
4200 if (log_inode_only) {
4201 /* set the generation to zero so the recover code
4202 * can tell the difference between an logging
4203 * just to say 'this inode exists' and a logging
4204 * to say 'update this inode with these values'
4205 */
4206 btrfs_set_token_inode_generation(&token, item, 0);
4207 btrfs_set_token_inode_size(&token, item, logged_isize);
4208 } else {
4209 btrfs_set_token_inode_generation(&token, item,
4210 BTRFS_I(inode)->generation);
4211 btrfs_set_token_inode_size(&token, item, inode->i_size);
4212 }
4213
4214 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4215 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4216 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4217 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4218
4219 btrfs_set_token_timespec_sec(&token, &item->atime,
4220 inode_get_atime_sec(inode));
4221 btrfs_set_token_timespec_nsec(&token, &item->atime,
4222 inode_get_atime_nsec(inode));
4223
4224 btrfs_set_token_timespec_sec(&token, &item->mtime,
4225 inode_get_mtime_sec(inode));
4226 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4227 inode_get_mtime_nsec(inode));
4228
4229 btrfs_set_token_timespec_sec(&token, &item->ctime,
4230 inode_get_ctime_sec(inode));
4231 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4232 inode_get_ctime_nsec(inode));
4233
4234 /*
4235 * We do not need to set the nbytes field, in fact during a fast fsync
4236 * its value may not even be correct, since a fast fsync does not wait
4237 * for ordered extent completion, which is where we update nbytes, it
4238 * only waits for writeback to complete. During log replay as we find
4239 * file extent items and replay them, we adjust the nbytes field of the
4240 * inode item in subvolume tree as needed (see overwrite_item()).
4241 */
4242
4243 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4244 btrfs_set_token_inode_transid(&token, item, trans->transid);
4245 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4246 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4247 BTRFS_I(inode)->ro_flags);
4248 btrfs_set_token_inode_flags(&token, item, flags);
4249 btrfs_set_token_inode_block_group(&token, item, 0);
4250}
4251
4252static int log_inode_item(struct btrfs_trans_handle *trans,
4253 struct btrfs_root *log, struct btrfs_path *path,
4254 struct btrfs_inode *inode, bool inode_item_dropped)
4255{
4256 struct btrfs_inode_item *inode_item;
4257 struct btrfs_key key;
4258 int ret;
4259
4260 btrfs_get_inode_key(inode, &key);
4261 /*
4262 * If we are doing a fast fsync and the inode was logged before in the
4263 * current transaction, then we know the inode was previously logged and
4264 * it exists in the log tree. For performance reasons, in this case use
4265 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267 * contention in case there are concurrent fsyncs for other inodes of the
4268 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269 * already exists can also result in unnecessarily splitting a leaf.
4270 */
4271 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4272 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4273 ASSERT(ret <= 0);
4274 if (ret > 0)
4275 ret = -ENOENT;
4276 } else {
4277 /*
4278 * This means it is the first fsync in the current transaction,
4279 * so the inode item is not in the log and we need to insert it.
4280 * We can never get -EEXIST because we are only called for a fast
4281 * fsync and in case an inode eviction happens after the inode was
4282 * logged before in the current transaction, when we load again
4283 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284 * flags and set ->logged_trans to 0.
4285 */
4286 ret = btrfs_insert_empty_item(trans, log, path, &key,
4287 sizeof(*inode_item));
4288 ASSERT(ret != -EEXIST);
4289 }
4290 if (ret)
4291 return ret;
4292 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4293 struct btrfs_inode_item);
4294 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4295 0, 0);
4296 btrfs_release_path(path);
4297 return 0;
4298}
4299
4300static int log_csums(struct btrfs_trans_handle *trans,
4301 struct btrfs_inode *inode,
4302 struct btrfs_root *log_root,
4303 struct btrfs_ordered_sum *sums)
4304{
4305 const u64 lock_end = sums->logical + sums->len - 1;
4306 struct extent_state *cached_state = NULL;
4307 int ret;
4308
4309 /*
4310 * If this inode was not used for reflink operations in the current
4311 * transaction with new extents, then do the fast path, no need to
4312 * worry about logging checksum items with overlapping ranges.
4313 */
4314 if (inode->last_reflink_trans < trans->transid)
4315 return btrfs_csum_file_blocks(trans, log_root, sums);
4316
4317 /*
4318 * Serialize logging for checksums. This is to avoid racing with the
4319 * same checksum being logged by another task that is logging another
4320 * file which happens to refer to the same extent as well. Such races
4321 * can leave checksum items in the log with overlapping ranges.
4322 */
4323 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4324 &cached_state);
4325 if (ret)
4326 return ret;
4327 /*
4328 * Due to extent cloning, we might have logged a csum item that covers a
4329 * subrange of a cloned extent, and later we can end up logging a csum
4330 * item for a larger subrange of the same extent or the entire range.
4331 * This would leave csum items in the log tree that cover the same range
4332 * and break the searches for checksums in the log tree, resulting in
4333 * some checksums missing in the fs/subvolume tree. So just delete (or
4334 * trim and adjust) any existing csum items in the log for this range.
4335 */
4336 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4337 if (!ret)
4338 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4339
4340 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4341 &cached_state);
4342
4343 return ret;
4344}
4345
4346static noinline int copy_items(struct btrfs_trans_handle *trans,
4347 struct btrfs_inode *inode,
4348 struct btrfs_path *dst_path,
4349 struct btrfs_path *src_path,
4350 int start_slot, int nr, int inode_only,
4351 u64 logged_isize, struct btrfs_log_ctx *ctx)
4352{
4353 struct btrfs_root *log = inode->root->log_root;
4354 struct btrfs_file_extent_item *extent;
4355 struct extent_buffer *src;
4356 int ret;
4357 struct btrfs_key *ins_keys;
4358 u32 *ins_sizes;
4359 struct btrfs_item_batch batch;
4360 char *ins_data;
4361 int dst_index;
4362 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4363 const u64 i_size = i_size_read(&inode->vfs_inode);
4364
4365 /*
4366 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367 * use the clone. This is because otherwise we would be changing the log
4368 * tree, to insert items from the subvolume tree or insert csum items,
4369 * while holding a read lock on a leaf from the subvolume tree, which
4370 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4371 *
4372 * 1) Modifying the log tree triggers an extent buffer allocation while
4373 * holding a write lock on a parent extent buffer from the log tree.
4374 * Allocating the pages for an extent buffer, or the extent buffer
4375 * struct, can trigger inode eviction and finally the inode eviction
4376 * will trigger a release/remove of a delayed node, which requires
4377 * taking the delayed node's mutex;
4378 *
4379 * 2) Allocating a metadata extent for a log tree can trigger the async
4380 * reclaim thread and make us wait for it to release enough space and
4381 * unblock our reservation ticket. The reclaim thread can start
4382 * flushing delayed items, and that in turn results in the need to
4383 * lock delayed node mutexes and in the need to write lock extent
4384 * buffers of a subvolume tree - all this while holding a write lock
4385 * on the parent extent buffer in the log tree.
4386 *
4387 * So one task in scenario 1) running in parallel with another task in
4388 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389 * node mutex while having a read lock on a leaf from the subvolume,
4390 * while the other is holding the delayed node's mutex and wants to
4391 * write lock the same subvolume leaf for flushing delayed items.
4392 */
4393 ret = clone_leaf(src_path, ctx);
4394 if (ret < 0)
4395 return ret;
4396
4397 src = src_path->nodes[0];
4398
4399 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4400 nr * sizeof(u32), GFP_NOFS);
4401 if (!ins_data)
4402 return -ENOMEM;
4403
4404 ins_sizes = (u32 *)ins_data;
4405 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4406 batch.keys = ins_keys;
4407 batch.data_sizes = ins_sizes;
4408 batch.total_data_size = 0;
4409 batch.nr = 0;
4410
4411 dst_index = 0;
4412 for (int i = 0; i < nr; i++) {
4413 const int src_slot = start_slot + i;
4414 struct btrfs_root *csum_root;
4415 struct btrfs_ordered_sum *sums;
4416 struct btrfs_ordered_sum *sums_next;
4417 LIST_HEAD(ordered_sums);
4418 u64 disk_bytenr;
4419 u64 disk_num_bytes;
4420 u64 extent_offset;
4421 u64 extent_num_bytes;
4422 bool is_old_extent;
4423
4424 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4425
4426 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4427 goto add_to_batch;
4428
4429 extent = btrfs_item_ptr(src, src_slot,
4430 struct btrfs_file_extent_item);
4431
4432 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4433 trans->transid);
4434
4435 /*
4436 * Don't copy extents from past generations. That would make us
4437 * log a lot more metadata for common cases like doing only a
4438 * few random writes into a file and then fsync it for the first
4439 * time or after the full sync flag is set on the inode. We can
4440 * get leaves full of extent items, most of which are from past
4441 * generations, so we can skip them - as long as the inode has
4442 * not been the target of a reflink operation in this transaction,
4443 * as in that case it might have had file extent items with old
4444 * generations copied into it. We also must always log prealloc
4445 * extents that start at or beyond eof, otherwise we would lose
4446 * them on log replay.
4447 */
4448 if (is_old_extent &&
4449 ins_keys[dst_index].offset < i_size &&
4450 inode->last_reflink_trans < trans->transid)
4451 continue;
4452
4453 if (skip_csum)
4454 goto add_to_batch;
4455
4456 /* Only regular extents have checksums. */
4457 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4458 goto add_to_batch;
4459
4460 /*
4461 * If it's an extent created in a past transaction, then its
4462 * checksums are already accessible from the committed csum tree,
4463 * no need to log them.
4464 */
4465 if (is_old_extent)
4466 goto add_to_batch;
4467
4468 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4469 /* If it's an explicit hole, there are no checksums. */
4470 if (disk_bytenr == 0)
4471 goto add_to_batch;
4472
4473 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4474
4475 if (btrfs_file_extent_compression(src, extent)) {
4476 extent_offset = 0;
4477 extent_num_bytes = disk_num_bytes;
4478 } else {
4479 extent_offset = btrfs_file_extent_offset(src, extent);
4480 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4481 }
4482
4483 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4484 disk_bytenr += extent_offset;
4485 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4486 disk_bytenr + extent_num_bytes - 1,
4487 &ordered_sums, false);
4488 if (ret < 0)
4489 goto out;
4490 ret = 0;
4491
4492 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4493 if (!ret)
4494 ret = log_csums(trans, inode, log, sums);
4495 list_del(&sums->list);
4496 kfree(sums);
4497 }
4498 if (ret)
4499 goto out;
4500
4501add_to_batch:
4502 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4503 batch.total_data_size += ins_sizes[dst_index];
4504 batch.nr++;
4505 dst_index++;
4506 }
4507
4508 /*
4509 * We have a leaf full of old extent items that don't need to be logged,
4510 * so we don't need to do anything.
4511 */
4512 if (batch.nr == 0)
4513 goto out;
4514
4515 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4516 if (ret)
4517 goto out;
4518
4519 dst_index = 0;
4520 for (int i = 0; i < nr; i++) {
4521 const int src_slot = start_slot + i;
4522 const int dst_slot = dst_path->slots[0] + dst_index;
4523 struct btrfs_key key;
4524 unsigned long src_offset;
4525 unsigned long dst_offset;
4526
4527 /*
4528 * We're done, all the remaining items in the source leaf
4529 * correspond to old file extent items.
4530 */
4531 if (dst_index >= batch.nr)
4532 break;
4533
4534 btrfs_item_key_to_cpu(src, &key, src_slot);
4535
4536 if (key.type != BTRFS_EXTENT_DATA_KEY)
4537 goto copy_item;
4538
4539 extent = btrfs_item_ptr(src, src_slot,
4540 struct btrfs_file_extent_item);
4541
4542 /* See the comment in the previous loop, same logic. */
4543 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4544 key.offset < i_size &&
4545 inode->last_reflink_trans < trans->transid)
4546 continue;
4547
4548copy_item:
4549 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4550 src_offset = btrfs_item_ptr_offset(src, src_slot);
4551
4552 if (key.type == BTRFS_INODE_ITEM_KEY) {
4553 struct btrfs_inode_item *inode_item;
4554
4555 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4556 struct btrfs_inode_item);
4557 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4558 &inode->vfs_inode,
4559 inode_only == LOG_INODE_EXISTS,
4560 logged_isize);
4561 } else {
4562 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4563 src_offset, ins_sizes[dst_index]);
4564 }
4565
4566 dst_index++;
4567 }
4568
4569 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4570 btrfs_release_path(dst_path);
4571out:
4572 kfree(ins_data);
4573
4574 return ret;
4575}
4576
4577static int extent_cmp(void *priv, const struct list_head *a,
4578 const struct list_head *b)
4579{
4580 const struct extent_map *em1, *em2;
4581
4582 em1 = list_entry(a, struct extent_map, list);
4583 em2 = list_entry(b, struct extent_map, list);
4584
4585 if (em1->start < em2->start)
4586 return -1;
4587 else if (em1->start > em2->start)
4588 return 1;
4589 return 0;
4590}
4591
4592static int log_extent_csums(struct btrfs_trans_handle *trans,
4593 struct btrfs_inode *inode,
4594 struct btrfs_root *log_root,
4595 const struct extent_map *em,
4596 struct btrfs_log_ctx *ctx)
4597{
4598 struct btrfs_ordered_extent *ordered;
4599 struct btrfs_root *csum_root;
4600 u64 block_start;
4601 u64 csum_offset;
4602 u64 csum_len;
4603 u64 mod_start = em->start;
4604 u64 mod_len = em->len;
4605 LIST_HEAD(ordered_sums);
4606 int ret = 0;
4607
4608 if (inode->flags & BTRFS_INODE_NODATASUM ||
4609 (em->flags & EXTENT_FLAG_PREALLOC) ||
4610 em->disk_bytenr == EXTENT_MAP_HOLE)
4611 return 0;
4612
4613 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4614 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4615 const u64 mod_end = mod_start + mod_len;
4616 struct btrfs_ordered_sum *sums;
4617
4618 if (mod_len == 0)
4619 break;
4620
4621 if (ordered_end <= mod_start)
4622 continue;
4623 if (mod_end <= ordered->file_offset)
4624 break;
4625
4626 /*
4627 * We are going to copy all the csums on this ordered extent, so
4628 * go ahead and adjust mod_start and mod_len in case this ordered
4629 * extent has already been logged.
4630 */
4631 if (ordered->file_offset > mod_start) {
4632 if (ordered_end >= mod_end)
4633 mod_len = ordered->file_offset - mod_start;
4634 /*
4635 * If we have this case
4636 *
4637 * |--------- logged extent ---------|
4638 * |----- ordered extent ----|
4639 *
4640 * Just don't mess with mod_start and mod_len, we'll
4641 * just end up logging more csums than we need and it
4642 * will be ok.
4643 */
4644 } else {
4645 if (ordered_end < mod_end) {
4646 mod_len = mod_end - ordered_end;
4647 mod_start = ordered_end;
4648 } else {
4649 mod_len = 0;
4650 }
4651 }
4652
4653 /*
4654 * To keep us from looping for the above case of an ordered
4655 * extent that falls inside of the logged extent.
4656 */
4657 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4658 continue;
4659
4660 list_for_each_entry(sums, &ordered->list, list) {
4661 ret = log_csums(trans, inode, log_root, sums);
4662 if (ret)
4663 return ret;
4664 }
4665 }
4666
4667 /* We're done, found all csums in the ordered extents. */
4668 if (mod_len == 0)
4669 return 0;
4670
4671 /* If we're compressed we have to save the entire range of csums. */
4672 if (extent_map_is_compressed(em)) {
4673 csum_offset = 0;
4674 csum_len = em->disk_num_bytes;
4675 } else {
4676 csum_offset = mod_start - em->start;
4677 csum_len = mod_len;
4678 }
4679
4680 /* block start is already adjusted for the file extent offset. */
4681 block_start = extent_map_block_start(em);
4682 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4683 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4684 block_start + csum_offset + csum_len - 1,
4685 &ordered_sums, false);
4686 if (ret < 0)
4687 return ret;
4688 ret = 0;
4689
4690 while (!list_empty(&ordered_sums)) {
4691 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4692 struct btrfs_ordered_sum,
4693 list);
4694 if (!ret)
4695 ret = log_csums(trans, inode, log_root, sums);
4696 list_del(&sums->list);
4697 kfree(sums);
4698 }
4699
4700 return ret;
4701}
4702
4703static int log_one_extent(struct btrfs_trans_handle *trans,
4704 struct btrfs_inode *inode,
4705 const struct extent_map *em,
4706 struct btrfs_path *path,
4707 struct btrfs_log_ctx *ctx)
4708{
4709 struct btrfs_drop_extents_args drop_args = { 0 };
4710 struct btrfs_root *log = inode->root->log_root;
4711 struct btrfs_file_extent_item fi = { 0 };
4712 struct extent_buffer *leaf;
4713 struct btrfs_key key;
4714 enum btrfs_compression_type compress_type;
4715 u64 extent_offset = em->offset;
4716 u64 block_start = extent_map_block_start(em);
4717 u64 block_len;
4718 int ret;
4719
4720 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4721 if (em->flags & EXTENT_FLAG_PREALLOC)
4722 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4723 else
4724 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4725
4726 block_len = em->disk_num_bytes;
4727 compress_type = extent_map_compression(em);
4728 if (compress_type != BTRFS_COMPRESS_NONE) {
4729 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4730 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4732 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4733 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4734 }
4735
4736 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4737 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4738 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4739 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4740
4741 ret = log_extent_csums(trans, inode, log, em, ctx);
4742 if (ret)
4743 return ret;
4744
4745 /*
4746 * If this is the first time we are logging the inode in the current
4747 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748 * because it does a deletion search, which always acquires write locks
4749 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750 * but also adds significant contention in a log tree, since log trees
4751 * are small, with a root at level 2 or 3 at most, due to their short
4752 * life span.
4753 */
4754 if (ctx->logged_before) {
4755 drop_args.path = path;
4756 drop_args.start = em->start;
4757 drop_args.end = em->start + em->len;
4758 drop_args.replace_extent = true;
4759 drop_args.extent_item_size = sizeof(fi);
4760 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4761 if (ret)
4762 return ret;
4763 }
4764
4765 if (!drop_args.extent_inserted) {
4766 key.objectid = btrfs_ino(inode);
4767 key.type = BTRFS_EXTENT_DATA_KEY;
4768 key.offset = em->start;
4769
4770 ret = btrfs_insert_empty_item(trans, log, path, &key,
4771 sizeof(fi));
4772 if (ret)
4773 return ret;
4774 }
4775 leaf = path->nodes[0];
4776 write_extent_buffer(leaf, &fi,
4777 btrfs_item_ptr_offset(leaf, path->slots[0]),
4778 sizeof(fi));
4779 btrfs_mark_buffer_dirty(trans, leaf);
4780
4781 btrfs_release_path(path);
4782
4783 return ret;
4784}
4785
4786/*
4787 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788 * lose them after doing a full/fast fsync and replaying the log. We scan the
4789 * subvolume's root instead of iterating the inode's extent map tree because
4790 * otherwise we can log incorrect extent items based on extent map conversion.
4791 * That can happen due to the fact that extent maps are merged when they
4792 * are not in the extent map tree's list of modified extents.
4793 */
4794static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4795 struct btrfs_inode *inode,
4796 struct btrfs_path *path,
4797 struct btrfs_log_ctx *ctx)
4798{
4799 struct btrfs_root *root = inode->root;
4800 struct btrfs_key key;
4801 const u64 i_size = i_size_read(&inode->vfs_inode);
4802 const u64 ino = btrfs_ino(inode);
4803 struct btrfs_path *dst_path = NULL;
4804 bool dropped_extents = false;
4805 u64 truncate_offset = i_size;
4806 struct extent_buffer *leaf;
4807 int slot;
4808 int ins_nr = 0;
4809 int start_slot = 0;
4810 int ret;
4811
4812 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4813 return 0;
4814
4815 key.objectid = ino;
4816 key.type = BTRFS_EXTENT_DATA_KEY;
4817 key.offset = i_size;
4818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4819 if (ret < 0)
4820 goto out;
4821
4822 /*
4823 * We must check if there is a prealloc extent that starts before the
4824 * i_size and crosses the i_size boundary. This is to ensure later we
4825 * truncate down to the end of that extent and not to the i_size, as
4826 * otherwise we end up losing part of the prealloc extent after a log
4827 * replay and with an implicit hole if there is another prealloc extent
4828 * that starts at an offset beyond i_size.
4829 */
4830 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4831 if (ret < 0)
4832 goto out;
4833
4834 if (ret == 0) {
4835 struct btrfs_file_extent_item *ei;
4836
4837 leaf = path->nodes[0];
4838 slot = path->slots[0];
4839 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4840
4841 if (btrfs_file_extent_type(leaf, ei) ==
4842 BTRFS_FILE_EXTENT_PREALLOC) {
4843 u64 extent_end;
4844
4845 btrfs_item_key_to_cpu(leaf, &key, slot);
4846 extent_end = key.offset +
4847 btrfs_file_extent_num_bytes(leaf, ei);
4848
4849 if (extent_end > i_size)
4850 truncate_offset = extent_end;
4851 }
4852 } else {
4853 ret = 0;
4854 }
4855
4856 while (true) {
4857 leaf = path->nodes[0];
4858 slot = path->slots[0];
4859
4860 if (slot >= btrfs_header_nritems(leaf)) {
4861 if (ins_nr > 0) {
4862 ret = copy_items(trans, inode, dst_path, path,
4863 start_slot, ins_nr, 1, 0, ctx);
4864 if (ret < 0)
4865 goto out;
4866 ins_nr = 0;
4867 }
4868 ret = btrfs_next_leaf(root, path);
4869 if (ret < 0)
4870 goto out;
4871 if (ret > 0) {
4872 ret = 0;
4873 break;
4874 }
4875 continue;
4876 }
4877
4878 btrfs_item_key_to_cpu(leaf, &key, slot);
4879 if (key.objectid > ino)
4880 break;
4881 if (WARN_ON_ONCE(key.objectid < ino) ||
4882 key.type < BTRFS_EXTENT_DATA_KEY ||
4883 key.offset < i_size) {
4884 path->slots[0]++;
4885 continue;
4886 }
4887 /*
4888 * Avoid overlapping items in the log tree. The first time we
4889 * get here, get rid of everything from a past fsync. After
4890 * that, if the current extent starts before the end of the last
4891 * extent we copied, truncate the last one. This can happen if
4892 * an ordered extent completion modifies the subvolume tree
4893 * while btrfs_next_leaf() has the tree unlocked.
4894 */
4895 if (!dropped_extents || key.offset < truncate_offset) {
4896 ret = truncate_inode_items(trans, root->log_root, inode,
4897 min(key.offset, truncate_offset),
4898 BTRFS_EXTENT_DATA_KEY);
4899 if (ret)
4900 goto out;
4901 dropped_extents = true;
4902 }
4903 truncate_offset = btrfs_file_extent_end(path);
4904 if (ins_nr == 0)
4905 start_slot = slot;
4906 ins_nr++;
4907 path->slots[0]++;
4908 if (!dst_path) {
4909 dst_path = btrfs_alloc_path();
4910 if (!dst_path) {
4911 ret = -ENOMEM;
4912 goto out;
4913 }
4914 }
4915 }
4916 if (ins_nr > 0)
4917 ret = copy_items(trans, inode, dst_path, path,
4918 start_slot, ins_nr, 1, 0, ctx);
4919out:
4920 btrfs_release_path(path);
4921 btrfs_free_path(dst_path);
4922 return ret;
4923}
4924
4925static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4926 struct btrfs_inode *inode,
4927 struct btrfs_path *path,
4928 struct btrfs_log_ctx *ctx)
4929{
4930 struct btrfs_ordered_extent *ordered;
4931 struct btrfs_ordered_extent *tmp;
4932 struct extent_map *em, *n;
4933 LIST_HEAD(extents);
4934 struct extent_map_tree *tree = &inode->extent_tree;
4935 int ret = 0;
4936 int num = 0;
4937
4938 write_lock(&tree->lock);
4939
4940 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4941 list_del_init(&em->list);
4942 /*
4943 * Just an arbitrary number, this can be really CPU intensive
4944 * once we start getting a lot of extents, and really once we
4945 * have a bunch of extents we just want to commit since it will
4946 * be faster.
4947 */
4948 if (++num > 32768) {
4949 list_del_init(&tree->modified_extents);
4950 ret = -EFBIG;
4951 goto process;
4952 }
4953
4954 if (em->generation < trans->transid)
4955 continue;
4956
4957 /* We log prealloc extents beyond eof later. */
4958 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4959 em->start >= i_size_read(&inode->vfs_inode))
4960 continue;
4961
4962 /* Need a ref to keep it from getting evicted from cache */
4963 refcount_inc(&em->refs);
4964 em->flags |= EXTENT_FLAG_LOGGING;
4965 list_add_tail(&em->list, &extents);
4966 num++;
4967 }
4968
4969 list_sort(NULL, &extents, extent_cmp);
4970process:
4971 while (!list_empty(&extents)) {
4972 em = list_entry(extents.next, struct extent_map, list);
4973
4974 list_del_init(&em->list);
4975
4976 /*
4977 * If we had an error we just need to delete everybody from our
4978 * private list.
4979 */
4980 if (ret) {
4981 clear_em_logging(inode, em);
4982 free_extent_map(em);
4983 continue;
4984 }
4985
4986 write_unlock(&tree->lock);
4987
4988 ret = log_one_extent(trans, inode, em, path, ctx);
4989 write_lock(&tree->lock);
4990 clear_em_logging(inode, em);
4991 free_extent_map(em);
4992 }
4993 WARN_ON(!list_empty(&extents));
4994 write_unlock(&tree->lock);
4995
4996 if (!ret)
4997 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4998 if (ret)
4999 return ret;
5000
5001 /*
5002 * We have logged all extents successfully, now make sure the commit of
5003 * the current transaction waits for the ordered extents to complete
5004 * before it commits and wipes out the log trees, otherwise we would
5005 * lose data if an ordered extents completes after the transaction
5006 * commits and a power failure happens after the transaction commit.
5007 */
5008 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5009 list_del_init(&ordered->log_list);
5010 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5011
5012 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5013 spin_lock_irq(&inode->ordered_tree_lock);
5014 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5015 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5016 atomic_inc(&trans->transaction->pending_ordered);
5017 }
5018 spin_unlock_irq(&inode->ordered_tree_lock);
5019 }
5020 btrfs_put_ordered_extent(ordered);
5021 }
5022
5023 return 0;
5024}
5025
5026static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5027 struct btrfs_path *path, u64 *size_ret)
5028{
5029 struct btrfs_key key;
5030 int ret;
5031
5032 key.objectid = btrfs_ino(inode);
5033 key.type = BTRFS_INODE_ITEM_KEY;
5034 key.offset = 0;
5035
5036 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5037 if (ret < 0) {
5038 return ret;
5039 } else if (ret > 0) {
5040 *size_ret = 0;
5041 } else {
5042 struct btrfs_inode_item *item;
5043
5044 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5045 struct btrfs_inode_item);
5046 *size_ret = btrfs_inode_size(path->nodes[0], item);
5047 /*
5048 * If the in-memory inode's i_size is smaller then the inode
5049 * size stored in the btree, return the inode's i_size, so
5050 * that we get a correct inode size after replaying the log
5051 * when before a power failure we had a shrinking truncate
5052 * followed by addition of a new name (rename / new hard link).
5053 * Otherwise return the inode size from the btree, to avoid
5054 * data loss when replaying a log due to previously doing a
5055 * write that expands the inode's size and logging a new name
5056 * immediately after.
5057 */
5058 if (*size_ret > inode->vfs_inode.i_size)
5059 *size_ret = inode->vfs_inode.i_size;
5060 }
5061
5062 btrfs_release_path(path);
5063 return 0;
5064}
5065
5066/*
5067 * At the moment we always log all xattrs. This is to figure out at log replay
5068 * time which xattrs must have their deletion replayed. If a xattr is missing
5069 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070 * because if a xattr is deleted, the inode is fsynced and a power failure
5071 * happens, causing the log to be replayed the next time the fs is mounted,
5072 * we want the xattr to not exist anymore (same behaviour as other filesystems
5073 * with a journal, ext3/4, xfs, f2fs, etc).
5074 */
5075static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5076 struct btrfs_inode *inode,
5077 struct btrfs_path *path,
5078 struct btrfs_path *dst_path,
5079 struct btrfs_log_ctx *ctx)
5080{
5081 struct btrfs_root *root = inode->root;
5082 int ret;
5083 struct btrfs_key key;
5084 const u64 ino = btrfs_ino(inode);
5085 int ins_nr = 0;
5086 int start_slot = 0;
5087 bool found_xattrs = false;
5088
5089 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5090 return 0;
5091
5092 key.objectid = ino;
5093 key.type = BTRFS_XATTR_ITEM_KEY;
5094 key.offset = 0;
5095
5096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097 if (ret < 0)
5098 return ret;
5099
5100 while (true) {
5101 int slot = path->slots[0];
5102 struct extent_buffer *leaf = path->nodes[0];
5103 int nritems = btrfs_header_nritems(leaf);
5104
5105 if (slot >= nritems) {
5106 if (ins_nr > 0) {
5107 ret = copy_items(trans, inode, dst_path, path,
5108 start_slot, ins_nr, 1, 0, ctx);
5109 if (ret < 0)
5110 return ret;
5111 ins_nr = 0;
5112 }
5113 ret = btrfs_next_leaf(root, path);
5114 if (ret < 0)
5115 return ret;
5116 else if (ret > 0)
5117 break;
5118 continue;
5119 }
5120
5121 btrfs_item_key_to_cpu(leaf, &key, slot);
5122 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5123 break;
5124
5125 if (ins_nr == 0)
5126 start_slot = slot;
5127 ins_nr++;
5128 path->slots[0]++;
5129 found_xattrs = true;
5130 cond_resched();
5131 }
5132 if (ins_nr > 0) {
5133 ret = copy_items(trans, inode, dst_path, path,
5134 start_slot, ins_nr, 1, 0, ctx);
5135 if (ret < 0)
5136 return ret;
5137 }
5138
5139 if (!found_xattrs)
5140 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5141
5142 return 0;
5143}
5144
5145/*
5146 * When using the NO_HOLES feature if we punched a hole that causes the
5147 * deletion of entire leafs or all the extent items of the first leaf (the one
5148 * that contains the inode item and references) we may end up not processing
5149 * any extents, because there are no leafs with a generation matching the
5150 * current transaction that have extent items for our inode. So we need to find
5151 * if any holes exist and then log them. We also need to log holes after any
5152 * truncate operation that changes the inode's size.
5153 */
5154static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5155 struct btrfs_inode *inode,
5156 struct btrfs_path *path)
5157{
5158 struct btrfs_root *root = inode->root;
5159 struct btrfs_fs_info *fs_info = root->fs_info;
5160 struct btrfs_key key;
5161 const u64 ino = btrfs_ino(inode);
5162 const u64 i_size = i_size_read(&inode->vfs_inode);
5163 u64 prev_extent_end = 0;
5164 int ret;
5165
5166 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5167 return 0;
5168
5169 key.objectid = ino;
5170 key.type = BTRFS_EXTENT_DATA_KEY;
5171 key.offset = 0;
5172
5173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5174 if (ret < 0)
5175 return ret;
5176
5177 while (true) {
5178 struct extent_buffer *leaf = path->nodes[0];
5179
5180 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5181 ret = btrfs_next_leaf(root, path);
5182 if (ret < 0)
5183 return ret;
5184 if (ret > 0) {
5185 ret = 0;
5186 break;
5187 }
5188 leaf = path->nodes[0];
5189 }
5190
5191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5192 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5193 break;
5194
5195 /* We have a hole, log it. */
5196 if (prev_extent_end < key.offset) {
5197 const u64 hole_len = key.offset - prev_extent_end;
5198
5199 /*
5200 * Release the path to avoid deadlocks with other code
5201 * paths that search the root while holding locks on
5202 * leafs from the log root.
5203 */
5204 btrfs_release_path(path);
5205 ret = btrfs_insert_hole_extent(trans, root->log_root,
5206 ino, prev_extent_end,
5207 hole_len);
5208 if (ret < 0)
5209 return ret;
5210
5211 /*
5212 * Search for the same key again in the root. Since it's
5213 * an extent item and we are holding the inode lock, the
5214 * key must still exist. If it doesn't just emit warning
5215 * and return an error to fall back to a transaction
5216 * commit.
5217 */
5218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5219 if (ret < 0)
5220 return ret;
5221 if (WARN_ON(ret > 0))
5222 return -ENOENT;
5223 leaf = path->nodes[0];
5224 }
5225
5226 prev_extent_end = btrfs_file_extent_end(path);
5227 path->slots[0]++;
5228 cond_resched();
5229 }
5230
5231 if (prev_extent_end < i_size) {
5232 u64 hole_len;
5233
5234 btrfs_release_path(path);
5235 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5236 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5237 prev_extent_end, hole_len);
5238 if (ret < 0)
5239 return ret;
5240 }
5241
5242 return 0;
5243}
5244
5245/*
5246 * When we are logging a new inode X, check if it doesn't have a reference that
5247 * matches the reference from some other inode Y created in a past transaction
5248 * and that was renamed in the current transaction. If we don't do this, then at
5249 * log replay time we can lose inode Y (and all its files if it's a directory):
5250 *
5251 * mkdir /mnt/x
5252 * echo "hello world" > /mnt/x/foobar
5253 * sync
5254 * mv /mnt/x /mnt/y
5255 * mkdir /mnt/x # or touch /mnt/x
5256 * xfs_io -c fsync /mnt/x
5257 * <power fail>
5258 * mount fs, trigger log replay
5259 *
5260 * After the log replay procedure, we would lose the first directory and all its
5261 * files (file foobar).
5262 * For the case where inode Y is not a directory we simply end up losing it:
5263 *
5264 * echo "123" > /mnt/foo
5265 * sync
5266 * mv /mnt/foo /mnt/bar
5267 * echo "abc" > /mnt/foo
5268 * xfs_io -c fsync /mnt/foo
5269 * <power fail>
5270 *
5271 * We also need this for cases where a snapshot entry is replaced by some other
5272 * entry (file or directory) otherwise we end up with an unreplayable log due to
5273 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274 * if it were a regular entry:
5275 *
5276 * mkdir /mnt/x
5277 * btrfs subvolume snapshot /mnt /mnt/x/snap
5278 * btrfs subvolume delete /mnt/x/snap
5279 * rmdir /mnt/x
5280 * mkdir /mnt/x
5281 * fsync /mnt/x or fsync some new file inside it
5282 * <power fail>
5283 *
5284 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285 * the same transaction.
5286 */
5287static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5288 const int slot,
5289 const struct btrfs_key *key,
5290 struct btrfs_inode *inode,
5291 u64 *other_ino, u64 *other_parent)
5292{
5293 int ret;
5294 struct btrfs_path *search_path;
5295 char *name = NULL;
5296 u32 name_len = 0;
5297 u32 item_size = btrfs_item_size(eb, slot);
5298 u32 cur_offset = 0;
5299 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5300
5301 search_path = btrfs_alloc_path();
5302 if (!search_path)
5303 return -ENOMEM;
5304 search_path->search_commit_root = 1;
5305 search_path->skip_locking = 1;
5306
5307 while (cur_offset < item_size) {
5308 u64 parent;
5309 u32 this_name_len;
5310 u32 this_len;
5311 unsigned long name_ptr;
5312 struct btrfs_dir_item *di;
5313 struct fscrypt_str name_str;
5314
5315 if (key->type == BTRFS_INODE_REF_KEY) {
5316 struct btrfs_inode_ref *iref;
5317
5318 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5319 parent = key->offset;
5320 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5321 name_ptr = (unsigned long)(iref + 1);
5322 this_len = sizeof(*iref) + this_name_len;
5323 } else {
5324 struct btrfs_inode_extref *extref;
5325
5326 extref = (struct btrfs_inode_extref *)(ptr +
5327 cur_offset);
5328 parent = btrfs_inode_extref_parent(eb, extref);
5329 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5330 name_ptr = (unsigned long)&extref->name;
5331 this_len = sizeof(*extref) + this_name_len;
5332 }
5333
5334 if (this_name_len > name_len) {
5335 char *new_name;
5336
5337 new_name = krealloc(name, this_name_len, GFP_NOFS);
5338 if (!new_name) {
5339 ret = -ENOMEM;
5340 goto out;
5341 }
5342 name_len = this_name_len;
5343 name = new_name;
5344 }
5345
5346 read_extent_buffer(eb, name, name_ptr, this_name_len);
5347
5348 name_str.name = name;
5349 name_str.len = this_name_len;
5350 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5351 parent, &name_str, 0);
5352 if (di && !IS_ERR(di)) {
5353 struct btrfs_key di_key;
5354
5355 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5356 di, &di_key);
5357 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5358 if (di_key.objectid != key->objectid) {
5359 ret = 1;
5360 *other_ino = di_key.objectid;
5361 *other_parent = parent;
5362 } else {
5363 ret = 0;
5364 }
5365 } else {
5366 ret = -EAGAIN;
5367 }
5368 goto out;
5369 } else if (IS_ERR(di)) {
5370 ret = PTR_ERR(di);
5371 goto out;
5372 }
5373 btrfs_release_path(search_path);
5374
5375 cur_offset += this_len;
5376 }
5377 ret = 0;
5378out:
5379 btrfs_free_path(search_path);
5380 kfree(name);
5381 return ret;
5382}
5383
5384/*
5385 * Check if we need to log an inode. This is used in contexts where while
5386 * logging an inode we need to log another inode (either that it exists or in
5387 * full mode). This is used instead of btrfs_inode_in_log() because the later
5388 * requires the inode to be in the log and have the log transaction committed,
5389 * while here we do not care if the log transaction was already committed - our
5390 * caller will commit the log later - and we want to avoid logging an inode
5391 * multiple times when multiple tasks have joined the same log transaction.
5392 */
5393static bool need_log_inode(const struct btrfs_trans_handle *trans,
5394 struct btrfs_inode *inode)
5395{
5396 /*
5397 * If a directory was not modified, no dentries added or removed, we can
5398 * and should avoid logging it.
5399 */
5400 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5401 return false;
5402
5403 /*
5404 * If this inode does not have new/updated/deleted xattrs since the last
5405 * time it was logged and is flagged as logged in the current transaction,
5406 * we can skip logging it. As for new/deleted names, those are updated in
5407 * the log by link/unlink/rename operations.
5408 * In case the inode was logged and then evicted and reloaded, its
5409 * logged_trans will be 0, in which case we have to fully log it since
5410 * logged_trans is a transient field, not persisted.
5411 */
5412 if (inode_logged(trans, inode, NULL) == 1 &&
5413 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5414 return false;
5415
5416 return true;
5417}
5418
5419struct btrfs_dir_list {
5420 u64 ino;
5421 struct list_head list;
5422};
5423
5424/*
5425 * Log the inodes of the new dentries of a directory.
5426 * See process_dir_items_leaf() for details about why it is needed.
5427 * This is a recursive operation - if an existing dentry corresponds to a
5428 * directory, that directory's new entries are logged too (same behaviour as
5429 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431 * complains about the following circular lock dependency / possible deadlock:
5432 *
5433 * CPU0 CPU1
5434 * ---- ----
5435 * lock(&type->i_mutex_dir_key#3/2);
5436 * lock(sb_internal#2);
5437 * lock(&type->i_mutex_dir_key#3/2);
5438 * lock(&sb->s_type->i_mutex_key#14);
5439 *
5440 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441 * sb_start_intwrite() in btrfs_start_transaction().
5442 * Not acquiring the VFS lock of the inodes is still safe because:
5443 *
5444 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445 * that while logging the inode new references (names) are added or removed
5446 * from the inode, leaving the logged inode item with a link count that does
5447 * not match the number of logged inode reference items. This is fine because
5448 * at log replay time we compute the real number of links and correct the
5449 * link count in the inode item (see replay_one_buffer() and
5450 * link_to_fixup_dir());
5451 *
5452 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453 * while logging the inode's items new index items (key type
5454 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455 * has a size that doesn't match the sum of the lengths of all the logged
5456 * names - this is ok, not a problem, because at log replay time we set the
5457 * directory's i_size to the correct value (see replay_one_name() and
5458 * overwrite_item()).
5459 */
5460static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5461 struct btrfs_inode *start_inode,
5462 struct btrfs_log_ctx *ctx)
5463{
5464 struct btrfs_root *root = start_inode->root;
5465 struct btrfs_path *path;
5466 LIST_HEAD(dir_list);
5467 struct btrfs_dir_list *dir_elem;
5468 u64 ino = btrfs_ino(start_inode);
5469 struct btrfs_inode *curr_inode = start_inode;
5470 int ret = 0;
5471
5472 /*
5473 * If we are logging a new name, as part of a link or rename operation,
5474 * don't bother logging new dentries, as we just want to log the names
5475 * of an inode and that any new parents exist.
5476 */
5477 if (ctx->logging_new_name)
5478 return 0;
5479
5480 path = btrfs_alloc_path();
5481 if (!path)
5482 return -ENOMEM;
5483
5484 /* Pairs with btrfs_add_delayed_iput below. */
5485 ihold(&curr_inode->vfs_inode);
5486
5487 while (true) {
5488 struct inode *vfs_inode;
5489 struct btrfs_key key;
5490 struct btrfs_key found_key;
5491 u64 next_index;
5492 bool continue_curr_inode = true;
5493 int iter_ret;
5494
5495 key.objectid = ino;
5496 key.type = BTRFS_DIR_INDEX_KEY;
5497 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5498 next_index = key.offset;
5499again:
5500 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5501 struct extent_buffer *leaf = path->nodes[0];
5502 struct btrfs_dir_item *di;
5503 struct btrfs_key di_key;
5504 struct inode *di_inode;
5505 int log_mode = LOG_INODE_EXISTS;
5506 int type;
5507
5508 if (found_key.objectid != ino ||
5509 found_key.type != BTRFS_DIR_INDEX_KEY) {
5510 continue_curr_inode = false;
5511 break;
5512 }
5513
5514 next_index = found_key.offset + 1;
5515
5516 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5517 type = btrfs_dir_ftype(leaf, di);
5518 if (btrfs_dir_transid(leaf, di) < trans->transid)
5519 continue;
5520 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5521 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5522 continue;
5523
5524 btrfs_release_path(path);
5525 di_inode = btrfs_iget_logging(di_key.objectid, root);
5526 if (IS_ERR(di_inode)) {
5527 ret = PTR_ERR(di_inode);
5528 goto out;
5529 }
5530
5531 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5532 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5533 break;
5534 }
5535
5536 ctx->log_new_dentries = false;
5537 if (type == BTRFS_FT_DIR)
5538 log_mode = LOG_INODE_ALL;
5539 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5540 log_mode, ctx);
5541 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5542 if (ret)
5543 goto out;
5544 if (ctx->log_new_dentries) {
5545 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5546 if (!dir_elem) {
5547 ret = -ENOMEM;
5548 goto out;
5549 }
5550 dir_elem->ino = di_key.objectid;
5551 list_add_tail(&dir_elem->list, &dir_list);
5552 }
5553 break;
5554 }
5555
5556 btrfs_release_path(path);
5557
5558 if (iter_ret < 0) {
5559 ret = iter_ret;
5560 goto out;
5561 } else if (iter_ret > 0) {
5562 continue_curr_inode = false;
5563 } else {
5564 key = found_key;
5565 }
5566
5567 if (continue_curr_inode && key.offset < (u64)-1) {
5568 key.offset++;
5569 goto again;
5570 }
5571
5572 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5573
5574 if (list_empty(&dir_list))
5575 break;
5576
5577 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5578 ino = dir_elem->ino;
5579 list_del(&dir_elem->list);
5580 kfree(dir_elem);
5581
5582 btrfs_add_delayed_iput(curr_inode);
5583 curr_inode = NULL;
5584
5585 vfs_inode = btrfs_iget_logging(ino, root);
5586 if (IS_ERR(vfs_inode)) {
5587 ret = PTR_ERR(vfs_inode);
5588 break;
5589 }
5590 curr_inode = BTRFS_I(vfs_inode);
5591 }
5592out:
5593 btrfs_free_path(path);
5594 if (curr_inode)
5595 btrfs_add_delayed_iput(curr_inode);
5596
5597 if (ret) {
5598 struct btrfs_dir_list *next;
5599
5600 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5601 kfree(dir_elem);
5602 }
5603
5604 return ret;
5605}
5606
5607struct btrfs_ino_list {
5608 u64 ino;
5609 u64 parent;
5610 struct list_head list;
5611};
5612
5613static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5614{
5615 struct btrfs_ino_list *curr;
5616 struct btrfs_ino_list *next;
5617
5618 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5619 list_del(&curr->list);
5620 kfree(curr);
5621 }
5622}
5623
5624static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5625 struct btrfs_path *path)
5626{
5627 struct btrfs_key key;
5628 int ret;
5629
5630 key.objectid = ino;
5631 key.type = BTRFS_INODE_ITEM_KEY;
5632 key.offset = 0;
5633
5634 path->search_commit_root = 1;
5635 path->skip_locking = 1;
5636
5637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 if (WARN_ON_ONCE(ret > 0)) {
5639 /*
5640 * We have previously found the inode through the commit root
5641 * so this should not happen. If it does, just error out and
5642 * fallback to a transaction commit.
5643 */
5644 ret = -ENOENT;
5645 } else if (ret == 0) {
5646 struct btrfs_inode_item *item;
5647
5648 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5649 struct btrfs_inode_item);
5650 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5651 ret = 1;
5652 }
5653
5654 btrfs_release_path(path);
5655 path->search_commit_root = 0;
5656 path->skip_locking = 0;
5657
5658 return ret;
5659}
5660
5661static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5662 struct btrfs_root *root,
5663 struct btrfs_path *path,
5664 u64 ino, u64 parent,
5665 struct btrfs_log_ctx *ctx)
5666{
5667 struct btrfs_ino_list *ino_elem;
5668 struct inode *inode;
5669
5670 /*
5671 * It's rare to have a lot of conflicting inodes, in practice it is not
5672 * common to have more than 1 or 2. We don't want to collect too many,
5673 * as we could end up logging too many inodes (even if only in
5674 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5675 * commits.
5676 */
5677 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5678 return BTRFS_LOG_FORCE_COMMIT;
5679
5680 inode = btrfs_iget_logging(ino, root);
5681 /*
5682 * If the other inode that had a conflicting dir entry was deleted in
5683 * the current transaction then we either:
5684 *
5685 * 1) Log the parent directory (later after adding it to the list) if
5686 * the inode is a directory. This is because it may be a deleted
5687 * subvolume/snapshot or it may be a regular directory that had
5688 * deleted subvolumes/snapshots (or subdirectories that had them),
5689 * and at the moment we can't deal with dropping subvolumes/snapshots
5690 * during log replay. So we just log the parent, which will result in
5691 * a fallback to a transaction commit if we are dealing with those
5692 * cases (last_unlink_trans will match the current transaction);
5693 *
5694 * 2) Do nothing if it's not a directory. During log replay we simply
5695 * unlink the conflicting dentry from the parent directory and then
5696 * add the dentry for our inode. Like this we can avoid logging the
5697 * parent directory (and maybe fallback to a transaction commit in
5698 * case it has a last_unlink_trans == trans->transid, due to moving
5699 * some inode from it to some other directory).
5700 */
5701 if (IS_ERR(inode)) {
5702 int ret = PTR_ERR(inode);
5703
5704 if (ret != -ENOENT)
5705 return ret;
5706
5707 ret = conflicting_inode_is_dir(root, ino, path);
5708 /* Not a directory or we got an error. */
5709 if (ret <= 0)
5710 return ret;
5711
5712 /* Conflicting inode is a directory, so we'll log its parent. */
5713 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5714 if (!ino_elem)
5715 return -ENOMEM;
5716 ino_elem->ino = ino;
5717 ino_elem->parent = parent;
5718 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5719 ctx->num_conflict_inodes++;
5720
5721 return 0;
5722 }
5723
5724 /*
5725 * If the inode was already logged skip it - otherwise we can hit an
5726 * infinite loop. Example:
5727 *
5728 * From the commit root (previous transaction) we have the following
5729 * inodes:
5730 *
5731 * inode 257 a directory
5732 * inode 258 with references "zz" and "zz_link" on inode 257
5733 * inode 259 with reference "a" on inode 257
5734 *
5735 * And in the current (uncommitted) transaction we have:
5736 *
5737 * inode 257 a directory, unchanged
5738 * inode 258 with references "a" and "a2" on inode 257
5739 * inode 259 with reference "zz_link" on inode 257
5740 * inode 261 with reference "zz" on inode 257
5741 *
5742 * When logging inode 261 the following infinite loop could
5743 * happen if we don't skip already logged inodes:
5744 *
5745 * - we detect inode 258 as a conflicting inode, with inode 261
5746 * on reference "zz", and log it;
5747 *
5748 * - we detect inode 259 as a conflicting inode, with inode 258
5749 * on reference "a", and log it;
5750 *
5751 * - we detect inode 258 as a conflicting inode, with inode 259
5752 * on reference "zz_link", and log it - again! After this we
5753 * repeat the above steps forever.
5754 *
5755 * Here we can use need_log_inode() because we only need to log the
5756 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757 * so that the log ends up with the new name and without the old name.
5758 */
5759 if (!need_log_inode(trans, BTRFS_I(inode))) {
5760 btrfs_add_delayed_iput(BTRFS_I(inode));
5761 return 0;
5762 }
5763
5764 btrfs_add_delayed_iput(BTRFS_I(inode));
5765
5766 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5767 if (!ino_elem)
5768 return -ENOMEM;
5769 ino_elem->ino = ino;
5770 ino_elem->parent = parent;
5771 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5772 ctx->num_conflict_inodes++;
5773
5774 return 0;
5775}
5776
5777static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5778 struct btrfs_root *root,
5779 struct btrfs_log_ctx *ctx)
5780{
5781 int ret = 0;
5782
5783 /*
5784 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785 * otherwise we could have unbounded recursion of btrfs_log_inode()
5786 * calls. This check guarantees we can have only 1 level of recursion.
5787 */
5788 if (ctx->logging_conflict_inodes)
5789 return 0;
5790
5791 ctx->logging_conflict_inodes = true;
5792
5793 /*
5794 * New conflicting inodes may be found and added to the list while we
5795 * are logging a conflicting inode, so keep iterating while the list is
5796 * not empty.
5797 */
5798 while (!list_empty(&ctx->conflict_inodes)) {
5799 struct btrfs_ino_list *curr;
5800 struct inode *inode;
5801 u64 ino;
5802 u64 parent;
5803
5804 curr = list_first_entry(&ctx->conflict_inodes,
5805 struct btrfs_ino_list, list);
5806 ino = curr->ino;
5807 parent = curr->parent;
5808 list_del(&curr->list);
5809 kfree(curr);
5810
5811 inode = btrfs_iget_logging(ino, root);
5812 /*
5813 * If the other inode that had a conflicting dir entry was
5814 * deleted in the current transaction, we need to log its parent
5815 * directory. See the comment at add_conflicting_inode().
5816 */
5817 if (IS_ERR(inode)) {
5818 ret = PTR_ERR(inode);
5819 if (ret != -ENOENT)
5820 break;
5821
5822 inode = btrfs_iget_logging(parent, root);
5823 if (IS_ERR(inode)) {
5824 ret = PTR_ERR(inode);
5825 break;
5826 }
5827
5828 /*
5829 * Always log the directory, we cannot make this
5830 * conditional on need_log_inode() because the directory
5831 * might have been logged in LOG_INODE_EXISTS mode or
5832 * the dir index of the conflicting inode is not in a
5833 * dir index key range logged for the directory. So we
5834 * must make sure the deletion is recorded.
5835 */
5836 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5837 LOG_INODE_ALL, ctx);
5838 btrfs_add_delayed_iput(BTRFS_I(inode));
5839 if (ret)
5840 break;
5841 continue;
5842 }
5843
5844 /*
5845 * Here we can use need_log_inode() because we only need to log
5846 * the inode in LOG_INODE_EXISTS mode and rename operations
5847 * update the log, so that the log ends up with the new name and
5848 * without the old name.
5849 *
5850 * We did this check at add_conflicting_inode(), but here we do
5851 * it again because if some other task logged the inode after
5852 * that, we can avoid doing it again.
5853 */
5854 if (!need_log_inode(trans, BTRFS_I(inode))) {
5855 btrfs_add_delayed_iput(BTRFS_I(inode));
5856 continue;
5857 }
5858
5859 /*
5860 * We are safe logging the other inode without acquiring its
5861 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862 * are safe against concurrent renames of the other inode as
5863 * well because during a rename we pin the log and update the
5864 * log with the new name before we unpin it.
5865 */
5866 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5867 btrfs_add_delayed_iput(BTRFS_I(inode));
5868 if (ret)
5869 break;
5870 }
5871
5872 ctx->logging_conflict_inodes = false;
5873 if (ret)
5874 free_conflicting_inodes(ctx);
5875
5876 return ret;
5877}
5878
5879static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5880 struct btrfs_inode *inode,
5881 struct btrfs_key *min_key,
5882 const struct btrfs_key *max_key,
5883 struct btrfs_path *path,
5884 struct btrfs_path *dst_path,
5885 const u64 logged_isize,
5886 const int inode_only,
5887 struct btrfs_log_ctx *ctx,
5888 bool *need_log_inode_item)
5889{
5890 const u64 i_size = i_size_read(&inode->vfs_inode);
5891 struct btrfs_root *root = inode->root;
5892 int ins_start_slot = 0;
5893 int ins_nr = 0;
5894 int ret;
5895
5896 while (1) {
5897 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5898 if (ret < 0)
5899 return ret;
5900 if (ret > 0) {
5901 ret = 0;
5902 break;
5903 }
5904again:
5905 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906 if (min_key->objectid != max_key->objectid)
5907 break;
5908 if (min_key->type > max_key->type)
5909 break;
5910
5911 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5912 *need_log_inode_item = false;
5913 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5914 min_key->offset >= i_size) {
5915 /*
5916 * Extents at and beyond eof are logged with
5917 * btrfs_log_prealloc_extents().
5918 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919 * and no keys greater than that, so bail out.
5920 */
5921 break;
5922 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5923 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5924 (inode->generation == trans->transid ||
5925 ctx->logging_conflict_inodes)) {
5926 u64 other_ino = 0;
5927 u64 other_parent = 0;
5928
5929 ret = btrfs_check_ref_name_override(path->nodes[0],
5930 path->slots[0], min_key, inode,
5931 &other_ino, &other_parent);
5932 if (ret < 0) {
5933 return ret;
5934 } else if (ret > 0 &&
5935 other_ino != btrfs_ino(ctx->inode)) {
5936 if (ins_nr > 0) {
5937 ins_nr++;
5938 } else {
5939 ins_nr = 1;
5940 ins_start_slot = path->slots[0];
5941 }
5942 ret = copy_items(trans, inode, dst_path, path,
5943 ins_start_slot, ins_nr,
5944 inode_only, logged_isize, ctx);
5945 if (ret < 0)
5946 return ret;
5947 ins_nr = 0;
5948
5949 btrfs_release_path(path);
5950 ret = add_conflicting_inode(trans, root, path,
5951 other_ino,
5952 other_parent, ctx);
5953 if (ret)
5954 return ret;
5955 goto next_key;
5956 }
5957 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5958 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5959 if (ins_nr == 0)
5960 goto next_slot;
5961 ret = copy_items(trans, inode, dst_path, path,
5962 ins_start_slot,
5963 ins_nr, inode_only, logged_isize, ctx);
5964 if (ret < 0)
5965 return ret;
5966 ins_nr = 0;
5967 goto next_slot;
5968 }
5969
5970 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5971 ins_nr++;
5972 goto next_slot;
5973 } else if (!ins_nr) {
5974 ins_start_slot = path->slots[0];
5975 ins_nr = 1;
5976 goto next_slot;
5977 }
5978
5979 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5980 ins_nr, inode_only, logged_isize, ctx);
5981 if (ret < 0)
5982 return ret;
5983 ins_nr = 1;
5984 ins_start_slot = path->slots[0];
5985next_slot:
5986 path->slots[0]++;
5987 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5988 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5989 path->slots[0]);
5990 goto again;
5991 }
5992 if (ins_nr) {
5993 ret = copy_items(trans, inode, dst_path, path,
5994 ins_start_slot, ins_nr, inode_only,
5995 logged_isize, ctx);
5996 if (ret < 0)
5997 return ret;
5998 ins_nr = 0;
5999 }
6000 btrfs_release_path(path);
6001next_key:
6002 if (min_key->offset < (u64)-1) {
6003 min_key->offset++;
6004 } else if (min_key->type < max_key->type) {
6005 min_key->type++;
6006 min_key->offset = 0;
6007 } else {
6008 break;
6009 }
6010
6011 /*
6012 * We may process many leaves full of items for our inode, so
6013 * avoid monopolizing a cpu for too long by rescheduling while
6014 * not holding locks on any tree.
6015 */
6016 cond_resched();
6017 }
6018 if (ins_nr) {
6019 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6020 ins_nr, inode_only, logged_isize, ctx);
6021 if (ret)
6022 return ret;
6023 }
6024
6025 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6026 /*
6027 * Release the path because otherwise we might attempt to double
6028 * lock the same leaf with btrfs_log_prealloc_extents() below.
6029 */
6030 btrfs_release_path(path);
6031 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6032 }
6033
6034 return ret;
6035}
6036
6037static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6038 struct btrfs_root *log,
6039 struct btrfs_path *path,
6040 const struct btrfs_item_batch *batch,
6041 const struct btrfs_delayed_item *first_item)
6042{
6043 const struct btrfs_delayed_item *curr = first_item;
6044 int ret;
6045
6046 ret = btrfs_insert_empty_items(trans, log, path, batch);
6047 if (ret)
6048 return ret;
6049
6050 for (int i = 0; i < batch->nr; i++) {
6051 char *data_ptr;
6052
6053 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6054 write_extent_buffer(path->nodes[0], &curr->data,
6055 (unsigned long)data_ptr, curr->data_len);
6056 curr = list_next_entry(curr, log_list);
6057 path->slots[0]++;
6058 }
6059
6060 btrfs_release_path(path);
6061
6062 return 0;
6063}
6064
6065static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6066 struct btrfs_inode *inode,
6067 struct btrfs_path *path,
6068 const struct list_head *delayed_ins_list,
6069 struct btrfs_log_ctx *ctx)
6070{
6071 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072 const int max_batch_size = 195;
6073 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6074 const u64 ino = btrfs_ino(inode);
6075 struct btrfs_root *log = inode->root->log_root;
6076 struct btrfs_item_batch batch = {
6077 .nr = 0,
6078 .total_data_size = 0,
6079 };
6080 const struct btrfs_delayed_item *first = NULL;
6081 const struct btrfs_delayed_item *curr;
6082 char *ins_data;
6083 struct btrfs_key *ins_keys;
6084 u32 *ins_sizes;
6085 u64 curr_batch_size = 0;
6086 int batch_idx = 0;
6087 int ret;
6088
6089 /* We are adding dir index items to the log tree. */
6090 lockdep_assert_held(&inode->log_mutex);
6091
6092 /*
6093 * We collect delayed items before copying index keys from the subvolume
6094 * to the log tree. However just after we collected them, they may have
6095 * been flushed (all of them or just some of them), and therefore we
6096 * could have copied them from the subvolume tree to the log tree.
6097 * So find the first delayed item that was not yet logged (they are
6098 * sorted by index number).
6099 */
6100 list_for_each_entry(curr, delayed_ins_list, log_list) {
6101 if (curr->index > inode->last_dir_index_offset) {
6102 first = curr;
6103 break;
6104 }
6105 }
6106
6107 /* Empty list or all delayed items were already logged. */
6108 if (!first)
6109 return 0;
6110
6111 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6112 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6113 if (!ins_data)
6114 return -ENOMEM;
6115 ins_sizes = (u32 *)ins_data;
6116 batch.data_sizes = ins_sizes;
6117 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6118 batch.keys = ins_keys;
6119
6120 curr = first;
6121 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6122 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6123
6124 if (curr_batch_size + curr_size > leaf_data_size ||
6125 batch.nr == max_batch_size) {
6126 ret = insert_delayed_items_batch(trans, log, path,
6127 &batch, first);
6128 if (ret)
6129 goto out;
6130 batch_idx = 0;
6131 batch.nr = 0;
6132 batch.total_data_size = 0;
6133 curr_batch_size = 0;
6134 first = curr;
6135 }
6136
6137 ins_sizes[batch_idx] = curr->data_len;
6138 ins_keys[batch_idx].objectid = ino;
6139 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6140 ins_keys[batch_idx].offset = curr->index;
6141 curr_batch_size += curr_size;
6142 batch.total_data_size += curr->data_len;
6143 batch.nr++;
6144 batch_idx++;
6145 curr = list_next_entry(curr, log_list);
6146 }
6147
6148 ASSERT(batch.nr >= 1);
6149 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6150
6151 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6152 log_list);
6153 inode->last_dir_index_offset = curr->index;
6154out:
6155 kfree(ins_data);
6156
6157 return ret;
6158}
6159
6160static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6161 struct btrfs_inode *inode,
6162 struct btrfs_path *path,
6163 const struct list_head *delayed_del_list,
6164 struct btrfs_log_ctx *ctx)
6165{
6166 const u64 ino = btrfs_ino(inode);
6167 const struct btrfs_delayed_item *curr;
6168
6169 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170 log_list);
6171
6172 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173 u64 first_dir_index = curr->index;
6174 u64 last_dir_index;
6175 const struct btrfs_delayed_item *next;
6176 int ret;
6177
6178 /*
6179 * Find a range of consecutive dir index items to delete. Like
6180 * this we log a single dir range item spanning several contiguous
6181 * dir items instead of logging one range item per dir index item.
6182 */
6183 next = list_next_entry(curr, log_list);
6184 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6185 if (next->index != curr->index + 1)
6186 break;
6187 curr = next;
6188 next = list_next_entry(next, log_list);
6189 }
6190
6191 last_dir_index = curr->index;
6192 ASSERT(last_dir_index >= first_dir_index);
6193
6194 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6195 ino, first_dir_index, last_dir_index);
6196 if (ret)
6197 return ret;
6198 curr = list_next_entry(curr, log_list);
6199 }
6200
6201 return 0;
6202}
6203
6204static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6205 struct btrfs_inode *inode,
6206 struct btrfs_path *path,
6207 const struct list_head *delayed_del_list,
6208 const struct btrfs_delayed_item *first,
6209 const struct btrfs_delayed_item **last_ret)
6210{
6211 const struct btrfs_delayed_item *next;
6212 struct extent_buffer *leaf = path->nodes[0];
6213 const int last_slot = btrfs_header_nritems(leaf) - 1;
6214 int slot = path->slots[0] + 1;
6215 const u64 ino = btrfs_ino(inode);
6216
6217 next = list_next_entry(first, log_list);
6218
6219 while (slot < last_slot &&
6220 !list_entry_is_head(next, delayed_del_list, log_list)) {
6221 struct btrfs_key key;
6222
6223 btrfs_item_key_to_cpu(leaf, &key, slot);
6224 if (key.objectid != ino ||
6225 key.type != BTRFS_DIR_INDEX_KEY ||
6226 key.offset != next->index)
6227 break;
6228
6229 slot++;
6230 *last_ret = next;
6231 next = list_next_entry(next, log_list);
6232 }
6233
6234 return btrfs_del_items(trans, inode->root->log_root, path,
6235 path->slots[0], slot - path->slots[0]);
6236}
6237
6238static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6239 struct btrfs_inode *inode,
6240 struct btrfs_path *path,
6241 const struct list_head *delayed_del_list,
6242 struct btrfs_log_ctx *ctx)
6243{
6244 struct btrfs_root *log = inode->root->log_root;
6245 const struct btrfs_delayed_item *curr;
6246 u64 last_range_start = 0;
6247 u64 last_range_end = 0;
6248 struct btrfs_key key;
6249
6250 key.objectid = btrfs_ino(inode);
6251 key.type = BTRFS_DIR_INDEX_KEY;
6252 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6253 log_list);
6254
6255 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6256 const struct btrfs_delayed_item *last = curr;
6257 u64 first_dir_index = curr->index;
6258 u64 last_dir_index;
6259 bool deleted_items = false;
6260 int ret;
6261
6262 key.offset = curr->index;
6263 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6264 if (ret < 0) {
6265 return ret;
6266 } else if (ret == 0) {
6267 ret = batch_delete_dir_index_items(trans, inode, path,
6268 delayed_del_list, curr,
6269 &last);
6270 if (ret)
6271 return ret;
6272 deleted_items = true;
6273 }
6274
6275 btrfs_release_path(path);
6276
6277 /*
6278 * If we deleted items from the leaf, it means we have a range
6279 * item logging their range, so no need to add one or update an
6280 * existing one. Otherwise we have to log a dir range item.
6281 */
6282 if (deleted_items)
6283 goto next_batch;
6284
6285 last_dir_index = last->index;
6286 ASSERT(last_dir_index >= first_dir_index);
6287 /*
6288 * If this range starts right after where the previous one ends,
6289 * then we want to reuse the previous range item and change its
6290 * end offset to the end of this range. This is just to minimize
6291 * leaf space usage, by avoiding adding a new range item.
6292 */
6293 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6294 first_dir_index = last_range_start;
6295
6296 ret = insert_dir_log_key(trans, log, path, key.objectid,
6297 first_dir_index, last_dir_index);
6298 if (ret)
6299 return ret;
6300
6301 last_range_start = first_dir_index;
6302 last_range_end = last_dir_index;
6303next_batch:
6304 curr = list_next_entry(last, log_list);
6305 }
6306
6307 return 0;
6308}
6309
6310static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6311 struct btrfs_inode *inode,
6312 struct btrfs_path *path,
6313 const struct list_head *delayed_del_list,
6314 struct btrfs_log_ctx *ctx)
6315{
6316 /*
6317 * We are deleting dir index items from the log tree or adding range
6318 * items to it.
6319 */
6320 lockdep_assert_held(&inode->log_mutex);
6321
6322 if (list_empty(delayed_del_list))
6323 return 0;
6324
6325 if (ctx->logged_before)
6326 return log_delayed_deletions_incremental(trans, inode, path,
6327 delayed_del_list, ctx);
6328
6329 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6330 ctx);
6331}
6332
6333/*
6334 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6335 * items instead of the subvolume tree.
6336 */
6337static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6338 struct btrfs_inode *inode,
6339 const struct list_head *delayed_ins_list,
6340 struct btrfs_log_ctx *ctx)
6341{
6342 const bool orig_log_new_dentries = ctx->log_new_dentries;
6343 struct btrfs_delayed_item *item;
6344 int ret = 0;
6345
6346 /*
6347 * No need for the log mutex, plus to avoid potential deadlocks or
6348 * lockdep annotations due to nesting of delayed inode mutexes and log
6349 * mutexes.
6350 */
6351 lockdep_assert_not_held(&inode->log_mutex);
6352
6353 ASSERT(!ctx->logging_new_delayed_dentries);
6354 ctx->logging_new_delayed_dentries = true;
6355
6356 list_for_each_entry(item, delayed_ins_list, log_list) {
6357 struct btrfs_dir_item *dir_item;
6358 struct inode *di_inode;
6359 struct btrfs_key key;
6360 int log_mode = LOG_INODE_EXISTS;
6361
6362 dir_item = (struct btrfs_dir_item *)item->data;
6363 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6364
6365 if (key.type == BTRFS_ROOT_ITEM_KEY)
6366 continue;
6367
6368 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6369 if (IS_ERR(di_inode)) {
6370 ret = PTR_ERR(di_inode);
6371 break;
6372 }
6373
6374 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6375 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6376 continue;
6377 }
6378
6379 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6380 log_mode = LOG_INODE_ALL;
6381
6382 ctx->log_new_dentries = false;
6383 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6384
6385 if (!ret && ctx->log_new_dentries)
6386 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6387
6388 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6389
6390 if (ret)
6391 break;
6392 }
6393
6394 ctx->log_new_dentries = orig_log_new_dentries;
6395 ctx->logging_new_delayed_dentries = false;
6396
6397 return ret;
6398}
6399
6400/* log a single inode in the tree log.
6401 * At least one parent directory for this inode must exist in the tree
6402 * or be logged already.
6403 *
6404 * Any items from this inode changed by the current transaction are copied
6405 * to the log tree. An extra reference is taken on any extents in this
6406 * file, allowing us to avoid a whole pile of corner cases around logging
6407 * blocks that have been removed from the tree.
6408 *
6409 * See LOG_INODE_ALL and related defines for a description of what inode_only
6410 * does.
6411 *
6412 * This handles both files and directories.
6413 */
6414static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6415 struct btrfs_inode *inode,
6416 int inode_only,
6417 struct btrfs_log_ctx *ctx)
6418{
6419 struct btrfs_path *path;
6420 struct btrfs_path *dst_path;
6421 struct btrfs_key min_key;
6422 struct btrfs_key max_key;
6423 struct btrfs_root *log = inode->root->log_root;
6424 int ret;
6425 bool fast_search = false;
6426 u64 ino = btrfs_ino(inode);
6427 struct extent_map_tree *em_tree = &inode->extent_tree;
6428 u64 logged_isize = 0;
6429 bool need_log_inode_item = true;
6430 bool xattrs_logged = false;
6431 bool inode_item_dropped = true;
6432 bool full_dir_logging = false;
6433 LIST_HEAD(delayed_ins_list);
6434 LIST_HEAD(delayed_del_list);
6435
6436 path = btrfs_alloc_path();
6437 if (!path)
6438 return -ENOMEM;
6439 dst_path = btrfs_alloc_path();
6440 if (!dst_path) {
6441 btrfs_free_path(path);
6442 return -ENOMEM;
6443 }
6444
6445 min_key.objectid = ino;
6446 min_key.type = BTRFS_INODE_ITEM_KEY;
6447 min_key.offset = 0;
6448
6449 max_key.objectid = ino;
6450
6451
6452 /* today the code can only do partial logging of directories */
6453 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6454 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6455 &inode->runtime_flags) &&
6456 inode_only >= LOG_INODE_EXISTS))
6457 max_key.type = BTRFS_XATTR_ITEM_KEY;
6458 else
6459 max_key.type = (u8)-1;
6460 max_key.offset = (u64)-1;
6461
6462 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6463 full_dir_logging = true;
6464
6465 /*
6466 * If we are logging a directory while we are logging dentries of the
6467 * delayed items of some other inode, then we need to flush the delayed
6468 * items of this directory and not log the delayed items directly. This
6469 * is to prevent more than one level of recursion into btrfs_log_inode()
6470 * by having something like this:
6471 *
6472 * $ mkdir -p a/b/c/d/e/f/g/h/...
6473 * $ xfs_io -c "fsync" a
6474 *
6475 * Where all directories in the path did not exist before and are
6476 * created in the current transaction.
6477 * So in such a case we directly log the delayed items of the main
6478 * directory ("a") without flushing them first, while for each of its
6479 * subdirectories we flush their delayed items before logging them.
6480 * This prevents a potential unbounded recursion like this:
6481 *
6482 * btrfs_log_inode()
6483 * log_new_delayed_dentries()
6484 * btrfs_log_inode()
6485 * log_new_delayed_dentries()
6486 * btrfs_log_inode()
6487 * log_new_delayed_dentries()
6488 * (...)
6489 *
6490 * We have thresholds for the maximum number of delayed items to have in
6491 * memory, and once they are hit, the items are flushed asynchronously.
6492 * However the limit is quite high, so lets prevent deep levels of
6493 * recursion to happen by limiting the maximum depth to be 1.
6494 */
6495 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6496 ret = btrfs_commit_inode_delayed_items(trans, inode);
6497 if (ret)
6498 goto out;
6499 }
6500
6501 mutex_lock(&inode->log_mutex);
6502
6503 /*
6504 * For symlinks, we must always log their content, which is stored in an
6505 * inline extent, otherwise we could end up with an empty symlink after
6506 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6507 * one attempts to create an empty symlink).
6508 * We don't need to worry about flushing delalloc, because when we create
6509 * the inline extent when the symlink is created (we never have delalloc
6510 * for symlinks).
6511 */
6512 if (S_ISLNK(inode->vfs_inode.i_mode))
6513 inode_only = LOG_INODE_ALL;
6514
6515 /*
6516 * Before logging the inode item, cache the value returned by
6517 * inode_logged(), because after that we have the need to figure out if
6518 * the inode was previously logged in this transaction.
6519 */
6520 ret = inode_logged(trans, inode, path);
6521 if (ret < 0)
6522 goto out_unlock;
6523 ctx->logged_before = (ret == 1);
6524 ret = 0;
6525
6526 /*
6527 * This is for cases where logging a directory could result in losing a
6528 * a file after replaying the log. For example, if we move a file from a
6529 * directory A to a directory B, then fsync directory A, we have no way
6530 * to known the file was moved from A to B, so logging just A would
6531 * result in losing the file after a log replay.
6532 */
6533 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6534 ret = BTRFS_LOG_FORCE_COMMIT;
6535 goto out_unlock;
6536 }
6537
6538 /*
6539 * a brute force approach to making sure we get the most uptodate
6540 * copies of everything.
6541 */
6542 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6543 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6544 if (ctx->logged_before)
6545 ret = drop_inode_items(trans, log, path, inode,
6546 BTRFS_XATTR_ITEM_KEY);
6547 } else {
6548 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6549 /*
6550 * Make sure the new inode item we write to the log has
6551 * the same isize as the current one (if it exists).
6552 * This is necessary to prevent data loss after log
6553 * replay, and also to prevent doing a wrong expanding
6554 * truncate - for e.g. create file, write 4K into offset
6555 * 0, fsync, write 4K into offset 4096, add hard link,
6556 * fsync some other file (to sync log), power fail - if
6557 * we use the inode's current i_size, after log replay
6558 * we get a 8Kb file, with the last 4Kb extent as a hole
6559 * (zeroes), as if an expanding truncate happened,
6560 * instead of getting a file of 4Kb only.
6561 */
6562 ret = logged_inode_size(log, inode, path, &logged_isize);
6563 if (ret)
6564 goto out_unlock;
6565 }
6566 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6567 &inode->runtime_flags)) {
6568 if (inode_only == LOG_INODE_EXISTS) {
6569 max_key.type = BTRFS_XATTR_ITEM_KEY;
6570 if (ctx->logged_before)
6571 ret = drop_inode_items(trans, log, path,
6572 inode, max_key.type);
6573 } else {
6574 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6575 &inode->runtime_flags);
6576 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6577 &inode->runtime_flags);
6578 if (ctx->logged_before)
6579 ret = truncate_inode_items(trans, log,
6580 inode, 0, 0);
6581 }
6582 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6583 &inode->runtime_flags) ||
6584 inode_only == LOG_INODE_EXISTS) {
6585 if (inode_only == LOG_INODE_ALL)
6586 fast_search = true;
6587 max_key.type = BTRFS_XATTR_ITEM_KEY;
6588 if (ctx->logged_before)
6589 ret = drop_inode_items(trans, log, path, inode,
6590 max_key.type);
6591 } else {
6592 if (inode_only == LOG_INODE_ALL)
6593 fast_search = true;
6594 inode_item_dropped = false;
6595 goto log_extents;
6596 }
6597
6598 }
6599 if (ret)
6600 goto out_unlock;
6601
6602 /*
6603 * If we are logging a directory in full mode, collect the delayed items
6604 * before iterating the subvolume tree, so that we don't miss any new
6605 * dir index items in case they get flushed while or right after we are
6606 * iterating the subvolume tree.
6607 */
6608 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6609 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6610 &delayed_del_list);
6611
6612 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6613 path, dst_path, logged_isize,
6614 inode_only, ctx,
6615 &need_log_inode_item);
6616 if (ret)
6617 goto out_unlock;
6618
6619 btrfs_release_path(path);
6620 btrfs_release_path(dst_path);
6621 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6622 if (ret)
6623 goto out_unlock;
6624 xattrs_logged = true;
6625 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6626 btrfs_release_path(path);
6627 btrfs_release_path(dst_path);
6628 ret = btrfs_log_holes(trans, inode, path);
6629 if (ret)
6630 goto out_unlock;
6631 }
6632log_extents:
6633 btrfs_release_path(path);
6634 btrfs_release_path(dst_path);
6635 if (need_log_inode_item) {
6636 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6637 if (ret)
6638 goto out_unlock;
6639 /*
6640 * If we are doing a fast fsync and the inode was logged before
6641 * in this transaction, we don't need to log the xattrs because
6642 * they were logged before. If xattrs were added, changed or
6643 * deleted since the last time we logged the inode, then we have
6644 * already logged them because the inode had the runtime flag
6645 * BTRFS_INODE_COPY_EVERYTHING set.
6646 */
6647 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6648 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6649 if (ret)
6650 goto out_unlock;
6651 btrfs_release_path(path);
6652 }
6653 }
6654 if (fast_search) {
6655 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6656 if (ret)
6657 goto out_unlock;
6658 } else if (inode_only == LOG_INODE_ALL) {
6659 struct extent_map *em, *n;
6660
6661 write_lock(&em_tree->lock);
6662 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6663 list_del_init(&em->list);
6664 write_unlock(&em_tree->lock);
6665 }
6666
6667 if (full_dir_logging) {
6668 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6669 if (ret)
6670 goto out_unlock;
6671 ret = log_delayed_insertion_items(trans, inode, path,
6672 &delayed_ins_list, ctx);
6673 if (ret)
6674 goto out_unlock;
6675 ret = log_delayed_deletion_items(trans, inode, path,
6676 &delayed_del_list, ctx);
6677 if (ret)
6678 goto out_unlock;
6679 }
6680
6681 spin_lock(&inode->lock);
6682 inode->logged_trans = trans->transid;
6683 /*
6684 * Don't update last_log_commit if we logged that an inode exists.
6685 * We do this for three reasons:
6686 *
6687 * 1) We might have had buffered writes to this inode that were
6688 * flushed and had their ordered extents completed in this
6689 * transaction, but we did not previously log the inode with
6690 * LOG_INODE_ALL. Later the inode was evicted and after that
6691 * it was loaded again and this LOG_INODE_EXISTS log operation
6692 * happened. We must make sure that if an explicit fsync against
6693 * the inode is performed later, it logs the new extents, an
6694 * updated inode item, etc, and syncs the log. The same logic
6695 * applies to direct IO writes instead of buffered writes.
6696 *
6697 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6698 * is logged with an i_size of 0 or whatever value was logged
6699 * before. If later the i_size of the inode is increased by a
6700 * truncate operation, the log is synced through an fsync of
6701 * some other inode and then finally an explicit fsync against
6702 * this inode is made, we must make sure this fsync logs the
6703 * inode with the new i_size, the hole between old i_size and
6704 * the new i_size, and syncs the log.
6705 *
6706 * 3) If we are logging that an ancestor inode exists as part of
6707 * logging a new name from a link or rename operation, don't update
6708 * its last_log_commit - otherwise if an explicit fsync is made
6709 * against an ancestor, the fsync considers the inode in the log
6710 * and doesn't sync the log, resulting in the ancestor missing after
6711 * a power failure unless the log was synced as part of an fsync
6712 * against any other unrelated inode.
6713 */
6714 if (inode_only != LOG_INODE_EXISTS)
6715 inode->last_log_commit = inode->last_sub_trans;
6716 spin_unlock(&inode->lock);
6717
6718 /*
6719 * Reset the last_reflink_trans so that the next fsync does not need to
6720 * go through the slower path when logging extents and their checksums.
6721 */
6722 if (inode_only == LOG_INODE_ALL)
6723 inode->last_reflink_trans = 0;
6724
6725out_unlock:
6726 mutex_unlock(&inode->log_mutex);
6727out:
6728 btrfs_free_path(path);
6729 btrfs_free_path(dst_path);
6730
6731 if (ret)
6732 free_conflicting_inodes(ctx);
6733 else
6734 ret = log_conflicting_inodes(trans, inode->root, ctx);
6735
6736 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6737 if (!ret)
6738 ret = log_new_delayed_dentries(trans, inode,
6739 &delayed_ins_list, ctx);
6740
6741 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6742 &delayed_del_list);
6743 }
6744
6745 return ret;
6746}
6747
6748static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6749 struct btrfs_inode *inode,
6750 struct btrfs_log_ctx *ctx)
6751{
6752 int ret;
6753 struct btrfs_path *path;
6754 struct btrfs_key key;
6755 struct btrfs_root *root = inode->root;
6756 const u64 ino = btrfs_ino(inode);
6757
6758 path = btrfs_alloc_path();
6759 if (!path)
6760 return -ENOMEM;
6761 path->skip_locking = 1;
6762 path->search_commit_root = 1;
6763
6764 key.objectid = ino;
6765 key.type = BTRFS_INODE_REF_KEY;
6766 key.offset = 0;
6767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6768 if (ret < 0)
6769 goto out;
6770
6771 while (true) {
6772 struct extent_buffer *leaf = path->nodes[0];
6773 int slot = path->slots[0];
6774 u32 cur_offset = 0;
6775 u32 item_size;
6776 unsigned long ptr;
6777
6778 if (slot >= btrfs_header_nritems(leaf)) {
6779 ret = btrfs_next_leaf(root, path);
6780 if (ret < 0)
6781 goto out;
6782 else if (ret > 0)
6783 break;
6784 continue;
6785 }
6786
6787 btrfs_item_key_to_cpu(leaf, &key, slot);
6788 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6789 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6790 break;
6791
6792 item_size = btrfs_item_size(leaf, slot);
6793 ptr = btrfs_item_ptr_offset(leaf, slot);
6794 while (cur_offset < item_size) {
6795 struct btrfs_key inode_key;
6796 struct inode *dir_inode;
6797
6798 inode_key.type = BTRFS_INODE_ITEM_KEY;
6799 inode_key.offset = 0;
6800
6801 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6802 struct btrfs_inode_extref *extref;
6803
6804 extref = (struct btrfs_inode_extref *)
6805 (ptr + cur_offset);
6806 inode_key.objectid = btrfs_inode_extref_parent(
6807 leaf, extref);
6808 cur_offset += sizeof(*extref);
6809 cur_offset += btrfs_inode_extref_name_len(leaf,
6810 extref);
6811 } else {
6812 inode_key.objectid = key.offset;
6813 cur_offset = item_size;
6814 }
6815
6816 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6817 /*
6818 * If the parent inode was deleted, return an error to
6819 * fallback to a transaction commit. This is to prevent
6820 * getting an inode that was moved from one parent A to
6821 * a parent B, got its former parent A deleted and then
6822 * it got fsync'ed, from existing at both parents after
6823 * a log replay (and the old parent still existing).
6824 * Example:
6825 *
6826 * mkdir /mnt/A
6827 * mkdir /mnt/B
6828 * touch /mnt/B/bar
6829 * sync
6830 * mv /mnt/B/bar /mnt/A/bar
6831 * mv -T /mnt/A /mnt/B
6832 * fsync /mnt/B/bar
6833 * <power fail>
6834 *
6835 * If we ignore the old parent B which got deleted,
6836 * after a log replay we would have file bar linked
6837 * at both parents and the old parent B would still
6838 * exist.
6839 */
6840 if (IS_ERR(dir_inode)) {
6841 ret = PTR_ERR(dir_inode);
6842 goto out;
6843 }
6844
6845 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6846 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6847 continue;
6848 }
6849
6850 ctx->log_new_dentries = false;
6851 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6852 LOG_INODE_ALL, ctx);
6853 if (!ret && ctx->log_new_dentries)
6854 ret = log_new_dir_dentries(trans,
6855 BTRFS_I(dir_inode), ctx);
6856 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6857 if (ret)
6858 goto out;
6859 }
6860 path->slots[0]++;
6861 }
6862 ret = 0;
6863out:
6864 btrfs_free_path(path);
6865 return ret;
6866}
6867
6868static int log_new_ancestors(struct btrfs_trans_handle *trans,
6869 struct btrfs_root *root,
6870 struct btrfs_path *path,
6871 struct btrfs_log_ctx *ctx)
6872{
6873 struct btrfs_key found_key;
6874
6875 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6876
6877 while (true) {
6878 struct extent_buffer *leaf;
6879 int slot;
6880 struct btrfs_key search_key;
6881 struct inode *inode;
6882 u64 ino;
6883 int ret = 0;
6884
6885 btrfs_release_path(path);
6886
6887 ino = found_key.offset;
6888
6889 search_key.objectid = found_key.offset;
6890 search_key.type = BTRFS_INODE_ITEM_KEY;
6891 search_key.offset = 0;
6892 inode = btrfs_iget_logging(ino, root);
6893 if (IS_ERR(inode))
6894 return PTR_ERR(inode);
6895
6896 if (BTRFS_I(inode)->generation >= trans->transid &&
6897 need_log_inode(trans, BTRFS_I(inode)))
6898 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6899 LOG_INODE_EXISTS, ctx);
6900 btrfs_add_delayed_iput(BTRFS_I(inode));
6901 if (ret)
6902 return ret;
6903
6904 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6905 break;
6906
6907 search_key.type = BTRFS_INODE_REF_KEY;
6908 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6909 if (ret < 0)
6910 return ret;
6911
6912 leaf = path->nodes[0];
6913 slot = path->slots[0];
6914 if (slot >= btrfs_header_nritems(leaf)) {
6915 ret = btrfs_next_leaf(root, path);
6916 if (ret < 0)
6917 return ret;
6918 else if (ret > 0)
6919 return -ENOENT;
6920 leaf = path->nodes[0];
6921 slot = path->slots[0];
6922 }
6923
6924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6925 if (found_key.objectid != search_key.objectid ||
6926 found_key.type != BTRFS_INODE_REF_KEY)
6927 return -ENOENT;
6928 }
6929 return 0;
6930}
6931
6932static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6933 struct btrfs_inode *inode,
6934 struct dentry *parent,
6935 struct btrfs_log_ctx *ctx)
6936{
6937 struct btrfs_root *root = inode->root;
6938 struct dentry *old_parent = NULL;
6939 struct super_block *sb = inode->vfs_inode.i_sb;
6940 int ret = 0;
6941
6942 while (true) {
6943 if (!parent || d_really_is_negative(parent) ||
6944 sb != parent->d_sb)
6945 break;
6946
6947 inode = BTRFS_I(d_inode(parent));
6948 if (root != inode->root)
6949 break;
6950
6951 if (inode->generation >= trans->transid &&
6952 need_log_inode(trans, inode)) {
6953 ret = btrfs_log_inode(trans, inode,
6954 LOG_INODE_EXISTS, ctx);
6955 if (ret)
6956 break;
6957 }
6958 if (IS_ROOT(parent))
6959 break;
6960
6961 parent = dget_parent(parent);
6962 dput(old_parent);
6963 old_parent = parent;
6964 }
6965 dput(old_parent);
6966
6967 return ret;
6968}
6969
6970static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6971 struct btrfs_inode *inode,
6972 struct dentry *parent,
6973 struct btrfs_log_ctx *ctx)
6974{
6975 struct btrfs_root *root = inode->root;
6976 const u64 ino = btrfs_ino(inode);
6977 struct btrfs_path *path;
6978 struct btrfs_key search_key;
6979 int ret;
6980
6981 /*
6982 * For a single hard link case, go through a fast path that does not
6983 * need to iterate the fs/subvolume tree.
6984 */
6985 if (inode->vfs_inode.i_nlink < 2)
6986 return log_new_ancestors_fast(trans, inode, parent, ctx);
6987
6988 path = btrfs_alloc_path();
6989 if (!path)
6990 return -ENOMEM;
6991
6992 search_key.objectid = ino;
6993 search_key.type = BTRFS_INODE_REF_KEY;
6994 search_key.offset = 0;
6995again:
6996 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6997 if (ret < 0)
6998 goto out;
6999 if (ret == 0)
7000 path->slots[0]++;
7001
7002 while (true) {
7003 struct extent_buffer *leaf = path->nodes[0];
7004 int slot = path->slots[0];
7005 struct btrfs_key found_key;
7006
7007 if (slot >= btrfs_header_nritems(leaf)) {
7008 ret = btrfs_next_leaf(root, path);
7009 if (ret < 0)
7010 goto out;
7011 else if (ret > 0)
7012 break;
7013 continue;
7014 }
7015
7016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7017 if (found_key.objectid != ino ||
7018 found_key.type > BTRFS_INODE_EXTREF_KEY)
7019 break;
7020
7021 /*
7022 * Don't deal with extended references because they are rare
7023 * cases and too complex to deal with (we would need to keep
7024 * track of which subitem we are processing for each item in
7025 * this loop, etc). So just return some error to fallback to
7026 * a transaction commit.
7027 */
7028 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7029 ret = -EMLINK;
7030 goto out;
7031 }
7032
7033 /*
7034 * Logging ancestors needs to do more searches on the fs/subvol
7035 * tree, so it releases the path as needed to avoid deadlocks.
7036 * Keep track of the last inode ref key and resume from that key
7037 * after logging all new ancestors for the current hard link.
7038 */
7039 memcpy(&search_key, &found_key, sizeof(search_key));
7040
7041 ret = log_new_ancestors(trans, root, path, ctx);
7042 if (ret)
7043 goto out;
7044 btrfs_release_path(path);
7045 goto again;
7046 }
7047 ret = 0;
7048out:
7049 btrfs_free_path(path);
7050 return ret;
7051}
7052
7053/*
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log. A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7058 */
7059static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7060 struct btrfs_inode *inode,
7061 struct dentry *parent,
7062 int inode_only,
7063 struct btrfs_log_ctx *ctx)
7064{
7065 struct btrfs_root *root = inode->root;
7066 struct btrfs_fs_info *fs_info = root->fs_info;
7067 int ret = 0;
7068 bool log_dentries = false;
7069
7070 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7071 ret = BTRFS_LOG_FORCE_COMMIT;
7072 goto end_no_trans;
7073 }
7074
7075 if (btrfs_root_refs(&root->root_item) == 0) {
7076 ret = BTRFS_LOG_FORCE_COMMIT;
7077 goto end_no_trans;
7078 }
7079
7080 /*
7081 * If we're logging an inode from a subvolume created in the current
7082 * transaction we must force a commit since the root is not persisted.
7083 */
7084 if (btrfs_root_generation(&root->root_item) == trans->transid) {
7085 ret = BTRFS_LOG_FORCE_COMMIT;
7086 goto end_no_trans;
7087 }
7088
7089 /*
7090 * Skip already logged inodes or inodes corresponding to tmpfiles
7091 * (since logging them is pointless, a link count of 0 means they
7092 * will never be accessible).
7093 */
7094 if ((btrfs_inode_in_log(inode, trans->transid) &&
7095 list_empty(&ctx->ordered_extents)) ||
7096 inode->vfs_inode.i_nlink == 0) {
7097 ret = BTRFS_NO_LOG_SYNC;
7098 goto end_no_trans;
7099 }
7100
7101 ret = start_log_trans(trans, root, ctx);
7102 if (ret)
7103 goto end_no_trans;
7104
7105 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7106 if (ret)
7107 goto end_trans;
7108
7109 /*
7110 * for regular files, if its inode is already on disk, we don't
7111 * have to worry about the parents at all. This is because
7112 * we can use the last_unlink_trans field to record renames
7113 * and other fun in this file.
7114 */
7115 if (S_ISREG(inode->vfs_inode.i_mode) &&
7116 inode->generation < trans->transid &&
7117 inode->last_unlink_trans < trans->transid) {
7118 ret = 0;
7119 goto end_trans;
7120 }
7121
7122 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7123 log_dentries = true;
7124
7125 /*
7126 * On unlink we must make sure all our current and old parent directory
7127 * inodes are fully logged. This is to prevent leaving dangling
7128 * directory index entries in directories that were our parents but are
7129 * not anymore. Not doing this results in old parent directory being
7130 * impossible to delete after log replay (rmdir will always fail with
7131 * error -ENOTEMPTY).
7132 *
7133 * Example 1:
7134 *
7135 * mkdir testdir
7136 * touch testdir/foo
7137 * ln testdir/foo testdir/bar
7138 * sync
7139 * unlink testdir/bar
7140 * xfs_io -c fsync testdir/foo
7141 * <power failure>
7142 * mount fs, triggers log replay
7143 *
7144 * If we don't log the parent directory (testdir), after log replay the
7145 * directory still has an entry pointing to the file inode using the bar
7146 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7147 * the file inode has a link count of 1.
7148 *
7149 * Example 2:
7150 *
7151 * mkdir testdir
7152 * touch foo
7153 * ln foo testdir/foo2
7154 * ln foo testdir/foo3
7155 * sync
7156 * unlink testdir/foo3
7157 * xfs_io -c fsync foo
7158 * <power failure>
7159 * mount fs, triggers log replay
7160 *
7161 * Similar as the first example, after log replay the parent directory
7162 * testdir still has an entry pointing to the inode file with name foo3
7163 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7164 * and has a link count of 2.
7165 */
7166 if (inode->last_unlink_trans >= trans->transid) {
7167 ret = btrfs_log_all_parents(trans, inode, ctx);
7168 if (ret)
7169 goto end_trans;
7170 }
7171
7172 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7173 if (ret)
7174 goto end_trans;
7175
7176 if (log_dentries)
7177 ret = log_new_dir_dentries(trans, inode, ctx);
7178 else
7179 ret = 0;
7180end_trans:
7181 if (ret < 0) {
7182 btrfs_set_log_full_commit(trans);
7183 ret = BTRFS_LOG_FORCE_COMMIT;
7184 }
7185
7186 if (ret)
7187 btrfs_remove_log_ctx(root, ctx);
7188 btrfs_end_log_trans(root);
7189end_no_trans:
7190 return ret;
7191}
7192
7193/*
7194 * it is not safe to log dentry if the chunk root has added new
7195 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7196 * If this returns 1, you must commit the transaction to safely get your
7197 * data on disk.
7198 */
7199int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7200 struct dentry *dentry,
7201 struct btrfs_log_ctx *ctx)
7202{
7203 struct dentry *parent = dget_parent(dentry);
7204 int ret;
7205
7206 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7207 LOG_INODE_ALL, ctx);
7208 dput(parent);
7209
7210 return ret;
7211}
7212
7213/*
7214 * should be called during mount to recover any replay any log trees
7215 * from the FS
7216 */
7217int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7218{
7219 int ret;
7220 struct btrfs_path *path;
7221 struct btrfs_trans_handle *trans;
7222 struct btrfs_key key;
7223 struct btrfs_key found_key;
7224 struct btrfs_root *log;
7225 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7226 struct walk_control wc = {
7227 .process_func = process_one_buffer,
7228 .stage = LOG_WALK_PIN_ONLY,
7229 };
7230
7231 path = btrfs_alloc_path();
7232 if (!path)
7233 return -ENOMEM;
7234
7235 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7236
7237 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7238 if (IS_ERR(trans)) {
7239 ret = PTR_ERR(trans);
7240 goto error;
7241 }
7242
7243 wc.trans = trans;
7244 wc.pin = 1;
7245
7246 ret = walk_log_tree(trans, log_root_tree, &wc);
7247 if (ret) {
7248 btrfs_abort_transaction(trans, ret);
7249 goto error;
7250 }
7251
7252again:
7253 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7254 key.offset = (u64)-1;
7255 key.type = BTRFS_ROOT_ITEM_KEY;
7256
7257 while (1) {
7258 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7259
7260 if (ret < 0) {
7261 btrfs_abort_transaction(trans, ret);
7262 goto error;
7263 }
7264 if (ret > 0) {
7265 if (path->slots[0] == 0)
7266 break;
7267 path->slots[0]--;
7268 }
7269 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7270 path->slots[0]);
7271 btrfs_release_path(path);
7272 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7273 break;
7274
7275 log = btrfs_read_tree_root(log_root_tree, &found_key);
7276 if (IS_ERR(log)) {
7277 ret = PTR_ERR(log);
7278 btrfs_abort_transaction(trans, ret);
7279 goto error;
7280 }
7281
7282 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7283 true);
7284 if (IS_ERR(wc.replay_dest)) {
7285 ret = PTR_ERR(wc.replay_dest);
7286
7287 /*
7288 * We didn't find the subvol, likely because it was
7289 * deleted. This is ok, simply skip this log and go to
7290 * the next one.
7291 *
7292 * We need to exclude the root because we can't have
7293 * other log replays overwriting this log as we'll read
7294 * it back in a few more times. This will keep our
7295 * block from being modified, and we'll just bail for
7296 * each subsequent pass.
7297 */
7298 if (ret == -ENOENT)
7299 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7300 btrfs_put_root(log);
7301
7302 if (!ret)
7303 goto next;
7304 btrfs_abort_transaction(trans, ret);
7305 goto error;
7306 }
7307
7308 wc.replay_dest->log_root = log;
7309 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7310 if (ret)
7311 /* The loop needs to continue due to the root refs */
7312 btrfs_abort_transaction(trans, ret);
7313 else
7314 ret = walk_log_tree(trans, log, &wc);
7315
7316 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7317 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7318 path);
7319 if (ret)
7320 btrfs_abort_transaction(trans, ret);
7321 }
7322
7323 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7324 struct btrfs_root *root = wc.replay_dest;
7325
7326 btrfs_release_path(path);
7327
7328 /*
7329 * We have just replayed everything, and the highest
7330 * objectid of fs roots probably has changed in case
7331 * some inode_item's got replayed.
7332 *
7333 * root->objectid_mutex is not acquired as log replay
7334 * could only happen during mount.
7335 */
7336 ret = btrfs_init_root_free_objectid(root);
7337 if (ret)
7338 btrfs_abort_transaction(trans, ret);
7339 }
7340
7341 wc.replay_dest->log_root = NULL;
7342 btrfs_put_root(wc.replay_dest);
7343 btrfs_put_root(log);
7344
7345 if (ret)
7346 goto error;
7347next:
7348 if (found_key.offset == 0)
7349 break;
7350 key.offset = found_key.offset - 1;
7351 }
7352 btrfs_release_path(path);
7353
7354 /* step one is to pin it all, step two is to replay just inodes */
7355 if (wc.pin) {
7356 wc.pin = 0;
7357 wc.process_func = replay_one_buffer;
7358 wc.stage = LOG_WALK_REPLAY_INODES;
7359 goto again;
7360 }
7361 /* step three is to replay everything */
7362 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7363 wc.stage++;
7364 goto again;
7365 }
7366
7367 btrfs_free_path(path);
7368
7369 /* step 4: commit the transaction, which also unpins the blocks */
7370 ret = btrfs_commit_transaction(trans);
7371 if (ret)
7372 return ret;
7373
7374 log_root_tree->log_root = NULL;
7375 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7376 btrfs_put_root(log_root_tree);
7377
7378 return 0;
7379error:
7380 if (wc.trans)
7381 btrfs_end_transaction(wc.trans);
7382 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7383 btrfs_free_path(path);
7384 return ret;
7385}
7386
7387/*
7388 * there are some corner cases where we want to force a full
7389 * commit instead of allowing a directory to be logged.
7390 *
7391 * They revolve around files there were unlinked from the directory, and
7392 * this function updates the parent directory so that a full commit is
7393 * properly done if it is fsync'd later after the unlinks are done.
7394 *
7395 * Must be called before the unlink operations (updates to the subvolume tree,
7396 * inodes, etc) are done.
7397 */
7398void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7399 struct btrfs_inode *dir, struct btrfs_inode *inode,
7400 bool for_rename)
7401{
7402 /*
7403 * when we're logging a file, if it hasn't been renamed
7404 * or unlinked, and its inode is fully committed on disk,
7405 * we don't have to worry about walking up the directory chain
7406 * to log its parents.
7407 *
7408 * So, we use the last_unlink_trans field to put this transid
7409 * into the file. When the file is logged we check it and
7410 * don't log the parents if the file is fully on disk.
7411 */
7412 mutex_lock(&inode->log_mutex);
7413 inode->last_unlink_trans = trans->transid;
7414 mutex_unlock(&inode->log_mutex);
7415
7416 if (!for_rename)
7417 return;
7418
7419 /*
7420 * If this directory was already logged, any new names will be logged
7421 * with btrfs_log_new_name() and old names will be deleted from the log
7422 * tree with btrfs_del_dir_entries_in_log() or with
7423 * btrfs_del_inode_ref_in_log().
7424 */
7425 if (inode_logged(trans, dir, NULL) == 1)
7426 return;
7427
7428 /*
7429 * If the inode we're about to unlink was logged before, the log will be
7430 * properly updated with the new name with btrfs_log_new_name() and the
7431 * old name removed with btrfs_del_dir_entries_in_log() or with
7432 * btrfs_del_inode_ref_in_log().
7433 */
7434 if (inode_logged(trans, inode, NULL) == 1)
7435 return;
7436
7437 /*
7438 * when renaming files across directories, if the directory
7439 * there we're unlinking from gets fsync'd later on, there's
7440 * no way to find the destination directory later and fsync it
7441 * properly. So, we have to be conservative and force commits
7442 * so the new name gets discovered.
7443 */
7444 mutex_lock(&dir->log_mutex);
7445 dir->last_unlink_trans = trans->transid;
7446 mutex_unlock(&dir->log_mutex);
7447}
7448
7449/*
7450 * Make sure that if someone attempts to fsync the parent directory of a deleted
7451 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7452 * that after replaying the log tree of the parent directory's root we will not
7453 * see the snapshot anymore and at log replay time we will not see any log tree
7454 * corresponding to the deleted snapshot's root, which could lead to replaying
7455 * it after replaying the log tree of the parent directory (which would replay
7456 * the snapshot delete operation).
7457 *
7458 * Must be called before the actual snapshot destroy operation (updates to the
7459 * parent root and tree of tree roots trees, etc) are done.
7460 */
7461void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7462 struct btrfs_inode *dir)
7463{
7464 mutex_lock(&dir->log_mutex);
7465 dir->last_unlink_trans = trans->transid;
7466 mutex_unlock(&dir->log_mutex);
7467}
7468
7469/*
7470 * Call this when creating a subvolume in a directory.
7471 * Because we don't commit a transaction when creating a subvolume, we can't
7472 * allow the directory pointing to the subvolume to be logged with an entry that
7473 * points to an unpersisted root if we are still in the transaction used to
7474 * create the subvolume, so make any attempt to log the directory to result in a
7475 * full log sync.
7476 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7477 * for full commit when renaming a subvolume.
7478 */
7479void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7480 struct btrfs_inode *dir)
7481{
7482 mutex_lock(&dir->log_mutex);
7483 dir->last_unlink_trans = trans->transid;
7484 mutex_unlock(&dir->log_mutex);
7485}
7486
7487/*
7488 * Update the log after adding a new name for an inode.
7489 *
7490 * @trans: Transaction handle.
7491 * @old_dentry: The dentry associated with the old name and the old
7492 * parent directory.
7493 * @old_dir: The inode of the previous parent directory for the case
7494 * of a rename. For a link operation, it must be NULL.
7495 * @old_dir_index: The index number associated with the old name, meaningful
7496 * only for rename operations (when @old_dir is not NULL).
7497 * Ignored for link operations.
7498 * @parent: The dentry associated with the directory under which the
7499 * new name is located.
7500 *
7501 * Call this after adding a new name for an inode, as a result of a link or
7502 * rename operation, and it will properly update the log to reflect the new name.
7503 */
7504void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7505 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7506 u64 old_dir_index, struct dentry *parent)
7507{
7508 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7509 struct btrfs_root *root = inode->root;
7510 struct btrfs_log_ctx ctx;
7511 bool log_pinned = false;
7512 int ret;
7513
7514 /*
7515 * this will force the logging code to walk the dentry chain
7516 * up for the file
7517 */
7518 if (!S_ISDIR(inode->vfs_inode.i_mode))
7519 inode->last_unlink_trans = trans->transid;
7520
7521 /*
7522 * if this inode hasn't been logged and directory we're renaming it
7523 * from hasn't been logged, we don't need to log it
7524 */
7525 ret = inode_logged(trans, inode, NULL);
7526 if (ret < 0) {
7527 goto out;
7528 } else if (ret == 0) {
7529 if (!old_dir)
7530 return;
7531 /*
7532 * If the inode was not logged and we are doing a rename (old_dir is not
7533 * NULL), check if old_dir was logged - if it was not we can return and
7534 * do nothing.
7535 */
7536 ret = inode_logged(trans, old_dir, NULL);
7537 if (ret < 0)
7538 goto out;
7539 else if (ret == 0)
7540 return;
7541 }
7542 ret = 0;
7543
7544 /*
7545 * If we are doing a rename (old_dir is not NULL) from a directory that
7546 * was previously logged, make sure that on log replay we get the old
7547 * dir entry deleted. This is needed because we will also log the new
7548 * name of the renamed inode, so we need to make sure that after log
7549 * replay we don't end up with both the new and old dir entries existing.
7550 */
7551 if (old_dir && old_dir->logged_trans == trans->transid) {
7552 struct btrfs_root *log = old_dir->root->log_root;
7553 struct btrfs_path *path;
7554 struct fscrypt_name fname;
7555
7556 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7557
7558 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7559 &old_dentry->d_name, 0, &fname);
7560 if (ret)
7561 goto out;
7562 /*
7563 * We have two inodes to update in the log, the old directory and
7564 * the inode that got renamed, so we must pin the log to prevent
7565 * anyone from syncing the log until we have updated both inodes
7566 * in the log.
7567 */
7568 ret = join_running_log_trans(root);
7569 /*
7570 * At least one of the inodes was logged before, so this should
7571 * not fail, but if it does, it's not serious, just bail out and
7572 * mark the log for a full commit.
7573 */
7574 if (WARN_ON_ONCE(ret < 0)) {
7575 fscrypt_free_filename(&fname);
7576 goto out;
7577 }
7578
7579 log_pinned = true;
7580
7581 path = btrfs_alloc_path();
7582 if (!path) {
7583 ret = -ENOMEM;
7584 fscrypt_free_filename(&fname);
7585 goto out;
7586 }
7587
7588 /*
7589 * Other concurrent task might be logging the old directory,
7590 * as it can be triggered when logging other inode that had or
7591 * still has a dentry in the old directory. We lock the old
7592 * directory's log_mutex to ensure the deletion of the old
7593 * name is persisted, because during directory logging we
7594 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7595 * the old name's dir index item is in the delayed items, so
7596 * it could be missed by an in progress directory logging.
7597 */
7598 mutex_lock(&old_dir->log_mutex);
7599 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7600 &fname.disk_name, old_dir_index);
7601 if (ret > 0) {
7602 /*
7603 * The dentry does not exist in the log, so record its
7604 * deletion.
7605 */
7606 btrfs_release_path(path);
7607 ret = insert_dir_log_key(trans, log, path,
7608 btrfs_ino(old_dir),
7609 old_dir_index, old_dir_index);
7610 }
7611 mutex_unlock(&old_dir->log_mutex);
7612
7613 btrfs_free_path(path);
7614 fscrypt_free_filename(&fname);
7615 if (ret < 0)
7616 goto out;
7617 }
7618
7619 btrfs_init_log_ctx(&ctx, inode);
7620 ctx.logging_new_name = true;
7621 btrfs_init_log_ctx_scratch_eb(&ctx);
7622 /*
7623 * We don't care about the return value. If we fail to log the new name
7624 * then we know the next attempt to sync the log will fallback to a full
7625 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7626 * we don't need to worry about getting a log committed that has an
7627 * inconsistent state after a rename operation.
7628 */
7629 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7630 free_extent_buffer(ctx.scratch_eb);
7631 ASSERT(list_empty(&ctx.conflict_inodes));
7632out:
7633 /*
7634 * If an error happened mark the log for a full commit because it's not
7635 * consistent and up to date or we couldn't find out if one of the
7636 * inodes was logged before in this transaction. Do it before unpinning
7637 * the log, to avoid any races with someone else trying to commit it.
7638 */
7639 if (ret < 0)
7640 btrfs_set_log_full_commit(trans);
7641 if (log_pinned)
7642 btrfs_end_log_trans(root);
7643}
7644
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/list_sort.h>
23#include "tree-log.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
27#include "backref.h"
28#include "hash.h"
29#include "compression.h"
30#include "qgroup.h"
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40#define LOG_OTHER_INODE 2
41
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
98
99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only,
102 const loff_t start,
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
145{
146 struct btrfs_fs_info *fs_info = root->fs_info;
147 int ret = 0;
148
149 mutex_lock(&root->log_mutex);
150
151 if (root->log_root) {
152 if (btrfs_need_log_full_commit(fs_info, trans)) {
153 ret = -EAGAIN;
154 goto out;
155 }
156
157 if (!root->log_start_pid) {
158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 root->log_start_pid = current->pid;
160 } else if (root->log_start_pid != current->pid) {
161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 }
163 } else {
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
168 if (ret)
169 goto out;
170
171 ret = btrfs_add_log_tree(trans, root);
172 if (ret)
173 goto out;
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
177 }
178
179 atomic_inc(&root->log_batch);
180 atomic_inc(&root->log_writers);
181 if (ctx) {
182 int index = root->log_transid % 2;
183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 ctx->log_transid = root->log_transid;
185 }
186
187out:
188 mutex_unlock(&root->log_mutex);
189 return ret;
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 if (root->log_root) {
207 ret = 0;
208 atomic_inc(&root->log_writers);
209 }
210 mutex_unlock(&root->log_mutex);
211 return ret;
212}
213
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
233void btrfs_end_log_trans(struct btrfs_root *root)
234{
235 if (atomic_dec_and_test(&root->log_writers)) {
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
297 struct btrfs_fs_info *fs_info = log->fs_info;
298 int ret = 0;
299
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
310 if (wc->pin)
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
313
314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 if (wc->pin && btrfs_header_level(eb) == 0)
316 ret = btrfs_exclude_logged_extents(fs_info, eb);
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
322 return ret;
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
345 struct btrfs_fs_info *fs_info = root->fs_info;
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 if (ret < 0)
364 return ret;
365
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
375 btrfs_release_path(path);
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
380 if (!dst_copy || !src_copy) {
381 btrfs_release_path(path);
382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
403 btrfs_release_path(path);
404 return 0;
405 }
406
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
414 u32 mode;
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
434 u32 mode;
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
451 }
452insert:
453 btrfs_release_path(path);
454 /* try to insert the key into the destination tree */
455 path->skip_release_on_error = 1;
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
458 path->skip_release_on_error = 0;
459
460 /* make sure any existing item is the correct size */
461 if (ret == -EEXIST || ret == -EOVERFLOW) {
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
465 if (found_size > item_size)
466 btrfs_truncate_item(fs_info, path, item_size, 1);
467 else if (found_size < item_size)
468 btrfs_extend_item(fs_info, path,
469 item_size - found_size);
470 } else if (ret) {
471 return ret;
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
494 const u64 ino_size = btrfs_inode_size(eb, src_item);
495
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
506 struct btrfs_map_token token;
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
512 goto no_copy;
513 }
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
544 btrfs_release_path(path);
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
555 struct btrfs_key key;
556 struct inode *inode;
557
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
589 struct btrfs_fs_info *fs_info = root->fs_info;
590 int found_type;
591 u64 extent_end;
592 u64 start = key->offset;
593 u64 nbytes = 0;
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
602 if (found_type == BTRFS_FILE_EXTENT_REG ||
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 size = btrfs_file_extent_inline_len(eb, slot, item);
615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 extent_end = ALIGN(start + size,
617 fs_info->sectorsize);
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
634 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
635 start, 0);
636
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 btrfs_release_path(path);
660 goto out;
661 }
662 }
663 btrfs_release_path(path);
664
665 /* drop any overlapping extents */
666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 if (ret)
668 goto out;
669
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 u64 offset;
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
678 if (ret)
679 goto out;
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
688 offset = key->offset - btrfs_file_extent_offset(eb, item);
689
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
698 ret = btrfs_qgroup_trace_extent(trans, fs_info,
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
705 if (ins.objectid > 0) {
706 u64 csum_start;
707 u64 csum_end;
708 LIST_HEAD(ordered_sums);
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 ret = btrfs_inc_extent_ref(trans, fs_info,
717 ins.objectid, ins.offset,
718 0, root->root_key.objectid,
719 key->objectid, offset);
720 if (ret)
721 goto out;
722 } else {
723 /*
724 * insert the extent pointer in the extent
725 * allocation tree
726 */
727 ret = btrfs_alloc_logged_file_extent(trans,
728 fs_info,
729 root->root_key.objectid,
730 key->objectid, offset, &ins);
731 if (ret)
732 goto out;
733 }
734 btrfs_release_path(path);
735
736 if (btrfs_file_extent_compression(eb, item)) {
737 csum_start = ins.objectid;
738 csum_end = csum_start + ins.offset;
739 } else {
740 csum_start = ins.objectid +
741 btrfs_file_extent_offset(eb, item);
742 csum_end = csum_start +
743 btrfs_file_extent_num_bytes(eb, item);
744 }
745
746 ret = btrfs_lookup_csums_range(root->log_root,
747 csum_start, csum_end - 1,
748 &ordered_sums, 0);
749 if (ret)
750 goto out;
751 /*
752 * Now delete all existing cums in the csum root that
753 * cover our range. We do this because we can have an
754 * extent that is completely referenced by one file
755 * extent item and partially referenced by another
756 * file extent item (like after using the clone or
757 * extent_same ioctls). In this case if we end up doing
758 * the replay of the one that partially references the
759 * extent first, and we do not do the csum deletion
760 * below, we can get 2 csum items in the csum tree that
761 * overlap each other. For example, imagine our log has
762 * the two following file extent items:
763 *
764 * key (257 EXTENT_DATA 409600)
765 * extent data disk byte 12845056 nr 102400
766 * extent data offset 20480 nr 20480 ram 102400
767 *
768 * key (257 EXTENT_DATA 819200)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 0 nr 102400 ram 102400
771 *
772 * Where the second one fully references the 100K extent
773 * that starts at disk byte 12845056, and the log tree
774 * has a single csum item that covers the entire range
775 * of the extent:
776 *
777 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 *
779 * After the first file extent item is replayed, the
780 * csum tree gets the following csum item:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 *
784 * Which covers the 20K sub-range starting at offset 20K
785 * of our extent. Now when we replay the second file
786 * extent item, if we do not delete existing csum items
787 * that cover any of its blocks, we end up getting two
788 * csum items in our csum tree that overlap each other:
789 *
790 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 *
793 * Which is a problem, because after this anyone trying
794 * to lookup up for the checksum of any block of our
795 * extent starting at an offset of 40K or higher, will
796 * end up looking at the second csum item only, which
797 * does not contain the checksum for any block starting
798 * at offset 40K or higher of our extent.
799 */
800 while (!list_empty(&ordered_sums)) {
801 struct btrfs_ordered_sum *sums;
802 sums = list_entry(ordered_sums.next,
803 struct btrfs_ordered_sum,
804 list);
805 if (!ret)
806 ret = btrfs_del_csums(trans, fs_info,
807 sums->bytenr,
808 sums->len);
809 if (!ret)
810 ret = btrfs_csum_file_blocks(trans,
811 fs_info->csum_root, sums);
812 list_del(&sums->list);
813 kfree(sums);
814 }
815 if (ret)
816 goto out;
817 } else {
818 btrfs_release_path(path);
819 }
820 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
821 /* inline extents are easy, we just overwrite them */
822 ret = overwrite_item(trans, root, path, eb, slot, key);
823 if (ret)
824 goto out;
825 }
826
827 inode_add_bytes(inode, nbytes);
828 ret = btrfs_update_inode(trans, root, inode);
829out:
830 if (inode)
831 iput(inode);
832 return ret;
833}
834
835/*
836 * when cleaning up conflicts between the directory names in the
837 * subvolume, directory names in the log and directory names in the
838 * inode back references, we may have to unlink inodes from directories.
839 *
840 * This is a helper function to do the unlink of a specific directory
841 * item
842 */
843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct inode *dir,
847 struct btrfs_dir_item *di)
848{
849 struct btrfs_fs_info *fs_info = root->fs_info;
850 struct inode *inode;
851 char *name;
852 int name_len;
853 struct extent_buffer *leaf;
854 struct btrfs_key location;
855 int ret;
856
857 leaf = path->nodes[0];
858
859 btrfs_dir_item_key_to_cpu(leaf, di, &location);
860 name_len = btrfs_dir_name_len(leaf, di);
861 name = kmalloc(name_len, GFP_NOFS);
862 if (!name)
863 return -ENOMEM;
864
865 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
866 btrfs_release_path(path);
867
868 inode = read_one_inode(root, location.objectid);
869 if (!inode) {
870 ret = -EIO;
871 goto out;
872 }
873
874 ret = link_to_fixup_dir(trans, root, path, location.objectid);
875 if (ret)
876 goto out;
877
878 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
879 if (ret)
880 goto out;
881 else
882 ret = btrfs_run_delayed_items(trans, fs_info);
883out:
884 kfree(name);
885 iput(inode);
886 return ret;
887}
888
889/*
890 * helper function to see if a given name and sequence number found
891 * in an inode back reference are already in a directory and correctly
892 * point to this inode
893 */
894static noinline int inode_in_dir(struct btrfs_root *root,
895 struct btrfs_path *path,
896 u64 dirid, u64 objectid, u64 index,
897 const char *name, int name_len)
898{
899 struct btrfs_dir_item *di;
900 struct btrfs_key location;
901 int match = 0;
902
903 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
904 index, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
908 goto out;
909 } else
910 goto out;
911 btrfs_release_path(path);
912
913 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 match = 1;
921out:
922 btrfs_release_path(path);
923 return match;
924}
925
926/*
927 * helper function to check a log tree for a named back reference in
928 * an inode. This is used to decide if a back reference that is
929 * found in the subvolume conflicts with what we find in the log.
930 *
931 * inode backreferences may have multiple refs in a single item,
932 * during replay we process one reference at a time, and we don't
933 * want to delete valid links to a file from the subvolume if that
934 * link is also in the log.
935 */
936static noinline int backref_in_log(struct btrfs_root *log,
937 struct btrfs_key *key,
938 u64 ref_objectid,
939 const char *name, int namelen)
940{
941 struct btrfs_path *path;
942 struct btrfs_inode_ref *ref;
943 unsigned long ptr;
944 unsigned long ptr_end;
945 unsigned long name_ptr;
946 int found_name_len;
947 int item_size;
948 int ret;
949 int match = 0;
950
951 path = btrfs_alloc_path();
952 if (!path)
953 return -ENOMEM;
954
955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
956 if (ret != 0)
957 goto out;
958
959 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
960
961 if (key->type == BTRFS_INODE_EXTREF_KEY) {
962 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
963 name, namelen, NULL))
964 match = 1;
965
966 goto out;
967 }
968
969 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
970 ptr_end = ptr + item_size;
971 while (ptr < ptr_end) {
972 ref = (struct btrfs_inode_ref *)ptr;
973 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
974 if (found_name_len == namelen) {
975 name_ptr = (unsigned long)(ref + 1);
976 ret = memcmp_extent_buffer(path->nodes[0], name,
977 name_ptr, namelen);
978 if (ret == 0) {
979 match = 1;
980 goto out;
981 }
982 }
983 ptr = (unsigned long)(ref + 1) + found_name_len;
984 }
985out:
986 btrfs_free_path(path);
987 return match;
988}
989
990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
991 struct btrfs_root *root,
992 struct btrfs_path *path,
993 struct btrfs_root *log_root,
994 struct inode *dir, struct inode *inode,
995 struct extent_buffer *eb,
996 u64 inode_objectid, u64 parent_objectid,
997 u64 ref_index, char *name, int namelen,
998 int *search_done)
999{
1000 struct btrfs_fs_info *fs_info = root->fs_info;
1001 int ret;
1002 char *victim_name;
1003 int victim_name_len;
1004 struct extent_buffer *leaf;
1005 struct btrfs_dir_item *di;
1006 struct btrfs_key search_key;
1007 struct btrfs_inode_extref *extref;
1008
1009again:
1010 /* Search old style refs */
1011 search_key.objectid = inode_objectid;
1012 search_key.type = BTRFS_INODE_REF_KEY;
1013 search_key.offset = parent_objectid;
1014 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015 if (ret == 0) {
1016 struct btrfs_inode_ref *victim_ref;
1017 unsigned long ptr;
1018 unsigned long ptr_end;
1019
1020 leaf = path->nodes[0];
1021
1022 /* are we trying to overwrite a back ref for the root directory
1023 * if so, just jump out, we're done
1024 */
1025 if (search_key.objectid == search_key.offset)
1026 return 1;
1027
1028 /* check all the names in this back reference to see
1029 * if they are in the log. if so, we allow them to stay
1030 * otherwise they must be unlinked as a conflict
1031 */
1032 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034 while (ptr < ptr_end) {
1035 victim_ref = (struct btrfs_inode_ref *)ptr;
1036 victim_name_len = btrfs_inode_ref_name_len(leaf,
1037 victim_ref);
1038 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039 if (!victim_name)
1040 return -ENOMEM;
1041
1042 read_extent_buffer(leaf, victim_name,
1043 (unsigned long)(victim_ref + 1),
1044 victim_name_len);
1045
1046 if (!backref_in_log(log_root, &search_key,
1047 parent_objectid,
1048 victim_name,
1049 victim_name_len)) {
1050 inc_nlink(inode);
1051 btrfs_release_path(path);
1052
1053 ret = btrfs_unlink_inode(trans, root, dir,
1054 inode, victim_name,
1055 victim_name_len);
1056 kfree(victim_name);
1057 if (ret)
1058 return ret;
1059 ret = btrfs_run_delayed_items(trans, fs_info);
1060 if (ret)
1061 return ret;
1062 *search_done = 1;
1063 goto again;
1064 }
1065 kfree(victim_name);
1066
1067 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068 }
1069
1070 /*
1071 * NOTE: we have searched root tree and checked the
1072 * corresponding ref, it does not need to check again.
1073 */
1074 *search_done = 1;
1075 }
1076 btrfs_release_path(path);
1077
1078 /* Same search but for extended refs */
1079 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080 inode_objectid, parent_objectid, 0,
1081 0);
1082 if (!IS_ERR_OR_NULL(extref)) {
1083 u32 item_size;
1084 u32 cur_offset = 0;
1085 unsigned long base;
1086 struct inode *victim_parent;
1087
1088 leaf = path->nodes[0];
1089
1090 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093 while (cur_offset < item_size) {
1094 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099 goto next;
1100
1101 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102 if (!victim_name)
1103 return -ENOMEM;
1104 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105 victim_name_len);
1106
1107 search_key.objectid = inode_objectid;
1108 search_key.type = BTRFS_INODE_EXTREF_KEY;
1109 search_key.offset = btrfs_extref_hash(parent_objectid,
1110 victim_name,
1111 victim_name_len);
1112 ret = 0;
1113 if (!backref_in_log(log_root, &search_key,
1114 parent_objectid, victim_name,
1115 victim_name_len)) {
1116 ret = -ENOENT;
1117 victim_parent = read_one_inode(root,
1118 parent_objectid);
1119 if (victim_parent) {
1120 inc_nlink(inode);
1121 btrfs_release_path(path);
1122
1123 ret = btrfs_unlink_inode(trans, root,
1124 victim_parent,
1125 inode,
1126 victim_name,
1127 victim_name_len);
1128 if (!ret)
1129 ret = btrfs_run_delayed_items(
1130 trans,
1131 fs_info);
1132 }
1133 iput(victim_parent);
1134 kfree(victim_name);
1135 if (ret)
1136 return ret;
1137 *search_done = 1;
1138 goto again;
1139 }
1140 kfree(victim_name);
1141 if (ret)
1142 return ret;
1143next:
1144 cur_offset += victim_name_len + sizeof(*extref);
1145 }
1146 *search_done = 1;
1147 }
1148 btrfs_release_path(path);
1149
1150 /* look for a conflicting sequence number */
1151 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152 ref_index, name, namelen, 0);
1153 if (di && !IS_ERR(di)) {
1154 ret = drop_one_dir_item(trans, root, path, dir, di);
1155 if (ret)
1156 return ret;
1157 }
1158 btrfs_release_path(path);
1159
1160 /* look for a conflicing name */
1161 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162 name, namelen, 0);
1163 if (di && !IS_ERR(di)) {
1164 ret = drop_one_dir_item(trans, root, path, dir, di);
1165 if (ret)
1166 return ret;
1167 }
1168 btrfs_release_path(path);
1169
1170 return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174 u32 *namelen, char **name, u64 *index,
1175 u64 *parent_objectid)
1176{
1177 struct btrfs_inode_extref *extref;
1178
1179 extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181 *namelen = btrfs_inode_extref_name_len(eb, extref);
1182 *name = kmalloc(*namelen, GFP_NOFS);
1183 if (*name == NULL)
1184 return -ENOMEM;
1185
1186 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187 *namelen);
1188
1189 *index = btrfs_inode_extref_index(eb, extref);
1190 if (parent_objectid)
1191 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193 return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197 u32 *namelen, char **name, u64 *index)
1198{
1199 struct btrfs_inode_ref *ref;
1200
1201 ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203 *namelen = btrfs_inode_ref_name_len(eb, ref);
1204 *name = kmalloc(*namelen, GFP_NOFS);
1205 if (*name == NULL)
1206 return -ENOMEM;
1207
1208 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210 *index = btrfs_inode_ref_index(eb, ref);
1211
1212 return 0;
1213}
1214
1215/*
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function. (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root,
1223 struct btrfs_root *log,
1224 struct btrfs_path *path,
1225 struct extent_buffer *eb, int slot,
1226 struct btrfs_key *key)
1227{
1228 struct inode *dir = NULL;
1229 struct inode *inode = NULL;
1230 unsigned long ref_ptr;
1231 unsigned long ref_end;
1232 char *name = NULL;
1233 int namelen;
1234 int ret;
1235 int search_done = 0;
1236 int log_ref_ver = 0;
1237 u64 parent_objectid;
1238 u64 inode_objectid;
1239 u64 ref_index = 0;
1240 int ref_struct_size;
1241
1242 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246 struct btrfs_inode_extref *r;
1247
1248 ref_struct_size = sizeof(struct btrfs_inode_extref);
1249 log_ref_ver = 1;
1250 r = (struct btrfs_inode_extref *)ref_ptr;
1251 parent_objectid = btrfs_inode_extref_parent(eb, r);
1252 } else {
1253 ref_struct_size = sizeof(struct btrfs_inode_ref);
1254 parent_objectid = key->offset;
1255 }
1256 inode_objectid = key->objectid;
1257
1258 /*
1259 * it is possible that we didn't log all the parent directories
1260 * for a given inode. If we don't find the dir, just don't
1261 * copy the back ref in. The link count fixup code will take
1262 * care of the rest
1263 */
1264 dir = read_one_inode(root, parent_objectid);
1265 if (!dir) {
1266 ret = -ENOENT;
1267 goto out;
1268 }
1269
1270 inode = read_one_inode(root, inode_objectid);
1271 if (!inode) {
1272 ret = -EIO;
1273 goto out;
1274 }
1275
1276 while (ref_ptr < ref_end) {
1277 if (log_ref_ver) {
1278 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279 &ref_index, &parent_objectid);
1280 /*
1281 * parent object can change from one array
1282 * item to another.
1283 */
1284 if (!dir)
1285 dir = read_one_inode(root, parent_objectid);
1286 if (!dir) {
1287 ret = -ENOENT;
1288 goto out;
1289 }
1290 } else {
1291 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292 &ref_index);
1293 }
1294 if (ret)
1295 goto out;
1296
1297 /* if we already have a perfect match, we're done */
1298 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299 ref_index, name, namelen)) {
1300 /*
1301 * look for a conflicting back reference in the
1302 * metadata. if we find one we have to unlink that name
1303 * of the file before we add our new link. Later on, we
1304 * overwrite any existing back reference, and we don't
1305 * want to create dangling pointers in the directory.
1306 */
1307
1308 if (!search_done) {
1309 ret = __add_inode_ref(trans, root, path, log,
1310 dir, inode, eb,
1311 inode_objectid,
1312 parent_objectid,
1313 ref_index, name, namelen,
1314 &search_done);
1315 if (ret) {
1316 if (ret == 1)
1317 ret = 0;
1318 goto out;
1319 }
1320 }
1321
1322 /* insert our name */
1323 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324 0, ref_index);
1325 if (ret)
1326 goto out;
1327
1328 btrfs_update_inode(trans, root, inode);
1329 }
1330
1331 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332 kfree(name);
1333 name = NULL;
1334 if (log_ref_ver) {
1335 iput(dir);
1336 dir = NULL;
1337 }
1338 }
1339
1340 /* finally write the back reference in the inode */
1341 ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343 btrfs_release_path(path);
1344 kfree(name);
1345 iput(dir);
1346 iput(inode);
1347 return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root, u64 ino)
1352{
1353 int ret;
1354
1355 ret = btrfs_insert_orphan_item(trans, root, ino);
1356 if (ret == -EEXIST)
1357 ret = 0;
1358
1359 return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363 struct inode *inode, struct btrfs_path *path)
1364{
1365 int ret = 0;
1366 int name_len;
1367 unsigned int nlink = 0;
1368 u32 item_size;
1369 u32 cur_offset = 0;
1370 u64 inode_objectid = btrfs_ino(inode);
1371 u64 offset = 0;
1372 unsigned long ptr;
1373 struct btrfs_inode_extref *extref;
1374 struct extent_buffer *leaf;
1375
1376 while (1) {
1377 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378 &extref, &offset);
1379 if (ret)
1380 break;
1381
1382 leaf = path->nodes[0];
1383 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385 cur_offset = 0;
1386
1387 while (cur_offset < item_size) {
1388 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389 name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391 nlink++;
1392
1393 cur_offset += name_len + sizeof(*extref);
1394 }
1395
1396 offset++;
1397 btrfs_release_path(path);
1398 }
1399 btrfs_release_path(path);
1400
1401 if (ret < 0 && ret != -ENOENT)
1402 return ret;
1403 return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407 struct inode *inode, struct btrfs_path *path)
1408{
1409 int ret;
1410 struct btrfs_key key;
1411 unsigned int nlink = 0;
1412 unsigned long ptr;
1413 unsigned long ptr_end;
1414 int name_len;
1415 u64 ino = btrfs_ino(inode);
1416
1417 key.objectid = ino;
1418 key.type = BTRFS_INODE_REF_KEY;
1419 key.offset = (u64)-1;
1420
1421 while (1) {
1422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423 if (ret < 0)
1424 break;
1425 if (ret > 0) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1429 }
1430process_slot:
1431 btrfs_item_key_to_cpu(path->nodes[0], &key,
1432 path->slots[0]);
1433 if (key.objectid != ino ||
1434 key.type != BTRFS_INODE_REF_KEY)
1435 break;
1436 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438 path->slots[0]);
1439 while (ptr < ptr_end) {
1440 struct btrfs_inode_ref *ref;
1441
1442 ref = (struct btrfs_inode_ref *)ptr;
1443 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444 ref);
1445 ptr = (unsigned long)(ref + 1) + name_len;
1446 nlink++;
1447 }
1448
1449 if (key.offset == 0)
1450 break;
1451 if (path->slots[0] > 0) {
1452 path->slots[0]--;
1453 goto process_slot;
1454 }
1455 key.offset--;
1456 btrfs_release_path(path);
1457 }
1458 btrfs_release_path(path);
1459
1460 return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay. So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found. If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root,
1475 struct inode *inode)
1476{
1477 struct btrfs_path *path;
1478 int ret;
1479 u64 nlink = 0;
1480 u64 ino = btrfs_ino(inode);
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1485
1486 ret = count_inode_refs(root, inode, path);
1487 if (ret < 0)
1488 goto out;
1489
1490 nlink = ret;
1491
1492 ret = count_inode_extrefs(root, inode, path);
1493 if (ret < 0)
1494 goto out;
1495
1496 nlink += ret;
1497
1498 ret = 0;
1499
1500 if (nlink != inode->i_nlink) {
1501 set_nlink(inode, nlink);
1502 btrfs_update_inode(trans, root, inode);
1503 }
1504 BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506 if (inode->i_nlink == 0) {
1507 if (S_ISDIR(inode->i_mode)) {
1508 ret = replay_dir_deletes(trans, root, NULL, path,
1509 ino, 1);
1510 if (ret)
1511 goto out;
1512 }
1513 ret = insert_orphan_item(trans, root, ino);
1514 }
1515
1516out:
1517 btrfs_free_path(path);
1518 return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522 struct btrfs_root *root,
1523 struct btrfs_path *path)
1524{
1525 int ret;
1526 struct btrfs_key key;
1527 struct inode *inode;
1528
1529 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530 key.type = BTRFS_ORPHAN_ITEM_KEY;
1531 key.offset = (u64)-1;
1532 while (1) {
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret < 0)
1535 break;
1536
1537 if (ret == 1) {
1538 if (path->slots[0] == 0)
1539 break;
1540 path->slots[0]--;
1541 }
1542
1543 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545 key.type != BTRFS_ORPHAN_ITEM_KEY)
1546 break;
1547
1548 ret = btrfs_del_item(trans, root, path);
1549 if (ret)
1550 goto out;
1551
1552 btrfs_release_path(path);
1553 inode = read_one_inode(root, key.offset);
1554 if (!inode)
1555 return -EIO;
1556
1557 ret = fixup_inode_link_count(trans, root, inode);
1558 iput(inode);
1559 if (ret)
1560 goto out;
1561
1562 /*
1563 * fixup on a directory may create new entries,
1564 * make sure we always look for the highset possible
1565 * offset
1566 */
1567 key.offset = (u64)-1;
1568 }
1569 ret = 0;
1570out:
1571 btrfs_release_path(path);
1572 return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done. The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582 struct btrfs_root *root,
1583 struct btrfs_path *path,
1584 u64 objectid)
1585{
1586 struct btrfs_key key;
1587 int ret = 0;
1588 struct inode *inode;
1589
1590 inode = read_one_inode(root, objectid);
1591 if (!inode)
1592 return -EIO;
1593
1594 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595 key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 key.offset = objectid;
1597
1598 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600 btrfs_release_path(path);
1601 if (ret == 0) {
1602 if (!inode->i_nlink)
1603 set_nlink(inode, 1);
1604 else
1605 inc_nlink(inode);
1606 ret = btrfs_update_inode(trans, root, inode);
1607 } else if (ret == -EEXIST) {
1608 ret = 0;
1609 } else {
1610 BUG(); /* Logic Error */
1611 }
1612 iput(inode);
1613
1614 return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist. This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623 struct btrfs_root *root,
1624 u64 dirid, u64 index,
1625 char *name, int name_len,
1626 struct btrfs_key *location)
1627{
1628 struct inode *inode;
1629 struct inode *dir;
1630 int ret;
1631
1632 inode = read_one_inode(root, location->objectid);
1633 if (!inode)
1634 return -ENOENT;
1635
1636 dir = read_one_inode(root, dirid);
1637 if (!dir) {
1638 iput(inode);
1639 return -EIO;
1640 }
1641
1642 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1643
1644 /* FIXME, put inode into FIXUP list */
1645
1646 iput(inode);
1647 iput(dir);
1648 return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656 const char *name, const int name_len,
1657 const u64 dirid, const u64 ino)
1658{
1659 struct btrfs_key search_key;
1660
1661 search_key.objectid = ino;
1662 search_key.type = BTRFS_INODE_REF_KEY;
1663 search_key.offset = dirid;
1664 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665 return true;
1666
1667 search_key.type = BTRFS_INODE_EXTREF_KEY;
1668 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670 return true;
1671
1672 return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped. fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct extent_buffer *eb,
1695 struct btrfs_dir_item *di,
1696 struct btrfs_key *key)
1697{
1698 char *name;
1699 int name_len;
1700 struct btrfs_dir_item *dst_di;
1701 struct btrfs_key found_key;
1702 struct btrfs_key log_key;
1703 struct inode *dir;
1704 u8 log_type;
1705 int exists;
1706 int ret = 0;
1707 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708 bool name_added = false;
1709
1710 dir = read_one_inode(root, key->objectid);
1711 if (!dir)
1712 return -EIO;
1713
1714 name_len = btrfs_dir_name_len(eb, di);
1715 name = kmalloc(name_len, GFP_NOFS);
1716 if (!name) {
1717 ret = -ENOMEM;
1718 goto out;
1719 }
1720
1721 log_type = btrfs_dir_type(eb, di);
1722 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723 name_len);
1724
1725 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727 if (exists == 0)
1728 exists = 1;
1729 else
1730 exists = 0;
1731 btrfs_release_path(path);
1732
1733 if (key->type == BTRFS_DIR_ITEM_KEY) {
1734 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735 name, name_len, 1);
1736 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738 key->objectid,
1739 key->offset, name,
1740 name_len, 1);
1741 } else {
1742 /* Corruption */
1743 ret = -EINVAL;
1744 goto out;
1745 }
1746 if (IS_ERR_OR_NULL(dst_di)) {
1747 /* we need a sequence number to insert, so we only
1748 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749 */
1750 if (key->type != BTRFS_DIR_INDEX_KEY)
1751 goto out;
1752 goto insert;
1753 }
1754
1755 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756 /* the existing item matches the logged item */
1757 if (found_key.objectid == log_key.objectid &&
1758 found_key.type == log_key.type &&
1759 found_key.offset == log_key.offset &&
1760 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761 update_size = false;
1762 goto out;
1763 }
1764
1765 /*
1766 * don't drop the conflicting directory entry if the inode
1767 * for the new entry doesn't exist
1768 */
1769 if (!exists)
1770 goto out;
1771
1772 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773 if (ret)
1774 goto out;
1775
1776 if (key->type == BTRFS_DIR_INDEX_KEY)
1777 goto insert;
1778out:
1779 btrfs_release_path(path);
1780 if (!ret && update_size) {
1781 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782 ret = btrfs_update_inode(trans, root, dir);
1783 }
1784 kfree(name);
1785 iput(dir);
1786 if (!ret && name_added)
1787 ret = 1;
1788 return ret;
1789
1790insert:
1791 if (name_in_log_ref(root->log_root, name, name_len,
1792 key->objectid, log_key.objectid)) {
1793 /* The dentry will be added later. */
1794 ret = 0;
1795 update_size = false;
1796 goto out;
1797 }
1798 btrfs_release_path(path);
1799 ret = insert_one_name(trans, root, key->objectid, key->offset,
1800 name, name_len, &log_key);
1801 if (ret && ret != -ENOENT && ret != -EEXIST)
1802 goto out;
1803 if (!ret)
1804 name_added = true;
1805 update_size = false;
1806 ret = 0;
1807 goto out;
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 struct extent_buffer *eb, int slot,
1820 struct btrfs_key *key)
1821{
1822 struct btrfs_fs_info *fs_info = root->fs_info;
1823 int ret = 0;
1824 u32 item_size = btrfs_item_size_nr(eb, slot);
1825 struct btrfs_dir_item *di;
1826 int name_len;
1827 unsigned long ptr;
1828 unsigned long ptr_end;
1829 struct btrfs_path *fixup_path = NULL;
1830
1831 ptr = btrfs_item_ptr_offset(eb, slot);
1832 ptr_end = ptr + item_size;
1833 while (ptr < ptr_end) {
1834 di = (struct btrfs_dir_item *)ptr;
1835 if (verify_dir_item(fs_info, eb, di))
1836 return -EIO;
1837 name_len = btrfs_dir_name_len(eb, di);
1838 ret = replay_one_name(trans, root, path, eb, di, key);
1839 if (ret < 0)
1840 break;
1841 ptr = (unsigned long)(di + 1);
1842 ptr += name_len;
1843
1844 /*
1845 * If this entry refers to a non-directory (directories can not
1846 * have a link count > 1) and it was added in the transaction
1847 * that was not committed, make sure we fixup the link count of
1848 * the inode it the entry points to. Otherwise something like
1849 * the following would result in a directory pointing to an
1850 * inode with a wrong link that does not account for this dir
1851 * entry:
1852 *
1853 * mkdir testdir
1854 * touch testdir/foo
1855 * touch testdir/bar
1856 * sync
1857 *
1858 * ln testdir/bar testdir/bar_link
1859 * ln testdir/foo testdir/foo_link
1860 * xfs_io -c "fsync" testdir/bar
1861 *
1862 * <power failure>
1863 *
1864 * mount fs, log replay happens
1865 *
1866 * File foo would remain with a link count of 1 when it has two
1867 * entries pointing to it in the directory testdir. This would
1868 * make it impossible to ever delete the parent directory has
1869 * it would result in stale dentries that can never be deleted.
1870 */
1871 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872 struct btrfs_key di_key;
1873
1874 if (!fixup_path) {
1875 fixup_path = btrfs_alloc_path();
1876 if (!fixup_path) {
1877 ret = -ENOMEM;
1878 break;
1879 }
1880 }
1881
1882 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883 ret = link_to_fixup_dir(trans, root, fixup_path,
1884 di_key.objectid);
1885 if (ret)
1886 break;
1887 }
1888 ret = 0;
1889 }
1890 btrfs_free_path(fixup_path);
1891 return ret;
1892}
1893
1894/*
1895 * directory replay has two parts. There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for. During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906 struct btrfs_path *path,
1907 u64 dirid, int key_type,
1908 u64 *start_ret, u64 *end_ret)
1909{
1910 struct btrfs_key key;
1911 u64 found_end;
1912 struct btrfs_dir_log_item *item;
1913 int ret;
1914 int nritems;
1915
1916 if (*start_ret == (u64)-1)
1917 return 1;
1918
1919 key.objectid = dirid;
1920 key.type = key_type;
1921 key.offset = *start_ret;
1922
1923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924 if (ret < 0)
1925 goto out;
1926 if (ret > 0) {
1927 if (path->slots[0] == 0)
1928 goto out;
1929 path->slots[0]--;
1930 }
1931 if (ret != 0)
1932 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934 if (key.type != key_type || key.objectid != dirid) {
1935 ret = 1;
1936 goto next;
1937 }
1938 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939 struct btrfs_dir_log_item);
1940 found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942 if (*start_ret >= key.offset && *start_ret <= found_end) {
1943 ret = 0;
1944 *start_ret = key.offset;
1945 *end_ret = found_end;
1946 goto out;
1947 }
1948 ret = 1;
1949next:
1950 /* check the next slot in the tree to see if it is a valid item */
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 path->slots[0]++;
1953 if (path->slots[0] >= nritems) {
1954 ret = btrfs_next_leaf(root, path);
1955 if (ret)
1956 goto out;
1957 }
1958
1959 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961 if (key.type != key_type || key.objectid != dirid) {
1962 ret = 1;
1963 goto out;
1964 }
1965 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966 struct btrfs_dir_log_item);
1967 found_end = btrfs_dir_log_end(path->nodes[0], item);
1968 *start_ret = key.offset;
1969 *end_ret = found_end;
1970 ret = 0;
1971out:
1972 btrfs_release_path(path);
1973 return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log. If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_root *log,
1984 struct btrfs_path *path,
1985 struct btrfs_path *log_path,
1986 struct inode *dir,
1987 struct btrfs_key *dir_key)
1988{
1989 struct btrfs_fs_info *fs_info = root->fs_info;
1990 int ret;
1991 struct extent_buffer *eb;
1992 int slot;
1993 u32 item_size;
1994 struct btrfs_dir_item *di;
1995 struct btrfs_dir_item *log_di;
1996 int name_len;
1997 unsigned long ptr;
1998 unsigned long ptr_end;
1999 char *name;
2000 struct inode *inode;
2001 struct btrfs_key location;
2002
2003again:
2004 eb = path->nodes[0];
2005 slot = path->slots[0];
2006 item_size = btrfs_item_size_nr(eb, slot);
2007 ptr = btrfs_item_ptr_offset(eb, slot);
2008 ptr_end = ptr + item_size;
2009 while (ptr < ptr_end) {
2010 di = (struct btrfs_dir_item *)ptr;
2011 if (verify_dir_item(fs_info, eb, di)) {
2012 ret = -EIO;
2013 goto out;
2014 }
2015
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2021 }
2022 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023 name_len);
2024 log_di = NULL;
2025 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027 dir_key->objectid,
2028 name, name_len, 0);
2029 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030 log_di = btrfs_lookup_dir_index_item(trans, log,
2031 log_path,
2032 dir_key->objectid,
2033 dir_key->offset,
2034 name, name_len, 0);
2035 }
2036 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037 btrfs_dir_item_key_to_cpu(eb, di, &location);
2038 btrfs_release_path(path);
2039 btrfs_release_path(log_path);
2040 inode = read_one_inode(root, location.objectid);
2041 if (!inode) {
2042 kfree(name);
2043 return -EIO;
2044 }
2045
2046 ret = link_to_fixup_dir(trans, root,
2047 path, location.objectid);
2048 if (ret) {
2049 kfree(name);
2050 iput(inode);
2051 goto out;
2052 }
2053
2054 inc_nlink(inode);
2055 ret = btrfs_unlink_inode(trans, root, dir, inode,
2056 name, name_len);
2057 if (!ret)
2058 ret = btrfs_run_delayed_items(trans, fs_info);
2059 kfree(name);
2060 iput(inode);
2061 if (ret)
2062 goto out;
2063
2064 /* there might still be more names under this key
2065 * check and repeat if required
2066 */
2067 ret = btrfs_search_slot(NULL, root, dir_key, path,
2068 0, 0);
2069 if (ret == 0)
2070 goto again;
2071 ret = 0;
2072 goto out;
2073 } else if (IS_ERR(log_di)) {
2074 kfree(name);
2075 return PTR_ERR(log_di);
2076 }
2077 btrfs_release_path(log_path);
2078 kfree(name);
2079
2080 ptr = (unsigned long)(di + 1);
2081 ptr += name_len;
2082 }
2083 ret = 0;
2084out:
2085 btrfs_release_path(path);
2086 btrfs_release_path(log_path);
2087 return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 const u64 ino)
2095{
2096 struct btrfs_key search_key;
2097 struct btrfs_path *log_path;
2098 int i;
2099 int nritems;
2100 int ret;
2101
2102 log_path = btrfs_alloc_path();
2103 if (!log_path)
2104 return -ENOMEM;
2105
2106 search_key.objectid = ino;
2107 search_key.type = BTRFS_XATTR_ITEM_KEY;
2108 search_key.offset = 0;
2109again:
2110 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111 if (ret < 0)
2112 goto out;
2113process_leaf:
2114 nritems = btrfs_header_nritems(path->nodes[0]);
2115 for (i = path->slots[0]; i < nritems; i++) {
2116 struct btrfs_key key;
2117 struct btrfs_dir_item *di;
2118 struct btrfs_dir_item *log_di;
2119 u32 total_size;
2120 u32 cur;
2121
2122 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124 ret = 0;
2125 goto out;
2126 }
2127
2128 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 cur = 0;
2131 while (cur < total_size) {
2132 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134 u32 this_len = sizeof(*di) + name_len + data_len;
2135 char *name;
2136
2137 name = kmalloc(name_len, GFP_NOFS);
2138 if (!name) {
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142 read_extent_buffer(path->nodes[0], name,
2143 (unsigned long)(di + 1), name_len);
2144
2145 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 name, name_len, 0);
2147 btrfs_release_path(log_path);
2148 if (!log_di) {
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path);
2151 di = btrfs_lookup_xattr(trans, root, path, ino,
2152 name, name_len, -1);
2153 kfree(name);
2154 if (IS_ERR(di)) {
2155 ret = PTR_ERR(di);
2156 goto out;
2157 }
2158 ASSERT(di);
2159 ret = btrfs_delete_one_dir_name(trans, root,
2160 path, di);
2161 if (ret)
2162 goto out;
2163 btrfs_release_path(path);
2164 search_key = key;
2165 goto again;
2166 }
2167 kfree(name);
2168 if (IS_ERR(log_di)) {
2169 ret = PTR_ERR(log_di);
2170 goto out;
2171 }
2172 cur += this_len;
2173 di = (struct btrfs_dir_item *)((char *)di + this_len);
2174 }
2175 }
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 ret = 0;
2179 else if (ret == 0)
2180 goto process_leaf;
2181out:
2182 btrfs_free_path(log_path);
2183 btrfs_release_path(path);
2184 return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_root *log,
2201 struct btrfs_path *path,
2202 u64 dirid, int del_all)
2203{
2204 u64 range_start;
2205 u64 range_end;
2206 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 int ret = 0;
2208 struct btrfs_key dir_key;
2209 struct btrfs_key found_key;
2210 struct btrfs_path *log_path;
2211 struct inode *dir;
2212
2213 dir_key.objectid = dirid;
2214 dir_key.type = BTRFS_DIR_ITEM_KEY;
2215 log_path = btrfs_alloc_path();
2216 if (!log_path)
2217 return -ENOMEM;
2218
2219 dir = read_one_inode(root, dirid);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2222 * from the log
2223 */
2224 if (!dir) {
2225 btrfs_free_path(log_path);
2226 return 0;
2227 }
2228again:
2229 range_start = 0;
2230 range_end = 0;
2231 while (1) {
2232 if (del_all)
2233 range_end = (u64)-1;
2234 else {
2235 ret = find_dir_range(log, path, dirid, key_type,
2236 &range_start, &range_end);
2237 if (ret != 0)
2238 break;
2239 }
2240
2241 dir_key.offset = range_start;
2242 while (1) {
2243 int nritems;
2244 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245 0, 0);
2246 if (ret < 0)
2247 goto out;
2248
2249 nritems = btrfs_header_nritems(path->nodes[0]);
2250 if (path->slots[0] >= nritems) {
2251 ret = btrfs_next_leaf(root, path);
2252 if (ret)
2253 break;
2254 }
2255 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 path->slots[0]);
2257 if (found_key.objectid != dirid ||
2258 found_key.type != dir_key.type)
2259 goto next_type;
2260
2261 if (found_key.offset > range_end)
2262 break;
2263
2264 ret = check_item_in_log(trans, root, log, path,
2265 log_path, dir,
2266 &found_key);
2267 if (ret)
2268 goto out;
2269 if (found_key.offset == (u64)-1)
2270 break;
2271 dir_key.offset = found_key.offset + 1;
2272 }
2273 btrfs_release_path(path);
2274 if (range_end == (u64)-1)
2275 break;
2276 range_start = range_end + 1;
2277 }
2278
2279next_type:
2280 ret = 0;
2281 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283 dir_key.type = BTRFS_DIR_INDEX_KEY;
2284 btrfs_release_path(path);
2285 goto again;
2286 }
2287out:
2288 btrfs_release_path(path);
2289 btrfs_free_path(log_path);
2290 iput(dir);
2291 return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306 struct walk_control *wc, u64 gen)
2307{
2308 int nritems;
2309 struct btrfs_path *path;
2310 struct btrfs_root *root = wc->replay_dest;
2311 struct btrfs_key key;
2312 int level;
2313 int i;
2314 int ret;
2315
2316 ret = btrfs_read_buffer(eb, gen);
2317 if (ret)
2318 return ret;
2319
2320 level = btrfs_header_level(eb);
2321
2322 if (level != 0)
2323 return 0;
2324
2325 path = btrfs_alloc_path();
2326 if (!path)
2327 return -ENOMEM;
2328
2329 nritems = btrfs_header_nritems(eb);
2330 for (i = 0; i < nritems; i++) {
2331 btrfs_item_key_to_cpu(eb, &key, i);
2332
2333 /* inode keys are done during the first stage */
2334 if (key.type == BTRFS_INODE_ITEM_KEY &&
2335 wc->stage == LOG_WALK_REPLAY_INODES) {
2336 struct btrfs_inode_item *inode_item;
2337 u32 mode;
2338
2339 inode_item = btrfs_item_ptr(eb, i,
2340 struct btrfs_inode_item);
2341 ret = replay_xattr_deletes(wc->trans, root, log,
2342 path, key.objectid);
2343 if (ret)
2344 break;
2345 mode = btrfs_inode_mode(eb, inode_item);
2346 if (S_ISDIR(mode)) {
2347 ret = replay_dir_deletes(wc->trans,
2348 root, log, path, key.objectid, 0);
2349 if (ret)
2350 break;
2351 }
2352 ret = overwrite_item(wc->trans, root, path,
2353 eb, i, &key);
2354 if (ret)
2355 break;
2356
2357 /* for regular files, make sure corresponding
2358 * orphan item exist. extents past the new EOF
2359 * will be truncated later by orphan cleanup.
2360 */
2361 if (S_ISREG(mode)) {
2362 ret = insert_orphan_item(wc->trans, root,
2363 key.objectid);
2364 if (ret)
2365 break;
2366 }
2367
2368 ret = link_to_fixup_dir(wc->trans, root,
2369 path, key.objectid);
2370 if (ret)
2371 break;
2372 }
2373
2374 if (key.type == BTRFS_DIR_INDEX_KEY &&
2375 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2380 }
2381
2382 if (wc->stage < LOG_WALK_REPLAY_ALL)
2383 continue;
2384
2385 /* these keys are simply copied */
2386 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387 ret = overwrite_item(wc->trans, root, path,
2388 eb, i, &key);
2389 if (ret)
2390 break;
2391 } else if (key.type == BTRFS_INODE_REF_KEY ||
2392 key.type == BTRFS_INODE_EXTREF_KEY) {
2393 ret = add_inode_ref(wc->trans, root, log, path,
2394 eb, i, &key);
2395 if (ret && ret != -ENOENT)
2396 break;
2397 ret = 0;
2398 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399 ret = replay_one_extent(wc->trans, root, path,
2400 eb, i, &key);
2401 if (ret)
2402 break;
2403 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404 ret = replay_one_dir_item(wc->trans, root, path,
2405 eb, i, &key);
2406 if (ret)
2407 break;
2408 }
2409 }
2410 btrfs_free_path(path);
2411 return ret;
2412}
2413
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415 struct btrfs_root *root,
2416 struct btrfs_path *path, int *level,
2417 struct walk_control *wc)
2418{
2419 struct btrfs_fs_info *fs_info = root->fs_info;
2420 u64 root_owner;
2421 u64 bytenr;
2422 u64 ptr_gen;
2423 struct extent_buffer *next;
2424 struct extent_buffer *cur;
2425 struct extent_buffer *parent;
2426 u32 blocksize;
2427 int ret = 0;
2428
2429 WARN_ON(*level < 0);
2430 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432 while (*level > 0) {
2433 WARN_ON(*level < 0);
2434 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435 cur = path->nodes[*level];
2436
2437 WARN_ON(btrfs_header_level(cur) != *level);
2438
2439 if (path->slots[*level] >=
2440 btrfs_header_nritems(cur))
2441 break;
2442
2443 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2445 blocksize = fs_info->nodesize;
2446
2447 parent = path->nodes[*level];
2448 root_owner = btrfs_header_owner(parent);
2449
2450 next = btrfs_find_create_tree_block(fs_info, bytenr);
2451 if (IS_ERR(next))
2452 return PTR_ERR(next);
2453
2454 if (*level == 1) {
2455 ret = wc->process_func(root, next, wc, ptr_gen);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2459 }
2460
2461 path->slots[*level]++;
2462 if (wc->free) {
2463 ret = btrfs_read_buffer(next, ptr_gen);
2464 if (ret) {
2465 free_extent_buffer(next);
2466 return ret;
2467 }
2468
2469 if (trans) {
2470 btrfs_tree_lock(next);
2471 btrfs_set_lock_blocking(next);
2472 clean_tree_block(trans, fs_info, next);
2473 btrfs_wait_tree_block_writeback(next);
2474 btrfs_tree_unlock(next);
2475 }
2476
2477 WARN_ON(root_owner !=
2478 BTRFS_TREE_LOG_OBJECTID);
2479 ret = btrfs_free_and_pin_reserved_extent(
2480 fs_info, bytenr,
2481 blocksize);
2482 if (ret) {
2483 free_extent_buffer(next);
2484 return ret;
2485 }
2486 }
2487 free_extent_buffer(next);
2488 continue;
2489 }
2490 ret = btrfs_read_buffer(next, ptr_gen);
2491 if (ret) {
2492 free_extent_buffer(next);
2493 return ret;
2494 }
2495
2496 WARN_ON(*level <= 0);
2497 if (path->nodes[*level-1])
2498 free_extent_buffer(path->nodes[*level-1]);
2499 path->nodes[*level-1] = next;
2500 *level = btrfs_header_level(next);
2501 path->slots[*level] = 0;
2502 cond_resched();
2503 }
2504 WARN_ON(*level < 0);
2505 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509 cond_resched();
2510 return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 struct btrfs_path *path, int *level,
2516 struct walk_control *wc)
2517{
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 u64 root_owner;
2520 int i;
2521 int slot;
2522 int ret;
2523
2524 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525 slot = path->slots[i];
2526 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527 path->slots[i]++;
2528 *level = i;
2529 WARN_ON(*level == 0);
2530 return 0;
2531 } else {
2532 struct extent_buffer *parent;
2533 if (path->nodes[*level] == root->node)
2534 parent = path->nodes[*level];
2535 else
2536 parent = path->nodes[*level + 1];
2537
2538 root_owner = btrfs_header_owner(parent);
2539 ret = wc->process_func(root, path->nodes[*level], wc,
2540 btrfs_header_generation(path->nodes[*level]));
2541 if (ret)
2542 return ret;
2543
2544 if (wc->free) {
2545 struct extent_buffer *next;
2546
2547 next = path->nodes[*level];
2548
2549 if (trans) {
2550 btrfs_tree_lock(next);
2551 btrfs_set_lock_blocking(next);
2552 clean_tree_block(trans, fs_info, next);
2553 btrfs_wait_tree_block_writeback(next);
2554 btrfs_tree_unlock(next);
2555 }
2556
2557 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558 ret = btrfs_free_and_pin_reserved_extent(
2559 fs_info,
2560 path->nodes[*level]->start,
2561 path->nodes[*level]->len);
2562 if (ret)
2563 return ret;
2564 }
2565 free_extent_buffer(path->nodes[*level]);
2566 path->nodes[*level] = NULL;
2567 *level = i + 1;
2568 }
2569 }
2570 return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'. This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579 struct btrfs_root *log, struct walk_control *wc)
2580{
2581 struct btrfs_fs_info *fs_info = log->fs_info;
2582 int ret = 0;
2583 int wret;
2584 int level;
2585 struct btrfs_path *path;
2586 int orig_level;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
2592 level = btrfs_header_level(log->node);
2593 orig_level = level;
2594 path->nodes[level] = log->node;
2595 extent_buffer_get(log->node);
2596 path->slots[level] = 0;
2597
2598 while (1) {
2599 wret = walk_down_log_tree(trans, log, path, &level, wc);
2600 if (wret > 0)
2601 break;
2602 if (wret < 0) {
2603 ret = wret;
2604 goto out;
2605 }
2606
2607 wret = walk_up_log_tree(trans, log, path, &level, wc);
2608 if (wret > 0)
2609 break;
2610 if (wret < 0) {
2611 ret = wret;
2612 goto out;
2613 }
2614 }
2615
2616 /* was the root node processed? if not, catch it here */
2617 if (path->nodes[orig_level]) {
2618 ret = wc->process_func(log, path->nodes[orig_level], wc,
2619 btrfs_header_generation(path->nodes[orig_level]));
2620 if (ret)
2621 goto out;
2622 if (wc->free) {
2623 struct extent_buffer *next;
2624
2625 next = path->nodes[orig_level];
2626
2627 if (trans) {
2628 btrfs_tree_lock(next);
2629 btrfs_set_lock_blocking(next);
2630 clean_tree_block(trans, fs_info, next);
2631 btrfs_wait_tree_block_writeback(next);
2632 btrfs_tree_unlock(next);
2633 }
2634
2635 WARN_ON(log->root_key.objectid !=
2636 BTRFS_TREE_LOG_OBJECTID);
2637 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638 next->start, next->len);
2639 if (ret)
2640 goto out;
2641 }
2642 }
2643
2644out:
2645 btrfs_free_path(path);
2646 return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654 struct btrfs_root *log)
2655{
2656 struct btrfs_fs_info *fs_info = log->fs_info;
2657 int ret;
2658
2659 if (log->log_transid == 1) {
2660 /* insert root item on the first sync */
2661 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662 &log->root_key, &log->root_item);
2663 } else {
2664 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665 &log->root_key, &log->root_item);
2666 }
2667 return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672 DEFINE_WAIT(wait);
2673 int index = transid % 2;
2674
2675 /*
2676 * we only allow two pending log transactions at a time,
2677 * so we know that if ours is more than 2 older than the
2678 * current transaction, we're done
2679 */
2680 do {
2681 prepare_to_wait(&root->log_commit_wait[index],
2682 &wait, TASK_UNINTERRUPTIBLE);
2683 mutex_unlock(&root->log_mutex);
2684
2685 if (root->log_transid_committed < transid &&
2686 atomic_read(&root->log_commit[index]))
2687 schedule();
2688
2689 finish_wait(&root->log_commit_wait[index], &wait);
2690 mutex_lock(&root->log_mutex);
2691 } while (root->log_transid_committed < transid &&
2692 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697 DEFINE_WAIT(wait);
2698
2699 while (atomic_read(&root->log_writers)) {
2700 prepare_to_wait(&root->log_writer_wait,
2701 &wait, TASK_UNINTERRUPTIBLE);
2702 mutex_unlock(&root->log_mutex);
2703 if (atomic_read(&root->log_writers))
2704 schedule();
2705 finish_wait(&root->log_writer_wait, &wait);
2706 mutex_lock(&root->log_mutex);
2707 }
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711 struct btrfs_log_ctx *ctx)
2712{
2713 if (!ctx)
2714 return;
2715
2716 mutex_lock(&root->log_mutex);
2717 list_del_init(&ctx->list);
2718 mutex_unlock(&root->log_mutex);
2719}
2720
2721/*
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726 int index, int error)
2727{
2728 struct btrfs_log_ctx *ctx;
2729 struct btrfs_log_ctx *safe;
2730
2731 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732 list_del_init(&ctx->list);
2733 ctx->log_ret = error;
2734 }
2735
2736 INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it. When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754 int index1;
2755 int index2;
2756 int mark;
2757 int ret;
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 struct btrfs_root *log = root->log_root;
2760 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2761 int log_transid = 0;
2762 struct btrfs_log_ctx root_log_ctx;
2763 struct blk_plug plug;
2764
2765 mutex_lock(&root->log_mutex);
2766 log_transid = ctx->log_transid;
2767 if (root->log_transid_committed >= log_transid) {
2768 mutex_unlock(&root->log_mutex);
2769 return ctx->log_ret;
2770 }
2771
2772 index1 = log_transid % 2;
2773 if (atomic_read(&root->log_commit[index1])) {
2774 wait_log_commit(root, log_transid);
2775 mutex_unlock(&root->log_mutex);
2776 return ctx->log_ret;
2777 }
2778 ASSERT(log_transid == root->log_transid);
2779 atomic_set(&root->log_commit[index1], 1);
2780
2781 /* wait for previous tree log sync to complete */
2782 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783 wait_log_commit(root, log_transid - 1);
2784
2785 while (1) {
2786 int batch = atomic_read(&root->log_batch);
2787 /* when we're on an ssd, just kick the log commit out */
2788 if (!btrfs_test_opt(fs_info, SSD) &&
2789 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790 mutex_unlock(&root->log_mutex);
2791 schedule_timeout_uninterruptible(1);
2792 mutex_lock(&root->log_mutex);
2793 }
2794 wait_for_writer(root);
2795 if (batch == atomic_read(&root->log_batch))
2796 break;
2797 }
2798
2799 /* bail out if we need to do a full commit */
2800 if (btrfs_need_log_full_commit(fs_info, trans)) {
2801 ret = -EAGAIN;
2802 btrfs_free_logged_extents(log, log_transid);
2803 mutex_unlock(&root->log_mutex);
2804 goto out;
2805 }
2806
2807 if (log_transid % 2 == 0)
2808 mark = EXTENT_DIRTY;
2809 else
2810 mark = EXTENT_NEW;
2811
2812 /* we start IO on all the marked extents here, but we don't actually
2813 * wait for them until later.
2814 */
2815 blk_start_plug(&plug);
2816 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2817 if (ret) {
2818 blk_finish_plug(&plug);
2819 btrfs_abort_transaction(trans, ret);
2820 btrfs_free_logged_extents(log, log_transid);
2821 btrfs_set_log_full_commit(fs_info, trans);
2822 mutex_unlock(&root->log_mutex);
2823 goto out;
2824 }
2825
2826 btrfs_set_root_node(&log->root_item, log->node);
2827
2828 root->log_transid++;
2829 log->log_transid = root->log_transid;
2830 root->log_start_pid = 0;
2831 /*
2832 * IO has been started, blocks of the log tree have WRITTEN flag set
2833 * in their headers. new modifications of the log will be written to
2834 * new positions. so it's safe to allow log writers to go in.
2835 */
2836 mutex_unlock(&root->log_mutex);
2837
2838 btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840 mutex_lock(&log_root_tree->log_mutex);
2841 atomic_inc(&log_root_tree->log_batch);
2842 atomic_inc(&log_root_tree->log_writers);
2843
2844 index2 = log_root_tree->log_transid % 2;
2845 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846 root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848 mutex_unlock(&log_root_tree->log_mutex);
2849
2850 ret = update_log_root(trans, log);
2851
2852 mutex_lock(&log_root_tree->log_mutex);
2853 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854 /*
2855 * Implicit memory barrier after atomic_dec_and_test
2856 */
2857 if (waitqueue_active(&log_root_tree->log_writer_wait))
2858 wake_up(&log_root_tree->log_writer_wait);
2859 }
2860
2861 if (ret) {
2862 if (!list_empty(&root_log_ctx.list))
2863 list_del_init(&root_log_ctx.list);
2864
2865 blk_finish_plug(&plug);
2866 btrfs_set_log_full_commit(fs_info, trans);
2867
2868 if (ret != -ENOSPC) {
2869 btrfs_abort_transaction(trans, ret);
2870 mutex_unlock(&log_root_tree->log_mutex);
2871 goto out;
2872 }
2873 btrfs_wait_tree_log_extents(log, mark);
2874 btrfs_free_logged_extents(log, log_transid);
2875 mutex_unlock(&log_root_tree->log_mutex);
2876 ret = -EAGAIN;
2877 goto out;
2878 }
2879
2880 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881 blk_finish_plug(&plug);
2882 list_del_init(&root_log_ctx.list);
2883 mutex_unlock(&log_root_tree->log_mutex);
2884 ret = root_log_ctx.log_ret;
2885 goto out;
2886 }
2887
2888 index2 = root_log_ctx.log_transid % 2;
2889 if (atomic_read(&log_root_tree->log_commit[index2])) {
2890 blk_finish_plug(&plug);
2891 ret = btrfs_wait_tree_log_extents(log, mark);
2892 btrfs_wait_logged_extents(trans, log, log_transid);
2893 wait_log_commit(log_root_tree,
2894 root_log_ctx.log_transid);
2895 mutex_unlock(&log_root_tree->log_mutex);
2896 if (!ret)
2897 ret = root_log_ctx.log_ret;
2898 goto out;
2899 }
2900 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901 atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904 wait_log_commit(log_root_tree,
2905 root_log_ctx.log_transid - 1);
2906 }
2907
2908 wait_for_writer(log_root_tree);
2909
2910 /*
2911 * now that we've moved on to the tree of log tree roots,
2912 * check the full commit flag again
2913 */
2914 if (btrfs_need_log_full_commit(fs_info, trans)) {
2915 blk_finish_plug(&plug);
2916 btrfs_wait_tree_log_extents(log, mark);
2917 btrfs_free_logged_extents(log, log_transid);
2918 mutex_unlock(&log_root_tree->log_mutex);
2919 ret = -EAGAIN;
2920 goto out_wake_log_root;
2921 }
2922
2923 ret = btrfs_write_marked_extents(fs_info,
2924 &log_root_tree->dirty_log_pages,
2925 EXTENT_DIRTY | EXTENT_NEW);
2926 blk_finish_plug(&plug);
2927 if (ret) {
2928 btrfs_set_log_full_commit(fs_info, trans);
2929 btrfs_abort_transaction(trans, ret);
2930 btrfs_free_logged_extents(log, log_transid);
2931 mutex_unlock(&log_root_tree->log_mutex);
2932 goto out_wake_log_root;
2933 }
2934 ret = btrfs_wait_tree_log_extents(log, mark);
2935 if (!ret)
2936 ret = btrfs_wait_tree_log_extents(log_root_tree,
2937 EXTENT_NEW | EXTENT_DIRTY);
2938 if (ret) {
2939 btrfs_set_log_full_commit(fs_info, trans);
2940 btrfs_free_logged_extents(log, log_transid);
2941 mutex_unlock(&log_root_tree->log_mutex);
2942 goto out_wake_log_root;
2943 }
2944 btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946 btrfs_set_super_log_root(fs_info->super_for_commit,
2947 log_root_tree->node->start);
2948 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949 btrfs_header_level(log_root_tree->node));
2950
2951 log_root_tree->log_transid++;
2952 mutex_unlock(&log_root_tree->log_mutex);
2953
2954 /*
2955 * nobody else is going to jump in and write the the ctree
2956 * super here because the log_commit atomic below is protecting
2957 * us. We must be called with a transaction handle pinning
2958 * the running transaction open, so a full commit can't hop
2959 * in and cause problems either.
2960 */
2961 ret = write_ctree_super(trans, fs_info, 1);
2962 if (ret) {
2963 btrfs_set_log_full_commit(fs_info, trans);
2964 btrfs_abort_transaction(trans, ret);
2965 goto out_wake_log_root;
2966 }
2967
2968 mutex_lock(&root->log_mutex);
2969 if (root->last_log_commit < log_transid)
2970 root->last_log_commit = log_transid;
2971 mutex_unlock(&root->log_mutex);
2972
2973out_wake_log_root:
2974 mutex_lock(&log_root_tree->log_mutex);
2975 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977 log_root_tree->log_transid_committed++;
2978 atomic_set(&log_root_tree->log_commit[index2], 0);
2979 mutex_unlock(&log_root_tree->log_mutex);
2980
2981 /*
2982 * The barrier before waitqueue_active is implied by mutex_unlock
2983 */
2984 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985 wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987 mutex_lock(&root->log_mutex);
2988 btrfs_remove_all_log_ctxs(root, index1, ret);
2989 root->log_transid_committed++;
2990 atomic_set(&root->log_commit[index1], 0);
2991 mutex_unlock(&root->log_mutex);
2992
2993 /*
2994 * The barrier before waitqueue_active is implied by mutex_unlock
2995 */
2996 if (waitqueue_active(&root->log_commit_wait[index1]))
2997 wake_up(&root->log_commit_wait[index1]);
2998 return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002 struct btrfs_root *log)
3003{
3004 int ret;
3005 u64 start;
3006 u64 end;
3007 struct walk_control wc = {
3008 .free = 1,
3009 .process_func = process_one_buffer
3010 };
3011
3012 ret = walk_log_tree(trans, log, &wc);
3013 /* I don't think this can happen but just in case */
3014 if (ret)
3015 btrfs_abort_transaction(trans, ret);
3016
3017 while (1) {
3018 ret = find_first_extent_bit(&log->dirty_log_pages,
3019 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020 NULL);
3021 if (ret)
3022 break;
3023
3024 clear_extent_bits(&log->dirty_log_pages, start, end,
3025 EXTENT_DIRTY | EXTENT_NEW);
3026 }
3027
3028 /*
3029 * We may have short-circuited the log tree with the full commit logic
3030 * and left ordered extents on our list, so clear these out to keep us
3031 * from leaking inodes and memory.
3032 */
3033 btrfs_free_logged_extents(log, 0);
3034 btrfs_free_logged_extents(log, 1);
3035
3036 free_extent_buffer(log->node);
3037 kfree(log);
3038}
3039
3040/*
3041 * free all the extents used by the tree log. This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046 if (root->log_root) {
3047 free_log_tree(trans, root->log_root);
3048 root->log_root = NULL;
3049 }
3050 return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054 struct btrfs_fs_info *fs_info)
3055{
3056 if (fs_info->log_root_tree) {
3057 free_log_tree(trans, fs_info->log_root_tree);
3058 fs_info->log_root_tree = NULL;
3059 }
3060 return 0;
3061}
3062
3063/*
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist. But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked. Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 const char *name, int name_len,
3087 struct inode *dir, u64 index)
3088{
3089 struct btrfs_root *log;
3090 struct btrfs_dir_item *di;
3091 struct btrfs_path *path;
3092 int ret;
3093 int err = 0;
3094 int bytes_del = 0;
3095 u64 dir_ino = btrfs_ino(dir);
3096
3097 if (BTRFS_I(dir)->logged_trans < trans->transid)
3098 return 0;
3099
3100 ret = join_running_log_trans(root);
3101 if (ret)
3102 return 0;
3103
3104 mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106 log = root->log_root;
3107 path = btrfs_alloc_path();
3108 if (!path) {
3109 err = -ENOMEM;
3110 goto out_unlock;
3111 }
3112
3113 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114 name, name_len, -1);
3115 if (IS_ERR(di)) {
3116 err = PTR_ERR(di);
3117 goto fail;
3118 }
3119 if (di) {
3120 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121 bytes_del += name_len;
3122 if (ret) {
3123 err = ret;
3124 goto fail;
3125 }
3126 }
3127 btrfs_release_path(path);
3128 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129 index, name, name_len, -1);
3130 if (IS_ERR(di)) {
3131 err = PTR_ERR(di);
3132 goto fail;
3133 }
3134 if (di) {
3135 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136 bytes_del += name_len;
3137 if (ret) {
3138 err = ret;
3139 goto fail;
3140 }
3141 }
3142
3143 /* update the directory size in the log to reflect the names
3144 * we have removed
3145 */
3146 if (bytes_del) {
3147 struct btrfs_key key;
3148
3149 key.objectid = dir_ino;
3150 key.offset = 0;
3151 key.type = BTRFS_INODE_ITEM_KEY;
3152 btrfs_release_path(path);
3153
3154 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155 if (ret < 0) {
3156 err = ret;
3157 goto fail;
3158 }
3159 if (ret == 0) {
3160 struct btrfs_inode_item *item;
3161 u64 i_size;
3162
3163 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164 struct btrfs_inode_item);
3165 i_size = btrfs_inode_size(path->nodes[0], item);
3166 if (i_size > bytes_del)
3167 i_size -= bytes_del;
3168 else
3169 i_size = 0;
3170 btrfs_set_inode_size(path->nodes[0], item, i_size);
3171 btrfs_mark_buffer_dirty(path->nodes[0]);
3172 } else
3173 ret = 0;
3174 btrfs_release_path(path);
3175 }
3176fail:
3177 btrfs_free_path(path);
3178out_unlock:
3179 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180 if (ret == -ENOSPC) {
3181 btrfs_set_log_full_commit(root->fs_info, trans);
3182 ret = 0;
3183 } else if (ret < 0)
3184 btrfs_abort_transaction(trans, ret);
3185
3186 btrfs_end_log_trans(root);
3187
3188 return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *root,
3194 const char *name, int name_len,
3195 struct inode *inode, u64 dirid)
3196{
3197 struct btrfs_fs_info *fs_info = root->fs_info;
3198 struct btrfs_root *log;
3199 u64 index;
3200 int ret;
3201
3202 if (BTRFS_I(inode)->logged_trans < trans->transid)
3203 return 0;
3204
3205 ret = join_running_log_trans(root);
3206 if (ret)
3207 return 0;
3208 log = root->log_root;
3209 mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212 dirid, &index);
3213 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214 if (ret == -ENOSPC) {
3215 btrfs_set_log_full_commit(fs_info, trans);
3216 ret = 0;
3217 } else if (ret < 0 && ret != -ENOENT)
3218 btrfs_abort_transaction(trans, ret);
3219 btrfs_end_log_trans(root);
3220
3221 return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'. first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230 struct btrfs_root *log,
3231 struct btrfs_path *path,
3232 int key_type, u64 dirid,
3233 u64 first_offset, u64 last_offset)
3234{
3235 int ret;
3236 struct btrfs_key key;
3237 struct btrfs_dir_log_item *item;
3238
3239 key.objectid = dirid;
3240 key.offset = first_offset;
3241 if (key_type == BTRFS_DIR_ITEM_KEY)
3242 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243 else
3244 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246 if (ret)
3247 return ret;
3248
3249 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250 struct btrfs_dir_log_item);
3251 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252 btrfs_mark_buffer_dirty(path->nodes[0]);
3253 btrfs_release_path(path);
3254 return 0;
3255}
3256
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory. This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root, struct inode *inode,
3264 struct btrfs_path *path,
3265 struct btrfs_path *dst_path, int key_type,
3266 struct btrfs_log_ctx *ctx,
3267 u64 min_offset, u64 *last_offset_ret)
3268{
3269 struct btrfs_key min_key;
3270 struct btrfs_root *log = root->log_root;
3271 struct extent_buffer *src;
3272 int err = 0;
3273 int ret;
3274 int i;
3275 int nritems;
3276 u64 first_offset = min_offset;
3277 u64 last_offset = (u64)-1;
3278 u64 ino = btrfs_ino(inode);
3279
3280 log = root->log_root;
3281
3282 min_key.objectid = ino;
3283 min_key.type = key_type;
3284 min_key.offset = min_offset;
3285
3286 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288 /*
3289 * we didn't find anything from this transaction, see if there
3290 * is anything at all
3291 */
3292 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3293 min_key.objectid = ino;
3294 min_key.type = key_type;
3295 min_key.offset = (u64)-1;
3296 btrfs_release_path(path);
3297 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298 if (ret < 0) {
3299 btrfs_release_path(path);
3300 return ret;
3301 }
3302 ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304 /* if ret == 0 there are items for this type,
3305 * create a range to tell us the last key of this type.
3306 * otherwise, there are no items in this directory after
3307 * *min_offset, and we create a range to indicate that.
3308 */
3309 if (ret == 0) {
3310 struct btrfs_key tmp;
3311 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312 path->slots[0]);
3313 if (key_type == tmp.type)
3314 first_offset = max(min_offset, tmp.offset) + 1;
3315 }
3316 goto done;
3317 }
3318
3319 /* go backward to find any previous key */
3320 ret = btrfs_previous_item(root, path, ino, key_type);
3321 if (ret == 0) {
3322 struct btrfs_key tmp;
3323 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324 if (key_type == tmp.type) {
3325 first_offset = tmp.offset;
3326 ret = overwrite_item(trans, log, dst_path,
3327 path->nodes[0], path->slots[0],
3328 &tmp);
3329 if (ret) {
3330 err = ret;
3331 goto done;
3332 }
3333 }
3334 }
3335 btrfs_release_path(path);
3336
3337 /* find the first key from this transaction again */
3338 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339 if (WARN_ON(ret != 0))
3340 goto done;
3341
3342 /*
3343 * we have a block from this transaction, log every item in it
3344 * from our directory
3345 */
3346 while (1) {
3347 struct btrfs_key tmp;
3348 src = path->nodes[0];
3349 nritems = btrfs_header_nritems(src);
3350 for (i = path->slots[0]; i < nritems; i++) {
3351 struct btrfs_dir_item *di;
3352
3353 btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355 if (min_key.objectid != ino || min_key.type != key_type)
3356 goto done;
3357 ret = overwrite_item(trans, log, dst_path, src, i,
3358 &min_key);
3359 if (ret) {
3360 err = ret;
3361 goto done;
3362 }
3363
3364 /*
3365 * We must make sure that when we log a directory entry,
3366 * the corresponding inode, after log replay, has a
3367 * matching link count. For example:
3368 *
3369 * touch foo
3370 * mkdir mydir
3371 * sync
3372 * ln foo mydir/bar
3373 * xfs_io -c "fsync" mydir
3374 * <crash>
3375 * <mount fs and log replay>
3376 *
3377 * Would result in a fsync log that when replayed, our
3378 * file inode would have a link count of 1, but we get
3379 * two directory entries pointing to the same inode.
3380 * After removing one of the names, it would not be
3381 * possible to remove the other name, which resulted
3382 * always in stale file handle errors, and would not
3383 * be possible to rmdir the parent directory, since
3384 * its i_size could never decrement to the value
3385 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386 */
3387 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389 if (ctx &&
3390 (btrfs_dir_transid(src, di) == trans->transid ||
3391 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392 tmp.type != BTRFS_ROOT_ITEM_KEY)
3393 ctx->log_new_dentries = true;
3394 }
3395 path->slots[0] = nritems;
3396
3397 /*
3398 * look ahead to the next item and see if it is also
3399 * from this directory and from this transaction
3400 */
3401 ret = btrfs_next_leaf(root, path);
3402 if (ret == 1) {
3403 last_offset = (u64)-1;
3404 goto done;
3405 }
3406 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407 if (tmp.objectid != ino || tmp.type != key_type) {
3408 last_offset = (u64)-1;
3409 goto done;
3410 }
3411 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412 ret = overwrite_item(trans, log, dst_path,
3413 path->nodes[0], path->slots[0],
3414 &tmp);
3415 if (ret)
3416 err = ret;
3417 else
3418 last_offset = tmp.offset;
3419 goto done;
3420 }
3421 }
3422done:
3423 btrfs_release_path(path);
3424 btrfs_release_path(dst_path);
3425
3426 if (err == 0) {
3427 *last_offset_ret = last_offset;
3428 /*
3429 * insert the log range keys to indicate where the log
3430 * is valid
3431 */
3432 ret = insert_dir_log_key(trans, log, path, key_type,
3433 ino, first_offset, last_offset);
3434 if (ret)
3435 err = ret;
3436 }
3437 return err;
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root, struct inode *inode,
3454 struct btrfs_path *path,
3455 struct btrfs_path *dst_path,
3456 struct btrfs_log_ctx *ctx)
3457{
3458 u64 min_key;
3459 u64 max_key;
3460 int ret;
3461 int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464 min_key = 0;
3465 max_key = 0;
3466 while (1) {
3467 ret = log_dir_items(trans, root, inode, path,
3468 dst_path, key_type, ctx, min_key,
3469 &max_key);
3470 if (ret)
3471 return ret;
3472 if (max_key == (u64)-1)
3473 break;
3474 min_key = max_key + 1;
3475 }
3476
3477 if (key_type == BTRFS_DIR_ITEM_KEY) {
3478 key_type = BTRFS_DIR_INDEX_KEY;
3479 goto again;
3480 }
3481 return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode. max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *log,
3492 struct btrfs_path *path,
3493 u64 objectid, int max_key_type)
3494{
3495 int ret;
3496 struct btrfs_key key;
3497 struct btrfs_key found_key;
3498 int start_slot;
3499
3500 key.objectid = objectid;
3501 key.type = max_key_type;
3502 key.offset = (u64)-1;
3503
3504 while (1) {
3505 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506 BUG_ON(ret == 0); /* Logic error */
3507 if (ret < 0)
3508 break;
3509
3510 if (path->slots[0] == 0)
3511 break;
3512
3513 path->slots[0]--;
3514 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515 path->slots[0]);
3516
3517 if (found_key.objectid != objectid)
3518 break;
3519
3520 found_key.offset = 0;
3521 found_key.type = 0;
3522 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523 &start_slot);
3524
3525 ret = btrfs_del_items(trans, log, path, start_slot,
3526 path->slots[0] - start_slot + 1);
3527 /*
3528 * If start slot isn't 0 then we don't need to re-search, we've
3529 * found the last guy with the objectid in this tree.
3530 */
3531 if (ret || start_slot != 0)
3532 break;
3533 btrfs_release_path(path);
3534 }
3535 btrfs_release_path(path);
3536 if (ret > 0)
3537 ret = 0;
3538 return ret;
3539}
3540
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542 struct extent_buffer *leaf,
3543 struct btrfs_inode_item *item,
3544 struct inode *inode, int log_inode_only,
3545 u64 logged_isize)
3546{
3547 struct btrfs_map_token token;
3548
3549 btrfs_init_map_token(&token);
3550
3551 if (log_inode_only) {
3552 /* set the generation to zero so the recover code
3553 * can tell the difference between an logging
3554 * just to say 'this inode exists' and a logging
3555 * to say 'update this inode with these values'
3556 */
3557 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559 } else {
3560 btrfs_set_token_inode_generation(leaf, item,
3561 BTRFS_I(inode)->generation,
3562 &token);
3563 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564 }
3565
3566 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571 btrfs_set_token_timespec_sec(leaf, &item->atime,
3572 inode->i_atime.tv_sec, &token);
3573 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574 inode->i_atime.tv_nsec, &token);
3575
3576 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577 inode->i_mtime.tv_sec, &token);
3578 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579 inode->i_mtime.tv_nsec, &token);
3580
3581 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582 inode->i_ctime.tv_sec, &token);
3583 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584 inode->i_ctime.tv_nsec, &token);
3585
3586 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587 &token);
3588
3589 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3590 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *log, struct btrfs_path *path,
3598 struct inode *inode)
3599{
3600 struct btrfs_inode_item *inode_item;
3601 int ret;
3602
3603 ret = btrfs_insert_empty_item(trans, log, path,
3604 &BTRFS_I(inode)->location,
3605 sizeof(*inode_item));
3606 if (ret && ret != -EEXIST)
3607 return ret;
3608 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609 struct btrfs_inode_item);
3610 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3611 btrfs_release_path(path);
3612 return 0;
3613}
3614
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616 struct inode *inode,
3617 struct btrfs_path *dst_path,
3618 struct btrfs_path *src_path, u64 *last_extent,
3619 int start_slot, int nr, int inode_only,
3620 u64 logged_isize)
3621{
3622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623 unsigned long src_offset;
3624 unsigned long dst_offset;
3625 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626 struct btrfs_file_extent_item *extent;
3627 struct btrfs_inode_item *inode_item;
3628 struct extent_buffer *src = src_path->nodes[0];
3629 struct btrfs_key first_key, last_key, key;
3630 int ret;
3631 struct btrfs_key *ins_keys;
3632 u32 *ins_sizes;
3633 char *ins_data;
3634 int i;
3635 struct list_head ordered_sums;
3636 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637 bool has_extents = false;
3638 bool need_find_last_extent = true;
3639 bool done = false;
3640
3641 INIT_LIST_HEAD(&ordered_sums);
3642
3643 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644 nr * sizeof(u32), GFP_NOFS);
3645 if (!ins_data)
3646 return -ENOMEM;
3647
3648 first_key.objectid = (u64)-1;
3649
3650 ins_sizes = (u32 *)ins_data;
3651 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652
3653 for (i = 0; i < nr; i++) {
3654 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656 }
3657 ret = btrfs_insert_empty_items(trans, log, dst_path,
3658 ins_keys, ins_sizes, nr);
3659 if (ret) {
3660 kfree(ins_data);
3661 return ret;
3662 }
3663
3664 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666 dst_path->slots[0]);
3667
3668 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670 if ((i == (nr - 1)))
3671 last_key = ins_keys[i];
3672
3673 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675 dst_path->slots[0],
3676 struct btrfs_inode_item);
3677 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678 inode, inode_only == LOG_INODE_EXISTS,
3679 logged_isize);
3680 } else {
3681 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682 src_offset, ins_sizes[i]);
3683 }
3684
3685 /*
3686 * We set need_find_last_extent here in case we know we were
3687 * processing other items and then walk into the first extent in
3688 * the inode. If we don't hit an extent then nothing changes,
3689 * we'll do the last search the next time around.
3690 */
3691 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692 has_extents = true;
3693 if (first_key.objectid == (u64)-1)
3694 first_key = ins_keys[i];
3695 } else {
3696 need_find_last_extent = false;
3697 }
3698
3699 /* take a reference on file data extents so that truncates
3700 * or deletes of this inode don't have to relog the inode
3701 * again
3702 */
3703 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704 !skip_csum) {
3705 int found_type;
3706 extent = btrfs_item_ptr(src, start_slot + i,
3707 struct btrfs_file_extent_item);
3708
3709 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710 continue;
3711
3712 found_type = btrfs_file_extent_type(src, extent);
3713 if (found_type == BTRFS_FILE_EXTENT_REG) {
3714 u64 ds, dl, cs, cl;
3715 ds = btrfs_file_extent_disk_bytenr(src,
3716 extent);
3717 /* ds == 0 is a hole */
3718 if (ds == 0)
3719 continue;
3720
3721 dl = btrfs_file_extent_disk_num_bytes(src,
3722 extent);
3723 cs = btrfs_file_extent_offset(src, extent);
3724 cl = btrfs_file_extent_num_bytes(src,
3725 extent);
3726 if (btrfs_file_extent_compression(src,
3727 extent)) {
3728 cs = 0;
3729 cl = dl;
3730 }
3731
3732 ret = btrfs_lookup_csums_range(
3733 fs_info->csum_root,
3734 ds + cs, ds + cs + cl - 1,
3735 &ordered_sums, 0);
3736 if (ret) {
3737 btrfs_release_path(dst_path);
3738 kfree(ins_data);
3739 return ret;
3740 }
3741 }
3742 }
3743 }
3744
3745 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746 btrfs_release_path(dst_path);
3747 kfree(ins_data);
3748
3749 /*
3750 * we have to do this after the loop above to avoid changing the
3751 * log tree while trying to change the log tree.
3752 */
3753 ret = 0;
3754 while (!list_empty(&ordered_sums)) {
3755 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756 struct btrfs_ordered_sum,
3757 list);
3758 if (!ret)
3759 ret = btrfs_csum_file_blocks(trans, log, sums);
3760 list_del(&sums->list);
3761 kfree(sums);
3762 }
3763
3764 if (!has_extents)
3765 return ret;
3766
3767 if (need_find_last_extent && *last_extent == first_key.offset) {
3768 /*
3769 * We don't have any leafs between our current one and the one
3770 * we processed before that can have file extent items for our
3771 * inode (and have a generation number smaller than our current
3772 * transaction id).
3773 */
3774 need_find_last_extent = false;
3775 }
3776
3777 /*
3778 * Because we use btrfs_search_forward we could skip leaves that were
3779 * not modified and then assume *last_extent is valid when it really
3780 * isn't. So back up to the previous leaf and read the end of the last
3781 * extent before we go and fill in holes.
3782 */
3783 if (need_find_last_extent) {
3784 u64 len;
3785
3786 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787 if (ret < 0)
3788 return ret;
3789 if (ret)
3790 goto fill_holes;
3791 if (src_path->slots[0])
3792 src_path->slots[0]--;
3793 src = src_path->nodes[0];
3794 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795 if (key.objectid != btrfs_ino(inode) ||
3796 key.type != BTRFS_EXTENT_DATA_KEY)
3797 goto fill_holes;
3798 extent = btrfs_item_ptr(src, src_path->slots[0],
3799 struct btrfs_file_extent_item);
3800 if (btrfs_file_extent_type(src, extent) ==
3801 BTRFS_FILE_EXTENT_INLINE) {
3802 len = btrfs_file_extent_inline_len(src,
3803 src_path->slots[0],
3804 extent);
3805 *last_extent = ALIGN(key.offset + len,
3806 fs_info->sectorsize);
3807 } else {
3808 len = btrfs_file_extent_num_bytes(src, extent);
3809 *last_extent = key.offset + len;
3810 }
3811 }
3812fill_holes:
3813 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3814 * things could have happened
3815 *
3816 * 1) A merge could have happened, so we could currently be on a leaf
3817 * that holds what we were copying in the first place.
3818 * 2) A split could have happened, and now not all of the items we want
3819 * are on the same leaf.
3820 *
3821 * So we need to adjust how we search for holes, we need to drop the
3822 * path and re-search for the first extent key we found, and then walk
3823 * forward until we hit the last one we copied.
3824 */
3825 if (need_find_last_extent) {
3826 /* btrfs_prev_leaf could return 1 without releasing the path */
3827 btrfs_release_path(src_path);
3828 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829 src_path, 0, 0);
3830 if (ret < 0)
3831 return ret;
3832 ASSERT(ret == 0);
3833 src = src_path->nodes[0];
3834 i = src_path->slots[0];
3835 } else {
3836 i = start_slot;
3837 }
3838
3839 /*
3840 * Ok so here we need to go through and fill in any holes we may have
3841 * to make sure that holes are punched for those areas in case they had
3842 * extents previously.
3843 */
3844 while (!done) {
3845 u64 offset, len;
3846 u64 extent_end;
3847
3848 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850 if (ret < 0)
3851 return ret;
3852 ASSERT(ret == 0);
3853 src = src_path->nodes[0];
3854 i = 0;
3855 }
3856
3857 btrfs_item_key_to_cpu(src, &key, i);
3858 if (!btrfs_comp_cpu_keys(&key, &last_key))
3859 done = true;
3860 if (key.objectid != btrfs_ino(inode) ||
3861 key.type != BTRFS_EXTENT_DATA_KEY) {
3862 i++;
3863 continue;
3864 }
3865 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866 if (btrfs_file_extent_type(src, extent) ==
3867 BTRFS_FILE_EXTENT_INLINE) {
3868 len = btrfs_file_extent_inline_len(src, i, extent);
3869 extent_end = ALIGN(key.offset + len,
3870 fs_info->sectorsize);
3871 } else {
3872 len = btrfs_file_extent_num_bytes(src, extent);
3873 extent_end = key.offset + len;
3874 }
3875 i++;
3876
3877 if (*last_extent == key.offset) {
3878 *last_extent = extent_end;
3879 continue;
3880 }
3881 offset = *last_extent;
3882 len = key.offset - *last_extent;
3883 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884 offset, 0, 0, len, 0, len, 0,
3885 0, 0);
3886 if (ret)
3887 break;
3888 *last_extent = extent_end;
3889 }
3890 /*
3891 * Need to let the callers know we dropped the path so they should
3892 * re-search.
3893 */
3894 if (!ret && need_find_last_extent)
3895 ret = 1;
3896 return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900{
3901 struct extent_map *em1, *em2;
3902
3903 em1 = list_entry(a, struct extent_map, list);
3904 em2 = list_entry(b, struct extent_map, list);
3905
3906 if (em1->start < em2->start)
3907 return -1;
3908 else if (em1->start > em2->start)
3909 return 1;
3910 return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914 struct inode *inode,
3915 struct btrfs_root *root,
3916 const struct extent_map *em,
3917 const struct list_head *logged_list,
3918 bool *ordered_io_error)
3919{
3920 struct btrfs_fs_info *fs_info = root->fs_info;
3921 struct btrfs_ordered_extent *ordered;
3922 struct btrfs_root *log = root->log_root;
3923 u64 mod_start = em->mod_start;
3924 u64 mod_len = em->mod_len;
3925 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926 u64 csum_offset;
3927 u64 csum_len;
3928 LIST_HEAD(ordered_sums);
3929 int ret = 0;
3930
3931 *ordered_io_error = false;
3932
3933 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934 em->block_start == EXTENT_MAP_HOLE)
3935 return 0;
3936
3937 /*
3938 * Wait far any ordered extent that covers our extent map. If it
3939 * finishes without an error, first check and see if our csums are on
3940 * our outstanding ordered extents.
3941 */
3942 list_for_each_entry(ordered, logged_list, log_list) {
3943 struct btrfs_ordered_sum *sum;
3944
3945 if (!mod_len)
3946 break;
3947
3948 if (ordered->file_offset + ordered->len <= mod_start ||
3949 mod_start + mod_len <= ordered->file_offset)
3950 continue;
3951
3952 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955 const u64 start = ordered->file_offset;
3956 const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958 WARN_ON(ordered->inode != inode);
3959 filemap_fdatawrite_range(inode->i_mapping, start, end);
3960 }
3961
3962 wait_event(ordered->wait,
3963 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967 /*
3968 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969 * i_mapping flags, so that the next fsync won't get
3970 * an outdated io error too.
3971 */
3972 filemap_check_errors(inode->i_mapping);
3973 *ordered_io_error = true;
3974 break;
3975 }
3976 /*
3977 * We are going to copy all the csums on this ordered extent, so
3978 * go ahead and adjust mod_start and mod_len in case this
3979 * ordered extent has already been logged.
3980 */
3981 if (ordered->file_offset > mod_start) {
3982 if (ordered->file_offset + ordered->len >=
3983 mod_start + mod_len)
3984 mod_len = ordered->file_offset - mod_start;
3985 /*
3986 * If we have this case
3987 *
3988 * |--------- logged extent ---------|
3989 * |----- ordered extent ----|
3990 *
3991 * Just don't mess with mod_start and mod_len, we'll
3992 * just end up logging more csums than we need and it
3993 * will be ok.
3994 */
3995 } else {
3996 if (ordered->file_offset + ordered->len <
3997 mod_start + mod_len) {
3998 mod_len = (mod_start + mod_len) -
3999 (ordered->file_offset + ordered->len);
4000 mod_start = ordered->file_offset +
4001 ordered->len;
4002 } else {
4003 mod_len = 0;
4004 }
4005 }
4006
4007 if (skip_csum)
4008 continue;
4009
4010 /*
4011 * To keep us from looping for the above case of an ordered
4012 * extent that falls inside of the logged extent.
4013 */
4014 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015 &ordered->flags))
4016 continue;
4017
4018 list_for_each_entry(sum, &ordered->list, list) {
4019 ret = btrfs_csum_file_blocks(trans, log, sum);
4020 if (ret)
4021 break;
4022 }
4023 }
4024
4025 if (*ordered_io_error || !mod_len || ret || skip_csum)
4026 return ret;
4027
4028 if (em->compress_type) {
4029 csum_offset = 0;
4030 csum_len = max(em->block_len, em->orig_block_len);
4031 } else {
4032 csum_offset = mod_start - em->start;
4033 csum_len = mod_len;
4034 }
4035
4036 /* block start is already adjusted for the file extent offset. */
4037 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038 em->block_start + csum_offset,
4039 em->block_start + csum_offset +
4040 csum_len - 1, &ordered_sums, 0);
4041 if (ret)
4042 return ret;
4043
4044 while (!list_empty(&ordered_sums)) {
4045 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046 struct btrfs_ordered_sum,
4047 list);
4048 if (!ret)
4049 ret = btrfs_csum_file_blocks(trans, log, sums);
4050 list_del(&sums->list);
4051 kfree(sums);
4052 }
4053
4054 return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058 struct inode *inode, struct btrfs_root *root,
4059 const struct extent_map *em,
4060 struct btrfs_path *path,
4061 const struct list_head *logged_list,
4062 struct btrfs_log_ctx *ctx)
4063{
4064 struct btrfs_root *log = root->log_root;
4065 struct btrfs_file_extent_item *fi;
4066 struct extent_buffer *leaf;
4067 struct btrfs_map_token token;
4068 struct btrfs_key key;
4069 u64 extent_offset = em->start - em->orig_start;
4070 u64 block_len;
4071 int ret;
4072 int extent_inserted = 0;
4073 bool ordered_io_err = false;
4074
4075 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076 &ordered_io_err);
4077 if (ret)
4078 return ret;
4079
4080 if (ordered_io_err) {
4081 ctx->io_err = -EIO;
4082 return 0;
4083 }
4084
4085 btrfs_init_map_token(&token);
4086
4087 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088 em->start + em->len, NULL, 0, 1,
4089 sizeof(*fi), &extent_inserted);
4090 if (ret)
4091 return ret;
4092
4093 if (!extent_inserted) {
4094 key.objectid = btrfs_ino(inode);
4095 key.type = BTRFS_EXTENT_DATA_KEY;
4096 key.offset = em->start;
4097
4098 ret = btrfs_insert_empty_item(trans, log, path, &key,
4099 sizeof(*fi));
4100 if (ret)
4101 return ret;
4102 }
4103 leaf = path->nodes[0];
4104 fi = btrfs_item_ptr(leaf, path->slots[0],
4105 struct btrfs_file_extent_item);
4106
4107 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108 &token);
4109 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110 btrfs_set_token_file_extent_type(leaf, fi,
4111 BTRFS_FILE_EXTENT_PREALLOC,
4112 &token);
4113 else
4114 btrfs_set_token_file_extent_type(leaf, fi,
4115 BTRFS_FILE_EXTENT_REG,
4116 &token);
4117
4118 block_len = max(em->block_len, em->orig_block_len);
4119 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121 em->block_start,
4122 &token);
4123 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124 &token);
4125 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 em->block_start -
4128 extent_offset, &token);
4129 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130 &token);
4131 } else {
4132 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134 &token);
4135 }
4136
4137 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141 &token);
4142 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144 btrfs_mark_buffer_dirty(leaf);
4145
4146 btrfs_release_path(path);
4147
4148 return ret;
4149}
4150
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152 struct btrfs_root *root,
4153 struct inode *inode,
4154 struct btrfs_path *path,
4155 struct list_head *logged_list,
4156 struct btrfs_log_ctx *ctx,
4157 const u64 start,
4158 const u64 end)
4159{
4160 struct extent_map *em, *n;
4161 struct list_head extents;
4162 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163 u64 test_gen;
4164 int ret = 0;
4165 int num = 0;
4166
4167 INIT_LIST_HEAD(&extents);
4168
4169 down_write(&BTRFS_I(inode)->dio_sem);
4170 write_lock(&tree->lock);
4171 test_gen = root->fs_info->last_trans_committed;
4172
4173 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174 list_del_init(&em->list);
4175
4176 /*
4177 * Just an arbitrary number, this can be really CPU intensive
4178 * once we start getting a lot of extents, and really once we
4179 * have a bunch of extents we just want to commit since it will
4180 * be faster.
4181 */
4182 if (++num > 32768) {
4183 list_del_init(&tree->modified_extents);
4184 ret = -EFBIG;
4185 goto process;
4186 }
4187
4188 if (em->generation <= test_gen)
4189 continue;
4190 /* Need a ref to keep it from getting evicted from cache */
4191 atomic_inc(&em->refs);
4192 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193 list_add_tail(&em->list, &extents);
4194 num++;
4195 }
4196
4197 list_sort(NULL, &extents, extent_cmp);
4198 btrfs_get_logged_extents(inode, logged_list, start, end);
4199 /*
4200 * Some ordered extents started by fsync might have completed
4201 * before we could collect them into the list logged_list, which
4202 * means they're gone, not in our logged_list nor in the inode's
4203 * ordered tree. We want the application/user space to know an
4204 * error happened while attempting to persist file data so that
4205 * it can take proper action. If such error happened, we leave
4206 * without writing to the log tree and the fsync must report the
4207 * file data write error and not commit the current transaction.
4208 */
4209 ret = filemap_check_errors(inode->i_mapping);
4210 if (ret)
4211 ctx->io_err = ret;
4212process:
4213 while (!list_empty(&extents)) {
4214 em = list_entry(extents.next, struct extent_map, list);
4215
4216 list_del_init(&em->list);
4217
4218 /*
4219 * If we had an error we just need to delete everybody from our
4220 * private list.
4221 */
4222 if (ret) {
4223 clear_em_logging(tree, em);
4224 free_extent_map(em);
4225 continue;
4226 }
4227
4228 write_unlock(&tree->lock);
4229
4230 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231 ctx);
4232 write_lock(&tree->lock);
4233 clear_em_logging(tree, em);
4234 free_extent_map(em);
4235 }
4236 WARN_ON(!list_empty(&extents));
4237 write_unlock(&tree->lock);
4238 up_write(&BTRFS_I(inode)->dio_sem);
4239
4240 btrfs_release_path(path);
4241 return ret;
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245 struct btrfs_path *path, u64 *size_ret)
4246{
4247 struct btrfs_key key;
4248 int ret;
4249
4250 key.objectid = btrfs_ino(inode);
4251 key.type = BTRFS_INODE_ITEM_KEY;
4252 key.offset = 0;
4253
4254 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255 if (ret < 0) {
4256 return ret;
4257 } else if (ret > 0) {
4258 *size_ret = 0;
4259 } else {
4260 struct btrfs_inode_item *item;
4261
4262 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263 struct btrfs_inode_item);
4264 *size_ret = btrfs_inode_size(path->nodes[0], item);
4265 }
4266
4267 btrfs_release_path(path);
4268 return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281 struct btrfs_root *root,
4282 struct inode *inode,
4283 struct btrfs_path *path,
4284 struct btrfs_path *dst_path)
4285{
4286 int ret;
4287 struct btrfs_key key;
4288 const u64 ino = btrfs_ino(inode);
4289 int ins_nr = 0;
4290 int start_slot = 0;
4291
4292 key.objectid = ino;
4293 key.type = BTRFS_XATTR_ITEM_KEY;
4294 key.offset = 0;
4295
4296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297 if (ret < 0)
4298 return ret;
4299
4300 while (true) {
4301 int slot = path->slots[0];
4302 struct extent_buffer *leaf = path->nodes[0];
4303 int nritems = btrfs_header_nritems(leaf);
4304
4305 if (slot >= nritems) {
4306 if (ins_nr > 0) {
4307 u64 last_extent = 0;
4308
4309 ret = copy_items(trans, inode, dst_path, path,
4310 &last_extent, start_slot,
4311 ins_nr, 1, 0);
4312 /* can't be 1, extent items aren't processed */
4313 ASSERT(ret <= 0);
4314 if (ret < 0)
4315 return ret;
4316 ins_nr = 0;
4317 }
4318 ret = btrfs_next_leaf(root, path);
4319 if (ret < 0)
4320 return ret;
4321 else if (ret > 0)
4322 break;
4323 continue;
4324 }
4325
4326 btrfs_item_key_to_cpu(leaf, &key, slot);
4327 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328 break;
4329
4330 if (ins_nr == 0)
4331 start_slot = slot;
4332 ins_nr++;
4333 path->slots[0]++;
4334 cond_resched();
4335 }
4336 if (ins_nr > 0) {
4337 u64 last_extent = 0;
4338
4339 ret = copy_items(trans, inode, dst_path, path,
4340 &last_extent, start_slot,
4341 ins_nr, 1, 0);
4342 /* can't be 1, extent items aren't processed */
4343 ASSERT(ret <= 0);
4344 if (ret < 0)
4345 return ret;
4346 }
4347
4348 return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 * 1) create file with 128Kb of data
4357 * 2) truncate file to 64Kb
4358 * 3) truncate file to 256Kb
4359 * 4) fsync file
4360 * 5) <crash/power failure>
4361 * 6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root,
4377 struct inode *inode,
4378 struct btrfs_path *path)
4379{
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 int ret;
4382 struct btrfs_key key;
4383 u64 hole_start;
4384 u64 hole_size;
4385 struct extent_buffer *leaf;
4386 struct btrfs_root *log = root->log_root;
4387 const u64 ino = btrfs_ino(inode);
4388 const u64 i_size = i_size_read(inode);
4389
4390 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391 return 0;
4392
4393 key.objectid = ino;
4394 key.type = BTRFS_EXTENT_DATA_KEY;
4395 key.offset = (u64)-1;
4396
4397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 ASSERT(ret != 0);
4399 if (ret < 0)
4400 return ret;
4401
4402 ASSERT(path->slots[0] > 0);
4403 path->slots[0]--;
4404 leaf = path->nodes[0];
4405 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408 /* inode does not have any extents */
4409 hole_start = 0;
4410 hole_size = i_size;
4411 } else {
4412 struct btrfs_file_extent_item *extent;
4413 u64 len;
4414
4415 /*
4416 * If there's an extent beyond i_size, an explicit hole was
4417 * already inserted by copy_items().
4418 */
4419 if (key.offset >= i_size)
4420 return 0;
4421
4422 extent = btrfs_item_ptr(leaf, path->slots[0],
4423 struct btrfs_file_extent_item);
4424
4425 if (btrfs_file_extent_type(leaf, extent) ==
4426 BTRFS_FILE_EXTENT_INLINE) {
4427 len = btrfs_file_extent_inline_len(leaf,
4428 path->slots[0],
4429 extent);
4430 ASSERT(len == i_size);
4431 return 0;
4432 }
4433
4434 len = btrfs_file_extent_num_bytes(leaf, extent);
4435 /* Last extent goes beyond i_size, no need to log a hole. */
4436 if (key.offset + len > i_size)
4437 return 0;
4438 hole_start = key.offset + len;
4439 hole_size = i_size - hole_start;
4440 }
4441 btrfs_release_path(path);
4442
4443 /* Last extent ends at i_size. */
4444 if (hole_size == 0)
4445 return 0;
4446
4447 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449 hole_size, 0, hole_size, 0, 0, 0);
4450 return ret;
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496 const int slot,
4497 const struct btrfs_key *key,
4498 struct inode *inode,
4499 u64 *other_ino)
4500{
4501 int ret;
4502 struct btrfs_path *search_path;
4503 char *name = NULL;
4504 u32 name_len = 0;
4505 u32 item_size = btrfs_item_size_nr(eb, slot);
4506 u32 cur_offset = 0;
4507 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509 search_path = btrfs_alloc_path();
4510 if (!search_path)
4511 return -ENOMEM;
4512 search_path->search_commit_root = 1;
4513 search_path->skip_locking = 1;
4514
4515 while (cur_offset < item_size) {
4516 u64 parent;
4517 u32 this_name_len;
4518 u32 this_len;
4519 unsigned long name_ptr;
4520 struct btrfs_dir_item *di;
4521
4522 if (key->type == BTRFS_INODE_REF_KEY) {
4523 struct btrfs_inode_ref *iref;
4524
4525 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526 parent = key->offset;
4527 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528 name_ptr = (unsigned long)(iref + 1);
4529 this_len = sizeof(*iref) + this_name_len;
4530 } else {
4531 struct btrfs_inode_extref *extref;
4532
4533 extref = (struct btrfs_inode_extref *)(ptr +
4534 cur_offset);
4535 parent = btrfs_inode_extref_parent(eb, extref);
4536 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537 name_ptr = (unsigned long)&extref->name;
4538 this_len = sizeof(*extref) + this_name_len;
4539 }
4540
4541 if (this_name_len > name_len) {
4542 char *new_name;
4543
4544 new_name = krealloc(name, this_name_len, GFP_NOFS);
4545 if (!new_name) {
4546 ret = -ENOMEM;
4547 goto out;
4548 }
4549 name_len = this_name_len;
4550 name = new_name;
4551 }
4552
4553 read_extent_buffer(eb, name, name_ptr, this_name_len);
4554 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555 search_path, parent,
4556 name, this_name_len, 0);
4557 if (di && !IS_ERR(di)) {
4558 struct btrfs_key di_key;
4559
4560 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561 di, &di_key);
4562 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563 ret = 1;
4564 *other_ino = di_key.objectid;
4565 } else {
4566 ret = -EAGAIN;
4567 }
4568 goto out;
4569 } else if (IS_ERR(di)) {
4570 ret = PTR_ERR(di);
4571 goto out;
4572 }
4573 btrfs_release_path(search_path);
4574
4575 cur_offset += this_len;
4576 }
4577 ret = 0;
4578out:
4579 btrfs_free_path(search_path);
4580 kfree(name);
4581 return ret;
4582}
4583
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree. An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
4595 *
4596 * This handles both files and directories.
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599 struct btrfs_root *root, struct inode *inode,
4600 int inode_only,
4601 const loff_t start,
4602 const loff_t end,
4603 struct btrfs_log_ctx *ctx)
4604{
4605 struct btrfs_fs_info *fs_info = root->fs_info;
4606 struct btrfs_path *path;
4607 struct btrfs_path *dst_path;
4608 struct btrfs_key min_key;
4609 struct btrfs_key max_key;
4610 struct btrfs_root *log = root->log_root;
4611 struct extent_buffer *src = NULL;
4612 LIST_HEAD(logged_list);
4613 u64 last_extent = 0;
4614 int err = 0;
4615 int ret;
4616 int nritems;
4617 int ins_start_slot = 0;
4618 int ins_nr;
4619 bool fast_search = false;
4620 u64 ino = btrfs_ino(inode);
4621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622 u64 logged_isize = 0;
4623 bool need_log_inode_item = true;
4624
4625 path = btrfs_alloc_path();
4626 if (!path)
4627 return -ENOMEM;
4628 dst_path = btrfs_alloc_path();
4629 if (!dst_path) {
4630 btrfs_free_path(path);
4631 return -ENOMEM;
4632 }
4633
4634 min_key.objectid = ino;
4635 min_key.type = BTRFS_INODE_ITEM_KEY;
4636 min_key.offset = 0;
4637
4638 max_key.objectid = ino;
4639
4640
4641 /* today the code can only do partial logging of directories */
4642 if (S_ISDIR(inode->i_mode) ||
4643 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644 &BTRFS_I(inode)->runtime_flags) &&
4645 inode_only >= LOG_INODE_EXISTS))
4646 max_key.type = BTRFS_XATTR_ITEM_KEY;
4647 else
4648 max_key.type = (u8)-1;
4649 max_key.offset = (u64)-1;
4650
4651 /*
4652 * Only run delayed items if we are a dir or a new file.
4653 * Otherwise commit the delayed inode only, which is needed in
4654 * order for the log replay code to mark inodes for link count
4655 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656 */
4657 if (S_ISDIR(inode->i_mode) ||
4658 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659 ret = btrfs_commit_inode_delayed_items(trans, inode);
4660 else
4661 ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663 if (ret) {
4664 btrfs_free_path(path);
4665 btrfs_free_path(dst_path);
4666 return ret;
4667 }
4668
4669 if (inode_only == LOG_OTHER_INODE) {
4670 inode_only = LOG_INODE_EXISTS;
4671 mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672 SINGLE_DEPTH_NESTING);
4673 } else {
4674 mutex_lock(&BTRFS_I(inode)->log_mutex);
4675 }
4676
4677 /*
4678 * a brute force approach to making sure we get the most uptodate
4679 * copies of everything.
4680 */
4681 if (S_ISDIR(inode->i_mode)) {
4682 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4683
4684 if (inode_only == LOG_INODE_EXISTS)
4685 max_key_type = BTRFS_XATTR_ITEM_KEY;
4686 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687 } else {
4688 if (inode_only == LOG_INODE_EXISTS) {
4689 /*
4690 * Make sure the new inode item we write to the log has
4691 * the same isize as the current one (if it exists).
4692 * This is necessary to prevent data loss after log
4693 * replay, and also to prevent doing a wrong expanding
4694 * truncate - for e.g. create file, write 4K into offset
4695 * 0, fsync, write 4K into offset 4096, add hard link,
4696 * fsync some other file (to sync log), power fail - if
4697 * we use the inode's current i_size, after log replay
4698 * we get a 8Kb file, with the last 4Kb extent as a hole
4699 * (zeroes), as if an expanding truncate happened,
4700 * instead of getting a file of 4Kb only.
4701 */
4702 err = logged_inode_size(log, inode, path,
4703 &logged_isize);
4704 if (err)
4705 goto out_unlock;
4706 }
4707 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708 &BTRFS_I(inode)->runtime_flags)) {
4709 if (inode_only == LOG_INODE_EXISTS) {
4710 max_key.type = BTRFS_XATTR_ITEM_KEY;
4711 ret = drop_objectid_items(trans, log, path, ino,
4712 max_key.type);
4713 } else {
4714 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715 &BTRFS_I(inode)->runtime_flags);
4716 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717 &BTRFS_I(inode)->runtime_flags);
4718 while(1) {
4719 ret = btrfs_truncate_inode_items(trans,
4720 log, inode, 0, 0);
4721 if (ret != -EAGAIN)
4722 break;
4723 }
4724 }
4725 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726 &BTRFS_I(inode)->runtime_flags) ||
4727 inode_only == LOG_INODE_EXISTS) {
4728 if (inode_only == LOG_INODE_ALL)
4729 fast_search = true;
4730 max_key.type = BTRFS_XATTR_ITEM_KEY;
4731 ret = drop_objectid_items(trans, log, path, ino,
4732 max_key.type);
4733 } else {
4734 if (inode_only == LOG_INODE_ALL)
4735 fast_search = true;
4736 goto log_extents;
4737 }
4738
4739 }
4740 if (ret) {
4741 err = ret;
4742 goto out_unlock;
4743 }
4744
4745 while (1) {
4746 ins_nr = 0;
4747 ret = btrfs_search_forward(root, &min_key,
4748 path, trans->transid);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 }
4753 if (ret != 0)
4754 break;
4755again:
4756 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4757 if (min_key.objectid != ino)
4758 break;
4759 if (min_key.type > max_key.type)
4760 break;
4761
4762 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763 need_log_inode_item = false;
4764
4765 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767 BTRFS_I(inode)->generation == trans->transid) {
4768 u64 other_ino = 0;
4769
4770 ret = btrfs_check_ref_name_override(path->nodes[0],
4771 path->slots[0],
4772 &min_key, inode,
4773 &other_ino);
4774 if (ret < 0) {
4775 err = ret;
4776 goto out_unlock;
4777 } else if (ret > 0 && ctx &&
4778 other_ino != btrfs_ino(ctx->inode)) {
4779 struct btrfs_key inode_key;
4780 struct inode *other_inode;
4781
4782 if (ins_nr > 0) {
4783 ins_nr++;
4784 } else {
4785 ins_nr = 1;
4786 ins_start_slot = path->slots[0];
4787 }
4788 ret = copy_items(trans, inode, dst_path, path,
4789 &last_extent, ins_start_slot,
4790 ins_nr, inode_only,
4791 logged_isize);
4792 if (ret < 0) {
4793 err = ret;
4794 goto out_unlock;
4795 }
4796 ins_nr = 0;
4797 btrfs_release_path(path);
4798 inode_key.objectid = other_ino;
4799 inode_key.type = BTRFS_INODE_ITEM_KEY;
4800 inode_key.offset = 0;
4801 other_inode = btrfs_iget(fs_info->sb,
4802 &inode_key, root,
4803 NULL);
4804 /*
4805 * If the other inode that had a conflicting dir
4806 * entry was deleted in the current transaction,
4807 * we don't need to do more work nor fallback to
4808 * a transaction commit.
4809 */
4810 if (IS_ERR(other_inode) &&
4811 PTR_ERR(other_inode) == -ENOENT) {
4812 goto next_key;
4813 } else if (IS_ERR(other_inode)) {
4814 err = PTR_ERR(other_inode);
4815 goto out_unlock;
4816 }
4817 /*
4818 * We are safe logging the other inode without
4819 * acquiring its i_mutex as long as we log with
4820 * the LOG_INODE_EXISTS mode. We're safe against
4821 * concurrent renames of the other inode as well
4822 * because during a rename we pin the log and
4823 * update the log with the new name before we
4824 * unpin it.
4825 */
4826 err = btrfs_log_inode(trans, root, other_inode,
4827 LOG_OTHER_INODE,
4828 0, LLONG_MAX, ctx);
4829 iput(other_inode);
4830 if (err)
4831 goto out_unlock;
4832 else
4833 goto next_key;
4834 }
4835 }
4836
4837 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839 if (ins_nr == 0)
4840 goto next_slot;
4841 ret = copy_items(trans, inode, dst_path, path,
4842 &last_extent, ins_start_slot,
4843 ins_nr, inode_only, logged_isize);
4844 if (ret < 0) {
4845 err = ret;
4846 goto out_unlock;
4847 }
4848 ins_nr = 0;
4849 if (ret) {
4850 btrfs_release_path(path);
4851 continue;
4852 }
4853 goto next_slot;
4854 }
4855
4856 src = path->nodes[0];
4857 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858 ins_nr++;
4859 goto next_slot;
4860 } else if (!ins_nr) {
4861 ins_start_slot = path->slots[0];
4862 ins_nr = 1;
4863 goto next_slot;
4864 }
4865
4866 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867 ins_start_slot, ins_nr, inode_only,
4868 logged_isize);
4869 if (ret < 0) {
4870 err = ret;
4871 goto out_unlock;
4872 }
4873 if (ret) {
4874 ins_nr = 0;
4875 btrfs_release_path(path);
4876 continue;
4877 }
4878 ins_nr = 1;
4879 ins_start_slot = path->slots[0];
4880next_slot:
4881
4882 nritems = btrfs_header_nritems(path->nodes[0]);
4883 path->slots[0]++;
4884 if (path->slots[0] < nritems) {
4885 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886 path->slots[0]);
4887 goto again;
4888 }
4889 if (ins_nr) {
4890 ret = copy_items(trans, inode, dst_path, path,
4891 &last_extent, ins_start_slot,
4892 ins_nr, inode_only, logged_isize);
4893 if (ret < 0) {
4894 err = ret;
4895 goto out_unlock;
4896 }
4897 ret = 0;
4898 ins_nr = 0;
4899 }
4900 btrfs_release_path(path);
4901next_key:
4902 if (min_key.offset < (u64)-1) {
4903 min_key.offset++;
4904 } else if (min_key.type < max_key.type) {
4905 min_key.type++;
4906 min_key.offset = 0;
4907 } else {
4908 break;
4909 }
4910 }
4911 if (ins_nr) {
4912 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913 ins_start_slot, ins_nr, inode_only,
4914 logged_isize);
4915 if (ret < 0) {
4916 err = ret;
4917 goto out_unlock;
4918 }
4919 ret = 0;
4920 ins_nr = 0;
4921 }
4922
4923 btrfs_release_path(path);
4924 btrfs_release_path(dst_path);
4925 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926 if (err)
4927 goto out_unlock;
4928 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929 btrfs_release_path(path);
4930 btrfs_release_path(dst_path);
4931 err = btrfs_log_trailing_hole(trans, root, inode, path);
4932 if (err)
4933 goto out_unlock;
4934 }
4935log_extents:
4936 btrfs_release_path(path);
4937 btrfs_release_path(dst_path);
4938 if (need_log_inode_item) {
4939 err = log_inode_item(trans, log, dst_path, inode);
4940 if (err)
4941 goto out_unlock;
4942 }
4943 if (fast_search) {
4944 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945 &logged_list, ctx, start, end);
4946 if (ret) {
4947 err = ret;
4948 goto out_unlock;
4949 }
4950 } else if (inode_only == LOG_INODE_ALL) {
4951 struct extent_map *em, *n;
4952
4953 write_lock(&em_tree->lock);
4954 /*
4955 * We can't just remove every em if we're called for a ranged
4956 * fsync - that is, one that doesn't cover the whole possible
4957 * file range (0 to LLONG_MAX). This is because we can have
4958 * em's that fall outside the range we're logging and therefore
4959 * their ordered operations haven't completed yet
4960 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961 * didn't get their respective file extent item in the fs/subvol
4962 * tree yet, and need to let the next fast fsync (one which
4963 * consults the list of modified extent maps) find the em so
4964 * that it logs a matching file extent item and waits for the
4965 * respective ordered operation to complete (if it's still
4966 * running).
4967 *
4968 * Removing every em outside the range we're logging would make
4969 * the next fast fsync not log their matching file extent items,
4970 * therefore making us lose data after a log replay.
4971 */
4972 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973 list) {
4974 const u64 mod_end = em->mod_start + em->mod_len - 1;
4975
4976 if (em->mod_start >= start && mod_end <= end)
4977 list_del_init(&em->list);
4978 }
4979 write_unlock(&em_tree->lock);
4980 }
4981
4982 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983 ret = log_directory_changes(trans, root, inode, path, dst_path,
4984 ctx);
4985 if (ret) {
4986 err = ret;
4987 goto out_unlock;
4988 }
4989 }
4990
4991 spin_lock(&BTRFS_I(inode)->lock);
4992 BTRFS_I(inode)->logged_trans = trans->transid;
4993 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994 spin_unlock(&BTRFS_I(inode)->lock);
4995out_unlock:
4996 if (unlikely(err))
4997 btrfs_put_logged_extents(&logged_list);
4998 else
4999 btrfs_submit_logged_extents(&logged_list, log);
5000 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002 btrfs_free_path(path);
5003 btrfs_free_path(dst_path);
5004 return err;
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024 struct inode *inode)
5025{
5026 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027 bool ret = false;
5028
5029 mutex_lock(&BTRFS_I(inode)->log_mutex);
5030 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5031 /*
5032 * Make sure any commits to the log are forced to be full
5033 * commits.
5034 */
5035 btrfs_set_log_full_commit(fs_info, trans);
5036 ret = true;
5037 }
5038 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040 return ret;
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged. Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050 struct inode *inode,
5051 struct dentry *parent,
5052 struct super_block *sb,
5053 u64 last_committed)
5054{
5055 int ret = 0;
5056 struct dentry *old_parent = NULL;
5057 struct inode *orig_inode = inode;
5058
5059 /*
5060 * for regular files, if its inode is already on disk, we don't
5061 * have to worry about the parents at all. This is because
5062 * we can use the last_unlink_trans field to record renames
5063 * and other fun in this file.
5064 */
5065 if (S_ISREG(inode->i_mode) &&
5066 BTRFS_I(inode)->generation <= last_committed &&
5067 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068 goto out;
5069
5070 if (!S_ISDIR(inode->i_mode)) {
5071 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072 goto out;
5073 inode = d_inode(parent);
5074 }
5075
5076 while (1) {
5077 /*
5078 * If we are logging a directory then we start with our inode,
5079 * not our parent's inode, so we need to skip setting the
5080 * logged_trans so that further down in the log code we don't
5081 * think this inode has already been logged.
5082 */
5083 if (inode != orig_inode)
5084 BTRFS_I(inode)->logged_trans = trans->transid;
5085 smp_mb();
5086
5087 if (btrfs_must_commit_transaction(trans, inode)) {
5088 ret = 1;
5089 break;
5090 }
5091
5092 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093 break;
5094
5095 if (IS_ROOT(parent)) {
5096 inode = d_inode(parent);
5097 if (btrfs_must_commit_transaction(trans, inode))
5098 ret = 1;
5099 break;
5100 }
5101
5102 parent = dget_parent(parent);
5103 dput(old_parent);
5104 old_parent = parent;
5105 inode = d_inode(parent);
5106
5107 }
5108 dput(old_parent);
5109out:
5110 return ret;
5111}
5112
5113struct btrfs_dir_list {
5114 u64 ino;
5115 struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 * CPU0 CPU1
5128 * ---- ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 * lock(sb_internal#2);
5131 * lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 * that while logging the inode new references (names) are added or removed
5140 * from the inode, leaving the logged inode item with a link count that does
5141 * not match the number of logged inode reference items. This is fine because
5142 * at log replay time we compute the real number of links and correct the
5143 * link count in the inode item (see replay_one_buffer() and
5144 * link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 * has a size that doesn't match the sum of the lengths of all the logged
5150 * names. This does not result in a problem because if a dir_item key is
5151 * logged but its matching dir_index key is not logged, at log replay time we
5152 * don't use it to replay the respective name (see replay_one_name()). On the
5153 * other hand if only the dir_index key ends up being logged, the respective
5154 * name is added to the fs/subvol tree with both the dir_item and dir_index
5155 * keys created (see replay_one_name()).
5156 * The directory's inode item with a wrong i_size is not a problem as well,
5157 * since we don't use it at log replay time to set the i_size in the inode
5158 * item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161 struct btrfs_root *root,
5162 struct inode *start_inode,
5163 struct btrfs_log_ctx *ctx)
5164{
5165 struct btrfs_fs_info *fs_info = root->fs_info;
5166 struct btrfs_root *log = root->log_root;
5167 struct btrfs_path *path;
5168 LIST_HEAD(dir_list);
5169 struct btrfs_dir_list *dir_elem;
5170 int ret = 0;
5171
5172 path = btrfs_alloc_path();
5173 if (!path)
5174 return -ENOMEM;
5175
5176 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177 if (!dir_elem) {
5178 btrfs_free_path(path);
5179 return -ENOMEM;
5180 }
5181 dir_elem->ino = btrfs_ino(start_inode);
5182 list_add_tail(&dir_elem->list, &dir_list);
5183
5184 while (!list_empty(&dir_list)) {
5185 struct extent_buffer *leaf;
5186 struct btrfs_key min_key;
5187 int nritems;
5188 int i;
5189
5190 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191 list);
5192 if (ret)
5193 goto next_dir_inode;
5194
5195 min_key.objectid = dir_elem->ino;
5196 min_key.type = BTRFS_DIR_ITEM_KEY;
5197 min_key.offset = 0;
5198again:
5199 btrfs_release_path(path);
5200 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201 if (ret < 0) {
5202 goto next_dir_inode;
5203 } else if (ret > 0) {
5204 ret = 0;
5205 goto next_dir_inode;
5206 }
5207
5208process_leaf:
5209 leaf = path->nodes[0];
5210 nritems = btrfs_header_nritems(leaf);
5211 for (i = path->slots[0]; i < nritems; i++) {
5212 struct btrfs_dir_item *di;
5213 struct btrfs_key di_key;
5214 struct inode *di_inode;
5215 struct btrfs_dir_list *new_dir_elem;
5216 int log_mode = LOG_INODE_EXISTS;
5217 int type;
5218
5219 btrfs_item_key_to_cpu(leaf, &min_key, i);
5220 if (min_key.objectid != dir_elem->ino ||
5221 min_key.type != BTRFS_DIR_ITEM_KEY)
5222 goto next_dir_inode;
5223
5224 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225 type = btrfs_dir_type(leaf, di);
5226 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227 type != BTRFS_FT_DIR)
5228 continue;
5229 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231 continue;
5232
5233 btrfs_release_path(path);
5234 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235 if (IS_ERR(di_inode)) {
5236 ret = PTR_ERR(di_inode);
5237 goto next_dir_inode;
5238 }
5239
5240 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241 iput(di_inode);
5242 break;
5243 }
5244
5245 ctx->log_new_dentries = false;
5246 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247 log_mode = LOG_INODE_ALL;
5248 ret = btrfs_log_inode(trans, root, di_inode,
5249 log_mode, 0, LLONG_MAX, ctx);
5250 if (!ret &&
5251 btrfs_must_commit_transaction(trans, di_inode))
5252 ret = 1;
5253 iput(di_inode);
5254 if (ret)
5255 goto next_dir_inode;
5256 if (ctx->log_new_dentries) {
5257 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258 GFP_NOFS);
5259 if (!new_dir_elem) {
5260 ret = -ENOMEM;
5261 goto next_dir_inode;
5262 }
5263 new_dir_elem->ino = di_key.objectid;
5264 list_add_tail(&new_dir_elem->list, &dir_list);
5265 }
5266 break;
5267 }
5268 if (i == nritems) {
5269 ret = btrfs_next_leaf(log, path);
5270 if (ret < 0) {
5271 goto next_dir_inode;
5272 } else if (ret > 0) {
5273 ret = 0;
5274 goto next_dir_inode;
5275 }
5276 goto process_leaf;
5277 }
5278 if (min_key.offset < (u64)-1) {
5279 min_key.offset++;
5280 goto again;
5281 }
5282next_dir_inode:
5283 list_del(&dir_elem->list);
5284 kfree(dir_elem);
5285 }
5286
5287 btrfs_free_path(path);
5288 return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292 struct inode *inode,
5293 struct btrfs_log_ctx *ctx)
5294{
5295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296 int ret;
5297 struct btrfs_path *path;
5298 struct btrfs_key key;
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 const u64 ino = btrfs_ino(inode);
5301
5302 path = btrfs_alloc_path();
5303 if (!path)
5304 return -ENOMEM;
5305 path->skip_locking = 1;
5306 path->search_commit_root = 1;
5307
5308 key.objectid = ino;
5309 key.type = BTRFS_INODE_REF_KEY;
5310 key.offset = 0;
5311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312 if (ret < 0)
5313 goto out;
5314
5315 while (true) {
5316 struct extent_buffer *leaf = path->nodes[0];
5317 int slot = path->slots[0];
5318 u32 cur_offset = 0;
5319 u32 item_size;
5320 unsigned long ptr;
5321
5322 if (slot >= btrfs_header_nritems(leaf)) {
5323 ret = btrfs_next_leaf(root, path);
5324 if (ret < 0)
5325 goto out;
5326 else if (ret > 0)
5327 break;
5328 continue;
5329 }
5330
5331 btrfs_item_key_to_cpu(leaf, &key, slot);
5332 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334 break;
5335
5336 item_size = btrfs_item_size_nr(leaf, slot);
5337 ptr = btrfs_item_ptr_offset(leaf, slot);
5338 while (cur_offset < item_size) {
5339 struct btrfs_key inode_key;
5340 struct inode *dir_inode;
5341
5342 inode_key.type = BTRFS_INODE_ITEM_KEY;
5343 inode_key.offset = 0;
5344
5345 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346 struct btrfs_inode_extref *extref;
5347
5348 extref = (struct btrfs_inode_extref *)
5349 (ptr + cur_offset);
5350 inode_key.objectid = btrfs_inode_extref_parent(
5351 leaf, extref);
5352 cur_offset += sizeof(*extref);
5353 cur_offset += btrfs_inode_extref_name_len(leaf,
5354 extref);
5355 } else {
5356 inode_key.objectid = key.offset;
5357 cur_offset = item_size;
5358 }
5359
5360 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361 root, NULL);
5362 /* If parent inode was deleted, skip it. */
5363 if (IS_ERR(dir_inode))
5364 continue;
5365
5366 if (ctx)
5367 ctx->log_new_dentries = false;
5368 ret = btrfs_log_inode(trans, root, dir_inode,
5369 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370 if (!ret &&
5371 btrfs_must_commit_transaction(trans, dir_inode))
5372 ret = 1;
5373 if (!ret && ctx && ctx->log_new_dentries)
5374 ret = log_new_dir_dentries(trans, root,
5375 dir_inode, ctx);
5376 iput(dir_inode);
5377 if (ret)
5378 goto out;
5379 }
5380 path->slots[0]++;
5381 }
5382 ret = 0;
5383out:
5384 btrfs_free_path(path);
5385 return ret;
5386}
5387
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log. A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395 struct btrfs_root *root, struct inode *inode,
5396 struct dentry *parent,
5397 const loff_t start,
5398 const loff_t end,
5399 int exists_only,
5400 struct btrfs_log_ctx *ctx)
5401{
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404 struct super_block *sb;
5405 struct dentry *old_parent = NULL;
5406 int ret = 0;
5407 u64 last_committed = fs_info->last_trans_committed;
5408 bool log_dentries = false;
5409 struct inode *orig_inode = inode;
5410
5411 sb = inode->i_sb;
5412
5413 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414 ret = 1;
5415 goto end_no_trans;
5416 }
5417
5418 /*
5419 * The prev transaction commit doesn't complete, we need do
5420 * full commit by ourselves.
5421 */
5422 if (fs_info->last_trans_log_full_commit >
5423 fs_info->last_trans_committed) {
5424 ret = 1;
5425 goto end_no_trans;
5426 }
5427
5428 if (root != BTRFS_I(inode)->root ||
5429 btrfs_root_refs(&root->root_item) == 0) {
5430 ret = 1;
5431 goto end_no_trans;
5432 }
5433
5434 ret = check_parent_dirs_for_sync(trans, inode, parent,
5435 sb, last_committed);
5436 if (ret)
5437 goto end_no_trans;
5438
5439 if (btrfs_inode_in_log(inode, trans->transid)) {
5440 ret = BTRFS_NO_LOG_SYNC;
5441 goto end_no_trans;
5442 }
5443
5444 ret = start_log_trans(trans, root, ctx);
5445 if (ret)
5446 goto end_no_trans;
5447
5448 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449 if (ret)
5450 goto end_trans;
5451
5452 /*
5453 * for regular files, if its inode is already on disk, we don't
5454 * have to worry about the parents at all. This is because
5455 * we can use the last_unlink_trans field to record renames
5456 * and other fun in this file.
5457 */
5458 if (S_ISREG(inode->i_mode) &&
5459 BTRFS_I(inode)->generation <= last_committed &&
5460 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461 ret = 0;
5462 goto end_trans;
5463 }
5464
5465 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466 log_dentries = true;
5467
5468 /*
5469 * On unlink we must make sure all our current and old parent directory
5470 * inodes are fully logged. This is to prevent leaving dangling
5471 * directory index entries in directories that were our parents but are
5472 * not anymore. Not doing this results in old parent directory being
5473 * impossible to delete after log replay (rmdir will always fail with
5474 * error -ENOTEMPTY).
5475 *
5476 * Example 1:
5477 *
5478 * mkdir testdir
5479 * touch testdir/foo
5480 * ln testdir/foo testdir/bar
5481 * sync
5482 * unlink testdir/bar
5483 * xfs_io -c fsync testdir/foo
5484 * <power failure>
5485 * mount fs, triggers log replay
5486 *
5487 * If we don't log the parent directory (testdir), after log replay the
5488 * directory still has an entry pointing to the file inode using the bar
5489 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490 * the file inode has a link count of 1.
5491 *
5492 * Example 2:
5493 *
5494 * mkdir testdir
5495 * touch foo
5496 * ln foo testdir/foo2
5497 * ln foo testdir/foo3
5498 * sync
5499 * unlink testdir/foo3
5500 * xfs_io -c fsync foo
5501 * <power failure>
5502 * mount fs, triggers log replay
5503 *
5504 * Similar as the first example, after log replay the parent directory
5505 * testdir still has an entry pointing to the inode file with name foo3
5506 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507 * and has a link count of 2.
5508 */
5509 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511 if (ret)
5512 goto end_trans;
5513 }
5514
5515 while (1) {
5516 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517 break;
5518
5519 inode = d_inode(parent);
5520 if (root != BTRFS_I(inode)->root)
5521 break;
5522
5523 if (BTRFS_I(inode)->generation > last_committed) {
5524 ret = btrfs_log_inode(trans, root, inode,
5525 LOG_INODE_EXISTS,
5526 0, LLONG_MAX, ctx);
5527 if (ret)
5528 goto end_trans;
5529 }
5530 if (IS_ROOT(parent))
5531 break;
5532
5533 parent = dget_parent(parent);
5534 dput(old_parent);
5535 old_parent = parent;
5536 }
5537 if (log_dentries)
5538 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539 else
5540 ret = 0;
5541end_trans:
5542 dput(old_parent);
5543 if (ret < 0) {
5544 btrfs_set_log_full_commit(fs_info, trans);
5545 ret = 1;
5546 }
5547
5548 if (ret)
5549 btrfs_remove_log_ctx(root, ctx);
5550 btrfs_end_log_trans(root);
5551end_no_trans:
5552 return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562 struct btrfs_root *root, struct dentry *dentry,
5563 const loff_t start,
5564 const loff_t end,
5565 struct btrfs_log_ctx *ctx)
5566{
5567 struct dentry *parent = dget_parent(dentry);
5568 int ret;
5569
5570 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571 start, end, 0, ctx);
5572 dput(parent);
5573
5574 return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583 int ret;
5584 struct btrfs_path *path;
5585 struct btrfs_trans_handle *trans;
5586 struct btrfs_key key;
5587 struct btrfs_key found_key;
5588 struct btrfs_key tmp_key;
5589 struct btrfs_root *log;
5590 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591 struct walk_control wc = {
5592 .process_func = process_one_buffer,
5593 .stage = 0,
5594 };
5595
5596 path = btrfs_alloc_path();
5597 if (!path)
5598 return -ENOMEM;
5599
5600 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603 if (IS_ERR(trans)) {
5604 ret = PTR_ERR(trans);
5605 goto error;
5606 }
5607
5608 wc.trans = trans;
5609 wc.pin = 1;
5610
5611 ret = walk_log_tree(trans, log_root_tree, &wc);
5612 if (ret) {
5613 btrfs_handle_fs_error(fs_info, ret,
5614 "Failed to pin buffers while recovering log root tree.");
5615 goto error;
5616 }
5617
5618again:
5619 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620 key.offset = (u64)-1;
5621 key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623 while (1) {
5624 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626 if (ret < 0) {
5627 btrfs_handle_fs_error(fs_info, ret,
5628 "Couldn't find tree log root.");
5629 goto error;
5630 }
5631 if (ret > 0) {
5632 if (path->slots[0] == 0)
5633 break;
5634 path->slots[0]--;
5635 }
5636 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637 path->slots[0]);
5638 btrfs_release_path(path);
5639 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640 break;
5641
5642 log = btrfs_read_fs_root(log_root_tree, &found_key);
5643 if (IS_ERR(log)) {
5644 ret = PTR_ERR(log);
5645 btrfs_handle_fs_error(fs_info, ret,
5646 "Couldn't read tree log root.");
5647 goto error;
5648 }
5649
5650 tmp_key.objectid = found_key.offset;
5651 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652 tmp_key.offset = (u64)-1;
5653
5654 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655 if (IS_ERR(wc.replay_dest)) {
5656 ret = PTR_ERR(wc.replay_dest);
5657 free_extent_buffer(log->node);
5658 free_extent_buffer(log->commit_root);
5659 kfree(log);
5660 btrfs_handle_fs_error(fs_info, ret,
5661 "Couldn't read target root for tree log recovery.");
5662 goto error;
5663 }
5664
5665 wc.replay_dest->log_root = log;
5666 btrfs_record_root_in_trans(trans, wc.replay_dest);
5667 ret = walk_log_tree(trans, log, &wc);
5668
5669 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671 path);
5672 }
5673
5674 key.offset = found_key.offset - 1;
5675 wc.replay_dest->log_root = NULL;
5676 free_extent_buffer(log->node);
5677 free_extent_buffer(log->commit_root);
5678 kfree(log);
5679
5680 if (ret)
5681 goto error;
5682
5683 if (found_key.offset == 0)
5684 break;
5685 }
5686 btrfs_release_path(path);
5687
5688 /* step one is to pin it all, step two is to replay just inodes */
5689 if (wc.pin) {
5690 wc.pin = 0;
5691 wc.process_func = replay_one_buffer;
5692 wc.stage = LOG_WALK_REPLAY_INODES;
5693 goto again;
5694 }
5695 /* step three is to replay everything */
5696 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697 wc.stage++;
5698 goto again;
5699 }
5700
5701 btrfs_free_path(path);
5702
5703 /* step 4: commit the transaction, which also unpins the blocks */
5704 ret = btrfs_commit_transaction(trans);
5705 if (ret)
5706 return ret;
5707
5708 free_extent_buffer(log_root_tree->node);
5709 log_root_tree->log_root = NULL;
5710 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711 kfree(log_root_tree);
5712
5713 return 0;
5714error:
5715 if (wc.trans)
5716 btrfs_end_transaction(wc.trans);
5717 btrfs_free_path(path);
5718 return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733 struct inode *dir, struct inode *inode,
5734 int for_rename)
5735{
5736 /*
5737 * when we're logging a file, if it hasn't been renamed
5738 * or unlinked, and its inode is fully committed on disk,
5739 * we don't have to worry about walking up the directory chain
5740 * to log its parents.
5741 *
5742 * So, we use the last_unlink_trans field to put this transid
5743 * into the file. When the file is logged we check it and
5744 * don't log the parents if the file is fully on disk.
5745 */
5746 mutex_lock(&BTRFS_I(inode)->log_mutex);
5747 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5749
5750 /*
5751 * if this directory was already logged any new
5752 * names for this file/dir will get recorded
5753 */
5754 smp_mb();
5755 if (BTRFS_I(dir)->logged_trans == trans->transid)
5756 return;
5757
5758 /*
5759 * if the inode we're about to unlink was logged,
5760 * the log will be properly updated for any new names
5761 */
5762 if (BTRFS_I(inode)->logged_trans == trans->transid)
5763 return;
5764
5765 /*
5766 * when renaming files across directories, if the directory
5767 * there we're unlinking from gets fsync'd later on, there's
5768 * no way to find the destination directory later and fsync it
5769 * properly. So, we have to be conservative and force commits
5770 * so the new name gets discovered.
5771 */
5772 if (for_rename)
5773 goto record;
5774
5775 /* we can safely do the unlink without any special recording */
5776 return;
5777
5778record:
5779 mutex_lock(&BTRFS_I(dir)->log_mutex);
5780 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797 struct inode *dir)
5798{
5799 mutex_lock(&BTRFS_I(dir)->log_mutex);
5800 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812 struct inode *inode, struct inode *old_dir,
5813 struct dentry *parent)
5814{
5815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816 struct btrfs_root * root = BTRFS_I(inode)->root;
5817
5818 /*
5819 * this will force the logging code to walk the dentry chain
5820 * up for the file
5821 */
5822 if (S_ISREG(inode->i_mode))
5823 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825 /*
5826 * if this inode hasn't been logged and directory we're renaming it
5827 * from hasn't been logged, we don't need to log it
5828 */
5829 if (BTRFS_I(inode)->logged_trans <=
5830 fs_info->last_trans_committed &&
5831 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832 fs_info->last_trans_committed))
5833 return 0;
5834
5835 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836 LLONG_MAX, 1, NULL);
5837}
5838