Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
 
  16#include "backref.h"
  17#include "compression.h"
  18#include "qgroup.h"
  19#include "block-group.h"
  20#include "space-info.h"
  21#include "inode-item.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "extent-tree.h"
  25#include "root-tree.h"
  26#include "dir-item.h"
  27#include "file-item.h"
  28#include "file.h"
  29#include "orphan.h"
  30#include "tree-checker.h"
  31
  32#define MAX_CONFLICT_INODES 10
  33
  34/* magic values for the inode_only field in btrfs_log_inode:
  35 *
  36 * LOG_INODE_ALL means to log everything
  37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  38 * during log replay
  39 */
  40enum {
  41	LOG_INODE_ALL,
  42	LOG_INODE_EXISTS,
  43};
  44
  45/*
  46 * directory trouble cases
  47 *
  48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  49 * log, we must force a full commit before doing an fsync of the directory
  50 * where the unlink was done.
  51 * ---> record transid of last unlink/rename per directory
  52 *
  53 * mkdir foo/some_dir
  54 * normal commit
  55 * rename foo/some_dir foo2/some_dir
  56 * mkdir foo/some_dir
  57 * fsync foo/some_dir/some_file
  58 *
  59 * The fsync above will unlink the original some_dir without recording
  60 * it in its new location (foo2).  After a crash, some_dir will be gone
  61 * unless the fsync of some_file forces a full commit
  62 *
  63 * 2) we must log any new names for any file or dir that is in the fsync
  64 * log. ---> check inode while renaming/linking.
  65 *
  66 * 2a) we must log any new names for any file or dir during rename
  67 * when the directory they are being removed from was logged.
  68 * ---> check inode and old parent dir during rename
  69 *
  70 *  2a is actually the more important variant.  With the extra logging
  71 *  a crash might unlink the old name without recreating the new one
  72 *
  73 * 3) after a crash, we must go through any directories with a link count
  74 * of zero and redo the rm -rf
  75 *
  76 * mkdir f1/foo
  77 * normal commit
  78 * rm -rf f1/foo
  79 * fsync(f1)
  80 *
  81 * The directory f1 was fully removed from the FS, but fsync was never
  82 * called on f1, only its parent dir.  After a crash the rm -rf must
  83 * be replayed.  This must be able to recurse down the entire
  84 * directory tree.  The inode link count fixup code takes care of the
  85 * ugly details.
  86 */
  87
  88/*
  89 * stages for the tree walking.  The first
  90 * stage (0) is to only pin down the blocks we find
  91 * the second stage (1) is to make sure that all the inodes
  92 * we find in the log are created in the subvolume.
  93 *
  94 * The last stage is to deal with directories and links and extents
  95 * and all the other fun semantics
  96 */
  97enum {
  98	LOG_WALK_PIN_ONLY,
  99	LOG_WALK_REPLAY_INODES,
 100	LOG_WALK_REPLAY_DIR_INDEX,
 101	LOG_WALK_REPLAY_ALL,
 102};
 103
 104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 105			   struct btrfs_inode *inode,
 106			   int inode_only,
 
 
 107			   struct btrfs_log_ctx *ctx);
 108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 109			     struct btrfs_root *root,
 110			     struct btrfs_path *path, u64 objectid);
 111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 112				       struct btrfs_root *root,
 113				       struct btrfs_root *log,
 114				       struct btrfs_path *path,
 115				       u64 dirid, int del_all);
 116static void wait_log_commit(struct btrfs_root *root, int transid);
 117
 118/*
 119 * tree logging is a special write ahead log used to make sure that
 120 * fsyncs and O_SYNCs can happen without doing full tree commits.
 121 *
 122 * Full tree commits are expensive because they require commonly
 123 * modified blocks to be recowed, creating many dirty pages in the
 124 * extent tree an 4x-6x higher write load than ext3.
 125 *
 126 * Instead of doing a tree commit on every fsync, we use the
 127 * key ranges and transaction ids to find items for a given file or directory
 128 * that have changed in this transaction.  Those items are copied into
 129 * a special tree (one per subvolume root), that tree is written to disk
 130 * and then the fsync is considered complete.
 131 *
 132 * After a crash, items are copied out of the log-tree back into the
 133 * subvolume tree.  Any file data extents found are recorded in the extent
 134 * allocation tree, and the log-tree freed.
 135 *
 136 * The log tree is read three times, once to pin down all the extents it is
 137 * using in ram and once, once to create all the inodes logged in the tree
 138 * and once to do all the other items.
 139 */
 140
 141static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
 142{
 143	unsigned int nofs_flag;
 144	struct inode *inode;
 145
 146	/*
 147	 * We're holding a transaction handle whether we are logging or
 148	 * replaying a log tree, so we must make sure NOFS semantics apply
 149	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
 150	 * to allocate an inode, which can recurse back into the filesystem and
 151	 * attempt a transaction commit, resulting in a deadlock.
 152	 */
 153	nofs_flag = memalloc_nofs_save();
 154	inode = btrfs_iget(objectid, root);
 155	memalloc_nofs_restore(nofs_flag);
 156
 157	return inode;
 158}
 159
 160/*
 161 * start a sub transaction and setup the log tree
 162 * this increments the log tree writer count to make the people
 163 * syncing the tree wait for us to finish
 164 */
 165static int start_log_trans(struct btrfs_trans_handle *trans,
 166			   struct btrfs_root *root,
 167			   struct btrfs_log_ctx *ctx)
 168{
 169	struct btrfs_fs_info *fs_info = root->fs_info;
 170	struct btrfs_root *tree_root = fs_info->tree_root;
 171	const bool zoned = btrfs_is_zoned(fs_info);
 172	int ret = 0;
 173	bool created = false;
 174
 175	/*
 176	 * First check if the log root tree was already created. If not, create
 177	 * it before locking the root's log_mutex, just to keep lockdep happy.
 178	 */
 179	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 180		mutex_lock(&tree_root->log_mutex);
 181		if (!fs_info->log_root_tree) {
 182			ret = btrfs_init_log_root_tree(trans, fs_info);
 183			if (!ret) {
 184				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 185				created = true;
 186			}
 187		}
 188		mutex_unlock(&tree_root->log_mutex);
 189		if (ret)
 190			return ret;
 191	}
 192
 193	mutex_lock(&root->log_mutex);
 194
 195again:
 196	if (root->log_root) {
 197		int index = (root->log_transid + 1) % 2;
 198
 199		if (btrfs_need_log_full_commit(trans)) {
 200			ret = BTRFS_LOG_FORCE_COMMIT;
 201			goto out;
 202		}
 203
 204		if (zoned && atomic_read(&root->log_commit[index])) {
 205			wait_log_commit(root, root->log_transid - 1);
 206			goto again;
 207		}
 208
 209		if (!root->log_start_pid) {
 210			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 211			root->log_start_pid = current->pid;
 212		} else if (root->log_start_pid != current->pid) {
 213			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 214		}
 215	} else {
 216		/*
 217		 * This means fs_info->log_root_tree was already created
 218		 * for some other FS trees. Do the full commit not to mix
 219		 * nodes from multiple log transactions to do sequential
 220		 * writing.
 221		 */
 222		if (zoned && !created) {
 223			ret = BTRFS_LOG_FORCE_COMMIT;
 224			goto out;
 225		}
 226
 227		ret = btrfs_add_log_tree(trans, root);
 228		if (ret)
 229			goto out;
 230
 231		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 232		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 233		root->log_start_pid = current->pid;
 234	}
 235
 
 236	atomic_inc(&root->log_writers);
 237	if (!ctx->logging_new_name) {
 238		int index = root->log_transid % 2;
 239		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 240		ctx->log_transid = root->log_transid;
 241	}
 242
 243out:
 244	mutex_unlock(&root->log_mutex);
 245	return ret;
 246}
 247
 248/*
 249 * returns 0 if there was a log transaction running and we were able
 250 * to join, or returns -ENOENT if there were not transactions
 251 * in progress
 252 */
 253static int join_running_log_trans(struct btrfs_root *root)
 254{
 255	const bool zoned = btrfs_is_zoned(root->fs_info);
 256	int ret = -ENOENT;
 257
 258	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 259		return ret;
 
 260
 261	mutex_lock(&root->log_mutex);
 262again:
 263	if (root->log_root) {
 264		int index = (root->log_transid + 1) % 2;
 265
 266		ret = 0;
 267		if (zoned && atomic_read(&root->log_commit[index])) {
 268			wait_log_commit(root, root->log_transid - 1);
 269			goto again;
 270		}
 271		atomic_inc(&root->log_writers);
 272	}
 273	mutex_unlock(&root->log_mutex);
 274	return ret;
 275}
 276
 277/*
 278 * This either makes the current running log transaction wait
 279 * until you call btrfs_end_log_trans() or it makes any future
 280 * log transactions wait until you call btrfs_end_log_trans()
 281 */
 282void btrfs_pin_log_trans(struct btrfs_root *root)
 283{
 
 
 
 284	atomic_inc(&root->log_writers);
 
 
 285}
 286
 287/*
 288 * indicate we're done making changes to the log tree
 289 * and wake up anyone waiting to do a sync
 290 */
 291void btrfs_end_log_trans(struct btrfs_root *root)
 292{
 293	if (atomic_dec_and_test(&root->log_writers)) {
 294		/* atomic_dec_and_test implies a barrier */
 295		cond_wake_up_nomb(&root->log_writer_wait);
 
 
 
 296	}
 297}
 298
 
 299/*
 300 * the walk control struct is used to pass state down the chain when
 301 * processing the log tree.  The stage field tells us which part
 302 * of the log tree processing we are currently doing.  The others
 303 * are state fields used for that specific part
 304 */
 305struct walk_control {
 306	/* should we free the extent on disk when done?  This is used
 307	 * at transaction commit time while freeing a log tree
 308	 */
 309	int free;
 310
 
 
 
 
 
 
 
 
 
 
 311	/* pin only walk, we record which extents on disk belong to the
 312	 * log trees
 313	 */
 314	int pin;
 315
 316	/* what stage of the replay code we're currently in */
 317	int stage;
 318
 319	/*
 320	 * Ignore any items from the inode currently being processed. Needs
 321	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 322	 * the LOG_WALK_REPLAY_INODES stage.
 323	 */
 324	bool ignore_cur_inode;
 325
 326	/* the root we are currently replaying */
 327	struct btrfs_root *replay_dest;
 328
 329	/* the trans handle for the current replay */
 330	struct btrfs_trans_handle *trans;
 331
 332	/* the function that gets used to process blocks we find in the
 333	 * tree.  Note the extent_buffer might not be up to date when it is
 334	 * passed in, and it must be checked or read if you need the data
 335	 * inside it
 336	 */
 337	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 338			    struct walk_control *wc, u64 gen, int level);
 339};
 340
 341/*
 342 * process_func used to pin down extents, write them or wait on them
 343 */
 344static int process_one_buffer(struct btrfs_root *log,
 345			      struct extent_buffer *eb,
 346			      struct walk_control *wc, u64 gen, int level)
 347{
 348	struct btrfs_fs_info *fs_info = log->fs_info;
 349	int ret = 0;
 350
 351	/*
 352	 * If this fs is mixed then we need to be able to process the leaves to
 353	 * pin down any logged extents, so we have to read the block.
 354	 */
 355	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 356		struct btrfs_tree_parent_check check = {
 357			.level = level,
 358			.transid = gen
 359		};
 360
 361		ret = btrfs_read_extent_buffer(eb, &check);
 362		if (ret)
 363			return ret;
 364	}
 365
 366	if (wc->pin) {
 367		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
 368		if (ret)
 369			return ret;
 370
 371		if (btrfs_buffer_uptodate(eb, gen, 0) &&
 372		    btrfs_header_level(eb) == 0)
 373			ret = btrfs_exclude_logged_extents(eb);
 
 
 
 374	}
 375	return ret;
 376}
 377
 378/*
 379 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 380 * to the src data we are copying out.
 381 *
 382 * root is the tree we are copying into, and path is a scratch
 383 * path for use in this function (it should be released on entry and
 384 * will be released on exit).
 385 *
 386 * If the key is already in the destination tree the existing item is
 387 * overwritten.  If the existing item isn't big enough, it is extended.
 388 * If it is too large, it is truncated.
 389 *
 390 * If the key isn't in the destination yet, a new item is inserted.
 391 */
 392static int overwrite_item(struct btrfs_trans_handle *trans,
 393			  struct btrfs_root *root,
 394			  struct btrfs_path *path,
 395			  struct extent_buffer *eb, int slot,
 396			  struct btrfs_key *key)
 397{
 
 398	int ret;
 399	u32 item_size;
 400	u64 saved_i_size = 0;
 401	int save_old_i_size = 0;
 402	unsigned long src_ptr;
 403	unsigned long dst_ptr;
 
 404	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 405
 406	/*
 407	 * This is only used during log replay, so the root is always from a
 408	 * fs/subvolume tree. In case we ever need to support a log root, then
 409	 * we'll have to clone the leaf in the path, release the path and use
 410	 * the leaf before writing into the log tree. See the comments at
 411	 * copy_items() for more details.
 412	 */
 413	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 414
 415	item_size = btrfs_item_size(eb, slot);
 416	src_ptr = btrfs_item_ptr_offset(eb, slot);
 417
 418	/* Look for the key in the destination tree. */
 419	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 420	if (ret < 0)
 421		return ret;
 422
 423	if (ret == 0) {
 424		char *src_copy;
 425		char *dst_copy;
 426		u32 dst_size = btrfs_item_size(path->nodes[0],
 427						  path->slots[0]);
 428		if (dst_size != item_size)
 429			goto insert;
 430
 431		if (item_size == 0) {
 432			btrfs_release_path(path);
 433			return 0;
 434		}
 435		dst_copy = kmalloc(item_size, GFP_NOFS);
 436		src_copy = kmalloc(item_size, GFP_NOFS);
 437		if (!dst_copy || !src_copy) {
 438			btrfs_release_path(path);
 439			kfree(dst_copy);
 440			kfree(src_copy);
 441			return -ENOMEM;
 442		}
 443
 444		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 445
 446		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 447		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 448				   item_size);
 449		ret = memcmp(dst_copy, src_copy, item_size);
 450
 451		kfree(dst_copy);
 452		kfree(src_copy);
 453		/*
 454		 * they have the same contents, just return, this saves
 455		 * us from cowing blocks in the destination tree and doing
 456		 * extra writes that may not have been done by a previous
 457		 * sync
 458		 */
 459		if (ret == 0) {
 460			btrfs_release_path(path);
 461			return 0;
 462		}
 463
 464		/*
 465		 * We need to load the old nbytes into the inode so when we
 466		 * replay the extents we've logged we get the right nbytes.
 467		 */
 468		if (inode_item) {
 469			struct btrfs_inode_item *item;
 470			u64 nbytes;
 471			u32 mode;
 472
 473			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 474					      struct btrfs_inode_item);
 475			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 476			item = btrfs_item_ptr(eb, slot,
 477					      struct btrfs_inode_item);
 478			btrfs_set_inode_nbytes(eb, item, nbytes);
 479
 480			/*
 481			 * If this is a directory we need to reset the i_size to
 482			 * 0 so that we can set it up properly when replaying
 483			 * the rest of the items in this log.
 484			 */
 485			mode = btrfs_inode_mode(eb, item);
 486			if (S_ISDIR(mode))
 487				btrfs_set_inode_size(eb, item, 0);
 488		}
 489	} else if (inode_item) {
 490		struct btrfs_inode_item *item;
 491		u32 mode;
 492
 493		/*
 494		 * New inode, set nbytes to 0 so that the nbytes comes out
 495		 * properly when we replay the extents.
 496		 */
 497		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 498		btrfs_set_inode_nbytes(eb, item, 0);
 499
 500		/*
 501		 * If this is a directory we need to reset the i_size to 0 so
 502		 * that we can set it up properly when replaying the rest of
 503		 * the items in this log.
 504		 */
 505		mode = btrfs_inode_mode(eb, item);
 506		if (S_ISDIR(mode))
 507			btrfs_set_inode_size(eb, item, 0);
 508	}
 509insert:
 510	btrfs_release_path(path);
 511	/* try to insert the key into the destination tree */
 512	path->skip_release_on_error = 1;
 513	ret = btrfs_insert_empty_item(trans, root, path,
 514				      key, item_size);
 515	path->skip_release_on_error = 0;
 516
 517	/* make sure any existing item is the correct size */
 518	if (ret == -EEXIST || ret == -EOVERFLOW) {
 519		u32 found_size;
 520		found_size = btrfs_item_size(path->nodes[0],
 521						path->slots[0]);
 522		if (found_size > item_size)
 523			btrfs_truncate_item(trans, path, item_size, 1);
 524		else if (found_size < item_size)
 525			btrfs_extend_item(trans, path, item_size - found_size);
 
 526	} else if (ret) {
 527		return ret;
 528	}
 529	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 530					path->slots[0]);
 531
 532	/* don't overwrite an existing inode if the generation number
 533	 * was logged as zero.  This is done when the tree logging code
 534	 * is just logging an inode to make sure it exists after recovery.
 535	 *
 536	 * Also, don't overwrite i_size on directories during replay.
 537	 * log replay inserts and removes directory items based on the
 538	 * state of the tree found in the subvolume, and i_size is modified
 539	 * as it goes
 540	 */
 541	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 542		struct btrfs_inode_item *src_item;
 543		struct btrfs_inode_item *dst_item;
 544
 545		src_item = (struct btrfs_inode_item *)src_ptr;
 546		dst_item = (struct btrfs_inode_item *)dst_ptr;
 547
 548		if (btrfs_inode_generation(eb, src_item) == 0) {
 549			struct extent_buffer *dst_eb = path->nodes[0];
 550			const u64 ino_size = btrfs_inode_size(eb, src_item);
 551
 552			/*
 553			 * For regular files an ino_size == 0 is used only when
 554			 * logging that an inode exists, as part of a directory
 555			 * fsync, and the inode wasn't fsynced before. In this
 556			 * case don't set the size of the inode in the fs/subvol
 557			 * tree, otherwise we would be throwing valid data away.
 558			 */
 559			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 560			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 561			    ino_size != 0)
 562				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 
 
 
 
 
 563			goto no_copy;
 564		}
 565
 566		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 
 567		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 568			save_old_i_size = 1;
 569			saved_i_size = btrfs_inode_size(path->nodes[0],
 570							dst_item);
 571		}
 572	}
 573
 574	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 575			   src_ptr, item_size);
 576
 577	if (save_old_i_size) {
 578		struct btrfs_inode_item *dst_item;
 579		dst_item = (struct btrfs_inode_item *)dst_ptr;
 580		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 581	}
 582
 583	/* make sure the generation is filled in */
 584	if (key->type == BTRFS_INODE_ITEM_KEY) {
 585		struct btrfs_inode_item *dst_item;
 586		dst_item = (struct btrfs_inode_item *)dst_ptr;
 587		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 588			btrfs_set_inode_generation(path->nodes[0], dst_item,
 589						   trans->transid);
 590		}
 591	}
 592no_copy:
 593	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
 594	btrfs_release_path(path);
 595	return 0;
 596}
 597
 598static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
 599			       struct fscrypt_str *name)
 600{
 601	char *buf;
 602
 603	buf = kmalloc(len, GFP_NOFS);
 604	if (!buf)
 605		return -ENOMEM;
 606
 607	read_extent_buffer(eb, buf, (unsigned long)start, len);
 608	name->name = buf;
 609	name->len = len;
 610	return 0;
 611}
 612
 613/*
 614 * simple helper to read an inode off the disk from a given root
 615 * This can only be called for subvolume roots and not for the log
 616 */
 617static noinline struct inode *read_one_inode(struct btrfs_root *root,
 618					     u64 objectid)
 619{
 
 620	struct inode *inode;
 621
 622	inode = btrfs_iget_logging(objectid, root);
 623	if (IS_ERR(inode))
 
 
 
 624		inode = NULL;
 
 
 
 
 625	return inode;
 626}
 627
 628/* replays a single extent in 'eb' at 'slot' with 'key' into the
 629 * subvolume 'root'.  path is released on entry and should be released
 630 * on exit.
 631 *
 632 * extents in the log tree have not been allocated out of the extent
 633 * tree yet.  So, this completes the allocation, taking a reference
 634 * as required if the extent already exists or creating a new extent
 635 * if it isn't in the extent allocation tree yet.
 636 *
 637 * The extent is inserted into the file, dropping any existing extents
 638 * from the file that overlap the new one.
 639 */
 640static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 641				      struct btrfs_root *root,
 642				      struct btrfs_path *path,
 643				      struct extent_buffer *eb, int slot,
 644				      struct btrfs_key *key)
 645{
 646	struct btrfs_drop_extents_args drop_args = { 0 };
 647	struct btrfs_fs_info *fs_info = root->fs_info;
 648	int found_type;
 649	u64 extent_end;
 650	u64 start = key->offset;
 651	u64 nbytes = 0;
 652	struct btrfs_file_extent_item *item;
 653	struct inode *inode = NULL;
 654	unsigned long size;
 655	int ret = 0;
 656
 657	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 658	found_type = btrfs_file_extent_type(eb, item);
 659
 660	if (found_type == BTRFS_FILE_EXTENT_REG ||
 661	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 662		nbytes = btrfs_file_extent_num_bytes(eb, item);
 663		extent_end = start + nbytes;
 664
 665		/*
 666		 * We don't add to the inodes nbytes if we are prealloc or a
 667		 * hole.
 668		 */
 669		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 670			nbytes = 0;
 671	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 672		size = btrfs_file_extent_ram_bytes(eb, item);
 673		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 674		extent_end = ALIGN(start + size,
 675				   fs_info->sectorsize);
 676	} else {
 677		ret = 0;
 678		goto out;
 679	}
 680
 681	inode = read_one_inode(root, key->objectid);
 682	if (!inode) {
 683		ret = -EIO;
 684		goto out;
 685	}
 686
 687	/*
 688	 * first check to see if we already have this extent in the
 689	 * file.  This must be done before the btrfs_drop_extents run
 690	 * so we don't try to drop this extent.
 691	 */
 692	ret = btrfs_lookup_file_extent(trans, root, path,
 693			btrfs_ino(BTRFS_I(inode)), start, 0);
 694
 695	if (ret == 0 &&
 696	    (found_type == BTRFS_FILE_EXTENT_REG ||
 697	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 698		struct btrfs_file_extent_item cmp1;
 699		struct btrfs_file_extent_item cmp2;
 700		struct btrfs_file_extent_item *existing;
 701		struct extent_buffer *leaf;
 702
 703		leaf = path->nodes[0];
 704		existing = btrfs_item_ptr(leaf, path->slots[0],
 705					  struct btrfs_file_extent_item);
 706
 707		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 708				   sizeof(cmp1));
 709		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 710				   sizeof(cmp2));
 711
 712		/*
 713		 * we already have a pointer to this exact extent,
 714		 * we don't have to do anything
 715		 */
 716		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 717			btrfs_release_path(path);
 718			goto out;
 719		}
 720	}
 721	btrfs_release_path(path);
 722
 723	/* drop any overlapping extents */
 724	drop_args.start = start;
 725	drop_args.end = extent_end;
 726	drop_args.drop_cache = true;
 727	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 728	if (ret)
 729		goto out;
 730
 731	if (found_type == BTRFS_FILE_EXTENT_REG ||
 732	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 733		u64 offset;
 734		unsigned long dest_offset;
 735		struct btrfs_key ins;
 736
 737		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 738		    btrfs_fs_incompat(fs_info, NO_HOLES))
 739			goto update_inode;
 740
 741		ret = btrfs_insert_empty_item(trans, root, path, key,
 742					      sizeof(*item));
 743		if (ret)
 744			goto out;
 745		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 746						    path->slots[0]);
 747		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 748				(unsigned long)item,  sizeof(*item));
 749
 750		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 751		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 752		ins.type = BTRFS_EXTENT_ITEM_KEY;
 753		offset = key->offset - btrfs_file_extent_offset(eb, item);
 754
 755		/*
 756		 * Manually record dirty extent, as here we did a shallow
 757		 * file extent item copy and skip normal backref update,
 758		 * but modifying extent tree all by ourselves.
 759		 * So need to manually record dirty extent for qgroup,
 760		 * as the owner of the file extent changed from log tree
 761		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 762		 */
 763		ret = btrfs_qgroup_trace_extent(trans,
 764				btrfs_file_extent_disk_bytenr(eb, item),
 765				btrfs_file_extent_disk_num_bytes(eb, item));
 
 766		if (ret < 0)
 767			goto out;
 768
 769		if (ins.objectid > 0) {
 770			u64 csum_start;
 771			u64 csum_end;
 772			LIST_HEAD(ordered_sums);
 773
 774			/*
 775			 * is this extent already allocated in the extent
 776			 * allocation tree?  If so, just add a reference
 777			 */
 778			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 779						ins.offset);
 780			if (ret < 0) {
 781				goto out;
 782			} else if (ret == 0) {
 783				struct btrfs_ref ref = {
 784					.action = BTRFS_ADD_DELAYED_REF,
 785					.bytenr = ins.objectid,
 786					.num_bytes = ins.offset,
 787					.owning_root = btrfs_root_id(root),
 788					.ref_root = btrfs_root_id(root),
 789				};
 790				btrfs_init_data_ref(&ref, key->objectid, offset,
 791						    0, false);
 792				ret = btrfs_inc_extent_ref(trans, &ref);
 793				if (ret)
 794					goto out;
 795			} else {
 796				/*
 797				 * insert the extent pointer in the extent
 798				 * allocation tree
 799				 */
 800				ret = btrfs_alloc_logged_file_extent(trans,
 801						btrfs_root_id(root),
 
 802						key->objectid, offset, &ins);
 803				if (ret)
 804					goto out;
 805			}
 806			btrfs_release_path(path);
 807
 808			if (btrfs_file_extent_compression(eb, item)) {
 809				csum_start = ins.objectid;
 810				csum_end = csum_start + ins.offset;
 811			} else {
 812				csum_start = ins.objectid +
 813					btrfs_file_extent_offset(eb, item);
 814				csum_end = csum_start +
 815					btrfs_file_extent_num_bytes(eb, item);
 816			}
 817
 818			ret = btrfs_lookup_csums_list(root->log_root,
 819						csum_start, csum_end - 1,
 820						&ordered_sums, false);
 821			if (ret < 0)
 822				goto out;
 823			ret = 0;
 824			/*
 825			 * Now delete all existing cums in the csum root that
 826			 * cover our range. We do this because we can have an
 827			 * extent that is completely referenced by one file
 828			 * extent item and partially referenced by another
 829			 * file extent item (like after using the clone or
 830			 * extent_same ioctls). In this case if we end up doing
 831			 * the replay of the one that partially references the
 832			 * extent first, and we do not do the csum deletion
 833			 * below, we can get 2 csum items in the csum tree that
 834			 * overlap each other. For example, imagine our log has
 835			 * the two following file extent items:
 836			 *
 837			 * key (257 EXTENT_DATA 409600)
 838			 *     extent data disk byte 12845056 nr 102400
 839			 *     extent data offset 20480 nr 20480 ram 102400
 840			 *
 841			 * key (257 EXTENT_DATA 819200)
 842			 *     extent data disk byte 12845056 nr 102400
 843			 *     extent data offset 0 nr 102400 ram 102400
 844			 *
 845			 * Where the second one fully references the 100K extent
 846			 * that starts at disk byte 12845056, and the log tree
 847			 * has a single csum item that covers the entire range
 848			 * of the extent:
 849			 *
 850			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 851			 *
 852			 * After the first file extent item is replayed, the
 853			 * csum tree gets the following csum item:
 854			 *
 855			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 856			 *
 857			 * Which covers the 20K sub-range starting at offset 20K
 858			 * of our extent. Now when we replay the second file
 859			 * extent item, if we do not delete existing csum items
 860			 * that cover any of its blocks, we end up getting two
 861			 * csum items in our csum tree that overlap each other:
 862			 *
 863			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 864			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 865			 *
 866			 * Which is a problem, because after this anyone trying
 867			 * to lookup up for the checksum of any block of our
 868			 * extent starting at an offset of 40K or higher, will
 869			 * end up looking at the second csum item only, which
 870			 * does not contain the checksum for any block starting
 871			 * at offset 40K or higher of our extent.
 872			 */
 873			while (!list_empty(&ordered_sums)) {
 874				struct btrfs_ordered_sum *sums;
 875				struct btrfs_root *csum_root;
 876
 877				sums = list_entry(ordered_sums.next,
 878						struct btrfs_ordered_sum,
 879						list);
 880				csum_root = btrfs_csum_root(fs_info,
 881							    sums->logical);
 882				if (!ret)
 883					ret = btrfs_del_csums(trans, csum_root,
 884							      sums->logical,
 885							      sums->len);
 886				if (!ret)
 887					ret = btrfs_csum_file_blocks(trans,
 888								     csum_root,
 889								     sums);
 890				list_del(&sums->list);
 891				kfree(sums);
 892			}
 893			if (ret)
 894				goto out;
 895		} else {
 896			btrfs_release_path(path);
 897		}
 898	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 899		/* inline extents are easy, we just overwrite them */
 900		ret = overwrite_item(trans, root, path, eb, slot, key);
 901		if (ret)
 902			goto out;
 903	}
 904
 905	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 906						extent_end - start);
 907	if (ret)
 908		goto out;
 909
 910update_inode:
 911	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 912	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 913out:
 914	iput(inode);
 
 915	return ret;
 916}
 917
 918static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
 919				       struct btrfs_inode *dir,
 920				       struct btrfs_inode *inode,
 921				       const struct fscrypt_str *name)
 922{
 923	int ret;
 924
 925	ret = btrfs_unlink_inode(trans, dir, inode, name);
 926	if (ret)
 927		return ret;
 928	/*
 929	 * Whenever we need to check if a name exists or not, we check the
 930	 * fs/subvolume tree. So after an unlink we must run delayed items, so
 931	 * that future checks for a name during log replay see that the name
 932	 * does not exists anymore.
 933	 */
 934	return btrfs_run_delayed_items(trans);
 935}
 936
 937/*
 938 * when cleaning up conflicts between the directory names in the
 939 * subvolume, directory names in the log and directory names in the
 940 * inode back references, we may have to unlink inodes from directories.
 941 *
 942 * This is a helper function to do the unlink of a specific directory
 943 * item
 944 */
 945static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 
 946				      struct btrfs_path *path,
 947				      struct btrfs_inode *dir,
 948				      struct btrfs_dir_item *di)
 949{
 950	struct btrfs_root *root = dir->root;
 951	struct inode *inode;
 952	struct fscrypt_str name;
 
 953	struct extent_buffer *leaf;
 954	struct btrfs_key location;
 955	int ret;
 956
 957	leaf = path->nodes[0];
 958
 959	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 960	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
 961	if (ret)
 
 962		return -ENOMEM;
 963
 
 964	btrfs_release_path(path);
 965
 966	inode = read_one_inode(root, location.objectid);
 967	if (!inode) {
 968		ret = -EIO;
 969		goto out;
 970	}
 971
 972	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 973	if (ret)
 974		goto out;
 975
 976	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
 
 
 
 
 
 977out:
 978	kfree(name.name);
 979	iput(inode);
 980	return ret;
 981}
 982
 983/*
 984 * See if a given name and sequence number found in an inode back reference are
 985 * already in a directory and correctly point to this inode.
 986 *
 987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 988 * exists.
 989 */
 990static noinline int inode_in_dir(struct btrfs_root *root,
 991				 struct btrfs_path *path,
 992				 u64 dirid, u64 objectid, u64 index,
 993				 struct fscrypt_str *name)
 994{
 995	struct btrfs_dir_item *di;
 996	struct btrfs_key location;
 997	int ret = 0;
 998
 999	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000					 index, name, 0);
1001	if (IS_ERR(di)) {
1002		ret = PTR_ERR(di);
1003		goto out;
1004	} else if (di) {
1005		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006		if (location.objectid != objectid)
1007			goto out;
1008	} else {
1009		goto out;
1010	}
1011
1012	btrfs_release_path(path);
1013	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014	if (IS_ERR(di)) {
1015		ret = PTR_ERR(di);
1016		goto out;
1017	} else if (di) {
1018		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019		if (location.objectid == objectid)
1020			ret = 1;
1021	}
 
 
1022out:
1023	btrfs_release_path(path);
1024	return ret;
1025}
1026
1027/*
1028 * helper function to check a log tree for a named back reference in
1029 * an inode.  This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1031 *
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1036 */
1037static noinline int backref_in_log(struct btrfs_root *log,
1038				   struct btrfs_key *key,
1039				   u64 ref_objectid,
1040				   const struct fscrypt_str *name)
1041{
1042	struct btrfs_path *path;
 
 
 
 
 
 
1043	int ret;
 
1044
1045	path = btrfs_alloc_path();
1046	if (!path)
1047		return -ENOMEM;
1048
1049	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050	if (ret < 0) {
1051		goto out;
1052	} else if (ret == 1) {
1053		ret = 0;
 
 
 
 
 
 
 
 
1054		goto out;
1055	}
1056
1057	if (key->type == BTRFS_INODE_EXTREF_KEY)
1058		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059						       path->slots[0],
1060						       ref_objectid, name);
1061	else
1062		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063						   path->slots[0], name);
 
 
 
 
 
 
 
 
 
1064out:
1065	btrfs_free_path(path);
1066	return ret;
1067}
1068
1069static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070				  struct btrfs_root *root,
1071				  struct btrfs_path *path,
1072				  struct btrfs_root *log_root,
1073				  struct btrfs_inode *dir,
1074				  struct btrfs_inode *inode,
1075				  u64 inode_objectid, u64 parent_objectid,
1076				  u64 ref_index, struct fscrypt_str *name)
 
1077{
1078	int ret;
 
 
1079	struct extent_buffer *leaf;
1080	struct btrfs_dir_item *di;
1081	struct btrfs_key search_key;
1082	struct btrfs_inode_extref *extref;
1083
1084again:
1085	/* Search old style refs */
1086	search_key.objectid = inode_objectid;
1087	search_key.type = BTRFS_INODE_REF_KEY;
1088	search_key.offset = parent_objectid;
1089	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090	if (ret == 0) {
1091		struct btrfs_inode_ref *victim_ref;
1092		unsigned long ptr;
1093		unsigned long ptr_end;
1094
1095		leaf = path->nodes[0];
1096
1097		/* are we trying to overwrite a back ref for the root directory
1098		 * if so, just jump out, we're done
1099		 */
1100		if (search_key.objectid == search_key.offset)
1101			return 1;
1102
1103		/* check all the names in this back reference to see
1104		 * if they are in the log.  if so, we allow them to stay
1105		 * otherwise they must be unlinked as a conflict
1106		 */
1107		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109		while (ptr < ptr_end) {
1110			struct fscrypt_str victim_name;
1111
1112			victim_ref = (struct btrfs_inode_ref *)ptr;
1113			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114				 btrfs_inode_ref_name_len(leaf, victim_ref),
1115				 &victim_name);
1116			if (ret)
1117				return ret;
1118
1119			ret = backref_in_log(log_root, &search_key,
1120					     parent_objectid, &victim_name);
1121			if (ret < 0) {
1122				kfree(victim_name.name);
1123				return ret;
1124			} else if (!ret) {
 
 
1125				inc_nlink(&inode->vfs_inode);
1126				btrfs_release_path(path);
1127
1128				ret = unlink_inode_for_log_replay(trans, dir, inode,
1129						&victim_name);
1130				kfree(victim_name.name);
1131				if (ret)
1132					return ret;
 
 
 
 
1133				goto again;
1134			}
1135			kfree(victim_name.name);
1136
1137			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138		}
 
 
 
 
 
 
1139	}
1140	btrfs_release_path(path);
1141
1142	/* Same search but for extended refs */
1143	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144					   inode_objectid, parent_objectid, 0,
1145					   0);
1146	if (IS_ERR(extref)) {
1147		return PTR_ERR(extref);
1148	} else if (extref) {
1149		u32 item_size;
1150		u32 cur_offset = 0;
1151		unsigned long base;
1152		struct inode *victim_parent;
1153
1154		leaf = path->nodes[0];
1155
1156		item_size = btrfs_item_size(leaf, path->slots[0]);
1157		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158
1159		while (cur_offset < item_size) {
1160			struct fscrypt_str victim_name;
1161
1162			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163
 
 
1164			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165				goto next;
1166
1167			ret = read_alloc_one_name(leaf, &extref->name,
1168				 btrfs_inode_extref_name_len(leaf, extref),
1169				 &victim_name);
1170			if (ret)
1171				return ret;
1172
1173			search_key.objectid = inode_objectid;
1174			search_key.type = BTRFS_INODE_EXTREF_KEY;
1175			search_key.offset = btrfs_extref_hash(parent_objectid,
1176							      victim_name.name,
1177							      victim_name.len);
1178			ret = backref_in_log(log_root, &search_key,
1179					     parent_objectid, &victim_name);
1180			if (ret < 0) {
1181				kfree(victim_name.name);
1182				return ret;
1183			} else if (!ret) {
1184				ret = -ENOENT;
1185				victim_parent = read_one_inode(root,
1186						parent_objectid);
1187				if (victim_parent) {
1188					inc_nlink(&inode->vfs_inode);
1189					btrfs_release_path(path);
1190
1191					ret = unlink_inode_for_log_replay(trans,
1192							BTRFS_I(victim_parent),
1193							inode, &victim_name);
 
 
 
 
 
1194				}
1195				iput(victim_parent);
1196				kfree(victim_name.name);
1197				if (ret)
1198					return ret;
 
1199				goto again;
1200			}
1201			kfree(victim_name.name);
1202next:
1203			cur_offset += victim_name.len + sizeof(*extref);
1204		}
 
1205	}
1206	btrfs_release_path(path);
1207
1208	/* look for a conflicting sequence number */
1209	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210					 ref_index, name, 0);
1211	if (IS_ERR(di)) {
1212		return PTR_ERR(di);
1213	} else if (di) {
1214		ret = drop_one_dir_item(trans, path, dir, di);
1215		if (ret)
1216			return ret;
1217	}
1218	btrfs_release_path(path);
1219
1220	/* look for a conflicting name */
1221	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222	if (IS_ERR(di)) {
1223		return PTR_ERR(di);
1224	} else if (di) {
1225		ret = drop_one_dir_item(trans, path, dir, di);
1226		if (ret)
1227			return ret;
1228	}
1229	btrfs_release_path(path);
1230
1231	return 0;
1232}
1233
1234static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235			     struct fscrypt_str *name, u64 *index,
1236			     u64 *parent_objectid)
1237{
1238	struct btrfs_inode_extref *extref;
1239	int ret;
1240
1241	extref = (struct btrfs_inode_extref *)ref_ptr;
1242
1243	ret = read_alloc_one_name(eb, &extref->name,
1244				  btrfs_inode_extref_name_len(eb, extref), name);
1245	if (ret)
1246		return ret;
 
 
 
1247
1248	if (index)
1249		*index = btrfs_inode_extref_index(eb, extref);
1250	if (parent_objectid)
1251		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253	return 0;
1254}
1255
1256static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257			  struct fscrypt_str *name, u64 *index)
1258{
1259	struct btrfs_inode_ref *ref;
1260	int ret;
1261
1262	ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265				  name);
1266	if (ret)
1267		return ret;
 
 
1268
1269	if (index)
1270		*index = btrfs_inode_ref_index(eb, ref);
1271
1272	return 0;
1273}
1274
1275/*
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1281 */
1282static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283				 struct btrfs_root *root,
1284				 struct btrfs_path *path,
1285				 struct btrfs_inode *inode,
1286				 struct extent_buffer *log_eb,
1287				 int log_slot,
1288				 struct btrfs_key *key)
1289{
1290	int ret;
1291	unsigned long ref_ptr;
1292	unsigned long ref_end;
1293	struct extent_buffer *eb;
1294
1295again:
1296	btrfs_release_path(path);
1297	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298	if (ret > 0) {
1299		ret = 0;
1300		goto out;
1301	}
1302	if (ret < 0)
1303		goto out;
1304
1305	eb = path->nodes[0];
1306	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308	while (ref_ptr < ref_end) {
1309		struct fscrypt_str name;
 
1310		u64 parent_id;
1311
1312		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313			ret = extref_get_fields(eb, ref_ptr, &name,
1314						NULL, &parent_id);
1315		} else {
1316			parent_id = key->offset;
1317			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
 
1318		}
1319		if (ret)
1320			goto out;
1321
1322		if (key->type == BTRFS_INODE_EXTREF_KEY)
1323			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324							       parent_id, &name);
 
1325		else
1326			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
 
1327
1328		if (!ret) {
1329			struct inode *dir;
1330
1331			btrfs_release_path(path);
1332			dir = read_one_inode(root, parent_id);
1333			if (!dir) {
1334				ret = -ENOENT;
1335				kfree(name.name);
1336				goto out;
1337			}
1338			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339						 inode, &name);
1340			kfree(name.name);
1341			iput(dir);
1342			if (ret)
1343				goto out;
1344			goto again;
1345		}
1346
1347		kfree(name.name);
1348		ref_ptr += name.len;
1349		if (key->type == BTRFS_INODE_EXTREF_KEY)
1350			ref_ptr += sizeof(struct btrfs_inode_extref);
1351		else
1352			ref_ptr += sizeof(struct btrfs_inode_ref);
1353	}
1354	ret = 0;
1355 out:
1356	btrfs_release_path(path);
1357	return ret;
1358}
1359
1360/*
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function.  (it should be released on return).
1365 */
1366static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367				  struct btrfs_root *root,
1368				  struct btrfs_root *log,
1369				  struct btrfs_path *path,
1370				  struct extent_buffer *eb, int slot,
1371				  struct btrfs_key *key)
1372{
1373	struct inode *dir = NULL;
1374	struct inode *inode = NULL;
1375	unsigned long ref_ptr;
1376	unsigned long ref_end;
1377	struct fscrypt_str name = { 0 };
 
1378	int ret;
 
1379	int log_ref_ver = 0;
1380	u64 parent_objectid;
1381	u64 inode_objectid;
1382	u64 ref_index = 0;
1383	int ref_struct_size;
1384
1385	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387
1388	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389		struct btrfs_inode_extref *r;
1390
1391		ref_struct_size = sizeof(struct btrfs_inode_extref);
1392		log_ref_ver = 1;
1393		r = (struct btrfs_inode_extref *)ref_ptr;
1394		parent_objectid = btrfs_inode_extref_parent(eb, r);
1395	} else {
1396		ref_struct_size = sizeof(struct btrfs_inode_ref);
1397		parent_objectid = key->offset;
1398	}
1399	inode_objectid = key->objectid;
1400
1401	/*
1402	 * it is possible that we didn't log all the parent directories
1403	 * for a given inode.  If we don't find the dir, just don't
1404	 * copy the back ref in.  The link count fixup code will take
1405	 * care of the rest
1406	 */
1407	dir = read_one_inode(root, parent_objectid);
1408	if (!dir) {
1409		ret = -ENOENT;
1410		goto out;
1411	}
1412
1413	inode = read_one_inode(root, inode_objectid);
1414	if (!inode) {
1415		ret = -EIO;
1416		goto out;
1417	}
1418
1419	while (ref_ptr < ref_end) {
1420		if (log_ref_ver) {
1421			ret = extref_get_fields(eb, ref_ptr, &name,
1422						&ref_index, &parent_objectid);
1423			/*
1424			 * parent object can change from one array
1425			 * item to another.
1426			 */
1427			if (!dir)
1428				dir = read_one_inode(root, parent_objectid);
1429			if (!dir) {
1430				ret = -ENOENT;
1431				goto out;
1432			}
1433		} else {
1434			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
 
1435		}
1436		if (ret)
1437			goto out;
1438
1439		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441		if (ret < 0) {
1442			goto out;
1443		} else if (ret == 0) {
1444			/*
1445			 * look for a conflicting back reference in the
1446			 * metadata. if we find one we have to unlink that name
1447			 * of the file before we add our new link.  Later on, we
1448			 * overwrite any existing back reference, and we don't
1449			 * want to create dangling pointers in the directory.
1450			 */
1451			ret = __add_inode_ref(trans, root, path, log,
1452					      BTRFS_I(dir), BTRFS_I(inode),
1453					      inode_objectid, parent_objectid,
1454					      ref_index, &name);
1455			if (ret) {
1456				if (ret == 1)
1457					ret = 0;
1458				goto out;
 
 
 
 
 
 
1459			}
1460
1461			/* insert our name */
1462			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463					     &name, 0, ref_index);
 
1464			if (ret)
1465				goto out;
1466
1467			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1468			if (ret)
1469				goto out;
1470		}
1471		/* Else, ret == 1, we already have a perfect match, we're done. */
1472
1473		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474		kfree(name.name);
1475		name.name = NULL;
1476		if (log_ref_ver) {
1477			iput(dir);
1478			dir = NULL;
1479		}
1480	}
1481
1482	/*
1483	 * Before we overwrite the inode reference item in the subvolume tree
1484	 * with the item from the log tree, we must unlink all names from the
1485	 * parent directory that are in the subvolume's tree inode reference
1486	 * item, otherwise we end up with an inconsistent subvolume tree where
1487	 * dir index entries exist for a name but there is no inode reference
1488	 * item with the same name.
1489	 */
1490	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491				    key);
1492	if (ret)
1493		goto out;
1494
1495	/* finally write the back reference in the inode */
1496	ret = overwrite_item(trans, root, path, eb, slot, key);
1497out:
1498	btrfs_release_path(path);
1499	kfree(name.name);
1500	iput(dir);
1501	iput(inode);
1502	return ret;
1503}
1504
1505static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
1506{
1507	int ret = 0;
1508	int name_len;
1509	unsigned int nlink = 0;
1510	u32 item_size;
1511	u32 cur_offset = 0;
1512	u64 inode_objectid = btrfs_ino(inode);
1513	u64 offset = 0;
1514	unsigned long ptr;
1515	struct btrfs_inode_extref *extref;
1516	struct extent_buffer *leaf;
1517
1518	while (1) {
1519		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1520					    path, &extref, &offset);
1521		if (ret)
1522			break;
1523
1524		leaf = path->nodes[0];
1525		item_size = btrfs_item_size(leaf, path->slots[0]);
1526		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527		cur_offset = 0;
1528
1529		while (cur_offset < item_size) {
1530			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1531			name_len = btrfs_inode_extref_name_len(leaf, extref);
1532
1533			nlink++;
1534
1535			cur_offset += name_len + sizeof(*extref);
1536		}
1537
1538		offset++;
1539		btrfs_release_path(path);
1540	}
1541	btrfs_release_path(path);
1542
1543	if (ret < 0 && ret != -ENOENT)
1544		return ret;
1545	return nlink;
1546}
1547
1548static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
 
1549{
1550	int ret;
1551	struct btrfs_key key;
1552	unsigned int nlink = 0;
1553	unsigned long ptr;
1554	unsigned long ptr_end;
1555	int name_len;
1556	u64 ino = btrfs_ino(inode);
1557
1558	key.objectid = ino;
1559	key.type = BTRFS_INODE_REF_KEY;
1560	key.offset = (u64)-1;
1561
1562	while (1) {
1563		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1564		if (ret < 0)
1565			break;
1566		if (ret > 0) {
1567			if (path->slots[0] == 0)
1568				break;
1569			path->slots[0]--;
1570		}
1571process_slot:
1572		btrfs_item_key_to_cpu(path->nodes[0], &key,
1573				      path->slots[0]);
1574		if (key.objectid != ino ||
1575		    key.type != BTRFS_INODE_REF_KEY)
1576			break;
1577		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579						   path->slots[0]);
1580		while (ptr < ptr_end) {
1581			struct btrfs_inode_ref *ref;
1582
1583			ref = (struct btrfs_inode_ref *)ptr;
1584			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585							    ref);
1586			ptr = (unsigned long)(ref + 1) + name_len;
1587			nlink++;
1588		}
1589
1590		if (key.offset == 0)
1591			break;
1592		if (path->slots[0] > 0) {
1593			path->slots[0]--;
1594			goto process_slot;
1595		}
1596		key.offset--;
1597		btrfs_release_path(path);
1598	}
1599	btrfs_release_path(path);
1600
1601	return nlink;
1602}
1603
1604/*
1605 * There are a few corners where the link count of the file can't
1606 * be properly maintained during replay.  So, instead of adding
1607 * lots of complexity to the log code, we just scan the backrefs
1608 * for any file that has been through replay.
1609 *
1610 * The scan will update the link count on the inode to reflect the
1611 * number of back refs found.  If it goes down to zero, the iput
1612 * will free the inode.
1613 */
1614static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 
1615					   struct inode *inode)
1616{
1617	struct btrfs_root *root = BTRFS_I(inode)->root;
1618	struct btrfs_path *path;
1619	int ret;
1620	u64 nlink = 0;
1621	u64 ino = btrfs_ino(BTRFS_I(inode));
1622
1623	path = btrfs_alloc_path();
1624	if (!path)
1625		return -ENOMEM;
1626
1627	ret = count_inode_refs(BTRFS_I(inode), path);
1628	if (ret < 0)
1629		goto out;
1630
1631	nlink = ret;
1632
1633	ret = count_inode_extrefs(BTRFS_I(inode), path);
1634	if (ret < 0)
1635		goto out;
1636
1637	nlink += ret;
1638
1639	ret = 0;
1640
1641	if (nlink != inode->i_nlink) {
1642		set_nlink(inode, nlink);
1643		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1644		if (ret)
1645			goto out;
1646	}
1647	if (S_ISDIR(inode->i_mode))
1648		BTRFS_I(inode)->index_cnt = (u64)-1;
1649
1650	if (inode->i_nlink == 0) {
1651		if (S_ISDIR(inode->i_mode)) {
1652			ret = replay_dir_deletes(trans, root, NULL, path,
1653						 ino, 1);
1654			if (ret)
1655				goto out;
1656		}
1657		ret = btrfs_insert_orphan_item(trans, root, ino);
1658		if (ret == -EEXIST)
1659			ret = 0;
1660	}
1661
1662out:
1663	btrfs_free_path(path);
1664	return ret;
1665}
1666
1667static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1668					    struct btrfs_root *root,
1669					    struct btrfs_path *path)
1670{
1671	int ret;
1672	struct btrfs_key key;
1673	struct inode *inode;
1674
1675	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1676	key.type = BTRFS_ORPHAN_ITEM_KEY;
1677	key.offset = (u64)-1;
1678	while (1) {
1679		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1680		if (ret < 0)
1681			break;
1682
1683		if (ret == 1) {
1684			ret = 0;
1685			if (path->slots[0] == 0)
1686				break;
1687			path->slots[0]--;
1688		}
1689
1690		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1691		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1692		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1693			break;
1694
1695		ret = btrfs_del_item(trans, root, path);
1696		if (ret)
1697			break;
1698
1699		btrfs_release_path(path);
1700		inode = read_one_inode(root, key.offset);
1701		if (!inode) {
1702			ret = -EIO;
1703			break;
1704		}
1705
1706		ret = fixup_inode_link_count(trans, inode);
1707		iput(inode);
1708		if (ret)
1709			break;
1710
1711		/*
1712		 * fixup on a directory may create new entries,
1713		 * make sure we always look for the highset possible
1714		 * offset
1715		 */
1716		key.offset = (u64)-1;
1717	}
 
 
1718	btrfs_release_path(path);
1719	return ret;
1720}
1721
1722
1723/*
1724 * record a given inode in the fixup dir so we can check its link
1725 * count when replay is done.  The link count is incremented here
1726 * so the inode won't go away until we check it
1727 */
1728static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1729				      struct btrfs_root *root,
1730				      struct btrfs_path *path,
1731				      u64 objectid)
1732{
1733	struct btrfs_key key;
1734	int ret = 0;
1735	struct inode *inode;
1736
1737	inode = read_one_inode(root, objectid);
1738	if (!inode)
1739		return -EIO;
1740
1741	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1742	key.type = BTRFS_ORPHAN_ITEM_KEY;
1743	key.offset = objectid;
1744
1745	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1746
1747	btrfs_release_path(path);
1748	if (ret == 0) {
1749		if (!inode->i_nlink)
1750			set_nlink(inode, 1);
1751		else
1752			inc_nlink(inode);
1753		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1754	} else if (ret == -EEXIST) {
1755		ret = 0;
 
 
1756	}
1757	iput(inode);
1758
1759	return ret;
1760}
1761
1762/*
1763 * when replaying the log for a directory, we only insert names
1764 * for inodes that actually exist.  This means an fsync on a directory
1765 * does not implicitly fsync all the new files in it
1766 */
1767static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1768				    struct btrfs_root *root,
1769				    u64 dirid, u64 index,
1770				    const struct fscrypt_str *name,
1771				    struct btrfs_key *location)
1772{
1773	struct inode *inode;
1774	struct inode *dir;
1775	int ret;
1776
1777	inode = read_one_inode(root, location->objectid);
1778	if (!inode)
1779		return -ENOENT;
1780
1781	dir = read_one_inode(root, dirid);
1782	if (!dir) {
1783		iput(inode);
1784		return -EIO;
1785	}
1786
1787	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1788			     1, index);
1789
1790	/* FIXME, put inode into FIXUP list */
1791
1792	iput(inode);
1793	iput(dir);
1794	return ret;
1795}
1796
1797static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1798					struct btrfs_inode *dir,
1799					struct btrfs_path *path,
1800					struct btrfs_dir_item *dst_di,
1801					const struct btrfs_key *log_key,
1802					u8 log_flags,
1803					bool exists)
1804{
1805	struct btrfs_key found_key;
1806
1807	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1808	/* The existing dentry points to the same inode, don't delete it. */
1809	if (found_key.objectid == log_key->objectid &&
1810	    found_key.type == log_key->type &&
1811	    found_key.offset == log_key->offset &&
1812	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1813		return 1;
1814
1815	/*
1816	 * Don't drop the conflicting directory entry if the inode for the new
1817	 * entry doesn't exist.
1818	 */
1819	if (!exists)
1820		return 0;
1821
1822	return drop_one_dir_item(trans, path, dir, dst_di);
1823}
1824
1825/*
1826 * take a single entry in a log directory item and replay it into
1827 * the subvolume.
1828 *
1829 * if a conflicting item exists in the subdirectory already,
1830 * the inode it points to is unlinked and put into the link count
1831 * fix up tree.
1832 *
1833 * If a name from the log points to a file or directory that does
1834 * not exist in the FS, it is skipped.  fsyncs on directories
1835 * do not force down inodes inside that directory, just changes to the
1836 * names or unlinks in a directory.
1837 *
1838 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839 * non-existing inode) and 1 if the name was replayed.
1840 */
1841static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1842				    struct btrfs_root *root,
1843				    struct btrfs_path *path,
1844				    struct extent_buffer *eb,
1845				    struct btrfs_dir_item *di,
1846				    struct btrfs_key *key)
1847{
1848	struct fscrypt_str name = { 0 };
1849	struct btrfs_dir_item *dir_dst_di;
1850	struct btrfs_dir_item *index_dst_di;
1851	bool dir_dst_matches = false;
1852	bool index_dst_matches = false;
1853	struct btrfs_key log_key;
1854	struct btrfs_key search_key;
1855	struct inode *dir;
1856	u8 log_flags;
1857	bool exists;
1858	int ret;
1859	bool update_size = true;
1860	bool name_added = false;
1861
1862	dir = read_one_inode(root, key->objectid);
1863	if (!dir)
1864		return -EIO;
1865
1866	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1867	if (ret)
 
 
1868		goto out;
 
 
 
 
 
1869
1870	log_flags = btrfs_dir_flags(eb, di);
1871	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1872	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1873	btrfs_release_path(path);
1874	if (ret < 0)
1875		goto out;
1876	exists = (ret == 0);
1877	ret = 0;
1878
1879	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1880					   &name, 1);
1881	if (IS_ERR(dir_dst_di)) {
1882		ret = PTR_ERR(dir_dst_di);
 
 
 
 
 
 
 
1883		goto out;
1884	} else if (dir_dst_di) {
1885		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1886						   dir_dst_di, &log_key,
1887						   log_flags, exists);
1888		if (ret < 0)
1889			goto out;
1890		dir_dst_matches = (ret == 1);
1891	}
1892
1893	btrfs_release_path(path);
1894
1895	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1896						   key->objectid, key->offset,
1897						   &name, 1);
1898	if (IS_ERR(index_dst_di)) {
1899		ret = PTR_ERR(index_dst_di);
1900		goto out;
1901	} else if (index_dst_di) {
1902		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903						   index_dst_di, &log_key,
1904						   log_flags, exists);
1905		if (ret < 0)
1906			goto out;
1907		index_dst_matches = (ret == 1);
1908	}
1909
1910	btrfs_release_path(path);
1911
1912	if (dir_dst_matches && index_dst_matches) {
1913		ret = 0;
 
 
1914		update_size = false;
1915		goto out;
1916	}
1917
1918	/*
1919	 * Check if the inode reference exists in the log for the given name,
1920	 * inode and parent inode
1921	 */
1922	search_key.objectid = log_key.objectid;
1923	search_key.type = BTRFS_INODE_REF_KEY;
1924	search_key.offset = key->objectid;
1925	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1926	if (ret < 0) {
1927	        goto out;
1928	} else if (ret) {
1929	        /* The dentry will be added later. */
1930	        ret = 0;
1931	        update_size = false;
1932	        goto out;
1933	}
1934
1935	search_key.objectid = log_key.objectid;
1936	search_key.type = BTRFS_INODE_EXTREF_KEY;
1937	search_key.offset = key->objectid;
1938	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1939	if (ret < 0) {
1940		goto out;
1941	} else if (ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942		/* The dentry will be added later. */
1943		ret = 0;
1944		update_size = false;
1945		goto out;
1946	}
1947	btrfs_release_path(path);
1948	ret = insert_one_name(trans, root, key->objectid, key->offset,
1949			      &name, &log_key);
1950	if (ret && ret != -ENOENT && ret != -EEXIST)
1951		goto out;
1952	if (!ret)
1953		name_added = true;
1954	update_size = false;
1955	ret = 0;
1956
1957out:
1958	if (!ret && update_size) {
1959		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1960		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1961	}
1962	kfree(name.name);
1963	iput(dir);
1964	if (!ret && name_added)
1965		ret = 1;
1966	return ret;
1967}
1968
1969/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
 
 
 
 
 
1970static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1971					struct btrfs_root *root,
1972					struct btrfs_path *path,
1973					struct extent_buffer *eb, int slot,
1974					struct btrfs_key *key)
1975{
1976	int ret;
 
1977	struct btrfs_dir_item *di;
 
 
 
 
1978
1979	/* We only log dir index keys, which only contain a single dir item. */
1980	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1981
1982	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1983	ret = replay_one_name(trans, root, path, eb, di, key);
1984	if (ret < 0)
1985		return ret;
 
 
 
1986
1987	/*
1988	 * If this entry refers to a non-directory (directories can not have a
1989	 * link count > 1) and it was added in the transaction that was not
1990	 * committed, make sure we fixup the link count of the inode the entry
1991	 * points to. Otherwise something like the following would result in a
1992	 * directory pointing to an inode with a wrong link that does not account
1993	 * for this dir entry:
1994	 *
1995	 * mkdir testdir
1996	 * touch testdir/foo
1997	 * touch testdir/bar
1998	 * sync
1999	 *
2000	 * ln testdir/bar testdir/bar_link
2001	 * ln testdir/foo testdir/foo_link
2002	 * xfs_io -c "fsync" testdir/bar
2003	 *
2004	 * <power failure>
2005	 *
2006	 * mount fs, log replay happens
2007	 *
2008	 * File foo would remain with a link count of 1 when it has two entries
2009	 * pointing to it in the directory testdir. This would make it impossible
2010	 * to ever delete the parent directory has it would result in stale
2011	 * dentries that can never be deleted.
2012	 */
2013	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2014		struct btrfs_path *fixup_path;
2015		struct btrfs_key di_key;
2016
2017		fixup_path = btrfs_alloc_path();
2018		if (!fixup_path)
2019			return -ENOMEM;
 
 
 
 
2020
2021		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2022		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2023		btrfs_free_path(fixup_path);
 
 
 
 
2024	}
2025
2026	return ret;
2027}
2028
2029/*
2030 * directory replay has two parts.  There are the standard directory
2031 * items in the log copied from the subvolume, and range items
2032 * created in the log while the subvolume was logged.
2033 *
2034 * The range items tell us which parts of the key space the log
2035 * is authoritative for.  During replay, if a key in the subvolume
2036 * directory is in a logged range item, but not actually in the log
2037 * that means it was deleted from the directory before the fsync
2038 * and should be removed.
2039 */
2040static noinline int find_dir_range(struct btrfs_root *root,
2041				   struct btrfs_path *path,
2042				   u64 dirid,
2043				   u64 *start_ret, u64 *end_ret)
2044{
2045	struct btrfs_key key;
2046	u64 found_end;
2047	struct btrfs_dir_log_item *item;
2048	int ret;
2049	int nritems;
2050
2051	if (*start_ret == (u64)-1)
2052		return 1;
2053
2054	key.objectid = dirid;
2055	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2056	key.offset = *start_ret;
2057
2058	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059	if (ret < 0)
2060		goto out;
2061	if (ret > 0) {
2062		if (path->slots[0] == 0)
2063			goto out;
2064		path->slots[0]--;
2065	}
2066	if (ret != 0)
2067		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2068
2069	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2070		ret = 1;
2071		goto next;
2072	}
2073	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2074			      struct btrfs_dir_log_item);
2075	found_end = btrfs_dir_log_end(path->nodes[0], item);
2076
2077	if (*start_ret >= key.offset && *start_ret <= found_end) {
2078		ret = 0;
2079		*start_ret = key.offset;
2080		*end_ret = found_end;
2081		goto out;
2082	}
2083	ret = 1;
2084next:
2085	/* check the next slot in the tree to see if it is a valid item */
2086	nritems = btrfs_header_nritems(path->nodes[0]);
2087	path->slots[0]++;
2088	if (path->slots[0] >= nritems) {
2089		ret = btrfs_next_leaf(root, path);
2090		if (ret)
2091			goto out;
2092	}
2093
2094	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095
2096	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2097		ret = 1;
2098		goto out;
2099	}
2100	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101			      struct btrfs_dir_log_item);
2102	found_end = btrfs_dir_log_end(path->nodes[0], item);
2103	*start_ret = key.offset;
2104	*end_ret = found_end;
2105	ret = 0;
2106out:
2107	btrfs_release_path(path);
2108	return ret;
2109}
2110
2111/*
2112 * this looks for a given directory item in the log.  If the directory
2113 * item is not in the log, the item is removed and the inode it points
2114 * to is unlinked
2115 */
2116static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 
2117				      struct btrfs_root *log,
2118				      struct btrfs_path *path,
2119				      struct btrfs_path *log_path,
2120				      struct inode *dir,
2121				      struct btrfs_key *dir_key)
2122{
2123	struct btrfs_root *root = BTRFS_I(dir)->root;
2124	int ret;
2125	struct extent_buffer *eb;
2126	int slot;
 
2127	struct btrfs_dir_item *di;
2128	struct fscrypt_str name = { 0 };
2129	struct inode *inode = NULL;
 
 
 
 
2130	struct btrfs_key location;
2131
2132	/*
2133	 * Currently we only log dir index keys. Even if we replay a log created
2134	 * by an older kernel that logged both dir index and dir item keys, all
2135	 * we need to do is process the dir index keys, we (and our caller) can
2136	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2137	 */
2138	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2139
2140	eb = path->nodes[0];
2141	slot = path->slots[0];
2142	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2143	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2144	if (ret)
2145		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146
2147	if (log) {
2148		struct btrfs_dir_item *log_di;
 
 
 
 
 
2149
2150		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2151						     dir_key->objectid,
2152						     dir_key->offset, &name, 0);
2153		if (IS_ERR(log_di)) {
2154			ret = PTR_ERR(log_di);
2155			goto out;
2156		} else if (log_di) {
2157			/* The dentry exists in the log, we have nothing to do. */
 
 
 
 
 
 
 
 
 
2158			ret = 0;
2159			goto out;
 
 
 
2160		}
2161	}
 
2162
2163	btrfs_dir_item_key_to_cpu(eb, di, &location);
2164	btrfs_release_path(path);
2165	btrfs_release_path(log_path);
2166	inode = read_one_inode(root, location.objectid);
2167	if (!inode) {
2168		ret = -EIO;
2169		goto out;
2170	}
2171
2172	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2173	if (ret)
2174		goto out;
2175
2176	inc_nlink(inode);
2177	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2178					  &name);
2179	/*
2180	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2181	 * them, as there are no key collisions since each key has a unique offset
2182	 * (an index number), so we're done.
2183	 */
2184out:
2185	btrfs_release_path(path);
2186	btrfs_release_path(log_path);
2187	kfree(name.name);
2188	iput(inode);
2189	return ret;
2190}
2191
2192static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2193			      struct btrfs_root *root,
2194			      struct btrfs_root *log,
2195			      struct btrfs_path *path,
2196			      const u64 ino)
2197{
2198	struct btrfs_key search_key;
2199	struct btrfs_path *log_path;
2200	int i;
2201	int nritems;
2202	int ret;
2203
2204	log_path = btrfs_alloc_path();
2205	if (!log_path)
2206		return -ENOMEM;
2207
2208	search_key.objectid = ino;
2209	search_key.type = BTRFS_XATTR_ITEM_KEY;
2210	search_key.offset = 0;
2211again:
2212	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2213	if (ret < 0)
2214		goto out;
2215process_leaf:
2216	nritems = btrfs_header_nritems(path->nodes[0]);
2217	for (i = path->slots[0]; i < nritems; i++) {
2218		struct btrfs_key key;
2219		struct btrfs_dir_item *di;
2220		struct btrfs_dir_item *log_di;
2221		u32 total_size;
2222		u32 cur;
2223
2224		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2225		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2226			ret = 0;
2227			goto out;
2228		}
2229
2230		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2231		total_size = btrfs_item_size(path->nodes[0], i);
2232		cur = 0;
2233		while (cur < total_size) {
2234			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2235			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2236			u32 this_len = sizeof(*di) + name_len + data_len;
2237			char *name;
2238
2239			name = kmalloc(name_len, GFP_NOFS);
2240			if (!name) {
2241				ret = -ENOMEM;
2242				goto out;
2243			}
2244			read_extent_buffer(path->nodes[0], name,
2245					   (unsigned long)(di + 1), name_len);
2246
2247			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2248						    name, name_len, 0);
2249			btrfs_release_path(log_path);
2250			if (!log_di) {
2251				/* Doesn't exist in log tree, so delete it. */
2252				btrfs_release_path(path);
2253				di = btrfs_lookup_xattr(trans, root, path, ino,
2254							name, name_len, -1);
2255				kfree(name);
2256				if (IS_ERR(di)) {
2257					ret = PTR_ERR(di);
2258					goto out;
2259				}
2260				ASSERT(di);
2261				ret = btrfs_delete_one_dir_name(trans, root,
2262								path, di);
2263				if (ret)
2264					goto out;
2265				btrfs_release_path(path);
2266				search_key = key;
2267				goto again;
2268			}
2269			kfree(name);
2270			if (IS_ERR(log_di)) {
2271				ret = PTR_ERR(log_di);
2272				goto out;
2273			}
2274			cur += this_len;
2275			di = (struct btrfs_dir_item *)((char *)di + this_len);
2276		}
2277	}
2278	ret = btrfs_next_leaf(root, path);
2279	if (ret > 0)
2280		ret = 0;
2281	else if (ret == 0)
2282		goto process_leaf;
2283out:
2284	btrfs_free_path(log_path);
2285	btrfs_release_path(path);
2286	return ret;
2287}
2288
2289
2290/*
2291 * deletion replay happens before we copy any new directory items
2292 * out of the log or out of backreferences from inodes.  It
2293 * scans the log to find ranges of keys that log is authoritative for,
2294 * and then scans the directory to find items in those ranges that are
2295 * not present in the log.
2296 *
2297 * Anything we don't find in the log is unlinked and removed from the
2298 * directory.
2299 */
2300static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2301				       struct btrfs_root *root,
2302				       struct btrfs_root *log,
2303				       struct btrfs_path *path,
2304				       u64 dirid, int del_all)
2305{
2306	u64 range_start;
2307	u64 range_end;
 
2308	int ret = 0;
2309	struct btrfs_key dir_key;
2310	struct btrfs_key found_key;
2311	struct btrfs_path *log_path;
2312	struct inode *dir;
2313
2314	dir_key.objectid = dirid;
2315	dir_key.type = BTRFS_DIR_INDEX_KEY;
2316	log_path = btrfs_alloc_path();
2317	if (!log_path)
2318		return -ENOMEM;
2319
2320	dir = read_one_inode(root, dirid);
2321	/* it isn't an error if the inode isn't there, that can happen
2322	 * because we replay the deletes before we copy in the inode item
2323	 * from the log
2324	 */
2325	if (!dir) {
2326		btrfs_free_path(log_path);
2327		return 0;
2328	}
2329
2330	range_start = 0;
2331	range_end = 0;
2332	while (1) {
2333		if (del_all)
2334			range_end = (u64)-1;
2335		else {
2336			ret = find_dir_range(log, path, dirid,
2337					     &range_start, &range_end);
2338			if (ret < 0)
2339				goto out;
2340			else if (ret > 0)
2341				break;
2342		}
2343
2344		dir_key.offset = range_start;
2345		while (1) {
2346			int nritems;
2347			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348						0, 0);
2349			if (ret < 0)
2350				goto out;
2351
2352			nritems = btrfs_header_nritems(path->nodes[0]);
2353			if (path->slots[0] >= nritems) {
2354				ret = btrfs_next_leaf(root, path);
2355				if (ret == 1)
2356					break;
2357				else if (ret < 0)
2358					goto out;
2359			}
2360			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361					      path->slots[0]);
2362			if (found_key.objectid != dirid ||
2363			    found_key.type != dir_key.type) {
2364				ret = 0;
2365				goto out;
2366			}
2367
2368			if (found_key.offset > range_end)
2369				break;
2370
2371			ret = check_item_in_log(trans, log, path,
2372						log_path, dir,
2373						&found_key);
2374			if (ret)
2375				goto out;
2376			if (found_key.offset == (u64)-1)
2377				break;
2378			dir_key.offset = found_key.offset + 1;
2379		}
2380		btrfs_release_path(path);
2381		if (range_end == (u64)-1)
2382			break;
2383		range_start = range_end + 1;
2384	}
 
 
2385	ret = 0;
 
 
 
 
 
 
2386out:
2387	btrfs_release_path(path);
2388	btrfs_free_path(log_path);
2389	iput(dir);
2390	return ret;
2391}
2392
2393/*
2394 * the process_func used to replay items from the log tree.  This
2395 * gets called in two different stages.  The first stage just looks
2396 * for inodes and makes sure they are all copied into the subvolume.
2397 *
2398 * The second stage copies all the other item types from the log into
2399 * the subvolume.  The two stage approach is slower, but gets rid of
2400 * lots of complexity around inodes referencing other inodes that exist
2401 * only in the log (references come from either directory items or inode
2402 * back refs).
2403 */
2404static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2405			     struct walk_control *wc, u64 gen, int level)
2406{
2407	int nritems;
2408	struct btrfs_tree_parent_check check = {
2409		.transid = gen,
2410		.level = level
2411	};
2412	struct btrfs_path *path;
2413	struct btrfs_root *root = wc->replay_dest;
2414	struct btrfs_key key;
2415	int i;
2416	int ret;
2417
2418	ret = btrfs_read_extent_buffer(eb, &check);
2419	if (ret)
2420		return ret;
2421
2422	level = btrfs_header_level(eb);
2423
2424	if (level != 0)
2425		return 0;
2426
2427	path = btrfs_alloc_path();
2428	if (!path)
2429		return -ENOMEM;
2430
2431	nritems = btrfs_header_nritems(eb);
2432	for (i = 0; i < nritems; i++) {
2433		btrfs_item_key_to_cpu(eb, &key, i);
2434
2435		/* inode keys are done during the first stage */
2436		if (key.type == BTRFS_INODE_ITEM_KEY &&
2437		    wc->stage == LOG_WALK_REPLAY_INODES) {
2438			struct btrfs_inode_item *inode_item;
2439			u32 mode;
2440
2441			inode_item = btrfs_item_ptr(eb, i,
2442					    struct btrfs_inode_item);
2443			/*
2444			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445			 * and never got linked before the fsync, skip it, as
2446			 * replaying it is pointless since it would be deleted
2447			 * later. We skip logging tmpfiles, but it's always
2448			 * possible we are replaying a log created with a kernel
2449			 * that used to log tmpfiles.
2450			 */
2451			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2452				wc->ignore_cur_inode = true;
2453				continue;
2454			} else {
2455				wc->ignore_cur_inode = false;
2456			}
2457			ret = replay_xattr_deletes(wc->trans, root, log,
2458						   path, key.objectid);
2459			if (ret)
2460				break;
2461			mode = btrfs_inode_mode(eb, inode_item);
2462			if (S_ISDIR(mode)) {
2463				ret = replay_dir_deletes(wc->trans,
2464					 root, log, path, key.objectid, 0);
2465				if (ret)
2466					break;
2467			}
2468			ret = overwrite_item(wc->trans, root, path,
2469					     eb, i, &key);
2470			if (ret)
2471				break;
2472
2473			/*
2474			 * Before replaying extents, truncate the inode to its
2475			 * size. We need to do it now and not after log replay
2476			 * because before an fsync we can have prealloc extents
2477			 * added beyond the inode's i_size. If we did it after,
2478			 * through orphan cleanup for example, we would drop
2479			 * those prealloc extents just after replaying them.
2480			 */
2481			if (S_ISREG(mode)) {
2482				struct btrfs_drop_extents_args drop_args = { 0 };
2483				struct inode *inode;
2484				u64 from;
2485
2486				inode = read_one_inode(root, key.objectid);
2487				if (!inode) {
2488					ret = -EIO;
2489					break;
2490				}
2491				from = ALIGN(i_size_read(inode),
2492					     root->fs_info->sectorsize);
2493				drop_args.start = from;
2494				drop_args.end = (u64)-1;
2495				drop_args.drop_cache = true;
2496				ret = btrfs_drop_extents(wc->trans, root,
2497							 BTRFS_I(inode),
2498							 &drop_args);
 
 
2499				if (!ret) {
2500					inode_sub_bytes(inode,
2501							drop_args.bytes_found);
2502					/* Update the inode's nbytes. */
2503					ret = btrfs_update_inode(wc->trans,
2504								 BTRFS_I(inode));
2505				}
2506				iput(inode);
2507				if (ret)
2508					break;
2509			}
2510
2511			ret = link_to_fixup_dir(wc->trans, root,
2512						path, key.objectid);
2513			if (ret)
2514				break;
2515		}
2516
2517		if (wc->ignore_cur_inode)
2518			continue;
2519
2520		if (key.type == BTRFS_DIR_INDEX_KEY &&
2521		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2522			ret = replay_one_dir_item(wc->trans, root, path,
2523						  eb, i, &key);
2524			if (ret)
2525				break;
2526		}
2527
2528		if (wc->stage < LOG_WALK_REPLAY_ALL)
2529			continue;
2530
2531		/* these keys are simply copied */
2532		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2533			ret = overwrite_item(wc->trans, root, path,
2534					     eb, i, &key);
2535			if (ret)
2536				break;
2537		} else if (key.type == BTRFS_INODE_REF_KEY ||
2538			   key.type == BTRFS_INODE_EXTREF_KEY) {
2539			ret = add_inode_ref(wc->trans, root, log, path,
2540					    eb, i, &key);
2541			if (ret && ret != -ENOENT)
2542				break;
2543			ret = 0;
2544		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2545			ret = replay_one_extent(wc->trans, root, path,
2546						eb, i, &key);
2547			if (ret)
2548				break;
 
 
 
 
 
2549		}
2550		/*
2551		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554		 * older kernel with such keys, ignore them.
2555		 */
2556	}
2557	btrfs_free_path(path);
2558	return ret;
2559}
2560
2561/*
2562 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2563 */
2564static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2565{
2566	struct btrfs_block_group *cache;
2567
2568	cache = btrfs_lookup_block_group(fs_info, start);
2569	if (!cache) {
2570		btrfs_err(fs_info, "unable to find block group for %llu", start);
2571		return;
2572	}
2573
2574	spin_lock(&cache->space_info->lock);
2575	spin_lock(&cache->lock);
2576	cache->reserved -= fs_info->nodesize;
2577	cache->space_info->bytes_reserved -= fs_info->nodesize;
2578	spin_unlock(&cache->lock);
2579	spin_unlock(&cache->space_info->lock);
2580
2581	btrfs_put_block_group(cache);
2582}
2583
2584static int clean_log_buffer(struct btrfs_trans_handle *trans,
2585			    struct extent_buffer *eb)
2586{
2587	int ret;
2588
2589	btrfs_tree_lock(eb);
2590	btrfs_clear_buffer_dirty(trans, eb);
2591	wait_on_extent_buffer_writeback(eb);
2592	btrfs_tree_unlock(eb);
2593
2594	if (trans) {
2595		ret = btrfs_pin_reserved_extent(trans, eb);
2596		if (ret)
2597			return ret;
2598	} else {
2599		unaccount_log_buffer(eb->fs_info, eb->start);
2600	}
2601
2602	return 0;
2603}
2604
2605static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606				   struct btrfs_root *root,
2607				   struct btrfs_path *path, int *level,
2608				   struct walk_control *wc)
2609{
2610	struct btrfs_fs_info *fs_info = root->fs_info;
 
2611	u64 bytenr;
2612	u64 ptr_gen;
2613	struct extent_buffer *next;
2614	struct extent_buffer *cur;
 
 
2615	int ret = 0;
2616
 
 
 
2617	while (*level > 0) {
2618		struct btrfs_tree_parent_check check = { 0 };
2619
 
 
2620		cur = path->nodes[*level];
2621
2622		WARN_ON(btrfs_header_level(cur) != *level);
2623
2624		if (path->slots[*level] >=
2625		    btrfs_header_nritems(cur))
2626			break;
2627
2628		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2629		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2630		check.transid = ptr_gen;
2631		check.level = *level - 1;
2632		check.has_first_key = true;
2633		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2634
2635		next = btrfs_find_create_tree_block(fs_info, bytenr,
2636						    btrfs_header_owner(cur),
2637						    *level - 1);
2638		if (IS_ERR(next))
2639			return PTR_ERR(next);
2640
2641		if (*level == 1) {
2642			ret = wc->process_func(root, next, wc, ptr_gen,
2643					       *level - 1);
2644			if (ret) {
2645				free_extent_buffer(next);
2646				return ret;
2647			}
2648
2649			path->slots[*level]++;
2650			if (wc->free) {
2651				ret = btrfs_read_extent_buffer(next, &check);
 
2652				if (ret) {
2653					free_extent_buffer(next);
2654					return ret;
2655				}
2656
2657				ret = clean_log_buffer(trans, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658				if (ret) {
2659					free_extent_buffer(next);
2660					return ret;
2661				}
2662			}
2663			free_extent_buffer(next);
2664			continue;
2665		}
2666		ret = btrfs_read_extent_buffer(next, &check);
2667		if (ret) {
2668			free_extent_buffer(next);
2669			return ret;
2670		}
2671
 
2672		if (path->nodes[*level-1])
2673			free_extent_buffer(path->nodes[*level-1]);
2674		path->nodes[*level-1] = next;
2675		*level = btrfs_header_level(next);
2676		path->slots[*level] = 0;
2677		cond_resched();
2678	}
 
 
 
2679	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2680
2681	cond_resched();
2682	return 0;
2683}
2684
2685static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2686				 struct btrfs_root *root,
2687				 struct btrfs_path *path, int *level,
2688				 struct walk_control *wc)
2689{
 
 
2690	int i;
2691	int slot;
2692	int ret;
2693
2694	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2695		slot = path->slots[i];
2696		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2697			path->slots[i]++;
2698			*level = i;
2699			WARN_ON(*level == 0);
2700			return 0;
2701		} else {
 
 
 
 
 
 
 
2702			ret = wc->process_func(root, path->nodes[*level], wc,
2703				 btrfs_header_generation(path->nodes[*level]),
2704				 *level);
2705			if (ret)
2706				return ret;
2707
2708			if (wc->free) {
2709				ret = clean_log_buffer(trans, path->nodes[*level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710				if (ret)
2711					return ret;
2712			}
2713			free_extent_buffer(path->nodes[*level]);
2714			path->nodes[*level] = NULL;
2715			*level = i + 1;
2716		}
2717	}
2718	return 1;
2719}
2720
2721/*
2722 * drop the reference count on the tree rooted at 'snap'.  This traverses
2723 * the tree freeing any blocks that have a ref count of zero after being
2724 * decremented.
2725 */
2726static int walk_log_tree(struct btrfs_trans_handle *trans,
2727			 struct btrfs_root *log, struct walk_control *wc)
2728{
 
2729	int ret = 0;
2730	int wret;
2731	int level;
2732	struct btrfs_path *path;
2733	int orig_level;
2734
2735	path = btrfs_alloc_path();
2736	if (!path)
2737		return -ENOMEM;
2738
2739	level = btrfs_header_level(log->node);
2740	orig_level = level;
2741	path->nodes[level] = log->node;
2742	atomic_inc(&log->node->refs);
2743	path->slots[level] = 0;
2744
2745	while (1) {
2746		wret = walk_down_log_tree(trans, log, path, &level, wc);
2747		if (wret > 0)
2748			break;
2749		if (wret < 0) {
2750			ret = wret;
2751			goto out;
2752		}
2753
2754		wret = walk_up_log_tree(trans, log, path, &level, wc);
2755		if (wret > 0)
2756			break;
2757		if (wret < 0) {
2758			ret = wret;
2759			goto out;
2760		}
2761	}
2762
2763	/* was the root node processed? if not, catch it here */
2764	if (path->nodes[orig_level]) {
2765		ret = wc->process_func(log, path->nodes[orig_level], wc,
2766			 btrfs_header_generation(path->nodes[orig_level]),
2767			 orig_level);
2768		if (ret)
2769			goto out;
2770		if (wc->free)
2771			ret = clean_log_buffer(trans, path->nodes[orig_level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772	}
2773
2774out:
2775	btrfs_free_path(path);
2776	return ret;
2777}
2778
2779/*
2780 * helper function to update the item for a given subvolumes log root
2781 * in the tree of log roots
2782 */
2783static int update_log_root(struct btrfs_trans_handle *trans,
2784			   struct btrfs_root *log,
2785			   struct btrfs_root_item *root_item)
2786{
2787	struct btrfs_fs_info *fs_info = log->fs_info;
2788	int ret;
2789
2790	if (log->log_transid == 1) {
2791		/* insert root item on the first sync */
2792		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793				&log->root_key, root_item);
2794	} else {
2795		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796				&log->root_key, root_item);
2797	}
2798	return ret;
2799}
2800
2801static void wait_log_commit(struct btrfs_root *root, int transid)
2802{
2803	DEFINE_WAIT(wait);
2804	int index = transid % 2;
2805
2806	/*
2807	 * we only allow two pending log transactions at a time,
2808	 * so we know that if ours is more than 2 older than the
2809	 * current transaction, we're done
2810	 */
2811	for (;;) {
2812		prepare_to_wait(&root->log_commit_wait[index],
2813				&wait, TASK_UNINTERRUPTIBLE);
2814
2815		if (!(root->log_transid_committed < transid &&
2816		      atomic_read(&root->log_commit[index])))
2817			break;
2818
2819		mutex_unlock(&root->log_mutex);
2820		schedule();
2821		mutex_lock(&root->log_mutex);
2822	}
2823	finish_wait(&root->log_commit_wait[index], &wait);
2824}
2825
2826static void wait_for_writer(struct btrfs_root *root)
2827{
2828	DEFINE_WAIT(wait);
2829
2830	for (;;) {
2831		prepare_to_wait(&root->log_writer_wait, &wait,
2832				TASK_UNINTERRUPTIBLE);
2833		if (!atomic_read(&root->log_writers))
2834			break;
2835
2836		mutex_unlock(&root->log_mutex);
2837		schedule();
2838		mutex_lock(&root->log_mutex);
2839	}
2840	finish_wait(&root->log_writer_wait, &wait);
2841}
2842
2843void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2844{
2845	ctx->log_ret = 0;
2846	ctx->log_transid = 0;
2847	ctx->log_new_dentries = false;
2848	ctx->logging_new_name = false;
2849	ctx->logging_new_delayed_dentries = false;
2850	ctx->logged_before = false;
2851	ctx->inode = inode;
2852	INIT_LIST_HEAD(&ctx->list);
2853	INIT_LIST_HEAD(&ctx->ordered_extents);
2854	INIT_LIST_HEAD(&ctx->conflict_inodes);
2855	ctx->num_conflict_inodes = 0;
2856	ctx->logging_conflict_inodes = false;
2857	ctx->scratch_eb = NULL;
2858}
2859
2860void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2861{
2862	struct btrfs_inode *inode = ctx->inode;
2863
2864	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2865	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2866		return;
2867
2868	/*
2869	 * Don't care about allocation failure. This is just for optimization,
2870	 * if we fail to allocate here, we will try again later if needed.
2871	 */
2872	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2873}
2874
2875void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2876{
2877	struct btrfs_ordered_extent *ordered;
2878	struct btrfs_ordered_extent *tmp;
2879
2880	btrfs_assert_inode_locked(ctx->inode);
2881
2882	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2883		list_del_init(&ordered->log_list);
2884		btrfs_put_ordered_extent(ordered);
2885	}
2886}
2887
2888
2889static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2890					struct btrfs_log_ctx *ctx)
2891{
 
 
 
2892	mutex_lock(&root->log_mutex);
2893	list_del_init(&ctx->list);
2894	mutex_unlock(&root->log_mutex);
2895}
2896
2897/* 
2898 * Invoked in log mutex context, or be sure there is no other task which
2899 * can access the list.
2900 */
2901static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2902					     int index, int error)
2903{
2904	struct btrfs_log_ctx *ctx;
2905	struct btrfs_log_ctx *safe;
2906
2907	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2908		list_del_init(&ctx->list);
2909		ctx->log_ret = error;
2910	}
 
 
2911}
2912
2913/*
2914 * Sends a given tree log down to the disk and updates the super blocks to
2915 * record it.  When this call is done, you know that any inodes previously
2916 * logged are safely on disk only if it returns 0.
 
2917 *
2918 * Any other return value means you need to call btrfs_commit_transaction.
2919 * Some of the edge cases for fsyncing directories that have had unlinks
2920 * or renames done in the past mean that sometimes the only safe
2921 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2922 * that has happened.
2923 */
2924int btrfs_sync_log(struct btrfs_trans_handle *trans,
2925		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2926{
2927	int index1;
2928	int index2;
2929	int mark;
2930	int ret;
2931	struct btrfs_fs_info *fs_info = root->fs_info;
2932	struct btrfs_root *log = root->log_root;
2933	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2934	struct btrfs_root_item new_root_item;
2935	int log_transid = 0;
2936	struct btrfs_log_ctx root_log_ctx;
2937	struct blk_plug plug;
2938	u64 log_root_start;
2939	u64 log_root_level;
2940
2941	mutex_lock(&root->log_mutex);
2942	log_transid = ctx->log_transid;
2943	if (root->log_transid_committed >= log_transid) {
2944		mutex_unlock(&root->log_mutex);
2945		return ctx->log_ret;
2946	}
2947
2948	index1 = log_transid % 2;
2949	if (atomic_read(&root->log_commit[index1])) {
2950		wait_log_commit(root, log_transid);
2951		mutex_unlock(&root->log_mutex);
2952		return ctx->log_ret;
2953	}
2954	ASSERT(log_transid == root->log_transid);
2955	atomic_set(&root->log_commit[index1], 1);
2956
2957	/* wait for previous tree log sync to complete */
2958	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2959		wait_log_commit(root, log_transid - 1);
2960
2961	while (1) {
2962		int batch = atomic_read(&root->log_batch);
2963		/* when we're on an ssd, just kick the log commit out */
2964		if (!btrfs_test_opt(fs_info, SSD) &&
2965		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2966			mutex_unlock(&root->log_mutex);
2967			schedule_timeout_uninterruptible(1);
2968			mutex_lock(&root->log_mutex);
2969		}
2970		wait_for_writer(root);
2971		if (batch == atomic_read(&root->log_batch))
2972			break;
2973	}
2974
2975	/* bail out if we need to do a full commit */
2976	if (btrfs_need_log_full_commit(trans)) {
2977		ret = BTRFS_LOG_FORCE_COMMIT;
 
2978		mutex_unlock(&root->log_mutex);
2979		goto out;
2980	}
2981
2982	if (log_transid % 2 == 0)
2983		mark = EXTENT_DIRTY;
2984	else
2985		mark = EXTENT_NEW;
2986
2987	/* we start IO on  all the marked extents here, but we don't actually
2988	 * wait for them until later.
2989	 */
2990	blk_start_plug(&plug);
2991	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2992	/*
2993	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2994	 *  commit, writes a dirty extent in this tree-log commit. This
2995	 *  concurrent write will create a hole writing out the extents,
2996	 *  and we cannot proceed on a zoned filesystem, requiring
2997	 *  sequential writing. While we can bail out to a full commit
2998	 *  here, but we can continue hoping the concurrent writing fills
2999	 *  the hole.
3000	 */
3001	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3002		ret = 0;
3003	if (ret) {
3004		blk_finish_plug(&plug);
3005		btrfs_set_log_full_commit(trans);
 
 
3006		mutex_unlock(&root->log_mutex);
3007		goto out;
3008	}
3009
3010	/*
3011	 * We _must_ update under the root->log_mutex in order to make sure we
3012	 * have a consistent view of the log root we are trying to commit at
3013	 * this moment.
3014	 *
3015	 * We _must_ copy this into a local copy, because we are not holding the
3016	 * log_root_tree->log_mutex yet.  This is important because when we
3017	 * commit the log_root_tree we must have a consistent view of the
3018	 * log_root_tree when we update the super block to point at the
3019	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3020	 * with the commit and possibly point at the new block which we may not
3021	 * have written out.
3022	 */
3023	btrfs_set_root_node(&log->root_item, log->node);
3024	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3025
3026	btrfs_set_root_log_transid(root, root->log_transid + 1);
3027	log->log_transid = root->log_transid;
3028	root->log_start_pid = 0;
3029	/*
3030	 * IO has been started, blocks of the log tree have WRITTEN flag set
3031	 * in their headers. new modifications of the log will be written to
3032	 * new positions. so it's safe to allow log writers to go in.
3033	 */
3034	mutex_unlock(&root->log_mutex);
3035
3036	if (btrfs_is_zoned(fs_info)) {
3037		mutex_lock(&fs_info->tree_root->log_mutex);
3038		if (!log_root_tree->node) {
3039			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3040			if (ret) {
3041				mutex_unlock(&fs_info->tree_root->log_mutex);
3042				blk_finish_plug(&plug);
3043				goto out;
3044			}
3045		}
3046		mutex_unlock(&fs_info->tree_root->log_mutex);
3047	}
3048
3049	btrfs_init_log_ctx(&root_log_ctx, NULL);
3050
3051	mutex_lock(&log_root_tree->log_mutex);
 
 
3052
3053	index2 = log_root_tree->log_transid % 2;
3054	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3055	root_log_ctx.log_transid = log_root_tree->log_transid;
3056
3057	/*
3058	 * Now we are safe to update the log_root_tree because we're under the
3059	 * log_mutex, and we're a current writer so we're holding the commit
3060	 * open until we drop the log_mutex.
3061	 */
3062	ret = update_log_root(trans, log, &new_root_item);
 
 
 
 
 
 
 
3063	if (ret) {
3064		list_del_init(&root_log_ctx.list);
 
 
3065		blk_finish_plug(&plug);
3066		btrfs_set_log_full_commit(trans);
3067		if (ret != -ENOSPC)
3068			btrfs_err(fs_info,
3069				  "failed to update log for root %llu ret %d",
3070				  btrfs_root_id(root), ret);
 
 
3071		btrfs_wait_tree_log_extents(log, mark);
 
3072		mutex_unlock(&log_root_tree->log_mutex);
 
3073		goto out;
3074	}
3075
3076	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3077		blk_finish_plug(&plug);
3078		list_del_init(&root_log_ctx.list);
3079		mutex_unlock(&log_root_tree->log_mutex);
3080		ret = root_log_ctx.log_ret;
3081		goto out;
3082	}
3083
 
3084	if (atomic_read(&log_root_tree->log_commit[index2])) {
3085		blk_finish_plug(&plug);
3086		ret = btrfs_wait_tree_log_extents(log, mark);
 
3087		wait_log_commit(log_root_tree,
3088				root_log_ctx.log_transid);
3089		mutex_unlock(&log_root_tree->log_mutex);
3090		if (!ret)
3091			ret = root_log_ctx.log_ret;
3092		goto out;
3093	}
3094	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3095	atomic_set(&log_root_tree->log_commit[index2], 1);
3096
3097	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3098		wait_log_commit(log_root_tree,
3099				root_log_ctx.log_transid - 1);
3100	}
3101
 
 
3102	/*
3103	 * now that we've moved on to the tree of log tree roots,
3104	 * check the full commit flag again
3105	 */
3106	if (btrfs_need_log_full_commit(trans)) {
3107		blk_finish_plug(&plug);
3108		btrfs_wait_tree_log_extents(log, mark);
 
3109		mutex_unlock(&log_root_tree->log_mutex);
3110		ret = BTRFS_LOG_FORCE_COMMIT;
3111		goto out_wake_log_root;
3112	}
3113
3114	ret = btrfs_write_marked_extents(fs_info,
3115					 &log_root_tree->dirty_log_pages,
3116					 EXTENT_DIRTY | EXTENT_NEW);
3117	blk_finish_plug(&plug);
3118	/*
3119	 * As described above, -EAGAIN indicates a hole in the extents. We
3120	 * cannot wait for these write outs since the waiting cause a
3121	 * deadlock. Bail out to the full commit instead.
3122	 */
3123	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3124		btrfs_set_log_full_commit(trans);
3125		btrfs_wait_tree_log_extents(log, mark);
3126		mutex_unlock(&log_root_tree->log_mutex);
3127		goto out_wake_log_root;
3128	} else if (ret) {
3129		btrfs_set_log_full_commit(trans);
3130		mutex_unlock(&log_root_tree->log_mutex);
3131		goto out_wake_log_root;
3132	}
3133	ret = btrfs_wait_tree_log_extents(log, mark);
3134	if (!ret)
3135		ret = btrfs_wait_tree_log_extents(log_root_tree,
3136						  EXTENT_NEW | EXTENT_DIRTY);
3137	if (ret) {
3138		btrfs_set_log_full_commit(trans);
 
3139		mutex_unlock(&log_root_tree->log_mutex);
3140		goto out_wake_log_root;
3141	}
 
 
 
 
 
 
3142
3143	log_root_start = log_root_tree->node->start;
3144	log_root_level = btrfs_header_level(log_root_tree->node);
3145	log_root_tree->log_transid++;
3146	mutex_unlock(&log_root_tree->log_mutex);
3147
3148	/*
3149	 * Here we are guaranteed that nobody is going to write the superblock
3150	 * for the current transaction before us and that neither we do write
3151	 * our superblock before the previous transaction finishes its commit
3152	 * and writes its superblock, because:
3153	 *
3154	 * 1) We are holding a handle on the current transaction, so no body
3155	 *    can commit it until we release the handle;
3156	 *
3157	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158	 *    if the previous transaction is still committing, and hasn't yet
3159	 *    written its superblock, we wait for it to do it, because a
3160	 *    transaction commit acquires the tree_log_mutex when the commit
3161	 *    begins and releases it only after writing its superblock.
3162	 */
3163	mutex_lock(&fs_info->tree_log_mutex);
3164
3165	/*
3166	 * The previous transaction writeout phase could have failed, and thus
3167	 * marked the fs in an error state.  We must not commit here, as we
3168	 * could have updated our generation in the super_for_commit and
3169	 * writing the super here would result in transid mismatches.  If there
3170	 * is an error here just bail.
3171	 */
3172	if (BTRFS_FS_ERROR(fs_info)) {
3173		ret = -EIO;
3174		btrfs_set_log_full_commit(trans);
3175		btrfs_abort_transaction(trans, ret);
3176		mutex_unlock(&fs_info->tree_log_mutex);
3177		goto out_wake_log_root;
3178	}
3179
3180	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3181	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3182	ret = write_all_supers(fs_info, 1);
3183	mutex_unlock(&fs_info->tree_log_mutex);
3184	if (ret) {
3185		btrfs_set_log_full_commit(trans);
3186		btrfs_abort_transaction(trans, ret);
3187		goto out_wake_log_root;
3188	}
3189
3190	/*
3191	 * We know there can only be one task here, since we have not yet set
3192	 * root->log_commit[index1] to 0 and any task attempting to sync the
3193	 * log must wait for the previous log transaction to commit if it's
3194	 * still in progress or wait for the current log transaction commit if
3195	 * someone else already started it. We use <= and not < because the
3196	 * first log transaction has an ID of 0.
3197	 */
3198	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3199	btrfs_set_root_last_log_commit(root, log_transid);
3200
3201out_wake_log_root:
3202	mutex_lock(&log_root_tree->log_mutex);
3203	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3204
3205	log_root_tree->log_transid_committed++;
3206	atomic_set(&log_root_tree->log_commit[index2], 0);
3207	mutex_unlock(&log_root_tree->log_mutex);
3208
3209	/*
3210	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211	 * all the updates above are seen by the woken threads. It might not be
3212	 * necessary, but proving that seems to be hard.
3213	 */
3214	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 
3215out:
3216	mutex_lock(&root->log_mutex);
3217	btrfs_remove_all_log_ctxs(root, index1, ret);
3218	root->log_transid_committed++;
3219	atomic_set(&root->log_commit[index1], 0);
3220	mutex_unlock(&root->log_mutex);
3221
3222	/*
3223	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224	 * all the updates above are seen by the woken threads. It might not be
3225	 * necessary, but proving that seems to be hard.
3226	 */
3227	cond_wake_up(&root->log_commit_wait[index1]);
 
3228	return ret;
3229}
3230
3231static void free_log_tree(struct btrfs_trans_handle *trans,
3232			  struct btrfs_root *log)
3233{
3234	int ret;
 
 
3235	struct walk_control wc = {
3236		.free = 1,
3237		.process_func = process_one_buffer
3238	};
3239
3240	if (log->node) {
3241		ret = walk_log_tree(trans, log, &wc);
3242		if (ret) {
3243			/*
3244			 * We weren't able to traverse the entire log tree, the
3245			 * typical scenario is getting an -EIO when reading an
3246			 * extent buffer of the tree, due to a previous writeback
3247			 * failure of it.
3248			 */
3249			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3250				&log->fs_info->fs_state);
3251
3252			/*
3253			 * Some extent buffers of the log tree may still be dirty
3254			 * and not yet written back to storage, because we may
3255			 * have updates to a log tree without syncing a log tree,
3256			 * such as during rename and link operations. So flush
3257			 * them out and wait for their writeback to complete, so
3258			 * that we properly cleanup their state and pages.
3259			 */
3260			btrfs_write_marked_extents(log->fs_info,
3261						   &log->dirty_log_pages,
3262						   EXTENT_DIRTY | EXTENT_NEW);
3263			btrfs_wait_tree_log_extents(log,
3264						    EXTENT_DIRTY | EXTENT_NEW);
3265
3266			if (trans)
3267				btrfs_abort_transaction(trans, ret);
3268			else
3269				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3270		}
3271	}
3272
3273	extent_io_tree_release(&log->dirty_log_pages);
3274	extent_io_tree_release(&log->log_csum_range);
 
 
 
 
 
3275
3276	btrfs_put_root(log);
 
3277}
3278
3279/*
3280 * free all the extents used by the tree log.  This should be called
3281 * at commit time of the full transaction
3282 */
3283int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3284{
3285	if (root->log_root) {
3286		free_log_tree(trans, root->log_root);
3287		root->log_root = NULL;
3288		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3289	}
3290	return 0;
3291}
3292
3293int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3294			     struct btrfs_fs_info *fs_info)
3295{
3296	if (fs_info->log_root_tree) {
3297		free_log_tree(trans, fs_info->log_root_tree);
3298		fs_info->log_root_tree = NULL;
3299		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3300	}
3301	return 0;
3302}
3303
3304/*
3305 * Check if an inode was logged in the current transaction. This correctly deals
3306 * with the case where the inode was logged but has a logged_trans of 0, which
3307 * happens if the inode is evicted and loaded again, as logged_trans is an in
3308 * memory only field (not persisted).
3309 *
3310 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3311 * and < 0 on error.
3312 */
3313static int inode_logged(const struct btrfs_trans_handle *trans,
3314			struct btrfs_inode *inode,
3315			struct btrfs_path *path_in)
3316{
3317	struct btrfs_path *path = path_in;
3318	struct btrfs_key key;
3319	int ret;
3320
3321	if (inode->logged_trans == trans->transid)
3322		return 1;
3323
3324	/*
3325	 * If logged_trans is not 0, then we know the inode logged was not logged
3326	 * in this transaction, so we can return false right away.
3327	 */
3328	if (inode->logged_trans > 0)
3329		return 0;
3330
3331	/*
3332	 * If no log tree was created for this root in this transaction, then
3333	 * the inode can not have been logged in this transaction. In that case
3334	 * set logged_trans to anything greater than 0 and less than the current
3335	 * transaction's ID, to avoid the search below in a future call in case
3336	 * a log tree gets created after this.
3337	 */
3338	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3339		inode->logged_trans = trans->transid - 1;
3340		return 0;
3341	}
3342
3343	/*
3344	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3345	 * for sure if the inode was logged before in this transaction by looking
3346	 * only at logged_trans. We could be pessimistic and assume it was, but
3347	 * that can lead to unnecessarily logging an inode during rename and link
3348	 * operations, and then further updating the log in followup rename and
3349	 * link operations, specially if it's a directory, which adds latency
3350	 * visible to applications doing a series of rename or link operations.
3351	 *
3352	 * A logged_trans of 0 here can mean several things:
3353	 *
3354	 * 1) The inode was never logged since the filesystem was mounted, and may
3355	 *    or may have not been evicted and loaded again;
3356	 *
3357	 * 2) The inode was logged in a previous transaction, then evicted and
3358	 *    then loaded again;
3359	 *
3360	 * 3) The inode was logged in the current transaction, then evicted and
3361	 *    then loaded again.
3362	 *
3363	 * For cases 1) and 2) we don't want to return true, but we need to detect
3364	 * case 3) and return true. So we do a search in the log root for the inode
3365	 * item.
3366	 */
3367	key.objectid = btrfs_ino(inode);
3368	key.type = BTRFS_INODE_ITEM_KEY;
3369	key.offset = 0;
3370
3371	if (!path) {
3372		path = btrfs_alloc_path();
3373		if (!path)
3374			return -ENOMEM;
3375	}
3376
3377	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3378
3379	if (path_in)
3380		btrfs_release_path(path);
3381	else
3382		btrfs_free_path(path);
3383
3384	/*
3385	 * Logging an inode always results in logging its inode item. So if we
3386	 * did not find the item we know the inode was not logged for sure.
3387	 */
3388	if (ret < 0) {
3389		return ret;
3390	} else if (ret > 0) {
3391		/*
3392		 * Set logged_trans to a value greater than 0 and less then the
3393		 * current transaction to avoid doing the search in future calls.
3394		 */
3395		inode->logged_trans = trans->transid - 1;
3396		return 0;
3397	}
3398
3399	/*
3400	 * The inode was previously logged and then evicted, set logged_trans to
3401	 * the current transacion's ID, to avoid future tree searches as long as
3402	 * the inode is not evicted again.
3403	 */
3404	inode->logged_trans = trans->transid;
3405
3406	/*
3407	 * If it's a directory, then we must set last_dir_index_offset to the
3408	 * maximum possible value, so that the next attempt to log the inode does
3409	 * not skip checking if dir index keys found in modified subvolume tree
3410	 * leaves have been logged before, otherwise it would result in attempts
3411	 * to insert duplicate dir index keys in the log tree. This must be done
3412	 * because last_dir_index_offset is an in-memory only field, not persisted
3413	 * in the inode item or any other on-disk structure, so its value is lost
3414	 * once the inode is evicted.
3415	 */
3416	if (S_ISDIR(inode->vfs_inode.i_mode))
3417		inode->last_dir_index_offset = (u64)-1;
3418
3419	return 1;
3420}
3421
3422/*
3423 * Delete a directory entry from the log if it exists.
3424 *
3425 * Returns < 0 on error
3426 *           1 if the entry does not exists
3427 *           0 if the entry existed and was successfully deleted
3428 */
3429static int del_logged_dentry(struct btrfs_trans_handle *trans,
3430			     struct btrfs_root *log,
3431			     struct btrfs_path *path,
3432			     u64 dir_ino,
3433			     const struct fscrypt_str *name,
3434			     u64 index)
3435{
3436	struct btrfs_dir_item *di;
3437
3438	/*
3439	 * We only log dir index items of a directory, so we don't need to look
3440	 * for dir item keys.
3441	 */
3442	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3443					 index, name, -1);
3444	if (IS_ERR(di))
3445		return PTR_ERR(di);
3446	else if (!di)
3447		return 1;
3448
3449	/*
3450	 * We do not need to update the size field of the directory's
3451	 * inode item because on log replay we update the field to reflect
3452	 * all existing entries in the directory (see overwrite_item()).
3453	 */
3454	return btrfs_delete_one_dir_name(trans, log, path, di);
3455}
3456
3457/*
3458 * If both a file and directory are logged, and unlinks or renames are
3459 * mixed in, we have a few interesting corners:
3460 *
3461 * create file X in dir Y
3462 * link file X to X.link in dir Y
3463 * fsync file X
3464 * unlink file X but leave X.link
3465 * fsync dir Y
3466 *
3467 * After a crash we would expect only X.link to exist.  But file X
3468 * didn't get fsync'd again so the log has back refs for X and X.link.
3469 *
3470 * We solve this by removing directory entries and inode backrefs from the
3471 * log when a file that was logged in the current transaction is
3472 * unlinked.  Any later fsync will include the updated log entries, and
3473 * we'll be able to reconstruct the proper directory items from backrefs.
3474 *
3475 * This optimizations allows us to avoid relogging the entire inode
3476 * or the entire directory.
3477 */
3478void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3479				  struct btrfs_root *root,
3480				  const struct fscrypt_str *name,
3481				  struct btrfs_inode *dir, u64 index)
3482{
 
 
3483	struct btrfs_path *path;
3484	int ret;
 
 
 
3485
3486	ret = inode_logged(trans, dir, NULL);
3487	if (ret == 0)
3488		return;
3489	else if (ret < 0) {
3490		btrfs_set_log_full_commit(trans);
3491		return;
3492	}
3493
3494	ret = join_running_log_trans(root);
3495	if (ret)
3496		return;
3497
3498	mutex_lock(&dir->log_mutex);
3499
 
3500	path = btrfs_alloc_path();
3501	if (!path) {
3502		ret = -ENOMEM;
3503		goto out_unlock;
3504	}
3505
3506	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3507				name, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508	btrfs_free_path(path);
3509out_unlock:
3510	mutex_unlock(&dir->log_mutex);
3511	if (ret < 0)
3512		btrfs_set_log_full_commit(trans);
 
 
 
 
3513	btrfs_end_log_trans(root);
 
 
3514}
3515
3516/* see comments for btrfs_del_dir_entries_in_log */
3517void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3518				struct btrfs_root *root,
3519				const struct fscrypt_str *name,
3520				struct btrfs_inode *inode, u64 dirid)
3521{
 
3522	struct btrfs_root *log;
3523	u64 index;
3524	int ret;
3525
3526	ret = inode_logged(trans, inode, NULL);
3527	if (ret == 0)
3528		return;
3529	else if (ret < 0) {
3530		btrfs_set_log_full_commit(trans);
3531		return;
3532	}
3533
3534	ret = join_running_log_trans(root);
3535	if (ret)
3536		return;
3537	log = root->log_root;
3538	mutex_lock(&inode->log_mutex);
3539
3540	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3541				  dirid, &index);
3542	mutex_unlock(&inode->log_mutex);
3543	if (ret < 0 && ret != -ENOENT)
3544		btrfs_set_log_full_commit(trans);
 
 
 
3545	btrfs_end_log_trans(root);
 
 
3546}
3547
3548/*
3549 * creates a range item in the log for 'dirid'.  first_offset and
3550 * last_offset tell us which parts of the key space the log should
3551 * be considered authoritative for.
3552 */
3553static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3554				       struct btrfs_root *log,
3555				       struct btrfs_path *path,
3556				       u64 dirid,
3557				       u64 first_offset, u64 last_offset)
3558{
3559	int ret;
3560	struct btrfs_key key;
3561	struct btrfs_dir_log_item *item;
3562
3563	key.objectid = dirid;
3564	key.offset = first_offset;
3565	key.type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
3566	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3567	/*
3568	 * -EEXIST is fine and can happen sporadically when we are logging a
3569	 * directory and have concurrent insertions in the subvolume's tree for
3570	 * items from other inodes and that result in pushing off some dir items
3571	 * from one leaf to another in order to accommodate for the new items.
3572	 * This results in logging the same dir index range key.
3573	 */
3574	if (ret && ret != -EEXIST)
3575		return ret;
3576
3577	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3578			      struct btrfs_dir_log_item);
3579	if (ret == -EEXIST) {
3580		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3581
3582		/*
3583		 * btrfs_del_dir_entries_in_log() might have been called during
3584		 * an unlink between the initial insertion of this key and the
3585		 * current update, or we might be logging a single entry deletion
3586		 * during a rename, so set the new last_offset to the max value.
3587		 */
3588		last_offset = max(last_offset, curr_end);
3589	}
3590	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3591	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3592	btrfs_release_path(path);
3593	return 0;
3594}
3595
3596static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3597				 struct btrfs_inode *inode,
3598				 struct extent_buffer *src,
3599				 struct btrfs_path *dst_path,
3600				 int start_slot,
3601				 int count)
3602{
3603	struct btrfs_root *log = inode->root->log_root;
3604	char *ins_data = NULL;
3605	struct btrfs_item_batch batch;
3606	struct extent_buffer *dst;
3607	unsigned long src_offset;
3608	unsigned long dst_offset;
3609	u64 last_index;
3610	struct btrfs_key key;
3611	u32 item_size;
3612	int ret;
3613	int i;
3614
3615	ASSERT(count > 0);
3616	batch.nr = count;
3617
3618	if (count == 1) {
3619		btrfs_item_key_to_cpu(src, &key, start_slot);
3620		item_size = btrfs_item_size(src, start_slot);
3621		batch.keys = &key;
3622		batch.data_sizes = &item_size;
3623		batch.total_data_size = item_size;
3624	} else {
3625		struct btrfs_key *ins_keys;
3626		u32 *ins_sizes;
3627
3628		ins_data = kmalloc(count * sizeof(u32) +
3629				   count * sizeof(struct btrfs_key), GFP_NOFS);
3630		if (!ins_data)
3631			return -ENOMEM;
3632
3633		ins_sizes = (u32 *)ins_data;
3634		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3635		batch.keys = ins_keys;
3636		batch.data_sizes = ins_sizes;
3637		batch.total_data_size = 0;
3638
3639		for (i = 0; i < count; i++) {
3640			const int slot = start_slot + i;
3641
3642			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3643			ins_sizes[i] = btrfs_item_size(src, slot);
3644			batch.total_data_size += ins_sizes[i];
3645		}
3646	}
3647
3648	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3649	if (ret)
3650		goto out;
3651
3652	dst = dst_path->nodes[0];
3653	/*
3654	 * Copy all the items in bulk, in a single copy operation. Item data is
3655	 * organized such that it's placed at the end of a leaf and from right
3656	 * to left. For example, the data for the second item ends at an offset
3657	 * that matches the offset where the data for the first item starts, the
3658	 * data for the third item ends at an offset that matches the offset
3659	 * where the data of the second items starts, and so on.
3660	 * Therefore our source and destination start offsets for copy match the
3661	 * offsets of the last items (highest slots).
3662	 */
3663	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3664	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3665	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3666	btrfs_release_path(dst_path);
3667
3668	last_index = batch.keys[count - 1].offset;
3669	ASSERT(last_index > inode->last_dir_index_offset);
3670
3671	/*
3672	 * If for some unexpected reason the last item's index is not greater
3673	 * than the last index we logged, warn and force a transaction commit.
3674	 */
3675	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3676		ret = BTRFS_LOG_FORCE_COMMIT;
3677	else
3678		inode->last_dir_index_offset = last_index;
3679
3680	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3681		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3682out:
3683	kfree(ins_data);
3684
3685	return ret;
3686}
3687
3688static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3689{
3690	const int slot = path->slots[0];
3691
3692	if (ctx->scratch_eb) {
3693		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3694	} else {
3695		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3696		if (!ctx->scratch_eb)
3697			return -ENOMEM;
3698	}
3699
3700	btrfs_release_path(path);
3701	path->nodes[0] = ctx->scratch_eb;
3702	path->slots[0] = slot;
3703	/*
3704	 * Add extra ref to scratch eb so that it is not freed when callers
3705	 * release the path, so we can reuse it later if needed.
3706	 */
3707	atomic_inc(&ctx->scratch_eb->refs);
3708
3709	return 0;
3710}
3711
3712static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3713				  struct btrfs_inode *inode,
3714				  struct btrfs_path *path,
3715				  struct btrfs_path *dst_path,
3716				  struct btrfs_log_ctx *ctx,
3717				  u64 *last_old_dentry_offset)
3718{
3719	struct btrfs_root *log = inode->root->log_root;
3720	struct extent_buffer *src;
3721	const int nritems = btrfs_header_nritems(path->nodes[0]);
3722	const u64 ino = btrfs_ino(inode);
3723	bool last_found = false;
3724	int batch_start = 0;
3725	int batch_size = 0;
3726	int ret;
3727
3728	/*
3729	 * We need to clone the leaf, release the read lock on it, and use the
3730	 * clone before modifying the log tree. See the comment at copy_items()
3731	 * about why we need to do this.
3732	 */
3733	ret = clone_leaf(path, ctx);
3734	if (ret < 0)
3735		return ret;
3736
3737	src = path->nodes[0];
3738
3739	for (int i = path->slots[0]; i < nritems; i++) {
3740		struct btrfs_dir_item *di;
3741		struct btrfs_key key;
3742		int ret;
3743
3744		btrfs_item_key_to_cpu(src, &key, i);
3745
3746		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747			last_found = true;
3748			break;
3749		}
3750
3751		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3752
3753		/*
3754		 * Skip ranges of items that consist only of dir item keys created
3755		 * in past transactions. However if we find a gap, we must log a
3756		 * dir index range item for that gap, so that index keys in that
3757		 * gap are deleted during log replay.
3758		 */
3759		if (btrfs_dir_transid(src, di) < trans->transid) {
3760			if (key.offset > *last_old_dentry_offset + 1) {
3761				ret = insert_dir_log_key(trans, log, dst_path,
3762						 ino, *last_old_dentry_offset + 1,
3763						 key.offset - 1);
3764				if (ret < 0)
3765					return ret;
3766			}
3767
3768			*last_old_dentry_offset = key.offset;
3769			continue;
3770		}
3771
3772		/* If we logged this dir index item before, we can skip it. */
3773		if (key.offset <= inode->last_dir_index_offset)
3774			continue;
3775
3776		/*
3777		 * We must make sure that when we log a directory entry, the
3778		 * corresponding inode, after log replay, has a matching link
3779		 * count. For example:
3780		 *
3781		 * touch foo
3782		 * mkdir mydir
3783		 * sync
3784		 * ln foo mydir/bar
3785		 * xfs_io -c "fsync" mydir
3786		 * <crash>
3787		 * <mount fs and log replay>
3788		 *
3789		 * Would result in a fsync log that when replayed, our file inode
3790		 * would have a link count of 1, but we get two directory entries
3791		 * pointing to the same inode. After removing one of the names,
3792		 * it would not be possible to remove the other name, which
3793		 * resulted always in stale file handle errors, and would not be
3794		 * possible to rmdir the parent directory, since its i_size could
3795		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796		 * resulting in -ENOTEMPTY errors.
3797		 */
3798		if (!ctx->log_new_dentries) {
3799			struct btrfs_key di_key;
3800
3801			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3802			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3803				ctx->log_new_dentries = true;
3804		}
3805
3806		if (batch_size == 0)
3807			batch_start = i;
3808		batch_size++;
3809	}
3810
3811	if (batch_size > 0) {
3812		int ret;
3813
3814		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3815					    batch_start, batch_size);
3816		if (ret < 0)
3817			return ret;
3818	}
3819
3820	return last_found ? 1 : 0;
3821}
3822
3823/*
3824 * log all the items included in the current transaction for a given
3825 * directory.  This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3827 */
3828static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3829			  struct btrfs_inode *inode,
3830			  struct btrfs_path *path,
3831			  struct btrfs_path *dst_path,
3832			  struct btrfs_log_ctx *ctx,
3833			  u64 min_offset, u64 *last_offset_ret)
3834{
3835	struct btrfs_key min_key;
3836	struct btrfs_root *root = inode->root;
3837	struct btrfs_root *log = root->log_root;
 
 
3838	int ret;
3839	u64 last_old_dentry_offset = min_offset - 1;
 
 
3840	u64 last_offset = (u64)-1;
3841	u64 ino = btrfs_ino(inode);
3842
 
 
3843	min_key.objectid = ino;
3844	min_key.type = BTRFS_DIR_INDEX_KEY;
3845	min_key.offset = min_offset;
3846
3847	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3848
3849	/*
3850	 * we didn't find anything from this transaction, see if there
3851	 * is anything at all
3852	 */
3853	if (ret != 0 || min_key.objectid != ino ||
3854	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3855		min_key.objectid = ino;
3856		min_key.type = BTRFS_DIR_INDEX_KEY;
3857		min_key.offset = (u64)-1;
3858		btrfs_release_path(path);
3859		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3860		if (ret < 0) {
3861			btrfs_release_path(path);
3862			return ret;
3863		}
3864		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865
3866		/* if ret == 0 there are items for this type,
3867		 * create a range to tell us the last key of this type.
3868		 * otherwise, there are no items in this directory after
3869		 * *min_offset, and we create a range to indicate that.
3870		 */
3871		if (ret == 0) {
3872			struct btrfs_key tmp;
3873
3874			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875					      path->slots[0]);
3876			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877				last_old_dentry_offset = tmp.offset;
3878		} else if (ret > 0) {
3879			ret = 0;
3880		}
3881
3882		goto done;
3883	}
3884
3885	/* go backward to find any previous key */
3886	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3887	if (ret == 0) {
3888		struct btrfs_key tmp;
3889
3890		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3891		/*
3892		 * The dir index key before the first one we found that needs to
3893		 * be logged might be in a previous leaf, and there might be a
3894		 * gap between these keys, meaning that we had deletions that
3895		 * happened. So the key range item we log (key type
3896		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897		 * previous key's offset plus 1, so that those deletes are replayed.
3898		 */
3899		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900			last_old_dentry_offset = tmp.offset;
3901	} else if (ret < 0) {
3902		goto done;
3903	}
3904
3905	btrfs_release_path(path);
3906
3907	/*
3908	 * Find the first key from this transaction again or the one we were at
3909	 * in the loop below in case we had to reschedule. We may be logging the
3910	 * directory without holding its VFS lock, which happen when logging new
3911	 * dentries (through log_new_dir_dentries()) or in some cases when we
3912	 * need to log the parent directory of an inode. This means a dir index
3913	 * key might be deleted from the inode's root, and therefore we may not
3914	 * find it anymore. If we can't find it, just move to the next key. We
3915	 * can not bail out and ignore, because if we do that we will simply
3916	 * not log dir index keys that come after the one that was just deleted
3917	 * and we can end up logging a dir index range that ends at (u64)-1
3918	 * (@last_offset is initialized to that), resulting in removing dir
3919	 * entries we should not remove at log replay time.
3920	 */
3921search:
3922	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3923	if (ret > 0) {
3924		ret = btrfs_next_item(root, path);
3925		if (ret > 0) {
3926			/* There are no more keys in the inode's root. */
3927			ret = 0;
3928			goto done;
3929		}
3930	}
3931	if (ret < 0)
3932		goto done;
3933
3934	/*
3935	 * we have a block from this transaction, log every item in it
3936	 * from our directory
3937	 */
3938	while (1) {
3939		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3940					     &last_old_dentry_offset);
3941		if (ret != 0) {
3942			if (ret > 0)
3943				ret = 0;
3944			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3945		}
3946		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3947
3948		/*
3949		 * look ahead to the next item and see if it is also
3950		 * from this directory and from this transaction
3951		 */
3952		ret = btrfs_next_leaf(root, path);
3953		if (ret) {
3954			if (ret == 1) {
3955				last_offset = (u64)-1;
3956				ret = 0;
3957			}
3958			goto done;
3959		}
3960		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3961		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3962			last_offset = (u64)-1;
3963			goto done;
3964		}
3965		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3966			/*
3967			 * The next leaf was not changed in the current transaction
3968			 * and has at least one dir index key.
3969			 * We check for the next key because there might have been
3970			 * one or more deletions between the last key we logged and
3971			 * that next key. So the key range item we log (key type
3972			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973			 * offset minus 1, so that those deletes are replayed.
3974			 */
3975			last_offset = min_key.offset - 1;
3976			goto done;
3977		}
3978		if (need_resched()) {
3979			btrfs_release_path(path);
3980			cond_resched();
3981			goto search;
3982		}
3983	}
3984done:
3985	btrfs_release_path(path);
3986	btrfs_release_path(dst_path);
3987
3988	if (ret == 0) {
3989		*last_offset_ret = last_offset;
3990		/*
3991		 * In case the leaf was changed in the current transaction but
3992		 * all its dir items are from a past transaction, the last item
3993		 * in the leaf is a dir item and there's no gap between that last
3994		 * dir item and the first one on the next leaf (which did not
3995		 * change in the current transaction), then we don't need to log
3996		 * a range, last_old_dentry_offset is == to last_offset.
3997		 */
3998		ASSERT(last_old_dentry_offset <= last_offset);
3999		if (last_old_dentry_offset < last_offset)
4000			ret = insert_dir_log_key(trans, log, path, ino,
4001						 last_old_dentry_offset + 1,
4002						 last_offset);
4003	}
4004
4005	return ret;
4006}
4007
4008/*
4009 * If the inode was logged before and it was evicted, then its
4010 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011 * key offset. If that's the case, search for it and update the inode. This
4012 * is to avoid lookups in the log tree every time we try to insert a dir index
4013 * key from a leaf changed in the current transaction, and to allow us to always
4014 * do batch insertions of dir index keys.
4015 */
4016static int update_last_dir_index_offset(struct btrfs_inode *inode,
4017					struct btrfs_path *path,
4018					const struct btrfs_log_ctx *ctx)
4019{
4020	const u64 ino = btrfs_ino(inode);
4021	struct btrfs_key key;
4022	int ret;
4023
4024	lockdep_assert_held(&inode->log_mutex);
4025
4026	if (inode->last_dir_index_offset != (u64)-1)
4027		return 0;
4028
4029	if (!ctx->logged_before) {
4030		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4031		return 0;
4032	}
4033
4034	key.objectid = ino;
4035	key.type = BTRFS_DIR_INDEX_KEY;
4036	key.offset = (u64)-1;
4037
4038	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4039	/*
4040	 * An error happened or we actually have an index key with an offset
4041	 * value of (u64)-1. Bail out, we're done.
4042	 */
4043	if (ret <= 0)
4044		goto out;
4045
4046	ret = 0;
4047	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4048
4049	/*
4050	 * No dir index items, bail out and leave last_dir_index_offset with
4051	 * the value right before the first valid index value.
4052	 */
4053	if (path->slots[0] == 0)
4054		goto out;
4055
4056	/*
4057	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4058	 * index key, or beyond the last key of the directory that is not an
4059	 * index key. If we have an index key before, set last_dir_index_offset
4060	 * to its offset value, otherwise leave it with a value right before the
4061	 * first valid index value, as it means we have an empty directory.
4062	 */
4063	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4064	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4065		inode->last_dir_index_offset = key.offset;
4066
4067out:
4068	btrfs_release_path(path);
4069
4070	return ret;
4071}
4072
4073/*
4074 * logging directories is very similar to logging inodes, We find all the items
4075 * from the current transaction and write them to the log.
4076 *
4077 * The recovery code scans the directory in the subvolume, and if it finds a
4078 * key in the range logged that is not present in the log tree, then it means
4079 * that dir entry was unlinked during the transaction.
4080 *
4081 * In order for that scan to work, we must include one key smaller than
4082 * the smallest logged by this transaction and one key larger than the largest
4083 * key logged by this transaction.
4084 */
4085static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4086			  struct btrfs_inode *inode,
4087			  struct btrfs_path *path,
4088			  struct btrfs_path *dst_path,
4089			  struct btrfs_log_ctx *ctx)
4090{
4091	u64 min_key;
4092	u64 max_key;
4093	int ret;
 
4094
4095	ret = update_last_dir_index_offset(inode, path, ctx);
4096	if (ret)
4097		return ret;
4098
4099	min_key = BTRFS_DIR_START_INDEX;
4100	max_key = 0;
4101
4102	while (1) {
4103		ret = log_dir_items(trans, inode, path, dst_path,
4104				ctx, min_key, &max_key);
4105		if (ret)
4106			return ret;
4107		if (max_key == (u64)-1)
4108			break;
4109		min_key = max_key + 1;
4110	}
4111
 
 
 
 
4112	return 0;
4113}
4114
4115/*
4116 * a helper function to drop items from the log before we relog an
4117 * inode.  max_key_type indicates the highest item type to remove.
4118 * This cannot be run for file data extents because it does not
4119 * free the extents they point to.
4120 */
4121static int drop_inode_items(struct btrfs_trans_handle *trans,
4122				  struct btrfs_root *log,
4123				  struct btrfs_path *path,
4124				  struct btrfs_inode *inode,
4125				  int max_key_type)
4126{
4127	int ret;
4128	struct btrfs_key key;
4129	struct btrfs_key found_key;
4130	int start_slot;
4131
4132	key.objectid = btrfs_ino(inode);
4133	key.type = max_key_type;
4134	key.offset = (u64)-1;
4135
4136	while (1) {
4137		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4138		if (ret < 0) {
 
4139			break;
4140		} else if (ret > 0) {
4141			if (path->slots[0] == 0)
4142				break;
4143			path->slots[0]--;
4144		}
4145
 
 
 
 
4146		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4147				      path->slots[0]);
4148
4149		if (found_key.objectid != key.objectid)
4150			break;
4151
4152		found_key.offset = 0;
4153		found_key.type = 0;
4154		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4155		if (ret < 0)
4156			break;
4157
4158		ret = btrfs_del_items(trans, log, path, start_slot,
4159				      path->slots[0] - start_slot + 1);
4160		/*
4161		 * If start slot isn't 0 then we don't need to re-search, we've
4162		 * found the last guy with the objectid in this tree.
4163		 */
4164		if (ret || start_slot != 0)
4165			break;
4166		btrfs_release_path(path);
4167	}
4168	btrfs_release_path(path);
4169	if (ret > 0)
4170		ret = 0;
4171	return ret;
4172}
4173
4174static int truncate_inode_items(struct btrfs_trans_handle *trans,
4175				struct btrfs_root *log_root,
4176				struct btrfs_inode *inode,
4177				u64 new_size, u32 min_type)
4178{
4179	struct btrfs_truncate_control control = {
4180		.new_size = new_size,
4181		.ino = btrfs_ino(inode),
4182		.min_type = min_type,
4183		.skip_ref_updates = true,
4184	};
4185
4186	return btrfs_truncate_inode_items(trans, log_root, &control);
4187}
4188
4189static void fill_inode_item(struct btrfs_trans_handle *trans,
4190			    struct extent_buffer *leaf,
4191			    struct btrfs_inode_item *item,
4192			    struct inode *inode, int log_inode_only,
4193			    u64 logged_isize)
4194{
4195	struct btrfs_map_token token;
4196	u64 flags;
4197
4198	btrfs_init_map_token(&token, leaf);
4199
4200	if (log_inode_only) {
4201		/* set the generation to zero so the recover code
4202		 * can tell the difference between an logging
4203		 * just to say 'this inode exists' and a logging
4204		 * to say 'update this inode with these values'
4205		 */
4206		btrfs_set_token_inode_generation(&token, item, 0);
4207		btrfs_set_token_inode_size(&token, item, logged_isize);
4208	} else {
4209		btrfs_set_token_inode_generation(&token, item,
4210						 BTRFS_I(inode)->generation);
4211		btrfs_set_token_inode_size(&token, item, inode->i_size);
4212	}
4213
4214	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4215	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4216	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4217	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4218
4219	btrfs_set_token_timespec_sec(&token, &item->atime,
4220				     inode_get_atime_sec(inode));
4221	btrfs_set_token_timespec_nsec(&token, &item->atime,
4222				      inode_get_atime_nsec(inode));
4223
4224	btrfs_set_token_timespec_sec(&token, &item->mtime,
4225				     inode_get_mtime_sec(inode));
4226	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4227				      inode_get_mtime_nsec(inode));
4228
4229	btrfs_set_token_timespec_sec(&token, &item->ctime,
4230				     inode_get_ctime_sec(inode));
4231	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4232				      inode_get_ctime_nsec(inode));
4233
4234	/*
4235	 * We do not need to set the nbytes field, in fact during a fast fsync
4236	 * its value may not even be correct, since a fast fsync does not wait
4237	 * for ordered extent completion, which is where we update nbytes, it
4238	 * only waits for writeback to complete. During log replay as we find
4239	 * file extent items and replay them, we adjust the nbytes field of the
4240	 * inode item in subvolume tree as needed (see overwrite_item()).
4241	 */
4242
4243	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4244	btrfs_set_token_inode_transid(&token, item, trans->transid);
4245	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4246	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4247					  BTRFS_I(inode)->ro_flags);
4248	btrfs_set_token_inode_flags(&token, item, flags);
4249	btrfs_set_token_inode_block_group(&token, item, 0);
4250}
4251
4252static int log_inode_item(struct btrfs_trans_handle *trans,
4253			  struct btrfs_root *log, struct btrfs_path *path,
4254			  struct btrfs_inode *inode, bool inode_item_dropped)
4255{
4256	struct btrfs_inode_item *inode_item;
4257	struct btrfs_key key;
4258	int ret;
4259
4260	btrfs_get_inode_key(inode, &key);
4261	/*
4262	 * If we are doing a fast fsync and the inode was logged before in the
4263	 * current transaction, then we know the inode was previously logged and
4264	 * it exists in the log tree. For performance reasons, in this case use
4265	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267	 * contention in case there are concurrent fsyncs for other inodes of the
4268	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269	 * already exists can also result in unnecessarily splitting a leaf.
4270	 */
4271	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4272		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4273		ASSERT(ret <= 0);
4274		if (ret > 0)
4275			ret = -ENOENT;
4276	} else {
4277		/*
4278		 * This means it is the first fsync in the current transaction,
4279		 * so the inode item is not in the log and we need to insert it.
4280		 * We can never get -EEXIST because we are only called for a fast
4281		 * fsync and in case an inode eviction happens after the inode was
4282		 * logged before in the current transaction, when we load again
4283		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284		 * flags and set ->logged_trans to 0.
4285		 */
4286		ret = btrfs_insert_empty_item(trans, log, path, &key,
4287					      sizeof(*inode_item));
4288		ASSERT(ret != -EEXIST);
4289	}
4290	if (ret)
4291		return ret;
4292	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4293				    struct btrfs_inode_item);
4294	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4295			0, 0);
4296	btrfs_release_path(path);
4297	return 0;
4298}
4299
4300static int log_csums(struct btrfs_trans_handle *trans,
4301		     struct btrfs_inode *inode,
4302		     struct btrfs_root *log_root,
4303		     struct btrfs_ordered_sum *sums)
4304{
4305	const u64 lock_end = sums->logical + sums->len - 1;
4306	struct extent_state *cached_state = NULL;
4307	int ret;
4308
4309	/*
4310	 * If this inode was not used for reflink operations in the current
4311	 * transaction with new extents, then do the fast path, no need to
4312	 * worry about logging checksum items with overlapping ranges.
4313	 */
4314	if (inode->last_reflink_trans < trans->transid)
4315		return btrfs_csum_file_blocks(trans, log_root, sums);
4316
4317	/*
4318	 * Serialize logging for checksums. This is to avoid racing with the
4319	 * same checksum being logged by another task that is logging another
4320	 * file which happens to refer to the same extent as well. Such races
4321	 * can leave checksum items in the log with overlapping ranges.
4322	 */
4323	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4324			  &cached_state);
4325	if (ret)
4326		return ret;
4327	/*
4328	 * Due to extent cloning, we might have logged a csum item that covers a
4329	 * subrange of a cloned extent, and later we can end up logging a csum
4330	 * item for a larger subrange of the same extent or the entire range.
4331	 * This would leave csum items in the log tree that cover the same range
4332	 * and break the searches for checksums in the log tree, resulting in
4333	 * some checksums missing in the fs/subvolume tree. So just delete (or
4334	 * trim and adjust) any existing csum items in the log for this range.
4335	 */
4336	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4337	if (!ret)
4338		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4339
4340	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4341		      &cached_state);
4342
4343	return ret;
4344}
4345
4346static noinline int copy_items(struct btrfs_trans_handle *trans,
4347			       struct btrfs_inode *inode,
4348			       struct btrfs_path *dst_path,
4349			       struct btrfs_path *src_path,
4350			       int start_slot, int nr, int inode_only,
4351			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4352{
 
 
 
4353	struct btrfs_root *log = inode->root->log_root;
4354	struct btrfs_file_extent_item *extent;
4355	struct extent_buffer *src;
 
 
4356	int ret;
4357	struct btrfs_key *ins_keys;
4358	u32 *ins_sizes;
4359	struct btrfs_item_batch batch;
4360	char *ins_data;
4361	int dst_index;
4362	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4363	const u64 i_size = i_size_read(&inode->vfs_inode);
4364
4365	/*
4366	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367	 * use the clone. This is because otherwise we would be changing the log
4368	 * tree, to insert items from the subvolume tree or insert csum items,
4369	 * while holding a read lock on a leaf from the subvolume tree, which
4370	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4371	 *
4372	 * 1) Modifying the log tree triggers an extent buffer allocation while
4373	 *    holding a write lock on a parent extent buffer from the log tree.
4374	 *    Allocating the pages for an extent buffer, or the extent buffer
4375	 *    struct, can trigger inode eviction and finally the inode eviction
4376	 *    will trigger a release/remove of a delayed node, which requires
4377	 *    taking the delayed node's mutex;
4378	 *
4379	 * 2) Allocating a metadata extent for a log tree can trigger the async
4380	 *    reclaim thread and make us wait for it to release enough space and
4381	 *    unblock our reservation ticket. The reclaim thread can start
4382	 *    flushing delayed items, and that in turn results in the need to
4383	 *    lock delayed node mutexes and in the need to write lock extent
4384	 *    buffers of a subvolume tree - all this while holding a write lock
4385	 *    on the parent extent buffer in the log tree.
4386	 *
4387	 * So one task in scenario 1) running in parallel with another task in
4388	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389	 * node mutex while having a read lock on a leaf from the subvolume,
4390	 * while the other is holding the delayed node's mutex and wants to
4391	 * write lock the same subvolume leaf for flushing delayed items.
4392	 */
4393	ret = clone_leaf(src_path, ctx);
4394	if (ret < 0)
4395		return ret;
4396
4397	src = src_path->nodes[0];
4398
4399	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4400			   nr * sizeof(u32), GFP_NOFS);
4401	if (!ins_data)
4402		return -ENOMEM;
4403
 
 
4404	ins_sizes = (u32 *)ins_data;
4405	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4406	batch.keys = ins_keys;
4407	batch.data_sizes = ins_sizes;
4408	batch.total_data_size = 0;
4409	batch.nr = 0;
4410
4411	dst_index = 0;
4412	for (int i = 0; i < nr; i++) {
4413		const int src_slot = start_slot + i;
4414		struct btrfs_root *csum_root;
4415		struct btrfs_ordered_sum *sums;
4416		struct btrfs_ordered_sum *sums_next;
4417		LIST_HEAD(ordered_sums);
4418		u64 disk_bytenr;
4419		u64 disk_num_bytes;
4420		u64 extent_offset;
4421		u64 extent_num_bytes;
4422		bool is_old_extent;
4423
4424		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4425
4426		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4427			goto add_to_batch;
4428
4429		extent = btrfs_item_ptr(src, src_slot,
4430					struct btrfs_file_extent_item);
 
 
 
4431
4432		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4433				 trans->transid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434
4435		/*
4436		 * Don't copy extents from past generations. That would make us
4437		 * log a lot more metadata for common cases like doing only a
4438		 * few random writes into a file and then fsync it for the first
4439		 * time or after the full sync flag is set on the inode. We can
4440		 * get leaves full of extent items, most of which are from past
4441		 * generations, so we can skip them - as long as the inode has
4442		 * not been the target of a reflink operation in this transaction,
4443		 * as in that case it might have had file extent items with old
4444		 * generations copied into it. We also must always log prealloc
4445		 * extents that start at or beyond eof, otherwise we would lose
4446		 * them on log replay.
4447		 */
4448		if (is_old_extent &&
4449		    ins_keys[dst_index].offset < i_size &&
4450		    inode->last_reflink_trans < trans->transid)
4451			continue;
4452
4453		if (skip_csum)
4454			goto add_to_batch;
4455
4456		/* Only regular extents have checksums. */
4457		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4458			goto add_to_batch;
4459
4460		/*
4461		 * If it's an extent created in a past transaction, then its
4462		 * checksums are already accessible from the committed csum tree,
4463		 * no need to log them.
4464		 */
4465		if (is_old_extent)
4466			goto add_to_batch;
 
 
 
4467
4468		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4469		/* If it's an explicit hole, there are no checksums. */
4470		if (disk_bytenr == 0)
4471			goto add_to_batch;
4472
4473		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4474
4475		if (btrfs_file_extent_compression(src, extent)) {
4476			extent_offset = 0;
4477			extent_num_bytes = disk_num_bytes;
4478		} else {
4479			extent_offset = btrfs_file_extent_offset(src, extent);
4480			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4481		}
4482
4483		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4484		disk_bytenr += extent_offset;
4485		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4486					      disk_bytenr + extent_num_bytes - 1,
4487					      &ordered_sums, false);
4488		if (ret < 0)
4489			goto out;
4490		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
4491
4492		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4493			if (!ret)
4494				ret = log_csums(trans, inode, log, sums);
4495			list_del(&sums->list);
4496			kfree(sums);
 
 
 
 
 
4497		}
4498		if (ret)
4499			goto out;
4500
4501add_to_batch:
4502		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4503		batch.total_data_size += ins_sizes[dst_index];
4504		batch.nr++;
4505		dst_index++;
4506	}
4507
 
 
 
 
4508	/*
4509	 * We have a leaf full of old extent items that don't need to be logged,
4510	 * so we don't need to do anything.
4511	 */
4512	if (batch.nr == 0)
4513		goto out;
4514
4515	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4516	if (ret)
4517		goto out;
 
 
 
 
4518
4519	dst_index = 0;
4520	for (int i = 0; i < nr; i++) {
4521		const int src_slot = start_slot + i;
4522		const int dst_slot = dst_path->slots[0] + dst_index;
4523		struct btrfs_key key;
4524		unsigned long src_offset;
4525		unsigned long dst_offset;
4526
 
4527		/*
4528		 * We're done, all the remaining items in the source leaf
4529		 * correspond to old file extent items.
 
 
4530		 */
4531		if (dst_index >= batch.nr)
4532			break;
4533
4534		btrfs_item_key_to_cpu(src, &key, src_slot);
4535
4536		if (key.type != BTRFS_EXTENT_DATA_KEY)
4537			goto copy_item;
 
 
 
 
 
 
4538
4539		extent = btrfs_item_ptr(src, src_slot,
 
 
 
 
 
 
 
 
 
 
 
 
4540					struct btrfs_file_extent_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4541
4542		/* See the comment in the previous loop, same logic. */
4543		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4544		    key.offset < i_size &&
4545		    inode->last_reflink_trans < trans->transid)
4546			continue;
4547
4548copy_item:
4549		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4550		src_offset = btrfs_item_ptr_offset(src, src_slot);
4551
4552		if (key.type == BTRFS_INODE_ITEM_KEY) {
4553			struct btrfs_inode_item *inode_item;
 
 
 
 
 
 
 
4554
4555			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4556						    struct btrfs_inode_item);
4557			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4558					&inode->vfs_inode,
4559					inode_only == LOG_INODE_EXISTS,
4560					logged_isize);
 
 
 
 
 
 
 
 
4561		} else {
4562			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4563					   src_offset, ins_sizes[dst_index]);
4564		}
 
4565
4566		dst_index++;
 
 
 
 
 
 
 
 
 
 
4567	}
4568
4569	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4570	btrfs_release_path(dst_path);
4571out:
4572	kfree(ins_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4574	return ret;
4575}
4576
4577static int extent_cmp(void *priv, const struct list_head *a,
4578		      const struct list_head *b)
4579{
4580	const struct extent_map *em1, *em2;
4581
4582	em1 = list_entry(a, struct extent_map, list);
4583	em2 = list_entry(b, struct extent_map, list);
4584
4585	if (em1->start < em2->start)
4586		return -1;
4587	else if (em1->start > em2->start)
4588		return 1;
4589	return 0;
4590}
4591
4592static int log_extent_csums(struct btrfs_trans_handle *trans,
4593			    struct btrfs_inode *inode,
4594			    struct btrfs_root *log_root,
4595			    const struct extent_map *em,
4596			    struct btrfs_log_ctx *ctx)
 
4597{
 
4598	struct btrfs_ordered_extent *ordered;
4599	struct btrfs_root *csum_root;
4600	u64 block_start;
 
 
4601	u64 csum_offset;
4602	u64 csum_len;
4603	u64 mod_start = em->start;
4604	u64 mod_len = em->len;
4605	LIST_HEAD(ordered_sums);
4606	int ret = 0;
4607
4608	if (inode->flags & BTRFS_INODE_NODATASUM ||
4609	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4610	    em->disk_bytenr == EXTENT_MAP_HOLE)
 
4611		return 0;
4612
4613	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4614		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4615		const u64 mod_end = mod_start + mod_len;
4616		struct btrfs_ordered_sum *sums;
 
 
 
4617
4618		if (mod_len == 0)
4619			break;
4620
4621		if (ordered_end <= mod_start)
 
4622			continue;
4623		if (mod_end <= ordered->file_offset)
4624			break;
4625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4626		/*
4627		 * We are going to copy all the csums on this ordered extent, so
4628		 * go ahead and adjust mod_start and mod_len in case this ordered
4629		 * extent has already been logged.
4630		 */
4631		if (ordered->file_offset > mod_start) {
4632			if (ordered_end >= mod_end)
 
4633				mod_len = ordered->file_offset - mod_start;
4634			/*
4635			 * If we have this case
4636			 *
4637			 * |--------- logged extent ---------|
4638			 *       |----- ordered extent ----|
4639			 *
4640			 * Just don't mess with mod_start and mod_len, we'll
4641			 * just end up logging more csums than we need and it
4642			 * will be ok.
4643			 */
4644		} else {
4645			if (ordered_end < mod_end) {
4646				mod_len = mod_end - ordered_end;
4647				mod_start = ordered_end;
 
 
 
4648			} else {
4649				mod_len = 0;
4650			}
4651		}
4652
 
 
 
4653		/*
4654		 * To keep us from looping for the above case of an ordered
4655		 * extent that falls inside of the logged extent.
4656		 */
4657		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
 
4658			continue;
4659
4660		list_for_each_entry(sums, &ordered->list, list) {
4661			ret = log_csums(trans, inode, log_root, sums);
4662			if (ret)
4663				return ret;
4664		}
4665	}
4666
4667	/* We're done, found all csums in the ordered extents. */
4668	if (mod_len == 0)
4669		return 0;
4670
4671	/* If we're compressed we have to save the entire range of csums. */
4672	if (extent_map_is_compressed(em)) {
4673		csum_offset = 0;
4674		csum_len = em->disk_num_bytes;
4675	} else {
4676		csum_offset = mod_start - em->start;
4677		csum_len = mod_len;
4678	}
4679
4680	/* block start is already adjusted for the file extent offset. */
4681	block_start = extent_map_block_start(em);
4682	csum_root = btrfs_csum_root(trans->fs_info, block_start);
4683	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4684				      block_start + csum_offset + csum_len - 1,
4685				      &ordered_sums, false);
4686	if (ret < 0)
4687		return ret;
4688	ret = 0;
4689
4690	while (!list_empty(&ordered_sums)) {
4691		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4692						   struct btrfs_ordered_sum,
4693						   list);
4694		if (!ret)
4695			ret = log_csums(trans, inode, log_root, sums);
4696		list_del(&sums->list);
4697		kfree(sums);
4698	}
4699
4700	return ret;
4701}
4702
4703static int log_one_extent(struct btrfs_trans_handle *trans,
4704			  struct btrfs_inode *inode,
4705			  const struct extent_map *em,
4706			  struct btrfs_path *path,
 
4707			  struct btrfs_log_ctx *ctx)
4708{
4709	struct btrfs_drop_extents_args drop_args = { 0 };
4710	struct btrfs_root *log = inode->root->log_root;
4711	struct btrfs_file_extent_item fi = { 0 };
4712	struct extent_buffer *leaf;
 
4713	struct btrfs_key key;
4714	enum btrfs_compression_type compress_type;
4715	u64 extent_offset = em->offset;
4716	u64 block_start = extent_map_block_start(em);
4717	u64 block_len;
4718	int ret;
 
 
4719
4720	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4721	if (em->flags & EXTENT_FLAG_PREALLOC)
4722		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4723	else
4724		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4725
4726	block_len = em->disk_num_bytes;
4727	compress_type = extent_map_compression(em);
4728	if (compress_type != BTRFS_COMPRESS_NONE) {
4729		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4730		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4732		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4733		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4734	}
4735
4736	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4737	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4738	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4739	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4740
4741	ret = log_extent_csums(trans, inode, log, em, ctx);
4742	if (ret)
4743		return ret;
4744
4745	/*
4746	 * If this is the first time we are logging the inode in the current
4747	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748	 * because it does a deletion search, which always acquires write locks
4749	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750	 * but also adds significant contention in a log tree, since log trees
4751	 * are small, with a root at level 2 or 3 at most, due to their short
4752	 * life span.
4753	 */
4754	if (ctx->logged_before) {
4755		drop_args.path = path;
4756		drop_args.start = em->start;
4757		drop_args.end = em->start + em->len;
4758		drop_args.replace_extent = true;
4759		drop_args.extent_item_size = sizeof(fi);
4760		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4761		if (ret)
4762			return ret;
4763	}
4764
4765	if (!drop_args.extent_inserted) {
 
 
 
 
 
 
 
 
4766		key.objectid = btrfs_ino(inode);
4767		key.type = BTRFS_EXTENT_DATA_KEY;
4768		key.offset = em->start;
4769
4770		ret = btrfs_insert_empty_item(trans, log, path, &key,
4771					      sizeof(fi));
4772		if (ret)
4773			return ret;
4774	}
4775	leaf = path->nodes[0];
4776	write_extent_buffer(leaf, &fi,
4777			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4778			    sizeof(fi));
4779	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4780
4781	btrfs_release_path(path);
4782
4783	return ret;
4784}
4785
4786/*
4787 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788 * lose them after doing a full/fast fsync and replaying the log. We scan the
4789 * subvolume's root instead of iterating the inode's extent map tree because
4790 * otherwise we can log incorrect extent items based on extent map conversion.
4791 * That can happen due to the fact that extent maps are merged when they
4792 * are not in the extent map tree's list of modified extents.
4793 */
4794static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4795				      struct btrfs_inode *inode,
4796				      struct btrfs_path *path,
4797				      struct btrfs_log_ctx *ctx)
4798{
4799	struct btrfs_root *root = inode->root;
4800	struct btrfs_key key;
4801	const u64 i_size = i_size_read(&inode->vfs_inode);
4802	const u64 ino = btrfs_ino(inode);
4803	struct btrfs_path *dst_path = NULL;
4804	bool dropped_extents = false;
4805	u64 truncate_offset = i_size;
4806	struct extent_buffer *leaf;
4807	int slot;
4808	int ins_nr = 0;
4809	int start_slot = 0;
4810	int ret;
4811
4812	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4813		return 0;
4814
4815	key.objectid = ino;
4816	key.type = BTRFS_EXTENT_DATA_KEY;
4817	key.offset = i_size;
4818	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4819	if (ret < 0)
4820		goto out;
4821
4822	/*
4823	 * We must check if there is a prealloc extent that starts before the
4824	 * i_size and crosses the i_size boundary. This is to ensure later we
4825	 * truncate down to the end of that extent and not to the i_size, as
4826	 * otherwise we end up losing part of the prealloc extent after a log
4827	 * replay and with an implicit hole if there is another prealloc extent
4828	 * that starts at an offset beyond i_size.
4829	 */
4830	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4831	if (ret < 0)
4832		goto out;
4833
4834	if (ret == 0) {
4835		struct btrfs_file_extent_item *ei;
4836
4837		leaf = path->nodes[0];
4838		slot = path->slots[0];
4839		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4840
4841		if (btrfs_file_extent_type(leaf, ei) ==
4842		    BTRFS_FILE_EXTENT_PREALLOC) {
4843			u64 extent_end;
4844
4845			btrfs_item_key_to_cpu(leaf, &key, slot);
4846			extent_end = key.offset +
4847				btrfs_file_extent_num_bytes(leaf, ei);
4848
4849			if (extent_end > i_size)
4850				truncate_offset = extent_end;
4851		}
4852	} else {
4853		ret = 0;
4854	}
4855
4856	while (true) {
4857		leaf = path->nodes[0];
4858		slot = path->slots[0];
4859
4860		if (slot >= btrfs_header_nritems(leaf)) {
4861			if (ins_nr > 0) {
4862				ret = copy_items(trans, inode, dst_path, path,
4863						 start_slot, ins_nr, 1, 0, ctx);
 
4864				if (ret < 0)
4865					goto out;
4866				ins_nr = 0;
4867			}
4868			ret = btrfs_next_leaf(root, path);
4869			if (ret < 0)
4870				goto out;
4871			if (ret > 0) {
4872				ret = 0;
4873				break;
4874			}
4875			continue;
4876		}
4877
4878		btrfs_item_key_to_cpu(leaf, &key, slot);
4879		if (key.objectid > ino)
4880			break;
4881		if (WARN_ON_ONCE(key.objectid < ino) ||
4882		    key.type < BTRFS_EXTENT_DATA_KEY ||
4883		    key.offset < i_size) {
4884			path->slots[0]++;
4885			continue;
4886		}
4887		/*
4888		 * Avoid overlapping items in the log tree. The first time we
4889		 * get here, get rid of everything from a past fsync. After
4890		 * that, if the current extent starts before the end of the last
4891		 * extent we copied, truncate the last one. This can happen if
4892		 * an ordered extent completion modifies the subvolume tree
4893		 * while btrfs_next_leaf() has the tree unlocked.
4894		 */
4895		if (!dropped_extents || key.offset < truncate_offset) {
4896			ret = truncate_inode_items(trans, root->log_root, inode,
4897						   min(key.offset, truncate_offset),
4898						   BTRFS_EXTENT_DATA_KEY);
 
4899			if (ret)
4900				goto out;
4901			dropped_extents = true;
4902		}
4903		truncate_offset = btrfs_file_extent_end(path);
4904		if (ins_nr == 0)
4905			start_slot = slot;
4906		ins_nr++;
4907		path->slots[0]++;
4908		if (!dst_path) {
4909			dst_path = btrfs_alloc_path();
4910			if (!dst_path) {
4911				ret = -ENOMEM;
4912				goto out;
4913			}
4914		}
4915	}
4916	if (ins_nr > 0)
4917		ret = copy_items(trans, inode, dst_path, path,
4918				 start_slot, ins_nr, 1, 0, ctx);
 
 
 
4919out:
4920	btrfs_release_path(path);
4921	btrfs_free_path(dst_path);
4922	return ret;
4923}
4924
4925static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
 
4926				     struct btrfs_inode *inode,
4927				     struct btrfs_path *path,
4928				     struct btrfs_log_ctx *ctx)
 
 
 
4929{
4930	struct btrfs_ordered_extent *ordered;
4931	struct btrfs_ordered_extent *tmp;
4932	struct extent_map *em, *n;
4933	LIST_HEAD(extents);
4934	struct extent_map_tree *tree = &inode->extent_tree;
 
 
4935	int ret = 0;
4936	int num = 0;
4937
 
 
 
4938	write_lock(&tree->lock);
 
 
 
4939
4940	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4941		list_del_init(&em->list);
4942		/*
4943		 * Just an arbitrary number, this can be really CPU intensive
4944		 * once we start getting a lot of extents, and really once we
4945		 * have a bunch of extents we just want to commit since it will
4946		 * be faster.
4947		 */
4948		if (++num > 32768) {
4949			list_del_init(&tree->modified_extents);
4950			ret = -EFBIG;
4951			goto process;
4952		}
4953
4954		if (em->generation < trans->transid)
4955			continue;
4956
4957		/* We log prealloc extents beyond eof later. */
4958		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4959		    em->start >= i_size_read(&inode->vfs_inode))
4960			continue;
4961
 
 
 
 
 
4962		/* Need a ref to keep it from getting evicted from cache */
4963		refcount_inc(&em->refs);
4964		em->flags |= EXTENT_FLAG_LOGGING;
4965		list_add_tail(&em->list, &extents);
4966		num++;
4967	}
4968
4969	list_sort(NULL, &extents, extent_cmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4970process:
4971	while (!list_empty(&extents)) {
4972		em = list_entry(extents.next, struct extent_map, list);
4973
4974		list_del_init(&em->list);
4975
4976		/*
4977		 * If we had an error we just need to delete everybody from our
4978		 * private list.
4979		 */
4980		if (ret) {
4981			clear_em_logging(inode, em);
4982			free_extent_map(em);
4983			continue;
4984		}
4985
4986		write_unlock(&tree->lock);
4987
4988		ret = log_one_extent(trans, inode, em, path, ctx);
 
4989		write_lock(&tree->lock);
4990		clear_em_logging(inode, em);
4991		free_extent_map(em);
4992	}
4993	WARN_ON(!list_empty(&extents));
4994	write_unlock(&tree->lock);
 
4995
 
4996	if (!ret)
4997		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4998	if (ret)
4999		return ret;
5000
5001	/*
5002	 * We have logged all extents successfully, now make sure the commit of
5003	 * the current transaction waits for the ordered extents to complete
5004	 * before it commits and wipes out the log trees, otherwise we would
5005	 * lose data if an ordered extents completes after the transaction
5006	 * commits and a power failure happens after the transaction commit.
5007	 */
5008	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5009		list_del_init(&ordered->log_list);
5010		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5011
5012		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5013			spin_lock_irq(&inode->ordered_tree_lock);
5014			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5015				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5016				atomic_inc(&trans->transaction->pending_ordered);
5017			}
5018			spin_unlock_irq(&inode->ordered_tree_lock);
5019		}
5020		btrfs_put_ordered_extent(ordered);
5021	}
5022
5023	return 0;
5024}
5025
5026static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5027			     struct btrfs_path *path, u64 *size_ret)
5028{
5029	struct btrfs_key key;
5030	int ret;
5031
5032	key.objectid = btrfs_ino(inode);
5033	key.type = BTRFS_INODE_ITEM_KEY;
5034	key.offset = 0;
5035
5036	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5037	if (ret < 0) {
5038		return ret;
5039	} else if (ret > 0) {
5040		*size_ret = 0;
5041	} else {
5042		struct btrfs_inode_item *item;
5043
5044		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5045				      struct btrfs_inode_item);
5046		*size_ret = btrfs_inode_size(path->nodes[0], item);
5047		/*
5048		 * If the in-memory inode's i_size is smaller then the inode
5049		 * size stored in the btree, return the inode's i_size, so
5050		 * that we get a correct inode size after replaying the log
5051		 * when before a power failure we had a shrinking truncate
5052		 * followed by addition of a new name (rename / new hard link).
5053		 * Otherwise return the inode size from the btree, to avoid
5054		 * data loss when replaying a log due to previously doing a
5055		 * write that expands the inode's size and logging a new name
5056		 * immediately after.
5057		 */
5058		if (*size_ret > inode->vfs_inode.i_size)
5059			*size_ret = inode->vfs_inode.i_size;
5060	}
5061
5062	btrfs_release_path(path);
5063	return 0;
5064}
5065
5066/*
5067 * At the moment we always log all xattrs. This is to figure out at log replay
5068 * time which xattrs must have their deletion replayed. If a xattr is missing
5069 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070 * because if a xattr is deleted, the inode is fsynced and a power failure
5071 * happens, causing the log to be replayed the next time the fs is mounted,
5072 * we want the xattr to not exist anymore (same behaviour as other filesystems
5073 * with a journal, ext3/4, xfs, f2fs, etc).
5074 */
5075static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
 
5076				struct btrfs_inode *inode,
5077				struct btrfs_path *path,
5078				struct btrfs_path *dst_path,
5079				struct btrfs_log_ctx *ctx)
5080{
5081	struct btrfs_root *root = inode->root;
5082	int ret;
5083	struct btrfs_key key;
5084	const u64 ino = btrfs_ino(inode);
5085	int ins_nr = 0;
5086	int start_slot = 0;
5087	bool found_xattrs = false;
5088
5089	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5090		return 0;
5091
5092	key.objectid = ino;
5093	key.type = BTRFS_XATTR_ITEM_KEY;
5094	key.offset = 0;
5095
5096	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097	if (ret < 0)
5098		return ret;
5099
5100	while (true) {
5101		int slot = path->slots[0];
5102		struct extent_buffer *leaf = path->nodes[0];
5103		int nritems = btrfs_header_nritems(leaf);
5104
5105		if (slot >= nritems) {
5106			if (ins_nr > 0) {
 
 
5107				ret = copy_items(trans, inode, dst_path, path,
5108						 start_slot, ins_nr, 1, 0, ctx);
 
 
 
5109				if (ret < 0)
5110					return ret;
5111				ins_nr = 0;
5112			}
5113			ret = btrfs_next_leaf(root, path);
5114			if (ret < 0)
5115				return ret;
5116			else if (ret > 0)
5117				break;
5118			continue;
5119		}
5120
5121		btrfs_item_key_to_cpu(leaf, &key, slot);
5122		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5123			break;
5124
5125		if (ins_nr == 0)
5126			start_slot = slot;
5127		ins_nr++;
5128		path->slots[0]++;
5129		found_xattrs = true;
5130		cond_resched();
5131	}
5132	if (ins_nr > 0) {
 
 
5133		ret = copy_items(trans, inode, dst_path, path,
5134				 start_slot, ins_nr, 1, 0, ctx);
 
 
 
5135		if (ret < 0)
5136			return ret;
5137	}
5138
5139	if (!found_xattrs)
5140		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5141
5142	return 0;
5143}
5144
5145/*
5146 * When using the NO_HOLES feature if we punched a hole that causes the
5147 * deletion of entire leafs or all the extent items of the first leaf (the one
5148 * that contains the inode item and references) we may end up not processing
5149 * any extents, because there are no leafs with a generation matching the
5150 * current transaction that have extent items for our inode. So we need to find
5151 * if any holes exist and then log them. We also need to log holes after any
5152 * truncate operation that changes the inode's size.
5153 */
5154static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5155			   struct btrfs_inode *inode,
5156			   struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5157{
5158	struct btrfs_root *root = inode->root;
5159	struct btrfs_fs_info *fs_info = root->fs_info;
 
5160	struct btrfs_key key;
 
 
 
 
5161	const u64 ino = btrfs_ino(inode);
5162	const u64 i_size = i_size_read(&inode->vfs_inode);
5163	u64 prev_extent_end = 0;
5164	int ret;
5165
5166	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5167		return 0;
5168
5169	key.objectid = ino;
5170	key.type = BTRFS_EXTENT_DATA_KEY;
5171	key.offset = 0;
5172
5173	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5174	if (ret < 0)
5175		return ret;
5176
5177	while (true) {
5178		struct extent_buffer *leaf = path->nodes[0];
5179
5180		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5181			ret = btrfs_next_leaf(root, path);
5182			if (ret < 0)
5183				return ret;
5184			if (ret > 0) {
5185				ret = 0;
5186				break;
5187			}
5188			leaf = path->nodes[0];
5189		}
5190
5191		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5192		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5193			break;
 
 
 
 
5194
5195		/* We have a hole, log it. */
5196		if (prev_extent_end < key.offset) {
5197			const u64 hole_len = key.offset - prev_extent_end;
 
 
 
5198
5199			/*
5200			 * Release the path to avoid deadlocks with other code
5201			 * paths that search the root while holding locks on
5202			 * leafs from the log root.
5203			 */
5204			btrfs_release_path(path);
5205			ret = btrfs_insert_hole_extent(trans, root->log_root,
5206						       ino, prev_extent_end,
5207						       hole_len);
5208			if (ret < 0)
5209				return ret;
5210
5211			/*
5212			 * Search for the same key again in the root. Since it's
5213			 * an extent item and we are holding the inode lock, the
5214			 * key must still exist. If it doesn't just emit warning
5215			 * and return an error to fall back to a transaction
5216			 * commit.
5217			 */
5218			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5219			if (ret < 0)
5220				return ret;
5221			if (WARN_ON(ret > 0))
5222				return -ENOENT;
5223			leaf = path->nodes[0];
5224		}
5225
5226		prev_extent_end = btrfs_file_extent_end(path);
5227		path->slots[0]++;
5228		cond_resched();
 
 
 
5229	}
 
5230
5231	if (prev_extent_end < i_size) {
5232		u64 hole_len;
5233
5234		btrfs_release_path(path);
5235		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5236		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5237					       prev_extent_end, hole_len);
5238		if (ret < 0)
5239			return ret;
5240	}
5241
5242	return 0;
 
 
 
5243}
5244
5245/*
5246 * When we are logging a new inode X, check if it doesn't have a reference that
5247 * matches the reference from some other inode Y created in a past transaction
5248 * and that was renamed in the current transaction. If we don't do this, then at
5249 * log replay time we can lose inode Y (and all its files if it's a directory):
5250 *
5251 * mkdir /mnt/x
5252 * echo "hello world" > /mnt/x/foobar
5253 * sync
5254 * mv /mnt/x /mnt/y
5255 * mkdir /mnt/x                 # or touch /mnt/x
5256 * xfs_io -c fsync /mnt/x
5257 * <power fail>
5258 * mount fs, trigger log replay
5259 *
5260 * After the log replay procedure, we would lose the first directory and all its
5261 * files (file foobar).
5262 * For the case where inode Y is not a directory we simply end up losing it:
5263 *
5264 * echo "123" > /mnt/foo
5265 * sync
5266 * mv /mnt/foo /mnt/bar
5267 * echo "abc" > /mnt/foo
5268 * xfs_io -c fsync /mnt/foo
5269 * <power fail>
5270 *
5271 * We also need this for cases where a snapshot entry is replaced by some other
5272 * entry (file or directory) otherwise we end up with an unreplayable log due to
5273 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274 * if it were a regular entry:
5275 *
5276 * mkdir /mnt/x
5277 * btrfs subvolume snapshot /mnt /mnt/x/snap
5278 * btrfs subvolume delete /mnt/x/snap
5279 * rmdir /mnt/x
5280 * mkdir /mnt/x
5281 * fsync /mnt/x or fsync some new file inside it
5282 * <power fail>
5283 *
5284 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285 * the same transaction.
5286 */
5287static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5288					 const int slot,
5289					 const struct btrfs_key *key,
5290					 struct btrfs_inode *inode,
5291					 u64 *other_ino, u64 *other_parent)
5292{
5293	int ret;
5294	struct btrfs_path *search_path;
5295	char *name = NULL;
5296	u32 name_len = 0;
5297	u32 item_size = btrfs_item_size(eb, slot);
5298	u32 cur_offset = 0;
5299	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5300
5301	search_path = btrfs_alloc_path();
5302	if (!search_path)
5303		return -ENOMEM;
5304	search_path->search_commit_root = 1;
5305	search_path->skip_locking = 1;
5306
5307	while (cur_offset < item_size) {
5308		u64 parent;
5309		u32 this_name_len;
5310		u32 this_len;
5311		unsigned long name_ptr;
5312		struct btrfs_dir_item *di;
5313		struct fscrypt_str name_str;
5314
5315		if (key->type == BTRFS_INODE_REF_KEY) {
5316			struct btrfs_inode_ref *iref;
5317
5318			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5319			parent = key->offset;
5320			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5321			name_ptr = (unsigned long)(iref + 1);
5322			this_len = sizeof(*iref) + this_name_len;
5323		} else {
5324			struct btrfs_inode_extref *extref;
5325
5326			extref = (struct btrfs_inode_extref *)(ptr +
5327							       cur_offset);
5328			parent = btrfs_inode_extref_parent(eb, extref);
5329			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5330			name_ptr = (unsigned long)&extref->name;
5331			this_len = sizeof(*extref) + this_name_len;
5332		}
5333
5334		if (this_name_len > name_len) {
5335			char *new_name;
5336
5337			new_name = krealloc(name, this_name_len, GFP_NOFS);
5338			if (!new_name) {
5339				ret = -ENOMEM;
5340				goto out;
5341			}
5342			name_len = this_name_len;
5343			name = new_name;
5344		}
5345
5346		read_extent_buffer(eb, name, name_ptr, this_name_len);
5347
5348		name_str.name = name;
5349		name_str.len = this_name_len;
5350		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5351				parent, &name_str, 0);
5352		if (di && !IS_ERR(di)) {
5353			struct btrfs_key di_key;
5354
5355			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5356						  di, &di_key);
5357			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5358				if (di_key.objectid != key->objectid) {
5359					ret = 1;
5360					*other_ino = di_key.objectid;
5361					*other_parent = parent;
5362				} else {
5363					ret = 0;
5364				}
5365			} else {
5366				ret = -EAGAIN;
5367			}
5368			goto out;
5369		} else if (IS_ERR(di)) {
5370			ret = PTR_ERR(di);
5371			goto out;
5372		}
5373		btrfs_release_path(search_path);
5374
5375		cur_offset += this_len;
5376	}
5377	ret = 0;
5378out:
5379	btrfs_free_path(search_path);
5380	kfree(name);
5381	return ret;
5382}
5383
5384/*
5385 * Check if we need to log an inode. This is used in contexts where while
5386 * logging an inode we need to log another inode (either that it exists or in
5387 * full mode). This is used instead of btrfs_inode_in_log() because the later
5388 * requires the inode to be in the log and have the log transaction committed,
5389 * while here we do not care if the log transaction was already committed - our
5390 * caller will commit the log later - and we want to avoid logging an inode
5391 * multiple times when multiple tasks have joined the same log transaction.
5392 */
5393static bool need_log_inode(const struct btrfs_trans_handle *trans,
5394			   struct btrfs_inode *inode)
5395{
5396	/*
5397	 * If a directory was not modified, no dentries added or removed, we can
5398	 * and should avoid logging it.
5399	 */
5400	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5401		return false;
5402
5403	/*
5404	 * If this inode does not have new/updated/deleted xattrs since the last
5405	 * time it was logged and is flagged as logged in the current transaction,
5406	 * we can skip logging it. As for new/deleted names, those are updated in
5407	 * the log by link/unlink/rename operations.
5408	 * In case the inode was logged and then evicted and reloaded, its
5409	 * logged_trans will be 0, in which case we have to fully log it since
5410	 * logged_trans is a transient field, not persisted.
5411	 */
5412	if (inode_logged(trans, inode, NULL) == 1 &&
5413	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5414		return false;
5415
5416	return true;
5417}
5418
5419struct btrfs_dir_list {
5420	u64 ino;
5421	struct list_head list;
5422};
5423
5424/*
5425 * Log the inodes of the new dentries of a directory.
5426 * See process_dir_items_leaf() for details about why it is needed.
5427 * This is a recursive operation - if an existing dentry corresponds to a
5428 * directory, that directory's new entries are logged too (same behaviour as
5429 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431 * complains about the following circular lock dependency / possible deadlock:
5432 *
5433 *        CPU0                                        CPU1
5434 *        ----                                        ----
5435 * lock(&type->i_mutex_dir_key#3/2);
5436 *                                            lock(sb_internal#2);
5437 *                                            lock(&type->i_mutex_dir_key#3/2);
5438 * lock(&sb->s_type->i_mutex_key#14);
5439 *
5440 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441 * sb_start_intwrite() in btrfs_start_transaction().
5442 * Not acquiring the VFS lock of the inodes is still safe because:
 
5443 *
5444 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445 *    that while logging the inode new references (names) are added or removed
5446 *    from the inode, leaving the logged inode item with a link count that does
5447 *    not match the number of logged inode reference items. This is fine because
5448 *    at log replay time we compute the real number of links and correct the
5449 *    link count in the inode item (see replay_one_buffer() and
5450 *    link_to_fixup_dir());
5451 *
5452 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453 *    while logging the inode's items new index items (key type
5454 *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455 *    has a size that doesn't match the sum of the lengths of all the logged
5456 *    names - this is ok, not a problem, because at log replay time we set the
5457 *    directory's i_size to the correct value (see replay_one_name() and
5458 *    overwrite_item()).
5459 */
5460static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5461				struct btrfs_inode *start_inode,
5462				struct btrfs_log_ctx *ctx)
 
 
 
5463{
5464	struct btrfs_root *root = start_inode->root;
5465	struct btrfs_path *path;
5466	LIST_HEAD(dir_list);
5467	struct btrfs_dir_list *dir_elem;
5468	u64 ino = btrfs_ino(start_inode);
5469	struct btrfs_inode *curr_inode = start_inode;
5470	int ret = 0;
5471
5472	/*
5473	 * If we are logging a new name, as part of a link or rename operation,
5474	 * don't bother logging new dentries, as we just want to log the names
5475	 * of an inode and that any new parents exist.
5476	 */
5477	if (ctx->logging_new_name)
5478		return 0;
 
 
 
 
5479
5480	path = btrfs_alloc_path();
5481	if (!path)
5482		return -ENOMEM;
5483
5484	/* Pairs with btrfs_add_delayed_iput below. */
5485	ihold(&curr_inode->vfs_inode);
5486
5487	while (true) {
5488		struct inode *vfs_inode;
5489		struct btrfs_key key;
5490		struct btrfs_key found_key;
5491		u64 next_index;
5492		bool continue_curr_inode = true;
5493		int iter_ret;
5494
5495		key.objectid = ino;
5496		key.type = BTRFS_DIR_INDEX_KEY;
5497		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5498		next_index = key.offset;
5499again:
5500		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5501			struct extent_buffer *leaf = path->nodes[0];
5502			struct btrfs_dir_item *di;
5503			struct btrfs_key di_key;
5504			struct inode *di_inode;
5505			int log_mode = LOG_INODE_EXISTS;
5506			int type;
5507
5508			if (found_key.objectid != ino ||
5509			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5510				continue_curr_inode = false;
5511				break;
5512			}
5513
5514			next_index = found_key.offset + 1;
5515
5516			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5517			type = btrfs_dir_ftype(leaf, di);
5518			if (btrfs_dir_transid(leaf, di) < trans->transid)
5519				continue;
5520			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5521			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5522				continue;
5523
5524			btrfs_release_path(path);
5525			di_inode = btrfs_iget_logging(di_key.objectid, root);
5526			if (IS_ERR(di_inode)) {
5527				ret = PTR_ERR(di_inode);
5528				goto out;
5529			}
5530
5531			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5532				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5533				break;
5534			}
5535
5536			ctx->log_new_dentries = false;
5537			if (type == BTRFS_FT_DIR)
5538				log_mode = LOG_INODE_ALL;
5539			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5540					      log_mode, ctx);
5541			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5542			if (ret)
5543				goto out;
5544			if (ctx->log_new_dentries) {
5545				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5546				if (!dir_elem) {
5547					ret = -ENOMEM;
5548					goto out;
5549				}
5550				dir_elem->ino = di_key.objectid;
5551				list_add_tail(&dir_elem->list, &dir_list);
5552			}
5553			break;
5554		}
5555
5556		btrfs_release_path(path);
5557
5558		if (iter_ret < 0) {
5559			ret = iter_ret;
5560			goto out;
5561		} else if (iter_ret > 0) {
5562			continue_curr_inode = false;
5563		} else {
5564			key = found_key;
5565		}
5566
5567		if (continue_curr_inode && key.offset < (u64)-1) {
5568			key.offset++;
5569			goto again;
5570		}
5571
5572		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5573
5574		if (list_empty(&dir_list))
5575			break;
5576
5577		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5578		ino = dir_elem->ino;
5579		list_del(&dir_elem->list);
5580		kfree(dir_elem);
5581
5582		btrfs_add_delayed_iput(curr_inode);
5583		curr_inode = NULL;
5584
5585		vfs_inode = btrfs_iget_logging(ino, root);
5586		if (IS_ERR(vfs_inode)) {
5587			ret = PTR_ERR(vfs_inode);
5588			break;
5589		}
5590		curr_inode = BTRFS_I(vfs_inode);
5591	}
5592out:
5593	btrfs_free_path(path);
5594	if (curr_inode)
5595		btrfs_add_delayed_iput(curr_inode);
5596
5597	if (ret) {
5598		struct btrfs_dir_list *next;
5599
5600		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5601			kfree(dir_elem);
5602	}
5603
5604	return ret;
5605}
5606
5607struct btrfs_ino_list {
5608	u64 ino;
5609	u64 parent;
5610	struct list_head list;
5611};
5612
5613static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5614{
5615	struct btrfs_ino_list *curr;
5616	struct btrfs_ino_list *next;
5617
5618	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5619		list_del(&curr->list);
5620		kfree(curr);
5621	}
5622}
5623
5624static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5625				    struct btrfs_path *path)
5626{
5627	struct btrfs_key key;
5628	int ret;
5629
5630	key.objectid = ino;
5631	key.type = BTRFS_INODE_ITEM_KEY;
5632	key.offset = 0;
5633
5634	path->search_commit_root = 1;
5635	path->skip_locking = 1;
5636
5637	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638	if (WARN_ON_ONCE(ret > 0)) {
5639		/*
5640		 * We have previously found the inode through the commit root
5641		 * so this should not happen. If it does, just error out and
5642		 * fallback to a transaction commit.
5643		 */
5644		ret = -ENOENT;
5645	} else if (ret == 0) {
5646		struct btrfs_inode_item *item;
5647
5648		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5649				      struct btrfs_inode_item);
5650		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5651			ret = 1;
5652	}
5653
5654	btrfs_release_path(path);
5655	path->search_commit_root = 0;
5656	path->skip_locking = 0;
5657
5658	return ret;
5659}
5660
5661static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5662				 struct btrfs_root *root,
5663				 struct btrfs_path *path,
5664				 u64 ino, u64 parent,
5665				 struct btrfs_log_ctx *ctx)
5666{
5667	struct btrfs_ino_list *ino_elem;
5668	struct inode *inode;
5669
5670	/*
5671	 * It's rare to have a lot of conflicting inodes, in practice it is not
5672	 * common to have more than 1 or 2. We don't want to collect too many,
5673	 * as we could end up logging too many inodes (even if only in
5674	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5675	 * commits.
5676	 */
5677	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5678		return BTRFS_LOG_FORCE_COMMIT;
5679
5680	inode = btrfs_iget_logging(ino, root);
5681	/*
5682	 * If the other inode that had a conflicting dir entry was deleted in
5683	 * the current transaction then we either:
5684	 *
5685	 * 1) Log the parent directory (later after adding it to the list) if
5686	 *    the inode is a directory. This is because it may be a deleted
5687	 *    subvolume/snapshot or it may be a regular directory that had
5688	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5689	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5690	 *    during log replay. So we just log the parent, which will result in
5691	 *    a fallback to a transaction commit if we are dealing with those
5692	 *    cases (last_unlink_trans will match the current transaction);
5693	 *
5694	 * 2) Do nothing if it's not a directory. During log replay we simply
5695	 *    unlink the conflicting dentry from the parent directory and then
5696	 *    add the dentry for our inode. Like this we can avoid logging the
5697	 *    parent directory (and maybe fallback to a transaction commit in
5698	 *    case it has a last_unlink_trans == trans->transid, due to moving
5699	 *    some inode from it to some other directory).
5700	 */
5701	if (IS_ERR(inode)) {
5702		int ret = PTR_ERR(inode);
5703
5704		if (ret != -ENOENT)
5705			return ret;
5706
5707		ret = conflicting_inode_is_dir(root, ino, path);
5708		/* Not a directory or we got an error. */
5709		if (ret <= 0)
5710			return ret;
5711
5712		/* Conflicting inode is a directory, so we'll log its parent. */
5713		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5714		if (!ino_elem)
5715			return -ENOMEM;
5716		ino_elem->ino = ino;
5717		ino_elem->parent = parent;
5718		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5719		ctx->num_conflict_inodes++;
5720
5721		return 0;
 
 
 
5722	}
5723
5724	/*
5725	 * If the inode was already logged skip it - otherwise we can hit an
5726	 * infinite loop. Example:
5727	 *
5728	 * From the commit root (previous transaction) we have the following
5729	 * inodes:
5730	 *
5731	 * inode 257 a directory
5732	 * inode 258 with references "zz" and "zz_link" on inode 257
5733	 * inode 259 with reference "a" on inode 257
5734	 *
5735	 * And in the current (uncommitted) transaction we have:
5736	 *
5737	 * inode 257 a directory, unchanged
5738	 * inode 258 with references "a" and "a2" on inode 257
5739	 * inode 259 with reference "zz_link" on inode 257
5740	 * inode 261 with reference "zz" on inode 257
5741	 *
5742	 * When logging inode 261 the following infinite loop could
5743	 * happen if we don't skip already logged inodes:
5744	 *
5745	 * - we detect inode 258 as a conflicting inode, with inode 261
5746	 *   on reference "zz", and log it;
5747	 *
5748	 * - we detect inode 259 as a conflicting inode, with inode 258
5749	 *   on reference "a", and log it;
5750	 *
5751	 * - we detect inode 258 as a conflicting inode, with inode 259
5752	 *   on reference "zz_link", and log it - again! After this we
5753	 *   repeat the above steps forever.
5754	 *
5755	 * Here we can use need_log_inode() because we only need to log the
5756	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757	 * so that the log ends up with the new name and without the old name.
5758	 */
5759	if (!need_log_inode(trans, BTRFS_I(inode))) {
5760		btrfs_add_delayed_iput(BTRFS_I(inode));
5761		return 0;
5762	}
5763
5764	btrfs_add_delayed_iput(BTRFS_I(inode));
5765
5766	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5767	if (!ino_elem)
5768		return -ENOMEM;
5769	ino_elem->ino = ino;
5770	ino_elem->parent = parent;
5771	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5772	ctx->num_conflict_inodes++;
5773
5774	return 0;
5775}
5776
5777static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5778				  struct btrfs_root *root,
5779				  struct btrfs_log_ctx *ctx)
5780{
5781	int ret = 0;
5782
5783	/*
5784	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5786	 * calls. This check guarantees we can have only 1 level of recursion.
5787	 */
5788	if (ctx->logging_conflict_inodes)
5789		return 0;
5790
5791	ctx->logging_conflict_inodes = true;
5792
5793	/*
5794	 * New conflicting inodes may be found and added to the list while we
5795	 * are logging a conflicting inode, so keep iterating while the list is
5796	 * not empty.
5797	 */
5798	while (!list_empty(&ctx->conflict_inodes)) {
5799		struct btrfs_ino_list *curr;
5800		struct inode *inode;
5801		u64 ino;
5802		u64 parent;
5803
5804		curr = list_first_entry(&ctx->conflict_inodes,
5805					struct btrfs_ino_list, list);
5806		ino = curr->ino;
5807		parent = curr->parent;
5808		list_del(&curr->list);
5809		kfree(curr);
5810
5811		inode = btrfs_iget_logging(ino, root);
5812		/*
5813		 * If the other inode that had a conflicting dir entry was
5814		 * deleted in the current transaction, we need to log its parent
5815		 * directory. See the comment at add_conflicting_inode().
5816		 */
5817		if (IS_ERR(inode)) {
5818			ret = PTR_ERR(inode);
5819			if (ret != -ENOENT)
5820				break;
5821
5822			inode = btrfs_iget_logging(parent, root);
5823			if (IS_ERR(inode)) {
5824				ret = PTR_ERR(inode);
5825				break;
5826			}
5827
 
 
 
 
 
5828			/*
5829			 * Always log the directory, we cannot make this
5830			 * conditional on need_log_inode() because the directory
5831			 * might have been logged in LOG_INODE_EXISTS mode or
5832			 * the dir index of the conflicting inode is not in a
5833			 * dir index key range logged for the directory. So we
5834			 * must make sure the deletion is recorded.
 
 
 
 
 
5835			 */
5836			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5837					      LOG_INODE_ALL, ctx);
5838			btrfs_add_delayed_iput(BTRFS_I(inode));
5839			if (ret)
5840				break;
5841			continue;
5842		}
5843
5844		/*
5845		 * Here we can use need_log_inode() because we only need to log
5846		 * the inode in LOG_INODE_EXISTS mode and rename operations
5847		 * update the log, so that the log ends up with the new name and
5848		 * without the old name.
5849		 *
5850		 * We did this check at add_conflicting_inode(), but here we do
5851		 * it again because if some other task logged the inode after
5852		 * that, we can avoid doing it again.
5853		 */
5854		if (!need_log_inode(trans, BTRFS_I(inode))) {
5855			btrfs_add_delayed_iput(BTRFS_I(inode));
5856			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5857		}
5858
5859		/*
5860		 * We are safe logging the other inode without acquiring its
5861		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862		 * are safe against concurrent renames of the other inode as
5863		 * well because during a rename we pin the log and update the
5864		 * log with the new name before we unpin it.
5865		 */
5866		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5867		btrfs_add_delayed_iput(BTRFS_I(inode));
5868		if (ret)
5869			break;
5870	}
5871
5872	ctx->logging_conflict_inodes = false;
5873	if (ret)
5874		free_conflicting_inodes(ctx);
5875
5876	return ret;
5877}
5878
5879static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5880				   struct btrfs_inode *inode,
5881				   struct btrfs_key *min_key,
5882				   const struct btrfs_key *max_key,
5883				   struct btrfs_path *path,
5884				   struct btrfs_path *dst_path,
5885				   const u64 logged_isize,
5886				   const int inode_only,
5887				   struct btrfs_log_ctx *ctx,
5888				   bool *need_log_inode_item)
5889{
5890	const u64 i_size = i_size_read(&inode->vfs_inode);
5891	struct btrfs_root *root = inode->root;
5892	int ins_start_slot = 0;
5893	int ins_nr = 0;
5894	int ret;
5895
5896	while (1) {
5897		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5898		if (ret < 0)
5899			return ret;
5900		if (ret > 0) {
5901			ret = 0;
5902			break;
5903		}
 
 
5904again:
5905		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906		if (min_key->objectid != max_key->objectid)
5907			break;
5908		if (min_key->type > max_key->type)
5909			break;
5910
5911		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5912			*need_log_inode_item = false;
5913		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5914			   min_key->offset >= i_size) {
5915			/*
5916			 * Extents at and beyond eof are logged with
5917			 * btrfs_log_prealloc_extents().
5918			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919			 * and no keys greater than that, so bail out.
5920			 */
5921			break;
5922		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5923			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5924			   (inode->generation == trans->transid ||
5925			    ctx->logging_conflict_inodes)) {
5926			u64 other_ino = 0;
5927			u64 other_parent = 0;
5928
5929			ret = btrfs_check_ref_name_override(path->nodes[0],
5930					path->slots[0], min_key, inode,
5931					&other_ino, &other_parent);
5932			if (ret < 0) {
5933				return ret;
5934			} else if (ret > 0 &&
5935				   other_ino != btrfs_ino(ctx->inode)) {
 
 
 
 
5936				if (ins_nr > 0) {
5937					ins_nr++;
5938				} else {
5939					ins_nr = 1;
5940					ins_start_slot = path->slots[0];
5941				}
5942				ret = copy_items(trans, inode, dst_path, path,
5943						 ins_start_slot, ins_nr,
5944						 inode_only, logged_isize, ctx);
5945				if (ret < 0)
5946					return ret;
 
 
 
5947				ins_nr = 0;
5948
5949				btrfs_release_path(path);
5950				ret = add_conflicting_inode(trans, root, path,
5951							    other_ino,
5952							    other_parent, ctx);
5953				if (ret)
5954					return ret;
5955				goto next_key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5956			}
5957		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5958			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
 
 
5959			if (ins_nr == 0)
5960				goto next_slot;
5961			ret = copy_items(trans, inode, dst_path, path,
5962					 ins_start_slot,
5963					 ins_nr, inode_only, logged_isize, ctx);
5964			if (ret < 0)
5965				return ret;
 
 
5966			ins_nr = 0;
 
 
 
 
5967			goto next_slot;
5968		}
5969
5970		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5971			ins_nr++;
5972			goto next_slot;
5973		} else if (!ins_nr) {
5974			ins_start_slot = path->slots[0];
5975			ins_nr = 1;
5976			goto next_slot;
5977		}
5978
5979		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5980				 ins_nr, inode_only, logged_isize, ctx);
5981		if (ret < 0)
5982			return ret;
 
 
 
 
 
 
 
 
5983		ins_nr = 1;
5984		ins_start_slot = path->slots[0];
5985next_slot:
 
 
5986		path->slots[0]++;
5987		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5988			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5989					      path->slots[0]);
5990			goto again;
5991		}
5992		if (ins_nr) {
5993			ret = copy_items(trans, inode, dst_path, path,
5994					 ins_start_slot, ins_nr, inode_only,
5995					 logged_isize, ctx);
5996			if (ret < 0)
5997				return ret;
 
 
 
5998			ins_nr = 0;
5999		}
6000		btrfs_release_path(path);
6001next_key:
6002		if (min_key->offset < (u64)-1) {
6003			min_key->offset++;
6004		} else if (min_key->type < max_key->type) {
6005			min_key->type++;
6006			min_key->offset = 0;
6007		} else {
6008			break;
6009		}
6010
6011		/*
6012		 * We may process many leaves full of items for our inode, so
6013		 * avoid monopolizing a cpu for too long by rescheduling while
6014		 * not holding locks on any tree.
6015		 */
6016		cond_resched();
6017	}
6018	if (ins_nr) {
6019		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6020				 ins_nr, inode_only, logged_isize, ctx);
6021		if (ret)
6022			return ret;
 
 
 
 
 
6023	}
6024
6025	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6026		/*
6027		 * Release the path because otherwise we might attempt to double
6028		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6029		 */
 
 
6030		btrfs_release_path(path);
6031		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6032	}
6033
6034	return ret;
6035}
6036
6037static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6038				      struct btrfs_root *log,
6039				      struct btrfs_path *path,
6040				      const struct btrfs_item_batch *batch,
6041				      const struct btrfs_delayed_item *first_item)
6042{
6043	const struct btrfs_delayed_item *curr = first_item;
6044	int ret;
6045
6046	ret = btrfs_insert_empty_items(trans, log, path, batch);
6047	if (ret)
6048		return ret;
6049
6050	for (int i = 0; i < batch->nr; i++) {
6051		char *data_ptr;
6052
6053		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6054		write_extent_buffer(path->nodes[0], &curr->data,
6055				    (unsigned long)data_ptr, curr->data_len);
6056		curr = list_next_entry(curr, log_list);
6057		path->slots[0]++;
6058	}
6059
6060	btrfs_release_path(path);
6061
6062	return 0;
6063}
6064
6065static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6066				       struct btrfs_inode *inode,
6067				       struct btrfs_path *path,
6068				       const struct list_head *delayed_ins_list,
6069				       struct btrfs_log_ctx *ctx)
6070{
6071	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072	const int max_batch_size = 195;
6073	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6074	const u64 ino = btrfs_ino(inode);
6075	struct btrfs_root *log = inode->root->log_root;
6076	struct btrfs_item_batch batch = {
6077		.nr = 0,
6078		.total_data_size = 0,
6079	};
6080	const struct btrfs_delayed_item *first = NULL;
6081	const struct btrfs_delayed_item *curr;
6082	char *ins_data;
6083	struct btrfs_key *ins_keys;
6084	u32 *ins_sizes;
6085	u64 curr_batch_size = 0;
6086	int batch_idx = 0;
6087	int ret;
6088
6089	/* We are adding dir index items to the log tree. */
6090	lockdep_assert_held(&inode->log_mutex);
6091
6092	/*
6093	 * We collect delayed items before copying index keys from the subvolume
6094	 * to the log tree. However just after we collected them, they may have
6095	 * been flushed (all of them or just some of them), and therefore we
6096	 * could have copied them from the subvolume tree to the log tree.
6097	 * So find the first delayed item that was not yet logged (they are
6098	 * sorted by index number).
6099	 */
6100	list_for_each_entry(curr, delayed_ins_list, log_list) {
6101		if (curr->index > inode->last_dir_index_offset) {
6102			first = curr;
6103			break;
6104		}
 
 
6105	}
6106
6107	/* Empty list or all delayed items were already logged. */
6108	if (!first)
6109		return 0;
6110
6111	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6112			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6113	if (!ins_data)
6114		return -ENOMEM;
6115	ins_sizes = (u32 *)ins_data;
6116	batch.data_sizes = ins_sizes;
6117	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6118	batch.keys = ins_keys;
6119
6120	curr = first;
6121	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6122		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6123
6124		if (curr_batch_size + curr_size > leaf_data_size ||
6125		    batch.nr == max_batch_size) {
6126			ret = insert_delayed_items_batch(trans, log, path,
6127							 &batch, first);
6128			if (ret)
6129				goto out;
6130			batch_idx = 0;
6131			batch.nr = 0;
6132			batch.total_data_size = 0;
6133			curr_batch_size = 0;
6134			first = curr;
6135		}
6136
6137		ins_sizes[batch_idx] = curr->data_len;
6138		ins_keys[batch_idx].objectid = ino;
6139		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6140		ins_keys[batch_idx].offset = curr->index;
6141		curr_batch_size += curr_size;
6142		batch.total_data_size += curr->data_len;
6143		batch.nr++;
6144		batch_idx++;
6145		curr = list_next_entry(curr, log_list);
6146	}
6147
6148	ASSERT(batch.nr >= 1);
6149	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6150
6151	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6152			       log_list);
6153	inode->last_dir_index_offset = curr->index;
6154out:
6155	kfree(ins_data);
6156
6157	return ret;
6158}
6159
6160static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6161				      struct btrfs_inode *inode,
6162				      struct btrfs_path *path,
6163				      const struct list_head *delayed_del_list,
6164				      struct btrfs_log_ctx *ctx)
6165{
6166	const u64 ino = btrfs_ino(inode);
6167	const struct btrfs_delayed_item *curr;
6168
6169	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170				log_list);
6171
6172	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173		u64 first_dir_index = curr->index;
6174		u64 last_dir_index;
6175		const struct btrfs_delayed_item *next;
6176		int ret;
6177
6178		/*
6179		 * Find a range of consecutive dir index items to delete. Like
6180		 * this we log a single dir range item spanning several contiguous
6181		 * dir items instead of logging one range item per dir index item.
6182		 */
6183		next = list_next_entry(curr, log_list);
6184		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6185			if (next->index != curr->index + 1)
6186				break;
6187			curr = next;
6188			next = list_next_entry(next, log_list);
6189		}
 
 
6190
6191		last_dir_index = curr->index;
6192		ASSERT(last_dir_index >= first_dir_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6193
6194		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6195					 ino, first_dir_index, last_dir_index);
6196		if (ret)
6197			return ret;
6198		curr = list_next_entry(curr, log_list);
6199	}
6200
6201	return 0;
6202}
6203
6204static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6205					struct btrfs_inode *inode,
6206					struct btrfs_path *path,
6207					const struct list_head *delayed_del_list,
6208					const struct btrfs_delayed_item *first,
6209					const struct btrfs_delayed_item **last_ret)
6210{
6211	const struct btrfs_delayed_item *next;
6212	struct extent_buffer *leaf = path->nodes[0];
6213	const int last_slot = btrfs_header_nritems(leaf) - 1;
6214	int slot = path->slots[0] + 1;
6215	const u64 ino = btrfs_ino(inode);
6216
6217	next = list_next_entry(first, log_list);
6218
6219	while (slot < last_slot &&
6220	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6221		struct btrfs_key key;
6222
6223		btrfs_item_key_to_cpu(leaf, &key, slot);
6224		if (key.objectid != ino ||
6225		    key.type != BTRFS_DIR_INDEX_KEY ||
6226		    key.offset != next->index)
6227			break;
6228
6229		slot++;
6230		*last_ret = next;
6231		next = list_next_entry(next, log_list);
6232	}
6233
6234	return btrfs_del_items(trans, inode->root->log_root, path,
6235			       path->slots[0], slot - path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
6236}
6237
6238static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6239					     struct btrfs_inode *inode,
6240					     struct btrfs_path *path,
6241					     const struct list_head *delayed_del_list,
6242					     struct btrfs_log_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
6243{
6244	struct btrfs_root *log = inode->root->log_root;
6245	const struct btrfs_delayed_item *curr;
6246	u64 last_range_start = 0;
6247	u64 last_range_end = 0;
6248	struct btrfs_key key;
6249
6250	key.objectid = btrfs_ino(inode);
6251	key.type = BTRFS_DIR_INDEX_KEY;
6252	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6253				log_list);
6254
6255	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6256		const struct btrfs_delayed_item *last = curr;
6257		u64 first_dir_index = curr->index;
6258		u64 last_dir_index;
6259		bool deleted_items = false;
6260		int ret;
6261
6262		key.offset = curr->index;
6263		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6264		if (ret < 0) {
6265			return ret;
6266		} else if (ret == 0) {
6267			ret = batch_delete_dir_index_items(trans, inode, path,
6268							   delayed_del_list, curr,
6269							   &last);
6270			if (ret)
6271				return ret;
6272			deleted_items = true;
6273		}
6274
6275		btrfs_release_path(path);
6276
6277		/*
6278		 * If we deleted items from the leaf, it means we have a range
6279		 * item logging their range, so no need to add one or update an
6280		 * existing one. Otherwise we have to log a dir range item.
6281		 */
6282		if (deleted_items)
6283			goto next_batch;
6284
6285		last_dir_index = last->index;
6286		ASSERT(last_dir_index >= first_dir_index);
6287		/*
6288		 * If this range starts right after where the previous one ends,
6289		 * then we want to reuse the previous range item and change its
6290		 * end offset to the end of this range. This is just to minimize
6291		 * leaf space usage, by avoiding adding a new range item.
6292		 */
6293		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6294			first_dir_index = last_range_start;
6295
6296		ret = insert_dir_log_key(trans, log, path, key.objectid,
6297					 first_dir_index, last_dir_index);
6298		if (ret)
6299			return ret;
6300
6301		last_range_start = first_dir_index;
6302		last_range_end = last_dir_index;
6303next_batch:
6304		curr = list_next_entry(last, log_list);
6305	}
 
6306
6307	return 0;
6308}
6309
6310static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6311				      struct btrfs_inode *inode,
6312				      struct btrfs_path *path,
6313				      const struct list_head *delayed_del_list,
6314				      struct btrfs_log_ctx *ctx)
6315{
6316	/*
6317	 * We are deleting dir index items from the log tree or adding range
6318	 * items to it.
6319	 */
6320	lockdep_assert_held(&inode->log_mutex);
6321
6322	if (list_empty(delayed_del_list))
6323		return 0;
6324
6325	if (ctx->logged_before)
6326		return log_delayed_deletions_incremental(trans, inode, path,
6327							 delayed_del_list, ctx);
6328
6329	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6330					  ctx);
6331}
6332
6333/*
6334 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6335 * items instead of the subvolume tree.
6336 */
6337static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6338				    struct btrfs_inode *inode,
6339				    const struct list_head *delayed_ins_list,
6340				    struct btrfs_log_ctx *ctx)
 
 
 
6341{
6342	const bool orig_log_new_dentries = ctx->log_new_dentries;
6343	struct btrfs_delayed_item *item;
6344	int ret = 0;
 
 
6345
6346	/*
6347	 * No need for the log mutex, plus to avoid potential deadlocks or
6348	 * lockdep annotations due to nesting of delayed inode mutexes and log
6349	 * mutexes.
6350	 */
6351	lockdep_assert_not_held(&inode->log_mutex);
6352
6353	ASSERT(!ctx->logging_new_delayed_dentries);
6354	ctx->logging_new_delayed_dentries = true;
6355
6356	list_for_each_entry(item, delayed_ins_list, log_list) {
6357		struct btrfs_dir_item *dir_item;
6358		struct inode *di_inode;
6359		struct btrfs_key key;
6360		int log_mode = LOG_INODE_EXISTS;
6361
6362		dir_item = (struct btrfs_dir_item *)item->data;
6363		btrfs_disk_key_to_cpu(&key, &dir_item->location);
 
 
 
6364
6365		if (key.type == BTRFS_ROOT_ITEM_KEY)
6366			continue;
 
 
 
 
 
 
 
 
6367
6368		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6369		if (IS_ERR(di_inode)) {
6370			ret = PTR_ERR(di_inode);
6371			break;
6372		}
6373
6374		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6375			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6376			continue;
6377		}
6378
6379		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6380			log_mode = LOG_INODE_ALL;
6381
6382		ctx->log_new_dentries = false;
6383		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6384
6385		if (!ret && ctx->log_new_dentries)
6386			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6387
6388		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6389
6390		if (ret)
 
 
 
6391			break;
6392	}
6393
6394	ctx->log_new_dentries = orig_log_new_dentries;
6395	ctx->logging_new_delayed_dentries = false;
 
 
6396
 
 
 
6397	return ret;
6398}
6399
6400/* log a single inode in the tree log.
6401 * At least one parent directory for this inode must exist in the tree
6402 * or be logged already.
 
 
 
 
 
 
 
 
 
 
6403 *
6404 * Any items from this inode changed by the current transaction are copied
6405 * to the log tree.  An extra reference is taken on any extents in this
6406 * file, allowing us to avoid a whole pile of corner cases around logging
6407 * blocks that have been removed from the tree.
 
 
6408 *
6409 * See LOG_INODE_ALL and related defines for a description of what inode_only
6410 * does.
 
6411 *
6412 * This handles both files and directories.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6413 */
6414static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6415			   struct btrfs_inode *inode,
6416			   int inode_only,
6417			   struct btrfs_log_ctx *ctx)
6418{
 
 
6419	struct btrfs_path *path;
6420	struct btrfs_path *dst_path;
6421	struct btrfs_key min_key;
6422	struct btrfs_key max_key;
6423	struct btrfs_root *log = inode->root->log_root;
6424	int ret;
6425	bool fast_search = false;
6426	u64 ino = btrfs_ino(inode);
6427	struct extent_map_tree *em_tree = &inode->extent_tree;
6428	u64 logged_isize = 0;
6429	bool need_log_inode_item = true;
6430	bool xattrs_logged = false;
6431	bool inode_item_dropped = true;
6432	bool full_dir_logging = false;
6433	LIST_HEAD(delayed_ins_list);
6434	LIST_HEAD(delayed_del_list);
6435
6436	path = btrfs_alloc_path();
6437	if (!path)
6438		return -ENOMEM;
6439	dst_path = btrfs_alloc_path();
6440	if (!dst_path) {
 
6441		btrfs_free_path(path);
6442		return -ENOMEM;
6443	}
 
 
6444
6445	min_key.objectid = ino;
6446	min_key.type = BTRFS_INODE_ITEM_KEY;
6447	min_key.offset = 0;
6448
6449	max_key.objectid = ino;
6450
6451
6452	/* today the code can only do partial logging of directories */
6453	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6454	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6455		       &inode->runtime_flags) &&
6456	     inode_only >= LOG_INODE_EXISTS))
6457		max_key.type = BTRFS_XATTR_ITEM_KEY;
6458	else
6459		max_key.type = (u8)-1;
6460	max_key.offset = (u64)-1;
6461
6462	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6463		full_dir_logging = true;
6464
6465	/*
6466	 * If we are logging a directory while we are logging dentries of the
6467	 * delayed items of some other inode, then we need to flush the delayed
6468	 * items of this directory and not log the delayed items directly. This
6469	 * is to prevent more than one level of recursion into btrfs_log_inode()
6470	 * by having something like this:
6471	 *
6472	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6473	 *     $ xfs_io -c "fsync" a
6474	 *
6475	 * Where all directories in the path did not exist before and are
6476	 * created in the current transaction.
6477	 * So in such a case we directly log the delayed items of the main
6478	 * directory ("a") without flushing them first, while for each of its
6479	 * subdirectories we flush their delayed items before logging them.
6480	 * This prevents a potential unbounded recursion like this:
6481	 *
6482	 * btrfs_log_inode()
6483	 *   log_new_delayed_dentries()
6484	 *      btrfs_log_inode()
6485	 *        log_new_delayed_dentries()
6486	 *          btrfs_log_inode()
6487	 *            log_new_delayed_dentries()
6488	 *              (...)
6489	 *
6490	 * We have thresholds for the maximum number of delayed items to have in
6491	 * memory, and once they are hit, the items are flushed asynchronously.
6492	 * However the limit is quite high, so lets prevent deep levels of
6493	 * recursion to happen by limiting the maximum depth to be 1.
6494	 */
6495	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6496		ret = btrfs_commit_inode_delayed_items(trans, inode);
6497		if (ret)
6498			goto out;
6499	}
6500
6501	mutex_lock(&inode->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
6502
6503	/*
6504	 * For symlinks, we must always log their content, which is stored in an
6505	 * inline extent, otherwise we could end up with an empty symlink after
6506	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6507	 * one attempts to create an empty symlink).
6508	 * We don't need to worry about flushing delalloc, because when we create
6509	 * the inline extent when the symlink is created (we never have delalloc
6510	 * for symlinks).
6511	 */
6512	if (S_ISLNK(inode->vfs_inode.i_mode))
6513		inode_only = LOG_INODE_ALL;
6514
6515	/*
6516	 * Before logging the inode item, cache the value returned by
6517	 * inode_logged(), because after that we have the need to figure out if
6518	 * the inode was previously logged in this transaction.
6519	 */
6520	ret = inode_logged(trans, inode, path);
6521	if (ret < 0)
6522		goto out_unlock;
6523	ctx->logged_before = (ret == 1);
6524	ret = 0;
 
 
 
6525
6526	/*
6527	 * This is for cases where logging a directory could result in losing a
6528	 * a file after replaying the log. For example, if we move a file from a
6529	 * directory A to a directory B, then fsync directory A, we have no way
6530	 * to known the file was moved from A to B, so logging just A would
6531	 * result in losing the file after a log replay.
6532	 */
6533	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6534		ret = BTRFS_LOG_FORCE_COMMIT;
6535		goto out_unlock;
6536	}
6537
6538	/*
6539	 * a brute force approach to making sure we get the most uptodate
6540	 * copies of everything.
6541	 */
6542	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6543		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6544		if (ctx->logged_before)
6545			ret = drop_inode_items(trans, log, path, inode,
6546					       BTRFS_XATTR_ITEM_KEY);
6547	} else {
6548		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6549			/*
6550			 * Make sure the new inode item we write to the log has
6551			 * the same isize as the current one (if it exists).
6552			 * This is necessary to prevent data loss after log
6553			 * replay, and also to prevent doing a wrong expanding
6554			 * truncate - for e.g. create file, write 4K into offset
6555			 * 0, fsync, write 4K into offset 4096, add hard link,
6556			 * fsync some other file (to sync log), power fail - if
6557			 * we use the inode's current i_size, after log replay
6558			 * we get a 8Kb file, with the last 4Kb extent as a hole
6559			 * (zeroes), as if an expanding truncate happened,
6560			 * instead of getting a file of 4Kb only.
6561			 */
6562			ret = logged_inode_size(log, inode, path, &logged_isize);
6563			if (ret)
6564				goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
6565		}
6566		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6567			     &inode->runtime_flags)) {
6568			if (inode_only == LOG_INODE_EXISTS) {
6569				max_key.type = BTRFS_XATTR_ITEM_KEY;
6570				if (ctx->logged_before)
6571					ret = drop_inode_items(trans, log, path,
6572							       inode, max_key.type);
6573			} else {
6574				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6575					  &inode->runtime_flags);
6576				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6577					  &inode->runtime_flags);
6578				if (ctx->logged_before)
6579					ret = truncate_inode_items(trans, log,
6580								   inode, 0, 0);
6581			}
6582		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6583					      &inode->runtime_flags) ||
6584			   inode_only == LOG_INODE_EXISTS) {
6585			if (inode_only == LOG_INODE_ALL)
6586				fast_search = true;
6587			max_key.type = BTRFS_XATTR_ITEM_KEY;
6588			if (ctx->logged_before)
6589				ret = drop_inode_items(trans, log, path, inode,
6590						       max_key.type);
6591		} else {
6592			if (inode_only == LOG_INODE_ALL)
6593				fast_search = true;
6594			inode_item_dropped = false;
6595			goto log_extents;
6596		}
6597
6598	}
6599	if (ret)
6600		goto out_unlock;
6601
6602	/*
6603	 * If we are logging a directory in full mode, collect the delayed items
6604	 * before iterating the subvolume tree, so that we don't miss any new
6605	 * dir index items in case they get flushed while or right after we are
6606	 * iterating the subvolume tree.
6607	 */
6608	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6609		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6610					    &delayed_del_list);
6611
6612	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6613				      path, dst_path, logged_isize,
6614				      inode_only, ctx,
6615				      &need_log_inode_item);
6616	if (ret)
6617		goto out_unlock;
6618
6619	btrfs_release_path(path);
6620	btrfs_release_path(dst_path);
6621	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6622	if (ret)
6623		goto out_unlock;
6624	xattrs_logged = true;
6625	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6626		btrfs_release_path(path);
6627		btrfs_release_path(dst_path);
6628		ret = btrfs_log_holes(trans, inode, path);
6629		if (ret)
6630			goto out_unlock;
6631	}
6632log_extents:
6633	btrfs_release_path(path);
6634	btrfs_release_path(dst_path);
6635	if (need_log_inode_item) {
6636		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6637		if (ret)
6638			goto out_unlock;
6639		/*
6640		 * If we are doing a fast fsync and the inode was logged before
6641		 * in this transaction, we don't need to log the xattrs because
6642		 * they were logged before. If xattrs were added, changed or
6643		 * deleted since the last time we logged the inode, then we have
6644		 * already logged them because the inode had the runtime flag
6645		 * BTRFS_INODE_COPY_EVERYTHING set.
6646		 */
6647		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6648			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6649			if (ret)
6650				goto out_unlock;
6651			btrfs_release_path(path);
6652		}
 
 
 
6653	}
6654	if (fast_search) {
6655		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6656		if (ret)
6657			goto out_unlock;
6658	} else if (inode_only == LOG_INODE_ALL) {
6659		struct extent_map *em, *n;
6660
6661		write_lock(&em_tree->lock);
6662		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6663			list_del_init(&em->list);
6664		write_unlock(&em_tree->lock);
6665	}
6666
6667	if (full_dir_logging) {
6668		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6669		if (ret)
6670			goto out_unlock;
6671		ret = log_delayed_insertion_items(trans, inode, path,
6672						  &delayed_ins_list, ctx);
6673		if (ret)
6674			goto out_unlock;
6675		ret = log_delayed_deletion_items(trans, inode, path,
6676						 &delayed_del_list, ctx);
6677		if (ret)
6678			goto out_unlock;
6679	}
6680
6681	spin_lock(&inode->lock);
6682	inode->logged_trans = trans->transid;
6683	/*
6684	 * Don't update last_log_commit if we logged that an inode exists.
6685	 * We do this for three reasons:
6686	 *
6687	 * 1) We might have had buffered writes to this inode that were
6688	 *    flushed and had their ordered extents completed in this
6689	 *    transaction, but we did not previously log the inode with
6690	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6691	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6692	 *    happened. We must make sure that if an explicit fsync against
6693	 *    the inode is performed later, it logs the new extents, an
6694	 *    updated inode item, etc, and syncs the log. The same logic
6695	 *    applies to direct IO writes instead of buffered writes.
6696	 *
6697	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6698	 *    is logged with an i_size of 0 or whatever value was logged
6699	 *    before. If later the i_size of the inode is increased by a
6700	 *    truncate operation, the log is synced through an fsync of
6701	 *    some other inode and then finally an explicit fsync against
6702	 *    this inode is made, we must make sure this fsync logs the
6703	 *    inode with the new i_size, the hole between old i_size and
6704	 *    the new i_size, and syncs the log.
6705	 *
6706	 * 3) If we are logging that an ancestor inode exists as part of
6707	 *    logging a new name from a link or rename operation, don't update
6708	 *    its last_log_commit - otherwise if an explicit fsync is made
6709	 *    against an ancestor, the fsync considers the inode in the log
6710	 *    and doesn't sync the log, resulting in the ancestor missing after
6711	 *    a power failure unless the log was synced as part of an fsync
6712	 *    against any other unrelated inode.
6713	 */
6714	if (inode_only != LOG_INODE_EXISTS)
6715		inode->last_log_commit = inode->last_sub_trans;
6716	spin_unlock(&inode->lock);
6717
6718	/*
6719	 * Reset the last_reflink_trans so that the next fsync does not need to
6720	 * go through the slower path when logging extents and their checksums.
6721	 */
6722	if (inode_only == LOG_INODE_ALL)
6723		inode->last_reflink_trans = 0;
6724
6725out_unlock:
6726	mutex_unlock(&inode->log_mutex);
6727out:
6728	btrfs_free_path(path);
6729	btrfs_free_path(dst_path);
6730
6731	if (ret)
6732		free_conflicting_inodes(ctx);
6733	else
6734		ret = log_conflicting_inodes(trans, inode->root, ctx);
6735
6736	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6737		if (!ret)
6738			ret = log_new_delayed_dentries(trans, inode,
6739						       &delayed_ins_list, ctx);
6740
6741		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6742					    &delayed_del_list);
6743	}
6744
6745	return ret;
6746}
6747
6748static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6749				 struct btrfs_inode *inode,
6750				 struct btrfs_log_ctx *ctx)
6751{
 
6752	int ret;
6753	struct btrfs_path *path;
6754	struct btrfs_key key;
6755	struct btrfs_root *root = inode->root;
6756	const u64 ino = btrfs_ino(inode);
6757
6758	path = btrfs_alloc_path();
6759	if (!path)
6760		return -ENOMEM;
6761	path->skip_locking = 1;
6762	path->search_commit_root = 1;
6763
6764	key.objectid = ino;
6765	key.type = BTRFS_INODE_REF_KEY;
6766	key.offset = 0;
6767	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6768	if (ret < 0)
6769		goto out;
6770
6771	while (true) {
6772		struct extent_buffer *leaf = path->nodes[0];
6773		int slot = path->slots[0];
6774		u32 cur_offset = 0;
6775		u32 item_size;
6776		unsigned long ptr;
6777
6778		if (slot >= btrfs_header_nritems(leaf)) {
6779			ret = btrfs_next_leaf(root, path);
6780			if (ret < 0)
6781				goto out;
6782			else if (ret > 0)
6783				break;
6784			continue;
6785		}
6786
6787		btrfs_item_key_to_cpu(leaf, &key, slot);
6788		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6789		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6790			break;
6791
6792		item_size = btrfs_item_size(leaf, slot);
6793		ptr = btrfs_item_ptr_offset(leaf, slot);
6794		while (cur_offset < item_size) {
6795			struct btrfs_key inode_key;
6796			struct inode *dir_inode;
6797
6798			inode_key.type = BTRFS_INODE_ITEM_KEY;
6799			inode_key.offset = 0;
6800
6801			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6802				struct btrfs_inode_extref *extref;
6803
6804				extref = (struct btrfs_inode_extref *)
6805					(ptr + cur_offset);
6806				inode_key.objectid = btrfs_inode_extref_parent(
6807					leaf, extref);
6808				cur_offset += sizeof(*extref);
6809				cur_offset += btrfs_inode_extref_name_len(leaf,
6810					extref);
6811			} else {
6812				inode_key.objectid = key.offset;
6813				cur_offset = item_size;
6814			}
6815
6816			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6817			/*
6818			 * If the parent inode was deleted, return an error to
6819			 * fallback to a transaction commit. This is to prevent
6820			 * getting an inode that was moved from one parent A to
6821			 * a parent B, got its former parent A deleted and then
6822			 * it got fsync'ed, from existing at both parents after
6823			 * a log replay (and the old parent still existing).
6824			 * Example:
6825			 *
6826			 * mkdir /mnt/A
6827			 * mkdir /mnt/B
6828			 * touch /mnt/B/bar
6829			 * sync
6830			 * mv /mnt/B/bar /mnt/A/bar
6831			 * mv -T /mnt/A /mnt/B
6832			 * fsync /mnt/B/bar
6833			 * <power fail>
6834			 *
6835			 * If we ignore the old parent B which got deleted,
6836			 * after a log replay we would have file bar linked
6837			 * at both parents and the old parent B would still
6838			 * exist.
6839			 */
6840			if (IS_ERR(dir_inode)) {
6841				ret = PTR_ERR(dir_inode);
6842				goto out;
6843			}
6844
6845			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6846				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6847				continue;
6848			}
6849
6850			ctx->log_new_dentries = false;
6851			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6852					      LOG_INODE_ALL, ctx);
6853			if (!ret && ctx->log_new_dentries)
6854				ret = log_new_dir_dentries(trans,
 
 
 
 
6855						   BTRFS_I(dir_inode), ctx);
6856			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6857			if (ret)
6858				goto out;
6859		}
6860		path->slots[0]++;
6861	}
6862	ret = 0;
6863out:
6864	btrfs_free_path(path);
6865	return ret;
6866}
6867
6868static int log_new_ancestors(struct btrfs_trans_handle *trans,
6869			     struct btrfs_root *root,
6870			     struct btrfs_path *path,
6871			     struct btrfs_log_ctx *ctx)
6872{
6873	struct btrfs_key found_key;
6874
6875	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6876
6877	while (true) {
6878		struct extent_buffer *leaf;
6879		int slot;
6880		struct btrfs_key search_key;
6881		struct inode *inode;
6882		u64 ino;
6883		int ret = 0;
6884
6885		btrfs_release_path(path);
6886
6887		ino = found_key.offset;
6888
6889		search_key.objectid = found_key.offset;
6890		search_key.type = BTRFS_INODE_ITEM_KEY;
6891		search_key.offset = 0;
6892		inode = btrfs_iget_logging(ino, root);
6893		if (IS_ERR(inode))
6894			return PTR_ERR(inode);
6895
6896		if (BTRFS_I(inode)->generation >= trans->transid &&
6897		    need_log_inode(trans, BTRFS_I(inode)))
6898			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6899					      LOG_INODE_EXISTS, ctx);
6900		btrfs_add_delayed_iput(BTRFS_I(inode));
6901		if (ret)
6902			return ret;
6903
6904		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6905			break;
6906
6907		search_key.type = BTRFS_INODE_REF_KEY;
6908		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6909		if (ret < 0)
6910			return ret;
6911
6912		leaf = path->nodes[0];
6913		slot = path->slots[0];
6914		if (slot >= btrfs_header_nritems(leaf)) {
6915			ret = btrfs_next_leaf(root, path);
6916			if (ret < 0)
6917				return ret;
6918			else if (ret > 0)
6919				return -ENOENT;
6920			leaf = path->nodes[0];
6921			slot = path->slots[0];
6922		}
6923
6924		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6925		if (found_key.objectid != search_key.objectid ||
6926		    found_key.type != BTRFS_INODE_REF_KEY)
6927			return -ENOENT;
6928	}
6929	return 0;
6930}
6931
6932static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6933				  struct btrfs_inode *inode,
6934				  struct dentry *parent,
6935				  struct btrfs_log_ctx *ctx)
6936{
6937	struct btrfs_root *root = inode->root;
6938	struct dentry *old_parent = NULL;
6939	struct super_block *sb = inode->vfs_inode.i_sb;
6940	int ret = 0;
6941
6942	while (true) {
6943		if (!parent || d_really_is_negative(parent) ||
6944		    sb != parent->d_sb)
6945			break;
6946
6947		inode = BTRFS_I(d_inode(parent));
6948		if (root != inode->root)
6949			break;
6950
6951		if (inode->generation >= trans->transid &&
6952		    need_log_inode(trans, inode)) {
6953			ret = btrfs_log_inode(trans, inode,
6954					      LOG_INODE_EXISTS, ctx);
6955			if (ret)
6956				break;
6957		}
6958		if (IS_ROOT(parent))
6959			break;
6960
6961		parent = dget_parent(parent);
6962		dput(old_parent);
6963		old_parent = parent;
6964	}
6965	dput(old_parent);
6966
6967	return ret;
6968}
6969
6970static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6971				 struct btrfs_inode *inode,
6972				 struct dentry *parent,
6973				 struct btrfs_log_ctx *ctx)
6974{
6975	struct btrfs_root *root = inode->root;
6976	const u64 ino = btrfs_ino(inode);
6977	struct btrfs_path *path;
6978	struct btrfs_key search_key;
6979	int ret;
6980
6981	/*
6982	 * For a single hard link case, go through a fast path that does not
6983	 * need to iterate the fs/subvolume tree.
6984	 */
6985	if (inode->vfs_inode.i_nlink < 2)
6986		return log_new_ancestors_fast(trans, inode, parent, ctx);
6987
6988	path = btrfs_alloc_path();
6989	if (!path)
6990		return -ENOMEM;
6991
6992	search_key.objectid = ino;
6993	search_key.type = BTRFS_INODE_REF_KEY;
6994	search_key.offset = 0;
6995again:
6996	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6997	if (ret < 0)
6998		goto out;
6999	if (ret == 0)
7000		path->slots[0]++;
7001
7002	while (true) {
7003		struct extent_buffer *leaf = path->nodes[0];
7004		int slot = path->slots[0];
7005		struct btrfs_key found_key;
7006
7007		if (slot >= btrfs_header_nritems(leaf)) {
7008			ret = btrfs_next_leaf(root, path);
7009			if (ret < 0)
7010				goto out;
7011			else if (ret > 0)
7012				break;
7013			continue;
7014		}
7015
7016		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7017		if (found_key.objectid != ino ||
7018		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7019			break;
7020
7021		/*
7022		 * Don't deal with extended references because they are rare
7023		 * cases and too complex to deal with (we would need to keep
7024		 * track of which subitem we are processing for each item in
7025		 * this loop, etc). So just return some error to fallback to
7026		 * a transaction commit.
7027		 */
7028		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7029			ret = -EMLINK;
7030			goto out;
7031		}
7032
7033		/*
7034		 * Logging ancestors needs to do more searches on the fs/subvol
7035		 * tree, so it releases the path as needed to avoid deadlocks.
7036		 * Keep track of the last inode ref key and resume from that key
7037		 * after logging all new ancestors for the current hard link.
7038		 */
7039		memcpy(&search_key, &found_key, sizeof(search_key));
7040
7041		ret = log_new_ancestors(trans, root, path, ctx);
7042		if (ret)
7043			goto out;
7044		btrfs_release_path(path);
7045		goto again;
7046	}
7047	ret = 0;
7048out:
7049	btrfs_free_path(path);
7050	return ret;
7051}
7052
7053/*
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log.  A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7058 */
7059static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7060				  struct btrfs_inode *inode,
7061				  struct dentry *parent,
 
 
7062				  int inode_only,
7063				  struct btrfs_log_ctx *ctx)
7064{
7065	struct btrfs_root *root = inode->root;
7066	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
7067	int ret = 0;
 
7068	bool log_dentries = false;
 
 
 
7069
7070	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7071		ret = BTRFS_LOG_FORCE_COMMIT;
7072		goto end_no_trans;
7073	}
7074
7075	if (btrfs_root_refs(&root->root_item) == 0) {
7076		ret = BTRFS_LOG_FORCE_COMMIT;
 
 
 
 
 
7077		goto end_no_trans;
7078	}
7079
7080	/*
7081	 * If we're logging an inode from a subvolume created in the current
7082	 * transaction we must force a commit since the root is not persisted.
7083	 */
7084	if (btrfs_root_generation(&root->root_item) == trans->transid) {
7085		ret = BTRFS_LOG_FORCE_COMMIT;
7086		goto end_no_trans;
7087	}
7088
7089	/*
7090	 * Skip already logged inodes or inodes corresponding to tmpfiles
7091	 * (since logging them is pointless, a link count of 0 means they
7092	 * will never be accessible).
7093	 */
7094	if ((btrfs_inode_in_log(inode, trans->transid) &&
7095	     list_empty(&ctx->ordered_extents)) ||
7096	    inode->vfs_inode.i_nlink == 0) {
7097		ret = BTRFS_NO_LOG_SYNC;
7098		goto end_no_trans;
7099	}
7100
7101	ret = start_log_trans(trans, root, ctx);
7102	if (ret)
7103		goto end_no_trans;
7104
7105	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7106	if (ret)
7107		goto end_trans;
7108
7109	/*
7110	 * for regular files, if its inode is already on disk, we don't
7111	 * have to worry about the parents at all.  This is because
7112	 * we can use the last_unlink_trans field to record renames
7113	 * and other fun in this file.
7114	 */
7115	if (S_ISREG(inode->vfs_inode.i_mode) &&
7116	    inode->generation < trans->transid &&
7117	    inode->last_unlink_trans < trans->transid) {
7118		ret = 0;
7119		goto end_trans;
7120	}
7121
7122	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7123		log_dentries = true;
7124
7125	/*
7126	 * On unlink we must make sure all our current and old parent directory
7127	 * inodes are fully logged. This is to prevent leaving dangling
7128	 * directory index entries in directories that were our parents but are
7129	 * not anymore. Not doing this results in old parent directory being
7130	 * impossible to delete after log replay (rmdir will always fail with
7131	 * error -ENOTEMPTY).
7132	 *
7133	 * Example 1:
7134	 *
7135	 * mkdir testdir
7136	 * touch testdir/foo
7137	 * ln testdir/foo testdir/bar
7138	 * sync
7139	 * unlink testdir/bar
7140	 * xfs_io -c fsync testdir/foo
7141	 * <power failure>
7142	 * mount fs, triggers log replay
7143	 *
7144	 * If we don't log the parent directory (testdir), after log replay the
7145	 * directory still has an entry pointing to the file inode using the bar
7146	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7147	 * the file inode has a link count of 1.
7148	 *
7149	 * Example 2:
7150	 *
7151	 * mkdir testdir
7152	 * touch foo
7153	 * ln foo testdir/foo2
7154	 * ln foo testdir/foo3
7155	 * sync
7156	 * unlink testdir/foo3
7157	 * xfs_io -c fsync foo
7158	 * <power failure>
7159	 * mount fs, triggers log replay
7160	 *
7161	 * Similar as the first example, after log replay the parent directory
7162	 * testdir still has an entry pointing to the inode file with name foo3
7163	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7164	 * and has a link count of 2.
7165	 */
7166	if (inode->last_unlink_trans >= trans->transid) {
7167		ret = btrfs_log_all_parents(trans, inode, ctx);
7168		if (ret)
7169			goto end_trans;
7170	}
7171
7172	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7173	if (ret)
7174		goto end_trans;
 
 
 
 
7175
 
 
 
 
 
 
 
 
 
 
 
 
 
7176	if (log_dentries)
7177		ret = log_new_dir_dentries(trans, inode, ctx);
7178	else
7179		ret = 0;
7180end_trans:
 
7181	if (ret < 0) {
7182		btrfs_set_log_full_commit(trans);
7183		ret = BTRFS_LOG_FORCE_COMMIT;
7184	}
7185
7186	if (ret)
7187		btrfs_remove_log_ctx(root, ctx);
7188	btrfs_end_log_trans(root);
7189end_no_trans:
7190	return ret;
7191}
7192
7193/*
7194 * it is not safe to log dentry if the chunk root has added new
7195 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7196 * If this returns 1, you must commit the transaction to safely get your
7197 * data on disk.
7198 */
7199int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7200			  struct dentry *dentry,
 
 
7201			  struct btrfs_log_ctx *ctx)
7202{
7203	struct dentry *parent = dget_parent(dentry);
7204	int ret;
7205
7206	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7207				     LOG_INODE_ALL, ctx);
7208	dput(parent);
7209
7210	return ret;
7211}
7212
7213/*
7214 * should be called during mount to recover any replay any log trees
7215 * from the FS
7216 */
7217int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7218{
7219	int ret;
7220	struct btrfs_path *path;
7221	struct btrfs_trans_handle *trans;
7222	struct btrfs_key key;
7223	struct btrfs_key found_key;
 
7224	struct btrfs_root *log;
7225	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7226	struct walk_control wc = {
7227		.process_func = process_one_buffer,
7228		.stage = LOG_WALK_PIN_ONLY,
7229	};
7230
7231	path = btrfs_alloc_path();
7232	if (!path)
7233		return -ENOMEM;
7234
7235	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7236
7237	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7238	if (IS_ERR(trans)) {
7239		ret = PTR_ERR(trans);
7240		goto error;
7241	}
7242
7243	wc.trans = trans;
7244	wc.pin = 1;
7245
7246	ret = walk_log_tree(trans, log_root_tree, &wc);
7247	if (ret) {
7248		btrfs_abort_transaction(trans, ret);
 
7249		goto error;
7250	}
7251
7252again:
7253	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7254	key.offset = (u64)-1;
7255	key.type = BTRFS_ROOT_ITEM_KEY;
7256
7257	while (1) {
7258		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7259
7260		if (ret < 0) {
7261			btrfs_abort_transaction(trans, ret);
 
7262			goto error;
7263		}
7264		if (ret > 0) {
7265			if (path->slots[0] == 0)
7266				break;
7267			path->slots[0]--;
7268		}
7269		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7270				      path->slots[0]);
7271		btrfs_release_path(path);
7272		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7273			break;
7274
7275		log = btrfs_read_tree_root(log_root_tree, &found_key);
7276		if (IS_ERR(log)) {
7277			ret = PTR_ERR(log);
7278			btrfs_abort_transaction(trans, ret);
 
7279			goto error;
7280		}
7281
7282		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7283						   true);
 
 
 
7284		if (IS_ERR(wc.replay_dest)) {
7285			ret = PTR_ERR(wc.replay_dest);
7286
7287			/*
7288			 * We didn't find the subvol, likely because it was
7289			 * deleted.  This is ok, simply skip this log and go to
7290			 * the next one.
7291			 *
7292			 * We need to exclude the root because we can't have
7293			 * other log replays overwriting this log as we'll read
7294			 * it back in a few more times.  This will keep our
7295			 * block from being modified, and we'll just bail for
7296			 * each subsequent pass.
7297			 */
7298			if (ret == -ENOENT)
7299				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7300			btrfs_put_root(log);
7301
7302			if (!ret)
7303				goto next;
7304			btrfs_abort_transaction(trans, ret);
7305			goto error;
7306		}
7307
7308		wc.replay_dest->log_root = log;
7309		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7310		if (ret)
7311			/* The loop needs to continue due to the root refs */
7312			btrfs_abort_transaction(trans, ret);
7313		else
7314			ret = walk_log_tree(trans, log, &wc);
7315
7316		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7317			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7318						      path);
7319			if (ret)
7320				btrfs_abort_transaction(trans, ret);
7321		}
7322
7323		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7324			struct btrfs_root *root = wc.replay_dest;
7325
7326			btrfs_release_path(path);
7327
7328			/*
7329			 * We have just replayed everything, and the highest
7330			 * objectid of fs roots probably has changed in case
7331			 * some inode_item's got replayed.
7332			 *
7333			 * root->objectid_mutex is not acquired as log replay
7334			 * could only happen during mount.
7335			 */
7336			ret = btrfs_init_root_free_objectid(root);
7337			if (ret)
7338				btrfs_abort_transaction(trans, ret);
7339		}
7340
 
7341		wc.replay_dest->log_root = NULL;
7342		btrfs_put_root(wc.replay_dest);
7343		btrfs_put_root(log);
 
7344
7345		if (ret)
7346			goto error;
7347next:
7348		if (found_key.offset == 0)
7349			break;
7350		key.offset = found_key.offset - 1;
7351	}
7352	btrfs_release_path(path);
7353
7354	/* step one is to pin it all, step two is to replay just inodes */
7355	if (wc.pin) {
7356		wc.pin = 0;
7357		wc.process_func = replay_one_buffer;
7358		wc.stage = LOG_WALK_REPLAY_INODES;
7359		goto again;
7360	}
7361	/* step three is to replay everything */
7362	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7363		wc.stage++;
7364		goto again;
7365	}
7366
7367	btrfs_free_path(path);
7368
7369	/* step 4: commit the transaction, which also unpins the blocks */
7370	ret = btrfs_commit_transaction(trans);
7371	if (ret)
7372		return ret;
7373
 
7374	log_root_tree->log_root = NULL;
7375	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7376	btrfs_put_root(log_root_tree);
7377
7378	return 0;
7379error:
7380	if (wc.trans)
7381		btrfs_end_transaction(wc.trans);
7382	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7383	btrfs_free_path(path);
7384	return ret;
7385}
7386
7387/*
7388 * there are some corner cases where we want to force a full
7389 * commit instead of allowing a directory to be logged.
7390 *
7391 * They revolve around files there were unlinked from the directory, and
7392 * this function updates the parent directory so that a full commit is
7393 * properly done if it is fsync'd later after the unlinks are done.
7394 *
7395 * Must be called before the unlink operations (updates to the subvolume tree,
7396 * inodes, etc) are done.
7397 */
7398void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7399			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7400			     bool for_rename)
7401{
7402	/*
7403	 * when we're logging a file, if it hasn't been renamed
7404	 * or unlinked, and its inode is fully committed on disk,
7405	 * we don't have to worry about walking up the directory chain
7406	 * to log its parents.
7407	 *
7408	 * So, we use the last_unlink_trans field to put this transid
7409	 * into the file.  When the file is logged we check it and
7410	 * don't log the parents if the file is fully on disk.
7411	 */
7412	mutex_lock(&inode->log_mutex);
7413	inode->last_unlink_trans = trans->transid;
7414	mutex_unlock(&inode->log_mutex);
7415
7416	if (!for_rename)
7417		return;
7418
7419	/*
7420	 * If this directory was already logged, any new names will be logged
7421	 * with btrfs_log_new_name() and old names will be deleted from the log
7422	 * tree with btrfs_del_dir_entries_in_log() or with
7423	 * btrfs_del_inode_ref_in_log().
7424	 */
7425	if (inode_logged(trans, dir, NULL) == 1)
 
7426		return;
7427
7428	/*
7429	 * If the inode we're about to unlink was logged before, the log will be
7430	 * properly updated with the new name with btrfs_log_new_name() and the
7431	 * old name removed with btrfs_del_dir_entries_in_log() or with
7432	 * btrfs_del_inode_ref_in_log().
7433	 */
7434	if (inode_logged(trans, inode, NULL) == 1)
7435		return;
7436
7437	/*
7438	 * when renaming files across directories, if the directory
7439	 * there we're unlinking from gets fsync'd later on, there's
7440	 * no way to find the destination directory later and fsync it
7441	 * properly.  So, we have to be conservative and force commits
7442	 * so the new name gets discovered.
7443	 */
 
 
 
 
 
 
 
7444	mutex_lock(&dir->log_mutex);
7445	dir->last_unlink_trans = trans->transid;
7446	mutex_unlock(&dir->log_mutex);
7447}
7448
7449/*
7450 * Make sure that if someone attempts to fsync the parent directory of a deleted
7451 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7452 * that after replaying the log tree of the parent directory's root we will not
7453 * see the snapshot anymore and at log replay time we will not see any log tree
7454 * corresponding to the deleted snapshot's root, which could lead to replaying
7455 * it after replaying the log tree of the parent directory (which would replay
7456 * the snapshot delete operation).
7457 *
7458 * Must be called before the actual snapshot destroy operation (updates to the
7459 * parent root and tree of tree roots trees, etc) are done.
7460 */
7461void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7462				   struct btrfs_inode *dir)
7463{
7464	mutex_lock(&dir->log_mutex);
7465	dir->last_unlink_trans = trans->transid;
7466	mutex_unlock(&dir->log_mutex);
7467}
7468
7469/*
7470 * Call this when creating a subvolume in a directory.
7471 * Because we don't commit a transaction when creating a subvolume, we can't
7472 * allow the directory pointing to the subvolume to be logged with an entry that
7473 * points to an unpersisted root if we are still in the transaction used to
7474 * create the subvolume, so make any attempt to log the directory to result in a
7475 * full log sync.
7476 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7477 * for full commit when renaming a subvolume.
7478 */
7479void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7480				struct btrfs_inode *dir)
7481{
7482	mutex_lock(&dir->log_mutex);
7483	dir->last_unlink_trans = trans->transid;
7484	mutex_unlock(&dir->log_mutex);
7485}
7486
7487/*
7488 * Update the log after adding a new name for an inode.
7489 *
7490 * @trans:              Transaction handle.
7491 * @old_dentry:         The dentry associated with the old name and the old
7492 *                      parent directory.
7493 * @old_dir:            The inode of the previous parent directory for the case
7494 *                      of a rename. For a link operation, it must be NULL.
7495 * @old_dir_index:      The index number associated with the old name, meaningful
7496 *                      only for rename operations (when @old_dir is not NULL).
7497 *                      Ignored for link operations.
7498 * @parent:             The dentry associated with the directory under which the
7499 *                      new name is located.
7500 *
7501 * Call this after adding a new name for an inode, as a result of a link or
7502 * rename operation, and it will properly update the log to reflect the new name.
7503 */
7504void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7505			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7506			u64 old_dir_index, struct dentry *parent)
7507{
7508	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7509	struct btrfs_root *root = inode->root;
7510	struct btrfs_log_ctx ctx;
7511	bool log_pinned = false;
7512	int ret;
7513
7514	/*
7515	 * this will force the logging code to walk the dentry chain
7516	 * up for the file
7517	 */
7518	if (!S_ISDIR(inode->vfs_inode.i_mode))
7519		inode->last_unlink_trans = trans->transid;
7520
7521	/*
7522	 * if this inode hasn't been logged and directory we're renaming it
7523	 * from hasn't been logged, we don't need to log it
7524	 */
7525	ret = inode_logged(trans, inode, NULL);
7526	if (ret < 0) {
7527		goto out;
7528	} else if (ret == 0) {
7529		if (!old_dir)
7530			return;
7531		/*
7532		 * If the inode was not logged and we are doing a rename (old_dir is not
7533		 * NULL), check if old_dir was logged - if it was not we can return and
7534		 * do nothing.
7535		 */
7536		ret = inode_logged(trans, old_dir, NULL);
7537		if (ret < 0)
7538			goto out;
7539		else if (ret == 0)
7540			return;
7541	}
7542	ret = 0;
7543
7544	/*
7545	 * If we are doing a rename (old_dir is not NULL) from a directory that
7546	 * was previously logged, make sure that on log replay we get the old
7547	 * dir entry deleted. This is needed because we will also log the new
7548	 * name of the renamed inode, so we need to make sure that after log
7549	 * replay we don't end up with both the new and old dir entries existing.
7550	 */
7551	if (old_dir && old_dir->logged_trans == trans->transid) {
7552		struct btrfs_root *log = old_dir->root->log_root;
7553		struct btrfs_path *path;
7554		struct fscrypt_name fname;
7555
7556		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7557
7558		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7559					     &old_dentry->d_name, 0, &fname);
7560		if (ret)
7561			goto out;
7562		/*
7563		 * We have two inodes to update in the log, the old directory and
7564		 * the inode that got renamed, so we must pin the log to prevent
7565		 * anyone from syncing the log until we have updated both inodes
7566		 * in the log.
7567		 */
7568		ret = join_running_log_trans(root);
7569		/*
7570		 * At least one of the inodes was logged before, so this should
7571		 * not fail, but if it does, it's not serious, just bail out and
7572		 * mark the log for a full commit.
7573		 */
7574		if (WARN_ON_ONCE(ret < 0)) {
7575			fscrypt_free_filename(&fname);
7576			goto out;
7577		}
7578
7579		log_pinned = true;
7580
7581		path = btrfs_alloc_path();
7582		if (!path) {
7583			ret = -ENOMEM;
7584			fscrypt_free_filename(&fname);
7585			goto out;
7586		}
7587
7588		/*
7589		 * Other concurrent task might be logging the old directory,
7590		 * as it can be triggered when logging other inode that had or
7591		 * still has a dentry in the old directory. We lock the old
7592		 * directory's log_mutex to ensure the deletion of the old
7593		 * name is persisted, because during directory logging we
7594		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7595		 * the old name's dir index item is in the delayed items, so
7596		 * it could be missed by an in progress directory logging.
7597		 */
7598		mutex_lock(&old_dir->log_mutex);
7599		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7600					&fname.disk_name, old_dir_index);
7601		if (ret > 0) {
7602			/*
7603			 * The dentry does not exist in the log, so record its
7604			 * deletion.
7605			 */
7606			btrfs_release_path(path);
7607			ret = insert_dir_log_key(trans, log, path,
7608						 btrfs_ino(old_dir),
7609						 old_dir_index, old_dir_index);
7610		}
7611		mutex_unlock(&old_dir->log_mutex);
7612
7613		btrfs_free_path(path);
7614		fscrypt_free_filename(&fname);
7615		if (ret < 0)
7616			goto out;
7617	}
7618
7619	btrfs_init_log_ctx(&ctx, inode);
7620	ctx.logging_new_name = true;
7621	btrfs_init_log_ctx_scratch_eb(&ctx);
7622	/*
7623	 * We don't care about the return value. If we fail to log the new name
7624	 * then we know the next attempt to sync the log will fallback to a full
7625	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7626	 * we don't need to worry about getting a log committed that has an
7627	 * inconsistent state after a rename operation.
7628	 */
7629	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7630	free_extent_buffer(ctx.scratch_eb);
7631	ASSERT(list_empty(&ctx.conflict_inodes));
7632out:
7633	/*
7634	 * If an error happened mark the log for a full commit because it's not
7635	 * consistent and up to date or we couldn't find out if one of the
7636	 * inodes was logged before in this transaction. Do it before unpinning
7637	 * the log, to avoid any races with someone else trying to commit it.
7638	 */
7639	if (ret < 0)
7640		btrfs_set_log_full_commit(trans);
7641	if (log_pinned)
7642		btrfs_end_log_trans(root);
7643}
7644
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
 
  11#include "ctree.h"
  12#include "tree-log.h"
  13#include "disk-io.h"
  14#include "locking.h"
  15#include "print-tree.h"
  16#include "backref.h"
  17#include "compression.h"
  18#include "qgroup.h"
  19#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/* magic values for the inode_only field in btrfs_log_inode:
  22 *
  23 * LOG_INODE_ALL means to log everything
  24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  25 * during log replay
  26 */
  27#define LOG_INODE_ALL 0
  28#define LOG_INODE_EXISTS 1
  29#define LOG_OTHER_INODE 2
 
  30
  31/*
  32 * directory trouble cases
  33 *
  34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  35 * log, we must force a full commit before doing an fsync of the directory
  36 * where the unlink was done.
  37 * ---> record transid of last unlink/rename per directory
  38 *
  39 * mkdir foo/some_dir
  40 * normal commit
  41 * rename foo/some_dir foo2/some_dir
  42 * mkdir foo/some_dir
  43 * fsync foo/some_dir/some_file
  44 *
  45 * The fsync above will unlink the original some_dir without recording
  46 * it in its new location (foo2).  After a crash, some_dir will be gone
  47 * unless the fsync of some_file forces a full commit
  48 *
  49 * 2) we must log any new names for any file or dir that is in the fsync
  50 * log. ---> check inode while renaming/linking.
  51 *
  52 * 2a) we must log any new names for any file or dir during rename
  53 * when the directory they are being removed from was logged.
  54 * ---> check inode and old parent dir during rename
  55 *
  56 *  2a is actually the more important variant.  With the extra logging
  57 *  a crash might unlink the old name without recreating the new one
  58 *
  59 * 3) after a crash, we must go through any directories with a link count
  60 * of zero and redo the rm -rf
  61 *
  62 * mkdir f1/foo
  63 * normal commit
  64 * rm -rf f1/foo
  65 * fsync(f1)
  66 *
  67 * The directory f1 was fully removed from the FS, but fsync was never
  68 * called on f1, only its parent dir.  After a crash the rm -rf must
  69 * be replayed.  This must be able to recurse down the entire
  70 * directory tree.  The inode link count fixup code takes care of the
  71 * ugly details.
  72 */
  73
  74/*
  75 * stages for the tree walking.  The first
  76 * stage (0) is to only pin down the blocks we find
  77 * the second stage (1) is to make sure that all the inodes
  78 * we find in the log are created in the subvolume.
  79 *
  80 * The last stage is to deal with directories and links and extents
  81 * and all the other fun semantics
  82 */
  83#define LOG_WALK_PIN_ONLY 0
  84#define LOG_WALK_REPLAY_INODES 1
  85#define LOG_WALK_REPLAY_DIR_INDEX 2
  86#define LOG_WALK_REPLAY_ALL 3
 
 
  87
  88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  89			   struct btrfs_root *root, struct btrfs_inode *inode,
  90			   int inode_only,
  91			   const loff_t start,
  92			   const loff_t end,
  93			   struct btrfs_log_ctx *ctx);
  94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root,
  96			     struct btrfs_path *path, u64 objectid);
  97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
  98				       struct btrfs_root *root,
  99				       struct btrfs_root *log,
 100				       struct btrfs_path *path,
 101				       u64 dirid, int del_all);
 
 102
 103/*
 104 * tree logging is a special write ahead log used to make sure that
 105 * fsyncs and O_SYNCs can happen without doing full tree commits.
 106 *
 107 * Full tree commits are expensive because they require commonly
 108 * modified blocks to be recowed, creating many dirty pages in the
 109 * extent tree an 4x-6x higher write load than ext3.
 110 *
 111 * Instead of doing a tree commit on every fsync, we use the
 112 * key ranges and transaction ids to find items for a given file or directory
 113 * that have changed in this transaction.  Those items are copied into
 114 * a special tree (one per subvolume root), that tree is written to disk
 115 * and then the fsync is considered complete.
 116 *
 117 * After a crash, items are copied out of the log-tree back into the
 118 * subvolume tree.  Any file data extents found are recorded in the extent
 119 * allocation tree, and the log-tree freed.
 120 *
 121 * The log tree is read three times, once to pin down all the extents it is
 122 * using in ram and once, once to create all the inodes logged in the tree
 123 * and once to do all the other items.
 124 */
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126/*
 127 * start a sub transaction and setup the log tree
 128 * this increments the log tree writer count to make the people
 129 * syncing the tree wait for us to finish
 130 */
 131static int start_log_trans(struct btrfs_trans_handle *trans,
 132			   struct btrfs_root *root,
 133			   struct btrfs_log_ctx *ctx)
 134{
 135	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 136	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137
 138	mutex_lock(&root->log_mutex);
 139
 
 140	if (root->log_root) {
 141		if (btrfs_need_log_full_commit(fs_info, trans)) {
 142			ret = -EAGAIN;
 
 
 143			goto out;
 144		}
 145
 
 
 
 
 
 146		if (!root->log_start_pid) {
 147			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 148			root->log_start_pid = current->pid;
 149		} else if (root->log_start_pid != current->pid) {
 150			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 151		}
 152	} else {
 153		mutex_lock(&fs_info->tree_log_mutex);
 154		if (!fs_info->log_root_tree)
 155			ret = btrfs_init_log_root_tree(trans, fs_info);
 156		mutex_unlock(&fs_info->tree_log_mutex);
 157		if (ret)
 
 
 
 158			goto out;
 
 159
 160		ret = btrfs_add_log_tree(trans, root);
 161		if (ret)
 162			goto out;
 163
 
 164		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 165		root->log_start_pid = current->pid;
 166	}
 167
 168	atomic_inc(&root->log_batch);
 169	atomic_inc(&root->log_writers);
 170	if (ctx) {
 171		int index = root->log_transid % 2;
 172		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 173		ctx->log_transid = root->log_transid;
 174	}
 175
 176out:
 177	mutex_unlock(&root->log_mutex);
 178	return ret;
 179}
 180
 181/*
 182 * returns 0 if there was a log transaction running and we were able
 183 * to join, or returns -ENOENT if there were not transactions
 184 * in progress
 185 */
 186static int join_running_log_trans(struct btrfs_root *root)
 187{
 
 188	int ret = -ENOENT;
 189
 190	smp_mb();
 191	if (!root->log_root)
 192		return -ENOENT;
 193
 194	mutex_lock(&root->log_mutex);
 
 195	if (root->log_root) {
 
 
 196		ret = 0;
 
 
 
 
 197		atomic_inc(&root->log_writers);
 198	}
 199	mutex_unlock(&root->log_mutex);
 200	return ret;
 201}
 202
 203/*
 204 * This either makes the current running log transaction wait
 205 * until you call btrfs_end_log_trans() or it makes any future
 206 * log transactions wait until you call btrfs_end_log_trans()
 207 */
 208int btrfs_pin_log_trans(struct btrfs_root *root)
 209{
 210	int ret = -ENOENT;
 211
 212	mutex_lock(&root->log_mutex);
 213	atomic_inc(&root->log_writers);
 214	mutex_unlock(&root->log_mutex);
 215	return ret;
 216}
 217
 218/*
 219 * indicate we're done making changes to the log tree
 220 * and wake up anyone waiting to do a sync
 221 */
 222void btrfs_end_log_trans(struct btrfs_root *root)
 223{
 224	if (atomic_dec_and_test(&root->log_writers)) {
 225		/*
 226		 * Implicit memory barrier after atomic_dec_and_test
 227		 */
 228		if (waitqueue_active(&root->log_writer_wait))
 229			wake_up(&root->log_writer_wait);
 230	}
 231}
 232
 233
 234/*
 235 * the walk control struct is used to pass state down the chain when
 236 * processing the log tree.  The stage field tells us which part
 237 * of the log tree processing we are currently doing.  The others
 238 * are state fields used for that specific part
 239 */
 240struct walk_control {
 241	/* should we free the extent on disk when done?  This is used
 242	 * at transaction commit time while freeing a log tree
 243	 */
 244	int free;
 245
 246	/* should we write out the extent buffer?  This is used
 247	 * while flushing the log tree to disk during a sync
 248	 */
 249	int write;
 250
 251	/* should we wait for the extent buffer io to finish?  Also used
 252	 * while flushing the log tree to disk for a sync
 253	 */
 254	int wait;
 255
 256	/* pin only walk, we record which extents on disk belong to the
 257	 * log trees
 258	 */
 259	int pin;
 260
 261	/* what stage of the replay code we're currently in */
 262	int stage;
 263
 
 
 
 
 
 
 
 264	/* the root we are currently replaying */
 265	struct btrfs_root *replay_dest;
 266
 267	/* the trans handle for the current replay */
 268	struct btrfs_trans_handle *trans;
 269
 270	/* the function that gets used to process blocks we find in the
 271	 * tree.  Note the extent_buffer might not be up to date when it is
 272	 * passed in, and it must be checked or read if you need the data
 273	 * inside it
 274	 */
 275	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 276			    struct walk_control *wc, u64 gen, int level);
 277};
 278
 279/*
 280 * process_func used to pin down extents, write them or wait on them
 281 */
 282static int process_one_buffer(struct btrfs_root *log,
 283			      struct extent_buffer *eb,
 284			      struct walk_control *wc, u64 gen, int level)
 285{
 286	struct btrfs_fs_info *fs_info = log->fs_info;
 287	int ret = 0;
 288
 289	/*
 290	 * If this fs is mixed then we need to be able to process the leaves to
 291	 * pin down any logged extents, so we have to read the block.
 292	 */
 293	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 294		ret = btrfs_read_buffer(eb, gen, level, NULL);
 
 
 
 
 
 295		if (ret)
 296			return ret;
 297	}
 298
 299	if (wc->pin)
 300		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 301						      eb->len);
 302
 303	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 304		if (wc->pin && btrfs_header_level(eb) == 0)
 305			ret = btrfs_exclude_logged_extents(fs_info, eb);
 306		if (wc->write)
 307			btrfs_write_tree_block(eb);
 308		if (wc->wait)
 309			btrfs_wait_tree_block_writeback(eb);
 310	}
 311	return ret;
 312}
 313
 314/*
 315 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 316 * to the src data we are copying out.
 317 *
 318 * root is the tree we are copying into, and path is a scratch
 319 * path for use in this function (it should be released on entry and
 320 * will be released on exit).
 321 *
 322 * If the key is already in the destination tree the existing item is
 323 * overwritten.  If the existing item isn't big enough, it is extended.
 324 * If it is too large, it is truncated.
 325 *
 326 * If the key isn't in the destination yet, a new item is inserted.
 327 */
 328static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 329				   struct btrfs_root *root,
 330				   struct btrfs_path *path,
 331				   struct extent_buffer *eb, int slot,
 332				   struct btrfs_key *key)
 333{
 334	struct btrfs_fs_info *fs_info = root->fs_info;
 335	int ret;
 336	u32 item_size;
 337	u64 saved_i_size = 0;
 338	int save_old_i_size = 0;
 339	unsigned long src_ptr;
 340	unsigned long dst_ptr;
 341	int overwrite_root = 0;
 342	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 343
 344	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 345		overwrite_root = 1;
 
 
 
 
 
 
 346
 347	item_size = btrfs_item_size_nr(eb, slot);
 348	src_ptr = btrfs_item_ptr_offset(eb, slot);
 349
 350	/* look for the key in the destination tree */
 351	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 352	if (ret < 0)
 353		return ret;
 354
 355	if (ret == 0) {
 356		char *src_copy;
 357		char *dst_copy;
 358		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 359						  path->slots[0]);
 360		if (dst_size != item_size)
 361			goto insert;
 362
 363		if (item_size == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367		dst_copy = kmalloc(item_size, GFP_NOFS);
 368		src_copy = kmalloc(item_size, GFP_NOFS);
 369		if (!dst_copy || !src_copy) {
 370			btrfs_release_path(path);
 371			kfree(dst_copy);
 372			kfree(src_copy);
 373			return -ENOMEM;
 374		}
 375
 376		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 377
 378		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 379		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 380				   item_size);
 381		ret = memcmp(dst_copy, src_copy, item_size);
 382
 383		kfree(dst_copy);
 384		kfree(src_copy);
 385		/*
 386		 * they have the same contents, just return, this saves
 387		 * us from cowing blocks in the destination tree and doing
 388		 * extra writes that may not have been done by a previous
 389		 * sync
 390		 */
 391		if (ret == 0) {
 392			btrfs_release_path(path);
 393			return 0;
 394		}
 395
 396		/*
 397		 * We need to load the old nbytes into the inode so when we
 398		 * replay the extents we've logged we get the right nbytes.
 399		 */
 400		if (inode_item) {
 401			struct btrfs_inode_item *item;
 402			u64 nbytes;
 403			u32 mode;
 404
 405			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 406					      struct btrfs_inode_item);
 407			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 408			item = btrfs_item_ptr(eb, slot,
 409					      struct btrfs_inode_item);
 410			btrfs_set_inode_nbytes(eb, item, nbytes);
 411
 412			/*
 413			 * If this is a directory we need to reset the i_size to
 414			 * 0 so that we can set it up properly when replaying
 415			 * the rest of the items in this log.
 416			 */
 417			mode = btrfs_inode_mode(eb, item);
 418			if (S_ISDIR(mode))
 419				btrfs_set_inode_size(eb, item, 0);
 420		}
 421	} else if (inode_item) {
 422		struct btrfs_inode_item *item;
 423		u32 mode;
 424
 425		/*
 426		 * New inode, set nbytes to 0 so that the nbytes comes out
 427		 * properly when we replay the extents.
 428		 */
 429		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 430		btrfs_set_inode_nbytes(eb, item, 0);
 431
 432		/*
 433		 * If this is a directory we need to reset the i_size to 0 so
 434		 * that we can set it up properly when replaying the rest of
 435		 * the items in this log.
 436		 */
 437		mode = btrfs_inode_mode(eb, item);
 438		if (S_ISDIR(mode))
 439			btrfs_set_inode_size(eb, item, 0);
 440	}
 441insert:
 442	btrfs_release_path(path);
 443	/* try to insert the key into the destination tree */
 444	path->skip_release_on_error = 1;
 445	ret = btrfs_insert_empty_item(trans, root, path,
 446				      key, item_size);
 447	path->skip_release_on_error = 0;
 448
 449	/* make sure any existing item is the correct size */
 450	if (ret == -EEXIST || ret == -EOVERFLOW) {
 451		u32 found_size;
 452		found_size = btrfs_item_size_nr(path->nodes[0],
 453						path->slots[0]);
 454		if (found_size > item_size)
 455			btrfs_truncate_item(fs_info, path, item_size, 1);
 456		else if (found_size < item_size)
 457			btrfs_extend_item(fs_info, path,
 458					  item_size - found_size);
 459	} else if (ret) {
 460		return ret;
 461	}
 462	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 463					path->slots[0]);
 464
 465	/* don't overwrite an existing inode if the generation number
 466	 * was logged as zero.  This is done when the tree logging code
 467	 * is just logging an inode to make sure it exists after recovery.
 468	 *
 469	 * Also, don't overwrite i_size on directories during replay.
 470	 * log replay inserts and removes directory items based on the
 471	 * state of the tree found in the subvolume, and i_size is modified
 472	 * as it goes
 473	 */
 474	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 475		struct btrfs_inode_item *src_item;
 476		struct btrfs_inode_item *dst_item;
 477
 478		src_item = (struct btrfs_inode_item *)src_ptr;
 479		dst_item = (struct btrfs_inode_item *)dst_ptr;
 480
 481		if (btrfs_inode_generation(eb, src_item) == 0) {
 482			struct extent_buffer *dst_eb = path->nodes[0];
 483			const u64 ino_size = btrfs_inode_size(eb, src_item);
 484
 485			/*
 486			 * For regular files an ino_size == 0 is used only when
 487			 * logging that an inode exists, as part of a directory
 488			 * fsync, and the inode wasn't fsynced before. In this
 489			 * case don't set the size of the inode in the fs/subvol
 490			 * tree, otherwise we would be throwing valid data away.
 491			 */
 492			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 493			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 494			    ino_size != 0) {
 495				struct btrfs_map_token token;
 496
 497				btrfs_init_map_token(&token);
 498				btrfs_set_token_inode_size(dst_eb, dst_item,
 499							   ino_size, &token);
 500			}
 501			goto no_copy;
 502		}
 503
 504		if (overwrite_root &&
 505		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 506		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 507			save_old_i_size = 1;
 508			saved_i_size = btrfs_inode_size(path->nodes[0],
 509							dst_item);
 510		}
 511	}
 512
 513	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 514			   src_ptr, item_size);
 515
 516	if (save_old_i_size) {
 517		struct btrfs_inode_item *dst_item;
 518		dst_item = (struct btrfs_inode_item *)dst_ptr;
 519		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 520	}
 521
 522	/* make sure the generation is filled in */
 523	if (key->type == BTRFS_INODE_ITEM_KEY) {
 524		struct btrfs_inode_item *dst_item;
 525		dst_item = (struct btrfs_inode_item *)dst_ptr;
 526		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 527			btrfs_set_inode_generation(path->nodes[0], dst_item,
 528						   trans->transid);
 529		}
 530	}
 531no_copy:
 532	btrfs_mark_buffer_dirty(path->nodes[0]);
 533	btrfs_release_path(path);
 534	return 0;
 535}
 536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537/*
 538 * simple helper to read an inode off the disk from a given root
 539 * This can only be called for subvolume roots and not for the log
 540 */
 541static noinline struct inode *read_one_inode(struct btrfs_root *root,
 542					     u64 objectid)
 543{
 544	struct btrfs_key key;
 545	struct inode *inode;
 546
 547	key.objectid = objectid;
 548	key.type = BTRFS_INODE_ITEM_KEY;
 549	key.offset = 0;
 550	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 551	if (IS_ERR(inode)) {
 552		inode = NULL;
 553	} else if (is_bad_inode(inode)) {
 554		iput(inode);
 555		inode = NULL;
 556	}
 557	return inode;
 558}
 559
 560/* replays a single extent in 'eb' at 'slot' with 'key' into the
 561 * subvolume 'root'.  path is released on entry and should be released
 562 * on exit.
 563 *
 564 * extents in the log tree have not been allocated out of the extent
 565 * tree yet.  So, this completes the allocation, taking a reference
 566 * as required if the extent already exists or creating a new extent
 567 * if it isn't in the extent allocation tree yet.
 568 *
 569 * The extent is inserted into the file, dropping any existing extents
 570 * from the file that overlap the new one.
 571 */
 572static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 573				      struct btrfs_root *root,
 574				      struct btrfs_path *path,
 575				      struct extent_buffer *eb, int slot,
 576				      struct btrfs_key *key)
 577{
 
 578	struct btrfs_fs_info *fs_info = root->fs_info;
 579	int found_type;
 580	u64 extent_end;
 581	u64 start = key->offset;
 582	u64 nbytes = 0;
 583	struct btrfs_file_extent_item *item;
 584	struct inode *inode = NULL;
 585	unsigned long size;
 586	int ret = 0;
 587
 588	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 589	found_type = btrfs_file_extent_type(eb, item);
 590
 591	if (found_type == BTRFS_FILE_EXTENT_REG ||
 592	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 593		nbytes = btrfs_file_extent_num_bytes(eb, item);
 594		extent_end = start + nbytes;
 595
 596		/*
 597		 * We don't add to the inodes nbytes if we are prealloc or a
 598		 * hole.
 599		 */
 600		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 601			nbytes = 0;
 602	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 603		size = btrfs_file_extent_inline_len(eb, slot, item);
 604		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 605		extent_end = ALIGN(start + size,
 606				   fs_info->sectorsize);
 607	} else {
 608		ret = 0;
 609		goto out;
 610	}
 611
 612	inode = read_one_inode(root, key->objectid);
 613	if (!inode) {
 614		ret = -EIO;
 615		goto out;
 616	}
 617
 618	/*
 619	 * first check to see if we already have this extent in the
 620	 * file.  This must be done before the btrfs_drop_extents run
 621	 * so we don't try to drop this extent.
 622	 */
 623	ret = btrfs_lookup_file_extent(trans, root, path,
 624			btrfs_ino(BTRFS_I(inode)), start, 0);
 625
 626	if (ret == 0 &&
 627	    (found_type == BTRFS_FILE_EXTENT_REG ||
 628	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 629		struct btrfs_file_extent_item cmp1;
 630		struct btrfs_file_extent_item cmp2;
 631		struct btrfs_file_extent_item *existing;
 632		struct extent_buffer *leaf;
 633
 634		leaf = path->nodes[0];
 635		existing = btrfs_item_ptr(leaf, path->slots[0],
 636					  struct btrfs_file_extent_item);
 637
 638		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 639				   sizeof(cmp1));
 640		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 641				   sizeof(cmp2));
 642
 643		/*
 644		 * we already have a pointer to this exact extent,
 645		 * we don't have to do anything
 646		 */
 647		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 648			btrfs_release_path(path);
 649			goto out;
 650		}
 651	}
 652	btrfs_release_path(path);
 653
 654	/* drop any overlapping extents */
 655	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 
 
 
 656	if (ret)
 657		goto out;
 658
 659	if (found_type == BTRFS_FILE_EXTENT_REG ||
 660	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 661		u64 offset;
 662		unsigned long dest_offset;
 663		struct btrfs_key ins;
 664
 665		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 666		    btrfs_fs_incompat(fs_info, NO_HOLES))
 667			goto update_inode;
 668
 669		ret = btrfs_insert_empty_item(trans, root, path, key,
 670					      sizeof(*item));
 671		if (ret)
 672			goto out;
 673		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 674						    path->slots[0]);
 675		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 676				(unsigned long)item,  sizeof(*item));
 677
 678		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 679		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 680		ins.type = BTRFS_EXTENT_ITEM_KEY;
 681		offset = key->offset - btrfs_file_extent_offset(eb, item);
 682
 683		/*
 684		 * Manually record dirty extent, as here we did a shallow
 685		 * file extent item copy and skip normal backref update,
 686		 * but modifying extent tree all by ourselves.
 687		 * So need to manually record dirty extent for qgroup,
 688		 * as the owner of the file extent changed from log tree
 689		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 690		 */
 691		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 692				btrfs_file_extent_disk_bytenr(eb, item),
 693				btrfs_file_extent_disk_num_bytes(eb, item),
 694				GFP_NOFS);
 695		if (ret < 0)
 696			goto out;
 697
 698		if (ins.objectid > 0) {
 699			u64 csum_start;
 700			u64 csum_end;
 701			LIST_HEAD(ordered_sums);
 
 702			/*
 703			 * is this extent already allocated in the extent
 704			 * allocation tree?  If so, just add a reference
 705			 */
 706			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 707						ins.offset);
 708			if (ret == 0) {
 709				ret = btrfs_inc_extent_ref(trans, root,
 710						ins.objectid, ins.offset,
 711						0, root->root_key.objectid,
 712						key->objectid, offset);
 
 
 
 
 
 
 
 
 713				if (ret)
 714					goto out;
 715			} else {
 716				/*
 717				 * insert the extent pointer in the extent
 718				 * allocation tree
 719				 */
 720				ret = btrfs_alloc_logged_file_extent(trans,
 721						fs_info,
 722						root->root_key.objectid,
 723						key->objectid, offset, &ins);
 724				if (ret)
 725					goto out;
 726			}
 727			btrfs_release_path(path);
 728
 729			if (btrfs_file_extent_compression(eb, item)) {
 730				csum_start = ins.objectid;
 731				csum_end = csum_start + ins.offset;
 732			} else {
 733				csum_start = ins.objectid +
 734					btrfs_file_extent_offset(eb, item);
 735				csum_end = csum_start +
 736					btrfs_file_extent_num_bytes(eb, item);
 737			}
 738
 739			ret = btrfs_lookup_csums_range(root->log_root,
 740						csum_start, csum_end - 1,
 741						&ordered_sums, 0);
 742			if (ret)
 743				goto out;
 
 744			/*
 745			 * Now delete all existing cums in the csum root that
 746			 * cover our range. We do this because we can have an
 747			 * extent that is completely referenced by one file
 748			 * extent item and partially referenced by another
 749			 * file extent item (like after using the clone or
 750			 * extent_same ioctls). In this case if we end up doing
 751			 * the replay of the one that partially references the
 752			 * extent first, and we do not do the csum deletion
 753			 * below, we can get 2 csum items in the csum tree that
 754			 * overlap each other. For example, imagine our log has
 755			 * the two following file extent items:
 756			 *
 757			 * key (257 EXTENT_DATA 409600)
 758			 *     extent data disk byte 12845056 nr 102400
 759			 *     extent data offset 20480 nr 20480 ram 102400
 760			 *
 761			 * key (257 EXTENT_DATA 819200)
 762			 *     extent data disk byte 12845056 nr 102400
 763			 *     extent data offset 0 nr 102400 ram 102400
 764			 *
 765			 * Where the second one fully references the 100K extent
 766			 * that starts at disk byte 12845056, and the log tree
 767			 * has a single csum item that covers the entire range
 768			 * of the extent:
 769			 *
 770			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 771			 *
 772			 * After the first file extent item is replayed, the
 773			 * csum tree gets the following csum item:
 774			 *
 775			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 776			 *
 777			 * Which covers the 20K sub-range starting at offset 20K
 778			 * of our extent. Now when we replay the second file
 779			 * extent item, if we do not delete existing csum items
 780			 * that cover any of its blocks, we end up getting two
 781			 * csum items in our csum tree that overlap each other:
 782			 *
 783			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 784			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 785			 *
 786			 * Which is a problem, because after this anyone trying
 787			 * to lookup up for the checksum of any block of our
 788			 * extent starting at an offset of 40K or higher, will
 789			 * end up looking at the second csum item only, which
 790			 * does not contain the checksum for any block starting
 791			 * at offset 40K or higher of our extent.
 792			 */
 793			while (!list_empty(&ordered_sums)) {
 794				struct btrfs_ordered_sum *sums;
 
 
 795				sums = list_entry(ordered_sums.next,
 796						struct btrfs_ordered_sum,
 797						list);
 
 
 798				if (!ret)
 799					ret = btrfs_del_csums(trans, fs_info,
 800							      sums->bytenr,
 801							      sums->len);
 802				if (!ret)
 803					ret = btrfs_csum_file_blocks(trans,
 804						fs_info->csum_root, sums);
 
 805				list_del(&sums->list);
 806				kfree(sums);
 807			}
 808			if (ret)
 809				goto out;
 810		} else {
 811			btrfs_release_path(path);
 812		}
 813	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 814		/* inline extents are easy, we just overwrite them */
 815		ret = overwrite_item(trans, root, path, eb, slot, key);
 816		if (ret)
 817			goto out;
 818	}
 819
 820	inode_add_bytes(inode, nbytes);
 
 
 
 
 821update_inode:
 822	ret = btrfs_update_inode(trans, root, inode);
 
 823out:
 824	if (inode)
 825		iput(inode);
 826	return ret;
 827}
 828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829/*
 830 * when cleaning up conflicts between the directory names in the
 831 * subvolume, directory names in the log and directory names in the
 832 * inode back references, we may have to unlink inodes from directories.
 833 *
 834 * This is a helper function to do the unlink of a specific directory
 835 * item
 836 */
 837static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 838				      struct btrfs_root *root,
 839				      struct btrfs_path *path,
 840				      struct btrfs_inode *dir,
 841				      struct btrfs_dir_item *di)
 842{
 
 843	struct inode *inode;
 844	char *name;
 845	int name_len;
 846	struct extent_buffer *leaf;
 847	struct btrfs_key location;
 848	int ret;
 849
 850	leaf = path->nodes[0];
 851
 852	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 853	name_len = btrfs_dir_name_len(leaf, di);
 854	name = kmalloc(name_len, GFP_NOFS);
 855	if (!name)
 856		return -ENOMEM;
 857
 858	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 859	btrfs_release_path(path);
 860
 861	inode = read_one_inode(root, location.objectid);
 862	if (!inode) {
 863		ret = -EIO;
 864		goto out;
 865	}
 866
 867	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 868	if (ret)
 869		goto out;
 870
 871	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 872			name_len);
 873	if (ret)
 874		goto out;
 875	else
 876		ret = btrfs_run_delayed_items(trans);
 877out:
 878	kfree(name);
 879	iput(inode);
 880	return ret;
 881}
 882
 883/*
 884 * helper function to see if a given name and sequence number found
 885 * in an inode back reference are already in a directory and correctly
 886 * point to this inode
 
 
 887 */
 888static noinline int inode_in_dir(struct btrfs_root *root,
 889				 struct btrfs_path *path,
 890				 u64 dirid, u64 objectid, u64 index,
 891				 const char *name, int name_len)
 892{
 893	struct btrfs_dir_item *di;
 894	struct btrfs_key location;
 895	int match = 0;
 896
 897	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 898					 index, name, name_len, 0);
 899	if (di && !IS_ERR(di)) {
 
 
 
 900		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 901		if (location.objectid != objectid)
 902			goto out;
 903	} else
 904		goto out;
 
 
 905	btrfs_release_path(path);
 906
 907	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 908	if (di && !IS_ERR(di)) {
 
 
 909		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 910		if (location.objectid != objectid)
 911			goto out;
 912	} else
 913		goto out;
 914	match = 1;
 915out:
 916	btrfs_release_path(path);
 917	return match;
 918}
 919
 920/*
 921 * helper function to check a log tree for a named back reference in
 922 * an inode.  This is used to decide if a back reference that is
 923 * found in the subvolume conflicts with what we find in the log.
 924 *
 925 * inode backreferences may have multiple refs in a single item,
 926 * during replay we process one reference at a time, and we don't
 927 * want to delete valid links to a file from the subvolume if that
 928 * link is also in the log.
 929 */
 930static noinline int backref_in_log(struct btrfs_root *log,
 931				   struct btrfs_key *key,
 932				   u64 ref_objectid,
 933				   const char *name, int namelen)
 934{
 935	struct btrfs_path *path;
 936	struct btrfs_inode_ref *ref;
 937	unsigned long ptr;
 938	unsigned long ptr_end;
 939	unsigned long name_ptr;
 940	int found_name_len;
 941	int item_size;
 942	int ret;
 943	int match = 0;
 944
 945	path = btrfs_alloc_path();
 946	if (!path)
 947		return -ENOMEM;
 948
 949	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 950	if (ret != 0)
 951		goto out;
 952
 953	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 954
 955	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 956		if (btrfs_find_name_in_ext_backref(path->nodes[0],
 957						   path->slots[0],
 958						   ref_objectid,
 959						   name, namelen, NULL))
 960			match = 1;
 961
 962		goto out;
 963	}
 964
 965	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 966	ptr_end = ptr + item_size;
 967	while (ptr < ptr_end) {
 968		ref = (struct btrfs_inode_ref *)ptr;
 969		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 970		if (found_name_len == namelen) {
 971			name_ptr = (unsigned long)(ref + 1);
 972			ret = memcmp_extent_buffer(path->nodes[0], name,
 973						   name_ptr, namelen);
 974			if (ret == 0) {
 975				match = 1;
 976				goto out;
 977			}
 978		}
 979		ptr = (unsigned long)(ref + 1) + found_name_len;
 980	}
 981out:
 982	btrfs_free_path(path);
 983	return match;
 984}
 985
 986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 987				  struct btrfs_root *root,
 988				  struct btrfs_path *path,
 989				  struct btrfs_root *log_root,
 990				  struct btrfs_inode *dir,
 991				  struct btrfs_inode *inode,
 992				  u64 inode_objectid, u64 parent_objectid,
 993				  u64 ref_index, char *name, int namelen,
 994				  int *search_done)
 995{
 996	int ret;
 997	char *victim_name;
 998	int victim_name_len;
 999	struct extent_buffer *leaf;
1000	struct btrfs_dir_item *di;
1001	struct btrfs_key search_key;
1002	struct btrfs_inode_extref *extref;
1003
1004again:
1005	/* Search old style refs */
1006	search_key.objectid = inode_objectid;
1007	search_key.type = BTRFS_INODE_REF_KEY;
1008	search_key.offset = parent_objectid;
1009	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010	if (ret == 0) {
1011		struct btrfs_inode_ref *victim_ref;
1012		unsigned long ptr;
1013		unsigned long ptr_end;
1014
1015		leaf = path->nodes[0];
1016
1017		/* are we trying to overwrite a back ref for the root directory
1018		 * if so, just jump out, we're done
1019		 */
1020		if (search_key.objectid == search_key.offset)
1021			return 1;
1022
1023		/* check all the names in this back reference to see
1024		 * if they are in the log.  if so, we allow them to stay
1025		 * otherwise they must be unlinked as a conflict
1026		 */
1027		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029		while (ptr < ptr_end) {
 
 
1030			victim_ref = (struct btrfs_inode_ref *)ptr;
1031			victim_name_len = btrfs_inode_ref_name_len(leaf,
1032								   victim_ref);
1033			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034			if (!victim_name)
1035				return -ENOMEM;
1036
1037			read_extent_buffer(leaf, victim_name,
1038					   (unsigned long)(victim_ref + 1),
1039					   victim_name_len);
1040
1041			if (!backref_in_log(log_root, &search_key,
1042					    parent_objectid,
1043					    victim_name,
1044					    victim_name_len)) {
1045				inc_nlink(&inode->vfs_inode);
1046				btrfs_release_path(path);
1047
1048				ret = btrfs_unlink_inode(trans, root, dir, inode,
1049						victim_name, victim_name_len);
1050				kfree(victim_name);
1051				if (ret)
1052					return ret;
1053				ret = btrfs_run_delayed_items(trans);
1054				if (ret)
1055					return ret;
1056				*search_done = 1;
1057				goto again;
1058			}
1059			kfree(victim_name);
1060
1061			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062		}
1063
1064		/*
1065		 * NOTE: we have searched root tree and checked the
1066		 * corresponding ref, it does not need to check again.
1067		 */
1068		*search_done = 1;
1069	}
1070	btrfs_release_path(path);
1071
1072	/* Same search but for extended refs */
1073	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074					   inode_objectid, parent_objectid, 0,
1075					   0);
1076	if (!IS_ERR_OR_NULL(extref)) {
 
 
1077		u32 item_size;
1078		u32 cur_offset = 0;
1079		unsigned long base;
1080		struct inode *victim_parent;
1081
1082		leaf = path->nodes[0];
1083
1084		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087		while (cur_offset < item_size) {
 
 
1088			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089
1090			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093				goto next;
1094
1095			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096			if (!victim_name)
1097				return -ENOMEM;
1098			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099					   victim_name_len);
1100
1101			search_key.objectid = inode_objectid;
1102			search_key.type = BTRFS_INODE_EXTREF_KEY;
1103			search_key.offset = btrfs_extref_hash(parent_objectid,
1104							      victim_name,
1105							      victim_name_len);
1106			ret = 0;
1107			if (!backref_in_log(log_root, &search_key,
1108					    parent_objectid, victim_name,
1109					    victim_name_len)) {
 
 
1110				ret = -ENOENT;
1111				victim_parent = read_one_inode(root,
1112						parent_objectid);
1113				if (victim_parent) {
1114					inc_nlink(&inode->vfs_inode);
1115					btrfs_release_path(path);
1116
1117					ret = btrfs_unlink_inode(trans, root,
1118							BTRFS_I(victim_parent),
1119							inode,
1120							victim_name,
1121							victim_name_len);
1122					if (!ret)
1123						ret = btrfs_run_delayed_items(
1124								  trans);
1125				}
1126				iput(victim_parent);
1127				kfree(victim_name);
1128				if (ret)
1129					return ret;
1130				*search_done = 1;
1131				goto again;
1132			}
1133			kfree(victim_name);
1134next:
1135			cur_offset += victim_name_len + sizeof(*extref);
1136		}
1137		*search_done = 1;
1138	}
1139	btrfs_release_path(path);
1140
1141	/* look for a conflicting sequence number */
1142	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143					 ref_index, name, namelen, 0);
1144	if (di && !IS_ERR(di)) {
1145		ret = drop_one_dir_item(trans, root, path, dir, di);
 
 
1146		if (ret)
1147			return ret;
1148	}
1149	btrfs_release_path(path);
1150
1151	/* look for a conflicing name */
1152	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153				   name, namelen, 0);
1154	if (di && !IS_ERR(di)) {
1155		ret = drop_one_dir_item(trans, root, path, dir, di);
 
1156		if (ret)
1157			return ret;
1158	}
1159	btrfs_release_path(path);
1160
1161	return 0;
1162}
1163
1164static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165			     u32 *namelen, char **name, u64 *index,
1166			     u64 *parent_objectid)
1167{
1168	struct btrfs_inode_extref *extref;
 
1169
1170	extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172	*namelen = btrfs_inode_extref_name_len(eb, extref);
1173	*name = kmalloc(*namelen, GFP_NOFS);
1174	if (*name == NULL)
1175		return -ENOMEM;
1176
1177	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178			   *namelen);
1179
1180	if (index)
1181		*index = btrfs_inode_extref_index(eb, extref);
1182	if (parent_objectid)
1183		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185	return 0;
1186}
1187
1188static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189			  u32 *namelen, char **name, u64 *index)
1190{
1191	struct btrfs_inode_ref *ref;
 
1192
1193	ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195	*namelen = btrfs_inode_ref_name_len(eb, ref);
1196	*name = kmalloc(*namelen, GFP_NOFS);
1197	if (*name == NULL)
1198		return -ENOMEM;
1199
1200	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202	if (index)
1203		*index = btrfs_inode_ref_index(eb, ref);
1204
1205	return 0;
1206}
1207
1208/*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
1215static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216				 struct btrfs_root *root,
1217				 struct btrfs_path *path,
1218				 struct btrfs_inode *inode,
1219				 struct extent_buffer *log_eb,
1220				 int log_slot,
1221				 struct btrfs_key *key)
1222{
1223	int ret;
1224	unsigned long ref_ptr;
1225	unsigned long ref_end;
1226	struct extent_buffer *eb;
1227
1228again:
1229	btrfs_release_path(path);
1230	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231	if (ret > 0) {
1232		ret = 0;
1233		goto out;
1234	}
1235	if (ret < 0)
1236		goto out;
1237
1238	eb = path->nodes[0];
1239	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241	while (ref_ptr < ref_end) {
1242		char *name = NULL;
1243		int namelen;
1244		u64 parent_id;
1245
1246		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248						NULL, &parent_id);
1249		} else {
1250			parent_id = key->offset;
1251			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252					     NULL);
1253		}
1254		if (ret)
1255			goto out;
1256
1257		if (key->type == BTRFS_INODE_EXTREF_KEY)
1258			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259							     parent_id, name,
1260							     namelen, NULL);
1261		else
1262			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263							 namelen, NULL);
1264
1265		if (!ret) {
1266			struct inode *dir;
1267
1268			btrfs_release_path(path);
1269			dir = read_one_inode(root, parent_id);
1270			if (!dir) {
1271				ret = -ENOENT;
1272				kfree(name);
1273				goto out;
1274			}
1275			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276						 inode, name, namelen);
1277			kfree(name);
1278			iput(dir);
1279			if (ret)
1280				goto out;
1281			goto again;
1282		}
1283
1284		kfree(name);
1285		ref_ptr += namelen;
1286		if (key->type == BTRFS_INODE_EXTREF_KEY)
1287			ref_ptr += sizeof(struct btrfs_inode_extref);
1288		else
1289			ref_ptr += sizeof(struct btrfs_inode_ref);
1290	}
1291	ret = 0;
1292 out:
1293	btrfs_release_path(path);
1294	return ret;
1295}
1296
1297/*
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function.  (it should be released on return).
1302 */
1303static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304				  struct btrfs_root *root,
1305				  struct btrfs_root *log,
1306				  struct btrfs_path *path,
1307				  struct extent_buffer *eb, int slot,
1308				  struct btrfs_key *key)
1309{
1310	struct inode *dir = NULL;
1311	struct inode *inode = NULL;
1312	unsigned long ref_ptr;
1313	unsigned long ref_end;
1314	char *name = NULL;
1315	int namelen;
1316	int ret;
1317	int search_done = 0;
1318	int log_ref_ver = 0;
1319	u64 parent_objectid;
1320	u64 inode_objectid;
1321	u64 ref_index = 0;
1322	int ref_struct_size;
1323
1324	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326
1327	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328		struct btrfs_inode_extref *r;
1329
1330		ref_struct_size = sizeof(struct btrfs_inode_extref);
1331		log_ref_ver = 1;
1332		r = (struct btrfs_inode_extref *)ref_ptr;
1333		parent_objectid = btrfs_inode_extref_parent(eb, r);
1334	} else {
1335		ref_struct_size = sizeof(struct btrfs_inode_ref);
1336		parent_objectid = key->offset;
1337	}
1338	inode_objectid = key->objectid;
1339
1340	/*
1341	 * it is possible that we didn't log all the parent directories
1342	 * for a given inode.  If we don't find the dir, just don't
1343	 * copy the back ref in.  The link count fixup code will take
1344	 * care of the rest
1345	 */
1346	dir = read_one_inode(root, parent_objectid);
1347	if (!dir) {
1348		ret = -ENOENT;
1349		goto out;
1350	}
1351
1352	inode = read_one_inode(root, inode_objectid);
1353	if (!inode) {
1354		ret = -EIO;
1355		goto out;
1356	}
1357
1358	while (ref_ptr < ref_end) {
1359		if (log_ref_ver) {
1360			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361						&ref_index, &parent_objectid);
1362			/*
1363			 * parent object can change from one array
1364			 * item to another.
1365			 */
1366			if (!dir)
1367				dir = read_one_inode(root, parent_objectid);
1368			if (!dir) {
1369				ret = -ENOENT;
1370				goto out;
1371			}
1372		} else {
1373			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374					     &ref_index);
1375		}
1376		if (ret)
1377			goto out;
1378
1379		/* if we already have a perfect match, we're done */
1380		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381					btrfs_ino(BTRFS_I(inode)), ref_index,
1382					name, namelen)) {
 
1383			/*
1384			 * look for a conflicting back reference in the
1385			 * metadata. if we find one we have to unlink that name
1386			 * of the file before we add our new link.  Later on, we
1387			 * overwrite any existing back reference, and we don't
1388			 * want to create dangling pointers in the directory.
1389			 */
1390
1391			if (!search_done) {
1392				ret = __add_inode_ref(trans, root, path, log,
1393						      BTRFS_I(dir),
1394						      BTRFS_I(inode),
1395						      inode_objectid,
1396						      parent_objectid,
1397						      ref_index, name, namelen,
1398						      &search_done);
1399				if (ret) {
1400					if (ret == 1)
1401						ret = 0;
1402					goto out;
1403				}
1404			}
1405
1406			/* insert our name */
1407			ret = btrfs_add_link(trans, BTRFS_I(dir),
1408					BTRFS_I(inode),
1409					name, namelen, 0, ref_index);
1410			if (ret)
1411				goto out;
1412
1413			btrfs_update_inode(trans, root, inode);
 
 
1414		}
 
1415
1416		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1417		kfree(name);
1418		name = NULL;
1419		if (log_ref_ver) {
1420			iput(dir);
1421			dir = NULL;
1422		}
1423	}
1424
1425	/*
1426	 * Before we overwrite the inode reference item in the subvolume tree
1427	 * with the item from the log tree, we must unlink all names from the
1428	 * parent directory that are in the subvolume's tree inode reference
1429	 * item, otherwise we end up with an inconsistent subvolume tree where
1430	 * dir index entries exist for a name but there is no inode reference
1431	 * item with the same name.
1432	 */
1433	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434				    key);
1435	if (ret)
1436		goto out;
1437
1438	/* finally write the back reference in the inode */
1439	ret = overwrite_item(trans, root, path, eb, slot, key);
1440out:
1441	btrfs_release_path(path);
1442	kfree(name);
1443	iput(dir);
1444	iput(inode);
1445	return ret;
1446}
1447
1448static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449			      struct btrfs_root *root, u64 ino)
1450{
1451	int ret;
1452
1453	ret = btrfs_insert_orphan_item(trans, root, ino);
1454	if (ret == -EEXIST)
1455		ret = 0;
1456
1457	return ret;
1458}
1459
1460static int count_inode_extrefs(struct btrfs_root *root,
1461		struct btrfs_inode *inode, struct btrfs_path *path)
1462{
1463	int ret = 0;
1464	int name_len;
1465	unsigned int nlink = 0;
1466	u32 item_size;
1467	u32 cur_offset = 0;
1468	u64 inode_objectid = btrfs_ino(inode);
1469	u64 offset = 0;
1470	unsigned long ptr;
1471	struct btrfs_inode_extref *extref;
1472	struct extent_buffer *leaf;
1473
1474	while (1) {
1475		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476					    &extref, &offset);
1477		if (ret)
1478			break;
1479
1480		leaf = path->nodes[0];
1481		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1483		cur_offset = 0;
1484
1485		while (cur_offset < item_size) {
1486			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487			name_len = btrfs_inode_extref_name_len(leaf, extref);
1488
1489			nlink++;
1490
1491			cur_offset += name_len + sizeof(*extref);
1492		}
1493
1494		offset++;
1495		btrfs_release_path(path);
1496	}
1497	btrfs_release_path(path);
1498
1499	if (ret < 0 && ret != -ENOENT)
1500		return ret;
1501	return nlink;
1502}
1503
1504static int count_inode_refs(struct btrfs_root *root,
1505			struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507	int ret;
1508	struct btrfs_key key;
1509	unsigned int nlink = 0;
1510	unsigned long ptr;
1511	unsigned long ptr_end;
1512	int name_len;
1513	u64 ino = btrfs_ino(inode);
1514
1515	key.objectid = ino;
1516	key.type = BTRFS_INODE_REF_KEY;
1517	key.offset = (u64)-1;
1518
1519	while (1) {
1520		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521		if (ret < 0)
1522			break;
1523		if (ret > 0) {
1524			if (path->slots[0] == 0)
1525				break;
1526			path->slots[0]--;
1527		}
1528process_slot:
1529		btrfs_item_key_to_cpu(path->nodes[0], &key,
1530				      path->slots[0]);
1531		if (key.objectid != ino ||
1532		    key.type != BTRFS_INODE_REF_KEY)
1533			break;
1534		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536						   path->slots[0]);
1537		while (ptr < ptr_end) {
1538			struct btrfs_inode_ref *ref;
1539
1540			ref = (struct btrfs_inode_ref *)ptr;
1541			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542							    ref);
1543			ptr = (unsigned long)(ref + 1) + name_len;
1544			nlink++;
1545		}
1546
1547		if (key.offset == 0)
1548			break;
1549		if (path->slots[0] > 0) {
1550			path->slots[0]--;
1551			goto process_slot;
1552		}
1553		key.offset--;
1554		btrfs_release_path(path);
1555	}
1556	btrfs_release_path(path);
1557
1558	return nlink;
1559}
1560
1561/*
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay.  So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1566 *
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found.  If it goes down to zero, the iput
1569 * will free the inode.
1570 */
1571static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572					   struct btrfs_root *root,
1573					   struct inode *inode)
1574{
 
1575	struct btrfs_path *path;
1576	int ret;
1577	u64 nlink = 0;
1578	u64 ino = btrfs_ino(BTRFS_I(inode));
1579
1580	path = btrfs_alloc_path();
1581	if (!path)
1582		return -ENOMEM;
1583
1584	ret = count_inode_refs(root, BTRFS_I(inode), path);
1585	if (ret < 0)
1586		goto out;
1587
1588	nlink = ret;
1589
1590	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1591	if (ret < 0)
1592		goto out;
1593
1594	nlink += ret;
1595
1596	ret = 0;
1597
1598	if (nlink != inode->i_nlink) {
1599		set_nlink(inode, nlink);
1600		btrfs_update_inode(trans, root, inode);
 
 
1601	}
1602	BTRFS_I(inode)->index_cnt = (u64)-1;
 
1603
1604	if (inode->i_nlink == 0) {
1605		if (S_ISDIR(inode->i_mode)) {
1606			ret = replay_dir_deletes(trans, root, NULL, path,
1607						 ino, 1);
1608			if (ret)
1609				goto out;
1610		}
1611		ret = insert_orphan_item(trans, root, ino);
 
 
1612	}
1613
1614out:
1615	btrfs_free_path(path);
1616	return ret;
1617}
1618
1619static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620					    struct btrfs_root *root,
1621					    struct btrfs_path *path)
1622{
1623	int ret;
1624	struct btrfs_key key;
1625	struct inode *inode;
1626
1627	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628	key.type = BTRFS_ORPHAN_ITEM_KEY;
1629	key.offset = (u64)-1;
1630	while (1) {
1631		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632		if (ret < 0)
1633			break;
1634
1635		if (ret == 1) {
 
1636			if (path->slots[0] == 0)
1637				break;
1638			path->slots[0]--;
1639		}
1640
1641		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1644			break;
1645
1646		ret = btrfs_del_item(trans, root, path);
1647		if (ret)
1648			goto out;
1649
1650		btrfs_release_path(path);
1651		inode = read_one_inode(root, key.offset);
1652		if (!inode)
1653			return -EIO;
 
 
1654
1655		ret = fixup_inode_link_count(trans, root, inode);
1656		iput(inode);
1657		if (ret)
1658			goto out;
1659
1660		/*
1661		 * fixup on a directory may create new entries,
1662		 * make sure we always look for the highset possible
1663		 * offset
1664		 */
1665		key.offset = (u64)-1;
1666	}
1667	ret = 0;
1668out:
1669	btrfs_release_path(path);
1670	return ret;
1671}
1672
1673
1674/*
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done.  The link count is incremented here
1677 * so the inode won't go away until we check it
1678 */
1679static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680				      struct btrfs_root *root,
1681				      struct btrfs_path *path,
1682				      u64 objectid)
1683{
1684	struct btrfs_key key;
1685	int ret = 0;
1686	struct inode *inode;
1687
1688	inode = read_one_inode(root, objectid);
1689	if (!inode)
1690		return -EIO;
1691
1692	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693	key.type = BTRFS_ORPHAN_ITEM_KEY;
1694	key.offset = objectid;
1695
1696	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697
1698	btrfs_release_path(path);
1699	if (ret == 0) {
1700		if (!inode->i_nlink)
1701			set_nlink(inode, 1);
1702		else
1703			inc_nlink(inode);
1704		ret = btrfs_update_inode(trans, root, inode);
1705	} else if (ret == -EEXIST) {
1706		ret = 0;
1707	} else {
1708		BUG(); /* Logic Error */
1709	}
1710	iput(inode);
1711
1712	return ret;
1713}
1714
1715/*
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist.  This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1719 */
1720static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721				    struct btrfs_root *root,
1722				    u64 dirid, u64 index,
1723				    char *name, int name_len,
1724				    struct btrfs_key *location)
1725{
1726	struct inode *inode;
1727	struct inode *dir;
1728	int ret;
1729
1730	inode = read_one_inode(root, location->objectid);
1731	if (!inode)
1732		return -ENOENT;
1733
1734	dir = read_one_inode(root, dirid);
1735	if (!dir) {
1736		iput(inode);
1737		return -EIO;
1738	}
1739
1740	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741			name_len, 1, index);
1742
1743	/* FIXME, put inode into FIXUP list */
1744
1745	iput(inode);
1746	iput(dir);
1747	return ret;
1748}
1749
1750/*
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1753 */
1754static bool name_in_log_ref(struct btrfs_root *log_root,
1755			    const char *name, const int name_len,
1756			    const u64 dirid, const u64 ino)
1757{
1758	struct btrfs_key search_key;
1759
1760	search_key.objectid = ino;
1761	search_key.type = BTRFS_INODE_REF_KEY;
1762	search_key.offset = dirid;
1763	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764		return true;
 
 
1765
1766	search_key.type = BTRFS_INODE_EXTREF_KEY;
1767	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769		return true;
 
 
1770
1771	return false;
1772}
1773
1774/*
1775 * take a single entry in a log directory item and replay it into
1776 * the subvolume.
1777 *
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1780 * fix up tree.
1781 *
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped.  fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
1786 *
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
1789 */
1790static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791				    struct btrfs_root *root,
1792				    struct btrfs_path *path,
1793				    struct extent_buffer *eb,
1794				    struct btrfs_dir_item *di,
1795				    struct btrfs_key *key)
1796{
1797	char *name;
1798	int name_len;
1799	struct btrfs_dir_item *dst_di;
1800	struct btrfs_key found_key;
 
1801	struct btrfs_key log_key;
 
1802	struct inode *dir;
1803	u8 log_type;
1804	int exists;
1805	int ret = 0;
1806	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807	bool name_added = false;
1808
1809	dir = read_one_inode(root, key->objectid);
1810	if (!dir)
1811		return -EIO;
1812
1813	name_len = btrfs_dir_name_len(eb, di);
1814	name = kmalloc(name_len, GFP_NOFS);
1815	if (!name) {
1816		ret = -ENOMEM;
1817		goto out;
1818	}
1819
1820	log_type = btrfs_dir_type(eb, di);
1821	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822		   name_len);
1823
 
1824	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826	if (exists == 0)
1827		exists = 1;
1828	else
1829		exists = 0;
1830	btrfs_release_path(path);
 
 
 
 
1831
1832	if (key->type == BTRFS_DIR_ITEM_KEY) {
1833		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834				       name, name_len, 1);
1835	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837						     key->objectid,
1838						     key->offset, name,
1839						     name_len, 1);
1840	} else {
1841		/* Corruption */
1842		ret = -EINVAL;
1843		goto out;
 
 
 
 
 
 
 
1844	}
1845	if (IS_ERR_OR_NULL(dst_di)) {
1846		/* we need a sequence number to insert, so we only
1847		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848		 */
1849		if (key->type != BTRFS_DIR_INDEX_KEY)
 
 
 
 
 
 
 
 
 
1850			goto out;
1851		goto insert;
1852	}
1853
1854	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855	/* the existing item matches the logged item */
1856	if (found_key.objectid == log_key.objectid &&
1857	    found_key.type == log_key.type &&
1858	    found_key.offset == log_key.offset &&
1859	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860		update_size = false;
1861		goto out;
1862	}
1863
1864	/*
1865	 * don't drop the conflicting directory entry if the inode
1866	 * for the new entry doesn't exist
1867	 */
1868	if (!exists)
1869		goto out;
 
 
 
 
 
 
 
 
 
 
1870
1871	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872	if (ret)
 
 
 
1873		goto out;
1874
1875	if (key->type == BTRFS_DIR_INDEX_KEY)
1876		goto insert;
1877out:
1878	btrfs_release_path(path);
1879	if (!ret && update_size) {
1880		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881		ret = btrfs_update_inode(trans, root, dir);
1882	}
1883	kfree(name);
1884	iput(dir);
1885	if (!ret && name_added)
1886		ret = 1;
1887	return ret;
1888
1889insert:
1890	if (name_in_log_ref(root->log_root, name, name_len,
1891			    key->objectid, log_key.objectid)) {
1892		/* The dentry will be added later. */
1893		ret = 0;
1894		update_size = false;
1895		goto out;
1896	}
1897	btrfs_release_path(path);
1898	ret = insert_one_name(trans, root, key->objectid, key->offset,
1899			      name, name_len, &log_key);
1900	if (ret && ret != -ENOENT && ret != -EEXIST)
1901		goto out;
1902	if (!ret)
1903		name_added = true;
1904	update_size = false;
1905	ret = 0;
1906	goto out;
 
 
 
 
 
 
 
 
 
 
1907}
1908
1909/*
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1914 */
1915static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916					struct btrfs_root *root,
1917					struct btrfs_path *path,
1918					struct extent_buffer *eb, int slot,
1919					struct btrfs_key *key)
1920{
1921	int ret = 0;
1922	u32 item_size = btrfs_item_size_nr(eb, slot);
1923	struct btrfs_dir_item *di;
1924	int name_len;
1925	unsigned long ptr;
1926	unsigned long ptr_end;
1927	struct btrfs_path *fixup_path = NULL;
1928
1929	ptr = btrfs_item_ptr_offset(eb, slot);
1930	ptr_end = ptr + item_size;
1931	while (ptr < ptr_end) {
1932		di = (struct btrfs_dir_item *)ptr;
1933		name_len = btrfs_dir_name_len(eb, di);
1934		ret = replay_one_name(trans, root, path, eb, di, key);
1935		if (ret < 0)
1936			break;
1937		ptr = (unsigned long)(di + 1);
1938		ptr += name_len;
1939
1940		/*
1941		 * If this entry refers to a non-directory (directories can not
1942		 * have a link count > 1) and it was added in the transaction
1943		 * that was not committed, make sure we fixup the link count of
1944		 * the inode it the entry points to. Otherwise something like
1945		 * the following would result in a directory pointing to an
1946		 * inode with a wrong link that does not account for this dir
1947		 * entry:
1948		 *
1949		 * mkdir testdir
1950		 * touch testdir/foo
1951		 * touch testdir/bar
1952		 * sync
1953		 *
1954		 * ln testdir/bar testdir/bar_link
1955		 * ln testdir/foo testdir/foo_link
1956		 * xfs_io -c "fsync" testdir/bar
1957		 *
1958		 * <power failure>
1959		 *
1960		 * mount fs, log replay happens
1961		 *
1962		 * File foo would remain with a link count of 1 when it has two
1963		 * entries pointing to it in the directory testdir. This would
1964		 * make it impossible to ever delete the parent directory has
1965		 * it would result in stale dentries that can never be deleted.
1966		 */
1967		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968			struct btrfs_key di_key;
1969
1970			if (!fixup_path) {
1971				fixup_path = btrfs_alloc_path();
1972				if (!fixup_path) {
1973					ret = -ENOMEM;
1974					break;
1975				}
1976			}
1977
1978			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979			ret = link_to_fixup_dir(trans, root, fixup_path,
1980						di_key.objectid);
1981			if (ret)
1982				break;
1983		}
1984		ret = 0;
1985	}
1986	btrfs_free_path(fixup_path);
1987	return ret;
1988}
1989
1990/*
1991 * directory replay has two parts.  There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1994 *
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for.  During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2000 */
2001static noinline int find_dir_range(struct btrfs_root *root,
2002				   struct btrfs_path *path,
2003				   u64 dirid, int key_type,
2004				   u64 *start_ret, u64 *end_ret)
2005{
2006	struct btrfs_key key;
2007	u64 found_end;
2008	struct btrfs_dir_log_item *item;
2009	int ret;
2010	int nritems;
2011
2012	if (*start_ret == (u64)-1)
2013		return 1;
2014
2015	key.objectid = dirid;
2016	key.type = key_type;
2017	key.offset = *start_ret;
2018
2019	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020	if (ret < 0)
2021		goto out;
2022	if (ret > 0) {
2023		if (path->slots[0] == 0)
2024			goto out;
2025		path->slots[0]--;
2026	}
2027	if (ret != 0)
2028		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029
2030	if (key.type != key_type || key.objectid != dirid) {
2031		ret = 1;
2032		goto next;
2033	}
2034	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035			      struct btrfs_dir_log_item);
2036	found_end = btrfs_dir_log_end(path->nodes[0], item);
2037
2038	if (*start_ret >= key.offset && *start_ret <= found_end) {
2039		ret = 0;
2040		*start_ret = key.offset;
2041		*end_ret = found_end;
2042		goto out;
2043	}
2044	ret = 1;
2045next:
2046	/* check the next slot in the tree to see if it is a valid item */
2047	nritems = btrfs_header_nritems(path->nodes[0]);
2048	path->slots[0]++;
2049	if (path->slots[0] >= nritems) {
2050		ret = btrfs_next_leaf(root, path);
2051		if (ret)
2052			goto out;
2053	}
2054
2055	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057	if (key.type != key_type || key.objectid != dirid) {
2058		ret = 1;
2059		goto out;
2060	}
2061	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062			      struct btrfs_dir_log_item);
2063	found_end = btrfs_dir_log_end(path->nodes[0], item);
2064	*start_ret = key.offset;
2065	*end_ret = found_end;
2066	ret = 0;
2067out:
2068	btrfs_release_path(path);
2069	return ret;
2070}
2071
2072/*
2073 * this looks for a given directory item in the log.  If the directory
2074 * item is not in the log, the item is removed and the inode it points
2075 * to is unlinked
2076 */
2077static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078				      struct btrfs_root *root,
2079				      struct btrfs_root *log,
2080				      struct btrfs_path *path,
2081				      struct btrfs_path *log_path,
2082				      struct inode *dir,
2083				      struct btrfs_key *dir_key)
2084{
 
2085	int ret;
2086	struct extent_buffer *eb;
2087	int slot;
2088	u32 item_size;
2089	struct btrfs_dir_item *di;
2090	struct btrfs_dir_item *log_di;
2091	int name_len;
2092	unsigned long ptr;
2093	unsigned long ptr_end;
2094	char *name;
2095	struct inode *inode;
2096	struct btrfs_key location;
2097
2098again:
 
 
 
 
 
 
 
2099	eb = path->nodes[0];
2100	slot = path->slots[0];
2101	item_size = btrfs_item_size_nr(eb, slot);
2102	ptr = btrfs_item_ptr_offset(eb, slot);
2103	ptr_end = ptr + item_size;
2104	while (ptr < ptr_end) {
2105		di = (struct btrfs_dir_item *)ptr;
2106		name_len = btrfs_dir_name_len(eb, di);
2107		name = kmalloc(name_len, GFP_NOFS);
2108		if (!name) {
2109			ret = -ENOMEM;
2110			goto out;
2111		}
2112		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113				  name_len);
2114		log_di = NULL;
2115		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117						       dir_key->objectid,
2118						       name, name_len, 0);
2119		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120			log_di = btrfs_lookup_dir_index_item(trans, log,
2121						     log_path,
2122						     dir_key->objectid,
2123						     dir_key->offset,
2124						     name, name_len, 0);
2125		}
2126		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127			btrfs_dir_item_key_to_cpu(eb, di, &location);
2128			btrfs_release_path(path);
2129			btrfs_release_path(log_path);
2130			inode = read_one_inode(root, location.objectid);
2131			if (!inode) {
2132				kfree(name);
2133				return -EIO;
2134			}
2135
2136			ret = link_to_fixup_dir(trans, root,
2137						path, location.objectid);
2138			if (ret) {
2139				kfree(name);
2140				iput(inode);
2141				goto out;
2142			}
2143
2144			inc_nlink(inode);
2145			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146					BTRFS_I(inode), name, name_len);
2147			if (!ret)
2148				ret = btrfs_run_delayed_items(trans);
2149			kfree(name);
2150			iput(inode);
2151			if (ret)
2152				goto out;
2153
2154			/* there might still be more names under this key
2155			 * check and repeat if required
2156			 */
2157			ret = btrfs_search_slot(NULL, root, dir_key, path,
2158						0, 0);
2159			if (ret == 0)
2160				goto again;
2161			ret = 0;
2162			goto out;
2163		} else if (IS_ERR(log_di)) {
2164			kfree(name);
2165			return PTR_ERR(log_di);
2166		}
2167		btrfs_release_path(log_path);
2168		kfree(name);
2169
2170		ptr = (unsigned long)(di + 1);
2171		ptr += name_len;
 
 
 
 
 
2172	}
2173	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2174out:
2175	btrfs_release_path(path);
2176	btrfs_release_path(log_path);
 
 
2177	return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181			      struct btrfs_root *root,
2182			      struct btrfs_root *log,
2183			      struct btrfs_path *path,
2184			      const u64 ino)
2185{
2186	struct btrfs_key search_key;
2187	struct btrfs_path *log_path;
2188	int i;
2189	int nritems;
2190	int ret;
2191
2192	log_path = btrfs_alloc_path();
2193	if (!log_path)
2194		return -ENOMEM;
2195
2196	search_key.objectid = ino;
2197	search_key.type = BTRFS_XATTR_ITEM_KEY;
2198	search_key.offset = 0;
2199again:
2200	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201	if (ret < 0)
2202		goto out;
2203process_leaf:
2204	nritems = btrfs_header_nritems(path->nodes[0]);
2205	for (i = path->slots[0]; i < nritems; i++) {
2206		struct btrfs_key key;
2207		struct btrfs_dir_item *di;
2208		struct btrfs_dir_item *log_di;
2209		u32 total_size;
2210		u32 cur;
2211
2212		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214			ret = 0;
2215			goto out;
2216		}
2217
2218		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219		total_size = btrfs_item_size_nr(path->nodes[0], i);
2220		cur = 0;
2221		while (cur < total_size) {
2222			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224			u32 this_len = sizeof(*di) + name_len + data_len;
2225			char *name;
2226
2227			name = kmalloc(name_len, GFP_NOFS);
2228			if (!name) {
2229				ret = -ENOMEM;
2230				goto out;
2231			}
2232			read_extent_buffer(path->nodes[0], name,
2233					   (unsigned long)(di + 1), name_len);
2234
2235			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236						    name, name_len, 0);
2237			btrfs_release_path(log_path);
2238			if (!log_di) {
2239				/* Doesn't exist in log tree, so delete it. */
2240				btrfs_release_path(path);
2241				di = btrfs_lookup_xattr(trans, root, path, ino,
2242							name, name_len, -1);
2243				kfree(name);
2244				if (IS_ERR(di)) {
2245					ret = PTR_ERR(di);
2246					goto out;
2247				}
2248				ASSERT(di);
2249				ret = btrfs_delete_one_dir_name(trans, root,
2250								path, di);
2251				if (ret)
2252					goto out;
2253				btrfs_release_path(path);
2254				search_key = key;
2255				goto again;
2256			}
2257			kfree(name);
2258			if (IS_ERR(log_di)) {
2259				ret = PTR_ERR(log_di);
2260				goto out;
2261			}
2262			cur += this_len;
2263			di = (struct btrfs_dir_item *)((char *)di + this_len);
2264		}
2265	}
2266	ret = btrfs_next_leaf(root, path);
2267	if (ret > 0)
2268		ret = 0;
2269	else if (ret == 0)
2270		goto process_leaf;
2271out:
2272	btrfs_free_path(log_path);
2273	btrfs_release_path(path);
2274	return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes.  It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289				       struct btrfs_root *root,
2290				       struct btrfs_root *log,
2291				       struct btrfs_path *path,
2292				       u64 dirid, int del_all)
2293{
2294	u64 range_start;
2295	u64 range_end;
2296	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297	int ret = 0;
2298	struct btrfs_key dir_key;
2299	struct btrfs_key found_key;
2300	struct btrfs_path *log_path;
2301	struct inode *dir;
2302
2303	dir_key.objectid = dirid;
2304	dir_key.type = BTRFS_DIR_ITEM_KEY;
2305	log_path = btrfs_alloc_path();
2306	if (!log_path)
2307		return -ENOMEM;
2308
2309	dir = read_one_inode(root, dirid);
2310	/* it isn't an error if the inode isn't there, that can happen
2311	 * because we replay the deletes before we copy in the inode item
2312	 * from the log
2313	 */
2314	if (!dir) {
2315		btrfs_free_path(log_path);
2316		return 0;
2317	}
2318again:
2319	range_start = 0;
2320	range_end = 0;
2321	while (1) {
2322		if (del_all)
2323			range_end = (u64)-1;
2324		else {
2325			ret = find_dir_range(log, path, dirid, key_type,
2326					     &range_start, &range_end);
2327			if (ret != 0)
 
 
2328				break;
2329		}
2330
2331		dir_key.offset = range_start;
2332		while (1) {
2333			int nritems;
2334			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335						0, 0);
2336			if (ret < 0)
2337				goto out;
2338
2339			nritems = btrfs_header_nritems(path->nodes[0]);
2340			if (path->slots[0] >= nritems) {
2341				ret = btrfs_next_leaf(root, path);
2342				if (ret == 1)
2343					break;
2344				else if (ret < 0)
2345					goto out;
2346			}
2347			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348					      path->slots[0]);
2349			if (found_key.objectid != dirid ||
2350			    found_key.type != dir_key.type)
2351				goto next_type;
 
 
2352
2353			if (found_key.offset > range_end)
2354				break;
2355
2356			ret = check_item_in_log(trans, root, log, path,
2357						log_path, dir,
2358						&found_key);
2359			if (ret)
2360				goto out;
2361			if (found_key.offset == (u64)-1)
2362				break;
2363			dir_key.offset = found_key.offset + 1;
2364		}
2365		btrfs_release_path(path);
2366		if (range_end == (u64)-1)
2367			break;
2368		range_start = range_end + 1;
2369	}
2370
2371next_type:
2372	ret = 0;
2373	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375		dir_key.type = BTRFS_DIR_INDEX_KEY;
2376		btrfs_release_path(path);
2377		goto again;
2378	}
2379out:
2380	btrfs_release_path(path);
2381	btrfs_free_path(log_path);
2382	iput(dir);
2383	return ret;
2384}
2385
2386/*
2387 * the process_func used to replay items from the log tree.  This
2388 * gets called in two different stages.  The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2390 *
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume.  The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2395 * back refs).
2396 */
2397static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398			     struct walk_control *wc, u64 gen, int level)
2399{
2400	int nritems;
 
 
 
 
2401	struct btrfs_path *path;
2402	struct btrfs_root *root = wc->replay_dest;
2403	struct btrfs_key key;
2404	int i;
2405	int ret;
2406
2407	ret = btrfs_read_buffer(eb, gen, level, NULL);
2408	if (ret)
2409		return ret;
2410
2411	level = btrfs_header_level(eb);
2412
2413	if (level != 0)
2414		return 0;
2415
2416	path = btrfs_alloc_path();
2417	if (!path)
2418		return -ENOMEM;
2419
2420	nritems = btrfs_header_nritems(eb);
2421	for (i = 0; i < nritems; i++) {
2422		btrfs_item_key_to_cpu(eb, &key, i);
2423
2424		/* inode keys are done during the first stage */
2425		if (key.type == BTRFS_INODE_ITEM_KEY &&
2426		    wc->stage == LOG_WALK_REPLAY_INODES) {
2427			struct btrfs_inode_item *inode_item;
2428			u32 mode;
2429
2430			inode_item = btrfs_item_ptr(eb, i,
2431					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432			ret = replay_xattr_deletes(wc->trans, root, log,
2433						   path, key.objectid);
2434			if (ret)
2435				break;
2436			mode = btrfs_inode_mode(eb, inode_item);
2437			if (S_ISDIR(mode)) {
2438				ret = replay_dir_deletes(wc->trans,
2439					 root, log, path, key.objectid, 0);
2440				if (ret)
2441					break;
2442			}
2443			ret = overwrite_item(wc->trans, root, path,
2444					     eb, i, &key);
2445			if (ret)
2446				break;
2447
2448			/*
2449			 * Before replaying extents, truncate the inode to its
2450			 * size. We need to do it now and not after log replay
2451			 * because before an fsync we can have prealloc extents
2452			 * added beyond the inode's i_size. If we did it after,
2453			 * through orphan cleanup for example, we would drop
2454			 * those prealloc extents just after replaying them.
2455			 */
2456			if (S_ISREG(mode)) {
 
2457				struct inode *inode;
2458				u64 from;
2459
2460				inode = read_one_inode(root, key.objectid);
2461				if (!inode) {
2462					ret = -EIO;
2463					break;
2464				}
2465				from = ALIGN(i_size_read(inode),
2466					     root->fs_info->sectorsize);
2467				ret = btrfs_drop_extents(wc->trans, root, inode,
2468							 from, (u64)-1, 1);
2469				/*
2470				 * If the nlink count is zero here, the iput
2471				 * will free the inode.  We bump it to make
2472				 * sure it doesn't get freed until the link
2473				 * count fixup is done.
2474				 */
2475				if (!ret) {
2476					if (inode->i_nlink == 0)
2477						inc_nlink(inode);
2478					/* Update link count and nbytes. */
2479					ret = btrfs_update_inode(wc->trans,
2480								 root, inode);
2481				}
2482				iput(inode);
2483				if (ret)
2484					break;
2485			}
2486
2487			ret = link_to_fixup_dir(wc->trans, root,
2488						path, key.objectid);
2489			if (ret)
2490				break;
2491		}
2492
 
 
 
2493		if (key.type == BTRFS_DIR_INDEX_KEY &&
2494		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495			ret = replay_one_dir_item(wc->trans, root, path,
2496						  eb, i, &key);
2497			if (ret)
2498				break;
2499		}
2500
2501		if (wc->stage < LOG_WALK_REPLAY_ALL)
2502			continue;
2503
2504		/* these keys are simply copied */
2505		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506			ret = overwrite_item(wc->trans, root, path,
2507					     eb, i, &key);
2508			if (ret)
2509				break;
2510		} else if (key.type == BTRFS_INODE_REF_KEY ||
2511			   key.type == BTRFS_INODE_EXTREF_KEY) {
2512			ret = add_inode_ref(wc->trans, root, log, path,
2513					    eb, i, &key);
2514			if (ret && ret != -ENOENT)
2515				break;
2516			ret = 0;
2517		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518			ret = replay_one_extent(wc->trans, root, path,
2519						eb, i, &key);
2520			if (ret)
2521				break;
2522		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523			ret = replay_one_dir_item(wc->trans, root, path,
2524						  eb, i, &key);
2525			if (ret)
2526				break;
2527		}
 
 
 
 
 
 
2528	}
2529	btrfs_free_path(path);
2530	return ret;
2531}
2532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2533static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534				   struct btrfs_root *root,
2535				   struct btrfs_path *path, int *level,
2536				   struct walk_control *wc)
2537{
2538	struct btrfs_fs_info *fs_info = root->fs_info;
2539	u64 root_owner;
2540	u64 bytenr;
2541	u64 ptr_gen;
2542	struct extent_buffer *next;
2543	struct extent_buffer *cur;
2544	struct extent_buffer *parent;
2545	u32 blocksize;
2546	int ret = 0;
2547
2548	WARN_ON(*level < 0);
2549	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550
2551	while (*level > 0) {
2552		struct btrfs_key first_key;
2553
2554		WARN_ON(*level < 0);
2555		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556		cur = path->nodes[*level];
2557
2558		WARN_ON(btrfs_header_level(cur) != *level);
2559
2560		if (path->slots[*level] >=
2561		    btrfs_header_nritems(cur))
2562			break;
2563
2564		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567		blocksize = fs_info->nodesize;
2568
2569		parent = path->nodes[*level];
2570		root_owner = btrfs_header_owner(parent);
2571
2572		next = btrfs_find_create_tree_block(fs_info, bytenr);
 
2573		if (IS_ERR(next))
2574			return PTR_ERR(next);
2575
2576		if (*level == 1) {
2577			ret = wc->process_func(root, next, wc, ptr_gen,
2578					       *level - 1);
2579			if (ret) {
2580				free_extent_buffer(next);
2581				return ret;
2582			}
2583
2584			path->slots[*level]++;
2585			if (wc->free) {
2586				ret = btrfs_read_buffer(next, ptr_gen,
2587							*level - 1, &first_key);
2588				if (ret) {
2589					free_extent_buffer(next);
2590					return ret;
2591				}
2592
2593				if (trans) {
2594					btrfs_tree_lock(next);
2595					btrfs_set_lock_blocking(next);
2596					clean_tree_block(fs_info, next);
2597					btrfs_wait_tree_block_writeback(next);
2598					btrfs_tree_unlock(next);
2599				} else {
2600					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601						clear_extent_buffer_dirty(next);
2602				}
2603
2604				WARN_ON(root_owner !=
2605					BTRFS_TREE_LOG_OBJECTID);
2606				ret = btrfs_free_and_pin_reserved_extent(
2607							fs_info, bytenr,
2608							blocksize);
2609				if (ret) {
2610					free_extent_buffer(next);
2611					return ret;
2612				}
2613			}
2614			free_extent_buffer(next);
2615			continue;
2616		}
2617		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2618		if (ret) {
2619			free_extent_buffer(next);
2620			return ret;
2621		}
2622
2623		WARN_ON(*level <= 0);
2624		if (path->nodes[*level-1])
2625			free_extent_buffer(path->nodes[*level-1]);
2626		path->nodes[*level-1] = next;
2627		*level = btrfs_header_level(next);
2628		path->slots[*level] = 0;
2629		cond_resched();
2630	}
2631	WARN_ON(*level < 0);
2632	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633
2634	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2635
2636	cond_resched();
2637	return 0;
2638}
2639
2640static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641				 struct btrfs_root *root,
2642				 struct btrfs_path *path, int *level,
2643				 struct walk_control *wc)
2644{
2645	struct btrfs_fs_info *fs_info = root->fs_info;
2646	u64 root_owner;
2647	int i;
2648	int slot;
2649	int ret;
2650
2651	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652		slot = path->slots[i];
2653		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2654			path->slots[i]++;
2655			*level = i;
2656			WARN_ON(*level == 0);
2657			return 0;
2658		} else {
2659			struct extent_buffer *parent;
2660			if (path->nodes[*level] == root->node)
2661				parent = path->nodes[*level];
2662			else
2663				parent = path->nodes[*level + 1];
2664
2665			root_owner = btrfs_header_owner(parent);
2666			ret = wc->process_func(root, path->nodes[*level], wc,
2667				 btrfs_header_generation(path->nodes[*level]),
2668				 *level);
2669			if (ret)
2670				return ret;
2671
2672			if (wc->free) {
2673				struct extent_buffer *next;
2674
2675				next = path->nodes[*level];
2676
2677				if (trans) {
2678					btrfs_tree_lock(next);
2679					btrfs_set_lock_blocking(next);
2680					clean_tree_block(fs_info, next);
2681					btrfs_wait_tree_block_writeback(next);
2682					btrfs_tree_unlock(next);
2683				} else {
2684					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685						clear_extent_buffer_dirty(next);
2686				}
2687
2688				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689				ret = btrfs_free_and_pin_reserved_extent(
2690						fs_info,
2691						path->nodes[*level]->start,
2692						path->nodes[*level]->len);
2693				if (ret)
2694					return ret;
2695			}
2696			free_extent_buffer(path->nodes[*level]);
2697			path->nodes[*level] = NULL;
2698			*level = i + 1;
2699		}
2700	}
2701	return 1;
2702}
2703
2704/*
2705 * drop the reference count on the tree rooted at 'snap'.  This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2707 * decremented.
2708 */
2709static int walk_log_tree(struct btrfs_trans_handle *trans,
2710			 struct btrfs_root *log, struct walk_control *wc)
2711{
2712	struct btrfs_fs_info *fs_info = log->fs_info;
2713	int ret = 0;
2714	int wret;
2715	int level;
2716	struct btrfs_path *path;
2717	int orig_level;
2718
2719	path = btrfs_alloc_path();
2720	if (!path)
2721		return -ENOMEM;
2722
2723	level = btrfs_header_level(log->node);
2724	orig_level = level;
2725	path->nodes[level] = log->node;
2726	extent_buffer_get(log->node);
2727	path->slots[level] = 0;
2728
2729	while (1) {
2730		wret = walk_down_log_tree(trans, log, path, &level, wc);
2731		if (wret > 0)
2732			break;
2733		if (wret < 0) {
2734			ret = wret;
2735			goto out;
2736		}
2737
2738		wret = walk_up_log_tree(trans, log, path, &level, wc);
2739		if (wret > 0)
2740			break;
2741		if (wret < 0) {
2742			ret = wret;
2743			goto out;
2744		}
2745	}
2746
2747	/* was the root node processed? if not, catch it here */
2748	if (path->nodes[orig_level]) {
2749		ret = wc->process_func(log, path->nodes[orig_level], wc,
2750			 btrfs_header_generation(path->nodes[orig_level]),
2751			 orig_level);
2752		if (ret)
2753			goto out;
2754		if (wc->free) {
2755			struct extent_buffer *next;
2756
2757			next = path->nodes[orig_level];
2758
2759			if (trans) {
2760				btrfs_tree_lock(next);
2761				btrfs_set_lock_blocking(next);
2762				clean_tree_block(fs_info, next);
2763				btrfs_wait_tree_block_writeback(next);
2764				btrfs_tree_unlock(next);
2765			} else {
2766				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767					clear_extent_buffer_dirty(next);
2768			}
2769
2770			WARN_ON(log->root_key.objectid !=
2771				BTRFS_TREE_LOG_OBJECTID);
2772			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773							next->start, next->len);
2774			if (ret)
2775				goto out;
2776		}
2777	}
2778
2779out:
2780	btrfs_free_path(path);
2781	return ret;
2782}
2783
2784/*
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2787 */
2788static int update_log_root(struct btrfs_trans_handle *trans,
2789			   struct btrfs_root *log)
 
2790{
2791	struct btrfs_fs_info *fs_info = log->fs_info;
2792	int ret;
2793
2794	if (log->log_transid == 1) {
2795		/* insert root item on the first sync */
2796		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797				&log->root_key, &log->root_item);
2798	} else {
2799		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800				&log->root_key, &log->root_item);
2801	}
2802	return ret;
2803}
2804
2805static void wait_log_commit(struct btrfs_root *root, int transid)
2806{
2807	DEFINE_WAIT(wait);
2808	int index = transid % 2;
2809
2810	/*
2811	 * we only allow two pending log transactions at a time,
2812	 * so we know that if ours is more than 2 older than the
2813	 * current transaction, we're done
2814	 */
2815	for (;;) {
2816		prepare_to_wait(&root->log_commit_wait[index],
2817				&wait, TASK_UNINTERRUPTIBLE);
2818
2819		if (!(root->log_transid_committed < transid &&
2820		      atomic_read(&root->log_commit[index])))
2821			break;
2822
2823		mutex_unlock(&root->log_mutex);
2824		schedule();
2825		mutex_lock(&root->log_mutex);
2826	}
2827	finish_wait(&root->log_commit_wait[index], &wait);
2828}
2829
2830static void wait_for_writer(struct btrfs_root *root)
2831{
2832	DEFINE_WAIT(wait);
2833
2834	for (;;) {
2835		prepare_to_wait(&root->log_writer_wait, &wait,
2836				TASK_UNINTERRUPTIBLE);
2837		if (!atomic_read(&root->log_writers))
2838			break;
2839
2840		mutex_unlock(&root->log_mutex);
2841		schedule();
2842		mutex_lock(&root->log_mutex);
2843	}
2844	finish_wait(&root->log_writer_wait, &wait);
2845}
2846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848					struct btrfs_log_ctx *ctx)
2849{
2850	if (!ctx)
2851		return;
2852
2853	mutex_lock(&root->log_mutex);
2854	list_del_init(&ctx->list);
2855	mutex_unlock(&root->log_mutex);
2856}
2857
2858/* 
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2861 */
2862static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863					     int index, int error)
2864{
2865	struct btrfs_log_ctx *ctx;
2866	struct btrfs_log_ctx *safe;
2867
2868	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869		list_del_init(&ctx->list);
2870		ctx->log_ret = error;
2871	}
2872
2873	INIT_LIST_HEAD(&root->log_ctxs[index]);
2874}
2875
2876/*
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it.  When this call is done,
2879 * you know that any inodes previously logged are safely on disk only
2880 * if it returns 0.
2881 *
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
2887 */
2888int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2890{
2891	int index1;
2892	int index2;
2893	int mark;
2894	int ret;
2895	struct btrfs_fs_info *fs_info = root->fs_info;
2896	struct btrfs_root *log = root->log_root;
2897	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 
2898	int log_transid = 0;
2899	struct btrfs_log_ctx root_log_ctx;
2900	struct blk_plug plug;
 
 
2901
2902	mutex_lock(&root->log_mutex);
2903	log_transid = ctx->log_transid;
2904	if (root->log_transid_committed >= log_transid) {
2905		mutex_unlock(&root->log_mutex);
2906		return ctx->log_ret;
2907	}
2908
2909	index1 = log_transid % 2;
2910	if (atomic_read(&root->log_commit[index1])) {
2911		wait_log_commit(root, log_transid);
2912		mutex_unlock(&root->log_mutex);
2913		return ctx->log_ret;
2914	}
2915	ASSERT(log_transid == root->log_transid);
2916	atomic_set(&root->log_commit[index1], 1);
2917
2918	/* wait for previous tree log sync to complete */
2919	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920		wait_log_commit(root, log_transid - 1);
2921
2922	while (1) {
2923		int batch = atomic_read(&root->log_batch);
2924		/* when we're on an ssd, just kick the log commit out */
2925		if (!btrfs_test_opt(fs_info, SSD) &&
2926		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927			mutex_unlock(&root->log_mutex);
2928			schedule_timeout_uninterruptible(1);
2929			mutex_lock(&root->log_mutex);
2930		}
2931		wait_for_writer(root);
2932		if (batch == atomic_read(&root->log_batch))
2933			break;
2934	}
2935
2936	/* bail out if we need to do a full commit */
2937	if (btrfs_need_log_full_commit(fs_info, trans)) {
2938		ret = -EAGAIN;
2939		btrfs_free_logged_extents(log, log_transid);
2940		mutex_unlock(&root->log_mutex);
2941		goto out;
2942	}
2943
2944	if (log_transid % 2 == 0)
2945		mark = EXTENT_DIRTY;
2946	else
2947		mark = EXTENT_NEW;
2948
2949	/* we start IO on  all the marked extents here, but we don't actually
2950	 * wait for them until later.
2951	 */
2952	blk_start_plug(&plug);
2953	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
2954	if (ret) {
2955		blk_finish_plug(&plug);
2956		btrfs_abort_transaction(trans, ret);
2957		btrfs_free_logged_extents(log, log_transid);
2958		btrfs_set_log_full_commit(fs_info, trans);
2959		mutex_unlock(&root->log_mutex);
2960		goto out;
2961	}
2962
 
 
 
 
 
 
 
 
 
 
 
 
 
2963	btrfs_set_root_node(&log->root_item, log->node);
 
2964
2965	root->log_transid++;
2966	log->log_transid = root->log_transid;
2967	root->log_start_pid = 0;
2968	/*
2969	 * IO has been started, blocks of the log tree have WRITTEN flag set
2970	 * in their headers. new modifications of the log will be written to
2971	 * new positions. so it's safe to allow log writers to go in.
2972	 */
2973	mutex_unlock(&root->log_mutex);
2974
 
 
 
 
 
 
 
 
 
 
 
 
 
2975	btrfs_init_log_ctx(&root_log_ctx, NULL);
2976
2977	mutex_lock(&log_root_tree->log_mutex);
2978	atomic_inc(&log_root_tree->log_batch);
2979	atomic_inc(&log_root_tree->log_writers);
2980
2981	index2 = log_root_tree->log_transid % 2;
2982	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983	root_log_ctx.log_transid = log_root_tree->log_transid;
2984
2985	mutex_unlock(&log_root_tree->log_mutex);
2986
2987	ret = update_log_root(trans, log);
2988
2989	mutex_lock(&log_root_tree->log_mutex);
2990	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2991		/*
2992		 * Implicit memory barrier after atomic_dec_and_test
2993		 */
2994		if (waitqueue_active(&log_root_tree->log_writer_wait))
2995			wake_up(&log_root_tree->log_writer_wait);
2996	}
2997
2998	if (ret) {
2999		if (!list_empty(&root_log_ctx.list))
3000			list_del_init(&root_log_ctx.list);
3001
3002		blk_finish_plug(&plug);
3003		btrfs_set_log_full_commit(fs_info, trans);
3004
3005		if (ret != -ENOSPC) {
3006			btrfs_abort_transaction(trans, ret);
3007			mutex_unlock(&log_root_tree->log_mutex);
3008			goto out;
3009		}
3010		btrfs_wait_tree_log_extents(log, mark);
3011		btrfs_free_logged_extents(log, log_transid);
3012		mutex_unlock(&log_root_tree->log_mutex);
3013		ret = -EAGAIN;
3014		goto out;
3015	}
3016
3017	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3018		blk_finish_plug(&plug);
3019		list_del_init(&root_log_ctx.list);
3020		mutex_unlock(&log_root_tree->log_mutex);
3021		ret = root_log_ctx.log_ret;
3022		goto out;
3023	}
3024
3025	index2 = root_log_ctx.log_transid % 2;
3026	if (atomic_read(&log_root_tree->log_commit[index2])) {
3027		blk_finish_plug(&plug);
3028		ret = btrfs_wait_tree_log_extents(log, mark);
3029		btrfs_wait_logged_extents(trans, log, log_transid);
3030		wait_log_commit(log_root_tree,
3031				root_log_ctx.log_transid);
3032		mutex_unlock(&log_root_tree->log_mutex);
3033		if (!ret)
3034			ret = root_log_ctx.log_ret;
3035		goto out;
3036	}
3037	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3038	atomic_set(&log_root_tree->log_commit[index2], 1);
3039
3040	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3041		wait_log_commit(log_root_tree,
3042				root_log_ctx.log_transid - 1);
3043	}
3044
3045	wait_for_writer(log_root_tree);
3046
3047	/*
3048	 * now that we've moved on to the tree of log tree roots,
3049	 * check the full commit flag again
3050	 */
3051	if (btrfs_need_log_full_commit(fs_info, trans)) {
3052		blk_finish_plug(&plug);
3053		btrfs_wait_tree_log_extents(log, mark);
3054		btrfs_free_logged_extents(log, log_transid);
3055		mutex_unlock(&log_root_tree->log_mutex);
3056		ret = -EAGAIN;
3057		goto out_wake_log_root;
3058	}
3059
3060	ret = btrfs_write_marked_extents(fs_info,
3061					 &log_root_tree->dirty_log_pages,
3062					 EXTENT_DIRTY | EXTENT_NEW);
3063	blk_finish_plug(&plug);
3064	if (ret) {
3065		btrfs_set_log_full_commit(fs_info, trans);
3066		btrfs_abort_transaction(trans, ret);
3067		btrfs_free_logged_extents(log, log_transid);
 
 
 
 
 
 
 
 
3068		mutex_unlock(&log_root_tree->log_mutex);
3069		goto out_wake_log_root;
3070	}
3071	ret = btrfs_wait_tree_log_extents(log, mark);
3072	if (!ret)
3073		ret = btrfs_wait_tree_log_extents(log_root_tree,
3074						  EXTENT_NEW | EXTENT_DIRTY);
3075	if (ret) {
3076		btrfs_set_log_full_commit(fs_info, trans);
3077		btrfs_free_logged_extents(log, log_transid);
3078		mutex_unlock(&log_root_tree->log_mutex);
3079		goto out_wake_log_root;
3080	}
3081	btrfs_wait_logged_extents(trans, log, log_transid);
3082
3083	btrfs_set_super_log_root(fs_info->super_for_commit,
3084				 log_root_tree->node->start);
3085	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086				       btrfs_header_level(log_root_tree->node));
3087
 
 
3088	log_root_tree->log_transid++;
3089	mutex_unlock(&log_root_tree->log_mutex);
3090
3091	/*
3092	 * nobody else is going to jump in and write the the ctree
3093	 * super here because the log_commit atomic below is protecting
3094	 * us.  We must be called with a transaction handle pinning
3095	 * the running transaction open, so a full commit can't hop
3096	 * in and cause problems either.
 
 
 
 
 
 
 
 
3097	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098	ret = write_all_supers(fs_info, 1);
 
3099	if (ret) {
3100		btrfs_set_log_full_commit(fs_info, trans);
3101		btrfs_abort_transaction(trans, ret);
3102		goto out_wake_log_root;
3103	}
3104
3105	mutex_lock(&root->log_mutex);
3106	if (root->last_log_commit < log_transid)
3107		root->last_log_commit = log_transid;
3108	mutex_unlock(&root->log_mutex);
 
 
 
 
 
 
3109
3110out_wake_log_root:
3111	mutex_lock(&log_root_tree->log_mutex);
3112	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113
3114	log_root_tree->log_transid_committed++;
3115	atomic_set(&log_root_tree->log_commit[index2], 0);
3116	mutex_unlock(&log_root_tree->log_mutex);
3117
3118	/*
3119	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
3120	 */
3121	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122		wake_up(&log_root_tree->log_commit_wait[index2]);
3123out:
3124	mutex_lock(&root->log_mutex);
3125	btrfs_remove_all_log_ctxs(root, index1, ret);
3126	root->log_transid_committed++;
3127	atomic_set(&root->log_commit[index1], 0);
3128	mutex_unlock(&root->log_mutex);
3129
3130	/*
3131	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
3132	 */
3133	if (waitqueue_active(&root->log_commit_wait[index1]))
3134		wake_up(&root->log_commit_wait[index1]);
3135	return ret;
3136}
3137
3138static void free_log_tree(struct btrfs_trans_handle *trans,
3139			  struct btrfs_root *log)
3140{
3141	int ret;
3142	u64 start;
3143	u64 end;
3144	struct walk_control wc = {
3145		.free = 1,
3146		.process_func = process_one_buffer
3147	};
3148
3149	ret = walk_log_tree(trans, log, &wc);
3150	/* I don't think this can happen but just in case */
3151	if (ret)
3152		btrfs_abort_transaction(trans, ret);
 
 
 
 
 
 
 
3153
3154	while (1) {
3155		ret = find_first_extent_bit(&log->dirty_log_pages,
3156				0, &start, &end,
3157				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3158				NULL);
3159		if (ret)
3160			break;
 
 
 
 
 
 
3161
3162		clear_extent_bits(&log->dirty_log_pages, start, end,
3163				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
 
 
 
3164	}
3165
3166	/*
3167	 * We may have short-circuited the log tree with the full commit logic
3168	 * and left ordered extents on our list, so clear these out to keep us
3169	 * from leaking inodes and memory.
3170	 */
3171	btrfs_free_logged_extents(log, 0);
3172	btrfs_free_logged_extents(log, 1);
3173
3174	free_extent_buffer(log->node);
3175	kfree(log);
3176}
3177
3178/*
3179 * free all the extents used by the tree log.  This should be called
3180 * at commit time of the full transaction
3181 */
3182int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183{
3184	if (root->log_root) {
3185		free_log_tree(trans, root->log_root);
3186		root->log_root = NULL;
 
3187	}
3188	return 0;
3189}
3190
3191int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192			     struct btrfs_fs_info *fs_info)
3193{
3194	if (fs_info->log_root_tree) {
3195		free_log_tree(trans, fs_info->log_root_tree);
3196		fs_info->log_root_tree = NULL;
 
3197	}
3198	return 0;
3199}
3200
3201/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3202 * If both a file and directory are logged, and unlinks or renames are
3203 * mixed in, we have a few interesting corners:
3204 *
3205 * create file X in dir Y
3206 * link file X to X.link in dir Y
3207 * fsync file X
3208 * unlink file X but leave X.link
3209 * fsync dir Y
3210 *
3211 * After a crash we would expect only X.link to exist.  But file X
3212 * didn't get fsync'd again so the log has back refs for X and X.link.
3213 *
3214 * We solve this by removing directory entries and inode backrefs from the
3215 * log when a file that was logged in the current transaction is
3216 * unlinked.  Any later fsync will include the updated log entries, and
3217 * we'll be able to reconstruct the proper directory items from backrefs.
3218 *
3219 * This optimizations allows us to avoid relogging the entire inode
3220 * or the entire directory.
3221 */
3222int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223				 struct btrfs_root *root,
3224				 const char *name, int name_len,
3225				 struct btrfs_inode *dir, u64 index)
3226{
3227	struct btrfs_root *log;
3228	struct btrfs_dir_item *di;
3229	struct btrfs_path *path;
3230	int ret;
3231	int err = 0;
3232	int bytes_del = 0;
3233	u64 dir_ino = btrfs_ino(dir);
3234
3235	if (dir->logged_trans < trans->transid)
3236		return 0;
 
 
 
 
 
3237
3238	ret = join_running_log_trans(root);
3239	if (ret)
3240		return 0;
3241
3242	mutex_lock(&dir->log_mutex);
3243
3244	log = root->log_root;
3245	path = btrfs_alloc_path();
3246	if (!path) {
3247		err = -ENOMEM;
3248		goto out_unlock;
3249	}
3250
3251	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3252				   name, name_len, -1);
3253	if (IS_ERR(di)) {
3254		err = PTR_ERR(di);
3255		goto fail;
3256	}
3257	if (di) {
3258		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259		bytes_del += name_len;
3260		if (ret) {
3261			err = ret;
3262			goto fail;
3263		}
3264	}
3265	btrfs_release_path(path);
3266	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3267					 index, name, name_len, -1);
3268	if (IS_ERR(di)) {
3269		err = PTR_ERR(di);
3270		goto fail;
3271	}
3272	if (di) {
3273		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274		bytes_del += name_len;
3275		if (ret) {
3276			err = ret;
3277			goto fail;
3278		}
3279	}
3280
3281	/* update the directory size in the log to reflect the names
3282	 * we have removed
3283	 */
3284	if (bytes_del) {
3285		struct btrfs_key key;
3286
3287		key.objectid = dir_ino;
3288		key.offset = 0;
3289		key.type = BTRFS_INODE_ITEM_KEY;
3290		btrfs_release_path(path);
3291
3292		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3293		if (ret < 0) {
3294			err = ret;
3295			goto fail;
3296		}
3297		if (ret == 0) {
3298			struct btrfs_inode_item *item;
3299			u64 i_size;
3300
3301			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302					      struct btrfs_inode_item);
3303			i_size = btrfs_inode_size(path->nodes[0], item);
3304			if (i_size > bytes_del)
3305				i_size -= bytes_del;
3306			else
3307				i_size = 0;
3308			btrfs_set_inode_size(path->nodes[0], item, i_size);
3309			btrfs_mark_buffer_dirty(path->nodes[0]);
3310		} else
3311			ret = 0;
3312		btrfs_release_path(path);
3313	}
3314fail:
3315	btrfs_free_path(path);
3316out_unlock:
3317	mutex_unlock(&dir->log_mutex);
3318	if (ret == -ENOSPC) {
3319		btrfs_set_log_full_commit(root->fs_info, trans);
3320		ret = 0;
3321	} else if (ret < 0)
3322		btrfs_abort_transaction(trans, ret);
3323
3324	btrfs_end_log_trans(root);
3325
3326	return err;
3327}
3328
3329/* see comments for btrfs_del_dir_entries_in_log */
3330int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331			       struct btrfs_root *root,
3332			       const char *name, int name_len,
3333			       struct btrfs_inode *inode, u64 dirid)
3334{
3335	struct btrfs_fs_info *fs_info = root->fs_info;
3336	struct btrfs_root *log;
3337	u64 index;
3338	int ret;
3339
3340	if (inode->logged_trans < trans->transid)
3341		return 0;
 
 
 
 
 
3342
3343	ret = join_running_log_trans(root);
3344	if (ret)
3345		return 0;
3346	log = root->log_root;
3347	mutex_lock(&inode->log_mutex);
3348
3349	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3350				  dirid, &index);
3351	mutex_unlock(&inode->log_mutex);
3352	if (ret == -ENOSPC) {
3353		btrfs_set_log_full_commit(fs_info, trans);
3354		ret = 0;
3355	} else if (ret < 0 && ret != -ENOENT)
3356		btrfs_abort_transaction(trans, ret);
3357	btrfs_end_log_trans(root);
3358
3359	return ret;
3360}
3361
3362/*
3363 * creates a range item in the log for 'dirid'.  first_offset and
3364 * last_offset tell us which parts of the key space the log should
3365 * be considered authoritative for.
3366 */
3367static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368				       struct btrfs_root *log,
3369				       struct btrfs_path *path,
3370				       int key_type, u64 dirid,
3371				       u64 first_offset, u64 last_offset)
3372{
3373	int ret;
3374	struct btrfs_key key;
3375	struct btrfs_dir_log_item *item;
3376
3377	key.objectid = dirid;
3378	key.offset = first_offset;
3379	if (key_type == BTRFS_DIR_ITEM_KEY)
3380		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381	else
3382		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3384	if (ret)
 
 
 
 
 
 
 
3385		return ret;
3386
3387	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388			      struct btrfs_dir_log_item);
 
 
 
 
 
 
 
 
 
 
 
3389	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390	btrfs_mark_buffer_dirty(path->nodes[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3392	return 0;
3393}
3394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395/*
3396 * log all the items included in the current transaction for a given
3397 * directory.  This also creates the range items in the log tree required
3398 * to replay anything deleted before the fsync
3399 */
3400static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3401			  struct btrfs_root *root, struct btrfs_inode *inode,
3402			  struct btrfs_path *path,
3403			  struct btrfs_path *dst_path, int key_type,
3404			  struct btrfs_log_ctx *ctx,
3405			  u64 min_offset, u64 *last_offset_ret)
3406{
3407	struct btrfs_key min_key;
 
3408	struct btrfs_root *log = root->log_root;
3409	struct extent_buffer *src;
3410	int err = 0;
3411	int ret;
3412	int i;
3413	int nritems;
3414	u64 first_offset = min_offset;
3415	u64 last_offset = (u64)-1;
3416	u64 ino = btrfs_ino(inode);
3417
3418	log = root->log_root;
3419
3420	min_key.objectid = ino;
3421	min_key.type = key_type;
3422	min_key.offset = min_offset;
3423
3424	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3425
3426	/*
3427	 * we didn't find anything from this transaction, see if there
3428	 * is anything at all
3429	 */
3430	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 
3431		min_key.objectid = ino;
3432		min_key.type = key_type;
3433		min_key.offset = (u64)-1;
3434		btrfs_release_path(path);
3435		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436		if (ret < 0) {
3437			btrfs_release_path(path);
3438			return ret;
3439		}
3440		ret = btrfs_previous_item(root, path, ino, key_type);
3441
3442		/* if ret == 0 there are items for this type,
3443		 * create a range to tell us the last key of this type.
3444		 * otherwise, there are no items in this directory after
3445		 * *min_offset, and we create a range to indicate that.
3446		 */
3447		if (ret == 0) {
3448			struct btrfs_key tmp;
 
3449			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450					      path->slots[0]);
3451			if (key_type == tmp.type)
3452				first_offset = max(min_offset, tmp.offset) + 1;
 
 
3453		}
 
3454		goto done;
3455	}
3456
3457	/* go backward to find any previous key */
3458	ret = btrfs_previous_item(root, path, ino, key_type);
3459	if (ret == 0) {
3460		struct btrfs_key tmp;
 
3461		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462		if (key_type == tmp.type) {
3463			first_offset = tmp.offset;
3464			ret = overwrite_item(trans, log, dst_path,
3465					     path->nodes[0], path->slots[0],
3466					     &tmp);
3467			if (ret) {
3468				err = ret;
3469				goto done;
3470			}
3471		}
 
 
3472	}
 
3473	btrfs_release_path(path);
3474
3475	/* find the first key from this transaction again */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477	if (WARN_ON(ret != 0))
 
 
 
 
 
 
 
 
3478		goto done;
3479
3480	/*
3481	 * we have a block from this transaction, log every item in it
3482	 * from our directory
3483	 */
3484	while (1) {
3485		struct btrfs_key tmp;
3486		src = path->nodes[0];
3487		nritems = btrfs_header_nritems(src);
3488		for (i = path->slots[0]; i < nritems; i++) {
3489			struct btrfs_dir_item *di;
3490
3491			btrfs_item_key_to_cpu(src, &min_key, i);
3492
3493			if (min_key.objectid != ino || min_key.type != key_type)
3494				goto done;
3495			ret = overwrite_item(trans, log, dst_path, src, i,
3496					     &min_key);
3497			if (ret) {
3498				err = ret;
3499				goto done;
3500			}
3501
3502			/*
3503			 * We must make sure that when we log a directory entry,
3504			 * the corresponding inode, after log replay, has a
3505			 * matching link count. For example:
3506			 *
3507			 * touch foo
3508			 * mkdir mydir
3509			 * sync
3510			 * ln foo mydir/bar
3511			 * xfs_io -c "fsync" mydir
3512			 * <crash>
3513			 * <mount fs and log replay>
3514			 *
3515			 * Would result in a fsync log that when replayed, our
3516			 * file inode would have a link count of 1, but we get
3517			 * two directory entries pointing to the same inode.
3518			 * After removing one of the names, it would not be
3519			 * possible to remove the other name, which resulted
3520			 * always in stale file handle errors, and would not
3521			 * be possible to rmdir the parent directory, since
3522			 * its i_size could never decrement to the value
3523			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524			 */
3525			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527			if (ctx &&
3528			    (btrfs_dir_transid(src, di) == trans->transid ||
3529			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3531				ctx->log_new_dentries = true;
3532		}
3533		path->slots[0] = nritems;
3534
3535		/*
3536		 * look ahead to the next item and see if it is also
3537		 * from this directory and from this transaction
3538		 */
3539		ret = btrfs_next_leaf(root, path);
3540		if (ret) {
3541			if (ret == 1)
3542				last_offset = (u64)-1;
3543			else
3544				err = ret;
3545			goto done;
3546		}
3547		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3548		if (tmp.objectid != ino || tmp.type != key_type) {
3549			last_offset = (u64)-1;
3550			goto done;
3551		}
3552		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553			ret = overwrite_item(trans, log, dst_path,
3554					     path->nodes[0], path->slots[0],
3555					     &tmp);
3556			if (ret)
3557				err = ret;
3558			else
3559				last_offset = tmp.offset;
 
 
 
3560			goto done;
3561		}
 
 
 
 
 
3562	}
3563done:
3564	btrfs_release_path(path);
3565	btrfs_release_path(dst_path);
3566
3567	if (err == 0) {
3568		*last_offset_ret = last_offset;
3569		/*
3570		 * insert the log range keys to indicate where the log
3571		 * is valid
 
 
 
 
3572		 */
3573		ret = insert_dir_log_key(trans, log, path, key_type,
3574					 ino, first_offset, last_offset);
3575		if (ret)
3576			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3577	}
3578	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3579}
3580
3581/*
3582 * logging directories is very similar to logging inodes, We find all the items
3583 * from the current transaction and write them to the log.
3584 *
3585 * The recovery code scans the directory in the subvolume, and if it finds a
3586 * key in the range logged that is not present in the log tree, then it means
3587 * that dir entry was unlinked during the transaction.
3588 *
3589 * In order for that scan to work, we must include one key smaller than
3590 * the smallest logged by this transaction and one key larger than the largest
3591 * key logged by this transaction.
3592 */
3593static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3594			  struct btrfs_root *root, struct btrfs_inode *inode,
3595			  struct btrfs_path *path,
3596			  struct btrfs_path *dst_path,
3597			  struct btrfs_log_ctx *ctx)
3598{
3599	u64 min_key;
3600	u64 max_key;
3601	int ret;
3602	int key_type = BTRFS_DIR_ITEM_KEY;
3603
3604again:
3605	min_key = 0;
 
 
 
3606	max_key = 0;
 
3607	while (1) {
3608		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609				ctx, min_key, &max_key);
3610		if (ret)
3611			return ret;
3612		if (max_key == (u64)-1)
3613			break;
3614		min_key = max_key + 1;
3615	}
3616
3617	if (key_type == BTRFS_DIR_ITEM_KEY) {
3618		key_type = BTRFS_DIR_INDEX_KEY;
3619		goto again;
3620	}
3621	return 0;
3622}
3623
3624/*
3625 * a helper function to drop items from the log before we relog an
3626 * inode.  max_key_type indicates the highest item type to remove.
3627 * This cannot be run for file data extents because it does not
3628 * free the extents they point to.
3629 */
3630static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631				  struct btrfs_root *log,
3632				  struct btrfs_path *path,
3633				  u64 objectid, int max_key_type)
 
3634{
3635	int ret;
3636	struct btrfs_key key;
3637	struct btrfs_key found_key;
3638	int start_slot;
3639
3640	key.objectid = objectid;
3641	key.type = max_key_type;
3642	key.offset = (u64)-1;
3643
3644	while (1) {
3645		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3646		BUG_ON(ret == 0); /* Logic error */
3647		if (ret < 0)
3648			break;
 
 
 
 
 
3649
3650		if (path->slots[0] == 0)
3651			break;
3652
3653		path->slots[0]--;
3654		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655				      path->slots[0]);
3656
3657		if (found_key.objectid != objectid)
3658			break;
3659
3660		found_key.offset = 0;
3661		found_key.type = 0;
3662		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663				       &start_slot);
 
3664
3665		ret = btrfs_del_items(trans, log, path, start_slot,
3666				      path->slots[0] - start_slot + 1);
3667		/*
3668		 * If start slot isn't 0 then we don't need to re-search, we've
3669		 * found the last guy with the objectid in this tree.
3670		 */
3671		if (ret || start_slot != 0)
3672			break;
3673		btrfs_release_path(path);
3674	}
3675	btrfs_release_path(path);
3676	if (ret > 0)
3677		ret = 0;
3678	return ret;
3679}
3680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3681static void fill_inode_item(struct btrfs_trans_handle *trans,
3682			    struct extent_buffer *leaf,
3683			    struct btrfs_inode_item *item,
3684			    struct inode *inode, int log_inode_only,
3685			    u64 logged_isize)
3686{
3687	struct btrfs_map_token token;
 
3688
3689	btrfs_init_map_token(&token);
3690
3691	if (log_inode_only) {
3692		/* set the generation to zero so the recover code
3693		 * can tell the difference between an logging
3694		 * just to say 'this inode exists' and a logging
3695		 * to say 'update this inode with these values'
3696		 */
3697		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3698		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3699	} else {
3700		btrfs_set_token_inode_generation(leaf, item,
3701						 BTRFS_I(inode)->generation,
3702						 &token);
3703		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704	}
3705
3706	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710
3711	btrfs_set_token_timespec_sec(leaf, &item->atime,
3712				     inode->i_atime.tv_sec, &token);
3713	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3714				      inode->i_atime.tv_nsec, &token);
3715
3716	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3717				     inode->i_mtime.tv_sec, &token);
3718	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3719				      inode->i_mtime.tv_nsec, &token);
3720
3721	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3722				     inode->i_ctime.tv_sec, &token);
3723	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3724				      inode->i_ctime.tv_nsec, &token);
3725
3726	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727				     &token);
3728
3729	btrfs_set_token_inode_sequence(leaf, item,
3730				       inode_peek_iversion(inode), &token);
3731	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 
 
 
 
 
 
3735}
3736
3737static int log_inode_item(struct btrfs_trans_handle *trans,
3738			  struct btrfs_root *log, struct btrfs_path *path,
3739			  struct btrfs_inode *inode)
3740{
3741	struct btrfs_inode_item *inode_item;
 
3742	int ret;
3743
3744	ret = btrfs_insert_empty_item(trans, log, path,
3745				      &inode->location, sizeof(*inode_item));
3746	if (ret && ret != -EEXIST)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3747		return ret;
3748	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749				    struct btrfs_inode_item);
3750	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751			0, 0);
3752	btrfs_release_path(path);
3753	return 0;
3754}
3755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756static noinline int copy_items(struct btrfs_trans_handle *trans,
3757			       struct btrfs_inode *inode,
3758			       struct btrfs_path *dst_path,
3759			       struct btrfs_path *src_path, u64 *last_extent,
3760			       int start_slot, int nr, int inode_only,
3761			       u64 logged_isize)
3762{
3763	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3764	unsigned long src_offset;
3765	unsigned long dst_offset;
3766	struct btrfs_root *log = inode->root->log_root;
3767	struct btrfs_file_extent_item *extent;
3768	struct btrfs_inode_item *inode_item;
3769	struct extent_buffer *src = src_path->nodes[0];
3770	struct btrfs_key first_key, last_key, key;
3771	int ret;
3772	struct btrfs_key *ins_keys;
3773	u32 *ins_sizes;
 
3774	char *ins_data;
3775	int i;
3776	struct list_head ordered_sums;
3777	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3778	bool has_extents = false;
3779	bool need_find_last_extent = true;
3780	bool done = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3781
3782	INIT_LIST_HEAD(&ordered_sums);
3783
3784	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785			   nr * sizeof(u32), GFP_NOFS);
3786	if (!ins_data)
3787		return -ENOMEM;
3788
3789	first_key.objectid = (u64)-1;
3790
3791	ins_sizes = (u32 *)ins_data;
3792	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793
3794	for (i = 0; i < nr; i++) {
3795		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797	}
3798	ret = btrfs_insert_empty_items(trans, log, dst_path,
3799				       ins_keys, ins_sizes, nr);
3800	if (ret) {
3801		kfree(ins_data);
3802		return ret;
3803	}
3804
3805	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3806		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807						   dst_path->slots[0]);
3808
3809		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810
3811		if (i == nr - 1)
3812			last_key = ins_keys[i];
3813
3814		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3815			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816						    dst_path->slots[0],
3817						    struct btrfs_inode_item);
3818			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3819					&inode->vfs_inode,
3820					inode_only == LOG_INODE_EXISTS,
3821					logged_isize);
3822		} else {
3823			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824					   src_offset, ins_sizes[i]);
3825		}
3826
3827		/*
3828		 * We set need_find_last_extent here in case we know we were
3829		 * processing other items and then walk into the first extent in
3830		 * the inode.  If we don't hit an extent then nothing changes,
3831		 * we'll do the last search the next time around.
 
 
 
 
 
 
 
3832		 */
3833		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834			has_extents = true;
3835			if (first_key.objectid == (u64)-1)
3836				first_key = ins_keys[i];
3837		} else {
3838			need_find_last_extent = false;
3839		}
 
 
 
 
3840
3841		/* take a reference on file data extents so that truncates
3842		 * or deletes of this inode don't have to relog the inode
3843		 * again
 
3844		 */
3845		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3846		    !skip_csum) {
3847			int found_type;
3848			extent = btrfs_item_ptr(src, start_slot + i,
3849						struct btrfs_file_extent_item);
3850
3851			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852				continue;
 
 
 
 
 
 
 
 
 
 
 
 
3853
3854			found_type = btrfs_file_extent_type(src, extent);
3855			if (found_type == BTRFS_FILE_EXTENT_REG) {
3856				u64 ds, dl, cs, cl;
3857				ds = btrfs_file_extent_disk_bytenr(src,
3858								extent);
3859				/* ds == 0 is a hole */
3860				if (ds == 0)
3861					continue;
3862
3863				dl = btrfs_file_extent_disk_num_bytes(src,
3864								extent);
3865				cs = btrfs_file_extent_offset(src, extent);
3866				cl = btrfs_file_extent_num_bytes(src,
3867								extent);
3868				if (btrfs_file_extent_compression(src,
3869								  extent)) {
3870					cs = 0;
3871					cl = dl;
3872				}
3873
3874				ret = btrfs_lookup_csums_range(
3875						fs_info->csum_root,
3876						ds + cs, ds + cs + cl - 1,
3877						&ordered_sums, 0);
3878				if (ret) {
3879					btrfs_release_path(dst_path);
3880					kfree(ins_data);
3881					return ret;
3882				}
3883			}
3884		}
 
 
 
 
 
 
 
 
3885	}
3886
3887	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3888	btrfs_release_path(dst_path);
3889	kfree(ins_data);
3890
3891	/*
3892	 * we have to do this after the loop above to avoid changing the
3893	 * log tree while trying to change the log tree.
3894	 */
3895	ret = 0;
3896	while (!list_empty(&ordered_sums)) {
3897		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898						   struct btrfs_ordered_sum,
3899						   list);
3900		if (!ret)
3901			ret = btrfs_csum_file_blocks(trans, log, sums);
3902		list_del(&sums->list);
3903		kfree(sums);
3904	}
3905
3906	if (!has_extents)
3907		return ret;
 
 
 
 
 
3908
3909	if (need_find_last_extent && *last_extent == first_key.offset) {
3910		/*
3911		 * We don't have any leafs between our current one and the one
3912		 * we processed before that can have file extent items for our
3913		 * inode (and have a generation number smaller than our current
3914		 * transaction id).
3915		 */
3916		need_find_last_extent = false;
3917	}
 
 
3918
3919	/*
3920	 * Because we use btrfs_search_forward we could skip leaves that were
3921	 * not modified and then assume *last_extent is valid when it really
3922	 * isn't.  So back up to the previous leaf and read the end of the last
3923	 * extent before we go and fill in holes.
3924	 */
3925	if (need_find_last_extent) {
3926		u64 len;
3927
3928		ret = btrfs_prev_leaf(inode->root, src_path);
3929		if (ret < 0)
3930			return ret;
3931		if (ret)
3932			goto fill_holes;
3933		if (src_path->slots[0])
3934			src_path->slots[0]--;
3935		src = src_path->nodes[0];
3936		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3937		if (key.objectid != btrfs_ino(inode) ||
3938		    key.type != BTRFS_EXTENT_DATA_KEY)
3939			goto fill_holes;
3940		extent = btrfs_item_ptr(src, src_path->slots[0],
3941					struct btrfs_file_extent_item);
3942		if (btrfs_file_extent_type(src, extent) ==
3943		    BTRFS_FILE_EXTENT_INLINE) {
3944			len = btrfs_file_extent_inline_len(src,
3945							   src_path->slots[0],
3946							   extent);
3947			*last_extent = ALIGN(key.offset + len,
3948					     fs_info->sectorsize);
3949		} else {
3950			len = btrfs_file_extent_num_bytes(src, extent);
3951			*last_extent = key.offset + len;
3952		}
3953	}
3954fill_holes:
3955	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3956	 * things could have happened
3957	 *
3958	 * 1) A merge could have happened, so we could currently be on a leaf
3959	 * that holds what we were copying in the first place.
3960	 * 2) A split could have happened, and now not all of the items we want
3961	 * are on the same leaf.
3962	 *
3963	 * So we need to adjust how we search for holes, we need to drop the
3964	 * path and re-search for the first extent key we found, and then walk
3965	 * forward until we hit the last one we copied.
3966	 */
3967	if (need_find_last_extent) {
3968		/* btrfs_prev_leaf could return 1 without releasing the path */
3969		btrfs_release_path(src_path);
3970		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971				src_path, 0, 0);
3972		if (ret < 0)
3973			return ret;
3974		ASSERT(ret == 0);
3975		src = src_path->nodes[0];
3976		i = src_path->slots[0];
3977	} else {
3978		i = start_slot;
3979	}
3980
3981	/*
3982	 * Ok so here we need to go through and fill in any holes we may have
3983	 * to make sure that holes are punched for those areas in case they had
3984	 * extents previously.
3985	 */
3986	while (!done) {
3987		u64 offset, len;
3988		u64 extent_end;
 
3989
3990		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3991			ret = btrfs_next_leaf(inode->root, src_path);
3992			if (ret < 0)
3993				return ret;
3994			ASSERT(ret == 0);
3995			src = src_path->nodes[0];
3996			i = 0;
3997			need_find_last_extent = true;
3998		}
3999
4000		btrfs_item_key_to_cpu(src, &key, i);
4001		if (!btrfs_comp_cpu_keys(&key, &last_key))
4002			done = true;
4003		if (key.objectid != btrfs_ino(inode) ||
4004		    key.type != BTRFS_EXTENT_DATA_KEY) {
4005			i++;
4006			continue;
4007		}
4008		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009		if (btrfs_file_extent_type(src, extent) ==
4010		    BTRFS_FILE_EXTENT_INLINE) {
4011			len = btrfs_file_extent_inline_len(src, i, extent);
4012			extent_end = ALIGN(key.offset + len,
4013					   fs_info->sectorsize);
4014		} else {
4015			len = btrfs_file_extent_num_bytes(src, extent);
4016			extent_end = key.offset + len;
4017		}
4018		i++;
4019
4020		if (*last_extent == key.offset) {
4021			*last_extent = extent_end;
4022			continue;
4023		}
4024		offset = *last_extent;
4025		len = key.offset - *last_extent;
4026		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4027				offset, 0, 0, len, 0, len, 0, 0, 0);
4028		if (ret)
4029			break;
4030		*last_extent = extent_end;
4031	}
4032
4033	/*
4034	 * Check if there is a hole between the last extent found in our leaf
4035	 * and the first extent in the next leaf. If there is one, we need to
4036	 * log an explicit hole so that at replay time we can punch the hole.
4037	 */
4038	if (ret == 0 &&
4039	    key.objectid == btrfs_ino(inode) &&
4040	    key.type == BTRFS_EXTENT_DATA_KEY &&
4041	    i == btrfs_header_nritems(src_path->nodes[0])) {
4042		ret = btrfs_next_leaf(inode->root, src_path);
4043		need_find_last_extent = true;
4044		if (ret > 0) {
4045			ret = 0;
4046		} else if (ret == 0) {
4047			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048					      src_path->slots[0]);
4049			if (key.objectid == btrfs_ino(inode) &&
4050			    key.type == BTRFS_EXTENT_DATA_KEY &&
4051			    *last_extent < key.offset) {
4052				const u64 len = key.offset - *last_extent;
4053
4054				ret = btrfs_insert_file_extent(trans, log,
4055							       btrfs_ino(inode),
4056							       *last_extent, 0,
4057							       0, len, 0, len,
4058							       0, 0, 0);
4059			}
4060		}
4061	}
4062	/*
4063	 * Need to let the callers know we dropped the path so they should
4064	 * re-search.
4065	 */
4066	if (!ret && need_find_last_extent)
4067		ret = 1;
4068	return ret;
4069}
4070
4071static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 
4072{
4073	struct extent_map *em1, *em2;
4074
4075	em1 = list_entry(a, struct extent_map, list);
4076	em2 = list_entry(b, struct extent_map, list);
4077
4078	if (em1->start < em2->start)
4079		return -1;
4080	else if (em1->start > em2->start)
4081		return 1;
4082	return 0;
4083}
4084
4085static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086				struct inode *inode,
4087				struct btrfs_root *root,
4088				const struct extent_map *em,
4089				const struct list_head *logged_list,
4090				bool *ordered_io_error)
4091{
4092	struct btrfs_fs_info *fs_info = root->fs_info;
4093	struct btrfs_ordered_extent *ordered;
4094	struct btrfs_root *log = root->log_root;
4095	u64 mod_start = em->mod_start;
4096	u64 mod_len = em->mod_len;
4097	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4098	u64 csum_offset;
4099	u64 csum_len;
 
 
4100	LIST_HEAD(ordered_sums);
4101	int ret = 0;
4102
4103	*ordered_io_error = false;
4104
4105	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106	    em->block_start == EXTENT_MAP_HOLE)
4107		return 0;
4108
4109	/*
4110	 * Wait far any ordered extent that covers our extent map. If it
4111	 * finishes without an error, first check and see if our csums are on
4112	 * our outstanding ordered extents.
4113	 */
4114	list_for_each_entry(ordered, logged_list, log_list) {
4115		struct btrfs_ordered_sum *sum;
4116
4117		if (!mod_len)
4118			break;
4119
4120		if (ordered->file_offset + ordered->len <= mod_start ||
4121		    mod_start + mod_len <= ordered->file_offset)
4122			continue;
 
 
4123
4124		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127			const u64 start = ordered->file_offset;
4128			const u64 end = ordered->file_offset + ordered->len - 1;
4129
4130			WARN_ON(ordered->inode != inode);
4131			filemap_fdatawrite_range(inode->i_mapping, start, end);
4132		}
4133
4134		wait_event(ordered->wait,
4135			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137
4138		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4139			/*
4140			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141			 * i_mapping flags, so that the next fsync won't get
4142			 * an outdated io error too.
4143			 */
4144			filemap_check_errors(inode->i_mapping);
4145			*ordered_io_error = true;
4146			break;
4147		}
4148		/*
4149		 * We are going to copy all the csums on this ordered extent, so
4150		 * go ahead and adjust mod_start and mod_len in case this
4151		 * ordered extent has already been logged.
4152		 */
4153		if (ordered->file_offset > mod_start) {
4154			if (ordered->file_offset + ordered->len >=
4155			    mod_start + mod_len)
4156				mod_len = ordered->file_offset - mod_start;
4157			/*
4158			 * If we have this case
4159			 *
4160			 * |--------- logged extent ---------|
4161			 *       |----- ordered extent ----|
4162			 *
4163			 * Just don't mess with mod_start and mod_len, we'll
4164			 * just end up logging more csums than we need and it
4165			 * will be ok.
4166			 */
4167		} else {
4168			if (ordered->file_offset + ordered->len <
4169			    mod_start + mod_len) {
4170				mod_len = (mod_start + mod_len) -
4171					(ordered->file_offset + ordered->len);
4172				mod_start = ordered->file_offset +
4173					ordered->len;
4174			} else {
4175				mod_len = 0;
4176			}
4177		}
4178
4179		if (skip_csum)
4180			continue;
4181
4182		/*
4183		 * To keep us from looping for the above case of an ordered
4184		 * extent that falls inside of the logged extent.
4185		 */
4186		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187				     &ordered->flags))
4188			continue;
4189
4190		list_for_each_entry(sum, &ordered->list, list) {
4191			ret = btrfs_csum_file_blocks(trans, log, sum);
4192			if (ret)
4193				break;
4194		}
4195	}
4196
4197	if (*ordered_io_error || !mod_len || ret || skip_csum)
4198		return ret;
 
4199
4200	if (em->compress_type) {
 
4201		csum_offset = 0;
4202		csum_len = max(em->block_len, em->orig_block_len);
4203	} else {
4204		csum_offset = mod_start - em->start;
4205		csum_len = mod_len;
4206	}
4207
4208	/* block start is already adjusted for the file extent offset. */
4209	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4210				       em->block_start + csum_offset,
4211				       em->block_start + csum_offset +
4212				       csum_len - 1, &ordered_sums, 0);
4213	if (ret)
 
4214		return ret;
 
4215
4216	while (!list_empty(&ordered_sums)) {
4217		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218						   struct btrfs_ordered_sum,
4219						   list);
4220		if (!ret)
4221			ret = btrfs_csum_file_blocks(trans, log, sums);
4222		list_del(&sums->list);
4223		kfree(sums);
4224	}
4225
4226	return ret;
4227}
4228
4229static int log_one_extent(struct btrfs_trans_handle *trans,
4230			  struct btrfs_inode *inode, struct btrfs_root *root,
4231			  const struct extent_map *em,
4232			  struct btrfs_path *path,
4233			  const struct list_head *logged_list,
4234			  struct btrfs_log_ctx *ctx)
4235{
4236	struct btrfs_root *log = root->log_root;
4237	struct btrfs_file_extent_item *fi;
 
4238	struct extent_buffer *leaf;
4239	struct btrfs_map_token token;
4240	struct btrfs_key key;
4241	u64 extent_offset = em->start - em->orig_start;
 
 
4242	u64 block_len;
4243	int ret;
4244	int extent_inserted = 0;
4245	bool ordered_io_err = false;
4246
4247	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248			logged_list, &ordered_io_err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4249	if (ret)
4250		return ret;
4251
4252	if (ordered_io_err) {
4253		ctx->io_err = -EIO;
4254		return ctx->io_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4255	}
4256
4257	btrfs_init_map_token(&token);
4258
4259	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4260				   em->start + em->len, NULL, 0, 1,
4261				   sizeof(*fi), &extent_inserted);
4262	if (ret)
4263		return ret;
4264
4265	if (!extent_inserted) {
4266		key.objectid = btrfs_ino(inode);
4267		key.type = BTRFS_EXTENT_DATA_KEY;
4268		key.offset = em->start;
4269
4270		ret = btrfs_insert_empty_item(trans, log, path, &key,
4271					      sizeof(*fi));
4272		if (ret)
4273			return ret;
4274	}
4275	leaf = path->nodes[0];
4276	fi = btrfs_item_ptr(leaf, path->slots[0],
4277			    struct btrfs_file_extent_item);
4278
4279	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4280					       &token);
4281	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282		btrfs_set_token_file_extent_type(leaf, fi,
4283						 BTRFS_FILE_EXTENT_PREALLOC,
4284						 &token);
4285	else
4286		btrfs_set_token_file_extent_type(leaf, fi,
4287						 BTRFS_FILE_EXTENT_REG,
4288						 &token);
4289
4290	block_len = max(em->block_len, em->orig_block_len);
4291	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293							em->block_start,
4294							&token);
4295		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296							   &token);
4297	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299							em->block_start -
4300							extent_offset, &token);
4301		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302							   &token);
4303	} else {
4304		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306							   &token);
4307	}
4308
4309	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313						&token);
4314	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316	btrfs_mark_buffer_dirty(leaf);
4317
4318	btrfs_release_path(path);
4319
4320	return ret;
4321}
4322
4323/*
4324 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4325 * lose them after doing a fast fsync and replaying the log. We scan the
4326 * subvolume's root instead of iterating the inode's extent map tree because
4327 * otherwise we can log incorrect extent items based on extent map conversion.
4328 * That can happen due to the fact that extent maps are merged when they
4329 * are not in the extent map tree's list of modified extents.
4330 */
4331static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4332				      struct btrfs_inode *inode,
4333				      struct btrfs_path *path)
 
4334{
4335	struct btrfs_root *root = inode->root;
4336	struct btrfs_key key;
4337	const u64 i_size = i_size_read(&inode->vfs_inode);
4338	const u64 ino = btrfs_ino(inode);
4339	struct btrfs_path *dst_path = NULL;
4340	u64 last_extent = (u64)-1;
 
 
 
4341	int ins_nr = 0;
4342	int start_slot;
4343	int ret;
4344
4345	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4346		return 0;
4347
4348	key.objectid = ino;
4349	key.type = BTRFS_EXTENT_DATA_KEY;
4350	key.offset = i_size;
4351	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4352	if (ret < 0)
4353		goto out;
4354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4355	while (true) {
4356		struct extent_buffer *leaf = path->nodes[0];
4357		int slot = path->slots[0];
4358
4359		if (slot >= btrfs_header_nritems(leaf)) {
4360			if (ins_nr > 0) {
4361				ret = copy_items(trans, inode, dst_path, path,
4362						 &last_extent, start_slot,
4363						 ins_nr, 1, 0);
4364				if (ret < 0)
4365					goto out;
4366				ins_nr = 0;
4367			}
4368			ret = btrfs_next_leaf(root, path);
4369			if (ret < 0)
4370				goto out;
4371			if (ret > 0) {
4372				ret = 0;
4373				break;
4374			}
4375			continue;
4376		}
4377
4378		btrfs_item_key_to_cpu(leaf, &key, slot);
4379		if (key.objectid > ino)
4380			break;
4381		if (WARN_ON_ONCE(key.objectid < ino) ||
4382		    key.type < BTRFS_EXTENT_DATA_KEY ||
4383		    key.offset < i_size) {
4384			path->slots[0]++;
4385			continue;
4386		}
4387		if (last_extent == (u64)-1) {
4388			last_extent = key.offset;
4389			/*
4390			 * Avoid logging extent items logged in past fsync calls
4391			 * and leading to duplicate keys in the log tree.
4392			 */
4393			do {
4394				ret = btrfs_truncate_inode_items(trans,
4395							 root->log_root,
4396							 &inode->vfs_inode,
4397							 i_size,
4398							 BTRFS_EXTENT_DATA_KEY);
4399			} while (ret == -EAGAIN);
4400			if (ret)
4401				goto out;
 
4402		}
 
4403		if (ins_nr == 0)
4404			start_slot = slot;
4405		ins_nr++;
4406		path->slots[0]++;
4407		if (!dst_path) {
4408			dst_path = btrfs_alloc_path();
4409			if (!dst_path) {
4410				ret = -ENOMEM;
4411				goto out;
4412			}
4413		}
4414	}
4415	if (ins_nr > 0) {
4416		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4417				 start_slot, ins_nr, 1, 0);
4418		if (ret > 0)
4419			ret = 0;
4420	}
4421out:
4422	btrfs_release_path(path);
4423	btrfs_free_path(dst_path);
4424	return ret;
4425}
4426
4427static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4428				     struct btrfs_root *root,
4429				     struct btrfs_inode *inode,
4430				     struct btrfs_path *path,
4431				     struct list_head *logged_list,
4432				     struct btrfs_log_ctx *ctx,
4433				     const u64 start,
4434				     const u64 end)
4435{
 
 
4436	struct extent_map *em, *n;
4437	struct list_head extents;
4438	struct extent_map_tree *tree = &inode->extent_tree;
4439	u64 logged_start, logged_end;
4440	u64 test_gen;
4441	int ret = 0;
4442	int num = 0;
4443
4444	INIT_LIST_HEAD(&extents);
4445
4446	down_write(&inode->dio_sem);
4447	write_lock(&tree->lock);
4448	test_gen = root->fs_info->last_trans_committed;
4449	logged_start = start;
4450	logged_end = end;
4451
4452	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4453		list_del_init(&em->list);
4454		/*
4455		 * Just an arbitrary number, this can be really CPU intensive
4456		 * once we start getting a lot of extents, and really once we
4457		 * have a bunch of extents we just want to commit since it will
4458		 * be faster.
4459		 */
4460		if (++num > 32768) {
4461			list_del_init(&tree->modified_extents);
4462			ret = -EFBIG;
4463			goto process;
4464		}
4465
4466		if (em->generation <= test_gen)
4467			continue;
4468
4469		/* We log prealloc extents beyond eof later. */
4470		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4471		    em->start >= i_size_read(&inode->vfs_inode))
4472			continue;
4473
4474		if (em->start < logged_start)
4475			logged_start = em->start;
4476		if ((em->start + em->len - 1) > logged_end)
4477			logged_end = em->start + em->len - 1;
4478
4479		/* Need a ref to keep it from getting evicted from cache */
4480		refcount_inc(&em->refs);
4481		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4482		list_add_tail(&em->list, &extents);
4483		num++;
4484	}
4485
4486	list_sort(NULL, &extents, extent_cmp);
4487	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4488	/*
4489	 * Some ordered extents started by fsync might have completed
4490	 * before we could collect them into the list logged_list, which
4491	 * means they're gone, not in our logged_list nor in the inode's
4492	 * ordered tree. We want the application/user space to know an
4493	 * error happened while attempting to persist file data so that
4494	 * it can take proper action. If such error happened, we leave
4495	 * without writing to the log tree and the fsync must report the
4496	 * file data write error and not commit the current transaction.
4497	 */
4498	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4499	if (ret)
4500		ctx->io_err = ret;
4501process:
4502	while (!list_empty(&extents)) {
4503		em = list_entry(extents.next, struct extent_map, list);
4504
4505		list_del_init(&em->list);
4506
4507		/*
4508		 * If we had an error we just need to delete everybody from our
4509		 * private list.
4510		 */
4511		if (ret) {
4512			clear_em_logging(tree, em);
4513			free_extent_map(em);
4514			continue;
4515		}
4516
4517		write_unlock(&tree->lock);
4518
4519		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4520				     ctx);
4521		write_lock(&tree->lock);
4522		clear_em_logging(tree, em);
4523		free_extent_map(em);
4524	}
4525	WARN_ON(!list_empty(&extents));
4526	write_unlock(&tree->lock);
4527	up_write(&inode->dio_sem);
4528
4529	btrfs_release_path(path);
4530	if (!ret)
4531		ret = btrfs_log_prealloc_extents(trans, inode, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4532
4533	return ret;
4534}
4535
4536static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4537			     struct btrfs_path *path, u64 *size_ret)
4538{
4539	struct btrfs_key key;
4540	int ret;
4541
4542	key.objectid = btrfs_ino(inode);
4543	key.type = BTRFS_INODE_ITEM_KEY;
4544	key.offset = 0;
4545
4546	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4547	if (ret < 0) {
4548		return ret;
4549	} else if (ret > 0) {
4550		*size_ret = 0;
4551	} else {
4552		struct btrfs_inode_item *item;
4553
4554		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4555				      struct btrfs_inode_item);
4556		*size_ret = btrfs_inode_size(path->nodes[0], item);
 
 
 
 
 
 
 
 
 
 
 
 
 
4557	}
4558
4559	btrfs_release_path(path);
4560	return 0;
4561}
4562
4563/*
4564 * At the moment we always log all xattrs. This is to figure out at log replay
4565 * time which xattrs must have their deletion replayed. If a xattr is missing
4566 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4567 * because if a xattr is deleted, the inode is fsynced and a power failure
4568 * happens, causing the log to be replayed the next time the fs is mounted,
4569 * we want the xattr to not exist anymore (same behaviour as other filesystems
4570 * with a journal, ext3/4, xfs, f2fs, etc).
4571 */
4572static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4573				struct btrfs_root *root,
4574				struct btrfs_inode *inode,
4575				struct btrfs_path *path,
4576				struct btrfs_path *dst_path)
 
4577{
 
4578	int ret;
4579	struct btrfs_key key;
4580	const u64 ino = btrfs_ino(inode);
4581	int ins_nr = 0;
4582	int start_slot = 0;
 
 
 
 
4583
4584	key.objectid = ino;
4585	key.type = BTRFS_XATTR_ITEM_KEY;
4586	key.offset = 0;
4587
4588	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4589	if (ret < 0)
4590		return ret;
4591
4592	while (true) {
4593		int slot = path->slots[0];
4594		struct extent_buffer *leaf = path->nodes[0];
4595		int nritems = btrfs_header_nritems(leaf);
4596
4597		if (slot >= nritems) {
4598			if (ins_nr > 0) {
4599				u64 last_extent = 0;
4600
4601				ret = copy_items(trans, inode, dst_path, path,
4602						 &last_extent, start_slot,
4603						 ins_nr, 1, 0);
4604				/* can't be 1, extent items aren't processed */
4605				ASSERT(ret <= 0);
4606				if (ret < 0)
4607					return ret;
4608				ins_nr = 0;
4609			}
4610			ret = btrfs_next_leaf(root, path);
4611			if (ret < 0)
4612				return ret;
4613			else if (ret > 0)
4614				break;
4615			continue;
4616		}
4617
4618		btrfs_item_key_to_cpu(leaf, &key, slot);
4619		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4620			break;
4621
4622		if (ins_nr == 0)
4623			start_slot = slot;
4624		ins_nr++;
4625		path->slots[0]++;
 
4626		cond_resched();
4627	}
4628	if (ins_nr > 0) {
4629		u64 last_extent = 0;
4630
4631		ret = copy_items(trans, inode, dst_path, path,
4632				 &last_extent, start_slot,
4633				 ins_nr, 1, 0);
4634		/* can't be 1, extent items aren't processed */
4635		ASSERT(ret <= 0);
4636		if (ret < 0)
4637			return ret;
4638	}
4639
 
 
 
4640	return 0;
4641}
4642
4643/*
4644 * If the no holes feature is enabled we need to make sure any hole between the
4645 * last extent and the i_size of our inode is explicitly marked in the log. This
4646 * is to make sure that doing something like:
4647 *
4648 *      1) create file with 128Kb of data
4649 *      2) truncate file to 64Kb
4650 *      3) truncate file to 256Kb
4651 *      4) fsync file
4652 *      5) <crash/power failure>
4653 *      6) mount fs and trigger log replay
4654 *
4655 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4656 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4657 * file correspond to a hole. The presence of explicit holes in a log tree is
4658 * what guarantees that log replay will remove/adjust file extent items in the
4659 * fs/subvol tree.
4660 *
4661 * Here we do not need to care about holes between extents, that is already done
4662 * by copy_items(). We also only need to do this in the full sync path, where we
4663 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4664 * lookup the list of modified extent maps and if any represents a hole, we
4665 * insert a corresponding extent representing a hole in the log tree.
4666 */
4667static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4668				   struct btrfs_root *root,
4669				   struct btrfs_inode *inode,
4670				   struct btrfs_path *path)
4671{
 
4672	struct btrfs_fs_info *fs_info = root->fs_info;
4673	int ret;
4674	struct btrfs_key key;
4675	u64 hole_start;
4676	u64 hole_size;
4677	struct extent_buffer *leaf;
4678	struct btrfs_root *log = root->log_root;
4679	const u64 ino = btrfs_ino(inode);
4680	const u64 i_size = i_size_read(&inode->vfs_inode);
 
 
4681
4682	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4683		return 0;
4684
4685	key.objectid = ino;
4686	key.type = BTRFS_EXTENT_DATA_KEY;
4687	key.offset = (u64)-1;
4688
4689	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4690	ASSERT(ret != 0);
4691	if (ret < 0)
4692		return ret;
4693
4694	ASSERT(path->slots[0] > 0);
4695	path->slots[0]--;
4696	leaf = path->nodes[0];
4697	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
4698
4699	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4700		/* inode does not have any extents */
4701		hole_start = 0;
4702		hole_size = i_size;
4703	} else {
4704		struct btrfs_file_extent_item *extent;
4705		u64 len;
4706
4707		/*
4708		 * If there's an extent beyond i_size, an explicit hole was
4709		 * already inserted by copy_items().
4710		 */
4711		if (key.offset >= i_size)
4712			return 0;
4713
4714		extent = btrfs_item_ptr(leaf, path->slots[0],
4715					struct btrfs_file_extent_item);
 
 
 
 
 
 
 
 
 
4716
4717		if (btrfs_file_extent_type(leaf, extent) ==
4718		    BTRFS_FILE_EXTENT_INLINE) {
4719			len = btrfs_file_extent_inline_len(leaf,
4720							   path->slots[0],
4721							   extent);
4722			ASSERT(len == i_size ||
4723			       (len == fs_info->sectorsize &&
4724				btrfs_file_extent_compression(leaf, extent) !=
4725				BTRFS_COMPRESS_NONE));
4726			return 0;
 
 
 
4727		}
4728
4729		len = btrfs_file_extent_num_bytes(leaf, extent);
4730		/* Last extent goes beyond i_size, no need to log a hole. */
4731		if (key.offset + len > i_size)
4732			return 0;
4733		hole_start = key.offset + len;
4734		hole_size = i_size - hole_start;
4735	}
4736	btrfs_release_path(path);
4737
4738	/* Last extent ends at i_size. */
4739	if (hole_size == 0)
4740		return 0;
 
 
 
 
 
 
 
4741
4742	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4743	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4744				       hole_size, 0, hole_size, 0, 0, 0);
4745	return ret;
4746}
4747
4748/*
4749 * When we are logging a new inode X, check if it doesn't have a reference that
4750 * matches the reference from some other inode Y created in a past transaction
4751 * and that was renamed in the current transaction. If we don't do this, then at
4752 * log replay time we can lose inode Y (and all its files if it's a directory):
4753 *
4754 * mkdir /mnt/x
4755 * echo "hello world" > /mnt/x/foobar
4756 * sync
4757 * mv /mnt/x /mnt/y
4758 * mkdir /mnt/x                 # or touch /mnt/x
4759 * xfs_io -c fsync /mnt/x
4760 * <power fail>
4761 * mount fs, trigger log replay
4762 *
4763 * After the log replay procedure, we would lose the first directory and all its
4764 * files (file foobar).
4765 * For the case where inode Y is not a directory we simply end up losing it:
4766 *
4767 * echo "123" > /mnt/foo
4768 * sync
4769 * mv /mnt/foo /mnt/bar
4770 * echo "abc" > /mnt/foo
4771 * xfs_io -c fsync /mnt/foo
4772 * <power fail>
4773 *
4774 * We also need this for cases where a snapshot entry is replaced by some other
4775 * entry (file or directory) otherwise we end up with an unreplayable log due to
4776 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4777 * if it were a regular entry:
4778 *
4779 * mkdir /mnt/x
4780 * btrfs subvolume snapshot /mnt /mnt/x/snap
4781 * btrfs subvolume delete /mnt/x/snap
4782 * rmdir /mnt/x
4783 * mkdir /mnt/x
4784 * fsync /mnt/x or fsync some new file inside it
4785 * <power fail>
4786 *
4787 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4788 * the same transaction.
4789 */
4790static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4791					 const int slot,
4792					 const struct btrfs_key *key,
4793					 struct btrfs_inode *inode,
4794					 u64 *other_ino)
4795{
4796	int ret;
4797	struct btrfs_path *search_path;
4798	char *name = NULL;
4799	u32 name_len = 0;
4800	u32 item_size = btrfs_item_size_nr(eb, slot);
4801	u32 cur_offset = 0;
4802	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4803
4804	search_path = btrfs_alloc_path();
4805	if (!search_path)
4806		return -ENOMEM;
4807	search_path->search_commit_root = 1;
4808	search_path->skip_locking = 1;
4809
4810	while (cur_offset < item_size) {
4811		u64 parent;
4812		u32 this_name_len;
4813		u32 this_len;
4814		unsigned long name_ptr;
4815		struct btrfs_dir_item *di;
 
4816
4817		if (key->type == BTRFS_INODE_REF_KEY) {
4818			struct btrfs_inode_ref *iref;
4819
4820			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4821			parent = key->offset;
4822			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4823			name_ptr = (unsigned long)(iref + 1);
4824			this_len = sizeof(*iref) + this_name_len;
4825		} else {
4826			struct btrfs_inode_extref *extref;
4827
4828			extref = (struct btrfs_inode_extref *)(ptr +
4829							       cur_offset);
4830			parent = btrfs_inode_extref_parent(eb, extref);
4831			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4832			name_ptr = (unsigned long)&extref->name;
4833			this_len = sizeof(*extref) + this_name_len;
4834		}
4835
4836		if (this_name_len > name_len) {
4837			char *new_name;
4838
4839			new_name = krealloc(name, this_name_len, GFP_NOFS);
4840			if (!new_name) {
4841				ret = -ENOMEM;
4842				goto out;
4843			}
4844			name_len = this_name_len;
4845			name = new_name;
4846		}
4847
4848		read_extent_buffer(eb, name, name_ptr, this_name_len);
 
 
 
4849		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4850				parent, name, this_name_len, 0);
4851		if (di && !IS_ERR(di)) {
4852			struct btrfs_key di_key;
4853
4854			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4855						  di, &di_key);
4856			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4857				ret = 1;
4858				*other_ino = di_key.objectid;
 
 
 
 
 
4859			} else {
4860				ret = -EAGAIN;
4861			}
4862			goto out;
4863		} else if (IS_ERR(di)) {
4864			ret = PTR_ERR(di);
4865			goto out;
4866		}
4867		btrfs_release_path(search_path);
4868
4869		cur_offset += this_len;
4870	}
4871	ret = 0;
4872out:
4873	btrfs_free_path(search_path);
4874	kfree(name);
4875	return ret;
4876}
4877
4878/* log a single inode in the tree log.
4879 * At least one parent directory for this inode must exist in the tree
4880 * or be logged already.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4881 *
4882 * Any items from this inode changed by the current transaction are copied
4883 * to the log tree.  An extra reference is taken on any extents in this
4884 * file, allowing us to avoid a whole pile of corner cases around logging
4885 * blocks that have been removed from the tree.
4886 *
4887 * See LOG_INODE_ALL and related defines for a description of what inode_only
4888 * does.
 
 
 
 
 
4889 *
4890 * This handles both files and directories.
 
 
 
 
 
 
4891 */
4892static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4893			   struct btrfs_root *root, struct btrfs_inode *inode,
4894			   int inode_only,
4895			   const loff_t start,
4896			   const loff_t end,
4897			   struct btrfs_log_ctx *ctx)
4898{
4899	struct btrfs_fs_info *fs_info = root->fs_info;
4900	struct btrfs_path *path;
4901	struct btrfs_path *dst_path;
4902	struct btrfs_key min_key;
4903	struct btrfs_key max_key;
4904	struct btrfs_root *log = root->log_root;
4905	LIST_HEAD(logged_list);
4906	u64 last_extent = 0;
4907	int err = 0;
4908	int ret;
4909	int nritems;
4910	int ins_start_slot = 0;
4911	int ins_nr;
4912	bool fast_search = false;
4913	u64 ino = btrfs_ino(inode);
4914	struct extent_map_tree *em_tree = &inode->extent_tree;
4915	u64 logged_isize = 0;
4916	bool need_log_inode_item = true;
4917	bool xattrs_logged = false;
4918
4919	path = btrfs_alloc_path();
4920	if (!path)
4921		return -ENOMEM;
4922	dst_path = btrfs_alloc_path();
4923	if (!dst_path) {
4924		btrfs_free_path(path);
4925		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4926	}
4927
4928	min_key.objectid = ino;
4929	min_key.type = BTRFS_INODE_ITEM_KEY;
4930	min_key.offset = 0;
4931
4932	max_key.objectid = ino;
 
4933
 
 
 
 
 
 
 
 
4934
4935	/* today the code can only do partial logging of directories */
4936	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4937	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4938		       &inode->runtime_flags) &&
4939	     inode_only >= LOG_INODE_EXISTS))
4940		max_key.type = BTRFS_XATTR_ITEM_KEY;
4941	else
4942		max_key.type = (u8)-1;
4943	max_key.offset = (u64)-1;
4944
 
4945	/*
4946	 * Only run delayed items if we are a dir or a new file.
4947	 * Otherwise commit the delayed inode only, which is needed in
4948	 * order for the log replay code to mark inodes for link count
4949	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4950	 */
4951	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4952	    inode->generation > fs_info->last_trans_committed)
4953		ret = btrfs_commit_inode_delayed_items(trans, inode);
4954	else
4955		ret = btrfs_commit_inode_delayed_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4956
4957	if (ret) {
4958		btrfs_free_path(path);
4959		btrfs_free_path(dst_path);
4960		return ret;
4961	}
4962
4963	if (inode_only == LOG_OTHER_INODE) {
4964		inode_only = LOG_INODE_EXISTS;
4965		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4966	} else {
4967		mutex_lock(&inode->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4968	}
4969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4970	/*
4971	 * a brute force approach to making sure we get the most uptodate
4972	 * copies of everything.
 
4973	 */
4974	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4975		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4976
4977		if (inode_only == LOG_INODE_EXISTS)
4978			max_key_type = BTRFS_XATTR_ITEM_KEY;
4979		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4980	} else {
4981		if (inode_only == LOG_INODE_EXISTS) {
4982			/*
4983			 * Make sure the new inode item we write to the log has
4984			 * the same isize as the current one (if it exists).
4985			 * This is necessary to prevent data loss after log
4986			 * replay, and also to prevent doing a wrong expanding
4987			 * truncate - for e.g. create file, write 4K into offset
4988			 * 0, fsync, write 4K into offset 4096, add hard link,
4989			 * fsync some other file (to sync log), power fail - if
4990			 * we use the inode's current i_size, after log replay
4991			 * we get a 8Kb file, with the last 4Kb extent as a hole
4992			 * (zeroes), as if an expanding truncate happened,
4993			 * instead of getting a file of 4Kb only.
4994			 */
4995			err = logged_inode_size(log, inode, path, &logged_isize);
4996			if (err)
4997				goto out_unlock;
 
 
 
4998		}
4999		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5000			     &inode->runtime_flags)) {
5001			if (inode_only == LOG_INODE_EXISTS) {
5002				max_key.type = BTRFS_XATTR_ITEM_KEY;
5003				ret = drop_objectid_items(trans, log, path, ino,
5004							  max_key.type);
5005			} else {
5006				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5007					  &inode->runtime_flags);
5008				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5009					  &inode->runtime_flags);
5010				while(1) {
5011					ret = btrfs_truncate_inode_items(trans,
5012						log, &inode->vfs_inode, 0, 0);
5013					if (ret != -EAGAIN)
5014						break;
5015				}
5016			}
5017		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5018					      &inode->runtime_flags) ||
5019			   inode_only == LOG_INODE_EXISTS) {
5020			if (inode_only == LOG_INODE_ALL)
5021				fast_search = true;
5022			max_key.type = BTRFS_XATTR_ITEM_KEY;
5023			ret = drop_objectid_items(trans, log, path, ino,
5024						  max_key.type);
5025		} else {
5026			if (inode_only == LOG_INODE_ALL)
5027				fast_search = true;
5028			goto log_extents;
5029		}
5030
 
 
 
 
 
 
 
 
 
 
 
5031	}
5032	if (ret) {
5033		err = ret;
5034		goto out_unlock;
5035	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5036
5037	while (1) {
5038		ins_nr = 0;
5039		ret = btrfs_search_forward(root, &min_key,
5040					   path, trans->transid);
5041		if (ret < 0) {
5042			err = ret;
5043			goto out_unlock;
5044		}
5045		if (ret != 0)
5046			break;
5047again:
5048		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5049		if (min_key.objectid != ino)
5050			break;
5051		if (min_key.type > max_key.type)
5052			break;
5053
5054		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5055			need_log_inode_item = false;
5056
5057		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5058		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5059		    inode->generation == trans->transid) {
 
 
 
 
 
 
 
 
 
5060			u64 other_ino = 0;
 
5061
5062			ret = btrfs_check_ref_name_override(path->nodes[0],
5063					path->slots[0], &min_key, inode,
5064					&other_ino);
5065			if (ret < 0) {
5066				err = ret;
5067				goto out_unlock;
5068			} else if (ret > 0 && ctx &&
5069				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5070				struct btrfs_key inode_key;
5071				struct inode *other_inode;
5072
5073				if (ins_nr > 0) {
5074					ins_nr++;
5075				} else {
5076					ins_nr = 1;
5077					ins_start_slot = path->slots[0];
5078				}
5079				ret = copy_items(trans, inode, dst_path, path,
5080						 &last_extent, ins_start_slot,
5081						 ins_nr, inode_only,
5082						 logged_isize);
5083				if (ret < 0) {
5084					err = ret;
5085					goto out_unlock;
5086				}
5087				ins_nr = 0;
 
5088				btrfs_release_path(path);
5089				inode_key.objectid = other_ino;
5090				inode_key.type = BTRFS_INODE_ITEM_KEY;
5091				inode_key.offset = 0;
5092				other_inode = btrfs_iget(fs_info->sb,
5093							 &inode_key, root,
5094							 NULL);
5095				/*
5096				 * If the other inode that had a conflicting dir
5097				 * entry was deleted in the current transaction,
5098				 * we don't need to do more work nor fallback to
5099				 * a transaction commit.
5100				 */
5101				if (IS_ERR(other_inode) &&
5102				    PTR_ERR(other_inode) == -ENOENT) {
5103					goto next_key;
5104				} else if (IS_ERR(other_inode)) {
5105					err = PTR_ERR(other_inode);
5106					goto out_unlock;
5107				}
5108				/*
5109				 * We are safe logging the other inode without
5110				 * acquiring its i_mutex as long as we log with
5111				 * the LOG_INODE_EXISTS mode. We're safe against
5112				 * concurrent renames of the other inode as well
5113				 * because during a rename we pin the log and
5114				 * update the log with the new name before we
5115				 * unpin it.
5116				 */
5117				err = btrfs_log_inode(trans, root,
5118						BTRFS_I(other_inode),
5119						LOG_OTHER_INODE, 0, LLONG_MAX,
5120						ctx);
5121				iput(other_inode);
5122				if (err)
5123					goto out_unlock;
5124				else
5125					goto next_key;
5126			}
5127		}
5128
5129		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5130		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5131			if (ins_nr == 0)
5132				goto next_slot;
5133			ret = copy_items(trans, inode, dst_path, path,
5134					 &last_extent, ins_start_slot,
5135					 ins_nr, inode_only, logged_isize);
5136			if (ret < 0) {
5137				err = ret;
5138				goto out_unlock;
5139			}
5140			ins_nr = 0;
5141			if (ret) {
5142				btrfs_release_path(path);
5143				continue;
5144			}
5145			goto next_slot;
5146		}
5147
5148		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5149			ins_nr++;
5150			goto next_slot;
5151		} else if (!ins_nr) {
5152			ins_start_slot = path->slots[0];
5153			ins_nr = 1;
5154			goto next_slot;
5155		}
5156
5157		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5158				 ins_start_slot, ins_nr, inode_only,
5159				 logged_isize);
5160		if (ret < 0) {
5161			err = ret;
5162			goto out_unlock;
5163		}
5164		if (ret) {
5165			ins_nr = 0;
5166			btrfs_release_path(path);
5167			continue;
5168		}
5169		ins_nr = 1;
5170		ins_start_slot = path->slots[0];
5171next_slot:
5172
5173		nritems = btrfs_header_nritems(path->nodes[0]);
5174		path->slots[0]++;
5175		if (path->slots[0] < nritems) {
5176			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5177					      path->slots[0]);
5178			goto again;
5179		}
5180		if (ins_nr) {
5181			ret = copy_items(trans, inode, dst_path, path,
5182					 &last_extent, ins_start_slot,
5183					 ins_nr, inode_only, logged_isize);
5184			if (ret < 0) {
5185				err = ret;
5186				goto out_unlock;
5187			}
5188			ret = 0;
5189			ins_nr = 0;
5190		}
5191		btrfs_release_path(path);
5192next_key:
5193		if (min_key.offset < (u64)-1) {
5194			min_key.offset++;
5195		} else if (min_key.type < max_key.type) {
5196			min_key.type++;
5197			min_key.offset = 0;
5198		} else {
5199			break;
5200		}
 
 
 
 
 
 
 
5201	}
5202	if (ins_nr) {
5203		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5204				 ins_start_slot, ins_nr, inode_only,
5205				 logged_isize);
5206		if (ret < 0) {
5207			err = ret;
5208			goto out_unlock;
5209		}
5210		ret = 0;
5211		ins_nr = 0;
5212	}
5213
5214	btrfs_release_path(path);
5215	btrfs_release_path(dst_path);
5216	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5217	if (err)
5218		goto out_unlock;
5219	xattrs_logged = true;
5220	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5221		btrfs_release_path(path);
5222		btrfs_release_path(dst_path);
5223		err = btrfs_log_trailing_hole(trans, root, inode, path);
5224		if (err)
5225			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5226	}
5227log_extents:
5228	btrfs_release_path(path);
5229	btrfs_release_path(dst_path);
5230	if (need_log_inode_item) {
5231		err = log_inode_item(trans, log, dst_path, inode);
5232		if (!err && !xattrs_logged) {
5233			err = btrfs_log_all_xattrs(trans, root, inode, path,
5234						   dst_path);
5235			btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5236		}
5237		if (err)
5238			goto out_unlock;
5239	}
5240	if (fast_search) {
5241		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5242						&logged_list, ctx, start, end);
5243		if (ret) {
5244			err = ret;
5245			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5246		}
5247	} else if (inode_only == LOG_INODE_ALL) {
5248		struct extent_map *em, *n;
5249
5250		write_lock(&em_tree->lock);
5251		/*
5252		 * We can't just remove every em if we're called for a ranged
5253		 * fsync - that is, one that doesn't cover the whole possible
5254		 * file range (0 to LLONG_MAX). This is because we can have
5255		 * em's that fall outside the range we're logging and therefore
5256		 * their ordered operations haven't completed yet
5257		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5258		 * didn't get their respective file extent item in the fs/subvol
5259		 * tree yet, and need to let the next fast fsync (one which
5260		 * consults the list of modified extent maps) find the em so
5261		 * that it logs a matching file extent item and waits for the
5262		 * respective ordered operation to complete (if it's still
5263		 * running).
5264		 *
5265		 * Removing every em outside the range we're logging would make
5266		 * the next fast fsync not log their matching file extent items,
5267		 * therefore making us lose data after a log replay.
5268		 */
5269		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5270					 list) {
5271			const u64 mod_end = em->mod_start + em->mod_len - 1;
5272
5273			if (em->mod_start >= start && mod_end <= end)
5274				list_del_init(&em->list);
5275		}
5276		write_unlock(&em_tree->lock);
 
5277	}
5278
5279	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5280		ret = log_directory_changes(trans, root, inode, path, dst_path,
5281					ctx);
5282		if (ret) {
5283			err = ret;
5284			goto out_unlock;
5285		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286	}
5287
5288	spin_lock(&inode->lock);
5289	inode->logged_trans = trans->transid;
5290	inode->last_log_commit = inode->last_sub_trans;
5291	spin_unlock(&inode->lock);
5292out_unlock:
5293	if (unlikely(err))
5294		btrfs_put_logged_extents(&logged_list);
5295	else
5296		btrfs_submit_logged_extents(&logged_list, log);
5297	mutex_unlock(&inode->log_mutex);
5298
5299	btrfs_free_path(path);
5300	btrfs_free_path(dst_path);
5301	return err;
5302}
5303
5304/*
5305 * Check if we must fallback to a transaction commit when logging an inode.
5306 * This must be called after logging the inode and is used only in the context
5307 * when fsyncing an inode requires the need to log some other inode - in which
5308 * case we can't lock the i_mutex of each other inode we need to log as that
5309 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5310 * log inodes up or down in the hierarchy) or rename operations for example. So
5311 * we take the log_mutex of the inode after we have logged it and then check for
5312 * its last_unlink_trans value - this is safe because any task setting
5313 * last_unlink_trans must take the log_mutex and it must do this before it does
5314 * the actual unlink operation, so if we do this check before a concurrent task
5315 * sets last_unlink_trans it means we've logged a consistent version/state of
5316 * all the inode items, otherwise we are not sure and must do a transaction
5317 * commit (the concurrent task might have only updated last_unlink_trans before
5318 * we logged the inode or it might have also done the unlink).
5319 */
5320static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5321					  struct btrfs_inode *inode)
5322{
5323	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5324	bool ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5325
5326	mutex_lock(&inode->log_mutex);
5327	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5328		/*
5329		 * Make sure any commits to the log are forced to be full
5330		 * commits.
 
 
5331		 */
5332		btrfs_set_log_full_commit(fs_info, trans);
5333		ret = true;
 
 
 
 
 
 
 
 
 
 
5334	}
5335	mutex_unlock(&inode->log_mutex);
5336
5337	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5338}
5339
5340/*
5341 * follow the dentry parent pointers up the chain and see if any
5342 * of the directories in it require a full commit before they can
5343 * be logged.  Returns zero if nothing special needs to be done or 1 if
5344 * a full commit is required.
5345 */
5346static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5347					       struct btrfs_inode *inode,
5348					       struct dentry *parent,
5349					       struct super_block *sb,
5350					       u64 last_committed)
5351{
 
 
5352	int ret = 0;
5353	struct dentry *old_parent = NULL;
5354	struct btrfs_inode *orig_inode = inode;
5355
5356	/*
5357	 * for regular files, if its inode is already on disk, we don't
5358	 * have to worry about the parents at all.  This is because
5359	 * we can use the last_unlink_trans field to record renames
5360	 * and other fun in this file.
5361	 */
5362	if (S_ISREG(inode->vfs_inode.i_mode) &&
5363	    inode->generation <= last_committed &&
5364	    inode->last_unlink_trans <= last_committed)
5365		goto out;
 
 
 
 
 
5366
5367	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5368		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5369			goto out;
5370		inode = BTRFS_I(d_inode(parent));
5371	}
5372
5373	while (1) {
5374		/*
5375		 * If we are logging a directory then we start with our inode,
5376		 * not our parent's inode, so we need to skip setting the
5377		 * logged_trans so that further down in the log code we don't
5378		 * think this inode has already been logged.
5379		 */
5380		if (inode != orig_inode)
5381			inode->logged_trans = trans->transid;
5382		smp_mb();
5383
5384		if (btrfs_must_commit_transaction(trans, inode)) {
5385			ret = 1;
 
5386			break;
5387		}
5388
5389		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5390			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
5391
5392		if (IS_ROOT(parent)) {
5393			inode = BTRFS_I(d_inode(parent));
5394			if (btrfs_must_commit_transaction(trans, inode))
5395				ret = 1;
5396			break;
5397		}
5398
5399		parent = dget_parent(parent);
5400		dput(old_parent);
5401		old_parent = parent;
5402		inode = BTRFS_I(d_inode(parent));
5403
5404	}
5405	dput(old_parent);
5406out:
5407	return ret;
5408}
5409
5410struct btrfs_dir_list {
5411	u64 ino;
5412	struct list_head list;
5413};
5414
5415/*
5416 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5417 * details about the why it is needed.
5418 * This is a recursive operation - if an existing dentry corresponds to a
5419 * directory, that directory's new entries are logged too (same behaviour as
5420 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5421 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5422 * complains about the following circular lock dependency / possible deadlock:
5423 *
5424 *        CPU0                                        CPU1
5425 *        ----                                        ----
5426 * lock(&type->i_mutex_dir_key#3/2);
5427 *                                            lock(sb_internal#2);
5428 *                                            lock(&type->i_mutex_dir_key#3/2);
5429 * lock(&sb->s_type->i_mutex_key#14);
5430 *
5431 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5432 * sb_start_intwrite() in btrfs_start_transaction().
5433 * Not locking i_mutex of the inodes is still safe because:
5434 *
5435 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5436 *    that while logging the inode new references (names) are added or removed
5437 *    from the inode, leaving the logged inode item with a link count that does
5438 *    not match the number of logged inode reference items. This is fine because
5439 *    at log replay time we compute the real number of links and correct the
5440 *    link count in the inode item (see replay_one_buffer() and
5441 *    link_to_fixup_dir());
5442 *
5443 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5444 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5445 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5446 *    has a size that doesn't match the sum of the lengths of all the logged
5447 *    names. This does not result in a problem because if a dir_item key is
5448 *    logged but its matching dir_index key is not logged, at log replay time we
5449 *    don't use it to replay the respective name (see replay_one_name()). On the
5450 *    other hand if only the dir_index key ends up being logged, the respective
5451 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5452 *    keys created (see replay_one_name()).
5453 *    The directory's inode item with a wrong i_size is not a problem as well,
5454 *    since we don't use it at log replay time to set the i_size in the inode
5455 *    item of the fs/subvol tree (see overwrite_item()).
5456 */
5457static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5458				struct btrfs_root *root,
5459				struct btrfs_inode *start_inode,
5460				struct btrfs_log_ctx *ctx)
5461{
5462	struct btrfs_fs_info *fs_info = root->fs_info;
5463	struct btrfs_root *log = root->log_root;
5464	struct btrfs_path *path;
5465	LIST_HEAD(dir_list);
5466	struct btrfs_dir_list *dir_elem;
5467	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
5468
5469	path = btrfs_alloc_path();
5470	if (!path)
5471		return -ENOMEM;
5472
5473	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5474	if (!dir_elem) {
5475		btrfs_free_path(path);
5476		return -ENOMEM;
5477	}
5478	dir_elem->ino = btrfs_ino(start_inode);
5479	list_add_tail(&dir_elem->list, &dir_list);
5480
5481	while (!list_empty(&dir_list)) {
5482		struct extent_buffer *leaf;
5483		struct btrfs_key min_key;
5484		int nritems;
5485		int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5486
5487		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5488					    list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5489		if (ret)
5490			goto next_dir_inode;
 
5491
5492		min_key.objectid = dir_elem->ino;
5493		min_key.type = BTRFS_DIR_ITEM_KEY;
5494		min_key.offset = 0;
5495again:
5496		btrfs_release_path(path);
5497		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5498		if (ret < 0) {
5499			goto next_dir_inode;
5500		} else if (ret > 0) {
5501			ret = 0;
5502			goto next_dir_inode;
5503		}
5504
5505process_leaf:
5506		leaf = path->nodes[0];
5507		nritems = btrfs_header_nritems(leaf);
5508		for (i = path->slots[0]; i < nritems; i++) {
5509			struct btrfs_dir_item *di;
5510			struct btrfs_key di_key;
5511			struct inode *di_inode;
5512			struct btrfs_dir_list *new_dir_elem;
5513			int log_mode = LOG_INODE_EXISTS;
5514			int type;
 
5515
5516			btrfs_item_key_to_cpu(leaf, &min_key, i);
5517			if (min_key.objectid != dir_elem->ino ||
5518			    min_key.type != BTRFS_DIR_ITEM_KEY)
5519				goto next_dir_inode;
5520
5521			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5522			type = btrfs_dir_type(leaf, di);
5523			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5524			    type != BTRFS_FT_DIR)
5525				continue;
5526			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5527			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5528				continue;
5529
5530			btrfs_release_path(path);
5531			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5532			if (IS_ERR(di_inode)) {
5533				ret = PTR_ERR(di_inode);
5534				goto next_dir_inode;
5535			}
 
 
 
 
 
5536
5537			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5538				iput(di_inode);
5539				break;
5540			}
5541
5542			ctx->log_new_dentries = false;
5543			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5544				log_mode = LOG_INODE_ALL;
5545			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5546					      log_mode, 0, LLONG_MAX, ctx);
5547			if (!ret &&
5548			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5549				ret = 1;
5550			iput(di_inode);
 
 
 
 
 
 
 
 
 
 
 
5551			if (ret)
5552				goto next_dir_inode;
5553			if (ctx->log_new_dentries) {
5554				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5555						       GFP_NOFS);
5556				if (!new_dir_elem) {
5557					ret = -ENOMEM;
5558					goto next_dir_inode;
5559				}
5560				new_dir_elem->ino = di_key.objectid;
5561				list_add_tail(&new_dir_elem->list, &dir_list);
5562			}
5563			break;
5564		}
5565		if (i == nritems) {
5566			ret = btrfs_next_leaf(log, path);
5567			if (ret < 0) {
5568				goto next_dir_inode;
5569			} else if (ret > 0) {
5570				ret = 0;
5571				goto next_dir_inode;
 
 
 
 
 
 
 
 
5572			}
5573			goto process_leaf;
 
 
 
 
 
 
 
 
 
 
 
 
 
5574		}
5575		if (min_key.offset < (u64)-1) {
5576			min_key.offset++;
5577			goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5578		}
5579next_dir_inode:
5580		list_del(&dir_elem->list);
5581		kfree(dir_elem);
5582	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5583
 
 
 
 
 
 
 
 
 
 
5584	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5585	return ret;
5586}
5587
5588static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5589				 struct btrfs_inode *inode,
5590				 struct btrfs_log_ctx *ctx)
5591{
5592	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5593	int ret;
5594	struct btrfs_path *path;
5595	struct btrfs_key key;
5596	struct btrfs_root *root = inode->root;
5597	const u64 ino = btrfs_ino(inode);
5598
5599	path = btrfs_alloc_path();
5600	if (!path)
5601		return -ENOMEM;
5602	path->skip_locking = 1;
5603	path->search_commit_root = 1;
5604
5605	key.objectid = ino;
5606	key.type = BTRFS_INODE_REF_KEY;
5607	key.offset = 0;
5608	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5609	if (ret < 0)
5610		goto out;
5611
5612	while (true) {
5613		struct extent_buffer *leaf = path->nodes[0];
5614		int slot = path->slots[0];
5615		u32 cur_offset = 0;
5616		u32 item_size;
5617		unsigned long ptr;
5618
5619		if (slot >= btrfs_header_nritems(leaf)) {
5620			ret = btrfs_next_leaf(root, path);
5621			if (ret < 0)
5622				goto out;
5623			else if (ret > 0)
5624				break;
5625			continue;
5626		}
5627
5628		btrfs_item_key_to_cpu(leaf, &key, slot);
5629		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5630		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5631			break;
5632
5633		item_size = btrfs_item_size_nr(leaf, slot);
5634		ptr = btrfs_item_ptr_offset(leaf, slot);
5635		while (cur_offset < item_size) {
5636			struct btrfs_key inode_key;
5637			struct inode *dir_inode;
5638
5639			inode_key.type = BTRFS_INODE_ITEM_KEY;
5640			inode_key.offset = 0;
5641
5642			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5643				struct btrfs_inode_extref *extref;
5644
5645				extref = (struct btrfs_inode_extref *)
5646					(ptr + cur_offset);
5647				inode_key.objectid = btrfs_inode_extref_parent(
5648					leaf, extref);
5649				cur_offset += sizeof(*extref);
5650				cur_offset += btrfs_inode_extref_name_len(leaf,
5651					extref);
5652			} else {
5653				inode_key.objectid = key.offset;
5654				cur_offset = item_size;
5655			}
5656
5657			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5658					       root, NULL);
5659			/* If parent inode was deleted, skip it. */
5660			if (IS_ERR(dir_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5661				continue;
 
5662
5663			if (ctx)
5664				ctx->log_new_dentries = false;
5665			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5666					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5667			if (!ret &&
5668			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5669				ret = 1;
5670			if (!ret && ctx && ctx->log_new_dentries)
5671				ret = log_new_dir_dentries(trans, root,
5672						   BTRFS_I(dir_inode), ctx);
5673			iput(dir_inode);
5674			if (ret)
5675				goto out;
5676		}
5677		path->slots[0]++;
5678	}
5679	ret = 0;
5680out:
5681	btrfs_free_path(path);
5682	return ret;
5683}
5684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685/*
5686 * helper function around btrfs_log_inode to make sure newly created
5687 * parent directories also end up in the log.  A minimal inode and backref
5688 * only logging is done of any parent directories that are older than
5689 * the last committed transaction
5690 */
5691static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5692				  struct btrfs_inode *inode,
5693				  struct dentry *parent,
5694				  const loff_t start,
5695				  const loff_t end,
5696				  int inode_only,
5697				  struct btrfs_log_ctx *ctx)
5698{
5699	struct btrfs_root *root = inode->root;
5700	struct btrfs_fs_info *fs_info = root->fs_info;
5701	struct super_block *sb;
5702	struct dentry *old_parent = NULL;
5703	int ret = 0;
5704	u64 last_committed = fs_info->last_trans_committed;
5705	bool log_dentries = false;
5706	struct btrfs_inode *orig_inode = inode;
5707
5708	sb = inode->vfs_inode.i_sb;
5709
5710	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5711		ret = 1;
5712		goto end_no_trans;
5713	}
5714
5715	/*
5716	 * The prev transaction commit doesn't complete, we need do
5717	 * full commit by ourselves.
5718	 */
5719	if (fs_info->last_trans_log_full_commit >
5720	    fs_info->last_trans_committed) {
5721		ret = 1;
5722		goto end_no_trans;
5723	}
5724
5725	if (btrfs_root_refs(&root->root_item) == 0) {
5726		ret = 1;
 
 
 
 
5727		goto end_no_trans;
5728	}
5729
5730	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5731			last_committed);
5732	if (ret)
5733		goto end_no_trans;
5734
5735	if (btrfs_inode_in_log(inode, trans->transid)) {
 
 
5736		ret = BTRFS_NO_LOG_SYNC;
5737		goto end_no_trans;
5738	}
5739
5740	ret = start_log_trans(trans, root, ctx);
5741	if (ret)
5742		goto end_no_trans;
5743
5744	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5745	if (ret)
5746		goto end_trans;
5747
5748	/*
5749	 * for regular files, if its inode is already on disk, we don't
5750	 * have to worry about the parents at all.  This is because
5751	 * we can use the last_unlink_trans field to record renames
5752	 * and other fun in this file.
5753	 */
5754	if (S_ISREG(inode->vfs_inode.i_mode) &&
5755	    inode->generation <= last_committed &&
5756	    inode->last_unlink_trans <= last_committed) {
5757		ret = 0;
5758		goto end_trans;
5759	}
5760
5761	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5762		log_dentries = true;
5763
5764	/*
5765	 * On unlink we must make sure all our current and old parent directory
5766	 * inodes are fully logged. This is to prevent leaving dangling
5767	 * directory index entries in directories that were our parents but are
5768	 * not anymore. Not doing this results in old parent directory being
5769	 * impossible to delete after log replay (rmdir will always fail with
5770	 * error -ENOTEMPTY).
5771	 *
5772	 * Example 1:
5773	 *
5774	 * mkdir testdir
5775	 * touch testdir/foo
5776	 * ln testdir/foo testdir/bar
5777	 * sync
5778	 * unlink testdir/bar
5779	 * xfs_io -c fsync testdir/foo
5780	 * <power failure>
5781	 * mount fs, triggers log replay
5782	 *
5783	 * If we don't log the parent directory (testdir), after log replay the
5784	 * directory still has an entry pointing to the file inode using the bar
5785	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5786	 * the file inode has a link count of 1.
5787	 *
5788	 * Example 2:
5789	 *
5790	 * mkdir testdir
5791	 * touch foo
5792	 * ln foo testdir/foo2
5793	 * ln foo testdir/foo3
5794	 * sync
5795	 * unlink testdir/foo3
5796	 * xfs_io -c fsync foo
5797	 * <power failure>
5798	 * mount fs, triggers log replay
5799	 *
5800	 * Similar as the first example, after log replay the parent directory
5801	 * testdir still has an entry pointing to the inode file with name foo3
5802	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5803	 * and has a link count of 2.
5804	 */
5805	if (inode->last_unlink_trans > last_committed) {
5806		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5807		if (ret)
5808			goto end_trans;
5809	}
5810
5811	while (1) {
5812		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5813			break;
5814
5815		inode = BTRFS_I(d_inode(parent));
5816		if (root != inode->root)
5817			break;
5818
5819		if (inode->generation > last_committed) {
5820			ret = btrfs_log_inode(trans, root, inode,
5821					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5822			if (ret)
5823				goto end_trans;
5824		}
5825		if (IS_ROOT(parent))
5826			break;
5827
5828		parent = dget_parent(parent);
5829		dput(old_parent);
5830		old_parent = parent;
5831	}
5832	if (log_dentries)
5833		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5834	else
5835		ret = 0;
5836end_trans:
5837	dput(old_parent);
5838	if (ret < 0) {
5839		btrfs_set_log_full_commit(fs_info, trans);
5840		ret = 1;
5841	}
5842
5843	if (ret)
5844		btrfs_remove_log_ctx(root, ctx);
5845	btrfs_end_log_trans(root);
5846end_no_trans:
5847	return ret;
5848}
5849
5850/*
5851 * it is not safe to log dentry if the chunk root has added new
5852 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5853 * If this returns 1, you must commit the transaction to safely get your
5854 * data on disk.
5855 */
5856int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5857			  struct dentry *dentry,
5858			  const loff_t start,
5859			  const loff_t end,
5860			  struct btrfs_log_ctx *ctx)
5861{
5862	struct dentry *parent = dget_parent(dentry);
5863	int ret;
5864
5865	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5866				     start, end, LOG_INODE_ALL, ctx);
5867	dput(parent);
5868
5869	return ret;
5870}
5871
5872/*
5873 * should be called during mount to recover any replay any log trees
5874 * from the FS
5875 */
5876int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5877{
5878	int ret;
5879	struct btrfs_path *path;
5880	struct btrfs_trans_handle *trans;
5881	struct btrfs_key key;
5882	struct btrfs_key found_key;
5883	struct btrfs_key tmp_key;
5884	struct btrfs_root *log;
5885	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5886	struct walk_control wc = {
5887		.process_func = process_one_buffer,
5888		.stage = 0,
5889	};
5890
5891	path = btrfs_alloc_path();
5892	if (!path)
5893		return -ENOMEM;
5894
5895	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5896
5897	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5898	if (IS_ERR(trans)) {
5899		ret = PTR_ERR(trans);
5900		goto error;
5901	}
5902
5903	wc.trans = trans;
5904	wc.pin = 1;
5905
5906	ret = walk_log_tree(trans, log_root_tree, &wc);
5907	if (ret) {
5908		btrfs_handle_fs_error(fs_info, ret,
5909			"Failed to pin buffers while recovering log root tree.");
5910		goto error;
5911	}
5912
5913again:
5914	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5915	key.offset = (u64)-1;
5916	key.type = BTRFS_ROOT_ITEM_KEY;
5917
5918	while (1) {
5919		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5920
5921		if (ret < 0) {
5922			btrfs_handle_fs_error(fs_info, ret,
5923				    "Couldn't find tree log root.");
5924			goto error;
5925		}
5926		if (ret > 0) {
5927			if (path->slots[0] == 0)
5928				break;
5929			path->slots[0]--;
5930		}
5931		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5932				      path->slots[0]);
5933		btrfs_release_path(path);
5934		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5935			break;
5936
5937		log = btrfs_read_fs_root(log_root_tree, &found_key);
5938		if (IS_ERR(log)) {
5939			ret = PTR_ERR(log);
5940			btrfs_handle_fs_error(fs_info, ret,
5941				    "Couldn't read tree log root.");
5942			goto error;
5943		}
5944
5945		tmp_key.objectid = found_key.offset;
5946		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5947		tmp_key.offset = (u64)-1;
5948
5949		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5950		if (IS_ERR(wc.replay_dest)) {
5951			ret = PTR_ERR(wc.replay_dest);
5952			free_extent_buffer(log->node);
5953			free_extent_buffer(log->commit_root);
5954			kfree(log);
5955			btrfs_handle_fs_error(fs_info, ret,
5956				"Couldn't read target root for tree log recovery.");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5957			goto error;
5958		}
5959
5960		wc.replay_dest->log_root = log;
5961		btrfs_record_root_in_trans(trans, wc.replay_dest);
5962		ret = walk_log_tree(trans, log, &wc);
 
 
 
 
5963
5964		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5965			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5966						      path);
 
 
5967		}
5968
5969		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5970			struct btrfs_root *root = wc.replay_dest;
5971
5972			btrfs_release_path(path);
5973
5974			/*
5975			 * We have just replayed everything, and the highest
5976			 * objectid of fs roots probably has changed in case
5977			 * some inode_item's got replayed.
5978			 *
5979			 * root->objectid_mutex is not acquired as log replay
5980			 * could only happen during mount.
5981			 */
5982			ret = btrfs_find_highest_objectid(root,
5983						  &root->highest_objectid);
 
5984		}
5985
5986		key.offset = found_key.offset - 1;
5987		wc.replay_dest->log_root = NULL;
5988		free_extent_buffer(log->node);
5989		free_extent_buffer(log->commit_root);
5990		kfree(log);
5991
5992		if (ret)
5993			goto error;
5994
5995		if (found_key.offset == 0)
5996			break;
 
5997	}
5998	btrfs_release_path(path);
5999
6000	/* step one is to pin it all, step two is to replay just inodes */
6001	if (wc.pin) {
6002		wc.pin = 0;
6003		wc.process_func = replay_one_buffer;
6004		wc.stage = LOG_WALK_REPLAY_INODES;
6005		goto again;
6006	}
6007	/* step three is to replay everything */
6008	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6009		wc.stage++;
6010		goto again;
6011	}
6012
6013	btrfs_free_path(path);
6014
6015	/* step 4: commit the transaction, which also unpins the blocks */
6016	ret = btrfs_commit_transaction(trans);
6017	if (ret)
6018		return ret;
6019
6020	free_extent_buffer(log_root_tree->node);
6021	log_root_tree->log_root = NULL;
6022	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6023	kfree(log_root_tree);
6024
6025	return 0;
6026error:
6027	if (wc.trans)
6028		btrfs_end_transaction(wc.trans);
 
6029	btrfs_free_path(path);
6030	return ret;
6031}
6032
6033/*
6034 * there are some corner cases where we want to force a full
6035 * commit instead of allowing a directory to be logged.
6036 *
6037 * They revolve around files there were unlinked from the directory, and
6038 * this function updates the parent directory so that a full commit is
6039 * properly done if it is fsync'd later after the unlinks are done.
6040 *
6041 * Must be called before the unlink operations (updates to the subvolume tree,
6042 * inodes, etc) are done.
6043 */
6044void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6045			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6046			     int for_rename)
6047{
6048	/*
6049	 * when we're logging a file, if it hasn't been renamed
6050	 * or unlinked, and its inode is fully committed on disk,
6051	 * we don't have to worry about walking up the directory chain
6052	 * to log its parents.
6053	 *
6054	 * So, we use the last_unlink_trans field to put this transid
6055	 * into the file.  When the file is logged we check it and
6056	 * don't log the parents if the file is fully on disk.
6057	 */
6058	mutex_lock(&inode->log_mutex);
6059	inode->last_unlink_trans = trans->transid;
6060	mutex_unlock(&inode->log_mutex);
6061
 
 
 
6062	/*
6063	 * if this directory was already logged any new
6064	 * names for this file/dir will get recorded
 
 
6065	 */
6066	smp_mb();
6067	if (dir->logged_trans == trans->transid)
6068		return;
6069
6070	/*
6071	 * if the inode we're about to unlink was logged,
6072	 * the log will be properly updated for any new names
 
 
6073	 */
6074	if (inode->logged_trans == trans->transid)
6075		return;
6076
6077	/*
6078	 * when renaming files across directories, if the directory
6079	 * there we're unlinking from gets fsync'd later on, there's
6080	 * no way to find the destination directory later and fsync it
6081	 * properly.  So, we have to be conservative and force commits
6082	 * so the new name gets discovered.
6083	 */
6084	if (for_rename)
6085		goto record;
6086
6087	/* we can safely do the unlink without any special recording */
6088	return;
6089
6090record:
6091	mutex_lock(&dir->log_mutex);
6092	dir->last_unlink_trans = trans->transid;
6093	mutex_unlock(&dir->log_mutex);
6094}
6095
6096/*
6097 * Make sure that if someone attempts to fsync the parent directory of a deleted
6098 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6099 * that after replaying the log tree of the parent directory's root we will not
6100 * see the snapshot anymore and at log replay time we will not see any log tree
6101 * corresponding to the deleted snapshot's root, which could lead to replaying
6102 * it after replaying the log tree of the parent directory (which would replay
6103 * the snapshot delete operation).
6104 *
6105 * Must be called before the actual snapshot destroy operation (updates to the
6106 * parent root and tree of tree roots trees, etc) are done.
6107 */
6108void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6109				   struct btrfs_inode *dir)
6110{
6111	mutex_lock(&dir->log_mutex);
6112	dir->last_unlink_trans = trans->transid;
6113	mutex_unlock(&dir->log_mutex);
6114}
6115
6116/*
6117 * Call this after adding a new name for a file and it will properly
6118 * update the log to reflect the new name.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6119 *
6120 * It will return zero if all goes well, and it will return 1 if a
6121 * full transaction commit is required.
6122 */
6123int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6124			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6125			struct dentry *parent)
 
 
 
 
 
 
 
 
 
 
 
6126{
6127	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 
 
 
 
6128
6129	/*
6130	 * this will force the logging code to walk the dentry chain
6131	 * up for the file
6132	 */
6133	if (!S_ISDIR(inode->vfs_inode.i_mode))
6134		inode->last_unlink_trans = trans->transid;
6135
6136	/*
6137	 * if this inode hasn't been logged and directory we're renaming it
6138	 * from hasn't been logged, we don't need to log it
6139	 */
6140	if (inode->logged_trans <= fs_info->last_trans_committed &&
6141	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6142		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6143
6144	return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145				      LOG_INODE_EXISTS, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6146}
6147