Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142{
143 unsigned int nofs_flag;
144 struct inode *inode;
145
146 /*
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
152 */
153 nofs_flag = memalloc_nofs_save();
154 inode = btrfs_iget(objectid, root);
155 memalloc_nofs_restore(nofs_flag);
156
157 return inode;
158}
159
160/*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
165static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct btrfs_log_ctx *ctx)
168{
169 struct btrfs_fs_info *fs_info = root->fs_info;
170 struct btrfs_root *tree_root = fs_info->tree_root;
171 const bool zoned = btrfs_is_zoned(fs_info);
172 int ret = 0;
173 bool created = false;
174
175 /*
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
178 */
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 mutex_lock(&tree_root->log_mutex);
181 if (!fs_info->log_root_tree) {
182 ret = btrfs_init_log_root_tree(trans, fs_info);
183 if (!ret) {
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 created = true;
186 }
187 }
188 mutex_unlock(&tree_root->log_mutex);
189 if (ret)
190 return ret;
191 }
192
193 mutex_lock(&root->log_mutex);
194
195again:
196 if (root->log_root) {
197 int index = (root->log_transid + 1) % 2;
198
199 if (btrfs_need_log_full_commit(trans)) {
200 ret = BTRFS_LOG_FORCE_COMMIT;
201 goto out;
202 }
203
204 if (zoned && atomic_read(&root->log_commit[index])) {
205 wait_log_commit(root, root->log_transid - 1);
206 goto again;
207 }
208
209 if (!root->log_start_pid) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
212 } else if (root->log_start_pid != current->pid) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 }
215 } else {
216 /*
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
220 * writing.
221 */
222 if (zoned && !created) {
223 ret = BTRFS_LOG_FORCE_COMMIT;
224 goto out;
225 }
226
227 ret = btrfs_add_log_tree(trans, root);
228 if (ret)
229 goto out;
230
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 root->log_start_pid = current->pid;
234 }
235
236 atomic_inc(&root->log_writers);
237 if (!ctx->logging_new_name) {
238 int index = root->log_transid % 2;
239 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 ctx->log_transid = root->log_transid;
241 }
242
243out:
244 mutex_unlock(&root->log_mutex);
245 return ret;
246}
247
248/*
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
251 * in progress
252 */
253static int join_running_log_trans(struct btrfs_root *root)
254{
255 const bool zoned = btrfs_is_zoned(root->fs_info);
256 int ret = -ENOENT;
257
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 return ret;
260
261 mutex_lock(&root->log_mutex);
262again:
263 if (root->log_root) {
264 int index = (root->log_transid + 1) % 2;
265
266 ret = 0;
267 if (zoned && atomic_read(&root->log_commit[index])) {
268 wait_log_commit(root, root->log_transid - 1);
269 goto again;
270 }
271 atomic_inc(&root->log_writers);
272 }
273 mutex_unlock(&root->log_mutex);
274 return ret;
275}
276
277/*
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
281 */
282void btrfs_pin_log_trans(struct btrfs_root *root)
283{
284 atomic_inc(&root->log_writers);
285}
286
287/*
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
290 */
291void btrfs_end_log_trans(struct btrfs_root *root)
292{
293 if (atomic_dec_and_test(&root->log_writers)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root->log_writer_wait);
296 }
297}
298
299/*
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
304 */
305struct walk_control {
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
308 */
309 int free;
310
311 /* pin only walk, we record which extents on disk belong to the
312 * log trees
313 */
314 int pin;
315
316 /* what stage of the replay code we're currently in */
317 int stage;
318
319 /*
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
323 */
324 bool ignore_cur_inode;
325
326 /* the root we are currently replaying */
327 struct btrfs_root *replay_dest;
328
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle *trans;
331
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
335 * inside it
336 */
337 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 struct walk_control *wc, u64 gen, int level);
339};
340
341/*
342 * process_func used to pin down extents, write them or wait on them
343 */
344static int process_one_buffer(struct btrfs_root *log,
345 struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level)
347{
348 struct btrfs_fs_info *fs_info = log->fs_info;
349 int ret = 0;
350
351 /*
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
354 */
355 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 struct btrfs_tree_parent_check check = {
357 .level = level,
358 .transid = gen
359 };
360
361 ret = btrfs_read_extent_buffer(eb, &check);
362 if (ret)
363 return ret;
364 }
365
366 if (wc->pin) {
367 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 if (ret)
369 return ret;
370
371 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 btrfs_header_level(eb) == 0)
373 ret = btrfs_exclude_logged_extents(eb);
374 }
375 return ret;
376}
377
378/*
379 * Item overwrite used by replay and tree logging. eb, slot and key all refer
380 * to the src data we are copying out.
381 *
382 * root is the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and
384 * will be released on exit).
385 *
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
389 *
390 * If the key isn't in the destination yet, a new item is inserted.
391 */
392static int overwrite_item(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root,
394 struct btrfs_path *path,
395 struct extent_buffer *eb, int slot,
396 struct btrfs_key *key)
397{
398 int ret;
399 u32 item_size;
400 u64 saved_i_size = 0;
401 int save_old_i_size = 0;
402 unsigned long src_ptr;
403 unsigned long dst_ptr;
404 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
405
406 /*
407 * This is only used during log replay, so the root is always from a
408 * fs/subvolume tree. In case we ever need to support a log root, then
409 * we'll have to clone the leaf in the path, release the path and use
410 * the leaf before writing into the log tree. See the comments at
411 * copy_items() for more details.
412 */
413 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
414
415 item_size = btrfs_item_size(eb, slot);
416 src_ptr = btrfs_item_ptr_offset(eb, slot);
417
418 /* Look for the key in the destination tree. */
419 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
420 if (ret < 0)
421 return ret;
422
423 if (ret == 0) {
424 char *src_copy;
425 char *dst_copy;
426 u32 dst_size = btrfs_item_size(path->nodes[0],
427 path->slots[0]);
428 if (dst_size != item_size)
429 goto insert;
430
431 if (item_size == 0) {
432 btrfs_release_path(path);
433 return 0;
434 }
435 dst_copy = kmalloc(item_size, GFP_NOFS);
436 src_copy = kmalloc(item_size, GFP_NOFS);
437 if (!dst_copy || !src_copy) {
438 btrfs_release_path(path);
439 kfree(dst_copy);
440 kfree(src_copy);
441 return -ENOMEM;
442 }
443
444 read_extent_buffer(eb, src_copy, src_ptr, item_size);
445
446 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
447 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
448 item_size);
449 ret = memcmp(dst_copy, src_copy, item_size);
450
451 kfree(dst_copy);
452 kfree(src_copy);
453 /*
454 * they have the same contents, just return, this saves
455 * us from cowing blocks in the destination tree and doing
456 * extra writes that may not have been done by a previous
457 * sync
458 */
459 if (ret == 0) {
460 btrfs_release_path(path);
461 return 0;
462 }
463
464 /*
465 * We need to load the old nbytes into the inode so when we
466 * replay the extents we've logged we get the right nbytes.
467 */
468 if (inode_item) {
469 struct btrfs_inode_item *item;
470 u64 nbytes;
471 u32 mode;
472
473 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
474 struct btrfs_inode_item);
475 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
476 item = btrfs_item_ptr(eb, slot,
477 struct btrfs_inode_item);
478 btrfs_set_inode_nbytes(eb, item, nbytes);
479
480 /*
481 * If this is a directory we need to reset the i_size to
482 * 0 so that we can set it up properly when replaying
483 * the rest of the items in this log.
484 */
485 mode = btrfs_inode_mode(eb, item);
486 if (S_ISDIR(mode))
487 btrfs_set_inode_size(eb, item, 0);
488 }
489 } else if (inode_item) {
490 struct btrfs_inode_item *item;
491 u32 mode;
492
493 /*
494 * New inode, set nbytes to 0 so that the nbytes comes out
495 * properly when we replay the extents.
496 */
497 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
498 btrfs_set_inode_nbytes(eb, item, 0);
499
500 /*
501 * If this is a directory we need to reset the i_size to 0 so
502 * that we can set it up properly when replaying the rest of
503 * the items in this log.
504 */
505 mode = btrfs_inode_mode(eb, item);
506 if (S_ISDIR(mode))
507 btrfs_set_inode_size(eb, item, 0);
508 }
509insert:
510 btrfs_release_path(path);
511 /* try to insert the key into the destination tree */
512 path->skip_release_on_error = 1;
513 ret = btrfs_insert_empty_item(trans, root, path,
514 key, item_size);
515 path->skip_release_on_error = 0;
516
517 /* make sure any existing item is the correct size */
518 if (ret == -EEXIST || ret == -EOVERFLOW) {
519 u32 found_size;
520 found_size = btrfs_item_size(path->nodes[0],
521 path->slots[0]);
522 if (found_size > item_size)
523 btrfs_truncate_item(trans, path, item_size, 1);
524 else if (found_size < item_size)
525 btrfs_extend_item(trans, path, item_size - found_size);
526 } else if (ret) {
527 return ret;
528 }
529 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
530 path->slots[0]);
531
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
535 *
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
539 * as it goes
540 */
541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 struct btrfs_inode_item *src_item;
543 struct btrfs_inode_item *dst_item;
544
545 src_item = (struct btrfs_inode_item *)src_ptr;
546 dst_item = (struct btrfs_inode_item *)dst_ptr;
547
548 if (btrfs_inode_generation(eb, src_item) == 0) {
549 struct extent_buffer *dst_eb = path->nodes[0];
550 const u64 ino_size = btrfs_inode_size(eb, src_item);
551
552 /*
553 * For regular files an ino_size == 0 is used only when
554 * logging that an inode exists, as part of a directory
555 * fsync, and the inode wasn't fsynced before. In this
556 * case don't set the size of the inode in the fs/subvol
557 * tree, otherwise we would be throwing valid data away.
558 */
559 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
560 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
561 ino_size != 0)
562 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
563 goto no_copy;
564 }
565
566 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
567 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
568 save_old_i_size = 1;
569 saved_i_size = btrfs_inode_size(path->nodes[0],
570 dst_item);
571 }
572 }
573
574 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
575 src_ptr, item_size);
576
577 if (save_old_i_size) {
578 struct btrfs_inode_item *dst_item;
579 dst_item = (struct btrfs_inode_item *)dst_ptr;
580 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
581 }
582
583 /* make sure the generation is filled in */
584 if (key->type == BTRFS_INODE_ITEM_KEY) {
585 struct btrfs_inode_item *dst_item;
586 dst_item = (struct btrfs_inode_item *)dst_ptr;
587 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
588 btrfs_set_inode_generation(path->nodes[0], dst_item,
589 trans->transid);
590 }
591 }
592no_copy:
593 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
594 btrfs_release_path(path);
595 return 0;
596}
597
598static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
599 struct fscrypt_str *name)
600{
601 char *buf;
602
603 buf = kmalloc(len, GFP_NOFS);
604 if (!buf)
605 return -ENOMEM;
606
607 read_extent_buffer(eb, buf, (unsigned long)start, len);
608 name->name = buf;
609 name->len = len;
610 return 0;
611}
612
613/*
614 * simple helper to read an inode off the disk from a given root
615 * This can only be called for subvolume roots and not for the log
616 */
617static noinline struct inode *read_one_inode(struct btrfs_root *root,
618 u64 objectid)
619{
620 struct inode *inode;
621
622 inode = btrfs_iget_logging(objectid, root);
623 if (IS_ERR(inode))
624 inode = NULL;
625 return inode;
626}
627
628/* replays a single extent in 'eb' at 'slot' with 'key' into the
629 * subvolume 'root'. path is released on entry and should be released
630 * on exit.
631 *
632 * extents in the log tree have not been allocated out of the extent
633 * tree yet. So, this completes the allocation, taking a reference
634 * as required if the extent already exists or creating a new extent
635 * if it isn't in the extent allocation tree yet.
636 *
637 * The extent is inserted into the file, dropping any existing extents
638 * from the file that overlap the new one.
639 */
640static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct btrfs_path *path,
643 struct extent_buffer *eb, int slot,
644 struct btrfs_key *key)
645{
646 struct btrfs_drop_extents_args drop_args = { 0 };
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 int found_type;
649 u64 extent_end;
650 u64 start = key->offset;
651 u64 nbytes = 0;
652 struct btrfs_file_extent_item *item;
653 struct inode *inode = NULL;
654 unsigned long size;
655 int ret = 0;
656
657 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
658 found_type = btrfs_file_extent_type(eb, item);
659
660 if (found_type == BTRFS_FILE_EXTENT_REG ||
661 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 nbytes = btrfs_file_extent_num_bytes(eb, item);
663 extent_end = start + nbytes;
664
665 /*
666 * We don't add to the inodes nbytes if we are prealloc or a
667 * hole.
668 */
669 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
670 nbytes = 0;
671 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672 size = btrfs_file_extent_ram_bytes(eb, item);
673 nbytes = btrfs_file_extent_ram_bytes(eb, item);
674 extent_end = ALIGN(start + size,
675 fs_info->sectorsize);
676 } else {
677 ret = 0;
678 goto out;
679 }
680
681 inode = read_one_inode(root, key->objectid);
682 if (!inode) {
683 ret = -EIO;
684 goto out;
685 }
686
687 /*
688 * first check to see if we already have this extent in the
689 * file. This must be done before the btrfs_drop_extents run
690 * so we don't try to drop this extent.
691 */
692 ret = btrfs_lookup_file_extent(trans, root, path,
693 btrfs_ino(BTRFS_I(inode)), start, 0);
694
695 if (ret == 0 &&
696 (found_type == BTRFS_FILE_EXTENT_REG ||
697 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698 struct btrfs_file_extent_item cmp1;
699 struct btrfs_file_extent_item cmp2;
700 struct btrfs_file_extent_item *existing;
701 struct extent_buffer *leaf;
702
703 leaf = path->nodes[0];
704 existing = btrfs_item_ptr(leaf, path->slots[0],
705 struct btrfs_file_extent_item);
706
707 read_extent_buffer(eb, &cmp1, (unsigned long)item,
708 sizeof(cmp1));
709 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710 sizeof(cmp2));
711
712 /*
713 * we already have a pointer to this exact extent,
714 * we don't have to do anything
715 */
716 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717 btrfs_release_path(path);
718 goto out;
719 }
720 }
721 btrfs_release_path(path);
722
723 /* drop any overlapping extents */
724 drop_args.start = start;
725 drop_args.end = extent_end;
726 drop_args.drop_cache = true;
727 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728 if (ret)
729 goto out;
730
731 if (found_type == BTRFS_FILE_EXTENT_REG ||
732 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733 u64 offset;
734 unsigned long dest_offset;
735 struct btrfs_key ins;
736
737 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738 btrfs_fs_incompat(fs_info, NO_HOLES))
739 goto update_inode;
740
741 ret = btrfs_insert_empty_item(trans, root, path, key,
742 sizeof(*item));
743 if (ret)
744 goto out;
745 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746 path->slots[0]);
747 copy_extent_buffer(path->nodes[0], eb, dest_offset,
748 (unsigned long)item, sizeof(*item));
749
750 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752 ins.type = BTRFS_EXTENT_ITEM_KEY;
753 offset = key->offset - btrfs_file_extent_offset(eb, item);
754
755 /*
756 * Manually record dirty extent, as here we did a shallow
757 * file extent item copy and skip normal backref update,
758 * but modifying extent tree all by ourselves.
759 * So need to manually record dirty extent for qgroup,
760 * as the owner of the file extent changed from log tree
761 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762 */
763 ret = btrfs_qgroup_trace_extent(trans,
764 btrfs_file_extent_disk_bytenr(eb, item),
765 btrfs_file_extent_disk_num_bytes(eb, item));
766 if (ret < 0)
767 goto out;
768
769 if (ins.objectid > 0) {
770 u64 csum_start;
771 u64 csum_end;
772 LIST_HEAD(ordered_sums);
773
774 /*
775 * is this extent already allocated in the extent
776 * allocation tree? If so, just add a reference
777 */
778 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
779 ins.offset);
780 if (ret < 0) {
781 goto out;
782 } else if (ret == 0) {
783 struct btrfs_ref ref = {
784 .action = BTRFS_ADD_DELAYED_REF,
785 .bytenr = ins.objectid,
786 .num_bytes = ins.offset,
787 .owning_root = btrfs_root_id(root),
788 .ref_root = btrfs_root_id(root),
789 };
790 btrfs_init_data_ref(&ref, key->objectid, offset,
791 0, false);
792 ret = btrfs_inc_extent_ref(trans, &ref);
793 if (ret)
794 goto out;
795 } else {
796 /*
797 * insert the extent pointer in the extent
798 * allocation tree
799 */
800 ret = btrfs_alloc_logged_file_extent(trans,
801 btrfs_root_id(root),
802 key->objectid, offset, &ins);
803 if (ret)
804 goto out;
805 }
806 btrfs_release_path(path);
807
808 if (btrfs_file_extent_compression(eb, item)) {
809 csum_start = ins.objectid;
810 csum_end = csum_start + ins.offset;
811 } else {
812 csum_start = ins.objectid +
813 btrfs_file_extent_offset(eb, item);
814 csum_end = csum_start +
815 btrfs_file_extent_num_bytes(eb, item);
816 }
817
818 ret = btrfs_lookup_csums_list(root->log_root,
819 csum_start, csum_end - 1,
820 &ordered_sums, false);
821 if (ret < 0)
822 goto out;
823 ret = 0;
824 /*
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
836 *
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
840 *
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
844 *
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
848 * of the extent:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 *
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
854 *
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 *
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
862 *
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 *
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
872 */
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 struct btrfs_root *csum_root;
876
877 sums = list_entry(ordered_sums.next,
878 struct btrfs_ordered_sum,
879 list);
880 csum_root = btrfs_csum_root(fs_info,
881 sums->logical);
882 if (!ret)
883 ret = btrfs_del_csums(trans, csum_root,
884 sums->logical,
885 sums->len);
886 if (!ret)
887 ret = btrfs_csum_file_blocks(trans,
888 csum_root,
889 sums);
890 list_del(&sums->list);
891 kfree(sums);
892 }
893 if (ret)
894 goto out;
895 } else {
896 btrfs_release_path(path);
897 }
898 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 /* inline extents are easy, we just overwrite them */
900 ret = overwrite_item(trans, root, path, eb, slot, key);
901 if (ret)
902 goto out;
903 }
904
905 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 extent_end - start);
907 if (ret)
908 goto out;
909
910update_inode:
911 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 ret = btrfs_update_inode(trans, BTRFS_I(inode));
913out:
914 iput(inode);
915 return ret;
916}
917
918static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 struct btrfs_inode *dir,
920 struct btrfs_inode *inode,
921 const struct fscrypt_str *name)
922{
923 int ret;
924
925 ret = btrfs_unlink_inode(trans, dir, inode, name);
926 if (ret)
927 return ret;
928 /*
929 * Whenever we need to check if a name exists or not, we check the
930 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 * that future checks for a name during log replay see that the name
932 * does not exists anymore.
933 */
934 return btrfs_run_delayed_items(trans);
935}
936
937/*
938 * when cleaning up conflicts between the directory names in the
939 * subvolume, directory names in the log and directory names in the
940 * inode back references, we may have to unlink inodes from directories.
941 *
942 * This is a helper function to do the unlink of a specific directory
943 * item
944 */
945static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 struct btrfs_path *path,
947 struct btrfs_inode *dir,
948 struct btrfs_dir_item *di)
949{
950 struct btrfs_root *root = dir->root;
951 struct inode *inode;
952 struct fscrypt_str name;
953 struct extent_buffer *leaf;
954 struct btrfs_key location;
955 int ret;
956
957 leaf = path->nodes[0];
958
959 btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 if (ret)
962 return -ENOMEM;
963
964 btrfs_release_path(path);
965
966 inode = read_one_inode(root, location.objectid);
967 if (!inode) {
968 ret = -EIO;
969 goto out;
970 }
971
972 ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 if (ret)
974 goto out;
975
976 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977out:
978 kfree(name.name);
979 iput(inode);
980 return ret;
981}
982
983/*
984 * See if a given name and sequence number found in an inode back reference are
985 * already in a directory and correctly point to this inode.
986 *
987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988 * exists.
989 */
990static noinline int inode_in_dir(struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 dirid, u64 objectid, u64 index,
993 struct fscrypt_str *name)
994{
995 struct btrfs_dir_item *di;
996 struct btrfs_key location;
997 int ret = 0;
998
999 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 index, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid != objectid)
1007 goto out;
1008 } else {
1009 goto out;
1010 }
1011
1012 btrfs_release_path(path);
1013 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 if (IS_ERR(di)) {
1015 ret = PTR_ERR(di);
1016 goto out;
1017 } else if (di) {
1018 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 if (location.objectid == objectid)
1020 ret = 1;
1021 }
1022out:
1023 btrfs_release_path(path);
1024 return ret;
1025}
1026
1027/*
1028 * helper function to check a log tree for a named back reference in
1029 * an inode. This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1031 *
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1036 */
1037static noinline int backref_in_log(struct btrfs_root *log,
1038 struct btrfs_key *key,
1039 u64 ref_objectid,
1040 const struct fscrypt_str *name)
1041{
1042 struct btrfs_path *path;
1043 int ret;
1044
1045 path = btrfs_alloc_path();
1046 if (!path)
1047 return -ENOMEM;
1048
1049 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 if (ret < 0) {
1051 goto out;
1052 } else if (ret == 1) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 path->slots[0],
1060 ref_objectid, name);
1061 else
1062 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 path->slots[0], name);
1064out:
1065 btrfs_free_path(path);
1066 return ret;
1067}
1068
1069static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root,
1071 struct btrfs_path *path,
1072 struct btrfs_root *log_root,
1073 struct btrfs_inode *dir,
1074 struct btrfs_inode *inode,
1075 u64 inode_objectid, u64 parent_objectid,
1076 u64 ref_index, struct fscrypt_str *name)
1077{
1078 int ret;
1079 struct extent_buffer *leaf;
1080 struct btrfs_dir_item *di;
1081 struct btrfs_key search_key;
1082 struct btrfs_inode_extref *extref;
1083
1084again:
1085 /* Search old style refs */
1086 search_key.objectid = inode_objectid;
1087 search_key.type = BTRFS_INODE_REF_KEY;
1088 search_key.offset = parent_objectid;
1089 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 if (ret == 0) {
1091 struct btrfs_inode_ref *victim_ref;
1092 unsigned long ptr;
1093 unsigned long ptr_end;
1094
1095 leaf = path->nodes[0];
1096
1097 /* are we trying to overwrite a back ref for the root directory
1098 * if so, just jump out, we're done
1099 */
1100 if (search_key.objectid == search_key.offset)
1101 return 1;
1102
1103 /* check all the names in this back reference to see
1104 * if they are in the log. if so, we allow them to stay
1105 * otherwise they must be unlinked as a conflict
1106 */
1107 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109 while (ptr < ptr_end) {
1110 struct fscrypt_str victim_name;
1111
1112 victim_ref = (struct btrfs_inode_ref *)ptr;
1113 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114 btrfs_inode_ref_name_len(leaf, victim_ref),
1115 &victim_name);
1116 if (ret)
1117 return ret;
1118
1119 ret = backref_in_log(log_root, &search_key,
1120 parent_objectid, &victim_name);
1121 if (ret < 0) {
1122 kfree(victim_name.name);
1123 return ret;
1124 } else if (!ret) {
1125 inc_nlink(&inode->vfs_inode);
1126 btrfs_release_path(path);
1127
1128 ret = unlink_inode_for_log_replay(trans, dir, inode,
1129 &victim_name);
1130 kfree(victim_name.name);
1131 if (ret)
1132 return ret;
1133 goto again;
1134 }
1135 kfree(victim_name.name);
1136
1137 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138 }
1139 }
1140 btrfs_release_path(path);
1141
1142 /* Same search but for extended refs */
1143 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144 inode_objectid, parent_objectid, 0,
1145 0);
1146 if (IS_ERR(extref)) {
1147 return PTR_ERR(extref);
1148 } else if (extref) {
1149 u32 item_size;
1150 u32 cur_offset = 0;
1151 unsigned long base;
1152 struct inode *victim_parent;
1153
1154 leaf = path->nodes[0];
1155
1156 item_size = btrfs_item_size(leaf, path->slots[0]);
1157 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158
1159 while (cur_offset < item_size) {
1160 struct fscrypt_str victim_name;
1161
1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163
1164 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165 goto next;
1166
1167 ret = read_alloc_one_name(leaf, &extref->name,
1168 btrfs_inode_extref_name_len(leaf, extref),
1169 &victim_name);
1170 if (ret)
1171 return ret;
1172
1173 search_key.objectid = inode_objectid;
1174 search_key.type = BTRFS_INODE_EXTREF_KEY;
1175 search_key.offset = btrfs_extref_hash(parent_objectid,
1176 victim_name.name,
1177 victim_name.len);
1178 ret = backref_in_log(log_root, &search_key,
1179 parent_objectid, &victim_name);
1180 if (ret < 0) {
1181 kfree(victim_name.name);
1182 return ret;
1183 } else if (!ret) {
1184 ret = -ENOENT;
1185 victim_parent = read_one_inode(root,
1186 parent_objectid);
1187 if (victim_parent) {
1188 inc_nlink(&inode->vfs_inode);
1189 btrfs_release_path(path);
1190
1191 ret = unlink_inode_for_log_replay(trans,
1192 BTRFS_I(victim_parent),
1193 inode, &victim_name);
1194 }
1195 iput(victim_parent);
1196 kfree(victim_name.name);
1197 if (ret)
1198 return ret;
1199 goto again;
1200 }
1201 kfree(victim_name.name);
1202next:
1203 cur_offset += victim_name.len + sizeof(*extref);
1204 }
1205 }
1206 btrfs_release_path(path);
1207
1208 /* look for a conflicting sequence number */
1209 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210 ref_index, name, 0);
1211 if (IS_ERR(di)) {
1212 return PTR_ERR(di);
1213 } else if (di) {
1214 ret = drop_one_dir_item(trans, path, dir, di);
1215 if (ret)
1216 return ret;
1217 }
1218 btrfs_release_path(path);
1219
1220 /* look for a conflicting name */
1221 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222 if (IS_ERR(di)) {
1223 return PTR_ERR(di);
1224 } else if (di) {
1225 ret = drop_one_dir_item(trans, path, dir, di);
1226 if (ret)
1227 return ret;
1228 }
1229 btrfs_release_path(path);
1230
1231 return 0;
1232}
1233
1234static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235 struct fscrypt_str *name, u64 *index,
1236 u64 *parent_objectid)
1237{
1238 struct btrfs_inode_extref *extref;
1239 int ret;
1240
1241 extref = (struct btrfs_inode_extref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, &extref->name,
1244 btrfs_inode_extref_name_len(eb, extref), name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_extref_index(eb, extref);
1250 if (parent_objectid)
1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252
1253 return 0;
1254}
1255
1256static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 struct fscrypt_str *name, u64 *index)
1258{
1259 struct btrfs_inode_ref *ref;
1260 int ret;
1261
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265 name);
1266 if (ret)
1267 return ret;
1268
1269 if (index)
1270 *index = btrfs_inode_ref_index(eb, ref);
1271
1272 return 0;
1273}
1274
1275/*
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1281 */
1282static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283 struct btrfs_root *root,
1284 struct btrfs_path *path,
1285 struct btrfs_inode *inode,
1286 struct extent_buffer *log_eb,
1287 int log_slot,
1288 struct btrfs_key *key)
1289{
1290 int ret;
1291 unsigned long ref_ptr;
1292 unsigned long ref_end;
1293 struct extent_buffer *eb;
1294
1295again:
1296 btrfs_release_path(path);
1297 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298 if (ret > 0) {
1299 ret = 0;
1300 goto out;
1301 }
1302 if (ret < 0)
1303 goto out;
1304
1305 eb = path->nodes[0];
1306 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308 while (ref_ptr < ref_end) {
1309 struct fscrypt_str name;
1310 u64 parent_id;
1311
1312 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313 ret = extref_get_fields(eb, ref_ptr, &name,
1314 NULL, &parent_id);
1315 } else {
1316 parent_id = key->offset;
1317 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318 }
1319 if (ret)
1320 goto out;
1321
1322 if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 parent_id, &name);
1325 else
1326 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327
1328 if (!ret) {
1329 struct inode *dir;
1330
1331 btrfs_release_path(path);
1332 dir = read_one_inode(root, parent_id);
1333 if (!dir) {
1334 ret = -ENOENT;
1335 kfree(name.name);
1336 goto out;
1337 }
1338 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339 inode, &name);
1340 kfree(name.name);
1341 iput(dir);
1342 if (ret)
1343 goto out;
1344 goto again;
1345 }
1346
1347 kfree(name.name);
1348 ref_ptr += name.len;
1349 if (key->type == BTRFS_INODE_EXTREF_KEY)
1350 ref_ptr += sizeof(struct btrfs_inode_extref);
1351 else
1352 ref_ptr += sizeof(struct btrfs_inode_ref);
1353 }
1354 ret = 0;
1355 out:
1356 btrfs_release_path(path);
1357 return ret;
1358}
1359
1360/*
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function. (it should be released on return).
1365 */
1366static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_root *log,
1369 struct btrfs_path *path,
1370 struct extent_buffer *eb, int slot,
1371 struct btrfs_key *key)
1372{
1373 struct inode *dir = NULL;
1374 struct inode *inode = NULL;
1375 unsigned long ref_ptr;
1376 unsigned long ref_end;
1377 struct fscrypt_str name = { 0 };
1378 int ret;
1379 int log_ref_ver = 0;
1380 u64 parent_objectid;
1381 u64 inode_objectid;
1382 u64 ref_index = 0;
1383 int ref_struct_size;
1384
1385 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387
1388 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389 struct btrfs_inode_extref *r;
1390
1391 ref_struct_size = sizeof(struct btrfs_inode_extref);
1392 log_ref_ver = 1;
1393 r = (struct btrfs_inode_extref *)ref_ptr;
1394 parent_objectid = btrfs_inode_extref_parent(eb, r);
1395 } else {
1396 ref_struct_size = sizeof(struct btrfs_inode_ref);
1397 parent_objectid = key->offset;
1398 }
1399 inode_objectid = key->objectid;
1400
1401 /*
1402 * it is possible that we didn't log all the parent directories
1403 * for a given inode. If we don't find the dir, just don't
1404 * copy the back ref in. The link count fixup code will take
1405 * care of the rest
1406 */
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412
1413 inode = read_one_inode(root, inode_objectid);
1414 if (!inode) {
1415 ret = -EIO;
1416 goto out;
1417 }
1418
1419 while (ref_ptr < ref_end) {
1420 if (log_ref_ver) {
1421 ret = extref_get_fields(eb, ref_ptr, &name,
1422 &ref_index, &parent_objectid);
1423 /*
1424 * parent object can change from one array
1425 * item to another.
1426 */
1427 if (!dir)
1428 dir = read_one_inode(root, parent_objectid);
1429 if (!dir) {
1430 ret = -ENOENT;
1431 goto out;
1432 }
1433 } else {
1434 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435 }
1436 if (ret)
1437 goto out;
1438
1439 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441 if (ret < 0) {
1442 goto out;
1443 } else if (ret == 0) {
1444 /*
1445 * look for a conflicting back reference in the
1446 * metadata. if we find one we have to unlink that name
1447 * of the file before we add our new link. Later on, we
1448 * overwrite any existing back reference, and we don't
1449 * want to create dangling pointers in the directory.
1450 */
1451 ret = __add_inode_ref(trans, root, path, log,
1452 BTRFS_I(dir), BTRFS_I(inode),
1453 inode_objectid, parent_objectid,
1454 ref_index, &name);
1455 if (ret) {
1456 if (ret == 1)
1457 ret = 0;
1458 goto out;
1459 }
1460
1461 /* insert our name */
1462 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463 &name, 0, ref_index);
1464 if (ret)
1465 goto out;
1466
1467 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1468 if (ret)
1469 goto out;
1470 }
1471 /* Else, ret == 1, we already have a perfect match, we're done. */
1472
1473 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474 kfree(name.name);
1475 name.name = NULL;
1476 if (log_ref_ver) {
1477 iput(dir);
1478 dir = NULL;
1479 }
1480 }
1481
1482 /*
1483 * Before we overwrite the inode reference item in the subvolume tree
1484 * with the item from the log tree, we must unlink all names from the
1485 * parent directory that are in the subvolume's tree inode reference
1486 * item, otherwise we end up with an inconsistent subvolume tree where
1487 * dir index entries exist for a name but there is no inode reference
1488 * item with the same name.
1489 */
1490 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491 key);
1492 if (ret)
1493 goto out;
1494
1495 /* finally write the back reference in the inode */
1496 ret = overwrite_item(trans, root, path, eb, slot, key);
1497out:
1498 btrfs_release_path(path);
1499 kfree(name.name);
1500 iput(dir);
1501 iput(inode);
1502 return ret;
1503}
1504
1505static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret = 0;
1508 int name_len;
1509 unsigned int nlink = 0;
1510 u32 item_size;
1511 u32 cur_offset = 0;
1512 u64 inode_objectid = btrfs_ino(inode);
1513 u64 offset = 0;
1514 unsigned long ptr;
1515 struct btrfs_inode_extref *extref;
1516 struct extent_buffer *leaf;
1517
1518 while (1) {
1519 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1520 path, &extref, &offset);
1521 if (ret)
1522 break;
1523
1524 leaf = path->nodes[0];
1525 item_size = btrfs_item_size(leaf, path->slots[0]);
1526 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527 cur_offset = 0;
1528
1529 while (cur_offset < item_size) {
1530 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1531 name_len = btrfs_inode_extref_name_len(leaf, extref);
1532
1533 nlink++;
1534
1535 cur_offset += name_len + sizeof(*extref);
1536 }
1537
1538 offset++;
1539 btrfs_release_path(path);
1540 }
1541 btrfs_release_path(path);
1542
1543 if (ret < 0 && ret != -ENOENT)
1544 return ret;
1545 return nlink;
1546}
1547
1548static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1549{
1550 int ret;
1551 struct btrfs_key key;
1552 unsigned int nlink = 0;
1553 unsigned long ptr;
1554 unsigned long ptr_end;
1555 int name_len;
1556 u64 ino = btrfs_ino(inode);
1557
1558 key.objectid = ino;
1559 key.type = BTRFS_INODE_REF_KEY;
1560 key.offset = (u64)-1;
1561
1562 while (1) {
1563 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1564 if (ret < 0)
1565 break;
1566 if (ret > 0) {
1567 if (path->slots[0] == 0)
1568 break;
1569 path->slots[0]--;
1570 }
1571process_slot:
1572 btrfs_item_key_to_cpu(path->nodes[0], &key,
1573 path->slots[0]);
1574 if (key.objectid != ino ||
1575 key.type != BTRFS_INODE_REF_KEY)
1576 break;
1577 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579 path->slots[0]);
1580 while (ptr < ptr_end) {
1581 struct btrfs_inode_ref *ref;
1582
1583 ref = (struct btrfs_inode_ref *)ptr;
1584 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585 ref);
1586 ptr = (unsigned long)(ref + 1) + name_len;
1587 nlink++;
1588 }
1589
1590 if (key.offset == 0)
1591 break;
1592 if (path->slots[0] > 0) {
1593 path->slots[0]--;
1594 goto process_slot;
1595 }
1596 key.offset--;
1597 btrfs_release_path(path);
1598 }
1599 btrfs_release_path(path);
1600
1601 return nlink;
1602}
1603
1604/*
1605 * There are a few corners where the link count of the file can't
1606 * be properly maintained during replay. So, instead of adding
1607 * lots of complexity to the log code, we just scan the backrefs
1608 * for any file that has been through replay.
1609 *
1610 * The scan will update the link count on the inode to reflect the
1611 * number of back refs found. If it goes down to zero, the iput
1612 * will free the inode.
1613 */
1614static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1615 struct inode *inode)
1616{
1617 struct btrfs_root *root = BTRFS_I(inode)->root;
1618 struct btrfs_path *path;
1619 int ret;
1620 u64 nlink = 0;
1621 u64 ino = btrfs_ino(BTRFS_I(inode));
1622
1623 path = btrfs_alloc_path();
1624 if (!path)
1625 return -ENOMEM;
1626
1627 ret = count_inode_refs(BTRFS_I(inode), path);
1628 if (ret < 0)
1629 goto out;
1630
1631 nlink = ret;
1632
1633 ret = count_inode_extrefs(BTRFS_I(inode), path);
1634 if (ret < 0)
1635 goto out;
1636
1637 nlink += ret;
1638
1639 ret = 0;
1640
1641 if (nlink != inode->i_nlink) {
1642 set_nlink(inode, nlink);
1643 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1644 if (ret)
1645 goto out;
1646 }
1647 if (S_ISDIR(inode->i_mode))
1648 BTRFS_I(inode)->index_cnt = (u64)-1;
1649
1650 if (inode->i_nlink == 0) {
1651 if (S_ISDIR(inode->i_mode)) {
1652 ret = replay_dir_deletes(trans, root, NULL, path,
1653 ino, 1);
1654 if (ret)
1655 goto out;
1656 }
1657 ret = btrfs_insert_orphan_item(trans, root, ino);
1658 if (ret == -EEXIST)
1659 ret = 0;
1660 }
1661
1662out:
1663 btrfs_free_path(path);
1664 return ret;
1665}
1666
1667static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path)
1670{
1671 int ret;
1672 struct btrfs_key key;
1673 struct inode *inode;
1674
1675 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1676 key.type = BTRFS_ORPHAN_ITEM_KEY;
1677 key.offset = (u64)-1;
1678 while (1) {
1679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1680 if (ret < 0)
1681 break;
1682
1683 if (ret == 1) {
1684 ret = 0;
1685 if (path->slots[0] == 0)
1686 break;
1687 path->slots[0]--;
1688 }
1689
1690 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1691 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1692 key.type != BTRFS_ORPHAN_ITEM_KEY)
1693 break;
1694
1695 ret = btrfs_del_item(trans, root, path);
1696 if (ret)
1697 break;
1698
1699 btrfs_release_path(path);
1700 inode = read_one_inode(root, key.offset);
1701 if (!inode) {
1702 ret = -EIO;
1703 break;
1704 }
1705
1706 ret = fixup_inode_link_count(trans, inode);
1707 iput(inode);
1708 if (ret)
1709 break;
1710
1711 /*
1712 * fixup on a directory may create new entries,
1713 * make sure we always look for the highset possible
1714 * offset
1715 */
1716 key.offset = (u64)-1;
1717 }
1718 btrfs_release_path(path);
1719 return ret;
1720}
1721
1722
1723/*
1724 * record a given inode in the fixup dir so we can check its link
1725 * count when replay is done. The link count is incremented here
1726 * so the inode won't go away until we check it
1727 */
1728static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 u64 objectid)
1732{
1733 struct btrfs_key key;
1734 int ret = 0;
1735 struct inode *inode;
1736
1737 inode = read_one_inode(root, objectid);
1738 if (!inode)
1739 return -EIO;
1740
1741 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1742 key.type = BTRFS_ORPHAN_ITEM_KEY;
1743 key.offset = objectid;
1744
1745 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1746
1747 btrfs_release_path(path);
1748 if (ret == 0) {
1749 if (!inode->i_nlink)
1750 set_nlink(inode, 1);
1751 else
1752 inc_nlink(inode);
1753 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1754 } else if (ret == -EEXIST) {
1755 ret = 0;
1756 }
1757 iput(inode);
1758
1759 return ret;
1760}
1761
1762/*
1763 * when replaying the log for a directory, we only insert names
1764 * for inodes that actually exist. This means an fsync on a directory
1765 * does not implicitly fsync all the new files in it
1766 */
1767static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 u64 dirid, u64 index,
1770 const struct fscrypt_str *name,
1771 struct btrfs_key *location)
1772{
1773 struct inode *inode;
1774 struct inode *dir;
1775 int ret;
1776
1777 inode = read_one_inode(root, location->objectid);
1778 if (!inode)
1779 return -ENOENT;
1780
1781 dir = read_one_inode(root, dirid);
1782 if (!dir) {
1783 iput(inode);
1784 return -EIO;
1785 }
1786
1787 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1788 1, index);
1789
1790 /* FIXME, put inode into FIXUP list */
1791
1792 iput(inode);
1793 iput(dir);
1794 return ret;
1795}
1796
1797static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1798 struct btrfs_inode *dir,
1799 struct btrfs_path *path,
1800 struct btrfs_dir_item *dst_di,
1801 const struct btrfs_key *log_key,
1802 u8 log_flags,
1803 bool exists)
1804{
1805 struct btrfs_key found_key;
1806
1807 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1808 /* The existing dentry points to the same inode, don't delete it. */
1809 if (found_key.objectid == log_key->objectid &&
1810 found_key.type == log_key->type &&
1811 found_key.offset == log_key->offset &&
1812 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1813 return 1;
1814
1815 /*
1816 * Don't drop the conflicting directory entry if the inode for the new
1817 * entry doesn't exist.
1818 */
1819 if (!exists)
1820 return 0;
1821
1822 return drop_one_dir_item(trans, path, dir, dst_di);
1823}
1824
1825/*
1826 * take a single entry in a log directory item and replay it into
1827 * the subvolume.
1828 *
1829 * if a conflicting item exists in the subdirectory already,
1830 * the inode it points to is unlinked and put into the link count
1831 * fix up tree.
1832 *
1833 * If a name from the log points to a file or directory that does
1834 * not exist in the FS, it is skipped. fsyncs on directories
1835 * do not force down inodes inside that directory, just changes to the
1836 * names or unlinks in a directory.
1837 *
1838 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839 * non-existing inode) and 1 if the name was replayed.
1840 */
1841static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root,
1843 struct btrfs_path *path,
1844 struct extent_buffer *eb,
1845 struct btrfs_dir_item *di,
1846 struct btrfs_key *key)
1847{
1848 struct fscrypt_str name = { 0 };
1849 struct btrfs_dir_item *dir_dst_di;
1850 struct btrfs_dir_item *index_dst_di;
1851 bool dir_dst_matches = false;
1852 bool index_dst_matches = false;
1853 struct btrfs_key log_key;
1854 struct btrfs_key search_key;
1855 struct inode *dir;
1856 u8 log_flags;
1857 bool exists;
1858 int ret;
1859 bool update_size = true;
1860 bool name_added = false;
1861
1862 dir = read_one_inode(root, key->objectid);
1863 if (!dir)
1864 return -EIO;
1865
1866 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1867 if (ret)
1868 goto out;
1869
1870 log_flags = btrfs_dir_flags(eb, di);
1871 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1872 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1873 btrfs_release_path(path);
1874 if (ret < 0)
1875 goto out;
1876 exists = (ret == 0);
1877 ret = 0;
1878
1879 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1880 &name, 1);
1881 if (IS_ERR(dir_dst_di)) {
1882 ret = PTR_ERR(dir_dst_di);
1883 goto out;
1884 } else if (dir_dst_di) {
1885 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1886 dir_dst_di, &log_key,
1887 log_flags, exists);
1888 if (ret < 0)
1889 goto out;
1890 dir_dst_matches = (ret == 1);
1891 }
1892
1893 btrfs_release_path(path);
1894
1895 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1896 key->objectid, key->offset,
1897 &name, 1);
1898 if (IS_ERR(index_dst_di)) {
1899 ret = PTR_ERR(index_dst_di);
1900 goto out;
1901 } else if (index_dst_di) {
1902 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 index_dst_di, &log_key,
1904 log_flags, exists);
1905 if (ret < 0)
1906 goto out;
1907 index_dst_matches = (ret == 1);
1908 }
1909
1910 btrfs_release_path(path);
1911
1912 if (dir_dst_matches && index_dst_matches) {
1913 ret = 0;
1914 update_size = false;
1915 goto out;
1916 }
1917
1918 /*
1919 * Check if the inode reference exists in the log for the given name,
1920 * inode and parent inode
1921 */
1922 search_key.objectid = log_key.objectid;
1923 search_key.type = BTRFS_INODE_REF_KEY;
1924 search_key.offset = key->objectid;
1925 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1926 if (ret < 0) {
1927 goto out;
1928 } else if (ret) {
1929 /* The dentry will be added later. */
1930 ret = 0;
1931 update_size = false;
1932 goto out;
1933 }
1934
1935 search_key.objectid = log_key.objectid;
1936 search_key.type = BTRFS_INODE_EXTREF_KEY;
1937 search_key.offset = key->objectid;
1938 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1939 if (ret < 0) {
1940 goto out;
1941 } else if (ret) {
1942 /* The dentry will be added later. */
1943 ret = 0;
1944 update_size = false;
1945 goto out;
1946 }
1947 btrfs_release_path(path);
1948 ret = insert_one_name(trans, root, key->objectid, key->offset,
1949 &name, &log_key);
1950 if (ret && ret != -ENOENT && ret != -EEXIST)
1951 goto out;
1952 if (!ret)
1953 name_added = true;
1954 update_size = false;
1955 ret = 0;
1956
1957out:
1958 if (!ret && update_size) {
1959 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1960 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1961 }
1962 kfree(name.name);
1963 iput(dir);
1964 if (!ret && name_added)
1965 ret = 1;
1966 return ret;
1967}
1968
1969/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1970static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 struct btrfs_path *path,
1973 struct extent_buffer *eb, int slot,
1974 struct btrfs_key *key)
1975{
1976 int ret;
1977 struct btrfs_dir_item *di;
1978
1979 /* We only log dir index keys, which only contain a single dir item. */
1980 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1981
1982 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1983 ret = replay_one_name(trans, root, path, eb, di, key);
1984 if (ret < 0)
1985 return ret;
1986
1987 /*
1988 * If this entry refers to a non-directory (directories can not have a
1989 * link count > 1) and it was added in the transaction that was not
1990 * committed, make sure we fixup the link count of the inode the entry
1991 * points to. Otherwise something like the following would result in a
1992 * directory pointing to an inode with a wrong link that does not account
1993 * for this dir entry:
1994 *
1995 * mkdir testdir
1996 * touch testdir/foo
1997 * touch testdir/bar
1998 * sync
1999 *
2000 * ln testdir/bar testdir/bar_link
2001 * ln testdir/foo testdir/foo_link
2002 * xfs_io -c "fsync" testdir/bar
2003 *
2004 * <power failure>
2005 *
2006 * mount fs, log replay happens
2007 *
2008 * File foo would remain with a link count of 1 when it has two entries
2009 * pointing to it in the directory testdir. This would make it impossible
2010 * to ever delete the parent directory has it would result in stale
2011 * dentries that can never be deleted.
2012 */
2013 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2014 struct btrfs_path *fixup_path;
2015 struct btrfs_key di_key;
2016
2017 fixup_path = btrfs_alloc_path();
2018 if (!fixup_path)
2019 return -ENOMEM;
2020
2021 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2022 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2023 btrfs_free_path(fixup_path);
2024 }
2025
2026 return ret;
2027}
2028
2029/*
2030 * directory replay has two parts. There are the standard directory
2031 * items in the log copied from the subvolume, and range items
2032 * created in the log while the subvolume was logged.
2033 *
2034 * The range items tell us which parts of the key space the log
2035 * is authoritative for. During replay, if a key in the subvolume
2036 * directory is in a logged range item, but not actually in the log
2037 * that means it was deleted from the directory before the fsync
2038 * and should be removed.
2039 */
2040static noinline int find_dir_range(struct btrfs_root *root,
2041 struct btrfs_path *path,
2042 u64 dirid,
2043 u64 *start_ret, u64 *end_ret)
2044{
2045 struct btrfs_key key;
2046 u64 found_end;
2047 struct btrfs_dir_log_item *item;
2048 int ret;
2049 int nritems;
2050
2051 if (*start_ret == (u64)-1)
2052 return 1;
2053
2054 key.objectid = dirid;
2055 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2056 key.offset = *start_ret;
2057
2058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059 if (ret < 0)
2060 goto out;
2061 if (ret > 0) {
2062 if (path->slots[0] == 0)
2063 goto out;
2064 path->slots[0]--;
2065 }
2066 if (ret != 0)
2067 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2068
2069 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2070 ret = 1;
2071 goto next;
2072 }
2073 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2074 struct btrfs_dir_log_item);
2075 found_end = btrfs_dir_log_end(path->nodes[0], item);
2076
2077 if (*start_ret >= key.offset && *start_ret <= found_end) {
2078 ret = 0;
2079 *start_ret = key.offset;
2080 *end_ret = found_end;
2081 goto out;
2082 }
2083 ret = 1;
2084next:
2085 /* check the next slot in the tree to see if it is a valid item */
2086 nritems = btrfs_header_nritems(path->nodes[0]);
2087 path->slots[0]++;
2088 if (path->slots[0] >= nritems) {
2089 ret = btrfs_next_leaf(root, path);
2090 if (ret)
2091 goto out;
2092 }
2093
2094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095
2096 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2097 ret = 1;
2098 goto out;
2099 }
2100 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101 struct btrfs_dir_log_item);
2102 found_end = btrfs_dir_log_end(path->nodes[0], item);
2103 *start_ret = key.offset;
2104 *end_ret = found_end;
2105 ret = 0;
2106out:
2107 btrfs_release_path(path);
2108 return ret;
2109}
2110
2111/*
2112 * this looks for a given directory item in the log. If the directory
2113 * item is not in the log, the item is removed and the inode it points
2114 * to is unlinked
2115 */
2116static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2117 struct btrfs_root *log,
2118 struct btrfs_path *path,
2119 struct btrfs_path *log_path,
2120 struct inode *dir,
2121 struct btrfs_key *dir_key)
2122{
2123 struct btrfs_root *root = BTRFS_I(dir)->root;
2124 int ret;
2125 struct extent_buffer *eb;
2126 int slot;
2127 struct btrfs_dir_item *di;
2128 struct fscrypt_str name = { 0 };
2129 struct inode *inode = NULL;
2130 struct btrfs_key location;
2131
2132 /*
2133 * Currently we only log dir index keys. Even if we replay a log created
2134 * by an older kernel that logged both dir index and dir item keys, all
2135 * we need to do is process the dir index keys, we (and our caller) can
2136 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2137 */
2138 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2139
2140 eb = path->nodes[0];
2141 slot = path->slots[0];
2142 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2143 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2144 if (ret)
2145 goto out;
2146
2147 if (log) {
2148 struct btrfs_dir_item *log_di;
2149
2150 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2151 dir_key->objectid,
2152 dir_key->offset, &name, 0);
2153 if (IS_ERR(log_di)) {
2154 ret = PTR_ERR(log_di);
2155 goto out;
2156 } else if (log_di) {
2157 /* The dentry exists in the log, we have nothing to do. */
2158 ret = 0;
2159 goto out;
2160 }
2161 }
2162
2163 btrfs_dir_item_key_to_cpu(eb, di, &location);
2164 btrfs_release_path(path);
2165 btrfs_release_path(log_path);
2166 inode = read_one_inode(root, location.objectid);
2167 if (!inode) {
2168 ret = -EIO;
2169 goto out;
2170 }
2171
2172 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2173 if (ret)
2174 goto out;
2175
2176 inc_nlink(inode);
2177 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2178 &name);
2179 /*
2180 * Unlike dir item keys, dir index keys can only have one name (entry) in
2181 * them, as there are no key collisions since each key has a unique offset
2182 * (an index number), so we're done.
2183 */
2184out:
2185 btrfs_release_path(path);
2186 btrfs_release_path(log_path);
2187 kfree(name.name);
2188 iput(inode);
2189 return ret;
2190}
2191
2192static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 struct btrfs_root *log,
2195 struct btrfs_path *path,
2196 const u64 ino)
2197{
2198 struct btrfs_key search_key;
2199 struct btrfs_path *log_path;
2200 int i;
2201 int nritems;
2202 int ret;
2203
2204 log_path = btrfs_alloc_path();
2205 if (!log_path)
2206 return -ENOMEM;
2207
2208 search_key.objectid = ino;
2209 search_key.type = BTRFS_XATTR_ITEM_KEY;
2210 search_key.offset = 0;
2211again:
2212 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2213 if (ret < 0)
2214 goto out;
2215process_leaf:
2216 nritems = btrfs_header_nritems(path->nodes[0]);
2217 for (i = path->slots[0]; i < nritems; i++) {
2218 struct btrfs_key key;
2219 struct btrfs_dir_item *di;
2220 struct btrfs_dir_item *log_di;
2221 u32 total_size;
2222 u32 cur;
2223
2224 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2225 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2226 ret = 0;
2227 goto out;
2228 }
2229
2230 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2231 total_size = btrfs_item_size(path->nodes[0], i);
2232 cur = 0;
2233 while (cur < total_size) {
2234 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2235 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2236 u32 this_len = sizeof(*di) + name_len + data_len;
2237 char *name;
2238
2239 name = kmalloc(name_len, GFP_NOFS);
2240 if (!name) {
2241 ret = -ENOMEM;
2242 goto out;
2243 }
2244 read_extent_buffer(path->nodes[0], name,
2245 (unsigned long)(di + 1), name_len);
2246
2247 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2248 name, name_len, 0);
2249 btrfs_release_path(log_path);
2250 if (!log_di) {
2251 /* Doesn't exist in log tree, so delete it. */
2252 btrfs_release_path(path);
2253 di = btrfs_lookup_xattr(trans, root, path, ino,
2254 name, name_len, -1);
2255 kfree(name);
2256 if (IS_ERR(di)) {
2257 ret = PTR_ERR(di);
2258 goto out;
2259 }
2260 ASSERT(di);
2261 ret = btrfs_delete_one_dir_name(trans, root,
2262 path, di);
2263 if (ret)
2264 goto out;
2265 btrfs_release_path(path);
2266 search_key = key;
2267 goto again;
2268 }
2269 kfree(name);
2270 if (IS_ERR(log_di)) {
2271 ret = PTR_ERR(log_di);
2272 goto out;
2273 }
2274 cur += this_len;
2275 di = (struct btrfs_dir_item *)((char *)di + this_len);
2276 }
2277 }
2278 ret = btrfs_next_leaf(root, path);
2279 if (ret > 0)
2280 ret = 0;
2281 else if (ret == 0)
2282 goto process_leaf;
2283out:
2284 btrfs_free_path(log_path);
2285 btrfs_release_path(path);
2286 return ret;
2287}
2288
2289
2290/*
2291 * deletion replay happens before we copy any new directory items
2292 * out of the log or out of backreferences from inodes. It
2293 * scans the log to find ranges of keys that log is authoritative for,
2294 * and then scans the directory to find items in those ranges that are
2295 * not present in the log.
2296 *
2297 * Anything we don't find in the log is unlinked and removed from the
2298 * directory.
2299 */
2300static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_root *log,
2303 struct btrfs_path *path,
2304 u64 dirid, int del_all)
2305{
2306 u64 range_start;
2307 u64 range_end;
2308 int ret = 0;
2309 struct btrfs_key dir_key;
2310 struct btrfs_key found_key;
2311 struct btrfs_path *log_path;
2312 struct inode *dir;
2313
2314 dir_key.objectid = dirid;
2315 dir_key.type = BTRFS_DIR_INDEX_KEY;
2316 log_path = btrfs_alloc_path();
2317 if (!log_path)
2318 return -ENOMEM;
2319
2320 dir = read_one_inode(root, dirid);
2321 /* it isn't an error if the inode isn't there, that can happen
2322 * because we replay the deletes before we copy in the inode item
2323 * from the log
2324 */
2325 if (!dir) {
2326 btrfs_free_path(log_path);
2327 return 0;
2328 }
2329
2330 range_start = 0;
2331 range_end = 0;
2332 while (1) {
2333 if (del_all)
2334 range_end = (u64)-1;
2335 else {
2336 ret = find_dir_range(log, path, dirid,
2337 &range_start, &range_end);
2338 if (ret < 0)
2339 goto out;
2340 else if (ret > 0)
2341 break;
2342 }
2343
2344 dir_key.offset = range_start;
2345 while (1) {
2346 int nritems;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 0, 0);
2349 if (ret < 0)
2350 goto out;
2351
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
2355 if (ret == 1)
2356 break;
2357 else if (ret < 0)
2358 goto out;
2359 }
2360 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361 path->slots[0]);
2362 if (found_key.objectid != dirid ||
2363 found_key.type != dir_key.type) {
2364 ret = 0;
2365 goto out;
2366 }
2367
2368 if (found_key.offset > range_end)
2369 break;
2370
2371 ret = check_item_in_log(trans, log, path,
2372 log_path, dir,
2373 &found_key);
2374 if (ret)
2375 goto out;
2376 if (found_key.offset == (u64)-1)
2377 break;
2378 dir_key.offset = found_key.offset + 1;
2379 }
2380 btrfs_release_path(path);
2381 if (range_end == (u64)-1)
2382 break;
2383 range_start = range_end + 1;
2384 }
2385 ret = 0;
2386out:
2387 btrfs_release_path(path);
2388 btrfs_free_path(log_path);
2389 iput(dir);
2390 return ret;
2391}
2392
2393/*
2394 * the process_func used to replay items from the log tree. This
2395 * gets called in two different stages. The first stage just looks
2396 * for inodes and makes sure they are all copied into the subvolume.
2397 *
2398 * The second stage copies all the other item types from the log into
2399 * the subvolume. The two stage approach is slower, but gets rid of
2400 * lots of complexity around inodes referencing other inodes that exist
2401 * only in the log (references come from either directory items or inode
2402 * back refs).
2403 */
2404static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2405 struct walk_control *wc, u64 gen, int level)
2406{
2407 int nritems;
2408 struct btrfs_tree_parent_check check = {
2409 .transid = gen,
2410 .level = level
2411 };
2412 struct btrfs_path *path;
2413 struct btrfs_root *root = wc->replay_dest;
2414 struct btrfs_key key;
2415 int i;
2416 int ret;
2417
2418 ret = btrfs_read_extent_buffer(eb, &check);
2419 if (ret)
2420 return ret;
2421
2422 level = btrfs_header_level(eb);
2423
2424 if (level != 0)
2425 return 0;
2426
2427 path = btrfs_alloc_path();
2428 if (!path)
2429 return -ENOMEM;
2430
2431 nritems = btrfs_header_nritems(eb);
2432 for (i = 0; i < nritems; i++) {
2433 btrfs_item_key_to_cpu(eb, &key, i);
2434
2435 /* inode keys are done during the first stage */
2436 if (key.type == BTRFS_INODE_ITEM_KEY &&
2437 wc->stage == LOG_WALK_REPLAY_INODES) {
2438 struct btrfs_inode_item *inode_item;
2439 u32 mode;
2440
2441 inode_item = btrfs_item_ptr(eb, i,
2442 struct btrfs_inode_item);
2443 /*
2444 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445 * and never got linked before the fsync, skip it, as
2446 * replaying it is pointless since it would be deleted
2447 * later. We skip logging tmpfiles, but it's always
2448 * possible we are replaying a log created with a kernel
2449 * that used to log tmpfiles.
2450 */
2451 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2452 wc->ignore_cur_inode = true;
2453 continue;
2454 } else {
2455 wc->ignore_cur_inode = false;
2456 }
2457 ret = replay_xattr_deletes(wc->trans, root, log,
2458 path, key.objectid);
2459 if (ret)
2460 break;
2461 mode = btrfs_inode_mode(eb, inode_item);
2462 if (S_ISDIR(mode)) {
2463 ret = replay_dir_deletes(wc->trans,
2464 root, log, path, key.objectid, 0);
2465 if (ret)
2466 break;
2467 }
2468 ret = overwrite_item(wc->trans, root, path,
2469 eb, i, &key);
2470 if (ret)
2471 break;
2472
2473 /*
2474 * Before replaying extents, truncate the inode to its
2475 * size. We need to do it now and not after log replay
2476 * because before an fsync we can have prealloc extents
2477 * added beyond the inode's i_size. If we did it after,
2478 * through orphan cleanup for example, we would drop
2479 * those prealloc extents just after replaying them.
2480 */
2481 if (S_ISREG(mode)) {
2482 struct btrfs_drop_extents_args drop_args = { 0 };
2483 struct inode *inode;
2484 u64 from;
2485
2486 inode = read_one_inode(root, key.objectid);
2487 if (!inode) {
2488 ret = -EIO;
2489 break;
2490 }
2491 from = ALIGN(i_size_read(inode),
2492 root->fs_info->sectorsize);
2493 drop_args.start = from;
2494 drop_args.end = (u64)-1;
2495 drop_args.drop_cache = true;
2496 ret = btrfs_drop_extents(wc->trans, root,
2497 BTRFS_I(inode),
2498 &drop_args);
2499 if (!ret) {
2500 inode_sub_bytes(inode,
2501 drop_args.bytes_found);
2502 /* Update the inode's nbytes. */
2503 ret = btrfs_update_inode(wc->trans,
2504 BTRFS_I(inode));
2505 }
2506 iput(inode);
2507 if (ret)
2508 break;
2509 }
2510
2511 ret = link_to_fixup_dir(wc->trans, root,
2512 path, key.objectid);
2513 if (ret)
2514 break;
2515 }
2516
2517 if (wc->ignore_cur_inode)
2518 continue;
2519
2520 if (key.type == BTRFS_DIR_INDEX_KEY &&
2521 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2522 ret = replay_one_dir_item(wc->trans, root, path,
2523 eb, i, &key);
2524 if (ret)
2525 break;
2526 }
2527
2528 if (wc->stage < LOG_WALK_REPLAY_ALL)
2529 continue;
2530
2531 /* these keys are simply copied */
2532 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2533 ret = overwrite_item(wc->trans, root, path,
2534 eb, i, &key);
2535 if (ret)
2536 break;
2537 } else if (key.type == BTRFS_INODE_REF_KEY ||
2538 key.type == BTRFS_INODE_EXTREF_KEY) {
2539 ret = add_inode_ref(wc->trans, root, log, path,
2540 eb, i, &key);
2541 if (ret && ret != -ENOENT)
2542 break;
2543 ret = 0;
2544 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2545 ret = replay_one_extent(wc->trans, root, path,
2546 eb, i, &key);
2547 if (ret)
2548 break;
2549 }
2550 /*
2551 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554 * older kernel with such keys, ignore them.
2555 */
2556 }
2557 btrfs_free_path(path);
2558 return ret;
2559}
2560
2561/*
2562 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2563 */
2564static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2565{
2566 struct btrfs_block_group *cache;
2567
2568 cache = btrfs_lookup_block_group(fs_info, start);
2569 if (!cache) {
2570 btrfs_err(fs_info, "unable to find block group for %llu", start);
2571 return;
2572 }
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->reserved -= fs_info->nodesize;
2577 cache->space_info->bytes_reserved -= fs_info->nodesize;
2578 spin_unlock(&cache->lock);
2579 spin_unlock(&cache->space_info->lock);
2580
2581 btrfs_put_block_group(cache);
2582}
2583
2584static int clean_log_buffer(struct btrfs_trans_handle *trans,
2585 struct extent_buffer *eb)
2586{
2587 int ret;
2588
2589 btrfs_tree_lock(eb);
2590 btrfs_clear_buffer_dirty(trans, eb);
2591 wait_on_extent_buffer_writeback(eb);
2592 btrfs_tree_unlock(eb);
2593
2594 if (trans) {
2595 ret = btrfs_pin_reserved_extent(trans, eb);
2596 if (ret)
2597 return ret;
2598 } else {
2599 unaccount_log_buffer(eb->fs_info, eb->start);
2600 }
2601
2602 return 0;
2603}
2604
2605static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path, int *level,
2608 struct walk_control *wc)
2609{
2610 struct btrfs_fs_info *fs_info = root->fs_info;
2611 u64 bytenr;
2612 u64 ptr_gen;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2615 int ret = 0;
2616
2617 while (*level > 0) {
2618 struct btrfs_tree_parent_check check = { 0 };
2619
2620 cur = path->nodes[*level];
2621
2622 WARN_ON(btrfs_header_level(cur) != *level);
2623
2624 if (path->slots[*level] >=
2625 btrfs_header_nritems(cur))
2626 break;
2627
2628 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2629 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2630 check.transid = ptr_gen;
2631 check.level = *level - 1;
2632 check.has_first_key = true;
2633 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2634
2635 next = btrfs_find_create_tree_block(fs_info, bytenr,
2636 btrfs_header_owner(cur),
2637 *level - 1);
2638 if (IS_ERR(next))
2639 return PTR_ERR(next);
2640
2641 if (*level == 1) {
2642 ret = wc->process_func(root, next, wc, ptr_gen,
2643 *level - 1);
2644 if (ret) {
2645 free_extent_buffer(next);
2646 return ret;
2647 }
2648
2649 path->slots[*level]++;
2650 if (wc->free) {
2651 ret = btrfs_read_extent_buffer(next, &check);
2652 if (ret) {
2653 free_extent_buffer(next);
2654 return ret;
2655 }
2656
2657 ret = clean_log_buffer(trans, next);
2658 if (ret) {
2659 free_extent_buffer(next);
2660 return ret;
2661 }
2662 }
2663 free_extent_buffer(next);
2664 continue;
2665 }
2666 ret = btrfs_read_extent_buffer(next, &check);
2667 if (ret) {
2668 free_extent_buffer(next);
2669 return ret;
2670 }
2671
2672 if (path->nodes[*level-1])
2673 free_extent_buffer(path->nodes[*level-1]);
2674 path->nodes[*level-1] = next;
2675 *level = btrfs_header_level(next);
2676 path->slots[*level] = 0;
2677 cond_resched();
2678 }
2679 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2680
2681 cond_resched();
2682 return 0;
2683}
2684
2685static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_path *path, int *level,
2688 struct walk_control *wc)
2689{
2690 int i;
2691 int slot;
2692 int ret;
2693
2694 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2695 slot = path->slots[i];
2696 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2697 path->slots[i]++;
2698 *level = i;
2699 WARN_ON(*level == 0);
2700 return 0;
2701 } else {
2702 ret = wc->process_func(root, path->nodes[*level], wc,
2703 btrfs_header_generation(path->nodes[*level]),
2704 *level);
2705 if (ret)
2706 return ret;
2707
2708 if (wc->free) {
2709 ret = clean_log_buffer(trans, path->nodes[*level]);
2710 if (ret)
2711 return ret;
2712 }
2713 free_extent_buffer(path->nodes[*level]);
2714 path->nodes[*level] = NULL;
2715 *level = i + 1;
2716 }
2717 }
2718 return 1;
2719}
2720
2721/*
2722 * drop the reference count on the tree rooted at 'snap'. This traverses
2723 * the tree freeing any blocks that have a ref count of zero after being
2724 * decremented.
2725 */
2726static int walk_log_tree(struct btrfs_trans_handle *trans,
2727 struct btrfs_root *log, struct walk_control *wc)
2728{
2729 int ret = 0;
2730 int wret;
2731 int level;
2732 struct btrfs_path *path;
2733 int orig_level;
2734
2735 path = btrfs_alloc_path();
2736 if (!path)
2737 return -ENOMEM;
2738
2739 level = btrfs_header_level(log->node);
2740 orig_level = level;
2741 path->nodes[level] = log->node;
2742 atomic_inc(&log->node->refs);
2743 path->slots[level] = 0;
2744
2745 while (1) {
2746 wret = walk_down_log_tree(trans, log, path, &level, wc);
2747 if (wret > 0)
2748 break;
2749 if (wret < 0) {
2750 ret = wret;
2751 goto out;
2752 }
2753
2754 wret = walk_up_log_tree(trans, log, path, &level, wc);
2755 if (wret > 0)
2756 break;
2757 if (wret < 0) {
2758 ret = wret;
2759 goto out;
2760 }
2761 }
2762
2763 /* was the root node processed? if not, catch it here */
2764 if (path->nodes[orig_level]) {
2765 ret = wc->process_func(log, path->nodes[orig_level], wc,
2766 btrfs_header_generation(path->nodes[orig_level]),
2767 orig_level);
2768 if (ret)
2769 goto out;
2770 if (wc->free)
2771 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2772 }
2773
2774out:
2775 btrfs_free_path(path);
2776 return ret;
2777}
2778
2779/*
2780 * helper function to update the item for a given subvolumes log root
2781 * in the tree of log roots
2782 */
2783static int update_log_root(struct btrfs_trans_handle *trans,
2784 struct btrfs_root *log,
2785 struct btrfs_root_item *root_item)
2786{
2787 struct btrfs_fs_info *fs_info = log->fs_info;
2788 int ret;
2789
2790 if (log->log_transid == 1) {
2791 /* insert root item on the first sync */
2792 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793 &log->root_key, root_item);
2794 } else {
2795 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796 &log->root_key, root_item);
2797 }
2798 return ret;
2799}
2800
2801static void wait_log_commit(struct btrfs_root *root, int transid)
2802{
2803 DEFINE_WAIT(wait);
2804 int index = transid % 2;
2805
2806 /*
2807 * we only allow two pending log transactions at a time,
2808 * so we know that if ours is more than 2 older than the
2809 * current transaction, we're done
2810 */
2811 for (;;) {
2812 prepare_to_wait(&root->log_commit_wait[index],
2813 &wait, TASK_UNINTERRUPTIBLE);
2814
2815 if (!(root->log_transid_committed < transid &&
2816 atomic_read(&root->log_commit[index])))
2817 break;
2818
2819 mutex_unlock(&root->log_mutex);
2820 schedule();
2821 mutex_lock(&root->log_mutex);
2822 }
2823 finish_wait(&root->log_commit_wait[index], &wait);
2824}
2825
2826static void wait_for_writer(struct btrfs_root *root)
2827{
2828 DEFINE_WAIT(wait);
2829
2830 for (;;) {
2831 prepare_to_wait(&root->log_writer_wait, &wait,
2832 TASK_UNINTERRUPTIBLE);
2833 if (!atomic_read(&root->log_writers))
2834 break;
2835
2836 mutex_unlock(&root->log_mutex);
2837 schedule();
2838 mutex_lock(&root->log_mutex);
2839 }
2840 finish_wait(&root->log_writer_wait, &wait);
2841}
2842
2843void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2844{
2845 ctx->log_ret = 0;
2846 ctx->log_transid = 0;
2847 ctx->log_new_dentries = false;
2848 ctx->logging_new_name = false;
2849 ctx->logging_new_delayed_dentries = false;
2850 ctx->logged_before = false;
2851 ctx->inode = inode;
2852 INIT_LIST_HEAD(&ctx->list);
2853 INIT_LIST_HEAD(&ctx->ordered_extents);
2854 INIT_LIST_HEAD(&ctx->conflict_inodes);
2855 ctx->num_conflict_inodes = 0;
2856 ctx->logging_conflict_inodes = false;
2857 ctx->scratch_eb = NULL;
2858}
2859
2860void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2861{
2862 struct btrfs_inode *inode = ctx->inode;
2863
2864 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2865 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2866 return;
2867
2868 /*
2869 * Don't care about allocation failure. This is just for optimization,
2870 * if we fail to allocate here, we will try again later if needed.
2871 */
2872 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2873}
2874
2875void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2876{
2877 struct btrfs_ordered_extent *ordered;
2878 struct btrfs_ordered_extent *tmp;
2879
2880 btrfs_assert_inode_locked(ctx->inode);
2881
2882 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2883 list_del_init(&ordered->log_list);
2884 btrfs_put_ordered_extent(ordered);
2885 }
2886}
2887
2888
2889static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2890 struct btrfs_log_ctx *ctx)
2891{
2892 mutex_lock(&root->log_mutex);
2893 list_del_init(&ctx->list);
2894 mutex_unlock(&root->log_mutex);
2895}
2896
2897/*
2898 * Invoked in log mutex context, or be sure there is no other task which
2899 * can access the list.
2900 */
2901static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2902 int index, int error)
2903{
2904 struct btrfs_log_ctx *ctx;
2905 struct btrfs_log_ctx *safe;
2906
2907 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2908 list_del_init(&ctx->list);
2909 ctx->log_ret = error;
2910 }
2911}
2912
2913/*
2914 * Sends a given tree log down to the disk and updates the super blocks to
2915 * record it. When this call is done, you know that any inodes previously
2916 * logged are safely on disk only if it returns 0.
2917 *
2918 * Any other return value means you need to call btrfs_commit_transaction.
2919 * Some of the edge cases for fsyncing directories that have had unlinks
2920 * or renames done in the past mean that sometimes the only safe
2921 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2922 * that has happened.
2923 */
2924int btrfs_sync_log(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2926{
2927 int index1;
2928 int index2;
2929 int mark;
2930 int ret;
2931 struct btrfs_fs_info *fs_info = root->fs_info;
2932 struct btrfs_root *log = root->log_root;
2933 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2934 struct btrfs_root_item new_root_item;
2935 int log_transid = 0;
2936 struct btrfs_log_ctx root_log_ctx;
2937 struct blk_plug plug;
2938 u64 log_root_start;
2939 u64 log_root_level;
2940
2941 mutex_lock(&root->log_mutex);
2942 log_transid = ctx->log_transid;
2943 if (root->log_transid_committed >= log_transid) {
2944 mutex_unlock(&root->log_mutex);
2945 return ctx->log_ret;
2946 }
2947
2948 index1 = log_transid % 2;
2949 if (atomic_read(&root->log_commit[index1])) {
2950 wait_log_commit(root, log_transid);
2951 mutex_unlock(&root->log_mutex);
2952 return ctx->log_ret;
2953 }
2954 ASSERT(log_transid == root->log_transid);
2955 atomic_set(&root->log_commit[index1], 1);
2956
2957 /* wait for previous tree log sync to complete */
2958 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2959 wait_log_commit(root, log_transid - 1);
2960
2961 while (1) {
2962 int batch = atomic_read(&root->log_batch);
2963 /* when we're on an ssd, just kick the log commit out */
2964 if (!btrfs_test_opt(fs_info, SSD) &&
2965 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2966 mutex_unlock(&root->log_mutex);
2967 schedule_timeout_uninterruptible(1);
2968 mutex_lock(&root->log_mutex);
2969 }
2970 wait_for_writer(root);
2971 if (batch == atomic_read(&root->log_batch))
2972 break;
2973 }
2974
2975 /* bail out if we need to do a full commit */
2976 if (btrfs_need_log_full_commit(trans)) {
2977 ret = BTRFS_LOG_FORCE_COMMIT;
2978 mutex_unlock(&root->log_mutex);
2979 goto out;
2980 }
2981
2982 if (log_transid % 2 == 0)
2983 mark = EXTENT_DIRTY;
2984 else
2985 mark = EXTENT_NEW;
2986
2987 /* we start IO on all the marked extents here, but we don't actually
2988 * wait for them until later.
2989 */
2990 blk_start_plug(&plug);
2991 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2992 /*
2993 * -EAGAIN happens when someone, e.g., a concurrent transaction
2994 * commit, writes a dirty extent in this tree-log commit. This
2995 * concurrent write will create a hole writing out the extents,
2996 * and we cannot proceed on a zoned filesystem, requiring
2997 * sequential writing. While we can bail out to a full commit
2998 * here, but we can continue hoping the concurrent writing fills
2999 * the hole.
3000 */
3001 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3002 ret = 0;
3003 if (ret) {
3004 blk_finish_plug(&plug);
3005 btrfs_set_log_full_commit(trans);
3006 mutex_unlock(&root->log_mutex);
3007 goto out;
3008 }
3009
3010 /*
3011 * We _must_ update under the root->log_mutex in order to make sure we
3012 * have a consistent view of the log root we are trying to commit at
3013 * this moment.
3014 *
3015 * We _must_ copy this into a local copy, because we are not holding the
3016 * log_root_tree->log_mutex yet. This is important because when we
3017 * commit the log_root_tree we must have a consistent view of the
3018 * log_root_tree when we update the super block to point at the
3019 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3020 * with the commit and possibly point at the new block which we may not
3021 * have written out.
3022 */
3023 btrfs_set_root_node(&log->root_item, log->node);
3024 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3025
3026 btrfs_set_root_log_transid(root, root->log_transid + 1);
3027 log->log_transid = root->log_transid;
3028 root->log_start_pid = 0;
3029 /*
3030 * IO has been started, blocks of the log tree have WRITTEN flag set
3031 * in their headers. new modifications of the log will be written to
3032 * new positions. so it's safe to allow log writers to go in.
3033 */
3034 mutex_unlock(&root->log_mutex);
3035
3036 if (btrfs_is_zoned(fs_info)) {
3037 mutex_lock(&fs_info->tree_root->log_mutex);
3038 if (!log_root_tree->node) {
3039 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3040 if (ret) {
3041 mutex_unlock(&fs_info->tree_root->log_mutex);
3042 blk_finish_plug(&plug);
3043 goto out;
3044 }
3045 }
3046 mutex_unlock(&fs_info->tree_root->log_mutex);
3047 }
3048
3049 btrfs_init_log_ctx(&root_log_ctx, NULL);
3050
3051 mutex_lock(&log_root_tree->log_mutex);
3052
3053 index2 = log_root_tree->log_transid % 2;
3054 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3055 root_log_ctx.log_transid = log_root_tree->log_transid;
3056
3057 /*
3058 * Now we are safe to update the log_root_tree because we're under the
3059 * log_mutex, and we're a current writer so we're holding the commit
3060 * open until we drop the log_mutex.
3061 */
3062 ret = update_log_root(trans, log, &new_root_item);
3063 if (ret) {
3064 list_del_init(&root_log_ctx.list);
3065 blk_finish_plug(&plug);
3066 btrfs_set_log_full_commit(trans);
3067 if (ret != -ENOSPC)
3068 btrfs_err(fs_info,
3069 "failed to update log for root %llu ret %d",
3070 btrfs_root_id(root), ret);
3071 btrfs_wait_tree_log_extents(log, mark);
3072 mutex_unlock(&log_root_tree->log_mutex);
3073 goto out;
3074 }
3075
3076 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3077 blk_finish_plug(&plug);
3078 list_del_init(&root_log_ctx.list);
3079 mutex_unlock(&log_root_tree->log_mutex);
3080 ret = root_log_ctx.log_ret;
3081 goto out;
3082 }
3083
3084 if (atomic_read(&log_root_tree->log_commit[index2])) {
3085 blk_finish_plug(&plug);
3086 ret = btrfs_wait_tree_log_extents(log, mark);
3087 wait_log_commit(log_root_tree,
3088 root_log_ctx.log_transid);
3089 mutex_unlock(&log_root_tree->log_mutex);
3090 if (!ret)
3091 ret = root_log_ctx.log_ret;
3092 goto out;
3093 }
3094 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3095 atomic_set(&log_root_tree->log_commit[index2], 1);
3096
3097 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3098 wait_log_commit(log_root_tree,
3099 root_log_ctx.log_transid - 1);
3100 }
3101
3102 /*
3103 * now that we've moved on to the tree of log tree roots,
3104 * check the full commit flag again
3105 */
3106 if (btrfs_need_log_full_commit(trans)) {
3107 blk_finish_plug(&plug);
3108 btrfs_wait_tree_log_extents(log, mark);
3109 mutex_unlock(&log_root_tree->log_mutex);
3110 ret = BTRFS_LOG_FORCE_COMMIT;
3111 goto out_wake_log_root;
3112 }
3113
3114 ret = btrfs_write_marked_extents(fs_info,
3115 &log_root_tree->dirty_log_pages,
3116 EXTENT_DIRTY | EXTENT_NEW);
3117 blk_finish_plug(&plug);
3118 /*
3119 * As described above, -EAGAIN indicates a hole in the extents. We
3120 * cannot wait for these write outs since the waiting cause a
3121 * deadlock. Bail out to the full commit instead.
3122 */
3123 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3124 btrfs_set_log_full_commit(trans);
3125 btrfs_wait_tree_log_extents(log, mark);
3126 mutex_unlock(&log_root_tree->log_mutex);
3127 goto out_wake_log_root;
3128 } else if (ret) {
3129 btrfs_set_log_full_commit(trans);
3130 mutex_unlock(&log_root_tree->log_mutex);
3131 goto out_wake_log_root;
3132 }
3133 ret = btrfs_wait_tree_log_extents(log, mark);
3134 if (!ret)
3135 ret = btrfs_wait_tree_log_extents(log_root_tree,
3136 EXTENT_NEW | EXTENT_DIRTY);
3137 if (ret) {
3138 btrfs_set_log_full_commit(trans);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out_wake_log_root;
3141 }
3142
3143 log_root_start = log_root_tree->node->start;
3144 log_root_level = btrfs_header_level(log_root_tree->node);
3145 log_root_tree->log_transid++;
3146 mutex_unlock(&log_root_tree->log_mutex);
3147
3148 /*
3149 * Here we are guaranteed that nobody is going to write the superblock
3150 * for the current transaction before us and that neither we do write
3151 * our superblock before the previous transaction finishes its commit
3152 * and writes its superblock, because:
3153 *
3154 * 1) We are holding a handle on the current transaction, so no body
3155 * can commit it until we release the handle;
3156 *
3157 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158 * if the previous transaction is still committing, and hasn't yet
3159 * written its superblock, we wait for it to do it, because a
3160 * transaction commit acquires the tree_log_mutex when the commit
3161 * begins and releases it only after writing its superblock.
3162 */
3163 mutex_lock(&fs_info->tree_log_mutex);
3164
3165 /*
3166 * The previous transaction writeout phase could have failed, and thus
3167 * marked the fs in an error state. We must not commit here, as we
3168 * could have updated our generation in the super_for_commit and
3169 * writing the super here would result in transid mismatches. If there
3170 * is an error here just bail.
3171 */
3172 if (BTRFS_FS_ERROR(fs_info)) {
3173 ret = -EIO;
3174 btrfs_set_log_full_commit(trans);
3175 btrfs_abort_transaction(trans, ret);
3176 mutex_unlock(&fs_info->tree_log_mutex);
3177 goto out_wake_log_root;
3178 }
3179
3180 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3181 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3182 ret = write_all_supers(fs_info, 1);
3183 mutex_unlock(&fs_info->tree_log_mutex);
3184 if (ret) {
3185 btrfs_set_log_full_commit(trans);
3186 btrfs_abort_transaction(trans, ret);
3187 goto out_wake_log_root;
3188 }
3189
3190 /*
3191 * We know there can only be one task here, since we have not yet set
3192 * root->log_commit[index1] to 0 and any task attempting to sync the
3193 * log must wait for the previous log transaction to commit if it's
3194 * still in progress or wait for the current log transaction commit if
3195 * someone else already started it. We use <= and not < because the
3196 * first log transaction has an ID of 0.
3197 */
3198 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3199 btrfs_set_root_last_log_commit(root, log_transid);
3200
3201out_wake_log_root:
3202 mutex_lock(&log_root_tree->log_mutex);
3203 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3204
3205 log_root_tree->log_transid_committed++;
3206 atomic_set(&log_root_tree->log_commit[index2], 0);
3207 mutex_unlock(&log_root_tree->log_mutex);
3208
3209 /*
3210 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211 * all the updates above are seen by the woken threads. It might not be
3212 * necessary, but proving that seems to be hard.
3213 */
3214 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3215out:
3216 mutex_lock(&root->log_mutex);
3217 btrfs_remove_all_log_ctxs(root, index1, ret);
3218 root->log_transid_committed++;
3219 atomic_set(&root->log_commit[index1], 0);
3220 mutex_unlock(&root->log_mutex);
3221
3222 /*
3223 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224 * all the updates above are seen by the woken threads. It might not be
3225 * necessary, but proving that seems to be hard.
3226 */
3227 cond_wake_up(&root->log_commit_wait[index1]);
3228 return ret;
3229}
3230
3231static void free_log_tree(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log)
3233{
3234 int ret;
3235 struct walk_control wc = {
3236 .free = 1,
3237 .process_func = process_one_buffer
3238 };
3239
3240 if (log->node) {
3241 ret = walk_log_tree(trans, log, &wc);
3242 if (ret) {
3243 /*
3244 * We weren't able to traverse the entire log tree, the
3245 * typical scenario is getting an -EIO when reading an
3246 * extent buffer of the tree, due to a previous writeback
3247 * failure of it.
3248 */
3249 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3250 &log->fs_info->fs_state);
3251
3252 /*
3253 * Some extent buffers of the log tree may still be dirty
3254 * and not yet written back to storage, because we may
3255 * have updates to a log tree without syncing a log tree,
3256 * such as during rename and link operations. So flush
3257 * them out and wait for their writeback to complete, so
3258 * that we properly cleanup their state and pages.
3259 */
3260 btrfs_write_marked_extents(log->fs_info,
3261 &log->dirty_log_pages,
3262 EXTENT_DIRTY | EXTENT_NEW);
3263 btrfs_wait_tree_log_extents(log,
3264 EXTENT_DIRTY | EXTENT_NEW);
3265
3266 if (trans)
3267 btrfs_abort_transaction(trans, ret);
3268 else
3269 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3270 }
3271 }
3272
3273 extent_io_tree_release(&log->dirty_log_pages);
3274 extent_io_tree_release(&log->log_csum_range);
3275
3276 btrfs_put_root(log);
3277}
3278
3279/*
3280 * free all the extents used by the tree log. This should be called
3281 * at commit time of the full transaction
3282 */
3283int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3284{
3285 if (root->log_root) {
3286 free_log_tree(trans, root->log_root);
3287 root->log_root = NULL;
3288 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3289 }
3290 return 0;
3291}
3292
3293int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3294 struct btrfs_fs_info *fs_info)
3295{
3296 if (fs_info->log_root_tree) {
3297 free_log_tree(trans, fs_info->log_root_tree);
3298 fs_info->log_root_tree = NULL;
3299 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3300 }
3301 return 0;
3302}
3303
3304/*
3305 * Check if an inode was logged in the current transaction. This correctly deals
3306 * with the case where the inode was logged but has a logged_trans of 0, which
3307 * happens if the inode is evicted and loaded again, as logged_trans is an in
3308 * memory only field (not persisted).
3309 *
3310 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3311 * and < 0 on error.
3312 */
3313static int inode_logged(const struct btrfs_trans_handle *trans,
3314 struct btrfs_inode *inode,
3315 struct btrfs_path *path_in)
3316{
3317 struct btrfs_path *path = path_in;
3318 struct btrfs_key key;
3319 int ret;
3320
3321 if (inode->logged_trans == trans->transid)
3322 return 1;
3323
3324 /*
3325 * If logged_trans is not 0, then we know the inode logged was not logged
3326 * in this transaction, so we can return false right away.
3327 */
3328 if (inode->logged_trans > 0)
3329 return 0;
3330
3331 /*
3332 * If no log tree was created for this root in this transaction, then
3333 * the inode can not have been logged in this transaction. In that case
3334 * set logged_trans to anything greater than 0 and less than the current
3335 * transaction's ID, to avoid the search below in a future call in case
3336 * a log tree gets created after this.
3337 */
3338 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3339 inode->logged_trans = trans->transid - 1;
3340 return 0;
3341 }
3342
3343 /*
3344 * We have a log tree and the inode's logged_trans is 0. We can't tell
3345 * for sure if the inode was logged before in this transaction by looking
3346 * only at logged_trans. We could be pessimistic and assume it was, but
3347 * that can lead to unnecessarily logging an inode during rename and link
3348 * operations, and then further updating the log in followup rename and
3349 * link operations, specially if it's a directory, which adds latency
3350 * visible to applications doing a series of rename or link operations.
3351 *
3352 * A logged_trans of 0 here can mean several things:
3353 *
3354 * 1) The inode was never logged since the filesystem was mounted, and may
3355 * or may have not been evicted and loaded again;
3356 *
3357 * 2) The inode was logged in a previous transaction, then evicted and
3358 * then loaded again;
3359 *
3360 * 3) The inode was logged in the current transaction, then evicted and
3361 * then loaded again.
3362 *
3363 * For cases 1) and 2) we don't want to return true, but we need to detect
3364 * case 3) and return true. So we do a search in the log root for the inode
3365 * item.
3366 */
3367 key.objectid = btrfs_ino(inode);
3368 key.type = BTRFS_INODE_ITEM_KEY;
3369 key.offset = 0;
3370
3371 if (!path) {
3372 path = btrfs_alloc_path();
3373 if (!path)
3374 return -ENOMEM;
3375 }
3376
3377 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3378
3379 if (path_in)
3380 btrfs_release_path(path);
3381 else
3382 btrfs_free_path(path);
3383
3384 /*
3385 * Logging an inode always results in logging its inode item. So if we
3386 * did not find the item we know the inode was not logged for sure.
3387 */
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret > 0) {
3391 /*
3392 * Set logged_trans to a value greater than 0 and less then the
3393 * current transaction to avoid doing the search in future calls.
3394 */
3395 inode->logged_trans = trans->transid - 1;
3396 return 0;
3397 }
3398
3399 /*
3400 * The inode was previously logged and then evicted, set logged_trans to
3401 * the current transacion's ID, to avoid future tree searches as long as
3402 * the inode is not evicted again.
3403 */
3404 inode->logged_trans = trans->transid;
3405
3406 /*
3407 * If it's a directory, then we must set last_dir_index_offset to the
3408 * maximum possible value, so that the next attempt to log the inode does
3409 * not skip checking if dir index keys found in modified subvolume tree
3410 * leaves have been logged before, otherwise it would result in attempts
3411 * to insert duplicate dir index keys in the log tree. This must be done
3412 * because last_dir_index_offset is an in-memory only field, not persisted
3413 * in the inode item or any other on-disk structure, so its value is lost
3414 * once the inode is evicted.
3415 */
3416 if (S_ISDIR(inode->vfs_inode.i_mode))
3417 inode->last_dir_index_offset = (u64)-1;
3418
3419 return 1;
3420}
3421
3422/*
3423 * Delete a directory entry from the log if it exists.
3424 *
3425 * Returns < 0 on error
3426 * 1 if the entry does not exists
3427 * 0 if the entry existed and was successfully deleted
3428 */
3429static int del_logged_dentry(struct btrfs_trans_handle *trans,
3430 struct btrfs_root *log,
3431 struct btrfs_path *path,
3432 u64 dir_ino,
3433 const struct fscrypt_str *name,
3434 u64 index)
3435{
3436 struct btrfs_dir_item *di;
3437
3438 /*
3439 * We only log dir index items of a directory, so we don't need to look
3440 * for dir item keys.
3441 */
3442 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3443 index, name, -1);
3444 if (IS_ERR(di))
3445 return PTR_ERR(di);
3446 else if (!di)
3447 return 1;
3448
3449 /*
3450 * We do not need to update the size field of the directory's
3451 * inode item because on log replay we update the field to reflect
3452 * all existing entries in the directory (see overwrite_item()).
3453 */
3454 return btrfs_delete_one_dir_name(trans, log, path, di);
3455}
3456
3457/*
3458 * If both a file and directory are logged, and unlinks or renames are
3459 * mixed in, we have a few interesting corners:
3460 *
3461 * create file X in dir Y
3462 * link file X to X.link in dir Y
3463 * fsync file X
3464 * unlink file X but leave X.link
3465 * fsync dir Y
3466 *
3467 * After a crash we would expect only X.link to exist. But file X
3468 * didn't get fsync'd again so the log has back refs for X and X.link.
3469 *
3470 * We solve this by removing directory entries and inode backrefs from the
3471 * log when a file that was logged in the current transaction is
3472 * unlinked. Any later fsync will include the updated log entries, and
3473 * we'll be able to reconstruct the proper directory items from backrefs.
3474 *
3475 * This optimizations allows us to avoid relogging the entire inode
3476 * or the entire directory.
3477 */
3478void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *root,
3480 const struct fscrypt_str *name,
3481 struct btrfs_inode *dir, u64 index)
3482{
3483 struct btrfs_path *path;
3484 int ret;
3485
3486 ret = inode_logged(trans, dir, NULL);
3487 if (ret == 0)
3488 return;
3489 else if (ret < 0) {
3490 btrfs_set_log_full_commit(trans);
3491 return;
3492 }
3493
3494 ret = join_running_log_trans(root);
3495 if (ret)
3496 return;
3497
3498 mutex_lock(&dir->log_mutex);
3499
3500 path = btrfs_alloc_path();
3501 if (!path) {
3502 ret = -ENOMEM;
3503 goto out_unlock;
3504 }
3505
3506 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3507 name, index);
3508 btrfs_free_path(path);
3509out_unlock:
3510 mutex_unlock(&dir->log_mutex);
3511 if (ret < 0)
3512 btrfs_set_log_full_commit(trans);
3513 btrfs_end_log_trans(root);
3514}
3515
3516/* see comments for btrfs_del_dir_entries_in_log */
3517void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *root,
3519 const struct fscrypt_str *name,
3520 struct btrfs_inode *inode, u64 dirid)
3521{
3522 struct btrfs_root *log;
3523 u64 index;
3524 int ret;
3525
3526 ret = inode_logged(trans, inode, NULL);
3527 if (ret == 0)
3528 return;
3529 else if (ret < 0) {
3530 btrfs_set_log_full_commit(trans);
3531 return;
3532 }
3533
3534 ret = join_running_log_trans(root);
3535 if (ret)
3536 return;
3537 log = root->log_root;
3538 mutex_lock(&inode->log_mutex);
3539
3540 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3541 dirid, &index);
3542 mutex_unlock(&inode->log_mutex);
3543 if (ret < 0 && ret != -ENOENT)
3544 btrfs_set_log_full_commit(trans);
3545 btrfs_end_log_trans(root);
3546}
3547
3548/*
3549 * creates a range item in the log for 'dirid'. first_offset and
3550 * last_offset tell us which parts of the key space the log should
3551 * be considered authoritative for.
3552 */
3553static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *log,
3555 struct btrfs_path *path,
3556 u64 dirid,
3557 u64 first_offset, u64 last_offset)
3558{
3559 int ret;
3560 struct btrfs_key key;
3561 struct btrfs_dir_log_item *item;
3562
3563 key.objectid = dirid;
3564 key.offset = first_offset;
3565 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3566 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3567 /*
3568 * -EEXIST is fine and can happen sporadically when we are logging a
3569 * directory and have concurrent insertions in the subvolume's tree for
3570 * items from other inodes and that result in pushing off some dir items
3571 * from one leaf to another in order to accommodate for the new items.
3572 * This results in logging the same dir index range key.
3573 */
3574 if (ret && ret != -EEXIST)
3575 return ret;
3576
3577 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3578 struct btrfs_dir_log_item);
3579 if (ret == -EEXIST) {
3580 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3581
3582 /*
3583 * btrfs_del_dir_entries_in_log() might have been called during
3584 * an unlink between the initial insertion of this key and the
3585 * current update, or we might be logging a single entry deletion
3586 * during a rename, so set the new last_offset to the max value.
3587 */
3588 last_offset = max(last_offset, curr_end);
3589 }
3590 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3591 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3592 btrfs_release_path(path);
3593 return 0;
3594}
3595
3596static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3597 struct btrfs_inode *inode,
3598 struct extent_buffer *src,
3599 struct btrfs_path *dst_path,
3600 int start_slot,
3601 int count)
3602{
3603 struct btrfs_root *log = inode->root->log_root;
3604 char *ins_data = NULL;
3605 struct btrfs_item_batch batch;
3606 struct extent_buffer *dst;
3607 unsigned long src_offset;
3608 unsigned long dst_offset;
3609 u64 last_index;
3610 struct btrfs_key key;
3611 u32 item_size;
3612 int ret;
3613 int i;
3614
3615 ASSERT(count > 0);
3616 batch.nr = count;
3617
3618 if (count == 1) {
3619 btrfs_item_key_to_cpu(src, &key, start_slot);
3620 item_size = btrfs_item_size(src, start_slot);
3621 batch.keys = &key;
3622 batch.data_sizes = &item_size;
3623 batch.total_data_size = item_size;
3624 } else {
3625 struct btrfs_key *ins_keys;
3626 u32 *ins_sizes;
3627
3628 ins_data = kmalloc(count * sizeof(u32) +
3629 count * sizeof(struct btrfs_key), GFP_NOFS);
3630 if (!ins_data)
3631 return -ENOMEM;
3632
3633 ins_sizes = (u32 *)ins_data;
3634 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3635 batch.keys = ins_keys;
3636 batch.data_sizes = ins_sizes;
3637 batch.total_data_size = 0;
3638
3639 for (i = 0; i < count; i++) {
3640 const int slot = start_slot + i;
3641
3642 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3643 ins_sizes[i] = btrfs_item_size(src, slot);
3644 batch.total_data_size += ins_sizes[i];
3645 }
3646 }
3647
3648 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3649 if (ret)
3650 goto out;
3651
3652 dst = dst_path->nodes[0];
3653 /*
3654 * Copy all the items in bulk, in a single copy operation. Item data is
3655 * organized such that it's placed at the end of a leaf and from right
3656 * to left. For example, the data for the second item ends at an offset
3657 * that matches the offset where the data for the first item starts, the
3658 * data for the third item ends at an offset that matches the offset
3659 * where the data of the second items starts, and so on.
3660 * Therefore our source and destination start offsets for copy match the
3661 * offsets of the last items (highest slots).
3662 */
3663 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3664 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3665 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3666 btrfs_release_path(dst_path);
3667
3668 last_index = batch.keys[count - 1].offset;
3669 ASSERT(last_index > inode->last_dir_index_offset);
3670
3671 /*
3672 * If for some unexpected reason the last item's index is not greater
3673 * than the last index we logged, warn and force a transaction commit.
3674 */
3675 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3676 ret = BTRFS_LOG_FORCE_COMMIT;
3677 else
3678 inode->last_dir_index_offset = last_index;
3679
3680 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3681 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3682out:
3683 kfree(ins_data);
3684
3685 return ret;
3686}
3687
3688static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3689{
3690 const int slot = path->slots[0];
3691
3692 if (ctx->scratch_eb) {
3693 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3694 } else {
3695 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3696 if (!ctx->scratch_eb)
3697 return -ENOMEM;
3698 }
3699
3700 btrfs_release_path(path);
3701 path->nodes[0] = ctx->scratch_eb;
3702 path->slots[0] = slot;
3703 /*
3704 * Add extra ref to scratch eb so that it is not freed when callers
3705 * release the path, so we can reuse it later if needed.
3706 */
3707 atomic_inc(&ctx->scratch_eb->refs);
3708
3709 return 0;
3710}
3711
3712static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3713 struct btrfs_inode *inode,
3714 struct btrfs_path *path,
3715 struct btrfs_path *dst_path,
3716 struct btrfs_log_ctx *ctx,
3717 u64 *last_old_dentry_offset)
3718{
3719 struct btrfs_root *log = inode->root->log_root;
3720 struct extent_buffer *src;
3721 const int nritems = btrfs_header_nritems(path->nodes[0]);
3722 const u64 ino = btrfs_ino(inode);
3723 bool last_found = false;
3724 int batch_start = 0;
3725 int batch_size = 0;
3726 int ret;
3727
3728 /*
3729 * We need to clone the leaf, release the read lock on it, and use the
3730 * clone before modifying the log tree. See the comment at copy_items()
3731 * about why we need to do this.
3732 */
3733 ret = clone_leaf(path, ctx);
3734 if (ret < 0)
3735 return ret;
3736
3737 src = path->nodes[0];
3738
3739 for (int i = path->slots[0]; i < nritems; i++) {
3740 struct btrfs_dir_item *di;
3741 struct btrfs_key key;
3742 int ret;
3743
3744 btrfs_item_key_to_cpu(src, &key, i);
3745
3746 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747 last_found = true;
3748 break;
3749 }
3750
3751 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3752
3753 /*
3754 * Skip ranges of items that consist only of dir item keys created
3755 * in past transactions. However if we find a gap, we must log a
3756 * dir index range item for that gap, so that index keys in that
3757 * gap are deleted during log replay.
3758 */
3759 if (btrfs_dir_transid(src, di) < trans->transid) {
3760 if (key.offset > *last_old_dentry_offset + 1) {
3761 ret = insert_dir_log_key(trans, log, dst_path,
3762 ino, *last_old_dentry_offset + 1,
3763 key.offset - 1);
3764 if (ret < 0)
3765 return ret;
3766 }
3767
3768 *last_old_dentry_offset = key.offset;
3769 continue;
3770 }
3771
3772 /* If we logged this dir index item before, we can skip it. */
3773 if (key.offset <= inode->last_dir_index_offset)
3774 continue;
3775
3776 /*
3777 * We must make sure that when we log a directory entry, the
3778 * corresponding inode, after log replay, has a matching link
3779 * count. For example:
3780 *
3781 * touch foo
3782 * mkdir mydir
3783 * sync
3784 * ln foo mydir/bar
3785 * xfs_io -c "fsync" mydir
3786 * <crash>
3787 * <mount fs and log replay>
3788 *
3789 * Would result in a fsync log that when replayed, our file inode
3790 * would have a link count of 1, but we get two directory entries
3791 * pointing to the same inode. After removing one of the names,
3792 * it would not be possible to remove the other name, which
3793 * resulted always in stale file handle errors, and would not be
3794 * possible to rmdir the parent directory, since its i_size could
3795 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796 * resulting in -ENOTEMPTY errors.
3797 */
3798 if (!ctx->log_new_dentries) {
3799 struct btrfs_key di_key;
3800
3801 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3802 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3803 ctx->log_new_dentries = true;
3804 }
3805
3806 if (batch_size == 0)
3807 batch_start = i;
3808 batch_size++;
3809 }
3810
3811 if (batch_size > 0) {
3812 int ret;
3813
3814 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3815 batch_start, batch_size);
3816 if (ret < 0)
3817 return ret;
3818 }
3819
3820 return last_found ? 1 : 0;
3821}
3822
3823/*
3824 * log all the items included in the current transaction for a given
3825 * directory. This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3827 */
3828static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3829 struct btrfs_inode *inode,
3830 struct btrfs_path *path,
3831 struct btrfs_path *dst_path,
3832 struct btrfs_log_ctx *ctx,
3833 u64 min_offset, u64 *last_offset_ret)
3834{
3835 struct btrfs_key min_key;
3836 struct btrfs_root *root = inode->root;
3837 struct btrfs_root *log = root->log_root;
3838 int ret;
3839 u64 last_old_dentry_offset = min_offset - 1;
3840 u64 last_offset = (u64)-1;
3841 u64 ino = btrfs_ino(inode);
3842
3843 min_key.objectid = ino;
3844 min_key.type = BTRFS_DIR_INDEX_KEY;
3845 min_key.offset = min_offset;
3846
3847 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3848
3849 /*
3850 * we didn't find anything from this transaction, see if there
3851 * is anything at all
3852 */
3853 if (ret != 0 || min_key.objectid != ino ||
3854 min_key.type != BTRFS_DIR_INDEX_KEY) {
3855 min_key.objectid = ino;
3856 min_key.type = BTRFS_DIR_INDEX_KEY;
3857 min_key.offset = (u64)-1;
3858 btrfs_release_path(path);
3859 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3860 if (ret < 0) {
3861 btrfs_release_path(path);
3862 return ret;
3863 }
3864 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865
3866 /* if ret == 0 there are items for this type,
3867 * create a range to tell us the last key of this type.
3868 * otherwise, there are no items in this directory after
3869 * *min_offset, and we create a range to indicate that.
3870 */
3871 if (ret == 0) {
3872 struct btrfs_key tmp;
3873
3874 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875 path->slots[0]);
3876 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877 last_old_dentry_offset = tmp.offset;
3878 } else if (ret > 0) {
3879 ret = 0;
3880 }
3881
3882 goto done;
3883 }
3884
3885 /* go backward to find any previous key */
3886 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3887 if (ret == 0) {
3888 struct btrfs_key tmp;
3889
3890 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3891 /*
3892 * The dir index key before the first one we found that needs to
3893 * be logged might be in a previous leaf, and there might be a
3894 * gap between these keys, meaning that we had deletions that
3895 * happened. So the key range item we log (key type
3896 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897 * previous key's offset plus 1, so that those deletes are replayed.
3898 */
3899 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900 last_old_dentry_offset = tmp.offset;
3901 } else if (ret < 0) {
3902 goto done;
3903 }
3904
3905 btrfs_release_path(path);
3906
3907 /*
3908 * Find the first key from this transaction again or the one we were at
3909 * in the loop below in case we had to reschedule. We may be logging the
3910 * directory without holding its VFS lock, which happen when logging new
3911 * dentries (through log_new_dir_dentries()) or in some cases when we
3912 * need to log the parent directory of an inode. This means a dir index
3913 * key might be deleted from the inode's root, and therefore we may not
3914 * find it anymore. If we can't find it, just move to the next key. We
3915 * can not bail out and ignore, because if we do that we will simply
3916 * not log dir index keys that come after the one that was just deleted
3917 * and we can end up logging a dir index range that ends at (u64)-1
3918 * (@last_offset is initialized to that), resulting in removing dir
3919 * entries we should not remove at log replay time.
3920 */
3921search:
3922 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3923 if (ret > 0) {
3924 ret = btrfs_next_item(root, path);
3925 if (ret > 0) {
3926 /* There are no more keys in the inode's root. */
3927 ret = 0;
3928 goto done;
3929 }
3930 }
3931 if (ret < 0)
3932 goto done;
3933
3934 /*
3935 * we have a block from this transaction, log every item in it
3936 * from our directory
3937 */
3938 while (1) {
3939 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3940 &last_old_dentry_offset);
3941 if (ret != 0) {
3942 if (ret > 0)
3943 ret = 0;
3944 goto done;
3945 }
3946 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3947
3948 /*
3949 * look ahead to the next item and see if it is also
3950 * from this directory and from this transaction
3951 */
3952 ret = btrfs_next_leaf(root, path);
3953 if (ret) {
3954 if (ret == 1) {
3955 last_offset = (u64)-1;
3956 ret = 0;
3957 }
3958 goto done;
3959 }
3960 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3961 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3962 last_offset = (u64)-1;
3963 goto done;
3964 }
3965 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3966 /*
3967 * The next leaf was not changed in the current transaction
3968 * and has at least one dir index key.
3969 * We check for the next key because there might have been
3970 * one or more deletions between the last key we logged and
3971 * that next key. So the key range item we log (key type
3972 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973 * offset minus 1, so that those deletes are replayed.
3974 */
3975 last_offset = min_key.offset - 1;
3976 goto done;
3977 }
3978 if (need_resched()) {
3979 btrfs_release_path(path);
3980 cond_resched();
3981 goto search;
3982 }
3983 }
3984done:
3985 btrfs_release_path(path);
3986 btrfs_release_path(dst_path);
3987
3988 if (ret == 0) {
3989 *last_offset_ret = last_offset;
3990 /*
3991 * In case the leaf was changed in the current transaction but
3992 * all its dir items are from a past transaction, the last item
3993 * in the leaf is a dir item and there's no gap between that last
3994 * dir item and the first one on the next leaf (which did not
3995 * change in the current transaction), then we don't need to log
3996 * a range, last_old_dentry_offset is == to last_offset.
3997 */
3998 ASSERT(last_old_dentry_offset <= last_offset);
3999 if (last_old_dentry_offset < last_offset)
4000 ret = insert_dir_log_key(trans, log, path, ino,
4001 last_old_dentry_offset + 1,
4002 last_offset);
4003 }
4004
4005 return ret;
4006}
4007
4008/*
4009 * If the inode was logged before and it was evicted, then its
4010 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011 * key offset. If that's the case, search for it and update the inode. This
4012 * is to avoid lookups in the log tree every time we try to insert a dir index
4013 * key from a leaf changed in the current transaction, and to allow us to always
4014 * do batch insertions of dir index keys.
4015 */
4016static int update_last_dir_index_offset(struct btrfs_inode *inode,
4017 struct btrfs_path *path,
4018 const struct btrfs_log_ctx *ctx)
4019{
4020 const u64 ino = btrfs_ino(inode);
4021 struct btrfs_key key;
4022 int ret;
4023
4024 lockdep_assert_held(&inode->log_mutex);
4025
4026 if (inode->last_dir_index_offset != (u64)-1)
4027 return 0;
4028
4029 if (!ctx->logged_before) {
4030 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4031 return 0;
4032 }
4033
4034 key.objectid = ino;
4035 key.type = BTRFS_DIR_INDEX_KEY;
4036 key.offset = (u64)-1;
4037
4038 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4039 /*
4040 * An error happened or we actually have an index key with an offset
4041 * value of (u64)-1. Bail out, we're done.
4042 */
4043 if (ret <= 0)
4044 goto out;
4045
4046 ret = 0;
4047 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4048
4049 /*
4050 * No dir index items, bail out and leave last_dir_index_offset with
4051 * the value right before the first valid index value.
4052 */
4053 if (path->slots[0] == 0)
4054 goto out;
4055
4056 /*
4057 * btrfs_search_slot() left us at one slot beyond the slot with the last
4058 * index key, or beyond the last key of the directory that is not an
4059 * index key. If we have an index key before, set last_dir_index_offset
4060 * to its offset value, otherwise leave it with a value right before the
4061 * first valid index value, as it means we have an empty directory.
4062 */
4063 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4064 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4065 inode->last_dir_index_offset = key.offset;
4066
4067out:
4068 btrfs_release_path(path);
4069
4070 return ret;
4071}
4072
4073/*
4074 * logging directories is very similar to logging inodes, We find all the items
4075 * from the current transaction and write them to the log.
4076 *
4077 * The recovery code scans the directory in the subvolume, and if it finds a
4078 * key in the range logged that is not present in the log tree, then it means
4079 * that dir entry was unlinked during the transaction.
4080 *
4081 * In order for that scan to work, we must include one key smaller than
4082 * the smallest logged by this transaction and one key larger than the largest
4083 * key logged by this transaction.
4084 */
4085static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4086 struct btrfs_inode *inode,
4087 struct btrfs_path *path,
4088 struct btrfs_path *dst_path,
4089 struct btrfs_log_ctx *ctx)
4090{
4091 u64 min_key;
4092 u64 max_key;
4093 int ret;
4094
4095 ret = update_last_dir_index_offset(inode, path, ctx);
4096 if (ret)
4097 return ret;
4098
4099 min_key = BTRFS_DIR_START_INDEX;
4100 max_key = 0;
4101
4102 while (1) {
4103 ret = log_dir_items(trans, inode, path, dst_path,
4104 ctx, min_key, &max_key);
4105 if (ret)
4106 return ret;
4107 if (max_key == (u64)-1)
4108 break;
4109 min_key = max_key + 1;
4110 }
4111
4112 return 0;
4113}
4114
4115/*
4116 * a helper function to drop items from the log before we relog an
4117 * inode. max_key_type indicates the highest item type to remove.
4118 * This cannot be run for file data extents because it does not
4119 * free the extents they point to.
4120 */
4121static int drop_inode_items(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *log,
4123 struct btrfs_path *path,
4124 struct btrfs_inode *inode,
4125 int max_key_type)
4126{
4127 int ret;
4128 struct btrfs_key key;
4129 struct btrfs_key found_key;
4130 int start_slot;
4131
4132 key.objectid = btrfs_ino(inode);
4133 key.type = max_key_type;
4134 key.offset = (u64)-1;
4135
4136 while (1) {
4137 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4138 if (ret < 0) {
4139 break;
4140 } else if (ret > 0) {
4141 if (path->slots[0] == 0)
4142 break;
4143 path->slots[0]--;
4144 }
4145
4146 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4147 path->slots[0]);
4148
4149 if (found_key.objectid != key.objectid)
4150 break;
4151
4152 found_key.offset = 0;
4153 found_key.type = 0;
4154 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4155 if (ret < 0)
4156 break;
4157
4158 ret = btrfs_del_items(trans, log, path, start_slot,
4159 path->slots[0] - start_slot + 1);
4160 /*
4161 * If start slot isn't 0 then we don't need to re-search, we've
4162 * found the last guy with the objectid in this tree.
4163 */
4164 if (ret || start_slot != 0)
4165 break;
4166 btrfs_release_path(path);
4167 }
4168 btrfs_release_path(path);
4169 if (ret > 0)
4170 ret = 0;
4171 return ret;
4172}
4173
4174static int truncate_inode_items(struct btrfs_trans_handle *trans,
4175 struct btrfs_root *log_root,
4176 struct btrfs_inode *inode,
4177 u64 new_size, u32 min_type)
4178{
4179 struct btrfs_truncate_control control = {
4180 .new_size = new_size,
4181 .ino = btrfs_ino(inode),
4182 .min_type = min_type,
4183 .skip_ref_updates = true,
4184 };
4185
4186 return btrfs_truncate_inode_items(trans, log_root, &control);
4187}
4188
4189static void fill_inode_item(struct btrfs_trans_handle *trans,
4190 struct extent_buffer *leaf,
4191 struct btrfs_inode_item *item,
4192 struct inode *inode, int log_inode_only,
4193 u64 logged_isize)
4194{
4195 struct btrfs_map_token token;
4196 u64 flags;
4197
4198 btrfs_init_map_token(&token, leaf);
4199
4200 if (log_inode_only) {
4201 /* set the generation to zero so the recover code
4202 * can tell the difference between an logging
4203 * just to say 'this inode exists' and a logging
4204 * to say 'update this inode with these values'
4205 */
4206 btrfs_set_token_inode_generation(&token, item, 0);
4207 btrfs_set_token_inode_size(&token, item, logged_isize);
4208 } else {
4209 btrfs_set_token_inode_generation(&token, item,
4210 BTRFS_I(inode)->generation);
4211 btrfs_set_token_inode_size(&token, item, inode->i_size);
4212 }
4213
4214 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4215 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4216 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4217 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4218
4219 btrfs_set_token_timespec_sec(&token, &item->atime,
4220 inode_get_atime_sec(inode));
4221 btrfs_set_token_timespec_nsec(&token, &item->atime,
4222 inode_get_atime_nsec(inode));
4223
4224 btrfs_set_token_timespec_sec(&token, &item->mtime,
4225 inode_get_mtime_sec(inode));
4226 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4227 inode_get_mtime_nsec(inode));
4228
4229 btrfs_set_token_timespec_sec(&token, &item->ctime,
4230 inode_get_ctime_sec(inode));
4231 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4232 inode_get_ctime_nsec(inode));
4233
4234 /*
4235 * We do not need to set the nbytes field, in fact during a fast fsync
4236 * its value may not even be correct, since a fast fsync does not wait
4237 * for ordered extent completion, which is where we update nbytes, it
4238 * only waits for writeback to complete. During log replay as we find
4239 * file extent items and replay them, we adjust the nbytes field of the
4240 * inode item in subvolume tree as needed (see overwrite_item()).
4241 */
4242
4243 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4244 btrfs_set_token_inode_transid(&token, item, trans->transid);
4245 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4246 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4247 BTRFS_I(inode)->ro_flags);
4248 btrfs_set_token_inode_flags(&token, item, flags);
4249 btrfs_set_token_inode_block_group(&token, item, 0);
4250}
4251
4252static int log_inode_item(struct btrfs_trans_handle *trans,
4253 struct btrfs_root *log, struct btrfs_path *path,
4254 struct btrfs_inode *inode, bool inode_item_dropped)
4255{
4256 struct btrfs_inode_item *inode_item;
4257 struct btrfs_key key;
4258 int ret;
4259
4260 btrfs_get_inode_key(inode, &key);
4261 /*
4262 * If we are doing a fast fsync and the inode was logged before in the
4263 * current transaction, then we know the inode was previously logged and
4264 * it exists in the log tree. For performance reasons, in this case use
4265 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267 * contention in case there are concurrent fsyncs for other inodes of the
4268 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269 * already exists can also result in unnecessarily splitting a leaf.
4270 */
4271 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4272 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4273 ASSERT(ret <= 0);
4274 if (ret > 0)
4275 ret = -ENOENT;
4276 } else {
4277 /*
4278 * This means it is the first fsync in the current transaction,
4279 * so the inode item is not in the log and we need to insert it.
4280 * We can never get -EEXIST because we are only called for a fast
4281 * fsync and in case an inode eviction happens after the inode was
4282 * logged before in the current transaction, when we load again
4283 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284 * flags and set ->logged_trans to 0.
4285 */
4286 ret = btrfs_insert_empty_item(trans, log, path, &key,
4287 sizeof(*inode_item));
4288 ASSERT(ret != -EEXIST);
4289 }
4290 if (ret)
4291 return ret;
4292 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4293 struct btrfs_inode_item);
4294 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4295 0, 0);
4296 btrfs_release_path(path);
4297 return 0;
4298}
4299
4300static int log_csums(struct btrfs_trans_handle *trans,
4301 struct btrfs_inode *inode,
4302 struct btrfs_root *log_root,
4303 struct btrfs_ordered_sum *sums)
4304{
4305 const u64 lock_end = sums->logical + sums->len - 1;
4306 struct extent_state *cached_state = NULL;
4307 int ret;
4308
4309 /*
4310 * If this inode was not used for reflink operations in the current
4311 * transaction with new extents, then do the fast path, no need to
4312 * worry about logging checksum items with overlapping ranges.
4313 */
4314 if (inode->last_reflink_trans < trans->transid)
4315 return btrfs_csum_file_blocks(trans, log_root, sums);
4316
4317 /*
4318 * Serialize logging for checksums. This is to avoid racing with the
4319 * same checksum being logged by another task that is logging another
4320 * file which happens to refer to the same extent as well. Such races
4321 * can leave checksum items in the log with overlapping ranges.
4322 */
4323 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4324 &cached_state);
4325 if (ret)
4326 return ret;
4327 /*
4328 * Due to extent cloning, we might have logged a csum item that covers a
4329 * subrange of a cloned extent, and later we can end up logging a csum
4330 * item for a larger subrange of the same extent or the entire range.
4331 * This would leave csum items in the log tree that cover the same range
4332 * and break the searches for checksums in the log tree, resulting in
4333 * some checksums missing in the fs/subvolume tree. So just delete (or
4334 * trim and adjust) any existing csum items in the log for this range.
4335 */
4336 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4337 if (!ret)
4338 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4339
4340 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4341 &cached_state);
4342
4343 return ret;
4344}
4345
4346static noinline int copy_items(struct btrfs_trans_handle *trans,
4347 struct btrfs_inode *inode,
4348 struct btrfs_path *dst_path,
4349 struct btrfs_path *src_path,
4350 int start_slot, int nr, int inode_only,
4351 u64 logged_isize, struct btrfs_log_ctx *ctx)
4352{
4353 struct btrfs_root *log = inode->root->log_root;
4354 struct btrfs_file_extent_item *extent;
4355 struct extent_buffer *src;
4356 int ret;
4357 struct btrfs_key *ins_keys;
4358 u32 *ins_sizes;
4359 struct btrfs_item_batch batch;
4360 char *ins_data;
4361 int dst_index;
4362 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4363 const u64 i_size = i_size_read(&inode->vfs_inode);
4364
4365 /*
4366 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367 * use the clone. This is because otherwise we would be changing the log
4368 * tree, to insert items from the subvolume tree or insert csum items,
4369 * while holding a read lock on a leaf from the subvolume tree, which
4370 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4371 *
4372 * 1) Modifying the log tree triggers an extent buffer allocation while
4373 * holding a write lock on a parent extent buffer from the log tree.
4374 * Allocating the pages for an extent buffer, or the extent buffer
4375 * struct, can trigger inode eviction and finally the inode eviction
4376 * will trigger a release/remove of a delayed node, which requires
4377 * taking the delayed node's mutex;
4378 *
4379 * 2) Allocating a metadata extent for a log tree can trigger the async
4380 * reclaim thread and make us wait for it to release enough space and
4381 * unblock our reservation ticket. The reclaim thread can start
4382 * flushing delayed items, and that in turn results in the need to
4383 * lock delayed node mutexes and in the need to write lock extent
4384 * buffers of a subvolume tree - all this while holding a write lock
4385 * on the parent extent buffer in the log tree.
4386 *
4387 * So one task in scenario 1) running in parallel with another task in
4388 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389 * node mutex while having a read lock on a leaf from the subvolume,
4390 * while the other is holding the delayed node's mutex and wants to
4391 * write lock the same subvolume leaf for flushing delayed items.
4392 */
4393 ret = clone_leaf(src_path, ctx);
4394 if (ret < 0)
4395 return ret;
4396
4397 src = src_path->nodes[0];
4398
4399 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4400 nr * sizeof(u32), GFP_NOFS);
4401 if (!ins_data)
4402 return -ENOMEM;
4403
4404 ins_sizes = (u32 *)ins_data;
4405 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4406 batch.keys = ins_keys;
4407 batch.data_sizes = ins_sizes;
4408 batch.total_data_size = 0;
4409 batch.nr = 0;
4410
4411 dst_index = 0;
4412 for (int i = 0; i < nr; i++) {
4413 const int src_slot = start_slot + i;
4414 struct btrfs_root *csum_root;
4415 struct btrfs_ordered_sum *sums;
4416 struct btrfs_ordered_sum *sums_next;
4417 LIST_HEAD(ordered_sums);
4418 u64 disk_bytenr;
4419 u64 disk_num_bytes;
4420 u64 extent_offset;
4421 u64 extent_num_bytes;
4422 bool is_old_extent;
4423
4424 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4425
4426 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4427 goto add_to_batch;
4428
4429 extent = btrfs_item_ptr(src, src_slot,
4430 struct btrfs_file_extent_item);
4431
4432 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4433 trans->transid);
4434
4435 /*
4436 * Don't copy extents from past generations. That would make us
4437 * log a lot more metadata for common cases like doing only a
4438 * few random writes into a file and then fsync it for the first
4439 * time or after the full sync flag is set on the inode. We can
4440 * get leaves full of extent items, most of which are from past
4441 * generations, so we can skip them - as long as the inode has
4442 * not been the target of a reflink operation in this transaction,
4443 * as in that case it might have had file extent items with old
4444 * generations copied into it. We also must always log prealloc
4445 * extents that start at or beyond eof, otherwise we would lose
4446 * them on log replay.
4447 */
4448 if (is_old_extent &&
4449 ins_keys[dst_index].offset < i_size &&
4450 inode->last_reflink_trans < trans->transid)
4451 continue;
4452
4453 if (skip_csum)
4454 goto add_to_batch;
4455
4456 /* Only regular extents have checksums. */
4457 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4458 goto add_to_batch;
4459
4460 /*
4461 * If it's an extent created in a past transaction, then its
4462 * checksums are already accessible from the committed csum tree,
4463 * no need to log them.
4464 */
4465 if (is_old_extent)
4466 goto add_to_batch;
4467
4468 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4469 /* If it's an explicit hole, there are no checksums. */
4470 if (disk_bytenr == 0)
4471 goto add_to_batch;
4472
4473 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4474
4475 if (btrfs_file_extent_compression(src, extent)) {
4476 extent_offset = 0;
4477 extent_num_bytes = disk_num_bytes;
4478 } else {
4479 extent_offset = btrfs_file_extent_offset(src, extent);
4480 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4481 }
4482
4483 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4484 disk_bytenr += extent_offset;
4485 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4486 disk_bytenr + extent_num_bytes - 1,
4487 &ordered_sums, false);
4488 if (ret < 0)
4489 goto out;
4490 ret = 0;
4491
4492 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4493 if (!ret)
4494 ret = log_csums(trans, inode, log, sums);
4495 list_del(&sums->list);
4496 kfree(sums);
4497 }
4498 if (ret)
4499 goto out;
4500
4501add_to_batch:
4502 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4503 batch.total_data_size += ins_sizes[dst_index];
4504 batch.nr++;
4505 dst_index++;
4506 }
4507
4508 /*
4509 * We have a leaf full of old extent items that don't need to be logged,
4510 * so we don't need to do anything.
4511 */
4512 if (batch.nr == 0)
4513 goto out;
4514
4515 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4516 if (ret)
4517 goto out;
4518
4519 dst_index = 0;
4520 for (int i = 0; i < nr; i++) {
4521 const int src_slot = start_slot + i;
4522 const int dst_slot = dst_path->slots[0] + dst_index;
4523 struct btrfs_key key;
4524 unsigned long src_offset;
4525 unsigned long dst_offset;
4526
4527 /*
4528 * We're done, all the remaining items in the source leaf
4529 * correspond to old file extent items.
4530 */
4531 if (dst_index >= batch.nr)
4532 break;
4533
4534 btrfs_item_key_to_cpu(src, &key, src_slot);
4535
4536 if (key.type != BTRFS_EXTENT_DATA_KEY)
4537 goto copy_item;
4538
4539 extent = btrfs_item_ptr(src, src_slot,
4540 struct btrfs_file_extent_item);
4541
4542 /* See the comment in the previous loop, same logic. */
4543 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4544 key.offset < i_size &&
4545 inode->last_reflink_trans < trans->transid)
4546 continue;
4547
4548copy_item:
4549 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4550 src_offset = btrfs_item_ptr_offset(src, src_slot);
4551
4552 if (key.type == BTRFS_INODE_ITEM_KEY) {
4553 struct btrfs_inode_item *inode_item;
4554
4555 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4556 struct btrfs_inode_item);
4557 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4558 &inode->vfs_inode,
4559 inode_only == LOG_INODE_EXISTS,
4560 logged_isize);
4561 } else {
4562 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4563 src_offset, ins_sizes[dst_index]);
4564 }
4565
4566 dst_index++;
4567 }
4568
4569 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4570 btrfs_release_path(dst_path);
4571out:
4572 kfree(ins_data);
4573
4574 return ret;
4575}
4576
4577static int extent_cmp(void *priv, const struct list_head *a,
4578 const struct list_head *b)
4579{
4580 const struct extent_map *em1, *em2;
4581
4582 em1 = list_entry(a, struct extent_map, list);
4583 em2 = list_entry(b, struct extent_map, list);
4584
4585 if (em1->start < em2->start)
4586 return -1;
4587 else if (em1->start > em2->start)
4588 return 1;
4589 return 0;
4590}
4591
4592static int log_extent_csums(struct btrfs_trans_handle *trans,
4593 struct btrfs_inode *inode,
4594 struct btrfs_root *log_root,
4595 const struct extent_map *em,
4596 struct btrfs_log_ctx *ctx)
4597{
4598 struct btrfs_ordered_extent *ordered;
4599 struct btrfs_root *csum_root;
4600 u64 block_start;
4601 u64 csum_offset;
4602 u64 csum_len;
4603 u64 mod_start = em->start;
4604 u64 mod_len = em->len;
4605 LIST_HEAD(ordered_sums);
4606 int ret = 0;
4607
4608 if (inode->flags & BTRFS_INODE_NODATASUM ||
4609 (em->flags & EXTENT_FLAG_PREALLOC) ||
4610 em->disk_bytenr == EXTENT_MAP_HOLE)
4611 return 0;
4612
4613 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4614 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4615 const u64 mod_end = mod_start + mod_len;
4616 struct btrfs_ordered_sum *sums;
4617
4618 if (mod_len == 0)
4619 break;
4620
4621 if (ordered_end <= mod_start)
4622 continue;
4623 if (mod_end <= ordered->file_offset)
4624 break;
4625
4626 /*
4627 * We are going to copy all the csums on this ordered extent, so
4628 * go ahead and adjust mod_start and mod_len in case this ordered
4629 * extent has already been logged.
4630 */
4631 if (ordered->file_offset > mod_start) {
4632 if (ordered_end >= mod_end)
4633 mod_len = ordered->file_offset - mod_start;
4634 /*
4635 * If we have this case
4636 *
4637 * |--------- logged extent ---------|
4638 * |----- ordered extent ----|
4639 *
4640 * Just don't mess with mod_start and mod_len, we'll
4641 * just end up logging more csums than we need and it
4642 * will be ok.
4643 */
4644 } else {
4645 if (ordered_end < mod_end) {
4646 mod_len = mod_end - ordered_end;
4647 mod_start = ordered_end;
4648 } else {
4649 mod_len = 0;
4650 }
4651 }
4652
4653 /*
4654 * To keep us from looping for the above case of an ordered
4655 * extent that falls inside of the logged extent.
4656 */
4657 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4658 continue;
4659
4660 list_for_each_entry(sums, &ordered->list, list) {
4661 ret = log_csums(trans, inode, log_root, sums);
4662 if (ret)
4663 return ret;
4664 }
4665 }
4666
4667 /* We're done, found all csums in the ordered extents. */
4668 if (mod_len == 0)
4669 return 0;
4670
4671 /* If we're compressed we have to save the entire range of csums. */
4672 if (extent_map_is_compressed(em)) {
4673 csum_offset = 0;
4674 csum_len = em->disk_num_bytes;
4675 } else {
4676 csum_offset = mod_start - em->start;
4677 csum_len = mod_len;
4678 }
4679
4680 /* block start is already adjusted for the file extent offset. */
4681 block_start = extent_map_block_start(em);
4682 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4683 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4684 block_start + csum_offset + csum_len - 1,
4685 &ordered_sums, false);
4686 if (ret < 0)
4687 return ret;
4688 ret = 0;
4689
4690 while (!list_empty(&ordered_sums)) {
4691 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4692 struct btrfs_ordered_sum,
4693 list);
4694 if (!ret)
4695 ret = log_csums(trans, inode, log_root, sums);
4696 list_del(&sums->list);
4697 kfree(sums);
4698 }
4699
4700 return ret;
4701}
4702
4703static int log_one_extent(struct btrfs_trans_handle *trans,
4704 struct btrfs_inode *inode,
4705 const struct extent_map *em,
4706 struct btrfs_path *path,
4707 struct btrfs_log_ctx *ctx)
4708{
4709 struct btrfs_drop_extents_args drop_args = { 0 };
4710 struct btrfs_root *log = inode->root->log_root;
4711 struct btrfs_file_extent_item fi = { 0 };
4712 struct extent_buffer *leaf;
4713 struct btrfs_key key;
4714 enum btrfs_compression_type compress_type;
4715 u64 extent_offset = em->offset;
4716 u64 block_start = extent_map_block_start(em);
4717 u64 block_len;
4718 int ret;
4719
4720 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4721 if (em->flags & EXTENT_FLAG_PREALLOC)
4722 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4723 else
4724 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4725
4726 block_len = em->disk_num_bytes;
4727 compress_type = extent_map_compression(em);
4728 if (compress_type != BTRFS_COMPRESS_NONE) {
4729 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4730 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4732 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4733 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4734 }
4735
4736 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4737 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4738 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4739 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4740
4741 ret = log_extent_csums(trans, inode, log, em, ctx);
4742 if (ret)
4743 return ret;
4744
4745 /*
4746 * If this is the first time we are logging the inode in the current
4747 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748 * because it does a deletion search, which always acquires write locks
4749 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750 * but also adds significant contention in a log tree, since log trees
4751 * are small, with a root at level 2 or 3 at most, due to their short
4752 * life span.
4753 */
4754 if (ctx->logged_before) {
4755 drop_args.path = path;
4756 drop_args.start = em->start;
4757 drop_args.end = em->start + em->len;
4758 drop_args.replace_extent = true;
4759 drop_args.extent_item_size = sizeof(fi);
4760 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4761 if (ret)
4762 return ret;
4763 }
4764
4765 if (!drop_args.extent_inserted) {
4766 key.objectid = btrfs_ino(inode);
4767 key.type = BTRFS_EXTENT_DATA_KEY;
4768 key.offset = em->start;
4769
4770 ret = btrfs_insert_empty_item(trans, log, path, &key,
4771 sizeof(fi));
4772 if (ret)
4773 return ret;
4774 }
4775 leaf = path->nodes[0];
4776 write_extent_buffer(leaf, &fi,
4777 btrfs_item_ptr_offset(leaf, path->slots[0]),
4778 sizeof(fi));
4779 btrfs_mark_buffer_dirty(trans, leaf);
4780
4781 btrfs_release_path(path);
4782
4783 return ret;
4784}
4785
4786/*
4787 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788 * lose them after doing a full/fast fsync and replaying the log. We scan the
4789 * subvolume's root instead of iterating the inode's extent map tree because
4790 * otherwise we can log incorrect extent items based on extent map conversion.
4791 * That can happen due to the fact that extent maps are merged when they
4792 * are not in the extent map tree's list of modified extents.
4793 */
4794static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4795 struct btrfs_inode *inode,
4796 struct btrfs_path *path,
4797 struct btrfs_log_ctx *ctx)
4798{
4799 struct btrfs_root *root = inode->root;
4800 struct btrfs_key key;
4801 const u64 i_size = i_size_read(&inode->vfs_inode);
4802 const u64 ino = btrfs_ino(inode);
4803 struct btrfs_path *dst_path = NULL;
4804 bool dropped_extents = false;
4805 u64 truncate_offset = i_size;
4806 struct extent_buffer *leaf;
4807 int slot;
4808 int ins_nr = 0;
4809 int start_slot = 0;
4810 int ret;
4811
4812 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4813 return 0;
4814
4815 key.objectid = ino;
4816 key.type = BTRFS_EXTENT_DATA_KEY;
4817 key.offset = i_size;
4818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4819 if (ret < 0)
4820 goto out;
4821
4822 /*
4823 * We must check if there is a prealloc extent that starts before the
4824 * i_size and crosses the i_size boundary. This is to ensure later we
4825 * truncate down to the end of that extent and not to the i_size, as
4826 * otherwise we end up losing part of the prealloc extent after a log
4827 * replay and with an implicit hole if there is another prealloc extent
4828 * that starts at an offset beyond i_size.
4829 */
4830 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4831 if (ret < 0)
4832 goto out;
4833
4834 if (ret == 0) {
4835 struct btrfs_file_extent_item *ei;
4836
4837 leaf = path->nodes[0];
4838 slot = path->slots[0];
4839 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4840
4841 if (btrfs_file_extent_type(leaf, ei) ==
4842 BTRFS_FILE_EXTENT_PREALLOC) {
4843 u64 extent_end;
4844
4845 btrfs_item_key_to_cpu(leaf, &key, slot);
4846 extent_end = key.offset +
4847 btrfs_file_extent_num_bytes(leaf, ei);
4848
4849 if (extent_end > i_size)
4850 truncate_offset = extent_end;
4851 }
4852 } else {
4853 ret = 0;
4854 }
4855
4856 while (true) {
4857 leaf = path->nodes[0];
4858 slot = path->slots[0];
4859
4860 if (slot >= btrfs_header_nritems(leaf)) {
4861 if (ins_nr > 0) {
4862 ret = copy_items(trans, inode, dst_path, path,
4863 start_slot, ins_nr, 1, 0, ctx);
4864 if (ret < 0)
4865 goto out;
4866 ins_nr = 0;
4867 }
4868 ret = btrfs_next_leaf(root, path);
4869 if (ret < 0)
4870 goto out;
4871 if (ret > 0) {
4872 ret = 0;
4873 break;
4874 }
4875 continue;
4876 }
4877
4878 btrfs_item_key_to_cpu(leaf, &key, slot);
4879 if (key.objectid > ino)
4880 break;
4881 if (WARN_ON_ONCE(key.objectid < ino) ||
4882 key.type < BTRFS_EXTENT_DATA_KEY ||
4883 key.offset < i_size) {
4884 path->slots[0]++;
4885 continue;
4886 }
4887 /*
4888 * Avoid overlapping items in the log tree. The first time we
4889 * get here, get rid of everything from a past fsync. After
4890 * that, if the current extent starts before the end of the last
4891 * extent we copied, truncate the last one. This can happen if
4892 * an ordered extent completion modifies the subvolume tree
4893 * while btrfs_next_leaf() has the tree unlocked.
4894 */
4895 if (!dropped_extents || key.offset < truncate_offset) {
4896 ret = truncate_inode_items(trans, root->log_root, inode,
4897 min(key.offset, truncate_offset),
4898 BTRFS_EXTENT_DATA_KEY);
4899 if (ret)
4900 goto out;
4901 dropped_extents = true;
4902 }
4903 truncate_offset = btrfs_file_extent_end(path);
4904 if (ins_nr == 0)
4905 start_slot = slot;
4906 ins_nr++;
4907 path->slots[0]++;
4908 if (!dst_path) {
4909 dst_path = btrfs_alloc_path();
4910 if (!dst_path) {
4911 ret = -ENOMEM;
4912 goto out;
4913 }
4914 }
4915 }
4916 if (ins_nr > 0)
4917 ret = copy_items(trans, inode, dst_path, path,
4918 start_slot, ins_nr, 1, 0, ctx);
4919out:
4920 btrfs_release_path(path);
4921 btrfs_free_path(dst_path);
4922 return ret;
4923}
4924
4925static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4926 struct btrfs_inode *inode,
4927 struct btrfs_path *path,
4928 struct btrfs_log_ctx *ctx)
4929{
4930 struct btrfs_ordered_extent *ordered;
4931 struct btrfs_ordered_extent *tmp;
4932 struct extent_map *em, *n;
4933 LIST_HEAD(extents);
4934 struct extent_map_tree *tree = &inode->extent_tree;
4935 int ret = 0;
4936 int num = 0;
4937
4938 write_lock(&tree->lock);
4939
4940 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4941 list_del_init(&em->list);
4942 /*
4943 * Just an arbitrary number, this can be really CPU intensive
4944 * once we start getting a lot of extents, and really once we
4945 * have a bunch of extents we just want to commit since it will
4946 * be faster.
4947 */
4948 if (++num > 32768) {
4949 list_del_init(&tree->modified_extents);
4950 ret = -EFBIG;
4951 goto process;
4952 }
4953
4954 if (em->generation < trans->transid)
4955 continue;
4956
4957 /* We log prealloc extents beyond eof later. */
4958 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4959 em->start >= i_size_read(&inode->vfs_inode))
4960 continue;
4961
4962 /* Need a ref to keep it from getting evicted from cache */
4963 refcount_inc(&em->refs);
4964 em->flags |= EXTENT_FLAG_LOGGING;
4965 list_add_tail(&em->list, &extents);
4966 num++;
4967 }
4968
4969 list_sort(NULL, &extents, extent_cmp);
4970process:
4971 while (!list_empty(&extents)) {
4972 em = list_entry(extents.next, struct extent_map, list);
4973
4974 list_del_init(&em->list);
4975
4976 /*
4977 * If we had an error we just need to delete everybody from our
4978 * private list.
4979 */
4980 if (ret) {
4981 clear_em_logging(inode, em);
4982 free_extent_map(em);
4983 continue;
4984 }
4985
4986 write_unlock(&tree->lock);
4987
4988 ret = log_one_extent(trans, inode, em, path, ctx);
4989 write_lock(&tree->lock);
4990 clear_em_logging(inode, em);
4991 free_extent_map(em);
4992 }
4993 WARN_ON(!list_empty(&extents));
4994 write_unlock(&tree->lock);
4995
4996 if (!ret)
4997 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4998 if (ret)
4999 return ret;
5000
5001 /*
5002 * We have logged all extents successfully, now make sure the commit of
5003 * the current transaction waits for the ordered extents to complete
5004 * before it commits and wipes out the log trees, otherwise we would
5005 * lose data if an ordered extents completes after the transaction
5006 * commits and a power failure happens after the transaction commit.
5007 */
5008 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5009 list_del_init(&ordered->log_list);
5010 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5011
5012 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5013 spin_lock_irq(&inode->ordered_tree_lock);
5014 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5015 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5016 atomic_inc(&trans->transaction->pending_ordered);
5017 }
5018 spin_unlock_irq(&inode->ordered_tree_lock);
5019 }
5020 btrfs_put_ordered_extent(ordered);
5021 }
5022
5023 return 0;
5024}
5025
5026static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5027 struct btrfs_path *path, u64 *size_ret)
5028{
5029 struct btrfs_key key;
5030 int ret;
5031
5032 key.objectid = btrfs_ino(inode);
5033 key.type = BTRFS_INODE_ITEM_KEY;
5034 key.offset = 0;
5035
5036 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5037 if (ret < 0) {
5038 return ret;
5039 } else if (ret > 0) {
5040 *size_ret = 0;
5041 } else {
5042 struct btrfs_inode_item *item;
5043
5044 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5045 struct btrfs_inode_item);
5046 *size_ret = btrfs_inode_size(path->nodes[0], item);
5047 /*
5048 * If the in-memory inode's i_size is smaller then the inode
5049 * size stored in the btree, return the inode's i_size, so
5050 * that we get a correct inode size after replaying the log
5051 * when before a power failure we had a shrinking truncate
5052 * followed by addition of a new name (rename / new hard link).
5053 * Otherwise return the inode size from the btree, to avoid
5054 * data loss when replaying a log due to previously doing a
5055 * write that expands the inode's size and logging a new name
5056 * immediately after.
5057 */
5058 if (*size_ret > inode->vfs_inode.i_size)
5059 *size_ret = inode->vfs_inode.i_size;
5060 }
5061
5062 btrfs_release_path(path);
5063 return 0;
5064}
5065
5066/*
5067 * At the moment we always log all xattrs. This is to figure out at log replay
5068 * time which xattrs must have their deletion replayed. If a xattr is missing
5069 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070 * because if a xattr is deleted, the inode is fsynced and a power failure
5071 * happens, causing the log to be replayed the next time the fs is mounted,
5072 * we want the xattr to not exist anymore (same behaviour as other filesystems
5073 * with a journal, ext3/4, xfs, f2fs, etc).
5074 */
5075static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5076 struct btrfs_inode *inode,
5077 struct btrfs_path *path,
5078 struct btrfs_path *dst_path,
5079 struct btrfs_log_ctx *ctx)
5080{
5081 struct btrfs_root *root = inode->root;
5082 int ret;
5083 struct btrfs_key key;
5084 const u64 ino = btrfs_ino(inode);
5085 int ins_nr = 0;
5086 int start_slot = 0;
5087 bool found_xattrs = false;
5088
5089 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5090 return 0;
5091
5092 key.objectid = ino;
5093 key.type = BTRFS_XATTR_ITEM_KEY;
5094 key.offset = 0;
5095
5096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097 if (ret < 0)
5098 return ret;
5099
5100 while (true) {
5101 int slot = path->slots[0];
5102 struct extent_buffer *leaf = path->nodes[0];
5103 int nritems = btrfs_header_nritems(leaf);
5104
5105 if (slot >= nritems) {
5106 if (ins_nr > 0) {
5107 ret = copy_items(trans, inode, dst_path, path,
5108 start_slot, ins_nr, 1, 0, ctx);
5109 if (ret < 0)
5110 return ret;
5111 ins_nr = 0;
5112 }
5113 ret = btrfs_next_leaf(root, path);
5114 if (ret < 0)
5115 return ret;
5116 else if (ret > 0)
5117 break;
5118 continue;
5119 }
5120
5121 btrfs_item_key_to_cpu(leaf, &key, slot);
5122 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5123 break;
5124
5125 if (ins_nr == 0)
5126 start_slot = slot;
5127 ins_nr++;
5128 path->slots[0]++;
5129 found_xattrs = true;
5130 cond_resched();
5131 }
5132 if (ins_nr > 0) {
5133 ret = copy_items(trans, inode, dst_path, path,
5134 start_slot, ins_nr, 1, 0, ctx);
5135 if (ret < 0)
5136 return ret;
5137 }
5138
5139 if (!found_xattrs)
5140 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5141
5142 return 0;
5143}
5144
5145/*
5146 * When using the NO_HOLES feature if we punched a hole that causes the
5147 * deletion of entire leafs or all the extent items of the first leaf (the one
5148 * that contains the inode item and references) we may end up not processing
5149 * any extents, because there are no leafs with a generation matching the
5150 * current transaction that have extent items for our inode. So we need to find
5151 * if any holes exist and then log them. We also need to log holes after any
5152 * truncate operation that changes the inode's size.
5153 */
5154static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5155 struct btrfs_inode *inode,
5156 struct btrfs_path *path)
5157{
5158 struct btrfs_root *root = inode->root;
5159 struct btrfs_fs_info *fs_info = root->fs_info;
5160 struct btrfs_key key;
5161 const u64 ino = btrfs_ino(inode);
5162 const u64 i_size = i_size_read(&inode->vfs_inode);
5163 u64 prev_extent_end = 0;
5164 int ret;
5165
5166 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5167 return 0;
5168
5169 key.objectid = ino;
5170 key.type = BTRFS_EXTENT_DATA_KEY;
5171 key.offset = 0;
5172
5173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5174 if (ret < 0)
5175 return ret;
5176
5177 while (true) {
5178 struct extent_buffer *leaf = path->nodes[0];
5179
5180 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5181 ret = btrfs_next_leaf(root, path);
5182 if (ret < 0)
5183 return ret;
5184 if (ret > 0) {
5185 ret = 0;
5186 break;
5187 }
5188 leaf = path->nodes[0];
5189 }
5190
5191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5192 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5193 break;
5194
5195 /* We have a hole, log it. */
5196 if (prev_extent_end < key.offset) {
5197 const u64 hole_len = key.offset - prev_extent_end;
5198
5199 /*
5200 * Release the path to avoid deadlocks with other code
5201 * paths that search the root while holding locks on
5202 * leafs from the log root.
5203 */
5204 btrfs_release_path(path);
5205 ret = btrfs_insert_hole_extent(trans, root->log_root,
5206 ino, prev_extent_end,
5207 hole_len);
5208 if (ret < 0)
5209 return ret;
5210
5211 /*
5212 * Search for the same key again in the root. Since it's
5213 * an extent item and we are holding the inode lock, the
5214 * key must still exist. If it doesn't just emit warning
5215 * and return an error to fall back to a transaction
5216 * commit.
5217 */
5218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5219 if (ret < 0)
5220 return ret;
5221 if (WARN_ON(ret > 0))
5222 return -ENOENT;
5223 leaf = path->nodes[0];
5224 }
5225
5226 prev_extent_end = btrfs_file_extent_end(path);
5227 path->slots[0]++;
5228 cond_resched();
5229 }
5230
5231 if (prev_extent_end < i_size) {
5232 u64 hole_len;
5233
5234 btrfs_release_path(path);
5235 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5236 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5237 prev_extent_end, hole_len);
5238 if (ret < 0)
5239 return ret;
5240 }
5241
5242 return 0;
5243}
5244
5245/*
5246 * When we are logging a new inode X, check if it doesn't have a reference that
5247 * matches the reference from some other inode Y created in a past transaction
5248 * and that was renamed in the current transaction. If we don't do this, then at
5249 * log replay time we can lose inode Y (and all its files if it's a directory):
5250 *
5251 * mkdir /mnt/x
5252 * echo "hello world" > /mnt/x/foobar
5253 * sync
5254 * mv /mnt/x /mnt/y
5255 * mkdir /mnt/x # or touch /mnt/x
5256 * xfs_io -c fsync /mnt/x
5257 * <power fail>
5258 * mount fs, trigger log replay
5259 *
5260 * After the log replay procedure, we would lose the first directory and all its
5261 * files (file foobar).
5262 * For the case where inode Y is not a directory we simply end up losing it:
5263 *
5264 * echo "123" > /mnt/foo
5265 * sync
5266 * mv /mnt/foo /mnt/bar
5267 * echo "abc" > /mnt/foo
5268 * xfs_io -c fsync /mnt/foo
5269 * <power fail>
5270 *
5271 * We also need this for cases where a snapshot entry is replaced by some other
5272 * entry (file or directory) otherwise we end up with an unreplayable log due to
5273 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274 * if it were a regular entry:
5275 *
5276 * mkdir /mnt/x
5277 * btrfs subvolume snapshot /mnt /mnt/x/snap
5278 * btrfs subvolume delete /mnt/x/snap
5279 * rmdir /mnt/x
5280 * mkdir /mnt/x
5281 * fsync /mnt/x or fsync some new file inside it
5282 * <power fail>
5283 *
5284 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285 * the same transaction.
5286 */
5287static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5288 const int slot,
5289 const struct btrfs_key *key,
5290 struct btrfs_inode *inode,
5291 u64 *other_ino, u64 *other_parent)
5292{
5293 int ret;
5294 struct btrfs_path *search_path;
5295 char *name = NULL;
5296 u32 name_len = 0;
5297 u32 item_size = btrfs_item_size(eb, slot);
5298 u32 cur_offset = 0;
5299 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5300
5301 search_path = btrfs_alloc_path();
5302 if (!search_path)
5303 return -ENOMEM;
5304 search_path->search_commit_root = 1;
5305 search_path->skip_locking = 1;
5306
5307 while (cur_offset < item_size) {
5308 u64 parent;
5309 u32 this_name_len;
5310 u32 this_len;
5311 unsigned long name_ptr;
5312 struct btrfs_dir_item *di;
5313 struct fscrypt_str name_str;
5314
5315 if (key->type == BTRFS_INODE_REF_KEY) {
5316 struct btrfs_inode_ref *iref;
5317
5318 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5319 parent = key->offset;
5320 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5321 name_ptr = (unsigned long)(iref + 1);
5322 this_len = sizeof(*iref) + this_name_len;
5323 } else {
5324 struct btrfs_inode_extref *extref;
5325
5326 extref = (struct btrfs_inode_extref *)(ptr +
5327 cur_offset);
5328 parent = btrfs_inode_extref_parent(eb, extref);
5329 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5330 name_ptr = (unsigned long)&extref->name;
5331 this_len = sizeof(*extref) + this_name_len;
5332 }
5333
5334 if (this_name_len > name_len) {
5335 char *new_name;
5336
5337 new_name = krealloc(name, this_name_len, GFP_NOFS);
5338 if (!new_name) {
5339 ret = -ENOMEM;
5340 goto out;
5341 }
5342 name_len = this_name_len;
5343 name = new_name;
5344 }
5345
5346 read_extent_buffer(eb, name, name_ptr, this_name_len);
5347
5348 name_str.name = name;
5349 name_str.len = this_name_len;
5350 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5351 parent, &name_str, 0);
5352 if (di && !IS_ERR(di)) {
5353 struct btrfs_key di_key;
5354
5355 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5356 di, &di_key);
5357 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5358 if (di_key.objectid != key->objectid) {
5359 ret = 1;
5360 *other_ino = di_key.objectid;
5361 *other_parent = parent;
5362 } else {
5363 ret = 0;
5364 }
5365 } else {
5366 ret = -EAGAIN;
5367 }
5368 goto out;
5369 } else if (IS_ERR(di)) {
5370 ret = PTR_ERR(di);
5371 goto out;
5372 }
5373 btrfs_release_path(search_path);
5374
5375 cur_offset += this_len;
5376 }
5377 ret = 0;
5378out:
5379 btrfs_free_path(search_path);
5380 kfree(name);
5381 return ret;
5382}
5383
5384/*
5385 * Check if we need to log an inode. This is used in contexts where while
5386 * logging an inode we need to log another inode (either that it exists or in
5387 * full mode). This is used instead of btrfs_inode_in_log() because the later
5388 * requires the inode to be in the log and have the log transaction committed,
5389 * while here we do not care if the log transaction was already committed - our
5390 * caller will commit the log later - and we want to avoid logging an inode
5391 * multiple times when multiple tasks have joined the same log transaction.
5392 */
5393static bool need_log_inode(const struct btrfs_trans_handle *trans,
5394 struct btrfs_inode *inode)
5395{
5396 /*
5397 * If a directory was not modified, no dentries added or removed, we can
5398 * and should avoid logging it.
5399 */
5400 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5401 return false;
5402
5403 /*
5404 * If this inode does not have new/updated/deleted xattrs since the last
5405 * time it was logged and is flagged as logged in the current transaction,
5406 * we can skip logging it. As for new/deleted names, those are updated in
5407 * the log by link/unlink/rename operations.
5408 * In case the inode was logged and then evicted and reloaded, its
5409 * logged_trans will be 0, in which case we have to fully log it since
5410 * logged_trans is a transient field, not persisted.
5411 */
5412 if (inode_logged(trans, inode, NULL) == 1 &&
5413 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5414 return false;
5415
5416 return true;
5417}
5418
5419struct btrfs_dir_list {
5420 u64 ino;
5421 struct list_head list;
5422};
5423
5424/*
5425 * Log the inodes of the new dentries of a directory.
5426 * See process_dir_items_leaf() for details about why it is needed.
5427 * This is a recursive operation - if an existing dentry corresponds to a
5428 * directory, that directory's new entries are logged too (same behaviour as
5429 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431 * complains about the following circular lock dependency / possible deadlock:
5432 *
5433 * CPU0 CPU1
5434 * ---- ----
5435 * lock(&type->i_mutex_dir_key#3/2);
5436 * lock(sb_internal#2);
5437 * lock(&type->i_mutex_dir_key#3/2);
5438 * lock(&sb->s_type->i_mutex_key#14);
5439 *
5440 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441 * sb_start_intwrite() in btrfs_start_transaction().
5442 * Not acquiring the VFS lock of the inodes is still safe because:
5443 *
5444 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445 * that while logging the inode new references (names) are added or removed
5446 * from the inode, leaving the logged inode item with a link count that does
5447 * not match the number of logged inode reference items. This is fine because
5448 * at log replay time we compute the real number of links and correct the
5449 * link count in the inode item (see replay_one_buffer() and
5450 * link_to_fixup_dir());
5451 *
5452 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453 * while logging the inode's items new index items (key type
5454 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455 * has a size that doesn't match the sum of the lengths of all the logged
5456 * names - this is ok, not a problem, because at log replay time we set the
5457 * directory's i_size to the correct value (see replay_one_name() and
5458 * overwrite_item()).
5459 */
5460static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5461 struct btrfs_inode *start_inode,
5462 struct btrfs_log_ctx *ctx)
5463{
5464 struct btrfs_root *root = start_inode->root;
5465 struct btrfs_path *path;
5466 LIST_HEAD(dir_list);
5467 struct btrfs_dir_list *dir_elem;
5468 u64 ino = btrfs_ino(start_inode);
5469 struct btrfs_inode *curr_inode = start_inode;
5470 int ret = 0;
5471
5472 /*
5473 * If we are logging a new name, as part of a link or rename operation,
5474 * don't bother logging new dentries, as we just want to log the names
5475 * of an inode and that any new parents exist.
5476 */
5477 if (ctx->logging_new_name)
5478 return 0;
5479
5480 path = btrfs_alloc_path();
5481 if (!path)
5482 return -ENOMEM;
5483
5484 /* Pairs with btrfs_add_delayed_iput below. */
5485 ihold(&curr_inode->vfs_inode);
5486
5487 while (true) {
5488 struct inode *vfs_inode;
5489 struct btrfs_key key;
5490 struct btrfs_key found_key;
5491 u64 next_index;
5492 bool continue_curr_inode = true;
5493 int iter_ret;
5494
5495 key.objectid = ino;
5496 key.type = BTRFS_DIR_INDEX_KEY;
5497 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5498 next_index = key.offset;
5499again:
5500 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5501 struct extent_buffer *leaf = path->nodes[0];
5502 struct btrfs_dir_item *di;
5503 struct btrfs_key di_key;
5504 struct inode *di_inode;
5505 int log_mode = LOG_INODE_EXISTS;
5506 int type;
5507
5508 if (found_key.objectid != ino ||
5509 found_key.type != BTRFS_DIR_INDEX_KEY) {
5510 continue_curr_inode = false;
5511 break;
5512 }
5513
5514 next_index = found_key.offset + 1;
5515
5516 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5517 type = btrfs_dir_ftype(leaf, di);
5518 if (btrfs_dir_transid(leaf, di) < trans->transid)
5519 continue;
5520 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5521 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5522 continue;
5523
5524 btrfs_release_path(path);
5525 di_inode = btrfs_iget_logging(di_key.objectid, root);
5526 if (IS_ERR(di_inode)) {
5527 ret = PTR_ERR(di_inode);
5528 goto out;
5529 }
5530
5531 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5532 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5533 break;
5534 }
5535
5536 ctx->log_new_dentries = false;
5537 if (type == BTRFS_FT_DIR)
5538 log_mode = LOG_INODE_ALL;
5539 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5540 log_mode, ctx);
5541 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5542 if (ret)
5543 goto out;
5544 if (ctx->log_new_dentries) {
5545 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5546 if (!dir_elem) {
5547 ret = -ENOMEM;
5548 goto out;
5549 }
5550 dir_elem->ino = di_key.objectid;
5551 list_add_tail(&dir_elem->list, &dir_list);
5552 }
5553 break;
5554 }
5555
5556 btrfs_release_path(path);
5557
5558 if (iter_ret < 0) {
5559 ret = iter_ret;
5560 goto out;
5561 } else if (iter_ret > 0) {
5562 continue_curr_inode = false;
5563 } else {
5564 key = found_key;
5565 }
5566
5567 if (continue_curr_inode && key.offset < (u64)-1) {
5568 key.offset++;
5569 goto again;
5570 }
5571
5572 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5573
5574 if (list_empty(&dir_list))
5575 break;
5576
5577 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5578 ino = dir_elem->ino;
5579 list_del(&dir_elem->list);
5580 kfree(dir_elem);
5581
5582 btrfs_add_delayed_iput(curr_inode);
5583 curr_inode = NULL;
5584
5585 vfs_inode = btrfs_iget_logging(ino, root);
5586 if (IS_ERR(vfs_inode)) {
5587 ret = PTR_ERR(vfs_inode);
5588 break;
5589 }
5590 curr_inode = BTRFS_I(vfs_inode);
5591 }
5592out:
5593 btrfs_free_path(path);
5594 if (curr_inode)
5595 btrfs_add_delayed_iput(curr_inode);
5596
5597 if (ret) {
5598 struct btrfs_dir_list *next;
5599
5600 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5601 kfree(dir_elem);
5602 }
5603
5604 return ret;
5605}
5606
5607struct btrfs_ino_list {
5608 u64 ino;
5609 u64 parent;
5610 struct list_head list;
5611};
5612
5613static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5614{
5615 struct btrfs_ino_list *curr;
5616 struct btrfs_ino_list *next;
5617
5618 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5619 list_del(&curr->list);
5620 kfree(curr);
5621 }
5622}
5623
5624static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5625 struct btrfs_path *path)
5626{
5627 struct btrfs_key key;
5628 int ret;
5629
5630 key.objectid = ino;
5631 key.type = BTRFS_INODE_ITEM_KEY;
5632 key.offset = 0;
5633
5634 path->search_commit_root = 1;
5635 path->skip_locking = 1;
5636
5637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 if (WARN_ON_ONCE(ret > 0)) {
5639 /*
5640 * We have previously found the inode through the commit root
5641 * so this should not happen. If it does, just error out and
5642 * fallback to a transaction commit.
5643 */
5644 ret = -ENOENT;
5645 } else if (ret == 0) {
5646 struct btrfs_inode_item *item;
5647
5648 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5649 struct btrfs_inode_item);
5650 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5651 ret = 1;
5652 }
5653
5654 btrfs_release_path(path);
5655 path->search_commit_root = 0;
5656 path->skip_locking = 0;
5657
5658 return ret;
5659}
5660
5661static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5662 struct btrfs_root *root,
5663 struct btrfs_path *path,
5664 u64 ino, u64 parent,
5665 struct btrfs_log_ctx *ctx)
5666{
5667 struct btrfs_ino_list *ino_elem;
5668 struct inode *inode;
5669
5670 /*
5671 * It's rare to have a lot of conflicting inodes, in practice it is not
5672 * common to have more than 1 or 2. We don't want to collect too many,
5673 * as we could end up logging too many inodes (even if only in
5674 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5675 * commits.
5676 */
5677 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5678 return BTRFS_LOG_FORCE_COMMIT;
5679
5680 inode = btrfs_iget_logging(ino, root);
5681 /*
5682 * If the other inode that had a conflicting dir entry was deleted in
5683 * the current transaction then we either:
5684 *
5685 * 1) Log the parent directory (later after adding it to the list) if
5686 * the inode is a directory. This is because it may be a deleted
5687 * subvolume/snapshot or it may be a regular directory that had
5688 * deleted subvolumes/snapshots (or subdirectories that had them),
5689 * and at the moment we can't deal with dropping subvolumes/snapshots
5690 * during log replay. So we just log the parent, which will result in
5691 * a fallback to a transaction commit if we are dealing with those
5692 * cases (last_unlink_trans will match the current transaction);
5693 *
5694 * 2) Do nothing if it's not a directory. During log replay we simply
5695 * unlink the conflicting dentry from the parent directory and then
5696 * add the dentry for our inode. Like this we can avoid logging the
5697 * parent directory (and maybe fallback to a transaction commit in
5698 * case it has a last_unlink_trans == trans->transid, due to moving
5699 * some inode from it to some other directory).
5700 */
5701 if (IS_ERR(inode)) {
5702 int ret = PTR_ERR(inode);
5703
5704 if (ret != -ENOENT)
5705 return ret;
5706
5707 ret = conflicting_inode_is_dir(root, ino, path);
5708 /* Not a directory or we got an error. */
5709 if (ret <= 0)
5710 return ret;
5711
5712 /* Conflicting inode is a directory, so we'll log its parent. */
5713 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5714 if (!ino_elem)
5715 return -ENOMEM;
5716 ino_elem->ino = ino;
5717 ino_elem->parent = parent;
5718 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5719 ctx->num_conflict_inodes++;
5720
5721 return 0;
5722 }
5723
5724 /*
5725 * If the inode was already logged skip it - otherwise we can hit an
5726 * infinite loop. Example:
5727 *
5728 * From the commit root (previous transaction) we have the following
5729 * inodes:
5730 *
5731 * inode 257 a directory
5732 * inode 258 with references "zz" and "zz_link" on inode 257
5733 * inode 259 with reference "a" on inode 257
5734 *
5735 * And in the current (uncommitted) transaction we have:
5736 *
5737 * inode 257 a directory, unchanged
5738 * inode 258 with references "a" and "a2" on inode 257
5739 * inode 259 with reference "zz_link" on inode 257
5740 * inode 261 with reference "zz" on inode 257
5741 *
5742 * When logging inode 261 the following infinite loop could
5743 * happen if we don't skip already logged inodes:
5744 *
5745 * - we detect inode 258 as a conflicting inode, with inode 261
5746 * on reference "zz", and log it;
5747 *
5748 * - we detect inode 259 as a conflicting inode, with inode 258
5749 * on reference "a", and log it;
5750 *
5751 * - we detect inode 258 as a conflicting inode, with inode 259
5752 * on reference "zz_link", and log it - again! After this we
5753 * repeat the above steps forever.
5754 *
5755 * Here we can use need_log_inode() because we only need to log the
5756 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757 * so that the log ends up with the new name and without the old name.
5758 */
5759 if (!need_log_inode(trans, BTRFS_I(inode))) {
5760 btrfs_add_delayed_iput(BTRFS_I(inode));
5761 return 0;
5762 }
5763
5764 btrfs_add_delayed_iput(BTRFS_I(inode));
5765
5766 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5767 if (!ino_elem)
5768 return -ENOMEM;
5769 ino_elem->ino = ino;
5770 ino_elem->parent = parent;
5771 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5772 ctx->num_conflict_inodes++;
5773
5774 return 0;
5775}
5776
5777static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5778 struct btrfs_root *root,
5779 struct btrfs_log_ctx *ctx)
5780{
5781 int ret = 0;
5782
5783 /*
5784 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785 * otherwise we could have unbounded recursion of btrfs_log_inode()
5786 * calls. This check guarantees we can have only 1 level of recursion.
5787 */
5788 if (ctx->logging_conflict_inodes)
5789 return 0;
5790
5791 ctx->logging_conflict_inodes = true;
5792
5793 /*
5794 * New conflicting inodes may be found and added to the list while we
5795 * are logging a conflicting inode, so keep iterating while the list is
5796 * not empty.
5797 */
5798 while (!list_empty(&ctx->conflict_inodes)) {
5799 struct btrfs_ino_list *curr;
5800 struct inode *inode;
5801 u64 ino;
5802 u64 parent;
5803
5804 curr = list_first_entry(&ctx->conflict_inodes,
5805 struct btrfs_ino_list, list);
5806 ino = curr->ino;
5807 parent = curr->parent;
5808 list_del(&curr->list);
5809 kfree(curr);
5810
5811 inode = btrfs_iget_logging(ino, root);
5812 /*
5813 * If the other inode that had a conflicting dir entry was
5814 * deleted in the current transaction, we need to log its parent
5815 * directory. See the comment at add_conflicting_inode().
5816 */
5817 if (IS_ERR(inode)) {
5818 ret = PTR_ERR(inode);
5819 if (ret != -ENOENT)
5820 break;
5821
5822 inode = btrfs_iget_logging(parent, root);
5823 if (IS_ERR(inode)) {
5824 ret = PTR_ERR(inode);
5825 break;
5826 }
5827
5828 /*
5829 * Always log the directory, we cannot make this
5830 * conditional on need_log_inode() because the directory
5831 * might have been logged in LOG_INODE_EXISTS mode or
5832 * the dir index of the conflicting inode is not in a
5833 * dir index key range logged for the directory. So we
5834 * must make sure the deletion is recorded.
5835 */
5836 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5837 LOG_INODE_ALL, ctx);
5838 btrfs_add_delayed_iput(BTRFS_I(inode));
5839 if (ret)
5840 break;
5841 continue;
5842 }
5843
5844 /*
5845 * Here we can use need_log_inode() because we only need to log
5846 * the inode in LOG_INODE_EXISTS mode and rename operations
5847 * update the log, so that the log ends up with the new name and
5848 * without the old name.
5849 *
5850 * We did this check at add_conflicting_inode(), but here we do
5851 * it again because if some other task logged the inode after
5852 * that, we can avoid doing it again.
5853 */
5854 if (!need_log_inode(trans, BTRFS_I(inode))) {
5855 btrfs_add_delayed_iput(BTRFS_I(inode));
5856 continue;
5857 }
5858
5859 /*
5860 * We are safe logging the other inode without acquiring its
5861 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862 * are safe against concurrent renames of the other inode as
5863 * well because during a rename we pin the log and update the
5864 * log with the new name before we unpin it.
5865 */
5866 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5867 btrfs_add_delayed_iput(BTRFS_I(inode));
5868 if (ret)
5869 break;
5870 }
5871
5872 ctx->logging_conflict_inodes = false;
5873 if (ret)
5874 free_conflicting_inodes(ctx);
5875
5876 return ret;
5877}
5878
5879static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5880 struct btrfs_inode *inode,
5881 struct btrfs_key *min_key,
5882 const struct btrfs_key *max_key,
5883 struct btrfs_path *path,
5884 struct btrfs_path *dst_path,
5885 const u64 logged_isize,
5886 const int inode_only,
5887 struct btrfs_log_ctx *ctx,
5888 bool *need_log_inode_item)
5889{
5890 const u64 i_size = i_size_read(&inode->vfs_inode);
5891 struct btrfs_root *root = inode->root;
5892 int ins_start_slot = 0;
5893 int ins_nr = 0;
5894 int ret;
5895
5896 while (1) {
5897 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5898 if (ret < 0)
5899 return ret;
5900 if (ret > 0) {
5901 ret = 0;
5902 break;
5903 }
5904again:
5905 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906 if (min_key->objectid != max_key->objectid)
5907 break;
5908 if (min_key->type > max_key->type)
5909 break;
5910
5911 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5912 *need_log_inode_item = false;
5913 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5914 min_key->offset >= i_size) {
5915 /*
5916 * Extents at and beyond eof are logged with
5917 * btrfs_log_prealloc_extents().
5918 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919 * and no keys greater than that, so bail out.
5920 */
5921 break;
5922 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5923 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5924 (inode->generation == trans->transid ||
5925 ctx->logging_conflict_inodes)) {
5926 u64 other_ino = 0;
5927 u64 other_parent = 0;
5928
5929 ret = btrfs_check_ref_name_override(path->nodes[0],
5930 path->slots[0], min_key, inode,
5931 &other_ino, &other_parent);
5932 if (ret < 0) {
5933 return ret;
5934 } else if (ret > 0 &&
5935 other_ino != btrfs_ino(ctx->inode)) {
5936 if (ins_nr > 0) {
5937 ins_nr++;
5938 } else {
5939 ins_nr = 1;
5940 ins_start_slot = path->slots[0];
5941 }
5942 ret = copy_items(trans, inode, dst_path, path,
5943 ins_start_slot, ins_nr,
5944 inode_only, logged_isize, ctx);
5945 if (ret < 0)
5946 return ret;
5947 ins_nr = 0;
5948
5949 btrfs_release_path(path);
5950 ret = add_conflicting_inode(trans, root, path,
5951 other_ino,
5952 other_parent, ctx);
5953 if (ret)
5954 return ret;
5955 goto next_key;
5956 }
5957 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5958 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5959 if (ins_nr == 0)
5960 goto next_slot;
5961 ret = copy_items(trans, inode, dst_path, path,
5962 ins_start_slot,
5963 ins_nr, inode_only, logged_isize, ctx);
5964 if (ret < 0)
5965 return ret;
5966 ins_nr = 0;
5967 goto next_slot;
5968 }
5969
5970 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5971 ins_nr++;
5972 goto next_slot;
5973 } else if (!ins_nr) {
5974 ins_start_slot = path->slots[0];
5975 ins_nr = 1;
5976 goto next_slot;
5977 }
5978
5979 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5980 ins_nr, inode_only, logged_isize, ctx);
5981 if (ret < 0)
5982 return ret;
5983 ins_nr = 1;
5984 ins_start_slot = path->slots[0];
5985next_slot:
5986 path->slots[0]++;
5987 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5988 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5989 path->slots[0]);
5990 goto again;
5991 }
5992 if (ins_nr) {
5993 ret = copy_items(trans, inode, dst_path, path,
5994 ins_start_slot, ins_nr, inode_only,
5995 logged_isize, ctx);
5996 if (ret < 0)
5997 return ret;
5998 ins_nr = 0;
5999 }
6000 btrfs_release_path(path);
6001next_key:
6002 if (min_key->offset < (u64)-1) {
6003 min_key->offset++;
6004 } else if (min_key->type < max_key->type) {
6005 min_key->type++;
6006 min_key->offset = 0;
6007 } else {
6008 break;
6009 }
6010
6011 /*
6012 * We may process many leaves full of items for our inode, so
6013 * avoid monopolizing a cpu for too long by rescheduling while
6014 * not holding locks on any tree.
6015 */
6016 cond_resched();
6017 }
6018 if (ins_nr) {
6019 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6020 ins_nr, inode_only, logged_isize, ctx);
6021 if (ret)
6022 return ret;
6023 }
6024
6025 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6026 /*
6027 * Release the path because otherwise we might attempt to double
6028 * lock the same leaf with btrfs_log_prealloc_extents() below.
6029 */
6030 btrfs_release_path(path);
6031 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6032 }
6033
6034 return ret;
6035}
6036
6037static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6038 struct btrfs_root *log,
6039 struct btrfs_path *path,
6040 const struct btrfs_item_batch *batch,
6041 const struct btrfs_delayed_item *first_item)
6042{
6043 const struct btrfs_delayed_item *curr = first_item;
6044 int ret;
6045
6046 ret = btrfs_insert_empty_items(trans, log, path, batch);
6047 if (ret)
6048 return ret;
6049
6050 for (int i = 0; i < batch->nr; i++) {
6051 char *data_ptr;
6052
6053 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6054 write_extent_buffer(path->nodes[0], &curr->data,
6055 (unsigned long)data_ptr, curr->data_len);
6056 curr = list_next_entry(curr, log_list);
6057 path->slots[0]++;
6058 }
6059
6060 btrfs_release_path(path);
6061
6062 return 0;
6063}
6064
6065static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6066 struct btrfs_inode *inode,
6067 struct btrfs_path *path,
6068 const struct list_head *delayed_ins_list,
6069 struct btrfs_log_ctx *ctx)
6070{
6071 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072 const int max_batch_size = 195;
6073 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6074 const u64 ino = btrfs_ino(inode);
6075 struct btrfs_root *log = inode->root->log_root;
6076 struct btrfs_item_batch batch = {
6077 .nr = 0,
6078 .total_data_size = 0,
6079 };
6080 const struct btrfs_delayed_item *first = NULL;
6081 const struct btrfs_delayed_item *curr;
6082 char *ins_data;
6083 struct btrfs_key *ins_keys;
6084 u32 *ins_sizes;
6085 u64 curr_batch_size = 0;
6086 int batch_idx = 0;
6087 int ret;
6088
6089 /* We are adding dir index items to the log tree. */
6090 lockdep_assert_held(&inode->log_mutex);
6091
6092 /*
6093 * We collect delayed items before copying index keys from the subvolume
6094 * to the log tree. However just after we collected them, they may have
6095 * been flushed (all of them or just some of them), and therefore we
6096 * could have copied them from the subvolume tree to the log tree.
6097 * So find the first delayed item that was not yet logged (they are
6098 * sorted by index number).
6099 */
6100 list_for_each_entry(curr, delayed_ins_list, log_list) {
6101 if (curr->index > inode->last_dir_index_offset) {
6102 first = curr;
6103 break;
6104 }
6105 }
6106
6107 /* Empty list or all delayed items were already logged. */
6108 if (!first)
6109 return 0;
6110
6111 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6112 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6113 if (!ins_data)
6114 return -ENOMEM;
6115 ins_sizes = (u32 *)ins_data;
6116 batch.data_sizes = ins_sizes;
6117 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6118 batch.keys = ins_keys;
6119
6120 curr = first;
6121 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6122 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6123
6124 if (curr_batch_size + curr_size > leaf_data_size ||
6125 batch.nr == max_batch_size) {
6126 ret = insert_delayed_items_batch(trans, log, path,
6127 &batch, first);
6128 if (ret)
6129 goto out;
6130 batch_idx = 0;
6131 batch.nr = 0;
6132 batch.total_data_size = 0;
6133 curr_batch_size = 0;
6134 first = curr;
6135 }
6136
6137 ins_sizes[batch_idx] = curr->data_len;
6138 ins_keys[batch_idx].objectid = ino;
6139 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6140 ins_keys[batch_idx].offset = curr->index;
6141 curr_batch_size += curr_size;
6142 batch.total_data_size += curr->data_len;
6143 batch.nr++;
6144 batch_idx++;
6145 curr = list_next_entry(curr, log_list);
6146 }
6147
6148 ASSERT(batch.nr >= 1);
6149 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6150
6151 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6152 log_list);
6153 inode->last_dir_index_offset = curr->index;
6154out:
6155 kfree(ins_data);
6156
6157 return ret;
6158}
6159
6160static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6161 struct btrfs_inode *inode,
6162 struct btrfs_path *path,
6163 const struct list_head *delayed_del_list,
6164 struct btrfs_log_ctx *ctx)
6165{
6166 const u64 ino = btrfs_ino(inode);
6167 const struct btrfs_delayed_item *curr;
6168
6169 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170 log_list);
6171
6172 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173 u64 first_dir_index = curr->index;
6174 u64 last_dir_index;
6175 const struct btrfs_delayed_item *next;
6176 int ret;
6177
6178 /*
6179 * Find a range of consecutive dir index items to delete. Like
6180 * this we log a single dir range item spanning several contiguous
6181 * dir items instead of logging one range item per dir index item.
6182 */
6183 next = list_next_entry(curr, log_list);
6184 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6185 if (next->index != curr->index + 1)
6186 break;
6187 curr = next;
6188 next = list_next_entry(next, log_list);
6189 }
6190
6191 last_dir_index = curr->index;
6192 ASSERT(last_dir_index >= first_dir_index);
6193
6194 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6195 ino, first_dir_index, last_dir_index);
6196 if (ret)
6197 return ret;
6198 curr = list_next_entry(curr, log_list);
6199 }
6200
6201 return 0;
6202}
6203
6204static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6205 struct btrfs_inode *inode,
6206 struct btrfs_path *path,
6207 const struct list_head *delayed_del_list,
6208 const struct btrfs_delayed_item *first,
6209 const struct btrfs_delayed_item **last_ret)
6210{
6211 const struct btrfs_delayed_item *next;
6212 struct extent_buffer *leaf = path->nodes[0];
6213 const int last_slot = btrfs_header_nritems(leaf) - 1;
6214 int slot = path->slots[0] + 1;
6215 const u64 ino = btrfs_ino(inode);
6216
6217 next = list_next_entry(first, log_list);
6218
6219 while (slot < last_slot &&
6220 !list_entry_is_head(next, delayed_del_list, log_list)) {
6221 struct btrfs_key key;
6222
6223 btrfs_item_key_to_cpu(leaf, &key, slot);
6224 if (key.objectid != ino ||
6225 key.type != BTRFS_DIR_INDEX_KEY ||
6226 key.offset != next->index)
6227 break;
6228
6229 slot++;
6230 *last_ret = next;
6231 next = list_next_entry(next, log_list);
6232 }
6233
6234 return btrfs_del_items(trans, inode->root->log_root, path,
6235 path->slots[0], slot - path->slots[0]);
6236}
6237
6238static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6239 struct btrfs_inode *inode,
6240 struct btrfs_path *path,
6241 const struct list_head *delayed_del_list,
6242 struct btrfs_log_ctx *ctx)
6243{
6244 struct btrfs_root *log = inode->root->log_root;
6245 const struct btrfs_delayed_item *curr;
6246 u64 last_range_start = 0;
6247 u64 last_range_end = 0;
6248 struct btrfs_key key;
6249
6250 key.objectid = btrfs_ino(inode);
6251 key.type = BTRFS_DIR_INDEX_KEY;
6252 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6253 log_list);
6254
6255 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6256 const struct btrfs_delayed_item *last = curr;
6257 u64 first_dir_index = curr->index;
6258 u64 last_dir_index;
6259 bool deleted_items = false;
6260 int ret;
6261
6262 key.offset = curr->index;
6263 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6264 if (ret < 0) {
6265 return ret;
6266 } else if (ret == 0) {
6267 ret = batch_delete_dir_index_items(trans, inode, path,
6268 delayed_del_list, curr,
6269 &last);
6270 if (ret)
6271 return ret;
6272 deleted_items = true;
6273 }
6274
6275 btrfs_release_path(path);
6276
6277 /*
6278 * If we deleted items from the leaf, it means we have a range
6279 * item logging their range, so no need to add one or update an
6280 * existing one. Otherwise we have to log a dir range item.
6281 */
6282 if (deleted_items)
6283 goto next_batch;
6284
6285 last_dir_index = last->index;
6286 ASSERT(last_dir_index >= first_dir_index);
6287 /*
6288 * If this range starts right after where the previous one ends,
6289 * then we want to reuse the previous range item and change its
6290 * end offset to the end of this range. This is just to minimize
6291 * leaf space usage, by avoiding adding a new range item.
6292 */
6293 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6294 first_dir_index = last_range_start;
6295
6296 ret = insert_dir_log_key(trans, log, path, key.objectid,
6297 first_dir_index, last_dir_index);
6298 if (ret)
6299 return ret;
6300
6301 last_range_start = first_dir_index;
6302 last_range_end = last_dir_index;
6303next_batch:
6304 curr = list_next_entry(last, log_list);
6305 }
6306
6307 return 0;
6308}
6309
6310static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6311 struct btrfs_inode *inode,
6312 struct btrfs_path *path,
6313 const struct list_head *delayed_del_list,
6314 struct btrfs_log_ctx *ctx)
6315{
6316 /*
6317 * We are deleting dir index items from the log tree or adding range
6318 * items to it.
6319 */
6320 lockdep_assert_held(&inode->log_mutex);
6321
6322 if (list_empty(delayed_del_list))
6323 return 0;
6324
6325 if (ctx->logged_before)
6326 return log_delayed_deletions_incremental(trans, inode, path,
6327 delayed_del_list, ctx);
6328
6329 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6330 ctx);
6331}
6332
6333/*
6334 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6335 * items instead of the subvolume tree.
6336 */
6337static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6338 struct btrfs_inode *inode,
6339 const struct list_head *delayed_ins_list,
6340 struct btrfs_log_ctx *ctx)
6341{
6342 const bool orig_log_new_dentries = ctx->log_new_dentries;
6343 struct btrfs_delayed_item *item;
6344 int ret = 0;
6345
6346 /*
6347 * No need for the log mutex, plus to avoid potential deadlocks or
6348 * lockdep annotations due to nesting of delayed inode mutexes and log
6349 * mutexes.
6350 */
6351 lockdep_assert_not_held(&inode->log_mutex);
6352
6353 ASSERT(!ctx->logging_new_delayed_dentries);
6354 ctx->logging_new_delayed_dentries = true;
6355
6356 list_for_each_entry(item, delayed_ins_list, log_list) {
6357 struct btrfs_dir_item *dir_item;
6358 struct inode *di_inode;
6359 struct btrfs_key key;
6360 int log_mode = LOG_INODE_EXISTS;
6361
6362 dir_item = (struct btrfs_dir_item *)item->data;
6363 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6364
6365 if (key.type == BTRFS_ROOT_ITEM_KEY)
6366 continue;
6367
6368 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6369 if (IS_ERR(di_inode)) {
6370 ret = PTR_ERR(di_inode);
6371 break;
6372 }
6373
6374 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6375 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6376 continue;
6377 }
6378
6379 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6380 log_mode = LOG_INODE_ALL;
6381
6382 ctx->log_new_dentries = false;
6383 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6384
6385 if (!ret && ctx->log_new_dentries)
6386 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6387
6388 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6389
6390 if (ret)
6391 break;
6392 }
6393
6394 ctx->log_new_dentries = orig_log_new_dentries;
6395 ctx->logging_new_delayed_dentries = false;
6396
6397 return ret;
6398}
6399
6400/* log a single inode in the tree log.
6401 * At least one parent directory for this inode must exist in the tree
6402 * or be logged already.
6403 *
6404 * Any items from this inode changed by the current transaction are copied
6405 * to the log tree. An extra reference is taken on any extents in this
6406 * file, allowing us to avoid a whole pile of corner cases around logging
6407 * blocks that have been removed from the tree.
6408 *
6409 * See LOG_INODE_ALL and related defines for a description of what inode_only
6410 * does.
6411 *
6412 * This handles both files and directories.
6413 */
6414static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6415 struct btrfs_inode *inode,
6416 int inode_only,
6417 struct btrfs_log_ctx *ctx)
6418{
6419 struct btrfs_path *path;
6420 struct btrfs_path *dst_path;
6421 struct btrfs_key min_key;
6422 struct btrfs_key max_key;
6423 struct btrfs_root *log = inode->root->log_root;
6424 int ret;
6425 bool fast_search = false;
6426 u64 ino = btrfs_ino(inode);
6427 struct extent_map_tree *em_tree = &inode->extent_tree;
6428 u64 logged_isize = 0;
6429 bool need_log_inode_item = true;
6430 bool xattrs_logged = false;
6431 bool inode_item_dropped = true;
6432 bool full_dir_logging = false;
6433 LIST_HEAD(delayed_ins_list);
6434 LIST_HEAD(delayed_del_list);
6435
6436 path = btrfs_alloc_path();
6437 if (!path)
6438 return -ENOMEM;
6439 dst_path = btrfs_alloc_path();
6440 if (!dst_path) {
6441 btrfs_free_path(path);
6442 return -ENOMEM;
6443 }
6444
6445 min_key.objectid = ino;
6446 min_key.type = BTRFS_INODE_ITEM_KEY;
6447 min_key.offset = 0;
6448
6449 max_key.objectid = ino;
6450
6451
6452 /* today the code can only do partial logging of directories */
6453 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6454 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6455 &inode->runtime_flags) &&
6456 inode_only >= LOG_INODE_EXISTS))
6457 max_key.type = BTRFS_XATTR_ITEM_KEY;
6458 else
6459 max_key.type = (u8)-1;
6460 max_key.offset = (u64)-1;
6461
6462 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6463 full_dir_logging = true;
6464
6465 /*
6466 * If we are logging a directory while we are logging dentries of the
6467 * delayed items of some other inode, then we need to flush the delayed
6468 * items of this directory and not log the delayed items directly. This
6469 * is to prevent more than one level of recursion into btrfs_log_inode()
6470 * by having something like this:
6471 *
6472 * $ mkdir -p a/b/c/d/e/f/g/h/...
6473 * $ xfs_io -c "fsync" a
6474 *
6475 * Where all directories in the path did not exist before and are
6476 * created in the current transaction.
6477 * So in such a case we directly log the delayed items of the main
6478 * directory ("a") without flushing them first, while for each of its
6479 * subdirectories we flush their delayed items before logging them.
6480 * This prevents a potential unbounded recursion like this:
6481 *
6482 * btrfs_log_inode()
6483 * log_new_delayed_dentries()
6484 * btrfs_log_inode()
6485 * log_new_delayed_dentries()
6486 * btrfs_log_inode()
6487 * log_new_delayed_dentries()
6488 * (...)
6489 *
6490 * We have thresholds for the maximum number of delayed items to have in
6491 * memory, and once they are hit, the items are flushed asynchronously.
6492 * However the limit is quite high, so lets prevent deep levels of
6493 * recursion to happen by limiting the maximum depth to be 1.
6494 */
6495 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6496 ret = btrfs_commit_inode_delayed_items(trans, inode);
6497 if (ret)
6498 goto out;
6499 }
6500
6501 mutex_lock(&inode->log_mutex);
6502
6503 /*
6504 * For symlinks, we must always log their content, which is stored in an
6505 * inline extent, otherwise we could end up with an empty symlink after
6506 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6507 * one attempts to create an empty symlink).
6508 * We don't need to worry about flushing delalloc, because when we create
6509 * the inline extent when the symlink is created (we never have delalloc
6510 * for symlinks).
6511 */
6512 if (S_ISLNK(inode->vfs_inode.i_mode))
6513 inode_only = LOG_INODE_ALL;
6514
6515 /*
6516 * Before logging the inode item, cache the value returned by
6517 * inode_logged(), because after that we have the need to figure out if
6518 * the inode was previously logged in this transaction.
6519 */
6520 ret = inode_logged(trans, inode, path);
6521 if (ret < 0)
6522 goto out_unlock;
6523 ctx->logged_before = (ret == 1);
6524 ret = 0;
6525
6526 /*
6527 * This is for cases where logging a directory could result in losing a
6528 * a file after replaying the log. For example, if we move a file from a
6529 * directory A to a directory B, then fsync directory A, we have no way
6530 * to known the file was moved from A to B, so logging just A would
6531 * result in losing the file after a log replay.
6532 */
6533 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6534 ret = BTRFS_LOG_FORCE_COMMIT;
6535 goto out_unlock;
6536 }
6537
6538 /*
6539 * a brute force approach to making sure we get the most uptodate
6540 * copies of everything.
6541 */
6542 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6543 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6544 if (ctx->logged_before)
6545 ret = drop_inode_items(trans, log, path, inode,
6546 BTRFS_XATTR_ITEM_KEY);
6547 } else {
6548 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6549 /*
6550 * Make sure the new inode item we write to the log has
6551 * the same isize as the current one (if it exists).
6552 * This is necessary to prevent data loss after log
6553 * replay, and also to prevent doing a wrong expanding
6554 * truncate - for e.g. create file, write 4K into offset
6555 * 0, fsync, write 4K into offset 4096, add hard link,
6556 * fsync some other file (to sync log), power fail - if
6557 * we use the inode's current i_size, after log replay
6558 * we get a 8Kb file, with the last 4Kb extent as a hole
6559 * (zeroes), as if an expanding truncate happened,
6560 * instead of getting a file of 4Kb only.
6561 */
6562 ret = logged_inode_size(log, inode, path, &logged_isize);
6563 if (ret)
6564 goto out_unlock;
6565 }
6566 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6567 &inode->runtime_flags)) {
6568 if (inode_only == LOG_INODE_EXISTS) {
6569 max_key.type = BTRFS_XATTR_ITEM_KEY;
6570 if (ctx->logged_before)
6571 ret = drop_inode_items(trans, log, path,
6572 inode, max_key.type);
6573 } else {
6574 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6575 &inode->runtime_flags);
6576 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6577 &inode->runtime_flags);
6578 if (ctx->logged_before)
6579 ret = truncate_inode_items(trans, log,
6580 inode, 0, 0);
6581 }
6582 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6583 &inode->runtime_flags) ||
6584 inode_only == LOG_INODE_EXISTS) {
6585 if (inode_only == LOG_INODE_ALL)
6586 fast_search = true;
6587 max_key.type = BTRFS_XATTR_ITEM_KEY;
6588 if (ctx->logged_before)
6589 ret = drop_inode_items(trans, log, path, inode,
6590 max_key.type);
6591 } else {
6592 if (inode_only == LOG_INODE_ALL)
6593 fast_search = true;
6594 inode_item_dropped = false;
6595 goto log_extents;
6596 }
6597
6598 }
6599 if (ret)
6600 goto out_unlock;
6601
6602 /*
6603 * If we are logging a directory in full mode, collect the delayed items
6604 * before iterating the subvolume tree, so that we don't miss any new
6605 * dir index items in case they get flushed while or right after we are
6606 * iterating the subvolume tree.
6607 */
6608 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6609 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6610 &delayed_del_list);
6611
6612 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6613 path, dst_path, logged_isize,
6614 inode_only, ctx,
6615 &need_log_inode_item);
6616 if (ret)
6617 goto out_unlock;
6618
6619 btrfs_release_path(path);
6620 btrfs_release_path(dst_path);
6621 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6622 if (ret)
6623 goto out_unlock;
6624 xattrs_logged = true;
6625 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6626 btrfs_release_path(path);
6627 btrfs_release_path(dst_path);
6628 ret = btrfs_log_holes(trans, inode, path);
6629 if (ret)
6630 goto out_unlock;
6631 }
6632log_extents:
6633 btrfs_release_path(path);
6634 btrfs_release_path(dst_path);
6635 if (need_log_inode_item) {
6636 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6637 if (ret)
6638 goto out_unlock;
6639 /*
6640 * If we are doing a fast fsync and the inode was logged before
6641 * in this transaction, we don't need to log the xattrs because
6642 * they were logged before. If xattrs were added, changed or
6643 * deleted since the last time we logged the inode, then we have
6644 * already logged them because the inode had the runtime flag
6645 * BTRFS_INODE_COPY_EVERYTHING set.
6646 */
6647 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6648 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6649 if (ret)
6650 goto out_unlock;
6651 btrfs_release_path(path);
6652 }
6653 }
6654 if (fast_search) {
6655 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6656 if (ret)
6657 goto out_unlock;
6658 } else if (inode_only == LOG_INODE_ALL) {
6659 struct extent_map *em, *n;
6660
6661 write_lock(&em_tree->lock);
6662 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6663 list_del_init(&em->list);
6664 write_unlock(&em_tree->lock);
6665 }
6666
6667 if (full_dir_logging) {
6668 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6669 if (ret)
6670 goto out_unlock;
6671 ret = log_delayed_insertion_items(trans, inode, path,
6672 &delayed_ins_list, ctx);
6673 if (ret)
6674 goto out_unlock;
6675 ret = log_delayed_deletion_items(trans, inode, path,
6676 &delayed_del_list, ctx);
6677 if (ret)
6678 goto out_unlock;
6679 }
6680
6681 spin_lock(&inode->lock);
6682 inode->logged_trans = trans->transid;
6683 /*
6684 * Don't update last_log_commit if we logged that an inode exists.
6685 * We do this for three reasons:
6686 *
6687 * 1) We might have had buffered writes to this inode that were
6688 * flushed and had their ordered extents completed in this
6689 * transaction, but we did not previously log the inode with
6690 * LOG_INODE_ALL. Later the inode was evicted and after that
6691 * it was loaded again and this LOG_INODE_EXISTS log operation
6692 * happened. We must make sure that if an explicit fsync against
6693 * the inode is performed later, it logs the new extents, an
6694 * updated inode item, etc, and syncs the log. The same logic
6695 * applies to direct IO writes instead of buffered writes.
6696 *
6697 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6698 * is logged with an i_size of 0 or whatever value was logged
6699 * before. If later the i_size of the inode is increased by a
6700 * truncate operation, the log is synced through an fsync of
6701 * some other inode and then finally an explicit fsync against
6702 * this inode is made, we must make sure this fsync logs the
6703 * inode with the new i_size, the hole between old i_size and
6704 * the new i_size, and syncs the log.
6705 *
6706 * 3) If we are logging that an ancestor inode exists as part of
6707 * logging a new name from a link or rename operation, don't update
6708 * its last_log_commit - otherwise if an explicit fsync is made
6709 * against an ancestor, the fsync considers the inode in the log
6710 * and doesn't sync the log, resulting in the ancestor missing after
6711 * a power failure unless the log was synced as part of an fsync
6712 * against any other unrelated inode.
6713 */
6714 if (inode_only != LOG_INODE_EXISTS)
6715 inode->last_log_commit = inode->last_sub_trans;
6716 spin_unlock(&inode->lock);
6717
6718 /*
6719 * Reset the last_reflink_trans so that the next fsync does not need to
6720 * go through the slower path when logging extents and their checksums.
6721 */
6722 if (inode_only == LOG_INODE_ALL)
6723 inode->last_reflink_trans = 0;
6724
6725out_unlock:
6726 mutex_unlock(&inode->log_mutex);
6727out:
6728 btrfs_free_path(path);
6729 btrfs_free_path(dst_path);
6730
6731 if (ret)
6732 free_conflicting_inodes(ctx);
6733 else
6734 ret = log_conflicting_inodes(trans, inode->root, ctx);
6735
6736 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6737 if (!ret)
6738 ret = log_new_delayed_dentries(trans, inode,
6739 &delayed_ins_list, ctx);
6740
6741 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6742 &delayed_del_list);
6743 }
6744
6745 return ret;
6746}
6747
6748static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6749 struct btrfs_inode *inode,
6750 struct btrfs_log_ctx *ctx)
6751{
6752 int ret;
6753 struct btrfs_path *path;
6754 struct btrfs_key key;
6755 struct btrfs_root *root = inode->root;
6756 const u64 ino = btrfs_ino(inode);
6757
6758 path = btrfs_alloc_path();
6759 if (!path)
6760 return -ENOMEM;
6761 path->skip_locking = 1;
6762 path->search_commit_root = 1;
6763
6764 key.objectid = ino;
6765 key.type = BTRFS_INODE_REF_KEY;
6766 key.offset = 0;
6767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6768 if (ret < 0)
6769 goto out;
6770
6771 while (true) {
6772 struct extent_buffer *leaf = path->nodes[0];
6773 int slot = path->slots[0];
6774 u32 cur_offset = 0;
6775 u32 item_size;
6776 unsigned long ptr;
6777
6778 if (slot >= btrfs_header_nritems(leaf)) {
6779 ret = btrfs_next_leaf(root, path);
6780 if (ret < 0)
6781 goto out;
6782 else if (ret > 0)
6783 break;
6784 continue;
6785 }
6786
6787 btrfs_item_key_to_cpu(leaf, &key, slot);
6788 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6789 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6790 break;
6791
6792 item_size = btrfs_item_size(leaf, slot);
6793 ptr = btrfs_item_ptr_offset(leaf, slot);
6794 while (cur_offset < item_size) {
6795 struct btrfs_key inode_key;
6796 struct inode *dir_inode;
6797
6798 inode_key.type = BTRFS_INODE_ITEM_KEY;
6799 inode_key.offset = 0;
6800
6801 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6802 struct btrfs_inode_extref *extref;
6803
6804 extref = (struct btrfs_inode_extref *)
6805 (ptr + cur_offset);
6806 inode_key.objectid = btrfs_inode_extref_parent(
6807 leaf, extref);
6808 cur_offset += sizeof(*extref);
6809 cur_offset += btrfs_inode_extref_name_len(leaf,
6810 extref);
6811 } else {
6812 inode_key.objectid = key.offset;
6813 cur_offset = item_size;
6814 }
6815
6816 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6817 /*
6818 * If the parent inode was deleted, return an error to
6819 * fallback to a transaction commit. This is to prevent
6820 * getting an inode that was moved from one parent A to
6821 * a parent B, got its former parent A deleted and then
6822 * it got fsync'ed, from existing at both parents after
6823 * a log replay (and the old parent still existing).
6824 * Example:
6825 *
6826 * mkdir /mnt/A
6827 * mkdir /mnt/B
6828 * touch /mnt/B/bar
6829 * sync
6830 * mv /mnt/B/bar /mnt/A/bar
6831 * mv -T /mnt/A /mnt/B
6832 * fsync /mnt/B/bar
6833 * <power fail>
6834 *
6835 * If we ignore the old parent B which got deleted,
6836 * after a log replay we would have file bar linked
6837 * at both parents and the old parent B would still
6838 * exist.
6839 */
6840 if (IS_ERR(dir_inode)) {
6841 ret = PTR_ERR(dir_inode);
6842 goto out;
6843 }
6844
6845 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6846 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6847 continue;
6848 }
6849
6850 ctx->log_new_dentries = false;
6851 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6852 LOG_INODE_ALL, ctx);
6853 if (!ret && ctx->log_new_dentries)
6854 ret = log_new_dir_dentries(trans,
6855 BTRFS_I(dir_inode), ctx);
6856 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6857 if (ret)
6858 goto out;
6859 }
6860 path->slots[0]++;
6861 }
6862 ret = 0;
6863out:
6864 btrfs_free_path(path);
6865 return ret;
6866}
6867
6868static int log_new_ancestors(struct btrfs_trans_handle *trans,
6869 struct btrfs_root *root,
6870 struct btrfs_path *path,
6871 struct btrfs_log_ctx *ctx)
6872{
6873 struct btrfs_key found_key;
6874
6875 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6876
6877 while (true) {
6878 struct extent_buffer *leaf;
6879 int slot;
6880 struct btrfs_key search_key;
6881 struct inode *inode;
6882 u64 ino;
6883 int ret = 0;
6884
6885 btrfs_release_path(path);
6886
6887 ino = found_key.offset;
6888
6889 search_key.objectid = found_key.offset;
6890 search_key.type = BTRFS_INODE_ITEM_KEY;
6891 search_key.offset = 0;
6892 inode = btrfs_iget_logging(ino, root);
6893 if (IS_ERR(inode))
6894 return PTR_ERR(inode);
6895
6896 if (BTRFS_I(inode)->generation >= trans->transid &&
6897 need_log_inode(trans, BTRFS_I(inode)))
6898 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6899 LOG_INODE_EXISTS, ctx);
6900 btrfs_add_delayed_iput(BTRFS_I(inode));
6901 if (ret)
6902 return ret;
6903
6904 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6905 break;
6906
6907 search_key.type = BTRFS_INODE_REF_KEY;
6908 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6909 if (ret < 0)
6910 return ret;
6911
6912 leaf = path->nodes[0];
6913 slot = path->slots[0];
6914 if (slot >= btrfs_header_nritems(leaf)) {
6915 ret = btrfs_next_leaf(root, path);
6916 if (ret < 0)
6917 return ret;
6918 else if (ret > 0)
6919 return -ENOENT;
6920 leaf = path->nodes[0];
6921 slot = path->slots[0];
6922 }
6923
6924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6925 if (found_key.objectid != search_key.objectid ||
6926 found_key.type != BTRFS_INODE_REF_KEY)
6927 return -ENOENT;
6928 }
6929 return 0;
6930}
6931
6932static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6933 struct btrfs_inode *inode,
6934 struct dentry *parent,
6935 struct btrfs_log_ctx *ctx)
6936{
6937 struct btrfs_root *root = inode->root;
6938 struct dentry *old_parent = NULL;
6939 struct super_block *sb = inode->vfs_inode.i_sb;
6940 int ret = 0;
6941
6942 while (true) {
6943 if (!parent || d_really_is_negative(parent) ||
6944 sb != parent->d_sb)
6945 break;
6946
6947 inode = BTRFS_I(d_inode(parent));
6948 if (root != inode->root)
6949 break;
6950
6951 if (inode->generation >= trans->transid &&
6952 need_log_inode(trans, inode)) {
6953 ret = btrfs_log_inode(trans, inode,
6954 LOG_INODE_EXISTS, ctx);
6955 if (ret)
6956 break;
6957 }
6958 if (IS_ROOT(parent))
6959 break;
6960
6961 parent = dget_parent(parent);
6962 dput(old_parent);
6963 old_parent = parent;
6964 }
6965 dput(old_parent);
6966
6967 return ret;
6968}
6969
6970static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6971 struct btrfs_inode *inode,
6972 struct dentry *parent,
6973 struct btrfs_log_ctx *ctx)
6974{
6975 struct btrfs_root *root = inode->root;
6976 const u64 ino = btrfs_ino(inode);
6977 struct btrfs_path *path;
6978 struct btrfs_key search_key;
6979 int ret;
6980
6981 /*
6982 * For a single hard link case, go through a fast path that does not
6983 * need to iterate the fs/subvolume tree.
6984 */
6985 if (inode->vfs_inode.i_nlink < 2)
6986 return log_new_ancestors_fast(trans, inode, parent, ctx);
6987
6988 path = btrfs_alloc_path();
6989 if (!path)
6990 return -ENOMEM;
6991
6992 search_key.objectid = ino;
6993 search_key.type = BTRFS_INODE_REF_KEY;
6994 search_key.offset = 0;
6995again:
6996 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6997 if (ret < 0)
6998 goto out;
6999 if (ret == 0)
7000 path->slots[0]++;
7001
7002 while (true) {
7003 struct extent_buffer *leaf = path->nodes[0];
7004 int slot = path->slots[0];
7005 struct btrfs_key found_key;
7006
7007 if (slot >= btrfs_header_nritems(leaf)) {
7008 ret = btrfs_next_leaf(root, path);
7009 if (ret < 0)
7010 goto out;
7011 else if (ret > 0)
7012 break;
7013 continue;
7014 }
7015
7016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7017 if (found_key.objectid != ino ||
7018 found_key.type > BTRFS_INODE_EXTREF_KEY)
7019 break;
7020
7021 /*
7022 * Don't deal with extended references because they are rare
7023 * cases and too complex to deal with (we would need to keep
7024 * track of which subitem we are processing for each item in
7025 * this loop, etc). So just return some error to fallback to
7026 * a transaction commit.
7027 */
7028 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7029 ret = -EMLINK;
7030 goto out;
7031 }
7032
7033 /*
7034 * Logging ancestors needs to do more searches on the fs/subvol
7035 * tree, so it releases the path as needed to avoid deadlocks.
7036 * Keep track of the last inode ref key and resume from that key
7037 * after logging all new ancestors for the current hard link.
7038 */
7039 memcpy(&search_key, &found_key, sizeof(search_key));
7040
7041 ret = log_new_ancestors(trans, root, path, ctx);
7042 if (ret)
7043 goto out;
7044 btrfs_release_path(path);
7045 goto again;
7046 }
7047 ret = 0;
7048out:
7049 btrfs_free_path(path);
7050 return ret;
7051}
7052
7053/*
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log. A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7058 */
7059static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7060 struct btrfs_inode *inode,
7061 struct dentry *parent,
7062 int inode_only,
7063 struct btrfs_log_ctx *ctx)
7064{
7065 struct btrfs_root *root = inode->root;
7066 struct btrfs_fs_info *fs_info = root->fs_info;
7067 int ret = 0;
7068 bool log_dentries = false;
7069
7070 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7071 ret = BTRFS_LOG_FORCE_COMMIT;
7072 goto end_no_trans;
7073 }
7074
7075 if (btrfs_root_refs(&root->root_item) == 0) {
7076 ret = BTRFS_LOG_FORCE_COMMIT;
7077 goto end_no_trans;
7078 }
7079
7080 /*
7081 * If we're logging an inode from a subvolume created in the current
7082 * transaction we must force a commit since the root is not persisted.
7083 */
7084 if (btrfs_root_generation(&root->root_item) == trans->transid) {
7085 ret = BTRFS_LOG_FORCE_COMMIT;
7086 goto end_no_trans;
7087 }
7088
7089 /*
7090 * Skip already logged inodes or inodes corresponding to tmpfiles
7091 * (since logging them is pointless, a link count of 0 means they
7092 * will never be accessible).
7093 */
7094 if ((btrfs_inode_in_log(inode, trans->transid) &&
7095 list_empty(&ctx->ordered_extents)) ||
7096 inode->vfs_inode.i_nlink == 0) {
7097 ret = BTRFS_NO_LOG_SYNC;
7098 goto end_no_trans;
7099 }
7100
7101 ret = start_log_trans(trans, root, ctx);
7102 if (ret)
7103 goto end_no_trans;
7104
7105 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7106 if (ret)
7107 goto end_trans;
7108
7109 /*
7110 * for regular files, if its inode is already on disk, we don't
7111 * have to worry about the parents at all. This is because
7112 * we can use the last_unlink_trans field to record renames
7113 * and other fun in this file.
7114 */
7115 if (S_ISREG(inode->vfs_inode.i_mode) &&
7116 inode->generation < trans->transid &&
7117 inode->last_unlink_trans < trans->transid) {
7118 ret = 0;
7119 goto end_trans;
7120 }
7121
7122 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7123 log_dentries = true;
7124
7125 /*
7126 * On unlink we must make sure all our current and old parent directory
7127 * inodes are fully logged. This is to prevent leaving dangling
7128 * directory index entries in directories that were our parents but are
7129 * not anymore. Not doing this results in old parent directory being
7130 * impossible to delete after log replay (rmdir will always fail with
7131 * error -ENOTEMPTY).
7132 *
7133 * Example 1:
7134 *
7135 * mkdir testdir
7136 * touch testdir/foo
7137 * ln testdir/foo testdir/bar
7138 * sync
7139 * unlink testdir/bar
7140 * xfs_io -c fsync testdir/foo
7141 * <power failure>
7142 * mount fs, triggers log replay
7143 *
7144 * If we don't log the parent directory (testdir), after log replay the
7145 * directory still has an entry pointing to the file inode using the bar
7146 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7147 * the file inode has a link count of 1.
7148 *
7149 * Example 2:
7150 *
7151 * mkdir testdir
7152 * touch foo
7153 * ln foo testdir/foo2
7154 * ln foo testdir/foo3
7155 * sync
7156 * unlink testdir/foo3
7157 * xfs_io -c fsync foo
7158 * <power failure>
7159 * mount fs, triggers log replay
7160 *
7161 * Similar as the first example, after log replay the parent directory
7162 * testdir still has an entry pointing to the inode file with name foo3
7163 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7164 * and has a link count of 2.
7165 */
7166 if (inode->last_unlink_trans >= trans->transid) {
7167 ret = btrfs_log_all_parents(trans, inode, ctx);
7168 if (ret)
7169 goto end_trans;
7170 }
7171
7172 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7173 if (ret)
7174 goto end_trans;
7175
7176 if (log_dentries)
7177 ret = log_new_dir_dentries(trans, inode, ctx);
7178 else
7179 ret = 0;
7180end_trans:
7181 if (ret < 0) {
7182 btrfs_set_log_full_commit(trans);
7183 ret = BTRFS_LOG_FORCE_COMMIT;
7184 }
7185
7186 if (ret)
7187 btrfs_remove_log_ctx(root, ctx);
7188 btrfs_end_log_trans(root);
7189end_no_trans:
7190 return ret;
7191}
7192
7193/*
7194 * it is not safe to log dentry if the chunk root has added new
7195 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7196 * If this returns 1, you must commit the transaction to safely get your
7197 * data on disk.
7198 */
7199int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7200 struct dentry *dentry,
7201 struct btrfs_log_ctx *ctx)
7202{
7203 struct dentry *parent = dget_parent(dentry);
7204 int ret;
7205
7206 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7207 LOG_INODE_ALL, ctx);
7208 dput(parent);
7209
7210 return ret;
7211}
7212
7213/*
7214 * should be called during mount to recover any replay any log trees
7215 * from the FS
7216 */
7217int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7218{
7219 int ret;
7220 struct btrfs_path *path;
7221 struct btrfs_trans_handle *trans;
7222 struct btrfs_key key;
7223 struct btrfs_key found_key;
7224 struct btrfs_root *log;
7225 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7226 struct walk_control wc = {
7227 .process_func = process_one_buffer,
7228 .stage = LOG_WALK_PIN_ONLY,
7229 };
7230
7231 path = btrfs_alloc_path();
7232 if (!path)
7233 return -ENOMEM;
7234
7235 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7236
7237 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7238 if (IS_ERR(trans)) {
7239 ret = PTR_ERR(trans);
7240 goto error;
7241 }
7242
7243 wc.trans = trans;
7244 wc.pin = 1;
7245
7246 ret = walk_log_tree(trans, log_root_tree, &wc);
7247 if (ret) {
7248 btrfs_abort_transaction(trans, ret);
7249 goto error;
7250 }
7251
7252again:
7253 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7254 key.offset = (u64)-1;
7255 key.type = BTRFS_ROOT_ITEM_KEY;
7256
7257 while (1) {
7258 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7259
7260 if (ret < 0) {
7261 btrfs_abort_transaction(trans, ret);
7262 goto error;
7263 }
7264 if (ret > 0) {
7265 if (path->slots[0] == 0)
7266 break;
7267 path->slots[0]--;
7268 }
7269 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7270 path->slots[0]);
7271 btrfs_release_path(path);
7272 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7273 break;
7274
7275 log = btrfs_read_tree_root(log_root_tree, &found_key);
7276 if (IS_ERR(log)) {
7277 ret = PTR_ERR(log);
7278 btrfs_abort_transaction(trans, ret);
7279 goto error;
7280 }
7281
7282 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7283 true);
7284 if (IS_ERR(wc.replay_dest)) {
7285 ret = PTR_ERR(wc.replay_dest);
7286
7287 /*
7288 * We didn't find the subvol, likely because it was
7289 * deleted. This is ok, simply skip this log and go to
7290 * the next one.
7291 *
7292 * We need to exclude the root because we can't have
7293 * other log replays overwriting this log as we'll read
7294 * it back in a few more times. This will keep our
7295 * block from being modified, and we'll just bail for
7296 * each subsequent pass.
7297 */
7298 if (ret == -ENOENT)
7299 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7300 btrfs_put_root(log);
7301
7302 if (!ret)
7303 goto next;
7304 btrfs_abort_transaction(trans, ret);
7305 goto error;
7306 }
7307
7308 wc.replay_dest->log_root = log;
7309 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7310 if (ret)
7311 /* The loop needs to continue due to the root refs */
7312 btrfs_abort_transaction(trans, ret);
7313 else
7314 ret = walk_log_tree(trans, log, &wc);
7315
7316 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7317 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7318 path);
7319 if (ret)
7320 btrfs_abort_transaction(trans, ret);
7321 }
7322
7323 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7324 struct btrfs_root *root = wc.replay_dest;
7325
7326 btrfs_release_path(path);
7327
7328 /*
7329 * We have just replayed everything, and the highest
7330 * objectid of fs roots probably has changed in case
7331 * some inode_item's got replayed.
7332 *
7333 * root->objectid_mutex is not acquired as log replay
7334 * could only happen during mount.
7335 */
7336 ret = btrfs_init_root_free_objectid(root);
7337 if (ret)
7338 btrfs_abort_transaction(trans, ret);
7339 }
7340
7341 wc.replay_dest->log_root = NULL;
7342 btrfs_put_root(wc.replay_dest);
7343 btrfs_put_root(log);
7344
7345 if (ret)
7346 goto error;
7347next:
7348 if (found_key.offset == 0)
7349 break;
7350 key.offset = found_key.offset - 1;
7351 }
7352 btrfs_release_path(path);
7353
7354 /* step one is to pin it all, step two is to replay just inodes */
7355 if (wc.pin) {
7356 wc.pin = 0;
7357 wc.process_func = replay_one_buffer;
7358 wc.stage = LOG_WALK_REPLAY_INODES;
7359 goto again;
7360 }
7361 /* step three is to replay everything */
7362 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7363 wc.stage++;
7364 goto again;
7365 }
7366
7367 btrfs_free_path(path);
7368
7369 /* step 4: commit the transaction, which also unpins the blocks */
7370 ret = btrfs_commit_transaction(trans);
7371 if (ret)
7372 return ret;
7373
7374 log_root_tree->log_root = NULL;
7375 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7376 btrfs_put_root(log_root_tree);
7377
7378 return 0;
7379error:
7380 if (wc.trans)
7381 btrfs_end_transaction(wc.trans);
7382 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7383 btrfs_free_path(path);
7384 return ret;
7385}
7386
7387/*
7388 * there are some corner cases where we want to force a full
7389 * commit instead of allowing a directory to be logged.
7390 *
7391 * They revolve around files there were unlinked from the directory, and
7392 * this function updates the parent directory so that a full commit is
7393 * properly done if it is fsync'd later after the unlinks are done.
7394 *
7395 * Must be called before the unlink operations (updates to the subvolume tree,
7396 * inodes, etc) are done.
7397 */
7398void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7399 struct btrfs_inode *dir, struct btrfs_inode *inode,
7400 bool for_rename)
7401{
7402 /*
7403 * when we're logging a file, if it hasn't been renamed
7404 * or unlinked, and its inode is fully committed on disk,
7405 * we don't have to worry about walking up the directory chain
7406 * to log its parents.
7407 *
7408 * So, we use the last_unlink_trans field to put this transid
7409 * into the file. When the file is logged we check it and
7410 * don't log the parents if the file is fully on disk.
7411 */
7412 mutex_lock(&inode->log_mutex);
7413 inode->last_unlink_trans = trans->transid;
7414 mutex_unlock(&inode->log_mutex);
7415
7416 if (!for_rename)
7417 return;
7418
7419 /*
7420 * If this directory was already logged, any new names will be logged
7421 * with btrfs_log_new_name() and old names will be deleted from the log
7422 * tree with btrfs_del_dir_entries_in_log() or with
7423 * btrfs_del_inode_ref_in_log().
7424 */
7425 if (inode_logged(trans, dir, NULL) == 1)
7426 return;
7427
7428 /*
7429 * If the inode we're about to unlink was logged before, the log will be
7430 * properly updated with the new name with btrfs_log_new_name() and the
7431 * old name removed with btrfs_del_dir_entries_in_log() or with
7432 * btrfs_del_inode_ref_in_log().
7433 */
7434 if (inode_logged(trans, inode, NULL) == 1)
7435 return;
7436
7437 /*
7438 * when renaming files across directories, if the directory
7439 * there we're unlinking from gets fsync'd later on, there's
7440 * no way to find the destination directory later and fsync it
7441 * properly. So, we have to be conservative and force commits
7442 * so the new name gets discovered.
7443 */
7444 mutex_lock(&dir->log_mutex);
7445 dir->last_unlink_trans = trans->transid;
7446 mutex_unlock(&dir->log_mutex);
7447}
7448
7449/*
7450 * Make sure that if someone attempts to fsync the parent directory of a deleted
7451 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7452 * that after replaying the log tree of the parent directory's root we will not
7453 * see the snapshot anymore and at log replay time we will not see any log tree
7454 * corresponding to the deleted snapshot's root, which could lead to replaying
7455 * it after replaying the log tree of the parent directory (which would replay
7456 * the snapshot delete operation).
7457 *
7458 * Must be called before the actual snapshot destroy operation (updates to the
7459 * parent root and tree of tree roots trees, etc) are done.
7460 */
7461void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7462 struct btrfs_inode *dir)
7463{
7464 mutex_lock(&dir->log_mutex);
7465 dir->last_unlink_trans = trans->transid;
7466 mutex_unlock(&dir->log_mutex);
7467}
7468
7469/*
7470 * Call this when creating a subvolume in a directory.
7471 * Because we don't commit a transaction when creating a subvolume, we can't
7472 * allow the directory pointing to the subvolume to be logged with an entry that
7473 * points to an unpersisted root if we are still in the transaction used to
7474 * create the subvolume, so make any attempt to log the directory to result in a
7475 * full log sync.
7476 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7477 * for full commit when renaming a subvolume.
7478 */
7479void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7480 struct btrfs_inode *dir)
7481{
7482 mutex_lock(&dir->log_mutex);
7483 dir->last_unlink_trans = trans->transid;
7484 mutex_unlock(&dir->log_mutex);
7485}
7486
7487/*
7488 * Update the log after adding a new name for an inode.
7489 *
7490 * @trans: Transaction handle.
7491 * @old_dentry: The dentry associated with the old name and the old
7492 * parent directory.
7493 * @old_dir: The inode of the previous parent directory for the case
7494 * of a rename. For a link operation, it must be NULL.
7495 * @old_dir_index: The index number associated with the old name, meaningful
7496 * only for rename operations (when @old_dir is not NULL).
7497 * Ignored for link operations.
7498 * @parent: The dentry associated with the directory under which the
7499 * new name is located.
7500 *
7501 * Call this after adding a new name for an inode, as a result of a link or
7502 * rename operation, and it will properly update the log to reflect the new name.
7503 */
7504void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7505 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7506 u64 old_dir_index, struct dentry *parent)
7507{
7508 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7509 struct btrfs_root *root = inode->root;
7510 struct btrfs_log_ctx ctx;
7511 bool log_pinned = false;
7512 int ret;
7513
7514 /*
7515 * this will force the logging code to walk the dentry chain
7516 * up for the file
7517 */
7518 if (!S_ISDIR(inode->vfs_inode.i_mode))
7519 inode->last_unlink_trans = trans->transid;
7520
7521 /*
7522 * if this inode hasn't been logged and directory we're renaming it
7523 * from hasn't been logged, we don't need to log it
7524 */
7525 ret = inode_logged(trans, inode, NULL);
7526 if (ret < 0) {
7527 goto out;
7528 } else if (ret == 0) {
7529 if (!old_dir)
7530 return;
7531 /*
7532 * If the inode was not logged and we are doing a rename (old_dir is not
7533 * NULL), check if old_dir was logged - if it was not we can return and
7534 * do nothing.
7535 */
7536 ret = inode_logged(trans, old_dir, NULL);
7537 if (ret < 0)
7538 goto out;
7539 else if (ret == 0)
7540 return;
7541 }
7542 ret = 0;
7543
7544 /*
7545 * If we are doing a rename (old_dir is not NULL) from a directory that
7546 * was previously logged, make sure that on log replay we get the old
7547 * dir entry deleted. This is needed because we will also log the new
7548 * name of the renamed inode, so we need to make sure that after log
7549 * replay we don't end up with both the new and old dir entries existing.
7550 */
7551 if (old_dir && old_dir->logged_trans == trans->transid) {
7552 struct btrfs_root *log = old_dir->root->log_root;
7553 struct btrfs_path *path;
7554 struct fscrypt_name fname;
7555
7556 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7557
7558 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7559 &old_dentry->d_name, 0, &fname);
7560 if (ret)
7561 goto out;
7562 /*
7563 * We have two inodes to update in the log, the old directory and
7564 * the inode that got renamed, so we must pin the log to prevent
7565 * anyone from syncing the log until we have updated both inodes
7566 * in the log.
7567 */
7568 ret = join_running_log_trans(root);
7569 /*
7570 * At least one of the inodes was logged before, so this should
7571 * not fail, but if it does, it's not serious, just bail out and
7572 * mark the log for a full commit.
7573 */
7574 if (WARN_ON_ONCE(ret < 0)) {
7575 fscrypt_free_filename(&fname);
7576 goto out;
7577 }
7578
7579 log_pinned = true;
7580
7581 path = btrfs_alloc_path();
7582 if (!path) {
7583 ret = -ENOMEM;
7584 fscrypt_free_filename(&fname);
7585 goto out;
7586 }
7587
7588 /*
7589 * Other concurrent task might be logging the old directory,
7590 * as it can be triggered when logging other inode that had or
7591 * still has a dentry in the old directory. We lock the old
7592 * directory's log_mutex to ensure the deletion of the old
7593 * name is persisted, because during directory logging we
7594 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7595 * the old name's dir index item is in the delayed items, so
7596 * it could be missed by an in progress directory logging.
7597 */
7598 mutex_lock(&old_dir->log_mutex);
7599 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7600 &fname.disk_name, old_dir_index);
7601 if (ret > 0) {
7602 /*
7603 * The dentry does not exist in the log, so record its
7604 * deletion.
7605 */
7606 btrfs_release_path(path);
7607 ret = insert_dir_log_key(trans, log, path,
7608 btrfs_ino(old_dir),
7609 old_dir_index, old_dir_index);
7610 }
7611 mutex_unlock(&old_dir->log_mutex);
7612
7613 btrfs_free_path(path);
7614 fscrypt_free_filename(&fname);
7615 if (ret < 0)
7616 goto out;
7617 }
7618
7619 btrfs_init_log_ctx(&ctx, inode);
7620 ctx.logging_new_name = true;
7621 btrfs_init_log_ctx_scratch_eb(&ctx);
7622 /*
7623 * We don't care about the return value. If we fail to log the new name
7624 * then we know the next attempt to sync the log will fallback to a full
7625 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7626 * we don't need to worry about getting a log committed that has an
7627 * inconsistent state after a rename operation.
7628 */
7629 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7630 free_extent_buffer(ctx.scratch_eb);
7631 ASSERT(list_empty(&ctx.conflict_inodes));
7632out:
7633 /*
7634 * If an error happened mark the log for a full commit because it's not
7635 * consistent and up to date or we couldn't find out if one of the
7636 * inodes was logged before in this transaction. Do it before unpinning
7637 * the log, to avoid any races with someone else trying to commit it.
7638 */
7639 if (ret < 0)
7640 btrfs_set_log_full_commit(trans);
7641 if (log_pinned)
7642 btrfs_end_log_trans(root);
7643}
7644
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "ctree.h"
12#include "tree-log.h"
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "inode-map.h"
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
29#define LOG_OTHER_INODE 2
30
31/*
32 * directory trouble cases
33 *
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
38 *
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
44 *
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
48 *
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
51 *
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
55 *
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
58 *
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
61 *
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
66 *
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
72 */
73
74/*
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
79 *
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
82 */
83#define LOG_WALK_PIN_ONLY 0
84#define LOG_WALK_REPLAY_INODES 1
85#define LOG_WALK_REPLAY_DIR_INDEX 2
86#define LOG_WALK_REPLAY_ALL 3
87
88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
90 int inode_only,
91 const loff_t start,
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
102
103/*
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
106 *
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
110 *
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
116 *
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
120 *
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
124 */
125
126/*
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
130 */
131static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
134{
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 int ret = 0;
137
138 mutex_lock(&root->log_mutex);
139
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
142 ret = -EAGAIN;
143 goto out;
144 }
145
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 }
152 } else {
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
157 if (ret)
158 goto out;
159
160 ret = btrfs_add_log_tree(trans, root);
161 if (ret)
162 goto out;
163
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
166 }
167
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
170 if (ctx) {
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
174 }
175
176out:
177 mutex_unlock(&root->log_mutex);
178 return ret;
179}
180
181/*
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
185 */
186static int join_running_log_trans(struct btrfs_root *root)
187{
188 int ret = -ENOENT;
189
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
193
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
196 ret = 0;
197 atomic_inc(&root->log_writers);
198 }
199 mutex_unlock(&root->log_mutex);
200 return ret;
201}
202
203/*
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
207 */
208int btrfs_pin_log_trans(struct btrfs_root *root)
209{
210 int ret = -ENOENT;
211
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215 return ret;
216}
217
218/*
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
221 */
222void btrfs_end_log_trans(struct btrfs_root *root)
223{
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /*
226 * Implicit memory barrier after atomic_dec_and_test
227 */
228 if (waitqueue_active(&root->log_writer_wait))
229 wake_up(&root->log_writer_wait);
230 }
231}
232
233
234/*
235 * the walk control struct is used to pass state down the chain when
236 * processing the log tree. The stage field tells us which part
237 * of the log tree processing we are currently doing. The others
238 * are state fields used for that specific part
239 */
240struct walk_control {
241 /* should we free the extent on disk when done? This is used
242 * at transaction commit time while freeing a log tree
243 */
244 int free;
245
246 /* should we write out the extent buffer? This is used
247 * while flushing the log tree to disk during a sync
248 */
249 int write;
250
251 /* should we wait for the extent buffer io to finish? Also used
252 * while flushing the log tree to disk for a sync
253 */
254 int wait;
255
256 /* pin only walk, we record which extents on disk belong to the
257 * log trees
258 */
259 int pin;
260
261 /* what stage of the replay code we're currently in */
262 int stage;
263
264 /* the root we are currently replaying */
265 struct btrfs_root *replay_dest;
266
267 /* the trans handle for the current replay */
268 struct btrfs_trans_handle *trans;
269
270 /* the function that gets used to process blocks we find in the
271 * tree. Note the extent_buffer might not be up to date when it is
272 * passed in, and it must be checked or read if you need the data
273 * inside it
274 */
275 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen, int level);
277};
278
279/*
280 * process_func used to pin down extents, write them or wait on them
281 */
282static int process_one_buffer(struct btrfs_root *log,
283 struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen, int level)
285{
286 struct btrfs_fs_info *fs_info = log->fs_info;
287 int ret = 0;
288
289 /*
290 * If this fs is mixed then we need to be able to process the leaves to
291 * pin down any logged extents, so we have to read the block.
292 */
293 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
294 ret = btrfs_read_buffer(eb, gen, level, NULL);
295 if (ret)
296 return ret;
297 }
298
299 if (wc->pin)
300 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
301 eb->len);
302
303 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
304 if (wc->pin && btrfs_header_level(eb) == 0)
305 ret = btrfs_exclude_logged_extents(fs_info, eb);
306 if (wc->write)
307 btrfs_write_tree_block(eb);
308 if (wc->wait)
309 btrfs_wait_tree_block_writeback(eb);
310 }
311 return ret;
312}
313
314/*
315 * Item overwrite used by replay and tree logging. eb, slot and key all refer
316 * to the src data we are copying out.
317 *
318 * root is the tree we are copying into, and path is a scratch
319 * path for use in this function (it should be released on entry and
320 * will be released on exit).
321 *
322 * If the key is already in the destination tree the existing item is
323 * overwritten. If the existing item isn't big enough, it is extended.
324 * If it is too large, it is truncated.
325 *
326 * If the key isn't in the destination yet, a new item is inserted.
327 */
328static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 struct btrfs_root *root,
330 struct btrfs_path *path,
331 struct extent_buffer *eb, int slot,
332 struct btrfs_key *key)
333{
334 struct btrfs_fs_info *fs_info = root->fs_info;
335 int ret;
336 u32 item_size;
337 u64 saved_i_size = 0;
338 int save_old_i_size = 0;
339 unsigned long src_ptr;
340 unsigned long dst_ptr;
341 int overwrite_root = 0;
342 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
343
344 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
345 overwrite_root = 1;
346
347 item_size = btrfs_item_size_nr(eb, slot);
348 src_ptr = btrfs_item_ptr_offset(eb, slot);
349
350 /* look for the key in the destination tree */
351 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
352 if (ret < 0)
353 return ret;
354
355 if (ret == 0) {
356 char *src_copy;
357 char *dst_copy;
358 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
359 path->slots[0]);
360 if (dst_size != item_size)
361 goto insert;
362
363 if (item_size == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367 dst_copy = kmalloc(item_size, GFP_NOFS);
368 src_copy = kmalloc(item_size, GFP_NOFS);
369 if (!dst_copy || !src_copy) {
370 btrfs_release_path(path);
371 kfree(dst_copy);
372 kfree(src_copy);
373 return -ENOMEM;
374 }
375
376 read_extent_buffer(eb, src_copy, src_ptr, item_size);
377
378 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
380 item_size);
381 ret = memcmp(dst_copy, src_copy, item_size);
382
383 kfree(dst_copy);
384 kfree(src_copy);
385 /*
386 * they have the same contents, just return, this saves
387 * us from cowing blocks in the destination tree and doing
388 * extra writes that may not have been done by a previous
389 * sync
390 */
391 if (ret == 0) {
392 btrfs_release_path(path);
393 return 0;
394 }
395
396 /*
397 * We need to load the old nbytes into the inode so when we
398 * replay the extents we've logged we get the right nbytes.
399 */
400 if (inode_item) {
401 struct btrfs_inode_item *item;
402 u64 nbytes;
403 u32 mode;
404
405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 struct btrfs_inode_item);
407 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 item = btrfs_item_ptr(eb, slot,
409 struct btrfs_inode_item);
410 btrfs_set_inode_nbytes(eb, item, nbytes);
411
412 /*
413 * If this is a directory we need to reset the i_size to
414 * 0 so that we can set it up properly when replaying
415 * the rest of the items in this log.
416 */
417 mode = btrfs_inode_mode(eb, item);
418 if (S_ISDIR(mode))
419 btrfs_set_inode_size(eb, item, 0);
420 }
421 } else if (inode_item) {
422 struct btrfs_inode_item *item;
423 u32 mode;
424
425 /*
426 * New inode, set nbytes to 0 so that the nbytes comes out
427 * properly when we replay the extents.
428 */
429 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 btrfs_set_inode_nbytes(eb, item, 0);
431
432 /*
433 * If this is a directory we need to reset the i_size to 0 so
434 * that we can set it up properly when replaying the rest of
435 * the items in this log.
436 */
437 mode = btrfs_inode_mode(eb, item);
438 if (S_ISDIR(mode))
439 btrfs_set_inode_size(eb, item, 0);
440 }
441insert:
442 btrfs_release_path(path);
443 /* try to insert the key into the destination tree */
444 path->skip_release_on_error = 1;
445 ret = btrfs_insert_empty_item(trans, root, path,
446 key, item_size);
447 path->skip_release_on_error = 0;
448
449 /* make sure any existing item is the correct size */
450 if (ret == -EEXIST || ret == -EOVERFLOW) {
451 u32 found_size;
452 found_size = btrfs_item_size_nr(path->nodes[0],
453 path->slots[0]);
454 if (found_size > item_size)
455 btrfs_truncate_item(fs_info, path, item_size, 1);
456 else if (found_size < item_size)
457 btrfs_extend_item(fs_info, path,
458 item_size - found_size);
459 } else if (ret) {
460 return ret;
461 }
462 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
463 path->slots[0]);
464
465 /* don't overwrite an existing inode if the generation number
466 * was logged as zero. This is done when the tree logging code
467 * is just logging an inode to make sure it exists after recovery.
468 *
469 * Also, don't overwrite i_size on directories during replay.
470 * log replay inserts and removes directory items based on the
471 * state of the tree found in the subvolume, and i_size is modified
472 * as it goes
473 */
474 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 struct btrfs_inode_item *src_item;
476 struct btrfs_inode_item *dst_item;
477
478 src_item = (struct btrfs_inode_item *)src_ptr;
479 dst_item = (struct btrfs_inode_item *)dst_ptr;
480
481 if (btrfs_inode_generation(eb, src_item) == 0) {
482 struct extent_buffer *dst_eb = path->nodes[0];
483 const u64 ino_size = btrfs_inode_size(eb, src_item);
484
485 /*
486 * For regular files an ino_size == 0 is used only when
487 * logging that an inode exists, as part of a directory
488 * fsync, and the inode wasn't fsynced before. In this
489 * case don't set the size of the inode in the fs/subvol
490 * tree, otherwise we would be throwing valid data away.
491 */
492 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
493 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
494 ino_size != 0) {
495 struct btrfs_map_token token;
496
497 btrfs_init_map_token(&token);
498 btrfs_set_token_inode_size(dst_eb, dst_item,
499 ino_size, &token);
500 }
501 goto no_copy;
502 }
503
504 if (overwrite_root &&
505 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
507 save_old_i_size = 1;
508 saved_i_size = btrfs_inode_size(path->nodes[0],
509 dst_item);
510 }
511 }
512
513 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
514 src_ptr, item_size);
515
516 if (save_old_i_size) {
517 struct btrfs_inode_item *dst_item;
518 dst_item = (struct btrfs_inode_item *)dst_ptr;
519 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
520 }
521
522 /* make sure the generation is filled in */
523 if (key->type == BTRFS_INODE_ITEM_KEY) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 btrfs_set_inode_generation(path->nodes[0], dst_item,
528 trans->transid);
529 }
530 }
531no_copy:
532 btrfs_mark_buffer_dirty(path->nodes[0]);
533 btrfs_release_path(path);
534 return 0;
535}
536
537/*
538 * simple helper to read an inode off the disk from a given root
539 * This can only be called for subvolume roots and not for the log
540 */
541static noinline struct inode *read_one_inode(struct btrfs_root *root,
542 u64 objectid)
543{
544 struct btrfs_key key;
545 struct inode *inode;
546
547 key.objectid = objectid;
548 key.type = BTRFS_INODE_ITEM_KEY;
549 key.offset = 0;
550 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
551 if (IS_ERR(inode)) {
552 inode = NULL;
553 } else if (is_bad_inode(inode)) {
554 iput(inode);
555 inode = NULL;
556 }
557 return inode;
558}
559
560/* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
562 * on exit.
563 *
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
568 *
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
571 */
572static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
577{
578 struct btrfs_fs_info *fs_info = root->fs_info;
579 int found_type;
580 u64 extent_end;
581 u64 start = key->offset;
582 u64 nbytes = 0;
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
585 unsigned long size;
586 int ret = 0;
587
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
590
591 if (found_type == BTRFS_FILE_EXTENT_REG ||
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
595
596 /*
597 * We don't add to the inodes nbytes if we are prealloc or a
598 * hole.
599 */
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 nbytes = 0;
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 size = btrfs_file_extent_inline_len(eb, slot, item);
604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 extent_end = ALIGN(start + size,
606 fs_info->sectorsize);
607 } else {
608 ret = 0;
609 goto out;
610 }
611
612 inode = read_one_inode(root, key->objectid);
613 if (!inode) {
614 ret = -EIO;
615 goto out;
616 }
617
618 /*
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
622 */
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
625
626 if (ret == 0 &&
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
633
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
637
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 sizeof(cmp1));
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 sizeof(cmp2));
642
643 /*
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
646 */
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 btrfs_release_path(path);
649 goto out;
650 }
651 }
652 btrfs_release_path(path);
653
654 /* drop any overlapping extents */
655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (ret)
657 goto out;
658
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 u64 offset;
662 unsigned long dest_offset;
663 struct btrfs_key ins;
664
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
667 goto update_inode;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 /*
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 */
691 ret = btrfs_qgroup_trace_extent(trans, fs_info,
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
694 GFP_NOFS);
695 if (ret < 0)
696 goto out;
697
698 if (ins.objectid > 0) {
699 u64 csum_start;
700 u64 csum_end;
701 LIST_HEAD(ordered_sums);
702 /*
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
705 */
706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 ins.offset);
708 if (ret == 0) {
709 ret = btrfs_inc_extent_ref(trans, root,
710 ins.objectid, ins.offset,
711 0, root->root_key.objectid,
712 key->objectid, offset);
713 if (ret)
714 goto out;
715 } else {
716 /*
717 * insert the extent pointer in the extent
718 * allocation tree
719 */
720 ret = btrfs_alloc_logged_file_extent(trans,
721 fs_info,
722 root->root_key.objectid,
723 key->objectid, offset, &ins);
724 if (ret)
725 goto out;
726 }
727 btrfs_release_path(path);
728
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
737 }
738
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
741 &ordered_sums, 0);
742 if (ret)
743 goto out;
744 /*
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
756 *
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
760 *
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
764 *
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
769 *
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 *
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 *
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
792 */
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
798 if (!ret)
799 ret = btrfs_del_csums(trans, fs_info,
800 sums->bytenr,
801 sums->len);
802 if (!ret)
803 ret = btrfs_csum_file_blocks(trans,
804 fs_info->csum_root, sums);
805 list_del(&sums->list);
806 kfree(sums);
807 }
808 if (ret)
809 goto out;
810 } else {
811 btrfs_release_path(path);
812 }
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
816 if (ret)
817 goto out;
818 }
819
820 inode_add_bytes(inode, nbytes);
821update_inode:
822 ret = btrfs_update_inode(trans, root, inode);
823out:
824 if (inode)
825 iput(inode);
826 return ret;
827}
828
829/*
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
833 *
834 * This is a helper function to do the unlink of a specific directory
835 * item
836 */
837static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
840 struct btrfs_inode *dir,
841 struct btrfs_dir_item *di)
842{
843 struct inode *inode;
844 char *name;
845 int name_len;
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
848 int ret;
849
850 leaf = path->nodes[0];
851
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
855 if (!name)
856 return -ENOMEM;
857
858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 btrfs_release_path(path);
860
861 inode = read_one_inode(root, location.objectid);
862 if (!inode) {
863 ret = -EIO;
864 goto out;
865 }
866
867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 if (ret)
869 goto out;
870
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans);
877out:
878 kfree(name);
879 iput(inode);
880 return ret;
881}
882
883/*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
888static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892{
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915out:
916 btrfs_release_path(path);
917 return match;
918}
919
920/*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
930static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
934{
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 path->slots[0],
958 ref_objectid,
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981out:
982 btrfs_free_path(path);
983 return match;
984}
985
986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 struct btrfs_root *log_root,
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
995{
996 int ret;
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
1000 struct btrfs_dir_item *di;
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
1003
1004again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010 if (ret == 0) {
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
1014
1015 leaf = path->nodes[0];
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
1020 if (search_key.objectid == search_key.offset)
1021 return 1;
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 while (ptr < ptr_end) {
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 if (!victim_name)
1035 return -ENOMEM;
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
1044 victim_name_len)) {
1045 inc_nlink(&inode->vfs_inode);
1046 btrfs_release_path(path);
1047
1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 victim_name, victim_name_len);
1050 kfree(victim_name);
1051 if (ret)
1052 return ret;
1053 ret = btrfs_run_delayed_items(trans);
1054 if (ret)
1055 return ret;
1056 *search_done = 1;
1057 goto again;
1058 }
1059 kfree(victim_name);
1060
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 }
1063
1064 /*
1065 * NOTE: we have searched root tree and checked the
1066 * corresponding ref, it does not need to check again.
1067 */
1068 *search_done = 1;
1069 }
1070 btrfs_release_path(path);
1071
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1075 0);
1076 if (!IS_ERR_OR_NULL(extref)) {
1077 u32 item_size;
1078 u32 cur_offset = 0;
1079 unsigned long base;
1080 struct inode *victim_parent;
1081
1082 leaf = path->nodes[0];
1083
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087 while (cur_offset < item_size) {
1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 goto next;
1094
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096 if (!victim_name)
1097 return -ENOMEM;
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 victim_name_len);
1100
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 victim_name,
1105 victim_name_len);
1106 ret = 0;
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len)) {
1110 ret = -ENOENT;
1111 victim_parent = read_one_inode(root,
1112 parent_objectid);
1113 if (victim_parent) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1116
1117 ret = btrfs_unlink_inode(trans, root,
1118 BTRFS_I(victim_parent),
1119 inode,
1120 victim_name,
1121 victim_name_len);
1122 if (!ret)
1123 ret = btrfs_run_delayed_items(
1124 trans);
1125 }
1126 iput(victim_parent);
1127 kfree(victim_name);
1128 if (ret)
1129 return ret;
1130 *search_done = 1;
1131 goto again;
1132 }
1133 kfree(victim_name);
1134next:
1135 cur_offset += victim_name_len + sizeof(*extref);
1136 }
1137 *search_done = 1;
1138 }
1139 btrfs_release_path(path);
1140
1141 /* look for a conflicting sequence number */
1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 ref_index, name, namelen, 0);
1144 if (di && !IS_ERR(di)) {
1145 ret = drop_one_dir_item(trans, root, path, dir, di);
1146 if (ret)
1147 return ret;
1148 }
1149 btrfs_release_path(path);
1150
1151 /* look for a conflicing name */
1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153 name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1156 if (ret)
1157 return ret;
1158 }
1159 btrfs_release_path(path);
1160
1161 return 0;
1162}
1163
1164static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
1167{
1168 struct btrfs_inode_extref *extref;
1169
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1174 if (*name == NULL)
1175 return -ENOMEM;
1176
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *namelen);
1179
1180 if (index)
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186}
1187
1188static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1190{
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202 if (index)
1203 *index = btrfs_inode_ref_index(eb, ref);
1204
1205 return 0;
1206}
1207
1208/*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
1215static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1220 int log_slot,
1221 struct btrfs_key *key)
1222{
1223 int ret;
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1227
1228again:
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 if (ret > 0) {
1232 ret = 0;
1233 goto out;
1234 }
1235 if (ret < 0)
1236 goto out;
1237
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1242 char *name = NULL;
1243 int namelen;
1244 u64 parent_id;
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL, &parent_id);
1249 } else {
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 NULL);
1253 }
1254 if (ret)
1255 goto out;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 parent_id, name,
1260 namelen, NULL);
1261 else
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 namelen, NULL);
1264
1265 if (!ret) {
1266 struct inode *dir;
1267
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 kfree(name);
1273 goto out;
1274 }
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1277 kfree(name);
1278 iput(dir);
1279 if (ret)
1280 goto out;
1281 goto again;
1282 }
1283
1284 kfree(name);
1285 ref_ptr += namelen;
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1288 else
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 }
1291 ret = 0;
1292 out:
1293 btrfs_release_path(path);
1294 return ret;
1295}
1296
1297/*
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function. (it should be released on return).
1302 */
1303static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root,
1305 struct btrfs_root *log,
1306 struct btrfs_path *path,
1307 struct extent_buffer *eb, int slot,
1308 struct btrfs_key *key)
1309{
1310 struct inode *dir = NULL;
1311 struct inode *inode = NULL;
1312 unsigned long ref_ptr;
1313 unsigned long ref_end;
1314 char *name = NULL;
1315 int namelen;
1316 int ret;
1317 int search_done = 0;
1318 int log_ref_ver = 0;
1319 u64 parent_objectid;
1320 u64 inode_objectid;
1321 u64 ref_index = 0;
1322 int ref_struct_size;
1323
1324 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326
1327 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 struct btrfs_inode_extref *r;
1329
1330 ref_struct_size = sizeof(struct btrfs_inode_extref);
1331 log_ref_ver = 1;
1332 r = (struct btrfs_inode_extref *)ref_ptr;
1333 parent_objectid = btrfs_inode_extref_parent(eb, r);
1334 } else {
1335 ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 parent_objectid = key->offset;
1337 }
1338 inode_objectid = key->objectid;
1339
1340 /*
1341 * it is possible that we didn't log all the parent directories
1342 * for a given inode. If we don't find the dir, just don't
1343 * copy the back ref in. The link count fixup code will take
1344 * care of the rest
1345 */
1346 dir = read_one_inode(root, parent_objectid);
1347 if (!dir) {
1348 ret = -ENOENT;
1349 goto out;
1350 }
1351
1352 inode = read_one_inode(root, inode_objectid);
1353 if (!inode) {
1354 ret = -EIO;
1355 goto out;
1356 }
1357
1358 while (ref_ptr < ref_end) {
1359 if (log_ref_ver) {
1360 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 &ref_index, &parent_objectid);
1362 /*
1363 * parent object can change from one array
1364 * item to another.
1365 */
1366 if (!dir)
1367 dir = read_one_inode(root, parent_objectid);
1368 if (!dir) {
1369 ret = -ENOENT;
1370 goto out;
1371 }
1372 } else {
1373 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index);
1375 }
1376 if (ret)
1377 goto out;
1378
1379 /* if we already have a perfect match, we're done */
1380 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 btrfs_ino(BTRFS_I(inode)), ref_index,
1382 name, namelen)) {
1383 /*
1384 * look for a conflicting back reference in the
1385 * metadata. if we find one we have to unlink that name
1386 * of the file before we add our new link. Later on, we
1387 * overwrite any existing back reference, and we don't
1388 * want to create dangling pointers in the directory.
1389 */
1390
1391 if (!search_done) {
1392 ret = __add_inode_ref(trans, root, path, log,
1393 BTRFS_I(dir),
1394 BTRFS_I(inode),
1395 inode_objectid,
1396 parent_objectid,
1397 ref_index, name, namelen,
1398 &search_done);
1399 if (ret) {
1400 if (ret == 1)
1401 ret = 0;
1402 goto out;
1403 }
1404 }
1405
1406 /* insert our name */
1407 ret = btrfs_add_link(trans, BTRFS_I(dir),
1408 BTRFS_I(inode),
1409 name, namelen, 0, ref_index);
1410 if (ret)
1411 goto out;
1412
1413 btrfs_update_inode(trans, root, inode);
1414 }
1415
1416 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1417 kfree(name);
1418 name = NULL;
1419 if (log_ref_ver) {
1420 iput(dir);
1421 dir = NULL;
1422 }
1423 }
1424
1425 /*
1426 * Before we overwrite the inode reference item in the subvolume tree
1427 * with the item from the log tree, we must unlink all names from the
1428 * parent directory that are in the subvolume's tree inode reference
1429 * item, otherwise we end up with an inconsistent subvolume tree where
1430 * dir index entries exist for a name but there is no inode reference
1431 * item with the same name.
1432 */
1433 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 key);
1435 if (ret)
1436 goto out;
1437
1438 /* finally write the back reference in the inode */
1439 ret = overwrite_item(trans, root, path, eb, slot, key);
1440out:
1441 btrfs_release_path(path);
1442 kfree(name);
1443 iput(dir);
1444 iput(inode);
1445 return ret;
1446}
1447
1448static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root, u64 ino)
1450{
1451 int ret;
1452
1453 ret = btrfs_insert_orphan_item(trans, root, ino);
1454 if (ret == -EEXIST)
1455 ret = 0;
1456
1457 return ret;
1458}
1459
1460static int count_inode_extrefs(struct btrfs_root *root,
1461 struct btrfs_inode *inode, struct btrfs_path *path)
1462{
1463 int ret = 0;
1464 int name_len;
1465 unsigned int nlink = 0;
1466 u32 item_size;
1467 u32 cur_offset = 0;
1468 u64 inode_objectid = btrfs_ino(inode);
1469 u64 offset = 0;
1470 unsigned long ptr;
1471 struct btrfs_inode_extref *extref;
1472 struct extent_buffer *leaf;
1473
1474 while (1) {
1475 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 &extref, &offset);
1477 if (ret)
1478 break;
1479
1480 leaf = path->nodes[0];
1481 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1483 cur_offset = 0;
1484
1485 while (cur_offset < item_size) {
1486 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 name_len = btrfs_inode_extref_name_len(leaf, extref);
1488
1489 nlink++;
1490
1491 cur_offset += name_len + sizeof(*extref);
1492 }
1493
1494 offset++;
1495 btrfs_release_path(path);
1496 }
1497 btrfs_release_path(path);
1498
1499 if (ret < 0 && ret != -ENOENT)
1500 return ret;
1501 return nlink;
1502}
1503
1504static int count_inode_refs(struct btrfs_root *root,
1505 struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret;
1508 struct btrfs_key key;
1509 unsigned int nlink = 0;
1510 unsigned long ptr;
1511 unsigned long ptr_end;
1512 int name_len;
1513 u64 ino = btrfs_ino(inode);
1514
1515 key.objectid = ino;
1516 key.type = BTRFS_INODE_REF_KEY;
1517 key.offset = (u64)-1;
1518
1519 while (1) {
1520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 if (ret < 0)
1522 break;
1523 if (ret > 0) {
1524 if (path->slots[0] == 0)
1525 break;
1526 path->slots[0]--;
1527 }
1528process_slot:
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid != ino ||
1532 key.type != BTRFS_INODE_REF_KEY)
1533 break;
1534 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536 path->slots[0]);
1537 while (ptr < ptr_end) {
1538 struct btrfs_inode_ref *ref;
1539
1540 ref = (struct btrfs_inode_ref *)ptr;
1541 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542 ref);
1543 ptr = (unsigned long)(ref + 1) + name_len;
1544 nlink++;
1545 }
1546
1547 if (key.offset == 0)
1548 break;
1549 if (path->slots[0] > 0) {
1550 path->slots[0]--;
1551 goto process_slot;
1552 }
1553 key.offset--;
1554 btrfs_release_path(path);
1555 }
1556 btrfs_release_path(path);
1557
1558 return nlink;
1559}
1560
1561/*
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay. So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1566 *
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found. If it goes down to zero, the iput
1569 * will free the inode.
1570 */
1571static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct inode *inode)
1574{
1575 struct btrfs_path *path;
1576 int ret;
1577 u64 nlink = 0;
1578 u64 ino = btrfs_ino(BTRFS_I(inode));
1579
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 ret = count_inode_refs(root, BTRFS_I(inode), path);
1585 if (ret < 0)
1586 goto out;
1587
1588 nlink = ret;
1589
1590 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1591 if (ret < 0)
1592 goto out;
1593
1594 nlink += ret;
1595
1596 ret = 0;
1597
1598 if (nlink != inode->i_nlink) {
1599 set_nlink(inode, nlink);
1600 btrfs_update_inode(trans, root, inode);
1601 }
1602 BTRFS_I(inode)->index_cnt = (u64)-1;
1603
1604 if (inode->i_nlink == 0) {
1605 if (S_ISDIR(inode->i_mode)) {
1606 ret = replay_dir_deletes(trans, root, NULL, path,
1607 ino, 1);
1608 if (ret)
1609 goto out;
1610 }
1611 ret = insert_orphan_item(trans, root, ino);
1612 }
1613
1614out:
1615 btrfs_free_path(path);
1616 return ret;
1617}
1618
1619static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 struct btrfs_path *path)
1622{
1623 int ret;
1624 struct btrfs_key key;
1625 struct inode *inode;
1626
1627 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = (u64)-1;
1630 while (1) {
1631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 if (ret < 0)
1633 break;
1634
1635 if (ret == 1) {
1636 if (path->slots[0] == 0)
1637 break;
1638 path->slots[0]--;
1639 }
1640
1641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 key.type != BTRFS_ORPHAN_ITEM_KEY)
1644 break;
1645
1646 ret = btrfs_del_item(trans, root, path);
1647 if (ret)
1648 goto out;
1649
1650 btrfs_release_path(path);
1651 inode = read_one_inode(root, key.offset);
1652 if (!inode)
1653 return -EIO;
1654
1655 ret = fixup_inode_link_count(trans, root, inode);
1656 iput(inode);
1657 if (ret)
1658 goto out;
1659
1660 /*
1661 * fixup on a directory may create new entries,
1662 * make sure we always look for the highset possible
1663 * offset
1664 */
1665 key.offset = (u64)-1;
1666 }
1667 ret = 0;
1668out:
1669 btrfs_release_path(path);
1670 return ret;
1671}
1672
1673
1674/*
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done. The link count is incremented here
1677 * so the inode won't go away until we check it
1678 */
1679static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path,
1682 u64 objectid)
1683{
1684 struct btrfs_key key;
1685 int ret = 0;
1686 struct inode *inode;
1687
1688 inode = read_one_inode(root, objectid);
1689 if (!inode)
1690 return -EIO;
1691
1692 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693 key.type = BTRFS_ORPHAN_ITEM_KEY;
1694 key.offset = objectid;
1695
1696 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697
1698 btrfs_release_path(path);
1699 if (ret == 0) {
1700 if (!inode->i_nlink)
1701 set_nlink(inode, 1);
1702 else
1703 inc_nlink(inode);
1704 ret = btrfs_update_inode(trans, root, inode);
1705 } else if (ret == -EEXIST) {
1706 ret = 0;
1707 } else {
1708 BUG(); /* Logic Error */
1709 }
1710 iput(inode);
1711
1712 return ret;
1713}
1714
1715/*
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist. This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1719 */
1720static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 struct btrfs_root *root,
1722 u64 dirid, u64 index,
1723 char *name, int name_len,
1724 struct btrfs_key *location)
1725{
1726 struct inode *inode;
1727 struct inode *dir;
1728 int ret;
1729
1730 inode = read_one_inode(root, location->objectid);
1731 if (!inode)
1732 return -ENOENT;
1733
1734 dir = read_one_inode(root, dirid);
1735 if (!dir) {
1736 iput(inode);
1737 return -EIO;
1738 }
1739
1740 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 name_len, 1, index);
1742
1743 /* FIXME, put inode into FIXUP list */
1744
1745 iput(inode);
1746 iput(dir);
1747 return ret;
1748}
1749
1750/*
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1753 */
1754static bool name_in_log_ref(struct btrfs_root *log_root,
1755 const char *name, const int name_len,
1756 const u64 dirid, const u64 ino)
1757{
1758 struct btrfs_key search_key;
1759
1760 search_key.objectid = ino;
1761 search_key.type = BTRFS_INODE_REF_KEY;
1762 search_key.offset = dirid;
1763 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764 return true;
1765
1766 search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769 return true;
1770
1771 return false;
1772}
1773
1774/*
1775 * take a single entry in a log directory item and replay it into
1776 * the subvolume.
1777 *
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1780 * fix up tree.
1781 *
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped. fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
1786 *
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
1789 */
1790static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct extent_buffer *eb,
1794 struct btrfs_dir_item *di,
1795 struct btrfs_key *key)
1796{
1797 char *name;
1798 int name_len;
1799 struct btrfs_dir_item *dst_di;
1800 struct btrfs_key found_key;
1801 struct btrfs_key log_key;
1802 struct inode *dir;
1803 u8 log_type;
1804 int exists;
1805 int ret = 0;
1806 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807 bool name_added = false;
1808
1809 dir = read_one_inode(root, key->objectid);
1810 if (!dir)
1811 return -EIO;
1812
1813 name_len = btrfs_dir_name_len(eb, di);
1814 name = kmalloc(name_len, GFP_NOFS);
1815 if (!name) {
1816 ret = -ENOMEM;
1817 goto out;
1818 }
1819
1820 log_type = btrfs_dir_type(eb, di);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 name_len);
1823
1824 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 if (exists == 0)
1827 exists = 1;
1828 else
1829 exists = 0;
1830 btrfs_release_path(path);
1831
1832 if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834 name, name_len, 1);
1835 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837 key->objectid,
1838 key->offset, name,
1839 name_len, 1);
1840 } else {
1841 /* Corruption */
1842 ret = -EINVAL;
1843 goto out;
1844 }
1845 if (IS_ERR_OR_NULL(dst_di)) {
1846 /* we need a sequence number to insert, so we only
1847 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848 */
1849 if (key->type != BTRFS_DIR_INDEX_KEY)
1850 goto out;
1851 goto insert;
1852 }
1853
1854 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 /* the existing item matches the logged item */
1856 if (found_key.objectid == log_key.objectid &&
1857 found_key.type == log_key.type &&
1858 found_key.offset == log_key.offset &&
1859 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860 update_size = false;
1861 goto out;
1862 }
1863
1864 /*
1865 * don't drop the conflicting directory entry if the inode
1866 * for the new entry doesn't exist
1867 */
1868 if (!exists)
1869 goto out;
1870
1871 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872 if (ret)
1873 goto out;
1874
1875 if (key->type == BTRFS_DIR_INDEX_KEY)
1876 goto insert;
1877out:
1878 btrfs_release_path(path);
1879 if (!ret && update_size) {
1880 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881 ret = btrfs_update_inode(trans, root, dir);
1882 }
1883 kfree(name);
1884 iput(dir);
1885 if (!ret && name_added)
1886 ret = 1;
1887 return ret;
1888
1889insert:
1890 if (name_in_log_ref(root->log_root, name, name_len,
1891 key->objectid, log_key.objectid)) {
1892 /* The dentry will be added later. */
1893 ret = 0;
1894 update_size = false;
1895 goto out;
1896 }
1897 btrfs_release_path(path);
1898 ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 name, name_len, &log_key);
1900 if (ret && ret != -ENOENT && ret != -EEXIST)
1901 goto out;
1902 if (!ret)
1903 name_added = true;
1904 update_size = false;
1905 ret = 0;
1906 goto out;
1907}
1908
1909/*
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1914 */
1915static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path,
1918 struct extent_buffer *eb, int slot,
1919 struct btrfs_key *key)
1920{
1921 int ret = 0;
1922 u32 item_size = btrfs_item_size_nr(eb, slot);
1923 struct btrfs_dir_item *di;
1924 int name_len;
1925 unsigned long ptr;
1926 unsigned long ptr_end;
1927 struct btrfs_path *fixup_path = NULL;
1928
1929 ptr = btrfs_item_ptr_offset(eb, slot);
1930 ptr_end = ptr + item_size;
1931 while (ptr < ptr_end) {
1932 di = (struct btrfs_dir_item *)ptr;
1933 name_len = btrfs_dir_name_len(eb, di);
1934 ret = replay_one_name(trans, root, path, eb, di, key);
1935 if (ret < 0)
1936 break;
1937 ptr = (unsigned long)(di + 1);
1938 ptr += name_len;
1939
1940 /*
1941 * If this entry refers to a non-directory (directories can not
1942 * have a link count > 1) and it was added in the transaction
1943 * that was not committed, make sure we fixup the link count of
1944 * the inode it the entry points to. Otherwise something like
1945 * the following would result in a directory pointing to an
1946 * inode with a wrong link that does not account for this dir
1947 * entry:
1948 *
1949 * mkdir testdir
1950 * touch testdir/foo
1951 * touch testdir/bar
1952 * sync
1953 *
1954 * ln testdir/bar testdir/bar_link
1955 * ln testdir/foo testdir/foo_link
1956 * xfs_io -c "fsync" testdir/bar
1957 *
1958 * <power failure>
1959 *
1960 * mount fs, log replay happens
1961 *
1962 * File foo would remain with a link count of 1 when it has two
1963 * entries pointing to it in the directory testdir. This would
1964 * make it impossible to ever delete the parent directory has
1965 * it would result in stale dentries that can never be deleted.
1966 */
1967 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 struct btrfs_key di_key;
1969
1970 if (!fixup_path) {
1971 fixup_path = btrfs_alloc_path();
1972 if (!fixup_path) {
1973 ret = -ENOMEM;
1974 break;
1975 }
1976 }
1977
1978 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 ret = link_to_fixup_dir(trans, root, fixup_path,
1980 di_key.objectid);
1981 if (ret)
1982 break;
1983 }
1984 ret = 0;
1985 }
1986 btrfs_free_path(fixup_path);
1987 return ret;
1988}
1989
1990/*
1991 * directory replay has two parts. There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1994 *
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for. During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2000 */
2001static noinline int find_dir_range(struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 u64 dirid, int key_type,
2004 u64 *start_ret, u64 *end_ret)
2005{
2006 struct btrfs_key key;
2007 u64 found_end;
2008 struct btrfs_dir_log_item *item;
2009 int ret;
2010 int nritems;
2011
2012 if (*start_ret == (u64)-1)
2013 return 1;
2014
2015 key.objectid = dirid;
2016 key.type = key_type;
2017 key.offset = *start_ret;
2018
2019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 if (ret < 0)
2021 goto out;
2022 if (ret > 0) {
2023 if (path->slots[0] == 0)
2024 goto out;
2025 path->slots[0]--;
2026 }
2027 if (ret != 0)
2028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029
2030 if (key.type != key_type || key.objectid != dirid) {
2031 ret = 1;
2032 goto next;
2033 }
2034 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 struct btrfs_dir_log_item);
2036 found_end = btrfs_dir_log_end(path->nodes[0], item);
2037
2038 if (*start_ret >= key.offset && *start_ret <= found_end) {
2039 ret = 0;
2040 *start_ret = key.offset;
2041 *end_ret = found_end;
2042 goto out;
2043 }
2044 ret = 1;
2045next:
2046 /* check the next slot in the tree to see if it is a valid item */
2047 nritems = btrfs_header_nritems(path->nodes[0]);
2048 path->slots[0]++;
2049 if (path->slots[0] >= nritems) {
2050 ret = btrfs_next_leaf(root, path);
2051 if (ret)
2052 goto out;
2053 }
2054
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != key_type || key.objectid != dirid) {
2058 ret = 1;
2059 goto out;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 *start_ret = key.offset;
2065 *end_ret = found_end;
2066 ret = 0;
2067out:
2068 btrfs_release_path(path);
2069 return ret;
2070}
2071
2072/*
2073 * this looks for a given directory item in the log. If the directory
2074 * item is not in the log, the item is removed and the inode it points
2075 * to is unlinked
2076 */
2077static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 struct btrfs_root *root,
2079 struct btrfs_root *log,
2080 struct btrfs_path *path,
2081 struct btrfs_path *log_path,
2082 struct inode *dir,
2083 struct btrfs_key *dir_key)
2084{
2085 int ret;
2086 struct extent_buffer *eb;
2087 int slot;
2088 u32 item_size;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2091 int name_len;
2092 unsigned long ptr;
2093 unsigned long ptr_end;
2094 char *name;
2095 struct inode *inode;
2096 struct btrfs_key location;
2097
2098again:
2099 eb = path->nodes[0];
2100 slot = path->slots[0];
2101 item_size = btrfs_item_size_nr(eb, slot);
2102 ptr = btrfs_item_ptr_offset(eb, slot);
2103 ptr_end = ptr + item_size;
2104 while (ptr < ptr_end) {
2105 di = (struct btrfs_dir_item *)ptr;
2106 name_len = btrfs_dir_name_len(eb, di);
2107 name = kmalloc(name_len, GFP_NOFS);
2108 if (!name) {
2109 ret = -ENOMEM;
2110 goto out;
2111 }
2112 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113 name_len);
2114 log_di = NULL;
2115 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117 dir_key->objectid,
2118 name, name_len, 0);
2119 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120 log_di = btrfs_lookup_dir_index_item(trans, log,
2121 log_path,
2122 dir_key->objectid,
2123 dir_key->offset,
2124 name, name_len, 0);
2125 }
2126 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127 btrfs_dir_item_key_to_cpu(eb, di, &location);
2128 btrfs_release_path(path);
2129 btrfs_release_path(log_path);
2130 inode = read_one_inode(root, location.objectid);
2131 if (!inode) {
2132 kfree(name);
2133 return -EIO;
2134 }
2135
2136 ret = link_to_fixup_dir(trans, root,
2137 path, location.objectid);
2138 if (ret) {
2139 kfree(name);
2140 iput(inode);
2141 goto out;
2142 }
2143
2144 inc_nlink(inode);
2145 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 BTRFS_I(inode), name, name_len);
2147 if (!ret)
2148 ret = btrfs_run_delayed_items(trans);
2149 kfree(name);
2150 iput(inode);
2151 if (ret)
2152 goto out;
2153
2154 /* there might still be more names under this key
2155 * check and repeat if required
2156 */
2157 ret = btrfs_search_slot(NULL, root, dir_key, path,
2158 0, 0);
2159 if (ret == 0)
2160 goto again;
2161 ret = 0;
2162 goto out;
2163 } else if (IS_ERR(log_di)) {
2164 kfree(name);
2165 return PTR_ERR(log_di);
2166 }
2167 btrfs_release_path(log_path);
2168 kfree(name);
2169
2170 ptr = (unsigned long)(di + 1);
2171 ptr += name_len;
2172 }
2173 ret = 0;
2174out:
2175 btrfs_release_path(path);
2176 btrfs_release_path(log_path);
2177 return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size_nr(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297 int ret = 0;
2298 struct btrfs_key dir_key;
2299 struct btrfs_key found_key;
2300 struct btrfs_path *log_path;
2301 struct inode *dir;
2302
2303 dir_key.objectid = dirid;
2304 dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 log_path = btrfs_alloc_path();
2306 if (!log_path)
2307 return -ENOMEM;
2308
2309 dir = read_one_inode(root, dirid);
2310 /* it isn't an error if the inode isn't there, that can happen
2311 * because we replay the deletes before we copy in the inode item
2312 * from the log
2313 */
2314 if (!dir) {
2315 btrfs_free_path(log_path);
2316 return 0;
2317 }
2318again:
2319 range_start = 0;
2320 range_end = 0;
2321 while (1) {
2322 if (del_all)
2323 range_end = (u64)-1;
2324 else {
2325 ret = find_dir_range(log, path, dirid, key_type,
2326 &range_start, &range_end);
2327 if (ret != 0)
2328 break;
2329 }
2330
2331 dir_key.offset = range_start;
2332 while (1) {
2333 int nritems;
2334 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 0, 0);
2336 if (ret < 0)
2337 goto out;
2338
2339 nritems = btrfs_header_nritems(path->nodes[0]);
2340 if (path->slots[0] >= nritems) {
2341 ret = btrfs_next_leaf(root, path);
2342 if (ret == 1)
2343 break;
2344 else if (ret < 0)
2345 goto out;
2346 }
2347 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348 path->slots[0]);
2349 if (found_key.objectid != dirid ||
2350 found_key.type != dir_key.type)
2351 goto next_type;
2352
2353 if (found_key.offset > range_end)
2354 break;
2355
2356 ret = check_item_in_log(trans, root, log, path,
2357 log_path, dir,
2358 &found_key);
2359 if (ret)
2360 goto out;
2361 if (found_key.offset == (u64)-1)
2362 break;
2363 dir_key.offset = found_key.offset + 1;
2364 }
2365 btrfs_release_path(path);
2366 if (range_end == (u64)-1)
2367 break;
2368 range_start = range_end + 1;
2369 }
2370
2371next_type:
2372 ret = 0;
2373 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 btrfs_release_path(path);
2377 goto again;
2378 }
2379out:
2380 btrfs_release_path(path);
2381 btrfs_free_path(log_path);
2382 iput(dir);
2383 return ret;
2384}
2385
2386/*
2387 * the process_func used to replay items from the log tree. This
2388 * gets called in two different stages. The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2390 *
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume. The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2395 * back refs).
2396 */
2397static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398 struct walk_control *wc, u64 gen, int level)
2399{
2400 int nritems;
2401 struct btrfs_path *path;
2402 struct btrfs_root *root = wc->replay_dest;
2403 struct btrfs_key key;
2404 int i;
2405 int ret;
2406
2407 ret = btrfs_read_buffer(eb, gen, level, NULL);
2408 if (ret)
2409 return ret;
2410
2411 level = btrfs_header_level(eb);
2412
2413 if (level != 0)
2414 return 0;
2415
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2419
2420 nritems = btrfs_header_nritems(eb);
2421 for (i = 0; i < nritems; i++) {
2422 btrfs_item_key_to_cpu(eb, &key, i);
2423
2424 /* inode keys are done during the first stage */
2425 if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 wc->stage == LOG_WALK_REPLAY_INODES) {
2427 struct btrfs_inode_item *inode_item;
2428 u32 mode;
2429
2430 inode_item = btrfs_item_ptr(eb, i,
2431 struct btrfs_inode_item);
2432 ret = replay_xattr_deletes(wc->trans, root, log,
2433 path, key.objectid);
2434 if (ret)
2435 break;
2436 mode = btrfs_inode_mode(eb, inode_item);
2437 if (S_ISDIR(mode)) {
2438 ret = replay_dir_deletes(wc->trans,
2439 root, log, path, key.objectid, 0);
2440 if (ret)
2441 break;
2442 }
2443 ret = overwrite_item(wc->trans, root, path,
2444 eb, i, &key);
2445 if (ret)
2446 break;
2447
2448 /*
2449 * Before replaying extents, truncate the inode to its
2450 * size. We need to do it now and not after log replay
2451 * because before an fsync we can have prealloc extents
2452 * added beyond the inode's i_size. If we did it after,
2453 * through orphan cleanup for example, we would drop
2454 * those prealloc extents just after replaying them.
2455 */
2456 if (S_ISREG(mode)) {
2457 struct inode *inode;
2458 u64 from;
2459
2460 inode = read_one_inode(root, key.objectid);
2461 if (!inode) {
2462 ret = -EIO;
2463 break;
2464 }
2465 from = ALIGN(i_size_read(inode),
2466 root->fs_info->sectorsize);
2467 ret = btrfs_drop_extents(wc->trans, root, inode,
2468 from, (u64)-1, 1);
2469 /*
2470 * If the nlink count is zero here, the iput
2471 * will free the inode. We bump it to make
2472 * sure it doesn't get freed until the link
2473 * count fixup is done.
2474 */
2475 if (!ret) {
2476 if (inode->i_nlink == 0)
2477 inc_nlink(inode);
2478 /* Update link count and nbytes. */
2479 ret = btrfs_update_inode(wc->trans,
2480 root, inode);
2481 }
2482 iput(inode);
2483 if (ret)
2484 break;
2485 }
2486
2487 ret = link_to_fixup_dir(wc->trans, root,
2488 path, key.objectid);
2489 if (ret)
2490 break;
2491 }
2492
2493 if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 ret = replay_one_dir_item(wc->trans, root, path,
2496 eb, i, &key);
2497 if (ret)
2498 break;
2499 }
2500
2501 if (wc->stage < LOG_WALK_REPLAY_ALL)
2502 continue;
2503
2504 /* these keys are simply copied */
2505 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 ret = overwrite_item(wc->trans, root, path,
2507 eb, i, &key);
2508 if (ret)
2509 break;
2510 } else if (key.type == BTRFS_INODE_REF_KEY ||
2511 key.type == BTRFS_INODE_EXTREF_KEY) {
2512 ret = add_inode_ref(wc->trans, root, log, path,
2513 eb, i, &key);
2514 if (ret && ret != -ENOENT)
2515 break;
2516 ret = 0;
2517 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 ret = replay_one_extent(wc->trans, root, path,
2519 eb, i, &key);
2520 if (ret)
2521 break;
2522 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523 ret = replay_one_dir_item(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528 }
2529 btrfs_free_path(path);
2530 return ret;
2531}
2532
2533static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root,
2535 struct btrfs_path *path, int *level,
2536 struct walk_control *wc)
2537{
2538 struct btrfs_fs_info *fs_info = root->fs_info;
2539 u64 root_owner;
2540 u64 bytenr;
2541 u64 ptr_gen;
2542 struct extent_buffer *next;
2543 struct extent_buffer *cur;
2544 struct extent_buffer *parent;
2545 u32 blocksize;
2546 int ret = 0;
2547
2548 WARN_ON(*level < 0);
2549 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550
2551 while (*level > 0) {
2552 struct btrfs_key first_key;
2553
2554 WARN_ON(*level < 0);
2555 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 cur = path->nodes[*level];
2557
2558 WARN_ON(btrfs_header_level(cur) != *level);
2559
2560 if (path->slots[*level] >=
2561 btrfs_header_nritems(cur))
2562 break;
2563
2564 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567 blocksize = fs_info->nodesize;
2568
2569 parent = path->nodes[*level];
2570 root_owner = btrfs_header_owner(parent);
2571
2572 next = btrfs_find_create_tree_block(fs_info, bytenr);
2573 if (IS_ERR(next))
2574 return PTR_ERR(next);
2575
2576 if (*level == 1) {
2577 ret = wc->process_func(root, next, wc, ptr_gen,
2578 *level - 1);
2579 if (ret) {
2580 free_extent_buffer(next);
2581 return ret;
2582 }
2583
2584 path->slots[*level]++;
2585 if (wc->free) {
2586 ret = btrfs_read_buffer(next, ptr_gen,
2587 *level - 1, &first_key);
2588 if (ret) {
2589 free_extent_buffer(next);
2590 return ret;
2591 }
2592
2593 if (trans) {
2594 btrfs_tree_lock(next);
2595 btrfs_set_lock_blocking(next);
2596 clean_tree_block(fs_info, next);
2597 btrfs_wait_tree_block_writeback(next);
2598 btrfs_tree_unlock(next);
2599 } else {
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 clear_extent_buffer_dirty(next);
2602 }
2603
2604 WARN_ON(root_owner !=
2605 BTRFS_TREE_LOG_OBJECTID);
2606 ret = btrfs_free_and_pin_reserved_extent(
2607 fs_info, bytenr,
2608 blocksize);
2609 if (ret) {
2610 free_extent_buffer(next);
2611 return ret;
2612 }
2613 }
2614 free_extent_buffer(next);
2615 continue;
2616 }
2617 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2618 if (ret) {
2619 free_extent_buffer(next);
2620 return ret;
2621 }
2622
2623 WARN_ON(*level <= 0);
2624 if (path->nodes[*level-1])
2625 free_extent_buffer(path->nodes[*level-1]);
2626 path->nodes[*level-1] = next;
2627 *level = btrfs_header_level(next);
2628 path->slots[*level] = 0;
2629 cond_resched();
2630 }
2631 WARN_ON(*level < 0);
2632 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633
2634 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2635
2636 cond_resched();
2637 return 0;
2638}
2639
2640static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int *level,
2643 struct walk_control *wc)
2644{
2645 struct btrfs_fs_info *fs_info = root->fs_info;
2646 u64 root_owner;
2647 int i;
2648 int slot;
2649 int ret;
2650
2651 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652 slot = path->slots[i];
2653 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2654 path->slots[i]++;
2655 *level = i;
2656 WARN_ON(*level == 0);
2657 return 0;
2658 } else {
2659 struct extent_buffer *parent;
2660 if (path->nodes[*level] == root->node)
2661 parent = path->nodes[*level];
2662 else
2663 parent = path->nodes[*level + 1];
2664
2665 root_owner = btrfs_header_owner(parent);
2666 ret = wc->process_func(root, path->nodes[*level], wc,
2667 btrfs_header_generation(path->nodes[*level]),
2668 *level);
2669 if (ret)
2670 return ret;
2671
2672 if (wc->free) {
2673 struct extent_buffer *next;
2674
2675 next = path->nodes[*level];
2676
2677 if (trans) {
2678 btrfs_tree_lock(next);
2679 btrfs_set_lock_blocking(next);
2680 clean_tree_block(fs_info, next);
2681 btrfs_wait_tree_block_writeback(next);
2682 btrfs_tree_unlock(next);
2683 } else {
2684 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 clear_extent_buffer_dirty(next);
2686 }
2687
2688 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689 ret = btrfs_free_and_pin_reserved_extent(
2690 fs_info,
2691 path->nodes[*level]->start,
2692 path->nodes[*level]->len);
2693 if (ret)
2694 return ret;
2695 }
2696 free_extent_buffer(path->nodes[*level]);
2697 path->nodes[*level] = NULL;
2698 *level = i + 1;
2699 }
2700 }
2701 return 1;
2702}
2703
2704/*
2705 * drop the reference count on the tree rooted at 'snap'. This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2707 * decremented.
2708 */
2709static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *log, struct walk_control *wc)
2711{
2712 struct btrfs_fs_info *fs_info = log->fs_info;
2713 int ret = 0;
2714 int wret;
2715 int level;
2716 struct btrfs_path *path;
2717 int orig_level;
2718
2719 path = btrfs_alloc_path();
2720 if (!path)
2721 return -ENOMEM;
2722
2723 level = btrfs_header_level(log->node);
2724 orig_level = level;
2725 path->nodes[level] = log->node;
2726 extent_buffer_get(log->node);
2727 path->slots[level] = 0;
2728
2729 while (1) {
2730 wret = walk_down_log_tree(trans, log, path, &level, wc);
2731 if (wret > 0)
2732 break;
2733 if (wret < 0) {
2734 ret = wret;
2735 goto out;
2736 }
2737
2738 wret = walk_up_log_tree(trans, log, path, &level, wc);
2739 if (wret > 0)
2740 break;
2741 if (wret < 0) {
2742 ret = wret;
2743 goto out;
2744 }
2745 }
2746
2747 /* was the root node processed? if not, catch it here */
2748 if (path->nodes[orig_level]) {
2749 ret = wc->process_func(log, path->nodes[orig_level], wc,
2750 btrfs_header_generation(path->nodes[orig_level]),
2751 orig_level);
2752 if (ret)
2753 goto out;
2754 if (wc->free) {
2755 struct extent_buffer *next;
2756
2757 next = path->nodes[orig_level];
2758
2759 if (trans) {
2760 btrfs_tree_lock(next);
2761 btrfs_set_lock_blocking(next);
2762 clean_tree_block(fs_info, next);
2763 btrfs_wait_tree_block_writeback(next);
2764 btrfs_tree_unlock(next);
2765 } else {
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 clear_extent_buffer_dirty(next);
2768 }
2769
2770 WARN_ON(log->root_key.objectid !=
2771 BTRFS_TREE_LOG_OBJECTID);
2772 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 next->start, next->len);
2774 if (ret)
2775 goto out;
2776 }
2777 }
2778
2779out:
2780 btrfs_free_path(path);
2781 return ret;
2782}
2783
2784/*
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2787 */
2788static int update_log_root(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *log)
2790{
2791 struct btrfs_fs_info *fs_info = log->fs_info;
2792 int ret;
2793
2794 if (log->log_transid == 1) {
2795 /* insert root item on the first sync */
2796 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 &log->root_key, &log->root_item);
2798 } else {
2799 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 &log->root_key, &log->root_item);
2801 }
2802 return ret;
2803}
2804
2805static void wait_log_commit(struct btrfs_root *root, int transid)
2806{
2807 DEFINE_WAIT(wait);
2808 int index = transid % 2;
2809
2810 /*
2811 * we only allow two pending log transactions at a time,
2812 * so we know that if ours is more than 2 older than the
2813 * current transaction, we're done
2814 */
2815 for (;;) {
2816 prepare_to_wait(&root->log_commit_wait[index],
2817 &wait, TASK_UNINTERRUPTIBLE);
2818
2819 if (!(root->log_transid_committed < transid &&
2820 atomic_read(&root->log_commit[index])))
2821 break;
2822
2823 mutex_unlock(&root->log_mutex);
2824 schedule();
2825 mutex_lock(&root->log_mutex);
2826 }
2827 finish_wait(&root->log_commit_wait[index], &wait);
2828}
2829
2830static void wait_for_writer(struct btrfs_root *root)
2831{
2832 DEFINE_WAIT(wait);
2833
2834 for (;;) {
2835 prepare_to_wait(&root->log_writer_wait, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 if (!atomic_read(&root->log_writers))
2838 break;
2839
2840 mutex_unlock(&root->log_mutex);
2841 schedule();
2842 mutex_lock(&root->log_mutex);
2843 }
2844 finish_wait(&root->log_writer_wait, &wait);
2845}
2846
2847static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 struct btrfs_log_ctx *ctx)
2849{
2850 if (!ctx)
2851 return;
2852
2853 mutex_lock(&root->log_mutex);
2854 list_del_init(&ctx->list);
2855 mutex_unlock(&root->log_mutex);
2856}
2857
2858/*
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2861 */
2862static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 int index, int error)
2864{
2865 struct btrfs_log_ctx *ctx;
2866 struct btrfs_log_ctx *safe;
2867
2868 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 list_del_init(&ctx->list);
2870 ctx->log_ret = error;
2871 }
2872
2873 INIT_LIST_HEAD(&root->log_ctxs[index]);
2874}
2875
2876/*
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it. When this call is done,
2879 * you know that any inodes previously logged are safely on disk only
2880 * if it returns 0.
2881 *
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
2887 */
2888int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2890{
2891 int index1;
2892 int index2;
2893 int mark;
2894 int ret;
2895 struct btrfs_fs_info *fs_info = root->fs_info;
2896 struct btrfs_root *log = root->log_root;
2897 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2898 int log_transid = 0;
2899 struct btrfs_log_ctx root_log_ctx;
2900 struct blk_plug plug;
2901
2902 mutex_lock(&root->log_mutex);
2903 log_transid = ctx->log_transid;
2904 if (root->log_transid_committed >= log_transid) {
2905 mutex_unlock(&root->log_mutex);
2906 return ctx->log_ret;
2907 }
2908
2909 index1 = log_transid % 2;
2910 if (atomic_read(&root->log_commit[index1])) {
2911 wait_log_commit(root, log_transid);
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2914 }
2915 ASSERT(log_transid == root->log_transid);
2916 atomic_set(&root->log_commit[index1], 1);
2917
2918 /* wait for previous tree log sync to complete */
2919 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920 wait_log_commit(root, log_transid - 1);
2921
2922 while (1) {
2923 int batch = atomic_read(&root->log_batch);
2924 /* when we're on an ssd, just kick the log commit out */
2925 if (!btrfs_test_opt(fs_info, SSD) &&
2926 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927 mutex_unlock(&root->log_mutex);
2928 schedule_timeout_uninterruptible(1);
2929 mutex_lock(&root->log_mutex);
2930 }
2931 wait_for_writer(root);
2932 if (batch == atomic_read(&root->log_batch))
2933 break;
2934 }
2935
2936 /* bail out if we need to do a full commit */
2937 if (btrfs_need_log_full_commit(fs_info, trans)) {
2938 ret = -EAGAIN;
2939 btrfs_free_logged_extents(log, log_transid);
2940 mutex_unlock(&root->log_mutex);
2941 goto out;
2942 }
2943
2944 if (log_transid % 2 == 0)
2945 mark = EXTENT_DIRTY;
2946 else
2947 mark = EXTENT_NEW;
2948
2949 /* we start IO on all the marked extents here, but we don't actually
2950 * wait for them until later.
2951 */
2952 blk_start_plug(&plug);
2953 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2954 if (ret) {
2955 blk_finish_plug(&plug);
2956 btrfs_abort_transaction(trans, ret);
2957 btrfs_free_logged_extents(log, log_transid);
2958 btrfs_set_log_full_commit(fs_info, trans);
2959 mutex_unlock(&root->log_mutex);
2960 goto out;
2961 }
2962
2963 btrfs_set_root_node(&log->root_item, log->node);
2964
2965 root->log_transid++;
2966 log->log_transid = root->log_transid;
2967 root->log_start_pid = 0;
2968 /*
2969 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 * in their headers. new modifications of the log will be written to
2971 * new positions. so it's safe to allow log writers to go in.
2972 */
2973 mutex_unlock(&root->log_mutex);
2974
2975 btrfs_init_log_ctx(&root_log_ctx, NULL);
2976
2977 mutex_lock(&log_root_tree->log_mutex);
2978 atomic_inc(&log_root_tree->log_batch);
2979 atomic_inc(&log_root_tree->log_writers);
2980
2981 index2 = log_root_tree->log_transid % 2;
2982 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 root_log_ctx.log_transid = log_root_tree->log_transid;
2984
2985 mutex_unlock(&log_root_tree->log_mutex);
2986
2987 ret = update_log_root(trans, log);
2988
2989 mutex_lock(&log_root_tree->log_mutex);
2990 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2991 /*
2992 * Implicit memory barrier after atomic_dec_and_test
2993 */
2994 if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 wake_up(&log_root_tree->log_writer_wait);
2996 }
2997
2998 if (ret) {
2999 if (!list_empty(&root_log_ctx.list))
3000 list_del_init(&root_log_ctx.list);
3001
3002 blk_finish_plug(&plug);
3003 btrfs_set_log_full_commit(fs_info, trans);
3004
3005 if (ret != -ENOSPC) {
3006 btrfs_abort_transaction(trans, ret);
3007 mutex_unlock(&log_root_tree->log_mutex);
3008 goto out;
3009 }
3010 btrfs_wait_tree_log_extents(log, mark);
3011 btrfs_free_logged_extents(log, log_transid);
3012 mutex_unlock(&log_root_tree->log_mutex);
3013 ret = -EAGAIN;
3014 goto out;
3015 }
3016
3017 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3018 blk_finish_plug(&plug);
3019 list_del_init(&root_log_ctx.list);
3020 mutex_unlock(&log_root_tree->log_mutex);
3021 ret = root_log_ctx.log_ret;
3022 goto out;
3023 }
3024
3025 index2 = root_log_ctx.log_transid % 2;
3026 if (atomic_read(&log_root_tree->log_commit[index2])) {
3027 blk_finish_plug(&plug);
3028 ret = btrfs_wait_tree_log_extents(log, mark);
3029 btrfs_wait_logged_extents(trans, log, log_transid);
3030 wait_log_commit(log_root_tree,
3031 root_log_ctx.log_transid);
3032 mutex_unlock(&log_root_tree->log_mutex);
3033 if (!ret)
3034 ret = root_log_ctx.log_ret;
3035 goto out;
3036 }
3037 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3038 atomic_set(&log_root_tree->log_commit[index2], 1);
3039
3040 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3041 wait_log_commit(log_root_tree,
3042 root_log_ctx.log_transid - 1);
3043 }
3044
3045 wait_for_writer(log_root_tree);
3046
3047 /*
3048 * now that we've moved on to the tree of log tree roots,
3049 * check the full commit flag again
3050 */
3051 if (btrfs_need_log_full_commit(fs_info, trans)) {
3052 blk_finish_plug(&plug);
3053 btrfs_wait_tree_log_extents(log, mark);
3054 btrfs_free_logged_extents(log, log_transid);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = -EAGAIN;
3057 goto out_wake_log_root;
3058 }
3059
3060 ret = btrfs_write_marked_extents(fs_info,
3061 &log_root_tree->dirty_log_pages,
3062 EXTENT_DIRTY | EXTENT_NEW);
3063 blk_finish_plug(&plug);
3064 if (ret) {
3065 btrfs_set_log_full_commit(fs_info, trans);
3066 btrfs_abort_transaction(trans, ret);
3067 btrfs_free_logged_extents(log, log_transid);
3068 mutex_unlock(&log_root_tree->log_mutex);
3069 goto out_wake_log_root;
3070 }
3071 ret = btrfs_wait_tree_log_extents(log, mark);
3072 if (!ret)
3073 ret = btrfs_wait_tree_log_extents(log_root_tree,
3074 EXTENT_NEW | EXTENT_DIRTY);
3075 if (ret) {
3076 btrfs_set_log_full_commit(fs_info, trans);
3077 btrfs_free_logged_extents(log, log_transid);
3078 mutex_unlock(&log_root_tree->log_mutex);
3079 goto out_wake_log_root;
3080 }
3081 btrfs_wait_logged_extents(trans, log, log_transid);
3082
3083 btrfs_set_super_log_root(fs_info->super_for_commit,
3084 log_root_tree->node->start);
3085 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086 btrfs_header_level(log_root_tree->node));
3087
3088 log_root_tree->log_transid++;
3089 mutex_unlock(&log_root_tree->log_mutex);
3090
3091 /*
3092 * nobody else is going to jump in and write the the ctree
3093 * super here because the log_commit atomic below is protecting
3094 * us. We must be called with a transaction handle pinning
3095 * the running transaction open, so a full commit can't hop
3096 * in and cause problems either.
3097 */
3098 ret = write_all_supers(fs_info, 1);
3099 if (ret) {
3100 btrfs_set_log_full_commit(fs_info, trans);
3101 btrfs_abort_transaction(trans, ret);
3102 goto out_wake_log_root;
3103 }
3104
3105 mutex_lock(&root->log_mutex);
3106 if (root->last_log_commit < log_transid)
3107 root->last_log_commit = log_transid;
3108 mutex_unlock(&root->log_mutex);
3109
3110out_wake_log_root:
3111 mutex_lock(&log_root_tree->log_mutex);
3112 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113
3114 log_root_tree->log_transid_committed++;
3115 atomic_set(&log_root_tree->log_commit[index2], 0);
3116 mutex_unlock(&log_root_tree->log_mutex);
3117
3118 /*
3119 * The barrier before waitqueue_active is implied by mutex_unlock
3120 */
3121 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122 wake_up(&log_root_tree->log_commit_wait[index2]);
3123out:
3124 mutex_lock(&root->log_mutex);
3125 btrfs_remove_all_log_ctxs(root, index1, ret);
3126 root->log_transid_committed++;
3127 atomic_set(&root->log_commit[index1], 0);
3128 mutex_unlock(&root->log_mutex);
3129
3130 /*
3131 * The barrier before waitqueue_active is implied by mutex_unlock
3132 */
3133 if (waitqueue_active(&root->log_commit_wait[index1]))
3134 wake_up(&root->log_commit_wait[index1]);
3135 return ret;
3136}
3137
3138static void free_log_tree(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *log)
3140{
3141 int ret;
3142 u64 start;
3143 u64 end;
3144 struct walk_control wc = {
3145 .free = 1,
3146 .process_func = process_one_buffer
3147 };
3148
3149 ret = walk_log_tree(trans, log, &wc);
3150 /* I don't think this can happen but just in case */
3151 if (ret)
3152 btrfs_abort_transaction(trans, ret);
3153
3154 while (1) {
3155 ret = find_first_extent_bit(&log->dirty_log_pages,
3156 0, &start, &end,
3157 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3158 NULL);
3159 if (ret)
3160 break;
3161
3162 clear_extent_bits(&log->dirty_log_pages, start, end,
3163 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3164 }
3165
3166 /*
3167 * We may have short-circuited the log tree with the full commit logic
3168 * and left ordered extents on our list, so clear these out to keep us
3169 * from leaking inodes and memory.
3170 */
3171 btrfs_free_logged_extents(log, 0);
3172 btrfs_free_logged_extents(log, 1);
3173
3174 free_extent_buffer(log->node);
3175 kfree(log);
3176}
3177
3178/*
3179 * free all the extents used by the tree log. This should be called
3180 * at commit time of the full transaction
3181 */
3182int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183{
3184 if (root->log_root) {
3185 free_log_tree(trans, root->log_root);
3186 root->log_root = NULL;
3187 }
3188 return 0;
3189}
3190
3191int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192 struct btrfs_fs_info *fs_info)
3193{
3194 if (fs_info->log_root_tree) {
3195 free_log_tree(trans, fs_info->log_root_tree);
3196 fs_info->log_root_tree = NULL;
3197 }
3198 return 0;
3199}
3200
3201/*
3202 * If both a file and directory are logged, and unlinks or renames are
3203 * mixed in, we have a few interesting corners:
3204 *
3205 * create file X in dir Y
3206 * link file X to X.link in dir Y
3207 * fsync file X
3208 * unlink file X but leave X.link
3209 * fsync dir Y
3210 *
3211 * After a crash we would expect only X.link to exist. But file X
3212 * didn't get fsync'd again so the log has back refs for X and X.link.
3213 *
3214 * We solve this by removing directory entries and inode backrefs from the
3215 * log when a file that was logged in the current transaction is
3216 * unlinked. Any later fsync will include the updated log entries, and
3217 * we'll be able to reconstruct the proper directory items from backrefs.
3218 *
3219 * This optimizations allows us to avoid relogging the entire inode
3220 * or the entire directory.
3221 */
3222int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 const char *name, int name_len,
3225 struct btrfs_inode *dir, u64 index)
3226{
3227 struct btrfs_root *log;
3228 struct btrfs_dir_item *di;
3229 struct btrfs_path *path;
3230 int ret;
3231 int err = 0;
3232 int bytes_del = 0;
3233 u64 dir_ino = btrfs_ino(dir);
3234
3235 if (dir->logged_trans < trans->transid)
3236 return 0;
3237
3238 ret = join_running_log_trans(root);
3239 if (ret)
3240 return 0;
3241
3242 mutex_lock(&dir->log_mutex);
3243
3244 log = root->log_root;
3245 path = btrfs_alloc_path();
3246 if (!path) {
3247 err = -ENOMEM;
3248 goto out_unlock;
3249 }
3250
3251 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3252 name, name_len, -1);
3253 if (IS_ERR(di)) {
3254 err = PTR_ERR(di);
3255 goto fail;
3256 }
3257 if (di) {
3258 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259 bytes_del += name_len;
3260 if (ret) {
3261 err = ret;
3262 goto fail;
3263 }
3264 }
3265 btrfs_release_path(path);
3266 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3267 index, name, name_len, -1);
3268 if (IS_ERR(di)) {
3269 err = PTR_ERR(di);
3270 goto fail;
3271 }
3272 if (di) {
3273 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274 bytes_del += name_len;
3275 if (ret) {
3276 err = ret;
3277 goto fail;
3278 }
3279 }
3280
3281 /* update the directory size in the log to reflect the names
3282 * we have removed
3283 */
3284 if (bytes_del) {
3285 struct btrfs_key key;
3286
3287 key.objectid = dir_ino;
3288 key.offset = 0;
3289 key.type = BTRFS_INODE_ITEM_KEY;
3290 btrfs_release_path(path);
3291
3292 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3293 if (ret < 0) {
3294 err = ret;
3295 goto fail;
3296 }
3297 if (ret == 0) {
3298 struct btrfs_inode_item *item;
3299 u64 i_size;
3300
3301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 struct btrfs_inode_item);
3303 i_size = btrfs_inode_size(path->nodes[0], item);
3304 if (i_size > bytes_del)
3305 i_size -= bytes_del;
3306 else
3307 i_size = 0;
3308 btrfs_set_inode_size(path->nodes[0], item, i_size);
3309 btrfs_mark_buffer_dirty(path->nodes[0]);
3310 } else
3311 ret = 0;
3312 btrfs_release_path(path);
3313 }
3314fail:
3315 btrfs_free_path(path);
3316out_unlock:
3317 mutex_unlock(&dir->log_mutex);
3318 if (ret == -ENOSPC) {
3319 btrfs_set_log_full_commit(root->fs_info, trans);
3320 ret = 0;
3321 } else if (ret < 0)
3322 btrfs_abort_transaction(trans, ret);
3323
3324 btrfs_end_log_trans(root);
3325
3326 return err;
3327}
3328
3329/* see comments for btrfs_del_dir_entries_in_log */
3330int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331 struct btrfs_root *root,
3332 const char *name, int name_len,
3333 struct btrfs_inode *inode, u64 dirid)
3334{
3335 struct btrfs_fs_info *fs_info = root->fs_info;
3336 struct btrfs_root *log;
3337 u64 index;
3338 int ret;
3339
3340 if (inode->logged_trans < trans->transid)
3341 return 0;
3342
3343 ret = join_running_log_trans(root);
3344 if (ret)
3345 return 0;
3346 log = root->log_root;
3347 mutex_lock(&inode->log_mutex);
3348
3349 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3350 dirid, &index);
3351 mutex_unlock(&inode->log_mutex);
3352 if (ret == -ENOSPC) {
3353 btrfs_set_log_full_commit(fs_info, trans);
3354 ret = 0;
3355 } else if (ret < 0 && ret != -ENOENT)
3356 btrfs_abort_transaction(trans, ret);
3357 btrfs_end_log_trans(root);
3358
3359 return ret;
3360}
3361
3362/*
3363 * creates a range item in the log for 'dirid'. first_offset and
3364 * last_offset tell us which parts of the key space the log should
3365 * be considered authoritative for.
3366 */
3367static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368 struct btrfs_root *log,
3369 struct btrfs_path *path,
3370 int key_type, u64 dirid,
3371 u64 first_offset, u64 last_offset)
3372{
3373 int ret;
3374 struct btrfs_key key;
3375 struct btrfs_dir_log_item *item;
3376
3377 key.objectid = dirid;
3378 key.offset = first_offset;
3379 if (key_type == BTRFS_DIR_ITEM_KEY)
3380 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381 else
3382 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3384 if (ret)
3385 return ret;
3386
3387 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388 struct btrfs_dir_log_item);
3389 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390 btrfs_mark_buffer_dirty(path->nodes[0]);
3391 btrfs_release_path(path);
3392 return 0;
3393}
3394
3395/*
3396 * log all the items included in the current transaction for a given
3397 * directory. This also creates the range items in the log tree required
3398 * to replay anything deleted before the fsync
3399 */
3400static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3401 struct btrfs_root *root, struct btrfs_inode *inode,
3402 struct btrfs_path *path,
3403 struct btrfs_path *dst_path, int key_type,
3404 struct btrfs_log_ctx *ctx,
3405 u64 min_offset, u64 *last_offset_ret)
3406{
3407 struct btrfs_key min_key;
3408 struct btrfs_root *log = root->log_root;
3409 struct extent_buffer *src;
3410 int err = 0;
3411 int ret;
3412 int i;
3413 int nritems;
3414 u64 first_offset = min_offset;
3415 u64 last_offset = (u64)-1;
3416 u64 ino = btrfs_ino(inode);
3417
3418 log = root->log_root;
3419
3420 min_key.objectid = ino;
3421 min_key.type = key_type;
3422 min_key.offset = min_offset;
3423
3424 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3425
3426 /*
3427 * we didn't find anything from this transaction, see if there
3428 * is anything at all
3429 */
3430 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3431 min_key.objectid = ino;
3432 min_key.type = key_type;
3433 min_key.offset = (u64)-1;
3434 btrfs_release_path(path);
3435 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436 if (ret < 0) {
3437 btrfs_release_path(path);
3438 return ret;
3439 }
3440 ret = btrfs_previous_item(root, path, ino, key_type);
3441
3442 /* if ret == 0 there are items for this type,
3443 * create a range to tell us the last key of this type.
3444 * otherwise, there are no items in this directory after
3445 * *min_offset, and we create a range to indicate that.
3446 */
3447 if (ret == 0) {
3448 struct btrfs_key tmp;
3449 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450 path->slots[0]);
3451 if (key_type == tmp.type)
3452 first_offset = max(min_offset, tmp.offset) + 1;
3453 }
3454 goto done;
3455 }
3456
3457 /* go backward to find any previous key */
3458 ret = btrfs_previous_item(root, path, ino, key_type);
3459 if (ret == 0) {
3460 struct btrfs_key tmp;
3461 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462 if (key_type == tmp.type) {
3463 first_offset = tmp.offset;
3464 ret = overwrite_item(trans, log, dst_path,
3465 path->nodes[0], path->slots[0],
3466 &tmp);
3467 if (ret) {
3468 err = ret;
3469 goto done;
3470 }
3471 }
3472 }
3473 btrfs_release_path(path);
3474
3475 /* find the first key from this transaction again */
3476 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477 if (WARN_ON(ret != 0))
3478 goto done;
3479
3480 /*
3481 * we have a block from this transaction, log every item in it
3482 * from our directory
3483 */
3484 while (1) {
3485 struct btrfs_key tmp;
3486 src = path->nodes[0];
3487 nritems = btrfs_header_nritems(src);
3488 for (i = path->slots[0]; i < nritems; i++) {
3489 struct btrfs_dir_item *di;
3490
3491 btrfs_item_key_to_cpu(src, &min_key, i);
3492
3493 if (min_key.objectid != ino || min_key.type != key_type)
3494 goto done;
3495 ret = overwrite_item(trans, log, dst_path, src, i,
3496 &min_key);
3497 if (ret) {
3498 err = ret;
3499 goto done;
3500 }
3501
3502 /*
3503 * We must make sure that when we log a directory entry,
3504 * the corresponding inode, after log replay, has a
3505 * matching link count. For example:
3506 *
3507 * touch foo
3508 * mkdir mydir
3509 * sync
3510 * ln foo mydir/bar
3511 * xfs_io -c "fsync" mydir
3512 * <crash>
3513 * <mount fs and log replay>
3514 *
3515 * Would result in a fsync log that when replayed, our
3516 * file inode would have a link count of 1, but we get
3517 * two directory entries pointing to the same inode.
3518 * After removing one of the names, it would not be
3519 * possible to remove the other name, which resulted
3520 * always in stale file handle errors, and would not
3521 * be possible to rmdir the parent directory, since
3522 * its i_size could never decrement to the value
3523 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524 */
3525 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527 if (ctx &&
3528 (btrfs_dir_transid(src, di) == trans->transid ||
3529 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530 tmp.type != BTRFS_ROOT_ITEM_KEY)
3531 ctx->log_new_dentries = true;
3532 }
3533 path->slots[0] = nritems;
3534
3535 /*
3536 * look ahead to the next item and see if it is also
3537 * from this directory and from this transaction
3538 */
3539 ret = btrfs_next_leaf(root, path);
3540 if (ret) {
3541 if (ret == 1)
3542 last_offset = (u64)-1;
3543 else
3544 err = ret;
3545 goto done;
3546 }
3547 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3548 if (tmp.objectid != ino || tmp.type != key_type) {
3549 last_offset = (u64)-1;
3550 goto done;
3551 }
3552 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553 ret = overwrite_item(trans, log, dst_path,
3554 path->nodes[0], path->slots[0],
3555 &tmp);
3556 if (ret)
3557 err = ret;
3558 else
3559 last_offset = tmp.offset;
3560 goto done;
3561 }
3562 }
3563done:
3564 btrfs_release_path(path);
3565 btrfs_release_path(dst_path);
3566
3567 if (err == 0) {
3568 *last_offset_ret = last_offset;
3569 /*
3570 * insert the log range keys to indicate where the log
3571 * is valid
3572 */
3573 ret = insert_dir_log_key(trans, log, path, key_type,
3574 ino, first_offset, last_offset);
3575 if (ret)
3576 err = ret;
3577 }
3578 return err;
3579}
3580
3581/*
3582 * logging directories is very similar to logging inodes, We find all the items
3583 * from the current transaction and write them to the log.
3584 *
3585 * The recovery code scans the directory in the subvolume, and if it finds a
3586 * key in the range logged that is not present in the log tree, then it means
3587 * that dir entry was unlinked during the transaction.
3588 *
3589 * In order for that scan to work, we must include one key smaller than
3590 * the smallest logged by this transaction and one key larger than the largest
3591 * key logged by this transaction.
3592 */
3593static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3594 struct btrfs_root *root, struct btrfs_inode *inode,
3595 struct btrfs_path *path,
3596 struct btrfs_path *dst_path,
3597 struct btrfs_log_ctx *ctx)
3598{
3599 u64 min_key;
3600 u64 max_key;
3601 int ret;
3602 int key_type = BTRFS_DIR_ITEM_KEY;
3603
3604again:
3605 min_key = 0;
3606 max_key = 0;
3607 while (1) {
3608 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609 ctx, min_key, &max_key);
3610 if (ret)
3611 return ret;
3612 if (max_key == (u64)-1)
3613 break;
3614 min_key = max_key + 1;
3615 }
3616
3617 if (key_type == BTRFS_DIR_ITEM_KEY) {
3618 key_type = BTRFS_DIR_INDEX_KEY;
3619 goto again;
3620 }
3621 return 0;
3622}
3623
3624/*
3625 * a helper function to drop items from the log before we relog an
3626 * inode. max_key_type indicates the highest item type to remove.
3627 * This cannot be run for file data extents because it does not
3628 * free the extents they point to.
3629 */
3630static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631 struct btrfs_root *log,
3632 struct btrfs_path *path,
3633 u64 objectid, int max_key_type)
3634{
3635 int ret;
3636 struct btrfs_key key;
3637 struct btrfs_key found_key;
3638 int start_slot;
3639
3640 key.objectid = objectid;
3641 key.type = max_key_type;
3642 key.offset = (u64)-1;
3643
3644 while (1) {
3645 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3646 BUG_ON(ret == 0); /* Logic error */
3647 if (ret < 0)
3648 break;
3649
3650 if (path->slots[0] == 0)
3651 break;
3652
3653 path->slots[0]--;
3654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655 path->slots[0]);
3656
3657 if (found_key.objectid != objectid)
3658 break;
3659
3660 found_key.offset = 0;
3661 found_key.type = 0;
3662 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663 &start_slot);
3664
3665 ret = btrfs_del_items(trans, log, path, start_slot,
3666 path->slots[0] - start_slot + 1);
3667 /*
3668 * If start slot isn't 0 then we don't need to re-search, we've
3669 * found the last guy with the objectid in this tree.
3670 */
3671 if (ret || start_slot != 0)
3672 break;
3673 btrfs_release_path(path);
3674 }
3675 btrfs_release_path(path);
3676 if (ret > 0)
3677 ret = 0;
3678 return ret;
3679}
3680
3681static void fill_inode_item(struct btrfs_trans_handle *trans,
3682 struct extent_buffer *leaf,
3683 struct btrfs_inode_item *item,
3684 struct inode *inode, int log_inode_only,
3685 u64 logged_isize)
3686{
3687 struct btrfs_map_token token;
3688
3689 btrfs_init_map_token(&token);
3690
3691 if (log_inode_only) {
3692 /* set the generation to zero so the recover code
3693 * can tell the difference between an logging
3694 * just to say 'this inode exists' and a logging
3695 * to say 'update this inode with these values'
3696 */
3697 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3698 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3699 } else {
3700 btrfs_set_token_inode_generation(leaf, item,
3701 BTRFS_I(inode)->generation,
3702 &token);
3703 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704 }
3705
3706 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710
3711 btrfs_set_token_timespec_sec(leaf, &item->atime,
3712 inode->i_atime.tv_sec, &token);
3713 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3714 inode->i_atime.tv_nsec, &token);
3715
3716 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3717 inode->i_mtime.tv_sec, &token);
3718 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3719 inode->i_mtime.tv_nsec, &token);
3720
3721 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3722 inode->i_ctime.tv_sec, &token);
3723 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3724 inode->i_ctime.tv_nsec, &token);
3725
3726 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727 &token);
3728
3729 btrfs_set_token_inode_sequence(leaf, item,
3730 inode_peek_iversion(inode), &token);
3731 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3735}
3736
3737static int log_inode_item(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *log, struct btrfs_path *path,
3739 struct btrfs_inode *inode)
3740{
3741 struct btrfs_inode_item *inode_item;
3742 int ret;
3743
3744 ret = btrfs_insert_empty_item(trans, log, path,
3745 &inode->location, sizeof(*inode_item));
3746 if (ret && ret != -EEXIST)
3747 return ret;
3748 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 struct btrfs_inode_item);
3750 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751 0, 0);
3752 btrfs_release_path(path);
3753 return 0;
3754}
3755
3756static noinline int copy_items(struct btrfs_trans_handle *trans,
3757 struct btrfs_inode *inode,
3758 struct btrfs_path *dst_path,
3759 struct btrfs_path *src_path, u64 *last_extent,
3760 int start_slot, int nr, int inode_only,
3761 u64 logged_isize)
3762{
3763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3764 unsigned long src_offset;
3765 unsigned long dst_offset;
3766 struct btrfs_root *log = inode->root->log_root;
3767 struct btrfs_file_extent_item *extent;
3768 struct btrfs_inode_item *inode_item;
3769 struct extent_buffer *src = src_path->nodes[0];
3770 struct btrfs_key first_key, last_key, key;
3771 int ret;
3772 struct btrfs_key *ins_keys;
3773 u32 *ins_sizes;
3774 char *ins_data;
3775 int i;
3776 struct list_head ordered_sums;
3777 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3778 bool has_extents = false;
3779 bool need_find_last_extent = true;
3780 bool done = false;
3781
3782 INIT_LIST_HEAD(&ordered_sums);
3783
3784 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785 nr * sizeof(u32), GFP_NOFS);
3786 if (!ins_data)
3787 return -ENOMEM;
3788
3789 first_key.objectid = (u64)-1;
3790
3791 ins_sizes = (u32 *)ins_data;
3792 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3793
3794 for (i = 0; i < nr; i++) {
3795 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797 }
3798 ret = btrfs_insert_empty_items(trans, log, dst_path,
3799 ins_keys, ins_sizes, nr);
3800 if (ret) {
3801 kfree(ins_data);
3802 return ret;
3803 }
3804
3805 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3806 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807 dst_path->slots[0]);
3808
3809 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810
3811 if (i == nr - 1)
3812 last_key = ins_keys[i];
3813
3814 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3815 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816 dst_path->slots[0],
3817 struct btrfs_inode_item);
3818 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3819 &inode->vfs_inode,
3820 inode_only == LOG_INODE_EXISTS,
3821 logged_isize);
3822 } else {
3823 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824 src_offset, ins_sizes[i]);
3825 }
3826
3827 /*
3828 * We set need_find_last_extent here in case we know we were
3829 * processing other items and then walk into the first extent in
3830 * the inode. If we don't hit an extent then nothing changes,
3831 * we'll do the last search the next time around.
3832 */
3833 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834 has_extents = true;
3835 if (first_key.objectid == (u64)-1)
3836 first_key = ins_keys[i];
3837 } else {
3838 need_find_last_extent = false;
3839 }
3840
3841 /* take a reference on file data extents so that truncates
3842 * or deletes of this inode don't have to relog the inode
3843 * again
3844 */
3845 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3846 !skip_csum) {
3847 int found_type;
3848 extent = btrfs_item_ptr(src, start_slot + i,
3849 struct btrfs_file_extent_item);
3850
3851 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852 continue;
3853
3854 found_type = btrfs_file_extent_type(src, extent);
3855 if (found_type == BTRFS_FILE_EXTENT_REG) {
3856 u64 ds, dl, cs, cl;
3857 ds = btrfs_file_extent_disk_bytenr(src,
3858 extent);
3859 /* ds == 0 is a hole */
3860 if (ds == 0)
3861 continue;
3862
3863 dl = btrfs_file_extent_disk_num_bytes(src,
3864 extent);
3865 cs = btrfs_file_extent_offset(src, extent);
3866 cl = btrfs_file_extent_num_bytes(src,
3867 extent);
3868 if (btrfs_file_extent_compression(src,
3869 extent)) {
3870 cs = 0;
3871 cl = dl;
3872 }
3873
3874 ret = btrfs_lookup_csums_range(
3875 fs_info->csum_root,
3876 ds + cs, ds + cs + cl - 1,
3877 &ordered_sums, 0);
3878 if (ret) {
3879 btrfs_release_path(dst_path);
3880 kfree(ins_data);
3881 return ret;
3882 }
3883 }
3884 }
3885 }
3886
3887 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3888 btrfs_release_path(dst_path);
3889 kfree(ins_data);
3890
3891 /*
3892 * we have to do this after the loop above to avoid changing the
3893 * log tree while trying to change the log tree.
3894 */
3895 ret = 0;
3896 while (!list_empty(&ordered_sums)) {
3897 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898 struct btrfs_ordered_sum,
3899 list);
3900 if (!ret)
3901 ret = btrfs_csum_file_blocks(trans, log, sums);
3902 list_del(&sums->list);
3903 kfree(sums);
3904 }
3905
3906 if (!has_extents)
3907 return ret;
3908
3909 if (need_find_last_extent && *last_extent == first_key.offset) {
3910 /*
3911 * We don't have any leafs between our current one and the one
3912 * we processed before that can have file extent items for our
3913 * inode (and have a generation number smaller than our current
3914 * transaction id).
3915 */
3916 need_find_last_extent = false;
3917 }
3918
3919 /*
3920 * Because we use btrfs_search_forward we could skip leaves that were
3921 * not modified and then assume *last_extent is valid when it really
3922 * isn't. So back up to the previous leaf and read the end of the last
3923 * extent before we go and fill in holes.
3924 */
3925 if (need_find_last_extent) {
3926 u64 len;
3927
3928 ret = btrfs_prev_leaf(inode->root, src_path);
3929 if (ret < 0)
3930 return ret;
3931 if (ret)
3932 goto fill_holes;
3933 if (src_path->slots[0])
3934 src_path->slots[0]--;
3935 src = src_path->nodes[0];
3936 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3937 if (key.objectid != btrfs_ino(inode) ||
3938 key.type != BTRFS_EXTENT_DATA_KEY)
3939 goto fill_holes;
3940 extent = btrfs_item_ptr(src, src_path->slots[0],
3941 struct btrfs_file_extent_item);
3942 if (btrfs_file_extent_type(src, extent) ==
3943 BTRFS_FILE_EXTENT_INLINE) {
3944 len = btrfs_file_extent_inline_len(src,
3945 src_path->slots[0],
3946 extent);
3947 *last_extent = ALIGN(key.offset + len,
3948 fs_info->sectorsize);
3949 } else {
3950 len = btrfs_file_extent_num_bytes(src, extent);
3951 *last_extent = key.offset + len;
3952 }
3953 }
3954fill_holes:
3955 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3956 * things could have happened
3957 *
3958 * 1) A merge could have happened, so we could currently be on a leaf
3959 * that holds what we were copying in the first place.
3960 * 2) A split could have happened, and now not all of the items we want
3961 * are on the same leaf.
3962 *
3963 * So we need to adjust how we search for holes, we need to drop the
3964 * path and re-search for the first extent key we found, and then walk
3965 * forward until we hit the last one we copied.
3966 */
3967 if (need_find_last_extent) {
3968 /* btrfs_prev_leaf could return 1 without releasing the path */
3969 btrfs_release_path(src_path);
3970 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971 src_path, 0, 0);
3972 if (ret < 0)
3973 return ret;
3974 ASSERT(ret == 0);
3975 src = src_path->nodes[0];
3976 i = src_path->slots[0];
3977 } else {
3978 i = start_slot;
3979 }
3980
3981 /*
3982 * Ok so here we need to go through and fill in any holes we may have
3983 * to make sure that holes are punched for those areas in case they had
3984 * extents previously.
3985 */
3986 while (!done) {
3987 u64 offset, len;
3988 u64 extent_end;
3989
3990 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3991 ret = btrfs_next_leaf(inode->root, src_path);
3992 if (ret < 0)
3993 return ret;
3994 ASSERT(ret == 0);
3995 src = src_path->nodes[0];
3996 i = 0;
3997 need_find_last_extent = true;
3998 }
3999
4000 btrfs_item_key_to_cpu(src, &key, i);
4001 if (!btrfs_comp_cpu_keys(&key, &last_key))
4002 done = true;
4003 if (key.objectid != btrfs_ino(inode) ||
4004 key.type != BTRFS_EXTENT_DATA_KEY) {
4005 i++;
4006 continue;
4007 }
4008 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009 if (btrfs_file_extent_type(src, extent) ==
4010 BTRFS_FILE_EXTENT_INLINE) {
4011 len = btrfs_file_extent_inline_len(src, i, extent);
4012 extent_end = ALIGN(key.offset + len,
4013 fs_info->sectorsize);
4014 } else {
4015 len = btrfs_file_extent_num_bytes(src, extent);
4016 extent_end = key.offset + len;
4017 }
4018 i++;
4019
4020 if (*last_extent == key.offset) {
4021 *last_extent = extent_end;
4022 continue;
4023 }
4024 offset = *last_extent;
4025 len = key.offset - *last_extent;
4026 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4027 offset, 0, 0, len, 0, len, 0, 0, 0);
4028 if (ret)
4029 break;
4030 *last_extent = extent_end;
4031 }
4032
4033 /*
4034 * Check if there is a hole between the last extent found in our leaf
4035 * and the first extent in the next leaf. If there is one, we need to
4036 * log an explicit hole so that at replay time we can punch the hole.
4037 */
4038 if (ret == 0 &&
4039 key.objectid == btrfs_ino(inode) &&
4040 key.type == BTRFS_EXTENT_DATA_KEY &&
4041 i == btrfs_header_nritems(src_path->nodes[0])) {
4042 ret = btrfs_next_leaf(inode->root, src_path);
4043 need_find_last_extent = true;
4044 if (ret > 0) {
4045 ret = 0;
4046 } else if (ret == 0) {
4047 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048 src_path->slots[0]);
4049 if (key.objectid == btrfs_ino(inode) &&
4050 key.type == BTRFS_EXTENT_DATA_KEY &&
4051 *last_extent < key.offset) {
4052 const u64 len = key.offset - *last_extent;
4053
4054 ret = btrfs_insert_file_extent(trans, log,
4055 btrfs_ino(inode),
4056 *last_extent, 0,
4057 0, len, 0, len,
4058 0, 0, 0);
4059 }
4060 }
4061 }
4062 /*
4063 * Need to let the callers know we dropped the path so they should
4064 * re-search.
4065 */
4066 if (!ret && need_find_last_extent)
4067 ret = 1;
4068 return ret;
4069}
4070
4071static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4072{
4073 struct extent_map *em1, *em2;
4074
4075 em1 = list_entry(a, struct extent_map, list);
4076 em2 = list_entry(b, struct extent_map, list);
4077
4078 if (em1->start < em2->start)
4079 return -1;
4080 else if (em1->start > em2->start)
4081 return 1;
4082 return 0;
4083}
4084
4085static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086 struct inode *inode,
4087 struct btrfs_root *root,
4088 const struct extent_map *em,
4089 const struct list_head *logged_list,
4090 bool *ordered_io_error)
4091{
4092 struct btrfs_fs_info *fs_info = root->fs_info;
4093 struct btrfs_ordered_extent *ordered;
4094 struct btrfs_root *log = root->log_root;
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
4097 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4098 u64 csum_offset;
4099 u64 csum_len;
4100 LIST_HEAD(ordered_sums);
4101 int ret = 0;
4102
4103 *ordered_io_error = false;
4104
4105 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106 em->block_start == EXTENT_MAP_HOLE)
4107 return 0;
4108
4109 /*
4110 * Wait far any ordered extent that covers our extent map. If it
4111 * finishes without an error, first check and see if our csums are on
4112 * our outstanding ordered extents.
4113 */
4114 list_for_each_entry(ordered, logged_list, log_list) {
4115 struct btrfs_ordered_sum *sum;
4116
4117 if (!mod_len)
4118 break;
4119
4120 if (ordered->file_offset + ordered->len <= mod_start ||
4121 mod_start + mod_len <= ordered->file_offset)
4122 continue;
4123
4124 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127 const u64 start = ordered->file_offset;
4128 const u64 end = ordered->file_offset + ordered->len - 1;
4129
4130 WARN_ON(ordered->inode != inode);
4131 filemap_fdatawrite_range(inode->i_mapping, start, end);
4132 }
4133
4134 wait_event(ordered->wait,
4135 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137
4138 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4139 /*
4140 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141 * i_mapping flags, so that the next fsync won't get
4142 * an outdated io error too.
4143 */
4144 filemap_check_errors(inode->i_mapping);
4145 *ordered_io_error = true;
4146 break;
4147 }
4148 /*
4149 * We are going to copy all the csums on this ordered extent, so
4150 * go ahead and adjust mod_start and mod_len in case this
4151 * ordered extent has already been logged.
4152 */
4153 if (ordered->file_offset > mod_start) {
4154 if (ordered->file_offset + ordered->len >=
4155 mod_start + mod_len)
4156 mod_len = ordered->file_offset - mod_start;
4157 /*
4158 * If we have this case
4159 *
4160 * |--------- logged extent ---------|
4161 * |----- ordered extent ----|
4162 *
4163 * Just don't mess with mod_start and mod_len, we'll
4164 * just end up logging more csums than we need and it
4165 * will be ok.
4166 */
4167 } else {
4168 if (ordered->file_offset + ordered->len <
4169 mod_start + mod_len) {
4170 mod_len = (mod_start + mod_len) -
4171 (ordered->file_offset + ordered->len);
4172 mod_start = ordered->file_offset +
4173 ordered->len;
4174 } else {
4175 mod_len = 0;
4176 }
4177 }
4178
4179 if (skip_csum)
4180 continue;
4181
4182 /*
4183 * To keep us from looping for the above case of an ordered
4184 * extent that falls inside of the logged extent.
4185 */
4186 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187 &ordered->flags))
4188 continue;
4189
4190 list_for_each_entry(sum, &ordered->list, list) {
4191 ret = btrfs_csum_file_blocks(trans, log, sum);
4192 if (ret)
4193 break;
4194 }
4195 }
4196
4197 if (*ordered_io_error || !mod_len || ret || skip_csum)
4198 return ret;
4199
4200 if (em->compress_type) {
4201 csum_offset = 0;
4202 csum_len = max(em->block_len, em->orig_block_len);
4203 } else {
4204 csum_offset = mod_start - em->start;
4205 csum_len = mod_len;
4206 }
4207
4208 /* block start is already adjusted for the file extent offset. */
4209 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4210 em->block_start + csum_offset,
4211 em->block_start + csum_offset +
4212 csum_len - 1, &ordered_sums, 0);
4213 if (ret)
4214 return ret;
4215
4216 while (!list_empty(&ordered_sums)) {
4217 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218 struct btrfs_ordered_sum,
4219 list);
4220 if (!ret)
4221 ret = btrfs_csum_file_blocks(trans, log, sums);
4222 list_del(&sums->list);
4223 kfree(sums);
4224 }
4225
4226 return ret;
4227}
4228
4229static int log_one_extent(struct btrfs_trans_handle *trans,
4230 struct btrfs_inode *inode, struct btrfs_root *root,
4231 const struct extent_map *em,
4232 struct btrfs_path *path,
4233 const struct list_head *logged_list,
4234 struct btrfs_log_ctx *ctx)
4235{
4236 struct btrfs_root *log = root->log_root;
4237 struct btrfs_file_extent_item *fi;
4238 struct extent_buffer *leaf;
4239 struct btrfs_map_token token;
4240 struct btrfs_key key;
4241 u64 extent_offset = em->start - em->orig_start;
4242 u64 block_len;
4243 int ret;
4244 int extent_inserted = 0;
4245 bool ordered_io_err = false;
4246
4247 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248 logged_list, &ordered_io_err);
4249 if (ret)
4250 return ret;
4251
4252 if (ordered_io_err) {
4253 ctx->io_err = -EIO;
4254 return ctx->io_err;
4255 }
4256
4257 btrfs_init_map_token(&token);
4258
4259 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4260 em->start + em->len, NULL, 0, 1,
4261 sizeof(*fi), &extent_inserted);
4262 if (ret)
4263 return ret;
4264
4265 if (!extent_inserted) {
4266 key.objectid = btrfs_ino(inode);
4267 key.type = BTRFS_EXTENT_DATA_KEY;
4268 key.offset = em->start;
4269
4270 ret = btrfs_insert_empty_item(trans, log, path, &key,
4271 sizeof(*fi));
4272 if (ret)
4273 return ret;
4274 }
4275 leaf = path->nodes[0];
4276 fi = btrfs_item_ptr(leaf, path->slots[0],
4277 struct btrfs_file_extent_item);
4278
4279 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4280 &token);
4281 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282 btrfs_set_token_file_extent_type(leaf, fi,
4283 BTRFS_FILE_EXTENT_PREALLOC,
4284 &token);
4285 else
4286 btrfs_set_token_file_extent_type(leaf, fi,
4287 BTRFS_FILE_EXTENT_REG,
4288 &token);
4289
4290 block_len = max(em->block_len, em->orig_block_len);
4291 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293 em->block_start,
4294 &token);
4295 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296 &token);
4297 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 em->block_start -
4300 extent_offset, &token);
4301 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 &token);
4303 } else {
4304 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306 &token);
4307 }
4308
4309 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313 &token);
4314 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316 btrfs_mark_buffer_dirty(leaf);
4317
4318 btrfs_release_path(path);
4319
4320 return ret;
4321}
4322
4323/*
4324 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4325 * lose them after doing a fast fsync and replaying the log. We scan the
4326 * subvolume's root instead of iterating the inode's extent map tree because
4327 * otherwise we can log incorrect extent items based on extent map conversion.
4328 * That can happen due to the fact that extent maps are merged when they
4329 * are not in the extent map tree's list of modified extents.
4330 */
4331static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4332 struct btrfs_inode *inode,
4333 struct btrfs_path *path)
4334{
4335 struct btrfs_root *root = inode->root;
4336 struct btrfs_key key;
4337 const u64 i_size = i_size_read(&inode->vfs_inode);
4338 const u64 ino = btrfs_ino(inode);
4339 struct btrfs_path *dst_path = NULL;
4340 u64 last_extent = (u64)-1;
4341 int ins_nr = 0;
4342 int start_slot;
4343 int ret;
4344
4345 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4346 return 0;
4347
4348 key.objectid = ino;
4349 key.type = BTRFS_EXTENT_DATA_KEY;
4350 key.offset = i_size;
4351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4352 if (ret < 0)
4353 goto out;
4354
4355 while (true) {
4356 struct extent_buffer *leaf = path->nodes[0];
4357 int slot = path->slots[0];
4358
4359 if (slot >= btrfs_header_nritems(leaf)) {
4360 if (ins_nr > 0) {
4361 ret = copy_items(trans, inode, dst_path, path,
4362 &last_extent, start_slot,
4363 ins_nr, 1, 0);
4364 if (ret < 0)
4365 goto out;
4366 ins_nr = 0;
4367 }
4368 ret = btrfs_next_leaf(root, path);
4369 if (ret < 0)
4370 goto out;
4371 if (ret > 0) {
4372 ret = 0;
4373 break;
4374 }
4375 continue;
4376 }
4377
4378 btrfs_item_key_to_cpu(leaf, &key, slot);
4379 if (key.objectid > ino)
4380 break;
4381 if (WARN_ON_ONCE(key.objectid < ino) ||
4382 key.type < BTRFS_EXTENT_DATA_KEY ||
4383 key.offset < i_size) {
4384 path->slots[0]++;
4385 continue;
4386 }
4387 if (last_extent == (u64)-1) {
4388 last_extent = key.offset;
4389 /*
4390 * Avoid logging extent items logged in past fsync calls
4391 * and leading to duplicate keys in the log tree.
4392 */
4393 do {
4394 ret = btrfs_truncate_inode_items(trans,
4395 root->log_root,
4396 &inode->vfs_inode,
4397 i_size,
4398 BTRFS_EXTENT_DATA_KEY);
4399 } while (ret == -EAGAIN);
4400 if (ret)
4401 goto out;
4402 }
4403 if (ins_nr == 0)
4404 start_slot = slot;
4405 ins_nr++;
4406 path->slots[0]++;
4407 if (!dst_path) {
4408 dst_path = btrfs_alloc_path();
4409 if (!dst_path) {
4410 ret = -ENOMEM;
4411 goto out;
4412 }
4413 }
4414 }
4415 if (ins_nr > 0) {
4416 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4417 start_slot, ins_nr, 1, 0);
4418 if (ret > 0)
4419 ret = 0;
4420 }
4421out:
4422 btrfs_release_path(path);
4423 btrfs_free_path(dst_path);
4424 return ret;
4425}
4426
4427static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4428 struct btrfs_root *root,
4429 struct btrfs_inode *inode,
4430 struct btrfs_path *path,
4431 struct list_head *logged_list,
4432 struct btrfs_log_ctx *ctx,
4433 const u64 start,
4434 const u64 end)
4435{
4436 struct extent_map *em, *n;
4437 struct list_head extents;
4438 struct extent_map_tree *tree = &inode->extent_tree;
4439 u64 logged_start, logged_end;
4440 u64 test_gen;
4441 int ret = 0;
4442 int num = 0;
4443
4444 INIT_LIST_HEAD(&extents);
4445
4446 down_write(&inode->dio_sem);
4447 write_lock(&tree->lock);
4448 test_gen = root->fs_info->last_trans_committed;
4449 logged_start = start;
4450 logged_end = end;
4451
4452 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4453 list_del_init(&em->list);
4454 /*
4455 * Just an arbitrary number, this can be really CPU intensive
4456 * once we start getting a lot of extents, and really once we
4457 * have a bunch of extents we just want to commit since it will
4458 * be faster.
4459 */
4460 if (++num > 32768) {
4461 list_del_init(&tree->modified_extents);
4462 ret = -EFBIG;
4463 goto process;
4464 }
4465
4466 if (em->generation <= test_gen)
4467 continue;
4468
4469 /* We log prealloc extents beyond eof later. */
4470 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4471 em->start >= i_size_read(&inode->vfs_inode))
4472 continue;
4473
4474 if (em->start < logged_start)
4475 logged_start = em->start;
4476 if ((em->start + em->len - 1) > logged_end)
4477 logged_end = em->start + em->len - 1;
4478
4479 /* Need a ref to keep it from getting evicted from cache */
4480 refcount_inc(&em->refs);
4481 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4482 list_add_tail(&em->list, &extents);
4483 num++;
4484 }
4485
4486 list_sort(NULL, &extents, extent_cmp);
4487 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4488 /*
4489 * Some ordered extents started by fsync might have completed
4490 * before we could collect them into the list logged_list, which
4491 * means they're gone, not in our logged_list nor in the inode's
4492 * ordered tree. We want the application/user space to know an
4493 * error happened while attempting to persist file data so that
4494 * it can take proper action. If such error happened, we leave
4495 * without writing to the log tree and the fsync must report the
4496 * file data write error and not commit the current transaction.
4497 */
4498 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4499 if (ret)
4500 ctx->io_err = ret;
4501process:
4502 while (!list_empty(&extents)) {
4503 em = list_entry(extents.next, struct extent_map, list);
4504
4505 list_del_init(&em->list);
4506
4507 /*
4508 * If we had an error we just need to delete everybody from our
4509 * private list.
4510 */
4511 if (ret) {
4512 clear_em_logging(tree, em);
4513 free_extent_map(em);
4514 continue;
4515 }
4516
4517 write_unlock(&tree->lock);
4518
4519 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4520 ctx);
4521 write_lock(&tree->lock);
4522 clear_em_logging(tree, em);
4523 free_extent_map(em);
4524 }
4525 WARN_ON(!list_empty(&extents));
4526 write_unlock(&tree->lock);
4527 up_write(&inode->dio_sem);
4528
4529 btrfs_release_path(path);
4530 if (!ret)
4531 ret = btrfs_log_prealloc_extents(trans, inode, path);
4532
4533 return ret;
4534}
4535
4536static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4537 struct btrfs_path *path, u64 *size_ret)
4538{
4539 struct btrfs_key key;
4540 int ret;
4541
4542 key.objectid = btrfs_ino(inode);
4543 key.type = BTRFS_INODE_ITEM_KEY;
4544 key.offset = 0;
4545
4546 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4547 if (ret < 0) {
4548 return ret;
4549 } else if (ret > 0) {
4550 *size_ret = 0;
4551 } else {
4552 struct btrfs_inode_item *item;
4553
4554 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4555 struct btrfs_inode_item);
4556 *size_ret = btrfs_inode_size(path->nodes[0], item);
4557 }
4558
4559 btrfs_release_path(path);
4560 return 0;
4561}
4562
4563/*
4564 * At the moment we always log all xattrs. This is to figure out at log replay
4565 * time which xattrs must have their deletion replayed. If a xattr is missing
4566 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4567 * because if a xattr is deleted, the inode is fsynced and a power failure
4568 * happens, causing the log to be replayed the next time the fs is mounted,
4569 * we want the xattr to not exist anymore (same behaviour as other filesystems
4570 * with a journal, ext3/4, xfs, f2fs, etc).
4571 */
4572static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4573 struct btrfs_root *root,
4574 struct btrfs_inode *inode,
4575 struct btrfs_path *path,
4576 struct btrfs_path *dst_path)
4577{
4578 int ret;
4579 struct btrfs_key key;
4580 const u64 ino = btrfs_ino(inode);
4581 int ins_nr = 0;
4582 int start_slot = 0;
4583
4584 key.objectid = ino;
4585 key.type = BTRFS_XATTR_ITEM_KEY;
4586 key.offset = 0;
4587
4588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4589 if (ret < 0)
4590 return ret;
4591
4592 while (true) {
4593 int slot = path->slots[0];
4594 struct extent_buffer *leaf = path->nodes[0];
4595 int nritems = btrfs_header_nritems(leaf);
4596
4597 if (slot >= nritems) {
4598 if (ins_nr > 0) {
4599 u64 last_extent = 0;
4600
4601 ret = copy_items(trans, inode, dst_path, path,
4602 &last_extent, start_slot,
4603 ins_nr, 1, 0);
4604 /* can't be 1, extent items aren't processed */
4605 ASSERT(ret <= 0);
4606 if (ret < 0)
4607 return ret;
4608 ins_nr = 0;
4609 }
4610 ret = btrfs_next_leaf(root, path);
4611 if (ret < 0)
4612 return ret;
4613 else if (ret > 0)
4614 break;
4615 continue;
4616 }
4617
4618 btrfs_item_key_to_cpu(leaf, &key, slot);
4619 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4620 break;
4621
4622 if (ins_nr == 0)
4623 start_slot = slot;
4624 ins_nr++;
4625 path->slots[0]++;
4626 cond_resched();
4627 }
4628 if (ins_nr > 0) {
4629 u64 last_extent = 0;
4630
4631 ret = copy_items(trans, inode, dst_path, path,
4632 &last_extent, start_slot,
4633 ins_nr, 1, 0);
4634 /* can't be 1, extent items aren't processed */
4635 ASSERT(ret <= 0);
4636 if (ret < 0)
4637 return ret;
4638 }
4639
4640 return 0;
4641}
4642
4643/*
4644 * If the no holes feature is enabled we need to make sure any hole between the
4645 * last extent and the i_size of our inode is explicitly marked in the log. This
4646 * is to make sure that doing something like:
4647 *
4648 * 1) create file with 128Kb of data
4649 * 2) truncate file to 64Kb
4650 * 3) truncate file to 256Kb
4651 * 4) fsync file
4652 * 5) <crash/power failure>
4653 * 6) mount fs and trigger log replay
4654 *
4655 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4656 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4657 * file correspond to a hole. The presence of explicit holes in a log tree is
4658 * what guarantees that log replay will remove/adjust file extent items in the
4659 * fs/subvol tree.
4660 *
4661 * Here we do not need to care about holes between extents, that is already done
4662 * by copy_items(). We also only need to do this in the full sync path, where we
4663 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4664 * lookup the list of modified extent maps and if any represents a hole, we
4665 * insert a corresponding extent representing a hole in the log tree.
4666 */
4667static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *root,
4669 struct btrfs_inode *inode,
4670 struct btrfs_path *path)
4671{
4672 struct btrfs_fs_info *fs_info = root->fs_info;
4673 int ret;
4674 struct btrfs_key key;
4675 u64 hole_start;
4676 u64 hole_size;
4677 struct extent_buffer *leaf;
4678 struct btrfs_root *log = root->log_root;
4679 const u64 ino = btrfs_ino(inode);
4680 const u64 i_size = i_size_read(&inode->vfs_inode);
4681
4682 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4683 return 0;
4684
4685 key.objectid = ino;
4686 key.type = BTRFS_EXTENT_DATA_KEY;
4687 key.offset = (u64)-1;
4688
4689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4690 ASSERT(ret != 0);
4691 if (ret < 0)
4692 return ret;
4693
4694 ASSERT(path->slots[0] > 0);
4695 path->slots[0]--;
4696 leaf = path->nodes[0];
4697 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4698
4699 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4700 /* inode does not have any extents */
4701 hole_start = 0;
4702 hole_size = i_size;
4703 } else {
4704 struct btrfs_file_extent_item *extent;
4705 u64 len;
4706
4707 /*
4708 * If there's an extent beyond i_size, an explicit hole was
4709 * already inserted by copy_items().
4710 */
4711 if (key.offset >= i_size)
4712 return 0;
4713
4714 extent = btrfs_item_ptr(leaf, path->slots[0],
4715 struct btrfs_file_extent_item);
4716
4717 if (btrfs_file_extent_type(leaf, extent) ==
4718 BTRFS_FILE_EXTENT_INLINE) {
4719 len = btrfs_file_extent_inline_len(leaf,
4720 path->slots[0],
4721 extent);
4722 ASSERT(len == i_size ||
4723 (len == fs_info->sectorsize &&
4724 btrfs_file_extent_compression(leaf, extent) !=
4725 BTRFS_COMPRESS_NONE));
4726 return 0;
4727 }
4728
4729 len = btrfs_file_extent_num_bytes(leaf, extent);
4730 /* Last extent goes beyond i_size, no need to log a hole. */
4731 if (key.offset + len > i_size)
4732 return 0;
4733 hole_start = key.offset + len;
4734 hole_size = i_size - hole_start;
4735 }
4736 btrfs_release_path(path);
4737
4738 /* Last extent ends at i_size. */
4739 if (hole_size == 0)
4740 return 0;
4741
4742 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4743 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4744 hole_size, 0, hole_size, 0, 0, 0);
4745 return ret;
4746}
4747
4748/*
4749 * When we are logging a new inode X, check if it doesn't have a reference that
4750 * matches the reference from some other inode Y created in a past transaction
4751 * and that was renamed in the current transaction. If we don't do this, then at
4752 * log replay time we can lose inode Y (and all its files if it's a directory):
4753 *
4754 * mkdir /mnt/x
4755 * echo "hello world" > /mnt/x/foobar
4756 * sync
4757 * mv /mnt/x /mnt/y
4758 * mkdir /mnt/x # or touch /mnt/x
4759 * xfs_io -c fsync /mnt/x
4760 * <power fail>
4761 * mount fs, trigger log replay
4762 *
4763 * After the log replay procedure, we would lose the first directory and all its
4764 * files (file foobar).
4765 * For the case where inode Y is not a directory we simply end up losing it:
4766 *
4767 * echo "123" > /mnt/foo
4768 * sync
4769 * mv /mnt/foo /mnt/bar
4770 * echo "abc" > /mnt/foo
4771 * xfs_io -c fsync /mnt/foo
4772 * <power fail>
4773 *
4774 * We also need this for cases where a snapshot entry is replaced by some other
4775 * entry (file or directory) otherwise we end up with an unreplayable log due to
4776 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4777 * if it were a regular entry:
4778 *
4779 * mkdir /mnt/x
4780 * btrfs subvolume snapshot /mnt /mnt/x/snap
4781 * btrfs subvolume delete /mnt/x/snap
4782 * rmdir /mnt/x
4783 * mkdir /mnt/x
4784 * fsync /mnt/x or fsync some new file inside it
4785 * <power fail>
4786 *
4787 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4788 * the same transaction.
4789 */
4790static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4791 const int slot,
4792 const struct btrfs_key *key,
4793 struct btrfs_inode *inode,
4794 u64 *other_ino)
4795{
4796 int ret;
4797 struct btrfs_path *search_path;
4798 char *name = NULL;
4799 u32 name_len = 0;
4800 u32 item_size = btrfs_item_size_nr(eb, slot);
4801 u32 cur_offset = 0;
4802 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4803
4804 search_path = btrfs_alloc_path();
4805 if (!search_path)
4806 return -ENOMEM;
4807 search_path->search_commit_root = 1;
4808 search_path->skip_locking = 1;
4809
4810 while (cur_offset < item_size) {
4811 u64 parent;
4812 u32 this_name_len;
4813 u32 this_len;
4814 unsigned long name_ptr;
4815 struct btrfs_dir_item *di;
4816
4817 if (key->type == BTRFS_INODE_REF_KEY) {
4818 struct btrfs_inode_ref *iref;
4819
4820 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4821 parent = key->offset;
4822 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4823 name_ptr = (unsigned long)(iref + 1);
4824 this_len = sizeof(*iref) + this_name_len;
4825 } else {
4826 struct btrfs_inode_extref *extref;
4827
4828 extref = (struct btrfs_inode_extref *)(ptr +
4829 cur_offset);
4830 parent = btrfs_inode_extref_parent(eb, extref);
4831 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4832 name_ptr = (unsigned long)&extref->name;
4833 this_len = sizeof(*extref) + this_name_len;
4834 }
4835
4836 if (this_name_len > name_len) {
4837 char *new_name;
4838
4839 new_name = krealloc(name, this_name_len, GFP_NOFS);
4840 if (!new_name) {
4841 ret = -ENOMEM;
4842 goto out;
4843 }
4844 name_len = this_name_len;
4845 name = new_name;
4846 }
4847
4848 read_extent_buffer(eb, name, name_ptr, this_name_len);
4849 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4850 parent, name, this_name_len, 0);
4851 if (di && !IS_ERR(di)) {
4852 struct btrfs_key di_key;
4853
4854 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4855 di, &di_key);
4856 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4857 ret = 1;
4858 *other_ino = di_key.objectid;
4859 } else {
4860 ret = -EAGAIN;
4861 }
4862 goto out;
4863 } else if (IS_ERR(di)) {
4864 ret = PTR_ERR(di);
4865 goto out;
4866 }
4867 btrfs_release_path(search_path);
4868
4869 cur_offset += this_len;
4870 }
4871 ret = 0;
4872out:
4873 btrfs_free_path(search_path);
4874 kfree(name);
4875 return ret;
4876}
4877
4878/* log a single inode in the tree log.
4879 * At least one parent directory for this inode must exist in the tree
4880 * or be logged already.
4881 *
4882 * Any items from this inode changed by the current transaction are copied
4883 * to the log tree. An extra reference is taken on any extents in this
4884 * file, allowing us to avoid a whole pile of corner cases around logging
4885 * blocks that have been removed from the tree.
4886 *
4887 * See LOG_INODE_ALL and related defines for a description of what inode_only
4888 * does.
4889 *
4890 * This handles both files and directories.
4891 */
4892static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4893 struct btrfs_root *root, struct btrfs_inode *inode,
4894 int inode_only,
4895 const loff_t start,
4896 const loff_t end,
4897 struct btrfs_log_ctx *ctx)
4898{
4899 struct btrfs_fs_info *fs_info = root->fs_info;
4900 struct btrfs_path *path;
4901 struct btrfs_path *dst_path;
4902 struct btrfs_key min_key;
4903 struct btrfs_key max_key;
4904 struct btrfs_root *log = root->log_root;
4905 LIST_HEAD(logged_list);
4906 u64 last_extent = 0;
4907 int err = 0;
4908 int ret;
4909 int nritems;
4910 int ins_start_slot = 0;
4911 int ins_nr;
4912 bool fast_search = false;
4913 u64 ino = btrfs_ino(inode);
4914 struct extent_map_tree *em_tree = &inode->extent_tree;
4915 u64 logged_isize = 0;
4916 bool need_log_inode_item = true;
4917 bool xattrs_logged = false;
4918
4919 path = btrfs_alloc_path();
4920 if (!path)
4921 return -ENOMEM;
4922 dst_path = btrfs_alloc_path();
4923 if (!dst_path) {
4924 btrfs_free_path(path);
4925 return -ENOMEM;
4926 }
4927
4928 min_key.objectid = ino;
4929 min_key.type = BTRFS_INODE_ITEM_KEY;
4930 min_key.offset = 0;
4931
4932 max_key.objectid = ino;
4933
4934
4935 /* today the code can only do partial logging of directories */
4936 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4937 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4938 &inode->runtime_flags) &&
4939 inode_only >= LOG_INODE_EXISTS))
4940 max_key.type = BTRFS_XATTR_ITEM_KEY;
4941 else
4942 max_key.type = (u8)-1;
4943 max_key.offset = (u64)-1;
4944
4945 /*
4946 * Only run delayed items if we are a dir or a new file.
4947 * Otherwise commit the delayed inode only, which is needed in
4948 * order for the log replay code to mark inodes for link count
4949 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4950 */
4951 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4952 inode->generation > fs_info->last_trans_committed)
4953 ret = btrfs_commit_inode_delayed_items(trans, inode);
4954 else
4955 ret = btrfs_commit_inode_delayed_inode(inode);
4956
4957 if (ret) {
4958 btrfs_free_path(path);
4959 btrfs_free_path(dst_path);
4960 return ret;
4961 }
4962
4963 if (inode_only == LOG_OTHER_INODE) {
4964 inode_only = LOG_INODE_EXISTS;
4965 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4966 } else {
4967 mutex_lock(&inode->log_mutex);
4968 }
4969
4970 /*
4971 * a brute force approach to making sure we get the most uptodate
4972 * copies of everything.
4973 */
4974 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4975 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4976
4977 if (inode_only == LOG_INODE_EXISTS)
4978 max_key_type = BTRFS_XATTR_ITEM_KEY;
4979 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4980 } else {
4981 if (inode_only == LOG_INODE_EXISTS) {
4982 /*
4983 * Make sure the new inode item we write to the log has
4984 * the same isize as the current one (if it exists).
4985 * This is necessary to prevent data loss after log
4986 * replay, and also to prevent doing a wrong expanding
4987 * truncate - for e.g. create file, write 4K into offset
4988 * 0, fsync, write 4K into offset 4096, add hard link,
4989 * fsync some other file (to sync log), power fail - if
4990 * we use the inode's current i_size, after log replay
4991 * we get a 8Kb file, with the last 4Kb extent as a hole
4992 * (zeroes), as if an expanding truncate happened,
4993 * instead of getting a file of 4Kb only.
4994 */
4995 err = logged_inode_size(log, inode, path, &logged_isize);
4996 if (err)
4997 goto out_unlock;
4998 }
4999 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5000 &inode->runtime_flags)) {
5001 if (inode_only == LOG_INODE_EXISTS) {
5002 max_key.type = BTRFS_XATTR_ITEM_KEY;
5003 ret = drop_objectid_items(trans, log, path, ino,
5004 max_key.type);
5005 } else {
5006 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5007 &inode->runtime_flags);
5008 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5009 &inode->runtime_flags);
5010 while(1) {
5011 ret = btrfs_truncate_inode_items(trans,
5012 log, &inode->vfs_inode, 0, 0);
5013 if (ret != -EAGAIN)
5014 break;
5015 }
5016 }
5017 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5018 &inode->runtime_flags) ||
5019 inode_only == LOG_INODE_EXISTS) {
5020 if (inode_only == LOG_INODE_ALL)
5021 fast_search = true;
5022 max_key.type = BTRFS_XATTR_ITEM_KEY;
5023 ret = drop_objectid_items(trans, log, path, ino,
5024 max_key.type);
5025 } else {
5026 if (inode_only == LOG_INODE_ALL)
5027 fast_search = true;
5028 goto log_extents;
5029 }
5030
5031 }
5032 if (ret) {
5033 err = ret;
5034 goto out_unlock;
5035 }
5036
5037 while (1) {
5038 ins_nr = 0;
5039 ret = btrfs_search_forward(root, &min_key,
5040 path, trans->transid);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out_unlock;
5044 }
5045 if (ret != 0)
5046 break;
5047again:
5048 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5049 if (min_key.objectid != ino)
5050 break;
5051 if (min_key.type > max_key.type)
5052 break;
5053
5054 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5055 need_log_inode_item = false;
5056
5057 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5058 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5059 inode->generation == trans->transid) {
5060 u64 other_ino = 0;
5061
5062 ret = btrfs_check_ref_name_override(path->nodes[0],
5063 path->slots[0], &min_key, inode,
5064 &other_ino);
5065 if (ret < 0) {
5066 err = ret;
5067 goto out_unlock;
5068 } else if (ret > 0 && ctx &&
5069 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5070 struct btrfs_key inode_key;
5071 struct inode *other_inode;
5072
5073 if (ins_nr > 0) {
5074 ins_nr++;
5075 } else {
5076 ins_nr = 1;
5077 ins_start_slot = path->slots[0];
5078 }
5079 ret = copy_items(trans, inode, dst_path, path,
5080 &last_extent, ins_start_slot,
5081 ins_nr, inode_only,
5082 logged_isize);
5083 if (ret < 0) {
5084 err = ret;
5085 goto out_unlock;
5086 }
5087 ins_nr = 0;
5088 btrfs_release_path(path);
5089 inode_key.objectid = other_ino;
5090 inode_key.type = BTRFS_INODE_ITEM_KEY;
5091 inode_key.offset = 0;
5092 other_inode = btrfs_iget(fs_info->sb,
5093 &inode_key, root,
5094 NULL);
5095 /*
5096 * If the other inode that had a conflicting dir
5097 * entry was deleted in the current transaction,
5098 * we don't need to do more work nor fallback to
5099 * a transaction commit.
5100 */
5101 if (IS_ERR(other_inode) &&
5102 PTR_ERR(other_inode) == -ENOENT) {
5103 goto next_key;
5104 } else if (IS_ERR(other_inode)) {
5105 err = PTR_ERR(other_inode);
5106 goto out_unlock;
5107 }
5108 /*
5109 * We are safe logging the other inode without
5110 * acquiring its i_mutex as long as we log with
5111 * the LOG_INODE_EXISTS mode. We're safe against
5112 * concurrent renames of the other inode as well
5113 * because during a rename we pin the log and
5114 * update the log with the new name before we
5115 * unpin it.
5116 */
5117 err = btrfs_log_inode(trans, root,
5118 BTRFS_I(other_inode),
5119 LOG_OTHER_INODE, 0, LLONG_MAX,
5120 ctx);
5121 iput(other_inode);
5122 if (err)
5123 goto out_unlock;
5124 else
5125 goto next_key;
5126 }
5127 }
5128
5129 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5130 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5131 if (ins_nr == 0)
5132 goto next_slot;
5133 ret = copy_items(trans, inode, dst_path, path,
5134 &last_extent, ins_start_slot,
5135 ins_nr, inode_only, logged_isize);
5136 if (ret < 0) {
5137 err = ret;
5138 goto out_unlock;
5139 }
5140 ins_nr = 0;
5141 if (ret) {
5142 btrfs_release_path(path);
5143 continue;
5144 }
5145 goto next_slot;
5146 }
5147
5148 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5149 ins_nr++;
5150 goto next_slot;
5151 } else if (!ins_nr) {
5152 ins_start_slot = path->slots[0];
5153 ins_nr = 1;
5154 goto next_slot;
5155 }
5156
5157 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5158 ins_start_slot, ins_nr, inode_only,
5159 logged_isize);
5160 if (ret < 0) {
5161 err = ret;
5162 goto out_unlock;
5163 }
5164 if (ret) {
5165 ins_nr = 0;
5166 btrfs_release_path(path);
5167 continue;
5168 }
5169 ins_nr = 1;
5170 ins_start_slot = path->slots[0];
5171next_slot:
5172
5173 nritems = btrfs_header_nritems(path->nodes[0]);
5174 path->slots[0]++;
5175 if (path->slots[0] < nritems) {
5176 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5177 path->slots[0]);
5178 goto again;
5179 }
5180 if (ins_nr) {
5181 ret = copy_items(trans, inode, dst_path, path,
5182 &last_extent, ins_start_slot,
5183 ins_nr, inode_only, logged_isize);
5184 if (ret < 0) {
5185 err = ret;
5186 goto out_unlock;
5187 }
5188 ret = 0;
5189 ins_nr = 0;
5190 }
5191 btrfs_release_path(path);
5192next_key:
5193 if (min_key.offset < (u64)-1) {
5194 min_key.offset++;
5195 } else if (min_key.type < max_key.type) {
5196 min_key.type++;
5197 min_key.offset = 0;
5198 } else {
5199 break;
5200 }
5201 }
5202 if (ins_nr) {
5203 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5204 ins_start_slot, ins_nr, inode_only,
5205 logged_isize);
5206 if (ret < 0) {
5207 err = ret;
5208 goto out_unlock;
5209 }
5210 ret = 0;
5211 ins_nr = 0;
5212 }
5213
5214 btrfs_release_path(path);
5215 btrfs_release_path(dst_path);
5216 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5217 if (err)
5218 goto out_unlock;
5219 xattrs_logged = true;
5220 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5221 btrfs_release_path(path);
5222 btrfs_release_path(dst_path);
5223 err = btrfs_log_trailing_hole(trans, root, inode, path);
5224 if (err)
5225 goto out_unlock;
5226 }
5227log_extents:
5228 btrfs_release_path(path);
5229 btrfs_release_path(dst_path);
5230 if (need_log_inode_item) {
5231 err = log_inode_item(trans, log, dst_path, inode);
5232 if (!err && !xattrs_logged) {
5233 err = btrfs_log_all_xattrs(trans, root, inode, path,
5234 dst_path);
5235 btrfs_release_path(path);
5236 }
5237 if (err)
5238 goto out_unlock;
5239 }
5240 if (fast_search) {
5241 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5242 &logged_list, ctx, start, end);
5243 if (ret) {
5244 err = ret;
5245 goto out_unlock;
5246 }
5247 } else if (inode_only == LOG_INODE_ALL) {
5248 struct extent_map *em, *n;
5249
5250 write_lock(&em_tree->lock);
5251 /*
5252 * We can't just remove every em if we're called for a ranged
5253 * fsync - that is, one that doesn't cover the whole possible
5254 * file range (0 to LLONG_MAX). This is because we can have
5255 * em's that fall outside the range we're logging and therefore
5256 * their ordered operations haven't completed yet
5257 * (btrfs_finish_ordered_io() not invoked yet). This means we
5258 * didn't get their respective file extent item in the fs/subvol
5259 * tree yet, and need to let the next fast fsync (one which
5260 * consults the list of modified extent maps) find the em so
5261 * that it logs a matching file extent item and waits for the
5262 * respective ordered operation to complete (if it's still
5263 * running).
5264 *
5265 * Removing every em outside the range we're logging would make
5266 * the next fast fsync not log their matching file extent items,
5267 * therefore making us lose data after a log replay.
5268 */
5269 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5270 list) {
5271 const u64 mod_end = em->mod_start + em->mod_len - 1;
5272
5273 if (em->mod_start >= start && mod_end <= end)
5274 list_del_init(&em->list);
5275 }
5276 write_unlock(&em_tree->lock);
5277 }
5278
5279 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5280 ret = log_directory_changes(trans, root, inode, path, dst_path,
5281 ctx);
5282 if (ret) {
5283 err = ret;
5284 goto out_unlock;
5285 }
5286 }
5287
5288 spin_lock(&inode->lock);
5289 inode->logged_trans = trans->transid;
5290 inode->last_log_commit = inode->last_sub_trans;
5291 spin_unlock(&inode->lock);
5292out_unlock:
5293 if (unlikely(err))
5294 btrfs_put_logged_extents(&logged_list);
5295 else
5296 btrfs_submit_logged_extents(&logged_list, log);
5297 mutex_unlock(&inode->log_mutex);
5298
5299 btrfs_free_path(path);
5300 btrfs_free_path(dst_path);
5301 return err;
5302}
5303
5304/*
5305 * Check if we must fallback to a transaction commit when logging an inode.
5306 * This must be called after logging the inode and is used only in the context
5307 * when fsyncing an inode requires the need to log some other inode - in which
5308 * case we can't lock the i_mutex of each other inode we need to log as that
5309 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5310 * log inodes up or down in the hierarchy) or rename operations for example. So
5311 * we take the log_mutex of the inode after we have logged it and then check for
5312 * its last_unlink_trans value - this is safe because any task setting
5313 * last_unlink_trans must take the log_mutex and it must do this before it does
5314 * the actual unlink operation, so if we do this check before a concurrent task
5315 * sets last_unlink_trans it means we've logged a consistent version/state of
5316 * all the inode items, otherwise we are not sure and must do a transaction
5317 * commit (the concurrent task might have only updated last_unlink_trans before
5318 * we logged the inode or it might have also done the unlink).
5319 */
5320static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5321 struct btrfs_inode *inode)
5322{
5323 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5324 bool ret = false;
5325
5326 mutex_lock(&inode->log_mutex);
5327 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5328 /*
5329 * Make sure any commits to the log are forced to be full
5330 * commits.
5331 */
5332 btrfs_set_log_full_commit(fs_info, trans);
5333 ret = true;
5334 }
5335 mutex_unlock(&inode->log_mutex);
5336
5337 return ret;
5338}
5339
5340/*
5341 * follow the dentry parent pointers up the chain and see if any
5342 * of the directories in it require a full commit before they can
5343 * be logged. Returns zero if nothing special needs to be done or 1 if
5344 * a full commit is required.
5345 */
5346static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5347 struct btrfs_inode *inode,
5348 struct dentry *parent,
5349 struct super_block *sb,
5350 u64 last_committed)
5351{
5352 int ret = 0;
5353 struct dentry *old_parent = NULL;
5354 struct btrfs_inode *orig_inode = inode;
5355
5356 /*
5357 * for regular files, if its inode is already on disk, we don't
5358 * have to worry about the parents at all. This is because
5359 * we can use the last_unlink_trans field to record renames
5360 * and other fun in this file.
5361 */
5362 if (S_ISREG(inode->vfs_inode.i_mode) &&
5363 inode->generation <= last_committed &&
5364 inode->last_unlink_trans <= last_committed)
5365 goto out;
5366
5367 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5368 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5369 goto out;
5370 inode = BTRFS_I(d_inode(parent));
5371 }
5372
5373 while (1) {
5374 /*
5375 * If we are logging a directory then we start with our inode,
5376 * not our parent's inode, so we need to skip setting the
5377 * logged_trans so that further down in the log code we don't
5378 * think this inode has already been logged.
5379 */
5380 if (inode != orig_inode)
5381 inode->logged_trans = trans->transid;
5382 smp_mb();
5383
5384 if (btrfs_must_commit_transaction(trans, inode)) {
5385 ret = 1;
5386 break;
5387 }
5388
5389 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5390 break;
5391
5392 if (IS_ROOT(parent)) {
5393 inode = BTRFS_I(d_inode(parent));
5394 if (btrfs_must_commit_transaction(trans, inode))
5395 ret = 1;
5396 break;
5397 }
5398
5399 parent = dget_parent(parent);
5400 dput(old_parent);
5401 old_parent = parent;
5402 inode = BTRFS_I(d_inode(parent));
5403
5404 }
5405 dput(old_parent);
5406out:
5407 return ret;
5408}
5409
5410struct btrfs_dir_list {
5411 u64 ino;
5412 struct list_head list;
5413};
5414
5415/*
5416 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5417 * details about the why it is needed.
5418 * This is a recursive operation - if an existing dentry corresponds to a
5419 * directory, that directory's new entries are logged too (same behaviour as
5420 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5421 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5422 * complains about the following circular lock dependency / possible deadlock:
5423 *
5424 * CPU0 CPU1
5425 * ---- ----
5426 * lock(&type->i_mutex_dir_key#3/2);
5427 * lock(sb_internal#2);
5428 * lock(&type->i_mutex_dir_key#3/2);
5429 * lock(&sb->s_type->i_mutex_key#14);
5430 *
5431 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5432 * sb_start_intwrite() in btrfs_start_transaction().
5433 * Not locking i_mutex of the inodes is still safe because:
5434 *
5435 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5436 * that while logging the inode new references (names) are added or removed
5437 * from the inode, leaving the logged inode item with a link count that does
5438 * not match the number of logged inode reference items. This is fine because
5439 * at log replay time we compute the real number of links and correct the
5440 * link count in the inode item (see replay_one_buffer() and
5441 * link_to_fixup_dir());
5442 *
5443 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5444 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5445 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5446 * has a size that doesn't match the sum of the lengths of all the logged
5447 * names. This does not result in a problem because if a dir_item key is
5448 * logged but its matching dir_index key is not logged, at log replay time we
5449 * don't use it to replay the respective name (see replay_one_name()). On the
5450 * other hand if only the dir_index key ends up being logged, the respective
5451 * name is added to the fs/subvol tree with both the dir_item and dir_index
5452 * keys created (see replay_one_name()).
5453 * The directory's inode item with a wrong i_size is not a problem as well,
5454 * since we don't use it at log replay time to set the i_size in the inode
5455 * item of the fs/subvol tree (see overwrite_item()).
5456 */
5457static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5458 struct btrfs_root *root,
5459 struct btrfs_inode *start_inode,
5460 struct btrfs_log_ctx *ctx)
5461{
5462 struct btrfs_fs_info *fs_info = root->fs_info;
5463 struct btrfs_root *log = root->log_root;
5464 struct btrfs_path *path;
5465 LIST_HEAD(dir_list);
5466 struct btrfs_dir_list *dir_elem;
5467 int ret = 0;
5468
5469 path = btrfs_alloc_path();
5470 if (!path)
5471 return -ENOMEM;
5472
5473 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5474 if (!dir_elem) {
5475 btrfs_free_path(path);
5476 return -ENOMEM;
5477 }
5478 dir_elem->ino = btrfs_ino(start_inode);
5479 list_add_tail(&dir_elem->list, &dir_list);
5480
5481 while (!list_empty(&dir_list)) {
5482 struct extent_buffer *leaf;
5483 struct btrfs_key min_key;
5484 int nritems;
5485 int i;
5486
5487 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5488 list);
5489 if (ret)
5490 goto next_dir_inode;
5491
5492 min_key.objectid = dir_elem->ino;
5493 min_key.type = BTRFS_DIR_ITEM_KEY;
5494 min_key.offset = 0;
5495again:
5496 btrfs_release_path(path);
5497 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5498 if (ret < 0) {
5499 goto next_dir_inode;
5500 } else if (ret > 0) {
5501 ret = 0;
5502 goto next_dir_inode;
5503 }
5504
5505process_leaf:
5506 leaf = path->nodes[0];
5507 nritems = btrfs_header_nritems(leaf);
5508 for (i = path->slots[0]; i < nritems; i++) {
5509 struct btrfs_dir_item *di;
5510 struct btrfs_key di_key;
5511 struct inode *di_inode;
5512 struct btrfs_dir_list *new_dir_elem;
5513 int log_mode = LOG_INODE_EXISTS;
5514 int type;
5515
5516 btrfs_item_key_to_cpu(leaf, &min_key, i);
5517 if (min_key.objectid != dir_elem->ino ||
5518 min_key.type != BTRFS_DIR_ITEM_KEY)
5519 goto next_dir_inode;
5520
5521 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5522 type = btrfs_dir_type(leaf, di);
5523 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5524 type != BTRFS_FT_DIR)
5525 continue;
5526 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5527 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5528 continue;
5529
5530 btrfs_release_path(path);
5531 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5532 if (IS_ERR(di_inode)) {
5533 ret = PTR_ERR(di_inode);
5534 goto next_dir_inode;
5535 }
5536
5537 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5538 iput(di_inode);
5539 break;
5540 }
5541
5542 ctx->log_new_dentries = false;
5543 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5544 log_mode = LOG_INODE_ALL;
5545 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5546 log_mode, 0, LLONG_MAX, ctx);
5547 if (!ret &&
5548 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5549 ret = 1;
5550 iput(di_inode);
5551 if (ret)
5552 goto next_dir_inode;
5553 if (ctx->log_new_dentries) {
5554 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5555 GFP_NOFS);
5556 if (!new_dir_elem) {
5557 ret = -ENOMEM;
5558 goto next_dir_inode;
5559 }
5560 new_dir_elem->ino = di_key.objectid;
5561 list_add_tail(&new_dir_elem->list, &dir_list);
5562 }
5563 break;
5564 }
5565 if (i == nritems) {
5566 ret = btrfs_next_leaf(log, path);
5567 if (ret < 0) {
5568 goto next_dir_inode;
5569 } else if (ret > 0) {
5570 ret = 0;
5571 goto next_dir_inode;
5572 }
5573 goto process_leaf;
5574 }
5575 if (min_key.offset < (u64)-1) {
5576 min_key.offset++;
5577 goto again;
5578 }
5579next_dir_inode:
5580 list_del(&dir_elem->list);
5581 kfree(dir_elem);
5582 }
5583
5584 btrfs_free_path(path);
5585 return ret;
5586}
5587
5588static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5589 struct btrfs_inode *inode,
5590 struct btrfs_log_ctx *ctx)
5591{
5592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5593 int ret;
5594 struct btrfs_path *path;
5595 struct btrfs_key key;
5596 struct btrfs_root *root = inode->root;
5597 const u64 ino = btrfs_ino(inode);
5598
5599 path = btrfs_alloc_path();
5600 if (!path)
5601 return -ENOMEM;
5602 path->skip_locking = 1;
5603 path->search_commit_root = 1;
5604
5605 key.objectid = ino;
5606 key.type = BTRFS_INODE_REF_KEY;
5607 key.offset = 0;
5608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5609 if (ret < 0)
5610 goto out;
5611
5612 while (true) {
5613 struct extent_buffer *leaf = path->nodes[0];
5614 int slot = path->slots[0];
5615 u32 cur_offset = 0;
5616 u32 item_size;
5617 unsigned long ptr;
5618
5619 if (slot >= btrfs_header_nritems(leaf)) {
5620 ret = btrfs_next_leaf(root, path);
5621 if (ret < 0)
5622 goto out;
5623 else if (ret > 0)
5624 break;
5625 continue;
5626 }
5627
5628 btrfs_item_key_to_cpu(leaf, &key, slot);
5629 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5630 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5631 break;
5632
5633 item_size = btrfs_item_size_nr(leaf, slot);
5634 ptr = btrfs_item_ptr_offset(leaf, slot);
5635 while (cur_offset < item_size) {
5636 struct btrfs_key inode_key;
5637 struct inode *dir_inode;
5638
5639 inode_key.type = BTRFS_INODE_ITEM_KEY;
5640 inode_key.offset = 0;
5641
5642 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5643 struct btrfs_inode_extref *extref;
5644
5645 extref = (struct btrfs_inode_extref *)
5646 (ptr + cur_offset);
5647 inode_key.objectid = btrfs_inode_extref_parent(
5648 leaf, extref);
5649 cur_offset += sizeof(*extref);
5650 cur_offset += btrfs_inode_extref_name_len(leaf,
5651 extref);
5652 } else {
5653 inode_key.objectid = key.offset;
5654 cur_offset = item_size;
5655 }
5656
5657 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5658 root, NULL);
5659 /* If parent inode was deleted, skip it. */
5660 if (IS_ERR(dir_inode))
5661 continue;
5662
5663 if (ctx)
5664 ctx->log_new_dentries = false;
5665 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5666 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5667 if (!ret &&
5668 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5669 ret = 1;
5670 if (!ret && ctx && ctx->log_new_dentries)
5671 ret = log_new_dir_dentries(trans, root,
5672 BTRFS_I(dir_inode), ctx);
5673 iput(dir_inode);
5674 if (ret)
5675 goto out;
5676 }
5677 path->slots[0]++;
5678 }
5679 ret = 0;
5680out:
5681 btrfs_free_path(path);
5682 return ret;
5683}
5684
5685/*
5686 * helper function around btrfs_log_inode to make sure newly created
5687 * parent directories also end up in the log. A minimal inode and backref
5688 * only logging is done of any parent directories that are older than
5689 * the last committed transaction
5690 */
5691static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5692 struct btrfs_inode *inode,
5693 struct dentry *parent,
5694 const loff_t start,
5695 const loff_t end,
5696 int inode_only,
5697 struct btrfs_log_ctx *ctx)
5698{
5699 struct btrfs_root *root = inode->root;
5700 struct btrfs_fs_info *fs_info = root->fs_info;
5701 struct super_block *sb;
5702 struct dentry *old_parent = NULL;
5703 int ret = 0;
5704 u64 last_committed = fs_info->last_trans_committed;
5705 bool log_dentries = false;
5706 struct btrfs_inode *orig_inode = inode;
5707
5708 sb = inode->vfs_inode.i_sb;
5709
5710 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5711 ret = 1;
5712 goto end_no_trans;
5713 }
5714
5715 /*
5716 * The prev transaction commit doesn't complete, we need do
5717 * full commit by ourselves.
5718 */
5719 if (fs_info->last_trans_log_full_commit >
5720 fs_info->last_trans_committed) {
5721 ret = 1;
5722 goto end_no_trans;
5723 }
5724
5725 if (btrfs_root_refs(&root->root_item) == 0) {
5726 ret = 1;
5727 goto end_no_trans;
5728 }
5729
5730 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5731 last_committed);
5732 if (ret)
5733 goto end_no_trans;
5734
5735 if (btrfs_inode_in_log(inode, trans->transid)) {
5736 ret = BTRFS_NO_LOG_SYNC;
5737 goto end_no_trans;
5738 }
5739
5740 ret = start_log_trans(trans, root, ctx);
5741 if (ret)
5742 goto end_no_trans;
5743
5744 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5745 if (ret)
5746 goto end_trans;
5747
5748 /*
5749 * for regular files, if its inode is already on disk, we don't
5750 * have to worry about the parents at all. This is because
5751 * we can use the last_unlink_trans field to record renames
5752 * and other fun in this file.
5753 */
5754 if (S_ISREG(inode->vfs_inode.i_mode) &&
5755 inode->generation <= last_committed &&
5756 inode->last_unlink_trans <= last_committed) {
5757 ret = 0;
5758 goto end_trans;
5759 }
5760
5761 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5762 log_dentries = true;
5763
5764 /*
5765 * On unlink we must make sure all our current and old parent directory
5766 * inodes are fully logged. This is to prevent leaving dangling
5767 * directory index entries in directories that were our parents but are
5768 * not anymore. Not doing this results in old parent directory being
5769 * impossible to delete after log replay (rmdir will always fail with
5770 * error -ENOTEMPTY).
5771 *
5772 * Example 1:
5773 *
5774 * mkdir testdir
5775 * touch testdir/foo
5776 * ln testdir/foo testdir/bar
5777 * sync
5778 * unlink testdir/bar
5779 * xfs_io -c fsync testdir/foo
5780 * <power failure>
5781 * mount fs, triggers log replay
5782 *
5783 * If we don't log the parent directory (testdir), after log replay the
5784 * directory still has an entry pointing to the file inode using the bar
5785 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5786 * the file inode has a link count of 1.
5787 *
5788 * Example 2:
5789 *
5790 * mkdir testdir
5791 * touch foo
5792 * ln foo testdir/foo2
5793 * ln foo testdir/foo3
5794 * sync
5795 * unlink testdir/foo3
5796 * xfs_io -c fsync foo
5797 * <power failure>
5798 * mount fs, triggers log replay
5799 *
5800 * Similar as the first example, after log replay the parent directory
5801 * testdir still has an entry pointing to the inode file with name foo3
5802 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5803 * and has a link count of 2.
5804 */
5805 if (inode->last_unlink_trans > last_committed) {
5806 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5807 if (ret)
5808 goto end_trans;
5809 }
5810
5811 while (1) {
5812 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5813 break;
5814
5815 inode = BTRFS_I(d_inode(parent));
5816 if (root != inode->root)
5817 break;
5818
5819 if (inode->generation > last_committed) {
5820 ret = btrfs_log_inode(trans, root, inode,
5821 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5822 if (ret)
5823 goto end_trans;
5824 }
5825 if (IS_ROOT(parent))
5826 break;
5827
5828 parent = dget_parent(parent);
5829 dput(old_parent);
5830 old_parent = parent;
5831 }
5832 if (log_dentries)
5833 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5834 else
5835 ret = 0;
5836end_trans:
5837 dput(old_parent);
5838 if (ret < 0) {
5839 btrfs_set_log_full_commit(fs_info, trans);
5840 ret = 1;
5841 }
5842
5843 if (ret)
5844 btrfs_remove_log_ctx(root, ctx);
5845 btrfs_end_log_trans(root);
5846end_no_trans:
5847 return ret;
5848}
5849
5850/*
5851 * it is not safe to log dentry if the chunk root has added new
5852 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5853 * If this returns 1, you must commit the transaction to safely get your
5854 * data on disk.
5855 */
5856int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5857 struct dentry *dentry,
5858 const loff_t start,
5859 const loff_t end,
5860 struct btrfs_log_ctx *ctx)
5861{
5862 struct dentry *parent = dget_parent(dentry);
5863 int ret;
5864
5865 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5866 start, end, LOG_INODE_ALL, ctx);
5867 dput(parent);
5868
5869 return ret;
5870}
5871
5872/*
5873 * should be called during mount to recover any replay any log trees
5874 * from the FS
5875 */
5876int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5877{
5878 int ret;
5879 struct btrfs_path *path;
5880 struct btrfs_trans_handle *trans;
5881 struct btrfs_key key;
5882 struct btrfs_key found_key;
5883 struct btrfs_key tmp_key;
5884 struct btrfs_root *log;
5885 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5886 struct walk_control wc = {
5887 .process_func = process_one_buffer,
5888 .stage = 0,
5889 };
5890
5891 path = btrfs_alloc_path();
5892 if (!path)
5893 return -ENOMEM;
5894
5895 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5896
5897 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5898 if (IS_ERR(trans)) {
5899 ret = PTR_ERR(trans);
5900 goto error;
5901 }
5902
5903 wc.trans = trans;
5904 wc.pin = 1;
5905
5906 ret = walk_log_tree(trans, log_root_tree, &wc);
5907 if (ret) {
5908 btrfs_handle_fs_error(fs_info, ret,
5909 "Failed to pin buffers while recovering log root tree.");
5910 goto error;
5911 }
5912
5913again:
5914 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5915 key.offset = (u64)-1;
5916 key.type = BTRFS_ROOT_ITEM_KEY;
5917
5918 while (1) {
5919 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5920
5921 if (ret < 0) {
5922 btrfs_handle_fs_error(fs_info, ret,
5923 "Couldn't find tree log root.");
5924 goto error;
5925 }
5926 if (ret > 0) {
5927 if (path->slots[0] == 0)
5928 break;
5929 path->slots[0]--;
5930 }
5931 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5932 path->slots[0]);
5933 btrfs_release_path(path);
5934 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5935 break;
5936
5937 log = btrfs_read_fs_root(log_root_tree, &found_key);
5938 if (IS_ERR(log)) {
5939 ret = PTR_ERR(log);
5940 btrfs_handle_fs_error(fs_info, ret,
5941 "Couldn't read tree log root.");
5942 goto error;
5943 }
5944
5945 tmp_key.objectid = found_key.offset;
5946 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5947 tmp_key.offset = (u64)-1;
5948
5949 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5950 if (IS_ERR(wc.replay_dest)) {
5951 ret = PTR_ERR(wc.replay_dest);
5952 free_extent_buffer(log->node);
5953 free_extent_buffer(log->commit_root);
5954 kfree(log);
5955 btrfs_handle_fs_error(fs_info, ret,
5956 "Couldn't read target root for tree log recovery.");
5957 goto error;
5958 }
5959
5960 wc.replay_dest->log_root = log;
5961 btrfs_record_root_in_trans(trans, wc.replay_dest);
5962 ret = walk_log_tree(trans, log, &wc);
5963
5964 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5965 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5966 path);
5967 }
5968
5969 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5970 struct btrfs_root *root = wc.replay_dest;
5971
5972 btrfs_release_path(path);
5973
5974 /*
5975 * We have just replayed everything, and the highest
5976 * objectid of fs roots probably has changed in case
5977 * some inode_item's got replayed.
5978 *
5979 * root->objectid_mutex is not acquired as log replay
5980 * could only happen during mount.
5981 */
5982 ret = btrfs_find_highest_objectid(root,
5983 &root->highest_objectid);
5984 }
5985
5986 key.offset = found_key.offset - 1;
5987 wc.replay_dest->log_root = NULL;
5988 free_extent_buffer(log->node);
5989 free_extent_buffer(log->commit_root);
5990 kfree(log);
5991
5992 if (ret)
5993 goto error;
5994
5995 if (found_key.offset == 0)
5996 break;
5997 }
5998 btrfs_release_path(path);
5999
6000 /* step one is to pin it all, step two is to replay just inodes */
6001 if (wc.pin) {
6002 wc.pin = 0;
6003 wc.process_func = replay_one_buffer;
6004 wc.stage = LOG_WALK_REPLAY_INODES;
6005 goto again;
6006 }
6007 /* step three is to replay everything */
6008 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6009 wc.stage++;
6010 goto again;
6011 }
6012
6013 btrfs_free_path(path);
6014
6015 /* step 4: commit the transaction, which also unpins the blocks */
6016 ret = btrfs_commit_transaction(trans);
6017 if (ret)
6018 return ret;
6019
6020 free_extent_buffer(log_root_tree->node);
6021 log_root_tree->log_root = NULL;
6022 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6023 kfree(log_root_tree);
6024
6025 return 0;
6026error:
6027 if (wc.trans)
6028 btrfs_end_transaction(wc.trans);
6029 btrfs_free_path(path);
6030 return ret;
6031}
6032
6033/*
6034 * there are some corner cases where we want to force a full
6035 * commit instead of allowing a directory to be logged.
6036 *
6037 * They revolve around files there were unlinked from the directory, and
6038 * this function updates the parent directory so that a full commit is
6039 * properly done if it is fsync'd later after the unlinks are done.
6040 *
6041 * Must be called before the unlink operations (updates to the subvolume tree,
6042 * inodes, etc) are done.
6043 */
6044void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6045 struct btrfs_inode *dir, struct btrfs_inode *inode,
6046 int for_rename)
6047{
6048 /*
6049 * when we're logging a file, if it hasn't been renamed
6050 * or unlinked, and its inode is fully committed on disk,
6051 * we don't have to worry about walking up the directory chain
6052 * to log its parents.
6053 *
6054 * So, we use the last_unlink_trans field to put this transid
6055 * into the file. When the file is logged we check it and
6056 * don't log the parents if the file is fully on disk.
6057 */
6058 mutex_lock(&inode->log_mutex);
6059 inode->last_unlink_trans = trans->transid;
6060 mutex_unlock(&inode->log_mutex);
6061
6062 /*
6063 * if this directory was already logged any new
6064 * names for this file/dir will get recorded
6065 */
6066 smp_mb();
6067 if (dir->logged_trans == trans->transid)
6068 return;
6069
6070 /*
6071 * if the inode we're about to unlink was logged,
6072 * the log will be properly updated for any new names
6073 */
6074 if (inode->logged_trans == trans->transid)
6075 return;
6076
6077 /*
6078 * when renaming files across directories, if the directory
6079 * there we're unlinking from gets fsync'd later on, there's
6080 * no way to find the destination directory later and fsync it
6081 * properly. So, we have to be conservative and force commits
6082 * so the new name gets discovered.
6083 */
6084 if (for_rename)
6085 goto record;
6086
6087 /* we can safely do the unlink without any special recording */
6088 return;
6089
6090record:
6091 mutex_lock(&dir->log_mutex);
6092 dir->last_unlink_trans = trans->transid;
6093 mutex_unlock(&dir->log_mutex);
6094}
6095
6096/*
6097 * Make sure that if someone attempts to fsync the parent directory of a deleted
6098 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6099 * that after replaying the log tree of the parent directory's root we will not
6100 * see the snapshot anymore and at log replay time we will not see any log tree
6101 * corresponding to the deleted snapshot's root, which could lead to replaying
6102 * it after replaying the log tree of the parent directory (which would replay
6103 * the snapshot delete operation).
6104 *
6105 * Must be called before the actual snapshot destroy operation (updates to the
6106 * parent root and tree of tree roots trees, etc) are done.
6107 */
6108void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6109 struct btrfs_inode *dir)
6110{
6111 mutex_lock(&dir->log_mutex);
6112 dir->last_unlink_trans = trans->transid;
6113 mutex_unlock(&dir->log_mutex);
6114}
6115
6116/*
6117 * Call this after adding a new name for a file and it will properly
6118 * update the log to reflect the new name.
6119 *
6120 * It will return zero if all goes well, and it will return 1 if a
6121 * full transaction commit is required.
6122 */
6123int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6124 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6125 struct dentry *parent)
6126{
6127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6128
6129 /*
6130 * this will force the logging code to walk the dentry chain
6131 * up for the file
6132 */
6133 if (!S_ISDIR(inode->vfs_inode.i_mode))
6134 inode->last_unlink_trans = trans->transid;
6135
6136 /*
6137 * if this inode hasn't been logged and directory we're renaming it
6138 * from hasn't been logged, we don't need to log it
6139 */
6140 if (inode->logged_trans <= fs_info->last_trans_committed &&
6141 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6142 return 0;
6143
6144 return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145 LOG_INODE_EXISTS, NULL);
6146}
6147