Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <linux/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34#include <linux/kcov.h>
  35
  36#include <linux/phy/phy.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/usb/otg.h>
  40
  41#include "usb.h"
  42#include "phy.h"
  43
  44
  45/*-------------------------------------------------------------------------*/
  46
  47/*
  48 * USB Host Controller Driver framework
  49 *
  50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  51 * HCD-specific behaviors/bugs.
  52 *
  53 * This does error checks, tracks devices and urbs, and delegates to a
  54 * "hc_driver" only for code (and data) that really needs to know about
  55 * hardware differences.  That includes root hub registers, i/o queues,
  56 * and so on ... but as little else as possible.
  57 *
  58 * Shared code includes most of the "root hub" code (these are emulated,
  59 * though each HC's hardware works differently) and PCI glue, plus request
  60 * tracking overhead.  The HCD code should only block on spinlocks or on
  61 * hardware handshaking; blocking on software events (such as other kernel
  62 * threads releasing resources, or completing actions) is all generic.
  63 *
  64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  66 * only by the hub driver ... and that neither should be seen or used by
  67 * usb client device drivers.
  68 *
  69 * Contributors of ideas or unattributed patches include: David Brownell,
  70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  71 *
  72 * HISTORY:
  73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  76 */
  77
  78/*-------------------------------------------------------------------------*/
  79
  80/* Keep track of which host controller drivers are loaded */
  81unsigned long usb_hcds_loaded;
  82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  83
  84/* host controllers we manage */
  85DEFINE_IDR (usb_bus_idr);
  86EXPORT_SYMBOL_GPL (usb_bus_idr);
  87
  88/* used when allocating bus numbers */
  89#define USB_MAXBUS		64
  90
  91/* used when updating list of hcds */
  92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  94
  95/* used for controlling access to virtual root hubs */
  96static DEFINE_SPINLOCK(hcd_root_hub_lock);
  97
  98/* used when updating an endpoint's URB list */
  99static DEFINE_SPINLOCK(hcd_urb_list_lock);
 100
 101/* used to protect against unlinking URBs after the device is gone */
 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 103
 104/* wait queue for synchronous unlinks */
 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 106
 107/*-------------------------------------------------------------------------*/
 108
 109/*
 110 * Sharable chunks of root hub code.
 111 */
 112
 113/*-------------------------------------------------------------------------*/
 114#define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
 115#define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
 116
 117/* usb 3.1 root hub device descriptor */
 118static const u8 usb31_rh_dev_descriptor[18] = {
 119	0x12,       /*  __u8  bLength; */
 120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 122
 123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 124	0x00,	    /*  __u8  bDeviceSubClass; */
 125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 127
 128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 131
 132	0x03,       /*  __u8  iManufacturer; */
 133	0x02,       /*  __u8  iProduct; */
 134	0x01,       /*  __u8  iSerialNumber; */
 135	0x01        /*  __u8  bNumConfigurations; */
 136};
 137
 138/* usb 3.0 root hub device descriptor */
 139static const u8 usb3_rh_dev_descriptor[18] = {
 140	0x12,       /*  __u8  bLength; */
 141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 143
 144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 145	0x00,	    /*  __u8  bDeviceSubClass; */
 146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 148
 149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 152
 153	0x03,       /*  __u8  iManufacturer; */
 154	0x02,       /*  __u8  iProduct; */
 155	0x01,       /*  __u8  iSerialNumber; */
 156	0x01        /*  __u8  bNumConfigurations; */
 157};
 158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159/* usb 2.0 root hub device descriptor */
 160static const u8 usb2_rh_dev_descriptor[18] = {
 161	0x12,       /*  __u8  bLength; */
 162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 163	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 164
 165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 166	0x00,	    /*  __u8  bDeviceSubClass; */
 167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 168	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 169
 170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 173
 174	0x03,       /*  __u8  iManufacturer; */
 175	0x02,       /*  __u8  iProduct; */
 176	0x01,       /*  __u8  iSerialNumber; */
 177	0x01        /*  __u8  bNumConfigurations; */
 178};
 179
 180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 181
 182/* usb 1.1 root hub device descriptor */
 183static const u8 usb11_rh_dev_descriptor[18] = {
 184	0x12,       /*  __u8  bLength; */
 185	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 186	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 187
 188	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 189	0x00,	    /*  __u8  bDeviceSubClass; */
 190	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 191	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 192
 193	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 194	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 195	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 196
 197	0x03,       /*  __u8  iManufacturer; */
 198	0x02,       /*  __u8  iProduct; */
 199	0x01,       /*  __u8  iSerialNumber; */
 200	0x01        /*  __u8  bNumConfigurations; */
 201};
 202
 203
 204/*-------------------------------------------------------------------------*/
 205
 206/* Configuration descriptors for our root hubs */
 207
 208static const u8 fs_rh_config_descriptor[] = {
 209
 210	/* one configuration */
 211	0x09,       /*  __u8  bLength; */
 212	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 213	0x19, 0x00, /*  __le16 wTotalLength; */
 214	0x01,       /*  __u8  bNumInterfaces; (1) */
 215	0x01,       /*  __u8  bConfigurationValue; */
 216	0x00,       /*  __u8  iConfiguration; */
 217	0xc0,       /*  __u8  bmAttributes;
 218				 Bit 7: must be set,
 219				     6: Self-powered,
 220				     5: Remote wakeup,
 221				     4..0: resvd */
 222	0x00,       /*  __u8  MaxPower; */
 223
 224	/* USB 1.1:
 225	 * USB 2.0, single TT organization (mandatory):
 226	 *	one interface, protocol 0
 227	 *
 228	 * USB 2.0, multiple TT organization (optional):
 229	 *	two interfaces, protocols 1 (like single TT)
 230	 *	and 2 (multiple TT mode) ... config is
 231	 *	sometimes settable
 232	 *	NOT IMPLEMENTED
 233	 */
 234
 235	/* one interface */
 236	0x09,       /*  __u8  if_bLength; */
 237	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 238	0x00,       /*  __u8  if_bInterfaceNumber; */
 239	0x00,       /*  __u8  if_bAlternateSetting; */
 240	0x01,       /*  __u8  if_bNumEndpoints; */
 241	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 242	0x00,       /*  __u8  if_bInterfaceSubClass; */
 243	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 244	0x00,       /*  __u8  if_iInterface; */
 245
 246	/* one endpoint (status change endpoint) */
 247	0x07,       /*  __u8  ep_bLength; */
 248	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 249	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 250	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 251	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 252	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 253};
 254
 255static const u8 hs_rh_config_descriptor[] = {
 256
 257	/* one configuration */
 258	0x09,       /*  __u8  bLength; */
 259	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 260	0x19, 0x00, /*  __le16 wTotalLength; */
 261	0x01,       /*  __u8  bNumInterfaces; (1) */
 262	0x01,       /*  __u8  bConfigurationValue; */
 263	0x00,       /*  __u8  iConfiguration; */
 264	0xc0,       /*  __u8  bmAttributes;
 265				 Bit 7: must be set,
 266				     6: Self-powered,
 267				     5: Remote wakeup,
 268				     4..0: resvd */
 269	0x00,       /*  __u8  MaxPower; */
 270
 271	/* USB 1.1:
 272	 * USB 2.0, single TT organization (mandatory):
 273	 *	one interface, protocol 0
 274	 *
 275	 * USB 2.0, multiple TT organization (optional):
 276	 *	two interfaces, protocols 1 (like single TT)
 277	 *	and 2 (multiple TT mode) ... config is
 278	 *	sometimes settable
 279	 *	NOT IMPLEMENTED
 280	 */
 281
 282	/* one interface */
 283	0x09,       /*  __u8  if_bLength; */
 284	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 285	0x00,       /*  __u8  if_bInterfaceNumber; */
 286	0x00,       /*  __u8  if_bAlternateSetting; */
 287	0x01,       /*  __u8  if_bNumEndpoints; */
 288	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 289	0x00,       /*  __u8  if_bInterfaceSubClass; */
 290	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 291	0x00,       /*  __u8  if_iInterface; */
 292
 293	/* one endpoint (status change endpoint) */
 294	0x07,       /*  __u8  ep_bLength; */
 295	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 296	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 297	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 298		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 299		     * see hub.c:hub_configure() for details. */
 300	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 301	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 302};
 303
 304static const u8 ss_rh_config_descriptor[] = {
 305	/* one configuration */
 306	0x09,       /*  __u8  bLength; */
 307	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 308	0x1f, 0x00, /*  __le16 wTotalLength; */
 309	0x01,       /*  __u8  bNumInterfaces; (1) */
 310	0x01,       /*  __u8  bConfigurationValue; */
 311	0x00,       /*  __u8  iConfiguration; */
 312	0xc0,       /*  __u8  bmAttributes;
 313				 Bit 7: must be set,
 314				     6: Self-powered,
 315				     5: Remote wakeup,
 316				     4..0: resvd */
 317	0x00,       /*  __u8  MaxPower; */
 318
 319	/* one interface */
 320	0x09,       /*  __u8  if_bLength; */
 321	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 322	0x00,       /*  __u8  if_bInterfaceNumber; */
 323	0x00,       /*  __u8  if_bAlternateSetting; */
 324	0x01,       /*  __u8  if_bNumEndpoints; */
 325	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 326	0x00,       /*  __u8  if_bInterfaceSubClass; */
 327	0x00,       /*  __u8  if_bInterfaceProtocol; */
 328	0x00,       /*  __u8  if_iInterface; */
 329
 330	/* one endpoint (status change endpoint) */
 331	0x07,       /*  __u8  ep_bLength; */
 332	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 333	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 334	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 335		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 336		     * see hub.c:hub_configure() for details. */
 337	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 338	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 339
 340	/* one SuperSpeed endpoint companion descriptor */
 341	0x06,        /* __u8 ss_bLength */
 342	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 343		     /* Companion */
 344	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 345	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 346	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 347};
 348
 349/* authorized_default behaviour:
 350 * -1 is authorized for all devices (leftover from wireless USB)
 351 * 0 is unauthorized for all devices
 352 * 1 is authorized for all devices
 353 * 2 is authorized for internal devices
 354 */
 355#define USB_AUTHORIZE_WIRED	-1
 356#define USB_AUTHORIZE_NONE	0
 357#define USB_AUTHORIZE_ALL	1
 358#define USB_AUTHORIZE_INTERNAL	2
 359
 360static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
 361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 362MODULE_PARM_DESC(authorized_default,
 363		"Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
 
 
 364/*-------------------------------------------------------------------------*/
 365
 366/**
 367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 368 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 369 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 370 * @len: Length (in bytes; may be odd) of descriptor buffer.
 371 *
 372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 373 * whichever is less.
 374 *
 375 * Note:
 376 * USB String descriptors can contain at most 126 characters; input
 377 * strings longer than that are truncated.
 378 */
 379static unsigned
 380ascii2desc(char const *s, u8 *buf, unsigned len)
 381{
 382	unsigned n, t = 2 + 2*strlen(s);
 383
 384	if (t > 254)
 385		t = 254;	/* Longest possible UTF string descriptor */
 386	if (len > t)
 387		len = t;
 388
 389	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 390
 391	n = len;
 392	while (n--) {
 393		*buf++ = t;
 394		if (!n--)
 395			break;
 396		*buf++ = t >> 8;
 397		t = (unsigned char)*s++;
 398	}
 399	return len;
 400}
 401
 402/**
 403 * rh_string() - provides string descriptors for root hub
 404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 405 * @hcd: the host controller for this root hub
 406 * @data: buffer for output packet
 407 * @len: length of the provided buffer
 408 *
 409 * Produces either a manufacturer, product or serial number string for the
 410 * virtual root hub device.
 411 *
 412 * Return: The number of bytes filled in: the length of the descriptor or
 413 * of the provided buffer, whichever is less.
 414 */
 415static unsigned
 416rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 417{
 418	char buf[100];
 419	char const *s;
 420	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 421
 422	/* language ids */
 423	switch (id) {
 424	case 0:
 425		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 426		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 427		if (len > 4)
 428			len = 4;
 429		memcpy(data, langids, len);
 430		return len;
 431	case 1:
 432		/* Serial number */
 433		s = hcd->self.bus_name;
 434		break;
 435	case 2:
 436		/* Product name */
 437		s = hcd->product_desc;
 438		break;
 439	case 3:
 440		/* Manufacturer */
 441		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 442			init_utsname()->release, hcd->driver->description);
 443		s = buf;
 444		break;
 445	default:
 446		/* Can't happen; caller guarantees it */
 447		return 0;
 448	}
 449
 450	return ascii2desc(s, data, len);
 451}
 452
 453
 454/* Root hub control transfers execute synchronously */
 455static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 456{
 457	struct usb_ctrlrequest *cmd;
 458	u16		typeReq, wValue, wIndex, wLength;
 459	u8		*ubuf = urb->transfer_buffer;
 460	unsigned	len = 0;
 461	int		status;
 462	u8		patch_wakeup = 0;
 463	u8		patch_protocol = 0;
 464	u16		tbuf_size;
 465	u8		*tbuf = NULL;
 466	const u8	*bufp;
 467
 468	might_sleep();
 469
 470	spin_lock_irq(&hcd_root_hub_lock);
 471	status = usb_hcd_link_urb_to_ep(hcd, urb);
 472	spin_unlock_irq(&hcd_root_hub_lock);
 473	if (status)
 474		return status;
 475	urb->hcpriv = hcd;	/* Indicate it's queued */
 476
 477	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 478	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 479	wValue   = le16_to_cpu (cmd->wValue);
 480	wIndex   = le16_to_cpu (cmd->wIndex);
 481	wLength  = le16_to_cpu (cmd->wLength);
 482
 483	if (wLength > urb->transfer_buffer_length)
 484		goto error;
 485
 486	/*
 487	 * tbuf should be at least as big as the
 488	 * USB hub descriptor.
 489	 */
 490	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 491	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 492	if (!tbuf) {
 493		status = -ENOMEM;
 494		goto err_alloc;
 495	}
 496
 497	bufp = tbuf;
 498
 499
 500	urb->actual_length = 0;
 501	switch (typeReq) {
 502
 503	/* DEVICE REQUESTS */
 504
 505	/* The root hub's remote wakeup enable bit is implemented using
 506	 * driver model wakeup flags.  If this system supports wakeup
 507	 * through USB, userspace may change the default "allow wakeup"
 508	 * policy through sysfs or these calls.
 509	 *
 510	 * Most root hubs support wakeup from downstream devices, for
 511	 * runtime power management (disabling USB clocks and reducing
 512	 * VBUS power usage).  However, not all of them do so; silicon,
 513	 * board, and BIOS bugs here are not uncommon, so these can't
 514	 * be treated quite like external hubs.
 515	 *
 516	 * Likewise, not all root hubs will pass wakeup events upstream,
 517	 * to wake up the whole system.  So don't assume root hub and
 518	 * controller capabilities are identical.
 519	 */
 520
 521	case DeviceRequest | USB_REQ_GET_STATUS:
 522		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 523					<< USB_DEVICE_REMOTE_WAKEUP)
 524				| (1 << USB_DEVICE_SELF_POWERED);
 525		tbuf[1] = 0;
 526		len = 2;
 527		break;
 528	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 529		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 530			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 531		else
 532			goto error;
 533		break;
 534	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 535		if (device_can_wakeup(&hcd->self.root_hub->dev)
 536				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 537			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 538		else
 539			goto error;
 540		break;
 541	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 542		tbuf[0] = 1;
 543		len = 1;
 544		fallthrough;
 545	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 546		break;
 547	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 548		switch (wValue & 0xff00) {
 549		case USB_DT_DEVICE << 8:
 550			switch (hcd->speed) {
 551			case HCD_USB32:
 552			case HCD_USB31:
 553				bufp = usb31_rh_dev_descriptor;
 554				break;
 555			case HCD_USB3:
 556				bufp = usb3_rh_dev_descriptor;
 557				break;
 
 
 
 558			case HCD_USB2:
 559				bufp = usb2_rh_dev_descriptor;
 560				break;
 561			case HCD_USB11:
 562				bufp = usb11_rh_dev_descriptor;
 563				break;
 564			default:
 565				goto error;
 566			}
 567			len = 18;
 568			if (hcd->has_tt)
 569				patch_protocol = 1;
 570			break;
 571		case USB_DT_CONFIG << 8:
 572			switch (hcd->speed) {
 573			case HCD_USB32:
 574			case HCD_USB31:
 575			case HCD_USB3:
 576				bufp = ss_rh_config_descriptor;
 577				len = sizeof ss_rh_config_descriptor;
 578				break;
 
 579			case HCD_USB2:
 580				bufp = hs_rh_config_descriptor;
 581				len = sizeof hs_rh_config_descriptor;
 582				break;
 583			case HCD_USB11:
 584				bufp = fs_rh_config_descriptor;
 585				len = sizeof fs_rh_config_descriptor;
 586				break;
 587			default:
 588				goto error;
 589			}
 590			if (device_can_wakeup(&hcd->self.root_hub->dev))
 591				patch_wakeup = 1;
 592			break;
 593		case USB_DT_STRING << 8:
 594			if ((wValue & 0xff) < 4)
 595				urb->actual_length = rh_string(wValue & 0xff,
 596						hcd, ubuf, wLength);
 597			else /* unsupported IDs --> "protocol stall" */
 598				goto error;
 599			break;
 600		case USB_DT_BOS << 8:
 601			goto nongeneric;
 602		default:
 603			goto error;
 604		}
 605		break;
 606	case DeviceRequest | USB_REQ_GET_INTERFACE:
 607		tbuf[0] = 0;
 608		len = 1;
 609		fallthrough;
 610	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 611		break;
 612	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 613		/* wValue == urb->dev->devaddr */
 614		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 615			wValue);
 616		break;
 617
 618	/* INTERFACE REQUESTS (no defined feature/status flags) */
 619
 620	/* ENDPOINT REQUESTS */
 621
 622	case EndpointRequest | USB_REQ_GET_STATUS:
 623		/* ENDPOINT_HALT flag */
 624		tbuf[0] = 0;
 625		tbuf[1] = 0;
 626		len = 2;
 627		fallthrough;
 628	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 629	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 630		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 631		break;
 632
 633	/* CLASS REQUESTS (and errors) */
 634
 635	default:
 636nongeneric:
 637		/* non-generic request */
 638		switch (typeReq) {
 639		case GetHubStatus:
 640			len = 4;
 641			break;
 642		case GetPortStatus:
 643			if (wValue == HUB_PORT_STATUS)
 644				len = 4;
 645			else
 646				/* other port status types return 8 bytes */
 647				len = 8;
 648			break;
 649		case GetHubDescriptor:
 650			len = sizeof (struct usb_hub_descriptor);
 651			break;
 652		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 653			/* len is returned by hub_control */
 654			break;
 655		}
 656		status = hcd->driver->hub_control (hcd,
 657			typeReq, wValue, wIndex,
 658			tbuf, wLength);
 659
 660		if (typeReq == GetHubDescriptor)
 661			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 662				(struct usb_hub_descriptor *)tbuf);
 663		break;
 664error:
 665		/* "protocol stall" on error */
 666		status = -EPIPE;
 667	}
 668
 669	if (status < 0) {
 670		len = 0;
 671		if (status != -EPIPE) {
 672			dev_dbg (hcd->self.controller,
 673				"CTRL: TypeReq=0x%x val=0x%x "
 674				"idx=0x%x len=%d ==> %d\n",
 675				typeReq, wValue, wIndex,
 676				wLength, status);
 677		}
 678	} else if (status > 0) {
 679		/* hub_control may return the length of data copied. */
 680		len = status;
 681		status = 0;
 682	}
 683	if (len) {
 684		if (urb->transfer_buffer_length < len)
 685			len = urb->transfer_buffer_length;
 686		urb->actual_length = len;
 687		/* always USB_DIR_IN, toward host */
 688		memcpy (ubuf, bufp, len);
 689
 690		/* report whether RH hardware supports remote wakeup */
 691		if (patch_wakeup &&
 692				len > offsetof (struct usb_config_descriptor,
 693						bmAttributes))
 694			((struct usb_config_descriptor *)ubuf)->bmAttributes
 695				|= USB_CONFIG_ATT_WAKEUP;
 696
 697		/* report whether RH hardware has an integrated TT */
 698		if (patch_protocol &&
 699				len > offsetof(struct usb_device_descriptor,
 700						bDeviceProtocol))
 701			((struct usb_device_descriptor *) ubuf)->
 702				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 703	}
 704
 705	kfree(tbuf);
 706 err_alloc:
 707
 708	/* any errors get returned through the urb completion */
 709	spin_lock_irq(&hcd_root_hub_lock);
 710	usb_hcd_unlink_urb_from_ep(hcd, urb);
 711	usb_hcd_giveback_urb(hcd, urb, status);
 712	spin_unlock_irq(&hcd_root_hub_lock);
 713	return 0;
 714}
 715
 716/*-------------------------------------------------------------------------*/
 717
 718/*
 719 * Root Hub interrupt transfers are polled using a timer if the
 720 * driver requests it; otherwise the driver is responsible for
 721 * calling usb_hcd_poll_rh_status() when an event occurs.
 722 *
 723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
 724 */
 725void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 726{
 727	struct urb	*urb;
 728	int		length;
 729	int		status;
 730	unsigned long	flags;
 731	char		buffer[6];	/* Any root hubs with > 31 ports? */
 732
 733	if (unlikely(!hcd->rh_pollable))
 734		return;
 735	if (!hcd->uses_new_polling && !hcd->status_urb)
 736		return;
 737
 738	length = hcd->driver->hub_status_data(hcd, buffer);
 739	if (length > 0) {
 740
 741		/* try to complete the status urb */
 742		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 743		urb = hcd->status_urb;
 744		if (urb) {
 745			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 746			hcd->status_urb = NULL;
 747			if (urb->transfer_buffer_length >= length) {
 748				status = 0;
 749			} else {
 750				status = -EOVERFLOW;
 751				length = urb->transfer_buffer_length;
 752			}
 753			urb->actual_length = length;
 754			memcpy(urb->transfer_buffer, buffer, length);
 755
 756			usb_hcd_unlink_urb_from_ep(hcd, urb);
 757			usb_hcd_giveback_urb(hcd, urb, status);
 758		} else {
 759			length = 0;
 760			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 761		}
 762		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 763	}
 764
 765	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 766	 * exceed that limit if HZ is 100. The math is more clunky than
 767	 * maybe expected, this is to make sure that all timers for USB devices
 768	 * fire at the same time to give the CPU a break in between */
 769	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 770			(length == 0 && hcd->status_urb != NULL))
 771		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 772}
 773EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 774
 775/* timer callback */
 776static void rh_timer_func (struct timer_list *t)
 777{
 778	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 779
 780	usb_hcd_poll_rh_status(_hcd);
 781}
 782
 783/*-------------------------------------------------------------------------*/
 784
 785static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 786{
 787	int		retval;
 788	unsigned long	flags;
 789	unsigned	len = 1 + (urb->dev->maxchild / 8);
 790
 791	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 792	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 793		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 794		retval = -EINVAL;
 795		goto done;
 796	}
 797
 798	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 799	if (retval)
 800		goto done;
 801
 802	hcd->status_urb = urb;
 803	urb->hcpriv = hcd;	/* indicate it's queued */
 804	if (!hcd->uses_new_polling)
 805		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 806
 807	/* If a status change has already occurred, report it ASAP */
 808	else if (HCD_POLL_PENDING(hcd))
 809		mod_timer(&hcd->rh_timer, jiffies);
 810	retval = 0;
 811 done:
 812	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 813	return retval;
 814}
 815
 816static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 817{
 818	if (usb_endpoint_xfer_int(&urb->ep->desc))
 819		return rh_queue_status (hcd, urb);
 820	if (usb_endpoint_xfer_control(&urb->ep->desc))
 821		return rh_call_control (hcd, urb);
 822	return -EINVAL;
 823}
 824
 825/*-------------------------------------------------------------------------*/
 826
 827/* Unlinks of root-hub control URBs are legal, but they don't do anything
 828 * since these URBs always execute synchronously.
 829 */
 830static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 831{
 832	unsigned long	flags;
 833	int		rc;
 834
 835	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 836	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 837	if (rc)
 838		goto done;
 839
 840	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 841		;	/* Do nothing */
 842
 843	} else {				/* Status URB */
 844		if (!hcd->uses_new_polling)
 845			del_timer (&hcd->rh_timer);
 846		if (urb == hcd->status_urb) {
 847			hcd->status_urb = NULL;
 848			usb_hcd_unlink_urb_from_ep(hcd, urb);
 849			usb_hcd_giveback_urb(hcd, urb, status);
 850		}
 851	}
 852 done:
 853	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 854	return rc;
 855}
 856
 857
 858/*-------------------------------------------------------------------------*/
 859
 860/**
 861 * usb_bus_init - shared initialization code
 862 * @bus: the bus structure being initialized
 863 *
 864 * This code is used to initialize a usb_bus structure, memory for which is
 865 * separately managed.
 866 */
 867static void usb_bus_init (struct usb_bus *bus)
 868{
 869	memset(&bus->devmap, 0, sizeof(bus->devmap));
 870
 871	bus->devnum_next = 1;
 872
 873	bus->root_hub = NULL;
 874	bus->busnum = -1;
 875	bus->bandwidth_allocated = 0;
 876	bus->bandwidth_int_reqs  = 0;
 877	bus->bandwidth_isoc_reqs = 0;
 878	mutex_init(&bus->devnum_next_mutex);
 879}
 880
 881/*-------------------------------------------------------------------------*/
 882
 883/**
 884 * usb_register_bus - registers the USB host controller with the usb core
 885 * @bus: pointer to the bus to register
 886 *
 887 * Context: task context, might sleep.
 888 *
 889 * Assigns a bus number, and links the controller into usbcore data
 890 * structures so that it can be seen by scanning the bus list.
 891 *
 892 * Return: 0 if successful. A negative error code otherwise.
 893 */
 894static int usb_register_bus(struct usb_bus *bus)
 895{
 896	int result = -E2BIG;
 897	int busnum;
 898
 899	mutex_lock(&usb_bus_idr_lock);
 900	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 901	if (busnum < 0) {
 902		pr_err("%s: failed to get bus number\n", usbcore_name);
 903		goto error_find_busnum;
 904	}
 905	bus->busnum = busnum;
 906	mutex_unlock(&usb_bus_idr_lock);
 907
 908	usb_notify_add_bus(bus);
 909
 910	dev_info (bus->controller, "new USB bus registered, assigned bus "
 911		  "number %d\n", bus->busnum);
 912	return 0;
 913
 914error_find_busnum:
 915	mutex_unlock(&usb_bus_idr_lock);
 916	return result;
 917}
 918
 919/**
 920 * usb_deregister_bus - deregisters the USB host controller
 921 * @bus: pointer to the bus to deregister
 922 *
 923 * Context: task context, might sleep.
 924 *
 925 * Recycles the bus number, and unlinks the controller from usbcore data
 926 * structures so that it won't be seen by scanning the bus list.
 927 */
 928static void usb_deregister_bus (struct usb_bus *bus)
 929{
 930	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 931
 932	/*
 933	 * NOTE: make sure that all the devices are removed by the
 934	 * controller code, as well as having it call this when cleaning
 935	 * itself up
 936	 */
 937	mutex_lock(&usb_bus_idr_lock);
 938	idr_remove(&usb_bus_idr, bus->busnum);
 939	mutex_unlock(&usb_bus_idr_lock);
 940
 941	usb_notify_remove_bus(bus);
 942}
 943
 944/**
 945 * register_root_hub - called by usb_add_hcd() to register a root hub
 946 * @hcd: host controller for this root hub
 947 *
 948 * This function registers the root hub with the USB subsystem.  It sets up
 949 * the device properly in the device tree and then calls usb_new_device()
 950 * to register the usb device.  It also assigns the root hub's USB address
 951 * (always 1).
 952 *
 953 * Return: 0 if successful. A negative error code otherwise.
 954 */
 955static int register_root_hub(struct usb_hcd *hcd)
 956{
 957	struct device *parent_dev = hcd->self.controller;
 958	struct usb_device *usb_dev = hcd->self.root_hub;
 959	struct usb_device_descriptor *descr;
 960	const int devnum = 1;
 961	int retval;
 962
 963	usb_dev->devnum = devnum;
 964	usb_dev->bus->devnum_next = devnum + 1;
 965	set_bit(devnum, usb_dev->bus->devmap);
 966	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 967
 968	mutex_lock(&usb_bus_idr_lock);
 969
 970	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 971	descr = usb_get_device_descriptor(usb_dev);
 972	if (IS_ERR(descr)) {
 973		retval = PTR_ERR(descr);
 974		mutex_unlock(&usb_bus_idr_lock);
 975		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 976				dev_name(&usb_dev->dev), retval);
 977		return retval;
 978	}
 979	usb_dev->descriptor = *descr;
 980	kfree(descr);
 981
 982	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 983		retval = usb_get_bos_descriptor(usb_dev);
 984		if (!retval) {
 985			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
 986		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
 987			mutex_unlock(&usb_bus_idr_lock);
 988			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
 989					dev_name(&usb_dev->dev), retval);
 990			return retval;
 991		}
 992	}
 993
 994	retval = usb_new_device (usb_dev);
 995	if (retval) {
 996		dev_err (parent_dev, "can't register root hub for %s, %d\n",
 997				dev_name(&usb_dev->dev), retval);
 998	} else {
 999		spin_lock_irq (&hcd_root_hub_lock);
1000		hcd->rh_registered = 1;
1001		spin_unlock_irq (&hcd_root_hub_lock);
1002
1003		/* Did the HC die before the root hub was registered? */
1004		if (HCD_DEAD(hcd))
1005			usb_hc_died (hcd);	/* This time clean up */
1006	}
1007	mutex_unlock(&usb_bus_idr_lock);
1008
1009	return retval;
1010}
1011
1012/*
1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014 * @bus: the bus which the root hub belongs to
1015 * @portnum: the port which is being resumed
1016 *
1017 * HCDs should call this function when they know that a resume signal is
1018 * being sent to a root-hub port.  The root hub will be prevented from
1019 * going into autosuspend until usb_hcd_end_port_resume() is called.
1020 *
1021 * The bus's private lock must be held by the caller.
1022 */
1023void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024{
1025	unsigned bit = 1 << portnum;
1026
1027	if (!(bus->resuming_ports & bit)) {
1028		bus->resuming_ports |= bit;
1029		pm_runtime_get_noresume(&bus->root_hub->dev);
1030	}
1031}
1032EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033
1034/*
1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal has
1040 * stopped being sent to a root-hub port.  The root hub will be allowed to
1041 * autosuspend again.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
1045void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046{
1047	unsigned bit = 1 << portnum;
1048
1049	if (bus->resuming_ports & bit) {
1050		bus->resuming_ports &= ~bit;
1051		pm_runtime_put_noidle(&bus->root_hub->dev);
1052	}
1053}
1054EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055
1056/*-------------------------------------------------------------------------*/
1057
1058/**
1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061 * @is_input: true iff the transaction sends data to the host
1062 * @isoc: true for isochronous transactions, false for interrupt ones
1063 * @bytecount: how many bytes in the transaction.
1064 *
1065 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066 *
1067 * Note:
1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069 * scheduled in software, this function is only used for such scheduling.
1070 */
1071long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072{
1073	unsigned long	tmp;
1074
1075	switch (speed) {
1076	case USB_SPEED_LOW: 	/* INTR only */
1077		if (is_input) {
1078			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080		} else {
1081			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083		}
1084	case USB_SPEED_FULL:	/* ISOC or INTR */
1085		if (isoc) {
1086			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088		} else {
1089			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090			return 9107L + BW_HOST_DELAY + tmp;
1091		}
1092	case USB_SPEED_HIGH:	/* ISOC or INTR */
1093		/* FIXME adjust for input vs output */
1094		if (isoc)
1095			tmp = HS_NSECS_ISO (bytecount);
1096		else
1097			tmp = HS_NSECS (bytecount);
1098		return tmp;
1099	default:
1100		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101		return -1;
1102	}
1103}
1104EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105
1106
1107/*-------------------------------------------------------------------------*/
1108
1109/*
1110 * Generic HC operations.
1111 */
1112
1113/*-------------------------------------------------------------------------*/
1114
1115/**
1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117 * @hcd: host controller to which @urb was submitted
1118 * @urb: URB being submitted
1119 *
1120 * Host controller drivers should call this routine in their enqueue()
1121 * method.  The HCD's private spinlock must be held and interrupts must
1122 * be disabled.  The actions carried out here are required for URB
1123 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124 *
1125 * Return: 0 for no error, otherwise a negative error code (in which case
1126 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128 * the private spinlock and returning.
1129 */
1130int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131{
1132	int		rc = 0;
1133
1134	spin_lock(&hcd_urb_list_lock);
1135
1136	/* Check that the URB isn't being killed */
1137	if (unlikely(atomic_read(&urb->reject))) {
1138		rc = -EPERM;
1139		goto done;
1140	}
1141
1142	if (unlikely(!urb->ep->enabled)) {
1143		rc = -ENOENT;
1144		goto done;
1145	}
1146
1147	if (unlikely(!urb->dev->can_submit)) {
1148		rc = -EHOSTUNREACH;
1149		goto done;
1150	}
1151
1152	/*
1153	 * Check the host controller's state and add the URB to the
1154	 * endpoint's queue.
1155	 */
1156	if (HCD_RH_RUNNING(hcd)) {
1157		urb->unlinked = 0;
1158		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159	} else {
1160		rc = -ESHUTDOWN;
1161		goto done;
1162	}
1163 done:
1164	spin_unlock(&hcd_urb_list_lock);
1165	return rc;
1166}
1167EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168
1169/**
1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171 * @hcd: host controller to which @urb was submitted
1172 * @urb: URB being checked for unlinkability
1173 * @status: error code to store in @urb if the unlink succeeds
1174 *
1175 * Host controller drivers should call this routine in their dequeue()
1176 * method.  The HCD's private spinlock must be held and interrupts must
1177 * be disabled.  The actions carried out here are required for making
1178 * sure than an unlink is valid.
1179 *
1180 * Return: 0 for no error, otherwise a negative error code (in which case
1181 * the dequeue() method must fail).  The possible error codes are:
1182 *
1183 *	-EIDRM: @urb was not submitted or has already completed.
1184 *		The completion function may not have been called yet.
1185 *
1186 *	-EBUSY: @urb has already been unlinked.
1187 */
1188int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189		int status)
1190{
1191	struct list_head	*tmp;
1192
1193	/* insist the urb is still queued */
1194	list_for_each(tmp, &urb->ep->urb_list) {
1195		if (tmp == &urb->urb_list)
1196			break;
1197	}
1198	if (tmp != &urb->urb_list)
1199		return -EIDRM;
1200
1201	/* Any status except -EINPROGRESS means something already started to
1202	 * unlink this URB from the hardware.  So there's no more work to do.
1203	 */
1204	if (urb->unlinked)
1205		return -EBUSY;
1206	urb->unlinked = status;
1207	return 0;
1208}
1209EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210
1211/**
1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213 * @hcd: host controller to which @urb was submitted
1214 * @urb: URB being unlinked
1215 *
1216 * Host controller drivers should call this routine before calling
1217 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1218 * interrupts must be disabled.  The actions carried out here are required
1219 * for URB completion.
1220 */
1221void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222{
1223	/* clear all state linking urb to this dev (and hcd) */
1224	spin_lock(&hcd_urb_list_lock);
1225	list_del_init(&urb->urb_list);
1226	spin_unlock(&hcd_urb_list_lock);
1227}
1228EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229
1230/*
1231 * Some usb host controllers can only perform dma using a small SRAM area,
1232 * or have restrictions on addressable DRAM.
1233 * The usb core itself is however optimized for host controllers that can dma
1234 * using regular system memory - like pci devices doing bus mastering.
1235 *
1236 * To support host controllers with limited dma capabilities we provide dma
1237 * bounce buffers. This feature can be enabled by initializing
1238 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239 *
1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241 * data for dma using the genalloc API.
1242 *
1243 * So, to summarize...
1244 *
1245 * - We need "local" memory, canonical example being
1246 *   a small SRAM on a discrete controller being the
1247 *   only memory that the controller can read ...
1248 *   (a) "normal" kernel memory is no good, and
1249 *   (b) there's not enough to share
1250 *
1251 * - So we use that, even though the primary requirement
1252 *   is that the memory be "local" (hence addressable
1253 *   by that device), not "coherent".
1254 *
1255 */
1256
1257static int hcd_alloc_coherent(struct usb_bus *bus,
1258			      gfp_t mem_flags, dma_addr_t *dma_handle,
1259			      void **vaddr_handle, size_t size,
1260			      enum dma_data_direction dir)
1261{
1262	unsigned char *vaddr;
1263
1264	if (*vaddr_handle == NULL) {
1265		WARN_ON_ONCE(1);
1266		return -EFAULT;
1267	}
1268
1269	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270				 mem_flags, dma_handle);
1271	if (!vaddr)
1272		return -ENOMEM;
1273
1274	/*
1275	 * Store the virtual address of the buffer at the end
1276	 * of the allocated dma buffer. The size of the buffer
1277	 * may be uneven so use unaligned functions instead
1278	 * of just rounding up. It makes sense to optimize for
1279	 * memory footprint over access speed since the amount
1280	 * of memory available for dma may be limited.
1281	 */
1282	put_unaligned((unsigned long)*vaddr_handle,
1283		      (unsigned long *)(vaddr + size));
1284
1285	if (dir == DMA_TO_DEVICE)
1286		memcpy(vaddr, *vaddr_handle, size);
1287
1288	*vaddr_handle = vaddr;
1289	return 0;
1290}
1291
1292static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293			      void **vaddr_handle, size_t size,
1294			      enum dma_data_direction dir)
1295{
1296	unsigned char *vaddr = *vaddr_handle;
1297
1298	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299
1300	if (dir == DMA_FROM_DEVICE)
1301		memcpy(vaddr, *vaddr_handle, size);
1302
1303	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304
1305	*vaddr_handle = vaddr;
1306	*dma_handle = 0;
1307}
1308
1309void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310{
1311	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313		dma_unmap_single(hcd->self.sysdev,
1314				urb->setup_dma,
1315				sizeof(struct usb_ctrlrequest),
1316				DMA_TO_DEVICE);
1317	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318		hcd_free_coherent(urb->dev->bus,
1319				&urb->setup_dma,
1320				(void **) &urb->setup_packet,
1321				sizeof(struct usb_ctrlrequest),
1322				DMA_TO_DEVICE);
1323
1324	/* Make it safe to call this routine more than once */
1325	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326}
1327EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328
1329static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330{
1331	if (hcd->driver->unmap_urb_for_dma)
1332		hcd->driver->unmap_urb_for_dma(hcd, urb);
1333	else
1334		usb_hcd_unmap_urb_for_dma(hcd, urb);
1335}
1336
1337void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338{
1339	enum dma_data_direction dir;
1340
1341	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342
1343	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345	    (urb->transfer_flags & URB_DMA_MAP_SG))
1346		dma_unmap_sg(hcd->self.sysdev,
1347				urb->sg,
1348				urb->num_sgs,
1349				dir);
1350	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1352		dma_unmap_page(hcd->self.sysdev,
1353				urb->transfer_dma,
1354				urb->transfer_buffer_length,
1355				dir);
1356	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358		dma_unmap_single(hcd->self.sysdev,
1359				urb->transfer_dma,
1360				urb->transfer_buffer_length,
1361				dir);
1362	else if (urb->transfer_flags & URB_MAP_LOCAL)
1363		hcd_free_coherent(urb->dev->bus,
1364				&urb->transfer_dma,
1365				&urb->transfer_buffer,
1366				urb->transfer_buffer_length,
1367				dir);
1368
1369	/* Make it safe to call this routine more than once */
1370	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1371			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1372}
1373EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1374
1375static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1376			   gfp_t mem_flags)
1377{
1378	if (hcd->driver->map_urb_for_dma)
1379		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1380	else
1381		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1382}
1383
1384int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1385			    gfp_t mem_flags)
1386{
1387	enum dma_data_direction dir;
1388	int ret = 0;
1389
1390	/* Map the URB's buffers for DMA access.
1391	 * Lower level HCD code should use *_dma exclusively,
1392	 * unless it uses pio or talks to another transport,
1393	 * or uses the provided scatter gather list for bulk.
1394	 */
1395
1396	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1397		if (hcd->self.uses_pio_for_control)
1398			return ret;
1399		if (hcd->localmem_pool) {
1400			ret = hcd_alloc_coherent(
1401					urb->dev->bus, mem_flags,
1402					&urb->setup_dma,
1403					(void **)&urb->setup_packet,
1404					sizeof(struct usb_ctrlrequest),
1405					DMA_TO_DEVICE);
1406			if (ret)
1407				return ret;
1408			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1409		} else if (hcd_uses_dma(hcd)) {
1410			if (object_is_on_stack(urb->setup_packet)) {
1411				WARN_ONCE(1, "setup packet is on stack\n");
1412				return -EAGAIN;
1413			}
1414
1415			urb->setup_dma = dma_map_single(
1416					hcd->self.sysdev,
1417					urb->setup_packet,
1418					sizeof(struct usb_ctrlrequest),
1419					DMA_TO_DEVICE);
1420			if (dma_mapping_error(hcd->self.sysdev,
1421						urb->setup_dma))
1422				return -EAGAIN;
1423			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1424		}
1425	}
1426
1427	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1428	if (urb->transfer_buffer_length != 0
1429	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1430		if (hcd->localmem_pool) {
1431			ret = hcd_alloc_coherent(
1432					urb->dev->bus, mem_flags,
1433					&urb->transfer_dma,
1434					&urb->transfer_buffer,
1435					urb->transfer_buffer_length,
1436					dir);
1437			if (ret == 0)
1438				urb->transfer_flags |= URB_MAP_LOCAL;
1439		} else if (hcd_uses_dma(hcd)) {
1440			if (urb->num_sgs) {
1441				int n;
1442
1443				/* We don't support sg for isoc transfers ! */
1444				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1445					WARN_ON(1);
1446					return -EINVAL;
1447				}
1448
1449				n = dma_map_sg(
1450						hcd->self.sysdev,
1451						urb->sg,
1452						urb->num_sgs,
1453						dir);
1454				if (!n)
1455					ret = -EAGAIN;
1456				else
1457					urb->transfer_flags |= URB_DMA_MAP_SG;
1458				urb->num_mapped_sgs = n;
1459				if (n != urb->num_sgs)
1460					urb->transfer_flags |=
1461							URB_DMA_SG_COMBINED;
1462			} else if (urb->sg) {
1463				struct scatterlist *sg = urb->sg;
1464				urb->transfer_dma = dma_map_page(
1465						hcd->self.sysdev,
1466						sg_page(sg),
1467						sg->offset,
1468						urb->transfer_buffer_length,
1469						dir);
1470				if (dma_mapping_error(hcd->self.sysdev,
1471						urb->transfer_dma))
1472					ret = -EAGAIN;
1473				else
1474					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1475			} else if (object_is_on_stack(urb->transfer_buffer)) {
1476				WARN_ONCE(1, "transfer buffer is on stack\n");
1477				ret = -EAGAIN;
1478			} else {
1479				urb->transfer_dma = dma_map_single(
1480						hcd->self.sysdev,
1481						urb->transfer_buffer,
1482						urb->transfer_buffer_length,
1483						dir);
1484				if (dma_mapping_error(hcd->self.sysdev,
1485						urb->transfer_dma))
1486					ret = -EAGAIN;
1487				else
1488					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1489			}
1490		}
1491		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1492				URB_SETUP_MAP_LOCAL)))
1493			usb_hcd_unmap_urb_for_dma(hcd, urb);
1494	}
1495	return ret;
1496}
1497EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1498
1499/*-------------------------------------------------------------------------*/
1500
1501/* may be called in any context with a valid urb->dev usecount
1502 * caller surrenders "ownership" of urb
1503 * expects usb_submit_urb() to have sanity checked and conditioned all
1504 * inputs in the urb
1505 */
1506int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1507{
1508	int			status;
1509	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1510
1511	/* increment urb's reference count as part of giving it to the HCD
1512	 * (which will control it).  HCD guarantees that it either returns
1513	 * an error or calls giveback(), but not both.
1514	 */
1515	usb_get_urb(urb);
1516	atomic_inc(&urb->use_count);
1517	atomic_inc(&urb->dev->urbnum);
1518	usbmon_urb_submit(&hcd->self, urb);
1519
1520	/* NOTE requirements on root-hub callers (usbfs and the hub
1521	 * driver, for now):  URBs' urb->transfer_buffer must be
1522	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1523	 * they could clobber root hub response data.  Also, control
1524	 * URBs must be submitted in process context with interrupts
1525	 * enabled.
1526	 */
1527
1528	if (is_root_hub(urb->dev)) {
1529		status = rh_urb_enqueue(hcd, urb);
1530	} else {
1531		status = map_urb_for_dma(hcd, urb, mem_flags);
1532		if (likely(status == 0)) {
1533			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1534			if (unlikely(status))
1535				unmap_urb_for_dma(hcd, urb);
1536		}
1537	}
1538
1539	if (unlikely(status)) {
1540		usbmon_urb_submit_error(&hcd->self, urb, status);
1541		urb->hcpriv = NULL;
1542		INIT_LIST_HEAD(&urb->urb_list);
1543		atomic_dec(&urb->use_count);
1544		/*
1545		 * Order the write of urb->use_count above before the read
1546		 * of urb->reject below.  Pairs with the memory barriers in
1547		 * usb_kill_urb() and usb_poison_urb().
1548		 */
1549		smp_mb__after_atomic();
1550
1551		atomic_dec(&urb->dev->urbnum);
1552		if (atomic_read(&urb->reject))
1553			wake_up(&usb_kill_urb_queue);
1554		usb_put_urb(urb);
1555	}
1556	return status;
1557}
1558
1559/*-------------------------------------------------------------------------*/
1560
1561/* this makes the hcd giveback() the urb more quickly, by kicking it
1562 * off hardware queues (which may take a while) and returning it as
1563 * soon as practical.  we've already set up the urb's return status,
1564 * but we can't know if the callback completed already.
1565 */
1566static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1567{
1568	int		value;
1569
1570	if (is_root_hub(urb->dev))
1571		value = usb_rh_urb_dequeue(hcd, urb, status);
1572	else {
1573
1574		/* The only reason an HCD might fail this call is if
1575		 * it has not yet fully queued the urb to begin with.
1576		 * Such failures should be harmless. */
1577		value = hcd->driver->urb_dequeue(hcd, urb, status);
1578	}
1579	return value;
1580}
1581
1582/*
1583 * called in any context
1584 *
1585 * caller guarantees urb won't be recycled till both unlink()
1586 * and the urb's completion function return
1587 */
1588int usb_hcd_unlink_urb (struct urb *urb, int status)
1589{
1590	struct usb_hcd		*hcd;
1591	struct usb_device	*udev = urb->dev;
1592	int			retval = -EIDRM;
1593	unsigned long		flags;
1594
1595	/* Prevent the device and bus from going away while
1596	 * the unlink is carried out.  If they are already gone
1597	 * then urb->use_count must be 0, since disconnected
1598	 * devices can't have any active URBs.
1599	 */
1600	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1601	if (atomic_read(&urb->use_count) > 0) {
1602		retval = 0;
1603		usb_get_dev(udev);
1604	}
1605	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1606	if (retval == 0) {
1607		hcd = bus_to_hcd(urb->dev->bus);
1608		retval = unlink1(hcd, urb, status);
1609		if (retval == 0)
1610			retval = -EINPROGRESS;
1611		else if (retval != -EIDRM && retval != -EBUSY)
1612			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1613					urb, retval);
1614		usb_put_dev(udev);
1615	}
1616	return retval;
1617}
1618
1619/*-------------------------------------------------------------------------*/
1620
1621static void __usb_hcd_giveback_urb(struct urb *urb)
1622{
1623	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1624	struct usb_anchor *anchor = urb->anchor;
1625	int status = urb->unlinked;
1626	unsigned long flags;
1627
1628	urb->hcpriv = NULL;
1629	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1630	    urb->actual_length < urb->transfer_buffer_length &&
1631	    !status))
1632		status = -EREMOTEIO;
1633
1634	unmap_urb_for_dma(hcd, urb);
1635	usbmon_urb_complete(&hcd->self, urb, status);
1636	usb_anchor_suspend_wakeups(anchor);
1637	usb_unanchor_urb(urb);
1638	if (likely(status == 0))
1639		usb_led_activity(USB_LED_EVENT_HOST);
1640
1641	/* pass ownership to the completion handler */
1642	urb->status = status;
1643	/*
1644	 * Only collect coverage in the softirq context and disable interrupts
1645	 * to avoid scenarios with nested remote coverage collection sections
1646	 * that KCOV does not support.
1647	 * See the comment next to kcov_remote_start_usb_softirq() for details.
1648	 */
1649	flags = kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650	urb->complete(urb);
1651	kcov_remote_stop_softirq(flags);
1652
1653	usb_anchor_resume_wakeups(anchor);
1654	atomic_dec(&urb->use_count);
1655	/*
1656	 * Order the write of urb->use_count above before the read
1657	 * of urb->reject below.  Pairs with the memory barriers in
1658	 * usb_kill_urb() and usb_poison_urb().
1659	 */
1660	smp_mb__after_atomic();
1661
1662	if (unlikely(atomic_read(&urb->reject)))
1663		wake_up(&usb_kill_urb_queue);
1664	usb_put_urb(urb);
1665}
1666
1667static void usb_giveback_urb_bh(struct work_struct *work)
1668{
1669	struct giveback_urb_bh *bh =
1670		container_of(work, struct giveback_urb_bh, bh);
1671	struct list_head local_list;
1672
1673	spin_lock_irq(&bh->lock);
1674	bh->running = true;
 
1675	list_replace_init(&bh->head, &local_list);
1676	spin_unlock_irq(&bh->lock);
1677
1678	while (!list_empty(&local_list)) {
1679		struct urb *urb;
1680
1681		urb = list_entry(local_list.next, struct urb, urb_list);
1682		list_del_init(&urb->urb_list);
1683		bh->completing_ep = urb->ep;
1684		__usb_hcd_giveback_urb(urb);
1685		bh->completing_ep = NULL;
1686	}
1687
1688	/*
1689	 * giveback new URBs next time to prevent this function
1690	 * from not exiting for a long time.
1691	 */
1692	spin_lock_irq(&bh->lock);
1693	if (!list_empty(&bh->head)) {
1694		if (bh->high_prio)
1695			queue_work(system_bh_highpri_wq, &bh->bh);
1696		else
1697			queue_work(system_bh_wq, &bh->bh);
1698	}
1699	bh->running = false;
1700	spin_unlock_irq(&bh->lock);
1701}
1702
1703/**
1704 * usb_hcd_giveback_urb - return URB from HCD to device driver
1705 * @hcd: host controller returning the URB
1706 * @urb: urb being returned to the USB device driver.
1707 * @status: completion status code for the URB.
1708 *
1709 * Context: atomic. The completion callback is invoked in caller's context.
1710 * For HCDs with HCD_BH flag set, the completion callback is invoked in BH
1711 * context (except for URBs submitted to the root hub which always complete in
1712 * caller's context).
1713 *
1714 * This hands the URB from HCD to its USB device driver, using its
1715 * completion function.  The HCD has freed all per-urb resources
1716 * (and is done using urb->hcpriv).  It also released all HCD locks;
1717 * the device driver won't cause problems if it frees, modifies,
1718 * or resubmits this URB.
1719 *
1720 * If @urb was unlinked, the value of @status will be overridden by
1721 * @urb->unlinked.  Erroneous short transfers are detected in case
1722 * the HCD hasn't checked for them.
1723 */
1724void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1725{
1726	struct giveback_urb_bh *bh;
1727	bool running;
1728
1729	/* pass status to BH via unlinked */
1730	if (likely(!urb->unlinked))
1731		urb->unlinked = status;
1732
1733	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1734		__usb_hcd_giveback_urb(urb);
1735		return;
1736	}
1737
1738	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1739		bh = &hcd->high_prio_bh;
1740	else
 
1741		bh = &hcd->low_prio_bh;
 
 
1742
1743	spin_lock(&bh->lock);
1744	list_add_tail(&urb->urb_list, &bh->head);
1745	running = bh->running;
1746	spin_unlock(&bh->lock);
1747
1748	if (running)
1749		;
1750	else if (bh->high_prio)
1751		queue_work(system_bh_highpri_wq, &bh->bh);
1752	else
1753		queue_work(system_bh_wq, &bh->bh);
1754}
1755EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1756
1757/*-------------------------------------------------------------------------*/
1758
1759/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1760 * queue to drain completely.  The caller must first insure that no more
1761 * URBs can be submitted for this endpoint.
1762 */
1763void usb_hcd_flush_endpoint(struct usb_device *udev,
1764		struct usb_host_endpoint *ep)
1765{
1766	struct usb_hcd		*hcd;
1767	struct urb		*urb;
1768
1769	if (!ep)
1770		return;
1771	might_sleep();
1772	hcd = bus_to_hcd(udev->bus);
1773
1774	/* No more submits can occur */
1775	spin_lock_irq(&hcd_urb_list_lock);
1776rescan:
1777	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1778		int	is_in;
1779
1780		if (urb->unlinked)
1781			continue;
1782		usb_get_urb (urb);
1783		is_in = usb_urb_dir_in(urb);
1784		spin_unlock(&hcd_urb_list_lock);
1785
1786		/* kick hcd */
1787		unlink1(hcd, urb, -ESHUTDOWN);
1788		dev_dbg (hcd->self.controller,
1789			"shutdown urb %pK ep%d%s-%s\n",
1790			urb, usb_endpoint_num(&ep->desc),
1791			is_in ? "in" : "out",
1792			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1793		usb_put_urb (urb);
1794
1795		/* list contents may have changed */
1796		spin_lock(&hcd_urb_list_lock);
1797		goto rescan;
1798	}
1799	spin_unlock_irq(&hcd_urb_list_lock);
1800
1801	/* Wait until the endpoint queue is completely empty */
1802	while (!list_empty (&ep->urb_list)) {
1803		spin_lock_irq(&hcd_urb_list_lock);
1804
1805		/* The list may have changed while we acquired the spinlock */
1806		urb = NULL;
1807		if (!list_empty (&ep->urb_list)) {
1808			urb = list_entry (ep->urb_list.prev, struct urb,
1809					urb_list);
1810			usb_get_urb (urb);
1811		}
1812		spin_unlock_irq(&hcd_urb_list_lock);
1813
1814		if (urb) {
1815			usb_kill_urb (urb);
1816			usb_put_urb (urb);
1817		}
1818	}
1819}
1820
1821/**
1822 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1823 *				the bus bandwidth
1824 * @udev: target &usb_device
1825 * @new_config: new configuration to install
1826 * @cur_alt: the current alternate interface setting
1827 * @new_alt: alternate interface setting that is being installed
1828 *
1829 * To change configurations, pass in the new configuration in new_config,
1830 * and pass NULL for cur_alt and new_alt.
1831 *
1832 * To reset a device's configuration (put the device in the ADDRESSED state),
1833 * pass in NULL for new_config, cur_alt, and new_alt.
1834 *
1835 * To change alternate interface settings, pass in NULL for new_config,
1836 * pass in the current alternate interface setting in cur_alt,
1837 * and pass in the new alternate interface setting in new_alt.
1838 *
1839 * Return: An error if the requested bandwidth change exceeds the
1840 * bus bandwidth or host controller internal resources.
1841 */
1842int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1843		struct usb_host_config *new_config,
1844		struct usb_host_interface *cur_alt,
1845		struct usb_host_interface *new_alt)
1846{
1847	int num_intfs, i, j;
1848	struct usb_host_interface *alt = NULL;
1849	int ret = 0;
1850	struct usb_hcd *hcd;
1851	struct usb_host_endpoint *ep;
1852
1853	hcd = bus_to_hcd(udev->bus);
1854	if (!hcd->driver->check_bandwidth)
1855		return 0;
1856
1857	/* Configuration is being removed - set configuration 0 */
1858	if (!new_config && !cur_alt) {
1859		for (i = 1; i < 16; ++i) {
1860			ep = udev->ep_out[i];
1861			if (ep)
1862				hcd->driver->drop_endpoint(hcd, udev, ep);
1863			ep = udev->ep_in[i];
1864			if (ep)
1865				hcd->driver->drop_endpoint(hcd, udev, ep);
1866		}
1867		hcd->driver->check_bandwidth(hcd, udev);
1868		return 0;
1869	}
1870	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1871	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1872	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1873	 * ok to exclude it.
1874	 */
1875	if (new_config) {
1876		num_intfs = new_config->desc.bNumInterfaces;
1877		/* Remove endpoints (except endpoint 0, which is always on the
1878		 * schedule) from the old config from the schedule
1879		 */
1880		for (i = 1; i < 16; ++i) {
1881			ep = udev->ep_out[i];
1882			if (ep) {
1883				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1884				if (ret < 0)
1885					goto reset;
1886			}
1887			ep = udev->ep_in[i];
1888			if (ep) {
1889				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1890				if (ret < 0)
1891					goto reset;
1892			}
1893		}
1894		for (i = 0; i < num_intfs; ++i) {
1895			struct usb_host_interface *first_alt;
1896			int iface_num;
1897
1898			first_alt = &new_config->intf_cache[i]->altsetting[0];
1899			iface_num = first_alt->desc.bInterfaceNumber;
1900			/* Set up endpoints for alternate interface setting 0 */
1901			alt = usb_find_alt_setting(new_config, iface_num, 0);
1902			if (!alt)
1903				/* No alt setting 0? Pick the first setting. */
1904				alt = first_alt;
1905
1906			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1907				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1908				if (ret < 0)
1909					goto reset;
1910			}
1911		}
1912	}
1913	if (cur_alt && new_alt) {
1914		struct usb_interface *iface = usb_ifnum_to_if(udev,
1915				cur_alt->desc.bInterfaceNumber);
1916
1917		if (!iface)
1918			return -EINVAL;
1919		if (iface->resetting_device) {
1920			/*
1921			 * The USB core just reset the device, so the xHCI host
1922			 * and the device will think alt setting 0 is installed.
1923			 * However, the USB core will pass in the alternate
1924			 * setting installed before the reset as cur_alt.  Dig
1925			 * out the alternate setting 0 structure, or the first
1926			 * alternate setting if a broken device doesn't have alt
1927			 * setting 0.
1928			 */
1929			cur_alt = usb_altnum_to_altsetting(iface, 0);
1930			if (!cur_alt)
1931				cur_alt = &iface->altsetting[0];
1932		}
1933
1934		/* Drop all the endpoints in the current alt setting */
1935		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1936			ret = hcd->driver->drop_endpoint(hcd, udev,
1937					&cur_alt->endpoint[i]);
1938			if (ret < 0)
1939				goto reset;
1940		}
1941		/* Add all the endpoints in the new alt setting */
1942		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1943			ret = hcd->driver->add_endpoint(hcd, udev,
1944					&new_alt->endpoint[i]);
1945			if (ret < 0)
1946				goto reset;
1947		}
1948	}
1949	ret = hcd->driver->check_bandwidth(hcd, udev);
1950reset:
1951	if (ret < 0)
1952		hcd->driver->reset_bandwidth(hcd, udev);
1953	return ret;
1954}
1955
1956/* Disables the endpoint: synchronizes with the hcd to make sure all
1957 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1958 * have been called previously.  Use for set_configuration, set_interface,
1959 * driver removal, physical disconnect.
1960 *
1961 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1962 * type, maxpacket size, toggle, halt status, and scheduling.
1963 */
1964void usb_hcd_disable_endpoint(struct usb_device *udev,
1965		struct usb_host_endpoint *ep)
1966{
1967	struct usb_hcd		*hcd;
1968
1969	might_sleep();
1970	hcd = bus_to_hcd(udev->bus);
1971	if (hcd->driver->endpoint_disable)
1972		hcd->driver->endpoint_disable(hcd, ep);
1973}
1974
1975/**
1976 * usb_hcd_reset_endpoint - reset host endpoint state
1977 * @udev: USB device.
1978 * @ep:   the endpoint to reset.
1979 *
1980 * Resets any host endpoint state such as the toggle bit, sequence
1981 * number and current window.
1982 */
1983void usb_hcd_reset_endpoint(struct usb_device *udev,
1984			    struct usb_host_endpoint *ep)
1985{
1986	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1987
1988	if (hcd->driver->endpoint_reset)
1989		hcd->driver->endpoint_reset(hcd, ep);
1990	else {
1991		int epnum = usb_endpoint_num(&ep->desc);
1992		int is_out = usb_endpoint_dir_out(&ep->desc);
1993		int is_control = usb_endpoint_xfer_control(&ep->desc);
1994
1995		usb_settoggle(udev, epnum, is_out, 0);
1996		if (is_control)
1997			usb_settoggle(udev, epnum, !is_out, 0);
1998	}
1999}
2000
2001/**
2002 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2003 * @interface:		alternate setting that includes all endpoints.
2004 * @eps:		array of endpoints that need streams.
2005 * @num_eps:		number of endpoints in the array.
2006 * @num_streams:	number of streams to allocate.
2007 * @mem_flags:		flags hcd should use to allocate memory.
2008 *
2009 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2010 * Drivers may queue multiple transfers to different stream IDs, which may
2011 * complete in a different order than they were queued.
2012 *
2013 * Return: On success, the number of allocated streams. On failure, a negative
2014 * error code.
2015 */
2016int usb_alloc_streams(struct usb_interface *interface,
2017		struct usb_host_endpoint **eps, unsigned int num_eps,
2018		unsigned int num_streams, gfp_t mem_flags)
2019{
2020	struct usb_hcd *hcd;
2021	struct usb_device *dev;
2022	int i, ret;
2023
2024	dev = interface_to_usbdev(interface);
2025	hcd = bus_to_hcd(dev->bus);
2026	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2027		return -EINVAL;
2028	if (dev->speed < USB_SPEED_SUPER)
2029		return -EINVAL;
2030	if (dev->state < USB_STATE_CONFIGURED)
2031		return -ENODEV;
2032
2033	for (i = 0; i < num_eps; i++) {
2034		/* Streams only apply to bulk endpoints. */
2035		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2036			return -EINVAL;
2037		/* Re-alloc is not allowed */
2038		if (eps[i]->streams)
2039			return -EINVAL;
2040	}
2041
2042	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2043			num_streams, mem_flags);
2044	if (ret < 0)
2045		return ret;
2046
2047	for (i = 0; i < num_eps; i++)
2048		eps[i]->streams = ret;
2049
2050	return ret;
2051}
2052EXPORT_SYMBOL_GPL(usb_alloc_streams);
2053
2054/**
2055 * usb_free_streams - free bulk endpoint stream IDs.
2056 * @interface:	alternate setting that includes all endpoints.
2057 * @eps:	array of endpoints to remove streams from.
2058 * @num_eps:	number of endpoints in the array.
2059 * @mem_flags:	flags hcd should use to allocate memory.
2060 *
2061 * Reverts a group of bulk endpoints back to not using stream IDs.
2062 * Can fail if we are given bad arguments, or HCD is broken.
2063 *
2064 * Return: 0 on success. On failure, a negative error code.
2065 */
2066int usb_free_streams(struct usb_interface *interface,
2067		struct usb_host_endpoint **eps, unsigned int num_eps,
2068		gfp_t mem_flags)
2069{
2070	struct usb_hcd *hcd;
2071	struct usb_device *dev;
2072	int i, ret;
2073
2074	dev = interface_to_usbdev(interface);
2075	hcd = bus_to_hcd(dev->bus);
2076	if (dev->speed < USB_SPEED_SUPER)
2077		return -EINVAL;
2078
2079	/* Double-free is not allowed */
2080	for (i = 0; i < num_eps; i++)
2081		if (!eps[i] || !eps[i]->streams)
2082			return -EINVAL;
2083
2084	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2085	if (ret < 0)
2086		return ret;
2087
2088	for (i = 0; i < num_eps; i++)
2089		eps[i]->streams = 0;
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL_GPL(usb_free_streams);
2094
2095/* Protect against drivers that try to unlink URBs after the device
2096 * is gone, by waiting until all unlinks for @udev are finished.
2097 * Since we don't currently track URBs by device, simply wait until
2098 * nothing is running in the locked region of usb_hcd_unlink_urb().
2099 */
2100void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2101{
2102	spin_lock_irq(&hcd_urb_unlink_lock);
2103	spin_unlock_irq(&hcd_urb_unlink_lock);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108/* called in any context */
2109int usb_hcd_get_frame_number (struct usb_device *udev)
2110{
2111	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2112
2113	if (!HCD_RH_RUNNING(hcd))
2114		return -ESHUTDOWN;
2115	return hcd->driver->get_frame_number (hcd);
2116}
2117
2118/*-------------------------------------------------------------------------*/
2119#ifdef CONFIG_USB_HCD_TEST_MODE
2120
2121static void usb_ehset_completion(struct urb *urb)
2122{
2123	struct completion  *done = urb->context;
2124
2125	complete(done);
2126}
2127/*
2128 * Allocate and initialize a control URB. This request will be used by the
2129 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2130 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2131 * Return NULL if failed.
2132 */
2133static struct urb *request_single_step_set_feature_urb(
2134	struct usb_device	*udev,
2135	void			*dr,
2136	void			*buf,
2137	struct completion	*done)
2138{
2139	struct urb *urb;
2140	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
 
2141
2142	urb = usb_alloc_urb(0, GFP_KERNEL);
2143	if (!urb)
2144		return NULL;
2145
2146	urb->pipe = usb_rcvctrlpipe(udev, 0);
 
 
 
 
 
 
2147
2148	urb->ep = &udev->ep0;
2149	urb->dev = udev;
2150	urb->setup_packet = (void *)dr;
2151	urb->transfer_buffer = buf;
2152	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2153	urb->complete = usb_ehset_completion;
2154	urb->status = -EINPROGRESS;
2155	urb->actual_length = 0;
2156	urb->transfer_flags = URB_DIR_IN;
2157	usb_get_urb(urb);
2158	atomic_inc(&urb->use_count);
2159	atomic_inc(&urb->dev->urbnum);
2160	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2161		usb_put_urb(urb);
2162		usb_free_urb(urb);
2163		return NULL;
2164	}
2165
2166	urb->context = done;
2167	return urb;
2168}
2169
2170int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2171{
2172	int retval = -ENOMEM;
2173	struct usb_ctrlrequest *dr;
2174	struct urb *urb;
2175	struct usb_device *udev;
2176	struct usb_device_descriptor *buf;
2177	DECLARE_COMPLETION_ONSTACK(done);
2178
2179	/* Obtain udev of the rhub's child port */
2180	udev = usb_hub_find_child(hcd->self.root_hub, port);
2181	if (!udev) {
2182		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2183		return -ENODEV;
2184	}
2185	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2186	if (!buf)
2187		return -ENOMEM;
2188
2189	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2190	if (!dr) {
2191		kfree(buf);
2192		return -ENOMEM;
2193	}
2194
2195	/* Fill Setup packet for GetDescriptor */
2196	dr->bRequestType = USB_DIR_IN;
2197	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2198	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2199	dr->wIndex = 0;
2200	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2201	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2202	if (!urb)
2203		goto cleanup;
2204
2205	/* Submit just the SETUP stage */
2206	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2207	if (retval)
2208		goto out1;
2209	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2210		usb_kill_urb(urb);
2211		retval = -ETIMEDOUT;
2212		dev_err(hcd->self.controller,
2213			"%s SETUP stage timed out on ep0\n", __func__);
2214		goto out1;
2215	}
2216	msleep(15 * 1000);
2217
2218	/* Complete remaining DATA and STATUS stages using the same URB */
2219	urb->status = -EINPROGRESS;
2220	usb_get_urb(urb);
2221	atomic_inc(&urb->use_count);
2222	atomic_inc(&urb->dev->urbnum);
2223	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2224	if (!retval && !wait_for_completion_timeout(&done,
2225						msecs_to_jiffies(2000))) {
2226		usb_kill_urb(urb);
2227		retval = -ETIMEDOUT;
2228		dev_err(hcd->self.controller,
2229			"%s IN stage timed out on ep0\n", __func__);
2230	}
2231out1:
2232	usb_free_urb(urb);
2233cleanup:
2234	kfree(dr);
2235	kfree(buf);
2236	return retval;
2237}
2238EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2239#endif /* CONFIG_USB_HCD_TEST_MODE */
2240
2241/*-------------------------------------------------------------------------*/
2242
2243#ifdef	CONFIG_PM
2244
2245int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2246{
2247	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2248	int		status;
2249	int		old_state = hcd->state;
2250
2251	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2252			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2253			rhdev->do_remote_wakeup);
2254	if (HCD_DEAD(hcd)) {
2255		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2256		return 0;
2257	}
2258
2259	if (!hcd->driver->bus_suspend) {
2260		status = -ENOENT;
2261	} else {
2262		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2263		hcd->state = HC_STATE_QUIESCING;
2264		status = hcd->driver->bus_suspend(hcd);
2265	}
2266	if (status == 0) {
2267		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2268		hcd->state = HC_STATE_SUSPENDED;
2269
2270		if (!PMSG_IS_AUTO(msg))
2271			usb_phy_roothub_suspend(hcd->self.sysdev,
2272						hcd->phy_roothub);
2273
2274		/* Did we race with a root-hub wakeup event? */
2275		if (rhdev->do_remote_wakeup) {
2276			char	buffer[6];
2277
2278			status = hcd->driver->hub_status_data(hcd, buffer);
2279			if (status != 0) {
2280				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282				status = -EBUSY;
2283			}
2284		}
2285	} else {
2286		spin_lock_irq(&hcd_root_hub_lock);
2287		if (!HCD_DEAD(hcd)) {
2288			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289			hcd->state = old_state;
2290		}
2291		spin_unlock_irq(&hcd_root_hub_lock);
2292		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293				"suspend", status);
2294	}
2295	return status;
2296}
2297
2298int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299{
2300	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2301	int		status;
2302	int		old_state = hcd->state;
2303
2304	dev_dbg(&rhdev->dev, "usb %sresume\n",
2305			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306	if (HCD_DEAD(hcd)) {
2307		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308		return 0;
2309	}
2310
2311	if (!PMSG_IS_AUTO(msg)) {
2312		status = usb_phy_roothub_resume(hcd->self.sysdev,
2313						hcd->phy_roothub);
2314		if (status)
2315			return status;
2316	}
2317
2318	if (!hcd->driver->bus_resume)
2319		return -ENOENT;
2320	if (HCD_RH_RUNNING(hcd))
2321		return 0;
2322
2323	hcd->state = HC_STATE_RESUMING;
2324	status = hcd->driver->bus_resume(hcd);
2325	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2326	if (status == 0)
2327		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2328
2329	if (status == 0) {
2330		struct usb_device *udev;
2331		int port1;
2332
2333		spin_lock_irq(&hcd_root_hub_lock);
2334		if (!HCD_DEAD(hcd)) {
2335			usb_set_device_state(rhdev, rhdev->actconfig
2336					? USB_STATE_CONFIGURED
2337					: USB_STATE_ADDRESS);
2338			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2339			hcd->state = HC_STATE_RUNNING;
2340		}
2341		spin_unlock_irq(&hcd_root_hub_lock);
2342
2343		/*
2344		 * Check whether any of the enabled ports on the root hub are
2345		 * unsuspended.  If they are then a TRSMRCY delay is needed
2346		 * (this is what the USB-2 spec calls a "global resume").
2347		 * Otherwise we can skip the delay.
2348		 */
2349		usb_hub_for_each_child(rhdev, port1, udev) {
2350			if (udev->state != USB_STATE_NOTATTACHED &&
2351					!udev->port_is_suspended) {
2352				usleep_range(10000, 11000);	/* TRSMRCY */
2353				break;
2354			}
2355		}
2356	} else {
2357		hcd->state = old_state;
2358		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2359		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2360				"resume", status);
2361		if (status != -ESHUTDOWN)
2362			usb_hc_died(hcd);
2363	}
2364	return status;
2365}
2366
2367/* Workqueue routine for root-hub remote wakeup */
2368static void hcd_resume_work(struct work_struct *work)
2369{
2370	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2371	struct usb_device *udev = hcd->self.root_hub;
2372
2373	usb_remote_wakeup(udev);
2374}
2375
2376/**
2377 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2378 * @hcd: host controller for this root hub
2379 *
2380 * The USB host controller calls this function when its root hub is
2381 * suspended (with the remote wakeup feature enabled) and a remote
2382 * wakeup request is received.  The routine submits a workqueue request
2383 * to resume the root hub (that is, manage its downstream ports again).
2384 */
2385void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2386{
2387	unsigned long flags;
2388
2389	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2390	if (hcd->rh_registered) {
2391		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2392		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2393		queue_work(pm_wq, &hcd->wakeup_work);
2394	}
2395	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2396}
2397EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2398
2399#endif	/* CONFIG_PM */
2400
2401/*-------------------------------------------------------------------------*/
2402
2403#ifdef	CONFIG_USB_OTG
2404
2405/**
2406 * usb_bus_start_enum - start immediate enumeration (for OTG)
2407 * @bus: the bus (must use hcd framework)
2408 * @port_num: 1-based number of port; usually bus->otg_port
2409 * Context: atomic
2410 *
2411 * Starts enumeration, with an immediate reset followed later by
2412 * hub_wq identifying and possibly configuring the device.
2413 * This is needed by OTG controller drivers, where it helps meet
2414 * HNP protocol timing requirements for starting a port reset.
2415 *
2416 * Return: 0 if successful.
2417 */
2418int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2419{
2420	struct usb_hcd		*hcd;
2421	int			status = -EOPNOTSUPP;
2422
2423	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2424	 * boards with root hubs hooked up to internal devices (instead of
2425	 * just the OTG port) may need more attention to resetting...
2426	 */
2427	hcd = bus_to_hcd(bus);
2428	if (port_num && hcd->driver->start_port_reset)
2429		status = hcd->driver->start_port_reset(hcd, port_num);
2430
2431	/* allocate hub_wq shortly after (first) root port reset finishes;
2432	 * it may issue others, until at least 50 msecs have passed.
2433	 */
2434	if (status == 0)
2435		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2436	return status;
2437}
2438EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2439
2440#endif
2441
2442/*-------------------------------------------------------------------------*/
2443
2444/**
2445 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2446 * @irq: the IRQ being raised
2447 * @__hcd: pointer to the HCD whose IRQ is being signaled
2448 *
2449 * If the controller isn't HALTed, calls the driver's irq handler.
2450 * Checks whether the controller is now dead.
2451 *
2452 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2453 */
2454irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2455{
2456	struct usb_hcd		*hcd = __hcd;
2457	irqreturn_t		rc;
2458
2459	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2460		rc = IRQ_NONE;
2461	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2462		rc = IRQ_NONE;
2463	else
2464		rc = IRQ_HANDLED;
2465
2466	return rc;
2467}
2468EXPORT_SYMBOL_GPL(usb_hcd_irq);
2469
2470/*-------------------------------------------------------------------------*/
2471
2472/* Workqueue routine for when the root-hub has died. */
2473static void hcd_died_work(struct work_struct *work)
2474{
2475	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2476	static char *env[] = {
2477		"ERROR=DEAD",
2478		NULL
2479	};
2480
2481	/* Notify user space that the host controller has died */
2482	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2483}
2484
2485/**
2486 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2487 * @hcd: pointer to the HCD representing the controller
2488 *
2489 * This is called by bus glue to report a USB host controller that died
2490 * while operations may still have been pending.  It's called automatically
2491 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2492 *
2493 * Only call this function with the primary HCD.
2494 */
2495void usb_hc_died (struct usb_hcd *hcd)
2496{
2497	unsigned long flags;
2498
2499	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2500
2501	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2502	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2503	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2504	if (hcd->rh_registered) {
2505		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2506
2507		/* make hub_wq clean up old urbs and devices */
2508		usb_set_device_state (hcd->self.root_hub,
2509				USB_STATE_NOTATTACHED);
2510		usb_kick_hub_wq(hcd->self.root_hub);
2511	}
2512	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2513		hcd = hcd->shared_hcd;
2514		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2515		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2516		if (hcd->rh_registered) {
2517			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2518
2519			/* make hub_wq clean up old urbs and devices */
2520			usb_set_device_state(hcd->self.root_hub,
2521					USB_STATE_NOTATTACHED);
2522			usb_kick_hub_wq(hcd->self.root_hub);
2523		}
2524	}
2525
2526	/* Handle the case where this function gets called with a shared HCD */
2527	if (usb_hcd_is_primary_hcd(hcd))
2528		schedule_work(&hcd->died_work);
2529	else
2530		schedule_work(&hcd->primary_hcd->died_work);
2531
2532	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2533	/* Make sure that the other roothub is also deallocated. */
2534}
2535EXPORT_SYMBOL_GPL (usb_hc_died);
2536
2537/*-------------------------------------------------------------------------*/
2538
2539static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2540{
2541
2542	spin_lock_init(&bh->lock);
2543	INIT_LIST_HEAD(&bh->head);
2544	INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2545}
2546
2547struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2548		struct device *sysdev, struct device *dev, const char *bus_name,
2549		struct usb_hcd *primary_hcd)
2550{
2551	struct usb_hcd *hcd;
2552
2553	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2554	if (!hcd)
2555		return NULL;
2556	if (primary_hcd == NULL) {
2557		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2558				GFP_KERNEL);
2559		if (!hcd->address0_mutex) {
2560			kfree(hcd);
2561			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2562			return NULL;
2563		}
2564		mutex_init(hcd->address0_mutex);
2565		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2566				GFP_KERNEL);
2567		if (!hcd->bandwidth_mutex) {
2568			kfree(hcd->address0_mutex);
2569			kfree(hcd);
2570			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2571			return NULL;
2572		}
2573		mutex_init(hcd->bandwidth_mutex);
2574		dev_set_drvdata(dev, hcd);
2575	} else {
2576		mutex_lock(&usb_port_peer_mutex);
2577		hcd->address0_mutex = primary_hcd->address0_mutex;
2578		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2579		hcd->primary_hcd = primary_hcd;
2580		primary_hcd->primary_hcd = primary_hcd;
2581		hcd->shared_hcd = primary_hcd;
2582		primary_hcd->shared_hcd = hcd;
2583		mutex_unlock(&usb_port_peer_mutex);
2584	}
2585
2586	kref_init(&hcd->kref);
2587
2588	usb_bus_init(&hcd->self);
2589	hcd->self.controller = dev;
2590	hcd->self.sysdev = sysdev;
2591	hcd->self.bus_name = bus_name;
2592
2593	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2594#ifdef CONFIG_PM
2595	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2596#endif
2597
2598	INIT_WORK(&hcd->died_work, hcd_died_work);
2599
2600	hcd->driver = driver;
2601	hcd->speed = driver->flags & HCD_MASK;
2602	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2603			"USB Host Controller";
2604	return hcd;
2605}
2606EXPORT_SYMBOL_GPL(__usb_create_hcd);
2607
2608/**
2609 * usb_create_shared_hcd - create and initialize an HCD structure
2610 * @driver: HC driver that will use this hcd
2611 * @dev: device for this HC, stored in hcd->self.controller
2612 * @bus_name: value to store in hcd->self.bus_name
2613 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2614 *              PCI device.  Only allocate certain resources for the primary HCD
2615 *
2616 * Context: task context, might sleep.
2617 *
2618 * Allocate a struct usb_hcd, with extra space at the end for the
2619 * HC driver's private data.  Initialize the generic members of the
2620 * hcd structure.
2621 *
2622 * Return: On success, a pointer to the created and initialized HCD structure.
2623 * On failure (e.g. if memory is unavailable), %NULL.
2624 */
2625struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2626		struct device *dev, const char *bus_name,
2627		struct usb_hcd *primary_hcd)
2628{
2629	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2630}
2631EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2632
2633/**
2634 * usb_create_hcd - create and initialize an HCD structure
2635 * @driver: HC driver that will use this hcd
2636 * @dev: device for this HC, stored in hcd->self.controller
2637 * @bus_name: value to store in hcd->self.bus_name
2638 *
2639 * Context: task context, might sleep.
2640 *
2641 * Allocate a struct usb_hcd, with extra space at the end for the
2642 * HC driver's private data.  Initialize the generic members of the
2643 * hcd structure.
2644 *
2645 * Return: On success, a pointer to the created and initialized HCD
2646 * structure. On failure (e.g. if memory is unavailable), %NULL.
2647 */
2648struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2649		struct device *dev, const char *bus_name)
2650{
2651	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2652}
2653EXPORT_SYMBOL_GPL(usb_create_hcd);
2654
2655/*
2656 * Roothubs that share one PCI device must also share the bandwidth mutex.
2657 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2658 * deallocated.
2659 *
2660 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2661 * freed.  When hcd_release() is called for either hcd in a peer set,
2662 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2663 */
2664static void hcd_release(struct kref *kref)
2665{
2666	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2667
2668	mutex_lock(&usb_port_peer_mutex);
2669	if (hcd->shared_hcd) {
2670		struct usb_hcd *peer = hcd->shared_hcd;
2671
2672		peer->shared_hcd = NULL;
2673		peer->primary_hcd = NULL;
2674	} else {
2675		kfree(hcd->address0_mutex);
2676		kfree(hcd->bandwidth_mutex);
2677	}
2678	mutex_unlock(&usb_port_peer_mutex);
2679	kfree(hcd);
2680}
2681
2682struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2683{
2684	if (hcd)
2685		kref_get (&hcd->kref);
2686	return hcd;
2687}
2688EXPORT_SYMBOL_GPL(usb_get_hcd);
2689
2690void usb_put_hcd (struct usb_hcd *hcd)
2691{
2692	if (hcd)
2693		kref_put (&hcd->kref, hcd_release);
2694}
2695EXPORT_SYMBOL_GPL(usb_put_hcd);
2696
2697int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2698{
2699	if (!hcd->primary_hcd)
2700		return 1;
2701	return hcd == hcd->primary_hcd;
2702}
2703EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2704
2705int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2706{
2707	if (!hcd->driver->find_raw_port_number)
2708		return port1;
2709
2710	return hcd->driver->find_raw_port_number(hcd, port1);
2711}
2712
2713static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2714		unsigned int irqnum, unsigned long irqflags)
2715{
2716	int retval;
2717
2718	if (hcd->driver->irq) {
2719
2720		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2721				hcd->driver->description, hcd->self.busnum);
2722		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2723				hcd->irq_descr, hcd);
2724		if (retval != 0) {
2725			dev_err(hcd->self.controller,
2726					"request interrupt %d failed\n",
2727					irqnum);
2728			return retval;
2729		}
2730		hcd->irq = irqnum;
2731		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2732				(hcd->driver->flags & HCD_MEMORY) ?
2733					"io mem" : "io port",
2734				(unsigned long long)hcd->rsrc_start);
2735	} else {
2736		hcd->irq = 0;
2737		if (hcd->rsrc_start)
2738			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2739					(hcd->driver->flags & HCD_MEMORY) ?
2740						"io mem" : "io port",
2741					(unsigned long long)hcd->rsrc_start);
2742	}
2743	return 0;
2744}
2745
2746/*
2747 * Before we free this root hub, flush in-flight peering attempts
2748 * and disable peer lookups
2749 */
2750static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2751{
2752	struct usb_device *rhdev;
2753
2754	mutex_lock(&usb_port_peer_mutex);
2755	rhdev = hcd->self.root_hub;
2756	hcd->self.root_hub = NULL;
2757	mutex_unlock(&usb_port_peer_mutex);
2758	usb_put_dev(rhdev);
2759}
2760
2761/**
2762 * usb_stop_hcd - Halt the HCD
2763 * @hcd: the usb_hcd that has to be halted
2764 *
2765 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2766 */
2767static void usb_stop_hcd(struct usb_hcd *hcd)
2768{
2769	hcd->rh_pollable = 0;
2770	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2771	del_timer_sync(&hcd->rh_timer);
2772
2773	hcd->driver->stop(hcd);
2774	hcd->state = HC_STATE_HALT;
2775
2776	/* In case the HCD restarted the timer, stop it again. */
2777	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778	del_timer_sync(&hcd->rh_timer);
2779}
2780
2781/**
2782 * usb_add_hcd - finish generic HCD structure initialization and register
2783 * @hcd: the usb_hcd structure to initialize
2784 * @irqnum: Interrupt line to allocate
2785 * @irqflags: Interrupt type flags
2786 *
2787 * Finish the remaining parts of generic HCD initialization: allocate the
2788 * buffers of consistent memory, register the bus, request the IRQ line,
2789 * and call the driver's reset() and start() routines.
2790 */
2791int usb_add_hcd(struct usb_hcd *hcd,
2792		unsigned int irqnum, unsigned long irqflags)
2793{
2794	int retval;
2795	struct usb_device *rhdev;
2796	struct usb_hcd *shared_hcd;
2797	int skip_phy_initialization;
2798
2799	if (usb_hcd_is_primary_hcd(hcd))
2800		skip_phy_initialization = hcd->skip_phy_initialization;
2801	else
2802		skip_phy_initialization = hcd->primary_hcd->skip_phy_initialization;
2803
2804	if (!skip_phy_initialization) {
2805		if (usb_hcd_is_primary_hcd(hcd)) {
2806			hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2807			if (IS_ERR(hcd->phy_roothub))
2808				return PTR_ERR(hcd->phy_roothub);
2809		} else {
2810			hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2811			if (IS_ERR(hcd->phy_roothub))
2812				return PTR_ERR(hcd->phy_roothub);
2813		}
2814
2815		retval = usb_phy_roothub_init(hcd->phy_roothub);
2816		if (retval)
2817			return retval;
2818
2819		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2820						  PHY_MODE_USB_HOST_SS);
2821		if (retval)
2822			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2823							  PHY_MODE_USB_HOST);
2824		if (retval)
2825			goto err_usb_phy_roothub_power_on;
2826
2827		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2828		if (retval)
2829			goto err_usb_phy_roothub_power_on;
2830	}
2831
2832	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2833
2834	switch (authorized_default) {
2835	case USB_AUTHORIZE_NONE:
2836		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2837		break;
2838
 
 
 
 
2839	case USB_AUTHORIZE_INTERNAL:
2840		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2841		break;
2842
2843	case USB_AUTHORIZE_ALL:
2844	case USB_AUTHORIZE_WIRED:
2845	default:
2846		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
 
2847		break;
2848	}
2849
2850	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2851
2852	/* per default all interfaces are authorized */
2853	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2854
2855	/* HC is in reset state, but accessible.  Now do the one-time init,
2856	 * bottom up so that hcds can customize the root hubs before hub_wq
2857	 * starts talking to them.  (Note, bus id is assigned early too.)
2858	 */
2859	retval = hcd_buffer_create(hcd);
2860	if (retval != 0) {
2861		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2862		goto err_create_buf;
2863	}
2864
2865	retval = usb_register_bus(&hcd->self);
2866	if (retval < 0)
2867		goto err_register_bus;
2868
2869	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2870	if (rhdev == NULL) {
2871		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2872		retval = -ENOMEM;
2873		goto err_allocate_root_hub;
2874	}
2875	mutex_lock(&usb_port_peer_mutex);
2876	hcd->self.root_hub = rhdev;
2877	mutex_unlock(&usb_port_peer_mutex);
2878
2879	rhdev->rx_lanes = 1;
2880	rhdev->tx_lanes = 1;
2881	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2882
2883	switch (hcd->speed) {
2884	case HCD_USB11:
2885		rhdev->speed = USB_SPEED_FULL;
2886		break;
2887	case HCD_USB2:
2888		rhdev->speed = USB_SPEED_HIGH;
2889		break;
 
 
 
2890	case HCD_USB3:
2891		rhdev->speed = USB_SPEED_SUPER;
2892		break;
2893	case HCD_USB32:
2894		rhdev->rx_lanes = 2;
2895		rhdev->tx_lanes = 2;
2896		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2897		rhdev->speed = USB_SPEED_SUPER_PLUS;
2898		break;
2899	case HCD_USB31:
2900		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2901		rhdev->speed = USB_SPEED_SUPER_PLUS;
2902		break;
2903	default:
2904		retval = -EINVAL;
2905		goto err_set_rh_speed;
2906	}
2907
2908	/* wakeup flag init defaults to "everything works" for root hubs,
2909	 * but drivers can override it in reset() if needed, along with
2910	 * recording the overall controller's system wakeup capability.
2911	 */
2912	device_set_wakeup_capable(&rhdev->dev, 1);
2913
2914	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2915	 * registered.  But since the controller can die at any time,
2916	 * let's initialize the flag before touching the hardware.
2917	 */
2918	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2919
2920	/* "reset" is misnamed; its role is now one-time init. the controller
2921	 * should already have been reset (and boot firmware kicked off etc).
2922	 */
2923	if (hcd->driver->reset) {
2924		retval = hcd->driver->reset(hcd);
2925		if (retval < 0) {
2926			dev_err(hcd->self.controller, "can't setup: %d\n",
2927					retval);
2928			goto err_hcd_driver_setup;
2929		}
2930	}
2931	hcd->rh_pollable = 1;
2932
2933	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2934	if (retval)
2935		goto err_hcd_driver_setup;
2936
2937	/* NOTE: root hub and controller capabilities may not be the same */
2938	if (device_can_wakeup(hcd->self.controller)
2939			&& device_can_wakeup(&hcd->self.root_hub->dev))
2940		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2941
2942	/* initialize BHs */
2943	init_giveback_urb_bh(&hcd->high_prio_bh);
2944	hcd->high_prio_bh.high_prio = true;
2945	init_giveback_urb_bh(&hcd->low_prio_bh);
2946
2947	/* enable irqs just before we start the controller,
2948	 * if the BIOS provides legacy PCI irqs.
2949	 */
2950	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2951		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2952		if (retval)
2953			goto err_request_irq;
2954	}
2955
2956	hcd->state = HC_STATE_RUNNING;
2957	retval = hcd->driver->start(hcd);
2958	if (retval < 0) {
2959		dev_err(hcd->self.controller, "startup error %d\n", retval);
2960		goto err_hcd_driver_start;
2961	}
2962
2963	/* starting here, usbcore will pay attention to the shared HCD roothub */
2964	shared_hcd = hcd->shared_hcd;
2965	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2966		retval = register_root_hub(shared_hcd);
2967		if (retval != 0)
2968			goto err_register_root_hub;
2969
2970		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2971			usb_hcd_poll_rh_status(shared_hcd);
2972	}
2973
2974	/* starting here, usbcore will pay attention to this root hub */
2975	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2976		retval = register_root_hub(hcd);
2977		if (retval != 0)
2978			goto err_register_root_hub;
2979
2980		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2981			usb_hcd_poll_rh_status(hcd);
2982	}
2983
2984	return retval;
2985
2986err_register_root_hub:
2987	usb_stop_hcd(hcd);
 
 
 
 
 
 
2988err_hcd_driver_start:
2989	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2990		free_irq(irqnum, hcd);
2991err_request_irq:
2992err_hcd_driver_setup:
2993err_set_rh_speed:
2994	usb_put_invalidate_rhdev(hcd);
2995err_allocate_root_hub:
2996	usb_deregister_bus(&hcd->self);
2997err_register_bus:
2998	hcd_buffer_destroy(hcd);
2999err_create_buf:
3000	usb_phy_roothub_power_off(hcd->phy_roothub);
3001err_usb_phy_roothub_power_on:
3002	usb_phy_roothub_exit(hcd->phy_roothub);
3003
3004	return retval;
3005}
3006EXPORT_SYMBOL_GPL(usb_add_hcd);
3007
3008/**
3009 * usb_remove_hcd - shutdown processing for generic HCDs
3010 * @hcd: the usb_hcd structure to remove
3011 *
3012 * Context: task context, might sleep.
3013 *
3014 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3015 * invoking the HCD's stop() method.
3016 */
3017void usb_remove_hcd(struct usb_hcd *hcd)
3018{
3019	struct usb_device *rhdev;
3020	bool rh_registered;
3021
3022	if (!hcd) {
3023		pr_debug("%s: hcd is NULL\n", __func__);
3024		return;
3025	}
3026	rhdev = hcd->self.root_hub;
3027
3028	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3029
3030	usb_get_dev(rhdev);
3031	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3032	if (HC_IS_RUNNING (hcd->state))
3033		hcd->state = HC_STATE_QUIESCING;
3034
3035	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3036	spin_lock_irq (&hcd_root_hub_lock);
3037	rh_registered = hcd->rh_registered;
3038	hcd->rh_registered = 0;
3039	spin_unlock_irq (&hcd_root_hub_lock);
3040
3041#ifdef CONFIG_PM
3042	cancel_work_sync(&hcd->wakeup_work);
3043#endif
3044	cancel_work_sync(&hcd->died_work);
3045
3046	mutex_lock(&usb_bus_idr_lock);
3047	if (rh_registered)
3048		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3049	mutex_unlock(&usb_bus_idr_lock);
3050
3051	/*
3052	 * flush_work() isn't needed here because:
3053	 * - driver's disconnect() called from usb_disconnect() should
3054	 *   make sure its URBs are completed during the disconnect()
3055	 *   callback
3056	 *
3057	 * - it is too late to run complete() here since driver may have
3058	 *   been removed already now
3059	 */
3060
3061	/* Prevent any more root-hub status calls from the timer.
3062	 * The HCD might still restart the timer (if a port status change
3063	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3064	 * the hub_status_data() callback.
3065	 */
3066	usb_stop_hcd(hcd);
 
 
 
 
 
 
 
 
 
3067
3068	if (usb_hcd_is_primary_hcd(hcd)) {
3069		if (hcd->irq > 0)
3070			free_irq(hcd->irq, hcd);
3071	}
3072
3073	usb_deregister_bus(&hcd->self);
3074	hcd_buffer_destroy(hcd);
3075
3076	usb_phy_roothub_power_off(hcd->phy_roothub);
3077	usb_phy_roothub_exit(hcd->phy_roothub);
3078
3079	usb_put_invalidate_rhdev(hcd);
3080	hcd->flags = 0;
3081}
3082EXPORT_SYMBOL_GPL(usb_remove_hcd);
3083
3084void
3085usb_hcd_platform_shutdown(struct platform_device *dev)
3086{
3087	struct usb_hcd *hcd = platform_get_drvdata(dev);
3088
3089	/* No need for pm_runtime_put(), we're shutting down */
3090	pm_runtime_get_sync(&dev->dev);
3091
3092	if (hcd->driver->shutdown)
3093		hcd->driver->shutdown(hcd);
3094}
3095EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3096
3097int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3098			    dma_addr_t dma, size_t size)
3099{
3100	int err;
3101	void *local_mem;
3102
3103	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3104						  dev_to_node(hcd->self.sysdev),
3105						  dev_name(hcd->self.sysdev));
3106	if (IS_ERR(hcd->localmem_pool))
3107		return PTR_ERR(hcd->localmem_pool);
3108
3109	/*
3110	 * if a physical SRAM address was passed, map it, otherwise
3111	 * allocate system memory as a buffer.
3112	 */
3113	if (phys_addr)
3114		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3115					  size, MEMREMAP_WC);
3116	else
3117		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3118					     GFP_KERNEL,
3119					     DMA_ATTR_WRITE_COMBINE);
3120
3121	if (IS_ERR_OR_NULL(local_mem)) {
3122		if (!local_mem)
3123			return -ENOMEM;
3124
3125		return PTR_ERR(local_mem);
3126	}
3127
3128	/*
3129	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3130	 * It's not backed by system memory and thus there's no kernel mapping
3131	 * for it.
3132	 */
3133	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3134				dma, size, dev_to_node(hcd->self.sysdev));
3135	if (err < 0) {
3136		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3137			err);
3138		return err;
3139	}
3140
3141	return 0;
3142}
3143EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3144
3145/*-------------------------------------------------------------------------*/
3146
3147#if IS_ENABLED(CONFIG_USB_MON)
3148
3149const struct usb_mon_operations *mon_ops;
3150
3151/*
3152 * The registration is unlocked.
3153 * We do it this way because we do not want to lock in hot paths.
3154 *
3155 * Notice that the code is minimally error-proof. Because usbmon needs
3156 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3157 */
3158
3159int usb_mon_register(const struct usb_mon_operations *ops)
3160{
3161
3162	if (mon_ops)
3163		return -EBUSY;
3164
3165	mon_ops = ops;
3166	mb();
3167	return 0;
3168}
3169EXPORT_SYMBOL_GPL (usb_mon_register);
3170
3171void usb_mon_deregister (void)
3172{
3173
3174	if (mon_ops == NULL) {
3175		printk(KERN_ERR "USB: monitor was not registered\n");
3176		return;
3177	}
3178	mon_ops = NULL;
3179	mb();
3180}
3181EXPORT_SYMBOL_GPL (usb_mon_deregister);
3182
3183#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <asm/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34#include <linux/kcov.h>
  35
  36#include <linux/phy/phy.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/usb/otg.h>
  40
  41#include "usb.h"
  42#include "phy.h"
  43
  44
  45/*-------------------------------------------------------------------------*/
  46
  47/*
  48 * USB Host Controller Driver framework
  49 *
  50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  51 * HCD-specific behaviors/bugs.
  52 *
  53 * This does error checks, tracks devices and urbs, and delegates to a
  54 * "hc_driver" only for code (and data) that really needs to know about
  55 * hardware differences.  That includes root hub registers, i/o queues,
  56 * and so on ... but as little else as possible.
  57 *
  58 * Shared code includes most of the "root hub" code (these are emulated,
  59 * though each HC's hardware works differently) and PCI glue, plus request
  60 * tracking overhead.  The HCD code should only block on spinlocks or on
  61 * hardware handshaking; blocking on software events (such as other kernel
  62 * threads releasing resources, or completing actions) is all generic.
  63 *
  64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  66 * only by the hub driver ... and that neither should be seen or used by
  67 * usb client device drivers.
  68 *
  69 * Contributors of ideas or unattributed patches include: David Brownell,
  70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  71 *
  72 * HISTORY:
  73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  76 */
  77
  78/*-------------------------------------------------------------------------*/
  79
  80/* Keep track of which host controller drivers are loaded */
  81unsigned long usb_hcds_loaded;
  82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  83
  84/* host controllers we manage */
  85DEFINE_IDR (usb_bus_idr);
  86EXPORT_SYMBOL_GPL (usb_bus_idr);
  87
  88/* used when allocating bus numbers */
  89#define USB_MAXBUS		64
  90
  91/* used when updating list of hcds */
  92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  94
  95/* used for controlling access to virtual root hubs */
  96static DEFINE_SPINLOCK(hcd_root_hub_lock);
  97
  98/* used when updating an endpoint's URB list */
  99static DEFINE_SPINLOCK(hcd_urb_list_lock);
 100
 101/* used to protect against unlinking URBs after the device is gone */
 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 103
 104/* wait queue for synchronous unlinks */
 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 106
 107/*-------------------------------------------------------------------------*/
 108
 109/*
 110 * Sharable chunks of root hub code.
 111 */
 112
 113/*-------------------------------------------------------------------------*/
 114#define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
 115#define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
 116
 117/* usb 3.1 root hub device descriptor */
 118static const u8 usb31_rh_dev_descriptor[18] = {
 119	0x12,       /*  __u8  bLength; */
 120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 122
 123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 124	0x00,	    /*  __u8  bDeviceSubClass; */
 125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 127
 128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 131
 132	0x03,       /*  __u8  iManufacturer; */
 133	0x02,       /*  __u8  iProduct; */
 134	0x01,       /*  __u8  iSerialNumber; */
 135	0x01        /*  __u8  bNumConfigurations; */
 136};
 137
 138/* usb 3.0 root hub device descriptor */
 139static const u8 usb3_rh_dev_descriptor[18] = {
 140	0x12,       /*  __u8  bLength; */
 141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 143
 144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 145	0x00,	    /*  __u8  bDeviceSubClass; */
 146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 148
 149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 152
 153	0x03,       /*  __u8  iManufacturer; */
 154	0x02,       /*  __u8  iProduct; */
 155	0x01,       /*  __u8  iSerialNumber; */
 156	0x01        /*  __u8  bNumConfigurations; */
 157};
 158
 159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 160static const u8 usb25_rh_dev_descriptor[18] = {
 161	0x12,       /*  __u8  bLength; */
 162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 163	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 164
 165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 166	0x00,	    /*  __u8  bDeviceSubClass; */
 167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 168	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 169
 170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 173
 174	0x03,       /*  __u8  iManufacturer; */
 175	0x02,       /*  __u8  iProduct; */
 176	0x01,       /*  __u8  iSerialNumber; */
 177	0x01        /*  __u8  bNumConfigurations; */
 178};
 179
 180/* usb 2.0 root hub device descriptor */
 181static const u8 usb2_rh_dev_descriptor[18] = {
 182	0x12,       /*  __u8  bLength; */
 183	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 184	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 185
 186	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 187	0x00,	    /*  __u8  bDeviceSubClass; */
 188	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 189	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 190
 191	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 192	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 193	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 194
 195	0x03,       /*  __u8  iManufacturer; */
 196	0x02,       /*  __u8  iProduct; */
 197	0x01,       /*  __u8  iSerialNumber; */
 198	0x01        /*  __u8  bNumConfigurations; */
 199};
 200
 201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 202
 203/* usb 1.1 root hub device descriptor */
 204static const u8 usb11_rh_dev_descriptor[18] = {
 205	0x12,       /*  __u8  bLength; */
 206	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 207	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 208
 209	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 210	0x00,	    /*  __u8  bDeviceSubClass; */
 211	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 212	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 213
 214	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 215	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 216	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 217
 218	0x03,       /*  __u8  iManufacturer; */
 219	0x02,       /*  __u8  iProduct; */
 220	0x01,       /*  __u8  iSerialNumber; */
 221	0x01        /*  __u8  bNumConfigurations; */
 222};
 223
 224
 225/*-------------------------------------------------------------------------*/
 226
 227/* Configuration descriptors for our root hubs */
 228
 229static const u8 fs_rh_config_descriptor[] = {
 230
 231	/* one configuration */
 232	0x09,       /*  __u8  bLength; */
 233	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 234	0x19, 0x00, /*  __le16 wTotalLength; */
 235	0x01,       /*  __u8  bNumInterfaces; (1) */
 236	0x01,       /*  __u8  bConfigurationValue; */
 237	0x00,       /*  __u8  iConfiguration; */
 238	0xc0,       /*  __u8  bmAttributes;
 239				 Bit 7: must be set,
 240				     6: Self-powered,
 241				     5: Remote wakeup,
 242				     4..0: resvd */
 243	0x00,       /*  __u8  MaxPower; */
 244
 245	/* USB 1.1:
 246	 * USB 2.0, single TT organization (mandatory):
 247	 *	one interface, protocol 0
 248	 *
 249	 * USB 2.0, multiple TT organization (optional):
 250	 *	two interfaces, protocols 1 (like single TT)
 251	 *	and 2 (multiple TT mode) ... config is
 252	 *	sometimes settable
 253	 *	NOT IMPLEMENTED
 254	 */
 255
 256	/* one interface */
 257	0x09,       /*  __u8  if_bLength; */
 258	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 259	0x00,       /*  __u8  if_bInterfaceNumber; */
 260	0x00,       /*  __u8  if_bAlternateSetting; */
 261	0x01,       /*  __u8  if_bNumEndpoints; */
 262	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 263	0x00,       /*  __u8  if_bInterfaceSubClass; */
 264	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 265	0x00,       /*  __u8  if_iInterface; */
 266
 267	/* one endpoint (status change endpoint) */
 268	0x07,       /*  __u8  ep_bLength; */
 269	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 270	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 271	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 272	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 273	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 274};
 275
 276static const u8 hs_rh_config_descriptor[] = {
 277
 278	/* one configuration */
 279	0x09,       /*  __u8  bLength; */
 280	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 281	0x19, 0x00, /*  __le16 wTotalLength; */
 282	0x01,       /*  __u8  bNumInterfaces; (1) */
 283	0x01,       /*  __u8  bConfigurationValue; */
 284	0x00,       /*  __u8  iConfiguration; */
 285	0xc0,       /*  __u8  bmAttributes;
 286				 Bit 7: must be set,
 287				     6: Self-powered,
 288				     5: Remote wakeup,
 289				     4..0: resvd */
 290	0x00,       /*  __u8  MaxPower; */
 291
 292	/* USB 1.1:
 293	 * USB 2.0, single TT organization (mandatory):
 294	 *	one interface, protocol 0
 295	 *
 296	 * USB 2.0, multiple TT organization (optional):
 297	 *	two interfaces, protocols 1 (like single TT)
 298	 *	and 2 (multiple TT mode) ... config is
 299	 *	sometimes settable
 300	 *	NOT IMPLEMENTED
 301	 */
 302
 303	/* one interface */
 304	0x09,       /*  __u8  if_bLength; */
 305	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 306	0x00,       /*  __u8  if_bInterfaceNumber; */
 307	0x00,       /*  __u8  if_bAlternateSetting; */
 308	0x01,       /*  __u8  if_bNumEndpoints; */
 309	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 310	0x00,       /*  __u8  if_bInterfaceSubClass; */
 311	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 312	0x00,       /*  __u8  if_iInterface; */
 313
 314	/* one endpoint (status change endpoint) */
 315	0x07,       /*  __u8  ep_bLength; */
 316	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 317	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 318	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 319		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 320		     * see hub.c:hub_configure() for details. */
 321	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 322	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 323};
 324
 325static const u8 ss_rh_config_descriptor[] = {
 326	/* one configuration */
 327	0x09,       /*  __u8  bLength; */
 328	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 329	0x1f, 0x00, /*  __le16 wTotalLength; */
 330	0x01,       /*  __u8  bNumInterfaces; (1) */
 331	0x01,       /*  __u8  bConfigurationValue; */
 332	0x00,       /*  __u8  iConfiguration; */
 333	0xc0,       /*  __u8  bmAttributes;
 334				 Bit 7: must be set,
 335				     6: Self-powered,
 336				     5: Remote wakeup,
 337				     4..0: resvd */
 338	0x00,       /*  __u8  MaxPower; */
 339
 340	/* one interface */
 341	0x09,       /*  __u8  if_bLength; */
 342	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 343	0x00,       /*  __u8  if_bInterfaceNumber; */
 344	0x00,       /*  __u8  if_bAlternateSetting; */
 345	0x01,       /*  __u8  if_bNumEndpoints; */
 346	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 347	0x00,       /*  __u8  if_bInterfaceSubClass; */
 348	0x00,       /*  __u8  if_bInterfaceProtocol; */
 349	0x00,       /*  __u8  if_iInterface; */
 350
 351	/* one endpoint (status change endpoint) */
 352	0x07,       /*  __u8  ep_bLength; */
 353	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 354	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 355	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 356		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 357		     * see hub.c:hub_configure() for details. */
 358	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 359	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 360
 361	/* one SuperSpeed endpoint companion descriptor */
 362	0x06,        /* __u8 ss_bLength */
 363	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 364		     /* Companion */
 365	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 366	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 367	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 368};
 369
 370/* authorized_default behaviour:
 371 * -1 is authorized for all devices except wireless (old behaviour)
 372 * 0 is unauthorized for all devices
 373 * 1 is authorized for all devices
 374 * 2 is authorized for internal devices
 375 */
 376#define USB_AUTHORIZE_WIRED	-1
 377#define USB_AUTHORIZE_NONE	0
 378#define USB_AUTHORIZE_ALL	1
 379#define USB_AUTHORIZE_INTERNAL	2
 380
 381static int authorized_default = USB_AUTHORIZE_WIRED;
 382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 383MODULE_PARM_DESC(authorized_default,
 384		"Default USB device authorization: 0 is not authorized, 1 is "
 385		"authorized, 2 is authorized for internal devices, -1 is "
 386		"authorized except for wireless USB (default, old behaviour)");
 387/*-------------------------------------------------------------------------*/
 388
 389/**
 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 393 * @len: Length (in bytes; may be odd) of descriptor buffer.
 394 *
 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 396 * whichever is less.
 397 *
 398 * Note:
 399 * USB String descriptors can contain at most 126 characters; input
 400 * strings longer than that are truncated.
 401 */
 402static unsigned
 403ascii2desc(char const *s, u8 *buf, unsigned len)
 404{
 405	unsigned n, t = 2 + 2*strlen(s);
 406
 407	if (t > 254)
 408		t = 254;	/* Longest possible UTF string descriptor */
 409	if (len > t)
 410		len = t;
 411
 412	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 413
 414	n = len;
 415	while (n--) {
 416		*buf++ = t;
 417		if (!n--)
 418			break;
 419		*buf++ = t >> 8;
 420		t = (unsigned char)*s++;
 421	}
 422	return len;
 423}
 424
 425/**
 426 * rh_string() - provides string descriptors for root hub
 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 428 * @hcd: the host controller for this root hub
 429 * @data: buffer for output packet
 430 * @len: length of the provided buffer
 431 *
 432 * Produces either a manufacturer, product or serial number string for the
 433 * virtual root hub device.
 434 *
 435 * Return: The number of bytes filled in: the length of the descriptor or
 436 * of the provided buffer, whichever is less.
 437 */
 438static unsigned
 439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 440{
 441	char buf[100];
 442	char const *s;
 443	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 444
 445	/* language ids */
 446	switch (id) {
 447	case 0:
 448		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 449		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 450		if (len > 4)
 451			len = 4;
 452		memcpy(data, langids, len);
 453		return len;
 454	case 1:
 455		/* Serial number */
 456		s = hcd->self.bus_name;
 457		break;
 458	case 2:
 459		/* Product name */
 460		s = hcd->product_desc;
 461		break;
 462	case 3:
 463		/* Manufacturer */
 464		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 465			init_utsname()->release, hcd->driver->description);
 466		s = buf;
 467		break;
 468	default:
 469		/* Can't happen; caller guarantees it */
 470		return 0;
 471	}
 472
 473	return ascii2desc(s, data, len);
 474}
 475
 476
 477/* Root hub control transfers execute synchronously */
 478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 479{
 480	struct usb_ctrlrequest *cmd;
 481	u16		typeReq, wValue, wIndex, wLength;
 482	u8		*ubuf = urb->transfer_buffer;
 483	unsigned	len = 0;
 484	int		status;
 485	u8		patch_wakeup = 0;
 486	u8		patch_protocol = 0;
 487	u16		tbuf_size;
 488	u8		*tbuf = NULL;
 489	const u8	*bufp;
 490
 491	might_sleep();
 492
 493	spin_lock_irq(&hcd_root_hub_lock);
 494	status = usb_hcd_link_urb_to_ep(hcd, urb);
 495	spin_unlock_irq(&hcd_root_hub_lock);
 496	if (status)
 497		return status;
 498	urb->hcpriv = hcd;	/* Indicate it's queued */
 499
 500	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 501	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 502	wValue   = le16_to_cpu (cmd->wValue);
 503	wIndex   = le16_to_cpu (cmd->wIndex);
 504	wLength  = le16_to_cpu (cmd->wLength);
 505
 506	if (wLength > urb->transfer_buffer_length)
 507		goto error;
 508
 509	/*
 510	 * tbuf should be at least as big as the
 511	 * USB hub descriptor.
 512	 */
 513	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 514	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 515	if (!tbuf) {
 516		status = -ENOMEM;
 517		goto err_alloc;
 518	}
 519
 520	bufp = tbuf;
 521
 522
 523	urb->actual_length = 0;
 524	switch (typeReq) {
 525
 526	/* DEVICE REQUESTS */
 527
 528	/* The root hub's remote wakeup enable bit is implemented using
 529	 * driver model wakeup flags.  If this system supports wakeup
 530	 * through USB, userspace may change the default "allow wakeup"
 531	 * policy through sysfs or these calls.
 532	 *
 533	 * Most root hubs support wakeup from downstream devices, for
 534	 * runtime power management (disabling USB clocks and reducing
 535	 * VBUS power usage).  However, not all of them do so; silicon,
 536	 * board, and BIOS bugs here are not uncommon, so these can't
 537	 * be treated quite like external hubs.
 538	 *
 539	 * Likewise, not all root hubs will pass wakeup events upstream,
 540	 * to wake up the whole system.  So don't assume root hub and
 541	 * controller capabilities are identical.
 542	 */
 543
 544	case DeviceRequest | USB_REQ_GET_STATUS:
 545		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 546					<< USB_DEVICE_REMOTE_WAKEUP)
 547				| (1 << USB_DEVICE_SELF_POWERED);
 548		tbuf[1] = 0;
 549		len = 2;
 550		break;
 551	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 552		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 553			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 554		else
 555			goto error;
 556		break;
 557	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 558		if (device_can_wakeup(&hcd->self.root_hub->dev)
 559				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 560			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 561		else
 562			goto error;
 563		break;
 564	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 565		tbuf[0] = 1;
 566		len = 1;
 567		fallthrough;
 568	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 569		break;
 570	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 571		switch (wValue & 0xff00) {
 572		case USB_DT_DEVICE << 8:
 573			switch (hcd->speed) {
 574			case HCD_USB32:
 575			case HCD_USB31:
 576				bufp = usb31_rh_dev_descriptor;
 577				break;
 578			case HCD_USB3:
 579				bufp = usb3_rh_dev_descriptor;
 580				break;
 581			case HCD_USB25:
 582				bufp = usb25_rh_dev_descriptor;
 583				break;
 584			case HCD_USB2:
 585				bufp = usb2_rh_dev_descriptor;
 586				break;
 587			case HCD_USB11:
 588				bufp = usb11_rh_dev_descriptor;
 589				break;
 590			default:
 591				goto error;
 592			}
 593			len = 18;
 594			if (hcd->has_tt)
 595				patch_protocol = 1;
 596			break;
 597		case USB_DT_CONFIG << 8:
 598			switch (hcd->speed) {
 599			case HCD_USB32:
 600			case HCD_USB31:
 601			case HCD_USB3:
 602				bufp = ss_rh_config_descriptor;
 603				len = sizeof ss_rh_config_descriptor;
 604				break;
 605			case HCD_USB25:
 606			case HCD_USB2:
 607				bufp = hs_rh_config_descriptor;
 608				len = sizeof hs_rh_config_descriptor;
 609				break;
 610			case HCD_USB11:
 611				bufp = fs_rh_config_descriptor;
 612				len = sizeof fs_rh_config_descriptor;
 613				break;
 614			default:
 615				goto error;
 616			}
 617			if (device_can_wakeup(&hcd->self.root_hub->dev))
 618				patch_wakeup = 1;
 619			break;
 620		case USB_DT_STRING << 8:
 621			if ((wValue & 0xff) < 4)
 622				urb->actual_length = rh_string(wValue & 0xff,
 623						hcd, ubuf, wLength);
 624			else /* unsupported IDs --> "protocol stall" */
 625				goto error;
 626			break;
 627		case USB_DT_BOS << 8:
 628			goto nongeneric;
 629		default:
 630			goto error;
 631		}
 632		break;
 633	case DeviceRequest | USB_REQ_GET_INTERFACE:
 634		tbuf[0] = 0;
 635		len = 1;
 636		fallthrough;
 637	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 638		break;
 639	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 640		/* wValue == urb->dev->devaddr */
 641		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 642			wValue);
 643		break;
 644
 645	/* INTERFACE REQUESTS (no defined feature/status flags) */
 646
 647	/* ENDPOINT REQUESTS */
 648
 649	case EndpointRequest | USB_REQ_GET_STATUS:
 650		/* ENDPOINT_HALT flag */
 651		tbuf[0] = 0;
 652		tbuf[1] = 0;
 653		len = 2;
 654		fallthrough;
 655	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 656	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 657		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 658		break;
 659
 660	/* CLASS REQUESTS (and errors) */
 661
 662	default:
 663nongeneric:
 664		/* non-generic request */
 665		switch (typeReq) {
 666		case GetHubStatus:
 667			len = 4;
 668			break;
 669		case GetPortStatus:
 670			if (wValue == HUB_PORT_STATUS)
 671				len = 4;
 672			else
 673				/* other port status types return 8 bytes */
 674				len = 8;
 675			break;
 676		case GetHubDescriptor:
 677			len = sizeof (struct usb_hub_descriptor);
 678			break;
 679		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 680			/* len is returned by hub_control */
 681			break;
 682		}
 683		status = hcd->driver->hub_control (hcd,
 684			typeReq, wValue, wIndex,
 685			tbuf, wLength);
 686
 687		if (typeReq == GetHubDescriptor)
 688			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 689				(struct usb_hub_descriptor *)tbuf);
 690		break;
 691error:
 692		/* "protocol stall" on error */
 693		status = -EPIPE;
 694	}
 695
 696	if (status < 0) {
 697		len = 0;
 698		if (status != -EPIPE) {
 699			dev_dbg (hcd->self.controller,
 700				"CTRL: TypeReq=0x%x val=0x%x "
 701				"idx=0x%x len=%d ==> %d\n",
 702				typeReq, wValue, wIndex,
 703				wLength, status);
 704		}
 705	} else if (status > 0) {
 706		/* hub_control may return the length of data copied. */
 707		len = status;
 708		status = 0;
 709	}
 710	if (len) {
 711		if (urb->transfer_buffer_length < len)
 712			len = urb->transfer_buffer_length;
 713		urb->actual_length = len;
 714		/* always USB_DIR_IN, toward host */
 715		memcpy (ubuf, bufp, len);
 716
 717		/* report whether RH hardware supports remote wakeup */
 718		if (patch_wakeup &&
 719				len > offsetof (struct usb_config_descriptor,
 720						bmAttributes))
 721			((struct usb_config_descriptor *)ubuf)->bmAttributes
 722				|= USB_CONFIG_ATT_WAKEUP;
 723
 724		/* report whether RH hardware has an integrated TT */
 725		if (patch_protocol &&
 726				len > offsetof(struct usb_device_descriptor,
 727						bDeviceProtocol))
 728			((struct usb_device_descriptor *) ubuf)->
 729				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 730	}
 731
 732	kfree(tbuf);
 733 err_alloc:
 734
 735	/* any errors get returned through the urb completion */
 736	spin_lock_irq(&hcd_root_hub_lock);
 737	usb_hcd_unlink_urb_from_ep(hcd, urb);
 738	usb_hcd_giveback_urb(hcd, urb, status);
 739	spin_unlock_irq(&hcd_root_hub_lock);
 740	return 0;
 741}
 742
 743/*-------------------------------------------------------------------------*/
 744
 745/*
 746 * Root Hub interrupt transfers are polled using a timer if the
 747 * driver requests it; otherwise the driver is responsible for
 748 * calling usb_hcd_poll_rh_status() when an event occurs.
 749 *
 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
 751 */
 752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 753{
 754	struct urb	*urb;
 755	int		length;
 
 756	unsigned long	flags;
 757	char		buffer[6];	/* Any root hubs with > 31 ports? */
 758
 759	if (unlikely(!hcd->rh_pollable))
 760		return;
 761	if (!hcd->uses_new_polling && !hcd->status_urb)
 762		return;
 763
 764	length = hcd->driver->hub_status_data(hcd, buffer);
 765	if (length > 0) {
 766
 767		/* try to complete the status urb */
 768		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 769		urb = hcd->status_urb;
 770		if (urb) {
 771			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 772			hcd->status_urb = NULL;
 
 
 
 
 
 
 773			urb->actual_length = length;
 774			memcpy(urb->transfer_buffer, buffer, length);
 775
 776			usb_hcd_unlink_urb_from_ep(hcd, urb);
 777			usb_hcd_giveback_urb(hcd, urb, 0);
 778		} else {
 779			length = 0;
 780			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 781		}
 782		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 783	}
 784
 785	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 786	 * exceed that limit if HZ is 100. The math is more clunky than
 787	 * maybe expected, this is to make sure that all timers for USB devices
 788	 * fire at the same time to give the CPU a break in between */
 789	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 790			(length == 0 && hcd->status_urb != NULL))
 791		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 792}
 793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 794
 795/* timer callback */
 796static void rh_timer_func (struct timer_list *t)
 797{
 798	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 799
 800	usb_hcd_poll_rh_status(_hcd);
 801}
 802
 803/*-------------------------------------------------------------------------*/
 804
 805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 806{
 807	int		retval;
 808	unsigned long	flags;
 809	unsigned	len = 1 + (urb->dev->maxchild / 8);
 810
 811	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 812	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 813		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 814		retval = -EINVAL;
 815		goto done;
 816	}
 817
 818	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 819	if (retval)
 820		goto done;
 821
 822	hcd->status_urb = urb;
 823	urb->hcpriv = hcd;	/* indicate it's queued */
 824	if (!hcd->uses_new_polling)
 825		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 826
 827	/* If a status change has already occurred, report it ASAP */
 828	else if (HCD_POLL_PENDING(hcd))
 829		mod_timer(&hcd->rh_timer, jiffies);
 830	retval = 0;
 831 done:
 832	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 833	return retval;
 834}
 835
 836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 837{
 838	if (usb_endpoint_xfer_int(&urb->ep->desc))
 839		return rh_queue_status (hcd, urb);
 840	if (usb_endpoint_xfer_control(&urb->ep->desc))
 841		return rh_call_control (hcd, urb);
 842	return -EINVAL;
 843}
 844
 845/*-------------------------------------------------------------------------*/
 846
 847/* Unlinks of root-hub control URBs are legal, but they don't do anything
 848 * since these URBs always execute synchronously.
 849 */
 850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 851{
 852	unsigned long	flags;
 853	int		rc;
 854
 855	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 856	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 857	if (rc)
 858		goto done;
 859
 860	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 861		;	/* Do nothing */
 862
 863	} else {				/* Status URB */
 864		if (!hcd->uses_new_polling)
 865			del_timer (&hcd->rh_timer);
 866		if (urb == hcd->status_urb) {
 867			hcd->status_urb = NULL;
 868			usb_hcd_unlink_urb_from_ep(hcd, urb);
 869			usb_hcd_giveback_urb(hcd, urb, status);
 870		}
 871	}
 872 done:
 873	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 874	return rc;
 875}
 876
 877
 878/*-------------------------------------------------------------------------*/
 879
 880/**
 881 * usb_bus_init - shared initialization code
 882 * @bus: the bus structure being initialized
 883 *
 884 * This code is used to initialize a usb_bus structure, memory for which is
 885 * separately managed.
 886 */
 887static void usb_bus_init (struct usb_bus *bus)
 888{
 889	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 890
 891	bus->devnum_next = 1;
 892
 893	bus->root_hub = NULL;
 894	bus->busnum = -1;
 895	bus->bandwidth_allocated = 0;
 896	bus->bandwidth_int_reqs  = 0;
 897	bus->bandwidth_isoc_reqs = 0;
 898	mutex_init(&bus->devnum_next_mutex);
 899}
 900
 901/*-------------------------------------------------------------------------*/
 902
 903/**
 904 * usb_register_bus - registers the USB host controller with the usb core
 905 * @bus: pointer to the bus to register
 906 *
 907 * Context: task context, might sleep.
 908 *
 909 * Assigns a bus number, and links the controller into usbcore data
 910 * structures so that it can be seen by scanning the bus list.
 911 *
 912 * Return: 0 if successful. A negative error code otherwise.
 913 */
 914static int usb_register_bus(struct usb_bus *bus)
 915{
 916	int result = -E2BIG;
 917	int busnum;
 918
 919	mutex_lock(&usb_bus_idr_lock);
 920	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 921	if (busnum < 0) {
 922		pr_err("%s: failed to get bus number\n", usbcore_name);
 923		goto error_find_busnum;
 924	}
 925	bus->busnum = busnum;
 926	mutex_unlock(&usb_bus_idr_lock);
 927
 928	usb_notify_add_bus(bus);
 929
 930	dev_info (bus->controller, "new USB bus registered, assigned bus "
 931		  "number %d\n", bus->busnum);
 932	return 0;
 933
 934error_find_busnum:
 935	mutex_unlock(&usb_bus_idr_lock);
 936	return result;
 937}
 938
 939/**
 940 * usb_deregister_bus - deregisters the USB host controller
 941 * @bus: pointer to the bus to deregister
 942 *
 943 * Context: task context, might sleep.
 944 *
 945 * Recycles the bus number, and unlinks the controller from usbcore data
 946 * structures so that it won't be seen by scanning the bus list.
 947 */
 948static void usb_deregister_bus (struct usb_bus *bus)
 949{
 950	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 951
 952	/*
 953	 * NOTE: make sure that all the devices are removed by the
 954	 * controller code, as well as having it call this when cleaning
 955	 * itself up
 956	 */
 957	mutex_lock(&usb_bus_idr_lock);
 958	idr_remove(&usb_bus_idr, bus->busnum);
 959	mutex_unlock(&usb_bus_idr_lock);
 960
 961	usb_notify_remove_bus(bus);
 962}
 963
 964/**
 965 * register_root_hub - called by usb_add_hcd() to register a root hub
 966 * @hcd: host controller for this root hub
 967 *
 968 * This function registers the root hub with the USB subsystem.  It sets up
 969 * the device properly in the device tree and then calls usb_new_device()
 970 * to register the usb device.  It also assigns the root hub's USB address
 971 * (always 1).
 972 *
 973 * Return: 0 if successful. A negative error code otherwise.
 974 */
 975static int register_root_hub(struct usb_hcd *hcd)
 976{
 977	struct device *parent_dev = hcd->self.controller;
 978	struct usb_device *usb_dev = hcd->self.root_hub;
 
 979	const int devnum = 1;
 980	int retval;
 981
 982	usb_dev->devnum = devnum;
 983	usb_dev->bus->devnum_next = devnum + 1;
 984	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 985	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 986
 987	mutex_lock(&usb_bus_idr_lock);
 988
 989	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 990	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 991	if (retval != sizeof usb_dev->descriptor) {
 
 992		mutex_unlock(&usb_bus_idr_lock);
 993		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 994				dev_name(&usb_dev->dev), retval);
 995		return (retval < 0) ? retval : -EMSGSIZE;
 996	}
 
 
 997
 998	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 999		retval = usb_get_bos_descriptor(usb_dev);
1000		if (!retval) {
1001			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1002		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1003			mutex_unlock(&usb_bus_idr_lock);
1004			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005					dev_name(&usb_dev->dev), retval);
1006			return retval;
1007		}
1008	}
1009
1010	retval = usb_new_device (usb_dev);
1011	if (retval) {
1012		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013				dev_name(&usb_dev->dev), retval);
1014	} else {
1015		spin_lock_irq (&hcd_root_hub_lock);
1016		hcd->rh_registered = 1;
1017		spin_unlock_irq (&hcd_root_hub_lock);
1018
1019		/* Did the HC die before the root hub was registered? */
1020		if (HCD_DEAD(hcd))
1021			usb_hc_died (hcd);	/* This time clean up */
1022	}
1023	mutex_unlock(&usb_bus_idr_lock);
1024
1025	return retval;
1026}
1027
1028/*
1029 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1030 * @bus: the bus which the root hub belongs to
1031 * @portnum: the port which is being resumed
1032 *
1033 * HCDs should call this function when they know that a resume signal is
1034 * being sent to a root-hub port.  The root hub will be prevented from
1035 * going into autosuspend until usb_hcd_end_port_resume() is called.
1036 *
1037 * The bus's private lock must be held by the caller.
1038 */
1039void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1040{
1041	unsigned bit = 1 << portnum;
1042
1043	if (!(bus->resuming_ports & bit)) {
1044		bus->resuming_ports |= bit;
1045		pm_runtime_get_noresume(&bus->root_hub->dev);
1046	}
1047}
1048EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1049
1050/*
1051 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1052 * @bus: the bus which the root hub belongs to
1053 * @portnum: the port which is being resumed
1054 *
1055 * HCDs should call this function when they know that a resume signal has
1056 * stopped being sent to a root-hub port.  The root hub will be allowed to
1057 * autosuspend again.
1058 *
1059 * The bus's private lock must be held by the caller.
1060 */
1061void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1062{
1063	unsigned bit = 1 << portnum;
1064
1065	if (bus->resuming_ports & bit) {
1066		bus->resuming_ports &= ~bit;
1067		pm_runtime_put_noidle(&bus->root_hub->dev);
1068	}
1069}
1070EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1071
1072/*-------------------------------------------------------------------------*/
1073
1074/**
1075 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1076 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1077 * @is_input: true iff the transaction sends data to the host
1078 * @isoc: true for isochronous transactions, false for interrupt ones
1079 * @bytecount: how many bytes in the transaction.
1080 *
1081 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1082 *
1083 * Note:
1084 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1085 * scheduled in software, this function is only used for such scheduling.
1086 */
1087long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1088{
1089	unsigned long	tmp;
1090
1091	switch (speed) {
1092	case USB_SPEED_LOW: 	/* INTR only */
1093		if (is_input) {
1094			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1095			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1096		} else {
1097			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1099		}
1100	case USB_SPEED_FULL:	/* ISOC or INTR */
1101		if (isoc) {
1102			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1103			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1104		} else {
1105			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106			return 9107L + BW_HOST_DELAY + tmp;
1107		}
1108	case USB_SPEED_HIGH:	/* ISOC or INTR */
1109		/* FIXME adjust for input vs output */
1110		if (isoc)
1111			tmp = HS_NSECS_ISO (bytecount);
1112		else
1113			tmp = HS_NSECS (bytecount);
1114		return tmp;
1115	default:
1116		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1117		return -1;
1118	}
1119}
1120EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1121
1122
1123/*-------------------------------------------------------------------------*/
1124
1125/*
1126 * Generic HC operations.
1127 */
1128
1129/*-------------------------------------------------------------------------*/
1130
1131/**
1132 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1133 * @hcd: host controller to which @urb was submitted
1134 * @urb: URB being submitted
1135 *
1136 * Host controller drivers should call this routine in their enqueue()
1137 * method.  The HCD's private spinlock must be held and interrupts must
1138 * be disabled.  The actions carried out here are required for URB
1139 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1140 *
1141 * Return: 0 for no error, otherwise a negative error code (in which case
1142 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1143 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1144 * the private spinlock and returning.
1145 */
1146int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1147{
1148	int		rc = 0;
1149
1150	spin_lock(&hcd_urb_list_lock);
1151
1152	/* Check that the URB isn't being killed */
1153	if (unlikely(atomic_read(&urb->reject))) {
1154		rc = -EPERM;
1155		goto done;
1156	}
1157
1158	if (unlikely(!urb->ep->enabled)) {
1159		rc = -ENOENT;
1160		goto done;
1161	}
1162
1163	if (unlikely(!urb->dev->can_submit)) {
1164		rc = -EHOSTUNREACH;
1165		goto done;
1166	}
1167
1168	/*
1169	 * Check the host controller's state and add the URB to the
1170	 * endpoint's queue.
1171	 */
1172	if (HCD_RH_RUNNING(hcd)) {
1173		urb->unlinked = 0;
1174		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1175	} else {
1176		rc = -ESHUTDOWN;
1177		goto done;
1178	}
1179 done:
1180	spin_unlock(&hcd_urb_list_lock);
1181	return rc;
1182}
1183EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1184
1185/**
1186 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1187 * @hcd: host controller to which @urb was submitted
1188 * @urb: URB being checked for unlinkability
1189 * @status: error code to store in @urb if the unlink succeeds
1190 *
1191 * Host controller drivers should call this routine in their dequeue()
1192 * method.  The HCD's private spinlock must be held and interrupts must
1193 * be disabled.  The actions carried out here are required for making
1194 * sure than an unlink is valid.
1195 *
1196 * Return: 0 for no error, otherwise a negative error code (in which case
1197 * the dequeue() method must fail).  The possible error codes are:
1198 *
1199 *	-EIDRM: @urb was not submitted or has already completed.
1200 *		The completion function may not have been called yet.
1201 *
1202 *	-EBUSY: @urb has already been unlinked.
1203 */
1204int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1205		int status)
1206{
1207	struct list_head	*tmp;
1208
1209	/* insist the urb is still queued */
1210	list_for_each(tmp, &urb->ep->urb_list) {
1211		if (tmp == &urb->urb_list)
1212			break;
1213	}
1214	if (tmp != &urb->urb_list)
1215		return -EIDRM;
1216
1217	/* Any status except -EINPROGRESS means something already started to
1218	 * unlink this URB from the hardware.  So there's no more work to do.
1219	 */
1220	if (urb->unlinked)
1221		return -EBUSY;
1222	urb->unlinked = status;
1223	return 0;
1224}
1225EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1226
1227/**
1228 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1229 * @hcd: host controller to which @urb was submitted
1230 * @urb: URB being unlinked
1231 *
1232 * Host controller drivers should call this routine before calling
1233 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1234 * interrupts must be disabled.  The actions carried out here are required
1235 * for URB completion.
1236 */
1237void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1238{
1239	/* clear all state linking urb to this dev (and hcd) */
1240	spin_lock(&hcd_urb_list_lock);
1241	list_del_init(&urb->urb_list);
1242	spin_unlock(&hcd_urb_list_lock);
1243}
1244EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1245
1246/*
1247 * Some usb host controllers can only perform dma using a small SRAM area.
 
1248 * The usb core itself is however optimized for host controllers that can dma
1249 * using regular system memory - like pci devices doing bus mastering.
1250 *
1251 * To support host controllers with limited dma capabilities we provide dma
1252 * bounce buffers. This feature can be enabled by initializing
1253 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1254 *
1255 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1256 * data for dma using the genalloc API.
1257 *
1258 * So, to summarize...
1259 *
1260 * - We need "local" memory, canonical example being
1261 *   a small SRAM on a discrete controller being the
1262 *   only memory that the controller can read ...
1263 *   (a) "normal" kernel memory is no good, and
1264 *   (b) there's not enough to share
1265 *
1266 * - So we use that, even though the primary requirement
1267 *   is that the memory be "local" (hence addressable
1268 *   by that device), not "coherent".
1269 *
1270 */
1271
1272static int hcd_alloc_coherent(struct usb_bus *bus,
1273			      gfp_t mem_flags, dma_addr_t *dma_handle,
1274			      void **vaddr_handle, size_t size,
1275			      enum dma_data_direction dir)
1276{
1277	unsigned char *vaddr;
1278
1279	if (*vaddr_handle == NULL) {
1280		WARN_ON_ONCE(1);
1281		return -EFAULT;
1282	}
1283
1284	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1285				 mem_flags, dma_handle);
1286	if (!vaddr)
1287		return -ENOMEM;
1288
1289	/*
1290	 * Store the virtual address of the buffer at the end
1291	 * of the allocated dma buffer. The size of the buffer
1292	 * may be uneven so use unaligned functions instead
1293	 * of just rounding up. It makes sense to optimize for
1294	 * memory footprint over access speed since the amount
1295	 * of memory available for dma may be limited.
1296	 */
1297	put_unaligned((unsigned long)*vaddr_handle,
1298		      (unsigned long *)(vaddr + size));
1299
1300	if (dir == DMA_TO_DEVICE)
1301		memcpy(vaddr, *vaddr_handle, size);
1302
1303	*vaddr_handle = vaddr;
1304	return 0;
1305}
1306
1307static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1308			      void **vaddr_handle, size_t size,
1309			      enum dma_data_direction dir)
1310{
1311	unsigned char *vaddr = *vaddr_handle;
1312
1313	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1314
1315	if (dir == DMA_FROM_DEVICE)
1316		memcpy(vaddr, *vaddr_handle, size);
1317
1318	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1319
1320	*vaddr_handle = vaddr;
1321	*dma_handle = 0;
1322}
1323
1324void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1325{
1326	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1327	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1328		dma_unmap_single(hcd->self.sysdev,
1329				urb->setup_dma,
1330				sizeof(struct usb_ctrlrequest),
1331				DMA_TO_DEVICE);
1332	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1333		hcd_free_coherent(urb->dev->bus,
1334				&urb->setup_dma,
1335				(void **) &urb->setup_packet,
1336				sizeof(struct usb_ctrlrequest),
1337				DMA_TO_DEVICE);
1338
1339	/* Make it safe to call this routine more than once */
1340	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1341}
1342EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1343
1344static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1345{
1346	if (hcd->driver->unmap_urb_for_dma)
1347		hcd->driver->unmap_urb_for_dma(hcd, urb);
1348	else
1349		usb_hcd_unmap_urb_for_dma(hcd, urb);
1350}
1351
1352void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353{
1354	enum dma_data_direction dir;
1355
1356	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1357
1358	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1359	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360	    (urb->transfer_flags & URB_DMA_MAP_SG))
1361		dma_unmap_sg(hcd->self.sysdev,
1362				urb->sg,
1363				urb->num_sgs,
1364				dir);
1365	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1367		dma_unmap_page(hcd->self.sysdev,
1368				urb->transfer_dma,
1369				urb->transfer_buffer_length,
1370				dir);
1371	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1373		dma_unmap_single(hcd->self.sysdev,
1374				urb->transfer_dma,
1375				urb->transfer_buffer_length,
1376				dir);
1377	else if (urb->transfer_flags & URB_MAP_LOCAL)
1378		hcd_free_coherent(urb->dev->bus,
1379				&urb->transfer_dma,
1380				&urb->transfer_buffer,
1381				urb->transfer_buffer_length,
1382				dir);
1383
1384	/* Make it safe to call this routine more than once */
1385	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1386			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1387}
1388EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1389
1390static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1391			   gfp_t mem_flags)
1392{
1393	if (hcd->driver->map_urb_for_dma)
1394		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1395	else
1396		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1397}
1398
1399int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1400			    gfp_t mem_flags)
1401{
1402	enum dma_data_direction dir;
1403	int ret = 0;
1404
1405	/* Map the URB's buffers for DMA access.
1406	 * Lower level HCD code should use *_dma exclusively,
1407	 * unless it uses pio or talks to another transport,
1408	 * or uses the provided scatter gather list for bulk.
1409	 */
1410
1411	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1412		if (hcd->self.uses_pio_for_control)
1413			return ret;
1414		if (hcd->localmem_pool) {
1415			ret = hcd_alloc_coherent(
1416					urb->dev->bus, mem_flags,
1417					&urb->setup_dma,
1418					(void **)&urb->setup_packet,
1419					sizeof(struct usb_ctrlrequest),
1420					DMA_TO_DEVICE);
1421			if (ret)
1422				return ret;
1423			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1424		} else if (hcd_uses_dma(hcd)) {
1425			if (object_is_on_stack(urb->setup_packet)) {
1426				WARN_ONCE(1, "setup packet is on stack\n");
1427				return -EAGAIN;
1428			}
1429
1430			urb->setup_dma = dma_map_single(
1431					hcd->self.sysdev,
1432					urb->setup_packet,
1433					sizeof(struct usb_ctrlrequest),
1434					DMA_TO_DEVICE);
1435			if (dma_mapping_error(hcd->self.sysdev,
1436						urb->setup_dma))
1437				return -EAGAIN;
1438			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1439		}
1440	}
1441
1442	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443	if (urb->transfer_buffer_length != 0
1444	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445		if (hcd->localmem_pool) {
1446			ret = hcd_alloc_coherent(
1447					urb->dev->bus, mem_flags,
1448					&urb->transfer_dma,
1449					&urb->transfer_buffer,
1450					urb->transfer_buffer_length,
1451					dir);
1452			if (ret == 0)
1453				urb->transfer_flags |= URB_MAP_LOCAL;
1454		} else if (hcd_uses_dma(hcd)) {
1455			if (urb->num_sgs) {
1456				int n;
1457
1458				/* We don't support sg for isoc transfers ! */
1459				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1460					WARN_ON(1);
1461					return -EINVAL;
1462				}
1463
1464				n = dma_map_sg(
1465						hcd->self.sysdev,
1466						urb->sg,
1467						urb->num_sgs,
1468						dir);
1469				if (n <= 0)
1470					ret = -EAGAIN;
1471				else
1472					urb->transfer_flags |= URB_DMA_MAP_SG;
1473				urb->num_mapped_sgs = n;
1474				if (n != urb->num_sgs)
1475					urb->transfer_flags |=
1476							URB_DMA_SG_COMBINED;
1477			} else if (urb->sg) {
1478				struct scatterlist *sg = urb->sg;
1479				urb->transfer_dma = dma_map_page(
1480						hcd->self.sysdev,
1481						sg_page(sg),
1482						sg->offset,
1483						urb->transfer_buffer_length,
1484						dir);
1485				if (dma_mapping_error(hcd->self.sysdev,
1486						urb->transfer_dma))
1487					ret = -EAGAIN;
1488				else
1489					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1490			} else if (object_is_on_stack(urb->transfer_buffer)) {
1491				WARN_ONCE(1, "transfer buffer is on stack\n");
1492				ret = -EAGAIN;
1493			} else {
1494				urb->transfer_dma = dma_map_single(
1495						hcd->self.sysdev,
1496						urb->transfer_buffer,
1497						urb->transfer_buffer_length,
1498						dir);
1499				if (dma_mapping_error(hcd->self.sysdev,
1500						urb->transfer_dma))
1501					ret = -EAGAIN;
1502				else
1503					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1504			}
1505		}
1506		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1507				URB_SETUP_MAP_LOCAL)))
1508			usb_hcd_unmap_urb_for_dma(hcd, urb);
1509	}
1510	return ret;
1511}
1512EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1513
1514/*-------------------------------------------------------------------------*/
1515
1516/* may be called in any context with a valid urb->dev usecount
1517 * caller surrenders "ownership" of urb
1518 * expects usb_submit_urb() to have sanity checked and conditioned all
1519 * inputs in the urb
1520 */
1521int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1522{
1523	int			status;
1524	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1525
1526	/* increment urb's reference count as part of giving it to the HCD
1527	 * (which will control it).  HCD guarantees that it either returns
1528	 * an error or calls giveback(), but not both.
1529	 */
1530	usb_get_urb(urb);
1531	atomic_inc(&urb->use_count);
1532	atomic_inc(&urb->dev->urbnum);
1533	usbmon_urb_submit(&hcd->self, urb);
1534
1535	/* NOTE requirements on root-hub callers (usbfs and the hub
1536	 * driver, for now):  URBs' urb->transfer_buffer must be
1537	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1538	 * they could clobber root hub response data.  Also, control
1539	 * URBs must be submitted in process context with interrupts
1540	 * enabled.
1541	 */
1542
1543	if (is_root_hub(urb->dev)) {
1544		status = rh_urb_enqueue(hcd, urb);
1545	} else {
1546		status = map_urb_for_dma(hcd, urb, mem_flags);
1547		if (likely(status == 0)) {
1548			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1549			if (unlikely(status))
1550				unmap_urb_for_dma(hcd, urb);
1551		}
1552	}
1553
1554	if (unlikely(status)) {
1555		usbmon_urb_submit_error(&hcd->self, urb, status);
1556		urb->hcpriv = NULL;
1557		INIT_LIST_HEAD(&urb->urb_list);
1558		atomic_dec(&urb->use_count);
 
 
 
 
 
 
 
1559		atomic_dec(&urb->dev->urbnum);
1560		if (atomic_read(&urb->reject))
1561			wake_up(&usb_kill_urb_queue);
1562		usb_put_urb(urb);
1563	}
1564	return status;
1565}
1566
1567/*-------------------------------------------------------------------------*/
1568
1569/* this makes the hcd giveback() the urb more quickly, by kicking it
1570 * off hardware queues (which may take a while) and returning it as
1571 * soon as practical.  we've already set up the urb's return status,
1572 * but we can't know if the callback completed already.
1573 */
1574static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1575{
1576	int		value;
1577
1578	if (is_root_hub(urb->dev))
1579		value = usb_rh_urb_dequeue(hcd, urb, status);
1580	else {
1581
1582		/* The only reason an HCD might fail this call is if
1583		 * it has not yet fully queued the urb to begin with.
1584		 * Such failures should be harmless. */
1585		value = hcd->driver->urb_dequeue(hcd, urb, status);
1586	}
1587	return value;
1588}
1589
1590/*
1591 * called in any context
1592 *
1593 * caller guarantees urb won't be recycled till both unlink()
1594 * and the urb's completion function return
1595 */
1596int usb_hcd_unlink_urb (struct urb *urb, int status)
1597{
1598	struct usb_hcd		*hcd;
1599	struct usb_device	*udev = urb->dev;
1600	int			retval = -EIDRM;
1601	unsigned long		flags;
1602
1603	/* Prevent the device and bus from going away while
1604	 * the unlink is carried out.  If they are already gone
1605	 * then urb->use_count must be 0, since disconnected
1606	 * devices can't have any active URBs.
1607	 */
1608	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1609	if (atomic_read(&urb->use_count) > 0) {
1610		retval = 0;
1611		usb_get_dev(udev);
1612	}
1613	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1614	if (retval == 0) {
1615		hcd = bus_to_hcd(urb->dev->bus);
1616		retval = unlink1(hcd, urb, status);
1617		if (retval == 0)
1618			retval = -EINPROGRESS;
1619		else if (retval != -EIDRM && retval != -EBUSY)
1620			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1621					urb, retval);
1622		usb_put_dev(udev);
1623	}
1624	return retval;
1625}
1626
1627/*-------------------------------------------------------------------------*/
1628
1629static void __usb_hcd_giveback_urb(struct urb *urb)
1630{
1631	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1632	struct usb_anchor *anchor = urb->anchor;
1633	int status = urb->unlinked;
 
1634
1635	urb->hcpriv = NULL;
1636	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1637	    urb->actual_length < urb->transfer_buffer_length &&
1638	    !status))
1639		status = -EREMOTEIO;
1640
1641	unmap_urb_for_dma(hcd, urb);
1642	usbmon_urb_complete(&hcd->self, urb, status);
1643	usb_anchor_suspend_wakeups(anchor);
1644	usb_unanchor_urb(urb);
1645	if (likely(status == 0))
1646		usb_led_activity(USB_LED_EVENT_HOST);
1647
1648	/* pass ownership to the completion handler */
1649	urb->status = status;
1650	/*
1651	 * This function can be called in task context inside another remote
1652	 * coverage collection section, but kcov doesn't support that kind of
1653	 * recursion yet. Only collect coverage in softirq context for now.
 
1654	 */
1655	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1656	urb->complete(urb);
1657	kcov_remote_stop_softirq();
1658
1659	usb_anchor_resume_wakeups(anchor);
1660	atomic_dec(&urb->use_count);
 
 
 
 
 
 
 
1661	if (unlikely(atomic_read(&urb->reject)))
1662		wake_up(&usb_kill_urb_queue);
1663	usb_put_urb(urb);
1664}
1665
1666static void usb_giveback_urb_bh(struct tasklet_struct *t)
1667{
1668	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
 
1669	struct list_head local_list;
1670
1671	spin_lock_irq(&bh->lock);
1672	bh->running = true;
1673 restart:
1674	list_replace_init(&bh->head, &local_list);
1675	spin_unlock_irq(&bh->lock);
1676
1677	while (!list_empty(&local_list)) {
1678		struct urb *urb;
1679
1680		urb = list_entry(local_list.next, struct urb, urb_list);
1681		list_del_init(&urb->urb_list);
1682		bh->completing_ep = urb->ep;
1683		__usb_hcd_giveback_urb(urb);
1684		bh->completing_ep = NULL;
1685	}
1686
1687	/* check if there are new URBs to giveback */
 
 
 
1688	spin_lock_irq(&bh->lock);
1689	if (!list_empty(&bh->head))
1690		goto restart;
 
 
 
 
1691	bh->running = false;
1692	spin_unlock_irq(&bh->lock);
1693}
1694
1695/**
1696 * usb_hcd_giveback_urb - return URB from HCD to device driver
1697 * @hcd: host controller returning the URB
1698 * @urb: urb being returned to the USB device driver.
1699 * @status: completion status code for the URB.
1700 *
1701 * Context: atomic. The completion callback is invoked in caller's context.
1702 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1703 * context (except for URBs submitted to the root hub which always complete in
1704 * caller's context).
1705 *
1706 * This hands the URB from HCD to its USB device driver, using its
1707 * completion function.  The HCD has freed all per-urb resources
1708 * (and is done using urb->hcpriv).  It also released all HCD locks;
1709 * the device driver won't cause problems if it frees, modifies,
1710 * or resubmits this URB.
1711 *
1712 * If @urb was unlinked, the value of @status will be overridden by
1713 * @urb->unlinked.  Erroneous short transfers are detected in case
1714 * the HCD hasn't checked for them.
1715 */
1716void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1717{
1718	struct giveback_urb_bh *bh;
1719	bool running, high_prio_bh;
1720
1721	/* pass status to tasklet via unlinked */
1722	if (likely(!urb->unlinked))
1723		urb->unlinked = status;
1724
1725	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1726		__usb_hcd_giveback_urb(urb);
1727		return;
1728	}
1729
1730	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1731		bh = &hcd->high_prio_bh;
1732		high_prio_bh = true;
1733	} else {
1734		bh = &hcd->low_prio_bh;
1735		high_prio_bh = false;
1736	}
1737
1738	spin_lock(&bh->lock);
1739	list_add_tail(&urb->urb_list, &bh->head);
1740	running = bh->running;
1741	spin_unlock(&bh->lock);
1742
1743	if (running)
1744		;
1745	else if (high_prio_bh)
1746		tasklet_hi_schedule(&bh->bh);
1747	else
1748		tasklet_schedule(&bh->bh);
1749}
1750EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1751
1752/*-------------------------------------------------------------------------*/
1753
1754/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1755 * queue to drain completely.  The caller must first insure that no more
1756 * URBs can be submitted for this endpoint.
1757 */
1758void usb_hcd_flush_endpoint(struct usb_device *udev,
1759		struct usb_host_endpoint *ep)
1760{
1761	struct usb_hcd		*hcd;
1762	struct urb		*urb;
1763
1764	if (!ep)
1765		return;
1766	might_sleep();
1767	hcd = bus_to_hcd(udev->bus);
1768
1769	/* No more submits can occur */
1770	spin_lock_irq(&hcd_urb_list_lock);
1771rescan:
1772	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1773		int	is_in;
1774
1775		if (urb->unlinked)
1776			continue;
1777		usb_get_urb (urb);
1778		is_in = usb_urb_dir_in(urb);
1779		spin_unlock(&hcd_urb_list_lock);
1780
1781		/* kick hcd */
1782		unlink1(hcd, urb, -ESHUTDOWN);
1783		dev_dbg (hcd->self.controller,
1784			"shutdown urb %pK ep%d%s-%s\n",
1785			urb, usb_endpoint_num(&ep->desc),
1786			is_in ? "in" : "out",
1787			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1788		usb_put_urb (urb);
1789
1790		/* list contents may have changed */
1791		spin_lock(&hcd_urb_list_lock);
1792		goto rescan;
1793	}
1794	spin_unlock_irq(&hcd_urb_list_lock);
1795
1796	/* Wait until the endpoint queue is completely empty */
1797	while (!list_empty (&ep->urb_list)) {
1798		spin_lock_irq(&hcd_urb_list_lock);
1799
1800		/* The list may have changed while we acquired the spinlock */
1801		urb = NULL;
1802		if (!list_empty (&ep->urb_list)) {
1803			urb = list_entry (ep->urb_list.prev, struct urb,
1804					urb_list);
1805			usb_get_urb (urb);
1806		}
1807		spin_unlock_irq(&hcd_urb_list_lock);
1808
1809		if (urb) {
1810			usb_kill_urb (urb);
1811			usb_put_urb (urb);
1812		}
1813	}
1814}
1815
1816/**
1817 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1818 *				the bus bandwidth
1819 * @udev: target &usb_device
1820 * @new_config: new configuration to install
1821 * @cur_alt: the current alternate interface setting
1822 * @new_alt: alternate interface setting that is being installed
1823 *
1824 * To change configurations, pass in the new configuration in new_config,
1825 * and pass NULL for cur_alt and new_alt.
1826 *
1827 * To reset a device's configuration (put the device in the ADDRESSED state),
1828 * pass in NULL for new_config, cur_alt, and new_alt.
1829 *
1830 * To change alternate interface settings, pass in NULL for new_config,
1831 * pass in the current alternate interface setting in cur_alt,
1832 * and pass in the new alternate interface setting in new_alt.
1833 *
1834 * Return: An error if the requested bandwidth change exceeds the
1835 * bus bandwidth or host controller internal resources.
1836 */
1837int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1838		struct usb_host_config *new_config,
1839		struct usb_host_interface *cur_alt,
1840		struct usb_host_interface *new_alt)
1841{
1842	int num_intfs, i, j;
1843	struct usb_host_interface *alt = NULL;
1844	int ret = 0;
1845	struct usb_hcd *hcd;
1846	struct usb_host_endpoint *ep;
1847
1848	hcd = bus_to_hcd(udev->bus);
1849	if (!hcd->driver->check_bandwidth)
1850		return 0;
1851
1852	/* Configuration is being removed - set configuration 0 */
1853	if (!new_config && !cur_alt) {
1854		for (i = 1; i < 16; ++i) {
1855			ep = udev->ep_out[i];
1856			if (ep)
1857				hcd->driver->drop_endpoint(hcd, udev, ep);
1858			ep = udev->ep_in[i];
1859			if (ep)
1860				hcd->driver->drop_endpoint(hcd, udev, ep);
1861		}
1862		hcd->driver->check_bandwidth(hcd, udev);
1863		return 0;
1864	}
1865	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1866	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1867	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1868	 * ok to exclude it.
1869	 */
1870	if (new_config) {
1871		num_intfs = new_config->desc.bNumInterfaces;
1872		/* Remove endpoints (except endpoint 0, which is always on the
1873		 * schedule) from the old config from the schedule
1874		 */
1875		for (i = 1; i < 16; ++i) {
1876			ep = udev->ep_out[i];
1877			if (ep) {
1878				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1879				if (ret < 0)
1880					goto reset;
1881			}
1882			ep = udev->ep_in[i];
1883			if (ep) {
1884				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1885				if (ret < 0)
1886					goto reset;
1887			}
1888		}
1889		for (i = 0; i < num_intfs; ++i) {
1890			struct usb_host_interface *first_alt;
1891			int iface_num;
1892
1893			first_alt = &new_config->intf_cache[i]->altsetting[0];
1894			iface_num = first_alt->desc.bInterfaceNumber;
1895			/* Set up endpoints for alternate interface setting 0 */
1896			alt = usb_find_alt_setting(new_config, iface_num, 0);
1897			if (!alt)
1898				/* No alt setting 0? Pick the first setting. */
1899				alt = first_alt;
1900
1901			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1902				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1903				if (ret < 0)
1904					goto reset;
1905			}
1906		}
1907	}
1908	if (cur_alt && new_alt) {
1909		struct usb_interface *iface = usb_ifnum_to_if(udev,
1910				cur_alt->desc.bInterfaceNumber);
1911
1912		if (!iface)
1913			return -EINVAL;
1914		if (iface->resetting_device) {
1915			/*
1916			 * The USB core just reset the device, so the xHCI host
1917			 * and the device will think alt setting 0 is installed.
1918			 * However, the USB core will pass in the alternate
1919			 * setting installed before the reset as cur_alt.  Dig
1920			 * out the alternate setting 0 structure, or the first
1921			 * alternate setting if a broken device doesn't have alt
1922			 * setting 0.
1923			 */
1924			cur_alt = usb_altnum_to_altsetting(iface, 0);
1925			if (!cur_alt)
1926				cur_alt = &iface->altsetting[0];
1927		}
1928
1929		/* Drop all the endpoints in the current alt setting */
1930		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1931			ret = hcd->driver->drop_endpoint(hcd, udev,
1932					&cur_alt->endpoint[i]);
1933			if (ret < 0)
1934				goto reset;
1935		}
1936		/* Add all the endpoints in the new alt setting */
1937		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1938			ret = hcd->driver->add_endpoint(hcd, udev,
1939					&new_alt->endpoint[i]);
1940			if (ret < 0)
1941				goto reset;
1942		}
1943	}
1944	ret = hcd->driver->check_bandwidth(hcd, udev);
1945reset:
1946	if (ret < 0)
1947		hcd->driver->reset_bandwidth(hcd, udev);
1948	return ret;
1949}
1950
1951/* Disables the endpoint: synchronizes with the hcd to make sure all
1952 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1953 * have been called previously.  Use for set_configuration, set_interface,
1954 * driver removal, physical disconnect.
1955 *
1956 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1957 * type, maxpacket size, toggle, halt status, and scheduling.
1958 */
1959void usb_hcd_disable_endpoint(struct usb_device *udev,
1960		struct usb_host_endpoint *ep)
1961{
1962	struct usb_hcd		*hcd;
1963
1964	might_sleep();
1965	hcd = bus_to_hcd(udev->bus);
1966	if (hcd->driver->endpoint_disable)
1967		hcd->driver->endpoint_disable(hcd, ep);
1968}
1969
1970/**
1971 * usb_hcd_reset_endpoint - reset host endpoint state
1972 * @udev: USB device.
1973 * @ep:   the endpoint to reset.
1974 *
1975 * Resets any host endpoint state such as the toggle bit, sequence
1976 * number and current window.
1977 */
1978void usb_hcd_reset_endpoint(struct usb_device *udev,
1979			    struct usb_host_endpoint *ep)
1980{
1981	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1982
1983	if (hcd->driver->endpoint_reset)
1984		hcd->driver->endpoint_reset(hcd, ep);
1985	else {
1986		int epnum = usb_endpoint_num(&ep->desc);
1987		int is_out = usb_endpoint_dir_out(&ep->desc);
1988		int is_control = usb_endpoint_xfer_control(&ep->desc);
1989
1990		usb_settoggle(udev, epnum, is_out, 0);
1991		if (is_control)
1992			usb_settoggle(udev, epnum, !is_out, 0);
1993	}
1994}
1995
1996/**
1997 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1998 * @interface:		alternate setting that includes all endpoints.
1999 * @eps:		array of endpoints that need streams.
2000 * @num_eps:		number of endpoints in the array.
2001 * @num_streams:	number of streams to allocate.
2002 * @mem_flags:		flags hcd should use to allocate memory.
2003 *
2004 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2005 * Drivers may queue multiple transfers to different stream IDs, which may
2006 * complete in a different order than they were queued.
2007 *
2008 * Return: On success, the number of allocated streams. On failure, a negative
2009 * error code.
2010 */
2011int usb_alloc_streams(struct usb_interface *interface,
2012		struct usb_host_endpoint **eps, unsigned int num_eps,
2013		unsigned int num_streams, gfp_t mem_flags)
2014{
2015	struct usb_hcd *hcd;
2016	struct usb_device *dev;
2017	int i, ret;
2018
2019	dev = interface_to_usbdev(interface);
2020	hcd = bus_to_hcd(dev->bus);
2021	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2022		return -EINVAL;
2023	if (dev->speed < USB_SPEED_SUPER)
2024		return -EINVAL;
2025	if (dev->state < USB_STATE_CONFIGURED)
2026		return -ENODEV;
2027
2028	for (i = 0; i < num_eps; i++) {
2029		/* Streams only apply to bulk endpoints. */
2030		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2031			return -EINVAL;
2032		/* Re-alloc is not allowed */
2033		if (eps[i]->streams)
2034			return -EINVAL;
2035	}
2036
2037	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2038			num_streams, mem_flags);
2039	if (ret < 0)
2040		return ret;
2041
2042	for (i = 0; i < num_eps; i++)
2043		eps[i]->streams = ret;
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL_GPL(usb_alloc_streams);
2048
2049/**
2050 * usb_free_streams - free bulk endpoint stream IDs.
2051 * @interface:	alternate setting that includes all endpoints.
2052 * @eps:	array of endpoints to remove streams from.
2053 * @num_eps:	number of endpoints in the array.
2054 * @mem_flags:	flags hcd should use to allocate memory.
2055 *
2056 * Reverts a group of bulk endpoints back to not using stream IDs.
2057 * Can fail if we are given bad arguments, or HCD is broken.
2058 *
2059 * Return: 0 on success. On failure, a negative error code.
2060 */
2061int usb_free_streams(struct usb_interface *interface,
2062		struct usb_host_endpoint **eps, unsigned int num_eps,
2063		gfp_t mem_flags)
2064{
2065	struct usb_hcd *hcd;
2066	struct usb_device *dev;
2067	int i, ret;
2068
2069	dev = interface_to_usbdev(interface);
2070	hcd = bus_to_hcd(dev->bus);
2071	if (dev->speed < USB_SPEED_SUPER)
2072		return -EINVAL;
2073
2074	/* Double-free is not allowed */
2075	for (i = 0; i < num_eps; i++)
2076		if (!eps[i] || !eps[i]->streams)
2077			return -EINVAL;
2078
2079	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2080	if (ret < 0)
2081		return ret;
2082
2083	for (i = 0; i < num_eps; i++)
2084		eps[i]->streams = 0;
2085
2086	return ret;
2087}
2088EXPORT_SYMBOL_GPL(usb_free_streams);
2089
2090/* Protect against drivers that try to unlink URBs after the device
2091 * is gone, by waiting until all unlinks for @udev are finished.
2092 * Since we don't currently track URBs by device, simply wait until
2093 * nothing is running in the locked region of usb_hcd_unlink_urb().
2094 */
2095void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2096{
2097	spin_lock_irq(&hcd_urb_unlink_lock);
2098	spin_unlock_irq(&hcd_urb_unlink_lock);
2099}
2100
2101/*-------------------------------------------------------------------------*/
2102
2103/* called in any context */
2104int usb_hcd_get_frame_number (struct usb_device *udev)
2105{
2106	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2107
2108	if (!HCD_RH_RUNNING(hcd))
2109		return -ESHUTDOWN;
2110	return hcd->driver->get_frame_number (hcd);
2111}
2112
2113/*-------------------------------------------------------------------------*/
2114#ifdef CONFIG_USB_HCD_TEST_MODE
2115
2116static void usb_ehset_completion(struct urb *urb)
2117{
2118	struct completion  *done = urb->context;
2119
2120	complete(done);
2121}
2122/*
2123 * Allocate and initialize a control URB. This request will be used by the
2124 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2125 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2126 * Return NULL if failed.
2127 */
2128static struct urb *request_single_step_set_feature_urb(
2129	struct usb_device	*udev,
2130	void			*dr,
2131	void			*buf,
2132	struct completion	*done)
2133{
2134	struct urb *urb;
2135	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2136	struct usb_host_endpoint *ep;
2137
2138	urb = usb_alloc_urb(0, GFP_KERNEL);
2139	if (!urb)
2140		return NULL;
2141
2142	urb->pipe = usb_rcvctrlpipe(udev, 0);
2143	ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2144				[usb_pipeendpoint(urb->pipe)];
2145	if (!ep) {
2146		usb_free_urb(urb);
2147		return NULL;
2148	}
2149
2150	urb->ep = ep;
2151	urb->dev = udev;
2152	urb->setup_packet = (void *)dr;
2153	urb->transfer_buffer = buf;
2154	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2155	urb->complete = usb_ehset_completion;
2156	urb->status = -EINPROGRESS;
2157	urb->actual_length = 0;
2158	urb->transfer_flags = URB_DIR_IN;
2159	usb_get_urb(urb);
2160	atomic_inc(&urb->use_count);
2161	atomic_inc(&urb->dev->urbnum);
2162	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2163		usb_put_urb(urb);
2164		usb_free_urb(urb);
2165		return NULL;
2166	}
2167
2168	urb->context = done;
2169	return urb;
2170}
2171
2172int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2173{
2174	int retval = -ENOMEM;
2175	struct usb_ctrlrequest *dr;
2176	struct urb *urb;
2177	struct usb_device *udev;
2178	struct usb_device_descriptor *buf;
2179	DECLARE_COMPLETION_ONSTACK(done);
2180
2181	/* Obtain udev of the rhub's child port */
2182	udev = usb_hub_find_child(hcd->self.root_hub, port);
2183	if (!udev) {
2184		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2185		return -ENODEV;
2186	}
2187	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2188	if (!buf)
2189		return -ENOMEM;
2190
2191	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2192	if (!dr) {
2193		kfree(buf);
2194		return -ENOMEM;
2195	}
2196
2197	/* Fill Setup packet for GetDescriptor */
2198	dr->bRequestType = USB_DIR_IN;
2199	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2200	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2201	dr->wIndex = 0;
2202	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2203	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2204	if (!urb)
2205		goto cleanup;
2206
2207	/* Submit just the SETUP stage */
2208	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2209	if (retval)
2210		goto out1;
2211	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2212		usb_kill_urb(urb);
2213		retval = -ETIMEDOUT;
2214		dev_err(hcd->self.controller,
2215			"%s SETUP stage timed out on ep0\n", __func__);
2216		goto out1;
2217	}
2218	msleep(15 * 1000);
2219
2220	/* Complete remaining DATA and STATUS stages using the same URB */
2221	urb->status = -EINPROGRESS;
2222	usb_get_urb(urb);
2223	atomic_inc(&urb->use_count);
2224	atomic_inc(&urb->dev->urbnum);
2225	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2226	if (!retval && !wait_for_completion_timeout(&done,
2227						msecs_to_jiffies(2000))) {
2228		usb_kill_urb(urb);
2229		retval = -ETIMEDOUT;
2230		dev_err(hcd->self.controller,
2231			"%s IN stage timed out on ep0\n", __func__);
2232	}
2233out1:
2234	usb_free_urb(urb);
2235cleanup:
2236	kfree(dr);
2237	kfree(buf);
2238	return retval;
2239}
2240EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2241#endif /* CONFIG_USB_HCD_TEST_MODE */
2242
2243/*-------------------------------------------------------------------------*/
2244
2245#ifdef	CONFIG_PM
2246
2247int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2248{
2249	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2250	int		status;
2251	int		old_state = hcd->state;
2252
2253	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2254			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2255			rhdev->do_remote_wakeup);
2256	if (HCD_DEAD(hcd)) {
2257		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2258		return 0;
2259	}
2260
2261	if (!hcd->driver->bus_suspend) {
2262		status = -ENOENT;
2263	} else {
2264		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2265		hcd->state = HC_STATE_QUIESCING;
2266		status = hcd->driver->bus_suspend(hcd);
2267	}
2268	if (status == 0) {
2269		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2270		hcd->state = HC_STATE_SUSPENDED;
2271
2272		if (!PMSG_IS_AUTO(msg))
2273			usb_phy_roothub_suspend(hcd->self.sysdev,
2274						hcd->phy_roothub);
2275
2276		/* Did we race with a root-hub wakeup event? */
2277		if (rhdev->do_remote_wakeup) {
2278			char	buffer[6];
2279
2280			status = hcd->driver->hub_status_data(hcd, buffer);
2281			if (status != 0) {
2282				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2283				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2284				status = -EBUSY;
2285			}
2286		}
2287	} else {
2288		spin_lock_irq(&hcd_root_hub_lock);
2289		if (!HCD_DEAD(hcd)) {
2290			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2291			hcd->state = old_state;
2292		}
2293		spin_unlock_irq(&hcd_root_hub_lock);
2294		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2295				"suspend", status);
2296	}
2297	return status;
2298}
2299
2300int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2301{
2302	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2303	int		status;
2304	int		old_state = hcd->state;
2305
2306	dev_dbg(&rhdev->dev, "usb %sresume\n",
2307			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2308	if (HCD_DEAD(hcd)) {
2309		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2310		return 0;
2311	}
2312
2313	if (!PMSG_IS_AUTO(msg)) {
2314		status = usb_phy_roothub_resume(hcd->self.sysdev,
2315						hcd->phy_roothub);
2316		if (status)
2317			return status;
2318	}
2319
2320	if (!hcd->driver->bus_resume)
2321		return -ENOENT;
2322	if (HCD_RH_RUNNING(hcd))
2323		return 0;
2324
2325	hcd->state = HC_STATE_RESUMING;
2326	status = hcd->driver->bus_resume(hcd);
2327	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2328	if (status == 0)
2329		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2330
2331	if (status == 0) {
2332		struct usb_device *udev;
2333		int port1;
2334
2335		spin_lock_irq(&hcd_root_hub_lock);
2336		if (!HCD_DEAD(hcd)) {
2337			usb_set_device_state(rhdev, rhdev->actconfig
2338					? USB_STATE_CONFIGURED
2339					: USB_STATE_ADDRESS);
2340			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2341			hcd->state = HC_STATE_RUNNING;
2342		}
2343		spin_unlock_irq(&hcd_root_hub_lock);
2344
2345		/*
2346		 * Check whether any of the enabled ports on the root hub are
2347		 * unsuspended.  If they are then a TRSMRCY delay is needed
2348		 * (this is what the USB-2 spec calls a "global resume").
2349		 * Otherwise we can skip the delay.
2350		 */
2351		usb_hub_for_each_child(rhdev, port1, udev) {
2352			if (udev->state != USB_STATE_NOTATTACHED &&
2353					!udev->port_is_suspended) {
2354				usleep_range(10000, 11000);	/* TRSMRCY */
2355				break;
2356			}
2357		}
2358	} else {
2359		hcd->state = old_state;
2360		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2361		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2362				"resume", status);
2363		if (status != -ESHUTDOWN)
2364			usb_hc_died(hcd);
2365	}
2366	return status;
2367}
2368
2369/* Workqueue routine for root-hub remote wakeup */
2370static void hcd_resume_work(struct work_struct *work)
2371{
2372	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2373	struct usb_device *udev = hcd->self.root_hub;
2374
2375	usb_remote_wakeup(udev);
2376}
2377
2378/**
2379 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2380 * @hcd: host controller for this root hub
2381 *
2382 * The USB host controller calls this function when its root hub is
2383 * suspended (with the remote wakeup feature enabled) and a remote
2384 * wakeup request is received.  The routine submits a workqueue request
2385 * to resume the root hub (that is, manage its downstream ports again).
2386 */
2387void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2388{
2389	unsigned long flags;
2390
2391	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2392	if (hcd->rh_registered) {
2393		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2394		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2395		queue_work(pm_wq, &hcd->wakeup_work);
2396	}
2397	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398}
2399EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2400
2401#endif	/* CONFIG_PM */
2402
2403/*-------------------------------------------------------------------------*/
2404
2405#ifdef	CONFIG_USB_OTG
2406
2407/**
2408 * usb_bus_start_enum - start immediate enumeration (for OTG)
2409 * @bus: the bus (must use hcd framework)
2410 * @port_num: 1-based number of port; usually bus->otg_port
2411 * Context: atomic
2412 *
2413 * Starts enumeration, with an immediate reset followed later by
2414 * hub_wq identifying and possibly configuring the device.
2415 * This is needed by OTG controller drivers, where it helps meet
2416 * HNP protocol timing requirements for starting a port reset.
2417 *
2418 * Return: 0 if successful.
2419 */
2420int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2421{
2422	struct usb_hcd		*hcd;
2423	int			status = -EOPNOTSUPP;
2424
2425	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2426	 * boards with root hubs hooked up to internal devices (instead of
2427	 * just the OTG port) may need more attention to resetting...
2428	 */
2429	hcd = bus_to_hcd(bus);
2430	if (port_num && hcd->driver->start_port_reset)
2431		status = hcd->driver->start_port_reset(hcd, port_num);
2432
2433	/* allocate hub_wq shortly after (first) root port reset finishes;
2434	 * it may issue others, until at least 50 msecs have passed.
2435	 */
2436	if (status == 0)
2437		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2438	return status;
2439}
2440EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2441
2442#endif
2443
2444/*-------------------------------------------------------------------------*/
2445
2446/**
2447 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2448 * @irq: the IRQ being raised
2449 * @__hcd: pointer to the HCD whose IRQ is being signaled
2450 *
2451 * If the controller isn't HALTed, calls the driver's irq handler.
2452 * Checks whether the controller is now dead.
2453 *
2454 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2455 */
2456irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2457{
2458	struct usb_hcd		*hcd = __hcd;
2459	irqreturn_t		rc;
2460
2461	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2462		rc = IRQ_NONE;
2463	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2464		rc = IRQ_NONE;
2465	else
2466		rc = IRQ_HANDLED;
2467
2468	return rc;
2469}
2470EXPORT_SYMBOL_GPL(usb_hcd_irq);
2471
2472/*-------------------------------------------------------------------------*/
2473
2474/* Workqueue routine for when the root-hub has died. */
2475static void hcd_died_work(struct work_struct *work)
2476{
2477	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2478	static char *env[] = {
2479		"ERROR=DEAD",
2480		NULL
2481	};
2482
2483	/* Notify user space that the host controller has died */
2484	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2485}
2486
2487/**
2488 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2489 * @hcd: pointer to the HCD representing the controller
2490 *
2491 * This is called by bus glue to report a USB host controller that died
2492 * while operations may still have been pending.  It's called automatically
2493 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2494 *
2495 * Only call this function with the primary HCD.
2496 */
2497void usb_hc_died (struct usb_hcd *hcd)
2498{
2499	unsigned long flags;
2500
2501	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2502
2503	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2504	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2505	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2506	if (hcd->rh_registered) {
2507		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2508
2509		/* make hub_wq clean up old urbs and devices */
2510		usb_set_device_state (hcd->self.root_hub,
2511				USB_STATE_NOTATTACHED);
2512		usb_kick_hub_wq(hcd->self.root_hub);
2513	}
2514	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2515		hcd = hcd->shared_hcd;
2516		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2517		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2518		if (hcd->rh_registered) {
2519			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2520
2521			/* make hub_wq clean up old urbs and devices */
2522			usb_set_device_state(hcd->self.root_hub,
2523					USB_STATE_NOTATTACHED);
2524			usb_kick_hub_wq(hcd->self.root_hub);
2525		}
2526	}
2527
2528	/* Handle the case where this function gets called with a shared HCD */
2529	if (usb_hcd_is_primary_hcd(hcd))
2530		schedule_work(&hcd->died_work);
2531	else
2532		schedule_work(&hcd->primary_hcd->died_work);
2533
2534	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2535	/* Make sure that the other roothub is also deallocated. */
2536}
2537EXPORT_SYMBOL_GPL (usb_hc_died);
2538
2539/*-------------------------------------------------------------------------*/
2540
2541static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2542{
2543
2544	spin_lock_init(&bh->lock);
2545	INIT_LIST_HEAD(&bh->head);
2546	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2547}
2548
2549struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2550		struct device *sysdev, struct device *dev, const char *bus_name,
2551		struct usb_hcd *primary_hcd)
2552{
2553	struct usb_hcd *hcd;
2554
2555	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2556	if (!hcd)
2557		return NULL;
2558	if (primary_hcd == NULL) {
2559		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2560				GFP_KERNEL);
2561		if (!hcd->address0_mutex) {
2562			kfree(hcd);
2563			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2564			return NULL;
2565		}
2566		mutex_init(hcd->address0_mutex);
2567		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2568				GFP_KERNEL);
2569		if (!hcd->bandwidth_mutex) {
2570			kfree(hcd->address0_mutex);
2571			kfree(hcd);
2572			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2573			return NULL;
2574		}
2575		mutex_init(hcd->bandwidth_mutex);
2576		dev_set_drvdata(dev, hcd);
2577	} else {
2578		mutex_lock(&usb_port_peer_mutex);
2579		hcd->address0_mutex = primary_hcd->address0_mutex;
2580		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2581		hcd->primary_hcd = primary_hcd;
2582		primary_hcd->primary_hcd = primary_hcd;
2583		hcd->shared_hcd = primary_hcd;
2584		primary_hcd->shared_hcd = hcd;
2585		mutex_unlock(&usb_port_peer_mutex);
2586	}
2587
2588	kref_init(&hcd->kref);
2589
2590	usb_bus_init(&hcd->self);
2591	hcd->self.controller = dev;
2592	hcd->self.sysdev = sysdev;
2593	hcd->self.bus_name = bus_name;
2594
2595	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2596#ifdef CONFIG_PM
2597	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2598#endif
2599
2600	INIT_WORK(&hcd->died_work, hcd_died_work);
2601
2602	hcd->driver = driver;
2603	hcd->speed = driver->flags & HCD_MASK;
2604	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2605			"USB Host Controller";
2606	return hcd;
2607}
2608EXPORT_SYMBOL_GPL(__usb_create_hcd);
2609
2610/**
2611 * usb_create_shared_hcd - create and initialize an HCD structure
2612 * @driver: HC driver that will use this hcd
2613 * @dev: device for this HC, stored in hcd->self.controller
2614 * @bus_name: value to store in hcd->self.bus_name
2615 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2616 *              PCI device.  Only allocate certain resources for the primary HCD
2617 *
2618 * Context: task context, might sleep.
2619 *
2620 * Allocate a struct usb_hcd, with extra space at the end for the
2621 * HC driver's private data.  Initialize the generic members of the
2622 * hcd structure.
2623 *
2624 * Return: On success, a pointer to the created and initialized HCD structure.
2625 * On failure (e.g. if memory is unavailable), %NULL.
2626 */
2627struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2628		struct device *dev, const char *bus_name,
2629		struct usb_hcd *primary_hcd)
2630{
2631	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2632}
2633EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2634
2635/**
2636 * usb_create_hcd - create and initialize an HCD structure
2637 * @driver: HC driver that will use this hcd
2638 * @dev: device for this HC, stored in hcd->self.controller
2639 * @bus_name: value to store in hcd->self.bus_name
2640 *
2641 * Context: task context, might sleep.
2642 *
2643 * Allocate a struct usb_hcd, with extra space at the end for the
2644 * HC driver's private data.  Initialize the generic members of the
2645 * hcd structure.
2646 *
2647 * Return: On success, a pointer to the created and initialized HCD
2648 * structure. On failure (e.g. if memory is unavailable), %NULL.
2649 */
2650struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2651		struct device *dev, const char *bus_name)
2652{
2653	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2654}
2655EXPORT_SYMBOL_GPL(usb_create_hcd);
2656
2657/*
2658 * Roothubs that share one PCI device must also share the bandwidth mutex.
2659 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2660 * deallocated.
2661 *
2662 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2663 * freed.  When hcd_release() is called for either hcd in a peer set,
2664 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2665 */
2666static void hcd_release(struct kref *kref)
2667{
2668	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2669
2670	mutex_lock(&usb_port_peer_mutex);
2671	if (hcd->shared_hcd) {
2672		struct usb_hcd *peer = hcd->shared_hcd;
2673
2674		peer->shared_hcd = NULL;
2675		peer->primary_hcd = NULL;
2676	} else {
2677		kfree(hcd->address0_mutex);
2678		kfree(hcd->bandwidth_mutex);
2679	}
2680	mutex_unlock(&usb_port_peer_mutex);
2681	kfree(hcd);
2682}
2683
2684struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2685{
2686	if (hcd)
2687		kref_get (&hcd->kref);
2688	return hcd;
2689}
2690EXPORT_SYMBOL_GPL(usb_get_hcd);
2691
2692void usb_put_hcd (struct usb_hcd *hcd)
2693{
2694	if (hcd)
2695		kref_put (&hcd->kref, hcd_release);
2696}
2697EXPORT_SYMBOL_GPL(usb_put_hcd);
2698
2699int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2700{
2701	if (!hcd->primary_hcd)
2702		return 1;
2703	return hcd == hcd->primary_hcd;
2704}
2705EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2706
2707int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2708{
2709	if (!hcd->driver->find_raw_port_number)
2710		return port1;
2711
2712	return hcd->driver->find_raw_port_number(hcd, port1);
2713}
2714
2715static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2716		unsigned int irqnum, unsigned long irqflags)
2717{
2718	int retval;
2719
2720	if (hcd->driver->irq) {
2721
2722		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2723				hcd->driver->description, hcd->self.busnum);
2724		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2725				hcd->irq_descr, hcd);
2726		if (retval != 0) {
2727			dev_err(hcd->self.controller,
2728					"request interrupt %d failed\n",
2729					irqnum);
2730			return retval;
2731		}
2732		hcd->irq = irqnum;
2733		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2734				(hcd->driver->flags & HCD_MEMORY) ?
2735					"io mem" : "io base",
2736					(unsigned long long)hcd->rsrc_start);
2737	} else {
2738		hcd->irq = 0;
2739		if (hcd->rsrc_start)
2740			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2741					(hcd->driver->flags & HCD_MEMORY) ?
2742					"io mem" : "io base",
2743					(unsigned long long)hcd->rsrc_start);
2744	}
2745	return 0;
2746}
2747
2748/*
2749 * Before we free this root hub, flush in-flight peering attempts
2750 * and disable peer lookups
2751 */
2752static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2753{
2754	struct usb_device *rhdev;
2755
2756	mutex_lock(&usb_port_peer_mutex);
2757	rhdev = hcd->self.root_hub;
2758	hcd->self.root_hub = NULL;
2759	mutex_unlock(&usb_port_peer_mutex);
2760	usb_put_dev(rhdev);
2761}
2762
2763/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764 * usb_add_hcd - finish generic HCD structure initialization and register
2765 * @hcd: the usb_hcd structure to initialize
2766 * @irqnum: Interrupt line to allocate
2767 * @irqflags: Interrupt type flags
2768 *
2769 * Finish the remaining parts of generic HCD initialization: allocate the
2770 * buffers of consistent memory, register the bus, request the IRQ line,
2771 * and call the driver's reset() and start() routines.
2772 */
2773int usb_add_hcd(struct usb_hcd *hcd,
2774		unsigned int irqnum, unsigned long irqflags)
2775{
2776	int retval;
2777	struct usb_device *rhdev;
2778	struct usb_hcd *shared_hcd;
 
 
 
 
 
 
2779
2780	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2781		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2782		if (IS_ERR(hcd->phy_roothub))
2783			return PTR_ERR(hcd->phy_roothub);
 
 
 
 
 
 
2784
2785		retval = usb_phy_roothub_init(hcd->phy_roothub);
2786		if (retval)
2787			return retval;
2788
2789		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2790						  PHY_MODE_USB_HOST_SS);
2791		if (retval)
2792			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2793							  PHY_MODE_USB_HOST);
2794		if (retval)
2795			goto err_usb_phy_roothub_power_on;
2796
2797		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2798		if (retval)
2799			goto err_usb_phy_roothub_power_on;
2800	}
2801
2802	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2803
2804	switch (authorized_default) {
2805	case USB_AUTHORIZE_NONE:
2806		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2807		break;
2808
2809	case USB_AUTHORIZE_ALL:
2810		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2811		break;
2812
2813	case USB_AUTHORIZE_INTERNAL:
2814		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2815		break;
2816
 
2817	case USB_AUTHORIZE_WIRED:
2818	default:
2819		hcd->dev_policy = hcd->wireless ?
2820			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2821		break;
2822	}
2823
2824	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2825
2826	/* per default all interfaces are authorized */
2827	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2828
2829	/* HC is in reset state, but accessible.  Now do the one-time init,
2830	 * bottom up so that hcds can customize the root hubs before hub_wq
2831	 * starts talking to them.  (Note, bus id is assigned early too.)
2832	 */
2833	retval = hcd_buffer_create(hcd);
2834	if (retval != 0) {
2835		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2836		goto err_create_buf;
2837	}
2838
2839	retval = usb_register_bus(&hcd->self);
2840	if (retval < 0)
2841		goto err_register_bus;
2842
2843	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2844	if (rhdev == NULL) {
2845		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2846		retval = -ENOMEM;
2847		goto err_allocate_root_hub;
2848	}
2849	mutex_lock(&usb_port_peer_mutex);
2850	hcd->self.root_hub = rhdev;
2851	mutex_unlock(&usb_port_peer_mutex);
2852
2853	rhdev->rx_lanes = 1;
2854	rhdev->tx_lanes = 1;
2855	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2856
2857	switch (hcd->speed) {
2858	case HCD_USB11:
2859		rhdev->speed = USB_SPEED_FULL;
2860		break;
2861	case HCD_USB2:
2862		rhdev->speed = USB_SPEED_HIGH;
2863		break;
2864	case HCD_USB25:
2865		rhdev->speed = USB_SPEED_WIRELESS;
2866		break;
2867	case HCD_USB3:
2868		rhdev->speed = USB_SPEED_SUPER;
2869		break;
2870	case HCD_USB32:
2871		rhdev->rx_lanes = 2;
2872		rhdev->tx_lanes = 2;
2873		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2874		rhdev->speed = USB_SPEED_SUPER_PLUS;
2875		break;
2876	case HCD_USB31:
2877		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2878		rhdev->speed = USB_SPEED_SUPER_PLUS;
2879		break;
2880	default:
2881		retval = -EINVAL;
2882		goto err_set_rh_speed;
2883	}
2884
2885	/* wakeup flag init defaults to "everything works" for root hubs,
2886	 * but drivers can override it in reset() if needed, along with
2887	 * recording the overall controller's system wakeup capability.
2888	 */
2889	device_set_wakeup_capable(&rhdev->dev, 1);
2890
2891	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2892	 * registered.  But since the controller can die at any time,
2893	 * let's initialize the flag before touching the hardware.
2894	 */
2895	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2896
2897	/* "reset" is misnamed; its role is now one-time init. the controller
2898	 * should already have been reset (and boot firmware kicked off etc).
2899	 */
2900	if (hcd->driver->reset) {
2901		retval = hcd->driver->reset(hcd);
2902		if (retval < 0) {
2903			dev_err(hcd->self.controller, "can't setup: %d\n",
2904					retval);
2905			goto err_hcd_driver_setup;
2906		}
2907	}
2908	hcd->rh_pollable = 1;
2909
2910	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2911	if (retval)
2912		goto err_hcd_driver_setup;
2913
2914	/* NOTE: root hub and controller capabilities may not be the same */
2915	if (device_can_wakeup(hcd->self.controller)
2916			&& device_can_wakeup(&hcd->self.root_hub->dev))
2917		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2918
2919	/* initialize tasklets */
2920	init_giveback_urb_bh(&hcd->high_prio_bh);
 
2921	init_giveback_urb_bh(&hcd->low_prio_bh);
2922
2923	/* enable irqs just before we start the controller,
2924	 * if the BIOS provides legacy PCI irqs.
2925	 */
2926	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2927		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2928		if (retval)
2929			goto err_request_irq;
2930	}
2931
2932	hcd->state = HC_STATE_RUNNING;
2933	retval = hcd->driver->start(hcd);
2934	if (retval < 0) {
2935		dev_err(hcd->self.controller, "startup error %d\n", retval);
2936		goto err_hcd_driver_start;
2937	}
2938
2939	/* starting here, usbcore will pay attention to the shared HCD roothub */
2940	shared_hcd = hcd->shared_hcd;
2941	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2942		retval = register_root_hub(shared_hcd);
2943		if (retval != 0)
2944			goto err_register_root_hub;
2945
2946		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2947			usb_hcd_poll_rh_status(shared_hcd);
2948	}
2949
2950	/* starting here, usbcore will pay attention to this root hub */
2951	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2952		retval = register_root_hub(hcd);
2953		if (retval != 0)
2954			goto err_register_root_hub;
2955
2956		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2957			usb_hcd_poll_rh_status(hcd);
2958	}
2959
2960	return retval;
2961
2962err_register_root_hub:
2963	hcd->rh_pollable = 0;
2964	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2965	del_timer_sync(&hcd->rh_timer);
2966	hcd->driver->stop(hcd);
2967	hcd->state = HC_STATE_HALT;
2968	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2969	del_timer_sync(&hcd->rh_timer);
2970err_hcd_driver_start:
2971	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2972		free_irq(irqnum, hcd);
2973err_request_irq:
2974err_hcd_driver_setup:
2975err_set_rh_speed:
2976	usb_put_invalidate_rhdev(hcd);
2977err_allocate_root_hub:
2978	usb_deregister_bus(&hcd->self);
2979err_register_bus:
2980	hcd_buffer_destroy(hcd);
2981err_create_buf:
2982	usb_phy_roothub_power_off(hcd->phy_roothub);
2983err_usb_phy_roothub_power_on:
2984	usb_phy_roothub_exit(hcd->phy_roothub);
2985
2986	return retval;
2987}
2988EXPORT_SYMBOL_GPL(usb_add_hcd);
2989
2990/**
2991 * usb_remove_hcd - shutdown processing for generic HCDs
2992 * @hcd: the usb_hcd structure to remove
2993 *
2994 * Context: task context, might sleep.
2995 *
2996 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2997 * invoking the HCD's stop() method.
2998 */
2999void usb_remove_hcd(struct usb_hcd *hcd)
3000{
3001	struct usb_device *rhdev = hcd->self.root_hub;
3002	bool rh_registered;
3003
 
 
 
 
 
 
3004	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3005
3006	usb_get_dev(rhdev);
3007	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3008	if (HC_IS_RUNNING (hcd->state))
3009		hcd->state = HC_STATE_QUIESCING;
3010
3011	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3012	spin_lock_irq (&hcd_root_hub_lock);
3013	rh_registered = hcd->rh_registered;
3014	hcd->rh_registered = 0;
3015	spin_unlock_irq (&hcd_root_hub_lock);
3016
3017#ifdef CONFIG_PM
3018	cancel_work_sync(&hcd->wakeup_work);
3019#endif
3020	cancel_work_sync(&hcd->died_work);
3021
3022	mutex_lock(&usb_bus_idr_lock);
3023	if (rh_registered)
3024		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3025	mutex_unlock(&usb_bus_idr_lock);
3026
3027	/*
3028	 * tasklet_kill() isn't needed here because:
3029	 * - driver's disconnect() called from usb_disconnect() should
3030	 *   make sure its URBs are completed during the disconnect()
3031	 *   callback
3032	 *
3033	 * - it is too late to run complete() here since driver may have
3034	 *   been removed already now
3035	 */
3036
3037	/* Prevent any more root-hub status calls from the timer.
3038	 * The HCD might still restart the timer (if a port status change
3039	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3040	 * the hub_status_data() callback.
3041	 */
3042	hcd->rh_pollable = 0;
3043	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3044	del_timer_sync(&hcd->rh_timer);
3045
3046	hcd->driver->stop(hcd);
3047	hcd->state = HC_STATE_HALT;
3048
3049	/* In case the HCD restarted the timer, stop it again. */
3050	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3051	del_timer_sync(&hcd->rh_timer);
3052
3053	if (usb_hcd_is_primary_hcd(hcd)) {
3054		if (hcd->irq > 0)
3055			free_irq(hcd->irq, hcd);
3056	}
3057
3058	usb_deregister_bus(&hcd->self);
3059	hcd_buffer_destroy(hcd);
3060
3061	usb_phy_roothub_power_off(hcd->phy_roothub);
3062	usb_phy_roothub_exit(hcd->phy_roothub);
3063
3064	usb_put_invalidate_rhdev(hcd);
3065	hcd->flags = 0;
3066}
3067EXPORT_SYMBOL_GPL(usb_remove_hcd);
3068
3069void
3070usb_hcd_platform_shutdown(struct platform_device *dev)
3071{
3072	struct usb_hcd *hcd = platform_get_drvdata(dev);
3073
3074	/* No need for pm_runtime_put(), we're shutting down */
3075	pm_runtime_get_sync(&dev->dev);
3076
3077	if (hcd->driver->shutdown)
3078		hcd->driver->shutdown(hcd);
3079}
3080EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3081
3082int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3083			    dma_addr_t dma, size_t size)
3084{
3085	int err;
3086	void *local_mem;
3087
3088	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3089						  dev_to_node(hcd->self.sysdev),
3090						  dev_name(hcd->self.sysdev));
3091	if (IS_ERR(hcd->localmem_pool))
3092		return PTR_ERR(hcd->localmem_pool);
3093
3094	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3095				  size, MEMREMAP_WC);
3096	if (IS_ERR(local_mem))
 
 
 
 
 
 
 
 
 
 
 
 
 
3097		return PTR_ERR(local_mem);
 
3098
3099	/*
3100	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3101	 * It's not backed by system memory and thus there's no kernel mapping
3102	 * for it.
3103	 */
3104	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3105				dma, size, dev_to_node(hcd->self.sysdev));
3106	if (err < 0) {
3107		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3108			err);
3109		return err;
3110	}
3111
3112	return 0;
3113}
3114EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3115
3116/*-------------------------------------------------------------------------*/
3117
3118#if IS_ENABLED(CONFIG_USB_MON)
3119
3120const struct usb_mon_operations *mon_ops;
3121
3122/*
3123 * The registration is unlocked.
3124 * We do it this way because we do not want to lock in hot paths.
3125 *
3126 * Notice that the code is minimally error-proof. Because usbmon needs
3127 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3128 */
3129
3130int usb_mon_register(const struct usb_mon_operations *ops)
3131{
3132
3133	if (mon_ops)
3134		return -EBUSY;
3135
3136	mon_ops = ops;
3137	mb();
3138	return 0;
3139}
3140EXPORT_SYMBOL_GPL (usb_mon_register);
3141
3142void usb_mon_deregister (void)
3143{
3144
3145	if (mon_ops == NULL) {
3146		printk(KERN_ERR "USB: monitor was not registered\n");
3147		return;
3148	}
3149	mon_ops = NULL;
3150	mb();
3151}
3152EXPORT_SYMBOL_GPL (usb_mon_deregister);
3153
3154#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */