Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <linux/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34#include <linux/kcov.h>
  35
  36#include <linux/phy/phy.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/usb/otg.h>
  40
  41#include "usb.h"
  42#include "phy.h"
  43
  44
  45/*-------------------------------------------------------------------------*/
  46
  47/*
  48 * USB Host Controller Driver framework
  49 *
  50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  51 * HCD-specific behaviors/bugs.
  52 *
  53 * This does error checks, tracks devices and urbs, and delegates to a
  54 * "hc_driver" only for code (and data) that really needs to know about
  55 * hardware differences.  That includes root hub registers, i/o queues,
  56 * and so on ... but as little else as possible.
  57 *
  58 * Shared code includes most of the "root hub" code (these are emulated,
  59 * though each HC's hardware works differently) and PCI glue, plus request
  60 * tracking overhead.  The HCD code should only block on spinlocks or on
  61 * hardware handshaking; blocking on software events (such as other kernel
  62 * threads releasing resources, or completing actions) is all generic.
  63 *
  64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  66 * only by the hub driver ... and that neither should be seen or used by
  67 * usb client device drivers.
  68 *
  69 * Contributors of ideas or unattributed patches include: David Brownell,
  70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  71 *
  72 * HISTORY:
  73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  76 */
  77
  78/*-------------------------------------------------------------------------*/
  79
  80/* Keep track of which host controller drivers are loaded */
  81unsigned long usb_hcds_loaded;
  82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  83
  84/* host controllers we manage */
  85DEFINE_IDR (usb_bus_idr);
  86EXPORT_SYMBOL_GPL (usb_bus_idr);
  87
  88/* used when allocating bus numbers */
  89#define USB_MAXBUS		64
 
  90
  91/* used when updating list of hcds */
  92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  94
  95/* used for controlling access to virtual root hubs */
  96static DEFINE_SPINLOCK(hcd_root_hub_lock);
  97
  98/* used when updating an endpoint's URB list */
  99static DEFINE_SPINLOCK(hcd_urb_list_lock);
 100
 101/* used to protect against unlinking URBs after the device is gone */
 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 103
 104/* wait queue for synchronous unlinks */
 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 106
 
 
 
 
 
 107/*-------------------------------------------------------------------------*/
 108
 109/*
 110 * Sharable chunks of root hub code.
 111 */
 112
 113/*-------------------------------------------------------------------------*/
 114#define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
 115#define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
 116
 117/* usb 3.1 root hub device descriptor */
 118static const u8 usb31_rh_dev_descriptor[18] = {
 119	0x12,       /*  __u8  bLength; */
 120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 122
 123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 124	0x00,	    /*  __u8  bDeviceSubClass; */
 125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 127
 128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 131
 132	0x03,       /*  __u8  iManufacturer; */
 133	0x02,       /*  __u8  iProduct; */
 134	0x01,       /*  __u8  iSerialNumber; */
 135	0x01        /*  __u8  bNumConfigurations; */
 136};
 137
 138/* usb 3.0 root hub device descriptor */
 139static const u8 usb3_rh_dev_descriptor[18] = {
 140	0x12,       /*  __u8  bLength; */
 141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 143
 144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 145	0x00,	    /*  __u8  bDeviceSubClass; */
 146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 148
 149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 152
 153	0x03,       /*  __u8  iManufacturer; */
 154	0x02,       /*  __u8  iProduct; */
 155	0x01,       /*  __u8  iSerialNumber; */
 156	0x01        /*  __u8  bNumConfigurations; */
 157};
 158
 159/* usb 2.0 root hub device descriptor */
 160static const u8 usb2_rh_dev_descriptor[18] = {
 161	0x12,       /*  __u8  bLength; */
 162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 163	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 164
 165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 166	0x00,	    /*  __u8  bDeviceSubClass; */
 167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 168	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 169
 170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 173
 174	0x03,       /*  __u8  iManufacturer; */
 175	0x02,       /*  __u8  iProduct; */
 176	0x01,       /*  __u8  iSerialNumber; */
 177	0x01        /*  __u8  bNumConfigurations; */
 178};
 179
 180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 181
 182/* usb 1.1 root hub device descriptor */
 183static const u8 usb11_rh_dev_descriptor[18] = {
 184	0x12,       /*  __u8  bLength; */
 185	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 186	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 187
 188	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 189	0x00,	    /*  __u8  bDeviceSubClass; */
 190	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 191	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 192
 193	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 194	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 195	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 196
 197	0x03,       /*  __u8  iManufacturer; */
 198	0x02,       /*  __u8  iProduct; */
 199	0x01,       /*  __u8  iSerialNumber; */
 200	0x01        /*  __u8  bNumConfigurations; */
 201};
 202
 203
 204/*-------------------------------------------------------------------------*/
 205
 206/* Configuration descriptors for our root hubs */
 207
 208static const u8 fs_rh_config_descriptor[] = {
 209
 210	/* one configuration */
 211	0x09,       /*  __u8  bLength; */
 212	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 213	0x19, 0x00, /*  __le16 wTotalLength; */
 214	0x01,       /*  __u8  bNumInterfaces; (1) */
 215	0x01,       /*  __u8  bConfigurationValue; */
 216	0x00,       /*  __u8  iConfiguration; */
 217	0xc0,       /*  __u8  bmAttributes;
 218				 Bit 7: must be set,
 219				     6: Self-powered,
 220				     5: Remote wakeup,
 221				     4..0: resvd */
 222	0x00,       /*  __u8  MaxPower; */
 223
 224	/* USB 1.1:
 225	 * USB 2.0, single TT organization (mandatory):
 226	 *	one interface, protocol 0
 227	 *
 228	 * USB 2.0, multiple TT organization (optional):
 229	 *	two interfaces, protocols 1 (like single TT)
 230	 *	and 2 (multiple TT mode) ... config is
 231	 *	sometimes settable
 232	 *	NOT IMPLEMENTED
 233	 */
 234
 235	/* one interface */
 236	0x09,       /*  __u8  if_bLength; */
 237	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 238	0x00,       /*  __u8  if_bInterfaceNumber; */
 239	0x00,       /*  __u8  if_bAlternateSetting; */
 240	0x01,       /*  __u8  if_bNumEndpoints; */
 241	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 242	0x00,       /*  __u8  if_bInterfaceSubClass; */
 243	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 244	0x00,       /*  __u8  if_iInterface; */
 245
 246	/* one endpoint (status change endpoint) */
 247	0x07,       /*  __u8  ep_bLength; */
 248	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 249	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 250	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 251	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 252	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 253};
 254
 255static const u8 hs_rh_config_descriptor[] = {
 256
 257	/* one configuration */
 258	0x09,       /*  __u8  bLength; */
 259	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 260	0x19, 0x00, /*  __le16 wTotalLength; */
 261	0x01,       /*  __u8  bNumInterfaces; (1) */
 262	0x01,       /*  __u8  bConfigurationValue; */
 263	0x00,       /*  __u8  iConfiguration; */
 264	0xc0,       /*  __u8  bmAttributes;
 265				 Bit 7: must be set,
 266				     6: Self-powered,
 267				     5: Remote wakeup,
 268				     4..0: resvd */
 269	0x00,       /*  __u8  MaxPower; */
 270
 271	/* USB 1.1:
 272	 * USB 2.0, single TT organization (mandatory):
 273	 *	one interface, protocol 0
 274	 *
 275	 * USB 2.0, multiple TT organization (optional):
 276	 *	two interfaces, protocols 1 (like single TT)
 277	 *	and 2 (multiple TT mode) ... config is
 278	 *	sometimes settable
 279	 *	NOT IMPLEMENTED
 280	 */
 281
 282	/* one interface */
 283	0x09,       /*  __u8  if_bLength; */
 284	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 285	0x00,       /*  __u8  if_bInterfaceNumber; */
 286	0x00,       /*  __u8  if_bAlternateSetting; */
 287	0x01,       /*  __u8  if_bNumEndpoints; */
 288	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 289	0x00,       /*  __u8  if_bInterfaceSubClass; */
 290	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 291	0x00,       /*  __u8  if_iInterface; */
 292
 293	/* one endpoint (status change endpoint) */
 294	0x07,       /*  __u8  ep_bLength; */
 295	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 296	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 297	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 298		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 299		     * see hub.c:hub_configure() for details. */
 300	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 301	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 302};
 303
 304static const u8 ss_rh_config_descriptor[] = {
 305	/* one configuration */
 306	0x09,       /*  __u8  bLength; */
 307	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 308	0x1f, 0x00, /*  __le16 wTotalLength; */
 309	0x01,       /*  __u8  bNumInterfaces; (1) */
 310	0x01,       /*  __u8  bConfigurationValue; */
 311	0x00,       /*  __u8  iConfiguration; */
 312	0xc0,       /*  __u8  bmAttributes;
 313				 Bit 7: must be set,
 314				     6: Self-powered,
 315				     5: Remote wakeup,
 316				     4..0: resvd */
 317	0x00,       /*  __u8  MaxPower; */
 318
 319	/* one interface */
 320	0x09,       /*  __u8  if_bLength; */
 321	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 322	0x00,       /*  __u8  if_bInterfaceNumber; */
 323	0x00,       /*  __u8  if_bAlternateSetting; */
 324	0x01,       /*  __u8  if_bNumEndpoints; */
 325	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 326	0x00,       /*  __u8  if_bInterfaceSubClass; */
 327	0x00,       /*  __u8  if_bInterfaceProtocol; */
 328	0x00,       /*  __u8  if_iInterface; */
 329
 330	/* one endpoint (status change endpoint) */
 331	0x07,       /*  __u8  ep_bLength; */
 332	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 333	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 334	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 335		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 336		     * see hub.c:hub_configure() for details. */
 337	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 338	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 339
 340	/* one SuperSpeed endpoint companion descriptor */
 341	0x06,        /* __u8 ss_bLength */
 342	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 343		     /* Companion */
 344	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 345	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 346	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 347};
 348
 349/* authorized_default behaviour:
 350 * -1 is authorized for all devices (leftover from wireless USB)
 351 * 0 is unauthorized for all devices
 352 * 1 is authorized for all devices
 353 * 2 is authorized for internal devices
 354 */
 355#define USB_AUTHORIZE_WIRED	-1
 356#define USB_AUTHORIZE_NONE	0
 357#define USB_AUTHORIZE_ALL	1
 358#define USB_AUTHORIZE_INTERNAL	2
 359
 360static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
 361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 362MODULE_PARM_DESC(authorized_default,
 363		"Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
 
 
 364/*-------------------------------------------------------------------------*/
 365
 366/**
 367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 368 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 369 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 370 * @len: Length (in bytes; may be odd) of descriptor buffer.
 371 *
 372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 373 * whichever is less.
 374 *
 375 * Note:
 376 * USB String descriptors can contain at most 126 characters; input
 377 * strings longer than that are truncated.
 378 */
 379static unsigned
 380ascii2desc(char const *s, u8 *buf, unsigned len)
 381{
 382	unsigned n, t = 2 + 2*strlen(s);
 383
 384	if (t > 254)
 385		t = 254;	/* Longest possible UTF string descriptor */
 386	if (len > t)
 387		len = t;
 388
 389	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 390
 391	n = len;
 392	while (n--) {
 393		*buf++ = t;
 394		if (!n--)
 395			break;
 396		*buf++ = t >> 8;
 397		t = (unsigned char)*s++;
 398	}
 399	return len;
 400}
 401
 402/**
 403 * rh_string() - provides string descriptors for root hub
 404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 405 * @hcd: the host controller for this root hub
 406 * @data: buffer for output packet
 407 * @len: length of the provided buffer
 408 *
 409 * Produces either a manufacturer, product or serial number string for the
 410 * virtual root hub device.
 411 *
 412 * Return: The number of bytes filled in: the length of the descriptor or
 413 * of the provided buffer, whichever is less.
 414 */
 415static unsigned
 416rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 417{
 418	char buf[100];
 419	char const *s;
 420	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 421
 422	/* language ids */
 423	switch (id) {
 424	case 0:
 425		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 426		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 427		if (len > 4)
 428			len = 4;
 429		memcpy(data, langids, len);
 430		return len;
 431	case 1:
 432		/* Serial number */
 433		s = hcd->self.bus_name;
 434		break;
 435	case 2:
 436		/* Product name */
 437		s = hcd->product_desc;
 438		break;
 439	case 3:
 440		/* Manufacturer */
 441		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 442			init_utsname()->release, hcd->driver->description);
 443		s = buf;
 444		break;
 445	default:
 446		/* Can't happen; caller guarantees it */
 447		return 0;
 448	}
 449
 450	return ascii2desc(s, data, len);
 451}
 452
 453
 454/* Root hub control transfers execute synchronously */
 455static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 456{
 457	struct usb_ctrlrequest *cmd;
 458	u16		typeReq, wValue, wIndex, wLength;
 459	u8		*ubuf = urb->transfer_buffer;
 460	unsigned	len = 0;
 461	int		status;
 462	u8		patch_wakeup = 0;
 463	u8		patch_protocol = 0;
 464	u16		tbuf_size;
 465	u8		*tbuf = NULL;
 466	const u8	*bufp;
 467
 468	might_sleep();
 469
 470	spin_lock_irq(&hcd_root_hub_lock);
 471	status = usb_hcd_link_urb_to_ep(hcd, urb);
 472	spin_unlock_irq(&hcd_root_hub_lock);
 473	if (status)
 474		return status;
 475	urb->hcpriv = hcd;	/* Indicate it's queued */
 476
 477	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 478	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 479	wValue   = le16_to_cpu (cmd->wValue);
 480	wIndex   = le16_to_cpu (cmd->wIndex);
 481	wLength  = le16_to_cpu (cmd->wLength);
 482
 483	if (wLength > urb->transfer_buffer_length)
 484		goto error;
 485
 486	/*
 487	 * tbuf should be at least as big as the
 488	 * USB hub descriptor.
 489	 */
 490	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 491	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 492	if (!tbuf) {
 493		status = -ENOMEM;
 494		goto err_alloc;
 495	}
 496
 497	bufp = tbuf;
 498
 499
 500	urb->actual_length = 0;
 501	switch (typeReq) {
 502
 503	/* DEVICE REQUESTS */
 504
 505	/* The root hub's remote wakeup enable bit is implemented using
 506	 * driver model wakeup flags.  If this system supports wakeup
 507	 * through USB, userspace may change the default "allow wakeup"
 508	 * policy through sysfs or these calls.
 509	 *
 510	 * Most root hubs support wakeup from downstream devices, for
 511	 * runtime power management (disabling USB clocks and reducing
 512	 * VBUS power usage).  However, not all of them do so; silicon,
 513	 * board, and BIOS bugs here are not uncommon, so these can't
 514	 * be treated quite like external hubs.
 515	 *
 516	 * Likewise, not all root hubs will pass wakeup events upstream,
 517	 * to wake up the whole system.  So don't assume root hub and
 518	 * controller capabilities are identical.
 519	 */
 520
 521	case DeviceRequest | USB_REQ_GET_STATUS:
 522		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 523					<< USB_DEVICE_REMOTE_WAKEUP)
 524				| (1 << USB_DEVICE_SELF_POWERED);
 525		tbuf[1] = 0;
 526		len = 2;
 527		break;
 528	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 529		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 530			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 531		else
 532			goto error;
 533		break;
 534	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 535		if (device_can_wakeup(&hcd->self.root_hub->dev)
 536				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 537			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 538		else
 539			goto error;
 540		break;
 541	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 542		tbuf[0] = 1;
 543		len = 1;
 544		fallthrough;
 545	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 546		break;
 547	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 548		switch (wValue & 0xff00) {
 549		case USB_DT_DEVICE << 8:
 550			switch (hcd->speed) {
 551			case HCD_USB32:
 552			case HCD_USB31:
 553				bufp = usb31_rh_dev_descriptor;
 554				break;
 555			case HCD_USB3:
 556				bufp = usb3_rh_dev_descriptor;
 557				break;
 
 
 
 558			case HCD_USB2:
 559				bufp = usb2_rh_dev_descriptor;
 560				break;
 561			case HCD_USB11:
 562				bufp = usb11_rh_dev_descriptor;
 563				break;
 564			default:
 565				goto error;
 566			}
 567			len = 18;
 568			if (hcd->has_tt)
 569				patch_protocol = 1;
 570			break;
 571		case USB_DT_CONFIG << 8:
 572			switch (hcd->speed) {
 573			case HCD_USB32:
 574			case HCD_USB31:
 575			case HCD_USB3:
 576				bufp = ss_rh_config_descriptor;
 577				len = sizeof ss_rh_config_descriptor;
 578				break;
 
 579			case HCD_USB2:
 580				bufp = hs_rh_config_descriptor;
 581				len = sizeof hs_rh_config_descriptor;
 582				break;
 583			case HCD_USB11:
 584				bufp = fs_rh_config_descriptor;
 585				len = sizeof fs_rh_config_descriptor;
 586				break;
 587			default:
 588				goto error;
 589			}
 590			if (device_can_wakeup(&hcd->self.root_hub->dev))
 591				patch_wakeup = 1;
 592			break;
 593		case USB_DT_STRING << 8:
 594			if ((wValue & 0xff) < 4)
 595				urb->actual_length = rh_string(wValue & 0xff,
 596						hcd, ubuf, wLength);
 597			else /* unsupported IDs --> "protocol stall" */
 598				goto error;
 599			break;
 600		case USB_DT_BOS << 8:
 601			goto nongeneric;
 602		default:
 603			goto error;
 604		}
 605		break;
 606	case DeviceRequest | USB_REQ_GET_INTERFACE:
 607		tbuf[0] = 0;
 608		len = 1;
 609		fallthrough;
 610	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 611		break;
 612	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 613		/* wValue == urb->dev->devaddr */
 614		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 615			wValue);
 616		break;
 617
 618	/* INTERFACE REQUESTS (no defined feature/status flags) */
 619
 620	/* ENDPOINT REQUESTS */
 621
 622	case EndpointRequest | USB_REQ_GET_STATUS:
 623		/* ENDPOINT_HALT flag */
 624		tbuf[0] = 0;
 625		tbuf[1] = 0;
 626		len = 2;
 627		fallthrough;
 628	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 629	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 630		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 631		break;
 632
 633	/* CLASS REQUESTS (and errors) */
 634
 635	default:
 636nongeneric:
 637		/* non-generic request */
 638		switch (typeReq) {
 639		case GetHubStatus:
 640			len = 4;
 641			break;
 642		case GetPortStatus:
 643			if (wValue == HUB_PORT_STATUS)
 644				len = 4;
 645			else
 646				/* other port status types return 8 bytes */
 647				len = 8;
 648			break;
 649		case GetHubDescriptor:
 650			len = sizeof (struct usb_hub_descriptor);
 651			break;
 652		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 653			/* len is returned by hub_control */
 654			break;
 655		}
 656		status = hcd->driver->hub_control (hcd,
 657			typeReq, wValue, wIndex,
 658			tbuf, wLength);
 659
 660		if (typeReq == GetHubDescriptor)
 661			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 662				(struct usb_hub_descriptor *)tbuf);
 663		break;
 664error:
 665		/* "protocol stall" on error */
 666		status = -EPIPE;
 667	}
 668
 669	if (status < 0) {
 670		len = 0;
 671		if (status != -EPIPE) {
 672			dev_dbg (hcd->self.controller,
 673				"CTRL: TypeReq=0x%x val=0x%x "
 674				"idx=0x%x len=%d ==> %d\n",
 675				typeReq, wValue, wIndex,
 676				wLength, status);
 677		}
 678	} else if (status > 0) {
 679		/* hub_control may return the length of data copied. */
 680		len = status;
 681		status = 0;
 682	}
 683	if (len) {
 684		if (urb->transfer_buffer_length < len)
 685			len = urb->transfer_buffer_length;
 686		urb->actual_length = len;
 687		/* always USB_DIR_IN, toward host */
 688		memcpy (ubuf, bufp, len);
 689
 690		/* report whether RH hardware supports remote wakeup */
 691		if (patch_wakeup &&
 692				len > offsetof (struct usb_config_descriptor,
 693						bmAttributes))
 694			((struct usb_config_descriptor *)ubuf)->bmAttributes
 695				|= USB_CONFIG_ATT_WAKEUP;
 696
 697		/* report whether RH hardware has an integrated TT */
 698		if (patch_protocol &&
 699				len > offsetof(struct usb_device_descriptor,
 700						bDeviceProtocol))
 701			((struct usb_device_descriptor *) ubuf)->
 702				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 703	}
 704
 705	kfree(tbuf);
 706 err_alloc:
 707
 708	/* any errors get returned through the urb completion */
 709	spin_lock_irq(&hcd_root_hub_lock);
 710	usb_hcd_unlink_urb_from_ep(hcd, urb);
 711	usb_hcd_giveback_urb(hcd, urb, status);
 712	spin_unlock_irq(&hcd_root_hub_lock);
 713	return 0;
 714}
 715
 716/*-------------------------------------------------------------------------*/
 717
 718/*
 719 * Root Hub interrupt transfers are polled using a timer if the
 720 * driver requests it; otherwise the driver is responsible for
 721 * calling usb_hcd_poll_rh_status() when an event occurs.
 722 *
 723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
 
 724 */
 725void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 726{
 727	struct urb	*urb;
 728	int		length;
 729	int		status;
 730	unsigned long	flags;
 731	char		buffer[6];	/* Any root hubs with > 31 ports? */
 732
 733	if (unlikely(!hcd->rh_pollable))
 734		return;
 735	if (!hcd->uses_new_polling && !hcd->status_urb)
 736		return;
 737
 738	length = hcd->driver->hub_status_data(hcd, buffer);
 739	if (length > 0) {
 740
 741		/* try to complete the status urb */
 742		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 743		urb = hcd->status_urb;
 744		if (urb) {
 745			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 746			hcd->status_urb = NULL;
 747			if (urb->transfer_buffer_length >= length) {
 748				status = 0;
 749			} else {
 750				status = -EOVERFLOW;
 751				length = urb->transfer_buffer_length;
 752			}
 753			urb->actual_length = length;
 754			memcpy(urb->transfer_buffer, buffer, length);
 755
 756			usb_hcd_unlink_urb_from_ep(hcd, urb);
 757			usb_hcd_giveback_urb(hcd, urb, status);
 758		} else {
 759			length = 0;
 760			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 761		}
 762		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 763	}
 764
 765	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 766	 * exceed that limit if HZ is 100. The math is more clunky than
 767	 * maybe expected, this is to make sure that all timers for USB devices
 768	 * fire at the same time to give the CPU a break in between */
 769	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 770			(length == 0 && hcd->status_urb != NULL))
 771		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 772}
 773EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 774
 775/* timer callback */
 776static void rh_timer_func (struct timer_list *t)
 777{
 778	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 779
 780	usb_hcd_poll_rh_status(_hcd);
 781}
 782
 783/*-------------------------------------------------------------------------*/
 784
 785static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 786{
 787	int		retval;
 788	unsigned long	flags;
 789	unsigned	len = 1 + (urb->dev->maxchild / 8);
 790
 791	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 792	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 793		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 794		retval = -EINVAL;
 795		goto done;
 796	}
 797
 798	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 799	if (retval)
 800		goto done;
 801
 802	hcd->status_urb = urb;
 803	urb->hcpriv = hcd;	/* indicate it's queued */
 804	if (!hcd->uses_new_polling)
 805		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 806
 807	/* If a status change has already occurred, report it ASAP */
 808	else if (HCD_POLL_PENDING(hcd))
 809		mod_timer(&hcd->rh_timer, jiffies);
 810	retval = 0;
 811 done:
 812	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 813	return retval;
 814}
 815
 816static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 817{
 818	if (usb_endpoint_xfer_int(&urb->ep->desc))
 819		return rh_queue_status (hcd, urb);
 820	if (usb_endpoint_xfer_control(&urb->ep->desc))
 821		return rh_call_control (hcd, urb);
 822	return -EINVAL;
 823}
 824
 825/*-------------------------------------------------------------------------*/
 826
 827/* Unlinks of root-hub control URBs are legal, but they don't do anything
 828 * since these URBs always execute synchronously.
 829 */
 830static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 831{
 832	unsigned long	flags;
 833	int		rc;
 834
 835	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 836	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 837	if (rc)
 838		goto done;
 839
 840	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 841		;	/* Do nothing */
 842
 843	} else {				/* Status URB */
 844		if (!hcd->uses_new_polling)
 845			del_timer (&hcd->rh_timer);
 846		if (urb == hcd->status_urb) {
 847			hcd->status_urb = NULL;
 848			usb_hcd_unlink_urb_from_ep(hcd, urb);
 849			usb_hcd_giveback_urb(hcd, urb, status);
 850		}
 851	}
 852 done:
 853	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 854	return rc;
 855}
 856
 857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858/*-------------------------------------------------------------------------*/
 859
 860/**
 861 * usb_bus_init - shared initialization code
 862 * @bus: the bus structure being initialized
 863 *
 864 * This code is used to initialize a usb_bus structure, memory for which is
 865 * separately managed.
 866 */
 867static void usb_bus_init (struct usb_bus *bus)
 868{
 869	memset(&bus->devmap, 0, sizeof(bus->devmap));
 870
 871	bus->devnum_next = 1;
 872
 873	bus->root_hub = NULL;
 874	bus->busnum = -1;
 875	bus->bandwidth_allocated = 0;
 876	bus->bandwidth_int_reqs  = 0;
 877	bus->bandwidth_isoc_reqs = 0;
 878	mutex_init(&bus->devnum_next_mutex);
 
 879}
 880
 881/*-------------------------------------------------------------------------*/
 882
 883/**
 884 * usb_register_bus - registers the USB host controller with the usb core
 885 * @bus: pointer to the bus to register
 886 *
 887 * Context: task context, might sleep.
 888 *
 889 * Assigns a bus number, and links the controller into usbcore data
 890 * structures so that it can be seen by scanning the bus list.
 891 *
 892 * Return: 0 if successful. A negative error code otherwise.
 893 */
 894static int usb_register_bus(struct usb_bus *bus)
 895{
 896	int result = -E2BIG;
 897	int busnum;
 898
 899	mutex_lock(&usb_bus_idr_lock);
 900	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 901	if (busnum < 0) {
 902		pr_err("%s: failed to get bus number\n", usbcore_name);
 903		goto error_find_busnum;
 904	}
 
 905	bus->busnum = busnum;
 906	mutex_unlock(&usb_bus_idr_lock);
 
 
 
 907
 908	usb_notify_add_bus(bus);
 909
 910	dev_info (bus->controller, "new USB bus registered, assigned bus "
 911		  "number %d\n", bus->busnum);
 912	return 0;
 913
 914error_find_busnum:
 915	mutex_unlock(&usb_bus_idr_lock);
 916	return result;
 917}
 918
 919/**
 920 * usb_deregister_bus - deregisters the USB host controller
 921 * @bus: pointer to the bus to deregister
 922 *
 923 * Context: task context, might sleep.
 924 *
 925 * Recycles the bus number, and unlinks the controller from usbcore data
 926 * structures so that it won't be seen by scanning the bus list.
 927 */
 928static void usb_deregister_bus (struct usb_bus *bus)
 929{
 930	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 931
 932	/*
 933	 * NOTE: make sure that all the devices are removed by the
 934	 * controller code, as well as having it call this when cleaning
 935	 * itself up
 936	 */
 937	mutex_lock(&usb_bus_idr_lock);
 938	idr_remove(&usb_bus_idr, bus->busnum);
 939	mutex_unlock(&usb_bus_idr_lock);
 940
 941	usb_notify_remove_bus(bus);
 
 
 942}
 943
 944/**
 945 * register_root_hub - called by usb_add_hcd() to register a root hub
 946 * @hcd: host controller for this root hub
 947 *
 948 * This function registers the root hub with the USB subsystem.  It sets up
 949 * the device properly in the device tree and then calls usb_new_device()
 950 * to register the usb device.  It also assigns the root hub's USB address
 951 * (always 1).
 952 *
 953 * Return: 0 if successful. A negative error code otherwise.
 954 */
 955static int register_root_hub(struct usb_hcd *hcd)
 956{
 957	struct device *parent_dev = hcd->self.controller;
 958	struct usb_device *usb_dev = hcd->self.root_hub;
 959	struct usb_device_descriptor *descr;
 960	const int devnum = 1;
 961	int retval;
 962
 963	usb_dev->devnum = devnum;
 964	usb_dev->bus->devnum_next = devnum + 1;
 965	set_bit(devnum, usb_dev->bus->devmap);
 
 
 966	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 967
 968	mutex_lock(&usb_bus_idr_lock);
 969
 970	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 971	descr = usb_get_device_descriptor(usb_dev);
 972	if (IS_ERR(descr)) {
 973		retval = PTR_ERR(descr);
 974		mutex_unlock(&usb_bus_idr_lock);
 975		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 976				dev_name(&usb_dev->dev), retval);
 977		return retval;
 978	}
 979	usb_dev->descriptor = *descr;
 980	kfree(descr);
 981
 982	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 983		retval = usb_get_bos_descriptor(usb_dev);
 984		if (!retval) {
 985			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
 986		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
 987			mutex_unlock(&usb_bus_idr_lock);
 988			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
 989					dev_name(&usb_dev->dev), retval);
 990			return retval;
 991		}
 992	}
 993
 994	retval = usb_new_device (usb_dev);
 995	if (retval) {
 996		dev_err (parent_dev, "can't register root hub for %s, %d\n",
 997				dev_name(&usb_dev->dev), retval);
 998	} else {
 999		spin_lock_irq (&hcd_root_hub_lock);
1000		hcd->rh_registered = 1;
1001		spin_unlock_irq (&hcd_root_hub_lock);
1002
1003		/* Did the HC die before the root hub was registered? */
1004		if (HCD_DEAD(hcd))
1005			usb_hc_died (hcd);	/* This time clean up */
1006	}
1007	mutex_unlock(&usb_bus_idr_lock);
1008
1009	return retval;
1010}
1011
1012/*
1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014 * @bus: the bus which the root hub belongs to
1015 * @portnum: the port which is being resumed
1016 *
1017 * HCDs should call this function when they know that a resume signal is
1018 * being sent to a root-hub port.  The root hub will be prevented from
1019 * going into autosuspend until usb_hcd_end_port_resume() is called.
1020 *
1021 * The bus's private lock must be held by the caller.
1022 */
1023void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024{
1025	unsigned bit = 1 << portnum;
1026
1027	if (!(bus->resuming_ports & bit)) {
1028		bus->resuming_ports |= bit;
1029		pm_runtime_get_noresume(&bus->root_hub->dev);
1030	}
1031}
1032EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033
1034/*
1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal has
1040 * stopped being sent to a root-hub port.  The root hub will be allowed to
1041 * autosuspend again.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
1045void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046{
1047	unsigned bit = 1 << portnum;
1048
1049	if (bus->resuming_ports & bit) {
1050		bus->resuming_ports &= ~bit;
1051		pm_runtime_put_noidle(&bus->root_hub->dev);
1052	}
1053}
1054EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055
1056/*-------------------------------------------------------------------------*/
1057
1058/**
1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061 * @is_input: true iff the transaction sends data to the host
1062 * @isoc: true for isochronous transactions, false for interrupt ones
1063 * @bytecount: how many bytes in the transaction.
1064 *
1065 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066 *
1067 * Note:
1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069 * scheduled in software, this function is only used for such scheduling.
1070 */
1071long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072{
1073	unsigned long	tmp;
1074
1075	switch (speed) {
1076	case USB_SPEED_LOW: 	/* INTR only */
1077		if (is_input) {
1078			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080		} else {
1081			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083		}
1084	case USB_SPEED_FULL:	/* ISOC or INTR */
1085		if (isoc) {
1086			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088		} else {
1089			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090			return 9107L + BW_HOST_DELAY + tmp;
1091		}
1092	case USB_SPEED_HIGH:	/* ISOC or INTR */
1093		/* FIXME adjust for input vs output */
1094		if (isoc)
1095			tmp = HS_NSECS_ISO (bytecount);
1096		else
1097			tmp = HS_NSECS (bytecount);
1098		return tmp;
1099	default:
1100		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101		return -1;
1102	}
1103}
1104EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105
1106
1107/*-------------------------------------------------------------------------*/
1108
1109/*
1110 * Generic HC operations.
1111 */
1112
1113/*-------------------------------------------------------------------------*/
1114
1115/**
1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117 * @hcd: host controller to which @urb was submitted
1118 * @urb: URB being submitted
1119 *
1120 * Host controller drivers should call this routine in their enqueue()
1121 * method.  The HCD's private spinlock must be held and interrupts must
1122 * be disabled.  The actions carried out here are required for URB
1123 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124 *
1125 * Return: 0 for no error, otherwise a negative error code (in which case
1126 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128 * the private spinlock and returning.
1129 */
1130int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131{
1132	int		rc = 0;
1133
1134	spin_lock(&hcd_urb_list_lock);
1135
1136	/* Check that the URB isn't being killed */
1137	if (unlikely(atomic_read(&urb->reject))) {
1138		rc = -EPERM;
1139		goto done;
1140	}
1141
1142	if (unlikely(!urb->ep->enabled)) {
1143		rc = -ENOENT;
1144		goto done;
1145	}
1146
1147	if (unlikely(!urb->dev->can_submit)) {
1148		rc = -EHOSTUNREACH;
1149		goto done;
1150	}
1151
1152	/*
1153	 * Check the host controller's state and add the URB to the
1154	 * endpoint's queue.
1155	 */
1156	if (HCD_RH_RUNNING(hcd)) {
1157		urb->unlinked = 0;
1158		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159	} else {
1160		rc = -ESHUTDOWN;
1161		goto done;
1162	}
1163 done:
1164	spin_unlock(&hcd_urb_list_lock);
1165	return rc;
1166}
1167EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168
1169/**
1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171 * @hcd: host controller to which @urb was submitted
1172 * @urb: URB being checked for unlinkability
1173 * @status: error code to store in @urb if the unlink succeeds
1174 *
1175 * Host controller drivers should call this routine in their dequeue()
1176 * method.  The HCD's private spinlock must be held and interrupts must
1177 * be disabled.  The actions carried out here are required for making
1178 * sure than an unlink is valid.
1179 *
1180 * Return: 0 for no error, otherwise a negative error code (in which case
1181 * the dequeue() method must fail).  The possible error codes are:
1182 *
1183 *	-EIDRM: @urb was not submitted or has already completed.
1184 *		The completion function may not have been called yet.
1185 *
1186 *	-EBUSY: @urb has already been unlinked.
1187 */
1188int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189		int status)
1190{
1191	struct list_head	*tmp;
1192
1193	/* insist the urb is still queued */
1194	list_for_each(tmp, &urb->ep->urb_list) {
1195		if (tmp == &urb->urb_list)
1196			break;
1197	}
1198	if (tmp != &urb->urb_list)
1199		return -EIDRM;
1200
1201	/* Any status except -EINPROGRESS means something already started to
1202	 * unlink this URB from the hardware.  So there's no more work to do.
1203	 */
1204	if (urb->unlinked)
1205		return -EBUSY;
1206	urb->unlinked = status;
1207	return 0;
1208}
1209EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210
1211/**
1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213 * @hcd: host controller to which @urb was submitted
1214 * @urb: URB being unlinked
1215 *
1216 * Host controller drivers should call this routine before calling
1217 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1218 * interrupts must be disabled.  The actions carried out here are required
1219 * for URB completion.
1220 */
1221void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222{
1223	/* clear all state linking urb to this dev (and hcd) */
1224	spin_lock(&hcd_urb_list_lock);
1225	list_del_init(&urb->urb_list);
1226	spin_unlock(&hcd_urb_list_lock);
1227}
1228EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229
1230/*
1231 * Some usb host controllers can only perform dma using a small SRAM area,
1232 * or have restrictions on addressable DRAM.
1233 * The usb core itself is however optimized for host controllers that can dma
1234 * using regular system memory - like pci devices doing bus mastering.
1235 *
1236 * To support host controllers with limited dma capabilities we provide dma
1237 * bounce buffers. This feature can be enabled by initializing
1238 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239 *
1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241 * data for dma using the genalloc API.
 
 
 
1242 *
1243 * So, to summarize...
1244 *
1245 * - We need "local" memory, canonical example being
1246 *   a small SRAM on a discrete controller being the
1247 *   only memory that the controller can read ...
1248 *   (a) "normal" kernel memory is no good, and
1249 *   (b) there's not enough to share
1250 *
 
 
 
1251 * - So we use that, even though the primary requirement
1252 *   is that the memory be "local" (hence addressable
1253 *   by that device), not "coherent".
1254 *
1255 */
1256
1257static int hcd_alloc_coherent(struct usb_bus *bus,
1258			      gfp_t mem_flags, dma_addr_t *dma_handle,
1259			      void **vaddr_handle, size_t size,
1260			      enum dma_data_direction dir)
1261{
1262	unsigned char *vaddr;
1263
1264	if (*vaddr_handle == NULL) {
1265		WARN_ON_ONCE(1);
1266		return -EFAULT;
1267	}
1268
1269	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270				 mem_flags, dma_handle);
1271	if (!vaddr)
1272		return -ENOMEM;
1273
1274	/*
1275	 * Store the virtual address of the buffer at the end
1276	 * of the allocated dma buffer. The size of the buffer
1277	 * may be uneven so use unaligned functions instead
1278	 * of just rounding up. It makes sense to optimize for
1279	 * memory footprint over access speed since the amount
1280	 * of memory available for dma may be limited.
1281	 */
1282	put_unaligned((unsigned long)*vaddr_handle,
1283		      (unsigned long *)(vaddr + size));
1284
1285	if (dir == DMA_TO_DEVICE)
1286		memcpy(vaddr, *vaddr_handle, size);
1287
1288	*vaddr_handle = vaddr;
1289	return 0;
1290}
1291
1292static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293			      void **vaddr_handle, size_t size,
1294			      enum dma_data_direction dir)
1295{
1296	unsigned char *vaddr = *vaddr_handle;
1297
1298	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299
1300	if (dir == DMA_FROM_DEVICE)
1301		memcpy(vaddr, *vaddr_handle, size);
1302
1303	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304
1305	*vaddr_handle = vaddr;
1306	*dma_handle = 0;
1307}
1308
1309void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310{
1311	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313		dma_unmap_single(hcd->self.sysdev,
1314				urb->setup_dma,
1315				sizeof(struct usb_ctrlrequest),
1316				DMA_TO_DEVICE);
1317	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318		hcd_free_coherent(urb->dev->bus,
1319				&urb->setup_dma,
1320				(void **) &urb->setup_packet,
1321				sizeof(struct usb_ctrlrequest),
1322				DMA_TO_DEVICE);
1323
1324	/* Make it safe to call this routine more than once */
1325	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326}
1327EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328
1329static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330{
1331	if (hcd->driver->unmap_urb_for_dma)
1332		hcd->driver->unmap_urb_for_dma(hcd, urb);
1333	else
1334		usb_hcd_unmap_urb_for_dma(hcd, urb);
1335}
1336
1337void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338{
1339	enum dma_data_direction dir;
1340
1341	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342
1343	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345	    (urb->transfer_flags & URB_DMA_MAP_SG))
1346		dma_unmap_sg(hcd->self.sysdev,
1347				urb->sg,
1348				urb->num_sgs,
1349				dir);
1350	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1352		dma_unmap_page(hcd->self.sysdev,
1353				urb->transfer_dma,
1354				urb->transfer_buffer_length,
1355				dir);
1356	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358		dma_unmap_single(hcd->self.sysdev,
1359				urb->transfer_dma,
1360				urb->transfer_buffer_length,
1361				dir);
1362	else if (urb->transfer_flags & URB_MAP_LOCAL)
1363		hcd_free_coherent(urb->dev->bus,
1364				&urb->transfer_dma,
1365				&urb->transfer_buffer,
1366				urb->transfer_buffer_length,
1367				dir);
1368
1369	/* Make it safe to call this routine more than once */
1370	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1371			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1372}
1373EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1374
1375static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1376			   gfp_t mem_flags)
1377{
1378	if (hcd->driver->map_urb_for_dma)
1379		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1380	else
1381		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1382}
1383
1384int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1385			    gfp_t mem_flags)
1386{
1387	enum dma_data_direction dir;
1388	int ret = 0;
1389
1390	/* Map the URB's buffers for DMA access.
1391	 * Lower level HCD code should use *_dma exclusively,
1392	 * unless it uses pio or talks to another transport,
1393	 * or uses the provided scatter gather list for bulk.
1394	 */
1395
1396	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1397		if (hcd->self.uses_pio_for_control)
1398			return ret;
1399		if (hcd->localmem_pool) {
 
 
 
 
 
 
 
 
 
 
1400			ret = hcd_alloc_coherent(
1401					urb->dev->bus, mem_flags,
1402					&urb->setup_dma,
1403					(void **)&urb->setup_packet,
1404					sizeof(struct usb_ctrlrequest),
1405					DMA_TO_DEVICE);
1406			if (ret)
1407				return ret;
1408			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1409		} else if (hcd_uses_dma(hcd)) {
1410			if (object_is_on_stack(urb->setup_packet)) {
1411				WARN_ONCE(1, "setup packet is on stack\n");
1412				return -EAGAIN;
1413			}
1414
1415			urb->setup_dma = dma_map_single(
1416					hcd->self.sysdev,
1417					urb->setup_packet,
1418					sizeof(struct usb_ctrlrequest),
1419					DMA_TO_DEVICE);
1420			if (dma_mapping_error(hcd->self.sysdev,
1421						urb->setup_dma))
1422				return -EAGAIN;
1423			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1424		}
1425	}
1426
1427	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1428	if (urb->transfer_buffer_length != 0
1429	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1430		if (hcd->localmem_pool) {
1431			ret = hcd_alloc_coherent(
1432					urb->dev->bus, mem_flags,
1433					&urb->transfer_dma,
1434					&urb->transfer_buffer,
1435					urb->transfer_buffer_length,
1436					dir);
1437			if (ret == 0)
1438				urb->transfer_flags |= URB_MAP_LOCAL;
1439		} else if (hcd_uses_dma(hcd)) {
1440			if (urb->num_sgs) {
1441				int n;
1442
1443				/* We don't support sg for isoc transfers ! */
1444				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1445					WARN_ON(1);
1446					return -EINVAL;
1447				}
1448
1449				n = dma_map_sg(
1450						hcd->self.sysdev,
1451						urb->sg,
1452						urb->num_sgs,
1453						dir);
1454				if (!n)
1455					ret = -EAGAIN;
1456				else
1457					urb->transfer_flags |= URB_DMA_MAP_SG;
1458				urb->num_mapped_sgs = n;
1459				if (n != urb->num_sgs)
1460					urb->transfer_flags |=
1461							URB_DMA_SG_COMBINED;
1462			} else if (urb->sg) {
1463				struct scatterlist *sg = urb->sg;
1464				urb->transfer_dma = dma_map_page(
1465						hcd->self.sysdev,
1466						sg_page(sg),
1467						sg->offset,
1468						urb->transfer_buffer_length,
1469						dir);
1470				if (dma_mapping_error(hcd->self.sysdev,
1471						urb->transfer_dma))
1472					ret = -EAGAIN;
1473				else
1474					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1475			} else if (object_is_on_stack(urb->transfer_buffer)) {
1476				WARN_ONCE(1, "transfer buffer is on stack\n");
1477				ret = -EAGAIN;
1478			} else {
1479				urb->transfer_dma = dma_map_single(
1480						hcd->self.sysdev,
1481						urb->transfer_buffer,
1482						urb->transfer_buffer_length,
1483						dir);
1484				if (dma_mapping_error(hcd->self.sysdev,
1485						urb->transfer_dma))
1486					ret = -EAGAIN;
1487				else
1488					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1489			}
 
 
 
 
 
 
 
 
 
1490		}
1491		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1492				URB_SETUP_MAP_LOCAL)))
1493			usb_hcd_unmap_urb_for_dma(hcd, urb);
1494	}
1495	return ret;
1496}
1497EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1498
1499/*-------------------------------------------------------------------------*/
1500
1501/* may be called in any context with a valid urb->dev usecount
1502 * caller surrenders "ownership" of urb
1503 * expects usb_submit_urb() to have sanity checked and conditioned all
1504 * inputs in the urb
1505 */
1506int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1507{
1508	int			status;
1509	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1510
1511	/* increment urb's reference count as part of giving it to the HCD
1512	 * (which will control it).  HCD guarantees that it either returns
1513	 * an error or calls giveback(), but not both.
1514	 */
1515	usb_get_urb(urb);
1516	atomic_inc(&urb->use_count);
1517	atomic_inc(&urb->dev->urbnum);
1518	usbmon_urb_submit(&hcd->self, urb);
1519
1520	/* NOTE requirements on root-hub callers (usbfs and the hub
1521	 * driver, for now):  URBs' urb->transfer_buffer must be
1522	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1523	 * they could clobber root hub response data.  Also, control
1524	 * URBs must be submitted in process context with interrupts
1525	 * enabled.
1526	 */
1527
1528	if (is_root_hub(urb->dev)) {
1529		status = rh_urb_enqueue(hcd, urb);
1530	} else {
1531		status = map_urb_for_dma(hcd, urb, mem_flags);
1532		if (likely(status == 0)) {
1533			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1534			if (unlikely(status))
1535				unmap_urb_for_dma(hcd, urb);
1536		}
1537	}
1538
1539	if (unlikely(status)) {
1540		usbmon_urb_submit_error(&hcd->self, urb, status);
1541		urb->hcpriv = NULL;
1542		INIT_LIST_HEAD(&urb->urb_list);
1543		atomic_dec(&urb->use_count);
1544		/*
1545		 * Order the write of urb->use_count above before the read
1546		 * of urb->reject below.  Pairs with the memory barriers in
1547		 * usb_kill_urb() and usb_poison_urb().
1548		 */
1549		smp_mb__after_atomic();
1550
1551		atomic_dec(&urb->dev->urbnum);
1552		if (atomic_read(&urb->reject))
1553			wake_up(&usb_kill_urb_queue);
1554		usb_put_urb(urb);
1555	}
1556	return status;
1557}
1558
1559/*-------------------------------------------------------------------------*/
1560
1561/* this makes the hcd giveback() the urb more quickly, by kicking it
1562 * off hardware queues (which may take a while) and returning it as
1563 * soon as practical.  we've already set up the urb's return status,
1564 * but we can't know if the callback completed already.
1565 */
1566static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1567{
1568	int		value;
1569
1570	if (is_root_hub(urb->dev))
1571		value = usb_rh_urb_dequeue(hcd, urb, status);
1572	else {
1573
1574		/* The only reason an HCD might fail this call is if
1575		 * it has not yet fully queued the urb to begin with.
1576		 * Such failures should be harmless. */
1577		value = hcd->driver->urb_dequeue(hcd, urb, status);
1578	}
1579	return value;
1580}
1581
1582/*
1583 * called in any context
1584 *
1585 * caller guarantees urb won't be recycled till both unlink()
1586 * and the urb's completion function return
1587 */
1588int usb_hcd_unlink_urb (struct urb *urb, int status)
1589{
1590	struct usb_hcd		*hcd;
1591	struct usb_device	*udev = urb->dev;
1592	int			retval = -EIDRM;
1593	unsigned long		flags;
1594
1595	/* Prevent the device and bus from going away while
1596	 * the unlink is carried out.  If they are already gone
1597	 * then urb->use_count must be 0, since disconnected
1598	 * devices can't have any active URBs.
1599	 */
1600	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1601	if (atomic_read(&urb->use_count) > 0) {
1602		retval = 0;
1603		usb_get_dev(udev);
1604	}
1605	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1606	if (retval == 0) {
1607		hcd = bus_to_hcd(urb->dev->bus);
1608		retval = unlink1(hcd, urb, status);
1609		if (retval == 0)
1610			retval = -EINPROGRESS;
1611		else if (retval != -EIDRM && retval != -EBUSY)
1612			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1613					urb, retval);
1614		usb_put_dev(udev);
1615	}
 
 
 
 
 
 
1616	return retval;
1617}
1618
1619/*-------------------------------------------------------------------------*/
1620
1621static void __usb_hcd_giveback_urb(struct urb *urb)
1622{
1623	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1624	struct usb_anchor *anchor = urb->anchor;
1625	int status = urb->unlinked;
1626	unsigned long flags;
1627
1628	urb->hcpriv = NULL;
1629	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1630	    urb->actual_length < urb->transfer_buffer_length &&
1631	    !status))
1632		status = -EREMOTEIO;
1633
1634	unmap_urb_for_dma(hcd, urb);
1635	usbmon_urb_complete(&hcd->self, urb, status);
1636	usb_anchor_suspend_wakeups(anchor);
1637	usb_unanchor_urb(urb);
1638	if (likely(status == 0))
1639		usb_led_activity(USB_LED_EVENT_HOST);
1640
1641	/* pass ownership to the completion handler */
1642	urb->status = status;
 
1643	/*
1644	 * Only collect coverage in the softirq context and disable interrupts
1645	 * to avoid scenarios with nested remote coverage collection sections
1646	 * that KCOV does not support.
1647	 * See the comment next to kcov_remote_start_usb_softirq() for details.
 
 
 
 
1648	 */
1649	flags = kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650	urb->complete(urb);
1651	kcov_remote_stop_softirq(flags);
1652
1653	usb_anchor_resume_wakeups(anchor);
1654	atomic_dec(&urb->use_count);
1655	/*
1656	 * Order the write of urb->use_count above before the read
1657	 * of urb->reject below.  Pairs with the memory barriers in
1658	 * usb_kill_urb() and usb_poison_urb().
1659	 */
1660	smp_mb__after_atomic();
1661
1662	if (unlikely(atomic_read(&urb->reject)))
1663		wake_up(&usb_kill_urb_queue);
1664	usb_put_urb(urb);
1665}
1666
1667static void usb_giveback_urb_bh(struct work_struct *work)
1668{
1669	struct giveback_urb_bh *bh =
1670		container_of(work, struct giveback_urb_bh, bh);
1671	struct list_head local_list;
1672
1673	spin_lock_irq(&bh->lock);
1674	bh->running = true;
 
1675	list_replace_init(&bh->head, &local_list);
1676	spin_unlock_irq(&bh->lock);
1677
1678	while (!list_empty(&local_list)) {
1679		struct urb *urb;
1680
1681		urb = list_entry(local_list.next, struct urb, urb_list);
1682		list_del_init(&urb->urb_list);
1683		bh->completing_ep = urb->ep;
1684		__usb_hcd_giveback_urb(urb);
1685		bh->completing_ep = NULL;
1686	}
1687
1688	/*
1689	 * giveback new URBs next time to prevent this function
1690	 * from not exiting for a long time.
1691	 */
1692	spin_lock_irq(&bh->lock);
1693	if (!list_empty(&bh->head)) {
1694		if (bh->high_prio)
1695			queue_work(system_bh_highpri_wq, &bh->bh);
1696		else
1697			queue_work(system_bh_wq, &bh->bh);
1698	}
1699	bh->running = false;
1700	spin_unlock_irq(&bh->lock);
1701}
1702
1703/**
1704 * usb_hcd_giveback_urb - return URB from HCD to device driver
1705 * @hcd: host controller returning the URB
1706 * @urb: urb being returned to the USB device driver.
1707 * @status: completion status code for the URB.
1708 *
1709 * Context: atomic. The completion callback is invoked in caller's context.
1710 * For HCDs with HCD_BH flag set, the completion callback is invoked in BH
1711 * context (except for URBs submitted to the root hub which always complete in
1712 * caller's context).
1713 *
1714 * This hands the URB from HCD to its USB device driver, using its
1715 * completion function.  The HCD has freed all per-urb resources
1716 * (and is done using urb->hcpriv).  It also released all HCD locks;
1717 * the device driver won't cause problems if it frees, modifies,
1718 * or resubmits this URB.
1719 *
1720 * If @urb was unlinked, the value of @status will be overridden by
1721 * @urb->unlinked.  Erroneous short transfers are detected in case
1722 * the HCD hasn't checked for them.
1723 */
1724void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1725{
1726	struct giveback_urb_bh *bh;
1727	bool running;
1728
1729	/* pass status to BH via unlinked */
1730	if (likely(!urb->unlinked))
1731		urb->unlinked = status;
1732
1733	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1734		__usb_hcd_giveback_urb(urb);
1735		return;
1736	}
1737
1738	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1739		bh = &hcd->high_prio_bh;
1740	else
 
1741		bh = &hcd->low_prio_bh;
 
 
1742
1743	spin_lock(&bh->lock);
1744	list_add_tail(&urb->urb_list, &bh->head);
1745	running = bh->running;
1746	spin_unlock(&bh->lock);
1747
1748	if (running)
1749		;
1750	else if (bh->high_prio)
1751		queue_work(system_bh_highpri_wq, &bh->bh);
1752	else
1753		queue_work(system_bh_wq, &bh->bh);
1754}
1755EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1756
1757/*-------------------------------------------------------------------------*/
1758
1759/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1760 * queue to drain completely.  The caller must first insure that no more
1761 * URBs can be submitted for this endpoint.
1762 */
1763void usb_hcd_flush_endpoint(struct usb_device *udev,
1764		struct usb_host_endpoint *ep)
1765{
1766	struct usb_hcd		*hcd;
1767	struct urb		*urb;
1768
1769	if (!ep)
1770		return;
1771	might_sleep();
1772	hcd = bus_to_hcd(udev->bus);
1773
1774	/* No more submits can occur */
1775	spin_lock_irq(&hcd_urb_list_lock);
1776rescan:
1777	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1778		int	is_in;
1779
1780		if (urb->unlinked)
1781			continue;
1782		usb_get_urb (urb);
1783		is_in = usb_urb_dir_in(urb);
1784		spin_unlock(&hcd_urb_list_lock);
1785
1786		/* kick hcd */
1787		unlink1(hcd, urb, -ESHUTDOWN);
1788		dev_dbg (hcd->self.controller,
1789			"shutdown urb %pK ep%d%s-%s\n",
1790			urb, usb_endpoint_num(&ep->desc),
1791			is_in ? "in" : "out",
1792			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1793		usb_put_urb (urb);
1794
1795		/* list contents may have changed */
1796		spin_lock(&hcd_urb_list_lock);
1797		goto rescan;
1798	}
1799	spin_unlock_irq(&hcd_urb_list_lock);
1800
1801	/* Wait until the endpoint queue is completely empty */
1802	while (!list_empty (&ep->urb_list)) {
1803		spin_lock_irq(&hcd_urb_list_lock);
1804
1805		/* The list may have changed while we acquired the spinlock */
1806		urb = NULL;
1807		if (!list_empty (&ep->urb_list)) {
1808			urb = list_entry (ep->urb_list.prev, struct urb,
1809					urb_list);
1810			usb_get_urb (urb);
1811		}
1812		spin_unlock_irq(&hcd_urb_list_lock);
1813
1814		if (urb) {
1815			usb_kill_urb (urb);
1816			usb_put_urb (urb);
1817		}
1818	}
1819}
1820
1821/**
1822 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1823 *				the bus bandwidth
1824 * @udev: target &usb_device
1825 * @new_config: new configuration to install
1826 * @cur_alt: the current alternate interface setting
1827 * @new_alt: alternate interface setting that is being installed
1828 *
1829 * To change configurations, pass in the new configuration in new_config,
1830 * and pass NULL for cur_alt and new_alt.
1831 *
1832 * To reset a device's configuration (put the device in the ADDRESSED state),
1833 * pass in NULL for new_config, cur_alt, and new_alt.
1834 *
1835 * To change alternate interface settings, pass in NULL for new_config,
1836 * pass in the current alternate interface setting in cur_alt,
1837 * and pass in the new alternate interface setting in new_alt.
1838 *
1839 * Return: An error if the requested bandwidth change exceeds the
1840 * bus bandwidth or host controller internal resources.
1841 */
1842int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1843		struct usb_host_config *new_config,
1844		struct usb_host_interface *cur_alt,
1845		struct usb_host_interface *new_alt)
1846{
1847	int num_intfs, i, j;
1848	struct usb_host_interface *alt = NULL;
1849	int ret = 0;
1850	struct usb_hcd *hcd;
1851	struct usb_host_endpoint *ep;
1852
1853	hcd = bus_to_hcd(udev->bus);
1854	if (!hcd->driver->check_bandwidth)
1855		return 0;
1856
1857	/* Configuration is being removed - set configuration 0 */
1858	if (!new_config && !cur_alt) {
1859		for (i = 1; i < 16; ++i) {
1860			ep = udev->ep_out[i];
1861			if (ep)
1862				hcd->driver->drop_endpoint(hcd, udev, ep);
1863			ep = udev->ep_in[i];
1864			if (ep)
1865				hcd->driver->drop_endpoint(hcd, udev, ep);
1866		}
1867		hcd->driver->check_bandwidth(hcd, udev);
1868		return 0;
1869	}
1870	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1871	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1872	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1873	 * ok to exclude it.
1874	 */
1875	if (new_config) {
1876		num_intfs = new_config->desc.bNumInterfaces;
1877		/* Remove endpoints (except endpoint 0, which is always on the
1878		 * schedule) from the old config from the schedule
1879		 */
1880		for (i = 1; i < 16; ++i) {
1881			ep = udev->ep_out[i];
1882			if (ep) {
1883				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1884				if (ret < 0)
1885					goto reset;
1886			}
1887			ep = udev->ep_in[i];
1888			if (ep) {
1889				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1890				if (ret < 0)
1891					goto reset;
1892			}
1893		}
1894		for (i = 0; i < num_intfs; ++i) {
1895			struct usb_host_interface *first_alt;
1896			int iface_num;
1897
1898			first_alt = &new_config->intf_cache[i]->altsetting[0];
1899			iface_num = first_alt->desc.bInterfaceNumber;
1900			/* Set up endpoints for alternate interface setting 0 */
1901			alt = usb_find_alt_setting(new_config, iface_num, 0);
1902			if (!alt)
1903				/* No alt setting 0? Pick the first setting. */
1904				alt = first_alt;
1905
1906			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1907				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1908				if (ret < 0)
1909					goto reset;
1910			}
1911		}
1912	}
1913	if (cur_alt && new_alt) {
1914		struct usb_interface *iface = usb_ifnum_to_if(udev,
1915				cur_alt->desc.bInterfaceNumber);
1916
1917		if (!iface)
1918			return -EINVAL;
1919		if (iface->resetting_device) {
1920			/*
1921			 * The USB core just reset the device, so the xHCI host
1922			 * and the device will think alt setting 0 is installed.
1923			 * However, the USB core will pass in the alternate
1924			 * setting installed before the reset as cur_alt.  Dig
1925			 * out the alternate setting 0 structure, or the first
1926			 * alternate setting if a broken device doesn't have alt
1927			 * setting 0.
1928			 */
1929			cur_alt = usb_altnum_to_altsetting(iface, 0);
1930			if (!cur_alt)
1931				cur_alt = &iface->altsetting[0];
1932		}
1933
1934		/* Drop all the endpoints in the current alt setting */
1935		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1936			ret = hcd->driver->drop_endpoint(hcd, udev,
1937					&cur_alt->endpoint[i]);
1938			if (ret < 0)
1939				goto reset;
1940		}
1941		/* Add all the endpoints in the new alt setting */
1942		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1943			ret = hcd->driver->add_endpoint(hcd, udev,
1944					&new_alt->endpoint[i]);
1945			if (ret < 0)
1946				goto reset;
1947		}
1948	}
1949	ret = hcd->driver->check_bandwidth(hcd, udev);
1950reset:
1951	if (ret < 0)
1952		hcd->driver->reset_bandwidth(hcd, udev);
1953	return ret;
1954}
1955
1956/* Disables the endpoint: synchronizes with the hcd to make sure all
1957 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1958 * have been called previously.  Use for set_configuration, set_interface,
1959 * driver removal, physical disconnect.
1960 *
1961 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1962 * type, maxpacket size, toggle, halt status, and scheduling.
1963 */
1964void usb_hcd_disable_endpoint(struct usb_device *udev,
1965		struct usb_host_endpoint *ep)
1966{
1967	struct usb_hcd		*hcd;
1968
1969	might_sleep();
1970	hcd = bus_to_hcd(udev->bus);
1971	if (hcd->driver->endpoint_disable)
1972		hcd->driver->endpoint_disable(hcd, ep);
1973}
1974
1975/**
1976 * usb_hcd_reset_endpoint - reset host endpoint state
1977 * @udev: USB device.
1978 * @ep:   the endpoint to reset.
1979 *
1980 * Resets any host endpoint state such as the toggle bit, sequence
1981 * number and current window.
1982 */
1983void usb_hcd_reset_endpoint(struct usb_device *udev,
1984			    struct usb_host_endpoint *ep)
1985{
1986	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1987
1988	if (hcd->driver->endpoint_reset)
1989		hcd->driver->endpoint_reset(hcd, ep);
1990	else {
1991		int epnum = usb_endpoint_num(&ep->desc);
1992		int is_out = usb_endpoint_dir_out(&ep->desc);
1993		int is_control = usb_endpoint_xfer_control(&ep->desc);
1994
1995		usb_settoggle(udev, epnum, is_out, 0);
1996		if (is_control)
1997			usb_settoggle(udev, epnum, !is_out, 0);
1998	}
1999}
2000
2001/**
2002 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2003 * @interface:		alternate setting that includes all endpoints.
2004 * @eps:		array of endpoints that need streams.
2005 * @num_eps:		number of endpoints in the array.
2006 * @num_streams:	number of streams to allocate.
2007 * @mem_flags:		flags hcd should use to allocate memory.
2008 *
2009 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2010 * Drivers may queue multiple transfers to different stream IDs, which may
2011 * complete in a different order than they were queued.
2012 *
2013 * Return: On success, the number of allocated streams. On failure, a negative
2014 * error code.
2015 */
2016int usb_alloc_streams(struct usb_interface *interface,
2017		struct usb_host_endpoint **eps, unsigned int num_eps,
2018		unsigned int num_streams, gfp_t mem_flags)
2019{
2020	struct usb_hcd *hcd;
2021	struct usb_device *dev;
2022	int i, ret;
2023
2024	dev = interface_to_usbdev(interface);
2025	hcd = bus_to_hcd(dev->bus);
2026	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2027		return -EINVAL;
2028	if (dev->speed < USB_SPEED_SUPER)
2029		return -EINVAL;
2030	if (dev->state < USB_STATE_CONFIGURED)
2031		return -ENODEV;
2032
2033	for (i = 0; i < num_eps; i++) {
2034		/* Streams only apply to bulk endpoints. */
2035		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2036			return -EINVAL;
2037		/* Re-alloc is not allowed */
2038		if (eps[i]->streams)
2039			return -EINVAL;
2040	}
2041
2042	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2043			num_streams, mem_flags);
2044	if (ret < 0)
2045		return ret;
2046
2047	for (i = 0; i < num_eps; i++)
2048		eps[i]->streams = ret;
2049
2050	return ret;
2051}
2052EXPORT_SYMBOL_GPL(usb_alloc_streams);
2053
2054/**
2055 * usb_free_streams - free bulk endpoint stream IDs.
2056 * @interface:	alternate setting that includes all endpoints.
2057 * @eps:	array of endpoints to remove streams from.
2058 * @num_eps:	number of endpoints in the array.
2059 * @mem_flags:	flags hcd should use to allocate memory.
2060 *
2061 * Reverts a group of bulk endpoints back to not using stream IDs.
2062 * Can fail if we are given bad arguments, or HCD is broken.
2063 *
2064 * Return: 0 on success. On failure, a negative error code.
2065 */
2066int usb_free_streams(struct usb_interface *interface,
2067		struct usb_host_endpoint **eps, unsigned int num_eps,
2068		gfp_t mem_flags)
2069{
2070	struct usb_hcd *hcd;
2071	struct usb_device *dev;
2072	int i, ret;
2073
2074	dev = interface_to_usbdev(interface);
2075	hcd = bus_to_hcd(dev->bus);
2076	if (dev->speed < USB_SPEED_SUPER)
2077		return -EINVAL;
2078
2079	/* Double-free is not allowed */
2080	for (i = 0; i < num_eps; i++)
2081		if (!eps[i] || !eps[i]->streams)
2082			return -EINVAL;
2083
2084	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2085	if (ret < 0)
2086		return ret;
2087
2088	for (i = 0; i < num_eps; i++)
2089		eps[i]->streams = 0;
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL_GPL(usb_free_streams);
2094
2095/* Protect against drivers that try to unlink URBs after the device
2096 * is gone, by waiting until all unlinks for @udev are finished.
2097 * Since we don't currently track URBs by device, simply wait until
2098 * nothing is running in the locked region of usb_hcd_unlink_urb().
2099 */
2100void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2101{
2102	spin_lock_irq(&hcd_urb_unlink_lock);
2103	spin_unlock_irq(&hcd_urb_unlink_lock);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108/* called in any context */
2109int usb_hcd_get_frame_number (struct usb_device *udev)
2110{
2111	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2112
2113	if (!HCD_RH_RUNNING(hcd))
2114		return -ESHUTDOWN;
2115	return hcd->driver->get_frame_number (hcd);
2116}
2117
2118/*-------------------------------------------------------------------------*/
2119#ifdef CONFIG_USB_HCD_TEST_MODE
2120
2121static void usb_ehset_completion(struct urb *urb)
2122{
2123	struct completion  *done = urb->context;
2124
2125	complete(done);
2126}
2127/*
2128 * Allocate and initialize a control URB. This request will be used by the
2129 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2130 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2131 * Return NULL if failed.
2132 */
2133static struct urb *request_single_step_set_feature_urb(
2134	struct usb_device	*udev,
2135	void			*dr,
2136	void			*buf,
2137	struct completion	*done)
2138{
2139	struct urb *urb;
2140	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2141
2142	urb = usb_alloc_urb(0, GFP_KERNEL);
2143	if (!urb)
2144		return NULL;
2145
2146	urb->pipe = usb_rcvctrlpipe(udev, 0);
2147
2148	urb->ep = &udev->ep0;
2149	urb->dev = udev;
2150	urb->setup_packet = (void *)dr;
2151	urb->transfer_buffer = buf;
2152	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2153	urb->complete = usb_ehset_completion;
2154	urb->status = -EINPROGRESS;
2155	urb->actual_length = 0;
2156	urb->transfer_flags = URB_DIR_IN;
2157	usb_get_urb(urb);
2158	atomic_inc(&urb->use_count);
2159	atomic_inc(&urb->dev->urbnum);
2160	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2161		usb_put_urb(urb);
2162		usb_free_urb(urb);
2163		return NULL;
2164	}
2165
2166	urb->context = done;
2167	return urb;
2168}
2169
2170int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2171{
2172	int retval = -ENOMEM;
2173	struct usb_ctrlrequest *dr;
2174	struct urb *urb;
2175	struct usb_device *udev;
2176	struct usb_device_descriptor *buf;
2177	DECLARE_COMPLETION_ONSTACK(done);
2178
2179	/* Obtain udev of the rhub's child port */
2180	udev = usb_hub_find_child(hcd->self.root_hub, port);
2181	if (!udev) {
2182		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2183		return -ENODEV;
2184	}
2185	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2186	if (!buf)
2187		return -ENOMEM;
2188
2189	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2190	if (!dr) {
2191		kfree(buf);
2192		return -ENOMEM;
2193	}
2194
2195	/* Fill Setup packet for GetDescriptor */
2196	dr->bRequestType = USB_DIR_IN;
2197	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2198	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2199	dr->wIndex = 0;
2200	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2201	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2202	if (!urb)
2203		goto cleanup;
2204
2205	/* Submit just the SETUP stage */
2206	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2207	if (retval)
2208		goto out1;
2209	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2210		usb_kill_urb(urb);
2211		retval = -ETIMEDOUT;
2212		dev_err(hcd->self.controller,
2213			"%s SETUP stage timed out on ep0\n", __func__);
2214		goto out1;
2215	}
2216	msleep(15 * 1000);
2217
2218	/* Complete remaining DATA and STATUS stages using the same URB */
2219	urb->status = -EINPROGRESS;
2220	usb_get_urb(urb);
2221	atomic_inc(&urb->use_count);
2222	atomic_inc(&urb->dev->urbnum);
2223	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2224	if (!retval && !wait_for_completion_timeout(&done,
2225						msecs_to_jiffies(2000))) {
2226		usb_kill_urb(urb);
2227		retval = -ETIMEDOUT;
2228		dev_err(hcd->self.controller,
2229			"%s IN stage timed out on ep0\n", __func__);
2230	}
2231out1:
2232	usb_free_urb(urb);
2233cleanup:
2234	kfree(dr);
2235	kfree(buf);
2236	return retval;
2237}
2238EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2239#endif /* CONFIG_USB_HCD_TEST_MODE */
2240
2241/*-------------------------------------------------------------------------*/
2242
2243#ifdef	CONFIG_PM
2244
2245int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2246{
2247	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2248	int		status;
2249	int		old_state = hcd->state;
2250
2251	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2252			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2253			rhdev->do_remote_wakeup);
2254	if (HCD_DEAD(hcd)) {
2255		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2256		return 0;
2257	}
2258
2259	if (!hcd->driver->bus_suspend) {
2260		status = -ENOENT;
2261	} else {
2262		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2263		hcd->state = HC_STATE_QUIESCING;
2264		status = hcd->driver->bus_suspend(hcd);
2265	}
2266	if (status == 0) {
2267		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2268		hcd->state = HC_STATE_SUSPENDED;
2269
2270		if (!PMSG_IS_AUTO(msg))
2271			usb_phy_roothub_suspend(hcd->self.sysdev,
2272						hcd->phy_roothub);
2273
2274		/* Did we race with a root-hub wakeup event? */
2275		if (rhdev->do_remote_wakeup) {
2276			char	buffer[6];
2277
2278			status = hcd->driver->hub_status_data(hcd, buffer);
2279			if (status != 0) {
2280				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282				status = -EBUSY;
2283			}
2284		}
2285	} else {
2286		spin_lock_irq(&hcd_root_hub_lock);
2287		if (!HCD_DEAD(hcd)) {
2288			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289			hcd->state = old_state;
2290		}
2291		spin_unlock_irq(&hcd_root_hub_lock);
2292		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293				"suspend", status);
2294	}
2295	return status;
2296}
2297
2298int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299{
2300	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2301	int		status;
2302	int		old_state = hcd->state;
2303
2304	dev_dbg(&rhdev->dev, "usb %sresume\n",
2305			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306	if (HCD_DEAD(hcd)) {
2307		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308		return 0;
2309	}
2310
2311	if (!PMSG_IS_AUTO(msg)) {
2312		status = usb_phy_roothub_resume(hcd->self.sysdev,
2313						hcd->phy_roothub);
2314		if (status)
2315			return status;
2316	}
2317
2318	if (!hcd->driver->bus_resume)
2319		return -ENOENT;
2320	if (HCD_RH_RUNNING(hcd))
2321		return 0;
2322
2323	hcd->state = HC_STATE_RESUMING;
2324	status = hcd->driver->bus_resume(hcd);
2325	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2326	if (status == 0)
2327		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2328
2329	if (status == 0) {
2330		struct usb_device *udev;
2331		int port1;
2332
2333		spin_lock_irq(&hcd_root_hub_lock);
2334		if (!HCD_DEAD(hcd)) {
2335			usb_set_device_state(rhdev, rhdev->actconfig
2336					? USB_STATE_CONFIGURED
2337					: USB_STATE_ADDRESS);
2338			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2339			hcd->state = HC_STATE_RUNNING;
2340		}
2341		spin_unlock_irq(&hcd_root_hub_lock);
2342
2343		/*
2344		 * Check whether any of the enabled ports on the root hub are
2345		 * unsuspended.  If they are then a TRSMRCY delay is needed
2346		 * (this is what the USB-2 spec calls a "global resume").
2347		 * Otherwise we can skip the delay.
2348		 */
2349		usb_hub_for_each_child(rhdev, port1, udev) {
2350			if (udev->state != USB_STATE_NOTATTACHED &&
2351					!udev->port_is_suspended) {
2352				usleep_range(10000, 11000);	/* TRSMRCY */
2353				break;
2354			}
2355		}
2356	} else {
2357		hcd->state = old_state;
2358		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2359		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2360				"resume", status);
2361		if (status != -ESHUTDOWN)
2362			usb_hc_died(hcd);
2363	}
2364	return status;
2365}
2366
 
 
 
 
2367/* Workqueue routine for root-hub remote wakeup */
2368static void hcd_resume_work(struct work_struct *work)
2369{
2370	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2371	struct usb_device *udev = hcd->self.root_hub;
2372
 
2373	usb_remote_wakeup(udev);
 
2374}
2375
2376/**
2377 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2378 * @hcd: host controller for this root hub
2379 *
2380 * The USB host controller calls this function when its root hub is
2381 * suspended (with the remote wakeup feature enabled) and a remote
2382 * wakeup request is received.  The routine submits a workqueue request
2383 * to resume the root hub (that is, manage its downstream ports again).
2384 */
2385void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2386{
2387	unsigned long flags;
2388
2389	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2390	if (hcd->rh_registered) {
2391		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2392		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2393		queue_work(pm_wq, &hcd->wakeup_work);
2394	}
2395	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2396}
2397EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2398
2399#endif	/* CONFIG_PM */
2400
2401/*-------------------------------------------------------------------------*/
2402
2403#ifdef	CONFIG_USB_OTG
2404
2405/**
2406 * usb_bus_start_enum - start immediate enumeration (for OTG)
2407 * @bus: the bus (must use hcd framework)
2408 * @port_num: 1-based number of port; usually bus->otg_port
2409 * Context: atomic
2410 *
2411 * Starts enumeration, with an immediate reset followed later by
2412 * hub_wq identifying and possibly configuring the device.
2413 * This is needed by OTG controller drivers, where it helps meet
2414 * HNP protocol timing requirements for starting a port reset.
2415 *
2416 * Return: 0 if successful.
2417 */
2418int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2419{
2420	struct usb_hcd		*hcd;
2421	int			status = -EOPNOTSUPP;
2422
2423	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2424	 * boards with root hubs hooked up to internal devices (instead of
2425	 * just the OTG port) may need more attention to resetting...
2426	 */
2427	hcd = bus_to_hcd(bus);
2428	if (port_num && hcd->driver->start_port_reset)
2429		status = hcd->driver->start_port_reset(hcd, port_num);
2430
2431	/* allocate hub_wq shortly after (first) root port reset finishes;
2432	 * it may issue others, until at least 50 msecs have passed.
2433	 */
2434	if (status == 0)
2435		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2436	return status;
2437}
2438EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2439
2440#endif
2441
2442/*-------------------------------------------------------------------------*/
2443
2444/**
2445 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2446 * @irq: the IRQ being raised
2447 * @__hcd: pointer to the HCD whose IRQ is being signaled
2448 *
2449 * If the controller isn't HALTed, calls the driver's irq handler.
2450 * Checks whether the controller is now dead.
2451 *
2452 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2453 */
2454irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2455{
2456	struct usb_hcd		*hcd = __hcd;
2457	irqreturn_t		rc;
2458
2459	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2460		rc = IRQ_NONE;
2461	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2462		rc = IRQ_NONE;
2463	else
2464		rc = IRQ_HANDLED;
2465
2466	return rc;
2467}
2468EXPORT_SYMBOL_GPL(usb_hcd_irq);
2469
2470/*-------------------------------------------------------------------------*/
2471
2472/* Workqueue routine for when the root-hub has died. */
2473static void hcd_died_work(struct work_struct *work)
2474{
2475	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2476	static char *env[] = {
2477		"ERROR=DEAD",
2478		NULL
2479	};
2480
2481	/* Notify user space that the host controller has died */
2482	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2483}
2484
2485/**
2486 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2487 * @hcd: pointer to the HCD representing the controller
2488 *
2489 * This is called by bus glue to report a USB host controller that died
2490 * while operations may still have been pending.  It's called automatically
2491 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2492 *
2493 * Only call this function with the primary HCD.
2494 */
2495void usb_hc_died (struct usb_hcd *hcd)
2496{
2497	unsigned long flags;
2498
2499	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2500
2501	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2502	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2503	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2504	if (hcd->rh_registered) {
2505		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2506
2507		/* make hub_wq clean up old urbs and devices */
2508		usb_set_device_state (hcd->self.root_hub,
2509				USB_STATE_NOTATTACHED);
2510		usb_kick_hub_wq(hcd->self.root_hub);
2511	}
2512	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2513		hcd = hcd->shared_hcd;
2514		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2515		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2516		if (hcd->rh_registered) {
2517			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2518
2519			/* make hub_wq clean up old urbs and devices */
2520			usb_set_device_state(hcd->self.root_hub,
2521					USB_STATE_NOTATTACHED);
2522			usb_kick_hub_wq(hcd->self.root_hub);
2523		}
2524	}
2525
2526	/* Handle the case where this function gets called with a shared HCD */
2527	if (usb_hcd_is_primary_hcd(hcd))
2528		schedule_work(&hcd->died_work);
2529	else
2530		schedule_work(&hcd->primary_hcd->died_work);
2531
2532	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2533	/* Make sure that the other roothub is also deallocated. */
2534}
2535EXPORT_SYMBOL_GPL (usb_hc_died);
2536
2537/*-------------------------------------------------------------------------*/
2538
2539static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2540{
2541
2542	spin_lock_init(&bh->lock);
2543	INIT_LIST_HEAD(&bh->head);
2544	INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2545}
2546
2547struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2548		struct device *sysdev, struct device *dev, const char *bus_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549		struct usb_hcd *primary_hcd)
2550{
2551	struct usb_hcd *hcd;
2552
2553	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2554	if (!hcd)
 
2555		return NULL;
 
2556	if (primary_hcd == NULL) {
2557		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2558				GFP_KERNEL);
2559		if (!hcd->address0_mutex) {
2560			kfree(hcd);
2561			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2562			return NULL;
2563		}
2564		mutex_init(hcd->address0_mutex);
2565		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2566				GFP_KERNEL);
2567		if (!hcd->bandwidth_mutex) {
2568			kfree(hcd->address0_mutex);
2569			kfree(hcd);
2570			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2571			return NULL;
2572		}
2573		mutex_init(hcd->bandwidth_mutex);
2574		dev_set_drvdata(dev, hcd);
2575	} else {
2576		mutex_lock(&usb_port_peer_mutex);
2577		hcd->address0_mutex = primary_hcd->address0_mutex;
2578		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2579		hcd->primary_hcd = primary_hcd;
2580		primary_hcd->primary_hcd = primary_hcd;
2581		hcd->shared_hcd = primary_hcd;
2582		primary_hcd->shared_hcd = hcd;
2583		mutex_unlock(&usb_port_peer_mutex);
2584	}
2585
2586	kref_init(&hcd->kref);
2587
2588	usb_bus_init(&hcd->self);
2589	hcd->self.controller = dev;
2590	hcd->self.sysdev = sysdev;
2591	hcd->self.bus_name = bus_name;
 
2592
2593	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2594#ifdef CONFIG_PM
 
 
2595	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2596#endif
2597
2598	INIT_WORK(&hcd->died_work, hcd_died_work);
2599
2600	hcd->driver = driver;
2601	hcd->speed = driver->flags & HCD_MASK;
2602	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2603			"USB Host Controller";
2604	return hcd;
2605}
2606EXPORT_SYMBOL_GPL(__usb_create_hcd);
2607
2608/**
2609 * usb_create_shared_hcd - create and initialize an HCD structure
2610 * @driver: HC driver that will use this hcd
2611 * @dev: device for this HC, stored in hcd->self.controller
2612 * @bus_name: value to store in hcd->self.bus_name
2613 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2614 *              PCI device.  Only allocate certain resources for the primary HCD
2615 *
2616 * Context: task context, might sleep.
2617 *
2618 * Allocate a struct usb_hcd, with extra space at the end for the
2619 * HC driver's private data.  Initialize the generic members of the
2620 * hcd structure.
2621 *
2622 * Return: On success, a pointer to the created and initialized HCD structure.
2623 * On failure (e.g. if memory is unavailable), %NULL.
2624 */
2625struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2626		struct device *dev, const char *bus_name,
2627		struct usb_hcd *primary_hcd)
2628{
2629	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2630}
2631EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2632
2633/**
2634 * usb_create_hcd - create and initialize an HCD structure
2635 * @driver: HC driver that will use this hcd
2636 * @dev: device for this HC, stored in hcd->self.controller
2637 * @bus_name: value to store in hcd->self.bus_name
2638 *
2639 * Context: task context, might sleep.
2640 *
2641 * Allocate a struct usb_hcd, with extra space at the end for the
2642 * HC driver's private data.  Initialize the generic members of the
2643 * hcd structure.
2644 *
2645 * Return: On success, a pointer to the created and initialized HCD
2646 * structure. On failure (e.g. if memory is unavailable), %NULL.
2647 */
2648struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2649		struct device *dev, const char *bus_name)
2650{
2651	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2652}
2653EXPORT_SYMBOL_GPL(usb_create_hcd);
2654
2655/*
2656 * Roothubs that share one PCI device must also share the bandwidth mutex.
2657 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2658 * deallocated.
2659 *
2660 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2661 * freed.  When hcd_release() is called for either hcd in a peer set,
2662 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
 
2663 */
2664static void hcd_release(struct kref *kref)
2665{
2666	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2667
2668	mutex_lock(&usb_port_peer_mutex);
2669	if (hcd->shared_hcd) {
2670		struct usb_hcd *peer = hcd->shared_hcd;
2671
2672		peer->shared_hcd = NULL;
2673		peer->primary_hcd = NULL;
2674	} else {
2675		kfree(hcd->address0_mutex);
2676		kfree(hcd->bandwidth_mutex);
2677	}
2678	mutex_unlock(&usb_port_peer_mutex);
2679	kfree(hcd);
2680}
2681
2682struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2683{
2684	if (hcd)
2685		kref_get (&hcd->kref);
2686	return hcd;
2687}
2688EXPORT_SYMBOL_GPL(usb_get_hcd);
2689
2690void usb_put_hcd (struct usb_hcd *hcd)
2691{
2692	if (hcd)
2693		kref_put (&hcd->kref, hcd_release);
2694}
2695EXPORT_SYMBOL_GPL(usb_put_hcd);
2696
2697int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2698{
2699	if (!hcd->primary_hcd)
2700		return 1;
2701	return hcd == hcd->primary_hcd;
2702}
2703EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2704
2705int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2706{
2707	if (!hcd->driver->find_raw_port_number)
2708		return port1;
2709
2710	return hcd->driver->find_raw_port_number(hcd, port1);
2711}
2712
2713static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2714		unsigned int irqnum, unsigned long irqflags)
2715{
2716	int retval;
2717
2718	if (hcd->driver->irq) {
2719
2720		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2721				hcd->driver->description, hcd->self.busnum);
2722		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2723				hcd->irq_descr, hcd);
2724		if (retval != 0) {
2725			dev_err(hcd->self.controller,
2726					"request interrupt %d failed\n",
2727					irqnum);
2728			return retval;
2729		}
2730		hcd->irq = irqnum;
2731		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2732				(hcd->driver->flags & HCD_MEMORY) ?
2733					"io mem" : "io port",
2734				(unsigned long long)hcd->rsrc_start);
2735	} else {
2736		hcd->irq = 0;
2737		if (hcd->rsrc_start)
2738			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2739					(hcd->driver->flags & HCD_MEMORY) ?
2740						"io mem" : "io port",
2741					(unsigned long long)hcd->rsrc_start);
2742	}
2743	return 0;
2744}
2745
2746/*
2747 * Before we free this root hub, flush in-flight peering attempts
2748 * and disable peer lookups
2749 */
2750static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2751{
2752	struct usb_device *rhdev;
2753
2754	mutex_lock(&usb_port_peer_mutex);
2755	rhdev = hcd->self.root_hub;
2756	hcd->self.root_hub = NULL;
2757	mutex_unlock(&usb_port_peer_mutex);
2758	usb_put_dev(rhdev);
2759}
2760
2761/**
2762 * usb_stop_hcd - Halt the HCD
2763 * @hcd: the usb_hcd that has to be halted
2764 *
2765 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2766 */
2767static void usb_stop_hcd(struct usb_hcd *hcd)
2768{
2769	hcd->rh_pollable = 0;
2770	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2771	del_timer_sync(&hcd->rh_timer);
2772
2773	hcd->driver->stop(hcd);
2774	hcd->state = HC_STATE_HALT;
2775
2776	/* In case the HCD restarted the timer, stop it again. */
2777	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778	del_timer_sync(&hcd->rh_timer);
2779}
2780
2781/**
2782 * usb_add_hcd - finish generic HCD structure initialization and register
2783 * @hcd: the usb_hcd structure to initialize
2784 * @irqnum: Interrupt line to allocate
2785 * @irqflags: Interrupt type flags
2786 *
2787 * Finish the remaining parts of generic HCD initialization: allocate the
2788 * buffers of consistent memory, register the bus, request the IRQ line,
2789 * and call the driver's reset() and start() routines.
2790 */
2791int usb_add_hcd(struct usb_hcd *hcd,
2792		unsigned int irqnum, unsigned long irqflags)
2793{
2794	int retval;
2795	struct usb_device *rhdev;
2796	struct usb_hcd *shared_hcd;
2797	int skip_phy_initialization;
2798
2799	if (usb_hcd_is_primary_hcd(hcd))
2800		skip_phy_initialization = hcd->skip_phy_initialization;
2801	else
2802		skip_phy_initialization = hcd->primary_hcd->skip_phy_initialization;
2803
2804	if (!skip_phy_initialization) {
2805		if (usb_hcd_is_primary_hcd(hcd)) {
2806			hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2807			if (IS_ERR(hcd->phy_roothub))
2808				return PTR_ERR(hcd->phy_roothub);
2809		} else {
2810			hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2811			if (IS_ERR(hcd->phy_roothub))
2812				return PTR_ERR(hcd->phy_roothub);
 
 
 
 
2813		}
2814
2815		retval = usb_phy_roothub_init(hcd->phy_roothub);
2816		if (retval)
2817			return retval;
2818
2819		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2820						  PHY_MODE_USB_HOST_SS);
2821		if (retval)
2822			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2823							  PHY_MODE_USB_HOST);
2824		if (retval)
2825			goto err_usb_phy_roothub_power_on;
2826
2827		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2828		if (retval)
2829			goto err_usb_phy_roothub_power_on;
2830	}
2831
2832	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2833
2834	switch (authorized_default) {
2835	case USB_AUTHORIZE_NONE:
2836		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2837		break;
2838
2839	case USB_AUTHORIZE_INTERNAL:
2840		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2841		break;
2842
2843	case USB_AUTHORIZE_ALL:
2844	case USB_AUTHORIZE_WIRED:
2845	default:
2846		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2847		break;
2848	}
2849
2850	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2851
2852	/* per default all interfaces are authorized */
2853	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2854
2855	/* HC is in reset state, but accessible.  Now do the one-time init,
2856	 * bottom up so that hcds can customize the root hubs before hub_wq
2857	 * starts talking to them.  (Note, bus id is assigned early too.)
2858	 */
2859	retval = hcd_buffer_create(hcd);
2860	if (retval != 0) {
2861		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2862		goto err_create_buf;
2863	}
2864
2865	retval = usb_register_bus(&hcd->self);
2866	if (retval < 0)
2867		goto err_register_bus;
2868
2869	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2870	if (rhdev == NULL) {
2871		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2872		retval = -ENOMEM;
2873		goto err_allocate_root_hub;
2874	}
2875	mutex_lock(&usb_port_peer_mutex);
2876	hcd->self.root_hub = rhdev;
2877	mutex_unlock(&usb_port_peer_mutex);
2878
2879	rhdev->rx_lanes = 1;
2880	rhdev->tx_lanes = 1;
2881	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2882
2883	switch (hcd->speed) {
2884	case HCD_USB11:
2885		rhdev->speed = USB_SPEED_FULL;
2886		break;
2887	case HCD_USB2:
2888		rhdev->speed = USB_SPEED_HIGH;
2889		break;
 
 
 
2890	case HCD_USB3:
2891		rhdev->speed = USB_SPEED_SUPER;
2892		break;
2893	case HCD_USB32:
2894		rhdev->rx_lanes = 2;
2895		rhdev->tx_lanes = 2;
2896		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2897		rhdev->speed = USB_SPEED_SUPER_PLUS;
2898		break;
2899	case HCD_USB31:
2900		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2901		rhdev->speed = USB_SPEED_SUPER_PLUS;
2902		break;
2903	default:
2904		retval = -EINVAL;
2905		goto err_set_rh_speed;
2906	}
2907
2908	/* wakeup flag init defaults to "everything works" for root hubs,
2909	 * but drivers can override it in reset() if needed, along with
2910	 * recording the overall controller's system wakeup capability.
2911	 */
2912	device_set_wakeup_capable(&rhdev->dev, 1);
2913
2914	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2915	 * registered.  But since the controller can die at any time,
2916	 * let's initialize the flag before touching the hardware.
2917	 */
2918	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2919
2920	/* "reset" is misnamed; its role is now one-time init. the controller
2921	 * should already have been reset (and boot firmware kicked off etc).
2922	 */
2923	if (hcd->driver->reset) {
2924		retval = hcd->driver->reset(hcd);
2925		if (retval < 0) {
2926			dev_err(hcd->self.controller, "can't setup: %d\n",
2927					retval);
2928			goto err_hcd_driver_setup;
2929		}
2930	}
2931	hcd->rh_pollable = 1;
2932
2933	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2934	if (retval)
2935		goto err_hcd_driver_setup;
2936
2937	/* NOTE: root hub and controller capabilities may not be the same */
2938	if (device_can_wakeup(hcd->self.controller)
2939			&& device_can_wakeup(&hcd->self.root_hub->dev))
2940		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2941
2942	/* initialize BHs */
2943	init_giveback_urb_bh(&hcd->high_prio_bh);
2944	hcd->high_prio_bh.high_prio = true;
2945	init_giveback_urb_bh(&hcd->low_prio_bh);
2946
2947	/* enable irqs just before we start the controller,
2948	 * if the BIOS provides legacy PCI irqs.
2949	 */
2950	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2951		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2952		if (retval)
2953			goto err_request_irq;
2954	}
2955
2956	hcd->state = HC_STATE_RUNNING;
2957	retval = hcd->driver->start(hcd);
2958	if (retval < 0) {
2959		dev_err(hcd->self.controller, "startup error %d\n", retval);
2960		goto err_hcd_driver_start;
2961	}
2962
2963	/* starting here, usbcore will pay attention to the shared HCD roothub */
2964	shared_hcd = hcd->shared_hcd;
2965	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2966		retval = register_root_hub(shared_hcd);
2967		if (retval != 0)
2968			goto err_register_root_hub;
2969
2970		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2971			usb_hcd_poll_rh_status(shared_hcd);
2972	}
2973
2974	/* starting here, usbcore will pay attention to this root hub */
2975	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2976		retval = register_root_hub(hcd);
2977		if (retval != 0)
2978			goto err_register_root_hub;
2979
2980		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2981			usb_hcd_poll_rh_status(hcd);
 
 
 
2982	}
 
 
2983
2984	return retval;
2985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2986err_register_root_hub:
2987	usb_stop_hcd(hcd);
 
 
 
 
 
 
2988err_hcd_driver_start:
2989	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2990		free_irq(irqnum, hcd);
2991err_request_irq:
2992err_hcd_driver_setup:
2993err_set_rh_speed:
2994	usb_put_invalidate_rhdev(hcd);
2995err_allocate_root_hub:
2996	usb_deregister_bus(&hcd->self);
2997err_register_bus:
2998	hcd_buffer_destroy(hcd);
2999err_create_buf:
3000	usb_phy_roothub_power_off(hcd->phy_roothub);
3001err_usb_phy_roothub_power_on:
3002	usb_phy_roothub_exit(hcd->phy_roothub);
3003
 
3004	return retval;
3005}
3006EXPORT_SYMBOL_GPL(usb_add_hcd);
3007
3008/**
3009 * usb_remove_hcd - shutdown processing for generic HCDs
3010 * @hcd: the usb_hcd structure to remove
3011 *
3012 * Context: task context, might sleep.
3013 *
3014 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3015 * invoking the HCD's stop() method.
3016 */
3017void usb_remove_hcd(struct usb_hcd *hcd)
3018{
3019	struct usb_device *rhdev;
3020	bool rh_registered;
3021
3022	if (!hcd) {
3023		pr_debug("%s: hcd is NULL\n", __func__);
3024		return;
3025	}
3026	rhdev = hcd->self.root_hub;
3027
3028	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3029
3030	usb_get_dev(rhdev);
 
 
3031	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3032	if (HC_IS_RUNNING (hcd->state))
3033		hcd->state = HC_STATE_QUIESCING;
3034
3035	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3036	spin_lock_irq (&hcd_root_hub_lock);
3037	rh_registered = hcd->rh_registered;
3038	hcd->rh_registered = 0;
3039	spin_unlock_irq (&hcd_root_hub_lock);
3040
3041#ifdef CONFIG_PM
3042	cancel_work_sync(&hcd->wakeup_work);
3043#endif
3044	cancel_work_sync(&hcd->died_work);
3045
3046	mutex_lock(&usb_bus_idr_lock);
3047	if (rh_registered)
3048		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3049	mutex_unlock(&usb_bus_idr_lock);
3050
3051	/*
3052	 * flush_work() isn't needed here because:
3053	 * - driver's disconnect() called from usb_disconnect() should
3054	 *   make sure its URBs are completed during the disconnect()
3055	 *   callback
3056	 *
3057	 * - it is too late to run complete() here since driver may have
3058	 *   been removed already now
3059	 */
3060
3061	/* Prevent any more root-hub status calls from the timer.
3062	 * The HCD might still restart the timer (if a port status change
3063	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3064	 * the hub_status_data() callback.
3065	 */
3066	usb_stop_hcd(hcd);
 
 
 
 
 
 
 
 
 
3067
3068	if (usb_hcd_is_primary_hcd(hcd)) {
3069		if (hcd->irq > 0)
3070			free_irq(hcd->irq, hcd);
3071	}
3072
 
3073	usb_deregister_bus(&hcd->self);
3074	hcd_buffer_destroy(hcd);
3075
3076	usb_phy_roothub_power_off(hcd->phy_roothub);
3077	usb_phy_roothub_exit(hcd->phy_roothub);
3078
3079	usb_put_invalidate_rhdev(hcd);
3080	hcd->flags = 0;
3081}
3082EXPORT_SYMBOL_GPL(usb_remove_hcd);
3083
3084void
3085usb_hcd_platform_shutdown(struct platform_device *dev)
3086{
3087	struct usb_hcd *hcd = platform_get_drvdata(dev);
3088
3089	/* No need for pm_runtime_put(), we're shutting down */
3090	pm_runtime_get_sync(&dev->dev);
3091
3092	if (hcd->driver->shutdown)
3093		hcd->driver->shutdown(hcd);
3094}
3095EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3096
3097int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3098			    dma_addr_t dma, size_t size)
3099{
3100	int err;
3101	void *local_mem;
3102
3103	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3104						  dev_to_node(hcd->self.sysdev),
3105						  dev_name(hcd->self.sysdev));
3106	if (IS_ERR(hcd->localmem_pool))
3107		return PTR_ERR(hcd->localmem_pool);
3108
3109	/*
3110	 * if a physical SRAM address was passed, map it, otherwise
3111	 * allocate system memory as a buffer.
3112	 */
3113	if (phys_addr)
3114		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3115					  size, MEMREMAP_WC);
3116	else
3117		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3118					     GFP_KERNEL,
3119					     DMA_ATTR_WRITE_COMBINE);
3120
3121	if (IS_ERR_OR_NULL(local_mem)) {
3122		if (!local_mem)
3123			return -ENOMEM;
3124
3125		return PTR_ERR(local_mem);
3126	}
3127
3128	/*
3129	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3130	 * It's not backed by system memory and thus there's no kernel mapping
3131	 * for it.
3132	 */
3133	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3134				dma, size, dev_to_node(hcd->self.sysdev));
3135	if (err < 0) {
3136		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3137			err);
3138		return err;
3139	}
3140
3141	return 0;
3142}
3143EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3144
3145/*-------------------------------------------------------------------------*/
3146
3147#if IS_ENABLED(CONFIG_USB_MON)
3148
3149const struct usb_mon_operations *mon_ops;
3150
3151/*
3152 * The registration is unlocked.
3153 * We do it this way because we do not want to lock in hot paths.
3154 *
3155 * Notice that the code is minimally error-proof. Because usbmon needs
3156 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3157 */
3158
3159int usb_mon_register(const struct usb_mon_operations *ops)
3160{
3161
3162	if (mon_ops)
3163		return -EBUSY;
3164
3165	mon_ops = ops;
3166	mb();
3167	return 0;
3168}
3169EXPORT_SYMBOL_GPL (usb_mon_register);
3170
3171void usb_mon_deregister (void)
3172{
3173
3174	if (mon_ops == NULL) {
3175		printk(KERN_ERR "USB: monitor was not registered\n");
3176		return;
3177	}
3178	mon_ops = NULL;
3179	mb();
3180}
3181EXPORT_SYMBOL_GPL (usb_mon_deregister);
3182
3183#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v3.15
 
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
 
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
 
 
 
  44
 
  45#include <linux/usb.h>
  46#include <linux/usb/hcd.h>
  47#include <linux/usb/phy.h>
  48
  49#include "usb.h"
 
  50
  51
  52/*-------------------------------------------------------------------------*/
  53
  54/*
  55 * USB Host Controller Driver framework
  56 *
  57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  58 * HCD-specific behaviors/bugs.
  59 *
  60 * This does error checks, tracks devices and urbs, and delegates to a
  61 * "hc_driver" only for code (and data) that really needs to know about
  62 * hardware differences.  That includes root hub registers, i/o queues,
  63 * and so on ... but as little else as possible.
  64 *
  65 * Shared code includes most of the "root hub" code (these are emulated,
  66 * though each HC's hardware works differently) and PCI glue, plus request
  67 * tracking overhead.  The HCD code should only block on spinlocks or on
  68 * hardware handshaking; blocking on software events (such as other kernel
  69 * threads releasing resources, or completing actions) is all generic.
  70 *
  71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  73 * only by the hub driver ... and that neither should be seen or used by
  74 * usb client device drivers.
  75 *
  76 * Contributors of ideas or unattributed patches include: David Brownell,
  77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  78 *
  79 * HISTORY:
  80 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  81 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  82 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  83 */
  84
  85/*-------------------------------------------------------------------------*/
  86
  87/* Keep track of which host controller drivers are loaded */
  88unsigned long usb_hcds_loaded;
  89EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  90
  91/* host controllers we manage */
  92LIST_HEAD (usb_bus_list);
  93EXPORT_SYMBOL_GPL (usb_bus_list);
  94
  95/* used when allocating bus numbers */
  96#define USB_MAXBUS		64
  97static DECLARE_BITMAP(busmap, USB_MAXBUS);
  98
  99/* used when updating list of hcds */
 100DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
 101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 102
 103/* used for controlling access to virtual root hubs */
 104static DEFINE_SPINLOCK(hcd_root_hub_lock);
 105
 106/* used when updating an endpoint's URB list */
 107static DEFINE_SPINLOCK(hcd_urb_list_lock);
 108
 109/* used to protect against unlinking URBs after the device is gone */
 110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 111
 112/* wait queue for synchronous unlinks */
 113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 114
 115static inline int is_root_hub(struct usb_device *udev)
 116{
 117	return (udev->parent == NULL);
 118}
 119
 120/*-------------------------------------------------------------------------*/
 121
 122/*
 123 * Sharable chunks of root hub code.
 124 */
 125
 126/*-------------------------------------------------------------------------*/
 127#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 128#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 129
 130/* usb 3.0 root hub device descriptor */
 131static const u8 usb3_rh_dev_descriptor[18] = {
 132	0x12,       /*  __u8  bLength; */
 133	0x01,       /*  __u8  bDescriptorType; Device */
 134	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 135
 136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137	0x00,	    /*  __u8  bDeviceSubClass; */
 138	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145	0x03,       /*  __u8  iManufacturer; */
 146	0x02,       /*  __u8  iProduct; */
 147	0x01,       /*  __u8  iSerialNumber; */
 148	0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 152static const u8 usb25_rh_dev_descriptor[18] = {
 153	0x12,       /*  __u8  bLength; */
 154	0x01,       /*  __u8  bDescriptorType; Device */
 155	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 156
 157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158	0x00,	    /*  __u8  bDeviceSubClass; */
 159	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 160	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 161
 162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 163	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166	0x03,       /*  __u8  iManufacturer; */
 167	0x02,       /*  __u8  iProduct; */
 168	0x01,       /*  __u8  iSerialNumber; */
 169	0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* usb 2.0 root hub device descriptor */
 173static const u8 usb2_rh_dev_descriptor[18] = {
 174	0x12,       /*  __u8  bLength; */
 175	0x01,       /*  __u8  bDescriptorType; Device */
 176	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 177
 178	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 179	0x00,	    /*  __u8  bDeviceSubClass; */
 180	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 181	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 182
 183	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 184	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 185	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 186
 187	0x03,       /*  __u8  iManufacturer; */
 188	0x02,       /*  __u8  iProduct; */
 189	0x01,       /*  __u8  iSerialNumber; */
 190	0x01        /*  __u8  bNumConfigurations; */
 191};
 192
 193/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 194
 195/* usb 1.1 root hub device descriptor */
 196static const u8 usb11_rh_dev_descriptor[18] = {
 197	0x12,       /*  __u8  bLength; */
 198	0x01,       /*  __u8  bDescriptorType; Device */
 199	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 200
 201	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 202	0x00,	    /*  __u8  bDeviceSubClass; */
 203	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 204	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 205
 206	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 207	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 208	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 209
 210	0x03,       /*  __u8  iManufacturer; */
 211	0x02,       /*  __u8  iProduct; */
 212	0x01,       /*  __u8  iSerialNumber; */
 213	0x01        /*  __u8  bNumConfigurations; */
 214};
 215
 216
 217/*-------------------------------------------------------------------------*/
 218
 219/* Configuration descriptors for our root hubs */
 220
 221static const u8 fs_rh_config_descriptor[] = {
 222
 223	/* one configuration */
 224	0x09,       /*  __u8  bLength; */
 225	0x02,       /*  __u8  bDescriptorType; Configuration */
 226	0x19, 0x00, /*  __le16 wTotalLength; */
 227	0x01,       /*  __u8  bNumInterfaces; (1) */
 228	0x01,       /*  __u8  bConfigurationValue; */
 229	0x00,       /*  __u8  iConfiguration; */
 230	0xc0,       /*  __u8  bmAttributes;
 231				 Bit 7: must be set,
 232				     6: Self-powered,
 233				     5: Remote wakeup,
 234				     4..0: resvd */
 235	0x00,       /*  __u8  MaxPower; */
 236
 237	/* USB 1.1:
 238	 * USB 2.0, single TT organization (mandatory):
 239	 *	one interface, protocol 0
 240	 *
 241	 * USB 2.0, multiple TT organization (optional):
 242	 *	two interfaces, protocols 1 (like single TT)
 243	 *	and 2 (multiple TT mode) ... config is
 244	 *	sometimes settable
 245	 *	NOT IMPLEMENTED
 246	 */
 247
 248	/* one interface */
 249	0x09,       /*  __u8  if_bLength; */
 250	0x04,       /*  __u8  if_bDescriptorType; Interface */
 251	0x00,       /*  __u8  if_bInterfaceNumber; */
 252	0x00,       /*  __u8  if_bAlternateSetting; */
 253	0x01,       /*  __u8  if_bNumEndpoints; */
 254	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 255	0x00,       /*  __u8  if_bInterfaceSubClass; */
 256	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 257	0x00,       /*  __u8  if_iInterface; */
 258
 259	/* one endpoint (status change endpoint) */
 260	0x07,       /*  __u8  ep_bLength; */
 261	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 262	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 263	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 264	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 265	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 266};
 267
 268static const u8 hs_rh_config_descriptor[] = {
 269
 270	/* one configuration */
 271	0x09,       /*  __u8  bLength; */
 272	0x02,       /*  __u8  bDescriptorType; Configuration */
 273	0x19, 0x00, /*  __le16 wTotalLength; */
 274	0x01,       /*  __u8  bNumInterfaces; (1) */
 275	0x01,       /*  __u8  bConfigurationValue; */
 276	0x00,       /*  __u8  iConfiguration; */
 277	0xc0,       /*  __u8  bmAttributes;
 278				 Bit 7: must be set,
 279				     6: Self-powered,
 280				     5: Remote wakeup,
 281				     4..0: resvd */
 282	0x00,       /*  __u8  MaxPower; */
 283
 284	/* USB 1.1:
 285	 * USB 2.0, single TT organization (mandatory):
 286	 *	one interface, protocol 0
 287	 *
 288	 * USB 2.0, multiple TT organization (optional):
 289	 *	two interfaces, protocols 1 (like single TT)
 290	 *	and 2 (multiple TT mode) ... config is
 291	 *	sometimes settable
 292	 *	NOT IMPLEMENTED
 293	 */
 294
 295	/* one interface */
 296	0x09,       /*  __u8  if_bLength; */
 297	0x04,       /*  __u8  if_bDescriptorType; Interface */
 298	0x00,       /*  __u8  if_bInterfaceNumber; */
 299	0x00,       /*  __u8  if_bAlternateSetting; */
 300	0x01,       /*  __u8  if_bNumEndpoints; */
 301	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 302	0x00,       /*  __u8  if_bInterfaceSubClass; */
 303	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 304	0x00,       /*  __u8  if_iInterface; */
 305
 306	/* one endpoint (status change endpoint) */
 307	0x07,       /*  __u8  ep_bLength; */
 308	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 309	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 310	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 311		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 312		     * see hub.c:hub_configure() for details. */
 313	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 314	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 315};
 316
 317static const u8 ss_rh_config_descriptor[] = {
 318	/* one configuration */
 319	0x09,       /*  __u8  bLength; */
 320	0x02,       /*  __u8  bDescriptorType; Configuration */
 321	0x1f, 0x00, /*  __le16 wTotalLength; */
 322	0x01,       /*  __u8  bNumInterfaces; (1) */
 323	0x01,       /*  __u8  bConfigurationValue; */
 324	0x00,       /*  __u8  iConfiguration; */
 325	0xc0,       /*  __u8  bmAttributes;
 326				 Bit 7: must be set,
 327				     6: Self-powered,
 328				     5: Remote wakeup,
 329				     4..0: resvd */
 330	0x00,       /*  __u8  MaxPower; */
 331
 332	/* one interface */
 333	0x09,       /*  __u8  if_bLength; */
 334	0x04,       /*  __u8  if_bDescriptorType; Interface */
 335	0x00,       /*  __u8  if_bInterfaceNumber; */
 336	0x00,       /*  __u8  if_bAlternateSetting; */
 337	0x01,       /*  __u8  if_bNumEndpoints; */
 338	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 339	0x00,       /*  __u8  if_bInterfaceSubClass; */
 340	0x00,       /*  __u8  if_bInterfaceProtocol; */
 341	0x00,       /*  __u8  if_iInterface; */
 342
 343	/* one endpoint (status change endpoint) */
 344	0x07,       /*  __u8  ep_bLength; */
 345	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 346	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 347	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 348		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 349		     * see hub.c:hub_configure() for details. */
 350	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 351	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 352
 353	/* one SuperSpeed endpoint companion descriptor */
 354	0x06,        /* __u8 ss_bLength */
 355	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 
 356	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 357	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 358	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 359};
 360
 361/* authorized_default behaviour:
 362 * -1 is authorized for all devices except wireless (old behaviour)
 363 * 0 is unauthorized for all devices
 364 * 1 is authorized for all devices
 
 365 */
 366static int authorized_default = -1;
 
 
 
 
 
 367module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 368MODULE_PARM_DESC(authorized_default,
 369		"Default USB device authorization: 0 is not authorized, 1 is "
 370		"authorized, -1 is authorized except for wireless USB (default, "
 371		"old behaviour");
 372/*-------------------------------------------------------------------------*/
 373
 374/**
 375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 378 * @len: Length (in bytes; may be odd) of descriptor buffer.
 379 *
 380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 381 * whichever is less.
 382 *
 383 * Note:
 384 * USB String descriptors can contain at most 126 characters; input
 385 * strings longer than that are truncated.
 386 */
 387static unsigned
 388ascii2desc(char const *s, u8 *buf, unsigned len)
 389{
 390	unsigned n, t = 2 + 2*strlen(s);
 391
 392	if (t > 254)
 393		t = 254;	/* Longest possible UTF string descriptor */
 394	if (len > t)
 395		len = t;
 396
 397	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 398
 399	n = len;
 400	while (n--) {
 401		*buf++ = t;
 402		if (!n--)
 403			break;
 404		*buf++ = t >> 8;
 405		t = (unsigned char)*s++;
 406	}
 407	return len;
 408}
 409
 410/**
 411 * rh_string() - provides string descriptors for root hub
 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 413 * @hcd: the host controller for this root hub
 414 * @data: buffer for output packet
 415 * @len: length of the provided buffer
 416 *
 417 * Produces either a manufacturer, product or serial number string for the
 418 * virtual root hub device.
 419 *
 420 * Return: The number of bytes filled in: the length of the descriptor or
 421 * of the provided buffer, whichever is less.
 422 */
 423static unsigned
 424rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 425{
 426	char buf[100];
 427	char const *s;
 428	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 429
 430	/* language ids */
 431	switch (id) {
 432	case 0:
 433		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 434		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 435		if (len > 4)
 436			len = 4;
 437		memcpy(data, langids, len);
 438		return len;
 439	case 1:
 440		/* Serial number */
 441		s = hcd->self.bus_name;
 442		break;
 443	case 2:
 444		/* Product name */
 445		s = hcd->product_desc;
 446		break;
 447	case 3:
 448		/* Manufacturer */
 449		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 450			init_utsname()->release, hcd->driver->description);
 451		s = buf;
 452		break;
 453	default:
 454		/* Can't happen; caller guarantees it */
 455		return 0;
 456	}
 457
 458	return ascii2desc(s, data, len);
 459}
 460
 461
 462/* Root hub control transfers execute synchronously */
 463static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 464{
 465	struct usb_ctrlrequest *cmd;
 466	u16		typeReq, wValue, wIndex, wLength;
 467	u8		*ubuf = urb->transfer_buffer;
 468	unsigned	len = 0;
 469	int		status;
 470	u8		patch_wakeup = 0;
 471	u8		patch_protocol = 0;
 472	u16		tbuf_size;
 473	u8		*tbuf = NULL;
 474	const u8	*bufp;
 475
 476	might_sleep();
 477
 478	spin_lock_irq(&hcd_root_hub_lock);
 479	status = usb_hcd_link_urb_to_ep(hcd, urb);
 480	spin_unlock_irq(&hcd_root_hub_lock);
 481	if (status)
 482		return status;
 483	urb->hcpriv = hcd;	/* Indicate it's queued */
 484
 485	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 486	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 487	wValue   = le16_to_cpu (cmd->wValue);
 488	wIndex   = le16_to_cpu (cmd->wIndex);
 489	wLength  = le16_to_cpu (cmd->wLength);
 490
 491	if (wLength > urb->transfer_buffer_length)
 492		goto error;
 493
 494	/*
 495	 * tbuf should be at least as big as the
 496	 * USB hub descriptor.
 497	 */
 498	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 499	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 500	if (!tbuf)
 501		return -ENOMEM;
 
 
 502
 503	bufp = tbuf;
 504
 505
 506	urb->actual_length = 0;
 507	switch (typeReq) {
 508
 509	/* DEVICE REQUESTS */
 510
 511	/* The root hub's remote wakeup enable bit is implemented using
 512	 * driver model wakeup flags.  If this system supports wakeup
 513	 * through USB, userspace may change the default "allow wakeup"
 514	 * policy through sysfs or these calls.
 515	 *
 516	 * Most root hubs support wakeup from downstream devices, for
 517	 * runtime power management (disabling USB clocks and reducing
 518	 * VBUS power usage).  However, not all of them do so; silicon,
 519	 * board, and BIOS bugs here are not uncommon, so these can't
 520	 * be treated quite like external hubs.
 521	 *
 522	 * Likewise, not all root hubs will pass wakeup events upstream,
 523	 * to wake up the whole system.  So don't assume root hub and
 524	 * controller capabilities are identical.
 525	 */
 526
 527	case DeviceRequest | USB_REQ_GET_STATUS:
 528		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 529					<< USB_DEVICE_REMOTE_WAKEUP)
 530				| (1 << USB_DEVICE_SELF_POWERED);
 531		tbuf[1] = 0;
 532		len = 2;
 533		break;
 534	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 535		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 536			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 537		else
 538			goto error;
 539		break;
 540	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 541		if (device_can_wakeup(&hcd->self.root_hub->dev)
 542				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 543			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 544		else
 545			goto error;
 546		break;
 547	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 548		tbuf[0] = 1;
 549		len = 1;
 550			/* FALLTHROUGH */
 551	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 552		break;
 553	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 554		switch (wValue & 0xff00) {
 555		case USB_DT_DEVICE << 8:
 556			switch (hcd->speed) {
 
 
 
 
 557			case HCD_USB3:
 558				bufp = usb3_rh_dev_descriptor;
 559				break;
 560			case HCD_USB25:
 561				bufp = usb25_rh_dev_descriptor;
 562				break;
 563			case HCD_USB2:
 564				bufp = usb2_rh_dev_descriptor;
 565				break;
 566			case HCD_USB11:
 567				bufp = usb11_rh_dev_descriptor;
 568				break;
 569			default:
 570				goto error;
 571			}
 572			len = 18;
 573			if (hcd->has_tt)
 574				patch_protocol = 1;
 575			break;
 576		case USB_DT_CONFIG << 8:
 577			switch (hcd->speed) {
 
 
 578			case HCD_USB3:
 579				bufp = ss_rh_config_descriptor;
 580				len = sizeof ss_rh_config_descriptor;
 581				break;
 582			case HCD_USB25:
 583			case HCD_USB2:
 584				bufp = hs_rh_config_descriptor;
 585				len = sizeof hs_rh_config_descriptor;
 586				break;
 587			case HCD_USB11:
 588				bufp = fs_rh_config_descriptor;
 589				len = sizeof fs_rh_config_descriptor;
 590				break;
 591			default:
 592				goto error;
 593			}
 594			if (device_can_wakeup(&hcd->self.root_hub->dev))
 595				patch_wakeup = 1;
 596			break;
 597		case USB_DT_STRING << 8:
 598			if ((wValue & 0xff) < 4)
 599				urb->actual_length = rh_string(wValue & 0xff,
 600						hcd, ubuf, wLength);
 601			else /* unsupported IDs --> "protocol stall" */
 602				goto error;
 603			break;
 604		case USB_DT_BOS << 8:
 605			goto nongeneric;
 606		default:
 607			goto error;
 608		}
 609		break;
 610	case DeviceRequest | USB_REQ_GET_INTERFACE:
 611		tbuf[0] = 0;
 612		len = 1;
 613			/* FALLTHROUGH */
 614	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 615		break;
 616	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 617		/* wValue == urb->dev->devaddr */
 618		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 619			wValue);
 620		break;
 621
 622	/* INTERFACE REQUESTS (no defined feature/status flags) */
 623
 624	/* ENDPOINT REQUESTS */
 625
 626	case EndpointRequest | USB_REQ_GET_STATUS:
 627		/* ENDPOINT_HALT flag */
 628		tbuf[0] = 0;
 629		tbuf[1] = 0;
 630		len = 2;
 631			/* FALLTHROUGH */
 632	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 633	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 634		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 635		break;
 636
 637	/* CLASS REQUESTS (and errors) */
 638
 639	default:
 640nongeneric:
 641		/* non-generic request */
 642		switch (typeReq) {
 643		case GetHubStatus:
 
 
 644		case GetPortStatus:
 645			len = 4;
 
 
 
 
 646			break;
 647		case GetHubDescriptor:
 648			len = sizeof (struct usb_hub_descriptor);
 649			break;
 650		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 651			/* len is returned by hub_control */
 652			break;
 653		}
 654		status = hcd->driver->hub_control (hcd,
 655			typeReq, wValue, wIndex,
 656			tbuf, wLength);
 657
 658		if (typeReq == GetHubDescriptor)
 659			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 660				(struct usb_hub_descriptor *)tbuf);
 661		break;
 662error:
 663		/* "protocol stall" on error */
 664		status = -EPIPE;
 665	}
 666
 667	if (status < 0) {
 668		len = 0;
 669		if (status != -EPIPE) {
 670			dev_dbg (hcd->self.controller,
 671				"CTRL: TypeReq=0x%x val=0x%x "
 672				"idx=0x%x len=%d ==> %d\n",
 673				typeReq, wValue, wIndex,
 674				wLength, status);
 675		}
 676	} else if (status > 0) {
 677		/* hub_control may return the length of data copied. */
 678		len = status;
 679		status = 0;
 680	}
 681	if (len) {
 682		if (urb->transfer_buffer_length < len)
 683			len = urb->transfer_buffer_length;
 684		urb->actual_length = len;
 685		/* always USB_DIR_IN, toward host */
 686		memcpy (ubuf, bufp, len);
 687
 688		/* report whether RH hardware supports remote wakeup */
 689		if (patch_wakeup &&
 690				len > offsetof (struct usb_config_descriptor,
 691						bmAttributes))
 692			((struct usb_config_descriptor *)ubuf)->bmAttributes
 693				|= USB_CONFIG_ATT_WAKEUP;
 694
 695		/* report whether RH hardware has an integrated TT */
 696		if (patch_protocol &&
 697				len > offsetof(struct usb_device_descriptor,
 698						bDeviceProtocol))
 699			((struct usb_device_descriptor *) ubuf)->
 700				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 701	}
 702
 703	kfree(tbuf);
 
 704
 705	/* any errors get returned through the urb completion */
 706	spin_lock_irq(&hcd_root_hub_lock);
 707	usb_hcd_unlink_urb_from_ep(hcd, urb);
 708	usb_hcd_giveback_urb(hcd, urb, status);
 709	spin_unlock_irq(&hcd_root_hub_lock);
 710	return 0;
 711}
 712
 713/*-------------------------------------------------------------------------*/
 714
 715/*
 716 * Root Hub interrupt transfers are polled using a timer if the
 717 * driver requests it; otherwise the driver is responsible for
 718 * calling usb_hcd_poll_rh_status() when an event occurs.
 719 *
 720 * Completions are called in_interrupt(), but they may or may not
 721 * be in_irq().
 722 */
 723void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 724{
 725	struct urb	*urb;
 726	int		length;
 
 727	unsigned long	flags;
 728	char		buffer[6];	/* Any root hubs with > 31 ports? */
 729
 730	if (unlikely(!hcd->rh_pollable))
 731		return;
 732	if (!hcd->uses_new_polling && !hcd->status_urb)
 733		return;
 734
 735	length = hcd->driver->hub_status_data(hcd, buffer);
 736	if (length > 0) {
 737
 738		/* try to complete the status urb */
 739		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 740		urb = hcd->status_urb;
 741		if (urb) {
 742			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 743			hcd->status_urb = NULL;
 
 
 
 
 
 
 744			urb->actual_length = length;
 745			memcpy(urb->transfer_buffer, buffer, length);
 746
 747			usb_hcd_unlink_urb_from_ep(hcd, urb);
 748			usb_hcd_giveback_urb(hcd, urb, 0);
 749		} else {
 750			length = 0;
 751			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 752		}
 753		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 754	}
 755
 756	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 757	 * exceed that limit if HZ is 100. The math is more clunky than
 758	 * maybe expected, this is to make sure that all timers for USB devices
 759	 * fire at the same time to give the CPU a break in between */
 760	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 761			(length == 0 && hcd->status_urb != NULL))
 762		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 763}
 764EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 765
 766/* timer callback */
 767static void rh_timer_func (unsigned long _hcd)
 768{
 769	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 
 
 770}
 771
 772/*-------------------------------------------------------------------------*/
 773
 774static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 775{
 776	int		retval;
 777	unsigned long	flags;
 778	unsigned	len = 1 + (urb->dev->maxchild / 8);
 779
 780	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 781	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 782		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 783		retval = -EINVAL;
 784		goto done;
 785	}
 786
 787	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 788	if (retval)
 789		goto done;
 790
 791	hcd->status_urb = urb;
 792	urb->hcpriv = hcd;	/* indicate it's queued */
 793	if (!hcd->uses_new_polling)
 794		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 795
 796	/* If a status change has already occurred, report it ASAP */
 797	else if (HCD_POLL_PENDING(hcd))
 798		mod_timer(&hcd->rh_timer, jiffies);
 799	retval = 0;
 800 done:
 801	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 802	return retval;
 803}
 804
 805static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 806{
 807	if (usb_endpoint_xfer_int(&urb->ep->desc))
 808		return rh_queue_status (hcd, urb);
 809	if (usb_endpoint_xfer_control(&urb->ep->desc))
 810		return rh_call_control (hcd, urb);
 811	return -EINVAL;
 812}
 813
 814/*-------------------------------------------------------------------------*/
 815
 816/* Unlinks of root-hub control URBs are legal, but they don't do anything
 817 * since these URBs always execute synchronously.
 818 */
 819static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 820{
 821	unsigned long	flags;
 822	int		rc;
 823
 824	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 825	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 826	if (rc)
 827		goto done;
 828
 829	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 830		;	/* Do nothing */
 831
 832	} else {				/* Status URB */
 833		if (!hcd->uses_new_polling)
 834			del_timer (&hcd->rh_timer);
 835		if (urb == hcd->status_urb) {
 836			hcd->status_urb = NULL;
 837			usb_hcd_unlink_urb_from_ep(hcd, urb);
 838			usb_hcd_giveback_urb(hcd, urb, status);
 839		}
 840	}
 841 done:
 842	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 843	return rc;
 844}
 845
 846
 847
 848/*
 849 * Show & store the current value of authorized_default
 850 */
 851static ssize_t authorized_default_show(struct device *dev,
 852				       struct device_attribute *attr, char *buf)
 853{
 854	struct usb_device *rh_usb_dev = to_usb_device(dev);
 855	struct usb_bus *usb_bus = rh_usb_dev->bus;
 856	struct usb_hcd *usb_hcd;
 857
 858	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 859		return -ENODEV;
 860	usb_hcd = bus_to_hcd(usb_bus);
 861	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 862}
 863
 864static ssize_t authorized_default_store(struct device *dev,
 865					struct device_attribute *attr,
 866					const char *buf, size_t size)
 867{
 868	ssize_t result;
 869	unsigned val;
 870	struct usb_device *rh_usb_dev = to_usb_device(dev);
 871	struct usb_bus *usb_bus = rh_usb_dev->bus;
 872	struct usb_hcd *usb_hcd;
 873
 874	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 875		return -ENODEV;
 876	usb_hcd = bus_to_hcd(usb_bus);
 877	result = sscanf(buf, "%u\n", &val);
 878	if (result == 1) {
 879		usb_hcd->authorized_default = val ? 1 : 0;
 880		result = size;
 881	} else {
 882		result = -EINVAL;
 883	}
 884	return result;
 885}
 886static DEVICE_ATTR_RW(authorized_default);
 887
 888/* Group all the USB bus attributes */
 889static struct attribute *usb_bus_attrs[] = {
 890		&dev_attr_authorized_default.attr,
 891		NULL,
 892};
 893
 894static struct attribute_group usb_bus_attr_group = {
 895	.name = NULL,	/* we want them in the same directory */
 896	.attrs = usb_bus_attrs,
 897};
 898
 899
 900
 901/*-------------------------------------------------------------------------*/
 902
 903/**
 904 * usb_bus_init - shared initialization code
 905 * @bus: the bus structure being initialized
 906 *
 907 * This code is used to initialize a usb_bus structure, memory for which is
 908 * separately managed.
 909 */
 910static void usb_bus_init (struct usb_bus *bus)
 911{
 912	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 913
 914	bus->devnum_next = 1;
 915
 916	bus->root_hub = NULL;
 917	bus->busnum = -1;
 918	bus->bandwidth_allocated = 0;
 919	bus->bandwidth_int_reqs  = 0;
 920	bus->bandwidth_isoc_reqs = 0;
 921
 922	INIT_LIST_HEAD (&bus->bus_list);
 923}
 924
 925/*-------------------------------------------------------------------------*/
 926
 927/**
 928 * usb_register_bus - registers the USB host controller with the usb core
 929 * @bus: pointer to the bus to register
 930 * Context: !in_interrupt()
 
 931 *
 932 * Assigns a bus number, and links the controller into usbcore data
 933 * structures so that it can be seen by scanning the bus list.
 934 *
 935 * Return: 0 if successful. A negative error code otherwise.
 936 */
 937static int usb_register_bus(struct usb_bus *bus)
 938{
 939	int result = -E2BIG;
 940	int busnum;
 941
 942	mutex_lock(&usb_bus_list_lock);
 943	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
 944	if (busnum >= USB_MAXBUS) {
 945		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 946		goto error_find_busnum;
 947	}
 948	set_bit(busnum, busmap);
 949	bus->busnum = busnum;
 950
 951	/* Add it to the local list of buses */
 952	list_add (&bus->bus_list, &usb_bus_list);
 953	mutex_unlock(&usb_bus_list_lock);
 954
 955	usb_notify_add_bus(bus);
 956
 957	dev_info (bus->controller, "new USB bus registered, assigned bus "
 958		  "number %d\n", bus->busnum);
 959	return 0;
 960
 961error_find_busnum:
 962	mutex_unlock(&usb_bus_list_lock);
 963	return result;
 964}
 965
 966/**
 967 * usb_deregister_bus - deregisters the USB host controller
 968 * @bus: pointer to the bus to deregister
 969 * Context: !in_interrupt()
 
 970 *
 971 * Recycles the bus number, and unlinks the controller from usbcore data
 972 * structures so that it won't be seen by scanning the bus list.
 973 */
 974static void usb_deregister_bus (struct usb_bus *bus)
 975{
 976	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 977
 978	/*
 979	 * NOTE: make sure that all the devices are removed by the
 980	 * controller code, as well as having it call this when cleaning
 981	 * itself up
 982	 */
 983	mutex_lock(&usb_bus_list_lock);
 984	list_del (&bus->bus_list);
 985	mutex_unlock(&usb_bus_list_lock);
 986
 987	usb_notify_remove_bus(bus);
 988
 989	clear_bit(bus->busnum, busmap);
 990}
 991
 992/**
 993 * register_root_hub - called by usb_add_hcd() to register a root hub
 994 * @hcd: host controller for this root hub
 995 *
 996 * This function registers the root hub with the USB subsystem.  It sets up
 997 * the device properly in the device tree and then calls usb_new_device()
 998 * to register the usb device.  It also assigns the root hub's USB address
 999 * (always 1).
1000 *
1001 * Return: 0 if successful. A negative error code otherwise.
1002 */
1003static int register_root_hub(struct usb_hcd *hcd)
1004{
1005	struct device *parent_dev = hcd->self.controller;
1006	struct usb_device *usb_dev = hcd->self.root_hub;
 
1007	const int devnum = 1;
1008	int retval;
1009
1010	usb_dev->devnum = devnum;
1011	usb_dev->bus->devnum_next = devnum + 1;
1012	memset (&usb_dev->bus->devmap.devicemap, 0,
1013			sizeof usb_dev->bus->devmap.devicemap);
1014	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1016
1017	mutex_lock(&usb_bus_list_lock);
1018
1019	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021	if (retval != sizeof usb_dev->descriptor) {
1022		mutex_unlock(&usb_bus_list_lock);
 
1023		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024				dev_name(&usb_dev->dev), retval);
1025		return (retval < 0) ? retval : -EMSGSIZE;
1026	}
1027	if (usb_dev->speed == USB_SPEED_SUPER) {
 
 
 
1028		retval = usb_get_bos_descriptor(usb_dev);
1029		if (retval < 0) {
1030			mutex_unlock(&usb_bus_list_lock);
 
 
1031			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032					dev_name(&usb_dev->dev), retval);
1033			return retval;
1034		}
1035	}
1036
1037	retval = usb_new_device (usb_dev);
1038	if (retval) {
1039		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040				dev_name(&usb_dev->dev), retval);
1041	} else {
1042		spin_lock_irq (&hcd_root_hub_lock);
1043		hcd->rh_registered = 1;
1044		spin_unlock_irq (&hcd_root_hub_lock);
1045
1046		/* Did the HC die before the root hub was registered? */
1047		if (HCD_DEAD(hcd))
1048			usb_hc_died (hcd);	/* This time clean up */
1049	}
1050	mutex_unlock(&usb_bus_list_lock);
1051
1052	return retval;
1053}
1054
1055/*
1056 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal is
1061 * being sent to a root-hub port.  The root hub will be prevented from
1062 * going into autosuspend until usb_hcd_end_port_resume() is called.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1067{
1068	unsigned bit = 1 << portnum;
1069
1070	if (!(bus->resuming_ports & bit)) {
1071		bus->resuming_ports |= bit;
1072		pm_runtime_get_noresume(&bus->root_hub->dev);
1073	}
1074}
1075EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1076
1077/*
1078 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079 * @bus: the bus which the root hub belongs to
1080 * @portnum: the port which is being resumed
1081 *
1082 * HCDs should call this function when they know that a resume signal has
1083 * stopped being sent to a root-hub port.  The root hub will be allowed to
1084 * autosuspend again.
1085 *
1086 * The bus's private lock must be held by the caller.
1087 */
1088void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1089{
1090	unsigned bit = 1 << portnum;
1091
1092	if (bus->resuming_ports & bit) {
1093		bus->resuming_ports &= ~bit;
1094		pm_runtime_put_noidle(&bus->root_hub->dev);
1095	}
1096}
1097EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1098
1099/*-------------------------------------------------------------------------*/
1100
1101/**
1102 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104 * @is_input: true iff the transaction sends data to the host
1105 * @isoc: true for isochronous transactions, false for interrupt ones
1106 * @bytecount: how many bytes in the transaction.
1107 *
1108 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109 *
1110 * Note:
1111 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112 * scheduled in software, this function is only used for such scheduling.
1113 */
1114long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1115{
1116	unsigned long	tmp;
1117
1118	switch (speed) {
1119	case USB_SPEED_LOW: 	/* INTR only */
1120		if (is_input) {
1121			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123		} else {
1124			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1126		}
1127	case USB_SPEED_FULL:	/* ISOC or INTR */
1128		if (isoc) {
1129			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131		} else {
1132			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133			return 9107L + BW_HOST_DELAY + tmp;
1134		}
1135	case USB_SPEED_HIGH:	/* ISOC or INTR */
1136		/* FIXME adjust for input vs output */
1137		if (isoc)
1138			tmp = HS_NSECS_ISO (bytecount);
1139		else
1140			tmp = HS_NSECS (bytecount);
1141		return tmp;
1142	default:
1143		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144		return -1;
1145	}
1146}
1147EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1148
1149
1150/*-------------------------------------------------------------------------*/
1151
1152/*
1153 * Generic HC operations.
1154 */
1155
1156/*-------------------------------------------------------------------------*/
1157
1158/**
1159 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160 * @hcd: host controller to which @urb was submitted
1161 * @urb: URB being submitted
1162 *
1163 * Host controller drivers should call this routine in their enqueue()
1164 * method.  The HCD's private spinlock must be held and interrupts must
1165 * be disabled.  The actions carried out here are required for URB
1166 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1167 *
1168 * Return: 0 for no error, otherwise a negative error code (in which case
1169 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1170 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171 * the private spinlock and returning.
1172 */
1173int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1174{
1175	int		rc = 0;
1176
1177	spin_lock(&hcd_urb_list_lock);
1178
1179	/* Check that the URB isn't being killed */
1180	if (unlikely(atomic_read(&urb->reject))) {
1181		rc = -EPERM;
1182		goto done;
1183	}
1184
1185	if (unlikely(!urb->ep->enabled)) {
1186		rc = -ENOENT;
1187		goto done;
1188	}
1189
1190	if (unlikely(!urb->dev->can_submit)) {
1191		rc = -EHOSTUNREACH;
1192		goto done;
1193	}
1194
1195	/*
1196	 * Check the host controller's state and add the URB to the
1197	 * endpoint's queue.
1198	 */
1199	if (HCD_RH_RUNNING(hcd)) {
1200		urb->unlinked = 0;
1201		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202	} else {
1203		rc = -ESHUTDOWN;
1204		goto done;
1205	}
1206 done:
1207	spin_unlock(&hcd_urb_list_lock);
1208	return rc;
1209}
1210EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1211
1212/**
1213 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214 * @hcd: host controller to which @urb was submitted
1215 * @urb: URB being checked for unlinkability
1216 * @status: error code to store in @urb if the unlink succeeds
1217 *
1218 * Host controller drivers should call this routine in their dequeue()
1219 * method.  The HCD's private spinlock must be held and interrupts must
1220 * be disabled.  The actions carried out here are required for making
1221 * sure than an unlink is valid.
1222 *
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the dequeue() method must fail).  The possible error codes are:
1225 *
1226 *	-EIDRM: @urb was not submitted or has already completed.
1227 *		The completion function may not have been called yet.
1228 *
1229 *	-EBUSY: @urb has already been unlinked.
1230 */
1231int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232		int status)
1233{
1234	struct list_head	*tmp;
1235
1236	/* insist the urb is still queued */
1237	list_for_each(tmp, &urb->ep->urb_list) {
1238		if (tmp == &urb->urb_list)
1239			break;
1240	}
1241	if (tmp != &urb->urb_list)
1242		return -EIDRM;
1243
1244	/* Any status except -EINPROGRESS means something already started to
1245	 * unlink this URB from the hardware.  So there's no more work to do.
1246	 */
1247	if (urb->unlinked)
1248		return -EBUSY;
1249	urb->unlinked = status;
1250	return 0;
1251}
1252EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1253
1254/**
1255 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256 * @hcd: host controller to which @urb was submitted
1257 * @urb: URB being unlinked
1258 *
1259 * Host controller drivers should call this routine before calling
1260 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1261 * interrupts must be disabled.  The actions carried out here are required
1262 * for URB completion.
1263 */
1264void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1265{
1266	/* clear all state linking urb to this dev (and hcd) */
1267	spin_lock(&hcd_urb_list_lock);
1268	list_del_init(&urb->urb_list);
1269	spin_unlock(&hcd_urb_list_lock);
1270}
1271EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1272
1273/*
1274 * Some usb host controllers can only perform dma using a small SRAM area.
 
1275 * The usb core itself is however optimized for host controllers that can dma
1276 * using regular system memory - like pci devices doing bus mastering.
1277 *
1278 * To support host controllers with limited dma capabilites we provide dma
1279 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280 * For this to work properly the host controller code must first use the
1281 * function dma_declare_coherent_memory() to point out which memory area
1282 * that should be used for dma allocations.
1283 *
1284 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285 * dma using dma_alloc_coherent() which in turn allocates from the memory
1286 * area pointed out with dma_declare_coherent_memory().
1287 *
1288 * So, to summarize...
1289 *
1290 * - We need "local" memory, canonical example being
1291 *   a small SRAM on a discrete controller being the
1292 *   only memory that the controller can read ...
1293 *   (a) "normal" kernel memory is no good, and
1294 *   (b) there's not enough to share
1295 *
1296 * - The only *portable* hook for such stuff in the
1297 *   DMA framework is dma_declare_coherent_memory()
1298 *
1299 * - So we use that, even though the primary requirement
1300 *   is that the memory be "local" (hence addressable
1301 *   by that device), not "coherent".
1302 *
1303 */
1304
1305static int hcd_alloc_coherent(struct usb_bus *bus,
1306			      gfp_t mem_flags, dma_addr_t *dma_handle,
1307			      void **vaddr_handle, size_t size,
1308			      enum dma_data_direction dir)
1309{
1310	unsigned char *vaddr;
1311
1312	if (*vaddr_handle == NULL) {
1313		WARN_ON_ONCE(1);
1314		return -EFAULT;
1315	}
1316
1317	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318				 mem_flags, dma_handle);
1319	if (!vaddr)
1320		return -ENOMEM;
1321
1322	/*
1323	 * Store the virtual address of the buffer at the end
1324	 * of the allocated dma buffer. The size of the buffer
1325	 * may be uneven so use unaligned functions instead
1326	 * of just rounding up. It makes sense to optimize for
1327	 * memory footprint over access speed since the amount
1328	 * of memory available for dma may be limited.
1329	 */
1330	put_unaligned((unsigned long)*vaddr_handle,
1331		      (unsigned long *)(vaddr + size));
1332
1333	if (dir == DMA_TO_DEVICE)
1334		memcpy(vaddr, *vaddr_handle, size);
1335
1336	*vaddr_handle = vaddr;
1337	return 0;
1338}
1339
1340static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341			      void **vaddr_handle, size_t size,
1342			      enum dma_data_direction dir)
1343{
1344	unsigned char *vaddr = *vaddr_handle;
1345
1346	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1347
1348	if (dir == DMA_FROM_DEVICE)
1349		memcpy(vaddr, *vaddr_handle, size);
1350
1351	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1352
1353	*vaddr_handle = vaddr;
1354	*dma_handle = 0;
1355}
1356
1357void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1358{
1359	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360		dma_unmap_single(hcd->self.controller,
 
1361				urb->setup_dma,
1362				sizeof(struct usb_ctrlrequest),
1363				DMA_TO_DEVICE);
1364	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365		hcd_free_coherent(urb->dev->bus,
1366				&urb->setup_dma,
1367				(void **) &urb->setup_packet,
1368				sizeof(struct usb_ctrlrequest),
1369				DMA_TO_DEVICE);
1370
1371	/* Make it safe to call this routine more than once */
1372	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1373}
1374EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1375
1376static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1377{
1378	if (hcd->driver->unmap_urb_for_dma)
1379		hcd->driver->unmap_urb_for_dma(hcd, urb);
1380	else
1381		usb_hcd_unmap_urb_for_dma(hcd, urb);
1382}
1383
1384void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1385{
1386	enum dma_data_direction dir;
1387
1388	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1389
1390	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391	if (urb->transfer_flags & URB_DMA_MAP_SG)
1392		dma_unmap_sg(hcd->self.controller,
 
1393				urb->sg,
1394				urb->num_sgs,
1395				dir);
1396	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397		dma_unmap_page(hcd->self.controller,
 
1398				urb->transfer_dma,
1399				urb->transfer_buffer_length,
1400				dir);
1401	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402		dma_unmap_single(hcd->self.controller,
 
1403				urb->transfer_dma,
1404				urb->transfer_buffer_length,
1405				dir);
1406	else if (urb->transfer_flags & URB_MAP_LOCAL)
1407		hcd_free_coherent(urb->dev->bus,
1408				&urb->transfer_dma,
1409				&urb->transfer_buffer,
1410				urb->transfer_buffer_length,
1411				dir);
1412
1413	/* Make it safe to call this routine more than once */
1414	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1416}
1417EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1418
1419static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420			   gfp_t mem_flags)
1421{
1422	if (hcd->driver->map_urb_for_dma)
1423		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424	else
1425		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1426}
1427
1428int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429			    gfp_t mem_flags)
1430{
1431	enum dma_data_direction dir;
1432	int ret = 0;
1433
1434	/* Map the URB's buffers for DMA access.
1435	 * Lower level HCD code should use *_dma exclusively,
1436	 * unless it uses pio or talks to another transport,
1437	 * or uses the provided scatter gather list for bulk.
1438	 */
1439
1440	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441		if (hcd->self.uses_pio_for_control)
1442			return ret;
1443		if (hcd->self.uses_dma) {
1444			urb->setup_dma = dma_map_single(
1445					hcd->self.controller,
1446					urb->setup_packet,
1447					sizeof(struct usb_ctrlrequest),
1448					DMA_TO_DEVICE);
1449			if (dma_mapping_error(hcd->self.controller,
1450						urb->setup_dma))
1451				return -EAGAIN;
1452			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454			ret = hcd_alloc_coherent(
1455					urb->dev->bus, mem_flags,
1456					&urb->setup_dma,
1457					(void **)&urb->setup_packet,
1458					sizeof(struct usb_ctrlrequest),
1459					DMA_TO_DEVICE);
1460			if (ret)
1461				return ret;
1462			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463		}
1464	}
1465
1466	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467	if (urb->transfer_buffer_length != 0
1468	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469		if (hcd->self.uses_dma) {
 
 
 
 
 
 
 
 
 
1470			if (urb->num_sgs) {
1471				int n;
1472
1473				/* We don't support sg for isoc transfers ! */
1474				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475					WARN_ON(1);
1476					return -EINVAL;
1477				}
1478
1479				n = dma_map_sg(
1480						hcd->self.controller,
1481						urb->sg,
1482						urb->num_sgs,
1483						dir);
1484				if (n <= 0)
1485					ret = -EAGAIN;
1486				else
1487					urb->transfer_flags |= URB_DMA_MAP_SG;
1488				urb->num_mapped_sgs = n;
1489				if (n != urb->num_sgs)
1490					urb->transfer_flags |=
1491							URB_DMA_SG_COMBINED;
1492			} else if (urb->sg) {
1493				struct scatterlist *sg = urb->sg;
1494				urb->transfer_dma = dma_map_page(
1495						hcd->self.controller,
1496						sg_page(sg),
1497						sg->offset,
1498						urb->transfer_buffer_length,
1499						dir);
1500				if (dma_mapping_error(hcd->self.controller,
1501						urb->transfer_dma))
1502					ret = -EAGAIN;
1503				else
1504					urb->transfer_flags |= URB_DMA_MAP_PAGE;
 
 
 
1505			} else {
1506				urb->transfer_dma = dma_map_single(
1507						hcd->self.controller,
1508						urb->transfer_buffer,
1509						urb->transfer_buffer_length,
1510						dir);
1511				if (dma_mapping_error(hcd->self.controller,
1512						urb->transfer_dma))
1513					ret = -EAGAIN;
1514				else
1515					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516			}
1517		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518			ret = hcd_alloc_coherent(
1519					urb->dev->bus, mem_flags,
1520					&urb->transfer_dma,
1521					&urb->transfer_buffer,
1522					urb->transfer_buffer_length,
1523					dir);
1524			if (ret == 0)
1525				urb->transfer_flags |= URB_MAP_LOCAL;
1526		}
1527		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528				URB_SETUP_MAP_LOCAL)))
1529			usb_hcd_unmap_urb_for_dma(hcd, urb);
1530	}
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535/*-------------------------------------------------------------------------*/
1536
1537/* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1541 */
1542int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543{
1544	int			status;
1545	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1546
1547	/* increment urb's reference count as part of giving it to the HCD
1548	 * (which will control it).  HCD guarantees that it either returns
1549	 * an error or calls giveback(), but not both.
1550	 */
1551	usb_get_urb(urb);
1552	atomic_inc(&urb->use_count);
1553	atomic_inc(&urb->dev->urbnum);
1554	usbmon_urb_submit(&hcd->self, urb);
1555
1556	/* NOTE requirements on root-hub callers (usbfs and the hub
1557	 * driver, for now):  URBs' urb->transfer_buffer must be
1558	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1559	 * they could clobber root hub response data.  Also, control
1560	 * URBs must be submitted in process context with interrupts
1561	 * enabled.
1562	 */
1563
1564	if (is_root_hub(urb->dev)) {
1565		status = rh_urb_enqueue(hcd, urb);
1566	} else {
1567		status = map_urb_for_dma(hcd, urb, mem_flags);
1568		if (likely(status == 0)) {
1569			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570			if (unlikely(status))
1571				unmap_urb_for_dma(hcd, urb);
1572		}
1573	}
1574
1575	if (unlikely(status)) {
1576		usbmon_urb_submit_error(&hcd->self, urb, status);
1577		urb->hcpriv = NULL;
1578		INIT_LIST_HEAD(&urb->urb_list);
1579		atomic_dec(&urb->use_count);
 
 
 
 
 
 
 
1580		atomic_dec(&urb->dev->urbnum);
1581		if (atomic_read(&urb->reject))
1582			wake_up(&usb_kill_urb_queue);
1583		usb_put_urb(urb);
1584	}
1585	return status;
1586}
1587
1588/*-------------------------------------------------------------------------*/
1589
1590/* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical.  we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1594 */
1595static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596{
1597	int		value;
1598
1599	if (is_root_hub(urb->dev))
1600		value = usb_rh_urb_dequeue(hcd, urb, status);
1601	else {
1602
1603		/* The only reason an HCD might fail this call is if
1604		 * it has not yet fully queued the urb to begin with.
1605		 * Such failures should be harmless. */
1606		value = hcd->driver->urb_dequeue(hcd, urb, status);
1607	}
1608	return value;
1609}
1610
1611/*
1612 * called in any context
1613 *
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1616 */
1617int usb_hcd_unlink_urb (struct urb *urb, int status)
1618{
1619	struct usb_hcd		*hcd;
 
1620	int			retval = -EIDRM;
1621	unsigned long		flags;
1622
1623	/* Prevent the device and bus from going away while
1624	 * the unlink is carried out.  If they are already gone
1625	 * then urb->use_count must be 0, since disconnected
1626	 * devices can't have any active URBs.
1627	 */
1628	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629	if (atomic_read(&urb->use_count) > 0) {
1630		retval = 0;
1631		usb_get_dev(urb->dev);
1632	}
1633	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634	if (retval == 0) {
1635		hcd = bus_to_hcd(urb->dev->bus);
1636		retval = unlink1(hcd, urb, status);
1637		usb_put_dev(urb->dev);
 
 
 
 
 
1638	}
1639
1640	if (retval == 0)
1641		retval = -EINPROGRESS;
1642	else if (retval != -EIDRM && retval != -EBUSY)
1643		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644				urb, retval);
1645	return retval;
1646}
1647
1648/*-------------------------------------------------------------------------*/
1649
1650static void __usb_hcd_giveback_urb(struct urb *urb)
1651{
1652	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653	struct usb_anchor *anchor = urb->anchor;
1654	int status = urb->unlinked;
1655	unsigned long flags;
1656
1657	urb->hcpriv = NULL;
1658	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659	    urb->actual_length < urb->transfer_buffer_length &&
1660	    !status))
1661		status = -EREMOTEIO;
1662
1663	unmap_urb_for_dma(hcd, urb);
1664	usbmon_urb_complete(&hcd->self, urb, status);
1665	usb_anchor_suspend_wakeups(anchor);
1666	usb_unanchor_urb(urb);
 
 
1667
1668	/* pass ownership to the completion handler */
1669	urb->status = status;
1670
1671	/*
1672	 * We disable local IRQs here avoid possible deadlock because
1673	 * drivers may call spin_lock() to hold lock which might be
1674	 * acquired in one hard interrupt handler.
1675	 *
1676	 * The local_irq_save()/local_irq_restore() around complete()
1677	 * will be removed if current USB drivers have been cleaned up
1678	 * and no one may trigger the above deadlock situation when
1679	 * running complete() in tasklet.
1680	 */
1681	local_irq_save(flags);
1682	urb->complete(urb);
1683	local_irq_restore(flags);
1684
1685	usb_anchor_resume_wakeups(anchor);
1686	atomic_dec(&urb->use_count);
 
 
 
 
 
 
 
1687	if (unlikely(atomic_read(&urb->reject)))
1688		wake_up(&usb_kill_urb_queue);
1689	usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(unsigned long param)
1693{
1694	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
 
1695	struct list_head local_list;
1696
1697	spin_lock_irq(&bh->lock);
1698	bh->running = true;
1699 restart:
1700	list_replace_init(&bh->head, &local_list);
1701	spin_unlock_irq(&bh->lock);
1702
1703	while (!list_empty(&local_list)) {
1704		struct urb *urb;
1705
1706		urb = list_entry(local_list.next, struct urb, urb_list);
1707		list_del_init(&urb->urb_list);
1708		bh->completing_ep = urb->ep;
1709		__usb_hcd_giveback_urb(urb);
1710		bh->completing_ep = NULL;
1711	}
1712
1713	/* check if there are new URBs to giveback */
 
 
 
1714	spin_lock_irq(&bh->lock);
1715	if (!list_empty(&bh->head))
1716		goto restart;
 
 
 
 
1717	bh->running = false;
1718	spin_unlock_irq(&bh->lock);
1719}
1720
1721/**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
 
 
 
 
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function.  The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv).  It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked.  Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
1738void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740	struct giveback_urb_bh *bh;
1741	bool running, high_prio_bh;
1742
1743	/* pass status to tasklet via unlinked */
1744	if (likely(!urb->unlinked))
1745		urb->unlinked = status;
1746
1747	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748		__usb_hcd_giveback_urb(urb);
1749		return;
1750	}
1751
1752	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753		bh = &hcd->high_prio_bh;
1754		high_prio_bh = true;
1755	} else {
1756		bh = &hcd->low_prio_bh;
1757		high_prio_bh = false;
1758	}
1759
1760	spin_lock(&bh->lock);
1761	list_add_tail(&urb->urb_list, &bh->head);
1762	running = bh->running;
1763	spin_unlock(&bh->lock);
1764
1765	if (running)
1766		;
1767	else if (high_prio_bh)
1768		tasklet_hi_schedule(&bh->bh);
1769	else
1770		tasklet_schedule(&bh->bh);
1771}
1772EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely.  The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
1780void usb_hcd_flush_endpoint(struct usb_device *udev,
1781		struct usb_host_endpoint *ep)
1782{
1783	struct usb_hcd		*hcd;
1784	struct urb		*urb;
1785
1786	if (!ep)
1787		return;
1788	might_sleep();
1789	hcd = bus_to_hcd(udev->bus);
1790
1791	/* No more submits can occur */
1792	spin_lock_irq(&hcd_urb_list_lock);
1793rescan:
1794	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795		int	is_in;
1796
1797		if (urb->unlinked)
1798			continue;
1799		usb_get_urb (urb);
1800		is_in = usb_urb_dir_in(urb);
1801		spin_unlock(&hcd_urb_list_lock);
1802
1803		/* kick hcd */
1804		unlink1(hcd, urb, -ESHUTDOWN);
1805		dev_dbg (hcd->self.controller,
1806			"shutdown urb %p ep%d%s%s\n",
1807			urb, usb_endpoint_num(&ep->desc),
1808			is_in ? "in" : "out",
1809			({	char *s;
1810
1811				 switch (usb_endpoint_type(&ep->desc)) {
1812				 case USB_ENDPOINT_XFER_CONTROL:
1813					s = ""; break;
1814				 case USB_ENDPOINT_XFER_BULK:
1815					s = "-bulk"; break;
1816				 case USB_ENDPOINT_XFER_INT:
1817					s = "-intr"; break;
1818				 default:
1819					s = "-iso"; break;
1820				};
1821				s;
1822			}));
1823		usb_put_urb (urb);
1824
1825		/* list contents may have changed */
1826		spin_lock(&hcd_urb_list_lock);
1827		goto rescan;
1828	}
1829	spin_unlock_irq(&hcd_urb_list_lock);
1830
1831	/* Wait until the endpoint queue is completely empty */
1832	while (!list_empty (&ep->urb_list)) {
1833		spin_lock_irq(&hcd_urb_list_lock);
1834
1835		/* The list may have changed while we acquired the spinlock */
1836		urb = NULL;
1837		if (!list_empty (&ep->urb_list)) {
1838			urb = list_entry (ep->urb_list.prev, struct urb,
1839					urb_list);
1840			usb_get_urb (urb);
1841		}
1842		spin_unlock_irq(&hcd_urb_list_lock);
1843
1844		if (urb) {
1845			usb_kill_urb (urb);
1846			usb_put_urb (urb);
1847		}
1848	}
1849}
1850
1851/**
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 *				the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1858 *
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1861 *
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1864 *
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1868 *
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1871 */
1872int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873		struct usb_host_config *new_config,
1874		struct usb_host_interface *cur_alt,
1875		struct usb_host_interface *new_alt)
1876{
1877	int num_intfs, i, j;
1878	struct usb_host_interface *alt = NULL;
1879	int ret = 0;
1880	struct usb_hcd *hcd;
1881	struct usb_host_endpoint *ep;
1882
1883	hcd = bus_to_hcd(udev->bus);
1884	if (!hcd->driver->check_bandwidth)
1885		return 0;
1886
1887	/* Configuration is being removed - set configuration 0 */
1888	if (!new_config && !cur_alt) {
1889		for (i = 1; i < 16; ++i) {
1890			ep = udev->ep_out[i];
1891			if (ep)
1892				hcd->driver->drop_endpoint(hcd, udev, ep);
1893			ep = udev->ep_in[i];
1894			if (ep)
1895				hcd->driver->drop_endpoint(hcd, udev, ep);
1896		}
1897		hcd->driver->check_bandwidth(hcd, udev);
1898		return 0;
1899	}
1900	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1901	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1903	 * ok to exclude it.
1904	 */
1905	if (new_config) {
1906		num_intfs = new_config->desc.bNumInterfaces;
1907		/* Remove endpoints (except endpoint 0, which is always on the
1908		 * schedule) from the old config from the schedule
1909		 */
1910		for (i = 1; i < 16; ++i) {
1911			ep = udev->ep_out[i];
1912			if (ep) {
1913				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914				if (ret < 0)
1915					goto reset;
1916			}
1917			ep = udev->ep_in[i];
1918			if (ep) {
1919				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920				if (ret < 0)
1921					goto reset;
1922			}
1923		}
1924		for (i = 0; i < num_intfs; ++i) {
1925			struct usb_host_interface *first_alt;
1926			int iface_num;
1927
1928			first_alt = &new_config->intf_cache[i]->altsetting[0];
1929			iface_num = first_alt->desc.bInterfaceNumber;
1930			/* Set up endpoints for alternate interface setting 0 */
1931			alt = usb_find_alt_setting(new_config, iface_num, 0);
1932			if (!alt)
1933				/* No alt setting 0? Pick the first setting. */
1934				alt = first_alt;
1935
1936			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938				if (ret < 0)
1939					goto reset;
1940			}
1941		}
1942	}
1943	if (cur_alt && new_alt) {
1944		struct usb_interface *iface = usb_ifnum_to_if(udev,
1945				cur_alt->desc.bInterfaceNumber);
1946
1947		if (!iface)
1948			return -EINVAL;
1949		if (iface->resetting_device) {
1950			/*
1951			 * The USB core just reset the device, so the xHCI host
1952			 * and the device will think alt setting 0 is installed.
1953			 * However, the USB core will pass in the alternate
1954			 * setting installed before the reset as cur_alt.  Dig
1955			 * out the alternate setting 0 structure, or the first
1956			 * alternate setting if a broken device doesn't have alt
1957			 * setting 0.
1958			 */
1959			cur_alt = usb_altnum_to_altsetting(iface, 0);
1960			if (!cur_alt)
1961				cur_alt = &iface->altsetting[0];
1962		}
1963
1964		/* Drop all the endpoints in the current alt setting */
1965		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966			ret = hcd->driver->drop_endpoint(hcd, udev,
1967					&cur_alt->endpoint[i]);
1968			if (ret < 0)
1969				goto reset;
1970		}
1971		/* Add all the endpoints in the new alt setting */
1972		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973			ret = hcd->driver->add_endpoint(hcd, udev,
1974					&new_alt->endpoint[i]);
1975			if (ret < 0)
1976				goto reset;
1977		}
1978	}
1979	ret = hcd->driver->check_bandwidth(hcd, udev);
1980reset:
1981	if (ret < 0)
1982		hcd->driver->reset_bandwidth(hcd, udev);
1983	return ret;
1984}
1985
1986/* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1988 * have been called previously.  Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1990 *
1991 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1993 */
1994void usb_hcd_disable_endpoint(struct usb_device *udev,
1995		struct usb_host_endpoint *ep)
1996{
1997	struct usb_hcd		*hcd;
1998
1999	might_sleep();
2000	hcd = bus_to_hcd(udev->bus);
2001	if (hcd->driver->endpoint_disable)
2002		hcd->driver->endpoint_disable(hcd, ep);
2003}
2004
2005/**
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep:   the endpoint to reset.
2009 *
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2012 */
2013void usb_hcd_reset_endpoint(struct usb_device *udev,
2014			    struct usb_host_endpoint *ep)
2015{
2016	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018	if (hcd->driver->endpoint_reset)
2019		hcd->driver->endpoint_reset(hcd, ep);
2020	else {
2021		int epnum = usb_endpoint_num(&ep->desc);
2022		int is_out = usb_endpoint_dir_out(&ep->desc);
2023		int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025		usb_settoggle(udev, epnum, is_out, 0);
2026		if (is_control)
2027			usb_settoggle(udev, epnum, !is_out, 0);
2028	}
2029}
2030
2031/**
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface:		alternate setting that includes all endpoints.
2034 * @eps:		array of endpoints that need streams.
2035 * @num_eps:		number of endpoints in the array.
2036 * @num_streams:	number of streams to allocate.
2037 * @mem_flags:		flags hcd should use to allocate memory.
2038 *
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2042 *
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2045 */
2046int usb_alloc_streams(struct usb_interface *interface,
2047		struct usb_host_endpoint **eps, unsigned int num_eps,
2048		unsigned int num_streams, gfp_t mem_flags)
2049{
2050	struct usb_hcd *hcd;
2051	struct usb_device *dev;
2052	int i, ret;
2053
2054	dev = interface_to_usbdev(interface);
2055	hcd = bus_to_hcd(dev->bus);
2056	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057		return -EINVAL;
2058	if (dev->speed != USB_SPEED_SUPER)
2059		return -EINVAL;
 
 
2060
2061	for (i = 0; i < num_eps; i++) {
2062		/* Streams only apply to bulk endpoints. */
2063		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064			return -EINVAL;
2065		/* Re-alloc is not allowed */
2066		if (eps[i]->streams)
2067			return -EINVAL;
2068	}
2069
2070	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2071			num_streams, mem_flags);
2072	if (ret < 0)
2073		return ret;
2074
2075	for (i = 0; i < num_eps; i++)
2076		eps[i]->streams = ret;
2077
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(usb_alloc_streams);
2081
2082/**
2083 * usb_free_streams - free bulk endpoint stream IDs.
2084 * @interface:	alternate setting that includes all endpoints.
2085 * @eps:	array of endpoints to remove streams from.
2086 * @num_eps:	number of endpoints in the array.
2087 * @mem_flags:	flags hcd should use to allocate memory.
2088 *
2089 * Reverts a group of bulk endpoints back to not using stream IDs.
2090 * Can fail if we are given bad arguments, or HCD is broken.
2091 *
2092 * Return: 0 on success. On failure, a negative error code.
2093 */
2094int usb_free_streams(struct usb_interface *interface,
2095		struct usb_host_endpoint **eps, unsigned int num_eps,
2096		gfp_t mem_flags)
2097{
2098	struct usb_hcd *hcd;
2099	struct usb_device *dev;
2100	int i, ret;
2101
2102	dev = interface_to_usbdev(interface);
2103	hcd = bus_to_hcd(dev->bus);
2104	if (dev->speed != USB_SPEED_SUPER)
2105		return -EINVAL;
2106
2107	/* Double-free is not allowed */
2108	for (i = 0; i < num_eps; i++)
2109		if (!eps[i] || !eps[i]->streams)
2110			return -EINVAL;
2111
2112	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2113	if (ret < 0)
2114		return ret;
2115
2116	for (i = 0; i < num_eps; i++)
2117		eps[i]->streams = 0;
2118
2119	return ret;
2120}
2121EXPORT_SYMBOL_GPL(usb_free_streams);
2122
2123/* Protect against drivers that try to unlink URBs after the device
2124 * is gone, by waiting until all unlinks for @udev are finished.
2125 * Since we don't currently track URBs by device, simply wait until
2126 * nothing is running in the locked region of usb_hcd_unlink_urb().
2127 */
2128void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2129{
2130	spin_lock_irq(&hcd_urb_unlink_lock);
2131	spin_unlock_irq(&hcd_urb_unlink_lock);
2132}
2133
2134/*-------------------------------------------------------------------------*/
2135
2136/* called in any context */
2137int usb_hcd_get_frame_number (struct usb_device *udev)
2138{
2139	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2140
2141	if (!HCD_RH_RUNNING(hcd))
2142		return -ESHUTDOWN;
2143	return hcd->driver->get_frame_number (hcd);
2144}
2145
2146/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147
2148#ifdef	CONFIG_PM
2149
2150int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2151{
2152	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2153	int		status;
2154	int		old_state = hcd->state;
2155
2156	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2157			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2158			rhdev->do_remote_wakeup);
2159	if (HCD_DEAD(hcd)) {
2160		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2161		return 0;
2162	}
2163
2164	if (!hcd->driver->bus_suspend) {
2165		status = -ENOENT;
2166	} else {
2167		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168		hcd->state = HC_STATE_QUIESCING;
2169		status = hcd->driver->bus_suspend(hcd);
2170	}
2171	if (status == 0) {
2172		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2173		hcd->state = HC_STATE_SUSPENDED;
2174
 
 
 
 
2175		/* Did we race with a root-hub wakeup event? */
2176		if (rhdev->do_remote_wakeup) {
2177			char	buffer[6];
2178
2179			status = hcd->driver->hub_status_data(hcd, buffer);
2180			if (status != 0) {
2181				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2182				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2183				status = -EBUSY;
2184			}
2185		}
2186	} else {
2187		spin_lock_irq(&hcd_root_hub_lock);
2188		if (!HCD_DEAD(hcd)) {
2189			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2190			hcd->state = old_state;
2191		}
2192		spin_unlock_irq(&hcd_root_hub_lock);
2193		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2194				"suspend", status);
2195	}
2196	return status;
2197}
2198
2199int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2200{
2201	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2202	int		status;
2203	int		old_state = hcd->state;
2204
2205	dev_dbg(&rhdev->dev, "usb %sresume\n",
2206			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2207	if (HCD_DEAD(hcd)) {
2208		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2209		return 0;
2210	}
 
 
 
 
 
 
 
 
2211	if (!hcd->driver->bus_resume)
2212		return -ENOENT;
2213	if (HCD_RH_RUNNING(hcd))
2214		return 0;
2215
2216	hcd->state = HC_STATE_RESUMING;
2217	status = hcd->driver->bus_resume(hcd);
2218	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
 
 
 
2219	if (status == 0) {
2220		struct usb_device *udev;
2221		int port1;
2222
2223		spin_lock_irq(&hcd_root_hub_lock);
2224		if (!HCD_DEAD(hcd)) {
2225			usb_set_device_state(rhdev, rhdev->actconfig
2226					? USB_STATE_CONFIGURED
2227					: USB_STATE_ADDRESS);
2228			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229			hcd->state = HC_STATE_RUNNING;
2230		}
2231		spin_unlock_irq(&hcd_root_hub_lock);
2232
2233		/*
2234		 * Check whether any of the enabled ports on the root hub are
2235		 * unsuspended.  If they are then a TRSMRCY delay is needed
2236		 * (this is what the USB-2 spec calls a "global resume").
2237		 * Otherwise we can skip the delay.
2238		 */
2239		usb_hub_for_each_child(rhdev, port1, udev) {
2240			if (udev->state != USB_STATE_NOTATTACHED &&
2241					!udev->port_is_suspended) {
2242				usleep_range(10000, 11000);	/* TRSMRCY */
2243				break;
2244			}
2245		}
2246	} else {
2247		hcd->state = old_state;
 
2248		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2249				"resume", status);
2250		if (status != -ESHUTDOWN)
2251			usb_hc_died(hcd);
2252	}
2253	return status;
2254}
2255
2256#endif	/* CONFIG_PM */
2257
2258#ifdef	CONFIG_PM_RUNTIME
2259
2260/* Workqueue routine for root-hub remote wakeup */
2261static void hcd_resume_work(struct work_struct *work)
2262{
2263	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264	struct usb_device *udev = hcd->self.root_hub;
2265
2266	usb_lock_device(udev);
2267	usb_remote_wakeup(udev);
2268	usb_unlock_device(udev);
2269}
2270
2271/**
2272 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2273 * @hcd: host controller for this root hub
2274 *
2275 * The USB host controller calls this function when its root hub is
2276 * suspended (with the remote wakeup feature enabled) and a remote
2277 * wakeup request is received.  The routine submits a workqueue request
2278 * to resume the root hub (that is, manage its downstream ports again).
2279 */
2280void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2281{
2282	unsigned long flags;
2283
2284	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2285	if (hcd->rh_registered) {
 
2286		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287		queue_work(pm_wq, &hcd->wakeup_work);
2288	}
2289	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290}
2291EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293#endif	/* CONFIG_PM_RUNTIME */
2294
2295/*-------------------------------------------------------------------------*/
2296
2297#ifdef	CONFIG_USB_OTG
2298
2299/**
2300 * usb_bus_start_enum - start immediate enumeration (for OTG)
2301 * @bus: the bus (must use hcd framework)
2302 * @port_num: 1-based number of port; usually bus->otg_port
2303 * Context: in_interrupt()
2304 *
2305 * Starts enumeration, with an immediate reset followed later by
2306 * khubd identifying and possibly configuring the device.
2307 * This is needed by OTG controller drivers, where it helps meet
2308 * HNP protocol timing requirements for starting a port reset.
2309 *
2310 * Return: 0 if successful.
2311 */
2312int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313{
2314	struct usb_hcd		*hcd;
2315	int			status = -EOPNOTSUPP;
2316
2317	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318	 * boards with root hubs hooked up to internal devices (instead of
2319	 * just the OTG port) may need more attention to resetting...
2320	 */
2321	hcd = container_of (bus, struct usb_hcd, self);
2322	if (port_num && hcd->driver->start_port_reset)
2323		status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325	/* run khubd shortly after (first) root port reset finishes;
2326	 * it may issue others, until at least 50 msecs have passed.
2327	 */
2328	if (status == 0)
2329		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330	return status;
2331}
2332EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334#endif
2335
2336/*-------------------------------------------------------------------------*/
2337
2338/**
2339 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340 * @irq: the IRQ being raised
2341 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 *
2343 * If the controller isn't HALTed, calls the driver's irq handler.
2344 * Checks whether the controller is now dead.
2345 *
2346 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 */
2348irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349{
2350	struct usb_hcd		*hcd = __hcd;
2351	irqreturn_t		rc;
2352
2353	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354		rc = IRQ_NONE;
2355	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356		rc = IRQ_NONE;
2357	else
2358		rc = IRQ_HANDLED;
2359
2360	return rc;
2361}
2362EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364/*-------------------------------------------------------------------------*/
2365
 
 
 
 
 
 
 
 
 
 
 
 
 
2366/**
2367 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2368 * @hcd: pointer to the HCD representing the controller
2369 *
2370 * This is called by bus glue to report a USB host controller that died
2371 * while operations may still have been pending.  It's called automatically
2372 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373 *
2374 * Only call this function with the primary HCD.
2375 */
2376void usb_hc_died (struct usb_hcd *hcd)
2377{
2378	unsigned long flags;
2379
2380	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2381
2382	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2383	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385	if (hcd->rh_registered) {
2386		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388		/* make khubd clean up old urbs and devices */
2389		usb_set_device_state (hcd->self.root_hub,
2390				USB_STATE_NOTATTACHED);
2391		usb_kick_khubd (hcd->self.root_hub);
2392	}
2393	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2394		hcd = hcd->shared_hcd;
 
 
2395		if (hcd->rh_registered) {
2396			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2397
2398			/* make khubd clean up old urbs and devices */
2399			usb_set_device_state(hcd->self.root_hub,
2400					USB_STATE_NOTATTACHED);
2401			usb_kick_khubd(hcd->self.root_hub);
2402		}
2403	}
 
 
 
 
 
 
 
2404	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2405	/* Make sure that the other roothub is also deallocated. */
2406}
2407EXPORT_SYMBOL_GPL (usb_hc_died);
2408
2409/*-------------------------------------------------------------------------*/
2410
2411static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2412{
2413
2414	spin_lock_init(&bh->lock);
2415	INIT_LIST_HEAD(&bh->head);
2416	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2417}
2418
2419/**
2420 * usb_create_shared_hcd - create and initialize an HCD structure
2421 * @driver: HC driver that will use this hcd
2422 * @dev: device for this HC, stored in hcd->self.controller
2423 * @bus_name: value to store in hcd->self.bus_name
2424 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2425 *              PCI device.  Only allocate certain resources for the primary HCD
2426 * Context: !in_interrupt()
2427 *
2428 * Allocate a struct usb_hcd, with extra space at the end for the
2429 * HC driver's private data.  Initialize the generic members of the
2430 * hcd structure.
2431 *
2432 * Return: On success, a pointer to the created and initialized HCD structure.
2433 * On failure (e.g. if memory is unavailable), %NULL.
2434 */
2435struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2436		struct device *dev, const char *bus_name,
2437		struct usb_hcd *primary_hcd)
2438{
2439	struct usb_hcd *hcd;
2440
2441	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2442	if (!hcd) {
2443		dev_dbg (dev, "hcd alloc failed\n");
2444		return NULL;
2445	}
2446	if (primary_hcd == NULL) {
 
 
 
 
 
 
 
 
2447		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2448				GFP_KERNEL);
2449		if (!hcd->bandwidth_mutex) {
 
2450			kfree(hcd);
2451			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2452			return NULL;
2453		}
2454		mutex_init(hcd->bandwidth_mutex);
2455		dev_set_drvdata(dev, hcd);
2456	} else {
 
 
2457		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2458		hcd->primary_hcd = primary_hcd;
2459		primary_hcd->primary_hcd = primary_hcd;
2460		hcd->shared_hcd = primary_hcd;
2461		primary_hcd->shared_hcd = hcd;
 
2462	}
2463
2464	kref_init(&hcd->kref);
2465
2466	usb_bus_init(&hcd->self);
2467	hcd->self.controller = dev;
 
2468	hcd->self.bus_name = bus_name;
2469	hcd->self.uses_dma = (dev->dma_mask != NULL);
2470
2471	init_timer(&hcd->rh_timer);
2472	hcd->rh_timer.function = rh_timer_func;
2473	hcd->rh_timer.data = (unsigned long) hcd;
2474#ifdef CONFIG_PM_RUNTIME
2475	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2476#endif
2477
 
 
2478	hcd->driver = driver;
2479	hcd->speed = driver->flags & HCD_MASK;
2480	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2481			"USB Host Controller";
2482	return hcd;
2483}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2485
2486/**
2487 * usb_create_hcd - create and initialize an HCD structure
2488 * @driver: HC driver that will use this hcd
2489 * @dev: device for this HC, stored in hcd->self.controller
2490 * @bus_name: value to store in hcd->self.bus_name
2491 * Context: !in_interrupt()
 
2492 *
2493 * Allocate a struct usb_hcd, with extra space at the end for the
2494 * HC driver's private data.  Initialize the generic members of the
2495 * hcd structure.
2496 *
2497 * Return: On success, a pointer to the created and initialized HCD
2498 * structure. On failure (e.g. if memory is unavailable), %NULL.
2499 */
2500struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2501		struct device *dev, const char *bus_name)
2502{
2503	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2504}
2505EXPORT_SYMBOL_GPL(usb_create_hcd);
2506
2507/*
2508 * Roothubs that share one PCI device must also share the bandwidth mutex.
2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2510 * deallocated.
2511 *
2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2513 * freed.  When hcd_release() is called for the non-primary HCD, set the
2514 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2515 * freed shortly).
2516 */
2517static void hcd_release (struct kref *kref)
2518{
2519	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2520
2521	if (usb_hcd_is_primary_hcd(hcd))
 
 
 
 
 
 
 
2522		kfree(hcd->bandwidth_mutex);
2523	else
2524		hcd->shared_hcd->shared_hcd = NULL;
2525	kfree(hcd);
2526}
2527
2528struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2529{
2530	if (hcd)
2531		kref_get (&hcd->kref);
2532	return hcd;
2533}
2534EXPORT_SYMBOL_GPL(usb_get_hcd);
2535
2536void usb_put_hcd (struct usb_hcd *hcd)
2537{
2538	if (hcd)
2539		kref_put (&hcd->kref, hcd_release);
2540}
2541EXPORT_SYMBOL_GPL(usb_put_hcd);
2542
2543int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2544{
2545	if (!hcd->primary_hcd)
2546		return 1;
2547	return hcd == hcd->primary_hcd;
2548}
2549EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2550
2551int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2552{
2553	if (!hcd->driver->find_raw_port_number)
2554		return port1;
2555
2556	return hcd->driver->find_raw_port_number(hcd, port1);
2557}
2558
2559static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2560		unsigned int irqnum, unsigned long irqflags)
2561{
2562	int retval;
2563
2564	if (hcd->driver->irq) {
2565
2566		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2567				hcd->driver->description, hcd->self.busnum);
2568		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2569				hcd->irq_descr, hcd);
2570		if (retval != 0) {
2571			dev_err(hcd->self.controller,
2572					"request interrupt %d failed\n",
2573					irqnum);
2574			return retval;
2575		}
2576		hcd->irq = irqnum;
2577		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2578				(hcd->driver->flags & HCD_MEMORY) ?
2579					"io mem" : "io base",
2580					(unsigned long long)hcd->rsrc_start);
2581	} else {
2582		hcd->irq = 0;
2583		if (hcd->rsrc_start)
2584			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2585					(hcd->driver->flags & HCD_MEMORY) ?
2586					"io mem" : "io base",
2587					(unsigned long long)hcd->rsrc_start);
2588	}
2589	return 0;
2590}
2591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592/**
2593 * usb_add_hcd - finish generic HCD structure initialization and register
2594 * @hcd: the usb_hcd structure to initialize
2595 * @irqnum: Interrupt line to allocate
2596 * @irqflags: Interrupt type flags
2597 *
2598 * Finish the remaining parts of generic HCD initialization: allocate the
2599 * buffers of consistent memory, register the bus, request the IRQ line,
2600 * and call the driver's reset() and start() routines.
2601 */
2602int usb_add_hcd(struct usb_hcd *hcd,
2603		unsigned int irqnum, unsigned long irqflags)
2604{
2605	int retval;
2606	struct usb_device *rhdev;
 
 
2607
2608	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2609		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
 
 
2610
2611		if (IS_ERR(phy)) {
2612			retval = PTR_ERR(phy);
2613			if (retval == -EPROBE_DEFER)
2614				return retval;
 
2615		} else {
2616			retval = usb_phy_init(phy);
2617			if (retval) {
2618				usb_put_phy(phy);
2619				return retval;
2620			}
2621			hcd->phy = phy;
2622			hcd->remove_phy = 1;
2623		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624	}
2625
2626	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2627
2628	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2629	if (authorized_default < 0 || authorized_default > 1)
2630		hcd->authorized_default = hcd->wireless ? 0 : 1;
2631	else
2632		hcd->authorized_default = authorized_default;
 
 
 
 
 
 
 
 
 
 
 
2633	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2634
 
 
 
2635	/* HC is in reset state, but accessible.  Now do the one-time init,
2636	 * bottom up so that hcds can customize the root hubs before khubd
2637	 * starts talking to them.  (Note, bus id is assigned early too.)
2638	 */
2639	if ((retval = hcd_buffer_create(hcd)) != 0) {
2640		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2641		goto err_remove_phy;
 
2642	}
2643
2644	if ((retval = usb_register_bus(&hcd->self)) < 0)
 
2645		goto err_register_bus;
2646
2647	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2648		dev_err(hcd->self.controller, "unable to allocate root hub\n");
 
2649		retval = -ENOMEM;
2650		goto err_allocate_root_hub;
2651	}
 
2652	hcd->self.root_hub = rhdev;
 
 
 
 
 
2653
2654	switch (hcd->speed) {
2655	case HCD_USB11:
2656		rhdev->speed = USB_SPEED_FULL;
2657		break;
2658	case HCD_USB2:
2659		rhdev->speed = USB_SPEED_HIGH;
2660		break;
2661	case HCD_USB25:
2662		rhdev->speed = USB_SPEED_WIRELESS;
2663		break;
2664	case HCD_USB3:
2665		rhdev->speed = USB_SPEED_SUPER;
2666		break;
 
 
 
 
 
 
 
 
 
 
2667	default:
2668		retval = -EINVAL;
2669		goto err_set_rh_speed;
2670	}
2671
2672	/* wakeup flag init defaults to "everything works" for root hubs,
2673	 * but drivers can override it in reset() if needed, along with
2674	 * recording the overall controller's system wakeup capability.
2675	 */
2676	device_set_wakeup_capable(&rhdev->dev, 1);
2677
2678	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2679	 * registered.  But since the controller can die at any time,
2680	 * let's initialize the flag before touching the hardware.
2681	 */
2682	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2683
2684	/* "reset" is misnamed; its role is now one-time init. the controller
2685	 * should already have been reset (and boot firmware kicked off etc).
2686	 */
2687	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2688		dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2689		goto err_hcd_driver_setup;
 
 
 
 
2690	}
2691	hcd->rh_pollable = 1;
2692
 
 
 
 
2693	/* NOTE: root hub and controller capabilities may not be the same */
2694	if (device_can_wakeup(hcd->self.controller)
2695			&& device_can_wakeup(&hcd->self.root_hub->dev))
2696		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2697
2698	/* initialize tasklets */
2699	init_giveback_urb_bh(&hcd->high_prio_bh);
 
2700	init_giveback_urb_bh(&hcd->low_prio_bh);
2701
2702	/* enable irqs just before we start the controller,
2703	 * if the BIOS provides legacy PCI irqs.
2704	 */
2705	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2706		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2707		if (retval)
2708			goto err_request_irq;
2709	}
2710
2711	hcd->state = HC_STATE_RUNNING;
2712	retval = hcd->driver->start(hcd);
2713	if (retval < 0) {
2714		dev_err(hcd->self.controller, "startup error %d\n", retval);
2715		goto err_hcd_driver_start;
2716	}
2717
 
 
 
 
 
 
 
 
 
 
 
2718	/* starting here, usbcore will pay attention to this root hub */
2719	if ((retval = register_root_hub(hcd)) != 0)
2720		goto err_register_root_hub;
 
 
2721
2722	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2723	if (retval < 0) {
2724		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2725		       retval);
2726		goto error_create_attr_group;
2727	}
2728	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2729		usb_hcd_poll_rh_status(hcd);
2730
2731	return retval;
2732
2733error_create_attr_group:
2734	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2735	if (HC_IS_RUNNING(hcd->state))
2736		hcd->state = HC_STATE_QUIESCING;
2737	spin_lock_irq(&hcd_root_hub_lock);
2738	hcd->rh_registered = 0;
2739	spin_unlock_irq(&hcd_root_hub_lock);
2740
2741#ifdef CONFIG_PM_RUNTIME
2742	cancel_work_sync(&hcd->wakeup_work);
2743#endif
2744	mutex_lock(&usb_bus_list_lock);
2745	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2746	mutex_unlock(&usb_bus_list_lock);
2747err_register_root_hub:
2748	hcd->rh_pollable = 0;
2749	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2750	del_timer_sync(&hcd->rh_timer);
2751	hcd->driver->stop(hcd);
2752	hcd->state = HC_STATE_HALT;
2753	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2754	del_timer_sync(&hcd->rh_timer);
2755err_hcd_driver_start:
2756	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2757		free_irq(irqnum, hcd);
2758err_request_irq:
2759err_hcd_driver_setup:
2760err_set_rh_speed:
2761	usb_put_dev(hcd->self.root_hub);
2762err_allocate_root_hub:
2763	usb_deregister_bus(&hcd->self);
2764err_register_bus:
2765	hcd_buffer_destroy(hcd);
2766err_remove_phy:
2767	if (hcd->remove_phy && hcd->phy) {
2768		usb_phy_shutdown(hcd->phy);
2769		usb_put_phy(hcd->phy);
2770		hcd->phy = NULL;
2771	}
2772	return retval;
2773}
2774EXPORT_SYMBOL_GPL(usb_add_hcd);
2775
2776/**
2777 * usb_remove_hcd - shutdown processing for generic HCDs
2778 * @hcd: the usb_hcd structure to remove
2779 * Context: !in_interrupt()
 
2780 *
2781 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2782 * invoking the HCD's stop() method.
2783 */
2784void usb_remove_hcd(struct usb_hcd *hcd)
2785{
2786	struct usb_device *rhdev = hcd->self.root_hub;
 
 
 
 
 
 
 
2787
2788	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2789
2790	usb_get_dev(rhdev);
2791	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2792
2793	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2794	if (HC_IS_RUNNING (hcd->state))
2795		hcd->state = HC_STATE_QUIESCING;
2796
2797	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2798	spin_lock_irq (&hcd_root_hub_lock);
 
2799	hcd->rh_registered = 0;
2800	spin_unlock_irq (&hcd_root_hub_lock);
2801
2802#ifdef CONFIG_PM_RUNTIME
2803	cancel_work_sync(&hcd->wakeup_work);
2804#endif
 
2805
2806	mutex_lock(&usb_bus_list_lock);
2807	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2808	mutex_unlock(&usb_bus_list_lock);
 
2809
2810	/*
2811	 * tasklet_kill() isn't needed here because:
2812	 * - driver's disconnect() called from usb_disconnect() should
2813	 *   make sure its URBs are completed during the disconnect()
2814	 *   callback
2815	 *
2816	 * - it is too late to run complete() here since driver may have
2817	 *   been removed already now
2818	 */
2819
2820	/* Prevent any more root-hub status calls from the timer.
2821	 * The HCD might still restart the timer (if a port status change
2822	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2823	 * the hub_status_data() callback.
2824	 */
2825	hcd->rh_pollable = 0;
2826	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2827	del_timer_sync(&hcd->rh_timer);
2828
2829	hcd->driver->stop(hcd);
2830	hcd->state = HC_STATE_HALT;
2831
2832	/* In case the HCD restarted the timer, stop it again. */
2833	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2834	del_timer_sync(&hcd->rh_timer);
2835
2836	if (usb_hcd_is_primary_hcd(hcd)) {
2837		if (hcd->irq > 0)
2838			free_irq(hcd->irq, hcd);
2839	}
2840
2841	usb_put_dev(hcd->self.root_hub);
2842	usb_deregister_bus(&hcd->self);
2843	hcd_buffer_destroy(hcd);
2844	if (hcd->remove_phy && hcd->phy) {
2845		usb_phy_shutdown(hcd->phy);
2846		usb_put_phy(hcd->phy);
2847		hcd->phy = NULL;
2848	}
 
2849}
2850EXPORT_SYMBOL_GPL(usb_remove_hcd);
2851
2852void
2853usb_hcd_platform_shutdown(struct platform_device *dev)
2854{
2855	struct usb_hcd *hcd = platform_get_drvdata(dev);
2856
 
 
 
2857	if (hcd->driver->shutdown)
2858		hcd->driver->shutdown(hcd);
2859}
2860EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862/*-------------------------------------------------------------------------*/
2863
2864#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2865
2866struct usb_mon_operations *mon_ops;
2867
2868/*
2869 * The registration is unlocked.
2870 * We do it this way because we do not want to lock in hot paths.
2871 *
2872 * Notice that the code is minimally error-proof. Because usbmon needs
2873 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2874 */
2875
2876int usb_mon_register (struct usb_mon_operations *ops)
2877{
2878
2879	if (mon_ops)
2880		return -EBUSY;
2881
2882	mon_ops = ops;
2883	mb();
2884	return 0;
2885}
2886EXPORT_SYMBOL_GPL (usb_mon_register);
2887
2888void usb_mon_deregister (void)
2889{
2890
2891	if (mon_ops == NULL) {
2892		printk(KERN_ERR "USB: monitor was not registered\n");
2893		return;
2894	}
2895	mon_ops = NULL;
2896	mb();
2897}
2898EXPORT_SYMBOL_GPL (usb_mon_deregister);
2899
2900#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */