Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <asm/unaligned.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44static int req_run(struct hci_request *req, hci_req_complete_t complete,
  45		   hci_req_complete_skb_t complete_skb)
  46{
  47	struct hci_dev *hdev = req->hdev;
  48	struct sk_buff *skb;
  49	unsigned long flags;
  50
  51	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  52
  53	/* If an error occurred during request building, remove all HCI
  54	 * commands queued on the HCI request queue.
  55	 */
  56	if (req->err) {
  57		skb_queue_purge(&req->cmd_q);
  58		return req->err;
  59	}
  60
  61	/* Do not allow empty requests */
  62	if (skb_queue_empty(&req->cmd_q))
  63		return -ENODATA;
  64
  65	skb = skb_peek_tail(&req->cmd_q);
  66	if (complete) {
  67		bt_cb(skb)->hci.req_complete = complete;
  68	} else if (complete_skb) {
  69		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  70		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  71	}
  72
  73	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  74	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  75	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  76
  77	queue_work(hdev->workqueue, &hdev->cmd_work);
  78
  79	return 0;
  80}
  81
  82int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  83{
  84	return req_run(req, complete, NULL);
  85}
  86
  87int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  88{
  89	return req_run(req, NULL, complete);
  90}
  91
  92static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  93				  struct sk_buff *skb)
  94{
  95	BT_DBG("%s result 0x%2.2x", hdev->name, result);
  96
  97	if (hdev->req_status == HCI_REQ_PEND) {
  98		hdev->req_result = result;
  99		hdev->req_status = HCI_REQ_DONE;
 100		if (skb)
 101			hdev->req_skb = skb_get(skb);
 102		wake_up_interruptible(&hdev->req_wait_q);
 103	}
 104}
 105
 106void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 107{
 108	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 109
 110	if (hdev->req_status == HCI_REQ_PEND) {
 111		hdev->req_result = err;
 112		hdev->req_status = HCI_REQ_CANCELED;
 113		wake_up_interruptible(&hdev->req_wait_q);
 114	}
 115}
 116
 117struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 118				  const void *param, u8 event, u32 timeout)
 119{
 120	DECLARE_WAITQUEUE(wait, current);
 121	struct hci_request req;
 122	struct sk_buff *skb;
 123	int err = 0;
 124
 125	BT_DBG("%s", hdev->name);
 126
 127	hci_req_init(&req, hdev);
 128
 129	hci_req_add_ev(&req, opcode, plen, param, event);
 130
 131	hdev->req_status = HCI_REQ_PEND;
 132
 133	add_wait_queue(&hdev->req_wait_q, &wait);
 134	set_current_state(TASK_INTERRUPTIBLE);
 135
 136	err = hci_req_run_skb(&req, hci_req_sync_complete);
 137	if (err < 0) {
 138		remove_wait_queue(&hdev->req_wait_q, &wait);
 139		set_current_state(TASK_RUNNING);
 140		return ERR_PTR(err);
 141	}
 142
 143	schedule_timeout(timeout);
 144
 145	remove_wait_queue(&hdev->req_wait_q, &wait);
 146
 147	if (signal_pending(current))
 148		return ERR_PTR(-EINTR);
 149
 150	switch (hdev->req_status) {
 151	case HCI_REQ_DONE:
 152		err = -bt_to_errno(hdev->req_result);
 153		break;
 154
 155	case HCI_REQ_CANCELED:
 156		err = -hdev->req_result;
 157		break;
 158
 159	default:
 160		err = -ETIMEDOUT;
 161		break;
 162	}
 163
 164	hdev->req_status = hdev->req_result = 0;
 165	skb = hdev->req_skb;
 166	hdev->req_skb = NULL;
 167
 168	BT_DBG("%s end: err %d", hdev->name, err);
 169
 170	if (err < 0) {
 171		kfree_skb(skb);
 172		return ERR_PTR(err);
 173	}
 174
 175	if (!skb)
 176		return ERR_PTR(-ENODATA);
 177
 178	return skb;
 179}
 180EXPORT_SYMBOL(__hci_cmd_sync_ev);
 181
 182struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 183			       const void *param, u32 timeout)
 184{
 185	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 186}
 187EXPORT_SYMBOL(__hci_cmd_sync);
 188
 189/* Execute request and wait for completion. */
 190int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 191						     unsigned long opt),
 192		   unsigned long opt, u32 timeout, u8 *hci_status)
 193{
 194	struct hci_request req;
 195	DECLARE_WAITQUEUE(wait, current);
 196	int err = 0;
 197
 198	BT_DBG("%s start", hdev->name);
 199
 200	hci_req_init(&req, hdev);
 201
 202	hdev->req_status = HCI_REQ_PEND;
 203
 204	err = func(&req, opt);
 205	if (err) {
 206		if (hci_status)
 207			*hci_status = HCI_ERROR_UNSPECIFIED;
 208		return err;
 209	}
 210
 211	add_wait_queue(&hdev->req_wait_q, &wait);
 212	set_current_state(TASK_INTERRUPTIBLE);
 213
 214	err = hci_req_run_skb(&req, hci_req_sync_complete);
 215	if (err < 0) {
 216		hdev->req_status = 0;
 217
 218		remove_wait_queue(&hdev->req_wait_q, &wait);
 219		set_current_state(TASK_RUNNING);
 220
 221		/* ENODATA means the HCI request command queue is empty.
 222		 * This can happen when a request with conditionals doesn't
 223		 * trigger any commands to be sent. This is normal behavior
 224		 * and should not trigger an error return.
 225		 */
 226		if (err == -ENODATA) {
 227			if (hci_status)
 228				*hci_status = 0;
 229			return 0;
 230		}
 231
 232		if (hci_status)
 233			*hci_status = HCI_ERROR_UNSPECIFIED;
 234
 235		return err;
 236	}
 237
 238	schedule_timeout(timeout);
 239
 240	remove_wait_queue(&hdev->req_wait_q, &wait);
 241
 242	if (signal_pending(current))
 243		return -EINTR;
 244
 245	switch (hdev->req_status) {
 246	case HCI_REQ_DONE:
 247		err = -bt_to_errno(hdev->req_result);
 248		if (hci_status)
 249			*hci_status = hdev->req_result;
 250		break;
 251
 252	case HCI_REQ_CANCELED:
 253		err = -hdev->req_result;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257
 258	default:
 259		err = -ETIMEDOUT;
 260		if (hci_status)
 261			*hci_status = HCI_ERROR_UNSPECIFIED;
 262		break;
 263	}
 264
 265	hdev->req_status = hdev->req_result = 0;
 266
 267	BT_DBG("%s end: err %d", hdev->name, err);
 268
 269	return err;
 270}
 271
 272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 273						  unsigned long opt),
 274		 unsigned long opt, u32 timeout, u8 *hci_status)
 275{
 276	int ret;
 277
 278	if (!test_bit(HCI_UP, &hdev->flags))
 279		return -ENETDOWN;
 280
 281	/* Serialize all requests */
 282	hci_req_sync_lock(hdev);
 283	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 284	hci_req_sync_unlock(hdev);
 285
 286	return ret;
 287}
 288
 289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 290				const void *param)
 291{
 292	int len = HCI_COMMAND_HDR_SIZE + plen;
 293	struct hci_command_hdr *hdr;
 294	struct sk_buff *skb;
 295
 296	skb = bt_skb_alloc(len, GFP_ATOMIC);
 297	if (!skb)
 298		return NULL;
 299
 300	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
 301	hdr->opcode = cpu_to_le16(opcode);
 302	hdr->plen   = plen;
 303
 304	if (plen)
 305		memcpy(skb_put(skb, plen), param, plen);
 306
 307	BT_DBG("skb len %d", skb->len);
 308
 309	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 310	hci_skb_opcode(skb) = opcode;
 311
 312	return skb;
 313}
 314
 315/* Queue a command to an asynchronous HCI request */
 316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 317		    const void *param, u8 event)
 318{
 319	struct hci_dev *hdev = req->hdev;
 320	struct sk_buff *skb;
 321
 322	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 323
 324	/* If an error occurred during request building, there is no point in
 325	 * queueing the HCI command. We can simply return.
 326	 */
 327	if (req->err)
 328		return;
 329
 330	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 331	if (!skb) {
 332		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
 333		       hdev->name, opcode);
 334		req->err = -ENOMEM;
 335		return;
 336	}
 337
 338	if (skb_queue_empty(&req->cmd_q))
 339		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 340
 341	bt_cb(skb)->hci.req_event = event;
 342
 343	skb_queue_tail(&req->cmd_q, skb);
 344}
 345
 346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 347		 const void *param)
 348{
 349	hci_req_add_ev(req, opcode, plen, param, 0);
 350}
 351
 352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 353{
 354	struct hci_dev *hdev = req->hdev;
 355	struct hci_cp_write_page_scan_activity acp;
 356	u8 type;
 357
 358	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 359		return;
 360
 361	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 362		return;
 363
 364	if (enable) {
 365		type = PAGE_SCAN_TYPE_INTERLACED;
 366
 367		/* 160 msec page scan interval */
 368		acp.interval = cpu_to_le16(0x0100);
 369	} else {
 370		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 371
 372		/* default 1.28 sec page scan */
 373		acp.interval = cpu_to_le16(0x0800);
 374	}
 375
 376	acp.window = cpu_to_le16(0x0012);
 377
 378	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 379	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 381			    sizeof(acp), &acp);
 382
 383	if (hdev->page_scan_type != type)
 384		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 385}
 386
 387/* This function controls the background scanning based on hdev->pend_le_conns
 388 * list. If there are pending LE connection we start the background scanning,
 389 * otherwise we stop it.
 390 *
 391 * This function requires the caller holds hdev->lock.
 392 */
 393static void __hci_update_background_scan(struct hci_request *req)
 394{
 395	struct hci_dev *hdev = req->hdev;
 396
 397	if (!test_bit(HCI_UP, &hdev->flags) ||
 398	    test_bit(HCI_INIT, &hdev->flags) ||
 399	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 400	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 401	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 402	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 403		return;
 404
 405	/* No point in doing scanning if LE support hasn't been enabled */
 406	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 407		return;
 408
 409	/* If discovery is active don't interfere with it */
 410	if (hdev->discovery.state != DISCOVERY_STOPPED)
 411		return;
 412
 413	/* Reset RSSI and UUID filters when starting background scanning
 414	 * since these filters are meant for service discovery only.
 415	 *
 416	 * The Start Discovery and Start Service Discovery operations
 417	 * ensure to set proper values for RSSI threshold and UUID
 418	 * filter list. So it is safe to just reset them here.
 419	 */
 420	hci_discovery_filter_clear(hdev);
 421
 422	if (list_empty(&hdev->pend_le_conns) &&
 423	    list_empty(&hdev->pend_le_reports)) {
 424		/* If there is no pending LE connections or devices
 425		 * to be scanned for, we should stop the background
 426		 * scanning.
 427		 */
 428
 429		/* If controller is not scanning we are done. */
 430		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 431			return;
 432
 433		hci_req_add_le_scan_disable(req);
 434
 435		BT_DBG("%s stopping background scanning", hdev->name);
 436	} else {
 437		/* If there is at least one pending LE connection, we should
 438		 * keep the background scan running.
 439		 */
 440
 441		/* If controller is connecting, we should not start scanning
 442		 * since some controllers are not able to scan and connect at
 443		 * the same time.
 444		 */
 445		if (hci_lookup_le_connect(hdev))
 446			return;
 447
 448		/* If controller is currently scanning, we stop it to ensure we
 449		 * don't miss any advertising (due to duplicates filter).
 450		 */
 451		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 452			hci_req_add_le_scan_disable(req);
 453
 454		hci_req_add_le_passive_scan(req);
 455
 456		BT_DBG("%s starting background scanning", hdev->name);
 457	}
 458}
 459
 460void __hci_req_update_name(struct hci_request *req)
 461{
 462	struct hci_dev *hdev = req->hdev;
 463	struct hci_cp_write_local_name cp;
 464
 465	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 466
 467	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 468}
 469
 470#define PNP_INFO_SVCLASS_ID		0x1200
 471
 472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 473{
 474	u8 *ptr = data, *uuids_start = NULL;
 475	struct bt_uuid *uuid;
 476
 477	if (len < 4)
 478		return ptr;
 479
 480	list_for_each_entry(uuid, &hdev->uuids, list) {
 481		u16 uuid16;
 482
 483		if (uuid->size != 16)
 484			continue;
 485
 486		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 487		if (uuid16 < 0x1100)
 488			continue;
 489
 490		if (uuid16 == PNP_INFO_SVCLASS_ID)
 491			continue;
 492
 493		if (!uuids_start) {
 494			uuids_start = ptr;
 495			uuids_start[0] = 1;
 496			uuids_start[1] = EIR_UUID16_ALL;
 497			ptr += 2;
 498		}
 499
 500		/* Stop if not enough space to put next UUID */
 501		if ((ptr - data) + sizeof(u16) > len) {
 502			uuids_start[1] = EIR_UUID16_SOME;
 503			break;
 504		}
 505
 506		*ptr++ = (uuid16 & 0x00ff);
 507		*ptr++ = (uuid16 & 0xff00) >> 8;
 508		uuids_start[0] += sizeof(uuid16);
 509	}
 510
 511	return ptr;
 512}
 513
 514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 515{
 516	u8 *ptr = data, *uuids_start = NULL;
 517	struct bt_uuid *uuid;
 518
 519	if (len < 6)
 520		return ptr;
 521
 522	list_for_each_entry(uuid, &hdev->uuids, list) {
 523		if (uuid->size != 32)
 524			continue;
 525
 526		if (!uuids_start) {
 527			uuids_start = ptr;
 528			uuids_start[0] = 1;
 529			uuids_start[1] = EIR_UUID32_ALL;
 530			ptr += 2;
 531		}
 532
 533		/* Stop if not enough space to put next UUID */
 534		if ((ptr - data) + sizeof(u32) > len) {
 535			uuids_start[1] = EIR_UUID32_SOME;
 536			break;
 537		}
 538
 539		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 540		ptr += sizeof(u32);
 541		uuids_start[0] += sizeof(u32);
 542	}
 543
 544	return ptr;
 545}
 546
 547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 548{
 549	u8 *ptr = data, *uuids_start = NULL;
 550	struct bt_uuid *uuid;
 551
 552	if (len < 18)
 553		return ptr;
 554
 555	list_for_each_entry(uuid, &hdev->uuids, list) {
 556		if (uuid->size != 128)
 557			continue;
 558
 559		if (!uuids_start) {
 560			uuids_start = ptr;
 561			uuids_start[0] = 1;
 562			uuids_start[1] = EIR_UUID128_ALL;
 563			ptr += 2;
 564		}
 565
 566		/* Stop if not enough space to put next UUID */
 567		if ((ptr - data) + 16 > len) {
 568			uuids_start[1] = EIR_UUID128_SOME;
 569			break;
 570		}
 571
 572		memcpy(ptr, uuid->uuid, 16);
 573		ptr += 16;
 574		uuids_start[0] += 16;
 575	}
 576
 577	return ptr;
 578}
 579
 580static void create_eir(struct hci_dev *hdev, u8 *data)
 581{
 582	u8 *ptr = data;
 583	size_t name_len;
 584
 585	name_len = strlen(hdev->dev_name);
 586
 587	if (name_len > 0) {
 588		/* EIR Data type */
 589		if (name_len > 48) {
 590			name_len = 48;
 591			ptr[1] = EIR_NAME_SHORT;
 592		} else
 593			ptr[1] = EIR_NAME_COMPLETE;
 594
 595		/* EIR Data length */
 596		ptr[0] = name_len + 1;
 597
 598		memcpy(ptr + 2, hdev->dev_name, name_len);
 599
 600		ptr += (name_len + 2);
 601	}
 602
 603	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 604		ptr[0] = 2;
 605		ptr[1] = EIR_TX_POWER;
 606		ptr[2] = (u8) hdev->inq_tx_power;
 607
 608		ptr += 3;
 609	}
 610
 611	if (hdev->devid_source > 0) {
 612		ptr[0] = 9;
 613		ptr[1] = EIR_DEVICE_ID;
 614
 615		put_unaligned_le16(hdev->devid_source, ptr + 2);
 616		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 617		put_unaligned_le16(hdev->devid_product, ptr + 6);
 618		put_unaligned_le16(hdev->devid_version, ptr + 8);
 619
 620		ptr += 10;
 621	}
 622
 623	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 625	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 626}
 627
 628void __hci_req_update_eir(struct hci_request *req)
 629{
 630	struct hci_dev *hdev = req->hdev;
 631	struct hci_cp_write_eir cp;
 632
 633	if (!hdev_is_powered(hdev))
 634		return;
 635
 636	if (!lmp_ext_inq_capable(hdev))
 637		return;
 638
 639	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 640		return;
 641
 642	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 643		return;
 644
 645	memset(&cp, 0, sizeof(cp));
 646
 647	create_eir(hdev, cp.data);
 648
 649	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 650		return;
 651
 652	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 653
 654	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 655}
 656
 657void hci_req_add_le_scan_disable(struct hci_request *req)
 658{
 659	struct hci_cp_le_set_scan_enable cp;
 660
 661	memset(&cp, 0, sizeof(cp));
 662	cp.enable = LE_SCAN_DISABLE;
 663	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 664}
 665
 666static void add_to_white_list(struct hci_request *req,
 667			      struct hci_conn_params *params)
 668{
 669	struct hci_cp_le_add_to_white_list cp;
 670
 671	cp.bdaddr_type = params->addr_type;
 672	bacpy(&cp.bdaddr, &params->addr);
 673
 674	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 675}
 676
 677static u8 update_white_list(struct hci_request *req)
 678{
 679	struct hci_dev *hdev = req->hdev;
 680	struct hci_conn_params *params;
 681	struct bdaddr_list *b;
 682	uint8_t white_list_entries = 0;
 683
 684	/* Go through the current white list programmed into the
 685	 * controller one by one and check if that address is still
 686	 * in the list of pending connections or list of devices to
 687	 * report. If not present in either list, then queue the
 688	 * command to remove it from the controller.
 689	 */
 690	list_for_each_entry(b, &hdev->le_white_list, list) {
 691		/* If the device is neither in pend_le_conns nor
 692		 * pend_le_reports then remove it from the whitelist.
 693		 */
 694		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 695					       &b->bdaddr, b->bdaddr_type) &&
 696		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 697					       &b->bdaddr, b->bdaddr_type)) {
 698			struct hci_cp_le_del_from_white_list cp;
 699
 700			cp.bdaddr_type = b->bdaddr_type;
 701			bacpy(&cp.bdaddr, &b->bdaddr);
 702
 703			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 704				    sizeof(cp), &cp);
 705			continue;
 706		}
 707
 708		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 709			/* White list can not be used with RPAs */
 710			return 0x00;
 711		}
 712
 713		white_list_entries++;
 714	}
 715
 716	/* Since all no longer valid white list entries have been
 717	 * removed, walk through the list of pending connections
 718	 * and ensure that any new device gets programmed into
 719	 * the controller.
 720	 *
 721	 * If the list of the devices is larger than the list of
 722	 * available white list entries in the controller, then
 723	 * just abort and return filer policy value to not use the
 724	 * white list.
 725	 */
 726	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 727		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 728					   &params->addr, params->addr_type))
 729			continue;
 730
 731		if (white_list_entries >= hdev->le_white_list_size) {
 732			/* Select filter policy to accept all advertising */
 733			return 0x00;
 734		}
 735
 736		if (hci_find_irk_by_addr(hdev, &params->addr,
 737					 params->addr_type)) {
 738			/* White list can not be used with RPAs */
 739			return 0x00;
 740		}
 741
 742		white_list_entries++;
 743		add_to_white_list(req, params);
 744	}
 745
 746	/* After adding all new pending connections, walk through
 747	 * the list of pending reports and also add these to the
 748	 * white list if there is still space.
 749	 */
 750	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 751		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 752					   &params->addr, params->addr_type))
 753			continue;
 754
 755		if (white_list_entries >= hdev->le_white_list_size) {
 756			/* Select filter policy to accept all advertising */
 757			return 0x00;
 758		}
 759
 760		if (hci_find_irk_by_addr(hdev, &params->addr,
 761					 params->addr_type)) {
 762			/* White list can not be used with RPAs */
 763			return 0x00;
 764		}
 765
 766		white_list_entries++;
 767		add_to_white_list(req, params);
 768	}
 769
 770	/* Select filter policy to use white list */
 771	return 0x01;
 772}
 773
 774static bool scan_use_rpa(struct hci_dev *hdev)
 775{
 776	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 777}
 778
 779void hci_req_add_le_passive_scan(struct hci_request *req)
 780{
 781	struct hci_cp_le_set_scan_param param_cp;
 782	struct hci_cp_le_set_scan_enable enable_cp;
 783	struct hci_dev *hdev = req->hdev;
 784	u8 own_addr_type;
 785	u8 filter_policy;
 786
 787	/* Set require_privacy to false since no SCAN_REQ are send
 788	 * during passive scanning. Not using an non-resolvable address
 789	 * here is important so that peer devices using direct
 790	 * advertising with our address will be correctly reported
 791	 * by the controller.
 792	 */
 793	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 794				      &own_addr_type))
 795		return;
 796
 797	/* Adding or removing entries from the white list must
 798	 * happen before enabling scanning. The controller does
 799	 * not allow white list modification while scanning.
 800	 */
 801	filter_policy = update_white_list(req);
 802
 803	/* When the controller is using random resolvable addresses and
 804	 * with that having LE privacy enabled, then controllers with
 805	 * Extended Scanner Filter Policies support can now enable support
 806	 * for handling directed advertising.
 807	 *
 808	 * So instead of using filter polices 0x00 (no whitelist)
 809	 * and 0x01 (whitelist enabled) use the new filter policies
 810	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 811	 */
 812	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 813	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 814		filter_policy |= 0x02;
 815
 816	memset(&param_cp, 0, sizeof(param_cp));
 817	param_cp.type = LE_SCAN_PASSIVE;
 818	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 819	param_cp.window = cpu_to_le16(hdev->le_scan_window);
 820	param_cp.own_address_type = own_addr_type;
 821	param_cp.filter_policy = filter_policy;
 822	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 823		    &param_cp);
 824
 825	memset(&enable_cp, 0, sizeof(enable_cp));
 826	enable_cp.enable = LE_SCAN_ENABLE;
 827	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 828	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 829		    &enable_cp);
 830}
 831
 832static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 833{
 834	u8 instance = hdev->cur_adv_instance;
 835	struct adv_info *adv_instance;
 836
 837	/* Ignore instance 0 */
 838	if (instance == 0x00)
 839		return 0;
 840
 841	adv_instance = hci_find_adv_instance(hdev, instance);
 842	if (!adv_instance)
 843		return 0;
 844
 845	/* TODO: Take into account the "appearance" and "local-name" flags here.
 846	 * These are currently being ignored as they are not supported.
 847	 */
 848	return adv_instance->scan_rsp_len;
 849}
 850
 851void __hci_req_disable_advertising(struct hci_request *req)
 852{
 853	u8 enable = 0x00;
 854
 855	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 856}
 857
 858static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 859{
 860	u32 flags;
 861	struct adv_info *adv_instance;
 862
 863	if (instance == 0x00) {
 864		/* Instance 0 always manages the "Tx Power" and "Flags"
 865		 * fields
 866		 */
 867		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 868
 869		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 870		 * corresponds to the "connectable" instance flag.
 871		 */
 872		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 873			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 874
 875		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 876			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 877		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 878			flags |= MGMT_ADV_FLAG_DISCOV;
 879
 880		return flags;
 881	}
 882
 883	adv_instance = hci_find_adv_instance(hdev, instance);
 884
 885	/* Return 0 when we got an invalid instance identifier. */
 886	if (!adv_instance)
 887		return 0;
 888
 889	return adv_instance->flags;
 890}
 891
 892static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 893{
 894	/* If privacy is not enabled don't use RPA */
 895	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 896		return false;
 897
 898	/* If basic privacy mode is enabled use RPA */
 899	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 900		return true;
 901
 902	/* If limited privacy mode is enabled don't use RPA if we're
 903	 * both discoverable and bondable.
 904	 */
 905	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 906	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 907		return false;
 908
 909	/* We're neither bondable nor discoverable in the limited
 910	 * privacy mode, therefore use RPA.
 911	 */
 912	return true;
 913}
 914
 915void __hci_req_enable_advertising(struct hci_request *req)
 916{
 917	struct hci_dev *hdev = req->hdev;
 918	struct hci_cp_le_set_adv_param cp;
 919	u8 own_addr_type, enable = 0x01;
 920	bool connectable;
 921	u32 flags;
 922
 923	if (hci_conn_num(hdev, LE_LINK) > 0)
 924		return;
 925
 926	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 927		__hci_req_disable_advertising(req);
 928
 929	/* Clear the HCI_LE_ADV bit temporarily so that the
 930	 * hci_update_random_address knows that it's safe to go ahead
 931	 * and write a new random address. The flag will be set back on
 932	 * as soon as the SET_ADV_ENABLE HCI command completes.
 933	 */
 934	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 935
 936	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 937
 938	/* If the "connectable" instance flag was not set, then choose between
 939	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 940	 */
 941	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 942		      mgmt_get_connectable(hdev);
 943
 944	/* Set require_privacy to true only when non-connectable
 945	 * advertising is used. In that case it is fine to use a
 946	 * non-resolvable private address.
 947	 */
 948	if (hci_update_random_address(req, !connectable,
 949				      adv_use_rpa(hdev, flags),
 950				      &own_addr_type) < 0)
 951		return;
 952
 953	memset(&cp, 0, sizeof(cp));
 954	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 955	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
 956
 957	if (connectable)
 958		cp.type = LE_ADV_IND;
 959	else if (get_cur_adv_instance_scan_rsp_len(hdev))
 960		cp.type = LE_ADV_SCAN_IND;
 961	else
 962		cp.type = LE_ADV_NONCONN_IND;
 963
 964	cp.own_address_type = own_addr_type;
 965	cp.channel_map = hdev->le_adv_channel_map;
 966
 967	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
 968
 969	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 970}
 971
 972static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
 973{
 974	u8 ad_len = 0;
 975	size_t name_len;
 976
 977	name_len = strlen(hdev->dev_name);
 978	if (name_len > 0) {
 979		size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
 980
 981		if (name_len > max_len) {
 982			name_len = max_len;
 983			ptr[1] = EIR_NAME_SHORT;
 984		} else
 985			ptr[1] = EIR_NAME_COMPLETE;
 986
 987		ptr[0] = name_len + 1;
 988
 989		memcpy(ptr + 2, hdev->dev_name, name_len);
 990
 991		ad_len += (name_len + 2);
 992		ptr += (name_len + 2);
 993	}
 994
 995	return ad_len;
 996}
 997
 998static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
 999					u8 *ptr)
1000{
1001	struct adv_info *adv_instance;
1002
1003	adv_instance = hci_find_adv_instance(hdev, instance);
1004	if (!adv_instance)
1005		return 0;
1006
1007	/* TODO: Set the appropriate entries based on advertising instance flags
1008	 * here once flags other than 0 are supported.
1009	 */
1010	memcpy(ptr, adv_instance->scan_rsp_data,
1011	       adv_instance->scan_rsp_len);
1012
1013	return adv_instance->scan_rsp_len;
1014}
1015
1016void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1017{
1018	struct hci_dev *hdev = req->hdev;
1019	struct hci_cp_le_set_scan_rsp_data cp;
1020	u8 len;
1021
1022	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1023		return;
1024
1025	memset(&cp, 0, sizeof(cp));
1026
1027	if (instance)
1028		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1029	else
1030		len = create_default_scan_rsp_data(hdev, cp.data);
1031
1032	if (hdev->scan_rsp_data_len == len &&
1033	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1034		return;
1035
1036	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1037	hdev->scan_rsp_data_len = len;
1038
1039	cp.length = len;
1040
1041	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1042}
1043
1044static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1045{
1046	struct adv_info *adv_instance = NULL;
1047	u8 ad_len = 0, flags = 0;
1048	u32 instance_flags;
1049
1050	/* Return 0 when the current instance identifier is invalid. */
1051	if (instance) {
1052		adv_instance = hci_find_adv_instance(hdev, instance);
1053		if (!adv_instance)
1054			return 0;
1055	}
1056
1057	instance_flags = get_adv_instance_flags(hdev, instance);
1058
1059	/* The Add Advertising command allows userspace to set both the general
1060	 * and limited discoverable flags.
1061	 */
1062	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1063		flags |= LE_AD_GENERAL;
1064
1065	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1066		flags |= LE_AD_LIMITED;
1067
1068	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1069		/* If a discovery flag wasn't provided, simply use the global
1070		 * settings.
1071		 */
1072		if (!flags)
1073			flags |= mgmt_get_adv_discov_flags(hdev);
1074
1075		if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1076			flags |= LE_AD_NO_BREDR;
1077
1078		/* If flags would still be empty, then there is no need to
1079		 * include the "Flags" AD field".
1080		 */
1081		if (flags) {
1082			ptr[0] = 0x02;
1083			ptr[1] = EIR_FLAGS;
1084			ptr[2] = flags;
1085
1086			ad_len += 3;
1087			ptr += 3;
1088		}
1089	}
1090
1091	if (adv_instance) {
1092		memcpy(ptr, adv_instance->adv_data,
1093		       adv_instance->adv_data_len);
1094		ad_len += adv_instance->adv_data_len;
1095		ptr += adv_instance->adv_data_len;
1096	}
1097
1098	/* Provide Tx Power only if we can provide a valid value for it */
1099	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1100	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1101		ptr[0] = 0x02;
1102		ptr[1] = EIR_TX_POWER;
1103		ptr[2] = (u8)hdev->adv_tx_power;
1104
1105		ad_len += 3;
1106		ptr += 3;
1107	}
1108
1109	return ad_len;
1110}
1111
1112void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1113{
1114	struct hci_dev *hdev = req->hdev;
1115	struct hci_cp_le_set_adv_data cp;
1116	u8 len;
1117
1118	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1119		return;
1120
1121	memset(&cp, 0, sizeof(cp));
1122
1123	len = create_instance_adv_data(hdev, instance, cp.data);
1124
1125	/* There's nothing to do if the data hasn't changed */
1126	if (hdev->adv_data_len == len &&
1127	    memcmp(cp.data, hdev->adv_data, len) == 0)
1128		return;
1129
1130	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1131	hdev->adv_data_len = len;
1132
1133	cp.length = len;
1134
1135	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1136}
1137
1138int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1139{
1140	struct hci_request req;
1141
1142	hci_req_init(&req, hdev);
1143	__hci_req_update_adv_data(&req, instance);
1144
1145	return hci_req_run(&req, NULL);
1146}
1147
1148static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1149{
1150	BT_DBG("%s status %u", hdev->name, status);
1151}
1152
1153void hci_req_reenable_advertising(struct hci_dev *hdev)
1154{
1155	struct hci_request req;
1156
1157	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1158	    list_empty(&hdev->adv_instances))
1159		return;
1160
1161	hci_req_init(&req, hdev);
1162
1163	if (hdev->cur_adv_instance) {
1164		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1165						true);
1166	} else {
1167		__hci_req_update_adv_data(&req, 0x00);
1168		__hci_req_update_scan_rsp_data(&req, 0x00);
1169		__hci_req_enable_advertising(&req);
1170	}
1171
1172	hci_req_run(&req, adv_enable_complete);
1173}
1174
1175static void adv_timeout_expire(struct work_struct *work)
1176{
1177	struct hci_dev *hdev = container_of(work, struct hci_dev,
1178					    adv_instance_expire.work);
1179
1180	struct hci_request req;
1181	u8 instance;
1182
1183	BT_DBG("%s", hdev->name);
1184
1185	hci_dev_lock(hdev);
1186
1187	hdev->adv_instance_timeout = 0;
1188
1189	instance = hdev->cur_adv_instance;
1190	if (instance == 0x00)
1191		goto unlock;
1192
1193	hci_req_init(&req, hdev);
1194
1195	hci_req_clear_adv_instance(hdev, &req, instance, false);
1196
1197	if (list_empty(&hdev->adv_instances))
1198		__hci_req_disable_advertising(&req);
1199
1200	hci_req_run(&req, NULL);
1201
1202unlock:
1203	hci_dev_unlock(hdev);
1204}
1205
1206int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1207				    bool force)
1208{
1209	struct hci_dev *hdev = req->hdev;
1210	struct adv_info *adv_instance = NULL;
1211	u16 timeout;
1212
1213	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1214	    list_empty(&hdev->adv_instances))
1215		return -EPERM;
1216
1217	if (hdev->adv_instance_timeout)
1218		return -EBUSY;
1219
1220	adv_instance = hci_find_adv_instance(hdev, instance);
1221	if (!adv_instance)
1222		return -ENOENT;
1223
1224	/* A zero timeout means unlimited advertising. As long as there is
1225	 * only one instance, duration should be ignored. We still set a timeout
1226	 * in case further instances are being added later on.
1227	 *
1228	 * If the remaining lifetime of the instance is more than the duration
1229	 * then the timeout corresponds to the duration, otherwise it will be
1230	 * reduced to the remaining instance lifetime.
1231	 */
1232	if (adv_instance->timeout == 0 ||
1233	    adv_instance->duration <= adv_instance->remaining_time)
1234		timeout = adv_instance->duration;
1235	else
1236		timeout = adv_instance->remaining_time;
1237
1238	/* The remaining time is being reduced unless the instance is being
1239	 * advertised without time limit.
1240	 */
1241	if (adv_instance->timeout)
1242		adv_instance->remaining_time =
1243				adv_instance->remaining_time - timeout;
1244
1245	hdev->adv_instance_timeout = timeout;
1246	queue_delayed_work(hdev->req_workqueue,
1247			   &hdev->adv_instance_expire,
1248			   msecs_to_jiffies(timeout * 1000));
1249
1250	/* If we're just re-scheduling the same instance again then do not
1251	 * execute any HCI commands. This happens when a single instance is
1252	 * being advertised.
1253	 */
1254	if (!force && hdev->cur_adv_instance == instance &&
1255	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1256		return 0;
1257
1258	hdev->cur_adv_instance = instance;
1259	__hci_req_update_adv_data(req, instance);
1260	__hci_req_update_scan_rsp_data(req, instance);
1261	__hci_req_enable_advertising(req);
1262
1263	return 0;
1264}
1265
1266static void cancel_adv_timeout(struct hci_dev *hdev)
1267{
1268	if (hdev->adv_instance_timeout) {
1269		hdev->adv_instance_timeout = 0;
1270		cancel_delayed_work(&hdev->adv_instance_expire);
1271	}
1272}
1273
1274/* For a single instance:
1275 * - force == true: The instance will be removed even when its remaining
1276 *   lifetime is not zero.
1277 * - force == false: the instance will be deactivated but kept stored unless
1278 *   the remaining lifetime is zero.
1279 *
1280 * For instance == 0x00:
1281 * - force == true: All instances will be removed regardless of their timeout
1282 *   setting.
1283 * - force == false: Only instances that have a timeout will be removed.
1284 */
1285void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req,
1286				u8 instance, bool force)
1287{
1288	struct adv_info *adv_instance, *n, *next_instance = NULL;
1289	int err;
1290	u8 rem_inst;
1291
1292	/* Cancel any timeout concerning the removed instance(s). */
1293	if (!instance || hdev->cur_adv_instance == instance)
1294		cancel_adv_timeout(hdev);
1295
1296	/* Get the next instance to advertise BEFORE we remove
1297	 * the current one. This can be the same instance again
1298	 * if there is only one instance.
1299	 */
1300	if (instance && hdev->cur_adv_instance == instance)
1301		next_instance = hci_get_next_instance(hdev, instance);
1302
1303	if (instance == 0x00) {
1304		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1305					 list) {
1306			if (!(force || adv_instance->timeout))
1307				continue;
1308
1309			rem_inst = adv_instance->instance;
1310			err = hci_remove_adv_instance(hdev, rem_inst);
1311			if (!err)
1312				mgmt_advertising_removed(NULL, hdev, rem_inst);
1313		}
1314	} else {
1315		adv_instance = hci_find_adv_instance(hdev, instance);
1316
1317		if (force || (adv_instance && adv_instance->timeout &&
1318			      !adv_instance->remaining_time)) {
1319			/* Don't advertise a removed instance. */
1320			if (next_instance &&
1321			    next_instance->instance == instance)
1322				next_instance = NULL;
1323
1324			err = hci_remove_adv_instance(hdev, instance);
1325			if (!err)
1326				mgmt_advertising_removed(NULL, hdev, instance);
1327		}
1328	}
1329
1330	if (!req || !hdev_is_powered(hdev) ||
1331	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1332		return;
1333
1334	if (next_instance)
1335		__hci_req_schedule_adv_instance(req, next_instance->instance,
1336						false);
1337}
1338
1339static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1340{
1341	struct hci_dev *hdev = req->hdev;
1342
1343	/* If we're advertising or initiating an LE connection we can't
1344	 * go ahead and change the random address at this time. This is
1345	 * because the eventual initiator address used for the
1346	 * subsequently created connection will be undefined (some
1347	 * controllers use the new address and others the one we had
1348	 * when the operation started).
1349	 *
1350	 * In this kind of scenario skip the update and let the random
1351	 * address be updated at the next cycle.
1352	 */
1353	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1354	    hci_lookup_le_connect(hdev)) {
1355		BT_DBG("Deferring random address update");
1356		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1357		return;
1358	}
1359
1360	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1361}
1362
1363int hci_update_random_address(struct hci_request *req, bool require_privacy,
1364			      bool use_rpa, u8 *own_addr_type)
1365{
1366	struct hci_dev *hdev = req->hdev;
1367	int err;
1368
1369	/* If privacy is enabled use a resolvable private address. If
1370	 * current RPA has expired or there is something else than
1371	 * the current RPA in use, then generate a new one.
1372	 */
1373	if (use_rpa) {
1374		int to;
1375
1376		*own_addr_type = ADDR_LE_DEV_RANDOM;
1377
1378		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1379		    !bacmp(&hdev->random_addr, &hdev->rpa))
1380			return 0;
1381
1382		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1383		if (err < 0) {
1384			BT_ERR("%s failed to generate new RPA", hdev->name);
1385			return err;
1386		}
1387
1388		set_random_addr(req, &hdev->rpa);
1389
1390		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1391		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1392
1393		return 0;
1394	}
1395
1396	/* In case of required privacy without resolvable private address,
1397	 * use an non-resolvable private address. This is useful for active
1398	 * scanning and non-connectable advertising.
1399	 */
1400	if (require_privacy) {
1401		bdaddr_t nrpa;
1402
1403		while (true) {
1404			/* The non-resolvable private address is generated
1405			 * from random six bytes with the two most significant
1406			 * bits cleared.
1407			 */
1408			get_random_bytes(&nrpa, 6);
1409			nrpa.b[5] &= 0x3f;
1410
1411			/* The non-resolvable private address shall not be
1412			 * equal to the public address.
1413			 */
1414			if (bacmp(&hdev->bdaddr, &nrpa))
1415				break;
1416		}
1417
1418		*own_addr_type = ADDR_LE_DEV_RANDOM;
1419		set_random_addr(req, &nrpa);
1420		return 0;
1421	}
1422
1423	/* If forcing static address is in use or there is no public
1424	 * address use the static address as random address (but skip
1425	 * the HCI command if the current random address is already the
1426	 * static one.
1427	 *
1428	 * In case BR/EDR has been disabled on a dual-mode controller
1429	 * and a static address has been configured, then use that
1430	 * address instead of the public BR/EDR address.
1431	 */
1432	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1433	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1434	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1435	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1436		*own_addr_type = ADDR_LE_DEV_RANDOM;
1437		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1438			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1439				    &hdev->static_addr);
1440		return 0;
1441	}
1442
1443	/* Neither privacy nor static address is being used so use a
1444	 * public address.
1445	 */
1446	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1447
1448	return 0;
1449}
1450
1451static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1452{
1453	struct bdaddr_list *b;
1454
1455	list_for_each_entry(b, &hdev->whitelist, list) {
1456		struct hci_conn *conn;
1457
1458		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1459		if (!conn)
1460			return true;
1461
1462		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1463			return true;
1464	}
1465
1466	return false;
1467}
1468
1469void __hci_req_update_scan(struct hci_request *req)
1470{
1471	struct hci_dev *hdev = req->hdev;
1472	u8 scan;
1473
1474	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1475		return;
1476
1477	if (!hdev_is_powered(hdev))
1478		return;
1479
1480	if (mgmt_powering_down(hdev))
1481		return;
1482
1483	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1484	    disconnected_whitelist_entries(hdev))
1485		scan = SCAN_PAGE;
1486	else
1487		scan = SCAN_DISABLED;
1488
1489	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1490		scan |= SCAN_INQUIRY;
1491
1492	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1493	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1494		return;
1495
1496	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1497}
1498
1499static int update_scan(struct hci_request *req, unsigned long opt)
1500{
1501	hci_dev_lock(req->hdev);
1502	__hci_req_update_scan(req);
1503	hci_dev_unlock(req->hdev);
1504	return 0;
1505}
1506
1507static void scan_update_work(struct work_struct *work)
1508{
1509	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1510
1511	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1512}
1513
1514static int connectable_update(struct hci_request *req, unsigned long opt)
1515{
1516	struct hci_dev *hdev = req->hdev;
1517
1518	hci_dev_lock(hdev);
1519
1520	__hci_req_update_scan(req);
1521
1522	/* If BR/EDR is not enabled and we disable advertising as a
1523	 * by-product of disabling connectable, we need to update the
1524	 * advertising flags.
1525	 */
1526	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1527		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1528
1529	/* Update the advertising parameters if necessary */
1530	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1531	    !list_empty(&hdev->adv_instances))
1532		__hci_req_enable_advertising(req);
1533
1534	__hci_update_background_scan(req);
1535
1536	hci_dev_unlock(hdev);
1537
1538	return 0;
1539}
1540
1541static void connectable_update_work(struct work_struct *work)
1542{
1543	struct hci_dev *hdev = container_of(work, struct hci_dev,
1544					    connectable_update);
1545	u8 status;
1546
1547	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1548	mgmt_set_connectable_complete(hdev, status);
1549}
1550
1551static u8 get_service_classes(struct hci_dev *hdev)
1552{
1553	struct bt_uuid *uuid;
1554	u8 val = 0;
1555
1556	list_for_each_entry(uuid, &hdev->uuids, list)
1557		val |= uuid->svc_hint;
1558
1559	return val;
1560}
1561
1562void __hci_req_update_class(struct hci_request *req)
1563{
1564	struct hci_dev *hdev = req->hdev;
1565	u8 cod[3];
1566
1567	BT_DBG("%s", hdev->name);
1568
1569	if (!hdev_is_powered(hdev))
1570		return;
1571
1572	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1573		return;
1574
1575	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1576		return;
1577
1578	cod[0] = hdev->minor_class;
1579	cod[1] = hdev->major_class;
1580	cod[2] = get_service_classes(hdev);
1581
1582	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1583		cod[1] |= 0x20;
1584
1585	if (memcmp(cod, hdev->dev_class, 3) == 0)
1586		return;
1587
1588	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1589}
1590
1591static void write_iac(struct hci_request *req)
1592{
1593	struct hci_dev *hdev = req->hdev;
1594	struct hci_cp_write_current_iac_lap cp;
1595
1596	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1597		return;
1598
1599	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1600		/* Limited discoverable mode */
1601		cp.num_iac = min_t(u8, hdev->num_iac, 2);
1602		cp.iac_lap[0] = 0x00;	/* LIAC */
1603		cp.iac_lap[1] = 0x8b;
1604		cp.iac_lap[2] = 0x9e;
1605		cp.iac_lap[3] = 0x33;	/* GIAC */
1606		cp.iac_lap[4] = 0x8b;
1607		cp.iac_lap[5] = 0x9e;
1608	} else {
1609		/* General discoverable mode */
1610		cp.num_iac = 1;
1611		cp.iac_lap[0] = 0x33;	/* GIAC */
1612		cp.iac_lap[1] = 0x8b;
1613		cp.iac_lap[2] = 0x9e;
1614	}
1615
1616	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1617		    (cp.num_iac * 3) + 1, &cp);
1618}
1619
1620static int discoverable_update(struct hci_request *req, unsigned long opt)
1621{
1622	struct hci_dev *hdev = req->hdev;
1623
1624	hci_dev_lock(hdev);
1625
1626	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1627		write_iac(req);
1628		__hci_req_update_scan(req);
1629		__hci_req_update_class(req);
1630	}
1631
1632	/* Advertising instances don't use the global discoverable setting, so
1633	 * only update AD if advertising was enabled using Set Advertising.
1634	 */
1635	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1636		__hci_req_update_adv_data(req, 0x00);
1637
1638		/* Discoverable mode affects the local advertising
1639		 * address in limited privacy mode.
1640		 */
1641		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1642			__hci_req_enable_advertising(req);
1643	}
1644
1645	hci_dev_unlock(hdev);
1646
1647	return 0;
1648}
1649
1650static void discoverable_update_work(struct work_struct *work)
1651{
1652	struct hci_dev *hdev = container_of(work, struct hci_dev,
1653					    discoverable_update);
1654	u8 status;
1655
1656	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1657	mgmt_set_discoverable_complete(hdev, status);
1658}
1659
1660void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1661		      u8 reason)
1662{
1663	switch (conn->state) {
1664	case BT_CONNECTED:
1665	case BT_CONFIG:
1666		if (conn->type == AMP_LINK) {
1667			struct hci_cp_disconn_phy_link cp;
1668
1669			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1670			cp.reason = reason;
1671			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1672				    &cp);
1673		} else {
1674			struct hci_cp_disconnect dc;
1675
1676			dc.handle = cpu_to_le16(conn->handle);
1677			dc.reason = reason;
1678			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1679		}
1680
1681		conn->state = BT_DISCONN;
1682
1683		break;
1684	case BT_CONNECT:
1685		if (conn->type == LE_LINK) {
1686			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1687				break;
1688			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1689				    0, NULL);
1690		} else if (conn->type == ACL_LINK) {
1691			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1692				break;
1693			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1694				    6, &conn->dst);
1695		}
1696		break;
1697	case BT_CONNECT2:
1698		if (conn->type == ACL_LINK) {
1699			struct hci_cp_reject_conn_req rej;
1700
1701			bacpy(&rej.bdaddr, &conn->dst);
1702			rej.reason = reason;
1703
1704			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1705				    sizeof(rej), &rej);
1706		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1707			struct hci_cp_reject_sync_conn_req rej;
1708
1709			bacpy(&rej.bdaddr, &conn->dst);
1710
1711			/* SCO rejection has its own limited set of
1712			 * allowed error values (0x0D-0x0F) which isn't
1713			 * compatible with most values passed to this
1714			 * function. To be safe hard-code one of the
1715			 * values that's suitable for SCO.
1716			 */
1717			rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;
1718
1719			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1720				    sizeof(rej), &rej);
1721		}
1722		break;
1723	default:
1724		conn->state = BT_CLOSED;
1725		break;
1726	}
1727}
1728
1729static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1730{
1731	if (status)
1732		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1733}
1734
1735int hci_abort_conn(struct hci_conn *conn, u8 reason)
1736{
1737	struct hci_request req;
1738	int err;
1739
1740	hci_req_init(&req, conn->hdev);
1741
1742	__hci_abort_conn(&req, conn, reason);
1743
1744	err = hci_req_run(&req, abort_conn_complete);
1745	if (err && err != -ENODATA) {
1746		BT_ERR("Failed to run HCI request: err %d", err);
1747		return err;
1748	}
1749
1750	return 0;
1751}
1752
1753static int update_bg_scan(struct hci_request *req, unsigned long opt)
1754{
1755	hci_dev_lock(req->hdev);
1756	__hci_update_background_scan(req);
1757	hci_dev_unlock(req->hdev);
1758	return 0;
1759}
1760
1761static void bg_scan_update(struct work_struct *work)
1762{
1763	struct hci_dev *hdev = container_of(work, struct hci_dev,
1764					    bg_scan_update);
1765	struct hci_conn *conn;
1766	u8 status;
1767	int err;
1768
1769	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1770	if (!err)
1771		return;
1772
1773	hci_dev_lock(hdev);
1774
1775	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1776	if (conn)
1777		hci_le_conn_failed(conn, status);
1778
1779	hci_dev_unlock(hdev);
1780}
1781
1782static int le_scan_disable(struct hci_request *req, unsigned long opt)
1783{
1784	hci_req_add_le_scan_disable(req);
1785	return 0;
1786}
1787
1788static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1789{
1790	u8 length = opt;
1791	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1792	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1793	struct hci_cp_inquiry cp;
1794
1795	BT_DBG("%s", req->hdev->name);
1796
1797	hci_dev_lock(req->hdev);
1798	hci_inquiry_cache_flush(req->hdev);
1799	hci_dev_unlock(req->hdev);
1800
1801	memset(&cp, 0, sizeof(cp));
1802
1803	if (req->hdev->discovery.limited)
1804		memcpy(&cp.lap, liac, sizeof(cp.lap));
1805	else
1806		memcpy(&cp.lap, giac, sizeof(cp.lap));
1807
1808	cp.length = length;
1809
1810	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1811
1812	return 0;
1813}
1814
1815static void le_scan_disable_work(struct work_struct *work)
1816{
1817	struct hci_dev *hdev = container_of(work, struct hci_dev,
1818					    le_scan_disable.work);
1819	u8 status;
1820
1821	BT_DBG("%s", hdev->name);
1822
1823	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1824		return;
1825
1826	cancel_delayed_work(&hdev->le_scan_restart);
1827
1828	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1829	if (status) {
1830		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1831		return;
1832	}
1833
1834	hdev->discovery.scan_start = 0;
1835
1836	/* If we were running LE only scan, change discovery state. If
1837	 * we were running both LE and BR/EDR inquiry simultaneously,
1838	 * and BR/EDR inquiry is already finished, stop discovery,
1839	 * otherwise BR/EDR inquiry will stop discovery when finished.
1840	 * If we will resolve remote device name, do not change
1841	 * discovery state.
1842	 */
1843
1844	if (hdev->discovery.type == DISCOV_TYPE_LE)
1845		goto discov_stopped;
1846
1847	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1848		return;
1849
1850	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1851		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1852		    hdev->discovery.state != DISCOVERY_RESOLVING)
1853			goto discov_stopped;
1854
1855		return;
1856	}
1857
1858	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1859		     HCI_CMD_TIMEOUT, &status);
1860	if (status) {
1861		BT_ERR("Inquiry failed: status 0x%02x", status);
1862		goto discov_stopped;
1863	}
1864
1865	return;
1866
1867discov_stopped:
1868	hci_dev_lock(hdev);
1869	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1870	hci_dev_unlock(hdev);
1871}
1872
1873static int le_scan_restart(struct hci_request *req, unsigned long opt)
1874{
1875	struct hci_dev *hdev = req->hdev;
1876	struct hci_cp_le_set_scan_enable cp;
1877
1878	/* If controller is not scanning we are done. */
1879	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1880		return 0;
1881
1882	hci_req_add_le_scan_disable(req);
1883
1884	memset(&cp, 0, sizeof(cp));
1885	cp.enable = LE_SCAN_ENABLE;
1886	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1887	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1888
1889	return 0;
1890}
1891
1892static void le_scan_restart_work(struct work_struct *work)
1893{
1894	struct hci_dev *hdev = container_of(work, struct hci_dev,
1895					    le_scan_restart.work);
1896	unsigned long timeout, duration, scan_start, now;
1897	u8 status;
1898
1899	BT_DBG("%s", hdev->name);
1900
1901	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1902	if (status) {
1903		BT_ERR("Failed to restart LE scan: status %d", status);
1904		return;
1905	}
1906
1907	hci_dev_lock(hdev);
1908
1909	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1910	    !hdev->discovery.scan_start)
1911		goto unlock;
1912
1913	/* When the scan was started, hdev->le_scan_disable has been queued
1914	 * after duration from scan_start. During scan restart this job
1915	 * has been canceled, and we need to queue it again after proper
1916	 * timeout, to make sure that scan does not run indefinitely.
1917	 */
1918	duration = hdev->discovery.scan_duration;
1919	scan_start = hdev->discovery.scan_start;
1920	now = jiffies;
1921	if (now - scan_start <= duration) {
1922		int elapsed;
1923
1924		if (now >= scan_start)
1925			elapsed = now - scan_start;
1926		else
1927			elapsed = ULONG_MAX - scan_start + now;
1928
1929		timeout = duration - elapsed;
1930	} else {
1931		timeout = 0;
1932	}
1933
1934	queue_delayed_work(hdev->req_workqueue,
1935			   &hdev->le_scan_disable, timeout);
1936
1937unlock:
1938	hci_dev_unlock(hdev);
1939}
1940
1941static void disable_advertising(struct hci_request *req)
1942{
1943	u8 enable = 0x00;
1944
1945	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1946}
1947
1948static int active_scan(struct hci_request *req, unsigned long opt)
1949{
1950	uint16_t interval = opt;
1951	struct hci_dev *hdev = req->hdev;
1952	struct hci_cp_le_set_scan_param param_cp;
1953	struct hci_cp_le_set_scan_enable enable_cp;
1954	u8 own_addr_type;
1955	int err;
1956
1957	BT_DBG("%s", hdev->name);
1958
1959	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1960		hci_dev_lock(hdev);
1961
1962		/* Don't let discovery abort an outgoing connection attempt
1963		 * that's using directed advertising.
1964		 */
1965		if (hci_lookup_le_connect(hdev)) {
1966			hci_dev_unlock(hdev);
1967			return -EBUSY;
1968		}
1969
1970		cancel_adv_timeout(hdev);
1971		hci_dev_unlock(hdev);
1972
1973		disable_advertising(req);
1974	}
1975
1976	/* If controller is scanning, it means the background scanning is
1977	 * running. Thus, we should temporarily stop it in order to set the
1978	 * discovery scanning parameters.
1979	 */
1980	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1981		hci_req_add_le_scan_disable(req);
1982
1983	/* All active scans will be done with either a resolvable private
1984	 * address (when privacy feature has been enabled) or non-resolvable
1985	 * private address.
1986	 */
1987	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
1988					&own_addr_type);
1989	if (err < 0)
1990		own_addr_type = ADDR_LE_DEV_PUBLIC;
1991
1992	memset(&param_cp, 0, sizeof(param_cp));
1993	param_cp.type = LE_SCAN_ACTIVE;
1994	param_cp.interval = cpu_to_le16(interval);
1995	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
1996	param_cp.own_address_type = own_addr_type;
1997
1998	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
1999		    &param_cp);
2000
2001	memset(&enable_cp, 0, sizeof(enable_cp));
2002	enable_cp.enable = LE_SCAN_ENABLE;
2003	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2004
2005	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2006		    &enable_cp);
2007
2008	return 0;
2009}
2010
2011static int interleaved_discov(struct hci_request *req, unsigned long opt)
2012{
2013	int err;
2014
2015	BT_DBG("%s", req->hdev->name);
2016
2017	err = active_scan(req, opt);
2018	if (err)
2019		return err;
2020
2021	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2022}
2023
2024static void start_discovery(struct hci_dev *hdev, u8 *status)
2025{
2026	unsigned long timeout;
2027
2028	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2029
2030	switch (hdev->discovery.type) {
2031	case DISCOV_TYPE_BREDR:
2032		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2033			hci_req_sync(hdev, bredr_inquiry,
2034				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2035				     status);
2036		return;
2037	case DISCOV_TYPE_INTERLEAVED:
2038		/* When running simultaneous discovery, the LE scanning time
2039		 * should occupy the whole discovery time sine BR/EDR inquiry
2040		 * and LE scanning are scheduled by the controller.
2041		 *
2042		 * For interleaving discovery in comparison, BR/EDR inquiry
2043		 * and LE scanning are done sequentially with separate
2044		 * timeouts.
2045		 */
2046		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2047			     &hdev->quirks)) {
2048			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2049			/* During simultaneous discovery, we double LE scan
2050			 * interval. We must leave some time for the controller
2051			 * to do BR/EDR inquiry.
2052			 */
2053			hci_req_sync(hdev, interleaved_discov,
2054				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2055				     status);
2056			break;
2057		}
2058
2059		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2060		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2061			     HCI_CMD_TIMEOUT, status);
2062		break;
2063	case DISCOV_TYPE_LE:
2064		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2065		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2066			     HCI_CMD_TIMEOUT, status);
2067		break;
2068	default:
2069		*status = HCI_ERROR_UNSPECIFIED;
2070		return;
2071	}
2072
2073	if (*status)
2074		return;
2075
2076	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2077
2078	/* When service discovery is used and the controller has a
2079	 * strict duplicate filter, it is important to remember the
2080	 * start and duration of the scan. This is required for
2081	 * restarting scanning during the discovery phase.
2082	 */
2083	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2084		     hdev->discovery.result_filtering) {
2085		hdev->discovery.scan_start = jiffies;
2086		hdev->discovery.scan_duration = timeout;
2087	}
2088
2089	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2090			   timeout);
2091}
2092
2093bool hci_req_stop_discovery(struct hci_request *req)
2094{
2095	struct hci_dev *hdev = req->hdev;
2096	struct discovery_state *d = &hdev->discovery;
2097	struct hci_cp_remote_name_req_cancel cp;
2098	struct inquiry_entry *e;
2099	bool ret = false;
2100
2101	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2102
2103	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2104		if (test_bit(HCI_INQUIRY, &hdev->flags))
2105			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2106
2107		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2108			cancel_delayed_work(&hdev->le_scan_disable);
2109			hci_req_add_le_scan_disable(req);
2110		}
2111
2112		ret = true;
2113	} else {
2114		/* Passive scanning */
2115		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2116			hci_req_add_le_scan_disable(req);
2117			ret = true;
2118		}
2119	}
2120
2121	/* No further actions needed for LE-only discovery */
2122	if (d->type == DISCOV_TYPE_LE)
2123		return ret;
2124
2125	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2126		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2127						     NAME_PENDING);
2128		if (!e)
2129			return ret;
2130
2131		bacpy(&cp.bdaddr, &e->data.bdaddr);
2132		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2133			    &cp);
2134		ret = true;
2135	}
2136
2137	return ret;
2138}
2139
2140static int stop_discovery(struct hci_request *req, unsigned long opt)
2141{
2142	hci_dev_lock(req->hdev);
2143	hci_req_stop_discovery(req);
2144	hci_dev_unlock(req->hdev);
2145
2146	return 0;
2147}
2148
2149static void discov_update(struct work_struct *work)
2150{
2151	struct hci_dev *hdev = container_of(work, struct hci_dev,
2152					    discov_update);
2153	u8 status = 0;
2154
2155	switch (hdev->discovery.state) {
2156	case DISCOVERY_STARTING:
2157		start_discovery(hdev, &status);
2158		mgmt_start_discovery_complete(hdev, status);
2159		if (status)
2160			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2161		else
2162			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2163		break;
2164	case DISCOVERY_STOPPING:
2165		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2166		mgmt_stop_discovery_complete(hdev, status);
2167		if (!status)
2168			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2169		break;
2170	case DISCOVERY_STOPPED:
2171	default:
2172		return;
2173	}
2174}
2175
2176static void discov_off(struct work_struct *work)
2177{
2178	struct hci_dev *hdev = container_of(work, struct hci_dev,
2179					    discov_off.work);
2180
2181	BT_DBG("%s", hdev->name);
2182
2183	hci_dev_lock(hdev);
2184
2185	/* When discoverable timeout triggers, then just make sure
2186	 * the limited discoverable flag is cleared. Even in the case
2187	 * of a timeout triggered from general discoverable, it is
2188	 * safe to unconditionally clear the flag.
2189	 */
2190	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2191	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2192	hdev->discov_timeout = 0;
2193
2194	hci_dev_unlock(hdev);
2195
2196	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2197	mgmt_new_settings(hdev);
2198}
2199
2200static int powered_update_hci(struct hci_request *req, unsigned long opt)
2201{
2202	struct hci_dev *hdev = req->hdev;
2203	u8 link_sec;
2204
2205	hci_dev_lock(hdev);
2206
2207	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2208	    !lmp_host_ssp_capable(hdev)) {
2209		u8 mode = 0x01;
2210
2211		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2212
2213		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2214			u8 support = 0x01;
2215
2216			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2217				    sizeof(support), &support);
2218		}
2219	}
2220
2221	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2222	    lmp_bredr_capable(hdev)) {
2223		struct hci_cp_write_le_host_supported cp;
2224
2225		cp.le = 0x01;
2226		cp.simul = 0x00;
2227
2228		/* Check first if we already have the right
2229		 * host state (host features set)
2230		 */
2231		if (cp.le != lmp_host_le_capable(hdev) ||
2232		    cp.simul != lmp_host_le_br_capable(hdev))
2233			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2234				    sizeof(cp), &cp);
2235	}
2236
2237	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2238		/* Make sure the controller has a good default for
2239		 * advertising data. This also applies to the case
2240		 * where BR/EDR was toggled during the AUTO_OFF phase.
2241		 */
2242		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2243		    list_empty(&hdev->adv_instances)) {
2244			__hci_req_update_adv_data(req, 0x00);
2245			__hci_req_update_scan_rsp_data(req, 0x00);
2246
2247			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2248				__hci_req_enable_advertising(req);
2249		} else if (!list_empty(&hdev->adv_instances)) {
2250			struct adv_info *adv_instance;
2251
2252			adv_instance = list_first_entry(&hdev->adv_instances,
2253							struct adv_info, list);
2254			__hci_req_schedule_adv_instance(req,
2255							adv_instance->instance,
2256							true);
2257		}
2258	}
2259
2260	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2261	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2262		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2263			    sizeof(link_sec), &link_sec);
2264
2265	if (lmp_bredr_capable(hdev)) {
2266		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2267			__hci_req_write_fast_connectable(req, true);
2268		else
2269			__hci_req_write_fast_connectable(req, false);
2270		__hci_req_update_scan(req);
2271		__hci_req_update_class(req);
2272		__hci_req_update_name(req);
2273		__hci_req_update_eir(req);
2274	}
2275
2276	hci_dev_unlock(hdev);
2277	return 0;
2278}
2279
2280int __hci_req_hci_power_on(struct hci_dev *hdev)
2281{
2282	/* Register the available SMP channels (BR/EDR and LE) only when
2283	 * successfully powering on the controller. This late
2284	 * registration is required so that LE SMP can clearly decide if
2285	 * the public address or static address is used.
2286	 */
2287	smp_register(hdev);
2288
2289	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2290			      NULL);
2291}
2292
2293void hci_request_setup(struct hci_dev *hdev)
2294{
2295	INIT_WORK(&hdev->discov_update, discov_update);
2296	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2297	INIT_WORK(&hdev->scan_update, scan_update_work);
2298	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2299	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2300	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2301	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2302	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2303	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2304}
2305
2306void hci_request_cancel_all(struct hci_dev *hdev)
2307{
2308	hci_req_sync_cancel(hdev, ENODEV);
2309
2310	cancel_work_sync(&hdev->discov_update);
2311	cancel_work_sync(&hdev->bg_scan_update);
2312	cancel_work_sync(&hdev->scan_update);
2313	cancel_work_sync(&hdev->connectable_update);
2314	cancel_work_sync(&hdev->discoverable_update);
2315	cancel_delayed_work_sync(&hdev->discov_off);
2316	cancel_delayed_work_sync(&hdev->le_scan_disable);
2317	cancel_delayed_work_sync(&hdev->le_scan_restart);
2318
2319	if (hdev->adv_instance_timeout) {
2320		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2321		hdev->adv_instance_timeout = 0;
2322	}
2323}