Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49static int req_run(struct hci_request *req, hci_req_complete_t complete,
  50		   hci_req_complete_skb_t complete_skb)
  51{
  52	struct hci_dev *hdev = req->hdev;
  53	struct sk_buff *skb;
  54	unsigned long flags;
  55
  56	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  57
  58	/* If an error occurred during request building, remove all HCI
  59	 * commands queued on the HCI request queue.
  60	 */
  61	if (req->err) {
  62		skb_queue_purge(&req->cmd_q);
  63		return req->err;
  64	}
  65
  66	/* Do not allow empty requests */
  67	if (skb_queue_empty(&req->cmd_q))
  68		return -ENODATA;
  69
  70	skb = skb_peek_tail(&req->cmd_q);
  71	if (complete) {
  72		bt_cb(skb)->hci.req_complete = complete;
  73	} else if (complete_skb) {
  74		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  75		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  76	}
  77
  78	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  79	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  80	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  81
  82	queue_work(hdev->workqueue, &hdev->cmd_work);
  83
  84	return 0;
  85}
  86
  87int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  88{
  89	return req_run(req, complete, NULL);
  90}
  91
  92int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  93{
  94	return req_run(req, NULL, complete);
  95}
  96
  97static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  98				  struct sk_buff *skb)
  99{
 100	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 101
 102	if (hdev->req_status == HCI_REQ_PEND) {
 103		hdev->req_result = result;
 104		hdev->req_status = HCI_REQ_DONE;
 105		if (skb)
 106			hdev->req_skb = skb_get(skb);
 107		wake_up_interruptible(&hdev->req_wait_q);
 108	}
 109}
 110
 111void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 112{
 113	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 114
 115	if (hdev->req_status == HCI_REQ_PEND) {
 116		hdev->req_result = err;
 117		hdev->req_status = HCI_REQ_CANCELED;
 118		wake_up_interruptible(&hdev->req_wait_q);
 119	}
 120}
 121
 122struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 123				  const void *param, u8 event, u32 timeout)
 124{
 125	DECLARE_WAITQUEUE(wait, current);
 126	struct hci_request req;
 127	struct sk_buff *skb;
 128	int err = 0;
 129
 130	BT_DBG("%s", hdev->name);
 131
 132	hci_req_init(&req, hdev);
 133
 134	hci_req_add_ev(&req, opcode, plen, param, event);
 135
 136	hdev->req_status = HCI_REQ_PEND;
 137
 138	add_wait_queue(&hdev->req_wait_q, &wait);
 139	set_current_state(TASK_INTERRUPTIBLE);
 140
 141	err = hci_req_run_skb(&req, hci_req_sync_complete);
 142	if (err < 0) {
 143		remove_wait_queue(&hdev->req_wait_q, &wait);
 144		set_current_state(TASK_RUNNING);
 145		return ERR_PTR(err);
 146	}
 147
 148	schedule_timeout(timeout);
 149
 150	remove_wait_queue(&hdev->req_wait_q, &wait);
 151
 152	if (signal_pending(current))
 153		return ERR_PTR(-EINTR);
 154
 155	switch (hdev->req_status) {
 156	case HCI_REQ_DONE:
 157		err = -bt_to_errno(hdev->req_result);
 158		break;
 159
 160	case HCI_REQ_CANCELED:
 161		err = -hdev->req_result;
 162		break;
 163
 164	default:
 165		err = -ETIMEDOUT;
 166		break;
 167	}
 168
 169	hdev->req_status = hdev->req_result = 0;
 170	skb = hdev->req_skb;
 171	hdev->req_skb = NULL;
 172
 173	BT_DBG("%s end: err %d", hdev->name, err);
 174
 175	if (err < 0) {
 176		kfree_skb(skb);
 177		return ERR_PTR(err);
 178	}
 179
 180	if (!skb)
 181		return ERR_PTR(-ENODATA);
 182
 183	return skb;
 184}
 185EXPORT_SYMBOL(__hci_cmd_sync_ev);
 186
 187struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 188			       const void *param, u32 timeout)
 189{
 190	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 191}
 192EXPORT_SYMBOL(__hci_cmd_sync);
 193
 194/* Execute request and wait for completion. */
 195int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 196						     unsigned long opt),
 197		   unsigned long opt, u32 timeout, u8 *hci_status)
 198{
 199	struct hci_request req;
 200	DECLARE_WAITQUEUE(wait, current);
 201	int err = 0;
 202
 203	BT_DBG("%s start", hdev->name);
 204
 205	hci_req_init(&req, hdev);
 206
 207	hdev->req_status = HCI_REQ_PEND;
 208
 209	err = func(&req, opt);
 210	if (err) {
 211		if (hci_status)
 212			*hci_status = HCI_ERROR_UNSPECIFIED;
 213		return err;
 214	}
 215
 216	add_wait_queue(&hdev->req_wait_q, &wait);
 217	set_current_state(TASK_INTERRUPTIBLE);
 218
 219	err = hci_req_run_skb(&req, hci_req_sync_complete);
 220	if (err < 0) {
 221		hdev->req_status = 0;
 222
 223		remove_wait_queue(&hdev->req_wait_q, &wait);
 224		set_current_state(TASK_RUNNING);
 225
 226		/* ENODATA means the HCI request command queue is empty.
 227		 * This can happen when a request with conditionals doesn't
 228		 * trigger any commands to be sent. This is normal behavior
 229		 * and should not trigger an error return.
 230		 */
 231		if (err == -ENODATA) {
 232			if (hci_status)
 233				*hci_status = 0;
 234			return 0;
 235		}
 236
 237		if (hci_status)
 238			*hci_status = HCI_ERROR_UNSPECIFIED;
 239
 240		return err;
 241	}
 242
 243	schedule_timeout(timeout);
 244
 245	remove_wait_queue(&hdev->req_wait_q, &wait);
 246
 247	if (signal_pending(current))
 248		return -EINTR;
 249
 250	switch (hdev->req_status) {
 251	case HCI_REQ_DONE:
 252		err = -bt_to_errno(hdev->req_result);
 253		if (hci_status)
 254			*hci_status = hdev->req_result;
 255		break;
 256
 257	case HCI_REQ_CANCELED:
 258		err = -hdev->req_result;
 259		if (hci_status)
 260			*hci_status = HCI_ERROR_UNSPECIFIED;
 261		break;
 262
 263	default:
 264		err = -ETIMEDOUT;
 265		if (hci_status)
 266			*hci_status = HCI_ERROR_UNSPECIFIED;
 267		break;
 268	}
 269
 270	kfree_skb(hdev->req_skb);
 271	hdev->req_skb = NULL;
 272	hdev->req_status = hdev->req_result = 0;
 273
 274	BT_DBG("%s end: err %d", hdev->name, err);
 275
 276	return err;
 277}
 278
 279int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 280						  unsigned long opt),
 281		 unsigned long opt, u32 timeout, u8 *hci_status)
 282{
 283	int ret;
 284
 285	if (!test_bit(HCI_UP, &hdev->flags))
 286		return -ENETDOWN;
 287
 288	/* Serialize all requests */
 289	hci_req_sync_lock(hdev);
 290	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 291	hci_req_sync_unlock(hdev);
 292
 293	return ret;
 294}
 295
 296struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 297				const void *param)
 298{
 299	int len = HCI_COMMAND_HDR_SIZE + plen;
 300	struct hci_command_hdr *hdr;
 301	struct sk_buff *skb;
 302
 303	skb = bt_skb_alloc(len, GFP_ATOMIC);
 304	if (!skb)
 305		return NULL;
 306
 307	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 308	hdr->opcode = cpu_to_le16(opcode);
 309	hdr->plen   = plen;
 310
 311	if (plen)
 312		skb_put_data(skb, param, plen);
 313
 314	BT_DBG("skb len %d", skb->len);
 315
 316	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 317	hci_skb_opcode(skb) = opcode;
 318
 319	return skb;
 320}
 321
 322/* Queue a command to an asynchronous HCI request */
 323void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 324		    const void *param, u8 event)
 325{
 326	struct hci_dev *hdev = req->hdev;
 327	struct sk_buff *skb;
 328
 329	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 330
 331	/* If an error occurred during request building, there is no point in
 332	 * queueing the HCI command. We can simply return.
 333	 */
 334	if (req->err)
 335		return;
 336
 337	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 338	if (!skb) {
 339		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 340			   opcode);
 341		req->err = -ENOMEM;
 342		return;
 343	}
 344
 345	if (skb_queue_empty(&req->cmd_q))
 346		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 347
 348	bt_cb(skb)->hci.req_event = event;
 349
 350	skb_queue_tail(&req->cmd_q, skb);
 351}
 352
 353void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 354		 const void *param)
 355{
 356	hci_req_add_ev(req, opcode, plen, param, 0);
 357}
 358
 359void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 360{
 361	struct hci_dev *hdev = req->hdev;
 362	struct hci_cp_write_page_scan_activity acp;
 363	u8 type;
 364
 365	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 366		return;
 367
 368	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 369		return;
 370
 371	if (enable) {
 372		type = PAGE_SCAN_TYPE_INTERLACED;
 373
 374		/* 160 msec page scan interval */
 375		acp.interval = cpu_to_le16(0x0100);
 376	} else {
 377		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 378
 379		/* default 1.28 sec page scan */
 380		acp.interval = cpu_to_le16(0x0800);
 381	}
 382
 383	acp.window = cpu_to_le16(0x0012);
 384
 385	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 386	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 387		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 388			    sizeof(acp), &acp);
 389
 390	if (hdev->page_scan_type != type)
 391		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 392}
 393
 394/* This function controls the background scanning based on hdev->pend_le_conns
 395 * list. If there are pending LE connection we start the background scanning,
 396 * otherwise we stop it.
 397 *
 398 * This function requires the caller holds hdev->lock.
 399 */
 400static void __hci_update_background_scan(struct hci_request *req)
 401{
 402	struct hci_dev *hdev = req->hdev;
 403
 404	if (!test_bit(HCI_UP, &hdev->flags) ||
 405	    test_bit(HCI_INIT, &hdev->flags) ||
 406	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 407	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 408	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 409	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 410		return;
 411
 412	/* No point in doing scanning if LE support hasn't been enabled */
 413	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 414		return;
 415
 416	/* If discovery is active don't interfere with it */
 417	if (hdev->discovery.state != DISCOVERY_STOPPED)
 418		return;
 419
 420	/* Reset RSSI and UUID filters when starting background scanning
 421	 * since these filters are meant for service discovery only.
 422	 *
 423	 * The Start Discovery and Start Service Discovery operations
 424	 * ensure to set proper values for RSSI threshold and UUID
 425	 * filter list. So it is safe to just reset them here.
 426	 */
 427	hci_discovery_filter_clear(hdev);
 428
 429	if (list_empty(&hdev->pend_le_conns) &&
 430	    list_empty(&hdev->pend_le_reports)) {
 431		/* If there is no pending LE connections or devices
 432		 * to be scanned for, we should stop the background
 433		 * scanning.
 434		 */
 435
 436		/* If controller is not scanning we are done. */
 437		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 438			return;
 439
 440		hci_req_add_le_scan_disable(req);
 441
 442		BT_DBG("%s stopping background scanning", hdev->name);
 443	} else {
 444		/* If there is at least one pending LE connection, we should
 445		 * keep the background scan running.
 446		 */
 447
 448		/* If controller is connecting, we should not start scanning
 449		 * since some controllers are not able to scan and connect at
 450		 * the same time.
 451		 */
 452		if (hci_lookup_le_connect(hdev))
 453			return;
 454
 455		/* If controller is currently scanning, we stop it to ensure we
 456		 * don't miss any advertising (due to duplicates filter).
 457		 */
 458		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 459			hci_req_add_le_scan_disable(req);
 460
 461		hci_req_add_le_passive_scan(req);
 462
 463		BT_DBG("%s starting background scanning", hdev->name);
 464	}
 465}
 466
 467void __hci_req_update_name(struct hci_request *req)
 468{
 469	struct hci_dev *hdev = req->hdev;
 470	struct hci_cp_write_local_name cp;
 471
 472	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 473
 474	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 475}
 476
 477#define PNP_INFO_SVCLASS_ID		0x1200
 478
 479static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 480{
 481	u8 *ptr = data, *uuids_start = NULL;
 482	struct bt_uuid *uuid;
 483
 484	if (len < 4)
 485		return ptr;
 486
 487	list_for_each_entry(uuid, &hdev->uuids, list) {
 488		u16 uuid16;
 489
 490		if (uuid->size != 16)
 491			continue;
 492
 493		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 494		if (uuid16 < 0x1100)
 495			continue;
 496
 497		if (uuid16 == PNP_INFO_SVCLASS_ID)
 498			continue;
 499
 500		if (!uuids_start) {
 501			uuids_start = ptr;
 502			uuids_start[0] = 1;
 503			uuids_start[1] = EIR_UUID16_ALL;
 504			ptr += 2;
 505		}
 506
 507		/* Stop if not enough space to put next UUID */
 508		if ((ptr - data) + sizeof(u16) > len) {
 509			uuids_start[1] = EIR_UUID16_SOME;
 510			break;
 511		}
 512
 513		*ptr++ = (uuid16 & 0x00ff);
 514		*ptr++ = (uuid16 & 0xff00) >> 8;
 515		uuids_start[0] += sizeof(uuid16);
 516	}
 517
 518	return ptr;
 519}
 520
 521static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 522{
 523	u8 *ptr = data, *uuids_start = NULL;
 524	struct bt_uuid *uuid;
 525
 526	if (len < 6)
 527		return ptr;
 528
 529	list_for_each_entry(uuid, &hdev->uuids, list) {
 530		if (uuid->size != 32)
 531			continue;
 532
 533		if (!uuids_start) {
 534			uuids_start = ptr;
 535			uuids_start[0] = 1;
 536			uuids_start[1] = EIR_UUID32_ALL;
 537			ptr += 2;
 538		}
 539
 540		/* Stop if not enough space to put next UUID */
 541		if ((ptr - data) + sizeof(u32) > len) {
 542			uuids_start[1] = EIR_UUID32_SOME;
 543			break;
 544		}
 545
 546		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 547		ptr += sizeof(u32);
 548		uuids_start[0] += sizeof(u32);
 549	}
 550
 551	return ptr;
 552}
 553
 554static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 555{
 556	u8 *ptr = data, *uuids_start = NULL;
 557	struct bt_uuid *uuid;
 558
 559	if (len < 18)
 560		return ptr;
 561
 562	list_for_each_entry(uuid, &hdev->uuids, list) {
 563		if (uuid->size != 128)
 564			continue;
 565
 566		if (!uuids_start) {
 567			uuids_start = ptr;
 568			uuids_start[0] = 1;
 569			uuids_start[1] = EIR_UUID128_ALL;
 570			ptr += 2;
 571		}
 572
 573		/* Stop if not enough space to put next UUID */
 574		if ((ptr - data) + 16 > len) {
 575			uuids_start[1] = EIR_UUID128_SOME;
 576			break;
 577		}
 578
 579		memcpy(ptr, uuid->uuid, 16);
 580		ptr += 16;
 581		uuids_start[0] += 16;
 582	}
 583
 584	return ptr;
 585}
 586
 587static void create_eir(struct hci_dev *hdev, u8 *data)
 588{
 589	u8 *ptr = data;
 590	size_t name_len;
 591
 592	name_len = strlen(hdev->dev_name);
 593
 594	if (name_len > 0) {
 595		/* EIR Data type */
 596		if (name_len > 48) {
 597			name_len = 48;
 598			ptr[1] = EIR_NAME_SHORT;
 599		} else
 600			ptr[1] = EIR_NAME_COMPLETE;
 601
 602		/* EIR Data length */
 603		ptr[0] = name_len + 1;
 604
 605		memcpy(ptr + 2, hdev->dev_name, name_len);
 606
 607		ptr += (name_len + 2);
 608	}
 609
 610	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 611		ptr[0] = 2;
 612		ptr[1] = EIR_TX_POWER;
 613		ptr[2] = (u8) hdev->inq_tx_power;
 614
 615		ptr += 3;
 616	}
 617
 618	if (hdev->devid_source > 0) {
 619		ptr[0] = 9;
 620		ptr[1] = EIR_DEVICE_ID;
 621
 622		put_unaligned_le16(hdev->devid_source, ptr + 2);
 623		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 624		put_unaligned_le16(hdev->devid_product, ptr + 6);
 625		put_unaligned_le16(hdev->devid_version, ptr + 8);
 626
 627		ptr += 10;
 628	}
 629
 630	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 631	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 632	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 633}
 634
 635void __hci_req_update_eir(struct hci_request *req)
 636{
 637	struct hci_dev *hdev = req->hdev;
 638	struct hci_cp_write_eir cp;
 639
 640	if (!hdev_is_powered(hdev))
 641		return;
 642
 643	if (!lmp_ext_inq_capable(hdev))
 644		return;
 645
 646	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 647		return;
 648
 649	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 650		return;
 651
 652	memset(&cp, 0, sizeof(cp));
 653
 654	create_eir(hdev, cp.data);
 655
 656	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 657		return;
 658
 659	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 660
 661	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 662}
 663
 664void hci_req_add_le_scan_disable(struct hci_request *req)
 665{
 666	struct hci_cp_le_set_scan_enable cp;
 667
 668	memset(&cp, 0, sizeof(cp));
 669	cp.enable = LE_SCAN_DISABLE;
 670	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 671}
 672
 673static void add_to_white_list(struct hci_request *req,
 674			      struct hci_conn_params *params)
 675{
 676	struct hci_cp_le_add_to_white_list cp;
 677
 678	cp.bdaddr_type = params->addr_type;
 679	bacpy(&cp.bdaddr, &params->addr);
 680
 681	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 682}
 683
 684static u8 update_white_list(struct hci_request *req)
 685{
 686	struct hci_dev *hdev = req->hdev;
 687	struct hci_conn_params *params;
 688	struct bdaddr_list *b;
 689	uint8_t white_list_entries = 0;
 690
 691	/* Go through the current white list programmed into the
 692	 * controller one by one and check if that address is still
 693	 * in the list of pending connections or list of devices to
 694	 * report. If not present in either list, then queue the
 695	 * command to remove it from the controller.
 696	 */
 697	list_for_each_entry(b, &hdev->le_white_list, list) {
 698		/* If the device is neither in pend_le_conns nor
 699		 * pend_le_reports then remove it from the whitelist.
 700		 */
 701		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 702					       &b->bdaddr, b->bdaddr_type) &&
 703		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 704					       &b->bdaddr, b->bdaddr_type)) {
 705			struct hci_cp_le_del_from_white_list cp;
 706
 707			cp.bdaddr_type = b->bdaddr_type;
 708			bacpy(&cp.bdaddr, &b->bdaddr);
 709
 710			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 711				    sizeof(cp), &cp);
 712			continue;
 713		}
 714
 715		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 716			/* White list can not be used with RPAs */
 717			return 0x00;
 718		}
 719
 720		white_list_entries++;
 721	}
 722
 723	/* Since all no longer valid white list entries have been
 724	 * removed, walk through the list of pending connections
 725	 * and ensure that any new device gets programmed into
 726	 * the controller.
 727	 *
 728	 * If the list of the devices is larger than the list of
 729	 * available white list entries in the controller, then
 730	 * just abort and return filer policy value to not use the
 731	 * white list.
 732	 */
 733	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 734		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 735					   &params->addr, params->addr_type))
 736			continue;
 737
 738		if (white_list_entries >= hdev->le_white_list_size) {
 739			/* Select filter policy to accept all advertising */
 740			return 0x00;
 741		}
 742
 743		if (hci_find_irk_by_addr(hdev, &params->addr,
 744					 params->addr_type)) {
 745			/* White list can not be used with RPAs */
 746			return 0x00;
 747		}
 748
 749		white_list_entries++;
 750		add_to_white_list(req, params);
 751	}
 752
 753	/* After adding all new pending connections, walk through
 754	 * the list of pending reports and also add these to the
 755	 * white list if there is still space.
 756	 */
 757	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 758		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 759					   &params->addr, params->addr_type))
 760			continue;
 761
 762		if (white_list_entries >= hdev->le_white_list_size) {
 763			/* Select filter policy to accept all advertising */
 764			return 0x00;
 765		}
 766
 767		if (hci_find_irk_by_addr(hdev, &params->addr,
 768					 params->addr_type)) {
 769			/* White list can not be used with RPAs */
 770			return 0x00;
 771		}
 772
 773		white_list_entries++;
 774		add_to_white_list(req, params);
 775	}
 776
 777	/* Select filter policy to use white list */
 778	return 0x01;
 779}
 780
 781static bool scan_use_rpa(struct hci_dev *hdev)
 782{
 783	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 784}
 785
 786void hci_req_add_le_passive_scan(struct hci_request *req)
 787{
 788	struct hci_cp_le_set_scan_param param_cp;
 789	struct hci_cp_le_set_scan_enable enable_cp;
 790	struct hci_dev *hdev = req->hdev;
 791	u8 own_addr_type;
 792	u8 filter_policy;
 793
 794	/* Set require_privacy to false since no SCAN_REQ are send
 795	 * during passive scanning. Not using an non-resolvable address
 796	 * here is important so that peer devices using direct
 797	 * advertising with our address will be correctly reported
 798	 * by the controller.
 799	 */
 800	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 801				      &own_addr_type))
 802		return;
 803
 804	/* Adding or removing entries from the white list must
 805	 * happen before enabling scanning. The controller does
 806	 * not allow white list modification while scanning.
 807	 */
 808	filter_policy = update_white_list(req);
 809
 810	/* When the controller is using random resolvable addresses and
 811	 * with that having LE privacy enabled, then controllers with
 812	 * Extended Scanner Filter Policies support can now enable support
 813	 * for handling directed advertising.
 814	 *
 815	 * So instead of using filter polices 0x00 (no whitelist)
 816	 * and 0x01 (whitelist enabled) use the new filter policies
 817	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 818	 */
 819	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 820	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 821		filter_policy |= 0x02;
 822
 823	memset(&param_cp, 0, sizeof(param_cp));
 824	param_cp.type = LE_SCAN_PASSIVE;
 825	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 826	param_cp.window = cpu_to_le16(hdev->le_scan_window);
 827	param_cp.own_address_type = own_addr_type;
 828	param_cp.filter_policy = filter_policy;
 829	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 830		    &param_cp);
 831
 832	memset(&enable_cp, 0, sizeof(enable_cp));
 833	enable_cp.enable = LE_SCAN_ENABLE;
 834	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 835	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 836		    &enable_cp);
 837}
 838
 839static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 840{
 841	u8 instance = hdev->cur_adv_instance;
 842	struct adv_info *adv_instance;
 843
 844	/* Ignore instance 0 */
 845	if (instance == 0x00)
 846		return 0;
 847
 848	adv_instance = hci_find_adv_instance(hdev, instance);
 849	if (!adv_instance)
 850		return 0;
 851
 852	/* TODO: Take into account the "appearance" and "local-name" flags here.
 853	 * These are currently being ignored as they are not supported.
 854	 */
 855	return adv_instance->scan_rsp_len;
 856}
 857
 858void __hci_req_disable_advertising(struct hci_request *req)
 859{
 860	u8 enable = 0x00;
 861
 862	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 863}
 864
 865static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 866{
 867	u32 flags;
 868	struct adv_info *adv_instance;
 869
 870	if (instance == 0x00) {
 871		/* Instance 0 always manages the "Tx Power" and "Flags"
 872		 * fields
 873		 */
 874		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 875
 876		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 877		 * corresponds to the "connectable" instance flag.
 878		 */
 879		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 880			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 881
 882		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 883			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 884		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 885			flags |= MGMT_ADV_FLAG_DISCOV;
 886
 887		return flags;
 888	}
 889
 890	adv_instance = hci_find_adv_instance(hdev, instance);
 891
 892	/* Return 0 when we got an invalid instance identifier. */
 893	if (!adv_instance)
 894		return 0;
 895
 896	return adv_instance->flags;
 897}
 898
 899static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 900{
 901	/* If privacy is not enabled don't use RPA */
 902	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 903		return false;
 904
 905	/* If basic privacy mode is enabled use RPA */
 906	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 907		return true;
 908
 909	/* If limited privacy mode is enabled don't use RPA if we're
 910	 * both discoverable and bondable.
 911	 */
 912	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 913	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 914		return false;
 915
 916	/* We're neither bondable nor discoverable in the limited
 917	 * privacy mode, therefore use RPA.
 918	 */
 919	return true;
 920}
 921
 922static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
 923{
 924	/* If there is no connection we are OK to advertise. */
 925	if (hci_conn_num(hdev, LE_LINK) == 0)
 926		return true;
 927
 928	/* Check le_states if there is any connection in slave role. */
 929	if (hdev->conn_hash.le_num_slave > 0) {
 930		/* Slave connection state and non connectable mode bit 20. */
 931		if (!connectable && !(hdev->le_states[2] & 0x10))
 932			return false;
 933
 934		/* Slave connection state and connectable mode bit 38
 935		 * and scannable bit 21.
 936		 */
 937		if (connectable && (!(hdev->le_states[4] & 0x40) ||
 938				    !(hdev->le_states[2] & 0x20)))
 939			return false;
 940	}
 941
 942	/* Check le_states if there is any connection in master role. */
 943	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
 944		/* Master connection state and non connectable mode bit 18. */
 945		if (!connectable && !(hdev->le_states[2] & 0x02))
 946			return false;
 947
 948		/* Master connection state and connectable mode bit 35 and
 949		 * scannable 19.
 950		 */
 951		if (connectable && (!(hdev->le_states[4] & 0x08) ||
 952				    !(hdev->le_states[2] & 0x08)))
 953			return false;
 954	}
 955
 956	return true;
 957}
 958
 959void __hci_req_enable_advertising(struct hci_request *req)
 960{
 961	struct hci_dev *hdev = req->hdev;
 962	struct hci_cp_le_set_adv_param cp;
 963	u8 own_addr_type, enable = 0x01;
 964	bool connectable;
 965	u32 flags;
 966
 967	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 968
 969	/* If the "connectable" instance flag was not set, then choose between
 970	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 971	 */
 972	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 973		      mgmt_get_connectable(hdev);
 974
 975	if (!is_advertising_allowed(hdev, connectable))
 976		return;
 977
 978	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 979		__hci_req_disable_advertising(req);
 980
 981	/* Clear the HCI_LE_ADV bit temporarily so that the
 982	 * hci_update_random_address knows that it's safe to go ahead
 983	 * and write a new random address. The flag will be set back on
 984	 * as soon as the SET_ADV_ENABLE HCI command completes.
 985	 */
 986	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 987
 988	/* Set require_privacy to true only when non-connectable
 989	 * advertising is used. In that case it is fine to use a
 990	 * non-resolvable private address.
 991	 */
 992	if (hci_update_random_address(req, !connectable,
 993				      adv_use_rpa(hdev, flags),
 994				      &own_addr_type) < 0)
 995		return;
 996
 997	memset(&cp, 0, sizeof(cp));
 998	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 999	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
1000
1001	if (connectable)
1002		cp.type = LE_ADV_IND;
1003	else if (get_cur_adv_instance_scan_rsp_len(hdev))
1004		cp.type = LE_ADV_SCAN_IND;
1005	else
1006		cp.type = LE_ADV_NONCONN_IND;
1007
1008	cp.own_address_type = own_addr_type;
1009	cp.channel_map = hdev->le_adv_channel_map;
1010
1011	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1012
1013	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1014}
1015
1016u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1017{
1018	size_t short_len;
1019	size_t complete_len;
1020
1021	/* no space left for name (+ NULL + type + len) */
1022	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1023		return ad_len;
1024
1025	/* use complete name if present and fits */
1026	complete_len = strlen(hdev->dev_name);
1027	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1028		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1029				       hdev->dev_name, complete_len + 1);
1030
1031	/* use short name if present */
1032	short_len = strlen(hdev->short_name);
1033	if (short_len)
1034		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1035				       hdev->short_name, short_len + 1);
1036
1037	/* use shortened full name if present, we already know that name
1038	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1039	 */
1040	if (complete_len) {
1041		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1042
1043		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1044		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1045
1046		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1047				       sizeof(name));
1048	}
1049
1050	return ad_len;
1051}
1052
1053static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1054{
1055	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1056}
1057
1058static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1059{
1060	u8 scan_rsp_len = 0;
1061
1062	if (hdev->appearance) {
1063		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1064	}
1065
1066	return append_local_name(hdev, ptr, scan_rsp_len);
1067}
1068
1069static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1070					u8 *ptr)
1071{
1072	struct adv_info *adv_instance;
1073	u32 instance_flags;
1074	u8 scan_rsp_len = 0;
1075
1076	adv_instance = hci_find_adv_instance(hdev, instance);
1077	if (!adv_instance)
1078		return 0;
1079
1080	instance_flags = adv_instance->flags;
1081
1082	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1083		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1084	}
1085
1086	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1087	       adv_instance->scan_rsp_len);
1088
1089	scan_rsp_len += adv_instance->scan_rsp_len;
1090
1091	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1092		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1093
1094	return scan_rsp_len;
1095}
1096
1097void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1098{
1099	struct hci_dev *hdev = req->hdev;
1100	struct hci_cp_le_set_scan_rsp_data cp;
1101	u8 len;
1102
1103	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1104		return;
1105
1106	memset(&cp, 0, sizeof(cp));
1107
1108	if (instance)
1109		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1110	else
1111		len = create_default_scan_rsp_data(hdev, cp.data);
1112
1113	if (hdev->scan_rsp_data_len == len &&
1114	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1115		return;
1116
1117	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1118	hdev->scan_rsp_data_len = len;
1119
1120	cp.length = len;
1121
1122	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1123}
1124
1125static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1126{
1127	struct adv_info *adv_instance = NULL;
1128	u8 ad_len = 0, flags = 0;
1129	u32 instance_flags;
1130
1131	/* Return 0 when the current instance identifier is invalid. */
1132	if (instance) {
1133		adv_instance = hci_find_adv_instance(hdev, instance);
1134		if (!adv_instance)
1135			return 0;
1136	}
1137
1138	instance_flags = get_adv_instance_flags(hdev, instance);
1139
1140	/* The Add Advertising command allows userspace to set both the general
1141	 * and limited discoverable flags.
1142	 */
1143	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1144		flags |= LE_AD_GENERAL;
1145
1146	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1147		flags |= LE_AD_LIMITED;
1148
1149	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1150		flags |= LE_AD_NO_BREDR;
1151
1152	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1153		/* If a discovery flag wasn't provided, simply use the global
1154		 * settings.
1155		 */
1156		if (!flags)
1157			flags |= mgmt_get_adv_discov_flags(hdev);
1158
1159		/* If flags would still be empty, then there is no need to
1160		 * include the "Flags" AD field".
1161		 */
1162		if (flags) {
1163			ptr[0] = 0x02;
1164			ptr[1] = EIR_FLAGS;
1165			ptr[2] = flags;
1166
1167			ad_len += 3;
1168			ptr += 3;
1169		}
1170	}
1171
1172	if (adv_instance) {
1173		memcpy(ptr, adv_instance->adv_data,
1174		       adv_instance->adv_data_len);
1175		ad_len += adv_instance->adv_data_len;
1176		ptr += adv_instance->adv_data_len;
1177	}
1178
1179	/* Provide Tx Power only if we can provide a valid value for it */
1180	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1181	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1182		ptr[0] = 0x02;
1183		ptr[1] = EIR_TX_POWER;
1184		ptr[2] = (u8)hdev->adv_tx_power;
1185
1186		ad_len += 3;
1187		ptr += 3;
1188	}
1189
1190	return ad_len;
1191}
1192
1193void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1194{
1195	struct hci_dev *hdev = req->hdev;
1196	struct hci_cp_le_set_adv_data cp;
1197	u8 len;
1198
1199	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1200		return;
1201
1202	memset(&cp, 0, sizeof(cp));
1203
1204	len = create_instance_adv_data(hdev, instance, cp.data);
1205
1206	/* There's nothing to do if the data hasn't changed */
1207	if (hdev->adv_data_len == len &&
1208	    memcmp(cp.data, hdev->adv_data, len) == 0)
1209		return;
1210
1211	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1212	hdev->adv_data_len = len;
1213
1214	cp.length = len;
1215
1216	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1217}
1218
1219int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1220{
1221	struct hci_request req;
1222
1223	hci_req_init(&req, hdev);
1224	__hci_req_update_adv_data(&req, instance);
1225
1226	return hci_req_run(&req, NULL);
1227}
1228
1229static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1230{
1231	BT_DBG("%s status %u", hdev->name, status);
1232}
1233
1234void hci_req_reenable_advertising(struct hci_dev *hdev)
1235{
1236	struct hci_request req;
1237
1238	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1239	    list_empty(&hdev->adv_instances))
1240		return;
1241
1242	hci_req_init(&req, hdev);
1243
1244	if (hdev->cur_adv_instance) {
1245		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1246						true);
1247	} else {
1248		__hci_req_update_adv_data(&req, 0x00);
1249		__hci_req_update_scan_rsp_data(&req, 0x00);
1250		__hci_req_enable_advertising(&req);
1251	}
1252
1253	hci_req_run(&req, adv_enable_complete);
1254}
1255
1256static void adv_timeout_expire(struct work_struct *work)
1257{
1258	struct hci_dev *hdev = container_of(work, struct hci_dev,
1259					    adv_instance_expire.work);
1260
1261	struct hci_request req;
1262	u8 instance;
1263
1264	BT_DBG("%s", hdev->name);
1265
1266	hci_dev_lock(hdev);
1267
1268	hdev->adv_instance_timeout = 0;
1269
1270	instance = hdev->cur_adv_instance;
1271	if (instance == 0x00)
1272		goto unlock;
1273
1274	hci_req_init(&req, hdev);
1275
1276	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1277
1278	if (list_empty(&hdev->adv_instances))
1279		__hci_req_disable_advertising(&req);
1280
1281	hci_req_run(&req, NULL);
1282
1283unlock:
1284	hci_dev_unlock(hdev);
1285}
1286
1287int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1288				    bool force)
1289{
1290	struct hci_dev *hdev = req->hdev;
1291	struct adv_info *adv_instance = NULL;
1292	u16 timeout;
1293
1294	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1295	    list_empty(&hdev->adv_instances))
1296		return -EPERM;
1297
1298	if (hdev->adv_instance_timeout)
1299		return -EBUSY;
1300
1301	adv_instance = hci_find_adv_instance(hdev, instance);
1302	if (!adv_instance)
1303		return -ENOENT;
1304
1305	/* A zero timeout means unlimited advertising. As long as there is
1306	 * only one instance, duration should be ignored. We still set a timeout
1307	 * in case further instances are being added later on.
1308	 *
1309	 * If the remaining lifetime of the instance is more than the duration
1310	 * then the timeout corresponds to the duration, otherwise it will be
1311	 * reduced to the remaining instance lifetime.
1312	 */
1313	if (adv_instance->timeout == 0 ||
1314	    adv_instance->duration <= adv_instance->remaining_time)
1315		timeout = adv_instance->duration;
1316	else
1317		timeout = adv_instance->remaining_time;
1318
1319	/* The remaining time is being reduced unless the instance is being
1320	 * advertised without time limit.
1321	 */
1322	if (adv_instance->timeout)
1323		adv_instance->remaining_time =
1324				adv_instance->remaining_time - timeout;
1325
1326	hdev->adv_instance_timeout = timeout;
1327	queue_delayed_work(hdev->req_workqueue,
1328			   &hdev->adv_instance_expire,
1329			   msecs_to_jiffies(timeout * 1000));
1330
1331	/* If we're just re-scheduling the same instance again then do not
1332	 * execute any HCI commands. This happens when a single instance is
1333	 * being advertised.
1334	 */
1335	if (!force && hdev->cur_adv_instance == instance &&
1336	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1337		return 0;
1338
1339	hdev->cur_adv_instance = instance;
1340	__hci_req_update_adv_data(req, instance);
1341	__hci_req_update_scan_rsp_data(req, instance);
1342	__hci_req_enable_advertising(req);
1343
1344	return 0;
1345}
1346
1347static void cancel_adv_timeout(struct hci_dev *hdev)
1348{
1349	if (hdev->adv_instance_timeout) {
1350		hdev->adv_instance_timeout = 0;
1351		cancel_delayed_work(&hdev->adv_instance_expire);
1352	}
1353}
1354
1355/* For a single instance:
1356 * - force == true: The instance will be removed even when its remaining
1357 *   lifetime is not zero.
1358 * - force == false: the instance will be deactivated but kept stored unless
1359 *   the remaining lifetime is zero.
1360 *
1361 * For instance == 0x00:
1362 * - force == true: All instances will be removed regardless of their timeout
1363 *   setting.
1364 * - force == false: Only instances that have a timeout will be removed.
1365 */
1366void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1367				struct hci_request *req, u8 instance,
1368				bool force)
1369{
1370	struct adv_info *adv_instance, *n, *next_instance = NULL;
1371	int err;
1372	u8 rem_inst;
1373
1374	/* Cancel any timeout concerning the removed instance(s). */
1375	if (!instance || hdev->cur_adv_instance == instance)
1376		cancel_adv_timeout(hdev);
1377
1378	/* Get the next instance to advertise BEFORE we remove
1379	 * the current one. This can be the same instance again
1380	 * if there is only one instance.
1381	 */
1382	if (instance && hdev->cur_adv_instance == instance)
1383		next_instance = hci_get_next_instance(hdev, instance);
1384
1385	if (instance == 0x00) {
1386		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1387					 list) {
1388			if (!(force || adv_instance->timeout))
1389				continue;
1390
1391			rem_inst = adv_instance->instance;
1392			err = hci_remove_adv_instance(hdev, rem_inst);
1393			if (!err)
1394				mgmt_advertising_removed(sk, hdev, rem_inst);
1395		}
1396	} else {
1397		adv_instance = hci_find_adv_instance(hdev, instance);
1398
1399		if (force || (adv_instance && adv_instance->timeout &&
1400			      !adv_instance->remaining_time)) {
1401			/* Don't advertise a removed instance. */
1402			if (next_instance &&
1403			    next_instance->instance == instance)
1404				next_instance = NULL;
1405
1406			err = hci_remove_adv_instance(hdev, instance);
1407			if (!err)
1408				mgmt_advertising_removed(sk, hdev, instance);
1409		}
1410	}
1411
1412	if (!req || !hdev_is_powered(hdev) ||
1413	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1414		return;
1415
1416	if (next_instance)
1417		__hci_req_schedule_adv_instance(req, next_instance->instance,
1418						false);
1419}
1420
1421static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1422{
1423	struct hci_dev *hdev = req->hdev;
1424
1425	/* If we're advertising or initiating an LE connection we can't
1426	 * go ahead and change the random address at this time. This is
1427	 * because the eventual initiator address used for the
1428	 * subsequently created connection will be undefined (some
1429	 * controllers use the new address and others the one we had
1430	 * when the operation started).
1431	 *
1432	 * In this kind of scenario skip the update and let the random
1433	 * address be updated at the next cycle.
1434	 */
1435	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1436	    hci_lookup_le_connect(hdev)) {
1437		BT_DBG("Deferring random address update");
1438		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1439		return;
1440	}
1441
1442	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1443}
1444
1445int hci_update_random_address(struct hci_request *req, bool require_privacy,
1446			      bool use_rpa, u8 *own_addr_type)
1447{
1448	struct hci_dev *hdev = req->hdev;
1449	int err;
1450
1451	/* If privacy is enabled use a resolvable private address. If
1452	 * current RPA has expired or there is something else than
1453	 * the current RPA in use, then generate a new one.
1454	 */
1455	if (use_rpa) {
1456		int to;
1457
1458		*own_addr_type = ADDR_LE_DEV_RANDOM;
1459
1460		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1461		    !bacmp(&hdev->random_addr, &hdev->rpa))
1462			return 0;
1463
1464		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1465		if (err < 0) {
1466			bt_dev_err(hdev, "failed to generate new RPA");
1467			return err;
1468		}
1469
1470		set_random_addr(req, &hdev->rpa);
1471
1472		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1473		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1474
1475		return 0;
1476	}
1477
1478	/* In case of required privacy without resolvable private address,
1479	 * use an non-resolvable private address. This is useful for active
1480	 * scanning and non-connectable advertising.
1481	 */
1482	if (require_privacy) {
1483		bdaddr_t nrpa;
1484
1485		while (true) {
1486			/* The non-resolvable private address is generated
1487			 * from random six bytes with the two most significant
1488			 * bits cleared.
1489			 */
1490			get_random_bytes(&nrpa, 6);
1491			nrpa.b[5] &= 0x3f;
1492
1493			/* The non-resolvable private address shall not be
1494			 * equal to the public address.
1495			 */
1496			if (bacmp(&hdev->bdaddr, &nrpa))
1497				break;
1498		}
1499
1500		*own_addr_type = ADDR_LE_DEV_RANDOM;
1501		set_random_addr(req, &nrpa);
1502		return 0;
1503	}
1504
1505	/* If forcing static address is in use or there is no public
1506	 * address use the static address as random address (but skip
1507	 * the HCI command if the current random address is already the
1508	 * static one.
1509	 *
1510	 * In case BR/EDR has been disabled on a dual-mode controller
1511	 * and a static address has been configured, then use that
1512	 * address instead of the public BR/EDR address.
1513	 */
1514	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1515	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1516	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1517	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1518		*own_addr_type = ADDR_LE_DEV_RANDOM;
1519		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1520			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1521				    &hdev->static_addr);
1522		return 0;
1523	}
1524
1525	/* Neither privacy nor static address is being used so use a
1526	 * public address.
1527	 */
1528	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1529
1530	return 0;
1531}
1532
1533static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1534{
1535	struct bdaddr_list *b;
1536
1537	list_for_each_entry(b, &hdev->whitelist, list) {
1538		struct hci_conn *conn;
1539
1540		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1541		if (!conn)
1542			return true;
1543
1544		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1545			return true;
1546	}
1547
1548	return false;
1549}
1550
1551void __hci_req_update_scan(struct hci_request *req)
1552{
1553	struct hci_dev *hdev = req->hdev;
1554	u8 scan;
1555
1556	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1557		return;
1558
1559	if (!hdev_is_powered(hdev))
1560		return;
1561
1562	if (mgmt_powering_down(hdev))
1563		return;
1564
1565	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1566	    disconnected_whitelist_entries(hdev))
1567		scan = SCAN_PAGE;
1568	else
1569		scan = SCAN_DISABLED;
1570
1571	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1572		scan |= SCAN_INQUIRY;
1573
1574	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1575	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1576		return;
1577
1578	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1579}
1580
1581static int update_scan(struct hci_request *req, unsigned long opt)
1582{
1583	hci_dev_lock(req->hdev);
1584	__hci_req_update_scan(req);
1585	hci_dev_unlock(req->hdev);
1586	return 0;
1587}
1588
1589static void scan_update_work(struct work_struct *work)
1590{
1591	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1592
1593	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1594}
1595
1596static int connectable_update(struct hci_request *req, unsigned long opt)
1597{
1598	struct hci_dev *hdev = req->hdev;
1599
1600	hci_dev_lock(hdev);
1601
1602	__hci_req_update_scan(req);
1603
1604	/* If BR/EDR is not enabled and we disable advertising as a
1605	 * by-product of disabling connectable, we need to update the
1606	 * advertising flags.
1607	 */
1608	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1609		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1610
1611	/* Update the advertising parameters if necessary */
1612	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1613	    !list_empty(&hdev->adv_instances))
1614		__hci_req_enable_advertising(req);
1615
1616	__hci_update_background_scan(req);
1617
1618	hci_dev_unlock(hdev);
1619
1620	return 0;
1621}
1622
1623static void connectable_update_work(struct work_struct *work)
1624{
1625	struct hci_dev *hdev = container_of(work, struct hci_dev,
1626					    connectable_update);
1627	u8 status;
1628
1629	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1630	mgmt_set_connectable_complete(hdev, status);
1631}
1632
1633static u8 get_service_classes(struct hci_dev *hdev)
1634{
1635	struct bt_uuid *uuid;
1636	u8 val = 0;
1637
1638	list_for_each_entry(uuid, &hdev->uuids, list)
1639		val |= uuid->svc_hint;
1640
1641	return val;
1642}
1643
1644void __hci_req_update_class(struct hci_request *req)
1645{
1646	struct hci_dev *hdev = req->hdev;
1647	u8 cod[3];
1648
1649	BT_DBG("%s", hdev->name);
1650
1651	if (!hdev_is_powered(hdev))
1652		return;
1653
1654	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1655		return;
1656
1657	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1658		return;
1659
1660	cod[0] = hdev->minor_class;
1661	cod[1] = hdev->major_class;
1662	cod[2] = get_service_classes(hdev);
1663
1664	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1665		cod[1] |= 0x20;
1666
1667	if (memcmp(cod, hdev->dev_class, 3) == 0)
1668		return;
1669
1670	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1671}
1672
1673static void write_iac(struct hci_request *req)
1674{
1675	struct hci_dev *hdev = req->hdev;
1676	struct hci_cp_write_current_iac_lap cp;
1677
1678	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1679		return;
1680
1681	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1682		/* Limited discoverable mode */
1683		cp.num_iac = min_t(u8, hdev->num_iac, 2);
1684		cp.iac_lap[0] = 0x00;	/* LIAC */
1685		cp.iac_lap[1] = 0x8b;
1686		cp.iac_lap[2] = 0x9e;
1687		cp.iac_lap[3] = 0x33;	/* GIAC */
1688		cp.iac_lap[4] = 0x8b;
1689		cp.iac_lap[5] = 0x9e;
1690	} else {
1691		/* General discoverable mode */
1692		cp.num_iac = 1;
1693		cp.iac_lap[0] = 0x33;	/* GIAC */
1694		cp.iac_lap[1] = 0x8b;
1695		cp.iac_lap[2] = 0x9e;
1696	}
1697
1698	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1699		    (cp.num_iac * 3) + 1, &cp);
1700}
1701
1702static int discoverable_update(struct hci_request *req, unsigned long opt)
1703{
1704	struct hci_dev *hdev = req->hdev;
1705
1706	hci_dev_lock(hdev);
1707
1708	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1709		write_iac(req);
1710		__hci_req_update_scan(req);
1711		__hci_req_update_class(req);
1712	}
1713
1714	/* Advertising instances don't use the global discoverable setting, so
1715	 * only update AD if advertising was enabled using Set Advertising.
1716	 */
1717	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1718		__hci_req_update_adv_data(req, 0x00);
1719
1720		/* Discoverable mode affects the local advertising
1721		 * address in limited privacy mode.
1722		 */
1723		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1724			__hci_req_enable_advertising(req);
1725	}
1726
1727	hci_dev_unlock(hdev);
1728
1729	return 0;
1730}
1731
1732static void discoverable_update_work(struct work_struct *work)
1733{
1734	struct hci_dev *hdev = container_of(work, struct hci_dev,
1735					    discoverable_update);
1736	u8 status;
1737
1738	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1739	mgmt_set_discoverable_complete(hdev, status);
1740}
1741
1742void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1743		      u8 reason)
1744{
1745	switch (conn->state) {
1746	case BT_CONNECTED:
1747	case BT_CONFIG:
1748		if (conn->type == AMP_LINK) {
1749			struct hci_cp_disconn_phy_link cp;
1750
1751			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1752			cp.reason = reason;
1753			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1754				    &cp);
1755		} else {
1756			struct hci_cp_disconnect dc;
1757
1758			dc.handle = cpu_to_le16(conn->handle);
1759			dc.reason = reason;
1760			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1761		}
1762
1763		conn->state = BT_DISCONN;
1764
1765		break;
1766	case BT_CONNECT:
1767		if (conn->type == LE_LINK) {
1768			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1769				break;
1770			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1771				    0, NULL);
1772		} else if (conn->type == ACL_LINK) {
1773			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1774				break;
1775			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1776				    6, &conn->dst);
1777		}
1778		break;
1779	case BT_CONNECT2:
1780		if (conn->type == ACL_LINK) {
1781			struct hci_cp_reject_conn_req rej;
1782
1783			bacpy(&rej.bdaddr, &conn->dst);
1784			rej.reason = reason;
1785
1786			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1787				    sizeof(rej), &rej);
1788		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1789			struct hci_cp_reject_sync_conn_req rej;
1790
1791			bacpy(&rej.bdaddr, &conn->dst);
1792
1793			/* SCO rejection has its own limited set of
1794			 * allowed error values (0x0D-0x0F) which isn't
1795			 * compatible with most values passed to this
1796			 * function. To be safe hard-code one of the
1797			 * values that's suitable for SCO.
1798			 */
1799			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1800
1801			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1802				    sizeof(rej), &rej);
1803		}
1804		break;
1805	default:
1806		conn->state = BT_CLOSED;
1807		break;
1808	}
1809}
1810
1811static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1812{
1813	if (status)
1814		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1815}
1816
1817int hci_abort_conn(struct hci_conn *conn, u8 reason)
1818{
1819	struct hci_request req;
1820	int err;
1821
1822	hci_req_init(&req, conn->hdev);
1823
1824	__hci_abort_conn(&req, conn, reason);
1825
1826	err = hci_req_run(&req, abort_conn_complete);
1827	if (err && err != -ENODATA) {
1828		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
1829		return err;
1830	}
1831
1832	return 0;
1833}
1834
1835static int update_bg_scan(struct hci_request *req, unsigned long opt)
1836{
1837	hci_dev_lock(req->hdev);
1838	__hci_update_background_scan(req);
1839	hci_dev_unlock(req->hdev);
1840	return 0;
1841}
1842
1843static void bg_scan_update(struct work_struct *work)
1844{
1845	struct hci_dev *hdev = container_of(work, struct hci_dev,
1846					    bg_scan_update);
1847	struct hci_conn *conn;
1848	u8 status;
1849	int err;
1850
1851	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1852	if (!err)
1853		return;
1854
1855	hci_dev_lock(hdev);
1856
1857	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1858	if (conn)
1859		hci_le_conn_failed(conn, status);
1860
1861	hci_dev_unlock(hdev);
1862}
1863
1864static int le_scan_disable(struct hci_request *req, unsigned long opt)
1865{
1866	hci_req_add_le_scan_disable(req);
1867	return 0;
1868}
1869
1870static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1871{
1872	u8 length = opt;
1873	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1874	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1875	struct hci_cp_inquiry cp;
1876
1877	BT_DBG("%s", req->hdev->name);
1878
1879	hci_dev_lock(req->hdev);
1880	hci_inquiry_cache_flush(req->hdev);
1881	hci_dev_unlock(req->hdev);
1882
1883	memset(&cp, 0, sizeof(cp));
1884
1885	if (req->hdev->discovery.limited)
1886		memcpy(&cp.lap, liac, sizeof(cp.lap));
1887	else
1888		memcpy(&cp.lap, giac, sizeof(cp.lap));
1889
1890	cp.length = length;
1891
1892	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1893
1894	return 0;
1895}
1896
1897static void le_scan_disable_work(struct work_struct *work)
1898{
1899	struct hci_dev *hdev = container_of(work, struct hci_dev,
1900					    le_scan_disable.work);
1901	u8 status;
1902
1903	BT_DBG("%s", hdev->name);
1904
1905	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1906		return;
1907
1908	cancel_delayed_work(&hdev->le_scan_restart);
1909
1910	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1911	if (status) {
1912		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
1913			   status);
1914		return;
1915	}
1916
1917	hdev->discovery.scan_start = 0;
1918
1919	/* If we were running LE only scan, change discovery state. If
1920	 * we were running both LE and BR/EDR inquiry simultaneously,
1921	 * and BR/EDR inquiry is already finished, stop discovery,
1922	 * otherwise BR/EDR inquiry will stop discovery when finished.
1923	 * If we will resolve remote device name, do not change
1924	 * discovery state.
1925	 */
1926
1927	if (hdev->discovery.type == DISCOV_TYPE_LE)
1928		goto discov_stopped;
1929
1930	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1931		return;
1932
1933	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1934		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1935		    hdev->discovery.state != DISCOVERY_RESOLVING)
1936			goto discov_stopped;
1937
1938		return;
1939	}
1940
1941	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1942		     HCI_CMD_TIMEOUT, &status);
1943	if (status) {
1944		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
1945		goto discov_stopped;
1946	}
1947
1948	return;
1949
1950discov_stopped:
1951	hci_dev_lock(hdev);
1952	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1953	hci_dev_unlock(hdev);
1954}
1955
1956static int le_scan_restart(struct hci_request *req, unsigned long opt)
1957{
1958	struct hci_dev *hdev = req->hdev;
1959	struct hci_cp_le_set_scan_enable cp;
1960
1961	/* If controller is not scanning we are done. */
1962	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1963		return 0;
1964
1965	hci_req_add_le_scan_disable(req);
1966
1967	memset(&cp, 0, sizeof(cp));
1968	cp.enable = LE_SCAN_ENABLE;
1969	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1970	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1971
1972	return 0;
1973}
1974
1975static void le_scan_restart_work(struct work_struct *work)
1976{
1977	struct hci_dev *hdev = container_of(work, struct hci_dev,
1978					    le_scan_restart.work);
1979	unsigned long timeout, duration, scan_start, now;
1980	u8 status;
1981
1982	BT_DBG("%s", hdev->name);
1983
1984	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1985	if (status) {
1986		bt_dev_err(hdev, "failed to restart LE scan: status %d",
1987			   status);
1988		return;
1989	}
1990
1991	hci_dev_lock(hdev);
1992
1993	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1994	    !hdev->discovery.scan_start)
1995		goto unlock;
1996
1997	/* When the scan was started, hdev->le_scan_disable has been queued
1998	 * after duration from scan_start. During scan restart this job
1999	 * has been canceled, and we need to queue it again after proper
2000	 * timeout, to make sure that scan does not run indefinitely.
2001	 */
2002	duration = hdev->discovery.scan_duration;
2003	scan_start = hdev->discovery.scan_start;
2004	now = jiffies;
2005	if (now - scan_start <= duration) {
2006		int elapsed;
2007
2008		if (now >= scan_start)
2009			elapsed = now - scan_start;
2010		else
2011			elapsed = ULONG_MAX - scan_start + now;
2012
2013		timeout = duration - elapsed;
2014	} else {
2015		timeout = 0;
2016	}
2017
2018	queue_delayed_work(hdev->req_workqueue,
2019			   &hdev->le_scan_disable, timeout);
2020
2021unlock:
2022	hci_dev_unlock(hdev);
2023}
2024
2025static int active_scan(struct hci_request *req, unsigned long opt)
2026{
2027	uint16_t interval = opt;
2028	struct hci_dev *hdev = req->hdev;
2029	struct hci_cp_le_set_scan_param param_cp;
2030	struct hci_cp_le_set_scan_enable enable_cp;
2031	u8 own_addr_type;
2032	int err;
2033
2034	BT_DBG("%s", hdev->name);
2035
2036	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2037		hci_dev_lock(hdev);
2038
2039		/* Don't let discovery abort an outgoing connection attempt
2040		 * that's using directed advertising.
2041		 */
2042		if (hci_lookup_le_connect(hdev)) {
2043			hci_dev_unlock(hdev);
2044			return -EBUSY;
2045		}
2046
2047		cancel_adv_timeout(hdev);
2048		hci_dev_unlock(hdev);
2049
2050		__hci_req_disable_advertising(req);
2051	}
2052
2053	/* If controller is scanning, it means the background scanning is
2054	 * running. Thus, we should temporarily stop it in order to set the
2055	 * discovery scanning parameters.
2056	 */
2057	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2058		hci_req_add_le_scan_disable(req);
2059
2060	/* All active scans will be done with either a resolvable private
2061	 * address (when privacy feature has been enabled) or non-resolvable
2062	 * private address.
2063	 */
2064	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2065					&own_addr_type);
2066	if (err < 0)
2067		own_addr_type = ADDR_LE_DEV_PUBLIC;
2068
2069	memset(&param_cp, 0, sizeof(param_cp));
2070	param_cp.type = LE_SCAN_ACTIVE;
2071	param_cp.interval = cpu_to_le16(interval);
2072	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2073	param_cp.own_address_type = own_addr_type;
2074
2075	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2076		    &param_cp);
2077
2078	memset(&enable_cp, 0, sizeof(enable_cp));
2079	enable_cp.enable = LE_SCAN_ENABLE;
2080	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2081
2082	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2083		    &enable_cp);
2084
2085	return 0;
2086}
2087
2088static int interleaved_discov(struct hci_request *req, unsigned long opt)
2089{
2090	int err;
2091
2092	BT_DBG("%s", req->hdev->name);
2093
2094	err = active_scan(req, opt);
2095	if (err)
2096		return err;
2097
2098	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2099}
2100
2101static void start_discovery(struct hci_dev *hdev, u8 *status)
2102{
2103	unsigned long timeout;
2104
2105	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2106
2107	switch (hdev->discovery.type) {
2108	case DISCOV_TYPE_BREDR:
2109		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2110			hci_req_sync(hdev, bredr_inquiry,
2111				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2112				     status);
2113		return;
2114	case DISCOV_TYPE_INTERLEAVED:
2115		/* When running simultaneous discovery, the LE scanning time
2116		 * should occupy the whole discovery time sine BR/EDR inquiry
2117		 * and LE scanning are scheduled by the controller.
2118		 *
2119		 * For interleaving discovery in comparison, BR/EDR inquiry
2120		 * and LE scanning are done sequentially with separate
2121		 * timeouts.
2122		 */
2123		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2124			     &hdev->quirks)) {
2125			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2126			/* During simultaneous discovery, we double LE scan
2127			 * interval. We must leave some time for the controller
2128			 * to do BR/EDR inquiry.
2129			 */
2130			hci_req_sync(hdev, interleaved_discov,
2131				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2132				     status);
2133			break;
2134		}
2135
2136		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2137		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2138			     HCI_CMD_TIMEOUT, status);
2139		break;
2140	case DISCOV_TYPE_LE:
2141		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2142		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2143			     HCI_CMD_TIMEOUT, status);
2144		break;
2145	default:
2146		*status = HCI_ERROR_UNSPECIFIED;
2147		return;
2148	}
2149
2150	if (*status)
2151		return;
2152
2153	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2154
2155	/* When service discovery is used and the controller has a
2156	 * strict duplicate filter, it is important to remember the
2157	 * start and duration of the scan. This is required for
2158	 * restarting scanning during the discovery phase.
2159	 */
2160	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2161		     hdev->discovery.result_filtering) {
2162		hdev->discovery.scan_start = jiffies;
2163		hdev->discovery.scan_duration = timeout;
2164	}
2165
2166	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2167			   timeout);
2168}
2169
2170bool hci_req_stop_discovery(struct hci_request *req)
2171{
2172	struct hci_dev *hdev = req->hdev;
2173	struct discovery_state *d = &hdev->discovery;
2174	struct hci_cp_remote_name_req_cancel cp;
2175	struct inquiry_entry *e;
2176	bool ret = false;
2177
2178	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2179
2180	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2181		if (test_bit(HCI_INQUIRY, &hdev->flags))
2182			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2183
2184		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2185			cancel_delayed_work(&hdev->le_scan_disable);
2186			hci_req_add_le_scan_disable(req);
2187		}
2188
2189		ret = true;
2190	} else {
2191		/* Passive scanning */
2192		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2193			hci_req_add_le_scan_disable(req);
2194			ret = true;
2195		}
2196	}
2197
2198	/* No further actions needed for LE-only discovery */
2199	if (d->type == DISCOV_TYPE_LE)
2200		return ret;
2201
2202	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2203		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2204						     NAME_PENDING);
2205		if (!e)
2206			return ret;
2207
2208		bacpy(&cp.bdaddr, &e->data.bdaddr);
2209		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2210			    &cp);
2211		ret = true;
2212	}
2213
2214	return ret;
2215}
2216
2217static int stop_discovery(struct hci_request *req, unsigned long opt)
2218{
2219	hci_dev_lock(req->hdev);
2220	hci_req_stop_discovery(req);
2221	hci_dev_unlock(req->hdev);
2222
2223	return 0;
2224}
2225
2226static void discov_update(struct work_struct *work)
2227{
2228	struct hci_dev *hdev = container_of(work, struct hci_dev,
2229					    discov_update);
2230	u8 status = 0;
2231
2232	switch (hdev->discovery.state) {
2233	case DISCOVERY_STARTING:
2234		start_discovery(hdev, &status);
2235		mgmt_start_discovery_complete(hdev, status);
2236		if (status)
2237			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2238		else
2239			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2240		break;
2241	case DISCOVERY_STOPPING:
2242		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2243		mgmt_stop_discovery_complete(hdev, status);
2244		if (!status)
2245			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2246		break;
2247	case DISCOVERY_STOPPED:
2248	default:
2249		return;
2250	}
2251}
2252
2253static void discov_off(struct work_struct *work)
2254{
2255	struct hci_dev *hdev = container_of(work, struct hci_dev,
2256					    discov_off.work);
2257
2258	BT_DBG("%s", hdev->name);
2259
2260	hci_dev_lock(hdev);
2261
2262	/* When discoverable timeout triggers, then just make sure
2263	 * the limited discoverable flag is cleared. Even in the case
2264	 * of a timeout triggered from general discoverable, it is
2265	 * safe to unconditionally clear the flag.
2266	 */
2267	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2268	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2269	hdev->discov_timeout = 0;
2270
2271	hci_dev_unlock(hdev);
2272
2273	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2274	mgmt_new_settings(hdev);
2275}
2276
2277static int powered_update_hci(struct hci_request *req, unsigned long opt)
2278{
2279	struct hci_dev *hdev = req->hdev;
2280	u8 link_sec;
2281
2282	hci_dev_lock(hdev);
2283
2284	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2285	    !lmp_host_ssp_capable(hdev)) {
2286		u8 mode = 0x01;
2287
2288		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2289
2290		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2291			u8 support = 0x01;
2292
2293			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2294				    sizeof(support), &support);
2295		}
2296	}
2297
2298	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2299	    lmp_bredr_capable(hdev)) {
2300		struct hci_cp_write_le_host_supported cp;
2301
2302		cp.le = 0x01;
2303		cp.simul = 0x00;
2304
2305		/* Check first if we already have the right
2306		 * host state (host features set)
2307		 */
2308		if (cp.le != lmp_host_le_capable(hdev) ||
2309		    cp.simul != lmp_host_le_br_capable(hdev))
2310			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2311				    sizeof(cp), &cp);
2312	}
2313
2314	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2315		/* Make sure the controller has a good default for
2316		 * advertising data. This also applies to the case
2317		 * where BR/EDR was toggled during the AUTO_OFF phase.
2318		 */
2319		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2320		    list_empty(&hdev->adv_instances)) {
2321			__hci_req_update_adv_data(req, 0x00);
2322			__hci_req_update_scan_rsp_data(req, 0x00);
2323
2324			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2325				__hci_req_enable_advertising(req);
2326		} else if (!list_empty(&hdev->adv_instances)) {
2327			struct adv_info *adv_instance;
2328
2329			adv_instance = list_first_entry(&hdev->adv_instances,
2330							struct adv_info, list);
2331			__hci_req_schedule_adv_instance(req,
2332							adv_instance->instance,
2333							true);
2334		}
2335	}
2336
2337	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2338	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2339		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2340			    sizeof(link_sec), &link_sec);
2341
2342	if (lmp_bredr_capable(hdev)) {
2343		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2344			__hci_req_write_fast_connectable(req, true);
2345		else
2346			__hci_req_write_fast_connectable(req, false);
2347		__hci_req_update_scan(req);
2348		__hci_req_update_class(req);
2349		__hci_req_update_name(req);
2350		__hci_req_update_eir(req);
2351	}
2352
2353	hci_dev_unlock(hdev);
2354	return 0;
2355}
2356
2357int __hci_req_hci_power_on(struct hci_dev *hdev)
2358{
2359	/* Register the available SMP channels (BR/EDR and LE) only when
2360	 * successfully powering on the controller. This late
2361	 * registration is required so that LE SMP can clearly decide if
2362	 * the public address or static address is used.
2363	 */
2364	smp_register(hdev);
2365
2366	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2367			      NULL);
2368}
2369
2370void hci_request_setup(struct hci_dev *hdev)
2371{
2372	INIT_WORK(&hdev->discov_update, discov_update);
2373	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2374	INIT_WORK(&hdev->scan_update, scan_update_work);
2375	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2376	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2377	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2378	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2379	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2380	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2381}
2382
2383void hci_request_cancel_all(struct hci_dev *hdev)
2384{
2385	hci_req_sync_cancel(hdev, ENODEV);
2386
2387	cancel_work_sync(&hdev->discov_update);
2388	cancel_work_sync(&hdev->bg_scan_update);
2389	cancel_work_sync(&hdev->scan_update);
2390	cancel_work_sync(&hdev->connectable_update);
2391	cancel_work_sync(&hdev->discoverable_update);
2392	cancel_delayed_work_sync(&hdev->discov_off);
2393	cancel_delayed_work_sync(&hdev->le_scan_disable);
2394	cancel_delayed_work_sync(&hdev->le_scan_restart);
2395
2396	if (hdev->adv_instance_timeout) {
2397		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2398		hdev->adv_instance_timeout = 0;
2399	}
2400}