Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <net/bluetooth/bluetooth.h>
  25#include <net/bluetooth/hci_core.h>
  26#include <net/bluetooth/mgmt.h>
  27
  28#include "smp.h"
  29#include "hci_request.h"
  30
  31#define HCI_REQ_DONE	  0
  32#define HCI_REQ_PEND	  1
  33#define HCI_REQ_CANCELED  2
  34
  35void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  36{
  37	skb_queue_head_init(&req->cmd_q);
  38	req->hdev = hdev;
  39	req->err = 0;
  40}
  41
  42static int req_run(struct hci_request *req, hci_req_complete_t complete,
  43		   hci_req_complete_skb_t complete_skb)
  44{
  45	struct hci_dev *hdev = req->hdev;
  46	struct sk_buff *skb;
  47	unsigned long flags;
  48
  49	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  50
  51	/* If an error occurred during request building, remove all HCI
  52	 * commands queued on the HCI request queue.
  53	 */
  54	if (req->err) {
  55		skb_queue_purge(&req->cmd_q);
  56		return req->err;
  57	}
  58
  59	/* Do not allow empty requests */
  60	if (skb_queue_empty(&req->cmd_q))
  61		return -ENODATA;
  62
  63	skb = skb_peek_tail(&req->cmd_q);
  64	if (complete) {
  65		bt_cb(skb)->hci.req_complete = complete;
  66	} else if (complete_skb) {
  67		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  68		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  69	}
  70
  71	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  72	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  73	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  74
  75	queue_work(hdev->workqueue, &hdev->cmd_work);
  76
  77	return 0;
  78}
  79
  80int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  81{
  82	return req_run(req, complete, NULL);
  83}
  84
  85int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  86{
  87	return req_run(req, NULL, complete);
  88}
  89
  90static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  91				  struct sk_buff *skb)
  92{
  93	BT_DBG("%s result 0x%2.2x", hdev->name, result);
  94
  95	if (hdev->req_status == HCI_REQ_PEND) {
  96		hdev->req_result = result;
  97		hdev->req_status = HCI_REQ_DONE;
  98		if (skb)
  99			hdev->req_skb = skb_get(skb);
 100		wake_up_interruptible(&hdev->req_wait_q);
 101	}
 102}
 103
 104void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 105{
 106	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 107
 108	if (hdev->req_status == HCI_REQ_PEND) {
 109		hdev->req_result = err;
 110		hdev->req_status = HCI_REQ_CANCELED;
 111		wake_up_interruptible(&hdev->req_wait_q);
 112	}
 113}
 114
 115struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 116				  const void *param, u8 event, u32 timeout)
 117{
 118	DECLARE_WAITQUEUE(wait, current);
 119	struct hci_request req;
 120	struct sk_buff *skb;
 121	int err = 0;
 122
 123	BT_DBG("%s", hdev->name);
 124
 125	hci_req_init(&req, hdev);
 126
 127	hci_req_add_ev(&req, opcode, plen, param, event);
 128
 129	hdev->req_status = HCI_REQ_PEND;
 130
 131	add_wait_queue(&hdev->req_wait_q, &wait);
 132	set_current_state(TASK_INTERRUPTIBLE);
 133
 134	err = hci_req_run_skb(&req, hci_req_sync_complete);
 135	if (err < 0) {
 136		remove_wait_queue(&hdev->req_wait_q, &wait);
 137		set_current_state(TASK_RUNNING);
 138		return ERR_PTR(err);
 139	}
 140
 141	schedule_timeout(timeout);
 142
 143	remove_wait_queue(&hdev->req_wait_q, &wait);
 144
 145	if (signal_pending(current))
 146		return ERR_PTR(-EINTR);
 147
 148	switch (hdev->req_status) {
 149	case HCI_REQ_DONE:
 150		err = -bt_to_errno(hdev->req_result);
 151		break;
 152
 153	case HCI_REQ_CANCELED:
 154		err = -hdev->req_result;
 155		break;
 156
 157	default:
 158		err = -ETIMEDOUT;
 159		break;
 160	}
 161
 162	hdev->req_status = hdev->req_result = 0;
 163	skb = hdev->req_skb;
 164	hdev->req_skb = NULL;
 165
 166	BT_DBG("%s end: err %d", hdev->name, err);
 167
 168	if (err < 0) {
 169		kfree_skb(skb);
 170		return ERR_PTR(err);
 171	}
 172
 173	if (!skb)
 174		return ERR_PTR(-ENODATA);
 175
 176	return skb;
 177}
 178EXPORT_SYMBOL(__hci_cmd_sync_ev);
 179
 180struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 181			       const void *param, u32 timeout)
 182{
 183	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 184}
 185EXPORT_SYMBOL(__hci_cmd_sync);
 186
 187/* Execute request and wait for completion. */
 188int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 189						     unsigned long opt),
 190		   unsigned long opt, u32 timeout, u8 *hci_status)
 191{
 192	struct hci_request req;
 193	DECLARE_WAITQUEUE(wait, current);
 194	int err = 0;
 195
 196	BT_DBG("%s start", hdev->name);
 197
 198	hci_req_init(&req, hdev);
 199
 200	hdev->req_status = HCI_REQ_PEND;
 201
 202	err = func(&req, opt);
 203	if (err) {
 204		if (hci_status)
 205			*hci_status = HCI_ERROR_UNSPECIFIED;
 206		return err;
 207	}
 208
 209	add_wait_queue(&hdev->req_wait_q, &wait);
 210	set_current_state(TASK_INTERRUPTIBLE);
 211
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 216		remove_wait_queue(&hdev->req_wait_q, &wait);
 217		set_current_state(TASK_RUNNING);
 218
 219		/* ENODATA means the HCI request command queue is empty.
 220		 * This can happen when a request with conditionals doesn't
 221		 * trigger any commands to be sent. This is normal behavior
 222		 * and should not trigger an error return.
 223		 */
 224		if (err == -ENODATA) {
 225			if (hci_status)
 226				*hci_status = 0;
 227			return 0;
 228		}
 229
 230		if (hci_status)
 231			*hci_status = HCI_ERROR_UNSPECIFIED;
 232
 233		return err;
 234	}
 235
 236	schedule_timeout(timeout);
 237
 238	remove_wait_queue(&hdev->req_wait_q, &wait);
 239
 240	if (signal_pending(current))
 241		return -EINTR;
 242
 243	switch (hdev->req_status) {
 244	case HCI_REQ_DONE:
 245		err = -bt_to_errno(hdev->req_result);
 246		if (hci_status)
 247			*hci_status = hdev->req_result;
 248		break;
 249
 250	case HCI_REQ_CANCELED:
 251		err = -hdev->req_result;
 252		if (hci_status)
 253			*hci_status = HCI_ERROR_UNSPECIFIED;
 254		break;
 255
 256	default:
 257		err = -ETIMEDOUT;
 258		if (hci_status)
 259			*hci_status = HCI_ERROR_UNSPECIFIED;
 260		break;
 261	}
 262
 263	kfree_skb(hdev->req_skb);
 264	hdev->req_skb = NULL;
 265	hdev->req_status = hdev->req_result = 0;
 266
 267	BT_DBG("%s end: err %d", hdev->name, err);
 268
 269	return err;
 270}
 271
 272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 273						  unsigned long opt),
 274		 unsigned long opt, u32 timeout, u8 *hci_status)
 275{
 276	int ret;
 277
 278	if (!test_bit(HCI_UP, &hdev->flags))
 279		return -ENETDOWN;
 280
 281	/* Serialize all requests */
 282	hci_req_sync_lock(hdev);
 283	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 284	hci_req_sync_unlock(hdev);
 285
 286	return ret;
 287}
 288
 289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 290				const void *param)
 291{
 292	int len = HCI_COMMAND_HDR_SIZE + plen;
 293	struct hci_command_hdr *hdr;
 294	struct sk_buff *skb;
 295
 296	skb = bt_skb_alloc(len, GFP_ATOMIC);
 297	if (!skb)
 298		return NULL;
 299
 300	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
 301	hdr->opcode = cpu_to_le16(opcode);
 302	hdr->plen   = plen;
 303
 304	if (plen)
 305		memcpy(skb_put(skb, plen), param, plen);
 306
 307	BT_DBG("skb len %d", skb->len);
 308
 309	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 310	hci_skb_opcode(skb) = opcode;
 311
 312	return skb;
 313}
 314
 315/* Queue a command to an asynchronous HCI request */
 316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 317		    const void *param, u8 event)
 318{
 319	struct hci_dev *hdev = req->hdev;
 320	struct sk_buff *skb;
 321
 322	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 323
 324	/* If an error occurred during request building, there is no point in
 325	 * queueing the HCI command. We can simply return.
 326	 */
 327	if (req->err)
 328		return;
 329
 330	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 331	if (!skb) {
 332		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
 333		       hdev->name, opcode);
 334		req->err = -ENOMEM;
 335		return;
 336	}
 337
 338	if (skb_queue_empty(&req->cmd_q))
 339		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 340
 341	bt_cb(skb)->hci.req_event = event;
 342
 343	skb_queue_tail(&req->cmd_q, skb);
 344}
 345
 346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 347		 const void *param)
 348{
 349	hci_req_add_ev(req, opcode, plen, param, 0);
 350}
 351
 352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 353{
 354	struct hci_dev *hdev = req->hdev;
 355	struct hci_cp_write_page_scan_activity acp;
 356	u8 type;
 357
 358	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 359		return;
 360
 361	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 362		return;
 363
 364	if (enable) {
 365		type = PAGE_SCAN_TYPE_INTERLACED;
 366
 367		/* 160 msec page scan interval */
 368		acp.interval = cpu_to_le16(0x0100);
 369	} else {
 370		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 371
 372		/* default 1.28 sec page scan */
 373		acp.interval = cpu_to_le16(0x0800);
 374	}
 375
 376	acp.window = cpu_to_le16(0x0012);
 377
 378	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 379	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 381			    sizeof(acp), &acp);
 382
 383	if (hdev->page_scan_type != type)
 384		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 385}
 386
 387/* This function controls the background scanning based on hdev->pend_le_conns
 388 * list. If there are pending LE connection we start the background scanning,
 389 * otherwise we stop it.
 390 *
 391 * This function requires the caller holds hdev->lock.
 392 */
 393static void __hci_update_background_scan(struct hci_request *req)
 394{
 395	struct hci_dev *hdev = req->hdev;
 396
 397	if (!test_bit(HCI_UP, &hdev->flags) ||
 398	    test_bit(HCI_INIT, &hdev->flags) ||
 399	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 400	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 401	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 402	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 403		return;
 404
 405	/* No point in doing scanning if LE support hasn't been enabled */
 406	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 407		return;
 408
 409	/* If discovery is active don't interfere with it */
 410	if (hdev->discovery.state != DISCOVERY_STOPPED)
 411		return;
 412
 413	/* Reset RSSI and UUID filters when starting background scanning
 414	 * since these filters are meant for service discovery only.
 415	 *
 416	 * The Start Discovery and Start Service Discovery operations
 417	 * ensure to set proper values for RSSI threshold and UUID
 418	 * filter list. So it is safe to just reset them here.
 419	 */
 420	hci_discovery_filter_clear(hdev);
 421
 422	if (list_empty(&hdev->pend_le_conns) &&
 423	    list_empty(&hdev->pend_le_reports)) {
 424		/* If there is no pending LE connections or devices
 425		 * to be scanned for, we should stop the background
 426		 * scanning.
 427		 */
 428
 429		/* If controller is not scanning we are done. */
 430		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 431			return;
 432
 433		hci_req_add_le_scan_disable(req);
 434
 435		BT_DBG("%s stopping background scanning", hdev->name);
 436	} else {
 437		/* If there is at least one pending LE connection, we should
 438		 * keep the background scan running.
 439		 */
 440
 441		/* If controller is connecting, we should not start scanning
 442		 * since some controllers are not able to scan and connect at
 443		 * the same time.
 444		 */
 445		if (hci_lookup_le_connect(hdev))
 446			return;
 447
 448		/* If controller is currently scanning, we stop it to ensure we
 449		 * don't miss any advertising (due to duplicates filter).
 450		 */
 451		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 452			hci_req_add_le_scan_disable(req);
 453
 454		hci_req_add_le_passive_scan(req);
 455
 456		BT_DBG("%s starting background scanning", hdev->name);
 457	}
 458}
 459
 460void __hci_req_update_name(struct hci_request *req)
 461{
 462	struct hci_dev *hdev = req->hdev;
 463	struct hci_cp_write_local_name cp;
 464
 465	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 466
 467	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 468}
 469
 470#define PNP_INFO_SVCLASS_ID		0x1200
 471
 472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 473{
 474	u8 *ptr = data, *uuids_start = NULL;
 475	struct bt_uuid *uuid;
 476
 477	if (len < 4)
 478		return ptr;
 479
 480	list_for_each_entry(uuid, &hdev->uuids, list) {
 481		u16 uuid16;
 482
 483		if (uuid->size != 16)
 484			continue;
 485
 486		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 487		if (uuid16 < 0x1100)
 488			continue;
 489
 490		if (uuid16 == PNP_INFO_SVCLASS_ID)
 491			continue;
 492
 493		if (!uuids_start) {
 494			uuids_start = ptr;
 495			uuids_start[0] = 1;
 496			uuids_start[1] = EIR_UUID16_ALL;
 497			ptr += 2;
 498		}
 499
 500		/* Stop if not enough space to put next UUID */
 501		if ((ptr - data) + sizeof(u16) > len) {
 502			uuids_start[1] = EIR_UUID16_SOME;
 503			break;
 504		}
 505
 506		*ptr++ = (uuid16 & 0x00ff);
 507		*ptr++ = (uuid16 & 0xff00) >> 8;
 508		uuids_start[0] += sizeof(uuid16);
 509	}
 510
 511	return ptr;
 512}
 513
 514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 515{
 516	u8 *ptr = data, *uuids_start = NULL;
 517	struct bt_uuid *uuid;
 518
 519	if (len < 6)
 520		return ptr;
 521
 522	list_for_each_entry(uuid, &hdev->uuids, list) {
 523		if (uuid->size != 32)
 524			continue;
 525
 526		if (!uuids_start) {
 527			uuids_start = ptr;
 528			uuids_start[0] = 1;
 529			uuids_start[1] = EIR_UUID32_ALL;
 530			ptr += 2;
 531		}
 532
 533		/* Stop if not enough space to put next UUID */
 534		if ((ptr - data) + sizeof(u32) > len) {
 535			uuids_start[1] = EIR_UUID32_SOME;
 536			break;
 537		}
 538
 539		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 540		ptr += sizeof(u32);
 541		uuids_start[0] += sizeof(u32);
 542	}
 543
 544	return ptr;
 545}
 546
 547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 548{
 549	u8 *ptr = data, *uuids_start = NULL;
 550	struct bt_uuid *uuid;
 551
 552	if (len < 18)
 553		return ptr;
 554
 555	list_for_each_entry(uuid, &hdev->uuids, list) {
 556		if (uuid->size != 128)
 557			continue;
 558
 559		if (!uuids_start) {
 560			uuids_start = ptr;
 561			uuids_start[0] = 1;
 562			uuids_start[1] = EIR_UUID128_ALL;
 563			ptr += 2;
 564		}
 565
 566		/* Stop if not enough space to put next UUID */
 567		if ((ptr - data) + 16 > len) {
 568			uuids_start[1] = EIR_UUID128_SOME;
 569			break;
 570		}
 571
 572		memcpy(ptr, uuid->uuid, 16);
 573		ptr += 16;
 574		uuids_start[0] += 16;
 575	}
 576
 577	return ptr;
 578}
 579
 580static void create_eir(struct hci_dev *hdev, u8 *data)
 581{
 582	u8 *ptr = data;
 583	size_t name_len;
 584
 585	name_len = strlen(hdev->dev_name);
 586
 587	if (name_len > 0) {
 588		/* EIR Data type */
 589		if (name_len > 48) {
 590			name_len = 48;
 591			ptr[1] = EIR_NAME_SHORT;
 592		} else
 593			ptr[1] = EIR_NAME_COMPLETE;
 594
 595		/* EIR Data length */
 596		ptr[0] = name_len + 1;
 597
 598		memcpy(ptr + 2, hdev->dev_name, name_len);
 599
 600		ptr += (name_len + 2);
 601	}
 602
 603	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 604		ptr[0] = 2;
 605		ptr[1] = EIR_TX_POWER;
 606		ptr[2] = (u8) hdev->inq_tx_power;
 607
 608		ptr += 3;
 609	}
 610
 611	if (hdev->devid_source > 0) {
 612		ptr[0] = 9;
 613		ptr[1] = EIR_DEVICE_ID;
 614
 615		put_unaligned_le16(hdev->devid_source, ptr + 2);
 616		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 617		put_unaligned_le16(hdev->devid_product, ptr + 6);
 618		put_unaligned_le16(hdev->devid_version, ptr + 8);
 619
 620		ptr += 10;
 621	}
 622
 623	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 625	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 626}
 627
 628void __hci_req_update_eir(struct hci_request *req)
 629{
 630	struct hci_dev *hdev = req->hdev;
 631	struct hci_cp_write_eir cp;
 632
 633	if (!hdev_is_powered(hdev))
 634		return;
 635
 636	if (!lmp_ext_inq_capable(hdev))
 637		return;
 638
 639	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 640		return;
 641
 642	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 643		return;
 644
 645	memset(&cp, 0, sizeof(cp));
 646
 647	create_eir(hdev, cp.data);
 648
 649	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 650		return;
 651
 652	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 653
 654	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 655}
 656
 657void hci_req_add_le_scan_disable(struct hci_request *req)
 658{
 659	struct hci_cp_le_set_scan_enable cp;
 660
 661	memset(&cp, 0, sizeof(cp));
 662	cp.enable = LE_SCAN_DISABLE;
 663	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 664}
 665
 666static void add_to_white_list(struct hci_request *req,
 667			      struct hci_conn_params *params)
 668{
 669	struct hci_cp_le_add_to_white_list cp;
 670
 671	cp.bdaddr_type = params->addr_type;
 672	bacpy(&cp.bdaddr, &params->addr);
 673
 674	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 675}
 676
 677static u8 update_white_list(struct hci_request *req)
 678{
 679	struct hci_dev *hdev = req->hdev;
 680	struct hci_conn_params *params;
 681	struct bdaddr_list *b;
 682	uint8_t white_list_entries = 0;
 683
 684	/* Go through the current white list programmed into the
 685	 * controller one by one and check if that address is still
 686	 * in the list of pending connections or list of devices to
 687	 * report. If not present in either list, then queue the
 688	 * command to remove it from the controller.
 689	 */
 690	list_for_each_entry(b, &hdev->le_white_list, list) {
 691		/* If the device is neither in pend_le_conns nor
 692		 * pend_le_reports then remove it from the whitelist.
 693		 */
 694		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 695					       &b->bdaddr, b->bdaddr_type) &&
 696		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 697					       &b->bdaddr, b->bdaddr_type)) {
 698			struct hci_cp_le_del_from_white_list cp;
 699
 700			cp.bdaddr_type = b->bdaddr_type;
 701			bacpy(&cp.bdaddr, &b->bdaddr);
 702
 703			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 704				    sizeof(cp), &cp);
 705			continue;
 706		}
 707
 708		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 709			/* White list can not be used with RPAs */
 710			return 0x00;
 711		}
 712
 713		white_list_entries++;
 714	}
 715
 716	/* Since all no longer valid white list entries have been
 717	 * removed, walk through the list of pending connections
 718	 * and ensure that any new device gets programmed into
 719	 * the controller.
 720	 *
 721	 * If the list of the devices is larger than the list of
 722	 * available white list entries in the controller, then
 723	 * just abort and return filer policy value to not use the
 724	 * white list.
 725	 */
 726	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 727		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 728					   &params->addr, params->addr_type))
 729			continue;
 730
 731		if (white_list_entries >= hdev->le_white_list_size) {
 732			/* Select filter policy to accept all advertising */
 733			return 0x00;
 734		}
 735
 736		if (hci_find_irk_by_addr(hdev, &params->addr,
 737					 params->addr_type)) {
 738			/* White list can not be used with RPAs */
 739			return 0x00;
 740		}
 741
 742		white_list_entries++;
 743		add_to_white_list(req, params);
 744	}
 745
 746	/* After adding all new pending connections, walk through
 747	 * the list of pending reports and also add these to the
 748	 * white list if there is still space.
 749	 */
 750	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 751		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 752					   &params->addr, params->addr_type))
 753			continue;
 754
 755		if (white_list_entries >= hdev->le_white_list_size) {
 756			/* Select filter policy to accept all advertising */
 757			return 0x00;
 758		}
 759
 760		if (hci_find_irk_by_addr(hdev, &params->addr,
 761					 params->addr_type)) {
 762			/* White list can not be used with RPAs */
 763			return 0x00;
 764		}
 765
 766		white_list_entries++;
 767		add_to_white_list(req, params);
 768	}
 769
 770	/* Select filter policy to use white list */
 771	return 0x01;
 772}
 773
 774static bool scan_use_rpa(struct hci_dev *hdev)
 775{
 776	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 777}
 778
 779void hci_req_add_le_passive_scan(struct hci_request *req)
 780{
 781	struct hci_cp_le_set_scan_param param_cp;
 782	struct hci_cp_le_set_scan_enable enable_cp;
 783	struct hci_dev *hdev = req->hdev;
 784	u8 own_addr_type;
 785	u8 filter_policy;
 786
 787	/* Set require_privacy to false since no SCAN_REQ are send
 788	 * during passive scanning. Not using an non-resolvable address
 789	 * here is important so that peer devices using direct
 790	 * advertising with our address will be correctly reported
 791	 * by the controller.
 792	 */
 793	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 794				      &own_addr_type))
 795		return;
 796
 797	/* Adding or removing entries from the white list must
 798	 * happen before enabling scanning. The controller does
 799	 * not allow white list modification while scanning.
 800	 */
 801	filter_policy = update_white_list(req);
 802
 803	/* When the controller is using random resolvable addresses and
 804	 * with that having LE privacy enabled, then controllers with
 805	 * Extended Scanner Filter Policies support can now enable support
 806	 * for handling directed advertising.
 807	 *
 808	 * So instead of using filter polices 0x00 (no whitelist)
 809	 * and 0x01 (whitelist enabled) use the new filter policies
 810	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 811	 */
 812	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 813	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 814		filter_policy |= 0x02;
 815
 816	memset(&param_cp, 0, sizeof(param_cp));
 817	param_cp.type = LE_SCAN_PASSIVE;
 818	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 819	param_cp.window = cpu_to_le16(hdev->le_scan_window);
 820	param_cp.own_address_type = own_addr_type;
 821	param_cp.filter_policy = filter_policy;
 822	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 823		    &param_cp);
 824
 825	memset(&enable_cp, 0, sizeof(enable_cp));
 826	enable_cp.enable = LE_SCAN_ENABLE;
 827	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 828	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 829		    &enable_cp);
 830}
 831
 832static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 833{
 834	u8 instance = hdev->cur_adv_instance;
 835	struct adv_info *adv_instance;
 836
 837	/* Ignore instance 0 */
 838	if (instance == 0x00)
 839		return 0;
 840
 841	adv_instance = hci_find_adv_instance(hdev, instance);
 842	if (!adv_instance)
 843		return 0;
 844
 845	/* TODO: Take into account the "appearance" and "local-name" flags here.
 846	 * These are currently being ignored as they are not supported.
 847	 */
 848	return adv_instance->scan_rsp_len;
 849}
 850
 851void __hci_req_disable_advertising(struct hci_request *req)
 852{
 853	u8 enable = 0x00;
 854
 855	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 856}
 857
 858static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 859{
 860	u32 flags;
 861	struct adv_info *adv_instance;
 862
 863	if (instance == 0x00) {
 864		/* Instance 0 always manages the "Tx Power" and "Flags"
 865		 * fields
 866		 */
 867		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 868
 869		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 870		 * corresponds to the "connectable" instance flag.
 871		 */
 872		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 873			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 874
 875		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 876			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 877		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 878			flags |= MGMT_ADV_FLAG_DISCOV;
 879
 880		return flags;
 881	}
 882
 883	adv_instance = hci_find_adv_instance(hdev, instance);
 884
 885	/* Return 0 when we got an invalid instance identifier. */
 886	if (!adv_instance)
 887		return 0;
 888
 889	return adv_instance->flags;
 890}
 891
 892static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 893{
 894	/* If privacy is not enabled don't use RPA */
 895	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 896		return false;
 897
 898	/* If basic privacy mode is enabled use RPA */
 899	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 900		return true;
 901
 902	/* If limited privacy mode is enabled don't use RPA if we're
 903	 * both discoverable and bondable.
 904	 */
 905	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 906	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 907		return false;
 908
 909	/* We're neither bondable nor discoverable in the limited
 910	 * privacy mode, therefore use RPA.
 911	 */
 912	return true;
 913}
 914
 915void __hci_req_enable_advertising(struct hci_request *req)
 916{
 917	struct hci_dev *hdev = req->hdev;
 918	struct hci_cp_le_set_adv_param cp;
 919	u8 own_addr_type, enable = 0x01;
 920	bool connectable;
 921	u32 flags;
 922
 923	if (hci_conn_num(hdev, LE_LINK) > 0)
 924		return;
 925
 926	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 927		__hci_req_disable_advertising(req);
 928
 929	/* Clear the HCI_LE_ADV bit temporarily so that the
 930	 * hci_update_random_address knows that it's safe to go ahead
 931	 * and write a new random address. The flag will be set back on
 932	 * as soon as the SET_ADV_ENABLE HCI command completes.
 933	 */
 934	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 935
 936	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 937
 938	/* If the "connectable" instance flag was not set, then choose between
 939	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 940	 */
 941	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 942		      mgmt_get_connectable(hdev);
 943
 944	/* Set require_privacy to true only when non-connectable
 945	 * advertising is used. In that case it is fine to use a
 946	 * non-resolvable private address.
 947	 */
 948	if (hci_update_random_address(req, !connectable,
 949				      adv_use_rpa(hdev, flags),
 950				      &own_addr_type) < 0)
 951		return;
 952
 953	memset(&cp, 0, sizeof(cp));
 954	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 955	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
 956
 957	if (connectable)
 958		cp.type = LE_ADV_IND;
 959	else if (get_cur_adv_instance_scan_rsp_len(hdev))
 960		cp.type = LE_ADV_SCAN_IND;
 961	else
 962		cp.type = LE_ADV_NONCONN_IND;
 963
 964	cp.own_address_type = own_addr_type;
 965	cp.channel_map = hdev->le_adv_channel_map;
 966
 967	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
 968
 969	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 970}
 971
 972u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
 973{
 974	size_t short_len;
 975	size_t complete_len;
 976
 977	/* no space left for name (+ NULL + type + len) */
 978	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
 979		return ad_len;
 980
 981	/* use complete name if present and fits */
 982	complete_len = strlen(hdev->dev_name);
 983	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
 984		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
 985				       hdev->dev_name, complete_len + 1);
 986
 987	/* use short name if present */
 988	short_len = strlen(hdev->short_name);
 989	if (short_len)
 990		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
 991				       hdev->short_name, short_len + 1);
 992
 993	/* use shortened full name if present, we already know that name
 994	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
 995	 */
 996	if (complete_len) {
 997		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
 998
 999		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1000		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1001
1002		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1003				       sizeof(name));
1004	}
1005
1006	return ad_len;
1007}
1008
1009static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1010{
1011	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1012}
1013
1014static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1015{
1016	u8 scan_rsp_len = 0;
1017
1018	if (hdev->appearance) {
1019		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1020	}
1021
1022	return append_local_name(hdev, ptr, scan_rsp_len);
1023}
1024
1025static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1026					u8 *ptr)
1027{
1028	struct adv_info *adv_instance;
1029	u32 instance_flags;
1030	u8 scan_rsp_len = 0;
1031
1032	adv_instance = hci_find_adv_instance(hdev, instance);
1033	if (!adv_instance)
1034		return 0;
1035
1036	instance_flags = adv_instance->flags;
1037
1038	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1039		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1040	}
1041
1042	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1043	       adv_instance->scan_rsp_len);
1044
1045	scan_rsp_len += adv_instance->scan_rsp_len;
1046
1047	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1048		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1049
1050	return scan_rsp_len;
1051}
1052
1053void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1054{
1055	struct hci_dev *hdev = req->hdev;
1056	struct hci_cp_le_set_scan_rsp_data cp;
1057	u8 len;
1058
1059	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1060		return;
1061
1062	memset(&cp, 0, sizeof(cp));
1063
1064	if (instance)
1065		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1066	else
1067		len = create_default_scan_rsp_data(hdev, cp.data);
1068
1069	if (hdev->scan_rsp_data_len == len &&
1070	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1071		return;
1072
1073	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1074	hdev->scan_rsp_data_len = len;
1075
1076	cp.length = len;
1077
1078	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1079}
1080
1081static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1082{
1083	struct adv_info *adv_instance = NULL;
1084	u8 ad_len = 0, flags = 0;
1085	u32 instance_flags;
1086
1087	/* Return 0 when the current instance identifier is invalid. */
1088	if (instance) {
1089		adv_instance = hci_find_adv_instance(hdev, instance);
1090		if (!adv_instance)
1091			return 0;
1092	}
1093
1094	instance_flags = get_adv_instance_flags(hdev, instance);
1095
1096	/* The Add Advertising command allows userspace to set both the general
1097	 * and limited discoverable flags.
1098	 */
1099	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1100		flags |= LE_AD_GENERAL;
1101
1102	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1103		flags |= LE_AD_LIMITED;
1104
1105	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1106		flags |= LE_AD_NO_BREDR;
1107
1108	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1109		/* If a discovery flag wasn't provided, simply use the global
1110		 * settings.
1111		 */
1112		if (!flags)
1113			flags |= mgmt_get_adv_discov_flags(hdev);
1114
1115		/* If flags would still be empty, then there is no need to
1116		 * include the "Flags" AD field".
1117		 */
1118		if (flags) {
1119			ptr[0] = 0x02;
1120			ptr[1] = EIR_FLAGS;
1121			ptr[2] = flags;
1122
1123			ad_len += 3;
1124			ptr += 3;
1125		}
1126	}
1127
1128	if (adv_instance) {
1129		memcpy(ptr, adv_instance->adv_data,
1130		       adv_instance->adv_data_len);
1131		ad_len += adv_instance->adv_data_len;
1132		ptr += adv_instance->adv_data_len;
1133	}
1134
1135	/* Provide Tx Power only if we can provide a valid value for it */
1136	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1137	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1138		ptr[0] = 0x02;
1139		ptr[1] = EIR_TX_POWER;
1140		ptr[2] = (u8)hdev->adv_tx_power;
1141
1142		ad_len += 3;
1143		ptr += 3;
1144	}
1145
1146	return ad_len;
1147}
1148
1149void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1150{
1151	struct hci_dev *hdev = req->hdev;
1152	struct hci_cp_le_set_adv_data cp;
1153	u8 len;
1154
1155	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1156		return;
1157
1158	memset(&cp, 0, sizeof(cp));
1159
1160	len = create_instance_adv_data(hdev, instance, cp.data);
1161
1162	/* There's nothing to do if the data hasn't changed */
1163	if (hdev->adv_data_len == len &&
1164	    memcmp(cp.data, hdev->adv_data, len) == 0)
1165		return;
1166
1167	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1168	hdev->adv_data_len = len;
1169
1170	cp.length = len;
1171
1172	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1173}
1174
1175int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1176{
1177	struct hci_request req;
1178
1179	hci_req_init(&req, hdev);
1180	__hci_req_update_adv_data(&req, instance);
1181
1182	return hci_req_run(&req, NULL);
1183}
1184
1185static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1186{
1187	BT_DBG("%s status %u", hdev->name, status);
1188}
1189
1190void hci_req_reenable_advertising(struct hci_dev *hdev)
1191{
1192	struct hci_request req;
1193
1194	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1195	    list_empty(&hdev->adv_instances))
1196		return;
1197
1198	hci_req_init(&req, hdev);
1199
1200	if (hdev->cur_adv_instance) {
1201		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1202						true);
1203	} else {
1204		__hci_req_update_adv_data(&req, 0x00);
1205		__hci_req_update_scan_rsp_data(&req, 0x00);
1206		__hci_req_enable_advertising(&req);
1207	}
1208
1209	hci_req_run(&req, adv_enable_complete);
1210}
1211
1212static void adv_timeout_expire(struct work_struct *work)
1213{
1214	struct hci_dev *hdev = container_of(work, struct hci_dev,
1215					    adv_instance_expire.work);
1216
1217	struct hci_request req;
1218	u8 instance;
1219
1220	BT_DBG("%s", hdev->name);
1221
1222	hci_dev_lock(hdev);
1223
1224	hdev->adv_instance_timeout = 0;
1225
1226	instance = hdev->cur_adv_instance;
1227	if (instance == 0x00)
1228		goto unlock;
1229
1230	hci_req_init(&req, hdev);
1231
1232	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1233
1234	if (list_empty(&hdev->adv_instances))
1235		__hci_req_disable_advertising(&req);
1236
1237	hci_req_run(&req, NULL);
1238
1239unlock:
1240	hci_dev_unlock(hdev);
1241}
1242
1243int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1244				    bool force)
1245{
1246	struct hci_dev *hdev = req->hdev;
1247	struct adv_info *adv_instance = NULL;
1248	u16 timeout;
1249
1250	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1251	    list_empty(&hdev->adv_instances))
1252		return -EPERM;
1253
1254	if (hdev->adv_instance_timeout)
1255		return -EBUSY;
1256
1257	adv_instance = hci_find_adv_instance(hdev, instance);
1258	if (!adv_instance)
1259		return -ENOENT;
1260
1261	/* A zero timeout means unlimited advertising. As long as there is
1262	 * only one instance, duration should be ignored. We still set a timeout
1263	 * in case further instances are being added later on.
1264	 *
1265	 * If the remaining lifetime of the instance is more than the duration
1266	 * then the timeout corresponds to the duration, otherwise it will be
1267	 * reduced to the remaining instance lifetime.
1268	 */
1269	if (adv_instance->timeout == 0 ||
1270	    adv_instance->duration <= adv_instance->remaining_time)
1271		timeout = adv_instance->duration;
1272	else
1273		timeout = adv_instance->remaining_time;
1274
1275	/* The remaining time is being reduced unless the instance is being
1276	 * advertised without time limit.
1277	 */
1278	if (adv_instance->timeout)
1279		adv_instance->remaining_time =
1280				adv_instance->remaining_time - timeout;
1281
1282	hdev->adv_instance_timeout = timeout;
1283	queue_delayed_work(hdev->req_workqueue,
1284			   &hdev->adv_instance_expire,
1285			   msecs_to_jiffies(timeout * 1000));
1286
1287	/* If we're just re-scheduling the same instance again then do not
1288	 * execute any HCI commands. This happens when a single instance is
1289	 * being advertised.
1290	 */
1291	if (!force && hdev->cur_adv_instance == instance &&
1292	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1293		return 0;
1294
1295	hdev->cur_adv_instance = instance;
1296	__hci_req_update_adv_data(req, instance);
1297	__hci_req_update_scan_rsp_data(req, instance);
1298	__hci_req_enable_advertising(req);
1299
1300	return 0;
1301}
1302
1303static void cancel_adv_timeout(struct hci_dev *hdev)
1304{
1305	if (hdev->adv_instance_timeout) {
1306		hdev->adv_instance_timeout = 0;
1307		cancel_delayed_work(&hdev->adv_instance_expire);
1308	}
1309}
1310
1311/* For a single instance:
1312 * - force == true: The instance will be removed even when its remaining
1313 *   lifetime is not zero.
1314 * - force == false: the instance will be deactivated but kept stored unless
1315 *   the remaining lifetime is zero.
1316 *
1317 * For instance == 0x00:
1318 * - force == true: All instances will be removed regardless of their timeout
1319 *   setting.
1320 * - force == false: Only instances that have a timeout will be removed.
1321 */
1322void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1323				struct hci_request *req, u8 instance,
1324				bool force)
1325{
1326	struct adv_info *adv_instance, *n, *next_instance = NULL;
1327	int err;
1328	u8 rem_inst;
1329
1330	/* Cancel any timeout concerning the removed instance(s). */
1331	if (!instance || hdev->cur_adv_instance == instance)
1332		cancel_adv_timeout(hdev);
1333
1334	/* Get the next instance to advertise BEFORE we remove
1335	 * the current one. This can be the same instance again
1336	 * if there is only one instance.
1337	 */
1338	if (instance && hdev->cur_adv_instance == instance)
1339		next_instance = hci_get_next_instance(hdev, instance);
1340
1341	if (instance == 0x00) {
1342		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1343					 list) {
1344			if (!(force || adv_instance->timeout))
1345				continue;
1346
1347			rem_inst = adv_instance->instance;
1348			err = hci_remove_adv_instance(hdev, rem_inst);
1349			if (!err)
1350				mgmt_advertising_removed(sk, hdev, rem_inst);
1351		}
1352	} else {
1353		adv_instance = hci_find_adv_instance(hdev, instance);
1354
1355		if (force || (adv_instance && adv_instance->timeout &&
1356			      !adv_instance->remaining_time)) {
1357			/* Don't advertise a removed instance. */
1358			if (next_instance &&
1359			    next_instance->instance == instance)
1360				next_instance = NULL;
1361
1362			err = hci_remove_adv_instance(hdev, instance);
1363			if (!err)
1364				mgmt_advertising_removed(sk, hdev, instance);
1365		}
1366	}
1367
1368	if (!req || !hdev_is_powered(hdev) ||
1369	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1370		return;
1371
1372	if (next_instance)
1373		__hci_req_schedule_adv_instance(req, next_instance->instance,
1374						false);
1375}
1376
1377static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1378{
1379	struct hci_dev *hdev = req->hdev;
1380
1381	/* If we're advertising or initiating an LE connection we can't
1382	 * go ahead and change the random address at this time. This is
1383	 * because the eventual initiator address used for the
1384	 * subsequently created connection will be undefined (some
1385	 * controllers use the new address and others the one we had
1386	 * when the operation started).
1387	 *
1388	 * In this kind of scenario skip the update and let the random
1389	 * address be updated at the next cycle.
1390	 */
1391	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1392	    hci_lookup_le_connect(hdev)) {
1393		BT_DBG("Deferring random address update");
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		return;
1396	}
1397
1398	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1399}
1400
1401int hci_update_random_address(struct hci_request *req, bool require_privacy,
1402			      bool use_rpa, u8 *own_addr_type)
1403{
1404	struct hci_dev *hdev = req->hdev;
1405	int err;
1406
1407	/* If privacy is enabled use a resolvable private address. If
1408	 * current RPA has expired or there is something else than
1409	 * the current RPA in use, then generate a new one.
1410	 */
1411	if (use_rpa) {
1412		int to;
1413
1414		*own_addr_type = ADDR_LE_DEV_RANDOM;
1415
1416		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1417		    !bacmp(&hdev->random_addr, &hdev->rpa))
1418			return 0;
1419
1420		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1421		if (err < 0) {
1422			BT_ERR("%s failed to generate new RPA", hdev->name);
1423			return err;
1424		}
1425
1426		set_random_addr(req, &hdev->rpa);
1427
1428		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1429		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1430
1431		return 0;
1432	}
1433
1434	/* In case of required privacy without resolvable private address,
1435	 * use an non-resolvable private address. This is useful for active
1436	 * scanning and non-connectable advertising.
1437	 */
1438	if (require_privacy) {
1439		bdaddr_t nrpa;
1440
1441		while (true) {
1442			/* The non-resolvable private address is generated
1443			 * from random six bytes with the two most significant
1444			 * bits cleared.
1445			 */
1446			get_random_bytes(&nrpa, 6);
1447			nrpa.b[5] &= 0x3f;
1448
1449			/* The non-resolvable private address shall not be
1450			 * equal to the public address.
1451			 */
1452			if (bacmp(&hdev->bdaddr, &nrpa))
1453				break;
1454		}
1455
1456		*own_addr_type = ADDR_LE_DEV_RANDOM;
1457		set_random_addr(req, &nrpa);
1458		return 0;
1459	}
1460
1461	/* If forcing static address is in use or there is no public
1462	 * address use the static address as random address (but skip
1463	 * the HCI command if the current random address is already the
1464	 * static one.
1465	 *
1466	 * In case BR/EDR has been disabled on a dual-mode controller
1467	 * and a static address has been configured, then use that
1468	 * address instead of the public BR/EDR address.
1469	 */
1470	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1471	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1472	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1473	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1474		*own_addr_type = ADDR_LE_DEV_RANDOM;
1475		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1476			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1477				    &hdev->static_addr);
1478		return 0;
1479	}
1480
1481	/* Neither privacy nor static address is being used so use a
1482	 * public address.
1483	 */
1484	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1485
1486	return 0;
1487}
1488
1489static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1490{
1491	struct bdaddr_list *b;
1492
1493	list_for_each_entry(b, &hdev->whitelist, list) {
1494		struct hci_conn *conn;
1495
1496		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1497		if (!conn)
1498			return true;
1499
1500		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1501			return true;
1502	}
1503
1504	return false;
1505}
1506
1507void __hci_req_update_scan(struct hci_request *req)
1508{
1509	struct hci_dev *hdev = req->hdev;
1510	u8 scan;
1511
1512	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1513		return;
1514
1515	if (!hdev_is_powered(hdev))
1516		return;
1517
1518	if (mgmt_powering_down(hdev))
1519		return;
1520
1521	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1522	    disconnected_whitelist_entries(hdev))
1523		scan = SCAN_PAGE;
1524	else
1525		scan = SCAN_DISABLED;
1526
1527	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1528		scan |= SCAN_INQUIRY;
1529
1530	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1531	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1532		return;
1533
1534	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1535}
1536
1537static int update_scan(struct hci_request *req, unsigned long opt)
1538{
1539	hci_dev_lock(req->hdev);
1540	__hci_req_update_scan(req);
1541	hci_dev_unlock(req->hdev);
1542	return 0;
1543}
1544
1545static void scan_update_work(struct work_struct *work)
1546{
1547	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1548
1549	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1550}
1551
1552static int connectable_update(struct hci_request *req, unsigned long opt)
1553{
1554	struct hci_dev *hdev = req->hdev;
1555
1556	hci_dev_lock(hdev);
1557
1558	__hci_req_update_scan(req);
1559
1560	/* If BR/EDR is not enabled and we disable advertising as a
1561	 * by-product of disabling connectable, we need to update the
1562	 * advertising flags.
1563	 */
1564	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1565		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1566
1567	/* Update the advertising parameters if necessary */
1568	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1569	    !list_empty(&hdev->adv_instances))
1570		__hci_req_enable_advertising(req);
1571
1572	__hci_update_background_scan(req);
1573
1574	hci_dev_unlock(hdev);
1575
1576	return 0;
1577}
1578
1579static void connectable_update_work(struct work_struct *work)
1580{
1581	struct hci_dev *hdev = container_of(work, struct hci_dev,
1582					    connectable_update);
1583	u8 status;
1584
1585	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1586	mgmt_set_connectable_complete(hdev, status);
1587}
1588
1589static u8 get_service_classes(struct hci_dev *hdev)
1590{
1591	struct bt_uuid *uuid;
1592	u8 val = 0;
1593
1594	list_for_each_entry(uuid, &hdev->uuids, list)
1595		val |= uuid->svc_hint;
1596
1597	return val;
1598}
1599
1600void __hci_req_update_class(struct hci_request *req)
1601{
1602	struct hci_dev *hdev = req->hdev;
1603	u8 cod[3];
1604
1605	BT_DBG("%s", hdev->name);
1606
1607	if (!hdev_is_powered(hdev))
1608		return;
1609
1610	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1611		return;
1612
1613	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1614		return;
1615
1616	cod[0] = hdev->minor_class;
1617	cod[1] = hdev->major_class;
1618	cod[2] = get_service_classes(hdev);
1619
1620	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1621		cod[1] |= 0x20;
1622
1623	if (memcmp(cod, hdev->dev_class, 3) == 0)
1624		return;
1625
1626	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1627}
1628
1629static void write_iac(struct hci_request *req)
1630{
1631	struct hci_dev *hdev = req->hdev;
1632	struct hci_cp_write_current_iac_lap cp;
1633
1634	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1635		return;
1636
1637	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1638		/* Limited discoverable mode */
1639		cp.num_iac = min_t(u8, hdev->num_iac, 2);
1640		cp.iac_lap[0] = 0x00;	/* LIAC */
1641		cp.iac_lap[1] = 0x8b;
1642		cp.iac_lap[2] = 0x9e;
1643		cp.iac_lap[3] = 0x33;	/* GIAC */
1644		cp.iac_lap[4] = 0x8b;
1645		cp.iac_lap[5] = 0x9e;
1646	} else {
1647		/* General discoverable mode */
1648		cp.num_iac = 1;
1649		cp.iac_lap[0] = 0x33;	/* GIAC */
1650		cp.iac_lap[1] = 0x8b;
1651		cp.iac_lap[2] = 0x9e;
1652	}
1653
1654	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1655		    (cp.num_iac * 3) + 1, &cp);
1656}
1657
1658static int discoverable_update(struct hci_request *req, unsigned long opt)
1659{
1660	struct hci_dev *hdev = req->hdev;
1661
1662	hci_dev_lock(hdev);
1663
1664	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1665		write_iac(req);
1666		__hci_req_update_scan(req);
1667		__hci_req_update_class(req);
1668	}
1669
1670	/* Advertising instances don't use the global discoverable setting, so
1671	 * only update AD if advertising was enabled using Set Advertising.
1672	 */
1673	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1674		__hci_req_update_adv_data(req, 0x00);
1675
1676		/* Discoverable mode affects the local advertising
1677		 * address in limited privacy mode.
1678		 */
1679		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1680			__hci_req_enable_advertising(req);
1681	}
1682
1683	hci_dev_unlock(hdev);
1684
1685	return 0;
1686}
1687
1688static void discoverable_update_work(struct work_struct *work)
1689{
1690	struct hci_dev *hdev = container_of(work, struct hci_dev,
1691					    discoverable_update);
1692	u8 status;
1693
1694	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1695	mgmt_set_discoverable_complete(hdev, status);
1696}
1697
1698void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1699		      u8 reason)
1700{
1701	switch (conn->state) {
1702	case BT_CONNECTED:
1703	case BT_CONFIG:
1704		if (conn->type == AMP_LINK) {
1705			struct hci_cp_disconn_phy_link cp;
1706
1707			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1708			cp.reason = reason;
1709			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1710				    &cp);
1711		} else {
1712			struct hci_cp_disconnect dc;
1713
1714			dc.handle = cpu_to_le16(conn->handle);
1715			dc.reason = reason;
1716			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1717		}
1718
1719		conn->state = BT_DISCONN;
1720
1721		break;
1722	case BT_CONNECT:
1723		if (conn->type == LE_LINK) {
1724			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1725				break;
1726			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1727				    0, NULL);
1728		} else if (conn->type == ACL_LINK) {
1729			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1730				break;
1731			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1732				    6, &conn->dst);
1733		}
1734		break;
1735	case BT_CONNECT2:
1736		if (conn->type == ACL_LINK) {
1737			struct hci_cp_reject_conn_req rej;
1738
1739			bacpy(&rej.bdaddr, &conn->dst);
1740			rej.reason = reason;
1741
1742			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1743				    sizeof(rej), &rej);
1744		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1745			struct hci_cp_reject_sync_conn_req rej;
1746
1747			bacpy(&rej.bdaddr, &conn->dst);
1748
1749			/* SCO rejection has its own limited set of
1750			 * allowed error values (0x0D-0x0F) which isn't
1751			 * compatible with most values passed to this
1752			 * function. To be safe hard-code one of the
1753			 * values that's suitable for SCO.
1754			 */
1755			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1756
1757			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1758				    sizeof(rej), &rej);
1759		}
1760		break;
1761	default:
1762		conn->state = BT_CLOSED;
1763		break;
1764	}
1765}
1766
1767static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1768{
1769	if (status)
1770		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1771}
1772
1773int hci_abort_conn(struct hci_conn *conn, u8 reason)
1774{
1775	struct hci_request req;
1776	int err;
1777
1778	hci_req_init(&req, conn->hdev);
1779
1780	__hci_abort_conn(&req, conn, reason);
1781
1782	err = hci_req_run(&req, abort_conn_complete);
1783	if (err && err != -ENODATA) {
1784		BT_ERR("Failed to run HCI request: err %d", err);
1785		return err;
1786	}
1787
1788	return 0;
1789}
1790
1791static int update_bg_scan(struct hci_request *req, unsigned long opt)
1792{
1793	hci_dev_lock(req->hdev);
1794	__hci_update_background_scan(req);
1795	hci_dev_unlock(req->hdev);
1796	return 0;
1797}
1798
1799static void bg_scan_update(struct work_struct *work)
1800{
1801	struct hci_dev *hdev = container_of(work, struct hci_dev,
1802					    bg_scan_update);
1803	struct hci_conn *conn;
1804	u8 status;
1805	int err;
1806
1807	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1808	if (!err)
1809		return;
1810
1811	hci_dev_lock(hdev);
1812
1813	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1814	if (conn)
1815		hci_le_conn_failed(conn, status);
1816
1817	hci_dev_unlock(hdev);
1818}
1819
1820static int le_scan_disable(struct hci_request *req, unsigned long opt)
1821{
1822	hci_req_add_le_scan_disable(req);
1823	return 0;
1824}
1825
1826static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1827{
1828	u8 length = opt;
1829	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1830	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1831	struct hci_cp_inquiry cp;
1832
1833	BT_DBG("%s", req->hdev->name);
1834
1835	hci_dev_lock(req->hdev);
1836	hci_inquiry_cache_flush(req->hdev);
1837	hci_dev_unlock(req->hdev);
1838
1839	memset(&cp, 0, sizeof(cp));
1840
1841	if (req->hdev->discovery.limited)
1842		memcpy(&cp.lap, liac, sizeof(cp.lap));
1843	else
1844		memcpy(&cp.lap, giac, sizeof(cp.lap));
1845
1846	cp.length = length;
1847
1848	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1849
1850	return 0;
1851}
1852
1853static void le_scan_disable_work(struct work_struct *work)
1854{
1855	struct hci_dev *hdev = container_of(work, struct hci_dev,
1856					    le_scan_disable.work);
1857	u8 status;
1858
1859	BT_DBG("%s", hdev->name);
1860
1861	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1862		return;
1863
1864	cancel_delayed_work(&hdev->le_scan_restart);
1865
1866	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1867	if (status) {
1868		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1869		return;
1870	}
1871
1872	hdev->discovery.scan_start = 0;
1873
1874	/* If we were running LE only scan, change discovery state. If
1875	 * we were running both LE and BR/EDR inquiry simultaneously,
1876	 * and BR/EDR inquiry is already finished, stop discovery,
1877	 * otherwise BR/EDR inquiry will stop discovery when finished.
1878	 * If we will resolve remote device name, do not change
1879	 * discovery state.
1880	 */
1881
1882	if (hdev->discovery.type == DISCOV_TYPE_LE)
1883		goto discov_stopped;
1884
1885	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1886		return;
1887
1888	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1889		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1890		    hdev->discovery.state != DISCOVERY_RESOLVING)
1891			goto discov_stopped;
1892
1893		return;
1894	}
1895
1896	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1897		     HCI_CMD_TIMEOUT, &status);
1898	if (status) {
1899		BT_ERR("Inquiry failed: status 0x%02x", status);
1900		goto discov_stopped;
1901	}
1902
1903	return;
1904
1905discov_stopped:
1906	hci_dev_lock(hdev);
1907	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1908	hci_dev_unlock(hdev);
1909}
1910
1911static int le_scan_restart(struct hci_request *req, unsigned long opt)
1912{
1913	struct hci_dev *hdev = req->hdev;
1914	struct hci_cp_le_set_scan_enable cp;
1915
1916	/* If controller is not scanning we are done. */
1917	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1918		return 0;
1919
1920	hci_req_add_le_scan_disable(req);
1921
1922	memset(&cp, 0, sizeof(cp));
1923	cp.enable = LE_SCAN_ENABLE;
1924	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1925	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1926
1927	return 0;
1928}
1929
1930static void le_scan_restart_work(struct work_struct *work)
1931{
1932	struct hci_dev *hdev = container_of(work, struct hci_dev,
1933					    le_scan_restart.work);
1934	unsigned long timeout, duration, scan_start, now;
1935	u8 status;
1936
1937	BT_DBG("%s", hdev->name);
1938
1939	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1940	if (status) {
1941		BT_ERR("Failed to restart LE scan: status %d", status);
1942		return;
1943	}
1944
1945	hci_dev_lock(hdev);
1946
1947	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1948	    !hdev->discovery.scan_start)
1949		goto unlock;
1950
1951	/* When the scan was started, hdev->le_scan_disable has been queued
1952	 * after duration from scan_start. During scan restart this job
1953	 * has been canceled, and we need to queue it again after proper
1954	 * timeout, to make sure that scan does not run indefinitely.
1955	 */
1956	duration = hdev->discovery.scan_duration;
1957	scan_start = hdev->discovery.scan_start;
1958	now = jiffies;
1959	if (now - scan_start <= duration) {
1960		int elapsed;
1961
1962		if (now >= scan_start)
1963			elapsed = now - scan_start;
1964		else
1965			elapsed = ULONG_MAX - scan_start + now;
1966
1967		timeout = duration - elapsed;
1968	} else {
1969		timeout = 0;
1970	}
1971
1972	queue_delayed_work(hdev->req_workqueue,
1973			   &hdev->le_scan_disable, timeout);
1974
1975unlock:
1976	hci_dev_unlock(hdev);
1977}
1978
1979static void disable_advertising(struct hci_request *req)
1980{
1981	u8 enable = 0x00;
1982
1983	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1984}
1985
1986static int active_scan(struct hci_request *req, unsigned long opt)
1987{
1988	uint16_t interval = opt;
1989	struct hci_dev *hdev = req->hdev;
1990	struct hci_cp_le_set_scan_param param_cp;
1991	struct hci_cp_le_set_scan_enable enable_cp;
1992	u8 own_addr_type;
1993	int err;
1994
1995	BT_DBG("%s", hdev->name);
1996
1997	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1998		hci_dev_lock(hdev);
1999
2000		/* Don't let discovery abort an outgoing connection attempt
2001		 * that's using directed advertising.
2002		 */
2003		if (hci_lookup_le_connect(hdev)) {
2004			hci_dev_unlock(hdev);
2005			return -EBUSY;
2006		}
2007
2008		cancel_adv_timeout(hdev);
2009		hci_dev_unlock(hdev);
2010
2011		disable_advertising(req);
2012	}
2013
2014	/* If controller is scanning, it means the background scanning is
2015	 * running. Thus, we should temporarily stop it in order to set the
2016	 * discovery scanning parameters.
2017	 */
2018	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2019		hci_req_add_le_scan_disable(req);
2020
2021	/* All active scans will be done with either a resolvable private
2022	 * address (when privacy feature has been enabled) or non-resolvable
2023	 * private address.
2024	 */
2025	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2026					&own_addr_type);
2027	if (err < 0)
2028		own_addr_type = ADDR_LE_DEV_PUBLIC;
2029
2030	memset(&param_cp, 0, sizeof(param_cp));
2031	param_cp.type = LE_SCAN_ACTIVE;
2032	param_cp.interval = cpu_to_le16(interval);
2033	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2034	param_cp.own_address_type = own_addr_type;
2035
2036	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2037		    &param_cp);
2038
2039	memset(&enable_cp, 0, sizeof(enable_cp));
2040	enable_cp.enable = LE_SCAN_ENABLE;
2041	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2042
2043	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2044		    &enable_cp);
2045
2046	return 0;
2047}
2048
2049static int interleaved_discov(struct hci_request *req, unsigned long opt)
2050{
2051	int err;
2052
2053	BT_DBG("%s", req->hdev->name);
2054
2055	err = active_scan(req, opt);
2056	if (err)
2057		return err;
2058
2059	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2060}
2061
2062static void start_discovery(struct hci_dev *hdev, u8 *status)
2063{
2064	unsigned long timeout;
2065
2066	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2067
2068	switch (hdev->discovery.type) {
2069	case DISCOV_TYPE_BREDR:
2070		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2071			hci_req_sync(hdev, bredr_inquiry,
2072				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2073				     status);
2074		return;
2075	case DISCOV_TYPE_INTERLEAVED:
2076		/* When running simultaneous discovery, the LE scanning time
2077		 * should occupy the whole discovery time sine BR/EDR inquiry
2078		 * and LE scanning are scheduled by the controller.
2079		 *
2080		 * For interleaving discovery in comparison, BR/EDR inquiry
2081		 * and LE scanning are done sequentially with separate
2082		 * timeouts.
2083		 */
2084		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2085			     &hdev->quirks)) {
2086			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2087			/* During simultaneous discovery, we double LE scan
2088			 * interval. We must leave some time for the controller
2089			 * to do BR/EDR inquiry.
2090			 */
2091			hci_req_sync(hdev, interleaved_discov,
2092				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2093				     status);
2094			break;
2095		}
2096
2097		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2098		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2099			     HCI_CMD_TIMEOUT, status);
2100		break;
2101	case DISCOV_TYPE_LE:
2102		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2103		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2104			     HCI_CMD_TIMEOUT, status);
2105		break;
2106	default:
2107		*status = HCI_ERROR_UNSPECIFIED;
2108		return;
2109	}
2110
2111	if (*status)
2112		return;
2113
2114	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2115
2116	/* When service discovery is used and the controller has a
2117	 * strict duplicate filter, it is important to remember the
2118	 * start and duration of the scan. This is required for
2119	 * restarting scanning during the discovery phase.
2120	 */
2121	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2122		     hdev->discovery.result_filtering) {
2123		hdev->discovery.scan_start = jiffies;
2124		hdev->discovery.scan_duration = timeout;
2125	}
2126
2127	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2128			   timeout);
2129}
2130
2131bool hci_req_stop_discovery(struct hci_request *req)
2132{
2133	struct hci_dev *hdev = req->hdev;
2134	struct discovery_state *d = &hdev->discovery;
2135	struct hci_cp_remote_name_req_cancel cp;
2136	struct inquiry_entry *e;
2137	bool ret = false;
2138
2139	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2140
2141	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2142		if (test_bit(HCI_INQUIRY, &hdev->flags))
2143			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2144
2145		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2146			cancel_delayed_work(&hdev->le_scan_disable);
2147			hci_req_add_le_scan_disable(req);
2148		}
2149
2150		ret = true;
2151	} else {
2152		/* Passive scanning */
2153		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2154			hci_req_add_le_scan_disable(req);
2155			ret = true;
2156		}
2157	}
2158
2159	/* No further actions needed for LE-only discovery */
2160	if (d->type == DISCOV_TYPE_LE)
2161		return ret;
2162
2163	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2164		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2165						     NAME_PENDING);
2166		if (!e)
2167			return ret;
2168
2169		bacpy(&cp.bdaddr, &e->data.bdaddr);
2170		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2171			    &cp);
2172		ret = true;
2173	}
2174
2175	return ret;
2176}
2177
2178static int stop_discovery(struct hci_request *req, unsigned long opt)
2179{
2180	hci_dev_lock(req->hdev);
2181	hci_req_stop_discovery(req);
2182	hci_dev_unlock(req->hdev);
2183
2184	return 0;
2185}
2186
2187static void discov_update(struct work_struct *work)
2188{
2189	struct hci_dev *hdev = container_of(work, struct hci_dev,
2190					    discov_update);
2191	u8 status = 0;
2192
2193	switch (hdev->discovery.state) {
2194	case DISCOVERY_STARTING:
2195		start_discovery(hdev, &status);
2196		mgmt_start_discovery_complete(hdev, status);
2197		if (status)
2198			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2199		else
2200			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2201		break;
2202	case DISCOVERY_STOPPING:
2203		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2204		mgmt_stop_discovery_complete(hdev, status);
2205		if (!status)
2206			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2207		break;
2208	case DISCOVERY_STOPPED:
2209	default:
2210		return;
2211	}
2212}
2213
2214static void discov_off(struct work_struct *work)
2215{
2216	struct hci_dev *hdev = container_of(work, struct hci_dev,
2217					    discov_off.work);
2218
2219	BT_DBG("%s", hdev->name);
2220
2221	hci_dev_lock(hdev);
2222
2223	/* When discoverable timeout triggers, then just make sure
2224	 * the limited discoverable flag is cleared. Even in the case
2225	 * of a timeout triggered from general discoverable, it is
2226	 * safe to unconditionally clear the flag.
2227	 */
2228	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2229	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2230	hdev->discov_timeout = 0;
2231
2232	hci_dev_unlock(hdev);
2233
2234	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2235	mgmt_new_settings(hdev);
2236}
2237
2238static int powered_update_hci(struct hci_request *req, unsigned long opt)
2239{
2240	struct hci_dev *hdev = req->hdev;
2241	u8 link_sec;
2242
2243	hci_dev_lock(hdev);
2244
2245	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2246	    !lmp_host_ssp_capable(hdev)) {
2247		u8 mode = 0x01;
2248
2249		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2250
2251		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2252			u8 support = 0x01;
2253
2254			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2255				    sizeof(support), &support);
2256		}
2257	}
2258
2259	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2260	    lmp_bredr_capable(hdev)) {
2261		struct hci_cp_write_le_host_supported cp;
2262
2263		cp.le = 0x01;
2264		cp.simul = 0x00;
2265
2266		/* Check first if we already have the right
2267		 * host state (host features set)
2268		 */
2269		if (cp.le != lmp_host_le_capable(hdev) ||
2270		    cp.simul != lmp_host_le_br_capable(hdev))
2271			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2272				    sizeof(cp), &cp);
2273	}
2274
2275	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2276		/* Make sure the controller has a good default for
2277		 * advertising data. This also applies to the case
2278		 * where BR/EDR was toggled during the AUTO_OFF phase.
2279		 */
2280		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2281		    list_empty(&hdev->adv_instances)) {
2282			__hci_req_update_adv_data(req, 0x00);
2283			__hci_req_update_scan_rsp_data(req, 0x00);
2284
2285			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2286				__hci_req_enable_advertising(req);
2287		} else if (!list_empty(&hdev->adv_instances)) {
2288			struct adv_info *adv_instance;
2289
2290			adv_instance = list_first_entry(&hdev->adv_instances,
2291							struct adv_info, list);
2292			__hci_req_schedule_adv_instance(req,
2293							adv_instance->instance,
2294							true);
2295		}
2296	}
2297
2298	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2299	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2300		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2301			    sizeof(link_sec), &link_sec);
2302
2303	if (lmp_bredr_capable(hdev)) {
2304		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2305			__hci_req_write_fast_connectable(req, true);
2306		else
2307			__hci_req_write_fast_connectable(req, false);
2308		__hci_req_update_scan(req);
2309		__hci_req_update_class(req);
2310		__hci_req_update_name(req);
2311		__hci_req_update_eir(req);
2312	}
2313
2314	hci_dev_unlock(hdev);
2315	return 0;
2316}
2317
2318int __hci_req_hci_power_on(struct hci_dev *hdev)
2319{
2320	/* Register the available SMP channels (BR/EDR and LE) only when
2321	 * successfully powering on the controller. This late
2322	 * registration is required so that LE SMP can clearly decide if
2323	 * the public address or static address is used.
2324	 */
2325	smp_register(hdev);
2326
2327	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2328			      NULL);
2329}
2330
2331void hci_request_setup(struct hci_dev *hdev)
2332{
2333	INIT_WORK(&hdev->discov_update, discov_update);
2334	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2335	INIT_WORK(&hdev->scan_update, scan_update_work);
2336	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2337	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2338	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2339	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2340	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2341	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2342}
2343
2344void hci_request_cancel_all(struct hci_dev *hdev)
2345{
2346	hci_req_sync_cancel(hdev, ENODEV);
2347
2348	cancel_work_sync(&hdev->discov_update);
2349	cancel_work_sync(&hdev->bg_scan_update);
2350	cancel_work_sync(&hdev->scan_update);
2351	cancel_work_sync(&hdev->connectable_update);
2352	cancel_work_sync(&hdev->discoverable_update);
2353	cancel_delayed_work_sync(&hdev->discov_off);
2354	cancel_delayed_work_sync(&hdev->le_scan_disable);
2355	cancel_delayed_work_sync(&hdev->le_scan_restart);
2356
2357	if (hdev->adv_instance_timeout) {
2358		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2359		hdev->adv_instance_timeout = 0;
2360	}
2361}