Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * balloc.c
4 *
5 * PURPOSE
6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1999-2001 Ben Fennema
10 * (C) 1999 Stelias Computing Inc
11 *
12 * HISTORY
13 *
14 * 02/24/99 blf Created.
15 *
16 */
17
18#include "udfdecl.h"
19
20#include <linux/bitops.h>
21#include <linux/overflow.h>
22
23#include "udf_i.h"
24#include "udf_sb.h"
25
26#define udf_clear_bit __test_and_clear_bit_le
27#define udf_set_bit __test_and_set_bit_le
28#define udf_test_bit test_bit_le
29#define udf_find_next_one_bit find_next_bit_le
30
31static int read_block_bitmap(struct super_block *sb,
32 struct udf_bitmap *bitmap, unsigned int block,
33 unsigned long bitmap_nr)
34{
35 struct buffer_head *bh = NULL;
36 int i;
37 int max_bits, off, count;
38 struct kernel_lb_addr loc;
39
40 loc.logicalBlockNum = bitmap->s_extPosition;
41 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
42
43 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
44 bitmap->s_block_bitmap[bitmap_nr] = bh;
45 if (!bh)
46 return -EIO;
47
48 /* Check consistency of Space Bitmap buffer. */
49 max_bits = sb->s_blocksize * 8;
50 if (!bitmap_nr) {
51 off = sizeof(struct spaceBitmapDesc) << 3;
52 count = min(max_bits - off, bitmap->s_nr_groups);
53 } else {
54 /*
55 * Rough check if bitmap number is too big to have any bitmap
56 * blocks reserved.
57 */
58 if (bitmap_nr >
59 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
60 return 0;
61 off = 0;
62 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
63 (sizeof(struct spaceBitmapDesc) << 3);
64 count = min(count, max_bits);
65 }
66
67 for (i = 0; i < count; i++)
68 if (udf_test_bit(i + off, bh->b_data)) {
69 bitmap->s_block_bitmap[bitmap_nr] =
70 ERR_PTR(-EFSCORRUPTED);
71 brelse(bh);
72 return -EFSCORRUPTED;
73 }
74 return 0;
75}
76
77static int load_block_bitmap(struct super_block *sb,
78 struct udf_bitmap *bitmap,
79 unsigned int block_group)
80{
81 int retval = 0;
82 int nr_groups = bitmap->s_nr_groups;
83
84 if (block_group >= nr_groups) {
85 udf_debug("block_group (%u) > nr_groups (%d)\n",
86 block_group, nr_groups);
87 }
88
89 if (bitmap->s_block_bitmap[block_group]) {
90 /*
91 * The bitmap failed verification in the past. No point in
92 * trying again.
93 */
94 if (IS_ERR(bitmap->s_block_bitmap[block_group]))
95 return PTR_ERR(bitmap->s_block_bitmap[block_group]);
96 return block_group;
97 }
98
99 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100 if (retval < 0)
101 return retval;
102
103 return block_group;
104}
105
106static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107{
108 struct udf_sb_info *sbi = UDF_SB(sb);
109 struct logicalVolIntegrityDesc *lvid;
110
111 if (!sbi->s_lvid_bh)
112 return;
113
114 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116 udf_updated_lvid(sb);
117}
118
119static void udf_bitmap_free_blocks(struct super_block *sb,
120 struct udf_bitmap *bitmap,
121 struct kernel_lb_addr *bloc,
122 uint32_t offset,
123 uint32_t count)
124{
125 struct udf_sb_info *sbi = UDF_SB(sb);
126 struct buffer_head *bh = NULL;
127 unsigned long block;
128 unsigned long block_group;
129 unsigned long bit;
130 unsigned long i;
131 int bitmap_nr;
132 unsigned long overflow;
133
134 mutex_lock(&sbi->s_alloc_mutex);
135 /* We make sure this cannot overflow when mounting the filesystem */
136 block = bloc->logicalBlockNum + offset +
137 (sizeof(struct spaceBitmapDesc) << 3);
138 do {
139 overflow = 0;
140 block_group = block >> (sb->s_blocksize_bits + 3);
141 bit = block % (sb->s_blocksize << 3);
142
143 /*
144 * Check to see if we are freeing blocks across a group boundary.
145 */
146 if (bit + count > (sb->s_blocksize << 3)) {
147 overflow = bit + count - (sb->s_blocksize << 3);
148 count -= overflow;
149 }
150 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151 if (bitmap_nr < 0)
152 goto error_return;
153
154 bh = bitmap->s_block_bitmap[bitmap_nr];
155 for (i = 0; i < count; i++) {
156 if (udf_set_bit(bit + i, bh->b_data)) {
157 udf_debug("bit %lu already set\n", bit + i);
158 udf_debug("byte=%2x\n",
159 ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160 }
161 }
162 udf_add_free_space(sb, sbi->s_partition, count);
163 mark_buffer_dirty(bh);
164 if (overflow) {
165 block += count;
166 count = overflow;
167 }
168 } while (overflow);
169
170error_return:
171 mutex_unlock(&sbi->s_alloc_mutex);
172}
173
174static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175 struct udf_bitmap *bitmap,
176 uint16_t partition, uint32_t first_block,
177 uint32_t block_count)
178{
179 struct udf_sb_info *sbi = UDF_SB(sb);
180 int alloc_count = 0;
181 int bit, block, block_group;
182 int bitmap_nr;
183 struct buffer_head *bh;
184 __u32 part_len;
185
186 mutex_lock(&sbi->s_alloc_mutex);
187 part_len = sbi->s_partmaps[partition].s_partition_len;
188 if (first_block >= part_len)
189 goto out;
190
191 if (first_block + block_count > part_len)
192 block_count = part_len - first_block;
193
194 do {
195 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196 block_group = block >> (sb->s_blocksize_bits + 3);
197
198 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199 if (bitmap_nr < 0)
200 goto out;
201 bh = bitmap->s_block_bitmap[bitmap_nr];
202
203 bit = block % (sb->s_blocksize << 3);
204
205 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206 if (!udf_clear_bit(bit, bh->b_data))
207 goto out;
208 block_count--;
209 alloc_count++;
210 bit++;
211 block++;
212 }
213 mark_buffer_dirty(bh);
214 } while (block_count > 0);
215
216out:
217 udf_add_free_space(sb, partition, -alloc_count);
218 mutex_unlock(&sbi->s_alloc_mutex);
219 return alloc_count;
220}
221
222static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223 struct udf_bitmap *bitmap, uint16_t partition,
224 uint32_t goal, int *err)
225{
226 struct udf_sb_info *sbi = UDF_SB(sb);
227 int newbit, bit = 0;
228 udf_pblk_t block;
229 int block_group, group_start;
230 int end_goal, nr_groups, bitmap_nr, i;
231 struct buffer_head *bh = NULL;
232 char *ptr;
233 udf_pblk_t newblock = 0;
234
235 *err = -ENOSPC;
236 mutex_lock(&sbi->s_alloc_mutex);
237
238repeat:
239 if (goal >= sbi->s_partmaps[partition].s_partition_len)
240 goal = 0;
241
242 nr_groups = bitmap->s_nr_groups;
243 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244 block_group = block >> (sb->s_blocksize_bits + 3);
245 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248 if (bitmap_nr < 0)
249 goto error_return;
250 bh = bitmap->s_block_bitmap[bitmap_nr];
251 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252 sb->s_blocksize - group_start);
253
254 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255 bit = block % (sb->s_blocksize << 3);
256 if (udf_test_bit(bit, bh->b_data))
257 goto got_block;
258
259 end_goal = (bit + 63) & ~63;
260 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261 if (bit < end_goal)
262 goto got_block;
263
264 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265 sb->s_blocksize - ((bit + 7) >> 3));
266 newbit = (ptr - ((char *)bh->b_data)) << 3;
267 if (newbit < sb->s_blocksize << 3) {
268 bit = newbit;
269 goto search_back;
270 }
271
272 newbit = udf_find_next_one_bit(bh->b_data,
273 sb->s_blocksize << 3, bit);
274 if (newbit < sb->s_blocksize << 3) {
275 bit = newbit;
276 goto got_block;
277 }
278 }
279
280 for (i = 0; i < (nr_groups * 2); i++) {
281 block_group++;
282 if (block_group >= nr_groups)
283 block_group = 0;
284 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287 if (bitmap_nr < 0)
288 goto error_return;
289 bh = bitmap->s_block_bitmap[bitmap_nr];
290 if (i < nr_groups) {
291 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292 sb->s_blocksize - group_start);
293 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294 bit = (ptr - ((char *)bh->b_data)) << 3;
295 break;
296 }
297 } else {
298 bit = udf_find_next_one_bit(bh->b_data,
299 sb->s_blocksize << 3,
300 group_start << 3);
301 if (bit < sb->s_blocksize << 3)
302 break;
303 }
304 }
305 if (i >= (nr_groups * 2)) {
306 mutex_unlock(&sbi->s_alloc_mutex);
307 return newblock;
308 }
309 if (bit < sb->s_blocksize << 3)
310 goto search_back;
311 else
312 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313 group_start << 3);
314 if (bit >= sb->s_blocksize << 3) {
315 mutex_unlock(&sbi->s_alloc_mutex);
316 return 0;
317 }
318
319search_back:
320 i = 0;
321 while (i < 7 && bit > (group_start << 3) &&
322 udf_test_bit(bit - 1, bh->b_data)) {
323 ++i;
324 --bit;
325 }
326
327got_block:
328 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329 (sizeof(struct spaceBitmapDesc) << 3);
330
331 if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332 /*
333 * Ran off the end of the bitmap, and bits following are
334 * non-compliant (not all zero)
335 */
336 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337 " as free, partition length is %u)\n", partition,
338 newblock, sbi->s_partmaps[partition].s_partition_len);
339 goto error_return;
340 }
341
342 if (!udf_clear_bit(bit, bh->b_data)) {
343 udf_debug("bit already cleared for block %d\n", bit);
344 goto repeat;
345 }
346
347 mark_buffer_dirty(bh);
348
349 udf_add_free_space(sb, partition, -1);
350 mutex_unlock(&sbi->s_alloc_mutex);
351 *err = 0;
352 return newblock;
353
354error_return:
355 *err = -EIO;
356 mutex_unlock(&sbi->s_alloc_mutex);
357 return 0;
358}
359
360static void udf_table_free_blocks(struct super_block *sb,
361 struct inode *table,
362 struct kernel_lb_addr *bloc,
363 uint32_t offset,
364 uint32_t count)
365{
366 struct udf_sb_info *sbi = UDF_SB(sb);
367 uint32_t start, end;
368 uint32_t elen;
369 struct kernel_lb_addr eloc;
370 struct extent_position oepos, epos;
371 int8_t etype;
372 struct udf_inode_info *iinfo;
373 int ret = 0;
374
375 mutex_lock(&sbi->s_alloc_mutex);
376 iinfo = UDF_I(table);
377 udf_add_free_space(sb, sbi->s_partition, count);
378
379 start = bloc->logicalBlockNum + offset;
380 end = bloc->logicalBlockNum + offset + count - 1;
381
382 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383 elen = 0;
384 epos.block = oepos.block = iinfo->i_location;
385 epos.bh = oepos.bh = NULL;
386
387 while (count) {
388 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389 if (ret < 0)
390 goto error_return;
391 if (ret == 0)
392 break;
393 if (((eloc.logicalBlockNum +
394 (elen >> sb->s_blocksize_bits)) == start)) {
395 if ((0x3FFFFFFF - elen) <
396 (count << sb->s_blocksize_bits)) {
397 uint32_t tmp = ((0x3FFFFFFF - elen) >>
398 sb->s_blocksize_bits);
399 count -= tmp;
400 start += tmp;
401 elen = (etype << 30) |
402 (0x40000000 - sb->s_blocksize);
403 } else {
404 elen = (etype << 30) |
405 (elen +
406 (count << sb->s_blocksize_bits));
407 start += count;
408 count = 0;
409 }
410 udf_write_aext(table, &oepos, &eloc, elen, 1);
411 } else if (eloc.logicalBlockNum == (end + 1)) {
412 if ((0x3FFFFFFF - elen) <
413 (count << sb->s_blocksize_bits)) {
414 uint32_t tmp = ((0x3FFFFFFF - elen) >>
415 sb->s_blocksize_bits);
416 count -= tmp;
417 end -= tmp;
418 eloc.logicalBlockNum -= tmp;
419 elen = (etype << 30) |
420 (0x40000000 - sb->s_blocksize);
421 } else {
422 eloc.logicalBlockNum = start;
423 elen = (etype << 30) |
424 (elen +
425 (count << sb->s_blocksize_bits));
426 end -= count;
427 count = 0;
428 }
429 udf_write_aext(table, &oepos, &eloc, elen, 1);
430 }
431
432 if (epos.bh != oepos.bh) {
433 oepos.block = epos.block;
434 brelse(oepos.bh);
435 get_bh(epos.bh);
436 oepos.bh = epos.bh;
437 oepos.offset = 0;
438 } else {
439 oepos.offset = epos.offset;
440 }
441 }
442
443 if (count) {
444 /*
445 * NOTE: we CANNOT use udf_add_aext here, as it can try to
446 * allocate a new block, and since we hold the super block
447 * lock already very bad things would happen :)
448 *
449 * We copy the behavior of udf_add_aext, but instead of
450 * trying to allocate a new block close to the existing one,
451 * we just steal a block from the extent we are trying to add.
452 *
453 * It would be nice if the blocks were close together, but it
454 * isn't required.
455 */
456
457 int adsize;
458
459 eloc.logicalBlockNum = start;
460 elen = EXT_RECORDED_ALLOCATED |
461 (count << sb->s_blocksize_bits);
462
463 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464 adsize = sizeof(struct short_ad);
465 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466 adsize = sizeof(struct long_ad);
467 else
468 goto error_return;
469
470 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471 /* Steal a block from the extent being free'd */
472 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473 &epos);
474
475 eloc.logicalBlockNum++;
476 elen -= sb->s_blocksize;
477 }
478
479 /* It's possible that stealing the block emptied the extent */
480 if (elen)
481 __udf_add_aext(table, &epos, &eloc, elen, 1);
482 }
483
484error_return:
485 brelse(epos.bh);
486 brelse(oepos.bh);
487
488 mutex_unlock(&sbi->s_alloc_mutex);
489 return;
490}
491
492static int udf_table_prealloc_blocks(struct super_block *sb,
493 struct inode *table, uint16_t partition,
494 uint32_t first_block, uint32_t block_count)
495{
496 struct udf_sb_info *sbi = UDF_SB(sb);
497 int alloc_count = 0;
498 uint32_t elen, adsize;
499 struct kernel_lb_addr eloc;
500 struct extent_position epos;
501 int8_t etype = -1;
502 struct udf_inode_info *iinfo;
503 int ret = 0;
504
505 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506 return 0;
507
508 iinfo = UDF_I(table);
509 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510 adsize = sizeof(struct short_ad);
511 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512 adsize = sizeof(struct long_ad);
513 else
514 return 0;
515
516 mutex_lock(&sbi->s_alloc_mutex);
517 epos.offset = sizeof(struct unallocSpaceEntry);
518 epos.block = iinfo->i_location;
519 epos.bh = NULL;
520 eloc.logicalBlockNum = 0xFFFFFFFF;
521
522 while (first_block != eloc.logicalBlockNum) {
523 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524 if (ret < 0)
525 goto err_out;
526 if (ret == 0)
527 break;
528 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529 eloc.logicalBlockNum, elen, first_block);
530 }
531
532 if (first_block == eloc.logicalBlockNum) {
533 epos.offset -= adsize;
534
535 alloc_count = (elen >> sb->s_blocksize_bits);
536 if (alloc_count > block_count) {
537 alloc_count = block_count;
538 eloc.logicalBlockNum += alloc_count;
539 elen -= (alloc_count << sb->s_blocksize_bits);
540 udf_write_aext(table, &epos, &eloc,
541 (etype << 30) | elen, 1);
542 } else
543 udf_delete_aext(table, epos);
544 } else {
545 alloc_count = 0;
546 }
547
548err_out:
549 brelse(epos.bh);
550
551 if (alloc_count)
552 udf_add_free_space(sb, partition, -alloc_count);
553 mutex_unlock(&sbi->s_alloc_mutex);
554 return alloc_count;
555}
556
557static udf_pblk_t udf_table_new_block(struct super_block *sb,
558 struct inode *table, uint16_t partition,
559 uint32_t goal, int *err)
560{
561 struct udf_sb_info *sbi = UDF_SB(sb);
562 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563 udf_pblk_t newblock = 0;
564 uint32_t adsize;
565 uint32_t elen, goal_elen = 0;
566 struct kernel_lb_addr eloc, goal_eloc;
567 struct extent_position epos, goal_epos;
568 int8_t etype;
569 struct udf_inode_info *iinfo = UDF_I(table);
570 int ret = 0;
571
572 *err = -ENOSPC;
573
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 adsize = sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 adsize = sizeof(struct long_ad);
578 else
579 return newblock;
580
581 mutex_lock(&sbi->s_alloc_mutex);
582 if (goal >= sbi->s_partmaps[partition].s_partition_len)
583 goal = 0;
584
585 /* We search for the closest matching block to goal. If we find
586 a exact hit, we stop. Otherwise we keep going till we run out
587 of extents. We store the buffer_head, bloc, and extoffset
588 of the current closest match and use that when we are done.
589 */
590 epos.offset = sizeof(struct unallocSpaceEntry);
591 epos.block = iinfo->i_location;
592 epos.bh = goal_epos.bh = NULL;
593
594 while (spread) {
595 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596 if (ret <= 0)
597 break;
598 if (goal >= eloc.logicalBlockNum) {
599 if (goal < eloc.logicalBlockNum +
600 (elen >> sb->s_blocksize_bits))
601 nspread = 0;
602 else
603 nspread = goal - eloc.logicalBlockNum -
604 (elen >> sb->s_blocksize_bits);
605 } else {
606 nspread = eloc.logicalBlockNum - goal;
607 }
608
609 if (nspread < spread) {
610 spread = nspread;
611 if (goal_epos.bh != epos.bh) {
612 brelse(goal_epos.bh);
613 goal_epos.bh = epos.bh;
614 get_bh(goal_epos.bh);
615 }
616 goal_epos.block = epos.block;
617 goal_epos.offset = epos.offset - adsize;
618 goal_eloc = eloc;
619 goal_elen = (etype << 30) | elen;
620 }
621 }
622
623 brelse(epos.bh);
624
625 if (ret < 0 || spread == 0xFFFFFFFF) {
626 brelse(goal_epos.bh);
627 mutex_unlock(&sbi->s_alloc_mutex);
628 if (ret < 0)
629 *err = ret;
630 return 0;
631 }
632
633 /* Only allocate blocks from the beginning of the extent.
634 That way, we only delete (empty) extents, never have to insert an
635 extent because of splitting */
636 /* This works, but very poorly.... */
637
638 newblock = goal_eloc.logicalBlockNum;
639 goal_eloc.logicalBlockNum++;
640 goal_elen -= sb->s_blocksize;
641
642 if (goal_elen)
643 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644 else
645 udf_delete_aext(table, goal_epos);
646 brelse(goal_epos.bh);
647
648 udf_add_free_space(sb, partition, -1);
649
650 mutex_unlock(&sbi->s_alloc_mutex);
651 *err = 0;
652 return newblock;
653}
654
655void udf_free_blocks(struct super_block *sb, struct inode *inode,
656 struct kernel_lb_addr *bloc, uint32_t offset,
657 uint32_t count)
658{
659 uint16_t partition = bloc->partitionReferenceNum;
660 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661 uint32_t blk;
662
663 if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664 check_add_overflow(blk, count, &blk) ||
665 bloc->logicalBlockNum + count > map->s_partition_len) {
666 udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667 "len %u, partition len %u\n",
668 partition, bloc->logicalBlockNum, offset, count,
669 map->s_partition_len);
670 return;
671 }
672
673 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675 bloc, offset, count);
676 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677 udf_table_free_blocks(sb, map->s_uspace.s_table,
678 bloc, offset, count);
679 }
680
681 if (inode) {
682 inode_sub_bytes(inode,
683 ((sector_t)count) << sb->s_blocksize_bits);
684 }
685}
686
687inline int udf_prealloc_blocks(struct super_block *sb,
688 struct inode *inode,
689 uint16_t partition, uint32_t first_block,
690 uint32_t block_count)
691{
692 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693 int allocated;
694
695 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696 allocated = udf_bitmap_prealloc_blocks(sb,
697 map->s_uspace.s_bitmap,
698 partition, first_block,
699 block_count);
700 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701 allocated = udf_table_prealloc_blocks(sb,
702 map->s_uspace.s_table,
703 partition, first_block,
704 block_count);
705 else
706 return 0;
707
708 if (inode && allocated > 0)
709 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710 return allocated;
711}
712
713inline udf_pblk_t udf_new_block(struct super_block *sb,
714 struct inode *inode,
715 uint16_t partition, uint32_t goal, int *err)
716{
717 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718 udf_pblk_t block;
719
720 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721 block = udf_bitmap_new_block(sb,
722 map->s_uspace.s_bitmap,
723 partition, goal, err);
724 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725 block = udf_table_new_block(sb,
726 map->s_uspace.s_table,
727 partition, goal, err);
728 else {
729 *err = -EIO;
730 return 0;
731 }
732 if (inode && block)
733 inode_add_bytes(inode, sb->s_blocksize);
734 return block;
735}
1/*
2 * balloc.c
3 *
4 * PURPOSE
5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
15 *
16 * HISTORY
17 *
18 * 02/24/99 blf Created.
19 *
20 */
21
22#include "udfdecl.h"
23
24#include <linux/bitops.h>
25
26#include "udf_i.h"
27#include "udf_sb.h"
28
29#define udf_clear_bit __test_and_clear_bit_le
30#define udf_set_bit __test_and_set_bit_le
31#define udf_test_bit test_bit_le
32#define udf_find_next_one_bit find_next_bit_le
33
34static int read_block_bitmap(struct super_block *sb,
35 struct udf_bitmap *bitmap, unsigned int block,
36 unsigned long bitmap_nr)
37{
38 struct buffer_head *bh = NULL;
39 int retval = 0;
40 struct kernel_lb_addr loc;
41
42 loc.logicalBlockNum = bitmap->s_extPosition;
43 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
44
45 bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
46 if (!bh)
47 retval = -EIO;
48
49 bitmap->s_block_bitmap[bitmap_nr] = bh;
50 return retval;
51}
52
53static int __load_block_bitmap(struct super_block *sb,
54 struct udf_bitmap *bitmap,
55 unsigned int block_group)
56{
57 int retval = 0;
58 int nr_groups = bitmap->s_nr_groups;
59
60 if (block_group >= nr_groups) {
61 udf_debug("block_group (%d) > nr_groups (%d)\n",
62 block_group, nr_groups);
63 }
64
65 if (bitmap->s_block_bitmap[block_group])
66 return block_group;
67
68 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
69 if (retval < 0)
70 return retval;
71
72 return block_group;
73}
74
75static inline int load_block_bitmap(struct super_block *sb,
76 struct udf_bitmap *bitmap,
77 unsigned int block_group)
78{
79 int slot;
80
81 slot = __load_block_bitmap(sb, bitmap, block_group);
82
83 if (slot < 0)
84 return slot;
85
86 if (!bitmap->s_block_bitmap[slot])
87 return -EIO;
88
89 return slot;
90}
91
92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
93{
94 struct udf_sb_info *sbi = UDF_SB(sb);
95 struct logicalVolIntegrityDesc *lvid;
96
97 if (!sbi->s_lvid_bh)
98 return;
99
100 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102 udf_updated_lvid(sb);
103}
104
105static void udf_bitmap_free_blocks(struct super_block *sb,
106 struct udf_bitmap *bitmap,
107 struct kernel_lb_addr *bloc,
108 uint32_t offset,
109 uint32_t count)
110{
111 struct udf_sb_info *sbi = UDF_SB(sb);
112 struct buffer_head *bh = NULL;
113 struct udf_part_map *partmap;
114 unsigned long block;
115 unsigned long block_group;
116 unsigned long bit;
117 unsigned long i;
118 int bitmap_nr;
119 unsigned long overflow;
120
121 mutex_lock(&sbi->s_alloc_mutex);
122 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123 if (bloc->logicalBlockNum + count < count ||
124 (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125 udf_debug("%d < %d || %d + %d > %d\n",
126 bloc->logicalBlockNum, 0,
127 bloc->logicalBlockNum, count,
128 partmap->s_partition_len);
129 goto error_return;
130 }
131
132 block = bloc->logicalBlockNum + offset +
133 (sizeof(struct spaceBitmapDesc) << 3);
134
135 do {
136 overflow = 0;
137 block_group = block >> (sb->s_blocksize_bits + 3);
138 bit = block % (sb->s_blocksize << 3);
139
140 /*
141 * Check to see if we are freeing blocks across a group boundary.
142 */
143 if (bit + count > (sb->s_blocksize << 3)) {
144 overflow = bit + count - (sb->s_blocksize << 3);
145 count -= overflow;
146 }
147 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148 if (bitmap_nr < 0)
149 goto error_return;
150
151 bh = bitmap->s_block_bitmap[bitmap_nr];
152 for (i = 0; i < count; i++) {
153 if (udf_set_bit(bit + i, bh->b_data)) {
154 udf_debug("bit %ld already set\n", bit + i);
155 udf_debug("byte=%2x\n",
156 ((char *)bh->b_data)[(bit + i) >> 3]);
157 }
158 }
159 udf_add_free_space(sb, sbi->s_partition, count);
160 mark_buffer_dirty(bh);
161 if (overflow) {
162 block += count;
163 count = overflow;
164 }
165 } while (overflow);
166
167error_return:
168 mutex_unlock(&sbi->s_alloc_mutex);
169}
170
171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172 struct udf_bitmap *bitmap,
173 uint16_t partition, uint32_t first_block,
174 uint32_t block_count)
175{
176 struct udf_sb_info *sbi = UDF_SB(sb);
177 int alloc_count = 0;
178 int bit, block, block_group, group_start;
179 int nr_groups, bitmap_nr;
180 struct buffer_head *bh;
181 __u32 part_len;
182
183 mutex_lock(&sbi->s_alloc_mutex);
184 part_len = sbi->s_partmaps[partition].s_partition_len;
185 if (first_block >= part_len)
186 goto out;
187
188 if (first_block + block_count > part_len)
189 block_count = part_len - first_block;
190
191 do {
192 nr_groups = udf_compute_nr_groups(sb, partition);
193 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194 block_group = block >> (sb->s_blocksize_bits + 3);
195 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196
197 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198 if (bitmap_nr < 0)
199 goto out;
200 bh = bitmap->s_block_bitmap[bitmap_nr];
201
202 bit = block % (sb->s_blocksize << 3);
203
204 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205 if (!udf_clear_bit(bit, bh->b_data))
206 goto out;
207 block_count--;
208 alloc_count++;
209 bit++;
210 block++;
211 }
212 mark_buffer_dirty(bh);
213 } while (block_count > 0);
214
215out:
216 udf_add_free_space(sb, partition, -alloc_count);
217 mutex_unlock(&sbi->s_alloc_mutex);
218 return alloc_count;
219}
220
221static int udf_bitmap_new_block(struct super_block *sb,
222 struct udf_bitmap *bitmap, uint16_t partition,
223 uint32_t goal, int *err)
224{
225 struct udf_sb_info *sbi = UDF_SB(sb);
226 int newbit, bit = 0, block, block_group, group_start;
227 int end_goal, nr_groups, bitmap_nr, i;
228 struct buffer_head *bh = NULL;
229 char *ptr;
230 int newblock = 0;
231
232 *err = -ENOSPC;
233 mutex_lock(&sbi->s_alloc_mutex);
234
235repeat:
236 if (goal >= sbi->s_partmaps[partition].s_partition_len)
237 goal = 0;
238
239 nr_groups = bitmap->s_nr_groups;
240 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241 block_group = block >> (sb->s_blocksize_bits + 3);
242 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243
244 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245 if (bitmap_nr < 0)
246 goto error_return;
247 bh = bitmap->s_block_bitmap[bitmap_nr];
248 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249 sb->s_blocksize - group_start);
250
251 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252 bit = block % (sb->s_blocksize << 3);
253 if (udf_test_bit(bit, bh->b_data))
254 goto got_block;
255
256 end_goal = (bit + 63) & ~63;
257 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258 if (bit < end_goal)
259 goto got_block;
260
261 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262 sb->s_blocksize - ((bit + 7) >> 3));
263 newbit = (ptr - ((char *)bh->b_data)) << 3;
264 if (newbit < sb->s_blocksize << 3) {
265 bit = newbit;
266 goto search_back;
267 }
268
269 newbit = udf_find_next_one_bit(bh->b_data,
270 sb->s_blocksize << 3, bit);
271 if (newbit < sb->s_blocksize << 3) {
272 bit = newbit;
273 goto got_block;
274 }
275 }
276
277 for (i = 0; i < (nr_groups * 2); i++) {
278 block_group++;
279 if (block_group >= nr_groups)
280 block_group = 0;
281 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282
283 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284 if (bitmap_nr < 0)
285 goto error_return;
286 bh = bitmap->s_block_bitmap[bitmap_nr];
287 if (i < nr_groups) {
288 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289 sb->s_blocksize - group_start);
290 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291 bit = (ptr - ((char *)bh->b_data)) << 3;
292 break;
293 }
294 } else {
295 bit = udf_find_next_one_bit(bh->b_data,
296 sb->s_blocksize << 3,
297 group_start << 3);
298 if (bit < sb->s_blocksize << 3)
299 break;
300 }
301 }
302 if (i >= (nr_groups * 2)) {
303 mutex_unlock(&sbi->s_alloc_mutex);
304 return newblock;
305 }
306 if (bit < sb->s_blocksize << 3)
307 goto search_back;
308 else
309 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310 group_start << 3);
311 if (bit >= sb->s_blocksize << 3) {
312 mutex_unlock(&sbi->s_alloc_mutex);
313 return 0;
314 }
315
316search_back:
317 i = 0;
318 while (i < 7 && bit > (group_start << 3) &&
319 udf_test_bit(bit - 1, bh->b_data)) {
320 ++i;
321 --bit;
322 }
323
324got_block:
325 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326 (sizeof(struct spaceBitmapDesc) << 3);
327
328 if (!udf_clear_bit(bit, bh->b_data)) {
329 udf_debug("bit already cleared for block %d\n", bit);
330 goto repeat;
331 }
332
333 mark_buffer_dirty(bh);
334
335 udf_add_free_space(sb, partition, -1);
336 mutex_unlock(&sbi->s_alloc_mutex);
337 *err = 0;
338 return newblock;
339
340error_return:
341 *err = -EIO;
342 mutex_unlock(&sbi->s_alloc_mutex);
343 return 0;
344}
345
346static void udf_table_free_blocks(struct super_block *sb,
347 struct inode *table,
348 struct kernel_lb_addr *bloc,
349 uint32_t offset,
350 uint32_t count)
351{
352 struct udf_sb_info *sbi = UDF_SB(sb);
353 struct udf_part_map *partmap;
354 uint32_t start, end;
355 uint32_t elen;
356 struct kernel_lb_addr eloc;
357 struct extent_position oepos, epos;
358 int8_t etype;
359 struct udf_inode_info *iinfo;
360
361 mutex_lock(&sbi->s_alloc_mutex);
362 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
363 if (bloc->logicalBlockNum + count < count ||
364 (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
365 udf_debug("%d < %d || %d + %d > %d\n",
366 bloc->logicalBlockNum, 0,
367 bloc->logicalBlockNum, count,
368 partmap->s_partition_len);
369 goto error_return;
370 }
371
372 iinfo = UDF_I(table);
373 udf_add_free_space(sb, sbi->s_partition, count);
374
375 start = bloc->logicalBlockNum + offset;
376 end = bloc->logicalBlockNum + offset + count - 1;
377
378 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
379 elen = 0;
380 epos.block = oepos.block = iinfo->i_location;
381 epos.bh = oepos.bh = NULL;
382
383 while (count &&
384 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
385 if (((eloc.logicalBlockNum +
386 (elen >> sb->s_blocksize_bits)) == start)) {
387 if ((0x3FFFFFFF - elen) <
388 (count << sb->s_blocksize_bits)) {
389 uint32_t tmp = ((0x3FFFFFFF - elen) >>
390 sb->s_blocksize_bits);
391 count -= tmp;
392 start += tmp;
393 elen = (etype << 30) |
394 (0x40000000 - sb->s_blocksize);
395 } else {
396 elen = (etype << 30) |
397 (elen +
398 (count << sb->s_blocksize_bits));
399 start += count;
400 count = 0;
401 }
402 udf_write_aext(table, &oepos, &eloc, elen, 1);
403 } else if (eloc.logicalBlockNum == (end + 1)) {
404 if ((0x3FFFFFFF - elen) <
405 (count << sb->s_blocksize_bits)) {
406 uint32_t tmp = ((0x3FFFFFFF - elen) >>
407 sb->s_blocksize_bits);
408 count -= tmp;
409 end -= tmp;
410 eloc.logicalBlockNum -= tmp;
411 elen = (etype << 30) |
412 (0x40000000 - sb->s_blocksize);
413 } else {
414 eloc.logicalBlockNum = start;
415 elen = (etype << 30) |
416 (elen +
417 (count << sb->s_blocksize_bits));
418 end -= count;
419 count = 0;
420 }
421 udf_write_aext(table, &oepos, &eloc, elen, 1);
422 }
423
424 if (epos.bh != oepos.bh) {
425 oepos.block = epos.block;
426 brelse(oepos.bh);
427 get_bh(epos.bh);
428 oepos.bh = epos.bh;
429 oepos.offset = 0;
430 } else {
431 oepos.offset = epos.offset;
432 }
433 }
434
435 if (count) {
436 /*
437 * NOTE: we CANNOT use udf_add_aext here, as it can try to
438 * allocate a new block, and since we hold the super block
439 * lock already very bad things would happen :)
440 *
441 * We copy the behavior of udf_add_aext, but instead of
442 * trying to allocate a new block close to the existing one,
443 * we just steal a block from the extent we are trying to add.
444 *
445 * It would be nice if the blocks were close together, but it
446 * isn't required.
447 */
448
449 int adsize;
450
451 eloc.logicalBlockNum = start;
452 elen = EXT_RECORDED_ALLOCATED |
453 (count << sb->s_blocksize_bits);
454
455 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
456 adsize = sizeof(struct short_ad);
457 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
458 adsize = sizeof(struct long_ad);
459 else {
460 brelse(oepos.bh);
461 brelse(epos.bh);
462 goto error_return;
463 }
464
465 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
466 /* Steal a block from the extent being free'd */
467 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
468 &epos);
469
470 eloc.logicalBlockNum++;
471 elen -= sb->s_blocksize;
472 }
473
474 /* It's possible that stealing the block emptied the extent */
475 if (elen)
476 __udf_add_aext(table, &epos, &eloc, elen, 1);
477 }
478
479 brelse(epos.bh);
480 brelse(oepos.bh);
481
482error_return:
483 mutex_unlock(&sbi->s_alloc_mutex);
484 return;
485}
486
487static int udf_table_prealloc_blocks(struct super_block *sb,
488 struct inode *table, uint16_t partition,
489 uint32_t first_block, uint32_t block_count)
490{
491 struct udf_sb_info *sbi = UDF_SB(sb);
492 int alloc_count = 0;
493 uint32_t elen, adsize;
494 struct kernel_lb_addr eloc;
495 struct extent_position epos;
496 int8_t etype = -1;
497 struct udf_inode_info *iinfo;
498
499 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
500 return 0;
501
502 iinfo = UDF_I(table);
503 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
504 adsize = sizeof(struct short_ad);
505 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
506 adsize = sizeof(struct long_ad);
507 else
508 return 0;
509
510 mutex_lock(&sbi->s_alloc_mutex);
511 epos.offset = sizeof(struct unallocSpaceEntry);
512 epos.block = iinfo->i_location;
513 epos.bh = NULL;
514 eloc.logicalBlockNum = 0xFFFFFFFF;
515
516 while (first_block != eloc.logicalBlockNum &&
517 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
518 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
519 eloc.logicalBlockNum, elen, first_block);
520 ; /* empty loop body */
521 }
522
523 if (first_block == eloc.logicalBlockNum) {
524 epos.offset -= adsize;
525
526 alloc_count = (elen >> sb->s_blocksize_bits);
527 if (alloc_count > block_count) {
528 alloc_count = block_count;
529 eloc.logicalBlockNum += alloc_count;
530 elen -= (alloc_count << sb->s_blocksize_bits);
531 udf_write_aext(table, &epos, &eloc,
532 (etype << 30) | elen, 1);
533 } else
534 udf_delete_aext(table, epos, eloc,
535 (etype << 30) | elen);
536 } else {
537 alloc_count = 0;
538 }
539
540 brelse(epos.bh);
541
542 if (alloc_count)
543 udf_add_free_space(sb, partition, -alloc_count);
544 mutex_unlock(&sbi->s_alloc_mutex);
545 return alloc_count;
546}
547
548static int udf_table_new_block(struct super_block *sb,
549 struct inode *table, uint16_t partition,
550 uint32_t goal, int *err)
551{
552 struct udf_sb_info *sbi = UDF_SB(sb);
553 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
554 uint32_t newblock = 0, adsize;
555 uint32_t elen, goal_elen = 0;
556 struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
557 struct extent_position epos, goal_epos;
558 int8_t etype;
559 struct udf_inode_info *iinfo = UDF_I(table);
560
561 *err = -ENOSPC;
562
563 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
564 adsize = sizeof(struct short_ad);
565 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
566 adsize = sizeof(struct long_ad);
567 else
568 return newblock;
569
570 mutex_lock(&sbi->s_alloc_mutex);
571 if (goal >= sbi->s_partmaps[partition].s_partition_len)
572 goal = 0;
573
574 /* We search for the closest matching block to goal. If we find
575 a exact hit, we stop. Otherwise we keep going till we run out
576 of extents. We store the buffer_head, bloc, and extoffset
577 of the current closest match and use that when we are done.
578 */
579 epos.offset = sizeof(struct unallocSpaceEntry);
580 epos.block = iinfo->i_location;
581 epos.bh = goal_epos.bh = NULL;
582
583 while (spread &&
584 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
585 if (goal >= eloc.logicalBlockNum) {
586 if (goal < eloc.logicalBlockNum +
587 (elen >> sb->s_blocksize_bits))
588 nspread = 0;
589 else
590 nspread = goal - eloc.logicalBlockNum -
591 (elen >> sb->s_blocksize_bits);
592 } else {
593 nspread = eloc.logicalBlockNum - goal;
594 }
595
596 if (nspread < spread) {
597 spread = nspread;
598 if (goal_epos.bh != epos.bh) {
599 brelse(goal_epos.bh);
600 goal_epos.bh = epos.bh;
601 get_bh(goal_epos.bh);
602 }
603 goal_epos.block = epos.block;
604 goal_epos.offset = epos.offset - adsize;
605 goal_eloc = eloc;
606 goal_elen = (etype << 30) | elen;
607 }
608 }
609
610 brelse(epos.bh);
611
612 if (spread == 0xFFFFFFFF) {
613 brelse(goal_epos.bh);
614 mutex_unlock(&sbi->s_alloc_mutex);
615 return 0;
616 }
617
618 /* Only allocate blocks from the beginning of the extent.
619 That way, we only delete (empty) extents, never have to insert an
620 extent because of splitting */
621 /* This works, but very poorly.... */
622
623 newblock = goal_eloc.logicalBlockNum;
624 goal_eloc.logicalBlockNum++;
625 goal_elen -= sb->s_blocksize;
626
627 if (goal_elen)
628 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
629 else
630 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
631 brelse(goal_epos.bh);
632
633 udf_add_free_space(sb, partition, -1);
634
635 mutex_unlock(&sbi->s_alloc_mutex);
636 *err = 0;
637 return newblock;
638}
639
640void udf_free_blocks(struct super_block *sb, struct inode *inode,
641 struct kernel_lb_addr *bloc, uint32_t offset,
642 uint32_t count)
643{
644 uint16_t partition = bloc->partitionReferenceNum;
645 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
646
647 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
648 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
649 bloc, offset, count);
650 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
651 udf_table_free_blocks(sb, map->s_uspace.s_table,
652 bloc, offset, count);
653 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
654 udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
655 bloc, offset, count);
656 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
657 udf_table_free_blocks(sb, map->s_fspace.s_table,
658 bloc, offset, count);
659 }
660
661 if (inode) {
662 inode_sub_bytes(inode,
663 ((sector_t)count) << sb->s_blocksize_bits);
664 }
665}
666
667inline int udf_prealloc_blocks(struct super_block *sb,
668 struct inode *inode,
669 uint16_t partition, uint32_t first_block,
670 uint32_t block_count)
671{
672 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
673 int allocated;
674
675 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
676 allocated = udf_bitmap_prealloc_blocks(sb,
677 map->s_uspace.s_bitmap,
678 partition, first_block,
679 block_count);
680 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
681 allocated = udf_table_prealloc_blocks(sb,
682 map->s_uspace.s_table,
683 partition, first_block,
684 block_count);
685 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
686 allocated = udf_bitmap_prealloc_blocks(sb,
687 map->s_fspace.s_bitmap,
688 partition, first_block,
689 block_count);
690 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
691 allocated = udf_table_prealloc_blocks(sb,
692 map->s_fspace.s_table,
693 partition, first_block,
694 block_count);
695 else
696 return 0;
697
698 if (inode && allocated > 0)
699 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
700 return allocated;
701}
702
703inline int udf_new_block(struct super_block *sb,
704 struct inode *inode,
705 uint16_t partition, uint32_t goal, int *err)
706{
707 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
708 int block;
709
710 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
711 block = udf_bitmap_new_block(sb,
712 map->s_uspace.s_bitmap,
713 partition, goal, err);
714 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
715 block = udf_table_new_block(sb,
716 map->s_uspace.s_table,
717 partition, goal, err);
718 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
719 block = udf_bitmap_new_block(sb,
720 map->s_fspace.s_bitmap,
721 partition, goal, err);
722 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
723 block = udf_table_new_block(sb,
724 map->s_fspace.s_table,
725 partition, goal, err);
726 else {
727 *err = -EIO;
728 return 0;
729 }
730 if (inode && block)
731 inode_add_bytes(inode, sb->s_blocksize);
732 return block;
733}