Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * balloc.c
  4 *
  5 * PURPOSE
  6 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  7 *
  8 * COPYRIGHT
 
 
 
 
 
  9 *  (C) 1999-2001 Ben Fennema
 10 *  (C) 1999 Stelias Computing Inc
 11 *
 12 * HISTORY
 13 *
 14 *  02/24/99 blf  Created.
 15 *
 16 */
 17
 18#include "udfdecl.h"
 19
 
 20#include <linux/bitops.h>
 21#include <linux/overflow.h>
 22
 23#include "udf_i.h"
 24#include "udf_sb.h"
 25
 26#define udf_clear_bit	__test_and_clear_bit_le
 27#define udf_set_bit	__test_and_set_bit_le
 28#define udf_test_bit	test_bit_le
 29#define udf_find_next_one_bit	find_next_bit_le
 30
 31static int read_block_bitmap(struct super_block *sb,
 32			     struct udf_bitmap *bitmap, unsigned int block,
 33			     unsigned long bitmap_nr)
 34{
 35	struct buffer_head *bh = NULL;
 36	int i;
 37	int max_bits, off, count;
 38	struct kernel_lb_addr loc;
 39
 40	loc.logicalBlockNum = bitmap->s_extPosition;
 41	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 42
 43	bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
 44	bitmap->s_block_bitmap[bitmap_nr] = bh;
 45	if (!bh)
 46		return -EIO;
 47
 48	/* Check consistency of Space Bitmap buffer. */
 49	max_bits = sb->s_blocksize * 8;
 50	if (!bitmap_nr) {
 51		off = sizeof(struct spaceBitmapDesc) << 3;
 52		count = min(max_bits - off, bitmap->s_nr_groups);
 53	} else {
 54		/*
 55		 * Rough check if bitmap number is too big to have any bitmap
 56 		 * blocks reserved.
 57		 */
 58		if (bitmap_nr >
 59		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
 60			return 0;
 61		off = 0;
 62		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
 63				(sizeof(struct spaceBitmapDesc) << 3);
 64		count = min(count, max_bits);
 65	}
 66
 67	for (i = 0; i < count; i++)
 68		if (udf_test_bit(i + off, bh->b_data)) {
 69			bitmap->s_block_bitmap[bitmap_nr] =
 70							ERR_PTR(-EFSCORRUPTED);
 71			brelse(bh);
 72			return -EFSCORRUPTED;
 73		}
 74	return 0;
 75}
 76
 77static int load_block_bitmap(struct super_block *sb,
 78			     struct udf_bitmap *bitmap,
 79			     unsigned int block_group)
 80{
 81	int retval = 0;
 82	int nr_groups = bitmap->s_nr_groups;
 83
 84	if (block_group >= nr_groups) {
 85		udf_debug("block_group (%u) > nr_groups (%d)\n",
 86			  block_group, nr_groups);
 87	}
 88
 89	if (bitmap->s_block_bitmap[block_group]) {
 90		/*
 91		 * The bitmap failed verification in the past. No point in
 92		 * trying again.
 93		 */
 94		if (IS_ERR(bitmap->s_block_bitmap[block_group]))
 95			return PTR_ERR(bitmap->s_block_bitmap[block_group]);
 96		return block_group;
 97	}
 
 98
 99	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100	if (retval < 0)
101		return retval;
 
 
 
 
 
 
 
 
 
 
102
103	return block_group;
104}
105
106static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107{
108	struct udf_sb_info *sbi = UDF_SB(sb);
109	struct logicalVolIntegrityDesc *lvid;
110
111	if (!sbi->s_lvid_bh)
112		return;
113
114	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116	udf_updated_lvid(sb);
117}
118
119static void udf_bitmap_free_blocks(struct super_block *sb,
 
120				   struct udf_bitmap *bitmap,
121				   struct kernel_lb_addr *bloc,
122				   uint32_t offset,
123				   uint32_t count)
124{
125	struct udf_sb_info *sbi = UDF_SB(sb);
126	struct buffer_head *bh = NULL;
 
127	unsigned long block;
128	unsigned long block_group;
129	unsigned long bit;
130	unsigned long i;
131	int bitmap_nr;
132	unsigned long overflow;
133
134	mutex_lock(&sbi->s_alloc_mutex);
135	/* We make sure this cannot overflow when mounting the filesystem */
 
 
 
 
 
 
 
 
136	block = bloc->logicalBlockNum + offset +
137		(sizeof(struct spaceBitmapDesc) << 3);
 
138	do {
139		overflow = 0;
140		block_group = block >> (sb->s_blocksize_bits + 3);
141		bit = block % (sb->s_blocksize << 3);
142
143		/*
144		* Check to see if we are freeing blocks across a group boundary.
145		*/
146		if (bit + count > (sb->s_blocksize << 3)) {
147			overflow = bit + count - (sb->s_blocksize << 3);
148			count -= overflow;
149		}
150		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151		if (bitmap_nr < 0)
152			goto error_return;
153
154		bh = bitmap->s_block_bitmap[bitmap_nr];
155		for (i = 0; i < count; i++) {
156			if (udf_set_bit(bit + i, bh->b_data)) {
157				udf_debug("bit %lu already set\n", bit + i);
158				udf_debug("byte=%2x\n",
159					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160			}
161		}
162		udf_add_free_space(sb, sbi->s_partition, count);
163		mark_buffer_dirty(bh);
164		if (overflow) {
165			block += count;
166			count = overflow;
167		}
168	} while (overflow);
169
170error_return:
171	mutex_unlock(&sbi->s_alloc_mutex);
172}
173
174static int udf_bitmap_prealloc_blocks(struct super_block *sb,
 
175				      struct udf_bitmap *bitmap,
176				      uint16_t partition, uint32_t first_block,
177				      uint32_t block_count)
178{
179	struct udf_sb_info *sbi = UDF_SB(sb);
180	int alloc_count = 0;
181	int bit, block, block_group;
182	int bitmap_nr;
183	struct buffer_head *bh;
184	__u32 part_len;
185
186	mutex_lock(&sbi->s_alloc_mutex);
187	part_len = sbi->s_partmaps[partition].s_partition_len;
188	if (first_block >= part_len)
189		goto out;
190
191	if (first_block + block_count > part_len)
192		block_count = part_len - first_block;
193
194	do {
 
195		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196		block_group = block >> (sb->s_blocksize_bits + 3);
 
197
198		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199		if (bitmap_nr < 0)
200			goto out;
201		bh = bitmap->s_block_bitmap[bitmap_nr];
202
203		bit = block % (sb->s_blocksize << 3);
204
205		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206			if (!udf_clear_bit(bit, bh->b_data))
207				goto out;
208			block_count--;
209			alloc_count++;
210			bit++;
211			block++;
212		}
213		mark_buffer_dirty(bh);
214	} while (block_count > 0);
215
216out:
217	udf_add_free_space(sb, partition, -alloc_count);
218	mutex_unlock(&sbi->s_alloc_mutex);
219	return alloc_count;
220}
221
222static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
 
223				struct udf_bitmap *bitmap, uint16_t partition,
224				uint32_t goal, int *err)
225{
226	struct udf_sb_info *sbi = UDF_SB(sb);
227	int newbit, bit = 0;
228	udf_pblk_t block;
229	int block_group, group_start;
230	int end_goal, nr_groups, bitmap_nr, i;
231	struct buffer_head *bh = NULL;
232	char *ptr;
233	udf_pblk_t newblock = 0;
234
235	*err = -ENOSPC;
236	mutex_lock(&sbi->s_alloc_mutex);
237
238repeat:
239	if (goal >= sbi->s_partmaps[partition].s_partition_len)
240		goal = 0;
241
242	nr_groups = bitmap->s_nr_groups;
243	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244	block_group = block >> (sb->s_blocksize_bits + 3);
245	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248	if (bitmap_nr < 0)
249		goto error_return;
250	bh = bitmap->s_block_bitmap[bitmap_nr];
251	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252		      sb->s_blocksize - group_start);
253
254	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255		bit = block % (sb->s_blocksize << 3);
256		if (udf_test_bit(bit, bh->b_data))
257			goto got_block;
258
259		end_goal = (bit + 63) & ~63;
260		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261		if (bit < end_goal)
262			goto got_block;
263
264		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265			      sb->s_blocksize - ((bit + 7) >> 3));
266		newbit = (ptr - ((char *)bh->b_data)) << 3;
267		if (newbit < sb->s_blocksize << 3) {
268			bit = newbit;
269			goto search_back;
270		}
271
272		newbit = udf_find_next_one_bit(bh->b_data,
273					       sb->s_blocksize << 3, bit);
274		if (newbit < sb->s_blocksize << 3) {
275			bit = newbit;
276			goto got_block;
277		}
278	}
279
280	for (i = 0; i < (nr_groups * 2); i++) {
281		block_group++;
282		if (block_group >= nr_groups)
283			block_group = 0;
284		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287		if (bitmap_nr < 0)
288			goto error_return;
289		bh = bitmap->s_block_bitmap[bitmap_nr];
290		if (i < nr_groups) {
291			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292				      sb->s_blocksize - group_start);
293			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294				bit = (ptr - ((char *)bh->b_data)) << 3;
295				break;
296			}
297		} else {
298			bit = udf_find_next_one_bit(bh->b_data,
299						    sb->s_blocksize << 3,
300						    group_start << 3);
301			if (bit < sb->s_blocksize << 3)
302				break;
303		}
304	}
305	if (i >= (nr_groups * 2)) {
306		mutex_unlock(&sbi->s_alloc_mutex);
307		return newblock;
308	}
309	if (bit < sb->s_blocksize << 3)
310		goto search_back;
311	else
312		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313					    group_start << 3);
314	if (bit >= sb->s_blocksize << 3) {
315		mutex_unlock(&sbi->s_alloc_mutex);
316		return 0;
317	}
318
319search_back:
320	i = 0;
321	while (i < 7 && bit > (group_start << 3) &&
322	       udf_test_bit(bit - 1, bh->b_data)) {
323		++i;
324		--bit;
325	}
326
327got_block:
328	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329		(sizeof(struct spaceBitmapDesc) << 3);
330
331	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332		/*
333		 * Ran off the end of the bitmap, and bits following are
334		 * non-compliant (not all zero)
335		 */
336		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337			" as free, partition length is %u)\n", partition,
338			newblock, sbi->s_partmaps[partition].s_partition_len);
339		goto error_return;
340	}
341
342	if (!udf_clear_bit(bit, bh->b_data)) {
343		udf_debug("bit already cleared for block %d\n", bit);
344		goto repeat;
345	}
346
347	mark_buffer_dirty(bh);
348
349	udf_add_free_space(sb, partition, -1);
350	mutex_unlock(&sbi->s_alloc_mutex);
351	*err = 0;
352	return newblock;
353
354error_return:
355	*err = -EIO;
356	mutex_unlock(&sbi->s_alloc_mutex);
357	return 0;
358}
359
360static void udf_table_free_blocks(struct super_block *sb,
 
361				  struct inode *table,
362				  struct kernel_lb_addr *bloc,
363				  uint32_t offset,
364				  uint32_t count)
365{
366	struct udf_sb_info *sbi = UDF_SB(sb);
 
367	uint32_t start, end;
368	uint32_t elen;
369	struct kernel_lb_addr eloc;
370	struct extent_position oepos, epos;
371	int8_t etype;
 
372	struct udf_inode_info *iinfo;
373	int ret = 0;
374
375	mutex_lock(&sbi->s_alloc_mutex);
 
 
 
 
 
 
 
 
 
376	iinfo = UDF_I(table);
377	udf_add_free_space(sb, sbi->s_partition, count);
378
379	start = bloc->logicalBlockNum + offset;
380	end = bloc->logicalBlockNum + offset + count - 1;
381
382	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383	elen = 0;
384	epos.block = oepos.block = iinfo->i_location;
385	epos.bh = oepos.bh = NULL;
386
387	while (count) {
388		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389		if (ret < 0)
390			goto error_return;
391		if (ret == 0)
392			break;
393		if (((eloc.logicalBlockNum +
394			(elen >> sb->s_blocksize_bits)) == start)) {
395			if ((0x3FFFFFFF - elen) <
396					(count << sb->s_blocksize_bits)) {
397				uint32_t tmp = ((0x3FFFFFFF - elen) >>
398							sb->s_blocksize_bits);
399				count -= tmp;
400				start += tmp;
401				elen = (etype << 30) |
402					(0x40000000 - sb->s_blocksize);
403			} else {
404				elen = (etype << 30) |
405					(elen +
406					(count << sb->s_blocksize_bits));
407				start += count;
408				count = 0;
409			}
410			udf_write_aext(table, &oepos, &eloc, elen, 1);
411		} else if (eloc.logicalBlockNum == (end + 1)) {
412			if ((0x3FFFFFFF - elen) <
413					(count << sb->s_blocksize_bits)) {
414				uint32_t tmp = ((0x3FFFFFFF - elen) >>
415						sb->s_blocksize_bits);
416				count -= tmp;
417				end -= tmp;
418				eloc.logicalBlockNum -= tmp;
419				elen = (etype << 30) |
420					(0x40000000 - sb->s_blocksize);
421			} else {
422				eloc.logicalBlockNum = start;
423				elen = (etype << 30) |
424					(elen +
425					(count << sb->s_blocksize_bits));
426				end -= count;
427				count = 0;
428			}
429			udf_write_aext(table, &oepos, &eloc, elen, 1);
430		}
431
432		if (epos.bh != oepos.bh) {
 
433			oepos.block = epos.block;
434			brelse(oepos.bh);
435			get_bh(epos.bh);
436			oepos.bh = epos.bh;
437			oepos.offset = 0;
438		} else {
439			oepos.offset = epos.offset;
440		}
441	}
442
443	if (count) {
444		/*
445		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
446		 * allocate a new block, and since we hold the super block
447		 * lock already very bad things would happen :)
448		 *
449		 * We copy the behavior of udf_add_aext, but instead of
450		 * trying to allocate a new block close to the existing one,
451		 * we just steal a block from the extent we are trying to add.
452		 *
453		 * It would be nice if the blocks were close together, but it
454		 * isn't required.
455		 */
456
457		int adsize;
 
 
 
458
459		eloc.logicalBlockNum = start;
460		elen = EXT_RECORDED_ALLOCATED |
461			(count << sb->s_blocksize_bits);
462
463		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464			adsize = sizeof(struct short_ad);
465		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466			adsize = sizeof(struct long_ad);
467		else
 
 
468			goto error_return;
 
469
470		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471			/* Steal a block from the extent being free'd */
472			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473						&epos);
 
 
474
 
 
475			eloc.logicalBlockNum++;
476			elen -= sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477		}
478
479		/* It's possible that stealing the block emptied the extent */
480		if (elen)
481			__udf_add_aext(table, &epos, &eloc, elen, 1);
 
 
 
 
 
 
 
 
 
 
 
482	}
483
484error_return:
485	brelse(epos.bh);
486	brelse(oepos.bh);
487
 
488	mutex_unlock(&sbi->s_alloc_mutex);
489	return;
490}
491
492static int udf_table_prealloc_blocks(struct super_block *sb,
 
493				     struct inode *table, uint16_t partition,
494				     uint32_t first_block, uint32_t block_count)
495{
496	struct udf_sb_info *sbi = UDF_SB(sb);
497	int alloc_count = 0;
498	uint32_t elen, adsize;
499	struct kernel_lb_addr eloc;
500	struct extent_position epos;
501	int8_t etype = -1;
502	struct udf_inode_info *iinfo;
503	int ret = 0;
504
505	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506		return 0;
507
508	iinfo = UDF_I(table);
509	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510		adsize = sizeof(struct short_ad);
511	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512		adsize = sizeof(struct long_ad);
513	else
514		return 0;
515
516	mutex_lock(&sbi->s_alloc_mutex);
517	epos.offset = sizeof(struct unallocSpaceEntry);
518	epos.block = iinfo->i_location;
519	epos.bh = NULL;
520	eloc.logicalBlockNum = 0xFFFFFFFF;
521
522	while (first_block != eloc.logicalBlockNum) {
523		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524		if (ret < 0)
525			goto err_out;
526		if (ret == 0)
527			break;
528		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529			  eloc.logicalBlockNum, elen, first_block);
 
530	}
531
532	if (first_block == eloc.logicalBlockNum) {
533		epos.offset -= adsize;
534
535		alloc_count = (elen >> sb->s_blocksize_bits);
536		if (alloc_count > block_count) {
537			alloc_count = block_count;
538			eloc.logicalBlockNum += alloc_count;
539			elen -= (alloc_count << sb->s_blocksize_bits);
540			udf_write_aext(table, &epos, &eloc,
541					(etype << 30) | elen, 1);
542		} else
543			udf_delete_aext(table, epos);
 
544	} else {
545		alloc_count = 0;
546	}
547
548err_out:
549	brelse(epos.bh);
550
551	if (alloc_count)
552		udf_add_free_space(sb, partition, -alloc_count);
553	mutex_unlock(&sbi->s_alloc_mutex);
554	return alloc_count;
555}
556
557static udf_pblk_t udf_table_new_block(struct super_block *sb,
 
558			       struct inode *table, uint16_t partition,
559			       uint32_t goal, int *err)
560{
561	struct udf_sb_info *sbi = UDF_SB(sb);
562	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563	udf_pblk_t newblock = 0;
564	uint32_t adsize;
565	uint32_t elen, goal_elen = 0;
566	struct kernel_lb_addr eloc, goal_eloc;
567	struct extent_position epos, goal_epos;
568	int8_t etype;
569	struct udf_inode_info *iinfo = UDF_I(table);
570	int ret = 0;
571
572	*err = -ENOSPC;
573
574	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575		adsize = sizeof(struct short_ad);
576	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577		adsize = sizeof(struct long_ad);
578	else
579		return newblock;
580
581	mutex_lock(&sbi->s_alloc_mutex);
582	if (goal >= sbi->s_partmaps[partition].s_partition_len)
583		goal = 0;
584
585	/* We search for the closest matching block to goal. If we find
586	   a exact hit, we stop. Otherwise we keep going till we run out
587	   of extents. We store the buffer_head, bloc, and extoffset
588	   of the current closest match and use that when we are done.
589	 */
590	epos.offset = sizeof(struct unallocSpaceEntry);
591	epos.block = iinfo->i_location;
592	epos.bh = goal_epos.bh = NULL;
593
594	while (spread) {
595		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596		if (ret <= 0)
597			break;
598		if (goal >= eloc.logicalBlockNum) {
599			if (goal < eloc.logicalBlockNum +
600					(elen >> sb->s_blocksize_bits))
601				nspread = 0;
602			else
603				nspread = goal - eloc.logicalBlockNum -
604					(elen >> sb->s_blocksize_bits);
605		} else {
606			nspread = eloc.logicalBlockNum - goal;
607		}
608
609		if (nspread < spread) {
610			spread = nspread;
611			if (goal_epos.bh != epos.bh) {
612				brelse(goal_epos.bh);
613				goal_epos.bh = epos.bh;
614				get_bh(goal_epos.bh);
615			}
616			goal_epos.block = epos.block;
617			goal_epos.offset = epos.offset - adsize;
618			goal_eloc = eloc;
619			goal_elen = (etype << 30) | elen;
620		}
621	}
622
623	brelse(epos.bh);
624
625	if (ret < 0 || spread == 0xFFFFFFFF) {
626		brelse(goal_epos.bh);
627		mutex_unlock(&sbi->s_alloc_mutex);
628		if (ret < 0)
629			*err = ret;
630		return 0;
631	}
632
633	/* Only allocate blocks from the beginning of the extent.
634	   That way, we only delete (empty) extents, never have to insert an
635	   extent because of splitting */
636	/* This works, but very poorly.... */
637
638	newblock = goal_eloc.logicalBlockNum;
639	goal_eloc.logicalBlockNum++;
640	goal_elen -= sb->s_blocksize;
641
642	if (goal_elen)
643		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644	else
645		udf_delete_aext(table, goal_epos);
646	brelse(goal_epos.bh);
647
648	udf_add_free_space(sb, partition, -1);
649
650	mutex_unlock(&sbi->s_alloc_mutex);
651	*err = 0;
652	return newblock;
653}
654
655void udf_free_blocks(struct super_block *sb, struct inode *inode,
656		     struct kernel_lb_addr *bloc, uint32_t offset,
657		     uint32_t count)
658{
659	uint16_t partition = bloc->partitionReferenceNum;
660	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661	uint32_t blk;
662
663	if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664	    check_add_overflow(blk, count, &blk) ||
665	    bloc->logicalBlockNum + count > map->s_partition_len) {
666		udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667			  "len %u, partition len %u\n",
668			  partition, bloc->logicalBlockNum, offset, count,
669			  map->s_partition_len);
670		return;
671	}
672
673	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675				       bloc, offset, count);
676	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677		udf_table_free_blocks(sb, map->s_uspace.s_table,
 
 
 
 
 
 
678				      bloc, offset, count);
679	}
680
681	if (inode) {
682		inode_sub_bytes(inode,
683				((sector_t)count) << sb->s_blocksize_bits);
684	}
685}
686
687inline int udf_prealloc_blocks(struct super_block *sb,
688			       struct inode *inode,
689			       uint16_t partition, uint32_t first_block,
690			       uint32_t block_count)
691{
692	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693	int allocated;
694
695	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696		allocated = udf_bitmap_prealloc_blocks(sb,
697						       map->s_uspace.s_bitmap,
698						       partition, first_block,
699						       block_count);
700	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701		allocated = udf_table_prealloc_blocks(sb,
702						      map->s_uspace.s_table,
703						      partition, first_block,
704						      block_count);
 
 
 
 
 
 
 
 
 
 
705	else
706		return 0;
707
708	if (inode && allocated > 0)
709		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710	return allocated;
711}
712
713inline udf_pblk_t udf_new_block(struct super_block *sb,
714			 struct inode *inode,
715			 uint16_t partition, uint32_t goal, int *err)
716{
717	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718	udf_pblk_t block;
719
720	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721		block = udf_bitmap_new_block(sb,
722					     map->s_uspace.s_bitmap,
723					     partition, goal, err);
724	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725		block = udf_table_new_block(sb,
726					    map->s_uspace.s_table,
 
 
 
 
727					    partition, goal, err);
 
 
 
 
728	else {
729		*err = -EIO;
730		return 0;
731	}
732	if (inode && block)
733		inode_add_bytes(inode, sb->s_blocksize);
734	return block;
735}
v3.1
 
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/buffer_head.h>
 25#include <linux/bitops.h>
 
 26
 27#include "udf_i.h"
 28#include "udf_sb.h"
 29
 30#define udf_clear_bit	__test_and_clear_bit_le
 31#define udf_set_bit	__test_and_set_bit_le
 32#define udf_test_bit	test_bit_le
 33#define udf_find_next_one_bit	find_next_bit_le
 34
 35static int read_block_bitmap(struct super_block *sb,
 36			     struct udf_bitmap *bitmap, unsigned int block,
 37			     unsigned long bitmap_nr)
 38{
 39	struct buffer_head *bh = NULL;
 40	int retval = 0;
 
 41	struct kernel_lb_addr loc;
 42
 43	loc.logicalBlockNum = bitmap->s_extPosition;
 44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 45
 46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 
 47	if (!bh)
 48		retval = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49
 50	bitmap->s_block_bitmap[bitmap_nr] = bh;
 51	return retval;
 
 
 
 
 
 
 52}
 53
 54static int __load_block_bitmap(struct super_block *sb,
 55			       struct udf_bitmap *bitmap,
 56			       unsigned int block_group)
 57{
 58	int retval = 0;
 59	int nr_groups = bitmap->s_nr_groups;
 60
 61	if (block_group >= nr_groups) {
 62		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
 63			  nr_groups);
 64	}
 65
 66	if (bitmap->s_block_bitmap[block_group]) {
 67		return block_group;
 68	} else {
 69		retval = read_block_bitmap(sb, bitmap, block_group,
 70					   block_group);
 71		if (retval < 0)
 72			return retval;
 73		return block_group;
 74	}
 75}
 76
 77static inline int load_block_bitmap(struct super_block *sb,
 78				    struct udf_bitmap *bitmap,
 79				    unsigned int block_group)
 80{
 81	int slot;
 82
 83	slot = __load_block_bitmap(sb, bitmap, block_group);
 84
 85	if (slot < 0)
 86		return slot;
 87
 88	if (!bitmap->s_block_bitmap[slot])
 89		return -EIO;
 90
 91	return slot;
 92}
 93
 94static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 95{
 96	struct udf_sb_info *sbi = UDF_SB(sb);
 97	struct logicalVolIntegrityDesc *lvid;
 98
 99	if (!sbi->s_lvid_bh)
100		return;
101
102	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104	udf_updated_lvid(sb);
105}
106
107static void udf_bitmap_free_blocks(struct super_block *sb,
108				   struct inode *inode,
109				   struct udf_bitmap *bitmap,
110				   struct kernel_lb_addr *bloc,
111				   uint32_t offset,
112				   uint32_t count)
113{
114	struct udf_sb_info *sbi = UDF_SB(sb);
115	struct buffer_head *bh = NULL;
116	struct udf_part_map *partmap;
117	unsigned long block;
118	unsigned long block_group;
119	unsigned long bit;
120	unsigned long i;
121	int bitmap_nr;
122	unsigned long overflow;
123
124	mutex_lock(&sbi->s_alloc_mutex);
125	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
126	if (bloc->logicalBlockNum + count < count ||
127	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
128		udf_debug("%d < %d || %d + %d > %d\n",
129			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
130			  count, partmap->s_partition_len);
131		goto error_return;
132	}
133
134	block = bloc->logicalBlockNum + offset +
135		(sizeof(struct spaceBitmapDesc) << 3);
136
137	do {
138		overflow = 0;
139		block_group = block >> (sb->s_blocksize_bits + 3);
140		bit = block % (sb->s_blocksize << 3);
141
142		/*
143		* Check to see if we are freeing blocks across a group boundary.
144		*/
145		if (bit + count > (sb->s_blocksize << 3)) {
146			overflow = bit + count - (sb->s_blocksize << 3);
147			count -= overflow;
148		}
149		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150		if (bitmap_nr < 0)
151			goto error_return;
152
153		bh = bitmap->s_block_bitmap[bitmap_nr];
154		for (i = 0; i < count; i++) {
155			if (udf_set_bit(bit + i, bh->b_data)) {
156				udf_debug("bit %ld already set\n", bit + i);
157				udf_debug("byte=%2x\n",
158					((char *)bh->b_data)[(bit + i) >> 3]);
159			}
160		}
161		udf_add_free_space(sb, sbi->s_partition, count);
162		mark_buffer_dirty(bh);
163		if (overflow) {
164			block += count;
165			count = overflow;
166		}
167	} while (overflow);
168
169error_return:
170	mutex_unlock(&sbi->s_alloc_mutex);
171}
172
173static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174				      struct inode *inode,
175				      struct udf_bitmap *bitmap,
176				      uint16_t partition, uint32_t first_block,
177				      uint32_t block_count)
178{
179	struct udf_sb_info *sbi = UDF_SB(sb);
180	int alloc_count = 0;
181	int bit, block, block_group, group_start;
182	int nr_groups, bitmap_nr;
183	struct buffer_head *bh;
184	__u32 part_len;
185
186	mutex_lock(&sbi->s_alloc_mutex);
187	part_len = sbi->s_partmaps[partition].s_partition_len;
188	if (first_block >= part_len)
189		goto out;
190
191	if (first_block + block_count > part_len)
192		block_count = part_len - first_block;
193
194	do {
195		nr_groups = udf_compute_nr_groups(sb, partition);
196		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
197		block_group = block >> (sb->s_blocksize_bits + 3);
198		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
199
200		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
201		if (bitmap_nr < 0)
202			goto out;
203		bh = bitmap->s_block_bitmap[bitmap_nr];
204
205		bit = block % (sb->s_blocksize << 3);
206
207		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
208			if (!udf_clear_bit(bit, bh->b_data))
209				goto out;
210			block_count--;
211			alloc_count++;
212			bit++;
213			block++;
214		}
215		mark_buffer_dirty(bh);
216	} while (block_count > 0);
217
218out:
219	udf_add_free_space(sb, partition, -alloc_count);
220	mutex_unlock(&sbi->s_alloc_mutex);
221	return alloc_count;
222}
223
224static int udf_bitmap_new_block(struct super_block *sb,
225				struct inode *inode,
226				struct udf_bitmap *bitmap, uint16_t partition,
227				uint32_t goal, int *err)
228{
229	struct udf_sb_info *sbi = UDF_SB(sb);
230	int newbit, bit = 0, block, block_group, group_start;
 
 
231	int end_goal, nr_groups, bitmap_nr, i;
232	struct buffer_head *bh = NULL;
233	char *ptr;
234	int newblock = 0;
235
236	*err = -ENOSPC;
237	mutex_lock(&sbi->s_alloc_mutex);
238
239repeat:
240	if (goal >= sbi->s_partmaps[partition].s_partition_len)
241		goal = 0;
242
243	nr_groups = bitmap->s_nr_groups;
244	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
245	block_group = block >> (sb->s_blocksize_bits + 3);
246	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
247
248	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
249	if (bitmap_nr < 0)
250		goto error_return;
251	bh = bitmap->s_block_bitmap[bitmap_nr];
252	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
253		      sb->s_blocksize - group_start);
254
255	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
256		bit = block % (sb->s_blocksize << 3);
257		if (udf_test_bit(bit, bh->b_data))
258			goto got_block;
259
260		end_goal = (bit + 63) & ~63;
261		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
262		if (bit < end_goal)
263			goto got_block;
264
265		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
266			      sb->s_blocksize - ((bit + 7) >> 3));
267		newbit = (ptr - ((char *)bh->b_data)) << 3;
268		if (newbit < sb->s_blocksize << 3) {
269			bit = newbit;
270			goto search_back;
271		}
272
273		newbit = udf_find_next_one_bit(bh->b_data,
274					       sb->s_blocksize << 3, bit);
275		if (newbit < sb->s_blocksize << 3) {
276			bit = newbit;
277			goto got_block;
278		}
279	}
280
281	for (i = 0; i < (nr_groups * 2); i++) {
282		block_group++;
283		if (block_group >= nr_groups)
284			block_group = 0;
285		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
286
287		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
288		if (bitmap_nr < 0)
289			goto error_return;
290		bh = bitmap->s_block_bitmap[bitmap_nr];
291		if (i < nr_groups) {
292			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
293				      sb->s_blocksize - group_start);
294			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
295				bit = (ptr - ((char *)bh->b_data)) << 3;
296				break;
297			}
298		} else {
299			bit = udf_find_next_one_bit(bh->b_data,
300						    sb->s_blocksize << 3,
301						    group_start << 3);
302			if (bit < sb->s_blocksize << 3)
303				break;
304		}
305	}
306	if (i >= (nr_groups * 2)) {
307		mutex_unlock(&sbi->s_alloc_mutex);
308		return newblock;
309	}
310	if (bit < sb->s_blocksize << 3)
311		goto search_back;
312	else
313		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
314					    group_start << 3);
315	if (bit >= sb->s_blocksize << 3) {
316		mutex_unlock(&sbi->s_alloc_mutex);
317		return 0;
318	}
319
320search_back:
321	i = 0;
322	while (i < 7 && bit > (group_start << 3) &&
323	       udf_test_bit(bit - 1, bh->b_data)) {
324		++i;
325		--bit;
326	}
327
328got_block:
329	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
330		(sizeof(struct spaceBitmapDesc) << 3);
331
 
 
 
 
 
 
 
 
 
 
 
332	if (!udf_clear_bit(bit, bh->b_data)) {
333		udf_debug("bit already cleared for block %d\n", bit);
334		goto repeat;
335	}
336
337	mark_buffer_dirty(bh);
338
339	udf_add_free_space(sb, partition, -1);
340	mutex_unlock(&sbi->s_alloc_mutex);
341	*err = 0;
342	return newblock;
343
344error_return:
345	*err = -EIO;
346	mutex_unlock(&sbi->s_alloc_mutex);
347	return 0;
348}
349
350static void udf_table_free_blocks(struct super_block *sb,
351				  struct inode *inode,
352				  struct inode *table,
353				  struct kernel_lb_addr *bloc,
354				  uint32_t offset,
355				  uint32_t count)
356{
357	struct udf_sb_info *sbi = UDF_SB(sb);
358	struct udf_part_map *partmap;
359	uint32_t start, end;
360	uint32_t elen;
361	struct kernel_lb_addr eloc;
362	struct extent_position oepos, epos;
363	int8_t etype;
364	int i;
365	struct udf_inode_info *iinfo;
 
366
367	mutex_lock(&sbi->s_alloc_mutex);
368	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
369	if (bloc->logicalBlockNum + count < count ||
370	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
371		udf_debug("%d < %d || %d + %d > %d\n",
372			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum, count,
373			  partmap->s_partition_len);
374		goto error_return;
375	}
376
377	iinfo = UDF_I(table);
378	udf_add_free_space(sb, sbi->s_partition, count);
379
380	start = bloc->logicalBlockNum + offset;
381	end = bloc->logicalBlockNum + offset + count - 1;
382
383	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
384	elen = 0;
385	epos.block = oepos.block = iinfo->i_location;
386	epos.bh = oepos.bh = NULL;
387
388	while (count &&
389	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 
 
 
 
390		if (((eloc.logicalBlockNum +
391			(elen >> sb->s_blocksize_bits)) == start)) {
392			if ((0x3FFFFFFF - elen) <
393					(count << sb->s_blocksize_bits)) {
394				uint32_t tmp = ((0x3FFFFFFF - elen) >>
395							sb->s_blocksize_bits);
396				count -= tmp;
397				start += tmp;
398				elen = (etype << 30) |
399					(0x40000000 - sb->s_blocksize);
400			} else {
401				elen = (etype << 30) |
402					(elen +
403					(count << sb->s_blocksize_bits));
404				start += count;
405				count = 0;
406			}
407			udf_write_aext(table, &oepos, &eloc, elen, 1);
408		} else if (eloc.logicalBlockNum == (end + 1)) {
409			if ((0x3FFFFFFF - elen) <
410					(count << sb->s_blocksize_bits)) {
411				uint32_t tmp = ((0x3FFFFFFF - elen) >>
412						sb->s_blocksize_bits);
413				count -= tmp;
414				end -= tmp;
415				eloc.logicalBlockNum -= tmp;
416				elen = (etype << 30) |
417					(0x40000000 - sb->s_blocksize);
418			} else {
419				eloc.logicalBlockNum = start;
420				elen = (etype << 30) |
421					(elen +
422					(count << sb->s_blocksize_bits));
423				end -= count;
424				count = 0;
425			}
426			udf_write_aext(table, &oepos, &eloc, elen, 1);
427		}
428
429		if (epos.bh != oepos.bh) {
430			i = -1;
431			oepos.block = epos.block;
432			brelse(oepos.bh);
433			get_bh(epos.bh);
434			oepos.bh = epos.bh;
435			oepos.offset = 0;
436		} else {
437			oepos.offset = epos.offset;
438		}
439	}
440
441	if (count) {
442		/*
443		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
444		 * allocate a new block, and since we hold the super block
445		 * lock already very bad things would happen :)
446		 *
447		 * We copy the behavior of udf_add_aext, but instead of
448		 * trying to allocate a new block close to the existing one,
449		 * we just steal a block from the extent we are trying to add.
450		 *
451		 * It would be nice if the blocks were close together, but it
452		 * isn't required.
453		 */
454
455		int adsize;
456		struct short_ad *sad = NULL;
457		struct long_ad *lad = NULL;
458		struct allocExtDesc *aed;
459
460		eloc.logicalBlockNum = start;
461		elen = EXT_RECORDED_ALLOCATED |
462			(count << sb->s_blocksize_bits);
463
464		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
465			adsize = sizeof(struct short_ad);
466		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
467			adsize = sizeof(struct long_ad);
468		else {
469			brelse(oepos.bh);
470			brelse(epos.bh);
471			goto error_return;
472		}
473
474		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
475			unsigned char *sptr, *dptr;
476			int loffset;
477
478			brelse(oepos.bh);
479			oepos = epos;
480
481			/* Steal a block from the extent being free'd */
482			epos.block.logicalBlockNum = eloc.logicalBlockNum;
483			eloc.logicalBlockNum++;
484			elen -= sb->s_blocksize;
485
486			epos.bh = udf_tread(sb,
487					udf_get_lb_pblock(sb, &epos.block, 0));
488			if (!epos.bh) {
489				brelse(oepos.bh);
490				goto error_return;
491			}
492			aed = (struct allocExtDesc *)(epos.bh->b_data);
493			aed->previousAllocExtLocation =
494				cpu_to_le32(oepos.block.logicalBlockNum);
495			if (epos.offset + adsize > sb->s_blocksize) {
496				loffset = epos.offset;
497				aed->lengthAllocDescs = cpu_to_le32(adsize);
498				sptr = iinfo->i_ext.i_data + epos.offset
499								- adsize;
500				dptr = epos.bh->b_data +
501					sizeof(struct allocExtDesc);
502				memcpy(dptr, sptr, adsize);
503				epos.offset = sizeof(struct allocExtDesc) +
504						adsize;
505			} else {
506				loffset = epos.offset + adsize;
507				aed->lengthAllocDescs = cpu_to_le32(0);
508				if (oepos.bh) {
509					sptr = oepos.bh->b_data + epos.offset;
510					aed = (struct allocExtDesc *)
511						oepos.bh->b_data;
512					le32_add_cpu(&aed->lengthAllocDescs,
513							adsize);
514				} else {
515					sptr = iinfo->i_ext.i_data +
516								epos.offset;
517					iinfo->i_lenAlloc += adsize;
518					mark_inode_dirty(table);
519				}
520				epos.offset = sizeof(struct allocExtDesc);
521			}
522			if (sbi->s_udfrev >= 0x0200)
523				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
524					    3, 1, epos.block.logicalBlockNum,
525					    sizeof(struct tag));
526			else
527				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
528					    2, 1, epos.block.logicalBlockNum,
529					    sizeof(struct tag));
530
531			switch (iinfo->i_alloc_type) {
532			case ICBTAG_FLAG_AD_SHORT:
533				sad = (struct short_ad *)sptr;
534				sad->extLength = cpu_to_le32(
535					EXT_NEXT_EXTENT_ALLOCDECS |
536					sb->s_blocksize);
537				sad->extPosition =
538					cpu_to_le32(epos.block.logicalBlockNum);
539				break;
540			case ICBTAG_FLAG_AD_LONG:
541				lad = (struct long_ad *)sptr;
542				lad->extLength = cpu_to_le32(
543					EXT_NEXT_EXTENT_ALLOCDECS |
544					sb->s_blocksize);
545				lad->extLocation =
546					cpu_to_lelb(epos.block);
547				break;
548			}
549			if (oepos.bh) {
550				udf_update_tag(oepos.bh->b_data, loffset);
551				mark_buffer_dirty(oepos.bh);
552			} else {
553				mark_inode_dirty(table);
554			}
555		}
556
557		/* It's possible that stealing the block emptied the extent */
558		if (elen) {
559			udf_write_aext(table, &epos, &eloc, elen, 1);
560
561			if (!epos.bh) {
562				iinfo->i_lenAlloc += adsize;
563				mark_inode_dirty(table);
564			} else {
565				aed = (struct allocExtDesc *)epos.bh->b_data;
566				le32_add_cpu(&aed->lengthAllocDescs, adsize);
567				udf_update_tag(epos.bh->b_data, epos.offset);
568				mark_buffer_dirty(epos.bh);
569			}
570		}
571	}
572
 
573	brelse(epos.bh);
574	brelse(oepos.bh);
575
576error_return:
577	mutex_unlock(&sbi->s_alloc_mutex);
578	return;
579}
580
581static int udf_table_prealloc_blocks(struct super_block *sb,
582				     struct inode *inode,
583				     struct inode *table, uint16_t partition,
584				     uint32_t first_block, uint32_t block_count)
585{
586	struct udf_sb_info *sbi = UDF_SB(sb);
587	int alloc_count = 0;
588	uint32_t elen, adsize;
589	struct kernel_lb_addr eloc;
590	struct extent_position epos;
591	int8_t etype = -1;
592	struct udf_inode_info *iinfo;
 
593
594	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
595		return 0;
596
597	iinfo = UDF_I(table);
598	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599		adsize = sizeof(struct short_ad);
600	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601		adsize = sizeof(struct long_ad);
602	else
603		return 0;
604
605	mutex_lock(&sbi->s_alloc_mutex);
606	epos.offset = sizeof(struct unallocSpaceEntry);
607	epos.block = iinfo->i_location;
608	epos.bh = NULL;
609	eloc.logicalBlockNum = 0xFFFFFFFF;
610
611	while (first_block != eloc.logicalBlockNum &&
612	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
613		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
 
 
 
 
614			  eloc.logicalBlockNum, elen, first_block);
615		; /* empty loop body */
616	}
617
618	if (first_block == eloc.logicalBlockNum) {
619		epos.offset -= adsize;
620
621		alloc_count = (elen >> sb->s_blocksize_bits);
622		if (alloc_count > block_count) {
623			alloc_count = block_count;
624			eloc.logicalBlockNum += alloc_count;
625			elen -= (alloc_count << sb->s_blocksize_bits);
626			udf_write_aext(table, &epos, &eloc,
627					(etype << 30) | elen, 1);
628		} else
629			udf_delete_aext(table, epos, eloc,
630					(etype << 30) | elen);
631	} else {
632		alloc_count = 0;
633	}
634
 
635	brelse(epos.bh);
636
637	if (alloc_count)
638		udf_add_free_space(sb, partition, -alloc_count);
639	mutex_unlock(&sbi->s_alloc_mutex);
640	return alloc_count;
641}
642
643static int udf_table_new_block(struct super_block *sb,
644			       struct inode *inode,
645			       struct inode *table, uint16_t partition,
646			       uint32_t goal, int *err)
647{
648	struct udf_sb_info *sbi = UDF_SB(sb);
649	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
650	uint32_t newblock = 0, adsize;
 
651	uint32_t elen, goal_elen = 0;
652	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
653	struct extent_position epos, goal_epos;
654	int8_t etype;
655	struct udf_inode_info *iinfo = UDF_I(table);
 
656
657	*err = -ENOSPC;
658
659	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
660		adsize = sizeof(struct short_ad);
661	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
662		adsize = sizeof(struct long_ad);
663	else
664		return newblock;
665
666	mutex_lock(&sbi->s_alloc_mutex);
667	if (goal >= sbi->s_partmaps[partition].s_partition_len)
668		goal = 0;
669
670	/* We search for the closest matching block to goal. If we find
671	   a exact hit, we stop. Otherwise we keep going till we run out
672	   of extents. We store the buffer_head, bloc, and extoffset
673	   of the current closest match and use that when we are done.
674	 */
675	epos.offset = sizeof(struct unallocSpaceEntry);
676	epos.block = iinfo->i_location;
677	epos.bh = goal_epos.bh = NULL;
678
679	while (spread &&
680	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 
 
681		if (goal >= eloc.logicalBlockNum) {
682			if (goal < eloc.logicalBlockNum +
683					(elen >> sb->s_blocksize_bits))
684				nspread = 0;
685			else
686				nspread = goal - eloc.logicalBlockNum -
687					(elen >> sb->s_blocksize_bits);
688		} else {
689			nspread = eloc.logicalBlockNum - goal;
690		}
691
692		if (nspread < spread) {
693			spread = nspread;
694			if (goal_epos.bh != epos.bh) {
695				brelse(goal_epos.bh);
696				goal_epos.bh = epos.bh;
697				get_bh(goal_epos.bh);
698			}
699			goal_epos.block = epos.block;
700			goal_epos.offset = epos.offset - adsize;
701			goal_eloc = eloc;
702			goal_elen = (etype << 30) | elen;
703		}
704	}
705
706	brelse(epos.bh);
707
708	if (spread == 0xFFFFFFFF) {
709		brelse(goal_epos.bh);
710		mutex_unlock(&sbi->s_alloc_mutex);
 
 
711		return 0;
712	}
713
714	/* Only allocate blocks from the beginning of the extent.
715	   That way, we only delete (empty) extents, never have to insert an
716	   extent because of splitting */
717	/* This works, but very poorly.... */
718
719	newblock = goal_eloc.logicalBlockNum;
720	goal_eloc.logicalBlockNum++;
721	goal_elen -= sb->s_blocksize;
722
723	if (goal_elen)
724		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
725	else
726		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
727	brelse(goal_epos.bh);
728
729	udf_add_free_space(sb, partition, -1);
730
731	mutex_unlock(&sbi->s_alloc_mutex);
732	*err = 0;
733	return newblock;
734}
735
736void udf_free_blocks(struct super_block *sb, struct inode *inode,
737		     struct kernel_lb_addr *bloc, uint32_t offset,
738		     uint32_t count)
739{
740	uint16_t partition = bloc->partitionReferenceNum;
741	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
 
 
 
 
 
 
 
 
 
 
742
743	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
744		udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
745				       bloc, offset, count);
746	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
747		udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
748				      bloc, offset, count);
749	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
750		udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
751				       bloc, offset, count);
752	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
753		udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
754				      bloc, offset, count);
 
 
 
 
 
755	}
756}
757
758inline int udf_prealloc_blocks(struct super_block *sb,
759			       struct inode *inode,
760			       uint16_t partition, uint32_t first_block,
761			       uint32_t block_count)
762{
763	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
764
765	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
766		return udf_bitmap_prealloc_blocks(sb, inode,
767						  map->s_uspace.s_bitmap,
768						  partition, first_block,
769						  block_count);
770	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
771		return udf_table_prealloc_blocks(sb, inode,
772						 map->s_uspace.s_table,
773						 partition, first_block,
774						 block_count);
775	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
776		return udf_bitmap_prealloc_blocks(sb, inode,
777						  map->s_fspace.s_bitmap,
778						  partition, first_block,
779						  block_count);
780	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
781		return udf_table_prealloc_blocks(sb, inode,
782						 map->s_fspace.s_table,
783						 partition, first_block,
784						 block_count);
785	else
786		return 0;
 
 
 
 
787}
788
789inline int udf_new_block(struct super_block *sb,
790			 struct inode *inode,
791			 uint16_t partition, uint32_t goal, int *err)
792{
793	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
794
795	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
796		return udf_bitmap_new_block(sb, inode,
797					   map->s_uspace.s_bitmap,
798					   partition, goal, err);
799	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
800		return udf_table_new_block(sb, inode,
801					   map->s_uspace.s_table,
802					   partition, goal, err);
803	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
804		return udf_bitmap_new_block(sb, inode,
805					    map->s_fspace.s_bitmap,
806					    partition, goal, err);
807	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
808		return udf_table_new_block(sb, inode,
809					   map->s_fspace.s_table,
810					   partition, goal, err);
811	else {
812		*err = -EIO;
813		return 0;
814	}
 
 
 
815}