Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * balloc.c
4 *
5 * PURPOSE
6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1999-2001 Ben Fennema
10 * (C) 1999 Stelias Computing Inc
11 *
12 * HISTORY
13 *
14 * 02/24/99 blf Created.
15 *
16 */
17
18#include "udfdecl.h"
19
20#include <linux/bitops.h>
21#include <linux/overflow.h>
22
23#include "udf_i.h"
24#include "udf_sb.h"
25
26#define udf_clear_bit __test_and_clear_bit_le
27#define udf_set_bit __test_and_set_bit_le
28#define udf_test_bit test_bit_le
29#define udf_find_next_one_bit find_next_bit_le
30
31static int read_block_bitmap(struct super_block *sb,
32 struct udf_bitmap *bitmap, unsigned int block,
33 unsigned long bitmap_nr)
34{
35 struct buffer_head *bh = NULL;
36 int i;
37 int max_bits, off, count;
38 struct kernel_lb_addr loc;
39
40 loc.logicalBlockNum = bitmap->s_extPosition;
41 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
42
43 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
44 bitmap->s_block_bitmap[bitmap_nr] = bh;
45 if (!bh)
46 return -EIO;
47
48 /* Check consistency of Space Bitmap buffer. */
49 max_bits = sb->s_blocksize * 8;
50 if (!bitmap_nr) {
51 off = sizeof(struct spaceBitmapDesc) << 3;
52 count = min(max_bits - off, bitmap->s_nr_groups);
53 } else {
54 /*
55 * Rough check if bitmap number is too big to have any bitmap
56 * blocks reserved.
57 */
58 if (bitmap_nr >
59 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
60 return 0;
61 off = 0;
62 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
63 (sizeof(struct spaceBitmapDesc) << 3);
64 count = min(count, max_bits);
65 }
66
67 for (i = 0; i < count; i++)
68 if (udf_test_bit(i + off, bh->b_data)) {
69 bitmap->s_block_bitmap[bitmap_nr] =
70 ERR_PTR(-EFSCORRUPTED);
71 brelse(bh);
72 return -EFSCORRUPTED;
73 }
74 return 0;
75}
76
77static int load_block_bitmap(struct super_block *sb,
78 struct udf_bitmap *bitmap,
79 unsigned int block_group)
80{
81 int retval = 0;
82 int nr_groups = bitmap->s_nr_groups;
83
84 if (block_group >= nr_groups) {
85 udf_debug("block_group (%u) > nr_groups (%d)\n",
86 block_group, nr_groups);
87 }
88
89 if (bitmap->s_block_bitmap[block_group]) {
90 /*
91 * The bitmap failed verification in the past. No point in
92 * trying again.
93 */
94 if (IS_ERR(bitmap->s_block_bitmap[block_group]))
95 return PTR_ERR(bitmap->s_block_bitmap[block_group]);
96 return block_group;
97 }
98
99 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100 if (retval < 0)
101 return retval;
102
103 return block_group;
104}
105
106static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107{
108 struct udf_sb_info *sbi = UDF_SB(sb);
109 struct logicalVolIntegrityDesc *lvid;
110
111 if (!sbi->s_lvid_bh)
112 return;
113
114 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116 udf_updated_lvid(sb);
117}
118
119static void udf_bitmap_free_blocks(struct super_block *sb,
120 struct udf_bitmap *bitmap,
121 struct kernel_lb_addr *bloc,
122 uint32_t offset,
123 uint32_t count)
124{
125 struct udf_sb_info *sbi = UDF_SB(sb);
126 struct buffer_head *bh = NULL;
127 unsigned long block;
128 unsigned long block_group;
129 unsigned long bit;
130 unsigned long i;
131 int bitmap_nr;
132 unsigned long overflow;
133
134 mutex_lock(&sbi->s_alloc_mutex);
135 /* We make sure this cannot overflow when mounting the filesystem */
136 block = bloc->logicalBlockNum + offset +
137 (sizeof(struct spaceBitmapDesc) << 3);
138 do {
139 overflow = 0;
140 block_group = block >> (sb->s_blocksize_bits + 3);
141 bit = block % (sb->s_blocksize << 3);
142
143 /*
144 * Check to see if we are freeing blocks across a group boundary.
145 */
146 if (bit + count > (sb->s_blocksize << 3)) {
147 overflow = bit + count - (sb->s_blocksize << 3);
148 count -= overflow;
149 }
150 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151 if (bitmap_nr < 0)
152 goto error_return;
153
154 bh = bitmap->s_block_bitmap[bitmap_nr];
155 for (i = 0; i < count; i++) {
156 if (udf_set_bit(bit + i, bh->b_data)) {
157 udf_debug("bit %lu already set\n", bit + i);
158 udf_debug("byte=%2x\n",
159 ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160 }
161 }
162 udf_add_free_space(sb, sbi->s_partition, count);
163 mark_buffer_dirty(bh);
164 if (overflow) {
165 block += count;
166 count = overflow;
167 }
168 } while (overflow);
169
170error_return:
171 mutex_unlock(&sbi->s_alloc_mutex);
172}
173
174static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175 struct udf_bitmap *bitmap,
176 uint16_t partition, uint32_t first_block,
177 uint32_t block_count)
178{
179 struct udf_sb_info *sbi = UDF_SB(sb);
180 int alloc_count = 0;
181 int bit, block, block_group;
182 int bitmap_nr;
183 struct buffer_head *bh;
184 __u32 part_len;
185
186 mutex_lock(&sbi->s_alloc_mutex);
187 part_len = sbi->s_partmaps[partition].s_partition_len;
188 if (first_block >= part_len)
189 goto out;
190
191 if (first_block + block_count > part_len)
192 block_count = part_len - first_block;
193
194 do {
195 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196 block_group = block >> (sb->s_blocksize_bits + 3);
197
198 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199 if (bitmap_nr < 0)
200 goto out;
201 bh = bitmap->s_block_bitmap[bitmap_nr];
202
203 bit = block % (sb->s_blocksize << 3);
204
205 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206 if (!udf_clear_bit(bit, bh->b_data))
207 goto out;
208 block_count--;
209 alloc_count++;
210 bit++;
211 block++;
212 }
213 mark_buffer_dirty(bh);
214 } while (block_count > 0);
215
216out:
217 udf_add_free_space(sb, partition, -alloc_count);
218 mutex_unlock(&sbi->s_alloc_mutex);
219 return alloc_count;
220}
221
222static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223 struct udf_bitmap *bitmap, uint16_t partition,
224 uint32_t goal, int *err)
225{
226 struct udf_sb_info *sbi = UDF_SB(sb);
227 int newbit, bit = 0;
228 udf_pblk_t block;
229 int block_group, group_start;
230 int end_goal, nr_groups, bitmap_nr, i;
231 struct buffer_head *bh = NULL;
232 char *ptr;
233 udf_pblk_t newblock = 0;
234
235 *err = -ENOSPC;
236 mutex_lock(&sbi->s_alloc_mutex);
237
238repeat:
239 if (goal >= sbi->s_partmaps[partition].s_partition_len)
240 goal = 0;
241
242 nr_groups = bitmap->s_nr_groups;
243 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244 block_group = block >> (sb->s_blocksize_bits + 3);
245 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248 if (bitmap_nr < 0)
249 goto error_return;
250 bh = bitmap->s_block_bitmap[bitmap_nr];
251 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252 sb->s_blocksize - group_start);
253
254 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255 bit = block % (sb->s_blocksize << 3);
256 if (udf_test_bit(bit, bh->b_data))
257 goto got_block;
258
259 end_goal = (bit + 63) & ~63;
260 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261 if (bit < end_goal)
262 goto got_block;
263
264 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265 sb->s_blocksize - ((bit + 7) >> 3));
266 newbit = (ptr - ((char *)bh->b_data)) << 3;
267 if (newbit < sb->s_blocksize << 3) {
268 bit = newbit;
269 goto search_back;
270 }
271
272 newbit = udf_find_next_one_bit(bh->b_data,
273 sb->s_blocksize << 3, bit);
274 if (newbit < sb->s_blocksize << 3) {
275 bit = newbit;
276 goto got_block;
277 }
278 }
279
280 for (i = 0; i < (nr_groups * 2); i++) {
281 block_group++;
282 if (block_group >= nr_groups)
283 block_group = 0;
284 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287 if (bitmap_nr < 0)
288 goto error_return;
289 bh = bitmap->s_block_bitmap[bitmap_nr];
290 if (i < nr_groups) {
291 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292 sb->s_blocksize - group_start);
293 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294 bit = (ptr - ((char *)bh->b_data)) << 3;
295 break;
296 }
297 } else {
298 bit = udf_find_next_one_bit(bh->b_data,
299 sb->s_blocksize << 3,
300 group_start << 3);
301 if (bit < sb->s_blocksize << 3)
302 break;
303 }
304 }
305 if (i >= (nr_groups * 2)) {
306 mutex_unlock(&sbi->s_alloc_mutex);
307 return newblock;
308 }
309 if (bit < sb->s_blocksize << 3)
310 goto search_back;
311 else
312 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313 group_start << 3);
314 if (bit >= sb->s_blocksize << 3) {
315 mutex_unlock(&sbi->s_alloc_mutex);
316 return 0;
317 }
318
319search_back:
320 i = 0;
321 while (i < 7 && bit > (group_start << 3) &&
322 udf_test_bit(bit - 1, bh->b_data)) {
323 ++i;
324 --bit;
325 }
326
327got_block:
328 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329 (sizeof(struct spaceBitmapDesc) << 3);
330
331 if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332 /*
333 * Ran off the end of the bitmap, and bits following are
334 * non-compliant (not all zero)
335 */
336 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337 " as free, partition length is %u)\n", partition,
338 newblock, sbi->s_partmaps[partition].s_partition_len);
339 goto error_return;
340 }
341
342 if (!udf_clear_bit(bit, bh->b_data)) {
343 udf_debug("bit already cleared for block %d\n", bit);
344 goto repeat;
345 }
346
347 mark_buffer_dirty(bh);
348
349 udf_add_free_space(sb, partition, -1);
350 mutex_unlock(&sbi->s_alloc_mutex);
351 *err = 0;
352 return newblock;
353
354error_return:
355 *err = -EIO;
356 mutex_unlock(&sbi->s_alloc_mutex);
357 return 0;
358}
359
360static void udf_table_free_blocks(struct super_block *sb,
361 struct inode *table,
362 struct kernel_lb_addr *bloc,
363 uint32_t offset,
364 uint32_t count)
365{
366 struct udf_sb_info *sbi = UDF_SB(sb);
367 uint32_t start, end;
368 uint32_t elen;
369 struct kernel_lb_addr eloc;
370 struct extent_position oepos, epos;
371 int8_t etype;
372 struct udf_inode_info *iinfo;
373 int ret = 0;
374
375 mutex_lock(&sbi->s_alloc_mutex);
376 iinfo = UDF_I(table);
377 udf_add_free_space(sb, sbi->s_partition, count);
378
379 start = bloc->logicalBlockNum + offset;
380 end = bloc->logicalBlockNum + offset + count - 1;
381
382 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383 elen = 0;
384 epos.block = oepos.block = iinfo->i_location;
385 epos.bh = oepos.bh = NULL;
386
387 while (count) {
388 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389 if (ret < 0)
390 goto error_return;
391 if (ret == 0)
392 break;
393 if (((eloc.logicalBlockNum +
394 (elen >> sb->s_blocksize_bits)) == start)) {
395 if ((0x3FFFFFFF - elen) <
396 (count << sb->s_blocksize_bits)) {
397 uint32_t tmp = ((0x3FFFFFFF - elen) >>
398 sb->s_blocksize_bits);
399 count -= tmp;
400 start += tmp;
401 elen = (etype << 30) |
402 (0x40000000 - sb->s_blocksize);
403 } else {
404 elen = (etype << 30) |
405 (elen +
406 (count << sb->s_blocksize_bits));
407 start += count;
408 count = 0;
409 }
410 udf_write_aext(table, &oepos, &eloc, elen, 1);
411 } else if (eloc.logicalBlockNum == (end + 1)) {
412 if ((0x3FFFFFFF - elen) <
413 (count << sb->s_blocksize_bits)) {
414 uint32_t tmp = ((0x3FFFFFFF - elen) >>
415 sb->s_blocksize_bits);
416 count -= tmp;
417 end -= tmp;
418 eloc.logicalBlockNum -= tmp;
419 elen = (etype << 30) |
420 (0x40000000 - sb->s_blocksize);
421 } else {
422 eloc.logicalBlockNum = start;
423 elen = (etype << 30) |
424 (elen +
425 (count << sb->s_blocksize_bits));
426 end -= count;
427 count = 0;
428 }
429 udf_write_aext(table, &oepos, &eloc, elen, 1);
430 }
431
432 if (epos.bh != oepos.bh) {
433 oepos.block = epos.block;
434 brelse(oepos.bh);
435 get_bh(epos.bh);
436 oepos.bh = epos.bh;
437 oepos.offset = 0;
438 } else {
439 oepos.offset = epos.offset;
440 }
441 }
442
443 if (count) {
444 /*
445 * NOTE: we CANNOT use udf_add_aext here, as it can try to
446 * allocate a new block, and since we hold the super block
447 * lock already very bad things would happen :)
448 *
449 * We copy the behavior of udf_add_aext, but instead of
450 * trying to allocate a new block close to the existing one,
451 * we just steal a block from the extent we are trying to add.
452 *
453 * It would be nice if the blocks were close together, but it
454 * isn't required.
455 */
456
457 int adsize;
458
459 eloc.logicalBlockNum = start;
460 elen = EXT_RECORDED_ALLOCATED |
461 (count << sb->s_blocksize_bits);
462
463 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464 adsize = sizeof(struct short_ad);
465 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466 adsize = sizeof(struct long_ad);
467 else
468 goto error_return;
469
470 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471 /* Steal a block from the extent being free'd */
472 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473 &epos);
474
475 eloc.logicalBlockNum++;
476 elen -= sb->s_blocksize;
477 }
478
479 /* It's possible that stealing the block emptied the extent */
480 if (elen)
481 __udf_add_aext(table, &epos, &eloc, elen, 1);
482 }
483
484error_return:
485 brelse(epos.bh);
486 brelse(oepos.bh);
487
488 mutex_unlock(&sbi->s_alloc_mutex);
489 return;
490}
491
492static int udf_table_prealloc_blocks(struct super_block *sb,
493 struct inode *table, uint16_t partition,
494 uint32_t first_block, uint32_t block_count)
495{
496 struct udf_sb_info *sbi = UDF_SB(sb);
497 int alloc_count = 0;
498 uint32_t elen, adsize;
499 struct kernel_lb_addr eloc;
500 struct extent_position epos;
501 int8_t etype = -1;
502 struct udf_inode_info *iinfo;
503 int ret = 0;
504
505 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506 return 0;
507
508 iinfo = UDF_I(table);
509 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510 adsize = sizeof(struct short_ad);
511 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512 adsize = sizeof(struct long_ad);
513 else
514 return 0;
515
516 mutex_lock(&sbi->s_alloc_mutex);
517 epos.offset = sizeof(struct unallocSpaceEntry);
518 epos.block = iinfo->i_location;
519 epos.bh = NULL;
520 eloc.logicalBlockNum = 0xFFFFFFFF;
521
522 while (first_block != eloc.logicalBlockNum) {
523 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524 if (ret < 0)
525 goto err_out;
526 if (ret == 0)
527 break;
528 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529 eloc.logicalBlockNum, elen, first_block);
530 }
531
532 if (first_block == eloc.logicalBlockNum) {
533 epos.offset -= adsize;
534
535 alloc_count = (elen >> sb->s_blocksize_bits);
536 if (alloc_count > block_count) {
537 alloc_count = block_count;
538 eloc.logicalBlockNum += alloc_count;
539 elen -= (alloc_count << sb->s_blocksize_bits);
540 udf_write_aext(table, &epos, &eloc,
541 (etype << 30) | elen, 1);
542 } else
543 udf_delete_aext(table, epos);
544 } else {
545 alloc_count = 0;
546 }
547
548err_out:
549 brelse(epos.bh);
550
551 if (alloc_count)
552 udf_add_free_space(sb, partition, -alloc_count);
553 mutex_unlock(&sbi->s_alloc_mutex);
554 return alloc_count;
555}
556
557static udf_pblk_t udf_table_new_block(struct super_block *sb,
558 struct inode *table, uint16_t partition,
559 uint32_t goal, int *err)
560{
561 struct udf_sb_info *sbi = UDF_SB(sb);
562 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563 udf_pblk_t newblock = 0;
564 uint32_t adsize;
565 uint32_t elen, goal_elen = 0;
566 struct kernel_lb_addr eloc, goal_eloc;
567 struct extent_position epos, goal_epos;
568 int8_t etype;
569 struct udf_inode_info *iinfo = UDF_I(table);
570 int ret = 0;
571
572 *err = -ENOSPC;
573
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 adsize = sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 adsize = sizeof(struct long_ad);
578 else
579 return newblock;
580
581 mutex_lock(&sbi->s_alloc_mutex);
582 if (goal >= sbi->s_partmaps[partition].s_partition_len)
583 goal = 0;
584
585 /* We search for the closest matching block to goal. If we find
586 a exact hit, we stop. Otherwise we keep going till we run out
587 of extents. We store the buffer_head, bloc, and extoffset
588 of the current closest match and use that when we are done.
589 */
590 epos.offset = sizeof(struct unallocSpaceEntry);
591 epos.block = iinfo->i_location;
592 epos.bh = goal_epos.bh = NULL;
593
594 while (spread) {
595 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596 if (ret <= 0)
597 break;
598 if (goal >= eloc.logicalBlockNum) {
599 if (goal < eloc.logicalBlockNum +
600 (elen >> sb->s_blocksize_bits))
601 nspread = 0;
602 else
603 nspread = goal - eloc.logicalBlockNum -
604 (elen >> sb->s_blocksize_bits);
605 } else {
606 nspread = eloc.logicalBlockNum - goal;
607 }
608
609 if (nspread < spread) {
610 spread = nspread;
611 if (goal_epos.bh != epos.bh) {
612 brelse(goal_epos.bh);
613 goal_epos.bh = epos.bh;
614 get_bh(goal_epos.bh);
615 }
616 goal_epos.block = epos.block;
617 goal_epos.offset = epos.offset - adsize;
618 goal_eloc = eloc;
619 goal_elen = (etype << 30) | elen;
620 }
621 }
622
623 brelse(epos.bh);
624
625 if (ret < 0 || spread == 0xFFFFFFFF) {
626 brelse(goal_epos.bh);
627 mutex_unlock(&sbi->s_alloc_mutex);
628 if (ret < 0)
629 *err = ret;
630 return 0;
631 }
632
633 /* Only allocate blocks from the beginning of the extent.
634 That way, we only delete (empty) extents, never have to insert an
635 extent because of splitting */
636 /* This works, but very poorly.... */
637
638 newblock = goal_eloc.logicalBlockNum;
639 goal_eloc.logicalBlockNum++;
640 goal_elen -= sb->s_blocksize;
641
642 if (goal_elen)
643 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644 else
645 udf_delete_aext(table, goal_epos);
646 brelse(goal_epos.bh);
647
648 udf_add_free_space(sb, partition, -1);
649
650 mutex_unlock(&sbi->s_alloc_mutex);
651 *err = 0;
652 return newblock;
653}
654
655void udf_free_blocks(struct super_block *sb, struct inode *inode,
656 struct kernel_lb_addr *bloc, uint32_t offset,
657 uint32_t count)
658{
659 uint16_t partition = bloc->partitionReferenceNum;
660 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661 uint32_t blk;
662
663 if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664 check_add_overflow(blk, count, &blk) ||
665 bloc->logicalBlockNum + count > map->s_partition_len) {
666 udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667 "len %u, partition len %u\n",
668 partition, bloc->logicalBlockNum, offset, count,
669 map->s_partition_len);
670 return;
671 }
672
673 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675 bloc, offset, count);
676 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677 udf_table_free_blocks(sb, map->s_uspace.s_table,
678 bloc, offset, count);
679 }
680
681 if (inode) {
682 inode_sub_bytes(inode,
683 ((sector_t)count) << sb->s_blocksize_bits);
684 }
685}
686
687inline int udf_prealloc_blocks(struct super_block *sb,
688 struct inode *inode,
689 uint16_t partition, uint32_t first_block,
690 uint32_t block_count)
691{
692 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693 int allocated;
694
695 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696 allocated = udf_bitmap_prealloc_blocks(sb,
697 map->s_uspace.s_bitmap,
698 partition, first_block,
699 block_count);
700 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701 allocated = udf_table_prealloc_blocks(sb,
702 map->s_uspace.s_table,
703 partition, first_block,
704 block_count);
705 else
706 return 0;
707
708 if (inode && allocated > 0)
709 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710 return allocated;
711}
712
713inline udf_pblk_t udf_new_block(struct super_block *sb,
714 struct inode *inode,
715 uint16_t partition, uint32_t goal, int *err)
716{
717 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718 udf_pblk_t block;
719
720 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721 block = udf_bitmap_new_block(sb,
722 map->s_uspace.s_bitmap,
723 partition, goal, err);
724 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725 block = udf_table_new_block(sb,
726 map->s_uspace.s_table,
727 partition, goal, err);
728 else {
729 *err = -EIO;
730 return 0;
731 }
732 if (inode && block)
733 inode_add_bytes(inode, sb->s_blocksize);
734 return block;
735}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * balloc.c
4 *
5 * PURPOSE
6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1999-2001 Ben Fennema
10 * (C) 1999 Stelias Computing Inc
11 *
12 * HISTORY
13 *
14 * 02/24/99 blf Created.
15 *
16 */
17
18#include "udfdecl.h"
19
20#include <linux/bitops.h>
21
22#include "udf_i.h"
23#include "udf_sb.h"
24
25#define udf_clear_bit __test_and_clear_bit_le
26#define udf_set_bit __test_and_set_bit_le
27#define udf_test_bit test_bit_le
28#define udf_find_next_one_bit find_next_bit_le
29
30static int read_block_bitmap(struct super_block *sb,
31 struct udf_bitmap *bitmap, unsigned int block,
32 unsigned long bitmap_nr)
33{
34 struct buffer_head *bh = NULL;
35 int i;
36 int max_bits, off, count;
37 struct kernel_lb_addr loc;
38
39 loc.logicalBlockNum = bitmap->s_extPosition;
40 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
41
42 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
43 bitmap->s_block_bitmap[bitmap_nr] = bh;
44 if (!bh)
45 return -EIO;
46
47 /* Check consistency of Space Bitmap buffer. */
48 max_bits = sb->s_blocksize * 8;
49 if (!bitmap_nr) {
50 off = sizeof(struct spaceBitmapDesc) << 3;
51 count = min(max_bits - off, bitmap->s_nr_groups);
52 } else {
53 /*
54 * Rough check if bitmap number is too big to have any bitmap
55 * blocks reserved.
56 */
57 if (bitmap_nr >
58 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
59 return 0;
60 off = 0;
61 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
62 (sizeof(struct spaceBitmapDesc) << 3);
63 count = min(count, max_bits);
64 }
65
66 for (i = 0; i < count; i++)
67 if (udf_test_bit(i + off, bh->b_data))
68 return -EFSCORRUPTED;
69 return 0;
70}
71
72static int __load_block_bitmap(struct super_block *sb,
73 struct udf_bitmap *bitmap,
74 unsigned int block_group)
75{
76 int retval = 0;
77 int nr_groups = bitmap->s_nr_groups;
78
79 if (block_group >= nr_groups) {
80 udf_debug("block_group (%u) > nr_groups (%d)\n",
81 block_group, nr_groups);
82 }
83
84 if (bitmap->s_block_bitmap[block_group])
85 return block_group;
86
87 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
88 if (retval < 0)
89 return retval;
90
91 return block_group;
92}
93
94static inline int load_block_bitmap(struct super_block *sb,
95 struct udf_bitmap *bitmap,
96 unsigned int block_group)
97{
98 int slot;
99
100 slot = __load_block_bitmap(sb, bitmap, block_group);
101
102 if (slot < 0)
103 return slot;
104
105 if (!bitmap->s_block_bitmap[slot])
106 return -EIO;
107
108 return slot;
109}
110
111static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
112{
113 struct udf_sb_info *sbi = UDF_SB(sb);
114 struct logicalVolIntegrityDesc *lvid;
115
116 if (!sbi->s_lvid_bh)
117 return;
118
119 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
120 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
121 udf_updated_lvid(sb);
122}
123
124static void udf_bitmap_free_blocks(struct super_block *sb,
125 struct udf_bitmap *bitmap,
126 struct kernel_lb_addr *bloc,
127 uint32_t offset,
128 uint32_t count)
129{
130 struct udf_sb_info *sbi = UDF_SB(sb);
131 struct buffer_head *bh = NULL;
132 struct udf_part_map *partmap;
133 unsigned long block;
134 unsigned long block_group;
135 unsigned long bit;
136 unsigned long i;
137 int bitmap_nr;
138 unsigned long overflow;
139
140 mutex_lock(&sbi->s_alloc_mutex);
141 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
142 if (bloc->logicalBlockNum + count < count ||
143 (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
144 udf_debug("%u < %d || %u + %u > %u\n",
145 bloc->logicalBlockNum, 0,
146 bloc->logicalBlockNum, count,
147 partmap->s_partition_len);
148 goto error_return;
149 }
150
151 block = bloc->logicalBlockNum + offset +
152 (sizeof(struct spaceBitmapDesc) << 3);
153
154 do {
155 overflow = 0;
156 block_group = block >> (sb->s_blocksize_bits + 3);
157 bit = block % (sb->s_blocksize << 3);
158
159 /*
160 * Check to see if we are freeing blocks across a group boundary.
161 */
162 if (bit + count > (sb->s_blocksize << 3)) {
163 overflow = bit + count - (sb->s_blocksize << 3);
164 count -= overflow;
165 }
166 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
167 if (bitmap_nr < 0)
168 goto error_return;
169
170 bh = bitmap->s_block_bitmap[bitmap_nr];
171 for (i = 0; i < count; i++) {
172 if (udf_set_bit(bit + i, bh->b_data)) {
173 udf_debug("bit %lu already set\n", bit + i);
174 udf_debug("byte=%2x\n",
175 ((__u8 *)bh->b_data)[(bit + i) >> 3]);
176 }
177 }
178 udf_add_free_space(sb, sbi->s_partition, count);
179 mark_buffer_dirty(bh);
180 if (overflow) {
181 block += count;
182 count = overflow;
183 }
184 } while (overflow);
185
186error_return:
187 mutex_unlock(&sbi->s_alloc_mutex);
188}
189
190static int udf_bitmap_prealloc_blocks(struct super_block *sb,
191 struct udf_bitmap *bitmap,
192 uint16_t partition, uint32_t first_block,
193 uint32_t block_count)
194{
195 struct udf_sb_info *sbi = UDF_SB(sb);
196 int alloc_count = 0;
197 int bit, block, block_group;
198 int bitmap_nr;
199 struct buffer_head *bh;
200 __u32 part_len;
201
202 mutex_lock(&sbi->s_alloc_mutex);
203 part_len = sbi->s_partmaps[partition].s_partition_len;
204 if (first_block >= part_len)
205 goto out;
206
207 if (first_block + block_count > part_len)
208 block_count = part_len - first_block;
209
210 do {
211 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
212 block_group = block >> (sb->s_blocksize_bits + 3);
213
214 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
215 if (bitmap_nr < 0)
216 goto out;
217 bh = bitmap->s_block_bitmap[bitmap_nr];
218
219 bit = block % (sb->s_blocksize << 3);
220
221 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
222 if (!udf_clear_bit(bit, bh->b_data))
223 goto out;
224 block_count--;
225 alloc_count++;
226 bit++;
227 block++;
228 }
229 mark_buffer_dirty(bh);
230 } while (block_count > 0);
231
232out:
233 udf_add_free_space(sb, partition, -alloc_count);
234 mutex_unlock(&sbi->s_alloc_mutex);
235 return alloc_count;
236}
237
238static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
239 struct udf_bitmap *bitmap, uint16_t partition,
240 uint32_t goal, int *err)
241{
242 struct udf_sb_info *sbi = UDF_SB(sb);
243 int newbit, bit = 0;
244 udf_pblk_t block;
245 int block_group, group_start;
246 int end_goal, nr_groups, bitmap_nr, i;
247 struct buffer_head *bh = NULL;
248 char *ptr;
249 udf_pblk_t newblock = 0;
250
251 *err = -ENOSPC;
252 mutex_lock(&sbi->s_alloc_mutex);
253
254repeat:
255 if (goal >= sbi->s_partmaps[partition].s_partition_len)
256 goal = 0;
257
258 nr_groups = bitmap->s_nr_groups;
259 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
260 block_group = block >> (sb->s_blocksize_bits + 3);
261 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
262
263 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
264 if (bitmap_nr < 0)
265 goto error_return;
266 bh = bitmap->s_block_bitmap[bitmap_nr];
267 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
268 sb->s_blocksize - group_start);
269
270 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
271 bit = block % (sb->s_blocksize << 3);
272 if (udf_test_bit(bit, bh->b_data))
273 goto got_block;
274
275 end_goal = (bit + 63) & ~63;
276 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
277 if (bit < end_goal)
278 goto got_block;
279
280 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
281 sb->s_blocksize - ((bit + 7) >> 3));
282 newbit = (ptr - ((char *)bh->b_data)) << 3;
283 if (newbit < sb->s_blocksize << 3) {
284 bit = newbit;
285 goto search_back;
286 }
287
288 newbit = udf_find_next_one_bit(bh->b_data,
289 sb->s_blocksize << 3, bit);
290 if (newbit < sb->s_blocksize << 3) {
291 bit = newbit;
292 goto got_block;
293 }
294 }
295
296 for (i = 0; i < (nr_groups * 2); i++) {
297 block_group++;
298 if (block_group >= nr_groups)
299 block_group = 0;
300 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
301
302 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
303 if (bitmap_nr < 0)
304 goto error_return;
305 bh = bitmap->s_block_bitmap[bitmap_nr];
306 if (i < nr_groups) {
307 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
308 sb->s_blocksize - group_start);
309 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
310 bit = (ptr - ((char *)bh->b_data)) << 3;
311 break;
312 }
313 } else {
314 bit = udf_find_next_one_bit(bh->b_data,
315 sb->s_blocksize << 3,
316 group_start << 3);
317 if (bit < sb->s_blocksize << 3)
318 break;
319 }
320 }
321 if (i >= (nr_groups * 2)) {
322 mutex_unlock(&sbi->s_alloc_mutex);
323 return newblock;
324 }
325 if (bit < sb->s_blocksize << 3)
326 goto search_back;
327 else
328 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
329 group_start << 3);
330 if (bit >= sb->s_blocksize << 3) {
331 mutex_unlock(&sbi->s_alloc_mutex);
332 return 0;
333 }
334
335search_back:
336 i = 0;
337 while (i < 7 && bit > (group_start << 3) &&
338 udf_test_bit(bit - 1, bh->b_data)) {
339 ++i;
340 --bit;
341 }
342
343got_block:
344 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
345 (sizeof(struct spaceBitmapDesc) << 3);
346
347 if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
348 /*
349 * Ran off the end of the bitmap, and bits following are
350 * non-compliant (not all zero)
351 */
352 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
353 " as free, partition length is %u)\n", partition,
354 newblock, sbi->s_partmaps[partition].s_partition_len);
355 goto error_return;
356 }
357
358 if (!udf_clear_bit(bit, bh->b_data)) {
359 udf_debug("bit already cleared for block %d\n", bit);
360 goto repeat;
361 }
362
363 mark_buffer_dirty(bh);
364
365 udf_add_free_space(sb, partition, -1);
366 mutex_unlock(&sbi->s_alloc_mutex);
367 *err = 0;
368 return newblock;
369
370error_return:
371 *err = -EIO;
372 mutex_unlock(&sbi->s_alloc_mutex);
373 return 0;
374}
375
376static void udf_table_free_blocks(struct super_block *sb,
377 struct inode *table,
378 struct kernel_lb_addr *bloc,
379 uint32_t offset,
380 uint32_t count)
381{
382 struct udf_sb_info *sbi = UDF_SB(sb);
383 struct udf_part_map *partmap;
384 uint32_t start, end;
385 uint32_t elen;
386 struct kernel_lb_addr eloc;
387 struct extent_position oepos, epos;
388 int8_t etype;
389 struct udf_inode_info *iinfo;
390
391 mutex_lock(&sbi->s_alloc_mutex);
392 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
393 if (bloc->logicalBlockNum + count < count ||
394 (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
395 udf_debug("%u < %d || %u + %u > %u\n",
396 bloc->logicalBlockNum, 0,
397 bloc->logicalBlockNum, count,
398 partmap->s_partition_len);
399 goto error_return;
400 }
401
402 iinfo = UDF_I(table);
403 udf_add_free_space(sb, sbi->s_partition, count);
404
405 start = bloc->logicalBlockNum + offset;
406 end = bloc->logicalBlockNum + offset + count - 1;
407
408 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
409 elen = 0;
410 epos.block = oepos.block = iinfo->i_location;
411 epos.bh = oepos.bh = NULL;
412
413 while (count &&
414 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
415 if (((eloc.logicalBlockNum +
416 (elen >> sb->s_blocksize_bits)) == start)) {
417 if ((0x3FFFFFFF - elen) <
418 (count << sb->s_blocksize_bits)) {
419 uint32_t tmp = ((0x3FFFFFFF - elen) >>
420 sb->s_blocksize_bits);
421 count -= tmp;
422 start += tmp;
423 elen = (etype << 30) |
424 (0x40000000 - sb->s_blocksize);
425 } else {
426 elen = (etype << 30) |
427 (elen +
428 (count << sb->s_blocksize_bits));
429 start += count;
430 count = 0;
431 }
432 udf_write_aext(table, &oepos, &eloc, elen, 1);
433 } else if (eloc.logicalBlockNum == (end + 1)) {
434 if ((0x3FFFFFFF - elen) <
435 (count << sb->s_blocksize_bits)) {
436 uint32_t tmp = ((0x3FFFFFFF - elen) >>
437 sb->s_blocksize_bits);
438 count -= tmp;
439 end -= tmp;
440 eloc.logicalBlockNum -= tmp;
441 elen = (etype << 30) |
442 (0x40000000 - sb->s_blocksize);
443 } else {
444 eloc.logicalBlockNum = start;
445 elen = (etype << 30) |
446 (elen +
447 (count << sb->s_blocksize_bits));
448 end -= count;
449 count = 0;
450 }
451 udf_write_aext(table, &oepos, &eloc, elen, 1);
452 }
453
454 if (epos.bh != oepos.bh) {
455 oepos.block = epos.block;
456 brelse(oepos.bh);
457 get_bh(epos.bh);
458 oepos.bh = epos.bh;
459 oepos.offset = 0;
460 } else {
461 oepos.offset = epos.offset;
462 }
463 }
464
465 if (count) {
466 /*
467 * NOTE: we CANNOT use udf_add_aext here, as it can try to
468 * allocate a new block, and since we hold the super block
469 * lock already very bad things would happen :)
470 *
471 * We copy the behavior of udf_add_aext, but instead of
472 * trying to allocate a new block close to the existing one,
473 * we just steal a block from the extent we are trying to add.
474 *
475 * It would be nice if the blocks were close together, but it
476 * isn't required.
477 */
478
479 int adsize;
480
481 eloc.logicalBlockNum = start;
482 elen = EXT_RECORDED_ALLOCATED |
483 (count << sb->s_blocksize_bits);
484
485 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
486 adsize = sizeof(struct short_ad);
487 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
488 adsize = sizeof(struct long_ad);
489 else {
490 brelse(oepos.bh);
491 brelse(epos.bh);
492 goto error_return;
493 }
494
495 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
496 /* Steal a block from the extent being free'd */
497 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
498 &epos);
499
500 eloc.logicalBlockNum++;
501 elen -= sb->s_blocksize;
502 }
503
504 /* It's possible that stealing the block emptied the extent */
505 if (elen)
506 __udf_add_aext(table, &epos, &eloc, elen, 1);
507 }
508
509 brelse(epos.bh);
510 brelse(oepos.bh);
511
512error_return:
513 mutex_unlock(&sbi->s_alloc_mutex);
514 return;
515}
516
517static int udf_table_prealloc_blocks(struct super_block *sb,
518 struct inode *table, uint16_t partition,
519 uint32_t first_block, uint32_t block_count)
520{
521 struct udf_sb_info *sbi = UDF_SB(sb);
522 int alloc_count = 0;
523 uint32_t elen, adsize;
524 struct kernel_lb_addr eloc;
525 struct extent_position epos;
526 int8_t etype = -1;
527 struct udf_inode_info *iinfo;
528
529 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
530 return 0;
531
532 iinfo = UDF_I(table);
533 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
534 adsize = sizeof(struct short_ad);
535 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
536 adsize = sizeof(struct long_ad);
537 else
538 return 0;
539
540 mutex_lock(&sbi->s_alloc_mutex);
541 epos.offset = sizeof(struct unallocSpaceEntry);
542 epos.block = iinfo->i_location;
543 epos.bh = NULL;
544 eloc.logicalBlockNum = 0xFFFFFFFF;
545
546 while (first_block != eloc.logicalBlockNum &&
547 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
548 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
549 eloc.logicalBlockNum, elen, first_block);
550 ; /* empty loop body */
551 }
552
553 if (first_block == eloc.logicalBlockNum) {
554 epos.offset -= adsize;
555
556 alloc_count = (elen >> sb->s_blocksize_bits);
557 if (alloc_count > block_count) {
558 alloc_count = block_count;
559 eloc.logicalBlockNum += alloc_count;
560 elen -= (alloc_count << sb->s_blocksize_bits);
561 udf_write_aext(table, &epos, &eloc,
562 (etype << 30) | elen, 1);
563 } else
564 udf_delete_aext(table, epos);
565 } else {
566 alloc_count = 0;
567 }
568
569 brelse(epos.bh);
570
571 if (alloc_count)
572 udf_add_free_space(sb, partition, -alloc_count);
573 mutex_unlock(&sbi->s_alloc_mutex);
574 return alloc_count;
575}
576
577static udf_pblk_t udf_table_new_block(struct super_block *sb,
578 struct inode *table, uint16_t partition,
579 uint32_t goal, int *err)
580{
581 struct udf_sb_info *sbi = UDF_SB(sb);
582 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
583 udf_pblk_t newblock = 0;
584 uint32_t adsize;
585 uint32_t elen, goal_elen = 0;
586 struct kernel_lb_addr eloc, goal_eloc;
587 struct extent_position epos, goal_epos;
588 int8_t etype;
589 struct udf_inode_info *iinfo = UDF_I(table);
590
591 *err = -ENOSPC;
592
593 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
594 adsize = sizeof(struct short_ad);
595 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
596 adsize = sizeof(struct long_ad);
597 else
598 return newblock;
599
600 mutex_lock(&sbi->s_alloc_mutex);
601 if (goal >= sbi->s_partmaps[partition].s_partition_len)
602 goal = 0;
603
604 /* We search for the closest matching block to goal. If we find
605 a exact hit, we stop. Otherwise we keep going till we run out
606 of extents. We store the buffer_head, bloc, and extoffset
607 of the current closest match and use that when we are done.
608 */
609 epos.offset = sizeof(struct unallocSpaceEntry);
610 epos.block = iinfo->i_location;
611 epos.bh = goal_epos.bh = NULL;
612
613 while (spread &&
614 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
615 if (goal >= eloc.logicalBlockNum) {
616 if (goal < eloc.logicalBlockNum +
617 (elen >> sb->s_blocksize_bits))
618 nspread = 0;
619 else
620 nspread = goal - eloc.logicalBlockNum -
621 (elen >> sb->s_blocksize_bits);
622 } else {
623 nspread = eloc.logicalBlockNum - goal;
624 }
625
626 if (nspread < spread) {
627 spread = nspread;
628 if (goal_epos.bh != epos.bh) {
629 brelse(goal_epos.bh);
630 goal_epos.bh = epos.bh;
631 get_bh(goal_epos.bh);
632 }
633 goal_epos.block = epos.block;
634 goal_epos.offset = epos.offset - adsize;
635 goal_eloc = eloc;
636 goal_elen = (etype << 30) | elen;
637 }
638 }
639
640 brelse(epos.bh);
641
642 if (spread == 0xFFFFFFFF) {
643 brelse(goal_epos.bh);
644 mutex_unlock(&sbi->s_alloc_mutex);
645 return 0;
646 }
647
648 /* Only allocate blocks from the beginning of the extent.
649 That way, we only delete (empty) extents, never have to insert an
650 extent because of splitting */
651 /* This works, but very poorly.... */
652
653 newblock = goal_eloc.logicalBlockNum;
654 goal_eloc.logicalBlockNum++;
655 goal_elen -= sb->s_blocksize;
656
657 if (goal_elen)
658 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
659 else
660 udf_delete_aext(table, goal_epos);
661 brelse(goal_epos.bh);
662
663 udf_add_free_space(sb, partition, -1);
664
665 mutex_unlock(&sbi->s_alloc_mutex);
666 *err = 0;
667 return newblock;
668}
669
670void udf_free_blocks(struct super_block *sb, struct inode *inode,
671 struct kernel_lb_addr *bloc, uint32_t offset,
672 uint32_t count)
673{
674 uint16_t partition = bloc->partitionReferenceNum;
675 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
676
677 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
678 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
679 bloc, offset, count);
680 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
681 udf_table_free_blocks(sb, map->s_uspace.s_table,
682 bloc, offset, count);
683 }
684
685 if (inode) {
686 inode_sub_bytes(inode,
687 ((sector_t)count) << sb->s_blocksize_bits);
688 }
689}
690
691inline int udf_prealloc_blocks(struct super_block *sb,
692 struct inode *inode,
693 uint16_t partition, uint32_t first_block,
694 uint32_t block_count)
695{
696 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
697 int allocated;
698
699 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
700 allocated = udf_bitmap_prealloc_blocks(sb,
701 map->s_uspace.s_bitmap,
702 partition, first_block,
703 block_count);
704 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
705 allocated = udf_table_prealloc_blocks(sb,
706 map->s_uspace.s_table,
707 partition, first_block,
708 block_count);
709 else
710 return 0;
711
712 if (inode && allocated > 0)
713 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
714 return allocated;
715}
716
717inline udf_pblk_t udf_new_block(struct super_block *sb,
718 struct inode *inode,
719 uint16_t partition, uint32_t goal, int *err)
720{
721 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
722 udf_pblk_t block;
723
724 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
725 block = udf_bitmap_new_block(sb,
726 map->s_uspace.s_bitmap,
727 partition, goal, err);
728 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
729 block = udf_table_new_block(sb,
730 map->s_uspace.s_table,
731 partition, goal, err);
732 else {
733 *err = -EIO;
734 return 0;
735 }
736 if (inode && block)
737 inode_add_bytes(inode, sb->s_blocksize);
738 return block;
739}