Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76 tristate
77 select CRYPTO_SIG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85 tristate
86 select CRYPTO_SKCIPHER2
87 select CRYPTO_ALGAPI
88 select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91 tristate
92 select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95 tristate
96 select CRYPTO_HASH2
97 select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100 tristate
101 select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104 tristate
105 select CRYPTO_RNG2
106 select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109 tristate
110 select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113 tristate
114 select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117 tristate
118 select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121 tristate
122 select CRYPTO_AKCIPHER2
123 select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126 tristate
127 select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130 tristate
131 select CRYPTO_ALGAPI
132 select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135 tristate
136 select CRYPTO_ALGAPI2
137 select SGL_ALLOC
138
139config CRYPTO_ACOMP
140 tristate
141 select CRYPTO_ALGAPI
142 select CRYPTO_ACOMP2
143
144config CRYPTO_MANAGER
145 tristate "Cryptographic algorithm manager"
146 select CRYPTO_MANAGER2
147 help
148 Create default cryptographic template instantiations such as
149 cbc(aes).
150
151config CRYPTO_MANAGER2
152 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
153 select CRYPTO_ACOMP2
154 select CRYPTO_AEAD2
155 select CRYPTO_AKCIPHER2
156 select CRYPTO_SIG2
157 select CRYPTO_HASH2
158 select CRYPTO_KPP2
159 select CRYPTO_RNG2
160 select CRYPTO_SKCIPHER2
161
162config CRYPTO_USER
163 tristate "Userspace cryptographic algorithm configuration"
164 depends on NET
165 select CRYPTO_MANAGER
166 help
167 Userspace configuration for cryptographic instantiations such as
168 cbc(aes).
169
170config CRYPTO_MANAGER_DISABLE_TESTS
171 bool "Disable run-time self tests"
172 default y
173 help
174 Disable run-time self tests that normally take place at
175 algorithm registration.
176
177config CRYPTO_MANAGER_EXTRA_TESTS
178 bool "Enable extra run-time crypto self tests"
179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
180 help
181 Enable extra run-time self tests of registered crypto algorithms,
182 including randomized fuzz tests.
183
184 This is intended for developer use only, as these tests take much
185 longer to run than the normal self tests.
186
187config CRYPTO_NULL
188 tristate "Null algorithms"
189 select CRYPTO_NULL2
190 help
191 These are 'Null' algorithms, used by IPsec, which do nothing.
192
193config CRYPTO_NULL2
194 tristate
195 select CRYPTO_ALGAPI2
196 select CRYPTO_SKCIPHER2
197 select CRYPTO_HASH2
198
199config CRYPTO_PCRYPT
200 tristate "Parallel crypto engine"
201 depends on SMP
202 select PADATA
203 select CRYPTO_MANAGER
204 select CRYPTO_AEAD
205 help
206 This converts an arbitrary crypto algorithm into a parallel
207 algorithm that executes in kernel threads.
208
209config CRYPTO_CRYPTD
210 tristate "Software async crypto daemon"
211 select CRYPTO_SKCIPHER
212 select CRYPTO_HASH
213 select CRYPTO_MANAGER
214 help
215 This is a generic software asynchronous crypto daemon that
216 converts an arbitrary synchronous software crypto algorithm
217 into an asynchronous algorithm that executes in a kernel thread.
218
219config CRYPTO_AUTHENC
220 tristate "Authenc support"
221 select CRYPTO_AEAD
222 select CRYPTO_SKCIPHER
223 select CRYPTO_MANAGER
224 select CRYPTO_HASH
225 select CRYPTO_NULL
226 help
227 Authenc: Combined mode wrapper for IPsec.
228
229 This is required for IPSec ESP (XFRM_ESP).
230
231config CRYPTO_TEST
232 tristate "Testing module"
233 depends on m || EXPERT
234 select CRYPTO_MANAGER
235 help
236 Quick & dirty crypto test module.
237
238config CRYPTO_SIMD
239 tristate
240 select CRYPTO_CRYPTD
241
242config CRYPTO_ENGINE
243 tristate
244
245endmenu
246
247menu "Public-key cryptography"
248
249config CRYPTO_RSA
250 tristate "RSA (Rivest-Shamir-Adleman)"
251 select CRYPTO_AKCIPHER
252 select CRYPTO_MANAGER
253 select CRYPTO_SIG
254 select MPILIB
255 select ASN1
256 help
257 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
258
259config CRYPTO_DH
260 tristate "DH (Diffie-Hellman)"
261 select CRYPTO_KPP
262 select MPILIB
263 help
264 DH (Diffie-Hellman) key exchange algorithm
265
266config CRYPTO_DH_RFC7919_GROUPS
267 bool "RFC 7919 FFDHE groups"
268 depends on CRYPTO_DH
269 select CRYPTO_RNG_DEFAULT
270 help
271 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
272 defined in RFC7919.
273
274 Support these finite-field groups in DH key exchanges:
275 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
276
277 If unsure, say N.
278
279config CRYPTO_ECC
280 tristate
281 select CRYPTO_RNG_DEFAULT
282
283config CRYPTO_ECDH
284 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
285 select CRYPTO_ECC
286 select CRYPTO_KPP
287 help
288 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
289 using curves P-192, P-256, and P-384 (FIPS 186)
290
291config CRYPTO_ECDSA
292 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
293 select CRYPTO_ECC
294 select CRYPTO_SIG
295 select ASN1
296 help
297 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
298 ISO/IEC 14888-3)
299 using curves P-192, P-256, P-384 and P-521
300
301 Only signature verification is implemented.
302
303config CRYPTO_ECRDSA
304 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
305 select CRYPTO_ECC
306 select CRYPTO_SIG
307 select CRYPTO_STREEBOG
308 select OID_REGISTRY
309 select ASN1
310 help
311 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
312 RFC 7091, ISO/IEC 14888-3)
313
314 One of the Russian cryptographic standard algorithms (called GOST
315 algorithms). Only signature verification is implemented.
316
317config CRYPTO_CURVE25519
318 tristate "Curve25519"
319 select CRYPTO_KPP
320 select CRYPTO_LIB_CURVE25519_GENERIC
321 help
322 Curve25519 elliptic curve (RFC7748)
323
324endmenu
325
326menu "Block ciphers"
327
328config CRYPTO_AES
329 tristate "AES (Advanced Encryption Standard)"
330 select CRYPTO_ALGAPI
331 select CRYPTO_LIB_AES
332 help
333 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
334
335 Rijndael appears to be consistently a very good performer in
336 both hardware and software across a wide range of computing
337 environments regardless of its use in feedback or non-feedback
338 modes. Its key setup time is excellent, and its key agility is
339 good. Rijndael's very low memory requirements make it very well
340 suited for restricted-space environments, in which it also
341 demonstrates excellent performance. Rijndael's operations are
342 among the easiest to defend against power and timing attacks.
343
344 The AES specifies three key sizes: 128, 192 and 256 bits
345
346config CRYPTO_AES_TI
347 tristate "AES (Advanced Encryption Standard) (fixed time)"
348 select CRYPTO_ALGAPI
349 select CRYPTO_LIB_AES
350 help
351 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
352
353 This is a generic implementation of AES that attempts to eliminate
354 data dependent latencies as much as possible without affecting
355 performance too much. It is intended for use by the generic CCM
356 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
357 solely on encryption (although decryption is supported as well, but
358 with a more dramatic performance hit)
359
360 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
361 8 for decryption), this implementation only uses just two S-boxes of
362 256 bytes each, and attempts to eliminate data dependent latencies by
363 prefetching the entire table into the cache at the start of each
364 block. Interrupts are also disabled to avoid races where cachelines
365 are evicted when the CPU is interrupted to do something else.
366
367config CRYPTO_ANUBIS
368 tristate "Anubis"
369 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
370 select CRYPTO_ALGAPI
371 help
372 Anubis cipher algorithm
373
374 Anubis is a variable key length cipher which can use keys from
375 128 bits to 320 bits in length. It was evaluated as a entrant
376 in the NESSIE competition.
377
378 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
379 for further information.
380
381config CRYPTO_ARIA
382 tristate "ARIA"
383 select CRYPTO_ALGAPI
384 help
385 ARIA cipher algorithm (RFC5794)
386
387 ARIA is a standard encryption algorithm of the Republic of Korea.
388 The ARIA specifies three key sizes and rounds.
389 128-bit: 12 rounds.
390 192-bit: 14 rounds.
391 256-bit: 16 rounds.
392
393 See:
394 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
395
396config CRYPTO_BLOWFISH
397 tristate "Blowfish"
398 select CRYPTO_ALGAPI
399 select CRYPTO_BLOWFISH_COMMON
400 help
401 Blowfish cipher algorithm, by Bruce Schneier
402
403 This is a variable key length cipher which can use keys from 32
404 bits to 448 bits in length. It's fast, simple and specifically
405 designed for use on "large microprocessors".
406
407 See https://www.schneier.com/blowfish.html for further information.
408
409config CRYPTO_BLOWFISH_COMMON
410 tristate
411 help
412 Common parts of the Blowfish cipher algorithm shared by the
413 generic c and the assembler implementations.
414
415config CRYPTO_CAMELLIA
416 tristate "Camellia"
417 select CRYPTO_ALGAPI
418 help
419 Camellia cipher algorithms (ISO/IEC 18033-3)
420
421 Camellia is a symmetric key block cipher developed jointly
422 at NTT and Mitsubishi Electric Corporation.
423
424 The Camellia specifies three key sizes: 128, 192 and 256 bits.
425
426 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
427
428config CRYPTO_CAST_COMMON
429 tristate
430 help
431 Common parts of the CAST cipher algorithms shared by the
432 generic c and the assembler implementations.
433
434config CRYPTO_CAST5
435 tristate "CAST5 (CAST-128)"
436 select CRYPTO_ALGAPI
437 select CRYPTO_CAST_COMMON
438 help
439 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
440
441config CRYPTO_CAST6
442 tristate "CAST6 (CAST-256)"
443 select CRYPTO_ALGAPI
444 select CRYPTO_CAST_COMMON
445 help
446 CAST6 (CAST-256) encryption algorithm (RFC2612)
447
448config CRYPTO_DES
449 tristate "DES and Triple DES EDE"
450 select CRYPTO_ALGAPI
451 select CRYPTO_LIB_DES
452 help
453 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
454 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
455 cipher algorithms
456
457config CRYPTO_FCRYPT
458 tristate "FCrypt"
459 select CRYPTO_ALGAPI
460 select CRYPTO_SKCIPHER
461 help
462 FCrypt algorithm used by RxRPC
463
464 See https://ota.polyonymo.us/fcrypt-paper.txt
465
466config CRYPTO_KHAZAD
467 tristate "Khazad"
468 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
469 select CRYPTO_ALGAPI
470 help
471 Khazad cipher algorithm
472
473 Khazad was a finalist in the initial NESSIE competition. It is
474 an algorithm optimized for 64-bit processors with good performance
475 on 32-bit processors. Khazad uses an 128 bit key size.
476
477 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
478 for further information.
479
480config CRYPTO_SEED
481 tristate "SEED"
482 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
483 select CRYPTO_ALGAPI
484 help
485 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
486
487 SEED is a 128-bit symmetric key block cipher that has been
488 developed by KISA (Korea Information Security Agency) as a
489 national standard encryption algorithm of the Republic of Korea.
490 It is a 16 round block cipher with the key size of 128 bit.
491
492 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
493 for further information.
494
495config CRYPTO_SERPENT
496 tristate "Serpent"
497 select CRYPTO_ALGAPI
498 help
499 Serpent cipher algorithm, by Anderson, Biham & Knudsen
500
501 Keys are allowed to be from 0 to 256 bits in length, in steps
502 of 8 bits.
503
504 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
505
506config CRYPTO_SM4
507 tristate
508
509config CRYPTO_SM4_GENERIC
510 tristate "SM4 (ShangMi 4)"
511 select CRYPTO_ALGAPI
512 select CRYPTO_SM4
513 help
514 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
515 ISO/IEC 18033-3:2010/Amd 1:2021)
516
517 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
518 Organization of State Commercial Administration of China (OSCCA)
519 as an authorized cryptographic algorithms for the use within China.
520
521 SMS4 was originally created for use in protecting wireless
522 networks, and is mandated in the Chinese National Standard for
523 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
524 (GB.15629.11-2003).
525
526 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
527 standardized through TC 260 of the Standardization Administration
528 of the People's Republic of China (SAC).
529
530 The input, output, and key of SMS4 are each 128 bits.
531
532 See https://eprint.iacr.org/2008/329.pdf for further information.
533
534 If unsure, say N.
535
536config CRYPTO_TEA
537 tristate "TEA, XTEA and XETA"
538 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
539 select CRYPTO_ALGAPI
540 help
541 TEA (Tiny Encryption Algorithm) cipher algorithms
542
543 Tiny Encryption Algorithm is a simple cipher that uses
544 many rounds for security. It is very fast and uses
545 little memory.
546
547 Xtendend Tiny Encryption Algorithm is a modification to
548 the TEA algorithm to address a potential key weakness
549 in the TEA algorithm.
550
551 Xtendend Encryption Tiny Algorithm is a mis-implementation
552 of the XTEA algorithm for compatibility purposes.
553
554config CRYPTO_TWOFISH
555 tristate "Twofish"
556 select CRYPTO_ALGAPI
557 select CRYPTO_TWOFISH_COMMON
558 help
559 Twofish cipher algorithm
560
561 Twofish was submitted as an AES (Advanced Encryption Standard)
562 candidate cipher by researchers at CounterPane Systems. It is a
563 16 round block cipher supporting key sizes of 128, 192, and 256
564 bits.
565
566 See https://www.schneier.com/twofish.html for further information.
567
568config CRYPTO_TWOFISH_COMMON
569 tristate
570 help
571 Common parts of the Twofish cipher algorithm shared by the
572 generic c and the assembler implementations.
573
574endmenu
575
576menu "Length-preserving ciphers and modes"
577
578config CRYPTO_ADIANTUM
579 tristate "Adiantum"
580 select CRYPTO_CHACHA20
581 select CRYPTO_LIB_POLY1305_GENERIC
582 select CRYPTO_NHPOLY1305
583 select CRYPTO_MANAGER
584 help
585 Adiantum tweakable, length-preserving encryption mode
586
587 Designed for fast and secure disk encryption, especially on
588 CPUs without dedicated crypto instructions. It encrypts
589 each sector using the XChaCha12 stream cipher, two passes of
590 an ε-almost-∆-universal hash function, and an invocation of
591 the AES-256 block cipher on a single 16-byte block. On CPUs
592 without AES instructions, Adiantum is much faster than
593 AES-XTS.
594
595 Adiantum's security is provably reducible to that of its
596 underlying stream and block ciphers, subject to a security
597 bound. Unlike XTS, Adiantum is a true wide-block encryption
598 mode, so it actually provides an even stronger notion of
599 security than XTS, subject to the security bound.
600
601 If unsure, say N.
602
603config CRYPTO_ARC4
604 tristate "ARC4 (Alleged Rivest Cipher 4)"
605 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
606 select CRYPTO_SKCIPHER
607 select CRYPTO_LIB_ARC4
608 help
609 ARC4 cipher algorithm
610
611 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
612 bits in length. This algorithm is required for driver-based
613 WEP, but it should not be for other purposes because of the
614 weakness of the algorithm.
615
616config CRYPTO_CHACHA20
617 tristate "ChaCha"
618 select CRYPTO_LIB_CHACHA_GENERIC
619 select CRYPTO_SKCIPHER
620 help
621 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
622
623 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
624 Bernstein and further specified in RFC7539 for use in IETF protocols.
625 This is the portable C implementation of ChaCha20. See
626 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
627
628 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
629 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
630 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
631 while provably retaining ChaCha20's security. See
632 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
633
634 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
635 reduced security margin but increased performance. It can be needed
636 in some performance-sensitive scenarios.
637
638config CRYPTO_CBC
639 tristate "CBC (Cipher Block Chaining)"
640 select CRYPTO_SKCIPHER
641 select CRYPTO_MANAGER
642 help
643 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
644
645 This block cipher mode is required for IPSec ESP (XFRM_ESP).
646
647config CRYPTO_CTR
648 tristate "CTR (Counter)"
649 select CRYPTO_SKCIPHER
650 select CRYPTO_MANAGER
651 help
652 CTR (Counter) mode (NIST SP800-38A)
653
654config CRYPTO_CTS
655 tristate "CTS (Cipher Text Stealing)"
656 select CRYPTO_SKCIPHER
657 select CRYPTO_MANAGER
658 help
659 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
660 Addendum to SP800-38A (October 2010))
661
662 This mode is required for Kerberos gss mechanism support
663 for AES encryption.
664
665config CRYPTO_ECB
666 tristate "ECB (Electronic Codebook)"
667 select CRYPTO_SKCIPHER2
668 select CRYPTO_MANAGER
669 help
670 ECB (Electronic Codebook) mode (NIST SP800-38A)
671
672config CRYPTO_HCTR2
673 tristate "HCTR2"
674 select CRYPTO_XCTR
675 select CRYPTO_POLYVAL
676 select CRYPTO_MANAGER
677 help
678 HCTR2 length-preserving encryption mode
679
680 A mode for storage encryption that is efficient on processors with
681 instructions to accelerate AES and carryless multiplication, e.g.
682 x86 processors with AES-NI and CLMUL, and ARM processors with the
683 ARMv8 crypto extensions.
684
685 See https://eprint.iacr.org/2021/1441
686
687config CRYPTO_KEYWRAP
688 tristate "KW (AES Key Wrap)"
689 select CRYPTO_SKCIPHER
690 select CRYPTO_MANAGER
691 help
692 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
693 and RFC3394) without padding.
694
695config CRYPTO_LRW
696 tristate "LRW (Liskov Rivest Wagner)"
697 select CRYPTO_LIB_GF128MUL
698 select CRYPTO_SKCIPHER
699 select CRYPTO_MANAGER
700 select CRYPTO_ECB
701 help
702 LRW (Liskov Rivest Wagner) mode
703
704 A tweakable, non malleable, non movable
705 narrow block cipher mode for dm-crypt. Use it with cipher
706 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
707 The first 128, 192 or 256 bits in the key are used for AES and the
708 rest is used to tie each cipher block to its logical position.
709
710 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
711
712config CRYPTO_PCBC
713 tristate "PCBC (Propagating Cipher Block Chaining)"
714 select CRYPTO_SKCIPHER
715 select CRYPTO_MANAGER
716 help
717 PCBC (Propagating Cipher Block Chaining) mode
718
719 This block cipher mode is required for RxRPC.
720
721config CRYPTO_XCTR
722 tristate
723 select CRYPTO_SKCIPHER
724 select CRYPTO_MANAGER
725 help
726 XCTR (XOR Counter) mode for HCTR2
727
728 This blockcipher mode is a variant of CTR mode using XORs and little-endian
729 addition rather than big-endian arithmetic.
730
731 XCTR mode is used to implement HCTR2.
732
733config CRYPTO_XTS
734 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
735 select CRYPTO_SKCIPHER
736 select CRYPTO_MANAGER
737 select CRYPTO_ECB
738 help
739 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
740 and IEEE 1619)
741
742 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
743 implementation currently can't handle a sectorsize which is not a
744 multiple of 16 bytes.
745
746config CRYPTO_NHPOLY1305
747 tristate
748 select CRYPTO_HASH
749 select CRYPTO_LIB_POLY1305_GENERIC
750
751endmenu
752
753menu "AEAD (authenticated encryption with associated data) ciphers"
754
755config CRYPTO_AEGIS128
756 tristate "AEGIS-128"
757 select CRYPTO_AEAD
758 select CRYPTO_AES # for AES S-box tables
759 help
760 AEGIS-128 AEAD algorithm
761
762config CRYPTO_AEGIS128_SIMD
763 bool "AEGIS-128 (arm NEON, arm64 NEON)"
764 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
765 default y
766 help
767 AEGIS-128 AEAD algorithm
768
769 Architecture: arm or arm64 using:
770 - NEON (Advanced SIMD) extension
771
772config CRYPTO_CHACHA20POLY1305
773 tristate "ChaCha20-Poly1305"
774 select CRYPTO_CHACHA20
775 select CRYPTO_POLY1305
776 select CRYPTO_AEAD
777 select CRYPTO_MANAGER
778 help
779 ChaCha20 stream cipher and Poly1305 authenticator combined
780 mode (RFC8439)
781
782config CRYPTO_CCM
783 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
784 select CRYPTO_CTR
785 select CRYPTO_HASH
786 select CRYPTO_AEAD
787 select CRYPTO_MANAGER
788 help
789 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
790 authenticated encryption mode (NIST SP800-38C)
791
792config CRYPTO_GCM
793 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
794 select CRYPTO_CTR
795 select CRYPTO_AEAD
796 select CRYPTO_GHASH
797 select CRYPTO_NULL
798 select CRYPTO_MANAGER
799 help
800 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
801 (GCM Message Authentication Code) (NIST SP800-38D)
802
803 This is required for IPSec ESP (XFRM_ESP).
804
805config CRYPTO_GENIV
806 tristate
807 select CRYPTO_AEAD
808 select CRYPTO_NULL
809 select CRYPTO_MANAGER
810 select CRYPTO_RNG_DEFAULT
811
812config CRYPTO_SEQIV
813 tristate "Sequence Number IV Generator"
814 select CRYPTO_GENIV
815 help
816 Sequence Number IV generator
817
818 This IV generator generates an IV based on a sequence number by
819 xoring it with a salt. This algorithm is mainly useful for CTR.
820
821 This is required for IPsec ESP (XFRM_ESP).
822
823config CRYPTO_ECHAINIV
824 tristate "Encrypted Chain IV Generator"
825 select CRYPTO_GENIV
826 help
827 Encrypted Chain IV generator
828
829 This IV generator generates an IV based on the encryption of
830 a sequence number xored with a salt. This is the default
831 algorithm for CBC.
832
833config CRYPTO_ESSIV
834 tristate "Encrypted Salt-Sector IV Generator"
835 select CRYPTO_AUTHENC
836 help
837 Encrypted Salt-Sector IV generator
838
839 This IV generator is used in some cases by fscrypt and/or
840 dm-crypt. It uses the hash of the block encryption key as the
841 symmetric key for a block encryption pass applied to the input
842 IV, making low entropy IV sources more suitable for block
843 encryption.
844
845 This driver implements a crypto API template that can be
846 instantiated either as an skcipher or as an AEAD (depending on the
847 type of the first template argument), and which defers encryption
848 and decryption requests to the encapsulated cipher after applying
849 ESSIV to the input IV. Note that in the AEAD case, it is assumed
850 that the keys are presented in the same format used by the authenc
851 template, and that the IV appears at the end of the authenticated
852 associated data (AAD) region (which is how dm-crypt uses it.)
853
854 Note that the use of ESSIV is not recommended for new deployments,
855 and so this only needs to be enabled when interoperability with
856 existing encrypted volumes of filesystems is required, or when
857 building for a particular system that requires it (e.g., when
858 the SoC in question has accelerated CBC but not XTS, making CBC
859 combined with ESSIV the only feasible mode for h/w accelerated
860 block encryption)
861
862endmenu
863
864menu "Hashes, digests, and MACs"
865
866config CRYPTO_BLAKE2B
867 tristate "BLAKE2b"
868 select CRYPTO_HASH
869 help
870 BLAKE2b cryptographic hash function (RFC 7693)
871
872 BLAKE2b is optimized for 64-bit platforms and can produce digests
873 of any size between 1 and 64 bytes. The keyed hash is also implemented.
874
875 This module provides the following algorithms:
876 - blake2b-160
877 - blake2b-256
878 - blake2b-384
879 - blake2b-512
880
881 Used by the btrfs filesystem.
882
883 See https://blake2.net for further information.
884
885config CRYPTO_CMAC
886 tristate "CMAC (Cipher-based MAC)"
887 select CRYPTO_HASH
888 select CRYPTO_MANAGER
889 help
890 CMAC (Cipher-based Message Authentication Code) authentication
891 mode (NIST SP800-38B and IETF RFC4493)
892
893config CRYPTO_GHASH
894 tristate "GHASH"
895 select CRYPTO_HASH
896 select CRYPTO_LIB_GF128MUL
897 help
898 GCM GHASH function (NIST SP800-38D)
899
900config CRYPTO_HMAC
901 tristate "HMAC (Keyed-Hash MAC)"
902 select CRYPTO_HASH
903 select CRYPTO_MANAGER
904 help
905 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
906 RFC2104)
907
908 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
909
910config CRYPTO_MD4
911 tristate "MD4"
912 select CRYPTO_HASH
913 help
914 MD4 message digest algorithm (RFC1320)
915
916config CRYPTO_MD5
917 tristate "MD5"
918 select CRYPTO_HASH
919 help
920 MD5 message digest algorithm (RFC1321)
921
922config CRYPTO_MICHAEL_MIC
923 tristate "Michael MIC"
924 select CRYPTO_HASH
925 help
926 Michael MIC (Message Integrity Code) (IEEE 802.11i)
927
928 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
929 known as WPA (Wif-Fi Protected Access).
930
931 This algorithm is required for TKIP, but it should not be used for
932 other purposes because of the weakness of the algorithm.
933
934config CRYPTO_POLYVAL
935 tristate
936 select CRYPTO_HASH
937 select CRYPTO_LIB_GF128MUL
938 help
939 POLYVAL hash function for HCTR2
940
941 This is used in HCTR2. It is not a general-purpose
942 cryptographic hash function.
943
944config CRYPTO_POLY1305
945 tristate "Poly1305"
946 select CRYPTO_HASH
947 select CRYPTO_LIB_POLY1305_GENERIC
948 help
949 Poly1305 authenticator algorithm (RFC7539)
950
951 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
952 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
953 in IETF protocols. This is the portable C implementation of Poly1305.
954
955config CRYPTO_RMD160
956 tristate "RIPEMD-160"
957 select CRYPTO_HASH
958 help
959 RIPEMD-160 hash function (ISO/IEC 10118-3)
960
961 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
962 to be used as a secure replacement for the 128-bit hash functions
963 MD4, MD5 and its predecessor RIPEMD
964 (not to be confused with RIPEMD-128).
965
966 Its speed is comparable to SHA-1 and there are no known attacks
967 against RIPEMD-160.
968
969 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
970 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
971 for further information.
972
973config CRYPTO_SHA1
974 tristate "SHA-1"
975 select CRYPTO_HASH
976 select CRYPTO_LIB_SHA1
977 help
978 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
979
980config CRYPTO_SHA256
981 tristate "SHA-224 and SHA-256"
982 select CRYPTO_HASH
983 select CRYPTO_LIB_SHA256
984 help
985 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
986
987 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
988 Used by the btrfs filesystem, Ceph, NFS, and SMB.
989
990config CRYPTO_SHA512
991 tristate "SHA-384 and SHA-512"
992 select CRYPTO_HASH
993 help
994 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
995
996config CRYPTO_SHA3
997 tristate "SHA-3"
998 select CRYPTO_HASH
999 help
1000 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003 tristate
1004
1005config CRYPTO_SM3_GENERIC
1006 tristate "SM3 (ShangMi 3)"
1007 select CRYPTO_HASH
1008 select CRYPTO_SM3
1009 help
1010 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012 This is part of the Chinese Commercial Cryptography suite.
1013
1014 References:
1015 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019 tristate "Streebog"
1020 select CRYPTO_HASH
1021 help
1022 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024 This is one of the Russian cryptographic standard algorithms (called
1025 GOST algorithms). This setting enables two hash algorithms with
1026 256 and 512 bits output.
1027
1028 References:
1029 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030 https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033 tristate "VMAC"
1034 select CRYPTO_HASH
1035 select CRYPTO_MANAGER
1036 help
1037 VMAC is a message authentication algorithm designed for
1038 very high speed on 64-bit architectures.
1039
1040 See https://fastcrypto.org/vmac for further information.
1041
1042config CRYPTO_WP512
1043 tristate "Whirlpool"
1044 select CRYPTO_HASH
1045 help
1046 Whirlpool hash function (ISO/IEC 10118-3)
1047
1048 512, 384 and 256-bit hashes.
1049
1050 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051
1052 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053 for further information.
1054
1055config CRYPTO_XCBC
1056 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057 select CRYPTO_HASH
1058 select CRYPTO_MANAGER
1059 help
1060 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061 Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064 tristate "xxHash"
1065 select CRYPTO_HASH
1066 select XXHASH
1067 help
1068 xxHash non-cryptographic hash algorithm
1069
1070 Extremely fast, working at speeds close to RAM limits.
1071
1072 Used by the btrfs filesystem.
1073
1074endmenu
1075
1076menu "CRCs (cyclic redundancy checks)"
1077
1078config CRYPTO_CRC32C
1079 tristate "CRC32c"
1080 select CRYPTO_HASH
1081 select CRC32
1082 help
1083 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1084
1085 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089 iSCSI.
1090
1091 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1092
1093config CRYPTO_CRC32
1094 tristate "CRC32"
1095 select CRYPTO_HASH
1096 select CRC32
1097 help
1098 CRC32 CRC algorithm (IEEE 802.3)
1099
1100 Used by RoCEv2 and f2fs.
1101
1102config CRYPTO_CRCT10DIF
1103 tristate "CRCT10DIF"
1104 select CRYPTO_HASH
1105 help
1106 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1107
1108 CRC algorithm used by the SCSI Block Commands standard.
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111 tristate "CRC64 based on Rocksoft Model algorithm"
1112 depends on CRC64
1113 select CRYPTO_HASH
1114 help
1115 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1118
1119 See https://zlib.net/crc_v3.txt
1120
1121endmenu
1122
1123menu "Compression"
1124
1125config CRYPTO_DEFLATE
1126 tristate "Deflate"
1127 select CRYPTO_ALGAPI
1128 select CRYPTO_ACOMP2
1129 select ZLIB_INFLATE
1130 select ZLIB_DEFLATE
1131 help
1132 Deflate compression algorithm (RFC1951)
1133
1134 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1135
1136config CRYPTO_LZO
1137 tristate "LZO"
1138 select CRYPTO_ALGAPI
1139 select CRYPTO_ACOMP2
1140 select LZO_COMPRESS
1141 select LZO_DECOMPRESS
1142 help
1143 LZO compression algorithm
1144
1145 See https://www.oberhumer.com/opensource/lzo/ for further information.
1146
1147config CRYPTO_842
1148 tristate "842"
1149 select CRYPTO_ALGAPI
1150 select CRYPTO_ACOMP2
1151 select 842_COMPRESS
1152 select 842_DECOMPRESS
1153 help
1154 842 compression algorithm by IBM
1155
1156 See https://github.com/plauth/lib842 for further information.
1157
1158config CRYPTO_LZ4
1159 tristate "LZ4"
1160 select CRYPTO_ALGAPI
1161 select CRYPTO_ACOMP2
1162 select LZ4_COMPRESS
1163 select LZ4_DECOMPRESS
1164 help
1165 LZ4 compression algorithm
1166
1167 See https://github.com/lz4/lz4 for further information.
1168
1169config CRYPTO_LZ4HC
1170 tristate "LZ4HC"
1171 select CRYPTO_ALGAPI
1172 select CRYPTO_ACOMP2
1173 select LZ4HC_COMPRESS
1174 select LZ4_DECOMPRESS
1175 help
1176 LZ4 high compression mode algorithm
1177
1178 See https://github.com/lz4/lz4 for further information.
1179
1180config CRYPTO_ZSTD
1181 tristate "Zstd"
1182 select CRYPTO_ALGAPI
1183 select CRYPTO_ACOMP2
1184 select ZSTD_COMPRESS
1185 select ZSTD_DECOMPRESS
1186 help
1187 zstd compression algorithm
1188
1189 See https://github.com/facebook/zstd for further information.
1190
1191endmenu
1192
1193menu "Random number generation"
1194
1195config CRYPTO_ANSI_CPRNG
1196 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197 select CRYPTO_AES
1198 select CRYPTO_RNG
1199 help
1200 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202 This uses the AES cipher algorithm.
1203
1204 Note that this option must be enabled if CRYPTO_FIPS is selected
1205
1206menuconfig CRYPTO_DRBG_MENU
1207 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1208 help
1209 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211 In the following submenu, one or more of the DRBG types must be selected.
1212
1213if CRYPTO_DRBG_MENU
1214
1215config CRYPTO_DRBG_HMAC
1216 bool
1217 default y
1218 select CRYPTO_HMAC
1219 select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222 bool "Hash_DRBG"
1223 select CRYPTO_SHA256
1224 help
1225 Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1228
1229config CRYPTO_DRBG_CTR
1230 bool "CTR_DRBG"
1231 select CRYPTO_AES
1232 select CRYPTO_CTR
1233 help
1234 CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236 This uses the AES cipher algorithm with the counter block mode.
1237
1238config CRYPTO_DRBG
1239 tristate
1240 default CRYPTO_DRBG_MENU
1241 select CRYPTO_RNG
1242 select CRYPTO_JITTERENTROPY
1243
1244endif # if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_JITTERENTROPY
1247 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248 select CRYPTO_RNG
1249 select CRYPTO_SHA3
1250 help
1251 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254 compliant with NIST SP800-90B) intended to provide a seed to a
1255 deterministic RNG (e.g., per NIST SP800-90C).
1256 This RNG does not perform any cryptographic whitening of the generated
1257 random numbers.
1258
1259 See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265 prompt "CPU Jitter RNG Memory Size"
1266 default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267 help
1268 The Jitter RNG measures the execution time of memory accesses.
1269 Multiple consecutive memory accesses are performed. If the memory
1270 size fits into a cache (e.g. L1), only the memory access timing
1271 to that cache is measured. The closer the cache is to the CPU
1272 the less variations are measured and thus the less entropy is
1273 obtained. Thus, if the memory size fits into the L1 cache, the
1274 obtained entropy is less than if the memory size fits within
1275 L1 + L2, which in turn is less if the memory fits into
1276 L1 + L2 + L3. Thus, by selecting a different memory size,
1277 the entropy rate produced by the Jitter RNG can be modified.
1278
1279 config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280 bool "2048 Bytes (default)"
1281
1282 config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283 bool "128 kBytes"
1284
1285 config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286 bool "1024 kBytes"
1287
1288 config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289 bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293 int
1294 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300 int
1301 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307 int "CPU Jitter RNG Oversampling Rate"
1308 range 1 15
1309 default 3
1310 help
1311 The Jitter RNG allows the specification of an oversampling rate (OSR).
1312 The Jitter RNG operation requires a fixed amount of timing
1313 measurements to produce one output block of random numbers. The
1314 OSR value is multiplied with the amount of timing measurements to
1315 generate one output block. Thus, the timing measurement is oversampled
1316 by the OSR factor. The oversampling allows the Jitter RNG to operate
1317 on hardware whose timers deliver limited amount of entropy (e.g.
1318 the timer is coarse) by setting the OSR to a higher value. The
1319 trade-off, however, is that the Jitter RNG now requires more time
1320 to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323 bool "CPU Jitter RNG Test Interface"
1324 help
1325 The test interface allows a privileged process to capture
1326 the raw unconditioned high resolution time stamp noise that
1327 is collected by the Jitter RNG for statistical analysis. As
1328 this data is used at the same time to generate random bits,
1329 the Jitter RNG operates in an insecure mode as long as the
1330 recording is enabled. This interface therefore is only
1331 intended for testing purposes and is not suitable for
1332 production systems.
1333
1334 The raw noise data can be obtained using the jent_raw_hires
1335 debugfs file. Using the option
1336 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337 the first 1000 entropy events since boot can be sampled.
1338
1339 If unsure, select N.
1340
1341endif # if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346 int
1347 default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350 int
1351 default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354 int
1355 default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358 bool
1359
1360endif # if !(CRYPTO_FIPS && EXPERT)
1361endif # if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364 tristate
1365 select CRYPTO_HMAC
1366 select CRYPTO_SHA256
1367
1368endmenu
1369menu "Userspace interface"
1370
1371config CRYPTO_USER_API
1372 tristate
1373
1374config CRYPTO_USER_API_HASH
1375 tristate "Hash algorithms"
1376 depends on NET
1377 select CRYPTO_HASH
1378 select CRYPTO_USER_API
1379 help
1380 Enable the userspace interface for hash algorithms.
1381
1382 See Documentation/crypto/userspace-if.rst and
1383 https://www.chronox.de/libkcapi/html/index.html
1384
1385config CRYPTO_USER_API_SKCIPHER
1386 tristate "Symmetric key cipher algorithms"
1387 depends on NET
1388 select CRYPTO_SKCIPHER
1389 select CRYPTO_USER_API
1390 help
1391 Enable the userspace interface for symmetric key cipher algorithms.
1392
1393 See Documentation/crypto/userspace-if.rst and
1394 https://www.chronox.de/libkcapi/html/index.html
1395
1396config CRYPTO_USER_API_RNG
1397 tristate "RNG (random number generator) algorithms"
1398 depends on NET
1399 select CRYPTO_RNG
1400 select CRYPTO_USER_API
1401 help
1402 Enable the userspace interface for RNG (random number generator)
1403 algorithms.
1404
1405 See Documentation/crypto/userspace-if.rst and
1406 https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409 bool "Enable CAVP testing of DRBG"
1410 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411 help
1412 Enable extra APIs in the userspace interface for NIST CAVP
1413 (Cryptographic Algorithm Validation Program) testing:
1414 - resetting DRBG entropy
1415 - providing Additional Data
1416
1417 This should only be enabled for CAVP testing. You should say
1418 no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421 tristate "AEAD cipher algorithms"
1422 depends on NET
1423 select CRYPTO_AEAD
1424 select CRYPTO_SKCIPHER
1425 select CRYPTO_NULL
1426 select CRYPTO_USER_API
1427 help
1428 Enable the userspace interface for AEAD cipher algorithms.
1429
1430 See Documentation/crypto/userspace-if.rst and
1431 https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434 bool "Obsolete cryptographic algorithms"
1435 depends on CRYPTO_USER_API
1436 default y
1437 help
1438 Allow obsolete cryptographic algorithms to be selected that have
1439 already been phased out from internal use by the kernel, and are
1440 only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445 bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif # if CRYPTO
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5 tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40config CRYPTO_ALGAPI2
41 tristate
42
43config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_RSA
97 tristate "RSA algorithm"
98 select CRYPTO_AKCIPHER
99 select CRYPTO_MANAGER
100 select MPILIB
101 select ASN1
102 help
103 Generic implementation of the RSA public key algorithm.
104
105config CRYPTO_MANAGER
106 tristate "Cryptographic algorithm manager"
107 select CRYPTO_MANAGER2
108 help
109 Create default cryptographic template instantiations such as
110 cbc(aes).
111
112config CRYPTO_MANAGER2
113 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
114 select CRYPTO_AEAD2
115 select CRYPTO_HASH2
116 select CRYPTO_BLKCIPHER2
117 select CRYPTO_AKCIPHER2
118
119config CRYPTO_USER
120 tristate "Userspace cryptographic algorithm configuration"
121 depends on NET
122 select CRYPTO_MANAGER
123 help
124 Userspace configuration for cryptographic instantiations such as
125 cbc(aes).
126
127config CRYPTO_MANAGER_DISABLE_TESTS
128 bool "Disable run-time self tests"
129 default y
130 depends on CRYPTO_MANAGER2
131 help
132 Disable run-time self tests that normally take place at
133 algorithm registration.
134
135config CRYPTO_GF128MUL
136 tristate "GF(2^128) multiplication functions"
137 help
138 Efficient table driven implementation of multiplications in the
139 field GF(2^128). This is needed by some cypher modes. This
140 option will be selected automatically if you select such a
141 cipher mode. Only select this option by hand if you expect to load
142 an external module that requires these functions.
143
144config CRYPTO_NULL
145 tristate "Null algorithms"
146 select CRYPTO_NULL2
147 help
148 These are 'Null' algorithms, used by IPsec, which do nothing.
149
150config CRYPTO_NULL2
151 tristate
152 select CRYPTO_ALGAPI2
153 select CRYPTO_BLKCIPHER2
154 select CRYPTO_HASH2
155
156config CRYPTO_PCRYPT
157 tristate "Parallel crypto engine"
158 depends on SMP
159 select PADATA
160 select CRYPTO_MANAGER
161 select CRYPTO_AEAD
162 help
163 This converts an arbitrary crypto algorithm into a parallel
164 algorithm that executes in kernel threads.
165
166config CRYPTO_WORKQUEUE
167 tristate
168
169config CRYPTO_CRYPTD
170 tristate "Software async crypto daemon"
171 select CRYPTO_BLKCIPHER
172 select CRYPTO_HASH
173 select CRYPTO_MANAGER
174 select CRYPTO_WORKQUEUE
175 help
176 This is a generic software asynchronous crypto daemon that
177 converts an arbitrary synchronous software crypto algorithm
178 into an asynchronous algorithm that executes in a kernel thread.
179
180config CRYPTO_MCRYPTD
181 tristate "Software async multi-buffer crypto daemon"
182 select CRYPTO_BLKCIPHER
183 select CRYPTO_HASH
184 select CRYPTO_MANAGER
185 select CRYPTO_WORKQUEUE
186 help
187 This is a generic software asynchronous crypto daemon that
188 provides the kernel thread to assist multi-buffer crypto
189 algorithms for submitting jobs and flushing jobs in multi-buffer
190 crypto algorithms. Multi-buffer crypto algorithms are executed
191 in the context of this kernel thread and drivers can post
192 their crypto request asynchronously to be processed by this daemon.
193
194config CRYPTO_AUTHENC
195 tristate "Authenc support"
196 select CRYPTO_AEAD
197 select CRYPTO_BLKCIPHER
198 select CRYPTO_MANAGER
199 select CRYPTO_HASH
200 select CRYPTO_NULL
201 help
202 Authenc: Combined mode wrapper for IPsec.
203 This is required for IPSec.
204
205config CRYPTO_TEST
206 tristate "Testing module"
207 depends on m
208 select CRYPTO_MANAGER
209 help
210 Quick & dirty crypto test module.
211
212config CRYPTO_ABLK_HELPER
213 tristate
214 select CRYPTO_CRYPTD
215
216config CRYPTO_GLUE_HELPER_X86
217 tristate
218 depends on X86
219 select CRYPTO_ALGAPI
220
221config CRYPTO_ENGINE
222 tristate
223
224comment "Authenticated Encryption with Associated Data"
225
226config CRYPTO_CCM
227 tristate "CCM support"
228 select CRYPTO_CTR
229 select CRYPTO_AEAD
230 help
231 Support for Counter with CBC MAC. Required for IPsec.
232
233config CRYPTO_GCM
234 tristate "GCM/GMAC support"
235 select CRYPTO_CTR
236 select CRYPTO_AEAD
237 select CRYPTO_GHASH
238 select CRYPTO_NULL
239 help
240 Support for Galois/Counter Mode (GCM) and Galois Message
241 Authentication Code (GMAC). Required for IPSec.
242
243config CRYPTO_CHACHA20POLY1305
244 tristate "ChaCha20-Poly1305 AEAD support"
245 select CRYPTO_CHACHA20
246 select CRYPTO_POLY1305
247 select CRYPTO_AEAD
248 help
249 ChaCha20-Poly1305 AEAD support, RFC7539.
250
251 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
252 with the Poly1305 authenticator. It is defined in RFC7539 for use in
253 IETF protocols.
254
255config CRYPTO_SEQIV
256 tristate "Sequence Number IV Generator"
257 select CRYPTO_AEAD
258 select CRYPTO_BLKCIPHER
259 select CRYPTO_NULL
260 select CRYPTO_RNG_DEFAULT
261 help
262 This IV generator generates an IV based on a sequence number by
263 xoring it with a salt. This algorithm is mainly useful for CTR
264
265config CRYPTO_ECHAINIV
266 tristate "Encrypted Chain IV Generator"
267 select CRYPTO_AEAD
268 select CRYPTO_NULL
269 select CRYPTO_RNG_DEFAULT
270 default m
271 help
272 This IV generator generates an IV based on the encryption of
273 a sequence number xored with a salt. This is the default
274 algorithm for CBC.
275
276comment "Block modes"
277
278config CRYPTO_CBC
279 tristate "CBC support"
280 select CRYPTO_BLKCIPHER
281 select CRYPTO_MANAGER
282 help
283 CBC: Cipher Block Chaining mode
284 This block cipher algorithm is required for IPSec.
285
286config CRYPTO_CTR
287 tristate "CTR support"
288 select CRYPTO_BLKCIPHER
289 select CRYPTO_SEQIV
290 select CRYPTO_MANAGER
291 help
292 CTR: Counter mode
293 This block cipher algorithm is required for IPSec.
294
295config CRYPTO_CTS
296 tristate "CTS support"
297 select CRYPTO_BLKCIPHER
298 help
299 CTS: Cipher Text Stealing
300 This is the Cipher Text Stealing mode as described by
301 Section 8 of rfc2040 and referenced by rfc3962.
302 (rfc3962 includes errata information in its Appendix A)
303 This mode is required for Kerberos gss mechanism support
304 for AES encryption.
305
306config CRYPTO_ECB
307 tristate "ECB support"
308 select CRYPTO_BLKCIPHER
309 select CRYPTO_MANAGER
310 help
311 ECB: Electronic CodeBook mode
312 This is the simplest block cipher algorithm. It simply encrypts
313 the input block by block.
314
315config CRYPTO_LRW
316 tristate "LRW support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 select CRYPTO_GF128MUL
320 help
321 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
322 narrow block cipher mode for dm-crypt. Use it with cipher
323 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
324 The first 128, 192 or 256 bits in the key are used for AES and the
325 rest is used to tie each cipher block to its logical position.
326
327config CRYPTO_PCBC
328 tristate "PCBC support"
329 select CRYPTO_BLKCIPHER
330 select CRYPTO_MANAGER
331 help
332 PCBC: Propagating Cipher Block Chaining mode
333 This block cipher algorithm is required for RxRPC.
334
335config CRYPTO_XTS
336 tristate "XTS support"
337 select CRYPTO_BLKCIPHER
338 select CRYPTO_MANAGER
339 select CRYPTO_GF128MUL
340 help
341 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
342 key size 256, 384 or 512 bits. This implementation currently
343 can't handle a sectorsize which is not a multiple of 16 bytes.
344
345config CRYPTO_KEYWRAP
346 tristate "Key wrapping support"
347 select CRYPTO_BLKCIPHER
348 help
349 Support for key wrapping (NIST SP800-38F / RFC3394) without
350 padding.
351
352comment "Hash modes"
353
354config CRYPTO_CMAC
355 tristate "CMAC support"
356 select CRYPTO_HASH
357 select CRYPTO_MANAGER
358 help
359 Cipher-based Message Authentication Code (CMAC) specified by
360 The National Institute of Standards and Technology (NIST).
361
362 https://tools.ietf.org/html/rfc4493
363 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
364
365config CRYPTO_HMAC
366 tristate "HMAC support"
367 select CRYPTO_HASH
368 select CRYPTO_MANAGER
369 help
370 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
371 This is required for IPSec.
372
373config CRYPTO_XCBC
374 tristate "XCBC support"
375 select CRYPTO_HASH
376 select CRYPTO_MANAGER
377 help
378 XCBC: Keyed-Hashing with encryption algorithm
379 http://www.ietf.org/rfc/rfc3566.txt
380 http://csrc.nist.gov/encryption/modes/proposedmodes/
381 xcbc-mac/xcbc-mac-spec.pdf
382
383config CRYPTO_VMAC
384 tristate "VMAC support"
385 select CRYPTO_HASH
386 select CRYPTO_MANAGER
387 help
388 VMAC is a message authentication algorithm designed for
389 very high speed on 64-bit architectures.
390
391 See also:
392 <http://fastcrypto.org/vmac>
393
394comment "Digest"
395
396config CRYPTO_CRC32C
397 tristate "CRC32c CRC algorithm"
398 select CRYPTO_HASH
399 select CRC32
400 help
401 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
402 by iSCSI for header and data digests and by others.
403 See Castagnoli93. Module will be crc32c.
404
405config CRYPTO_CRC32C_INTEL
406 tristate "CRC32c INTEL hardware acceleration"
407 depends on X86
408 select CRYPTO_HASH
409 help
410 In Intel processor with SSE4.2 supported, the processor will
411 support CRC32C implementation using hardware accelerated CRC32
412 instruction. This option will create 'crc32c-intel' module,
413 which will enable any routine to use the CRC32 instruction to
414 gain performance compared with software implementation.
415 Module will be crc32c-intel.
416
417config CRYPTO_CRC32C_SPARC64
418 tristate "CRC32c CRC algorithm (SPARC64)"
419 depends on SPARC64
420 select CRYPTO_HASH
421 select CRC32
422 help
423 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
424 when available.
425
426config CRYPTO_CRC32
427 tristate "CRC32 CRC algorithm"
428 select CRYPTO_HASH
429 select CRC32
430 help
431 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
432 Shash crypto api wrappers to crc32_le function.
433
434config CRYPTO_CRC32_PCLMUL
435 tristate "CRC32 PCLMULQDQ hardware acceleration"
436 depends on X86
437 select CRYPTO_HASH
438 select CRC32
439 help
440 From Intel Westmere and AMD Bulldozer processor with SSE4.2
441 and PCLMULQDQ supported, the processor will support
442 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
443 instruction. This option will create 'crc32-plcmul' module,
444 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
445 and gain better performance as compared with the table implementation.
446
447config CRYPTO_CRCT10DIF
448 tristate "CRCT10DIF algorithm"
449 select CRYPTO_HASH
450 help
451 CRC T10 Data Integrity Field computation is being cast as
452 a crypto transform. This allows for faster crc t10 diff
453 transforms to be used if they are available.
454
455config CRYPTO_CRCT10DIF_PCLMUL
456 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
457 depends on X86 && 64BIT && CRC_T10DIF
458 select CRYPTO_HASH
459 help
460 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
461 CRC T10 DIF PCLMULQDQ computation can be hardware
462 accelerated PCLMULQDQ instruction. This option will create
463 'crct10dif-plcmul' module, which is faster when computing the
464 crct10dif checksum as compared with the generic table implementation.
465
466config CRYPTO_GHASH
467 tristate "GHASH digest algorithm"
468 select CRYPTO_GF128MUL
469 select CRYPTO_HASH
470 help
471 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
472
473config CRYPTO_POLY1305
474 tristate "Poly1305 authenticator algorithm"
475 select CRYPTO_HASH
476 help
477 Poly1305 authenticator algorithm, RFC7539.
478
479 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
480 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
481 in IETF protocols. This is the portable C implementation of Poly1305.
482
483config CRYPTO_POLY1305_X86_64
484 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
485 depends on X86 && 64BIT
486 select CRYPTO_POLY1305
487 help
488 Poly1305 authenticator algorithm, RFC7539.
489
490 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
491 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
492 in IETF protocols. This is the x86_64 assembler implementation using SIMD
493 instructions.
494
495config CRYPTO_MD4
496 tristate "MD4 digest algorithm"
497 select CRYPTO_HASH
498 help
499 MD4 message digest algorithm (RFC1320).
500
501config CRYPTO_MD5
502 tristate "MD5 digest algorithm"
503 select CRYPTO_HASH
504 help
505 MD5 message digest algorithm (RFC1321).
506
507config CRYPTO_MD5_OCTEON
508 tristate "MD5 digest algorithm (OCTEON)"
509 depends on CPU_CAVIUM_OCTEON
510 select CRYPTO_MD5
511 select CRYPTO_HASH
512 help
513 MD5 message digest algorithm (RFC1321) implemented
514 using OCTEON crypto instructions, when available.
515
516config CRYPTO_MD5_PPC
517 tristate "MD5 digest algorithm (PPC)"
518 depends on PPC
519 select CRYPTO_HASH
520 help
521 MD5 message digest algorithm (RFC1321) implemented
522 in PPC assembler.
523
524config CRYPTO_MD5_SPARC64
525 tristate "MD5 digest algorithm (SPARC64)"
526 depends on SPARC64
527 select CRYPTO_MD5
528 select CRYPTO_HASH
529 help
530 MD5 message digest algorithm (RFC1321) implemented
531 using sparc64 crypto instructions, when available.
532
533config CRYPTO_MICHAEL_MIC
534 tristate "Michael MIC keyed digest algorithm"
535 select CRYPTO_HASH
536 help
537 Michael MIC is used for message integrity protection in TKIP
538 (IEEE 802.11i). This algorithm is required for TKIP, but it
539 should not be used for other purposes because of the weakness
540 of the algorithm.
541
542config CRYPTO_RMD128
543 tristate "RIPEMD-128 digest algorithm"
544 select CRYPTO_HASH
545 help
546 RIPEMD-128 (ISO/IEC 10118-3:2004).
547
548 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
549 be used as a secure replacement for RIPEMD. For other use cases,
550 RIPEMD-160 should be used.
551
552 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
553 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
554
555config CRYPTO_RMD160
556 tristate "RIPEMD-160 digest algorithm"
557 select CRYPTO_HASH
558 help
559 RIPEMD-160 (ISO/IEC 10118-3:2004).
560
561 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
562 to be used as a secure replacement for the 128-bit hash functions
563 MD4, MD5 and it's predecessor RIPEMD
564 (not to be confused with RIPEMD-128).
565
566 It's speed is comparable to SHA1 and there are no known attacks
567 against RIPEMD-160.
568
569 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
570 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
571
572config CRYPTO_RMD256
573 tristate "RIPEMD-256 digest algorithm"
574 select CRYPTO_HASH
575 help
576 RIPEMD-256 is an optional extension of RIPEMD-128 with a
577 256 bit hash. It is intended for applications that require
578 longer hash-results, without needing a larger security level
579 (than RIPEMD-128).
580
581 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
582 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
583
584config CRYPTO_RMD320
585 tristate "RIPEMD-320 digest algorithm"
586 select CRYPTO_HASH
587 help
588 RIPEMD-320 is an optional extension of RIPEMD-160 with a
589 320 bit hash. It is intended for applications that require
590 longer hash-results, without needing a larger security level
591 (than RIPEMD-160).
592
593 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
594 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
595
596config CRYPTO_SHA1
597 tristate "SHA1 digest algorithm"
598 select CRYPTO_HASH
599 help
600 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
601
602config CRYPTO_SHA1_SSSE3
603 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
604 depends on X86 && 64BIT
605 select CRYPTO_SHA1
606 select CRYPTO_HASH
607 help
608 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
609 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
610 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
611 when available.
612
613config CRYPTO_SHA256_SSSE3
614 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
615 depends on X86 && 64BIT
616 select CRYPTO_SHA256
617 select CRYPTO_HASH
618 help
619 SHA-256 secure hash standard (DFIPS 180-2) implemented
620 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
621 Extensions version 1 (AVX1), or Advanced Vector Extensions
622 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
623 Instructions) when available.
624
625config CRYPTO_SHA512_SSSE3
626 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
627 depends on X86 && 64BIT
628 select CRYPTO_SHA512
629 select CRYPTO_HASH
630 help
631 SHA-512 secure hash standard (DFIPS 180-2) implemented
632 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
633 Extensions version 1 (AVX1), or Advanced Vector Extensions
634 version 2 (AVX2) instructions, when available.
635
636config CRYPTO_SHA1_OCTEON
637 tristate "SHA1 digest algorithm (OCTEON)"
638 depends on CPU_CAVIUM_OCTEON
639 select CRYPTO_SHA1
640 select CRYPTO_HASH
641 help
642 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
643 using OCTEON crypto instructions, when available.
644
645config CRYPTO_SHA1_SPARC64
646 tristate "SHA1 digest algorithm (SPARC64)"
647 depends on SPARC64
648 select CRYPTO_SHA1
649 select CRYPTO_HASH
650 help
651 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
652 using sparc64 crypto instructions, when available.
653
654config CRYPTO_SHA1_PPC
655 tristate "SHA1 digest algorithm (powerpc)"
656 depends on PPC
657 help
658 This is the powerpc hardware accelerated implementation of the
659 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
660
661config CRYPTO_SHA1_PPC_SPE
662 tristate "SHA1 digest algorithm (PPC SPE)"
663 depends on PPC && SPE
664 help
665 SHA-1 secure hash standard (DFIPS 180-4) implemented
666 using powerpc SPE SIMD instruction set.
667
668config CRYPTO_SHA1_MB
669 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
670 depends on X86 && 64BIT
671 select CRYPTO_SHA1
672 select CRYPTO_HASH
673 select CRYPTO_MCRYPTD
674 help
675 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
676 using multi-buffer technique. This algorithm computes on
677 multiple data lanes concurrently with SIMD instructions for
678 better throughput. It should not be enabled by default but
679 used when there is significant amount of work to keep the keep
680 the data lanes filled to get performance benefit. If the data
681 lanes remain unfilled, a flush operation will be initiated to
682 process the crypto jobs, adding a slight latency.
683
684config CRYPTO_SHA256
685 tristate "SHA224 and SHA256 digest algorithm"
686 select CRYPTO_HASH
687 help
688 SHA256 secure hash standard (DFIPS 180-2).
689
690 This version of SHA implements a 256 bit hash with 128 bits of
691 security against collision attacks.
692
693 This code also includes SHA-224, a 224 bit hash with 112 bits
694 of security against collision attacks.
695
696config CRYPTO_SHA256_PPC_SPE
697 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
698 depends on PPC && SPE
699 select CRYPTO_SHA256
700 select CRYPTO_HASH
701 help
702 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
703 implemented using powerpc SPE SIMD instruction set.
704
705config CRYPTO_SHA256_OCTEON
706 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
707 depends on CPU_CAVIUM_OCTEON
708 select CRYPTO_SHA256
709 select CRYPTO_HASH
710 help
711 SHA-256 secure hash standard (DFIPS 180-2) implemented
712 using OCTEON crypto instructions, when available.
713
714config CRYPTO_SHA256_SPARC64
715 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
716 depends on SPARC64
717 select CRYPTO_SHA256
718 select CRYPTO_HASH
719 help
720 SHA-256 secure hash standard (DFIPS 180-2) implemented
721 using sparc64 crypto instructions, when available.
722
723config CRYPTO_SHA512
724 tristate "SHA384 and SHA512 digest algorithms"
725 select CRYPTO_HASH
726 help
727 SHA512 secure hash standard (DFIPS 180-2).
728
729 This version of SHA implements a 512 bit hash with 256 bits of
730 security against collision attacks.
731
732 This code also includes SHA-384, a 384 bit hash with 192 bits
733 of security against collision attacks.
734
735config CRYPTO_SHA512_OCTEON
736 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
737 depends on CPU_CAVIUM_OCTEON
738 select CRYPTO_SHA512
739 select CRYPTO_HASH
740 help
741 SHA-512 secure hash standard (DFIPS 180-2) implemented
742 using OCTEON crypto instructions, when available.
743
744config CRYPTO_SHA512_SPARC64
745 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
746 depends on SPARC64
747 select CRYPTO_SHA512
748 select CRYPTO_HASH
749 help
750 SHA-512 secure hash standard (DFIPS 180-2) implemented
751 using sparc64 crypto instructions, when available.
752
753config CRYPTO_TGR192
754 tristate "Tiger digest algorithms"
755 select CRYPTO_HASH
756 help
757 Tiger hash algorithm 192, 160 and 128-bit hashes
758
759 Tiger is a hash function optimized for 64-bit processors while
760 still having decent performance on 32-bit processors.
761 Tiger was developed by Ross Anderson and Eli Biham.
762
763 See also:
764 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
765
766config CRYPTO_WP512
767 tristate "Whirlpool digest algorithms"
768 select CRYPTO_HASH
769 help
770 Whirlpool hash algorithm 512, 384 and 256-bit hashes
771
772 Whirlpool-512 is part of the NESSIE cryptographic primitives.
773 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
774
775 See also:
776 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
777
778config CRYPTO_GHASH_CLMUL_NI_INTEL
779 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
780 depends on X86 && 64BIT
781 select CRYPTO_CRYPTD
782 help
783 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
784 The implementation is accelerated by CLMUL-NI of Intel.
785
786comment "Ciphers"
787
788config CRYPTO_AES
789 tristate "AES cipher algorithms"
790 select CRYPTO_ALGAPI
791 help
792 AES cipher algorithms (FIPS-197). AES uses the Rijndael
793 algorithm.
794
795 Rijndael appears to be consistently a very good performer in
796 both hardware and software across a wide range of computing
797 environments regardless of its use in feedback or non-feedback
798 modes. Its key setup time is excellent, and its key agility is
799 good. Rijndael's very low memory requirements make it very well
800 suited for restricted-space environments, in which it also
801 demonstrates excellent performance. Rijndael's operations are
802 among the easiest to defend against power and timing attacks.
803
804 The AES specifies three key sizes: 128, 192 and 256 bits
805
806 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
807
808config CRYPTO_AES_586
809 tristate "AES cipher algorithms (i586)"
810 depends on (X86 || UML_X86) && !64BIT
811 select CRYPTO_ALGAPI
812 select CRYPTO_AES
813 help
814 AES cipher algorithms (FIPS-197). AES uses the Rijndael
815 algorithm.
816
817 Rijndael appears to be consistently a very good performer in
818 both hardware and software across a wide range of computing
819 environments regardless of its use in feedback or non-feedback
820 modes. Its key setup time is excellent, and its key agility is
821 good. Rijndael's very low memory requirements make it very well
822 suited for restricted-space environments, in which it also
823 demonstrates excellent performance. Rijndael's operations are
824 among the easiest to defend against power and timing attacks.
825
826 The AES specifies three key sizes: 128, 192 and 256 bits
827
828 See <http://csrc.nist.gov/encryption/aes/> for more information.
829
830config CRYPTO_AES_X86_64
831 tristate "AES cipher algorithms (x86_64)"
832 depends on (X86 || UML_X86) && 64BIT
833 select CRYPTO_ALGAPI
834 select CRYPTO_AES
835 help
836 AES cipher algorithms (FIPS-197). AES uses the Rijndael
837 algorithm.
838
839 Rijndael appears to be consistently a very good performer in
840 both hardware and software across a wide range of computing
841 environments regardless of its use in feedback or non-feedback
842 modes. Its key setup time is excellent, and its key agility is
843 good. Rijndael's very low memory requirements make it very well
844 suited for restricted-space environments, in which it also
845 demonstrates excellent performance. Rijndael's operations are
846 among the easiest to defend against power and timing attacks.
847
848 The AES specifies three key sizes: 128, 192 and 256 bits
849
850 See <http://csrc.nist.gov/encryption/aes/> for more information.
851
852config CRYPTO_AES_NI_INTEL
853 tristate "AES cipher algorithms (AES-NI)"
854 depends on X86
855 select CRYPTO_AES_X86_64 if 64BIT
856 select CRYPTO_AES_586 if !64BIT
857 select CRYPTO_CRYPTD
858 select CRYPTO_ABLK_HELPER
859 select CRYPTO_ALGAPI
860 select CRYPTO_GLUE_HELPER_X86 if 64BIT
861 select CRYPTO_LRW
862 select CRYPTO_XTS
863 help
864 Use Intel AES-NI instructions for AES algorithm.
865
866 AES cipher algorithms (FIPS-197). AES uses the Rijndael
867 algorithm.
868
869 Rijndael appears to be consistently a very good performer in
870 both hardware and software across a wide range of computing
871 environments regardless of its use in feedback or non-feedback
872 modes. Its key setup time is excellent, and its key agility is
873 good. Rijndael's very low memory requirements make it very well
874 suited for restricted-space environments, in which it also
875 demonstrates excellent performance. Rijndael's operations are
876 among the easiest to defend against power and timing attacks.
877
878 The AES specifies three key sizes: 128, 192 and 256 bits
879
880 See <http://csrc.nist.gov/encryption/aes/> for more information.
881
882 In addition to AES cipher algorithm support, the acceleration
883 for some popular block cipher mode is supported too, including
884 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
885 acceleration for CTR.
886
887config CRYPTO_AES_SPARC64
888 tristate "AES cipher algorithms (SPARC64)"
889 depends on SPARC64
890 select CRYPTO_CRYPTD
891 select CRYPTO_ALGAPI
892 help
893 Use SPARC64 crypto opcodes for AES algorithm.
894
895 AES cipher algorithms (FIPS-197). AES uses the Rijndael
896 algorithm.
897
898 Rijndael appears to be consistently a very good performer in
899 both hardware and software across a wide range of computing
900 environments regardless of its use in feedback or non-feedback
901 modes. Its key setup time is excellent, and its key agility is
902 good. Rijndael's very low memory requirements make it very well
903 suited for restricted-space environments, in which it also
904 demonstrates excellent performance. Rijndael's operations are
905 among the easiest to defend against power and timing attacks.
906
907 The AES specifies three key sizes: 128, 192 and 256 bits
908
909 See <http://csrc.nist.gov/encryption/aes/> for more information.
910
911 In addition to AES cipher algorithm support, the acceleration
912 for some popular block cipher mode is supported too, including
913 ECB and CBC.
914
915config CRYPTO_AES_PPC_SPE
916 tristate "AES cipher algorithms (PPC SPE)"
917 depends on PPC && SPE
918 help
919 AES cipher algorithms (FIPS-197). Additionally the acceleration
920 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
921 This module should only be used for low power (router) devices
922 without hardware AES acceleration (e.g. caam crypto). It reduces the
923 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
924 timining attacks. Nevertheless it might be not as secure as other
925 architecture specific assembler implementations that work on 1KB
926 tables or 256 bytes S-boxes.
927
928config CRYPTO_ANUBIS
929 tristate "Anubis cipher algorithm"
930 select CRYPTO_ALGAPI
931 help
932 Anubis cipher algorithm.
933
934 Anubis is a variable key length cipher which can use keys from
935 128 bits to 320 bits in length. It was evaluated as a entrant
936 in the NESSIE competition.
937
938 See also:
939 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
940 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
941
942config CRYPTO_ARC4
943 tristate "ARC4 cipher algorithm"
944 select CRYPTO_BLKCIPHER
945 help
946 ARC4 cipher algorithm.
947
948 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
949 bits in length. This algorithm is required for driver-based
950 WEP, but it should not be for other purposes because of the
951 weakness of the algorithm.
952
953config CRYPTO_BLOWFISH
954 tristate "Blowfish cipher algorithm"
955 select CRYPTO_ALGAPI
956 select CRYPTO_BLOWFISH_COMMON
957 help
958 Blowfish cipher algorithm, by Bruce Schneier.
959
960 This is a variable key length cipher which can use keys from 32
961 bits to 448 bits in length. It's fast, simple and specifically
962 designed for use on "large microprocessors".
963
964 See also:
965 <http://www.schneier.com/blowfish.html>
966
967config CRYPTO_BLOWFISH_COMMON
968 tristate
969 help
970 Common parts of the Blowfish cipher algorithm shared by the
971 generic c and the assembler implementations.
972
973 See also:
974 <http://www.schneier.com/blowfish.html>
975
976config CRYPTO_BLOWFISH_X86_64
977 tristate "Blowfish cipher algorithm (x86_64)"
978 depends on X86 && 64BIT
979 select CRYPTO_ALGAPI
980 select CRYPTO_BLOWFISH_COMMON
981 help
982 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
983
984 This is a variable key length cipher which can use keys from 32
985 bits to 448 bits in length. It's fast, simple and specifically
986 designed for use on "large microprocessors".
987
988 See also:
989 <http://www.schneier.com/blowfish.html>
990
991config CRYPTO_CAMELLIA
992 tristate "Camellia cipher algorithms"
993 depends on CRYPTO
994 select CRYPTO_ALGAPI
995 help
996 Camellia cipher algorithms module.
997
998 Camellia is a symmetric key block cipher developed jointly
999 at NTT and Mitsubishi Electric Corporation.
1000
1001 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1002
1003 See also:
1004 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1005
1006config CRYPTO_CAMELLIA_X86_64
1007 tristate "Camellia cipher algorithm (x86_64)"
1008 depends on X86 && 64BIT
1009 depends on CRYPTO
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_GLUE_HELPER_X86
1012 select CRYPTO_LRW
1013 select CRYPTO_XTS
1014 help
1015 Camellia cipher algorithm module (x86_64).
1016
1017 Camellia is a symmetric key block cipher developed jointly
1018 at NTT and Mitsubishi Electric Corporation.
1019
1020 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1021
1022 See also:
1023 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027 depends on X86 && 64BIT
1028 depends on CRYPTO
1029 select CRYPTO_ALGAPI
1030 select CRYPTO_CRYPTD
1031 select CRYPTO_ABLK_HELPER
1032 select CRYPTO_GLUE_HELPER_X86
1033 select CRYPTO_CAMELLIA_X86_64
1034 select CRYPTO_LRW
1035 select CRYPTO_XTS
1036 help
1037 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1038
1039 Camellia is a symmetric key block cipher developed jointly
1040 at NTT and Mitsubishi Electric Corporation.
1041
1042 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1043
1044 See also:
1045 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049 depends on X86 && 64BIT
1050 depends on CRYPTO
1051 select CRYPTO_ALGAPI
1052 select CRYPTO_CRYPTD
1053 select CRYPTO_ABLK_HELPER
1054 select CRYPTO_GLUE_HELPER_X86
1055 select CRYPTO_CAMELLIA_X86_64
1056 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057 select CRYPTO_LRW
1058 select CRYPTO_XTS
1059 help
1060 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062 Camellia is a symmetric key block cipher developed jointly
1063 at NTT and Mitsubishi Electric Corporation.
1064
1065 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1066
1067 See also:
1068 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071 tristate "Camellia cipher algorithm (SPARC64)"
1072 depends on SPARC64
1073 depends on CRYPTO
1074 select CRYPTO_ALGAPI
1075 help
1076 Camellia cipher algorithm module (SPARC64).
1077
1078 Camellia is a symmetric key block cipher developed jointly
1079 at NTT and Mitsubishi Electric Corporation.
1080
1081 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1082
1083 See also:
1084 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087 tristate
1088 help
1089 Common parts of the CAST cipher algorithms shared by the
1090 generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093 tristate "CAST5 (CAST-128) cipher algorithm"
1094 select CRYPTO_ALGAPI
1095 select CRYPTO_CAST_COMMON
1096 help
1097 The CAST5 encryption algorithm (synonymous with CAST-128) is
1098 described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102 depends on X86 && 64BIT
1103 select CRYPTO_ALGAPI
1104 select CRYPTO_CRYPTD
1105 select CRYPTO_ABLK_HELPER
1106 select CRYPTO_CAST_COMMON
1107 select CRYPTO_CAST5
1108 help
1109 The CAST5 encryption algorithm (synonymous with CAST-128) is
1110 described in RFC2144.
1111
1112 This module provides the Cast5 cipher algorithm that processes
1113 sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116 tristate "CAST6 (CAST-256) cipher algorithm"
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_CAST_COMMON
1119 help
1120 The CAST6 encryption algorithm (synonymous with CAST-256) is
1121 described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125 depends on X86 && 64BIT
1126 select CRYPTO_ALGAPI
1127 select CRYPTO_CRYPTD
1128 select CRYPTO_ABLK_HELPER
1129 select CRYPTO_GLUE_HELPER_X86
1130 select CRYPTO_CAST_COMMON
1131 select CRYPTO_CAST6
1132 select CRYPTO_LRW
1133 select CRYPTO_XTS
1134 help
1135 The CAST6 encryption algorithm (synonymous with CAST-256) is
1136 described in RFC2612.
1137
1138 This module provides the Cast6 cipher algorithm that processes
1139 eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142 tristate "DES and Triple DES EDE cipher algorithms"
1143 select CRYPTO_ALGAPI
1144 help
1145 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1146
1147config CRYPTO_DES_SPARC64
1148 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149 depends on SPARC64
1150 select CRYPTO_ALGAPI
1151 select CRYPTO_DES
1152 help
1153 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154 optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157 tristate "Triple DES EDE cipher algorithm (x86-64)"
1158 depends on X86 && 64BIT
1159 select CRYPTO_ALGAPI
1160 select CRYPTO_DES
1161 help
1162 Triple DES EDE (FIPS 46-3) algorithm.
1163
1164 This module provides implementation of the Triple DES EDE cipher
1165 algorithm that is optimized for x86-64 processors. Two versions of
1166 algorithm are provided; regular processing one input block and
1167 one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170 tristate "FCrypt cipher algorithm"
1171 select CRYPTO_ALGAPI
1172 select CRYPTO_BLKCIPHER
1173 help
1174 FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177 tristate "Khazad cipher algorithm"
1178 select CRYPTO_ALGAPI
1179 help
1180 Khazad cipher algorithm.
1181
1182 Khazad was a finalist in the initial NESSIE competition. It is
1183 an algorithm optimized for 64-bit processors with good performance
1184 on 32-bit processors. Khazad uses an 128 bit key size.
1185
1186 See also:
1187 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1188
1189config CRYPTO_SALSA20
1190 tristate "Salsa20 stream cipher algorithm"
1191 select CRYPTO_BLKCIPHER
1192 help
1193 Salsa20 stream cipher algorithm.
1194
1195 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1197
1198 The Salsa20 stream cipher algorithm is designed by Daniel J.
1199 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1200
1201config CRYPTO_SALSA20_586
1202 tristate "Salsa20 stream cipher algorithm (i586)"
1203 depends on (X86 || UML_X86) && !64BIT
1204 select CRYPTO_BLKCIPHER
1205 help
1206 Salsa20 stream cipher algorithm.
1207
1208 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211 The Salsa20 stream cipher algorithm is designed by Daniel J.
1212 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1213
1214config CRYPTO_SALSA20_X86_64
1215 tristate "Salsa20 stream cipher algorithm (x86_64)"
1216 depends on (X86 || UML_X86) && 64BIT
1217 select CRYPTO_BLKCIPHER
1218 help
1219 Salsa20 stream cipher algorithm.
1220
1221 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224 The Salsa20 stream cipher algorithm is designed by Daniel J.
1225 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1226
1227config CRYPTO_CHACHA20
1228 tristate "ChaCha20 cipher algorithm"
1229 select CRYPTO_BLKCIPHER
1230 help
1231 ChaCha20 cipher algorithm, RFC7539.
1232
1233 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234 Bernstein and further specified in RFC7539 for use in IETF protocols.
1235 This is the portable C implementation of ChaCha20.
1236
1237 See also:
1238 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1239
1240config CRYPTO_CHACHA20_X86_64
1241 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CHACHA20
1245 help
1246 ChaCha20 cipher algorithm, RFC7539.
1247
1248 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249 Bernstein and further specified in RFC7539 for use in IETF protocols.
1250 This is the x86_64 assembler implementation using SIMD instructions.
1251
1252 See also:
1253 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1254
1255config CRYPTO_SEED
1256 tristate "SEED cipher algorithm"
1257 select CRYPTO_ALGAPI
1258 help
1259 SEED cipher algorithm (RFC4269).
1260
1261 SEED is a 128-bit symmetric key block cipher that has been
1262 developed by KISA (Korea Information Security Agency) as a
1263 national standard encryption algorithm of the Republic of Korea.
1264 It is a 16 round block cipher with the key size of 128 bit.
1265
1266 See also:
1267 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1268
1269config CRYPTO_SERPENT
1270 tristate "Serpent cipher algorithm"
1271 select CRYPTO_ALGAPI
1272 help
1273 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275 Keys are allowed to be from 0 to 256 bits in length, in steps
1276 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1277 variant of Serpent for compatibility with old kerneli.org code.
1278
1279 See also:
1280 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284 depends on X86 && 64BIT
1285 select CRYPTO_ALGAPI
1286 select CRYPTO_CRYPTD
1287 select CRYPTO_ABLK_HELPER
1288 select CRYPTO_GLUE_HELPER_X86
1289 select CRYPTO_SERPENT
1290 select CRYPTO_LRW
1291 select CRYPTO_XTS
1292 help
1293 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295 Keys are allowed to be from 0 to 256 bits in length, in steps
1296 of 8 bits.
1297
1298 This module provides Serpent cipher algorithm that processes eight
1299 blocks parallel using SSE2 instruction set.
1300
1301 See also:
1302 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304config CRYPTO_SERPENT_SSE2_586
1305 tristate "Serpent cipher algorithm (i586/SSE2)"
1306 depends on X86 && !64BIT
1307 select CRYPTO_ALGAPI
1308 select CRYPTO_CRYPTD
1309 select CRYPTO_ABLK_HELPER
1310 select CRYPTO_GLUE_HELPER_X86
1311 select CRYPTO_SERPENT
1312 select CRYPTO_LRW
1313 select CRYPTO_XTS
1314 help
1315 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1316
1317 Keys are allowed to be from 0 to 256 bits in length, in steps
1318 of 8 bits.
1319
1320 This module provides Serpent cipher algorithm that processes four
1321 blocks parallel using SSE2 instruction set.
1322
1323 See also:
1324 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327 tristate "Serpent cipher algorithm (x86_64/AVX)"
1328 depends on X86 && 64BIT
1329 select CRYPTO_ALGAPI
1330 select CRYPTO_CRYPTD
1331 select CRYPTO_ABLK_HELPER
1332 select CRYPTO_GLUE_HELPER_X86
1333 select CRYPTO_SERPENT
1334 select CRYPTO_LRW
1335 select CRYPTO_XTS
1336 help
1337 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339 Keys are allowed to be from 0 to 256 bits in length, in steps
1340 of 8 bits.
1341
1342 This module provides the Serpent cipher algorithm that processes
1343 eight blocks parallel using the AVX instruction set.
1344
1345 See also:
1346 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350 depends on X86 && 64BIT
1351 select CRYPTO_ALGAPI
1352 select CRYPTO_CRYPTD
1353 select CRYPTO_ABLK_HELPER
1354 select CRYPTO_GLUE_HELPER_X86
1355 select CRYPTO_SERPENT
1356 select CRYPTO_SERPENT_AVX_X86_64
1357 select CRYPTO_LRW
1358 select CRYPTO_XTS
1359 help
1360 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1361
1362 Keys are allowed to be from 0 to 256 bits in length, in steps
1363 of 8 bits.
1364
1365 This module provides Serpent cipher algorithm that processes 16
1366 blocks parallel using AVX2 instruction set.
1367
1368 See also:
1369 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_TEA
1372 tristate "TEA, XTEA and XETA cipher algorithms"
1373 select CRYPTO_ALGAPI
1374 help
1375 TEA cipher algorithm.
1376
1377 Tiny Encryption Algorithm is a simple cipher that uses
1378 many rounds for security. It is very fast and uses
1379 little memory.
1380
1381 Xtendend Tiny Encryption Algorithm is a modification to
1382 the TEA algorithm to address a potential key weakness
1383 in the TEA algorithm.
1384
1385 Xtendend Encryption Tiny Algorithm is a mis-implementation
1386 of the XTEA algorithm for compatibility purposes.
1387
1388config CRYPTO_TWOFISH
1389 tristate "Twofish cipher algorithm"
1390 select CRYPTO_ALGAPI
1391 select CRYPTO_TWOFISH_COMMON
1392 help
1393 Twofish cipher algorithm.
1394
1395 Twofish was submitted as an AES (Advanced Encryption Standard)
1396 candidate cipher by researchers at CounterPane Systems. It is a
1397 16 round block cipher supporting key sizes of 128, 192, and 256
1398 bits.
1399
1400 See also:
1401 <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404 tristate
1405 help
1406 Common parts of the Twofish cipher algorithm shared by the
1407 generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410 tristate "Twofish cipher algorithms (i586)"
1411 depends on (X86 || UML_X86) && !64BIT
1412 select CRYPTO_ALGAPI
1413 select CRYPTO_TWOFISH_COMMON
1414 help
1415 Twofish cipher algorithm.
1416
1417 Twofish was submitted as an AES (Advanced Encryption Standard)
1418 candidate cipher by researchers at CounterPane Systems. It is a
1419 16 round block cipher supporting key sizes of 128, 192, and 256
1420 bits.
1421
1422 See also:
1423 <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426 tristate "Twofish cipher algorithm (x86_64)"
1427 depends on (X86 || UML_X86) && 64BIT
1428 select CRYPTO_ALGAPI
1429 select CRYPTO_TWOFISH_COMMON
1430 help
1431 Twofish cipher algorithm (x86_64).
1432
1433 Twofish was submitted as an AES (Advanced Encryption Standard)
1434 candidate cipher by researchers at CounterPane Systems. It is a
1435 16 round block cipher supporting key sizes of 128, 192, and 256
1436 bits.
1437
1438 See also:
1439 <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443 depends on X86 && 64BIT
1444 select CRYPTO_ALGAPI
1445 select CRYPTO_TWOFISH_COMMON
1446 select CRYPTO_TWOFISH_X86_64
1447 select CRYPTO_GLUE_HELPER_X86
1448 select CRYPTO_LRW
1449 select CRYPTO_XTS
1450 help
1451 Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453 Twofish was submitted as an AES (Advanced Encryption Standard)
1454 candidate cipher by researchers at CounterPane Systems. It is a
1455 16 round block cipher supporting key sizes of 128, 192, and 256
1456 bits.
1457
1458 This module provides Twofish cipher algorithm that processes three
1459 blocks parallel, utilizing resources of out-of-order CPUs better.
1460
1461 See also:
1462 <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465 tristate "Twofish cipher algorithm (x86_64/AVX)"
1466 depends on X86 && 64BIT
1467 select CRYPTO_ALGAPI
1468 select CRYPTO_CRYPTD
1469 select CRYPTO_ABLK_HELPER
1470 select CRYPTO_GLUE_HELPER_X86
1471 select CRYPTO_TWOFISH_COMMON
1472 select CRYPTO_TWOFISH_X86_64
1473 select CRYPTO_TWOFISH_X86_64_3WAY
1474 select CRYPTO_LRW
1475 select CRYPTO_XTS
1476 help
1477 Twofish cipher algorithm (x86_64/AVX).
1478
1479 Twofish was submitted as an AES (Advanced Encryption Standard)
1480 candidate cipher by researchers at CounterPane Systems. It is a
1481 16 round block cipher supporting key sizes of 128, 192, and 256
1482 bits.
1483
1484 This module provides the Twofish cipher algorithm that processes
1485 eight blocks parallel using the AVX Instruction Set.
1486
1487 See also:
1488 <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493 tristate "Deflate compression algorithm"
1494 select CRYPTO_ALGAPI
1495 select ZLIB_INFLATE
1496 select ZLIB_DEFLATE
1497 help
1498 This is the Deflate algorithm (RFC1951), specified for use in
1499 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501 You will most probably want this if using IPSec.
1502
1503config CRYPTO_LZO
1504 tristate "LZO compression algorithm"
1505 select CRYPTO_ALGAPI
1506 select LZO_COMPRESS
1507 select LZO_DECOMPRESS
1508 help
1509 This is the LZO algorithm.
1510
1511config CRYPTO_842
1512 tristate "842 compression algorithm"
1513 select CRYPTO_ALGAPI
1514 select 842_COMPRESS
1515 select 842_DECOMPRESS
1516 help
1517 This is the 842 algorithm.
1518
1519config CRYPTO_LZ4
1520 tristate "LZ4 compression algorithm"
1521 select CRYPTO_ALGAPI
1522 select LZ4_COMPRESS
1523 select LZ4_DECOMPRESS
1524 help
1525 This is the LZ4 algorithm.
1526
1527config CRYPTO_LZ4HC
1528 tristate "LZ4HC compression algorithm"
1529 select CRYPTO_ALGAPI
1530 select LZ4HC_COMPRESS
1531 select LZ4_DECOMPRESS
1532 help
1533 This is the LZ4 high compression mode algorithm.
1534
1535comment "Random Number Generation"
1536
1537config CRYPTO_ANSI_CPRNG
1538 tristate "Pseudo Random Number Generation for Cryptographic modules"
1539 select CRYPTO_AES
1540 select CRYPTO_RNG
1541 help
1542 This option enables the generic pseudo random number generator
1543 for cryptographic modules. Uses the Algorithm specified in
1544 ANSI X9.31 A.2.4. Note that this option must be enabled if
1545 CRYPTO_FIPS is selected
1546
1547menuconfig CRYPTO_DRBG_MENU
1548 tristate "NIST SP800-90A DRBG"
1549 help
1550 NIST SP800-90A compliant DRBG. In the following submenu, one or
1551 more of the DRBG types must be selected.
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556 bool
1557 default y
1558 select CRYPTO_HMAC
1559 select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562 bool "Enable Hash DRBG"
1563 select CRYPTO_SHA256
1564 help
1565 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1566
1567config CRYPTO_DRBG_CTR
1568 bool "Enable CTR DRBG"
1569 select CRYPTO_AES
1570 help
1571 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1572
1573config CRYPTO_DRBG
1574 tristate
1575 default CRYPTO_DRBG_MENU
1576 select CRYPTO_RNG
1577 select CRYPTO_JITTERENTROPY
1578
1579endif # if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583 select CRYPTO_RNG
1584 help
1585 The Jitterentropy RNG is a noise that is intended
1586 to provide seed to another RNG. The RNG does not
1587 perform any cryptographic whitening of the generated
1588 random numbers. This Jitterentropy RNG registers with
1589 the kernel crypto API and can be used by any caller.
1590
1591config CRYPTO_USER_API
1592 tristate
1593
1594config CRYPTO_USER_API_HASH
1595 tristate "User-space interface for hash algorithms"
1596 depends on NET
1597 select CRYPTO_HASH
1598 select CRYPTO_USER_API
1599 help
1600 This option enables the user-spaces interface for hash
1601 algorithms.
1602
1603config CRYPTO_USER_API_SKCIPHER
1604 tristate "User-space interface for symmetric key cipher algorithms"
1605 depends on NET
1606 select CRYPTO_BLKCIPHER
1607 select CRYPTO_USER_API
1608 help
1609 This option enables the user-spaces interface for symmetric
1610 key cipher algorithms.
1611
1612config CRYPTO_USER_API_RNG
1613 tristate "User-space interface for random number generator algorithms"
1614 depends on NET
1615 select CRYPTO_RNG
1616 select CRYPTO_USER_API
1617 help
1618 This option enables the user-spaces interface for random
1619 number generator algorithms.
1620
1621config CRYPTO_USER_API_AEAD
1622 tristate "User-space interface for AEAD cipher algorithms"
1623 depends on NET
1624 select CRYPTO_AEAD
1625 select CRYPTO_USER_API
1626 help
1627 This option enables the user-spaces interface for AEAD
1628 cipher algorithms.
1629
1630config CRYPTO_HASH_INFO
1631 bool
1632
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif # if CRYPTO