Linux Audio

Check our new training course

Loading...
v6.13.7
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
 
 
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 
 
 
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 
 
 
 
 
 242config CRYPTO_ENGINE
 243	tristate
 244
 245endmenu
 246
 247menu "Public-key cryptography"
 
 
 
 
 
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select CRYPTO_SIG
 254	select MPILIB
 255	select ASN1
 256	help
 257	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 
 258
 259config CRYPTO_DH
 260	tristate "DH (Diffie-Hellman)"
 261	select CRYPTO_KPP
 262	select MPILIB
 
 263	help
 264	  DH (Diffie-Hellman) key exchange algorithm
 
 
 
 
 265
 266config CRYPTO_DH_RFC7919_GROUPS
 267	bool "RFC 7919 FFDHE groups"
 268	depends on CRYPTO_DH
 
 
 269	select CRYPTO_RNG_DEFAULT
 270	help
 271	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 272	  defined in RFC7919.
 273
 274	  Support these finite-field groups in DH key exchanges:
 275	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 
 
 
 
 
 
 
 
 276
 277	  If unsure, say N.
 278
 279config CRYPTO_ECC
 280	tristate
 281	select CRYPTO_RNG_DEFAULT
 
 
 
 
 282
 283config CRYPTO_ECDH
 284	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 285	select CRYPTO_ECC
 286	select CRYPTO_KPP
 287	help
 288	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 289	  using curves P-192, P-256, and P-384 (FIPS 186)
 290
 291config CRYPTO_ECDSA
 292	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 293	select CRYPTO_ECC
 294	select CRYPTO_SIG
 295	select ASN1
 296	help
 297	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 298	  ISO/IEC 14888-3)
 299	  using curves P-192, P-256, P-384 and P-521
 300
 301	  Only signature verification is implemented.
 302
 303config CRYPTO_ECRDSA
 304	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 305	select CRYPTO_ECC
 306	select CRYPTO_SIG
 307	select CRYPTO_STREEBOG
 308	select OID_REGISTRY
 309	select ASN1
 310	help
 311	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 312	  RFC 7091, ISO/IEC 14888-3)
 
 
 
 
 313
 314	  One of the Russian cryptographic standard algorithms (called GOST
 315	  algorithms). Only signature verification is implemented.
 
 
 
 
 
 
 316
 317config CRYPTO_CURVE25519
 318	tristate "Curve25519"
 319	select CRYPTO_KPP
 320	select CRYPTO_LIB_CURVE25519_GENERIC
 
 321	help
 322	  Curve25519 elliptic curve (RFC7748)
 
 
 
 
 323
 324endmenu
 
 
 
 
 
 
 325
 326menu "Block ciphers"
 
 
 
 
 
 
 
 
 327
 328config CRYPTO_AES
 329	tristate "AES (Advanced Encryption Standard)"
 330	select CRYPTO_ALGAPI
 331	select CRYPTO_LIB_AES
 332	help
 333	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 334
 335	  Rijndael appears to be consistently a very good performer in
 336	  both hardware and software across a wide range of computing
 337	  environments regardless of its use in feedback or non-feedback
 338	  modes. Its key setup time is excellent, and its key agility is
 339	  good. Rijndael's very low memory requirements make it very well
 340	  suited for restricted-space environments, in which it also
 341	  demonstrates excellent performance. Rijndael's operations are
 342	  among the easiest to defend against power and timing attacks.
 343
 344	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 
 345
 346config CRYPTO_AES_TI
 347	tristate "AES (Advanced Encryption Standard) (fixed time)"
 348	select CRYPTO_ALGAPI
 349	select CRYPTO_LIB_AES
 
 
 
 350	help
 351	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 352
 353	  This is a generic implementation of AES that attempts to eliminate
 354	  data dependent latencies as much as possible without affecting
 355	  performance too much. It is intended for use by the generic CCM
 356	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 357	  solely on encryption (although decryption is supported as well, but
 358	  with a more dramatic performance hit)
 359
 360	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 361	  8 for decryption), this implementation only uses just two S-boxes of
 362	  256 bytes each, and attempts to eliminate data dependent latencies by
 363	  prefetching the entire table into the cache at the start of each
 364	  block. Interrupts are also disabled to avoid races where cachelines
 365	  are evicted when the CPU is interrupted to do something else.
 366
 367config CRYPTO_ANUBIS
 368	tristate "Anubis"
 369	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 370	select CRYPTO_ALGAPI
 371	help
 372	  Anubis cipher algorithm
 
 373
 374	  Anubis is a variable key length cipher which can use keys from
 375	  128 bits to 320 bits in length.  It was evaluated as a entrant
 376	  in the NESSIE competition.
 377
 378	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 379	  for further information.
 380
 381config CRYPTO_ARIA
 382	tristate "ARIA"
 383	select CRYPTO_ALGAPI
 
 384	help
 385	  ARIA cipher algorithm (RFC5794)
 386
 387	  ARIA is a standard encryption algorithm of the Republic of Korea.
 388	  The ARIA specifies three key sizes and rounds.
 389	  128-bit: 12 rounds.
 390	  192-bit: 14 rounds.
 391	  256-bit: 16 rounds.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392
 393	  See:
 394	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 
 
 
 
 
 395
 396config CRYPTO_BLOWFISH
 397	tristate "Blowfish"
 398	select CRYPTO_ALGAPI
 399	select CRYPTO_BLOWFISH_COMMON
 
 400	help
 401	  Blowfish cipher algorithm, by Bruce Schneier
 
 
 
 
 
 402
 403	  This is a variable key length cipher which can use keys from 32
 404	  bits to 448 bits in length.  It's fast, simple and specifically
 405	  designed for use on "large microprocessors".
 
 
 
 
 406
 407	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 
 
 
 
 
 408
 409config CRYPTO_BLOWFISH_COMMON
 410	tristate
 
 
 411	help
 412	  Common parts of the Blowfish cipher algorithm shared by the
 413	  generic c and the assembler implementations.
 414
 415config CRYPTO_CAMELLIA
 416	tristate "Camellia"
 417	select CRYPTO_ALGAPI
 418	help
 419	  Camellia cipher algorithms (ISO/IEC 18033-3)
 420
 421	  Camellia is a symmetric key block cipher developed jointly
 422	  at NTT and Mitsubishi Electric Corporation.
 
 423
 424	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 425
 426	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 
 427
 428config CRYPTO_CAST_COMMON
 429	tristate
 
 430	help
 431	  Common parts of the CAST cipher algorithms shared by the
 432	  generic c and the assembler implementations.
 433
 434config CRYPTO_CAST5
 435	tristate "CAST5 (CAST-128)"
 436	select CRYPTO_ALGAPI
 437	select CRYPTO_CAST_COMMON
 438	help
 439	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 440
 441config CRYPTO_CAST6
 442	tristate "CAST6 (CAST-256)"
 443	select CRYPTO_ALGAPI
 444	select CRYPTO_CAST_COMMON
 
 445	help
 446	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 
 447
 448config CRYPTO_DES
 449	tristate "DES and Triple DES EDE"
 450	select CRYPTO_ALGAPI
 451	select CRYPTO_LIB_DES
 452	help
 453	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 454	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 455	  cipher algorithms
 456
 457config CRYPTO_FCRYPT
 458	tristate "FCrypt"
 459	select CRYPTO_ALGAPI
 460	select CRYPTO_SKCIPHER
 
 461	help
 462	  FCrypt algorithm used by RxRPC
 
 463
 464	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 
 
 
 
 
 
 465
 466config CRYPTO_KHAZAD
 467	tristate "Khazad"
 468	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 469	select CRYPTO_ALGAPI
 470	help
 471	  Khazad cipher algorithm
 472
 473	  Khazad was a finalist in the initial NESSIE competition.  It is
 474	  an algorithm optimized for 64-bit processors with good performance
 475	  on 32-bit processors.  Khazad uses an 128 bit key size.
 476
 477	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 478	  for further information.
 479
 480config CRYPTO_SEED
 481	tristate "SEED"
 482	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 483	select CRYPTO_ALGAPI
 484	help
 485	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 486
 487	  SEED is a 128-bit symmetric key block cipher that has been
 488	  developed by KISA (Korea Information Security Agency) as a
 489	  national standard encryption algorithm of the Republic of Korea.
 490	  It is a 16 round block cipher with the key size of 128 bit.
 491
 492	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 493	  for further information.
 494
 495config CRYPTO_SERPENT
 496	tristate "Serpent"
 497	select CRYPTO_ALGAPI
 
 
 
 498	help
 499	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 
 
 500
 501	  Keys are allowed to be from 0 to 256 bits in length, in steps
 502	  of 8 bits.
 503
 504	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 
 
 
 
 
 
 
 505
 506config CRYPTO_SM4
 507	tristate
 508
 509config CRYPTO_SM4_GENERIC
 510	tristate "SM4 (ShangMi 4)"
 511	select CRYPTO_ALGAPI
 512	select CRYPTO_SM4
 513	help
 514	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 515	  ISO/IEC 18033-3:2010/Amd 1:2021)
 516
 517	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 518	  Organization of State Commercial Administration of China (OSCCA)
 519	  as an authorized cryptographic algorithms for the use within China.
 
 
 
 
 
 
 
 520
 521	  SMS4 was originally created for use in protecting wireless
 522	  networks, and is mandated in the Chinese National Standard for
 523	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 524	  (GB.15629.11-2003).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 527	  standardized through TC 260 of the Standardization Administration
 528	  of the People's Republic of China (SAC).
 
 
 529
 530	  The input, output, and key of SMS4 are each 128 bits.
 
 531
 532	  See https://eprint.iacr.org/2008/329.pdf for further information.
 
 533
 534	  If unsure, say N.
 
 
 
 
 
 
 
 535
 536config CRYPTO_TEA
 537	tristate "TEA, XTEA and XETA"
 538	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 539	select CRYPTO_ALGAPI
 
 540	help
 541	  TEA (Tiny Encryption Algorithm) cipher algorithms
 
 542
 543	  Tiny Encryption Algorithm is a simple cipher that uses
 544	  many rounds for security.  It is very fast and uses
 545	  little memory.
 
 
 
 
 
 546
 547	  Xtendend Tiny Encryption Algorithm is a modification to
 548	  the TEA algorithm to address a potential key weakness
 549	  in the TEA algorithm.
 
 
 550
 551	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 552	  of the XTEA algorithm for compatibility purposes.
 553
 554config CRYPTO_TWOFISH
 555	tristate "Twofish"
 556	select CRYPTO_ALGAPI
 557	select CRYPTO_TWOFISH_COMMON
 558	help
 559	  Twofish cipher algorithm
 560
 561	  Twofish was submitted as an AES (Advanced Encryption Standard)
 562	  candidate cipher by researchers at CounterPane Systems.  It is a
 563	  16 round block cipher supporting key sizes of 128, 192, and 256
 564	  bits.
 
 
 
 
 565
 566	  See https://www.schneier.com/twofish.html for further information.
 
 
 
 
 
 
 
 567
 568config CRYPTO_TWOFISH_COMMON
 569	tristate
 
 570	help
 571	  Common parts of the Twofish cipher algorithm shared by the
 572	  generic c and the assembler implementations.
 573
 574endmenu
 
 
 575
 576menu "Length-preserving ciphers and modes"
 
 577
 578config CRYPTO_ADIANTUM
 579	tristate "Adiantum"
 580	select CRYPTO_CHACHA20
 581	select CRYPTO_LIB_POLY1305_GENERIC
 582	select CRYPTO_NHPOLY1305
 583	select CRYPTO_MANAGER
 584	help
 585	  Adiantum tweakable, length-preserving encryption mode
 586
 587	  Designed for fast and secure disk encryption, especially on
 588	  CPUs without dedicated crypto instructions.  It encrypts
 589	  each sector using the XChaCha12 stream cipher, two passes of
 590	  an ε-almost-∆-universal hash function, and an invocation of
 591	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 592	  without AES instructions, Adiantum is much faster than
 593	  AES-XTS.
 594
 595	  Adiantum's security is provably reducible to that of its
 596	  underlying stream and block ciphers, subject to a security
 597	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 598	  mode, so it actually provides an even stronger notion of
 599	  security than XTS, subject to the security bound.
 600
 601	  If unsure, say N.
 
 602
 603config CRYPTO_ARC4
 604	tristate "ARC4 (Alleged Rivest Cipher 4)"
 605	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 606	select CRYPTO_SKCIPHER
 607	select CRYPTO_LIB_ARC4
 608	help
 609	  ARC4 cipher algorithm
 
 610
 611	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 612	  bits in length.  This algorithm is required for driver-based
 613	  WEP, but it should not be for other purposes because of the
 614	  weakness of the algorithm.
 615
 616config CRYPTO_CHACHA20
 617	tristate "ChaCha"
 618	select CRYPTO_LIB_CHACHA_GENERIC
 619	select CRYPTO_SKCIPHER
 620	help
 621	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 
 622
 623	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 624	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 625	  This is the portable C implementation of ChaCha20.  See
 626	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 
 
 
 
 627
 628	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 629	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 630	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 631	  while provably retaining ChaCha20's security.  See
 632	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 633
 634	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 635	  reduced security margin but increased performance.  It can be needed
 636	  in some performance-sensitive scenarios.
 637
 638config CRYPTO_CBC
 639	tristate "CBC (Cipher Block Chaining)"
 640	select CRYPTO_SKCIPHER
 641	select CRYPTO_MANAGER
 
 
 
 642	help
 643	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 
 644
 645	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 
 
 
 
 
 
 646
 647config CRYPTO_CTR
 648	tristate "CTR (Counter)"
 649	select CRYPTO_SKCIPHER
 650	select CRYPTO_MANAGER
 651	help
 652	  CTR (Counter) mode (NIST SP800-38A)
 653
 654config CRYPTO_CTS
 655	tristate "CTS (Cipher Text Stealing)"
 656	select CRYPTO_SKCIPHER
 657	select CRYPTO_MANAGER
 
 
 
 658	help
 659	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 660	  Addendum to SP800-38A (October 2010))
 661
 662	  This mode is required for Kerberos gss mechanism support
 663	  for AES encryption.
 
 
 
 
 
 
 664
 665config CRYPTO_ECB
 666	tristate "ECB (Electronic Codebook)"
 667	select CRYPTO_SKCIPHER2
 668	select CRYPTO_MANAGER
 669	help
 670	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 671
 672config CRYPTO_HCTR2
 673	tristate "HCTR2"
 674	select CRYPTO_XCTR
 675	select CRYPTO_POLYVAL
 676	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 677	help
 678	  HCTR2 length-preserving encryption mode
 679
 680	  A mode for storage encryption that is efficient on processors with
 681	  instructions to accelerate AES and carryless multiplication, e.g.
 682	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 683	  ARMv8 crypto extensions.
 684
 685	  See https://eprint.iacr.org/2021/1441
 
 
 
 
 
 
 
 686
 687config CRYPTO_KEYWRAP
 688	tristate "KW (AES Key Wrap)"
 689	select CRYPTO_SKCIPHER
 690	select CRYPTO_MANAGER
 691	help
 692	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 693	  and RFC3394) without padding.
 694
 695config CRYPTO_LRW
 696	tristate "LRW (Liskov Rivest Wagner)"
 697	select CRYPTO_LIB_GF128MUL
 698	select CRYPTO_SKCIPHER
 699	select CRYPTO_MANAGER
 700	select CRYPTO_ECB
 
 
 
 
 
 
 701	help
 702	  LRW (Liskov Rivest Wagner) mode
 703
 704	  A tweakable, non malleable, non movable
 705	  narrow block cipher mode for dm-crypt.  Use it with cipher
 706	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 707	  The first 128, 192 or 256 bits in the key are used for AES and the
 708	  rest is used to tie each cipher block to its logical position.
 709
 710	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 
 
 
 
 
 
 711
 712config CRYPTO_PCBC
 713	tristate "PCBC (Propagating Cipher Block Chaining)"
 714	select CRYPTO_SKCIPHER
 715	select CRYPTO_MANAGER
 716	help
 717	  PCBC (Propagating Cipher Block Chaining) mode
 718
 719	  This block cipher mode is required for RxRPC.
 720
 721config CRYPTO_XCTR
 722	tristate
 723	select CRYPTO_SKCIPHER
 724	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725	help
 726	  XCTR (XOR Counter) mode for HCTR2
 727
 728	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 729	  addition rather than big-endian arithmetic.
 
 730
 731	  XCTR mode is used to implement HCTR2.
 
 
 732
 733config CRYPTO_XTS
 734	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 735	select CRYPTO_SKCIPHER
 736	select CRYPTO_MANAGER
 737	select CRYPTO_ECB
 738	help
 739	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 740	  and IEEE 1619)
 741
 742	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 743	  implementation currently can't handle a sectorsize which is not a
 744	  multiple of 16 bytes.
 
 745
 746config CRYPTO_NHPOLY1305
 747	tristate
 748	select CRYPTO_HASH
 749	select CRYPTO_LIB_POLY1305_GENERIC
 
 
 750
 751endmenu
 
 
 752
 753menu "AEAD (authenticated encryption with associated data) ciphers"
 
 754
 755config CRYPTO_AEGIS128
 756	tristate "AEGIS-128"
 757	select CRYPTO_AEAD
 758	select CRYPTO_AES  # for AES S-box tables
 759	help
 760	  AEGIS-128 AEAD algorithm
 
 761
 762config CRYPTO_AEGIS128_SIMD
 763	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 764	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 765	default y
 
 
 
 
 766	help
 767	  AEGIS-128 AEAD algorithm
 768
 769	  Architecture: arm or arm64 using:
 770	  - NEON (Advanced SIMD) extension
 
 771
 772config CRYPTO_CHACHA20POLY1305
 773	tristate "ChaCha20-Poly1305"
 774	select CRYPTO_CHACHA20
 775	select CRYPTO_POLY1305
 776	select CRYPTO_AEAD
 777	select CRYPTO_MANAGER
 778	help
 779	  ChaCha20 stream cipher and Poly1305 authenticator combined
 780	  mode (RFC8439)
 781
 782config CRYPTO_CCM
 783	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 784	select CRYPTO_CTR
 785	select CRYPTO_HASH
 786	select CRYPTO_AEAD
 787	select CRYPTO_MANAGER
 788	help
 789	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 790	  authenticated encryption mode (NIST SP800-38C)
 791
 792config CRYPTO_GCM
 793	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 794	select CRYPTO_CTR
 795	select CRYPTO_AEAD
 796	select CRYPTO_GHASH
 797	select CRYPTO_NULL
 798	select CRYPTO_MANAGER
 799	help
 800	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 801	  (GCM Message Authentication Code) (NIST SP800-38D)
 802
 803	  This is required for IPSec ESP (XFRM_ESP).
 804
 805config CRYPTO_GENIV
 806	tristate
 807	select CRYPTO_AEAD
 808	select CRYPTO_NULL
 809	select CRYPTO_MANAGER
 810	select CRYPTO_RNG_DEFAULT
 811
 812config CRYPTO_SEQIV
 813	tristate "Sequence Number IV Generator"
 814	select CRYPTO_GENIV
 
 
 
 
 
 815	help
 816	  Sequence Number IV generator
 817
 818	  This IV generator generates an IV based on a sequence number by
 819	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 820
 821	  This is required for IPsec ESP (XFRM_ESP).
 822
 823config CRYPTO_ECHAINIV
 824	tristate "Encrypted Chain IV Generator"
 825	select CRYPTO_GENIV
 
 
 
 
 
 
 
 
 
 
 
 826	help
 827	  Encrypted Chain IV generator
 828
 829	  This IV generator generates an IV based on the encryption of
 830	  a sequence number xored with a salt.  This is the default
 831	  algorithm for CBC.
 832
 833config CRYPTO_ESSIV
 834	tristate "Encrypted Salt-Sector IV Generator"
 835	select CRYPTO_AUTHENC
 836	help
 837	  Encrypted Salt-Sector IV generator
 838
 839	  This IV generator is used in some cases by fscrypt and/or
 840	  dm-crypt. It uses the hash of the block encryption key as the
 841	  symmetric key for a block encryption pass applied to the input
 842	  IV, making low entropy IV sources more suitable for block
 843	  encryption.
 844
 845	  This driver implements a crypto API template that can be
 846	  instantiated either as an skcipher or as an AEAD (depending on the
 847	  type of the first template argument), and which defers encryption
 848	  and decryption requests to the encapsulated cipher after applying
 849	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 850	  that the keys are presented in the same format used by the authenc
 851	  template, and that the IV appears at the end of the authenticated
 852	  associated data (AAD) region (which is how dm-crypt uses it.)
 
 
 
 
 
 
 853
 854	  Note that the use of ESSIV is not recommended for new deployments,
 855	  and so this only needs to be enabled when interoperability with
 856	  existing encrypted volumes of filesystems is required, or when
 857	  building for a particular system that requires it (e.g., when
 858	  the SoC in question has accelerated CBC but not XTS, making CBC
 859	  combined with ESSIV the only feasible mode for h/w accelerated
 860	  block encryption)
 861
 862endmenu
 863
 864menu "Hashes, digests, and MACs"
 
 865
 866config CRYPTO_BLAKE2B
 867	tristate "BLAKE2b"
 868	select CRYPTO_HASH
 
 
 869	help
 870	  BLAKE2b cryptographic hash function (RFC 7693)
 871
 872	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 873	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 874
 875	  This module provides the following algorithms:
 876	  - blake2b-160
 877	  - blake2b-256
 878	  - blake2b-384
 879	  - blake2b-512
 880
 881	  Used by the btrfs filesystem.
 
 882
 883	  See https://blake2.net for further information.
 
 
 
 
 884
 885config CRYPTO_CMAC
 886	tristate "CMAC (Cipher-based MAC)"
 887	select CRYPTO_HASH
 888	select CRYPTO_MANAGER
 889	help
 890	  CMAC (Cipher-based Message Authentication Code) authentication
 891	  mode (NIST SP800-38B and IETF RFC4493)
 892
 893config CRYPTO_GHASH
 894	tristate "GHASH"
 895	select CRYPTO_HASH
 896	select CRYPTO_LIB_GF128MUL
 
 
 
 
 897	help
 898	  GCM GHASH function (NIST SP800-38D)
 
 899
 900config CRYPTO_HMAC
 901	tristate "HMAC (Keyed-Hash MAC)"
 902	select CRYPTO_HASH
 903	select CRYPTO_MANAGER
 
 
 
 904	help
 905	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 906	  RFC2104)
 907
 908	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910config CRYPTO_MD4
 911	tristate "MD4"
 912	select CRYPTO_HASH
 
 
 
 913	help
 914	  MD4 message digest algorithm (RFC1320)
 915
 916config CRYPTO_MD5
 917	tristate "MD5"
 918	select CRYPTO_HASH
 
 
 919	help
 920	  MD5 message digest algorithm (RFC1321)
 
 921
 922config CRYPTO_MICHAEL_MIC
 923	tristate "Michael MIC"
 924	select CRYPTO_HASH
 
 
 925	help
 926	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 927
 928	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 929	  known as WPA (Wif-Fi Protected Access).
 
 
 930
 931	  This algorithm is required for TKIP, but it should not be used for
 932	  other purposes because of the weakness of the algorithm.
 
 
 
 
 933
 934config CRYPTO_POLYVAL
 935	tristate
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_GF128MUL
 938	help
 939	  POLYVAL hash function for HCTR2
 940
 941	  This is used in HCTR2.  It is not a general-purpose
 942	  cryptographic hash function.
 
 943
 944config CRYPTO_POLY1305
 945	tristate "Poly1305"
 946	select CRYPTO_HASH
 947	select CRYPTO_LIB_POLY1305_GENERIC
 
 
 948	help
 949	  Poly1305 authenticator algorithm (RFC7539)
 950
 951	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 952	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 953	  in IETF protocols. This is the portable C implementation of Poly1305.
 954
 955config CRYPTO_RMD160
 956	tristate "RIPEMD-160"
 957	select CRYPTO_HASH
 958	help
 959	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 960
 961	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 962	  to be used as a secure replacement for the 128-bit hash functions
 963	  MD4, MD5 and its predecessor RIPEMD
 964	  (not to be confused with RIPEMD-128).
 
 
 965
 966	  Its speed is comparable to SHA-1 and there are no known attacks
 967	  against RIPEMD-160.
 968
 969	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 970	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 971	  for further information.
 972
 973config CRYPTO_SHA1
 974	tristate "SHA-1"
 975	select CRYPTO_HASH
 976	select CRYPTO_LIB_SHA1
 977	help
 978	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 979
 980config CRYPTO_SHA256
 981	tristate "SHA-224 and SHA-256"
 982	select CRYPTO_HASH
 983	select CRYPTO_LIB_SHA256
 
 
 
 
 
 984	help
 985	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 986
 987	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 988	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 
 989
 990config CRYPTO_SHA512
 991	tristate "SHA-384 and SHA-512"
 992	select CRYPTO_HASH
 
 
 
 
 
 993	help
 994	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 995
 996config CRYPTO_SHA3
 997	tristate "SHA-3"
 998	select CRYPTO_HASH
 
 
 
 
 
 
 
 999	help
1000	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003	tristate
 
 
1004
1005config CRYPTO_SM3_GENERIC
1006	tristate "SM3 (ShangMi 3)"
1007	select CRYPTO_HASH
1008	select CRYPTO_SM3
 
 
1009	help
1010	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012	  This is part of the Chinese Commercial Cryptography suite.
 
 
1013
1014	  References:
1015	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019	tristate "Streebog"
1020	select CRYPTO_HASH
 
 
 
 
 
 
 
1021	help
1022	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024	  This is one of the Russian cryptographic standard algorithms (called
1025	  GOST algorithms). This setting enables two hash algorithms with
1026	  256 and 512 bits output.
1027
1028	  References:
1029	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030	  https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033	tristate "VMAC"
1034	select CRYPTO_HASH
1035	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
1036	help
1037	  VMAC is a message authentication algorithm designed for
1038	  very high speed on 64-bit architectures.
1039
1040	  See https://fastcrypto.org/vmac for further information.
 
1041
1042config CRYPTO_WP512
1043	tristate "Whirlpool"
1044	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
1045	help
1046	  Whirlpool hash function (ISO/IEC 10118-3)
1047
1048	  512, 384 and 256-bit hashes.
 
1049
1050	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1051
1052	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053	  for further information.
1054
1055config CRYPTO_XCBC
1056	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057	select CRYPTO_HASH
1058	select CRYPTO_MANAGER
 
 
 
 
 
 
 
1059	help
1060	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061	  Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064	tristate "xxHash"
1065	select CRYPTO_HASH
1066	select XXHASH
 
 
 
 
 
 
 
 
1067	help
1068	  xxHash non-cryptographic hash algorithm
 
 
 
 
1069
1070	  Extremely fast, working at speeds close to RAM limits.
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072	  Used by the btrfs filesystem.
 
 
 
1073
1074endmenu
 
1075
1076menu "CRCs (cyclic redundancy checks)"
 
 
 
 
1077
1078config CRYPTO_CRC32C
1079	tristate "CRC32c"
1080	select CRYPTO_HASH
1081	select CRC32
 
1082	help
1083	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1084
1085	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089	  iSCSI.
1090
1091	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1092
1093config CRYPTO_CRC32
1094	tristate "CRC32"
1095	select CRYPTO_HASH
1096	select CRC32
 
1097	help
1098	  CRC32 CRC algorithm (IEEE 802.3)
1099
1100	  Used by RoCEv2 and f2fs.
 
 
 
1101
1102config CRYPTO_CRCT10DIF
1103	tristate "CRCT10DIF"
1104	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
1105	help
1106	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1107
1108	  CRC algorithm used by the SCSI Block Commands standard.
 
 
 
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111	tristate "CRC64 based on Rocksoft Model algorithm"
1112	depends on CRC64
1113	select CRYPTO_HASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114	help
1115	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1118
1119	  See https://zlib.net/crc_v3.txt
 
1120
1121endmenu
 
1122
1123menu "Compression"
1124
1125config CRYPTO_DEFLATE
1126	tristate "Deflate"
1127	select CRYPTO_ALGAPI
1128	select CRYPTO_ACOMP2
1129	select ZLIB_INFLATE
1130	select ZLIB_DEFLATE
1131	help
1132	  Deflate compression algorithm (RFC1951)
 
1133
1134	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1135
1136config CRYPTO_LZO
1137	tristate "LZO"
1138	select CRYPTO_ALGAPI
1139	select CRYPTO_ACOMP2
1140	select LZO_COMPRESS
1141	select LZO_DECOMPRESS
1142	help
1143	  LZO compression algorithm
1144
1145	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1146
1147config CRYPTO_842
1148	tristate "842"
1149	select CRYPTO_ALGAPI
1150	select CRYPTO_ACOMP2
1151	select 842_COMPRESS
1152	select 842_DECOMPRESS
1153	help
1154	  842 compression algorithm by IBM
1155
1156	  See https://github.com/plauth/lib842 for further information.
1157
1158config CRYPTO_LZ4
1159	tristate "LZ4"
1160	select CRYPTO_ALGAPI
1161	select CRYPTO_ACOMP2
1162	select LZ4_COMPRESS
1163	select LZ4_DECOMPRESS
1164	help
1165	  LZ4 compression algorithm
1166
1167	  See https://github.com/lz4/lz4 for further information.
1168
1169config CRYPTO_LZ4HC
1170	tristate "LZ4HC"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_ACOMP2
1173	select LZ4HC_COMPRESS
1174	select LZ4_DECOMPRESS
1175	help
1176	  LZ4 high compression mode algorithm
1177
1178	  See https://github.com/lz4/lz4 for further information.
1179
1180config CRYPTO_ZSTD
1181	tristate "Zstd"
1182	select CRYPTO_ALGAPI
1183	select CRYPTO_ACOMP2
1184	select ZSTD_COMPRESS
1185	select ZSTD_DECOMPRESS
1186	help
1187	  zstd compression algorithm
1188
1189	  See https://github.com/facebook/zstd for further information.
1190
1191endmenu
1192
1193menu "Random number generation"
1194
1195config CRYPTO_ANSI_CPRNG
1196	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197	select CRYPTO_AES
1198	select CRYPTO_RNG
1199	help
1200	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202	  This uses the AES cipher algorithm.
1203
1204	  Note that this option must be enabled if CRYPTO_FIPS is selected
1205
1206menuconfig CRYPTO_DRBG_MENU
1207	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1208	help
1209	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211	  In the following submenu, one or more of the DRBG types must be selected.
1212
1213if CRYPTO_DRBG_MENU
1214
1215config CRYPTO_DRBG_HMAC
1216	bool
1217	default y
1218	select CRYPTO_HMAC
1219	select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222	bool "Hash_DRBG"
1223	select CRYPTO_SHA256
1224	help
1225	  Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1228
1229config CRYPTO_DRBG_CTR
1230	bool "CTR_DRBG"
1231	select CRYPTO_AES
1232	select CRYPTO_CTR
1233	help
1234	  CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236	  This uses the AES cipher algorithm with the counter block mode.
1237
1238config CRYPTO_DRBG
1239	tristate
1240	default CRYPTO_DRBG_MENU
1241	select CRYPTO_RNG
1242	select CRYPTO_JITTERENTROPY
1243
1244endif	# if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_JITTERENTROPY
1247	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248	select CRYPTO_RNG
1249	select CRYPTO_SHA3
1250	help
1251	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254	  compliant with NIST SP800-90B) intended to provide a seed to a
1255	  deterministic RNG (e.g., per NIST SP800-90C).
1256	  This RNG does not perform any cryptographic whitening of the generated
1257	  random numbers.
1258
1259	  See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265	prompt "CPU Jitter RNG Memory Size"
1266	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267	help
1268	  The Jitter RNG measures the execution time of memory accesses.
1269	  Multiple consecutive memory accesses are performed. If the memory
1270	  size fits into a cache (e.g. L1), only the memory access timing
1271	  to that cache is measured. The closer the cache is to the CPU
1272	  the less variations are measured and thus the less entropy is
1273	  obtained. Thus, if the memory size fits into the L1 cache, the
1274	  obtained entropy is less than if the memory size fits within
1275	  L1 + L2, which in turn is less if the memory fits into
1276	  L1 + L2 + L3. Thus, by selecting a different memory size,
1277	  the entropy rate produced by the Jitter RNG can be modified.
1278
1279	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280		bool "2048 Bytes (default)"
1281
1282	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283		bool "128 kBytes"
1284
1285	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286		bool "1024 kBytes"
1287
1288	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289		bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293	int
1294	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300	int
1301	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307	int "CPU Jitter RNG Oversampling Rate"
1308	range 1 15
1309	default 3
1310	help
1311	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1312	  The Jitter RNG operation requires a fixed amount of timing
1313	  measurements to produce one output block of random numbers. The
1314	  OSR value is multiplied with the amount of timing measurements to
1315	  generate one output block. Thus, the timing measurement is oversampled
1316	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1317	  on hardware whose timers deliver limited amount of entropy (e.g.
1318	  the timer is coarse) by setting the OSR to a higher value. The
1319	  trade-off, however, is that the Jitter RNG now requires more time
1320	  to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323	bool "CPU Jitter RNG Test Interface"
1324	help
1325	  The test interface allows a privileged process to capture
1326	  the raw unconditioned high resolution time stamp noise that
1327	  is collected by the Jitter RNG for statistical analysis. As
1328	  this data is used at the same time to generate random bits,
1329	  the Jitter RNG operates in an insecure mode as long as the
1330	  recording is enabled. This interface therefore is only
1331	  intended for testing purposes and is not suitable for
1332	  production systems.
1333
1334	  The raw noise data can be obtained using the jent_raw_hires
1335	  debugfs file. Using the option
1336	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337	  the first 1000 entropy events since boot can be sampled.
1338
1339	  If unsure, select N.
1340
1341endif	# if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346	int
1347	default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350	int
1351	default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354	int
1355	default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358	bool
1359
1360endif	# if !(CRYPTO_FIPS && EXPERT)
1361endif	# if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364	tristate
1365	select CRYPTO_HMAC
1366	select CRYPTO_SHA256
1367
1368endmenu
1369menu "Userspace interface"
1370
1371config CRYPTO_USER_API
1372	tristate
1373
1374config CRYPTO_USER_API_HASH
1375	tristate "Hash algorithms"
1376	depends on NET
1377	select CRYPTO_HASH
1378	select CRYPTO_USER_API
1379	help
1380	  Enable the userspace interface for hash algorithms.
1381
1382	  See Documentation/crypto/userspace-if.rst and
1383	  https://www.chronox.de/libkcapi/html/index.html
1384
1385config CRYPTO_USER_API_SKCIPHER
1386	tristate "Symmetric key cipher algorithms"
1387	depends on NET
1388	select CRYPTO_SKCIPHER
1389	select CRYPTO_USER_API
1390	help
1391	  Enable the userspace interface for symmetric key cipher algorithms.
1392
1393	  See Documentation/crypto/userspace-if.rst and
1394	  https://www.chronox.de/libkcapi/html/index.html
1395
1396config CRYPTO_USER_API_RNG
1397	tristate "RNG (random number generator) algorithms"
1398	depends on NET
1399	select CRYPTO_RNG
1400	select CRYPTO_USER_API
1401	help
1402	  Enable the userspace interface for RNG (random number generator)
1403	  algorithms.
1404
1405	  See Documentation/crypto/userspace-if.rst and
1406	  https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409	bool "Enable CAVP testing of DRBG"
1410	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411	help
1412	  Enable extra APIs in the userspace interface for NIST CAVP
1413	  (Cryptographic Algorithm Validation Program) testing:
1414	  - resetting DRBG entropy
1415	  - providing Additional Data
1416
1417	  This should only be enabled for CAVP testing. You should say
1418	  no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421	tristate "AEAD cipher algorithms"
1422	depends on NET
1423	select CRYPTO_AEAD
1424	select CRYPTO_SKCIPHER
1425	select CRYPTO_NULL
1426	select CRYPTO_USER_API
1427	help
1428	  Enable the userspace interface for AEAD cipher algorithms.
1429
1430	  See Documentation/crypto/userspace-if.rst and
1431	  https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434	bool "Obsolete cryptographic algorithms"
1435	depends on CRYPTO_USER_API
1436	default y
1437	help
1438	  Allow obsolete cryptographic algorithms to be selected that have
1439	  already been phased out from internal use by the kernel, and are
1440	  only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445	bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif	# if CRYPTO
v4.6
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
 
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on MODULE_SIG
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
 
 
 
 
 
 
 
 
 
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
 
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_RSA
  97	tristate "RSA algorithm"
  98	select CRYPTO_AKCIPHER
  99	select CRYPTO_MANAGER
 100	select MPILIB
 101	select ASN1
 102	help
 103	  Generic implementation of the RSA public key algorithm.
 
 
 
 
 
 
 
 
 
 
 104
 105config CRYPTO_MANAGER
 106	tristate "Cryptographic algorithm manager"
 107	select CRYPTO_MANAGER2
 108	help
 109	  Create default cryptographic template instantiations such as
 110	  cbc(aes).
 111
 112config CRYPTO_MANAGER2
 113	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 114	select CRYPTO_AEAD2
 
 
 115	select CRYPTO_HASH2
 116	select CRYPTO_BLKCIPHER2
 117	select CRYPTO_AKCIPHER2
 
 118
 119config CRYPTO_USER
 120	tristate "Userspace cryptographic algorithm configuration"
 121	depends on NET
 122	select CRYPTO_MANAGER
 123	help
 124	  Userspace configuration for cryptographic instantiations such as
 125	  cbc(aes).
 126
 127config CRYPTO_MANAGER_DISABLE_TESTS
 128	bool "Disable run-time self tests"
 129	default y
 130	depends on CRYPTO_MANAGER2
 131	help
 132	  Disable run-time self tests that normally take place at
 133	  algorithm registration.
 134
 135config CRYPTO_GF128MUL
 136	tristate "GF(2^128) multiplication functions"
 
 137	help
 138	  Efficient table driven implementation of multiplications in the
 139	  field GF(2^128).  This is needed by some cypher modes. This
 140	  option will be selected automatically if you select such a
 141	  cipher mode.  Only select this option by hand if you expect to load
 142	  an external module that requires these functions.
 143
 144config CRYPTO_NULL
 145	tristate "Null algorithms"
 146	select CRYPTO_NULL2
 147	help
 148	  These are 'Null' algorithms, used by IPsec, which do nothing.
 149
 150config CRYPTO_NULL2
 151	tristate
 152	select CRYPTO_ALGAPI2
 153	select CRYPTO_BLKCIPHER2
 154	select CRYPTO_HASH2
 155
 156config CRYPTO_PCRYPT
 157	tristate "Parallel crypto engine"
 158	depends on SMP
 159	select PADATA
 160	select CRYPTO_MANAGER
 161	select CRYPTO_AEAD
 162	help
 163	  This converts an arbitrary crypto algorithm into a parallel
 164	  algorithm that executes in kernel threads.
 165
 166config CRYPTO_WORKQUEUE
 167       tristate
 168
 169config CRYPTO_CRYPTD
 170	tristate "Software async crypto daemon"
 171	select CRYPTO_BLKCIPHER
 172	select CRYPTO_HASH
 173	select CRYPTO_MANAGER
 174	select CRYPTO_WORKQUEUE
 175	help
 176	  This is a generic software asynchronous crypto daemon that
 177	  converts an arbitrary synchronous software crypto algorithm
 178	  into an asynchronous algorithm that executes in a kernel thread.
 179
 180config CRYPTO_MCRYPTD
 181	tristate "Software async multi-buffer crypto daemon"
 182	select CRYPTO_BLKCIPHER
 183	select CRYPTO_HASH
 184	select CRYPTO_MANAGER
 185	select CRYPTO_WORKQUEUE
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  provides the kernel thread to assist multi-buffer crypto
 189	  algorithms for submitting jobs and flushing jobs in multi-buffer
 190	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 191	  in the context of this kernel thread and drivers can post
 192	  their crypto request asynchronously to be processed by this daemon.
 193
 194config CRYPTO_AUTHENC
 195	tristate "Authenc support"
 196	select CRYPTO_AEAD
 197	select CRYPTO_BLKCIPHER
 198	select CRYPTO_MANAGER
 199	select CRYPTO_HASH
 200	select CRYPTO_NULL
 201	help
 202	  Authenc: Combined mode wrapper for IPsec.
 203	  This is required for IPSec.
 
 204
 205config CRYPTO_TEST
 206	tristate "Testing module"
 207	depends on m
 208	select CRYPTO_MANAGER
 209	help
 210	  Quick & dirty crypto test module.
 211
 212config CRYPTO_ABLK_HELPER
 213	tristate
 214	select CRYPTO_CRYPTD
 215
 216config CRYPTO_GLUE_HELPER_X86
 217	tristate
 218	depends on X86
 219	select CRYPTO_ALGAPI
 220
 221config CRYPTO_ENGINE
 222	tristate
 223
 224comment "Authenticated Encryption with Associated Data"
 225
 226config CRYPTO_CCM
 227	tristate "CCM support"
 228	select CRYPTO_CTR
 229	select CRYPTO_AEAD
 230	help
 231	  Support for Counter with CBC MAC. Required for IPsec.
 232
 233config CRYPTO_GCM
 234	tristate "GCM/GMAC support"
 235	select CRYPTO_CTR
 236	select CRYPTO_AEAD
 237	select CRYPTO_GHASH
 238	select CRYPTO_NULL
 
 239	help
 240	  Support for Galois/Counter Mode (GCM) and Galois Message
 241	  Authentication Code (GMAC). Required for IPSec.
 242
 243config CRYPTO_CHACHA20POLY1305
 244	tristate "ChaCha20-Poly1305 AEAD support"
 245	select CRYPTO_CHACHA20
 246	select CRYPTO_POLY1305
 247	select CRYPTO_AEAD
 248	help
 249	  ChaCha20-Poly1305 AEAD support, RFC7539.
 250
 251	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 252	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 253	  IETF protocols.
 254
 255config CRYPTO_SEQIV
 256	tristate "Sequence Number IV Generator"
 257	select CRYPTO_AEAD
 258	select CRYPTO_BLKCIPHER
 259	select CRYPTO_NULL
 260	select CRYPTO_RNG_DEFAULT
 261	help
 262	  This IV generator generates an IV based on a sequence number by
 263	  xoring it with a salt.  This algorithm is mainly useful for CTR
 264
 265config CRYPTO_ECHAINIV
 266	tristate "Encrypted Chain IV Generator"
 267	select CRYPTO_AEAD
 268	select CRYPTO_NULL
 269	select CRYPTO_RNG_DEFAULT
 270	default m
 271	help
 272	  This IV generator generates an IV based on the encryption of
 273	  a sequence number xored with a salt.  This is the default
 274	  algorithm for CBC.
 275
 276comment "Block modes"
 277
 278config CRYPTO_CBC
 279	tristate "CBC support"
 280	select CRYPTO_BLKCIPHER
 281	select CRYPTO_MANAGER
 282	help
 283	  CBC: Cipher Block Chaining mode
 284	  This block cipher algorithm is required for IPSec.
 285
 286config CRYPTO_CTR
 287	tristate "CTR support"
 288	select CRYPTO_BLKCIPHER
 289	select CRYPTO_SEQIV
 290	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 291	help
 292	  CTR: Counter mode
 293	  This block cipher algorithm is required for IPSec.
 294
 295config CRYPTO_CTS
 296	tristate "CTS support"
 297	select CRYPTO_BLKCIPHER
 
 
 
 
 
 
 
 298	help
 299	  CTS: Cipher Text Stealing
 300	  This is the Cipher Text Stealing mode as described by
 301	  Section 8 of rfc2040 and referenced by rfc3962.
 302	  (rfc3962 includes errata information in its Appendix A)
 303	  This mode is required for Kerberos gss mechanism support
 304	  for AES encryption.
 305
 306config CRYPTO_ECB
 307	tristate "ECB support"
 308	select CRYPTO_BLKCIPHER
 309	select CRYPTO_MANAGER
 310	help
 311	  ECB: Electronic CodeBook mode
 312	  This is the simplest block cipher algorithm.  It simply encrypts
 313	  the input block by block.
 314
 315config CRYPTO_LRW
 316	tristate "LRW support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	select CRYPTO_GF128MUL
 320	help
 321	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 322	  narrow block cipher mode for dm-crypt.  Use it with cipher
 323	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 324	  The first 128, 192 or 256 bits in the key are used for AES and the
 325	  rest is used to tie each cipher block to its logical position.
 326
 327config CRYPTO_PCBC
 328	tristate "PCBC support"
 329	select CRYPTO_BLKCIPHER
 330	select CRYPTO_MANAGER
 331	help
 332	  PCBC: Propagating Cipher Block Chaining mode
 333	  This block cipher algorithm is required for RxRPC.
 334
 335config CRYPTO_XTS
 336	tristate "XTS support"
 337	select CRYPTO_BLKCIPHER
 338	select CRYPTO_MANAGER
 339	select CRYPTO_GF128MUL
 340	help
 341	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 342	  key size 256, 384 or 512 bits. This implementation currently
 343	  can't handle a sectorsize which is not a multiple of 16 bytes.
 344
 345config CRYPTO_KEYWRAP
 346	tristate "Key wrapping support"
 347	select CRYPTO_BLKCIPHER
 
 348	help
 349	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 350	  padding.
 351
 352comment "Hash modes"
 
 
 
 
 
 
 
 353
 354config CRYPTO_CMAC
 355	tristate "CMAC support"
 356	select CRYPTO_HASH
 357	select CRYPTO_MANAGER
 358	help
 359	  Cipher-based Message Authentication Code (CMAC) specified by
 360	  The National Institute of Standards and Technology (NIST).
 361
 362	  https://tools.ietf.org/html/rfc4493
 363	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 364
 365config CRYPTO_HMAC
 366	tristate "HMAC support"
 367	select CRYPTO_HASH
 368	select CRYPTO_MANAGER
 369	help
 370	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 371	  This is required for IPSec.
 372
 373config CRYPTO_XCBC
 374	tristate "XCBC support"
 375	select CRYPTO_HASH
 376	select CRYPTO_MANAGER
 377	help
 378	  XCBC: Keyed-Hashing with encryption algorithm
 379		http://www.ietf.org/rfc/rfc3566.txt
 380		http://csrc.nist.gov/encryption/modes/proposedmodes/
 381		 xcbc-mac/xcbc-mac-spec.pdf
 
 
 
 
 382
 383config CRYPTO_VMAC
 384	tristate "VMAC support"
 385	select CRYPTO_HASH
 386	select CRYPTO_MANAGER
 387	help
 388	  VMAC is a message authentication algorithm designed for
 389	  very high speed on 64-bit architectures.
 390
 391	  See also:
 392	  <http://fastcrypto.org/vmac>
 
 393
 394comment "Digest"
 
 395
 396config CRYPTO_CRC32C
 397	tristate "CRC32c CRC algorithm"
 398	select CRYPTO_HASH
 399	select CRC32
 400	help
 401	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 402	  by iSCSI for header and data digests and by others.
 403	  See Castagnoli93.  Module will be crc32c.
 404
 405config CRYPTO_CRC32C_INTEL
 406	tristate "CRC32c INTEL hardware acceleration"
 407	depends on X86
 408	select CRYPTO_HASH
 409	help
 410	  In Intel processor with SSE4.2 supported, the processor will
 411	  support CRC32C implementation using hardware accelerated CRC32
 412	  instruction. This option will create 'crc32c-intel' module,
 413	  which will enable any routine to use the CRC32 instruction to
 414	  gain performance compared with software implementation.
 415	  Module will be crc32c-intel.
 416
 417config CRYPTO_CRC32C_SPARC64
 418	tristate "CRC32c CRC algorithm (SPARC64)"
 419	depends on SPARC64
 420	select CRYPTO_HASH
 421	select CRC32
 422	help
 423	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 424	  when available.
 425
 426config CRYPTO_CRC32
 427	tristate "CRC32 CRC algorithm"
 428	select CRYPTO_HASH
 429	select CRC32
 430	help
 431	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 432	  Shash crypto api wrappers to crc32_le function.
 433
 434config CRYPTO_CRC32_PCLMUL
 435	tristate "CRC32 PCLMULQDQ hardware acceleration"
 436	depends on X86
 437	select CRYPTO_HASH
 438	select CRC32
 439	help
 440	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 441	  and PCLMULQDQ supported, the processor will support
 442	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 443	  instruction. This option will create 'crc32-plcmul' module,
 444	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 445	  and gain better performance as compared with the table implementation.
 446
 447config CRYPTO_CRCT10DIF
 448	tristate "CRCT10DIF algorithm"
 449	select CRYPTO_HASH
 450	help
 451	  CRC T10 Data Integrity Field computation is being cast as
 452	  a crypto transform.  This allows for faster crc t10 diff
 453	  transforms to be used if they are available.
 454
 455config CRYPTO_CRCT10DIF_PCLMUL
 456	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 457	depends on X86 && 64BIT && CRC_T10DIF
 458	select CRYPTO_HASH
 459	help
 460	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 461	  CRC T10 DIF PCLMULQDQ computation can be hardware
 462	  accelerated PCLMULQDQ instruction. This option will create
 463	  'crct10dif-plcmul' module, which is faster when computing the
 464	  crct10dif checksum as compared with the generic table implementation.
 465
 466config CRYPTO_GHASH
 467	tristate "GHASH digest algorithm"
 468	select CRYPTO_GF128MUL
 469	select CRYPTO_HASH
 470	help
 471	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 
 472
 473config CRYPTO_POLY1305
 474	tristate "Poly1305 authenticator algorithm"
 475	select CRYPTO_HASH
 476	help
 477	  Poly1305 authenticator algorithm, RFC7539.
 478
 479	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 480	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 481	  in IETF protocols. This is the portable C implementation of Poly1305.
 482
 483config CRYPTO_POLY1305_X86_64
 484	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 485	depends on X86 && 64BIT
 486	select CRYPTO_POLY1305
 487	help
 488	  Poly1305 authenticator algorithm, RFC7539.
 489
 490	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 491	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 492	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 493	  instructions.
 494
 495config CRYPTO_MD4
 496	tristate "MD4 digest algorithm"
 497	select CRYPTO_HASH
 498	help
 499	  MD4 message digest algorithm (RFC1320).
 
 500
 501config CRYPTO_MD5
 502	tristate "MD5 digest algorithm"
 503	select CRYPTO_HASH
 
 504	help
 505	  MD5 message digest algorithm (RFC1321).
 506
 507config CRYPTO_MD5_OCTEON
 508	tristate "MD5 digest algorithm (OCTEON)"
 509	depends on CPU_CAVIUM_OCTEON
 510	select CRYPTO_MD5
 511	select CRYPTO_HASH
 512	help
 513	  MD5 message digest algorithm (RFC1321) implemented
 514	  using OCTEON crypto instructions, when available.
 515
 516config CRYPTO_MD5_PPC
 517	tristate "MD5 digest algorithm (PPC)"
 518	depends on PPC
 519	select CRYPTO_HASH
 520	help
 521	  MD5 message digest algorithm (RFC1321) implemented
 522	  in PPC assembler.
 
 523
 524config CRYPTO_MD5_SPARC64
 525	tristate "MD5 digest algorithm (SPARC64)"
 526	depends on SPARC64
 527	select CRYPTO_MD5
 528	select CRYPTO_HASH
 529	help
 530	  MD5 message digest algorithm (RFC1321) implemented
 531	  using sparc64 crypto instructions, when available.
 532
 533config CRYPTO_MICHAEL_MIC
 534	tristate "Michael MIC keyed digest algorithm"
 535	select CRYPTO_HASH
 536	help
 537	  Michael MIC is used for message integrity protection in TKIP
 538	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 539	  should not be used for other purposes because of the weakness
 540	  of the algorithm.
 541
 542config CRYPTO_RMD128
 543	tristate "RIPEMD-128 digest algorithm"
 544	select CRYPTO_HASH
 
 545	help
 546	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 547
 548	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 549	  be used as a secure replacement for RIPEMD. For other use cases,
 550	  RIPEMD-160 should be used.
 551
 552	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 553	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 554
 555config CRYPTO_RMD160
 556	tristate "RIPEMD-160 digest algorithm"
 557	select CRYPTO_HASH
 
 558	help
 559	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 560
 561	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 562	  to be used as a secure replacement for the 128-bit hash functions
 563	  MD4, MD5 and it's predecessor RIPEMD
 564	  (not to be confused with RIPEMD-128).
 565
 566	  It's speed is comparable to SHA1 and there are no known attacks
 567	  against RIPEMD-160.
 568
 569	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 570	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 571
 572config CRYPTO_RMD256
 573	tristate "RIPEMD-256 digest algorithm"
 574	select CRYPTO_HASH
 575	help
 576	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 577	  256 bit hash. It is intended for applications that require
 578	  longer hash-results, without needing a larger security level
 579	  (than RIPEMD-128).
 580
 581	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 582	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 583
 584config CRYPTO_RMD320
 585	tristate "RIPEMD-320 digest algorithm"
 586	select CRYPTO_HASH
 587	help
 588	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 589	  320 bit hash. It is intended for applications that require
 590	  longer hash-results, without needing a larger security level
 591	  (than RIPEMD-160).
 592
 593	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 594	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 595
 596config CRYPTO_SHA1
 597	tristate "SHA1 digest algorithm"
 598	select CRYPTO_HASH
 
 599	help
 600	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 
 601
 602config CRYPTO_SHA1_SSSE3
 603	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 604	depends on X86 && 64BIT
 605	select CRYPTO_SHA1
 606	select CRYPTO_HASH
 607	help
 608	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 609	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 610	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 611	  when available.
 612
 613config CRYPTO_SHA256_SSSE3
 614	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 615	depends on X86 && 64BIT
 616	select CRYPTO_SHA256
 617	select CRYPTO_HASH
 618	help
 619	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 620	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 621	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 622	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 623	  Instructions) when available.
 624
 625config CRYPTO_SHA512_SSSE3
 626	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 627	depends on X86 && 64BIT
 628	select CRYPTO_SHA512
 629	select CRYPTO_HASH
 630	help
 631	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 632	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 633	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 634	  version 2 (AVX2) instructions, when available.
 635
 636config CRYPTO_SHA1_OCTEON
 637	tristate "SHA1 digest algorithm (OCTEON)"
 638	depends on CPU_CAVIUM_OCTEON
 639	select CRYPTO_SHA1
 640	select CRYPTO_HASH
 641	help
 642	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 643	  using OCTEON crypto instructions, when available.
 644
 645config CRYPTO_SHA1_SPARC64
 646	tristate "SHA1 digest algorithm (SPARC64)"
 647	depends on SPARC64
 648	select CRYPTO_SHA1
 649	select CRYPTO_HASH
 650	help
 651	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 652	  using sparc64 crypto instructions, when available.
 653
 654config CRYPTO_SHA1_PPC
 655	tristate "SHA1 digest algorithm (powerpc)"
 656	depends on PPC
 657	help
 658	  This is the powerpc hardware accelerated implementation of the
 659	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 660
 661config CRYPTO_SHA1_PPC_SPE
 662	tristate "SHA1 digest algorithm (PPC SPE)"
 663	depends on PPC && SPE
 664	help
 665	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 666	  using powerpc SPE SIMD instruction set.
 667
 668config CRYPTO_SHA1_MB
 669	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 670	depends on X86 && 64BIT
 671	select CRYPTO_SHA1
 672	select CRYPTO_HASH
 673	select CRYPTO_MCRYPTD
 674	help
 675	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 676	  using multi-buffer technique.  This algorithm computes on
 677	  multiple data lanes concurrently with SIMD instructions for
 678	  better throughput.  It should not be enabled by default but
 679	  used when there is significant amount of work to keep the keep
 680	  the data lanes filled to get performance benefit.  If the data
 681	  lanes remain unfilled, a flush operation will be initiated to
 682	  process the crypto jobs, adding a slight latency.
 683
 684config CRYPTO_SHA256
 685	tristate "SHA224 and SHA256 digest algorithm"
 686	select CRYPTO_HASH
 687	help
 688	  SHA256 secure hash standard (DFIPS 180-2).
 689
 690	  This version of SHA implements a 256 bit hash with 128 bits of
 691	  security against collision attacks.
 692
 693	  This code also includes SHA-224, a 224 bit hash with 112 bits
 694	  of security against collision attacks.
 695
 696config CRYPTO_SHA256_PPC_SPE
 697	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 698	depends on PPC && SPE
 699	select CRYPTO_SHA256
 700	select CRYPTO_HASH
 701	help
 702	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 703	  implemented using powerpc SPE SIMD instruction set.
 704
 705config CRYPTO_SHA256_OCTEON
 706	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 707	depends on CPU_CAVIUM_OCTEON
 708	select CRYPTO_SHA256
 709	select CRYPTO_HASH
 710	help
 711	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 712	  using OCTEON crypto instructions, when available.
 713
 714config CRYPTO_SHA256_SPARC64
 715	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 716	depends on SPARC64
 717	select CRYPTO_SHA256
 718	select CRYPTO_HASH
 719	help
 720	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 721	  using sparc64 crypto instructions, when available.
 722
 723config CRYPTO_SHA512
 724	tristate "SHA384 and SHA512 digest algorithms"
 725	select CRYPTO_HASH
 726	help
 727	  SHA512 secure hash standard (DFIPS 180-2).
 728
 729	  This version of SHA implements a 512 bit hash with 256 bits of
 730	  security against collision attacks.
 731
 732	  This code also includes SHA-384, a 384 bit hash with 192 bits
 733	  of security against collision attacks.
 
 
 
 
 734
 735config CRYPTO_SHA512_OCTEON
 736	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 737	depends on CPU_CAVIUM_OCTEON
 738	select CRYPTO_SHA512
 739	select CRYPTO_HASH
 740	help
 741	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 742	  using OCTEON crypto instructions, when available.
 743
 744config CRYPTO_SHA512_SPARC64
 745	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 746	depends on SPARC64
 747	select CRYPTO_SHA512
 748	select CRYPTO_HASH
 749	help
 750	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 751	  using sparc64 crypto instructions, when available.
 752
 753config CRYPTO_TGR192
 754	tristate "Tiger digest algorithms"
 755	select CRYPTO_HASH
 756	help
 757	  Tiger hash algorithm 192, 160 and 128-bit hashes
 
 758
 759	  Tiger is a hash function optimized for 64-bit processors while
 760	  still having decent performance on 32-bit processors.
 761	  Tiger was developed by Ross Anderson and Eli Biham.
 762
 763	  See also:
 764	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 765
 766config CRYPTO_WP512
 767	tristate "Whirlpool digest algorithms"
 768	select CRYPTO_HASH
 
 
 
 769	help
 770	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 771
 772	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 773	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 
 
 
 
 
 
 
 
 
 
 
 774
 775	  See also:
 776	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 777
 778config CRYPTO_GHASH_CLMUL_NI_INTEL
 779	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 780	depends on X86 && 64BIT
 781	select CRYPTO_CRYPTD
 
 782	help
 783	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 784	  The implementation is accelerated by CLMUL-NI of Intel.
 785
 786comment "Ciphers"
 
 
 
 787
 788config CRYPTO_AES
 789	tristate "AES cipher algorithms"
 790	select CRYPTO_ALGAPI
 
 791	help
 792	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 793	  algorithm.
 794
 795	  Rijndael appears to be consistently a very good performer in
 796	  both hardware and software across a wide range of computing
 797	  environments regardless of its use in feedback or non-feedback
 798	  modes. Its key setup time is excellent, and its key agility is
 799	  good. Rijndael's very low memory requirements make it very well
 800	  suited for restricted-space environments, in which it also
 801	  demonstrates excellent performance. Rijndael's operations are
 802	  among the easiest to defend against power and timing attacks.
 803
 804	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 
 
 
 805
 806	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 807
 808config CRYPTO_AES_586
 809	tristate "AES cipher algorithms (i586)"
 810	depends on (X86 || UML_X86) && !64BIT
 811	select CRYPTO_ALGAPI
 812	select CRYPTO_AES
 813	help
 814	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 815	  algorithm.
 816
 817	  Rijndael appears to be consistently a very good performer in
 818	  both hardware and software across a wide range of computing
 819	  environments regardless of its use in feedback or non-feedback
 820	  modes. Its key setup time is excellent, and its key agility is
 821	  good. Rijndael's very low memory requirements make it very well
 822	  suited for restricted-space environments, in which it also
 823	  demonstrates excellent performance. Rijndael's operations are
 824	  among the easiest to defend against power and timing attacks.
 825
 826	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 827
 828	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 829
 830config CRYPTO_AES_X86_64
 831	tristate "AES cipher algorithms (x86_64)"
 832	depends on (X86 || UML_X86) && 64BIT
 833	select CRYPTO_ALGAPI
 834	select CRYPTO_AES
 835	help
 836	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 837	  algorithm.
 838
 839	  Rijndael appears to be consistently a very good performer in
 840	  both hardware and software across a wide range of computing
 841	  environments regardless of its use in feedback or non-feedback
 842	  modes. Its key setup time is excellent, and its key agility is
 843	  good. Rijndael's very low memory requirements make it very well
 844	  suited for restricted-space environments, in which it also
 845	  demonstrates excellent performance. Rijndael's operations are
 846	  among the easiest to defend against power and timing attacks.
 847
 848	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 849
 850	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 851
 852config CRYPTO_AES_NI_INTEL
 853	tristate "AES cipher algorithms (AES-NI)"
 854	depends on X86
 855	select CRYPTO_AES_X86_64 if 64BIT
 856	select CRYPTO_AES_586 if !64BIT
 857	select CRYPTO_CRYPTD
 858	select CRYPTO_ABLK_HELPER
 859	select CRYPTO_ALGAPI
 860	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 861	select CRYPTO_LRW
 862	select CRYPTO_XTS
 863	help
 864	  Use Intel AES-NI instructions for AES algorithm.
 865
 866	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 867	  algorithm.
 
 
 868
 869	  Rijndael appears to be consistently a very good performer in
 870	  both hardware and software across a wide range of computing
 871	  environments regardless of its use in feedback or non-feedback
 872	  modes. Its key setup time is excellent, and its key agility is
 873	  good. Rijndael's very low memory requirements make it very well
 874	  suited for restricted-space environments, in which it also
 875	  demonstrates excellent performance. Rijndael's operations are
 876	  among the easiest to defend against power and timing attacks.
 877
 878	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 
 879
 880	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 881
 882	  In addition to AES cipher algorithm support, the acceleration
 883	  for some popular block cipher mode is supported too, including
 884	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 885	  acceleration for CTR.
 886
 887config CRYPTO_AES_SPARC64
 888	tristate "AES cipher algorithms (SPARC64)"
 889	depends on SPARC64
 890	select CRYPTO_CRYPTD
 891	select CRYPTO_ALGAPI
 892	help
 893	  Use SPARC64 crypto opcodes for AES algorithm.
 894
 895	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 896	  algorithm.
 
 
 
 897
 898	  Rijndael appears to be consistently a very good performer in
 899	  both hardware and software across a wide range of computing
 900	  environments regardless of its use in feedback or non-feedback
 901	  modes. Its key setup time is excellent, and its key agility is
 902	  good. Rijndael's very low memory requirements make it very well
 903	  suited for restricted-space environments, in which it also
 904	  demonstrates excellent performance. Rijndael's operations are
 905	  among the easiest to defend against power and timing attacks.
 906
 907	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 908
 909	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 910
 911	  In addition to AES cipher algorithm support, the acceleration
 912	  for some popular block cipher mode is supported too, including
 913	  ECB and CBC.
 914
 915config CRYPTO_AES_PPC_SPE
 916	tristate "AES cipher algorithms (PPC SPE)"
 917	depends on PPC && SPE
 918	help
 919	  AES cipher algorithms (FIPS-197). Additionally the acceleration
 920	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
 921	  This module should only be used for low power (router) devices
 922	  without hardware AES acceleration (e.g. caam crypto). It reduces the
 923	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
 924	  timining attacks. Nevertheless it might be not as secure as other
 925	  architecture specific assembler implementations that work on 1KB
 926	  tables or 256 bytes S-boxes.
 927
 928config CRYPTO_ANUBIS
 929	tristate "Anubis cipher algorithm"
 930	select CRYPTO_ALGAPI
 931	help
 932	  Anubis cipher algorithm.
 933
 934	  Anubis is a variable key length cipher which can use keys from
 935	  128 bits to 320 bits in length.  It was evaluated as a entrant
 936	  in the NESSIE competition.
 937
 938	  See also:
 939	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 940	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 941
 942config CRYPTO_ARC4
 943	tristate "ARC4 cipher algorithm"
 944	select CRYPTO_BLKCIPHER
 
 
 945	help
 946	  ARC4 cipher algorithm.
 
 947
 948	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 949	  bits in length.  This algorithm is required for driver-based
 950	  WEP, but it should not be for other purposes because of the
 951	  weakness of the algorithm.
 952
 953config CRYPTO_BLOWFISH
 954	tristate "Blowfish cipher algorithm"
 955	select CRYPTO_ALGAPI
 956	select CRYPTO_BLOWFISH_COMMON
 957	help
 958	  Blowfish cipher algorithm, by Bruce Schneier.
 959
 960	  This is a variable key length cipher which can use keys from 32
 961	  bits to 448 bits in length.  It's fast, simple and specifically
 962	  designed for use on "large microprocessors".
 963
 964	  See also:
 965	  <http://www.schneier.com/blowfish.html>
 966
 967config CRYPTO_BLOWFISH_COMMON
 968	tristate
 
 
 969	help
 970	  Common parts of the Blowfish cipher algorithm shared by the
 971	  generic c and the assembler implementations.
 972
 973	  See also:
 974	  <http://www.schneier.com/blowfish.html>
 975
 976config CRYPTO_BLOWFISH_X86_64
 977	tristate "Blowfish cipher algorithm (x86_64)"
 978	depends on X86 && 64BIT
 979	select CRYPTO_ALGAPI
 980	select CRYPTO_BLOWFISH_COMMON
 981	help
 982	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 983
 984	  This is a variable key length cipher which can use keys from 32
 985	  bits to 448 bits in length.  It's fast, simple and specifically
 986	  designed for use on "large microprocessors".
 987
 988	  See also:
 989	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 
 
 
 990
 991config CRYPTO_CAMELLIA
 992	tristate "Camellia cipher algorithms"
 993	depends on CRYPTO
 994	select CRYPTO_ALGAPI
 
 
 995	help
 996	  Camellia cipher algorithms module.
 
 997
 998	  Camellia is a symmetric key block cipher developed jointly
 999	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 
 
1000
1001	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1002
1003	  See also:
1004	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
 
 
 
1005
1006config CRYPTO_CAMELLIA_X86_64
1007	tristate "Camellia cipher algorithm (x86_64)"
1008	depends on X86 && 64BIT
1009	depends on CRYPTO
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_GLUE_HELPER_X86
1012	select CRYPTO_LRW
1013	select CRYPTO_XTS
1014	help
1015	  Camellia cipher algorithm module (x86_64).
1016
1017	  Camellia is a symmetric key block cipher developed jointly
1018	  at NTT and Mitsubishi Electric Corporation.
1019
1020	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1021
1022	  See also:
1023	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027	depends on X86 && 64BIT
1028	depends on CRYPTO
1029	select CRYPTO_ALGAPI
1030	select CRYPTO_CRYPTD
1031	select CRYPTO_ABLK_HELPER
1032	select CRYPTO_GLUE_HELPER_X86
1033	select CRYPTO_CAMELLIA_X86_64
1034	select CRYPTO_LRW
1035	select CRYPTO_XTS
1036	help
1037	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1038
1039	  Camellia is a symmetric key block cipher developed jointly
1040	  at NTT and Mitsubishi Electric Corporation.
 
1041
1042	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
1043
1044	  See also:
1045	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
 
 
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049	depends on X86 && 64BIT
1050	depends on CRYPTO
1051	select CRYPTO_ALGAPI
1052	select CRYPTO_CRYPTD
1053	select CRYPTO_ABLK_HELPER
1054	select CRYPTO_GLUE_HELPER_X86
1055	select CRYPTO_CAMELLIA_X86_64
1056	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057	select CRYPTO_LRW
1058	select CRYPTO_XTS
1059	help
1060	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062	  Camellia is a symmetric key block cipher developed jointly
1063	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
1064
1065	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1066
1067	  See also:
1068	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071	tristate "Camellia cipher algorithm (SPARC64)"
1072	depends on SPARC64
1073	depends on CRYPTO
1074	select CRYPTO_ALGAPI
1075	help
1076	  Camellia cipher algorithm module (SPARC64).
1077
1078	  Camellia is a symmetric key block cipher developed jointly
1079	  at NTT and Mitsubishi Electric Corporation.
1080
1081	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
1082
1083	  See also:
1084	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087	tristate
1088	help
1089	  Common parts of the CAST cipher algorithms shared by the
1090	  generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093	tristate "CAST5 (CAST-128) cipher algorithm"
1094	select CRYPTO_ALGAPI
1095	select CRYPTO_CAST_COMMON
1096	help
1097	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1098	  described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102	depends on X86 && 64BIT
1103	select CRYPTO_ALGAPI
1104	select CRYPTO_CRYPTD
1105	select CRYPTO_ABLK_HELPER
1106	select CRYPTO_CAST_COMMON
1107	select CRYPTO_CAST5
1108	help
1109	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1110	  described in RFC2144.
1111
1112	  This module provides the Cast5 cipher algorithm that processes
1113	  sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116	tristate "CAST6 (CAST-256) cipher algorithm"
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_CAST_COMMON
1119	help
1120	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1121	  described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125	depends on X86 && 64BIT
1126	select CRYPTO_ALGAPI
1127	select CRYPTO_CRYPTD
1128	select CRYPTO_ABLK_HELPER
1129	select CRYPTO_GLUE_HELPER_X86
1130	select CRYPTO_CAST_COMMON
1131	select CRYPTO_CAST6
1132	select CRYPTO_LRW
1133	select CRYPTO_XTS
1134	help
1135	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1136	  described in RFC2612.
1137
1138	  This module provides the Cast6 cipher algorithm that processes
1139	  eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142	tristate "DES and Triple DES EDE cipher algorithms"
1143	select CRYPTO_ALGAPI
1144	help
1145	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1146
1147config CRYPTO_DES_SPARC64
1148	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149	depends on SPARC64
1150	select CRYPTO_ALGAPI
1151	select CRYPTO_DES
1152	help
1153	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154	  optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157	tristate "Triple DES EDE cipher algorithm (x86-64)"
1158	depends on X86 && 64BIT
1159	select CRYPTO_ALGAPI
1160	select CRYPTO_DES
1161	help
1162	  Triple DES EDE (FIPS 46-3) algorithm.
1163
1164	  This module provides implementation of the Triple DES EDE cipher
1165	  algorithm that is optimized for x86-64 processors. Two versions of
1166	  algorithm are provided; regular processing one input block and
1167	  one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170	tristate "FCrypt cipher algorithm"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_BLKCIPHER
1173	help
1174	  FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177	tristate "Khazad cipher algorithm"
1178	select CRYPTO_ALGAPI
 
1179	help
1180	  Khazad cipher algorithm.
1181
1182	  Khazad was a finalist in the initial NESSIE competition.  It is
1183	  an algorithm optimized for 64-bit processors with good performance
1184	  on 32-bit processors.  Khazad uses an 128 bit key size.
1185
1186	  See also:
1187	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1188
1189config CRYPTO_SALSA20
1190	tristate "Salsa20 stream cipher algorithm"
1191	select CRYPTO_BLKCIPHER
1192	help
1193	  Salsa20 stream cipher algorithm.
1194
1195	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
 
1197
1198	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1199	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
1200
1201config CRYPTO_SALSA20_586
1202	tristate "Salsa20 stream cipher algorithm (i586)"
1203	depends on (X86 || UML_X86) && !64BIT
1204	select CRYPTO_BLKCIPHER
1205	help
1206	  Salsa20 stream cipher algorithm.
1207
1208	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1212	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
1213
1214config CRYPTO_SALSA20_X86_64
1215	tristate "Salsa20 stream cipher algorithm (x86_64)"
1216	depends on (X86 || UML_X86) && 64BIT
1217	select CRYPTO_BLKCIPHER
1218	help
1219	  Salsa20 stream cipher algorithm.
1220
1221	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1225	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1226
1227config CRYPTO_CHACHA20
1228	tristate "ChaCha20 cipher algorithm"
1229	select CRYPTO_BLKCIPHER
1230	help
1231	  ChaCha20 cipher algorithm, RFC7539.
1232
1233	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1235	  This is the portable C implementation of ChaCha20.
1236
1237	  See also:
1238	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1239
1240config CRYPTO_CHACHA20_X86_64
1241	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CHACHA20
1245	help
1246	  ChaCha20 cipher algorithm, RFC7539.
1247
1248	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1250	  This is the x86_64 assembler implementation using SIMD instructions.
1251
1252	  See also:
1253	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1254
1255config CRYPTO_SEED
1256	tristate "SEED cipher algorithm"
1257	select CRYPTO_ALGAPI
1258	help
1259	  SEED cipher algorithm (RFC4269).
1260
1261	  SEED is a 128-bit symmetric key block cipher that has been
1262	  developed by KISA (Korea Information Security Agency) as a
1263	  national standard encryption algorithm of the Republic of Korea.
1264	  It is a 16 round block cipher with the key size of 128 bit.
1265
1266	  See also:
1267	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1268
1269config CRYPTO_SERPENT
1270	tristate "Serpent cipher algorithm"
1271	select CRYPTO_ALGAPI
1272	help
1273	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275	  Keys are allowed to be from 0 to 256 bits in length, in steps
1276	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1277	  variant of Serpent for compatibility with old kerneli.org code.
1278
1279	  See also:
1280	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284	depends on X86 && 64BIT
1285	select CRYPTO_ALGAPI
1286	select CRYPTO_CRYPTD
1287	select CRYPTO_ABLK_HELPER
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SERPENT
1290	select CRYPTO_LRW
1291	select CRYPTO_XTS
1292	help
1293	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295	  Keys are allowed to be from 0 to 256 bits in length, in steps
1296	  of 8 bits.
 
1297
1298	  This module provides Serpent cipher algorithm that processes eight
1299	  blocks parallel using SSE2 instruction set.
 
1300
1301	  See also:
1302	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304config CRYPTO_SERPENT_SSE2_586
1305	tristate "Serpent cipher algorithm (i586/SSE2)"
1306	depends on X86 && !64BIT
1307	select CRYPTO_ALGAPI
1308	select CRYPTO_CRYPTD
1309	select CRYPTO_ABLK_HELPER
1310	select CRYPTO_GLUE_HELPER_X86
1311	select CRYPTO_SERPENT
1312	select CRYPTO_LRW
1313	select CRYPTO_XTS
1314	help
1315	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
1316
1317	  Keys are allowed to be from 0 to 256 bits in length, in steps
1318	  of 8 bits.
1319
1320	  This module provides Serpent cipher algorithm that processes four
1321	  blocks parallel using SSE2 instruction set.
1322
1323	  See also:
1324	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327	tristate "Serpent cipher algorithm (x86_64/AVX)"
1328	depends on X86 && 64BIT
1329	select CRYPTO_ALGAPI
1330	select CRYPTO_CRYPTD
1331	select CRYPTO_ABLK_HELPER
1332	select CRYPTO_GLUE_HELPER_X86
1333	select CRYPTO_SERPENT
1334	select CRYPTO_LRW
1335	select CRYPTO_XTS
1336	help
1337	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339	  Keys are allowed to be from 0 to 256 bits in length, in steps
1340	  of 8 bits.
1341
1342	  This module provides the Serpent cipher algorithm that processes
1343	  eight blocks parallel using the AVX instruction set.
1344
1345	  See also:
1346	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350	depends on X86 && 64BIT
1351	select CRYPTO_ALGAPI
1352	select CRYPTO_CRYPTD
1353	select CRYPTO_ABLK_HELPER
1354	select CRYPTO_GLUE_HELPER_X86
1355	select CRYPTO_SERPENT
1356	select CRYPTO_SERPENT_AVX_X86_64
1357	select CRYPTO_LRW
1358	select CRYPTO_XTS
1359	help
1360	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
1361
1362	  Keys are allowed to be from 0 to 256 bits in length, in steps
1363	  of 8 bits.
1364
1365	  This module provides Serpent cipher algorithm that processes 16
1366	  blocks parallel using AVX2 instruction set.
1367
1368	  See also:
1369	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_TEA
1372	tristate "TEA, XTEA and XETA cipher algorithms"
1373	select CRYPTO_ALGAPI
1374	help
1375	  TEA cipher algorithm.
1376
1377	  Tiny Encryption Algorithm is a simple cipher that uses
1378	  many rounds for security.  It is very fast and uses
1379	  little memory.
1380
1381	  Xtendend Tiny Encryption Algorithm is a modification to
1382	  the TEA algorithm to address a potential key weakness
1383	  in the TEA algorithm.
1384
1385	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1386	  of the XTEA algorithm for compatibility purposes.
1387
1388config CRYPTO_TWOFISH
1389	tristate "Twofish cipher algorithm"
1390	select CRYPTO_ALGAPI
1391	select CRYPTO_TWOFISH_COMMON
1392	help
1393	  Twofish cipher algorithm.
1394
1395	  Twofish was submitted as an AES (Advanced Encryption Standard)
1396	  candidate cipher by researchers at CounterPane Systems.  It is a
1397	  16 round block cipher supporting key sizes of 128, 192, and 256
1398	  bits.
1399
1400	  See also:
1401	  <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404	tristate
1405	help
1406	  Common parts of the Twofish cipher algorithm shared by the
1407	  generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410	tristate "Twofish cipher algorithms (i586)"
1411	depends on (X86 || UML_X86) && !64BIT
1412	select CRYPTO_ALGAPI
1413	select CRYPTO_TWOFISH_COMMON
1414	help
1415	  Twofish cipher algorithm.
1416
1417	  Twofish was submitted as an AES (Advanced Encryption Standard)
1418	  candidate cipher by researchers at CounterPane Systems.  It is a
1419	  16 round block cipher supporting key sizes of 128, 192, and 256
1420	  bits.
 
1421
1422	  See also:
1423	  <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426	tristate "Twofish cipher algorithm (x86_64)"
1427	depends on (X86 || UML_X86) && 64BIT
1428	select CRYPTO_ALGAPI
1429	select CRYPTO_TWOFISH_COMMON
1430	help
1431	  Twofish cipher algorithm (x86_64).
1432
1433	  Twofish was submitted as an AES (Advanced Encryption Standard)
1434	  candidate cipher by researchers at CounterPane Systems.  It is a
1435	  16 round block cipher supporting key sizes of 128, 192, and 256
1436	  bits.
1437
1438	  See also:
1439	  <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443	depends on X86 && 64BIT
1444	select CRYPTO_ALGAPI
1445	select CRYPTO_TWOFISH_COMMON
1446	select CRYPTO_TWOFISH_X86_64
1447	select CRYPTO_GLUE_HELPER_X86
1448	select CRYPTO_LRW
1449	select CRYPTO_XTS
1450	help
1451	  Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453	  Twofish was submitted as an AES (Advanced Encryption Standard)
1454	  candidate cipher by researchers at CounterPane Systems.  It is a
1455	  16 round block cipher supporting key sizes of 128, 192, and 256
1456	  bits.
1457
1458	  This module provides Twofish cipher algorithm that processes three
1459	  blocks parallel, utilizing resources of out-of-order CPUs better.
1460
1461	  See also:
1462	  <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465	tristate "Twofish cipher algorithm (x86_64/AVX)"
1466	depends on X86 && 64BIT
1467	select CRYPTO_ALGAPI
1468	select CRYPTO_CRYPTD
1469	select CRYPTO_ABLK_HELPER
1470	select CRYPTO_GLUE_HELPER_X86
1471	select CRYPTO_TWOFISH_COMMON
1472	select CRYPTO_TWOFISH_X86_64
1473	select CRYPTO_TWOFISH_X86_64_3WAY
1474	select CRYPTO_LRW
1475	select CRYPTO_XTS
1476	help
1477	  Twofish cipher algorithm (x86_64/AVX).
1478
1479	  Twofish was submitted as an AES (Advanced Encryption Standard)
1480	  candidate cipher by researchers at CounterPane Systems.  It is a
1481	  16 round block cipher supporting key sizes of 128, 192, and 256
1482	  bits.
1483
1484	  This module provides the Twofish cipher algorithm that processes
1485	  eight blocks parallel using the AVX Instruction Set.
1486
1487	  See also:
1488	  <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493	tristate "Deflate compression algorithm"
1494	select CRYPTO_ALGAPI
 
1495	select ZLIB_INFLATE
1496	select ZLIB_DEFLATE
1497	help
1498	  This is the Deflate algorithm (RFC1951), specified for use in
1499	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501	  You will most probably want this if using IPSec.
1502
1503config CRYPTO_LZO
1504	tristate "LZO compression algorithm"
1505	select CRYPTO_ALGAPI
 
1506	select LZO_COMPRESS
1507	select LZO_DECOMPRESS
1508	help
1509	  This is the LZO algorithm.
 
 
1510
1511config CRYPTO_842
1512	tristate "842 compression algorithm"
1513	select CRYPTO_ALGAPI
 
1514	select 842_COMPRESS
1515	select 842_DECOMPRESS
1516	help
1517	  This is the 842 algorithm.
 
 
1518
1519config CRYPTO_LZ4
1520	tristate "LZ4 compression algorithm"
1521	select CRYPTO_ALGAPI
 
1522	select LZ4_COMPRESS
1523	select LZ4_DECOMPRESS
1524	help
1525	  This is the LZ4 algorithm.
 
 
1526
1527config CRYPTO_LZ4HC
1528	tristate "LZ4HC compression algorithm"
1529	select CRYPTO_ALGAPI
 
1530	select LZ4HC_COMPRESS
1531	select LZ4_DECOMPRESS
1532	help
1533	  This is the LZ4 high compression mode algorithm.
 
 
 
 
 
 
 
 
 
 
 
1534
1535comment "Random Number Generation"
 
 
 
 
1536
1537config CRYPTO_ANSI_CPRNG
1538	tristate "Pseudo Random Number Generation for Cryptographic modules"
1539	select CRYPTO_AES
1540	select CRYPTO_RNG
1541	help
1542	  This option enables the generic pseudo random number generator
1543	  for cryptographic modules.  Uses the Algorithm specified in
1544	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1545	  CRYPTO_FIPS is selected
 
1546
1547menuconfig CRYPTO_DRBG_MENU
1548	tristate "NIST SP800-90A DRBG"
1549	help
1550	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1551	  more of the DRBG types must be selected.
 
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556	bool
1557	default y
1558	select CRYPTO_HMAC
1559	select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562	bool "Enable Hash DRBG"
1563	select CRYPTO_SHA256
1564	help
1565	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1566
1567config CRYPTO_DRBG_CTR
1568	bool "Enable CTR DRBG"
1569	select CRYPTO_AES
 
1570	help
1571	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1572
1573config CRYPTO_DRBG
1574	tristate
1575	default CRYPTO_DRBG_MENU
1576	select CRYPTO_RNG
1577	select CRYPTO_JITTERENTROPY
1578
1579endif	# if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583	select CRYPTO_RNG
 
1584	help
1585	  The Jitterentropy RNG is a noise that is intended
1586	  to provide seed to another RNG. The RNG does not
1587	  perform any cryptographic whitening of the generated
1588	  random numbers. This Jitterentropy RNG registers with
1589	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591config CRYPTO_USER_API
1592	tristate
1593
1594config CRYPTO_USER_API_HASH
1595	tristate "User-space interface for hash algorithms"
1596	depends on NET
1597	select CRYPTO_HASH
1598	select CRYPTO_USER_API
1599	help
1600	  This option enables the user-spaces interface for hash
1601	  algorithms.
 
 
1602
1603config CRYPTO_USER_API_SKCIPHER
1604	tristate "User-space interface for symmetric key cipher algorithms"
1605	depends on NET
1606	select CRYPTO_BLKCIPHER
1607	select CRYPTO_USER_API
1608	help
1609	  This option enables the user-spaces interface for symmetric
1610	  key cipher algorithms.
 
 
1611
1612config CRYPTO_USER_API_RNG
1613	tristate "User-space interface for random number generator algorithms"
1614	depends on NET
1615	select CRYPTO_RNG
1616	select CRYPTO_USER_API
1617	help
1618	  This option enables the user-spaces interface for random
1619	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621config CRYPTO_USER_API_AEAD
1622	tristate "User-space interface for AEAD cipher algorithms"
1623	depends on NET
1624	select CRYPTO_AEAD
 
 
1625	select CRYPTO_USER_API
1626	help
1627	  This option enables the user-spaces interface for AEAD
1628	  cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630config CRYPTO_HASH_INFO
1631	bool
1632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif	# if CRYPTO