Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/bpf-cgroup.h>
  56#include <linux/ethtool.h>
  57#include <linux/mm.h>
  58#include <linux/socket.h>
  59#include <linux/file.h>
  60#include <linux/splice.h>
  61#include <linux/net.h>
  62#include <linux/interrupt.h>
  63#include <linux/thread_info.h>
  64#include <linux/rcupdate.h>
  65#include <linux/netdevice.h>
  66#include <linux/proc_fs.h>
  67#include <linux/seq_file.h>
  68#include <linux/mutex.h>
  69#include <linux/if_bridge.h>
 
  70#include <linux/if_vlan.h>
  71#include <linux/ptp_classify.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/cache.h>
  75#include <linux/module.h>
  76#include <linux/highmem.h>
  77#include <linux/mount.h>
  78#include <linux/pseudo_fs.h>
  79#include <linux/security.h>
  80#include <linux/syscalls.h>
  81#include <linux/compat.h>
  82#include <linux/kmod.h>
  83#include <linux/audit.h>
  84#include <linux/wireless.h>
  85#include <linux/nsproxy.h>
  86#include <linux/magic.h>
  87#include <linux/slab.h>
  88#include <linux/xattr.h>
  89#include <linux/nospec.h>
  90#include <linux/indirect_call_wrapper.h>
  91#include <linux/io_uring/net.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/termios.h>
 107#include <linux/sockios.h>
 
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110#include <linux/ptp_clock_kernel.h>
 111#include <trace/events/sock.h>
 112
 113#ifdef CONFIG_NET_RX_BUSY_POLL
 114unsigned int sysctl_net_busy_read __read_mostly;
 115unsigned int sysctl_net_busy_poll __read_mostly;
 116#endif
 117
 118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static __poll_t sock_poll(struct file *file,
 124			      struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128			      unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 
 
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134static void sock_splice_eof(struct file *file);
 135
 136#ifdef CONFIG_PROC_FS
 137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 138{
 139	struct socket *sock = f->private_data;
 140	const struct proto_ops *ops = READ_ONCE(sock->ops);
 141
 142	if (ops->show_fdinfo)
 143		ops->show_fdinfo(m, sock);
 144}
 145#else
 146#define sock_show_fdinfo NULL
 147#endif
 148
 149/*
 150 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 151 *	in the operation structures but are done directly via the socketcall() multiplexor.
 152 */
 153
 154static const struct file_operations socket_file_ops = {
 155	.owner =	THIS_MODULE,
 
 156	.read_iter =	sock_read_iter,
 157	.write_iter =	sock_write_iter,
 158	.poll =		sock_poll,
 159	.unlocked_ioctl = sock_ioctl,
 160#ifdef CONFIG_COMPAT
 161	.compat_ioctl = compat_sock_ioctl,
 162#endif
 163	.uring_cmd =    io_uring_cmd_sock,
 164	.mmap =		sock_mmap,
 165	.release =	sock_close,
 166	.fasync =	sock_fasync,
 167	.splice_write = splice_to_socket,
 
 168	.splice_read =	sock_splice_read,
 169	.splice_eof =	sock_splice_eof,
 170	.show_fdinfo =	sock_show_fdinfo,
 171};
 172
 173static const char * const pf_family_names[] = {
 174	[PF_UNSPEC]	= "PF_UNSPEC",
 175	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 176	[PF_INET]	= "PF_INET",
 177	[PF_AX25]	= "PF_AX25",
 178	[PF_IPX]	= "PF_IPX",
 179	[PF_APPLETALK]	= "PF_APPLETALK",
 180	[PF_NETROM]	= "PF_NETROM",
 181	[PF_BRIDGE]	= "PF_BRIDGE",
 182	[PF_ATMPVC]	= "PF_ATMPVC",
 183	[PF_X25]	= "PF_X25",
 184	[PF_INET6]	= "PF_INET6",
 185	[PF_ROSE]	= "PF_ROSE",
 186	[PF_DECnet]	= "PF_DECnet",
 187	[PF_NETBEUI]	= "PF_NETBEUI",
 188	[PF_SECURITY]	= "PF_SECURITY",
 189	[PF_KEY]	= "PF_KEY",
 190	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 191	[PF_PACKET]	= "PF_PACKET",
 192	[PF_ASH]	= "PF_ASH",
 193	[PF_ECONET]	= "PF_ECONET",
 194	[PF_ATMSVC]	= "PF_ATMSVC",
 195	[PF_RDS]	= "PF_RDS",
 196	[PF_SNA]	= "PF_SNA",
 197	[PF_IRDA]	= "PF_IRDA",
 198	[PF_PPPOX]	= "PF_PPPOX",
 199	[PF_WANPIPE]	= "PF_WANPIPE",
 200	[PF_LLC]	= "PF_LLC",
 201	[PF_IB]		= "PF_IB",
 202	[PF_MPLS]	= "PF_MPLS",
 203	[PF_CAN]	= "PF_CAN",
 204	[PF_TIPC]	= "PF_TIPC",
 205	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 206	[PF_IUCV]	= "PF_IUCV",
 207	[PF_RXRPC]	= "PF_RXRPC",
 208	[PF_ISDN]	= "PF_ISDN",
 209	[PF_PHONET]	= "PF_PHONET",
 210	[PF_IEEE802154]	= "PF_IEEE802154",
 211	[PF_CAIF]	= "PF_CAIF",
 212	[PF_ALG]	= "PF_ALG",
 213	[PF_NFC]	= "PF_NFC",
 214	[PF_VSOCK]	= "PF_VSOCK",
 215	[PF_KCM]	= "PF_KCM",
 216	[PF_QIPCRTR]	= "PF_QIPCRTR",
 217	[PF_SMC]	= "PF_SMC",
 218	[PF_XDP]	= "PF_XDP",
 219	[PF_MCTP]	= "PF_MCTP",
 220};
 221
 222/*
 223 *	The protocol list. Each protocol is registered in here.
 224 */
 225
 226static DEFINE_SPINLOCK(net_family_lock);
 227static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 228
 229/*
 
 
 
 
 
 
 230 * Support routines.
 231 * Move socket addresses back and forth across the kernel/user
 232 * divide and look after the messy bits.
 233 */
 234
 235/**
 236 *	move_addr_to_kernel	-	copy a socket address into kernel space
 237 *	@uaddr: Address in user space
 238 *	@kaddr: Address in kernel space
 239 *	@ulen: Length in user space
 240 *
 241 *	The address is copied into kernel space. If the provided address is
 242 *	too long an error code of -EINVAL is returned. If the copy gives
 243 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 244 */
 245
 246int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 247{
 248	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 249		return -EINVAL;
 250	if (ulen == 0)
 251		return 0;
 252	if (copy_from_user(kaddr, uaddr, ulen))
 253		return -EFAULT;
 254	return audit_sockaddr(ulen, kaddr);
 255}
 256
 257/**
 258 *	move_addr_to_user	-	copy an address to user space
 259 *	@kaddr: kernel space address
 260 *	@klen: length of address in kernel
 261 *	@uaddr: user space address
 262 *	@ulen: pointer to user length field
 263 *
 264 *	The value pointed to by ulen on entry is the buffer length available.
 265 *	This is overwritten with the buffer space used. -EINVAL is returned
 266 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 267 *	is returned if either the buffer or the length field are not
 268 *	accessible.
 269 *	After copying the data up to the limit the user specifies, the true
 270 *	length of the data is written over the length limit the user
 271 *	specified. Zero is returned for a success.
 272 */
 273
 274static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 275			     void __user *uaddr, int __user *ulen)
 276{
 277	int err;
 278	int len;
 279
 280	BUG_ON(klen > sizeof(struct sockaddr_storage));
 281	err = get_user(len, ulen);
 282	if (err)
 283		return err;
 284	if (len > klen)
 285		len = klen;
 286	if (len < 0)
 287		return -EINVAL;
 288	if (len) {
 289		if (audit_sockaddr(klen, kaddr))
 290			return -ENOMEM;
 291		if (copy_to_user(uaddr, kaddr, len))
 292			return -EFAULT;
 293	}
 294	/*
 295	 *      "fromlen shall refer to the value before truncation.."
 296	 *                      1003.1g
 297	 */
 298	return __put_user(klen, ulen);
 299}
 300
 301static struct kmem_cache *sock_inode_cachep __ro_after_init;
 302
 303static struct inode *sock_alloc_inode(struct super_block *sb)
 304{
 305	struct socket_alloc *ei;
 
 306
 307	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
 308	if (!ei)
 309		return NULL;
 310	init_waitqueue_head(&ei->socket.wq.wait);
 311	ei->socket.wq.fasync_list = NULL;
 312	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 313
 314	ei->socket.state = SS_UNCONNECTED;
 315	ei->socket.flags = 0;
 316	ei->socket.ops = NULL;
 317	ei->socket.sk = NULL;
 318	ei->socket.file = NULL;
 319
 320	return &ei->vfs_inode;
 321}
 322
 323static void sock_free_inode(struct inode *inode)
 324{
 325	struct socket_alloc *ei;
 
 326
 327	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 328	kmem_cache_free(sock_inode_cachep, ei);
 329}
 330
 331static void init_once(void *foo)
 332{
 333	struct socket_alloc *ei = (struct socket_alloc *)foo;
 334
 335	inode_init_once(&ei->vfs_inode);
 336}
 337
 338static void init_inodecache(void)
 339{
 340	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 341					      sizeof(struct socket_alloc),
 342					      0,
 343					      (SLAB_HWCACHE_ALIGN |
 344					       SLAB_RECLAIM_ACCOUNT |
 345					       SLAB_ACCOUNT),
 346					      init_once);
 347	BUG_ON(sock_inode_cachep == NULL);
 
 
 348}
 349
 350static const struct super_operations sockfs_ops = {
 351	.alloc_inode	= sock_alloc_inode,
 352	.free_inode	= sock_free_inode,
 353	.statfs		= simple_statfs,
 354};
 355
 356/*
 357 * sockfs_dname() is called from d_path().
 358 */
 359static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 360{
 361	return dynamic_dname(buffer, buflen, "socket:[%lu]",
 362				d_inode(dentry)->i_ino);
 363}
 364
 365static const struct dentry_operations sockfs_dentry_operations = {
 366	.d_dname  = sockfs_dname,
 367};
 368
 369static int sockfs_xattr_get(const struct xattr_handler *handler,
 370			    struct dentry *dentry, struct inode *inode,
 371			    const char *suffix, void *value, size_t size)
 372{
 373	if (value) {
 374		if (dentry->d_name.len + 1 > size)
 375			return -ERANGE;
 376		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 377	}
 378	return dentry->d_name.len + 1;
 379}
 380
 381#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 382#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 383#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 384
 385static const struct xattr_handler sockfs_xattr_handler = {
 386	.name = XATTR_NAME_SOCKPROTONAME,
 387	.get = sockfs_xattr_get,
 388};
 389
 390static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 391				     struct mnt_idmap *idmap,
 392				     struct dentry *dentry, struct inode *inode,
 393				     const char *suffix, const void *value,
 394				     size_t size, int flags)
 395{
 396	/* Handled by LSM. */
 397	return -EAGAIN;
 398}
 399
 400static const struct xattr_handler sockfs_security_xattr_handler = {
 401	.prefix = XATTR_SECURITY_PREFIX,
 402	.set = sockfs_security_xattr_set,
 403};
 404
 405static const struct xattr_handler * const sockfs_xattr_handlers[] = {
 406	&sockfs_xattr_handler,
 407	&sockfs_security_xattr_handler,
 408	NULL
 409};
 410
 411static int sockfs_init_fs_context(struct fs_context *fc)
 412{
 413	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 414	if (!ctx)
 415		return -ENOMEM;
 416	ctx->ops = &sockfs_ops;
 417	ctx->dops = &sockfs_dentry_operations;
 418	ctx->xattr = sockfs_xattr_handlers;
 419	return 0;
 420}
 421
 422static struct vfsmount *sock_mnt __read_mostly;
 423
 424static struct file_system_type sock_fs_type = {
 425	.name =		"sockfs",
 426	.init_fs_context = sockfs_init_fs_context,
 427	.kill_sb =	kill_anon_super,
 428};
 429
 430/*
 431 *	Obtains the first available file descriptor and sets it up for use.
 432 *
 433 *	These functions create file structures and maps them to fd space
 434 *	of the current process. On success it returns file descriptor
 435 *	and file struct implicitly stored in sock->file.
 436 *	Note that another thread may close file descriptor before we return
 437 *	from this function. We use the fact that now we do not refer
 438 *	to socket after mapping. If one day we will need it, this
 439 *	function will increment ref. count on file by 1.
 440 *
 441 *	In any case returned fd MAY BE not valid!
 442 *	This race condition is unavoidable
 443 *	with shared fd spaces, we cannot solve it inside kernel,
 444 *	but we take care of internal coherence yet.
 445 */
 446
 447/**
 448 *	sock_alloc_file - Bind a &socket to a &file
 449 *	@sock: socket
 450 *	@flags: file status flags
 451 *	@dname: protocol name
 452 *
 453 *	Returns the &file bound with @sock, implicitly storing it
 454 *	in sock->file. If dname is %NULL, sets to "".
 455 *
 456 *	On failure @sock is released, and an ERR pointer is returned.
 457 *
 458 *	This function uses GFP_KERNEL internally.
 459 */
 460
 461struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 462{
 
 
 463	struct file *file;
 464
 465	if (!dname)
 466		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 
 
 467
 468	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 469				O_RDWR | (flags & O_NONBLOCK),
 470				&socket_file_ops);
 471	if (IS_ERR(file)) {
 472		sock_release(sock);
 
 
 473		return file;
 474	}
 475
 476	file->f_mode |= FMODE_NOWAIT;
 477	sock->file = file;
 
 478	file->private_data = sock;
 479	stream_open(SOCK_INODE(sock), file);
 480	return file;
 481}
 482EXPORT_SYMBOL(sock_alloc_file);
 483
 484static int sock_map_fd(struct socket *sock, int flags)
 485{
 486	struct file *newfile;
 487	int fd = get_unused_fd_flags(flags);
 488	if (unlikely(fd < 0)) {
 489		sock_release(sock);
 490		return fd;
 491	}
 492
 493	newfile = sock_alloc_file(sock, flags, NULL);
 494	if (!IS_ERR(newfile)) {
 495		fd_install(fd, newfile);
 496		return fd;
 497	}
 498
 499	put_unused_fd(fd);
 500	return PTR_ERR(newfile);
 501}
 502
 503/**
 504 *	sock_from_file - Return the &socket bounded to @file.
 505 *	@file: file
 506 *
 507 *	On failure returns %NULL.
 508 */
 509
 510struct socket *sock_from_file(struct file *file)
 511{
 512	if (likely(file->f_op == &socket_file_ops))
 513		return file->private_data;	/* set in sock_alloc_file */
 514
 
 515	return NULL;
 516}
 517EXPORT_SYMBOL(sock_from_file);
 518
 519/**
 520 *	sockfd_lookup - Go from a file number to its socket slot
 521 *	@fd: file handle
 522 *	@err: pointer to an error code return
 523 *
 524 *	The file handle passed in is locked and the socket it is bound
 525 *	to is returned. If an error occurs the err pointer is overwritten
 526 *	with a negative errno code and NULL is returned. The function checks
 527 *	for both invalid handles and passing a handle which is not a socket.
 528 *
 529 *	On a success the socket object pointer is returned.
 530 */
 531
 532struct socket *sockfd_lookup(int fd, int *err)
 533{
 534	struct file *file;
 535	struct socket *sock;
 536
 537	file = fget(fd);
 538	if (!file) {
 539		*err = -EBADF;
 540		return NULL;
 541	}
 542
 543	sock = sock_from_file(file);
 544	if (!sock) {
 545		*err = -ENOTSOCK;
 546		fput(file);
 547	}
 548	return sock;
 549}
 550EXPORT_SYMBOL(sockfd_lookup);
 551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 553				size_t size)
 554{
 555	ssize_t len;
 556	ssize_t used = 0;
 557
 558	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 559	if (len < 0)
 560		return len;
 561	used += len;
 562	if (buffer) {
 563		if (size < used)
 564			return -ERANGE;
 565		buffer += len;
 566	}
 567
 568	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 569	used += len;
 570	if (buffer) {
 571		if (size < used)
 572			return -ERANGE;
 573		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 574		buffer += len;
 575	}
 576
 577	return used;
 578}
 579
 580static int sockfs_setattr(struct mnt_idmap *idmap,
 581			  struct dentry *dentry, struct iattr *iattr)
 582{
 583	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
 584
 585	if (!err && (iattr->ia_valid & ATTR_UID)) {
 586		struct socket *sock = SOCKET_I(d_inode(dentry));
 587
 588		if (sock->sk)
 589			sock->sk->sk_uid = iattr->ia_uid;
 590		else
 591			err = -ENOENT;
 592	}
 593
 594	return err;
 595}
 596
 597static const struct inode_operations sockfs_inode_ops = {
 
 598	.listxattr = sockfs_listxattr,
 599	.setattr = sockfs_setattr,
 600};
 601
 602/**
 603 *	sock_alloc - allocate a socket
 604 *
 605 *	Allocate a new inode and socket object. The two are bound together
 606 *	and initialised. The socket is then returned. If we are out of inodes
 607 *	NULL is returned. This functions uses GFP_KERNEL internally.
 608 */
 609
 610struct socket *sock_alloc(void)
 611{
 612	struct inode *inode;
 613	struct socket *sock;
 614
 615	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 616	if (!inode)
 617		return NULL;
 618
 619	sock = SOCKET_I(inode);
 620
 
 621	inode->i_ino = get_next_ino();
 622	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 623	inode->i_uid = current_fsuid();
 624	inode->i_gid = current_fsgid();
 625	inode->i_op = &sockfs_inode_ops;
 626
 
 627	return sock;
 628}
 629EXPORT_SYMBOL(sock_alloc);
 630
 631static void __sock_release(struct socket *sock, struct inode *inode)
 632{
 633	const struct proto_ops *ops = READ_ONCE(sock->ops);
 
 
 
 
 
 634
 635	if (ops) {
 636		struct module *owner = ops->owner;
 
 
 637
 638		if (inode)
 639			inode_lock(inode);
 640		ops->release(sock);
 641		sock->sk = NULL;
 642		if (inode)
 643			inode_unlock(inode);
 644		sock->ops = NULL;
 645		module_put(owner);
 646	}
 647
 648	if (sock->wq.fasync_list)
 649		pr_err("%s: fasync list not empty!\n", __func__);
 650
 
 651	if (!sock->file) {
 652		iput(SOCK_INODE(sock));
 653		return;
 654	}
 655	sock->file = NULL;
 656}
 657
 658/**
 659 *	sock_release - close a socket
 660 *	@sock: socket to close
 661 *
 662 *	The socket is released from the protocol stack if it has a release
 663 *	callback, and the inode is then released if the socket is bound to
 664 *	an inode not a file.
 665 */
 666void sock_release(struct socket *sock)
 667{
 668	__sock_release(sock, NULL);
 669}
 670EXPORT_SYMBOL(sock_release);
 671
 672void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
 673{
 674	u8 flags = *tx_flags;
 675
 676	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
 677		flags |= SKBTX_HW_TSTAMP;
 678
 679		/* PTP hardware clocks can provide a free running cycle counter
 680		 * as a time base for virtual clocks. Tell driver to use the
 681		 * free running cycle counter for timestamp if socket is bound
 682		 * to virtual clock.
 683		 */
 684		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 685			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
 686	}
 687
 688	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 689		flags |= SKBTX_SW_TSTAMP;
 690
 691	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 692		flags |= SKBTX_SCHED_TSTAMP;
 693
 
 
 
 694	*tx_flags = flags;
 695}
 696EXPORT_SYMBOL(__sock_tx_timestamp);
 697
 698INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 699					   size_t));
 700INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 701					    size_t));
 702
 703static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
 704						 int flags)
 705{
 706	trace_sock_send_length(sk, ret, 0);
 707}
 708
 709static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 710{
 711	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
 712				     inet_sendmsg, sock, msg,
 713				     msg_data_left(msg));
 714	BUG_ON(ret == -EIOCBQUEUED);
 715
 716	if (trace_sock_send_length_enabled())
 717		call_trace_sock_send_length(sock->sk, ret, 0);
 718	return ret;
 719}
 720
 721static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
 722{
 723	int err = security_socket_sendmsg(sock, msg,
 724					  msg_data_left(msg));
 725
 726	return err ?: sock_sendmsg_nosec(sock, msg);
 727}
 728
 729/**
 730 *	sock_sendmsg - send a message through @sock
 731 *	@sock: socket
 732 *	@msg: message to send
 733 *
 734 *	Sends @msg through @sock, passing through LSM.
 735 *	Returns the number of bytes sent, or an error code.
 736 */
 737int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 738{
 739	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
 740	struct sockaddr_storage address;
 741	int save_len = msg->msg_namelen;
 742	int ret;
 743
 744	if (msg->msg_name) {
 745		memcpy(&address, msg->msg_name, msg->msg_namelen);
 746		msg->msg_name = &address;
 747	}
 748
 749	ret = __sock_sendmsg(sock, msg);
 750	msg->msg_name = save_addr;
 751	msg->msg_namelen = save_len;
 752
 753	return ret;
 754}
 755EXPORT_SYMBOL(sock_sendmsg);
 756
 757/**
 758 *	kernel_sendmsg - send a message through @sock (kernel-space)
 759 *	@sock: socket
 760 *	@msg: message header
 761 *	@vec: kernel vec
 762 *	@num: vec array length
 763 *	@size: total message data size
 764 *
 765 *	Builds the message data with @vec and sends it through @sock.
 766 *	Returns the number of bytes sent, or an error code.
 767 */
 768
 769int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 770		   struct kvec *vec, size_t num, size_t size)
 771{
 772	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 773	return sock_sendmsg(sock, msg);
 774}
 775EXPORT_SYMBOL(kernel_sendmsg);
 776
 777/**
 778 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 779 *	@sk: sock
 780 *	@msg: message header
 781 *	@vec: output s/g array
 782 *	@num: output s/g array length
 783 *	@size: total message data size
 784 *
 785 *	Builds the message data with @vec and sends it through @sock.
 786 *	Returns the number of bytes sent, or an error code.
 787 *	Caller must hold @sk.
 788 */
 789
 790int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 791			  struct kvec *vec, size_t num, size_t size)
 792{
 793	struct socket *sock = sk->sk_socket;
 794	const struct proto_ops *ops = READ_ONCE(sock->ops);
 795
 796	if (!ops->sendmsg_locked)
 797		return sock_no_sendmsg_locked(sk, msg, size);
 798
 799	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 800
 801	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 802}
 803EXPORT_SYMBOL(kernel_sendmsg_locked);
 804
 805static bool skb_is_err_queue(const struct sk_buff *skb)
 806{
 807	/* pkt_type of skbs enqueued on the error queue are set to
 808	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 809	 * in recvmsg, since skbs received on a local socket will never
 810	 * have a pkt_type of PACKET_OUTGOING.
 811	 */
 812	return skb->pkt_type == PACKET_OUTGOING;
 813}
 814
 815/* On transmit, software and hardware timestamps are returned independently.
 816 * As the two skb clones share the hardware timestamp, which may be updated
 817 * before the software timestamp is received, a hardware TX timestamp may be
 818 * returned only if there is no software TX timestamp. Ignore false software
 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 821 * hardware timestamp.
 822 */
 823static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 824{
 825	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 826}
 827
 828static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
 829{
 830	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
 831	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 832	struct net_device *orig_dev;
 833	ktime_t hwtstamp;
 834
 835	rcu_read_lock();
 836	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 837	if (orig_dev) {
 838		*if_index = orig_dev->ifindex;
 839		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
 840	} else {
 841		hwtstamp = shhwtstamps->hwtstamp;
 842	}
 843	rcu_read_unlock();
 844
 845	return hwtstamp;
 846}
 847
 848static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
 849			   int if_index)
 850{
 851	struct scm_ts_pktinfo ts_pktinfo;
 852	struct net_device *orig_dev;
 853
 854	if (!skb_mac_header_was_set(skb))
 855		return;
 856
 857	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 858
 859	if (!if_index) {
 860		rcu_read_lock();
 861		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 862		if (orig_dev)
 863			if_index = orig_dev->ifindex;
 864		rcu_read_unlock();
 865	}
 866	ts_pktinfo.if_index = if_index;
 867
 868	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 869	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 870		 sizeof(ts_pktinfo), &ts_pktinfo);
 871}
 872
 873/*
 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 875 */
 876void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 877	struct sk_buff *skb)
 878{
 879	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 880	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 881	struct scm_timestamping_internal tss;
 882	int empty = 1, false_tstamp = 0;
 883	struct skb_shared_hwtstamps *shhwtstamps =
 884		skb_hwtstamps(skb);
 885	int if_index;
 886	ktime_t hwtstamp;
 887	u32 tsflags;
 888
 889	/* Race occurred between timestamp enabling and packet
 890	   receiving.  Fill in the current time for now. */
 891	if (need_software_tstamp && skb->tstamp == 0) {
 892		__net_timestamp(skb);
 893		false_tstamp = 1;
 894	}
 895
 896	if (need_software_tstamp) {
 897		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 898			if (new_tstamp) {
 899				struct __kernel_sock_timeval tv;
 900
 901				skb_get_new_timestamp(skb, &tv);
 902				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 903					 sizeof(tv), &tv);
 904			} else {
 905				struct __kernel_old_timeval tv;
 906
 907				skb_get_timestamp(skb, &tv);
 908				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 909					 sizeof(tv), &tv);
 910			}
 911		} else {
 912			if (new_tstamp) {
 913				struct __kernel_timespec ts;
 914
 915				skb_get_new_timestampns(skb, &ts);
 916				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 917					 sizeof(ts), &ts);
 918			} else {
 919				struct __kernel_old_timespec ts;
 920
 921				skb_get_timestampns(skb, &ts);
 922				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 923					 sizeof(ts), &ts);
 924			}
 925		}
 926	}
 927
 928	memset(&tss, 0, sizeof(tss));
 929	tsflags = READ_ONCE(sk->sk_tsflags);
 930	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
 931	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
 932	      skb_is_err_queue(skb) ||
 933	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
 934	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 935		empty = 0;
 936	if (shhwtstamps &&
 937	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
 938	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
 939	      skb_is_err_queue(skb) ||
 940	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
 941	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 942		if_index = 0;
 943		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
 944			hwtstamp = get_timestamp(sk, skb, &if_index);
 945		else
 946			hwtstamp = shhwtstamps->hwtstamp;
 947
 948		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 949			hwtstamp = ptp_convert_timestamp(&hwtstamp,
 950							 READ_ONCE(sk->sk_bind_phc));
 951
 952		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
 953			empty = 0;
 954
 955			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 956			    !skb_is_err_queue(skb))
 957				put_ts_pktinfo(msg, skb, if_index);
 958		}
 959	}
 960	if (!empty) {
 961		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 962			put_cmsg_scm_timestamping64(msg, &tss);
 963		else
 964			put_cmsg_scm_timestamping(msg, &tss);
 965
 966		if (skb_is_err_queue(skb) && skb->len &&
 967		    SKB_EXT_ERR(skb)->opt_stats)
 968			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 969				 skb->len, skb->data);
 970	}
 971}
 972EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 973
 974#ifdef CONFIG_WIRELESS
 975void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 976	struct sk_buff *skb)
 977{
 978	int ack;
 979
 980	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 981		return;
 982	if (!skb->wifi_acked_valid)
 983		return;
 984
 985	ack = skb->wifi_acked;
 986
 987	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 988}
 989EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 990#endif
 991
 992static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 993				   struct sk_buff *skb)
 994{
 995	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 996		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 997			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 998}
 999
1000static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001			   struct sk_buff *skb)
1002{
1003	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005		__u32 mark = skb->mark;
1006
1007		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008	}
1009}
1010
1011void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012		       struct sk_buff *skb)
1013{
1014	sock_recv_timestamp(msg, sk, skb);
1015	sock_recv_drops(msg, sk, skb);
1016	sock_recv_mark(msg, sk, skb);
1017}
1018EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1019
1020INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021					   size_t, int));
1022INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023					    size_t, int));
1024
1025static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1026{
1027	trace_sock_recv_length(sk, ret, flags);
1028}
 
1029
1030static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031				     int flags)
1032{
1033	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034				     inet6_recvmsg,
1035				     inet_recvmsg, sock, msg,
1036				     msg_data_left(msg), flags);
1037	if (trace_sock_recv_length_enabled())
1038		call_trace_sock_recv_length(sock->sk, ret, flags);
1039	return ret;
1040}
1041
1042/**
1043 *	sock_recvmsg - receive a message from @sock
1044 *	@sock: socket
1045 *	@msg: message to receive
1046 *	@flags: message flags
1047 *
1048 *	Receives @msg from @sock, passing through LSM. Returns the total number
1049 *	of bytes received, or an error.
1050 */
1051int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052{
1053	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1054
1055	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1056}
1057EXPORT_SYMBOL(sock_recvmsg);
1058
1059/**
1060 *	kernel_recvmsg - Receive a message from a socket (kernel space)
1061 *	@sock: The socket to receive the message from
1062 *	@msg: Received message
1063 *	@vec: Input s/g array for message data
1064 *	@num: Size of input s/g array
1065 *	@size: Number of bytes to read
1066 *	@flags: Message flags (MSG_DONTWAIT, etc...)
1067 *
1068 *	On return the msg structure contains the scatter/gather array passed in the
1069 *	vec argument. The array is modified so that it consists of the unfilled
1070 *	portion of the original array.
1071 *
1072 *	The returned value is the total number of bytes received, or an error.
1073 */
1074
1075int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076		   struct kvec *vec, size_t num, size_t size, int flags)
1077{
1078	msg->msg_control_is_user = false;
1079	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
1081}
1082EXPORT_SYMBOL(kernel_recvmsg);
1083
1084static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085				struct pipe_inode_info *pipe, size_t len,
1086				unsigned int flags)
1087{
1088	struct socket *sock = file->private_data;
1089	const struct proto_ops *ops;
1090
1091	ops = READ_ONCE(sock->ops);
1092	if (unlikely(!ops->splice_read))
1093		return copy_splice_read(file, ppos, pipe, len, flags);
 
 
1094
1095	return ops->splice_read(sock, ppos, pipe, len, flags);
1096}
1097
1098static void sock_splice_eof(struct file *file)
 
 
1099{
1100	struct socket *sock = file->private_data;
1101	const struct proto_ops *ops;
1102
1103	ops = READ_ONCE(sock->ops);
1104	if (ops->splice_eof)
1105		ops->splice_eof(sock);
 
1106}
1107
1108static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1109{
1110	struct file *file = iocb->ki_filp;
1111	struct socket *sock = file->private_data;
1112	struct msghdr msg = {.msg_iter = *to,
1113			     .msg_iocb = iocb};
1114	ssize_t res;
1115
1116	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117		msg.msg_flags = MSG_DONTWAIT;
1118
1119	if (iocb->ki_pos != 0)
1120		return -ESPIPE;
1121
1122	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1123		return 0;
1124
1125	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126	*to = msg.msg_iter;
1127	return res;
1128}
1129
1130static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1131{
1132	struct file *file = iocb->ki_filp;
1133	struct socket *sock = file->private_data;
1134	struct msghdr msg = {.msg_iter = *from,
1135			     .msg_iocb = iocb};
1136	ssize_t res;
1137
1138	if (iocb->ki_pos != 0)
1139		return -ESPIPE;
1140
1141	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142		msg.msg_flags = MSG_DONTWAIT;
1143
1144	if (sock->type == SOCK_SEQPACKET)
1145		msg.msg_flags |= MSG_EOR;
1146
1147	res = __sock_sendmsg(sock, &msg);
1148	*from = msg.msg_iter;
1149	return res;
1150}
1151
1152/*
1153 * Atomic setting of ioctl hooks to avoid race
1154 * with module unload.
1155 */
1156
1157static DEFINE_MUTEX(br_ioctl_mutex);
1158static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159			    unsigned int cmd, struct ifreq *ifr,
1160			    void __user *uarg);
1161
1162void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163			     unsigned int cmd, struct ifreq *ifr,
1164			     void __user *uarg))
1165{
1166	mutex_lock(&br_ioctl_mutex);
1167	br_ioctl_hook = hook;
1168	mutex_unlock(&br_ioctl_mutex);
1169}
1170EXPORT_SYMBOL(brioctl_set);
1171
1172int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173		  struct ifreq *ifr, void __user *uarg)
1174{
1175	int err = -ENOPKG;
1176
1177	if (!br_ioctl_hook)
1178		request_module("bridge");
1179
1180	mutex_lock(&br_ioctl_mutex);
1181	if (br_ioctl_hook)
1182		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183	mutex_unlock(&br_ioctl_mutex);
1184
1185	return err;
1186}
1187
1188static DEFINE_MUTEX(vlan_ioctl_mutex);
1189static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190
1191void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192{
1193	mutex_lock(&vlan_ioctl_mutex);
1194	vlan_ioctl_hook = hook;
1195	mutex_unlock(&vlan_ioctl_mutex);
1196}
1197EXPORT_SYMBOL(vlan_ioctl_set);
1198
 
 
 
 
 
 
 
 
 
 
 
1199static long sock_do_ioctl(struct net *net, struct socket *sock,
1200			  unsigned int cmd, unsigned long arg)
1201{
1202	const struct proto_ops *ops = READ_ONCE(sock->ops);
1203	struct ifreq ifr;
1204	bool need_copyout;
1205	int err;
1206	void __user *argp = (void __user *)arg;
1207	void __user *data;
1208
1209	err = ops->ioctl(sock, cmd, arg);
1210
1211	/*
1212	 * If this ioctl is unknown try to hand it down
1213	 * to the NIC driver.
1214	 */
1215	if (err != -ENOIOCTLCMD)
1216		return err;
1217
1218	if (!is_socket_ioctl_cmd(cmd))
1219		return -ENOTTY;
1220
1221	if (get_user_ifreq(&ifr, &data, argp))
1222		return -EFAULT;
1223	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224	if (!err && need_copyout)
1225		if (put_user_ifreq(&ifr, argp))
1226			return -EFAULT;
1227
1228	return err;
1229}
1230
1231/*
1232 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1233 *	what to do with it - that's up to the protocol still.
1234 */
1235
1236static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237{
1238	const struct proto_ops  *ops;
1239	struct socket *sock;
1240	struct sock *sk;
1241	void __user *argp = (void __user *)arg;
1242	int pid, err;
1243	struct net *net;
1244
1245	sock = file->private_data;
1246	ops = READ_ONCE(sock->ops);
1247	sk = sock->sk;
1248	net = sock_net(sk);
1249	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250		struct ifreq ifr;
1251		void __user *data;
1252		bool need_copyout;
1253		if (get_user_ifreq(&ifr, &data, argp))
1254			return -EFAULT;
1255		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256		if (!err && need_copyout)
1257			if (put_user_ifreq(&ifr, argp))
1258				return -EFAULT;
1259	} else
1260#ifdef CONFIG_WEXT_CORE
1261	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262		err = wext_handle_ioctl(net, cmd, argp);
1263	} else
1264#endif
1265		switch (cmd) {
1266		case FIOSETOWN:
1267		case SIOCSPGRP:
1268			err = -EFAULT;
1269			if (get_user(pid, (int __user *)argp))
1270				break;
1271			err = f_setown(sock->file, pid, 1);
 
1272			break;
1273		case FIOGETOWN:
1274		case SIOCGPGRP:
1275			err = put_user(f_getown(sock->file),
1276				       (int __user *)argp);
1277			break;
1278		case SIOCGIFBR:
1279		case SIOCSIFBR:
1280		case SIOCBRADDBR:
1281		case SIOCBRDELBR:
1282			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
 
 
 
 
 
 
 
1283			break;
1284		case SIOCGIFVLAN:
1285		case SIOCSIFVLAN:
1286			err = -ENOPKG;
1287			if (!vlan_ioctl_hook)
1288				request_module("8021q");
1289
1290			mutex_lock(&vlan_ioctl_mutex);
1291			if (vlan_ioctl_hook)
1292				err = vlan_ioctl_hook(net, argp);
1293			mutex_unlock(&vlan_ioctl_mutex);
1294			break;
1295		case SIOCGSKNS:
1296			err = -EPERM;
1297			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298				break;
1299
1300			err = open_related_ns(&net->ns, get_net_ns);
1301			break;
1302		case SIOCGSTAMP_OLD:
1303		case SIOCGSTAMPNS_OLD:
1304			if (!ops->gettstamp) {
1305				err = -ENOIOCTLCMD;
1306				break;
1307			}
1308			err = ops->gettstamp(sock, argp,
1309					     cmd == SIOCGSTAMP_OLD,
1310					     !IS_ENABLED(CONFIG_64BIT));
1311			break;
1312		case SIOCGSTAMP_NEW:
1313		case SIOCGSTAMPNS_NEW:
1314			if (!ops->gettstamp) {
1315				err = -ENOIOCTLCMD;
1316				break;
1317			}
1318			err = ops->gettstamp(sock, argp,
1319					     cmd == SIOCGSTAMP_NEW,
1320					     false);
1321			break;
1322
1323		case SIOCGIFCONF:
1324			err = dev_ifconf(net, argp);
 
 
1325			break;
1326
1327		default:
1328			err = sock_do_ioctl(net, sock, cmd, arg);
1329			break;
1330		}
1331	return err;
1332}
1333
1334/**
1335 *	sock_create_lite - creates a socket
1336 *	@family: protocol family (AF_INET, ...)
1337 *	@type: communication type (SOCK_STREAM, ...)
1338 *	@protocol: protocol (0, ...)
1339 *	@res: new socket
1340 *
1341 *	Creates a new socket and assigns it to @res, passing through LSM.
1342 *	The new socket initialization is not complete, see kernel_accept().
1343 *	Returns 0 or an error. On failure @res is set to %NULL.
1344 *	This function internally uses GFP_KERNEL.
1345 */
1346
1347int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348{
1349	int err;
1350	struct socket *sock = NULL;
1351
1352	err = security_socket_create(family, type, protocol, 1);
1353	if (err)
1354		goto out;
1355
1356	sock = sock_alloc();
1357	if (!sock) {
1358		err = -ENOMEM;
1359		goto out;
1360	}
1361
1362	sock->type = type;
1363	err = security_socket_post_create(sock, family, type, protocol, 1);
1364	if (err)
1365		goto out_release;
1366
1367out:
1368	*res = sock;
1369	return err;
1370out_release:
1371	sock_release(sock);
1372	sock = NULL;
1373	goto out;
1374}
1375EXPORT_SYMBOL(sock_create_lite);
1376
1377/* No kernel lock held - perfect */
1378static __poll_t sock_poll(struct file *file, poll_table *wait)
1379{
1380	struct socket *sock = file->private_data;
1381	const struct proto_ops *ops = READ_ONCE(sock->ops);
1382	__poll_t events = poll_requested_events(wait), flag = 0;
1383
1384	if (!ops->poll)
1385		return 0;
 
 
1386
1387	if (sk_can_busy_loop(sock->sk)) {
1388		/* poll once if requested by the syscall */
1389		if (events & POLL_BUSY_LOOP)
1390			sk_busy_loop(sock->sk, 1);
1391
1392		/* if this socket can poll_ll, tell the system call */
1393		flag = POLL_BUSY_LOOP;
 
1394	}
1395
1396	return ops->poll(file, sock, wait) | flag;
1397}
1398
1399static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400{
1401	struct socket *sock = file->private_data;
1402
1403	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404}
1405
1406static int sock_close(struct inode *inode, struct file *filp)
1407{
1408	__sock_release(SOCKET_I(inode), inode);
1409	return 0;
1410}
1411
1412/*
1413 *	Update the socket async list
1414 *
1415 *	Fasync_list locking strategy.
1416 *
1417 *	1. fasync_list is modified only under process context socket lock
1418 *	   i.e. under semaphore.
1419 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420 *	   or under socket lock
1421 */
1422
1423static int sock_fasync(int fd, struct file *filp, int on)
1424{
1425	struct socket *sock = filp->private_data;
1426	struct sock *sk = sock->sk;
1427	struct socket_wq *wq = &sock->wq;
1428
1429	if (sk == NULL)
1430		return -EINVAL;
1431
1432	lock_sock(sk);
 
1433	fasync_helper(fd, filp, on, &wq->fasync_list);
1434
1435	if (!wq->fasync_list)
1436		sock_reset_flag(sk, SOCK_FASYNC);
1437	else
1438		sock_set_flag(sk, SOCK_FASYNC);
1439
1440	release_sock(sk);
1441	return 0;
1442}
1443
1444/* This function may be called only under rcu_lock */
1445
1446int sock_wake_async(struct socket_wq *wq, int how, int band)
1447{
1448	if (!wq || !wq->fasync_list)
1449		return -1;
1450
1451	switch (how) {
1452	case SOCK_WAKE_WAITD:
1453		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454			break;
1455		goto call_kill;
1456	case SOCK_WAKE_SPACE:
1457		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458			break;
1459		fallthrough;
1460	case SOCK_WAKE_IO:
1461call_kill:
1462		kill_fasync(&wq->fasync_list, SIGIO, band);
1463		break;
1464	case SOCK_WAKE_URG:
1465		kill_fasync(&wq->fasync_list, SIGURG, band);
1466	}
1467
1468	return 0;
1469}
1470EXPORT_SYMBOL(sock_wake_async);
1471
1472/**
1473 *	__sock_create - creates a socket
1474 *	@net: net namespace
1475 *	@family: protocol family (AF_INET, ...)
1476 *	@type: communication type (SOCK_STREAM, ...)
1477 *	@protocol: protocol (0, ...)
1478 *	@res: new socket
1479 *	@kern: boolean for kernel space sockets
1480 *
1481 *	Creates a new socket and assigns it to @res, passing through LSM.
1482 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483 *	be set to true if the socket resides in kernel space.
1484 *	This function internally uses GFP_KERNEL.
1485 */
1486
1487int __sock_create(struct net *net, int family, int type, int protocol,
1488			 struct socket **res, int kern)
1489{
1490	int err;
1491	struct socket *sock;
1492	const struct net_proto_family *pf;
1493
1494	/*
1495	 *      Check protocol is in range
1496	 */
1497	if (family < 0 || family >= NPROTO)
1498		return -EAFNOSUPPORT;
1499	if (type < 0 || type >= SOCK_MAX)
1500		return -EINVAL;
1501
1502	/* Compatibility.
1503
1504	   This uglymoron is moved from INET layer to here to avoid
1505	   deadlock in module load.
1506	 */
1507	if (family == PF_INET && type == SOCK_PACKET) {
1508		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509			     current->comm);
1510		family = PF_PACKET;
1511	}
1512
1513	err = security_socket_create(family, type, protocol, kern);
1514	if (err)
1515		return err;
1516
1517	/*
1518	 *	Allocate the socket and allow the family to set things up. if
1519	 *	the protocol is 0, the family is instructed to select an appropriate
1520	 *	default.
1521	 */
1522	sock = sock_alloc();
1523	if (!sock) {
1524		net_warn_ratelimited("socket: no more sockets\n");
1525		return -ENFILE;	/* Not exactly a match, but its the
1526				   closest posix thing */
1527	}
1528
1529	sock->type = type;
1530
1531#ifdef CONFIG_MODULES
1532	/* Attempt to load a protocol module if the find failed.
1533	 *
1534	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535	 * requested real, full-featured networking support upon configuration.
1536	 * Otherwise module support will break!
1537	 */
1538	if (rcu_access_pointer(net_families[family]) == NULL)
1539		request_module("net-pf-%d", family);
1540#endif
1541
1542	rcu_read_lock();
1543	pf = rcu_dereference(net_families[family]);
1544	err = -EAFNOSUPPORT;
1545	if (!pf)
1546		goto out_release;
1547
1548	/*
1549	 * We will call the ->create function, that possibly is in a loadable
1550	 * module, so we have to bump that loadable module refcnt first.
1551	 */
1552	if (!try_module_get(pf->owner))
1553		goto out_release;
1554
1555	/* Now protected by module ref count */
1556	rcu_read_unlock();
1557
1558	err = pf->create(net, sock, protocol, kern);
1559	if (err < 0) {
1560		/* ->create should release the allocated sock->sk object on error
1561		 * and make sure sock->sk is set to NULL to avoid use-after-free
1562		 */
1563		DEBUG_NET_WARN_ONCE(sock->sk,
1564				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565				    pf->create, family, type, protocol);
1566		goto out_module_put;
1567	}
1568
1569	/*
1570	 * Now to bump the refcnt of the [loadable] module that owns this
1571	 * socket at sock_release time we decrement its refcnt.
1572	 */
1573	if (!try_module_get(sock->ops->owner))
1574		goto out_module_busy;
1575
1576	/*
1577	 * Now that we're done with the ->create function, the [loadable]
1578	 * module can have its refcnt decremented
1579	 */
1580	module_put(pf->owner);
1581	err = security_socket_post_create(sock, family, type, protocol, kern);
1582	if (err)
1583		goto out_sock_release;
1584	*res = sock;
1585
1586	return 0;
1587
1588out_module_busy:
1589	err = -EAFNOSUPPORT;
1590out_module_put:
1591	sock->ops = NULL;
1592	module_put(pf->owner);
1593out_sock_release:
1594	sock_release(sock);
1595	return err;
1596
1597out_release:
1598	rcu_read_unlock();
1599	goto out_sock_release;
1600}
1601EXPORT_SYMBOL(__sock_create);
1602
1603/**
1604 *	sock_create - creates a socket
1605 *	@family: protocol family (AF_INET, ...)
1606 *	@type: communication type (SOCK_STREAM, ...)
1607 *	@protocol: protocol (0, ...)
1608 *	@res: new socket
1609 *
1610 *	A wrapper around __sock_create().
1611 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1612 */
1613
1614int sock_create(int family, int type, int protocol, struct socket **res)
1615{
1616	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1617}
1618EXPORT_SYMBOL(sock_create);
1619
1620/**
1621 *	sock_create_kern - creates a socket (kernel space)
1622 *	@net: net namespace
1623 *	@family: protocol family (AF_INET, ...)
1624 *	@type: communication type (SOCK_STREAM, ...)
1625 *	@protocol: protocol (0, ...)
1626 *	@res: new socket
1627 *
1628 *	A wrapper around __sock_create().
1629 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1630 */
1631
1632int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1633{
1634	return __sock_create(net, family, type, protocol, res, 1);
1635}
1636EXPORT_SYMBOL(sock_create_kern);
1637
1638static struct socket *__sys_socket_create(int family, int type, int protocol)
1639{
1640	struct socket *sock;
1641	int retval;
 
 
1642
1643	/* Check the SOCK_* constants for consistency.  */
1644	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1648
1649	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650		return ERR_PTR(-EINVAL);
 
1651	type &= SOCK_TYPE_MASK;
1652
1653	retval = sock_create(family, type, protocol, &sock);
1654	if (retval < 0)
1655		return ERR_PTR(retval);
1656
1657	return sock;
1658}
1659
1660struct file *__sys_socket_file(int family, int type, int protocol)
1661{
1662	struct socket *sock;
1663	int flags;
1664
1665	sock = __sys_socket_create(family, type, protocol);
1666	if (IS_ERR(sock))
1667		return ERR_CAST(sock);
1668
1669	flags = type & ~SOCK_TYPE_MASK;
1670	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672
1673	return sock_alloc_file(sock, flags, NULL);
1674}
1675
1676/*	A hook for bpf progs to attach to and update socket protocol.
1677 *
1678 *	A static noinline declaration here could cause the compiler to
1679 *	optimize away the function. A global noinline declaration will
1680 *	keep the definition, but may optimize away the callsite.
1681 *	Therefore, __weak is needed to ensure that the call is still
1682 *	emitted, by telling the compiler that we don't know what the
1683 *	function might eventually be.
1684 */
1685
1686__bpf_hook_start();
1687
1688__weak noinline int update_socket_protocol(int family, int type, int protocol)
1689{
1690	return protocol;
1691}
1692
1693__bpf_hook_end();
1694
1695int __sys_socket(int family, int type, int protocol)
1696{
1697	struct socket *sock;
1698	int flags;
1699
1700	sock = __sys_socket_create(family, type,
1701				   update_socket_protocol(family, type, protocol));
1702	if (IS_ERR(sock))
1703		return PTR_ERR(sock);
1704
1705	flags = type & ~SOCK_TYPE_MASK;
1706	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708
1709	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1710}
 
1711
1712SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1713{
1714	return __sys_socket(family, type, protocol);
1715}
1716
1717/*
1718 *	Create a pair of connected sockets.
1719 */
1720
1721int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1722{
1723	struct socket *sock1, *sock2;
1724	int fd1, fd2, err;
1725	struct file *newfile1, *newfile2;
1726	int flags;
1727
1728	flags = type & ~SOCK_TYPE_MASK;
1729	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730		return -EINVAL;
1731	type &= SOCK_TYPE_MASK;
1732
1733	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735
1736	/*
1737	 * reserve descriptors and make sure we won't fail
1738	 * to return them to userland.
1739	 */
1740	fd1 = get_unused_fd_flags(flags);
1741	if (unlikely(fd1 < 0))
1742		return fd1;
1743
1744	fd2 = get_unused_fd_flags(flags);
1745	if (unlikely(fd2 < 0)) {
1746		put_unused_fd(fd1);
1747		return fd2;
1748	}
1749
1750	err = put_user(fd1, &usockvec[0]);
1751	if (err)
1752		goto out;
1753
1754	err = put_user(fd2, &usockvec[1]);
1755	if (err)
1756		goto out;
1757
1758	/*
1759	 * Obtain the first socket and check if the underlying protocol
1760	 * supports the socketpair call.
1761	 */
1762
1763	err = sock_create(family, type, protocol, &sock1);
1764	if (unlikely(err < 0))
1765		goto out;
1766
1767	err = sock_create(family, type, protocol, &sock2);
1768	if (unlikely(err < 0)) {
1769		sock_release(sock1);
1770		goto out;
1771	}
1772
1773	err = security_socket_socketpair(sock1, sock2);
1774	if (unlikely(err)) {
1775		sock_release(sock2);
1776		sock_release(sock1);
1777		goto out;
 
 
 
1778	}
1779
1780	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781	if (unlikely(err < 0)) {
1782		sock_release(sock2);
1783		sock_release(sock1);
1784		goto out;
1785	}
1786
1787	newfile1 = sock_alloc_file(sock1, flags, NULL);
1788	if (IS_ERR(newfile1)) {
1789		err = PTR_ERR(newfile1);
1790		sock_release(sock2);
1791		goto out;
1792	}
1793
1794	newfile2 = sock_alloc_file(sock2, flags, NULL);
1795	if (IS_ERR(newfile2)) {
1796		err = PTR_ERR(newfile2);
1797		fput(newfile1);
1798		goto out;
1799	}
1800
 
 
 
 
 
 
 
 
1801	audit_fd_pair(fd1, fd2);
1802
1803	fd_install(fd1, newfile1);
1804	fd_install(fd2, newfile2);
 
 
 
 
1805	return 0;
1806
1807out:
 
 
1808	put_unused_fd(fd2);
1809	put_unused_fd(fd1);
1810	return err;
1811}
1812
1813SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814		int __user *, usockvec)
1815{
1816	return __sys_socketpair(family, type, protocol, usockvec);
1817}
1818
1819int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820		      int addrlen)
1821{
1822	int err;
 
 
1823
1824	err = security_socket_bind(sock, (struct sockaddr *)address,
1825				   addrlen);
1826	if (!err)
1827		err = READ_ONCE(sock->ops)->bind(sock,
1828						 (struct sockaddr *)address,
1829						 addrlen);
 
 
 
1830	return err;
1831}
1832
1833/*
1834 *	Bind a name to a socket. Nothing much to do here since it's
1835 *	the protocol's responsibility to handle the local address.
1836 *
1837 *	We move the socket address to kernel space before we call
1838 *	the protocol layer (having also checked the address is ok).
1839 */
1840
1841int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1842{
1843	struct socket *sock;
1844	struct sockaddr_storage address;
1845	CLASS(fd, f)(fd);
1846	int err;
1847
1848	if (fd_empty(f))
1849		return -EBADF;
1850	sock = sock_from_file(fd_file(f));
1851	if (unlikely(!sock))
1852		return -ENOTSOCK;
1853
1854	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855	if (unlikely(err))
1856		return err;
1857
1858	return __sys_bind_socket(sock, &address, addrlen);
1859}
1860
1861SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1862{
1863	return __sys_bind(fd, umyaddr, addrlen);
 
 
 
 
 
1864}
1865
1866/*
1867 *	Perform a listen. Basically, we allow the protocol to do anything
1868 *	necessary for a listen, and if that works, we mark the socket as
1869 *	ready for listening.
1870 */
1871int __sys_listen_socket(struct socket *sock, int backlog)
1872{
1873	int somaxconn, err;
1874
1875	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876	if ((unsigned int)backlog > somaxconn)
1877		backlog = somaxconn;
1878
1879	err = security_socket_listen(sock, backlog);
1880	if (!err)
1881		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882	return err;
1883}
1884
1885int __sys_listen(int fd, int backlog)
1886{
1887	CLASS(fd, f)(fd);
1888	struct socket *sock;
 
 
1889
1890	if (fd_empty(f))
1891		return -EBADF;
1892	sock = sock_from_file(fd_file(f));
1893	if (unlikely(!sock))
1894		return -ENOTSOCK;
 
 
 
 
1895
1896	return __sys_listen_socket(sock, backlog);
 
 
1897}
1898
1899SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1900{
1901	return __sys_listen(fd, backlog);
1902}
 
 
 
 
 
 
 
1903
1904struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905		       struct sockaddr __user *upeer_sockaddr,
1906		       int __user *upeer_addrlen, int flags)
1907{
1908	struct socket *sock, *newsock;
1909	struct file *newfile;
1910	int err, len;
1911	struct sockaddr_storage address;
1912	const struct proto_ops *ops;
1913
1914	sock = sock_from_file(file);
 
 
 
 
 
 
1915	if (!sock)
1916		return ERR_PTR(-ENOTSOCK);
1917
 
1918	newsock = sock_alloc();
1919	if (!newsock)
1920		return ERR_PTR(-ENFILE);
1921	ops = READ_ONCE(sock->ops);
1922
1923	newsock->type = sock->type;
1924	newsock->ops = ops;
1925
1926	/*
1927	 * We don't need try_module_get here, as the listening socket (sock)
1928	 * has the protocol module (sock->ops->owner) held.
1929	 */
1930	__module_get(ops->owner);
1931
 
 
 
 
 
 
1932	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933	if (IS_ERR(newfile))
1934		return newfile;
 
 
 
 
1935
1936	err = security_socket_accept(sock, newsock);
1937	if (err)
1938		goto out_fd;
1939
1940	arg->flags |= sock->file->f_flags;
1941	err = ops->accept(sock, newsock, arg);
1942	if (err < 0)
1943		goto out_fd;
1944
1945	if (upeer_sockaddr) {
1946		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947		if (len < 0) {
1948			err = -ECONNABORTED;
1949			goto out_fd;
1950		}
1951		err = move_addr_to_user(&address,
1952					len, upeer_sockaddr, upeer_addrlen);
1953		if (err < 0)
1954			goto out_fd;
1955	}
1956
1957	/* File flags are not inherited via accept() unlike another OSes. */
1958	return newfile;
1959out_fd:
1960	fput(newfile);
1961	return ERR_PTR(err);
1962}
1963
1964static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965			      int __user *upeer_addrlen, int flags)
1966{
1967	struct proto_accept_arg arg = { };
1968	struct file *newfile;
1969	int newfd;
1970
1971	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972		return -EINVAL;
1973
1974	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1976
1977	newfd = get_unused_fd_flags(flags);
1978	if (unlikely(newfd < 0))
1979		return newfd;
1980
1981	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982			    flags);
1983	if (IS_ERR(newfile)) {
1984		put_unused_fd(newfd);
1985		return PTR_ERR(newfile);
1986	}
1987	fd_install(newfd, newfile);
1988	return newfd;
1989}
1990
1991/*
1992 *	For accept, we attempt to create a new socket, set up the link
1993 *	with the client, wake up the client, then return the new
1994 *	connected fd. We collect the address of the connector in kernel
1995 *	space and move it to user at the very end. This is unclean because
1996 *	we open the socket then return an error.
1997 *
1998 *	1003.1g adds the ability to recvmsg() to query connection pending
1999 *	status to recvmsg. We need to add that support in a way thats
2000 *	clean when we restructure accept also.
2001 */
2002
2003int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004		  int __user *upeer_addrlen, int flags)
2005{
2006	CLASS(fd, f)(fd);
2007
2008	if (fd_empty(f))
2009		return -EBADF;
2010	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011					 upeer_addrlen, flags);
2012}
2013
2014SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015		int __user *, upeer_addrlen, int, flags)
2016{
2017	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2018}
2019
2020SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021		int __user *, upeer_addrlen)
2022{
2023	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024}
2025
2026/*
2027 *	Attempt to connect to a socket with the server address.  The address
2028 *	is in user space so we verify it is OK and move it to kernel space.
2029 *
2030 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 *	break bindings
2032 *
2033 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 *	other SEQPACKET protocols that take time to connect() as it doesn't
2035 *	include the -EINPROGRESS status for such sockets.
2036 */
2037
2038int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039		       int addrlen, int file_flags)
2040{
2041	struct socket *sock;
2042	int err;
 
2043
2044	sock = sock_from_file(file);
2045	if (!sock) {
2046		err = -ENOTSOCK;
2047		goto out;
2048	}
 
 
2049
2050	err =
2051	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052	if (err)
2053		goto out;
2054
2055	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056				addrlen, sock->file->f_flags | file_flags);
 
 
2057out:
2058	return err;
2059}
2060
2061int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062{
2063	struct sockaddr_storage address;
2064	CLASS(fd, f)(fd);
2065	int ret;
2066
2067	if (fd_empty(f))
2068		return -EBADF;
2069
2070	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071	if (ret)
2072		return ret;
2073
2074	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2075}
2076
2077SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078		int, addrlen)
2079{
2080	return __sys_connect(fd, uservaddr, addrlen);
2081}
2082
2083/*
2084 *	Get the local address ('name') of a socket object. Move the obtained
2085 *	name to user space.
2086 */
2087
2088int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089		      int __user *usockaddr_len)
2090{
2091	struct socket *sock;
2092	struct sockaddr_storage address;
2093	CLASS(fd, f)(fd);
2094	int err;
2095
2096	if (fd_empty(f))
2097		return -EBADF;
2098	sock = sock_from_file(fd_file(f));
2099	if (unlikely(!sock))
2100		return -ENOTSOCK;
2101
2102	err = security_socket_getsockname(sock);
2103	if (err)
2104		return err;
2105
2106	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107	if (err < 0)
2108		return err;
2109
2110	/* "err" is actually length in this case */
2111	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112}
 
2113
2114SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115		int __user *, usockaddr_len)
2116{
2117	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118}
2119
2120/*
2121 *	Get the remote address ('name') of a socket object. Move the obtained
2122 *	name to user space.
2123 */
2124
2125int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126		      int __user *usockaddr_len)
2127{
2128	struct socket *sock;
2129	struct sockaddr_storage address;
2130	CLASS(fd, f)(fd);
2131	int err;
2132
2133	if (fd_empty(f))
2134		return -EBADF;
2135	sock = sock_from_file(fd_file(f));
2136	if (unlikely(!sock))
2137		return -ENOTSOCK;
2138
2139	err = security_socket_getpeername(sock);
2140	if (err)
2141		return err;
2142
2143	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144	if (err < 0)
2145		return err;
2146
2147	/* "err" is actually length in this case */
2148	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2149}
2150
2151SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152		int __user *, usockaddr_len)
2153{
2154	return __sys_getpeername(fd, usockaddr, usockaddr_len);
 
 
 
 
 
2155}
2156
2157/*
2158 *	Send a datagram to a given address. We move the address into kernel
2159 *	space and check the user space data area is readable before invoking
2160 *	the protocol.
2161 */
2162int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163		 struct sockaddr __user *addr,  int addr_len)
 
 
2164{
2165	struct socket *sock;
2166	struct sockaddr_storage address;
2167	int err;
2168	struct msghdr msg;
 
 
2169
2170	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171	if (unlikely(err))
2172		return err;
2173
2174	CLASS(fd, f)(fd);
2175	if (fd_empty(f))
2176		return -EBADF;
2177	sock = sock_from_file(fd_file(f));
2178	if (unlikely(!sock))
2179		return -ENOTSOCK;
2180
2181	msg.msg_name = NULL;
2182	msg.msg_control = NULL;
2183	msg.msg_controllen = 0;
2184	msg.msg_namelen = 0;
2185	msg.msg_ubuf = NULL;
2186	if (addr) {
2187		err = move_addr_to_kernel(addr, addr_len, &address);
2188		if (err < 0)
2189			return err;
2190		msg.msg_name = (struct sockaddr *)&address;
2191		msg.msg_namelen = addr_len;
2192	}
2193	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194	if (sock->file->f_flags & O_NONBLOCK)
2195		flags |= MSG_DONTWAIT;
2196	msg.msg_flags = flags;
2197	return __sock_sendmsg(sock, &msg);
2198}
2199
2200SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201		unsigned int, flags, struct sockaddr __user *, addr,
2202		int, addr_len)
2203{
2204	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205}
2206
2207/*
2208 *	Send a datagram down a socket.
2209 */
2210
2211SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212		unsigned int, flags)
2213{
2214	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215}
2216
2217/*
2218 *	Receive a frame from the socket and optionally record the address of the
2219 *	sender. We verify the buffers are writable and if needed move the
2220 *	sender address from kernel to user space.
2221 */
2222int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2224{
2225	struct sockaddr_storage address;
2226	struct msghdr msg = {
2227		/* Save some cycles and don't copy the address if not needed */
2228		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2229	};
2230	struct socket *sock;
 
 
 
2231	int err, err2;
 
2232
2233	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234	if (unlikely(err))
2235		return err;
 
 
 
2236
2237	CLASS(fd, f)(fd);
2238
2239	if (fd_empty(f))
2240		return -EBADF;
2241	sock = sock_from_file(fd_file(f));
2242	if (unlikely(!sock))
2243		return -ENOTSOCK;
2244
2245	if (sock->file->f_flags & O_NONBLOCK)
2246		flags |= MSG_DONTWAIT;
2247	err = sock_recvmsg(sock, &msg, flags);
2248
2249	if (err >= 0 && addr != NULL) {
2250		err2 = move_addr_to_user(&address,
2251					 msg.msg_namelen, addr, addr_len);
2252		if (err2 < 0)
2253			err = err2;
2254	}
2255	return err;
2256}
2257
2258SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259		unsigned int, flags, struct sockaddr __user *, addr,
2260		int __user *, addr_len)
2261{
2262	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263}
2264
2265/*
2266 *	Receive a datagram from a socket.
2267 */
2268
2269SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270		unsigned int, flags)
2271{
2272	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273}
2274
2275static bool sock_use_custom_sol_socket(const struct socket *sock)
2276{
2277	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278}
2279
2280int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281		       int optname, sockptr_t optval, int optlen)
2282{
2283	const struct proto_ops *ops;
2284	char *kernel_optval = NULL;
2285	int err;
2286
2287	if (optlen < 0)
2288		return -EINVAL;
2289
2290	err = security_socket_setsockopt(sock, level, optname);
2291	if (err)
2292		goto out_put;
2293
2294	if (!compat)
2295		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296						     optval, &optlen,
2297						     &kernel_optval);
2298	if (err < 0)
2299		goto out_put;
2300	if (err > 0) {
2301		err = 0;
2302		goto out_put;
2303	}
2304
2305	if (kernel_optval)
2306		optval = KERNEL_SOCKPTR(kernel_optval);
2307	ops = READ_ONCE(sock->ops);
2308	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309		err = sock_setsockopt(sock, level, optname, optval, optlen);
2310	else if (unlikely(!ops->setsockopt))
2311		err = -EOPNOTSUPP;
2312	else
2313		err = ops->setsockopt(sock, level, optname, optval,
2314					    optlen);
2315	kfree(kernel_optval);
 
 
 
2316out_put:
2317	return err;
2318}
2319EXPORT_SYMBOL(do_sock_setsockopt);
2320
2321/* Set a socket option. Because we don't know the option lengths we have
2322 * to pass the user mode parameter for the protocols to sort out.
2323 */
2324int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325		     int optlen)
2326{
2327	sockptr_t optval = USER_SOCKPTR(user_optval);
2328	bool compat = in_compat_syscall();
2329	struct socket *sock;
2330	CLASS(fd, f)(fd);
2331
2332	if (fd_empty(f))
2333		return -EBADF;
2334	sock = sock_from_file(fd_file(f));
2335	if (unlikely(!sock))
2336		return -ENOTSOCK;
2337
2338	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339}
2340
2341SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342		char __user *, optval, int, optlen)
2343{
2344	return __sys_setsockopt(fd, level, optname, optval, optlen);
2345}
2346
2347INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348							 int optname));
2349
2350int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351		       int optname, sockptr_t optval, sockptr_t optlen)
2352{
2353	int max_optlen __maybe_unused = 0;
2354	const struct proto_ops *ops;
2355	int err;
2356
2357	err = security_socket_getsockopt(sock, level, optname);
2358	if (err)
2359		return err;
2360
2361	if (!compat)
2362		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363
2364	ops = READ_ONCE(sock->ops);
2365	if (level == SOL_SOCKET) {
2366		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367	} else if (unlikely(!ops->getsockopt)) {
2368		err = -EOPNOTSUPP;
2369	} else {
2370		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371			      "Invalid argument type"))
2372			return -EOPNOTSUPP;
2373
2374		err = ops->getsockopt(sock, level, optname, optval.user,
2375				      optlen.user);
2376	}
2377
2378	if (!compat)
2379		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380						     optval, optlen, max_optlen,
2381						     err);
2382
2383	return err;
2384}
2385EXPORT_SYMBOL(do_sock_getsockopt);
2386
2387/*
2388 *	Get a socket option. Because we don't know the option lengths we have
2389 *	to pass a user mode parameter for the protocols to sort out.
2390 */
2391int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392		int __user *optlen)
2393{
2394	struct socket *sock;
2395	CLASS(fd, f)(fd);
2396
2397	if (fd_empty(f))
2398		return -EBADF;
2399	sock = sock_from_file(fd_file(f));
2400	if (unlikely(!sock))
2401		return -ENOTSOCK;
2402
2403	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405}
2406
2407SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408		char __user *, optval, int __user *, optlen)
2409{
2410	return __sys_getsockopt(fd, level, optname, optval, optlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411}
2412
2413/*
2414 *	Shutdown a socket.
2415 */
2416
2417int __sys_shutdown_sock(struct socket *sock, int how)
2418{
2419	int err;
2420
2421	err = security_socket_shutdown(sock, how);
2422	if (!err)
2423		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424
2425	return err;
2426}
2427
2428int __sys_shutdown(int fd, int how)
2429{
 
2430	struct socket *sock;
2431	CLASS(fd, f)(fd);
2432
2433	if (fd_empty(f))
2434		return -EBADF;
2435	sock = sock_from_file(fd_file(f));
2436	if (unlikely(!sock))
2437		return -ENOTSOCK;
2438
2439	return __sys_shutdown_sock(sock, how);
2440}
2441
2442SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443{
2444	return __sys_shutdown(fd, how);
2445}
2446
2447/* A couple of helpful macros for getting the address of the 32/64 bit
2448 * fields which are the same type (int / unsigned) on our platforms.
2449 */
2450#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2452#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2453
2454struct used_address {
2455	struct sockaddr_storage name;
2456	unsigned int name_len;
2457};
2458
2459int __copy_msghdr(struct msghdr *kmsg,
2460		  struct user_msghdr *msg,
2461		  struct sockaddr __user **save_addr)
 
2462{
 
 
 
2463	ssize_t err;
2464
2465	kmsg->msg_control_is_user = true;
2466	kmsg->msg_get_inq = 0;
2467	kmsg->msg_control_user = msg->msg_control;
2468	kmsg->msg_controllen = msg->msg_controllen;
2469	kmsg->msg_flags = msg->msg_flags;
 
 
 
 
2470
2471	kmsg->msg_namelen = msg->msg_namelen;
2472	if (!msg->msg_name)
2473		kmsg->msg_namelen = 0;
2474
2475	if (kmsg->msg_namelen < 0)
2476		return -EINVAL;
2477
2478	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480
2481	if (save_addr)
2482		*save_addr = msg->msg_name;
2483
2484	if (msg->msg_name && kmsg->msg_namelen) {
2485		if (!save_addr) {
2486			err = move_addr_to_kernel(msg->msg_name,
2487						  kmsg->msg_namelen,
2488						  kmsg->msg_name);
2489			if (err < 0)
2490				return err;
2491		}
2492	} else {
2493		kmsg->msg_name = NULL;
2494		kmsg->msg_namelen = 0;
2495	}
2496
2497	if (msg->msg_iovlen > UIO_MAXIOV)
2498		return -EMSGSIZE;
2499
2500	kmsg->msg_iocb = NULL;
2501	kmsg->msg_ubuf = NULL;
2502	return 0;
2503}
2504
2505static int copy_msghdr_from_user(struct msghdr *kmsg,
2506				 struct user_msghdr __user *umsg,
2507				 struct sockaddr __user **save_addr,
2508				 struct iovec **iov)
2509{
2510	struct user_msghdr msg;
2511	ssize_t err;
2512
2513	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514		return -EFAULT;
2515
2516	err = __copy_msghdr(kmsg, &msg, save_addr);
2517	if (err)
2518		return err;
2519
2520	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521			    msg.msg_iov, msg.msg_iovlen,
2522			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2523	return err < 0 ? err : 0;
2524}
2525
2526static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527			   unsigned int flags, struct used_address *used_address,
2528			   unsigned int allowed_msghdr_flags)
 
2529{
 
 
 
 
2530	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531				__aligned(sizeof(__kernel_size_t));
2532	/* 20 is size of ipv6_pktinfo */
2533	unsigned char *ctl_buf = ctl;
2534	int ctl_len;
2535	ssize_t err;
2536
 
 
 
 
 
 
 
 
 
2537	err = -ENOBUFS;
2538
2539	if (msg_sys->msg_controllen > INT_MAX)
2540		goto out;
2541	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542	ctl_len = msg_sys->msg_controllen;
2543	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544		err =
2545		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546						     sizeof(ctl));
2547		if (err)
2548			goto out;
2549		ctl_buf = msg_sys->msg_control;
2550		ctl_len = msg_sys->msg_controllen;
2551	} else if (ctl_len) {
2552		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2554		if (ctl_len > sizeof(ctl)) {
2555			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556			if (ctl_buf == NULL)
2557				goto out;
2558		}
2559		err = -EFAULT;
2560		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2561			goto out_freectl;
2562		msg_sys->msg_control = ctl_buf;
2563		msg_sys->msg_control_is_user = false;
2564	}
2565	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566	msg_sys->msg_flags = flags;
2567
2568	if (sock->file->f_flags & O_NONBLOCK)
2569		msg_sys->msg_flags |= MSG_DONTWAIT;
2570	/*
2571	 * If this is sendmmsg() and current destination address is same as
2572	 * previously succeeded address, omit asking LSM's decision.
2573	 * used_address->name_len is initialized to UINT_MAX so that the first
2574	 * destination address never matches.
2575	 */
2576	if (used_address && msg_sys->msg_name &&
2577	    used_address->name_len == msg_sys->msg_namelen &&
2578	    !memcmp(&used_address->name, msg_sys->msg_name,
2579		    used_address->name_len)) {
2580		err = sock_sendmsg_nosec(sock, msg_sys);
2581		goto out_freectl;
2582	}
2583	err = __sock_sendmsg(sock, msg_sys);
2584	/*
2585	 * If this is sendmmsg() and sending to current destination address was
2586	 * successful, remember it.
2587	 */
2588	if (used_address && err >= 0) {
2589		used_address->name_len = msg_sys->msg_namelen;
2590		if (msg_sys->msg_name)
2591			memcpy(&used_address->name, msg_sys->msg_name,
2592			       used_address->name_len);
2593	}
2594
2595out_freectl:
2596	if (ctl_buf != ctl)
2597		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598out:
2599	return err;
2600}
2601
2602static int sendmsg_copy_msghdr(struct msghdr *msg,
2603			       struct user_msghdr __user *umsg, unsigned flags,
2604			       struct iovec **iov)
2605{
2606	int err;
2607
2608	if (flags & MSG_CMSG_COMPAT) {
2609		struct compat_msghdr __user *msg_compat;
2610
2611		msg_compat = (struct compat_msghdr __user *) umsg;
2612		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613	} else {
2614		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615	}
2616	if (err < 0)
2617		return err;
2618
2619	return 0;
2620}
2621
2622static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623			 struct msghdr *msg_sys, unsigned int flags,
2624			 struct used_address *used_address,
2625			 unsigned int allowed_msghdr_flags)
2626{
2627	struct sockaddr_storage address;
2628	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629	ssize_t err;
2630
2631	msg_sys->msg_name = &address;
2632
2633	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634	if (err < 0)
2635		return err;
2636
2637	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638				allowed_msghdr_flags);
2639	kfree(iov);
2640	return err;
2641}
2642
2643/*
2644 *	BSD sendmsg interface
2645 */
2646long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647			unsigned int flags)
2648{
2649	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650}
2651
2652long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653		   bool forbid_cmsg_compat)
2654{
 
2655	struct msghdr msg_sys;
2656	struct socket *sock;
2657
2658	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659		return -EINVAL;
2660
2661	CLASS(fd, f)(fd);
2662
2663	if (fd_empty(f))
2664		return -EBADF;
2665	sock = sock_from_file(fd_file(f));
2666	if (unlikely(!sock))
2667		return -ENOTSOCK;
2668
2669	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
 
 
2670}
2671
2672SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673{
2674	return __sys_sendmsg(fd, msg, flags, true);
 
 
2675}
2676
2677/*
2678 *	Linux sendmmsg interface
2679 */
2680
2681int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682		   unsigned int flags, bool forbid_cmsg_compat)
2683{
2684	int err, datagrams;
2685	struct socket *sock;
2686	struct mmsghdr __user *entry;
2687	struct compat_mmsghdr __user *compat_entry;
2688	struct msghdr msg_sys;
2689	struct used_address used_address;
2690	unsigned int oflags = flags;
2691
2692	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693		return -EINVAL;
2694
2695	if (vlen > UIO_MAXIOV)
2696		vlen = UIO_MAXIOV;
2697
2698	datagrams = 0;
2699
2700	CLASS(fd, f)(fd);
2701
2702	if (fd_empty(f))
2703		return -EBADF;
2704	sock = sock_from_file(fd_file(f));
2705	if (unlikely(!sock))
2706		return -ENOTSOCK;
2707
2708	used_address.name_len = UINT_MAX;
2709	entry = mmsg;
2710	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711	err = 0;
2712	flags |= MSG_BATCH;
2713
2714	while (datagrams < vlen) {
2715		if (datagrams == vlen - 1)
2716			flags = oflags;
2717
2718		if (MSG_CMSG_COMPAT & flags) {
2719			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720					     &msg_sys, flags, &used_address, MSG_EOR);
2721			if (err < 0)
2722				break;
2723			err = __put_user(err, &compat_entry->msg_len);
2724			++compat_entry;
2725		} else {
2726			err = ___sys_sendmsg(sock,
2727					     (struct user_msghdr __user *)entry,
2728					     &msg_sys, flags, &used_address, MSG_EOR);
2729			if (err < 0)
2730				break;
2731			err = put_user(err, &entry->msg_len);
2732			++entry;
2733		}
2734
2735		if (err)
2736			break;
2737		++datagrams;
2738		if (msg_data_left(&msg_sys))
2739			break;
2740		cond_resched();
2741	}
2742
 
 
2743	/* We only return an error if no datagrams were able to be sent */
2744	if (datagrams != 0)
2745		return datagrams;
2746
2747	return err;
2748}
2749
2750SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751		unsigned int, vlen, unsigned int, flags)
2752{
2753	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2754}
2755
2756static int recvmsg_copy_msghdr(struct msghdr *msg,
2757			       struct user_msghdr __user *umsg, unsigned flags,
2758			       struct sockaddr __user **uaddr,
2759			       struct iovec **iov)
2760{
 
 
 
 
 
 
2761	ssize_t err;
2762
2763	if (MSG_CMSG_COMPAT & flags) {
2764		struct compat_msghdr __user *msg_compat;
2765
2766		msg_compat = (struct compat_msghdr __user *) umsg;
2767		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768	} else {
2769		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770	}
2771	if (err < 0)
2772		return err;
2773
2774	return 0;
2775}
2776
2777static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778			   struct user_msghdr __user *msg,
2779			   struct sockaddr __user *uaddr,
2780			   unsigned int flags, int nosec)
2781{
2782	struct compat_msghdr __user *msg_compat =
2783					(struct compat_msghdr __user *) msg;
2784	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785	struct sockaddr_storage addr;
2786	unsigned long cmsg_ptr;
2787	int len;
2788	ssize_t err;
2789
2790	msg_sys->msg_name = &addr;
 
 
 
 
 
 
 
 
 
2791	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793
2794	/* We assume all kernel code knows the size of sockaddr_storage */
2795	msg_sys->msg_namelen = 0;
2796
2797	if (sock->file->f_flags & O_NONBLOCK)
2798		flags |= MSG_DONTWAIT;
2799
2800	if (unlikely(nosec))
2801		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802	else
2803		err = sock_recvmsg(sock, msg_sys, flags);
2804
2805	if (err < 0)
2806		goto out;
2807	len = err;
2808
2809	if (uaddr != NULL) {
2810		err = move_addr_to_user(&addr,
2811					msg_sys->msg_namelen, uaddr,
2812					uaddr_len);
2813		if (err < 0)
2814			goto out;
2815	}
2816	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817			 COMPAT_FLAGS(msg));
2818	if (err)
2819		goto out;
2820	if (MSG_CMSG_COMPAT & flags)
2821		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822				 &msg_compat->msg_controllen);
2823	else
2824		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825				 &msg->msg_controllen);
2826	if (err)
2827		goto out;
2828	err = len;
2829out:
2830	return err;
2831}
2832
2833static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835{
2836	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837	/* user mode address pointers */
2838	struct sockaddr __user *uaddr;
2839	ssize_t err;
2840
2841	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842	if (err < 0)
2843		return err;
2844
2845	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846	kfree(iov);
2847	return err;
2848}
2849
2850/*
2851 *	BSD recvmsg interface
2852 */
2853
2854long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855			struct user_msghdr __user *umsg,
2856			struct sockaddr __user *uaddr, unsigned int flags)
2857{
2858	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859}
2860
2861long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862		   bool forbid_cmsg_compat)
2863{
 
2864	struct msghdr msg_sys;
2865	struct socket *sock;
2866
2867	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868		return -EINVAL;
2869
2870	CLASS(fd, f)(fd);
2871
2872	if (fd_empty(f))
2873		return -EBADF;
2874	sock = sock_from_file(fd_file(f));
2875	if (unlikely(!sock))
2876		return -ENOTSOCK;
2877
2878	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
 
 
2879}
2880
2881SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882		unsigned int, flags)
2883{
2884	return __sys_recvmsg(fd, msg, flags, true);
 
 
2885}
2886
2887/*
2888 *     Linux recvmmsg interface
2889 */
2890
2891static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892			  unsigned int vlen, unsigned int flags,
2893			  struct timespec64 *timeout)
2894{
2895	int err = 0, datagrams;
2896	struct socket *sock;
2897	struct mmsghdr __user *entry;
2898	struct compat_mmsghdr __user *compat_entry;
2899	struct msghdr msg_sys;
2900	struct timespec64 end_time;
2901	struct timespec64 timeout64;
2902
2903	if (timeout &&
2904	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2905				    timeout->tv_nsec))
2906		return -EINVAL;
2907
2908	datagrams = 0;
2909
2910	CLASS(fd, f)(fd);
2911
2912	if (fd_empty(f))
2913		return -EBADF;
2914	sock = sock_from_file(fd_file(f));
2915	if (unlikely(!sock))
2916		return -ENOTSOCK;
2917
2918	if (likely(!(flags & MSG_ERRQUEUE))) {
2919		err = sock_error(sock->sk);
2920		if (err)
2921			return err;
2922	}
2923
2924	entry = mmsg;
2925	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926
2927	while (datagrams < vlen) {
2928		/*
2929		 * No need to ask LSM for more than the first datagram.
2930		 */
2931		if (MSG_CMSG_COMPAT & flags) {
2932			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933					     &msg_sys, flags & ~MSG_WAITFORONE,
2934					     datagrams);
2935			if (err < 0)
2936				break;
2937			err = __put_user(err, &compat_entry->msg_len);
2938			++compat_entry;
2939		} else {
2940			err = ___sys_recvmsg(sock,
2941					     (struct user_msghdr __user *)entry,
2942					     &msg_sys, flags & ~MSG_WAITFORONE,
2943					     datagrams);
2944			if (err < 0)
2945				break;
2946			err = put_user(err, &entry->msg_len);
2947			++entry;
2948		}
2949
2950		if (err)
2951			break;
2952		++datagrams;
2953
2954		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955		if (flags & MSG_WAITFORONE)
2956			flags |= MSG_DONTWAIT;
2957
2958		if (timeout) {
2959			ktime_get_ts64(&timeout64);
2960			*timeout = timespec64_sub(end_time, timeout64);
2961			if (timeout->tv_sec < 0) {
2962				timeout->tv_sec = timeout->tv_nsec = 0;
2963				break;
2964			}
2965
2966			/* Timeout, return less than vlen datagrams */
2967			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968				break;
2969		}
2970
2971		/* Out of band data, return right away */
2972		if (msg_sys.msg_flags & MSG_OOB)
2973			break;
2974		cond_resched();
2975	}
2976
2977	if (err == 0)
2978		return datagrams;
2979
2980	if (datagrams == 0)
2981		return err;
 
 
2982
2983	/*
2984	 * We may return less entries than requested (vlen) if the
2985	 * sock is non block and there aren't enough datagrams...
2986	 */
2987	if (err != -EAGAIN) {
2988		/*
2989		 * ... or  if recvmsg returns an error after we
2990		 * received some datagrams, where we record the
2991		 * error to return on the next call or if the
2992		 * app asks about it using getsockopt(SO_ERROR).
2993		 */
2994		WRITE_ONCE(sock->sk->sk_err, -err);
2995	}
 
 
 
2996	return datagrams;
2997}
2998
2999int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000		   unsigned int vlen, unsigned int flags,
3001		   struct __kernel_timespec __user *timeout,
3002		   struct old_timespec32 __user *timeout32)
3003{
3004	int datagrams;
3005	struct timespec64 timeout_sys;
3006
3007	if (timeout && get_timespec64(&timeout_sys, timeout))
3008		return -EFAULT;
3009
3010	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011		return -EFAULT;
3012
3013	if (!timeout && !timeout32)
3014		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015
3016	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
3017
3018	if (datagrams <= 0)
3019		return datagrams;
3020
3021	if (timeout && put_timespec64(&timeout_sys, timeout))
3022		datagrams = -EFAULT;
3023
3024	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
 
3025		datagrams = -EFAULT;
3026
3027	return datagrams;
3028}
3029
3030SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031		unsigned int, vlen, unsigned int, flags,
3032		struct __kernel_timespec __user *, timeout)
3033{
3034	if (flags & MSG_CMSG_COMPAT)
3035		return -EINVAL;
3036
3037	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038}
3039
3040#ifdef CONFIG_COMPAT_32BIT_TIME
3041SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042		unsigned int, vlen, unsigned int, flags,
3043		struct old_timespec32 __user *, timeout)
3044{
3045	if (flags & MSG_CMSG_COMPAT)
3046		return -EINVAL;
3047
3048	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3049}
3050#endif
3051
3052#ifdef __ARCH_WANT_SYS_SOCKETCALL
3053/* Argument list sizes for sys_socketcall */
3054#define AL(x) ((x) * sizeof(unsigned long))
3055static const unsigned char nargs[21] = {
3056	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059	AL(4), AL(5), AL(4)
3060};
3061
3062#undef AL
3063
3064/*
3065 *	System call vectors.
3066 *
3067 *	Argument checking cleaned up. Saved 20% in size.
3068 *  This function doesn't need to set the kernel lock because
3069 *  it is set by the callees.
3070 */
3071
3072SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073{
3074	unsigned long a[AUDITSC_ARGS];
3075	unsigned long a0, a1;
3076	int err;
3077	unsigned int len;
3078
3079	if (call < 1 || call > SYS_SENDMMSG)
3080		return -EINVAL;
3081	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082
3083	len = nargs[call];
3084	if (len > sizeof(a))
3085		return -EINVAL;
3086
3087	/* copy_from_user should be SMP safe. */
3088	if (copy_from_user(a, args, len))
3089		return -EFAULT;
3090
3091	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092	if (err)
3093		return err;
3094
3095	a0 = a[0];
3096	a1 = a[1];
3097
3098	switch (call) {
3099	case SYS_SOCKET:
3100		err = __sys_socket(a0, a1, a[2]);
3101		break;
3102	case SYS_BIND:
3103		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104		break;
3105	case SYS_CONNECT:
3106		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107		break;
3108	case SYS_LISTEN:
3109		err = __sys_listen(a0, a1);
3110		break;
3111	case SYS_ACCEPT:
3112		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113				    (int __user *)a[2], 0);
3114		break;
3115	case SYS_GETSOCKNAME:
3116		err =
3117		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118				      (int __user *)a[2]);
3119		break;
3120	case SYS_GETPEERNAME:
3121		err =
3122		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123				      (int __user *)a[2]);
3124		break;
3125	case SYS_SOCKETPAIR:
3126		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127		break;
3128	case SYS_SEND:
3129		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130				   NULL, 0);
3131		break;
3132	case SYS_SENDTO:
3133		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134				   (struct sockaddr __user *)a[4], a[5]);
3135		break;
3136	case SYS_RECV:
3137		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138				     NULL, NULL);
3139		break;
3140	case SYS_RECVFROM:
3141		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142				     (struct sockaddr __user *)a[4],
3143				     (int __user *)a[5]);
3144		break;
3145	case SYS_SHUTDOWN:
3146		err = __sys_shutdown(a0, a1);
3147		break;
3148	case SYS_SETSOCKOPT:
3149		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150				       a[4]);
3151		break;
3152	case SYS_GETSOCKOPT:
3153		err =
3154		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155				     (int __user *)a[4]);
3156		break;
3157	case SYS_SENDMSG:
3158		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159				    a[2], true);
3160		break;
3161	case SYS_SENDMMSG:
3162		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163				     a[3], true);
3164		break;
3165	case SYS_RECVMSG:
3166		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167				    a[2], true);
3168		break;
3169	case SYS_RECVMMSG:
3170		if (IS_ENABLED(CONFIG_64BIT))
3171			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172					     a[2], a[3],
3173					     (struct __kernel_timespec __user *)a[4],
3174					     NULL);
3175		else
3176			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177					     a[2], a[3], NULL,
3178					     (struct old_timespec32 __user *)a[4]);
3179		break;
3180	case SYS_ACCEPT4:
3181		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182				    (int __user *)a[2], a[3]);
3183		break;
3184	default:
3185		err = -EINVAL;
3186		break;
3187	}
3188	return err;
3189}
3190
3191#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3192
3193/**
3194 *	sock_register - add a socket protocol handler
3195 *	@ops: description of protocol
3196 *
3197 *	This function is called by a protocol handler that wants to
3198 *	advertise its address family, and have it linked into the
3199 *	socket interface. The value ops->family corresponds to the
3200 *	socket system call protocol family.
3201 */
3202int sock_register(const struct net_proto_family *ops)
3203{
3204	int err;
3205
3206	if (ops->family >= NPROTO) {
3207		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208		return -ENOBUFS;
3209	}
3210
3211	spin_lock(&net_family_lock);
3212	if (rcu_dereference_protected(net_families[ops->family],
3213				      lockdep_is_held(&net_family_lock)))
3214		err = -EEXIST;
3215	else {
3216		rcu_assign_pointer(net_families[ops->family], ops);
3217		err = 0;
3218	}
3219	spin_unlock(&net_family_lock);
3220
3221	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222	return err;
3223}
3224EXPORT_SYMBOL(sock_register);
3225
3226/**
3227 *	sock_unregister - remove a protocol handler
3228 *	@family: protocol family to remove
3229 *
3230 *	This function is called by a protocol handler that wants to
3231 *	remove its address family, and have it unlinked from the
3232 *	new socket creation.
3233 *
3234 *	If protocol handler is a module, then it can use module reference
3235 *	counts to protect against new references. If protocol handler is not
3236 *	a module then it needs to provide its own protection in
3237 *	the ops->create routine.
3238 */
3239void sock_unregister(int family)
3240{
3241	BUG_ON(family < 0 || family >= NPROTO);
3242
3243	spin_lock(&net_family_lock);
3244	RCU_INIT_POINTER(net_families[family], NULL);
3245	spin_unlock(&net_family_lock);
3246
3247	synchronize_rcu();
3248
3249	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250}
3251EXPORT_SYMBOL(sock_unregister);
3252
3253bool sock_is_registered(int family)
3254{
3255	return family < NPROTO && rcu_access_pointer(net_families[family]);
3256}
3257
3258static int __init sock_init(void)
3259{
3260	int err;
3261	/*
3262	 *      Initialize the network sysctl infrastructure.
3263	 */
3264	err = net_sysctl_init();
3265	if (err)
3266		goto out;
3267
3268	/*
3269	 *      Initialize skbuff SLAB cache
3270	 */
3271	skb_init();
3272
3273	/*
3274	 *      Initialize the protocols module.
3275	 */
3276
3277	init_inodecache();
3278
3279	err = register_filesystem(&sock_fs_type);
3280	if (err)
3281		goto out;
3282	sock_mnt = kern_mount(&sock_fs_type);
3283	if (IS_ERR(sock_mnt)) {
3284		err = PTR_ERR(sock_mnt);
3285		goto out_mount;
3286	}
3287
3288	/* The real protocol initialization is performed in later initcalls.
3289	 */
3290
3291#ifdef CONFIG_NETFILTER
3292	err = netfilter_init();
3293	if (err)
3294		goto out;
3295#endif
3296
3297	ptp_classifier_init();
3298
3299out:
3300	return err;
3301
3302out_mount:
3303	unregister_filesystem(&sock_fs_type);
 
3304	goto out;
3305}
3306
3307core_initcall(sock_init);	/* early initcall */
3308
3309#ifdef CONFIG_PROC_FS
3310void socket_seq_show(struct seq_file *seq)
3311{
3312	seq_printf(seq, "sockets: used %d\n",
3313		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3314}
3315#endif				/* CONFIG_PROC_FS */
3316
3317/* Handle the fact that while struct ifreq has the same *layout* on
3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319 * which are handled elsewhere, it still has different *size* due to
3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321 * resulting in struct ifreq being 32 and 40 bytes respectively).
3322 * As a result, if the struct happens to be at the end of a page and
3323 * the next page isn't readable/writable, we get a fault. To prevent
3324 * that, copy back and forth to the full size.
3325 */
3326int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327{
3328	if (in_compat_syscall()) {
3329		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
 
3330
3331		memset(ifr, 0, sizeof(*ifr));
3332		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333			return -EFAULT;
 
 
 
 
 
3334
3335		if (ifrdata)
3336			*ifrdata = compat_ptr(ifr32->ifr_data);
 
 
 
 
3337
3338		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339	}
 
 
 
 
 
 
3340
3341	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342		return -EFAULT;
3343
3344	if (ifrdata)
3345		*ifrdata = ifr->ifr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346
3347	return 0;
3348}
3349EXPORT_SYMBOL(get_user_ifreq);
3350
3351int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352{
3353	size_t size = sizeof(*ifr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354
3355	if (in_compat_syscall())
3356		size = sizeof(struct compat_ifreq);
3357
3358	if (copy_to_user(arg, ifr, size))
3359		return -EFAULT;
3360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3361	return 0;
3362}
3363EXPORT_SYMBOL(put_user_ifreq);
3364
3365#ifdef CONFIG_COMPAT
3366static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367{
 
3368	compat_uptr_t uptr32;
3369	struct ifreq ifr;
3370	void __user *saved;
3371	int err;
3372
3373	if (get_user_ifreq(&ifr, NULL, uifr32))
 
3374		return -EFAULT;
3375
3376	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377		return -EFAULT;
3378
3379	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381
3382	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383	if (!err) {
3384		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385		if (put_user_ifreq(&ifr, uifr32))
3386			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3387	}
3388	return err;
3389}
3390
3391/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393				 struct compat_ifreq __user *u_ifreq32)
3394{
3395	struct ifreq ifreq;
3396	void __user *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397
3398	if (!is_socket_ioctl_cmd(cmd))
3399		return -ENOTTY;
3400	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
 
 
 
 
 
 
3401		return -EFAULT;
3402	ifreq.ifr_data = data;
3403
3404	return dev_ioctl(net, cmd, &ifreq, data, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405}
3406
3407static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408			 unsigned int cmd, unsigned long arg)
3409{
3410	void __user *argp = compat_ptr(arg);
3411	struct sock *sk = sock->sk;
3412	struct net *net = sock_net(sk);
3413	const struct proto_ops *ops;
3414
3415	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416		return sock_ioctl(file, cmd, (unsigned long)argp);
3417
3418	switch (cmd) {
 
 
 
 
 
 
 
 
 
3419	case SIOCWANDEV:
3420		return compat_siocwandev(net, argp);
3421	case SIOCGSTAMP_OLD:
3422	case SIOCGSTAMPNS_OLD:
3423		ops = READ_ONCE(sock->ops);
3424		if (!ops->gettstamp)
3425			return -ENOIOCTLCMD;
3426		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427				      !COMPAT_USE_64BIT_TIME);
3428
3429	case SIOCETHTOOL:
 
 
 
 
 
 
3430	case SIOCBONDSLAVEINFOQUERY:
3431	case SIOCBONDINFOQUERY:
3432	case SIOCSHWTSTAMP:
3433	case SIOCGHWTSTAMP:
3434		return compat_ifr_data_ioctl(net, cmd, argp);
3435
3436	case FIOSETOWN:
3437	case SIOCSPGRP:
3438	case FIOGETOWN:
3439	case SIOCGPGRP:
3440	case SIOCBRADDBR:
3441	case SIOCBRDELBR:
3442	case SIOCGIFVLAN:
3443	case SIOCSIFVLAN:
3444	case SIOCGSKNS:
3445	case SIOCGSTAMP_NEW:
3446	case SIOCGSTAMPNS_NEW:
3447	case SIOCGIFCONF:
3448	case SIOCSIFBR:
3449	case SIOCGIFBR:
3450		return sock_ioctl(file, cmd, arg);
3451
3452	case SIOCGIFFLAGS:
3453	case SIOCSIFFLAGS:
3454	case SIOCGIFMAP:
3455	case SIOCSIFMAP:
3456	case SIOCGIFMETRIC:
3457	case SIOCSIFMETRIC:
3458	case SIOCGIFMTU:
3459	case SIOCSIFMTU:
3460	case SIOCGIFMEM:
3461	case SIOCSIFMEM:
3462	case SIOCGIFHWADDR:
3463	case SIOCSIFHWADDR:
3464	case SIOCADDMULTI:
3465	case SIOCDELMULTI:
3466	case SIOCGIFINDEX:
3467	case SIOCGIFADDR:
3468	case SIOCSIFADDR:
3469	case SIOCSIFHWBROADCAST:
3470	case SIOCDIFADDR:
3471	case SIOCGIFBRDADDR:
3472	case SIOCSIFBRDADDR:
3473	case SIOCGIFDSTADDR:
3474	case SIOCSIFDSTADDR:
3475	case SIOCGIFNETMASK:
3476	case SIOCSIFNETMASK:
3477	case SIOCSIFPFLAGS:
3478	case SIOCGIFPFLAGS:
3479	case SIOCGIFTXQLEN:
3480	case SIOCSIFTXQLEN:
3481	case SIOCBRADDIF:
3482	case SIOCBRDELIF:
3483	case SIOCGIFNAME:
3484	case SIOCSIFNAME:
3485	case SIOCGMIIPHY:
3486	case SIOCGMIIREG:
3487	case SIOCSMIIREG:
3488	case SIOCBONDENSLAVE:
3489	case SIOCBONDRELEASE:
3490	case SIOCBONDSETHWADDR:
3491	case SIOCBONDCHANGEACTIVE:
3492	case SIOCSARP:
3493	case SIOCGARP:
3494	case SIOCDARP:
3495	case SIOCOUTQ:
3496	case SIOCOUTQNSD:
3497	case SIOCATMARK:
3498		return sock_do_ioctl(net, sock, cmd, arg);
3499	}
3500
3501	return -ENOIOCTLCMD;
3502}
3503
3504static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505			      unsigned long arg)
3506{
3507	struct socket *sock = file->private_data;
3508	const struct proto_ops *ops = READ_ONCE(sock->ops);
3509	int ret = -ENOIOCTLCMD;
3510	struct sock *sk;
3511	struct net *net;
3512
3513	sk = sock->sk;
3514	net = sock_net(sk);
3515
3516	if (ops->compat_ioctl)
3517		ret = ops->compat_ioctl(sock, cmd, arg);
3518
3519	if (ret == -ENOIOCTLCMD &&
3520	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521		ret = compat_wext_handle_ioctl(net, cmd, arg);
3522
3523	if (ret == -ENOIOCTLCMD)
3524		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525
3526	return ret;
3527}
3528#endif
3529
3530/**
3531 *	kernel_bind - bind an address to a socket (kernel space)
3532 *	@sock: socket
3533 *	@addr: address
3534 *	@addrlen: length of address
3535 *
3536 *	Returns 0 or an error.
3537 */
3538
3539int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3540{
3541	struct sockaddr_storage address;
3542
3543	memcpy(&address, addr, addrlen);
3544
3545	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546					  addrlen);
3547}
3548EXPORT_SYMBOL(kernel_bind);
3549
3550/**
3551 *	kernel_listen - move socket to listening state (kernel space)
3552 *	@sock: socket
3553 *	@backlog: pending connections queue size
3554 *
3555 *	Returns 0 or an error.
3556 */
3557
3558int kernel_listen(struct socket *sock, int backlog)
3559{
3560	return READ_ONCE(sock->ops)->listen(sock, backlog);
3561}
3562EXPORT_SYMBOL(kernel_listen);
3563
3564/**
3565 *	kernel_accept - accept a connection (kernel space)
3566 *	@sock: listening socket
3567 *	@newsock: new connected socket
3568 *	@flags: flags
3569 *
3570 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571 *	If it fails, @newsock is guaranteed to be %NULL.
3572 *	Returns 0 or an error.
3573 */
3574
3575int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576{
3577	struct sock *sk = sock->sk;
3578	const struct proto_ops *ops = READ_ONCE(sock->ops);
3579	struct proto_accept_arg arg = {
3580		.flags = flags,
3581		.kern = true,
3582	};
3583	int err;
3584
3585	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586			       newsock);
3587	if (err < 0)
3588		goto done;
3589
3590	err = ops->accept(sock, *newsock, &arg);
3591	if (err < 0) {
3592		sock_release(*newsock);
3593		*newsock = NULL;
3594		goto done;
3595	}
3596
3597	(*newsock)->ops = ops;
3598	__module_get(ops->owner);
3599
3600done:
3601	return err;
3602}
3603EXPORT_SYMBOL(kernel_accept);
3604
3605/**
3606 *	kernel_connect - connect a socket (kernel space)
3607 *	@sock: socket
3608 *	@addr: address
3609 *	@addrlen: address length
3610 *	@flags: flags (O_NONBLOCK, ...)
3611 *
3612 *	For datagram sockets, @addr is the address to which datagrams are sent
3613 *	by default, and the only address from which datagrams are received.
3614 *	For stream sockets, attempts to connect to @addr.
3615 *	Returns 0 or an error code.
3616 */
3617
3618int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619		   int flags)
3620{
3621	struct sockaddr_storage address;
3622
3623	memcpy(&address, addr, addrlen);
3624
3625	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626					     addrlen, flags);
3627}
3628EXPORT_SYMBOL(kernel_connect);
3629
3630/**
3631 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632 *	@sock: socket
3633 *	@addr: address holder
3634 *
3635 * 	Fills the @addr pointer with the address which the socket is bound.
3636 *	Returns the length of the address in bytes or an error code.
3637 */
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640{
3641	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
3644
3645/**
3646 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647 *	@sock: socket
3648 *	@addr: address holder
3649 *
3650 * 	Fills the @addr pointer with the address which the socket is connected.
3651 *	Returns the length of the address in bytes or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 *	@sock: socket
3663 *	@how: connection part
3664 *
3665 *	Returns 0 or an error.
3666 */
3667
3668int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669{
3670	return READ_ONCE(sock->ops)->shutdown(sock, how);
 
 
 
 
 
 
 
 
 
 
 
 
 
3671}
3672EXPORT_SYMBOL(kernel_sock_shutdown);
3673
3674/**
3675 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 *	@sk: socket
3677 *
3678 *	This routine returns the IP overhead imposed by a socket i.e.
3679 *	the length of the underlying IP header, depending on whether
3680 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681 *	on at the socket. Assumes that the caller has a lock on the socket.
3682 */
3683
3684u32 kernel_sock_ip_overhead(struct sock *sk)
3685{
3686	struct inet_sock *inet;
3687	struct ip_options_rcu *opt;
3688	u32 overhead = 0;
3689#if IS_ENABLED(CONFIG_IPV6)
3690	struct ipv6_pinfo *np;
3691	struct ipv6_txoptions *optv6 = NULL;
3692#endif /* IS_ENABLED(CONFIG_IPV6) */
3693
3694	if (!sk)
3695		return overhead;
3696
3697	switch (sk->sk_family) {
3698	case AF_INET:
3699		inet = inet_sk(sk);
3700		overhead += sizeof(struct iphdr);
3701		opt = rcu_dereference_protected(inet->inet_opt,
3702						sock_owned_by_user(sk));
3703		if (opt)
3704			overhead += opt->opt.optlen;
3705		return overhead;
3706#if IS_ENABLED(CONFIG_IPV6)
3707	case AF_INET6:
3708		np = inet6_sk(sk);
3709		overhead += sizeof(struct ipv6hdr);
3710		if (np)
3711			optv6 = rcu_dereference_protected(np->opt,
3712							  sock_owned_by_user(sk));
3713		if (optv6)
3714			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715		return overhead;
3716#endif /* IS_ENABLED(CONFIG_IPV6) */
3717	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718		return overhead;
3719	}
3720}
3721EXPORT_SYMBOL(kernel_sock_ip_overhead);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
 
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
 
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 
 
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 324			 int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325{
 326	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 327		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 
 328}
 329
 330static struct vfsmount *sock_mnt __read_mostly;
 331
 332static struct file_system_type sock_fs_type = {
 333	.name =		"sockfs",
 334	.mount =	sockfs_mount,
 335	.kill_sb =	kill_anon_super,
 336};
 337
 338/*
 339 *	Obtains the first available file descriptor and sets it up for use.
 340 *
 341 *	These functions create file structures and maps them to fd space
 342 *	of the current process. On success it returns file descriptor
 343 *	and file struct implicitly stored in sock->file.
 344 *	Note that another thread may close file descriptor before we return
 345 *	from this function. We use the fact that now we do not refer
 346 *	to socket after mapping. If one day we will need it, this
 347 *	function will increment ref. count on file by 1.
 348 *
 349 *	In any case returned fd MAY BE not valid!
 350 *	This race condition is unavoidable
 351 *	with shared fd spaces, we cannot solve it inside kernel,
 352 *	but we take care of internal coherence yet.
 353 */
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 356{
 357	struct qstr name = { .name = "" };
 358	struct path path;
 359	struct file *file;
 360
 361	if (dname) {
 362		name.name = dname;
 363		name.len = strlen(name.name);
 364	} else if (sock->sk) {
 365		name.name = sock->sk->sk_prot_creator->name;
 366		name.len = strlen(name.name);
 367	}
 368	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 369	if (unlikely(!path.dentry))
 370		return ERR_PTR(-ENOMEM);
 371	path.mnt = mntget(sock_mnt);
 372
 373	d_instantiate(path.dentry, SOCK_INODE(sock));
 374
 375	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 376		  &socket_file_ops);
 
 377	if (IS_ERR(file)) {
 378		/* drop dentry, keep inode */
 379		ihold(d_inode(path.dentry));
 380		path_put(&path);
 381		return file;
 382	}
 383
 
 384	sock->file = file;
 385	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 386	file->private_data = sock;
 
 387	return file;
 388}
 389EXPORT_SYMBOL(sock_alloc_file);
 390
 391static int sock_map_fd(struct socket *sock, int flags)
 392{
 393	struct file *newfile;
 394	int fd = get_unused_fd_flags(flags);
 395	if (unlikely(fd < 0))
 
 396		return fd;
 
 397
 398	newfile = sock_alloc_file(sock, flags, NULL);
 399	if (likely(!IS_ERR(newfile))) {
 400		fd_install(fd, newfile);
 401		return fd;
 402	}
 403
 404	put_unused_fd(fd);
 405	return PTR_ERR(newfile);
 406}
 407
 408struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 409{
 410	if (file->f_op == &socket_file_ops)
 411		return file->private_data;	/* set in sock_map_fd */
 412
 413	*err = -ENOTSOCK;
 414	return NULL;
 415}
 416EXPORT_SYMBOL(sock_from_file);
 417
 418/**
 419 *	sockfd_lookup - Go from a file number to its socket slot
 420 *	@fd: file handle
 421 *	@err: pointer to an error code return
 422 *
 423 *	The file handle passed in is locked and the socket it is bound
 424 *	too is returned. If an error occurs the err pointer is overwritten
 425 *	with a negative errno code and NULL is returned. The function checks
 426 *	for both invalid handles and passing a handle which is not a socket.
 427 *
 428 *	On a success the socket object pointer is returned.
 429 */
 430
 431struct socket *sockfd_lookup(int fd, int *err)
 432{
 433	struct file *file;
 434	struct socket *sock;
 435
 436	file = fget(fd);
 437	if (!file) {
 438		*err = -EBADF;
 439		return NULL;
 440	}
 441
 442	sock = sock_from_file(file, err);
 443	if (!sock)
 
 444		fput(file);
 
 445	return sock;
 446}
 447EXPORT_SYMBOL(sockfd_lookup);
 448
 449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 450{
 451	struct fd f = fdget(fd);
 452	struct socket *sock;
 453
 454	*err = -EBADF;
 455	if (f.file) {
 456		sock = sock_from_file(f.file, err);
 457		if (likely(sock)) {
 458			*fput_needed = f.flags;
 459			return sock;
 460		}
 461		fdput(f);
 462	}
 463	return NULL;
 464}
 465
 466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 469static ssize_t sockfs_getxattr(struct dentry *dentry,
 470			       const char *name, void *value, size_t size)
 471{
 472	const char *proto_name;
 473	size_t proto_size;
 474	int error;
 475
 476	error = -ENODATA;
 477	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 478		proto_name = dentry->d_name.name;
 479		proto_size = strlen(proto_name);
 480
 481		if (value) {
 482			error = -ERANGE;
 483			if (proto_size + 1 > size)
 484				goto out;
 485
 486			strncpy(value, proto_name, proto_size + 1);
 487		}
 488		error = proto_size + 1;
 489	}
 490
 491out:
 492	return error;
 493}
 494
 495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 496				size_t size)
 497{
 498	ssize_t len;
 499	ssize_t used = 0;
 500
 501	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 502	if (len < 0)
 503		return len;
 504	used += len;
 505	if (buffer) {
 506		if (size < used)
 507			return -ERANGE;
 508		buffer += len;
 509	}
 510
 511	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 512	used += len;
 513	if (buffer) {
 514		if (size < used)
 515			return -ERANGE;
 516		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 517		buffer += len;
 518	}
 519
 520	return used;
 521}
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523static const struct inode_operations sockfs_inode_ops = {
 524	.getxattr = sockfs_getxattr,
 525	.listxattr = sockfs_listxattr,
 
 526};
 527
 528/**
 529 *	sock_alloc	-	allocate a socket
 530 *
 531 *	Allocate a new inode and socket object. The two are bound together
 532 *	and initialised. The socket is then returned. If we are out of inodes
 533 *	NULL is returned.
 534 */
 535
 536struct socket *sock_alloc(void)
 537{
 538	struct inode *inode;
 539	struct socket *sock;
 540
 541	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 542	if (!inode)
 543		return NULL;
 544
 545	sock = SOCKET_I(inode);
 546
 547	kmemcheck_annotate_bitfield(sock, type);
 548	inode->i_ino = get_next_ino();
 549	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 550	inode->i_uid = current_fsuid();
 551	inode->i_gid = current_fsgid();
 552	inode->i_op = &sockfs_inode_ops;
 553
 554	this_cpu_add(sockets_in_use, 1);
 555	return sock;
 556}
 557EXPORT_SYMBOL(sock_alloc);
 558
 559/**
 560 *	sock_release	-	close a socket
 561 *	@sock: socket to close
 562 *
 563 *	The socket is released from the protocol stack if it has a release
 564 *	callback, and the inode is then released if the socket is bound to
 565 *	an inode not a file.
 566 */
 567
 568void sock_release(struct socket *sock)
 569{
 570	if (sock->ops) {
 571		struct module *owner = sock->ops->owner;
 572
 573		sock->ops->release(sock);
 
 
 
 
 
 574		sock->ops = NULL;
 575		module_put(owner);
 576	}
 577
 578	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 579		pr_err("%s: fasync list not empty!\n", __func__);
 580
 581	this_cpu_sub(sockets_in_use, 1);
 582	if (!sock->file) {
 583		iput(SOCK_INODE(sock));
 584		return;
 585	}
 586	sock->file = NULL;
 587}
 
 
 
 
 
 
 
 
 
 
 
 
 
 588EXPORT_SYMBOL(sock_release);
 589
 590void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 591{
 592	u8 flags = *tx_flags;
 593
 594	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 595		flags |= SKBTX_HW_TSTAMP;
 596
 597	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 
 
 
 
 
 
 
 
 
 598		flags |= SKBTX_SW_TSTAMP;
 599
 600	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
 601		flags |= SKBTX_SCHED_TSTAMP;
 602
 603	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
 604		flags |= SKBTX_ACK_TSTAMP;
 605
 606	*tx_flags = flags;
 607}
 608EXPORT_SYMBOL(__sock_tx_timestamp);
 609
 
 
 
 
 
 
 
 
 
 
 
 610static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 611{
 612	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 613	BUG_ON(ret == -EIOCBQUEUED);
 
 
 
 614	return ret;
 615}
 616
 617int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 618{
 619	int err = security_socket_sendmsg(sock, msg,
 620					  msg_data_left(msg));
 621
 622	return err ?: sock_sendmsg_nosec(sock, msg);
 623}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624EXPORT_SYMBOL(sock_sendmsg);
 625
 
 
 
 
 
 
 
 
 
 
 
 
 626int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 627		   struct kvec *vec, size_t num, size_t size)
 628{
 629	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 630	return sock_sendmsg(sock, msg);
 631}
 632EXPORT_SYMBOL(kernel_sendmsg);
 633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634/*
 635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 636 */
 637void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 638	struct sk_buff *skb)
 639{
 640	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 641	struct scm_timestamping tss;
 642	int empty = 1;
 
 643	struct skb_shared_hwtstamps *shhwtstamps =
 644		skb_hwtstamps(skb);
 
 
 
 645
 646	/* Race occurred between timestamp enabling and packet
 647	   receiving.  Fill in the current time for now. */
 648	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 649		__net_timestamp(skb);
 
 
 650
 651	if (need_software_tstamp) {
 652		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 653			struct timeval tv;
 654			skb_get_timestamp(skb, &tv);
 655			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 656				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 657		} else {
 658			struct timespec ts;
 659			skb_get_timestampns(skb, &ts);
 660			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 661				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 662		}
 663	}
 664
 665	memset(&tss, 0, sizeof(tss));
 666	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 667	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 
 
 
 
 668		empty = 0;
 669	if (shhwtstamps &&
 670	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 671	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 672		empty = 0;
 673	if (!empty)
 674		put_cmsg(msg, SOL_SOCKET,
 675			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676}
 677EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 678
 
 679void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 680	struct sk_buff *skb)
 681{
 682	int ack;
 683
 684	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 685		return;
 686	if (!skb->wifi_acked_valid)
 687		return;
 688
 689	ack = skb->wifi_acked;
 690
 691	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 692}
 693EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 
 694
 695static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 696				   struct sk_buff *skb)
 697{
 698	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 699		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 700			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 701}
 702
 703void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 704	struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 705{
 706	sock_recv_timestamp(msg, sk, skb);
 707	sock_recv_drops(msg, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 708}
 709EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 710
 711static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 712				     size_t size, int flags)
 713{
 714	return sock->ops->recvmsg(sock, msg, size, flags);
 
 
 
 
 
 
 715}
 716
 717int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
 718		 int flags)
 
 
 
 
 
 
 
 
 719{
 720	int err = security_socket_recvmsg(sock, msg, size, flags);
 721
 722	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
 723}
 724EXPORT_SYMBOL(sock_recvmsg);
 725
 726/**
 727 * kernel_recvmsg - Receive a message from a socket (kernel space)
 728 * @sock:       The socket to receive the message from
 729 * @msg:        Received message
 730 * @vec:        Input s/g array for message data
 731 * @num:        Size of input s/g array
 732 * @size:       Number of bytes to read
 733 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 734 *
 735 * On return the msg structure contains the scatter/gather array passed in the
 736 * vec argument. The array is modified so that it consists of the unfilled
 737 * portion of the original array.
 738 *
 739 * The returned value is the total number of bytes received, or an error.
 740 */
 
 741int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 742		   struct kvec *vec, size_t num, size_t size, int flags)
 743{
 744	mm_segment_t oldfs = get_fs();
 745	int result;
 746
 747	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 748	set_fs(KERNEL_DS);
 749	result = sock_recvmsg(sock, msg, size, flags);
 750	set_fs(oldfs);
 751	return result;
 752}
 753EXPORT_SYMBOL(kernel_recvmsg);
 754
 755static ssize_t sock_sendpage(struct file *file, struct page *page,
 756			     int offset, size_t size, loff_t *ppos, int more)
 
 757{
 758	struct socket *sock;
 759	int flags;
 760
 761	sock = file->private_data;
 762
 763	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 764	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 765	flags |= more;
 766
 767	return kernel_sendpage(sock, page, offset, size, flags);
 768}
 769
 770static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 771				struct pipe_inode_info *pipe, size_t len,
 772				unsigned int flags)
 773{
 774	struct socket *sock = file->private_data;
 
 775
 776	if (unlikely(!sock->ops->splice_read))
 777		return -EINVAL;
 778
 779	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 780}
 781
 782static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 783{
 784	struct file *file = iocb->ki_filp;
 785	struct socket *sock = file->private_data;
 786	struct msghdr msg = {.msg_iter = *to,
 787			     .msg_iocb = iocb};
 788	ssize_t res;
 789
 790	if (file->f_flags & O_NONBLOCK)
 791		msg.msg_flags = MSG_DONTWAIT;
 792
 793	if (iocb->ki_pos != 0)
 794		return -ESPIPE;
 795
 796	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 797		return 0;
 798
 799	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
 800	*to = msg.msg_iter;
 801	return res;
 802}
 803
 804static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 805{
 806	struct file *file = iocb->ki_filp;
 807	struct socket *sock = file->private_data;
 808	struct msghdr msg = {.msg_iter = *from,
 809			     .msg_iocb = iocb};
 810	ssize_t res;
 811
 812	if (iocb->ki_pos != 0)
 813		return -ESPIPE;
 814
 815	if (file->f_flags & O_NONBLOCK)
 816		msg.msg_flags = MSG_DONTWAIT;
 817
 818	if (sock->type == SOCK_SEQPACKET)
 819		msg.msg_flags |= MSG_EOR;
 820
 821	res = sock_sendmsg(sock, &msg);
 822	*from = msg.msg_iter;
 823	return res;
 824}
 825
 826/*
 827 * Atomic setting of ioctl hooks to avoid race
 828 * with module unload.
 829 */
 830
 831static DEFINE_MUTEX(br_ioctl_mutex);
 832static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 833
 834void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 
 
 
 
 835{
 836	mutex_lock(&br_ioctl_mutex);
 837	br_ioctl_hook = hook;
 838	mutex_unlock(&br_ioctl_mutex);
 839}
 840EXPORT_SYMBOL(brioctl_set);
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842static DEFINE_MUTEX(vlan_ioctl_mutex);
 843static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 844
 845void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 846{
 847	mutex_lock(&vlan_ioctl_mutex);
 848	vlan_ioctl_hook = hook;
 849	mutex_unlock(&vlan_ioctl_mutex);
 850}
 851EXPORT_SYMBOL(vlan_ioctl_set);
 852
 853static DEFINE_MUTEX(dlci_ioctl_mutex);
 854static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 855
 856void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 857{
 858	mutex_lock(&dlci_ioctl_mutex);
 859	dlci_ioctl_hook = hook;
 860	mutex_unlock(&dlci_ioctl_mutex);
 861}
 862EXPORT_SYMBOL(dlci_ioctl_set);
 863
 864static long sock_do_ioctl(struct net *net, struct socket *sock,
 865				 unsigned int cmd, unsigned long arg)
 866{
 
 
 
 867	int err;
 868	void __user *argp = (void __user *)arg;
 
 869
 870	err = sock->ops->ioctl(sock, cmd, arg);
 871
 872	/*
 873	 * If this ioctl is unknown try to hand it down
 874	 * to the NIC driver.
 875	 */
 876	if (err == -ENOIOCTLCMD)
 877		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 
 
 878
 879	return err;
 880}
 881
 882/*
 883 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 884 *	what to do with it - that's up to the protocol still.
 885 */
 886
 887static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 888{
 
 889	struct socket *sock;
 890	struct sock *sk;
 891	void __user *argp = (void __user *)arg;
 892	int pid, err;
 893	struct net *net;
 894
 895	sock = file->private_data;
 
 896	sk = sock->sk;
 897	net = sock_net(sk);
 898	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 899		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 900	} else
 901#ifdef CONFIG_WEXT_CORE
 902	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 903		err = dev_ioctl(net, cmd, argp);
 904	} else
 905#endif
 906		switch (cmd) {
 907		case FIOSETOWN:
 908		case SIOCSPGRP:
 909			err = -EFAULT;
 910			if (get_user(pid, (int __user *)argp))
 911				break;
 912			f_setown(sock->file, pid, 1);
 913			err = 0;
 914			break;
 915		case FIOGETOWN:
 916		case SIOCGPGRP:
 917			err = put_user(f_getown(sock->file),
 918				       (int __user *)argp);
 919			break;
 920		case SIOCGIFBR:
 921		case SIOCSIFBR:
 922		case SIOCBRADDBR:
 923		case SIOCBRDELBR:
 924			err = -ENOPKG;
 925			if (!br_ioctl_hook)
 926				request_module("bridge");
 927
 928			mutex_lock(&br_ioctl_mutex);
 929			if (br_ioctl_hook)
 930				err = br_ioctl_hook(net, cmd, argp);
 931			mutex_unlock(&br_ioctl_mutex);
 932			break;
 933		case SIOCGIFVLAN:
 934		case SIOCSIFVLAN:
 935			err = -ENOPKG;
 936			if (!vlan_ioctl_hook)
 937				request_module("8021q");
 938
 939			mutex_lock(&vlan_ioctl_mutex);
 940			if (vlan_ioctl_hook)
 941				err = vlan_ioctl_hook(net, argp);
 942			mutex_unlock(&vlan_ioctl_mutex);
 943			break;
 944		case SIOCADDDLCI:
 945		case SIOCDELDLCI:
 946			err = -ENOPKG;
 947			if (!dlci_ioctl_hook)
 948				request_module("dlci");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949
 950			mutex_lock(&dlci_ioctl_mutex);
 951			if (dlci_ioctl_hook)
 952				err = dlci_ioctl_hook(cmd, argp);
 953			mutex_unlock(&dlci_ioctl_mutex);
 954			break;
 
 955		default:
 956			err = sock_do_ioctl(net, sock, cmd, arg);
 957			break;
 958		}
 959	return err;
 960}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 962int sock_create_lite(int family, int type, int protocol, struct socket **res)
 963{
 964	int err;
 965	struct socket *sock = NULL;
 966
 967	err = security_socket_create(family, type, protocol, 1);
 968	if (err)
 969		goto out;
 970
 971	sock = sock_alloc();
 972	if (!sock) {
 973		err = -ENOMEM;
 974		goto out;
 975	}
 976
 977	sock->type = type;
 978	err = security_socket_post_create(sock, family, type, protocol, 1);
 979	if (err)
 980		goto out_release;
 981
 982out:
 983	*res = sock;
 984	return err;
 985out_release:
 986	sock_release(sock);
 987	sock = NULL;
 988	goto out;
 989}
 990EXPORT_SYMBOL(sock_create_lite);
 991
 992/* No kernel lock held - perfect */
 993static unsigned int sock_poll(struct file *file, poll_table *wait)
 994{
 995	unsigned int busy_flag = 0;
 996	struct socket *sock;
 
 997
 998	/*
 999	 *      We can't return errors to poll, so it's either yes or no.
1000	 */
1001	sock = file->private_data;
1002
1003	if (sk_can_busy_loop(sock->sk)) {
1004		/* this socket can poll_ll so tell the system call */
1005		busy_flag = POLL_BUSY_LOOP;
 
1006
1007		/* once, only if requested by syscall */
1008		if (wait && (wait->_key & POLL_BUSY_LOOP))
1009			sk_busy_loop(sock->sk, 1);
1010	}
1011
1012	return busy_flag | sock->ops->poll(file, sock, wait);
1013}
1014
1015static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016{
1017	struct socket *sock = file->private_data;
1018
1019	return sock->ops->mmap(file, sock, vma);
1020}
1021
1022static int sock_close(struct inode *inode, struct file *filp)
1023{
1024	sock_release(SOCKET_I(inode));
1025	return 0;
1026}
1027
1028/*
1029 *	Update the socket async list
1030 *
1031 *	Fasync_list locking strategy.
1032 *
1033 *	1. fasync_list is modified only under process context socket lock
1034 *	   i.e. under semaphore.
1035 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 *	   or under socket lock
1037 */
1038
1039static int sock_fasync(int fd, struct file *filp, int on)
1040{
1041	struct socket *sock = filp->private_data;
1042	struct sock *sk = sock->sk;
1043	struct socket_wq *wq;
1044
1045	if (sk == NULL)
1046		return -EINVAL;
1047
1048	lock_sock(sk);
1049	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050	fasync_helper(fd, filp, on, &wq->fasync_list);
1051
1052	if (!wq->fasync_list)
1053		sock_reset_flag(sk, SOCK_FASYNC);
1054	else
1055		sock_set_flag(sk, SOCK_FASYNC);
1056
1057	release_sock(sk);
1058	return 0;
1059}
1060
1061/* This function may be called only under rcu_lock */
1062
1063int sock_wake_async(struct socket_wq *wq, int how, int band)
1064{
1065	if (!wq || !wq->fasync_list)
1066		return -1;
1067
1068	switch (how) {
1069	case SOCK_WAKE_WAITD:
1070		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071			break;
1072		goto call_kill;
1073	case SOCK_WAKE_SPACE:
1074		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075			break;
1076		/* fall through */
1077	case SOCK_WAKE_IO:
1078call_kill:
1079		kill_fasync(&wq->fasync_list, SIGIO, band);
1080		break;
1081	case SOCK_WAKE_URG:
1082		kill_fasync(&wq->fasync_list, SIGURG, band);
1083	}
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL(sock_wake_async);
1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089int __sock_create(struct net *net, int family, int type, int protocol,
1090			 struct socket **res, int kern)
1091{
1092	int err;
1093	struct socket *sock;
1094	const struct net_proto_family *pf;
1095
1096	/*
1097	 *      Check protocol is in range
1098	 */
1099	if (family < 0 || family >= NPROTO)
1100		return -EAFNOSUPPORT;
1101	if (type < 0 || type >= SOCK_MAX)
1102		return -EINVAL;
1103
1104	/* Compatibility.
1105
1106	   This uglymoron is moved from INET layer to here to avoid
1107	   deadlock in module load.
1108	 */
1109	if (family == PF_INET && type == SOCK_PACKET) {
1110		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111			     current->comm);
1112		family = PF_PACKET;
1113	}
1114
1115	err = security_socket_create(family, type, protocol, kern);
1116	if (err)
1117		return err;
1118
1119	/*
1120	 *	Allocate the socket and allow the family to set things up. if
1121	 *	the protocol is 0, the family is instructed to select an appropriate
1122	 *	default.
1123	 */
1124	sock = sock_alloc();
1125	if (!sock) {
1126		net_warn_ratelimited("socket: no more sockets\n");
1127		return -ENFILE;	/* Not exactly a match, but its the
1128				   closest posix thing */
1129	}
1130
1131	sock->type = type;
1132
1133#ifdef CONFIG_MODULES
1134	/* Attempt to load a protocol module if the find failed.
1135	 *
1136	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137	 * requested real, full-featured networking support upon configuration.
1138	 * Otherwise module support will break!
1139	 */
1140	if (rcu_access_pointer(net_families[family]) == NULL)
1141		request_module("net-pf-%d", family);
1142#endif
1143
1144	rcu_read_lock();
1145	pf = rcu_dereference(net_families[family]);
1146	err = -EAFNOSUPPORT;
1147	if (!pf)
1148		goto out_release;
1149
1150	/*
1151	 * We will call the ->create function, that possibly is in a loadable
1152	 * module, so we have to bump that loadable module refcnt first.
1153	 */
1154	if (!try_module_get(pf->owner))
1155		goto out_release;
1156
1157	/* Now protected by module ref count */
1158	rcu_read_unlock();
1159
1160	err = pf->create(net, sock, protocol, kern);
1161	if (err < 0)
 
 
 
 
 
 
1162		goto out_module_put;
 
1163
1164	/*
1165	 * Now to bump the refcnt of the [loadable] module that owns this
1166	 * socket at sock_release time we decrement its refcnt.
1167	 */
1168	if (!try_module_get(sock->ops->owner))
1169		goto out_module_busy;
1170
1171	/*
1172	 * Now that we're done with the ->create function, the [loadable]
1173	 * module can have its refcnt decremented
1174	 */
1175	module_put(pf->owner);
1176	err = security_socket_post_create(sock, family, type, protocol, kern);
1177	if (err)
1178		goto out_sock_release;
1179	*res = sock;
1180
1181	return 0;
1182
1183out_module_busy:
1184	err = -EAFNOSUPPORT;
1185out_module_put:
1186	sock->ops = NULL;
1187	module_put(pf->owner);
1188out_sock_release:
1189	sock_release(sock);
1190	return err;
1191
1192out_release:
1193	rcu_read_unlock();
1194	goto out_sock_release;
1195}
1196EXPORT_SYMBOL(__sock_create);
1197
 
 
 
 
 
 
 
 
 
 
 
1198int sock_create(int family, int type, int protocol, struct socket **res)
1199{
1200	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201}
1202EXPORT_SYMBOL(sock_create);
1203
 
 
 
 
 
 
 
 
 
 
 
 
1204int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205{
1206	return __sock_create(net, family, type, protocol, res, 1);
1207}
1208EXPORT_SYMBOL(sock_create_kern);
1209
1210SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211{
 
1212	int retval;
1213	struct socket *sock;
1214	int flags;
1215
1216	/* Check the SOCK_* constants for consistency.  */
1217	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221
1222	flags = type & ~SOCK_TYPE_MASK;
1223	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224		return -EINVAL;
1225	type &= SOCK_TYPE_MASK;
1226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229
1230	retval = sock_create(family, type, protocol, &sock);
1231	if (retval < 0)
1232		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233
1234	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235	if (retval < 0)
1236		goto out_release;
1237
1238out:
1239	/* It may be already another descriptor 8) Not kernel problem. */
1240	return retval;
1241
1242out_release:
1243	sock_release(sock);
1244	return retval;
1245}
1246
1247/*
1248 *	Create a pair of connected sockets.
1249 */
1250
1251SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252		int __user *, usockvec)
1253{
1254	struct socket *sock1, *sock2;
1255	int fd1, fd2, err;
1256	struct file *newfile1, *newfile2;
1257	int flags;
1258
1259	flags = type & ~SOCK_TYPE_MASK;
1260	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261		return -EINVAL;
1262	type &= SOCK_TYPE_MASK;
1263
1264	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266
1267	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268	 * Obtain the first socket and check if the underlying protocol
1269	 * supports the socketpair call.
1270	 */
1271
1272	err = sock_create(family, type, protocol, &sock1);
1273	if (err < 0)
1274		goto out;
1275
1276	err = sock_create(family, type, protocol, &sock2);
1277	if (err < 0)
1278		goto out_release_1;
 
 
1279
1280	err = sock1->ops->socketpair(sock1, sock2);
1281	if (err < 0)
1282		goto out_release_both;
1283
1284	fd1 = get_unused_fd_flags(flags);
1285	if (unlikely(fd1 < 0)) {
1286		err = fd1;
1287		goto out_release_both;
1288	}
1289
1290	fd2 = get_unused_fd_flags(flags);
1291	if (unlikely(fd2 < 0)) {
1292		err = fd2;
1293		goto out_put_unused_1;
 
1294	}
1295
1296	newfile1 = sock_alloc_file(sock1, flags, NULL);
1297	if (IS_ERR(newfile1)) {
1298		err = PTR_ERR(newfile1);
1299		goto out_put_unused_both;
 
1300	}
1301
1302	newfile2 = sock_alloc_file(sock2, flags, NULL);
1303	if (IS_ERR(newfile2)) {
1304		err = PTR_ERR(newfile2);
1305		goto out_fput_1;
 
1306	}
1307
1308	err = put_user(fd1, &usockvec[0]);
1309	if (err)
1310		goto out_fput_both;
1311
1312	err = put_user(fd2, &usockvec[1]);
1313	if (err)
1314		goto out_fput_both;
1315
1316	audit_fd_pair(fd1, fd2);
1317
1318	fd_install(fd1, newfile1);
1319	fd_install(fd2, newfile2);
1320	/* fd1 and fd2 may be already another descriptors.
1321	 * Not kernel problem.
1322	 */
1323
1324	return 0;
1325
1326out_fput_both:
1327	fput(newfile2);
1328	fput(newfile1);
1329	put_unused_fd(fd2);
1330	put_unused_fd(fd1);
1331	goto out;
 
 
 
 
 
 
 
1332
1333out_fput_1:
1334	fput(newfile1);
1335	put_unused_fd(fd2);
1336	put_unused_fd(fd1);
1337	sock_release(sock2);
1338	goto out;
1339
1340out_put_unused_both:
1341	put_unused_fd(fd2);
1342out_put_unused_1:
1343	put_unused_fd(fd1);
1344out_release_both:
1345	sock_release(sock2);
1346out_release_1:
1347	sock_release(sock1);
1348out:
1349	return err;
1350}
1351
1352/*
1353 *	Bind a name to a socket. Nothing much to do here since it's
1354 *	the protocol's responsibility to handle the local address.
1355 *
1356 *	We move the socket address to kernel space before we call
1357 *	the protocol layer (having also checked the address is ok).
1358 */
1359
1360SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361{
1362	struct socket *sock;
1363	struct sockaddr_storage address;
1364	int err, fput_needed;
 
 
 
 
 
 
 
1365
1366	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367	if (sock) {
1368		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369		if (err >= 0) {
1370			err = security_socket_bind(sock,
1371						   (struct sockaddr *)&address,
1372						   addrlen);
1373			if (!err)
1374				err = sock->ops->bind(sock,
1375						      (struct sockaddr *)
1376						      &address, addrlen);
1377		}
1378		fput_light(sock->file, fput_needed);
1379	}
1380	return err;
1381}
1382
1383/*
1384 *	Perform a listen. Basically, we allow the protocol to do anything
1385 *	necessary for a listen, and if that works, we mark the socket as
1386 *	ready for listening.
1387 */
 
 
 
 
 
 
 
1388
1389SYSCALL_DEFINE2(listen, int, fd, int, backlog)
 
 
 
 
 
 
1390{
 
1391	struct socket *sock;
1392	int err, fput_needed;
1393	int somaxconn;
1394
1395	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396	if (sock) {
1397		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398		if ((unsigned int)backlog > somaxconn)
1399			backlog = somaxconn;
1400
1401		err = security_socket_listen(sock, backlog);
1402		if (!err)
1403			err = sock->ops->listen(sock, backlog);
1404
1405		fput_light(sock->file, fput_needed);
1406	}
1407	return err;
1408}
1409
1410/*
1411 *	For accept, we attempt to create a new socket, set up the link
1412 *	with the client, wake up the client, then return the new
1413 *	connected fd. We collect the address of the connector in kernel
1414 *	space and move it to user at the very end. This is unclean because
1415 *	we open the socket then return an error.
1416 *
1417 *	1003.1g adds the ability to recvmsg() to query connection pending
1418 *	status to recvmsg. We need to add that support in a way thats
1419 *	clean when we restucture accept also.
1420 */
1421
1422SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423		int __user *, upeer_addrlen, int, flags)
 
1424{
1425	struct socket *sock, *newsock;
1426	struct file *newfile;
1427	int err, len, newfd, fput_needed;
1428	struct sockaddr_storage address;
 
1429
1430	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431		return -EINVAL;
1432
1433	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435
1436	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437	if (!sock)
1438		goto out;
1439
1440	err = -ENFILE;
1441	newsock = sock_alloc();
1442	if (!newsock)
1443		goto out_put;
 
1444
1445	newsock->type = sock->type;
1446	newsock->ops = sock->ops;
1447
1448	/*
1449	 * We don't need try_module_get here, as the listening socket (sock)
1450	 * has the protocol module (sock->ops->owner) held.
1451	 */
1452	__module_get(newsock->ops->owner);
1453
1454	newfd = get_unused_fd_flags(flags);
1455	if (unlikely(newfd < 0)) {
1456		err = newfd;
1457		sock_release(newsock);
1458		goto out_put;
1459	}
1460	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461	if (IS_ERR(newfile)) {
1462		err = PTR_ERR(newfile);
1463		put_unused_fd(newfd);
1464		sock_release(newsock);
1465		goto out_put;
1466	}
1467
1468	err = security_socket_accept(sock, newsock);
1469	if (err)
1470		goto out_fd;
1471
1472	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1473	if (err < 0)
1474		goto out_fd;
1475
1476	if (upeer_sockaddr) {
1477		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1478					  &len, 2) < 0) {
1479			err = -ECONNABORTED;
1480			goto out_fd;
1481		}
1482		err = move_addr_to_user(&address,
1483					len, upeer_sockaddr, upeer_addrlen);
1484		if (err < 0)
1485			goto out_fd;
1486	}
1487
1488	/* File flags are not inherited via accept() unlike another OSes. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489
 
 
 
 
 
 
1490	fd_install(newfd, newfile);
1491	err = newfd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492
1493out_put:
1494	fput_light(sock->file, fput_needed);
1495out:
1496	return err;
1497out_fd:
1498	fput(newfile);
1499	put_unused_fd(newfd);
1500	goto out_put;
 
 
1501}
1502
1503SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1504		int __user *, upeer_addrlen)
1505{
1506	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1507}
1508
1509/*
1510 *	Attempt to connect to a socket with the server address.  The address
1511 *	is in user space so we verify it is OK and move it to kernel space.
1512 *
1513 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1514 *	break bindings
1515 *
1516 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1517 *	other SEQPACKET protocols that take time to connect() as it doesn't
1518 *	include the -EINPROGRESS status for such sockets.
1519 */
1520
1521SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1522		int, addrlen)
1523{
1524	struct socket *sock;
1525	struct sockaddr_storage address;
1526	int err, fput_needed;
1527
1528	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529	if (!sock)
 
1530		goto out;
1531	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1532	if (err < 0)
1533		goto out_put;
1534
1535	err =
1536	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1537	if (err)
1538		goto out_put;
1539
1540	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1541				 sock->file->f_flags);
1542out_put:
1543	fput_light(sock->file, fput_needed);
1544out:
1545	return err;
1546}
1547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548/*
1549 *	Get the local address ('name') of a socket object. Move the obtained
1550 *	name to user space.
1551 */
1552
1553SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1554		int __user *, usockaddr_len)
1555{
1556	struct socket *sock;
1557	struct sockaddr_storage address;
1558	int len, err, fput_needed;
 
1559
1560	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561	if (!sock)
1562		goto out;
 
 
1563
1564	err = security_socket_getsockname(sock);
1565	if (err)
1566		goto out_put;
 
 
 
 
1567
1568	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1569	if (err)
1570		goto out_put;
1571	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1572
1573out_put:
1574	fput_light(sock->file, fput_needed);
1575out:
1576	return err;
1577}
1578
1579/*
1580 *	Get the remote address ('name') of a socket object. Move the obtained
1581 *	name to user space.
1582 */
1583
1584SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1585		int __user *, usockaddr_len)
1586{
1587	struct socket *sock;
1588	struct sockaddr_storage address;
1589	int len, err, fput_needed;
 
 
 
 
 
 
 
1590
1591	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1592	if (sock != NULL) {
1593		err = security_socket_getpeername(sock);
1594		if (err) {
1595			fput_light(sock->file, fput_needed);
1596			return err;
1597		}
 
 
 
 
1598
1599		err =
1600		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1601				       1);
1602		if (!err)
1603			err = move_addr_to_user(&address, len, usockaddr,
1604						usockaddr_len);
1605		fput_light(sock->file, fput_needed);
1606	}
1607	return err;
1608}
1609
1610/*
1611 *	Send a datagram to a given address. We move the address into kernel
1612 *	space and check the user space data area is readable before invoking
1613 *	the protocol.
1614 */
1615
1616SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1617		unsigned int, flags, struct sockaddr __user *, addr,
1618		int, addr_len)
1619{
1620	struct socket *sock;
1621	struct sockaddr_storage address;
1622	int err;
1623	struct msghdr msg;
1624	struct iovec iov;
1625	int fput_needed;
1626
1627	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1628	if (unlikely(err))
1629		return err;
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (!sock)
1632		goto out;
 
 
 
 
1633
1634	msg.msg_name = NULL;
1635	msg.msg_control = NULL;
1636	msg.msg_controllen = 0;
1637	msg.msg_namelen = 0;
 
1638	if (addr) {
1639		err = move_addr_to_kernel(addr, addr_len, &address);
1640		if (err < 0)
1641			goto out_put;
1642		msg.msg_name = (struct sockaddr *)&address;
1643		msg.msg_namelen = addr_len;
1644	}
 
1645	if (sock->file->f_flags & O_NONBLOCK)
1646		flags |= MSG_DONTWAIT;
1647	msg.msg_flags = flags;
1648	err = sock_sendmsg(sock, &msg);
 
1649
1650out_put:
1651	fput_light(sock->file, fput_needed);
1652out:
1653	return err;
 
1654}
1655
1656/*
1657 *	Send a datagram down a socket.
1658 */
1659
1660SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1661		unsigned int, flags)
1662{
1663	return sys_sendto(fd, buff, len, flags, NULL, 0);
1664}
1665
1666/*
1667 *	Receive a frame from the socket and optionally record the address of the
1668 *	sender. We verify the buffers are writable and if needed move the
1669 *	sender address from kernel to user space.
1670 */
1671
1672SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1673		unsigned int, flags, struct sockaddr __user *, addr,
1674		int __user *, addr_len)
1675{
 
 
 
 
 
1676	struct socket *sock;
1677	struct iovec iov;
1678	struct msghdr msg;
1679	struct sockaddr_storage address;
1680	int err, err2;
1681	int fput_needed;
1682
1683	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1684	if (unlikely(err))
1685		return err;
1686	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687	if (!sock)
1688		goto out;
1689
1690	msg.msg_control = NULL;
1691	msg.msg_controllen = 0;
1692	/* Save some cycles and don't copy the address if not needed */
1693	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1694	/* We assume all kernel code knows the size of sockaddr_storage */
1695	msg.msg_namelen = 0;
1696	msg.msg_iocb = NULL;
 
1697	if (sock->file->f_flags & O_NONBLOCK)
1698		flags |= MSG_DONTWAIT;
1699	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1700
1701	if (err >= 0 && addr != NULL) {
1702		err2 = move_addr_to_user(&address,
1703					 msg.msg_namelen, addr, addr_len);
1704		if (err2 < 0)
1705			err = err2;
1706	}
 
 
1707
1708	fput_light(sock->file, fput_needed);
1709out:
1710	return err;
 
 
1711}
1712
1713/*
1714 *	Receive a datagram from a socket.
1715 */
1716
1717SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1718		unsigned int, flags)
1719{
1720	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1721}
1722
1723/*
1724 *	Set a socket option. Because we don't know the option lengths we have
1725 *	to pass the user mode parameter for the protocols to sort out.
1726 */
1727
1728SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1729		char __user *, optval, int, optlen)
1730{
1731	int err, fput_needed;
1732	struct socket *sock;
 
1733
1734	if (optlen < 0)
1735		return -EINVAL;
1736
1737	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738	if (sock != NULL) {
1739		err = security_socket_setsockopt(sock, level, optname);
1740		if (err)
1741			goto out_put;
 
 
 
 
 
 
 
 
 
1742
1743		if (level == SOL_SOCKET)
1744			err =
1745			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
 
1746					    optlen);
1747		else
1748			err =
1749			    sock->ops->setsockopt(sock, level, optname, optval,
1750						  optlen);
1751out_put:
1752		fput_light(sock->file, fput_needed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	}
 
 
 
 
 
 
1754	return err;
1755}
 
1756
1757/*
1758 *	Get a socket option. Because we don't know the option lengths we have
1759 *	to pass a user mode parameter for the protocols to sort out.
1760 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1763		char __user *, optval, int __user *, optlen)
1764{
1765	int err, fput_needed;
1766	struct socket *sock;
1767
1768	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769	if (sock != NULL) {
1770		err = security_socket_getsockopt(sock, level, optname);
1771		if (err)
1772			goto out_put;
1773
1774		if (level == SOL_SOCKET)
1775			err =
1776			    sock_getsockopt(sock, level, optname, optval,
1777					    optlen);
1778		else
1779			err =
1780			    sock->ops->getsockopt(sock, level, optname, optval,
1781						  optlen);
1782out_put:
1783		fput_light(sock->file, fput_needed);
1784	}
1785	return err;
1786}
1787
1788/*
1789 *	Shutdown a socket.
1790 */
1791
1792SYSCALL_DEFINE2(shutdown, int, fd, int, how)
 
 
 
 
 
 
 
 
 
 
 
1793{
1794	int err, fput_needed;
1795	struct socket *sock;
 
1796
1797	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798	if (sock != NULL) {
1799		err = security_socket_shutdown(sock, how);
1800		if (!err)
1801			err = sock->ops->shutdown(sock, how);
1802		fput_light(sock->file, fput_needed);
1803	}
1804	return err;
 
 
 
 
1805}
1806
1807/* A couple of helpful macros for getting the address of the 32/64 bit
1808 * fields which are the same type (int / unsigned) on our platforms.
1809 */
1810#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1811#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1812#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1813
1814struct used_address {
1815	struct sockaddr_storage name;
1816	unsigned int name_len;
1817};
1818
1819static int copy_msghdr_from_user(struct msghdr *kmsg,
1820				 struct user_msghdr __user *umsg,
1821				 struct sockaddr __user **save_addr,
1822				 struct iovec **iov)
1823{
1824	struct sockaddr __user *uaddr;
1825	struct iovec __user *uiov;
1826	size_t nr_segs;
1827	ssize_t err;
1828
1829	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1830	    __get_user(uaddr, &umsg->msg_name) ||
1831	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1832	    __get_user(uiov, &umsg->msg_iov) ||
1833	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1834	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1835	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1836	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1837		return -EFAULT;
1838
1839	if (!uaddr)
 
1840		kmsg->msg_namelen = 0;
1841
1842	if (kmsg->msg_namelen < 0)
1843		return -EINVAL;
1844
1845	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1846		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1847
1848	if (save_addr)
1849		*save_addr = uaddr;
1850
1851	if (uaddr && kmsg->msg_namelen) {
1852		if (!save_addr) {
1853			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1854						  kmsg->msg_name);
1855			if (err < 0)
1856				return err;
1857		}
1858	} else {
1859		kmsg->msg_name = NULL;
1860		kmsg->msg_namelen = 0;
1861	}
1862
1863	if (nr_segs > UIO_MAXIOV)
1864		return -EMSGSIZE;
1865
1866	kmsg->msg_iocb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867
1868	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
 
 
 
 
1869			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
1870}
1871
1872static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1873			 struct msghdr *msg_sys, unsigned int flags,
1874			 struct used_address *used_address,
1875			 unsigned int allowed_msghdr_flags)
1876{
1877	struct compat_msghdr __user *msg_compat =
1878	    (struct compat_msghdr __user *)msg;
1879	struct sockaddr_storage address;
1880	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883	/* 20 is size of ipv6_pktinfo */
1884	unsigned char *ctl_buf = ctl;
1885	int ctl_len;
1886	ssize_t err;
1887
1888	msg_sys->msg_name = &address;
1889
1890	if (MSG_CMSG_COMPAT & flags)
1891		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892	else
1893		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894	if (err < 0)
1895		return err;
1896
1897	err = -ENOBUFS;
1898
1899	if (msg_sys->msg_controllen > INT_MAX)
1900		goto out_freeiov;
1901	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1902	ctl_len = msg_sys->msg_controllen;
1903	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904		err =
1905		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1906						     sizeof(ctl));
1907		if (err)
1908			goto out_freeiov;
1909		ctl_buf = msg_sys->msg_control;
1910		ctl_len = msg_sys->msg_controllen;
1911	} else if (ctl_len) {
 
 
1912		if (ctl_len > sizeof(ctl)) {
1913			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914			if (ctl_buf == NULL)
1915				goto out_freeiov;
1916		}
1917		err = -EFAULT;
1918		/*
1919		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1920		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921		 * checking falls down on this.
1922		 */
1923		if (copy_from_user(ctl_buf,
1924				   (void __user __force *)msg_sys->msg_control,
1925				   ctl_len))
1926			goto out_freectl;
1927		msg_sys->msg_control = ctl_buf;
 
1928	}
 
1929	msg_sys->msg_flags = flags;
1930
1931	if (sock->file->f_flags & O_NONBLOCK)
1932		msg_sys->msg_flags |= MSG_DONTWAIT;
1933	/*
1934	 * If this is sendmmsg() and current destination address is same as
1935	 * previously succeeded address, omit asking LSM's decision.
1936	 * used_address->name_len is initialized to UINT_MAX so that the first
1937	 * destination address never matches.
1938	 */
1939	if (used_address && msg_sys->msg_name &&
1940	    used_address->name_len == msg_sys->msg_namelen &&
1941	    !memcmp(&used_address->name, msg_sys->msg_name,
1942		    used_address->name_len)) {
1943		err = sock_sendmsg_nosec(sock, msg_sys);
1944		goto out_freectl;
1945	}
1946	err = sock_sendmsg(sock, msg_sys);
1947	/*
1948	 * If this is sendmmsg() and sending to current destination address was
1949	 * successful, remember it.
1950	 */
1951	if (used_address && err >= 0) {
1952		used_address->name_len = msg_sys->msg_namelen;
1953		if (msg_sys->msg_name)
1954			memcpy(&used_address->name, msg_sys->msg_name,
1955			       used_address->name_len);
1956	}
1957
1958out_freectl:
1959	if (ctl_buf != ctl)
1960		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1961out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	kfree(iov);
1963	return err;
1964}
1965
1966/*
1967 *	BSD sendmsg interface
1968 */
 
 
 
 
 
1969
1970long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
1971{
1972	int fput_needed, err;
1973	struct msghdr msg_sys;
1974	struct socket *sock;
1975
1976	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977	if (!sock)
1978		goto out;
 
1979
1980	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
 
 
 
 
1981
1982	fput_light(sock->file, fput_needed);
1983out:
1984	return err;
1985}
1986
1987SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1988{
1989	if (flags & MSG_CMSG_COMPAT)
1990		return -EINVAL;
1991	return __sys_sendmsg(fd, msg, flags);
1992}
1993
1994/*
1995 *	Linux sendmmsg interface
1996 */
1997
1998int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1999		   unsigned int flags)
2000{
2001	int fput_needed, err, datagrams;
2002	struct socket *sock;
2003	struct mmsghdr __user *entry;
2004	struct compat_mmsghdr __user *compat_entry;
2005	struct msghdr msg_sys;
2006	struct used_address used_address;
2007	unsigned int oflags = flags;
2008
 
 
 
2009	if (vlen > UIO_MAXIOV)
2010		vlen = UIO_MAXIOV;
2011
2012	datagrams = 0;
2013
2014	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015	if (!sock)
2016		return err;
 
 
 
 
2017
2018	used_address.name_len = UINT_MAX;
2019	entry = mmsg;
2020	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021	err = 0;
2022	flags |= MSG_BATCH;
2023
2024	while (datagrams < vlen) {
2025		if (datagrams == vlen - 1)
2026			flags = oflags;
2027
2028		if (MSG_CMSG_COMPAT & flags) {
2029			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2030					     &msg_sys, flags, &used_address, MSG_EOR);
2031			if (err < 0)
2032				break;
2033			err = __put_user(err, &compat_entry->msg_len);
2034			++compat_entry;
2035		} else {
2036			err = ___sys_sendmsg(sock,
2037					     (struct user_msghdr __user *)entry,
2038					     &msg_sys, flags, &used_address, MSG_EOR);
2039			if (err < 0)
2040				break;
2041			err = put_user(err, &entry->msg_len);
2042			++entry;
2043		}
2044
2045		if (err)
2046			break;
2047		++datagrams;
 
 
2048		cond_resched();
2049	}
2050
2051	fput_light(sock->file, fput_needed);
2052
2053	/* We only return an error if no datagrams were able to be sent */
2054	if (datagrams != 0)
2055		return datagrams;
2056
2057	return err;
2058}
2059
2060SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061		unsigned int, vlen, unsigned int, flags)
2062{
2063	if (flags & MSG_CMSG_COMPAT)
2064		return -EINVAL;
2065	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066}
2067
2068static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2070{
2071	struct compat_msghdr __user *msg_compat =
2072	    (struct compat_msghdr __user *)msg;
2073	struct iovec iovstack[UIO_FASTIOV];
2074	struct iovec *iov = iovstack;
2075	unsigned long cmsg_ptr;
2076	int total_len, len;
2077	ssize_t err;
2078
2079	/* kernel mode address */
2080	struct sockaddr_storage addr;
 
 
 
 
 
 
 
 
 
 
 
2081
2082	/* user mode address pointers */
2083	struct sockaddr __user *uaddr;
 
 
 
 
 
2084	int __user *uaddr_len = COMPAT_NAMELEN(msg);
 
 
 
 
2085
2086	msg_sys->msg_name = &addr;
2087
2088	if (MSG_CMSG_COMPAT & flags)
2089		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090	else
2091		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092	if (err < 0)
2093		return err;
2094	total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099	/* We assume all kernel code knows the size of sockaddr_storage */
2100	msg_sys->msg_namelen = 0;
2101
2102	if (sock->file->f_flags & O_NONBLOCK)
2103		flags |= MSG_DONTWAIT;
2104	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105							  total_len, flags);
 
 
 
 
2106	if (err < 0)
2107		goto out_freeiov;
2108	len = err;
2109
2110	if (uaddr != NULL) {
2111		err = move_addr_to_user(&addr,
2112					msg_sys->msg_namelen, uaddr,
2113					uaddr_len);
2114		if (err < 0)
2115			goto out_freeiov;
2116	}
2117	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118			 COMPAT_FLAGS(msg));
2119	if (err)
2120		goto out_freeiov;
2121	if (MSG_CMSG_COMPAT & flags)
2122		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123				 &msg_compat->msg_controllen);
2124	else
2125		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126				 &msg->msg_controllen);
2127	if (err)
2128		goto out_freeiov;
2129	err = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130
2131out_freeiov:
2132	kfree(iov);
2133	return err;
2134}
2135
2136/*
2137 *	BSD recvmsg interface
2138 */
2139
2140long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
2141{
2142	int fput_needed, err;
2143	struct msghdr msg_sys;
2144	struct socket *sock;
2145
2146	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147	if (!sock)
2148		goto out;
 
2149
2150	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
 
 
 
 
2151
2152	fput_light(sock->file, fput_needed);
2153out:
2154	return err;
2155}
2156
2157SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158		unsigned int, flags)
2159{
2160	if (flags & MSG_CMSG_COMPAT)
2161		return -EINVAL;
2162	return __sys_recvmsg(fd, msg, flags);
2163}
2164
2165/*
2166 *     Linux recvmmsg interface
2167 */
2168
2169int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170		   unsigned int flags, struct timespec *timeout)
 
2171{
2172	int fput_needed, err, datagrams;
2173	struct socket *sock;
2174	struct mmsghdr __user *entry;
2175	struct compat_mmsghdr __user *compat_entry;
2176	struct msghdr msg_sys;
2177	struct timespec end_time;
 
2178
2179	if (timeout &&
2180	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2181				    timeout->tv_nsec))
2182		return -EINVAL;
2183
2184	datagrams = 0;
2185
2186	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187	if (!sock)
2188		return err;
 
 
 
 
2189
2190	err = sock_error(sock->sk);
2191	if (err)
2192		goto out_put;
 
 
2193
2194	entry = mmsg;
2195	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197	while (datagrams < vlen) {
2198		/*
2199		 * No need to ask LSM for more than the first datagram.
2200		 */
2201		if (MSG_CMSG_COMPAT & flags) {
2202			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203					     &msg_sys, flags & ~MSG_WAITFORONE,
2204					     datagrams);
2205			if (err < 0)
2206				break;
2207			err = __put_user(err, &compat_entry->msg_len);
2208			++compat_entry;
2209		} else {
2210			err = ___sys_recvmsg(sock,
2211					     (struct user_msghdr __user *)entry,
2212					     &msg_sys, flags & ~MSG_WAITFORONE,
2213					     datagrams);
2214			if (err < 0)
2215				break;
2216			err = put_user(err, &entry->msg_len);
2217			++entry;
2218		}
2219
2220		if (err)
2221			break;
2222		++datagrams;
2223
2224		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225		if (flags & MSG_WAITFORONE)
2226			flags |= MSG_DONTWAIT;
2227
2228		if (timeout) {
2229			ktime_get_ts(timeout);
2230			*timeout = timespec_sub(end_time, *timeout);
2231			if (timeout->tv_sec < 0) {
2232				timeout->tv_sec = timeout->tv_nsec = 0;
2233				break;
2234			}
2235
2236			/* Timeout, return less than vlen datagrams */
2237			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238				break;
2239		}
2240
2241		/* Out of band data, return right away */
2242		if (msg_sys.msg_flags & MSG_OOB)
2243			break;
2244		cond_resched();
2245	}
2246
2247	if (err == 0)
2248		goto out_put;
2249
2250	if (datagrams == 0) {
2251		datagrams = err;
2252		goto out_put;
2253	}
2254
2255	/*
2256	 * We may return less entries than requested (vlen) if the
2257	 * sock is non block and there aren't enough datagrams...
2258	 */
2259	if (err != -EAGAIN) {
2260		/*
2261		 * ... or  if recvmsg returns an error after we
2262		 * received some datagrams, where we record the
2263		 * error to return on the next call or if the
2264		 * app asks about it using getsockopt(SO_ERROR).
2265		 */
2266		sock->sk->sk_err = -err;
2267	}
2268out_put:
2269	fput_light(sock->file, fput_needed);
2270
2271	return datagrams;
2272}
2273
2274SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275		unsigned int, vlen, unsigned int, flags,
2276		struct timespec __user *, timeout)
 
2277{
2278	int datagrams;
2279	struct timespec timeout_sys;
 
 
 
 
 
 
2280
2281	if (flags & MSG_CMSG_COMPAT)
2282		return -EINVAL;
2283
2284	if (!timeout)
2285		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286
2287	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288		return -EFAULT;
2289
2290	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
2291
2292	if (datagrams > 0 &&
2293	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294		datagrams = -EFAULT;
2295
2296	return datagrams;
2297}
2298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299#ifdef __ARCH_WANT_SYS_SOCKETCALL
2300/* Argument list sizes for sys_socketcall */
2301#define AL(x) ((x) * sizeof(unsigned long))
2302static const unsigned char nargs[21] = {
2303	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306	AL(4), AL(5), AL(4)
2307};
2308
2309#undef AL
2310
2311/*
2312 *	System call vectors.
2313 *
2314 *	Argument checking cleaned up. Saved 20% in size.
2315 *  This function doesn't need to set the kernel lock because
2316 *  it is set by the callees.
2317 */
2318
2319SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320{
2321	unsigned long a[AUDITSC_ARGS];
2322	unsigned long a0, a1;
2323	int err;
2324	unsigned int len;
2325
2326	if (call < 1 || call > SYS_SENDMMSG)
2327		return -EINVAL;
 
2328
2329	len = nargs[call];
2330	if (len > sizeof(a))
2331		return -EINVAL;
2332
2333	/* copy_from_user should be SMP safe. */
2334	if (copy_from_user(a, args, len))
2335		return -EFAULT;
2336
2337	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2338	if (err)
2339		return err;
2340
2341	a0 = a[0];
2342	a1 = a[1];
2343
2344	switch (call) {
2345	case SYS_SOCKET:
2346		err = sys_socket(a0, a1, a[2]);
2347		break;
2348	case SYS_BIND:
2349		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2350		break;
2351	case SYS_CONNECT:
2352		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2353		break;
2354	case SYS_LISTEN:
2355		err = sys_listen(a0, a1);
2356		break;
2357	case SYS_ACCEPT:
2358		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359				  (int __user *)a[2], 0);
2360		break;
2361	case SYS_GETSOCKNAME:
2362		err =
2363		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2364				    (int __user *)a[2]);
2365		break;
2366	case SYS_GETPEERNAME:
2367		err =
2368		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2369				    (int __user *)a[2]);
2370		break;
2371	case SYS_SOCKETPAIR:
2372		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2373		break;
2374	case SYS_SEND:
2375		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2376		break;
2377	case SYS_SENDTO:
2378		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2379				 (struct sockaddr __user *)a[4], a[5]);
2380		break;
2381	case SYS_RECV:
2382		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2383		break;
2384	case SYS_RECVFROM:
2385		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2386				   (struct sockaddr __user *)a[4],
2387				   (int __user *)a[5]);
2388		break;
2389	case SYS_SHUTDOWN:
2390		err = sys_shutdown(a0, a1);
2391		break;
2392	case SYS_SETSOCKOPT:
2393		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2394		break;
2395	case SYS_GETSOCKOPT:
2396		err =
2397		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2398				   (int __user *)a[4]);
2399		break;
2400	case SYS_SENDMSG:
2401		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2402		break;
2403	case SYS_SENDMMSG:
2404		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2405		break;
2406	case SYS_RECVMSG:
2407		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2408		break;
2409	case SYS_RECVMMSG:
2410		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2411				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2412		break;
2413	case SYS_ACCEPT4:
2414		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2415				  (int __user *)a[2], a[3]);
2416		break;
2417	default:
2418		err = -EINVAL;
2419		break;
2420	}
2421	return err;
2422}
2423
2424#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2425
2426/**
2427 *	sock_register - add a socket protocol handler
2428 *	@ops: description of protocol
2429 *
2430 *	This function is called by a protocol handler that wants to
2431 *	advertise its address family, and have it linked into the
2432 *	socket interface. The value ops->family corresponds to the
2433 *	socket system call protocol family.
2434 */
2435int sock_register(const struct net_proto_family *ops)
2436{
2437	int err;
2438
2439	if (ops->family >= NPROTO) {
2440		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2441		return -ENOBUFS;
2442	}
2443
2444	spin_lock(&net_family_lock);
2445	if (rcu_dereference_protected(net_families[ops->family],
2446				      lockdep_is_held(&net_family_lock)))
2447		err = -EEXIST;
2448	else {
2449		rcu_assign_pointer(net_families[ops->family], ops);
2450		err = 0;
2451	}
2452	spin_unlock(&net_family_lock);
2453
2454	pr_info("NET: Registered protocol family %d\n", ops->family);
2455	return err;
2456}
2457EXPORT_SYMBOL(sock_register);
2458
2459/**
2460 *	sock_unregister - remove a protocol handler
2461 *	@family: protocol family to remove
2462 *
2463 *	This function is called by a protocol handler that wants to
2464 *	remove its address family, and have it unlinked from the
2465 *	new socket creation.
2466 *
2467 *	If protocol handler is a module, then it can use module reference
2468 *	counts to protect against new references. If protocol handler is not
2469 *	a module then it needs to provide its own protection in
2470 *	the ops->create routine.
2471 */
2472void sock_unregister(int family)
2473{
2474	BUG_ON(family < 0 || family >= NPROTO);
2475
2476	spin_lock(&net_family_lock);
2477	RCU_INIT_POINTER(net_families[family], NULL);
2478	spin_unlock(&net_family_lock);
2479
2480	synchronize_rcu();
2481
2482	pr_info("NET: Unregistered protocol family %d\n", family);
2483}
2484EXPORT_SYMBOL(sock_unregister);
2485
 
 
 
 
 
2486static int __init sock_init(void)
2487{
2488	int err;
2489	/*
2490	 *      Initialize the network sysctl infrastructure.
2491	 */
2492	err = net_sysctl_init();
2493	if (err)
2494		goto out;
2495
2496	/*
2497	 *      Initialize skbuff SLAB cache
2498	 */
2499	skb_init();
2500
2501	/*
2502	 *      Initialize the protocols module.
2503	 */
2504
2505	init_inodecache();
2506
2507	err = register_filesystem(&sock_fs_type);
2508	if (err)
2509		goto out_fs;
2510	sock_mnt = kern_mount(&sock_fs_type);
2511	if (IS_ERR(sock_mnt)) {
2512		err = PTR_ERR(sock_mnt);
2513		goto out_mount;
2514	}
2515
2516	/* The real protocol initialization is performed in later initcalls.
2517	 */
2518
2519#ifdef CONFIG_NETFILTER
2520	err = netfilter_init();
2521	if (err)
2522		goto out;
2523#endif
2524
2525	ptp_classifier_init();
2526
2527out:
2528	return err;
2529
2530out_mount:
2531	unregister_filesystem(&sock_fs_type);
2532out_fs:
2533	goto out;
2534}
2535
2536core_initcall(sock_init);	/* early initcall */
2537
2538#ifdef CONFIG_PROC_FS
2539void socket_seq_show(struct seq_file *seq)
2540{
2541	int cpu;
2542	int counter = 0;
2543
2544	for_each_possible_cpu(cpu)
2545	    counter += per_cpu(sockets_in_use, cpu);
2546
2547	/* It can be negative, by the way. 8) */
2548	if (counter < 0)
2549		counter = 0;
2550
2551	seq_printf(seq, "sockets: used %d\n", counter);
2552}
2553#endif				/* CONFIG_PROC_FS */
2554
2555#ifdef CONFIG_COMPAT
2556static int do_siocgstamp(struct net *net, struct socket *sock,
2557			 unsigned int cmd, void __user *up)
 
 
 
 
 
 
 
2558{
2559	mm_segment_t old_fs = get_fs();
2560	struct timeval ktv;
2561	int err;
2562
2563	set_fs(KERNEL_DS);
2564	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2565	set_fs(old_fs);
2566	if (!err)
2567		err = compat_put_timeval(&ktv, up);
2568
2569	return err;
2570}
2571
2572static int do_siocgstampns(struct net *net, struct socket *sock,
2573			   unsigned int cmd, void __user *up)
2574{
2575	mm_segment_t old_fs = get_fs();
2576	struct timespec kts;
2577	int err;
2578
2579	set_fs(KERNEL_DS);
2580	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2581	set_fs(old_fs);
2582	if (!err)
2583		err = compat_put_timespec(&kts, up);
2584
2585	return err;
2586}
2587
2588static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2589{
2590	struct ifreq __user *uifr;
2591	int err;
2592
2593	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2594	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2595		return -EFAULT;
2596
2597	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2598	if (err)
2599		return err;
2600
2601	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2602		return -EFAULT;
2603
2604	return 0;
2605}
2606
2607static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2608{
2609	struct compat_ifconf ifc32;
2610	struct ifconf ifc;
2611	struct ifconf __user *uifc;
2612	struct compat_ifreq __user *ifr32;
2613	struct ifreq __user *ifr;
2614	unsigned int i, j;
2615	int err;
2616
2617	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2618		return -EFAULT;
2619
2620	memset(&ifc, 0, sizeof(ifc));
2621	if (ifc32.ifcbuf == 0) {
2622		ifc32.ifc_len = 0;
2623		ifc.ifc_len = 0;
2624		ifc.ifc_req = NULL;
2625		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2626	} else {
2627		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2628			sizeof(struct ifreq);
2629		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2630		ifc.ifc_len = len;
2631		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2632		ifr32 = compat_ptr(ifc32.ifcbuf);
2633		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2634			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2635				return -EFAULT;
2636			ifr++;
2637			ifr32++;
2638		}
2639	}
2640	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2641		return -EFAULT;
2642
2643	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2644	if (err)
2645		return err;
2646
2647	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2648		return -EFAULT;
2649
2650	ifr = ifc.ifc_req;
2651	ifr32 = compat_ptr(ifc32.ifcbuf);
2652	for (i = 0, j = 0;
2653	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2654	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2655		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2656			return -EFAULT;
2657		ifr32++;
2658		ifr++;
2659	}
2660
2661	if (ifc32.ifcbuf == 0) {
2662		/* Translate from 64-bit structure multiple to
2663		 * a 32-bit one.
2664		 */
2665		i = ifc.ifc_len;
2666		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2667		ifc32.ifc_len = i;
2668	} else {
2669		ifc32.ifc_len = i;
2670	}
2671	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2672		return -EFAULT;
2673
2674	return 0;
2675}
 
2676
2677static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2678{
2679	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2680	bool convert_in = false, convert_out = false;
2681	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2682	struct ethtool_rxnfc __user *rxnfc;
2683	struct ifreq __user *ifr;
2684	u32 rule_cnt = 0, actual_rule_cnt;
2685	u32 ethcmd;
2686	u32 data;
2687	int ret;
2688
2689	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2690		return -EFAULT;
2691
2692	compat_rxnfc = compat_ptr(data);
2693
2694	if (get_user(ethcmd, &compat_rxnfc->cmd))
2695		return -EFAULT;
2696
2697	/* Most ethtool structures are defined without padding.
2698	 * Unfortunately struct ethtool_rxnfc is an exception.
2699	 */
2700	switch (ethcmd) {
2701	default:
2702		break;
2703	case ETHTOOL_GRXCLSRLALL:
2704		/* Buffer size is variable */
2705		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2706			return -EFAULT;
2707		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2708			return -ENOMEM;
2709		buf_size += rule_cnt * sizeof(u32);
2710		/* fall through */
2711	case ETHTOOL_GRXRINGS:
2712	case ETHTOOL_GRXCLSRLCNT:
2713	case ETHTOOL_GRXCLSRULE:
2714	case ETHTOOL_SRXCLSRLINS:
2715		convert_out = true;
2716		/* fall through */
2717	case ETHTOOL_SRXCLSRLDEL:
2718		buf_size += sizeof(struct ethtool_rxnfc);
2719		convert_in = true;
2720		break;
2721	}
2722
2723	ifr = compat_alloc_user_space(buf_size);
2724	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2725
2726	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2727		return -EFAULT;
2728
2729	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2730		     &ifr->ifr_ifru.ifru_data))
2731		return -EFAULT;
2732
2733	if (convert_in) {
2734		/* We expect there to be holes between fs.m_ext and
2735		 * fs.ring_cookie and at the end of fs, but nowhere else.
2736		 */
2737		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2738			     sizeof(compat_rxnfc->fs.m_ext) !=
2739			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2740			     sizeof(rxnfc->fs.m_ext));
2741		BUILD_BUG_ON(
2742			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2743			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2744			offsetof(struct ethtool_rxnfc, fs.location) -
2745			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2746
2747		if (copy_in_user(rxnfc, compat_rxnfc,
2748				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2749				 (void __user *)rxnfc) ||
2750		    copy_in_user(&rxnfc->fs.ring_cookie,
2751				 &compat_rxnfc->fs.ring_cookie,
2752				 (void __user *)(&rxnfc->fs.location + 1) -
2753				 (void __user *)&rxnfc->fs.ring_cookie) ||
2754		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2755				 sizeof(rxnfc->rule_cnt)))
2756			return -EFAULT;
2757	}
2758
2759	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2760	if (ret)
2761		return ret;
2762
2763	if (convert_out) {
2764		if (copy_in_user(compat_rxnfc, rxnfc,
2765				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2766				 (const void __user *)rxnfc) ||
2767		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2768				 &rxnfc->fs.ring_cookie,
2769				 (const void __user *)(&rxnfc->fs.location + 1) -
2770				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2771		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2772				 sizeof(rxnfc->rule_cnt)))
2773			return -EFAULT;
2774
2775		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2776			/* As an optimisation, we only copy the actual
2777			 * number of rules that the underlying
2778			 * function returned.  Since Mallory might
2779			 * change the rule count in user memory, we
2780			 * check that it is less than the rule count
2781			 * originally given (as the user buffer size),
2782			 * which has been range-checked.
2783			 */
2784			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2785				return -EFAULT;
2786			if (actual_rule_cnt < rule_cnt)
2787				rule_cnt = actual_rule_cnt;
2788			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2789					 &rxnfc->rule_locs[0],
2790					 rule_cnt * sizeof(u32)))
2791				return -EFAULT;
2792		}
2793	}
2794
2795	return 0;
2796}
 
2797
 
2798static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2799{
2800	void __user *uptr;
2801	compat_uptr_t uptr32;
2802	struct ifreq __user *uifr;
 
 
2803
2804	uifr = compat_alloc_user_space(sizeof(*uifr));
2805	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806		return -EFAULT;
2807
2808	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2809		return -EFAULT;
2810
2811	uptr = compat_ptr(uptr32);
 
2812
2813	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2814		return -EFAULT;
2815
2816	return dev_ioctl(net, SIOCWANDEV, uifr);
2817}
2818
2819static int bond_ioctl(struct net *net, unsigned int cmd,
2820			 struct compat_ifreq __user *ifr32)
2821{
2822	struct ifreq kifr;
2823	mm_segment_t old_fs;
2824	int err;
2825
2826	switch (cmd) {
2827	case SIOCBONDENSLAVE:
2828	case SIOCBONDRELEASE:
2829	case SIOCBONDSETHWADDR:
2830	case SIOCBONDCHANGEACTIVE:
2831		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2832			return -EFAULT;
2833
2834		old_fs = get_fs();
2835		set_fs(KERNEL_DS);
2836		err = dev_ioctl(net, cmd,
2837				(struct ifreq __user __force *) &kifr);
2838		set_fs(old_fs);
2839
2840		return err;
2841	default:
2842		return -ENOIOCTLCMD;
2843	}
 
2844}
2845
2846/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2847static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2848				 struct compat_ifreq __user *u_ifreq32)
2849{
2850	struct ifreq __user *u_ifreq64;
2851	char tmp_buf[IFNAMSIZ];
2852	void __user *data64;
2853	u32 data32;
2854
2855	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2856			   IFNAMSIZ))
2857		return -EFAULT;
2858	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2859		return -EFAULT;
2860	data64 = compat_ptr(data32);
2861
2862	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2863
2864	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2865			 IFNAMSIZ))
2866		return -EFAULT;
2867	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2868		return -EFAULT;
2869
2870	return dev_ioctl(net, cmd, u_ifreq64);
2871}
2872
2873static int dev_ifsioc(struct net *net, struct socket *sock,
2874			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2875{
2876	struct ifreq __user *uifr;
2877	int err;
2878
2879	uifr = compat_alloc_user_space(sizeof(*uifr));
2880	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2881		return -EFAULT;
2882
2883	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2884
2885	if (!err) {
2886		switch (cmd) {
2887		case SIOCGIFFLAGS:
2888		case SIOCGIFMETRIC:
2889		case SIOCGIFMTU:
2890		case SIOCGIFMEM:
2891		case SIOCGIFHWADDR:
2892		case SIOCGIFINDEX:
2893		case SIOCGIFADDR:
2894		case SIOCGIFBRDADDR:
2895		case SIOCGIFDSTADDR:
2896		case SIOCGIFNETMASK:
2897		case SIOCGIFPFLAGS:
2898		case SIOCGIFTXQLEN:
2899		case SIOCGMIIPHY:
2900		case SIOCGMIIREG:
2901			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2902				err = -EFAULT;
2903			break;
2904		}
2905	}
2906	return err;
2907}
2908
2909static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2910			struct compat_ifreq __user *uifr32)
2911{
2912	struct ifreq ifr;
2913	struct compat_ifmap __user *uifmap32;
2914	mm_segment_t old_fs;
2915	int err;
2916
2917	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2918	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2919	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2920	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2921	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2922	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2923	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2924	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2925	if (err)
2926		return -EFAULT;
 
2927
2928	old_fs = get_fs();
2929	set_fs(KERNEL_DS);
2930	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2931	set_fs(old_fs);
2932
2933	if (cmd == SIOCGIFMAP && !err) {
2934		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2935		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2936		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2937		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2938		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2939		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2940		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2941		if (err)
2942			err = -EFAULT;
2943	}
2944	return err;
2945}
2946
2947struct rtentry32 {
2948	u32		rt_pad1;
2949	struct sockaddr rt_dst;         /* target address               */
2950	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2951	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2952	unsigned short	rt_flags;
2953	short		rt_pad2;
2954	u32		rt_pad3;
2955	unsigned char	rt_tos;
2956	unsigned char	rt_class;
2957	short		rt_pad4;
2958	short		rt_metric;      /* +1 for binary compatibility! */
2959	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2960	u32		rt_mtu;         /* per route MTU/Window         */
2961	u32		rt_window;      /* Window clamping              */
2962	unsigned short  rt_irtt;        /* Initial RTT                  */
2963};
2964
2965struct in6_rtmsg32 {
2966	struct in6_addr		rtmsg_dst;
2967	struct in6_addr		rtmsg_src;
2968	struct in6_addr		rtmsg_gateway;
2969	u32			rtmsg_type;
2970	u16			rtmsg_dst_len;
2971	u16			rtmsg_src_len;
2972	u32			rtmsg_metric;
2973	u32			rtmsg_info;
2974	u32			rtmsg_flags;
2975	s32			rtmsg_ifindex;
2976};
2977
2978static int routing_ioctl(struct net *net, struct socket *sock,
2979			 unsigned int cmd, void __user *argp)
2980{
2981	int ret;
2982	void *r = NULL;
2983	struct in6_rtmsg r6;
2984	struct rtentry r4;
2985	char devname[16];
2986	u32 rtdev;
2987	mm_segment_t old_fs = get_fs();
2988
2989	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2990		struct in6_rtmsg32 __user *ur6 = argp;
2991		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2992			3 * sizeof(struct in6_addr));
2993		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2994		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2995		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2996		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2997		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2998		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2999		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3000
3001		r = (void *) &r6;
3002	} else { /* ipv4 */
3003		struct rtentry32 __user *ur4 = argp;
3004		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3005					3 * sizeof(struct sockaddr));
3006		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3007		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3008		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3009		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3010		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3011		ret |= get_user(rtdev, &(ur4->rt_dev));
3012		if (rtdev) {
3013			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3014			r4.rt_dev = (char __user __force *)devname;
3015			devname[15] = 0;
3016		} else
3017			r4.rt_dev = NULL;
3018
3019		r = (void *) &r4;
3020	}
3021
3022	if (ret) {
3023		ret = -EFAULT;
3024		goto out;
3025	}
3026
3027	set_fs(KERNEL_DS);
3028	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3029	set_fs(old_fs);
3030
3031out:
3032	return ret;
3033}
3034
3035/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3036 * for some operations; this forces use of the newer bridge-utils that
3037 * use compatible ioctls
3038 */
3039static int old_bridge_ioctl(compat_ulong_t __user *argp)
3040{
3041	compat_ulong_t tmp;
3042
3043	if (get_user(tmp, argp))
3044		return -EFAULT;
3045	if (tmp == BRCTL_GET_VERSION)
3046		return BRCTL_VERSION + 1;
3047	return -EINVAL;
3048}
3049
3050static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3051			 unsigned int cmd, unsigned long arg)
3052{
3053	void __user *argp = compat_ptr(arg);
3054	struct sock *sk = sock->sk;
3055	struct net *net = sock_net(sk);
 
3056
3057	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3058		return compat_ifr_data_ioctl(net, cmd, argp);
3059
3060	switch (cmd) {
3061	case SIOCSIFBR:
3062	case SIOCGIFBR:
3063		return old_bridge_ioctl(argp);
3064	case SIOCGIFNAME:
3065		return dev_ifname32(net, argp);
3066	case SIOCGIFCONF:
3067		return dev_ifconf(net, argp);
3068	case SIOCETHTOOL:
3069		return ethtool_ioctl(net, argp);
3070	case SIOCWANDEV:
3071		return compat_siocwandev(net, argp);
3072	case SIOCGIFMAP:
3073	case SIOCSIFMAP:
3074		return compat_sioc_ifmap(net, cmd, argp);
3075	case SIOCBONDENSLAVE:
3076	case SIOCBONDRELEASE:
3077	case SIOCBONDSETHWADDR:
3078	case SIOCBONDCHANGEACTIVE:
3079		return bond_ioctl(net, cmd, argp);
3080	case SIOCADDRT:
3081	case SIOCDELRT:
3082		return routing_ioctl(net, sock, cmd, argp);
3083	case SIOCGSTAMP:
3084		return do_siocgstamp(net, sock, cmd, argp);
3085	case SIOCGSTAMPNS:
3086		return do_siocgstampns(net, sock, cmd, argp);
3087	case SIOCBONDSLAVEINFOQUERY:
3088	case SIOCBONDINFOQUERY:
3089	case SIOCSHWTSTAMP:
3090	case SIOCGHWTSTAMP:
3091		return compat_ifr_data_ioctl(net, cmd, argp);
3092
3093	case FIOSETOWN:
3094	case SIOCSPGRP:
3095	case FIOGETOWN:
3096	case SIOCGPGRP:
3097	case SIOCBRADDBR:
3098	case SIOCBRDELBR:
3099	case SIOCGIFVLAN:
3100	case SIOCSIFVLAN:
3101	case SIOCADDDLCI:
3102	case SIOCDELDLCI:
 
 
 
 
3103		return sock_ioctl(file, cmd, arg);
3104
3105	case SIOCGIFFLAGS:
3106	case SIOCSIFFLAGS:
 
 
3107	case SIOCGIFMETRIC:
3108	case SIOCSIFMETRIC:
3109	case SIOCGIFMTU:
3110	case SIOCSIFMTU:
3111	case SIOCGIFMEM:
3112	case SIOCSIFMEM:
3113	case SIOCGIFHWADDR:
3114	case SIOCSIFHWADDR:
3115	case SIOCADDMULTI:
3116	case SIOCDELMULTI:
3117	case SIOCGIFINDEX:
3118	case SIOCGIFADDR:
3119	case SIOCSIFADDR:
3120	case SIOCSIFHWBROADCAST:
3121	case SIOCDIFADDR:
3122	case SIOCGIFBRDADDR:
3123	case SIOCSIFBRDADDR:
3124	case SIOCGIFDSTADDR:
3125	case SIOCSIFDSTADDR:
3126	case SIOCGIFNETMASK:
3127	case SIOCSIFNETMASK:
3128	case SIOCSIFPFLAGS:
3129	case SIOCGIFPFLAGS:
3130	case SIOCGIFTXQLEN:
3131	case SIOCSIFTXQLEN:
3132	case SIOCBRADDIF:
3133	case SIOCBRDELIF:
 
3134	case SIOCSIFNAME:
3135	case SIOCGMIIPHY:
3136	case SIOCGMIIREG:
3137	case SIOCSMIIREG:
3138		return dev_ifsioc(net, sock, cmd, argp);
3139
 
 
3140	case SIOCSARP:
3141	case SIOCGARP:
3142	case SIOCDARP:
 
 
3143	case SIOCATMARK:
3144		return sock_do_ioctl(net, sock, cmd, arg);
3145	}
3146
3147	return -ENOIOCTLCMD;
3148}
3149
3150static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3151			      unsigned long arg)
3152{
3153	struct socket *sock = file->private_data;
 
3154	int ret = -ENOIOCTLCMD;
3155	struct sock *sk;
3156	struct net *net;
3157
3158	sk = sock->sk;
3159	net = sock_net(sk);
3160
3161	if (sock->ops->compat_ioctl)
3162		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3163
3164	if (ret == -ENOIOCTLCMD &&
3165	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3166		ret = compat_wext_handle_ioctl(net, cmd, arg);
3167
3168	if (ret == -ENOIOCTLCMD)
3169		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3170
3171	return ret;
3172}
3173#endif
3174
 
 
 
 
 
 
 
 
 
3175int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3176{
3177	return sock->ops->bind(sock, addr, addrlen);
 
 
 
 
 
3178}
3179EXPORT_SYMBOL(kernel_bind);
3180
 
 
 
 
 
 
 
 
3181int kernel_listen(struct socket *sock, int backlog)
3182{
3183	return sock->ops->listen(sock, backlog);
3184}
3185EXPORT_SYMBOL(kernel_listen);
3186
 
 
 
 
 
 
 
 
 
 
 
3187int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3188{
3189	struct sock *sk = sock->sk;
 
 
 
 
 
3190	int err;
3191
3192	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3193			       newsock);
3194	if (err < 0)
3195		goto done;
3196
3197	err = sock->ops->accept(sock, *newsock, flags);
3198	if (err < 0) {
3199		sock_release(*newsock);
3200		*newsock = NULL;
3201		goto done;
3202	}
3203
3204	(*newsock)->ops = sock->ops;
3205	__module_get((*newsock)->ops->owner);
3206
3207done:
3208	return err;
3209}
3210EXPORT_SYMBOL(kernel_accept);
3211
 
 
 
 
 
 
 
 
 
 
 
 
 
3212int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3213		   int flags)
3214{
3215	return sock->ops->connect(sock, addr, addrlen, flags);
 
 
 
 
 
3216}
3217EXPORT_SYMBOL(kernel_connect);
3218
3219int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3220			 int *addrlen)
 
 
 
 
 
 
 
 
3221{
3222	return sock->ops->getname(sock, addr, addrlen, 0);
3223}
3224EXPORT_SYMBOL(kernel_getsockname);
3225
3226int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3227			 int *addrlen)
 
 
 
 
 
 
 
 
3228{
3229	return sock->ops->getname(sock, addr, addrlen, 1);
3230}
3231EXPORT_SYMBOL(kernel_getpeername);
3232
3233int kernel_getsockopt(struct socket *sock, int level, int optname,
3234			char *optval, int *optlen)
3235{
3236	mm_segment_t oldfs = get_fs();
3237	char __user *uoptval;
3238	int __user *uoptlen;
3239	int err;
3240
3241	uoptval = (char __user __force *) optval;
3242	uoptlen = (int __user __force *) optlen;
3243
3244	set_fs(KERNEL_DS);
3245	if (level == SOL_SOCKET)
3246		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3247	else
3248		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3249					    uoptlen);
3250	set_fs(oldfs);
3251	return err;
3252}
3253EXPORT_SYMBOL(kernel_getsockopt);
3254
3255int kernel_setsockopt(struct socket *sock, int level, int optname,
3256			char *optval, unsigned int optlen)
3257{
3258	mm_segment_t oldfs = get_fs();
3259	char __user *uoptval;
3260	int err;
3261
3262	uoptval = (char __user __force *) optval;
3263
3264	set_fs(KERNEL_DS);
3265	if (level == SOL_SOCKET)
3266		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3267	else
3268		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3269					    optlen);
3270	set_fs(oldfs);
3271	return err;
3272}
3273EXPORT_SYMBOL(kernel_setsockopt);
3274
3275int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3276		    size_t size, int flags)
3277{
3278	if (sock->ops->sendpage)
3279		return sock->ops->sendpage(sock, page, offset, size, flags);
3280
3281	return sock_no_sendpage(sock, page, offset, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282}
3283EXPORT_SYMBOL(kernel_sendpage);
3284
3285int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3286{
3287	mm_segment_t oldfs = get_fs();
3288	int err;
3289
3290	set_fs(KERNEL_DS);
3291	err = sock->ops->ioctl(sock, cmd, arg);
3292	set_fs(oldfs);
3293
3294	return err;
3295}
3296EXPORT_SYMBOL(kernel_sock_ioctl);
3297
3298int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3299{
3300	return sock->ops->shutdown(sock, how);
3301}
3302EXPORT_SYMBOL(kernel_sock_shutdown);