Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/splice.h>
61#include <linux/net.h>
62#include <linux/interrupt.h>
63#include <linux/thread_info.h>
64#include <linux/rcupdate.h>
65#include <linux/netdevice.h>
66#include <linux/proc_fs.h>
67#include <linux/seq_file.h>
68#include <linux/mutex.h>
69#include <linux/if_bridge.h>
70#include <linux/if_vlan.h>
71#include <linux/ptp_classify.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/cache.h>
75#include <linux/module.h>
76#include <linux/highmem.h>
77#include <linux/mount.h>
78#include <linux/pseudo_fs.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/compat.h>
82#include <linux/kmod.h>
83#include <linux/audit.h>
84#include <linux/wireless.h>
85#include <linux/nsproxy.h>
86#include <linux/magic.h>
87#include <linux/slab.h>
88#include <linux/xattr.h>
89#include <linux/nospec.h>
90#include <linux/indirect_call_wrapper.h>
91#include <linux/io_uring/net.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/termios.h>
107#include <linux/sockios.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110#include <linux/ptp_clock_kernel.h>
111#include <trace/events/sock.h>
112
113#ifdef CONFIG_NET_RX_BUSY_POLL
114unsigned int sysctl_net_busy_read __read_mostly;
115unsigned int sysctl_net_busy_poll __read_mostly;
116#endif
117
118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134static void sock_splice_eof(struct file *file);
135
136#ifdef CONFIG_PROC_FS
137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138{
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144}
145#else
146#define sock_show_fdinfo NULL
147#endif
148
149/*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
158 .poll = sock_poll,
159 .unlocked_ioctl = sock_ioctl,
160#ifdef CONFIG_COMPAT
161 .compat_ioctl = compat_sock_ioctl,
162#endif
163 .uring_cmd = io_uring_cmd_sock,
164 .mmap = sock_mmap,
165 .release = sock_close,
166 .fasync = sock_fasync,
167 .splice_write = splice_to_socket,
168 .splice_read = sock_splice_read,
169 .splice_eof = sock_splice_eof,
170 .show_fdinfo = sock_show_fdinfo,
171};
172
173static const char * const pf_family_names[] = {
174 [PF_UNSPEC] = "PF_UNSPEC",
175 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
176 [PF_INET] = "PF_INET",
177 [PF_AX25] = "PF_AX25",
178 [PF_IPX] = "PF_IPX",
179 [PF_APPLETALK] = "PF_APPLETALK",
180 [PF_NETROM] = "PF_NETROM",
181 [PF_BRIDGE] = "PF_BRIDGE",
182 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_X25] = "PF_X25",
184 [PF_INET6] = "PF_INET6",
185 [PF_ROSE] = "PF_ROSE",
186 [PF_DECnet] = "PF_DECnet",
187 [PF_NETBEUI] = "PF_NETBEUI",
188 [PF_SECURITY] = "PF_SECURITY",
189 [PF_KEY] = "PF_KEY",
190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET] = "PF_PACKET",
192 [PF_ASH] = "PF_ASH",
193 [PF_ECONET] = "PF_ECONET",
194 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_RDS] = "PF_RDS",
196 [PF_SNA] = "PF_SNA",
197 [PF_IRDA] = "PF_IRDA",
198 [PF_PPPOX] = "PF_PPPOX",
199 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_LLC] = "PF_LLC",
201 [PF_IB] = "PF_IB",
202 [PF_MPLS] = "PF_MPLS",
203 [PF_CAN] = "PF_CAN",
204 [PF_TIPC] = "PF_TIPC",
205 [PF_BLUETOOTH] = "PF_BLUETOOTH",
206 [PF_IUCV] = "PF_IUCV",
207 [PF_RXRPC] = "PF_RXRPC",
208 [PF_ISDN] = "PF_ISDN",
209 [PF_PHONET] = "PF_PHONET",
210 [PF_IEEE802154] = "PF_IEEE802154",
211 [PF_CAIF] = "PF_CAIF",
212 [PF_ALG] = "PF_ALG",
213 [PF_NFC] = "PF_NFC",
214 [PF_VSOCK] = "PF_VSOCK",
215 [PF_KCM] = "PF_KCM",
216 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_SMC] = "PF_SMC",
218 [PF_XDP] = "PF_XDP",
219 [PF_MCTP] = "PF_MCTP",
220};
221
222/*
223 * The protocol list. Each protocol is registered in here.
224 */
225
226static DEFINE_SPINLOCK(net_family_lock);
227static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228
229/*
230 * Support routines.
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
233 */
234
235/**
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
240 *
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
244 */
245
246int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247{
248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 return -EINVAL;
250 if (ulen == 0)
251 return 0;
252 if (copy_from_user(kaddr, uaddr, ulen))
253 return -EFAULT;
254 return audit_sockaddr(ulen, kaddr);
255}
256
257/**
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
263 *
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
268 * accessible.
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
272 */
273
274static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 void __user *uaddr, int __user *ulen)
276{
277 int err;
278 int len;
279
280 BUG_ON(klen > sizeof(struct sockaddr_storage));
281 err = get_user(len, ulen);
282 if (err)
283 return err;
284 if (len > klen)
285 len = klen;
286 if (len < 0)
287 return -EINVAL;
288 if (len) {
289 if (audit_sockaddr(klen, kaddr))
290 return -ENOMEM;
291 if (copy_to_user(uaddr, kaddr, len))
292 return -EFAULT;
293 }
294 /*
295 * "fromlen shall refer to the value before truncation.."
296 * 1003.1g
297 */
298 return __put_user(klen, ulen);
299}
300
301static struct kmem_cache *sock_inode_cachep __ro_after_init;
302
303static struct inode *sock_alloc_inode(struct super_block *sb)
304{
305 struct socket_alloc *ei;
306
307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 if (!ei)
309 return NULL;
310 init_waitqueue_head(&ei->socket.wq.wait);
311 ei->socket.wq.fasync_list = NULL;
312 ei->socket.wq.flags = 0;
313
314 ei->socket.state = SS_UNCONNECTED;
315 ei->socket.flags = 0;
316 ei->socket.ops = NULL;
317 ei->socket.sk = NULL;
318 ei->socket.file = NULL;
319
320 return &ei->vfs_inode;
321}
322
323static void sock_free_inode(struct inode *inode)
324{
325 struct socket_alloc *ei;
326
327 ei = container_of(inode, struct socket_alloc, vfs_inode);
328 kmem_cache_free(sock_inode_cachep, ei);
329}
330
331static void init_once(void *foo)
332{
333 struct socket_alloc *ei = (struct socket_alloc *)foo;
334
335 inode_init_once(&ei->vfs_inode);
336}
337
338static void init_inodecache(void)
339{
340 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc),
342 0,
343 (SLAB_HWCACHE_ALIGN |
344 SLAB_RECLAIM_ACCOUNT |
345 SLAB_ACCOUNT),
346 init_once);
347 BUG_ON(sock_inode_cachep == NULL);
348}
349
350static const struct super_operations sockfs_ops = {
351 .alloc_inode = sock_alloc_inode,
352 .free_inode = sock_free_inode,
353 .statfs = simple_statfs,
354};
355
356/*
357 * sockfs_dname() is called from d_path().
358 */
359static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360{
361 return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 d_inode(dentry)->i_ino);
363}
364
365static const struct dentry_operations sockfs_dentry_operations = {
366 .d_dname = sockfs_dname,
367};
368
369static int sockfs_xattr_get(const struct xattr_handler *handler,
370 struct dentry *dentry, struct inode *inode,
371 const char *suffix, void *value, size_t size)
372{
373 if (value) {
374 if (dentry->d_name.len + 1 > size)
375 return -ERANGE;
376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 }
378 return dentry->d_name.len + 1;
379}
380
381#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384
385static const struct xattr_handler sockfs_xattr_handler = {
386 .name = XATTR_NAME_SOCKPROTONAME,
387 .get = sockfs_xattr_get,
388};
389
390static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 struct mnt_idmap *idmap,
392 struct dentry *dentry, struct inode *inode,
393 const char *suffix, const void *value,
394 size_t size, int flags)
395{
396 /* Handled by LSM. */
397 return -EAGAIN;
398}
399
400static const struct xattr_handler sockfs_security_xattr_handler = {
401 .prefix = XATTR_SECURITY_PREFIX,
402 .set = sockfs_security_xattr_set,
403};
404
405static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 &sockfs_xattr_handler,
407 &sockfs_security_xattr_handler,
408 NULL
409};
410
411static int sockfs_init_fs_context(struct fs_context *fc)
412{
413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 if (!ctx)
415 return -ENOMEM;
416 ctx->ops = &sockfs_ops;
417 ctx->dops = &sockfs_dentry_operations;
418 ctx->xattr = sockfs_xattr_handlers;
419 return 0;
420}
421
422static struct vfsmount *sock_mnt __read_mostly;
423
424static struct file_system_type sock_fs_type = {
425 .name = "sockfs",
426 .init_fs_context = sockfs_init_fs_context,
427 .kill_sb = kill_anon_super,
428};
429
430/*
431 * Obtains the first available file descriptor and sets it up for use.
432 *
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
440 *
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
445 */
446
447/**
448 * sock_alloc_file - Bind a &socket to a &file
449 * @sock: socket
450 * @flags: file status flags
451 * @dname: protocol name
452 *
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
455 *
456 * On failure @sock is released, and an ERR pointer is returned.
457 *
458 * This function uses GFP_KERNEL internally.
459 */
460
461struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462{
463 struct file *file;
464
465 if (!dname)
466 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467
468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 O_RDWR | (flags & O_NONBLOCK),
470 &socket_file_ops);
471 if (IS_ERR(file)) {
472 sock_release(sock);
473 return file;
474 }
475
476 file->f_mode |= FMODE_NOWAIT;
477 sock->file = file;
478 file->private_data = sock;
479 stream_open(SOCK_INODE(sock), file);
480 return file;
481}
482EXPORT_SYMBOL(sock_alloc_file);
483
484static int sock_map_fd(struct socket *sock, int flags)
485{
486 struct file *newfile;
487 int fd = get_unused_fd_flags(flags);
488 if (unlikely(fd < 0)) {
489 sock_release(sock);
490 return fd;
491 }
492
493 newfile = sock_alloc_file(sock, flags, NULL);
494 if (!IS_ERR(newfile)) {
495 fd_install(fd, newfile);
496 return fd;
497 }
498
499 put_unused_fd(fd);
500 return PTR_ERR(newfile);
501}
502
503/**
504 * sock_from_file - Return the &socket bounded to @file.
505 * @file: file
506 *
507 * On failure returns %NULL.
508 */
509
510struct socket *sock_from_file(struct file *file)
511{
512 if (likely(file->f_op == &socket_file_ops))
513 return file->private_data; /* set in sock_alloc_file */
514
515 return NULL;
516}
517EXPORT_SYMBOL(sock_from_file);
518
519/**
520 * sockfd_lookup - Go from a file number to its socket slot
521 * @fd: file handle
522 * @err: pointer to an error code return
523 *
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
528 *
529 * On a success the socket object pointer is returned.
530 */
531
532struct socket *sockfd_lookup(int fd, int *err)
533{
534 struct file *file;
535 struct socket *sock;
536
537 file = fget(fd);
538 if (!file) {
539 *err = -EBADF;
540 return NULL;
541 }
542
543 sock = sock_from_file(file);
544 if (!sock) {
545 *err = -ENOTSOCK;
546 fput(file);
547 }
548 return sock;
549}
550EXPORT_SYMBOL(sockfd_lookup);
551
552static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
553 size_t size)
554{
555 ssize_t len;
556 ssize_t used = 0;
557
558 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
559 if (len < 0)
560 return len;
561 used += len;
562 if (buffer) {
563 if (size < used)
564 return -ERANGE;
565 buffer += len;
566 }
567
568 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
569 used += len;
570 if (buffer) {
571 if (size < used)
572 return -ERANGE;
573 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
574 buffer += len;
575 }
576
577 return used;
578}
579
580static int sockfs_setattr(struct mnt_idmap *idmap,
581 struct dentry *dentry, struct iattr *iattr)
582{
583 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
584
585 if (!err && (iattr->ia_valid & ATTR_UID)) {
586 struct socket *sock = SOCKET_I(d_inode(dentry));
587
588 if (sock->sk)
589 sock->sk->sk_uid = iattr->ia_uid;
590 else
591 err = -ENOENT;
592 }
593
594 return err;
595}
596
597static const struct inode_operations sockfs_inode_ops = {
598 .listxattr = sockfs_listxattr,
599 .setattr = sockfs_setattr,
600};
601
602/**
603 * sock_alloc - allocate a socket
604 *
605 * Allocate a new inode and socket object. The two are bound together
606 * and initialised. The socket is then returned. If we are out of inodes
607 * NULL is returned. This functions uses GFP_KERNEL internally.
608 */
609
610struct socket *sock_alloc(void)
611{
612 struct inode *inode;
613 struct socket *sock;
614
615 inode = new_inode_pseudo(sock_mnt->mnt_sb);
616 if (!inode)
617 return NULL;
618
619 sock = SOCKET_I(inode);
620
621 inode->i_ino = get_next_ino();
622 inode->i_mode = S_IFSOCK | S_IRWXUGO;
623 inode->i_uid = current_fsuid();
624 inode->i_gid = current_fsgid();
625 inode->i_op = &sockfs_inode_ops;
626
627 return sock;
628}
629EXPORT_SYMBOL(sock_alloc);
630
631static void __sock_release(struct socket *sock, struct inode *inode)
632{
633 const struct proto_ops *ops = READ_ONCE(sock->ops);
634
635 if (ops) {
636 struct module *owner = ops->owner;
637
638 if (inode)
639 inode_lock(inode);
640 ops->release(sock);
641 sock->sk = NULL;
642 if (inode)
643 inode_unlock(inode);
644 sock->ops = NULL;
645 module_put(owner);
646 }
647
648 if (sock->wq.fasync_list)
649 pr_err("%s: fasync list not empty!\n", __func__);
650
651 if (!sock->file) {
652 iput(SOCK_INODE(sock));
653 return;
654 }
655 sock->file = NULL;
656}
657
658/**
659 * sock_release - close a socket
660 * @sock: socket to close
661 *
662 * The socket is released from the protocol stack if it has a release
663 * callback, and the inode is then released if the socket is bound to
664 * an inode not a file.
665 */
666void sock_release(struct socket *sock)
667{
668 __sock_release(sock, NULL);
669}
670EXPORT_SYMBOL(sock_release);
671
672void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
673{
674 u8 flags = *tx_flags;
675
676 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
677 flags |= SKBTX_HW_TSTAMP;
678
679 /* PTP hardware clocks can provide a free running cycle counter
680 * as a time base for virtual clocks. Tell driver to use the
681 * free running cycle counter for timestamp if socket is bound
682 * to virtual clock.
683 */
684 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
685 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
686 }
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695}
696EXPORT_SYMBOL(__sock_tx_timestamp);
697
698INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
702
703static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
704 int flags)
705{
706 trace_sock_send_length(sk, ret, 0);
707}
708
709static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
710{
711 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
712 inet_sendmsg, sock, msg,
713 msg_data_left(msg));
714 BUG_ON(ret == -EIOCBQUEUED);
715
716 if (trace_sock_send_length_enabled())
717 call_trace_sock_send_length(sock->sk, ret, 0);
718 return ret;
719}
720
721static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
722{
723 int err = security_socket_sendmsg(sock, msg,
724 msg_data_left(msg));
725
726 return err ?: sock_sendmsg_nosec(sock, msg);
727}
728
729/**
730 * sock_sendmsg - send a message through @sock
731 * @sock: socket
732 * @msg: message to send
733 *
734 * Sends @msg through @sock, passing through LSM.
735 * Returns the number of bytes sent, or an error code.
736 */
737int sock_sendmsg(struct socket *sock, struct msghdr *msg)
738{
739 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
740 struct sockaddr_storage address;
741 int save_len = msg->msg_namelen;
742 int ret;
743
744 if (msg->msg_name) {
745 memcpy(&address, msg->msg_name, msg->msg_namelen);
746 msg->msg_name = &address;
747 }
748
749 ret = __sock_sendmsg(sock, msg);
750 msg->msg_name = save_addr;
751 msg->msg_namelen = save_len;
752
753 return ret;
754}
755EXPORT_SYMBOL(sock_sendmsg);
756
757/**
758 * kernel_sendmsg - send a message through @sock (kernel-space)
759 * @sock: socket
760 * @msg: message header
761 * @vec: kernel vec
762 * @num: vec array length
763 * @size: total message data size
764 *
765 * Builds the message data with @vec and sends it through @sock.
766 * Returns the number of bytes sent, or an error code.
767 */
768
769int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 struct kvec *vec, size_t num, size_t size)
771{
772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 return sock_sendmsg(sock, msg);
774}
775EXPORT_SYMBOL(kernel_sendmsg);
776
777/**
778 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
779 * @sk: sock
780 * @msg: message header
781 * @vec: output s/g array
782 * @num: output s/g array length
783 * @size: total message data size
784 *
785 * Builds the message data with @vec and sends it through @sock.
786 * Returns the number of bytes sent, or an error code.
787 * Caller must hold @sk.
788 */
789
790int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 struct kvec *vec, size_t num, size_t size)
792{
793 struct socket *sock = sk->sk_socket;
794 const struct proto_ops *ops = READ_ONCE(sock->ops);
795
796 if (!ops->sendmsg_locked)
797 return sock_no_sendmsg_locked(sk, msg, size);
798
799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800
801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802}
803EXPORT_SYMBOL(kernel_sendmsg_locked);
804
805static bool skb_is_err_queue(const struct sk_buff *skb)
806{
807 /* pkt_type of skbs enqueued on the error queue are set to
808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 * in recvmsg, since skbs received on a local socket will never
810 * have a pkt_type of PACKET_OUTGOING.
811 */
812 return skb->pkt_type == PACKET_OUTGOING;
813}
814
815/* On transmit, software and hardware timestamps are returned independently.
816 * As the two skb clones share the hardware timestamp, which may be updated
817 * before the software timestamp is received, a hardware TX timestamp may be
818 * returned only if there is no software TX timestamp. Ignore false software
819 * timestamps, which may be made in the __sock_recv_timestamp() call when the
820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821 * hardware timestamp.
822 */
823static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824{
825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826}
827
828static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829{
830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 struct net_device *orig_dev;
833 ktime_t hwtstamp;
834
835 rcu_read_lock();
836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 if (orig_dev) {
838 *if_index = orig_dev->ifindex;
839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 } else {
841 hwtstamp = shhwtstamps->hwtstamp;
842 }
843 rcu_read_unlock();
844
845 return hwtstamp;
846}
847
848static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 int if_index)
850{
851 struct scm_ts_pktinfo ts_pktinfo;
852 struct net_device *orig_dev;
853
854 if (!skb_mac_header_was_set(skb))
855 return;
856
857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858
859 if (!if_index) {
860 rcu_read_lock();
861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 if (orig_dev)
863 if_index = orig_dev->ifindex;
864 rcu_read_unlock();
865 }
866 ts_pktinfo.if_index = if_index;
867
868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 sizeof(ts_pktinfo), &ts_pktinfo);
871}
872
873/*
874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875 */
876void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 struct sk_buff *skb)
878{
879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 struct scm_timestamping_internal tss;
882 int empty = 1, false_tstamp = 0;
883 struct skb_shared_hwtstamps *shhwtstamps =
884 skb_hwtstamps(skb);
885 int if_index;
886 ktime_t hwtstamp;
887 u32 tsflags;
888
889 /* Race occurred between timestamp enabling and packet
890 receiving. Fill in the current time for now. */
891 if (need_software_tstamp && skb->tstamp == 0) {
892 __net_timestamp(skb);
893 false_tstamp = 1;
894 }
895
896 if (need_software_tstamp) {
897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 if (new_tstamp) {
899 struct __kernel_sock_timeval tv;
900
901 skb_get_new_timestamp(skb, &tv);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 sizeof(tv), &tv);
904 } else {
905 struct __kernel_old_timeval tv;
906
907 skb_get_timestamp(skb, &tv);
908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 sizeof(tv), &tv);
910 }
911 } else {
912 if (new_tstamp) {
913 struct __kernel_timespec ts;
914
915 skb_get_new_timestampns(skb, &ts);
916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 sizeof(ts), &ts);
918 } else {
919 struct __kernel_old_timespec ts;
920
921 skb_get_timestampns(skb, &ts);
922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 sizeof(ts), &ts);
924 }
925 }
926 }
927
928 memset(&tss, 0, sizeof(tss));
929 tsflags = READ_ONCE(sk->sk_tsflags);
930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
931 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
932 skb_is_err_queue(skb) ||
933 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
934 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
935 empty = 0;
936 if (shhwtstamps &&
937 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
938 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
939 skb_is_err_queue(skb) ||
940 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
941 !skb_is_swtx_tstamp(skb, false_tstamp)) {
942 if_index = 0;
943 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
944 hwtstamp = get_timestamp(sk, skb, &if_index);
945 else
946 hwtstamp = shhwtstamps->hwtstamp;
947
948 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
949 hwtstamp = ptp_convert_timestamp(&hwtstamp,
950 READ_ONCE(sk->sk_bind_phc));
951
952 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
953 empty = 0;
954
955 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
956 !skb_is_err_queue(skb))
957 put_ts_pktinfo(msg, skb, if_index);
958 }
959 }
960 if (!empty) {
961 if (sock_flag(sk, SOCK_TSTAMP_NEW))
962 put_cmsg_scm_timestamping64(msg, &tss);
963 else
964 put_cmsg_scm_timestamping(msg, &tss);
965
966 if (skb_is_err_queue(skb) && skb->len &&
967 SKB_EXT_ERR(skb)->opt_stats)
968 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
969 skb->len, skb->data);
970 }
971}
972EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
973
974#ifdef CONFIG_WIRELESS
975void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
976 struct sk_buff *skb)
977{
978 int ack;
979
980 if (!sock_flag(sk, SOCK_WIFI_STATUS))
981 return;
982 if (!skb->wifi_acked_valid)
983 return;
984
985 ack = skb->wifi_acked;
986
987 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
988}
989EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
990#endif
991
992static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
993 struct sk_buff *skb)
994{
995 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
996 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
997 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
998}
999
1000static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001 struct sk_buff *skb)
1002{
1003 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005 __u32 mark = skb->mark;
1006
1007 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008 }
1009}
1010
1011void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1013{
1014 sock_recv_timestamp(msg, sk, skb);
1015 sock_recv_drops(msg, sk, skb);
1016 sock_recv_mark(msg, sk, skb);
1017}
1018EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1019
1020INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021 size_t, int));
1022INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023 size_t, int));
1024
1025static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1026{
1027 trace_sock_recv_length(sk, ret, flags);
1028}
1029
1030static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031 int flags)
1032{
1033 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034 inet6_recvmsg,
1035 inet_recvmsg, sock, msg,
1036 msg_data_left(msg), flags);
1037 if (trace_sock_recv_length_enabled())
1038 call_trace_sock_recv_length(sock->sk, ret, flags);
1039 return ret;
1040}
1041
1042/**
1043 * sock_recvmsg - receive a message from @sock
1044 * @sock: socket
1045 * @msg: message to receive
1046 * @flags: message flags
1047 *
1048 * Receives @msg from @sock, passing through LSM. Returns the total number
1049 * of bytes received, or an error.
1050 */
1051int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052{
1053 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1054
1055 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1056}
1057EXPORT_SYMBOL(sock_recvmsg);
1058
1059/**
1060 * kernel_recvmsg - Receive a message from a socket (kernel space)
1061 * @sock: The socket to receive the message from
1062 * @msg: Received message
1063 * @vec: Input s/g array for message data
1064 * @num: Size of input s/g array
1065 * @size: Number of bytes to read
1066 * @flags: Message flags (MSG_DONTWAIT, etc...)
1067 *
1068 * On return the msg structure contains the scatter/gather array passed in the
1069 * vec argument. The array is modified so that it consists of the unfilled
1070 * portion of the original array.
1071 *
1072 * The returned value is the total number of bytes received, or an error.
1073 */
1074
1075int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076 struct kvec *vec, size_t num, size_t size, int flags)
1077{
1078 msg->msg_control_is_user = false;
1079 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080 return sock_recvmsg(sock, msg, flags);
1081}
1082EXPORT_SYMBOL(kernel_recvmsg);
1083
1084static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085 struct pipe_inode_info *pipe, size_t len,
1086 unsigned int flags)
1087{
1088 struct socket *sock = file->private_data;
1089 const struct proto_ops *ops;
1090
1091 ops = READ_ONCE(sock->ops);
1092 if (unlikely(!ops->splice_read))
1093 return copy_splice_read(file, ppos, pipe, len, flags);
1094
1095 return ops->splice_read(sock, ppos, pipe, len, flags);
1096}
1097
1098static void sock_splice_eof(struct file *file)
1099{
1100 struct socket *sock = file->private_data;
1101 const struct proto_ops *ops;
1102
1103 ops = READ_ONCE(sock->ops);
1104 if (ops->splice_eof)
1105 ops->splice_eof(sock);
1106}
1107
1108static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1109{
1110 struct file *file = iocb->ki_filp;
1111 struct socket *sock = file->private_data;
1112 struct msghdr msg = {.msg_iter = *to,
1113 .msg_iocb = iocb};
1114 ssize_t res;
1115
1116 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117 msg.msg_flags = MSG_DONTWAIT;
1118
1119 if (iocb->ki_pos != 0)
1120 return -ESPIPE;
1121
1122 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1123 return 0;
1124
1125 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126 *to = msg.msg_iter;
1127 return res;
1128}
1129
1130static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1131{
1132 struct file *file = iocb->ki_filp;
1133 struct socket *sock = file->private_data;
1134 struct msghdr msg = {.msg_iter = *from,
1135 .msg_iocb = iocb};
1136 ssize_t res;
1137
1138 if (iocb->ki_pos != 0)
1139 return -ESPIPE;
1140
1141 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142 msg.msg_flags = MSG_DONTWAIT;
1143
1144 if (sock->type == SOCK_SEQPACKET)
1145 msg.msg_flags |= MSG_EOR;
1146
1147 res = __sock_sendmsg(sock, &msg);
1148 *from = msg.msg_iter;
1149 return res;
1150}
1151
1152/*
1153 * Atomic setting of ioctl hooks to avoid race
1154 * with module unload.
1155 */
1156
1157static DEFINE_MUTEX(br_ioctl_mutex);
1158static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159 unsigned int cmd, struct ifreq *ifr,
1160 void __user *uarg);
1161
1162void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163 unsigned int cmd, struct ifreq *ifr,
1164 void __user *uarg))
1165{
1166 mutex_lock(&br_ioctl_mutex);
1167 br_ioctl_hook = hook;
1168 mutex_unlock(&br_ioctl_mutex);
1169}
1170EXPORT_SYMBOL(brioctl_set);
1171
1172int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173 struct ifreq *ifr, void __user *uarg)
1174{
1175 int err = -ENOPKG;
1176
1177 if (!br_ioctl_hook)
1178 request_module("bridge");
1179
1180 mutex_lock(&br_ioctl_mutex);
1181 if (br_ioctl_hook)
1182 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183 mutex_unlock(&br_ioctl_mutex);
1184
1185 return err;
1186}
1187
1188static DEFINE_MUTEX(vlan_ioctl_mutex);
1189static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190
1191void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192{
1193 mutex_lock(&vlan_ioctl_mutex);
1194 vlan_ioctl_hook = hook;
1195 mutex_unlock(&vlan_ioctl_mutex);
1196}
1197EXPORT_SYMBOL(vlan_ioctl_set);
1198
1199static long sock_do_ioctl(struct net *net, struct socket *sock,
1200 unsigned int cmd, unsigned long arg)
1201{
1202 const struct proto_ops *ops = READ_ONCE(sock->ops);
1203 struct ifreq ifr;
1204 bool need_copyout;
1205 int err;
1206 void __user *argp = (void __user *)arg;
1207 void __user *data;
1208
1209 err = ops->ioctl(sock, cmd, arg);
1210
1211 /*
1212 * If this ioctl is unknown try to hand it down
1213 * to the NIC driver.
1214 */
1215 if (err != -ENOIOCTLCMD)
1216 return err;
1217
1218 if (!is_socket_ioctl_cmd(cmd))
1219 return -ENOTTY;
1220
1221 if (get_user_ifreq(&ifr, &data, argp))
1222 return -EFAULT;
1223 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224 if (!err && need_copyout)
1225 if (put_user_ifreq(&ifr, argp))
1226 return -EFAULT;
1227
1228 return err;
1229}
1230
1231/*
1232 * With an ioctl, arg may well be a user mode pointer, but we don't know
1233 * what to do with it - that's up to the protocol still.
1234 */
1235
1236static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237{
1238 const struct proto_ops *ops;
1239 struct socket *sock;
1240 struct sock *sk;
1241 void __user *argp = (void __user *)arg;
1242 int pid, err;
1243 struct net *net;
1244
1245 sock = file->private_data;
1246 ops = READ_ONCE(sock->ops);
1247 sk = sock->sk;
1248 net = sock_net(sk);
1249 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250 struct ifreq ifr;
1251 void __user *data;
1252 bool need_copyout;
1253 if (get_user_ifreq(&ifr, &data, argp))
1254 return -EFAULT;
1255 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 if (!err && need_copyout)
1257 if (put_user_ifreq(&ifr, argp))
1258 return -EFAULT;
1259 } else
1260#ifdef CONFIG_WEXT_CORE
1261 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262 err = wext_handle_ioctl(net, cmd, argp);
1263 } else
1264#endif
1265 switch (cmd) {
1266 case FIOSETOWN:
1267 case SIOCSPGRP:
1268 err = -EFAULT;
1269 if (get_user(pid, (int __user *)argp))
1270 break;
1271 err = f_setown(sock->file, pid, 1);
1272 break;
1273 case FIOGETOWN:
1274 case SIOCGPGRP:
1275 err = put_user(f_getown(sock->file),
1276 (int __user *)argp);
1277 break;
1278 case SIOCGIFBR:
1279 case SIOCSIFBR:
1280 case SIOCBRADDBR:
1281 case SIOCBRDELBR:
1282 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1283 break;
1284 case SIOCGIFVLAN:
1285 case SIOCSIFVLAN:
1286 err = -ENOPKG;
1287 if (!vlan_ioctl_hook)
1288 request_module("8021q");
1289
1290 mutex_lock(&vlan_ioctl_mutex);
1291 if (vlan_ioctl_hook)
1292 err = vlan_ioctl_hook(net, argp);
1293 mutex_unlock(&vlan_ioctl_mutex);
1294 break;
1295 case SIOCGSKNS:
1296 err = -EPERM;
1297 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298 break;
1299
1300 err = open_related_ns(&net->ns, get_net_ns);
1301 break;
1302 case SIOCGSTAMP_OLD:
1303 case SIOCGSTAMPNS_OLD:
1304 if (!ops->gettstamp) {
1305 err = -ENOIOCTLCMD;
1306 break;
1307 }
1308 err = ops->gettstamp(sock, argp,
1309 cmd == SIOCGSTAMP_OLD,
1310 !IS_ENABLED(CONFIG_64BIT));
1311 break;
1312 case SIOCGSTAMP_NEW:
1313 case SIOCGSTAMPNS_NEW:
1314 if (!ops->gettstamp) {
1315 err = -ENOIOCTLCMD;
1316 break;
1317 }
1318 err = ops->gettstamp(sock, argp,
1319 cmd == SIOCGSTAMP_NEW,
1320 false);
1321 break;
1322
1323 case SIOCGIFCONF:
1324 err = dev_ifconf(net, argp);
1325 break;
1326
1327 default:
1328 err = sock_do_ioctl(net, sock, cmd, arg);
1329 break;
1330 }
1331 return err;
1332}
1333
1334/**
1335 * sock_create_lite - creates a socket
1336 * @family: protocol family (AF_INET, ...)
1337 * @type: communication type (SOCK_STREAM, ...)
1338 * @protocol: protocol (0, ...)
1339 * @res: new socket
1340 *
1341 * Creates a new socket and assigns it to @res, passing through LSM.
1342 * The new socket initialization is not complete, see kernel_accept().
1343 * Returns 0 or an error. On failure @res is set to %NULL.
1344 * This function internally uses GFP_KERNEL.
1345 */
1346
1347int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348{
1349 int err;
1350 struct socket *sock = NULL;
1351
1352 err = security_socket_create(family, type, protocol, 1);
1353 if (err)
1354 goto out;
1355
1356 sock = sock_alloc();
1357 if (!sock) {
1358 err = -ENOMEM;
1359 goto out;
1360 }
1361
1362 sock->type = type;
1363 err = security_socket_post_create(sock, family, type, protocol, 1);
1364 if (err)
1365 goto out_release;
1366
1367out:
1368 *res = sock;
1369 return err;
1370out_release:
1371 sock_release(sock);
1372 sock = NULL;
1373 goto out;
1374}
1375EXPORT_SYMBOL(sock_create_lite);
1376
1377/* No kernel lock held - perfect */
1378static __poll_t sock_poll(struct file *file, poll_table *wait)
1379{
1380 struct socket *sock = file->private_data;
1381 const struct proto_ops *ops = READ_ONCE(sock->ops);
1382 __poll_t events = poll_requested_events(wait), flag = 0;
1383
1384 if (!ops->poll)
1385 return 0;
1386
1387 if (sk_can_busy_loop(sock->sk)) {
1388 /* poll once if requested by the syscall */
1389 if (events & POLL_BUSY_LOOP)
1390 sk_busy_loop(sock->sk, 1);
1391
1392 /* if this socket can poll_ll, tell the system call */
1393 flag = POLL_BUSY_LOOP;
1394 }
1395
1396 return ops->poll(file, sock, wait) | flag;
1397}
1398
1399static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400{
1401 struct socket *sock = file->private_data;
1402
1403 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404}
1405
1406static int sock_close(struct inode *inode, struct file *filp)
1407{
1408 __sock_release(SOCKET_I(inode), inode);
1409 return 0;
1410}
1411
1412/*
1413 * Update the socket async list
1414 *
1415 * Fasync_list locking strategy.
1416 *
1417 * 1. fasync_list is modified only under process context socket lock
1418 * i.e. under semaphore.
1419 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420 * or under socket lock
1421 */
1422
1423static int sock_fasync(int fd, struct file *filp, int on)
1424{
1425 struct socket *sock = filp->private_data;
1426 struct sock *sk = sock->sk;
1427 struct socket_wq *wq = &sock->wq;
1428
1429 if (sk == NULL)
1430 return -EINVAL;
1431
1432 lock_sock(sk);
1433 fasync_helper(fd, filp, on, &wq->fasync_list);
1434
1435 if (!wq->fasync_list)
1436 sock_reset_flag(sk, SOCK_FASYNC);
1437 else
1438 sock_set_flag(sk, SOCK_FASYNC);
1439
1440 release_sock(sk);
1441 return 0;
1442}
1443
1444/* This function may be called only under rcu_lock */
1445
1446int sock_wake_async(struct socket_wq *wq, int how, int band)
1447{
1448 if (!wq || !wq->fasync_list)
1449 return -1;
1450
1451 switch (how) {
1452 case SOCK_WAKE_WAITD:
1453 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454 break;
1455 goto call_kill;
1456 case SOCK_WAKE_SPACE:
1457 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458 break;
1459 fallthrough;
1460 case SOCK_WAKE_IO:
1461call_kill:
1462 kill_fasync(&wq->fasync_list, SIGIO, band);
1463 break;
1464 case SOCK_WAKE_URG:
1465 kill_fasync(&wq->fasync_list, SIGURG, band);
1466 }
1467
1468 return 0;
1469}
1470EXPORT_SYMBOL(sock_wake_async);
1471
1472/**
1473 * __sock_create - creates a socket
1474 * @net: net namespace
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1478 * @res: new socket
1479 * @kern: boolean for kernel space sockets
1480 *
1481 * Creates a new socket and assigns it to @res, passing through LSM.
1482 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483 * be set to true if the socket resides in kernel space.
1484 * This function internally uses GFP_KERNEL.
1485 */
1486
1487int __sock_create(struct net *net, int family, int type, int protocol,
1488 struct socket **res, int kern)
1489{
1490 int err;
1491 struct socket *sock;
1492 const struct net_proto_family *pf;
1493
1494 /*
1495 * Check protocol is in range
1496 */
1497 if (family < 0 || family >= NPROTO)
1498 return -EAFNOSUPPORT;
1499 if (type < 0 || type >= SOCK_MAX)
1500 return -EINVAL;
1501
1502 /* Compatibility.
1503
1504 This uglymoron is moved from INET layer to here to avoid
1505 deadlock in module load.
1506 */
1507 if (family == PF_INET && type == SOCK_PACKET) {
1508 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509 current->comm);
1510 family = PF_PACKET;
1511 }
1512
1513 err = security_socket_create(family, type, protocol, kern);
1514 if (err)
1515 return err;
1516
1517 /*
1518 * Allocate the socket and allow the family to set things up. if
1519 * the protocol is 0, the family is instructed to select an appropriate
1520 * default.
1521 */
1522 sock = sock_alloc();
1523 if (!sock) {
1524 net_warn_ratelimited("socket: no more sockets\n");
1525 return -ENFILE; /* Not exactly a match, but its the
1526 closest posix thing */
1527 }
1528
1529 sock->type = type;
1530
1531#ifdef CONFIG_MODULES
1532 /* Attempt to load a protocol module if the find failed.
1533 *
1534 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535 * requested real, full-featured networking support upon configuration.
1536 * Otherwise module support will break!
1537 */
1538 if (rcu_access_pointer(net_families[family]) == NULL)
1539 request_module("net-pf-%d", family);
1540#endif
1541
1542 rcu_read_lock();
1543 pf = rcu_dereference(net_families[family]);
1544 err = -EAFNOSUPPORT;
1545 if (!pf)
1546 goto out_release;
1547
1548 /*
1549 * We will call the ->create function, that possibly is in a loadable
1550 * module, so we have to bump that loadable module refcnt first.
1551 */
1552 if (!try_module_get(pf->owner))
1553 goto out_release;
1554
1555 /* Now protected by module ref count */
1556 rcu_read_unlock();
1557
1558 err = pf->create(net, sock, protocol, kern);
1559 if (err < 0) {
1560 /* ->create should release the allocated sock->sk object on error
1561 * and make sure sock->sk is set to NULL to avoid use-after-free
1562 */
1563 DEBUG_NET_WARN_ONCE(sock->sk,
1564 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565 pf->create, family, type, protocol);
1566 goto out_module_put;
1567 }
1568
1569 /*
1570 * Now to bump the refcnt of the [loadable] module that owns this
1571 * socket at sock_release time we decrement its refcnt.
1572 */
1573 if (!try_module_get(sock->ops->owner))
1574 goto out_module_busy;
1575
1576 /*
1577 * Now that we're done with the ->create function, the [loadable]
1578 * module can have its refcnt decremented
1579 */
1580 module_put(pf->owner);
1581 err = security_socket_post_create(sock, family, type, protocol, kern);
1582 if (err)
1583 goto out_sock_release;
1584 *res = sock;
1585
1586 return 0;
1587
1588out_module_busy:
1589 err = -EAFNOSUPPORT;
1590out_module_put:
1591 sock->ops = NULL;
1592 module_put(pf->owner);
1593out_sock_release:
1594 sock_release(sock);
1595 return err;
1596
1597out_release:
1598 rcu_read_unlock();
1599 goto out_sock_release;
1600}
1601EXPORT_SYMBOL(__sock_create);
1602
1603/**
1604 * sock_create - creates a socket
1605 * @family: protocol family (AF_INET, ...)
1606 * @type: communication type (SOCK_STREAM, ...)
1607 * @protocol: protocol (0, ...)
1608 * @res: new socket
1609 *
1610 * A wrapper around __sock_create().
1611 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1612 */
1613
1614int sock_create(int family, int type, int protocol, struct socket **res)
1615{
1616 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1617}
1618EXPORT_SYMBOL(sock_create);
1619
1620/**
1621 * sock_create_kern - creates a socket (kernel space)
1622 * @net: net namespace
1623 * @family: protocol family (AF_INET, ...)
1624 * @type: communication type (SOCK_STREAM, ...)
1625 * @protocol: protocol (0, ...)
1626 * @res: new socket
1627 *
1628 * A wrapper around __sock_create().
1629 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1630 */
1631
1632int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1633{
1634 return __sock_create(net, family, type, protocol, res, 1);
1635}
1636EXPORT_SYMBOL(sock_create_kern);
1637
1638static struct socket *__sys_socket_create(int family, int type, int protocol)
1639{
1640 struct socket *sock;
1641 int retval;
1642
1643 /* Check the SOCK_* constants for consistency. */
1644 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1648
1649 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650 return ERR_PTR(-EINVAL);
1651 type &= SOCK_TYPE_MASK;
1652
1653 retval = sock_create(family, type, protocol, &sock);
1654 if (retval < 0)
1655 return ERR_PTR(retval);
1656
1657 return sock;
1658}
1659
1660struct file *__sys_socket_file(int family, int type, int protocol)
1661{
1662 struct socket *sock;
1663 int flags;
1664
1665 sock = __sys_socket_create(family, type, protocol);
1666 if (IS_ERR(sock))
1667 return ERR_CAST(sock);
1668
1669 flags = type & ~SOCK_TYPE_MASK;
1670 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672
1673 return sock_alloc_file(sock, flags, NULL);
1674}
1675
1676/* A hook for bpf progs to attach to and update socket protocol.
1677 *
1678 * A static noinline declaration here could cause the compiler to
1679 * optimize away the function. A global noinline declaration will
1680 * keep the definition, but may optimize away the callsite.
1681 * Therefore, __weak is needed to ensure that the call is still
1682 * emitted, by telling the compiler that we don't know what the
1683 * function might eventually be.
1684 */
1685
1686__bpf_hook_start();
1687
1688__weak noinline int update_socket_protocol(int family, int type, int protocol)
1689{
1690 return protocol;
1691}
1692
1693__bpf_hook_end();
1694
1695int __sys_socket(int family, int type, int protocol)
1696{
1697 struct socket *sock;
1698 int flags;
1699
1700 sock = __sys_socket_create(family, type,
1701 update_socket_protocol(family, type, protocol));
1702 if (IS_ERR(sock))
1703 return PTR_ERR(sock);
1704
1705 flags = type & ~SOCK_TYPE_MASK;
1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708
1709 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1710}
1711
1712SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1713{
1714 return __sys_socket(family, type, protocol);
1715}
1716
1717/*
1718 * Create a pair of connected sockets.
1719 */
1720
1721int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1722{
1723 struct socket *sock1, *sock2;
1724 int fd1, fd2, err;
1725 struct file *newfile1, *newfile2;
1726 int flags;
1727
1728 flags = type & ~SOCK_TYPE_MASK;
1729 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730 return -EINVAL;
1731 type &= SOCK_TYPE_MASK;
1732
1733 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735
1736 /*
1737 * reserve descriptors and make sure we won't fail
1738 * to return them to userland.
1739 */
1740 fd1 = get_unused_fd_flags(flags);
1741 if (unlikely(fd1 < 0))
1742 return fd1;
1743
1744 fd2 = get_unused_fd_flags(flags);
1745 if (unlikely(fd2 < 0)) {
1746 put_unused_fd(fd1);
1747 return fd2;
1748 }
1749
1750 err = put_user(fd1, &usockvec[0]);
1751 if (err)
1752 goto out;
1753
1754 err = put_user(fd2, &usockvec[1]);
1755 if (err)
1756 goto out;
1757
1758 /*
1759 * Obtain the first socket and check if the underlying protocol
1760 * supports the socketpair call.
1761 */
1762
1763 err = sock_create(family, type, protocol, &sock1);
1764 if (unlikely(err < 0))
1765 goto out;
1766
1767 err = sock_create(family, type, protocol, &sock2);
1768 if (unlikely(err < 0)) {
1769 sock_release(sock1);
1770 goto out;
1771 }
1772
1773 err = security_socket_socketpair(sock1, sock2);
1774 if (unlikely(err)) {
1775 sock_release(sock2);
1776 sock_release(sock1);
1777 goto out;
1778 }
1779
1780 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781 if (unlikely(err < 0)) {
1782 sock_release(sock2);
1783 sock_release(sock1);
1784 goto out;
1785 }
1786
1787 newfile1 = sock_alloc_file(sock1, flags, NULL);
1788 if (IS_ERR(newfile1)) {
1789 err = PTR_ERR(newfile1);
1790 sock_release(sock2);
1791 goto out;
1792 }
1793
1794 newfile2 = sock_alloc_file(sock2, flags, NULL);
1795 if (IS_ERR(newfile2)) {
1796 err = PTR_ERR(newfile2);
1797 fput(newfile1);
1798 goto out;
1799 }
1800
1801 audit_fd_pair(fd1, fd2);
1802
1803 fd_install(fd1, newfile1);
1804 fd_install(fd2, newfile2);
1805 return 0;
1806
1807out:
1808 put_unused_fd(fd2);
1809 put_unused_fd(fd1);
1810 return err;
1811}
1812
1813SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814 int __user *, usockvec)
1815{
1816 return __sys_socketpair(family, type, protocol, usockvec);
1817}
1818
1819int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820 int addrlen)
1821{
1822 int err;
1823
1824 err = security_socket_bind(sock, (struct sockaddr *)address,
1825 addrlen);
1826 if (!err)
1827 err = READ_ONCE(sock->ops)->bind(sock,
1828 (struct sockaddr *)address,
1829 addrlen);
1830 return err;
1831}
1832
1833/*
1834 * Bind a name to a socket. Nothing much to do here since it's
1835 * the protocol's responsibility to handle the local address.
1836 *
1837 * We move the socket address to kernel space before we call
1838 * the protocol layer (having also checked the address is ok).
1839 */
1840
1841int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1842{
1843 struct socket *sock;
1844 struct sockaddr_storage address;
1845 CLASS(fd, f)(fd);
1846 int err;
1847
1848 if (fd_empty(f))
1849 return -EBADF;
1850 sock = sock_from_file(fd_file(f));
1851 if (unlikely(!sock))
1852 return -ENOTSOCK;
1853
1854 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855 if (unlikely(err))
1856 return err;
1857
1858 return __sys_bind_socket(sock, &address, addrlen);
1859}
1860
1861SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1862{
1863 return __sys_bind(fd, umyaddr, addrlen);
1864}
1865
1866/*
1867 * Perform a listen. Basically, we allow the protocol to do anything
1868 * necessary for a listen, and if that works, we mark the socket as
1869 * ready for listening.
1870 */
1871int __sys_listen_socket(struct socket *sock, int backlog)
1872{
1873 int somaxconn, err;
1874
1875 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876 if ((unsigned int)backlog > somaxconn)
1877 backlog = somaxconn;
1878
1879 err = security_socket_listen(sock, backlog);
1880 if (!err)
1881 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882 return err;
1883}
1884
1885int __sys_listen(int fd, int backlog)
1886{
1887 CLASS(fd, f)(fd);
1888 struct socket *sock;
1889
1890 if (fd_empty(f))
1891 return -EBADF;
1892 sock = sock_from_file(fd_file(f));
1893 if (unlikely(!sock))
1894 return -ENOTSOCK;
1895
1896 return __sys_listen_socket(sock, backlog);
1897}
1898
1899SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1900{
1901 return __sys_listen(fd, backlog);
1902}
1903
1904struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905 struct sockaddr __user *upeer_sockaddr,
1906 int __user *upeer_addrlen, int flags)
1907{
1908 struct socket *sock, *newsock;
1909 struct file *newfile;
1910 int err, len;
1911 struct sockaddr_storage address;
1912 const struct proto_ops *ops;
1913
1914 sock = sock_from_file(file);
1915 if (!sock)
1916 return ERR_PTR(-ENOTSOCK);
1917
1918 newsock = sock_alloc();
1919 if (!newsock)
1920 return ERR_PTR(-ENFILE);
1921 ops = READ_ONCE(sock->ops);
1922
1923 newsock->type = sock->type;
1924 newsock->ops = ops;
1925
1926 /*
1927 * We don't need try_module_get here, as the listening socket (sock)
1928 * has the protocol module (sock->ops->owner) held.
1929 */
1930 __module_get(ops->owner);
1931
1932 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933 if (IS_ERR(newfile))
1934 return newfile;
1935
1936 err = security_socket_accept(sock, newsock);
1937 if (err)
1938 goto out_fd;
1939
1940 arg->flags |= sock->file->f_flags;
1941 err = ops->accept(sock, newsock, arg);
1942 if (err < 0)
1943 goto out_fd;
1944
1945 if (upeer_sockaddr) {
1946 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947 if (len < 0) {
1948 err = -ECONNABORTED;
1949 goto out_fd;
1950 }
1951 err = move_addr_to_user(&address,
1952 len, upeer_sockaddr, upeer_addrlen);
1953 if (err < 0)
1954 goto out_fd;
1955 }
1956
1957 /* File flags are not inherited via accept() unlike another OSes. */
1958 return newfile;
1959out_fd:
1960 fput(newfile);
1961 return ERR_PTR(err);
1962}
1963
1964static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965 int __user *upeer_addrlen, int flags)
1966{
1967 struct proto_accept_arg arg = { };
1968 struct file *newfile;
1969 int newfd;
1970
1971 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972 return -EINVAL;
1973
1974 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1976
1977 newfd = get_unused_fd_flags(flags);
1978 if (unlikely(newfd < 0))
1979 return newfd;
1980
1981 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982 flags);
1983 if (IS_ERR(newfile)) {
1984 put_unused_fd(newfd);
1985 return PTR_ERR(newfile);
1986 }
1987 fd_install(newfd, newfile);
1988 return newfd;
1989}
1990
1991/*
1992 * For accept, we attempt to create a new socket, set up the link
1993 * with the client, wake up the client, then return the new
1994 * connected fd. We collect the address of the connector in kernel
1995 * space and move it to user at the very end. This is unclean because
1996 * we open the socket then return an error.
1997 *
1998 * 1003.1g adds the ability to recvmsg() to query connection pending
1999 * status to recvmsg. We need to add that support in a way thats
2000 * clean when we restructure accept also.
2001 */
2002
2003int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004 int __user *upeer_addrlen, int flags)
2005{
2006 CLASS(fd, f)(fd);
2007
2008 if (fd_empty(f))
2009 return -EBADF;
2010 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011 upeer_addrlen, flags);
2012}
2013
2014SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015 int __user *, upeer_addrlen, int, flags)
2016{
2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2018}
2019
2020SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 int __user *, upeer_addrlen)
2022{
2023 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024}
2025
2026/*
2027 * Attempt to connect to a socket with the server address. The address
2028 * is in user space so we verify it is OK and move it to kernel space.
2029 *
2030 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 * break bindings
2032 *
2033 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 * other SEQPACKET protocols that take time to connect() as it doesn't
2035 * include the -EINPROGRESS status for such sockets.
2036 */
2037
2038int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039 int addrlen, int file_flags)
2040{
2041 struct socket *sock;
2042 int err;
2043
2044 sock = sock_from_file(file);
2045 if (!sock) {
2046 err = -ENOTSOCK;
2047 goto out;
2048 }
2049
2050 err =
2051 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052 if (err)
2053 goto out;
2054
2055 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056 addrlen, sock->file->f_flags | file_flags);
2057out:
2058 return err;
2059}
2060
2061int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062{
2063 struct sockaddr_storage address;
2064 CLASS(fd, f)(fd);
2065 int ret;
2066
2067 if (fd_empty(f))
2068 return -EBADF;
2069
2070 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071 if (ret)
2072 return ret;
2073
2074 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2075}
2076
2077SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078 int, addrlen)
2079{
2080 return __sys_connect(fd, uservaddr, addrlen);
2081}
2082
2083/*
2084 * Get the local address ('name') of a socket object. Move the obtained
2085 * name to user space.
2086 */
2087
2088int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089 int __user *usockaddr_len)
2090{
2091 struct socket *sock;
2092 struct sockaddr_storage address;
2093 CLASS(fd, f)(fd);
2094 int err;
2095
2096 if (fd_empty(f))
2097 return -EBADF;
2098 sock = sock_from_file(fd_file(f));
2099 if (unlikely(!sock))
2100 return -ENOTSOCK;
2101
2102 err = security_socket_getsockname(sock);
2103 if (err)
2104 return err;
2105
2106 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107 if (err < 0)
2108 return err;
2109
2110 /* "err" is actually length in this case */
2111 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112}
2113
2114SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115 int __user *, usockaddr_len)
2116{
2117 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118}
2119
2120/*
2121 * Get the remote address ('name') of a socket object. Move the obtained
2122 * name to user space.
2123 */
2124
2125int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126 int __user *usockaddr_len)
2127{
2128 struct socket *sock;
2129 struct sockaddr_storage address;
2130 CLASS(fd, f)(fd);
2131 int err;
2132
2133 if (fd_empty(f))
2134 return -EBADF;
2135 sock = sock_from_file(fd_file(f));
2136 if (unlikely(!sock))
2137 return -ENOTSOCK;
2138
2139 err = security_socket_getpeername(sock);
2140 if (err)
2141 return err;
2142
2143 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144 if (err < 0)
2145 return err;
2146
2147 /* "err" is actually length in this case */
2148 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2149}
2150
2151SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152 int __user *, usockaddr_len)
2153{
2154 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2155}
2156
2157/*
2158 * Send a datagram to a given address. We move the address into kernel
2159 * space and check the user space data area is readable before invoking
2160 * the protocol.
2161 */
2162int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163 struct sockaddr __user *addr, int addr_len)
2164{
2165 struct socket *sock;
2166 struct sockaddr_storage address;
2167 int err;
2168 struct msghdr msg;
2169
2170 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171 if (unlikely(err))
2172 return err;
2173
2174 CLASS(fd, f)(fd);
2175 if (fd_empty(f))
2176 return -EBADF;
2177 sock = sock_from_file(fd_file(f));
2178 if (unlikely(!sock))
2179 return -ENOTSOCK;
2180
2181 msg.msg_name = NULL;
2182 msg.msg_control = NULL;
2183 msg.msg_controllen = 0;
2184 msg.msg_namelen = 0;
2185 msg.msg_ubuf = NULL;
2186 if (addr) {
2187 err = move_addr_to_kernel(addr, addr_len, &address);
2188 if (err < 0)
2189 return err;
2190 msg.msg_name = (struct sockaddr *)&address;
2191 msg.msg_namelen = addr_len;
2192 }
2193 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194 if (sock->file->f_flags & O_NONBLOCK)
2195 flags |= MSG_DONTWAIT;
2196 msg.msg_flags = flags;
2197 return __sock_sendmsg(sock, &msg);
2198}
2199
2200SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201 unsigned int, flags, struct sockaddr __user *, addr,
2202 int, addr_len)
2203{
2204 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205}
2206
2207/*
2208 * Send a datagram down a socket.
2209 */
2210
2211SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212 unsigned int, flags)
2213{
2214 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215}
2216
2217/*
2218 * Receive a frame from the socket and optionally record the address of the
2219 * sender. We verify the buffers are writable and if needed move the
2220 * sender address from kernel to user space.
2221 */
2222int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223 struct sockaddr __user *addr, int __user *addr_len)
2224{
2225 struct sockaddr_storage address;
2226 struct msghdr msg = {
2227 /* Save some cycles and don't copy the address if not needed */
2228 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2229 };
2230 struct socket *sock;
2231 int err, err2;
2232
2233 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234 if (unlikely(err))
2235 return err;
2236
2237 CLASS(fd, f)(fd);
2238
2239 if (fd_empty(f))
2240 return -EBADF;
2241 sock = sock_from_file(fd_file(f));
2242 if (unlikely(!sock))
2243 return -ENOTSOCK;
2244
2245 if (sock->file->f_flags & O_NONBLOCK)
2246 flags |= MSG_DONTWAIT;
2247 err = sock_recvmsg(sock, &msg, flags);
2248
2249 if (err >= 0 && addr != NULL) {
2250 err2 = move_addr_to_user(&address,
2251 msg.msg_namelen, addr, addr_len);
2252 if (err2 < 0)
2253 err = err2;
2254 }
2255 return err;
2256}
2257
2258SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259 unsigned int, flags, struct sockaddr __user *, addr,
2260 int __user *, addr_len)
2261{
2262 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263}
2264
2265/*
2266 * Receive a datagram from a socket.
2267 */
2268
2269SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270 unsigned int, flags)
2271{
2272 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273}
2274
2275static bool sock_use_custom_sol_socket(const struct socket *sock)
2276{
2277 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278}
2279
2280int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281 int optname, sockptr_t optval, int optlen)
2282{
2283 const struct proto_ops *ops;
2284 char *kernel_optval = NULL;
2285 int err;
2286
2287 if (optlen < 0)
2288 return -EINVAL;
2289
2290 err = security_socket_setsockopt(sock, level, optname);
2291 if (err)
2292 goto out_put;
2293
2294 if (!compat)
2295 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296 optval, &optlen,
2297 &kernel_optval);
2298 if (err < 0)
2299 goto out_put;
2300 if (err > 0) {
2301 err = 0;
2302 goto out_put;
2303 }
2304
2305 if (kernel_optval)
2306 optval = KERNEL_SOCKPTR(kernel_optval);
2307 ops = READ_ONCE(sock->ops);
2308 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309 err = sock_setsockopt(sock, level, optname, optval, optlen);
2310 else if (unlikely(!ops->setsockopt))
2311 err = -EOPNOTSUPP;
2312 else
2313 err = ops->setsockopt(sock, level, optname, optval,
2314 optlen);
2315 kfree(kernel_optval);
2316out_put:
2317 return err;
2318}
2319EXPORT_SYMBOL(do_sock_setsockopt);
2320
2321/* Set a socket option. Because we don't know the option lengths we have
2322 * to pass the user mode parameter for the protocols to sort out.
2323 */
2324int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325 int optlen)
2326{
2327 sockptr_t optval = USER_SOCKPTR(user_optval);
2328 bool compat = in_compat_syscall();
2329 struct socket *sock;
2330 CLASS(fd, f)(fd);
2331
2332 if (fd_empty(f))
2333 return -EBADF;
2334 sock = sock_from_file(fd_file(f));
2335 if (unlikely(!sock))
2336 return -ENOTSOCK;
2337
2338 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339}
2340
2341SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342 char __user *, optval, int, optlen)
2343{
2344 return __sys_setsockopt(fd, level, optname, optval, optlen);
2345}
2346
2347INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348 int optname));
2349
2350int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351 int optname, sockptr_t optval, sockptr_t optlen)
2352{
2353 int max_optlen __maybe_unused = 0;
2354 const struct proto_ops *ops;
2355 int err;
2356
2357 err = security_socket_getsockopt(sock, level, optname);
2358 if (err)
2359 return err;
2360
2361 if (!compat)
2362 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363
2364 ops = READ_ONCE(sock->ops);
2365 if (level == SOL_SOCKET) {
2366 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367 } else if (unlikely(!ops->getsockopt)) {
2368 err = -EOPNOTSUPP;
2369 } else {
2370 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371 "Invalid argument type"))
2372 return -EOPNOTSUPP;
2373
2374 err = ops->getsockopt(sock, level, optname, optval.user,
2375 optlen.user);
2376 }
2377
2378 if (!compat)
2379 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380 optval, optlen, max_optlen,
2381 err);
2382
2383 return err;
2384}
2385EXPORT_SYMBOL(do_sock_getsockopt);
2386
2387/*
2388 * Get a socket option. Because we don't know the option lengths we have
2389 * to pass a user mode parameter for the protocols to sort out.
2390 */
2391int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392 int __user *optlen)
2393{
2394 struct socket *sock;
2395 CLASS(fd, f)(fd);
2396
2397 if (fd_empty(f))
2398 return -EBADF;
2399 sock = sock_from_file(fd_file(f));
2400 if (unlikely(!sock))
2401 return -ENOTSOCK;
2402
2403 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405}
2406
2407SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408 char __user *, optval, int __user *, optlen)
2409{
2410 return __sys_getsockopt(fd, level, optname, optval, optlen);
2411}
2412
2413/*
2414 * Shutdown a socket.
2415 */
2416
2417int __sys_shutdown_sock(struct socket *sock, int how)
2418{
2419 int err;
2420
2421 err = security_socket_shutdown(sock, how);
2422 if (!err)
2423 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424
2425 return err;
2426}
2427
2428int __sys_shutdown(int fd, int how)
2429{
2430 struct socket *sock;
2431 CLASS(fd, f)(fd);
2432
2433 if (fd_empty(f))
2434 return -EBADF;
2435 sock = sock_from_file(fd_file(f));
2436 if (unlikely(!sock))
2437 return -ENOTSOCK;
2438
2439 return __sys_shutdown_sock(sock, how);
2440}
2441
2442SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443{
2444 return __sys_shutdown(fd, how);
2445}
2446
2447/* A couple of helpful macros for getting the address of the 32/64 bit
2448 * fields which are the same type (int / unsigned) on our platforms.
2449 */
2450#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2452#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2453
2454struct used_address {
2455 struct sockaddr_storage name;
2456 unsigned int name_len;
2457};
2458
2459int __copy_msghdr(struct msghdr *kmsg,
2460 struct user_msghdr *msg,
2461 struct sockaddr __user **save_addr)
2462{
2463 ssize_t err;
2464
2465 kmsg->msg_control_is_user = true;
2466 kmsg->msg_get_inq = 0;
2467 kmsg->msg_control_user = msg->msg_control;
2468 kmsg->msg_controllen = msg->msg_controllen;
2469 kmsg->msg_flags = msg->msg_flags;
2470
2471 kmsg->msg_namelen = msg->msg_namelen;
2472 if (!msg->msg_name)
2473 kmsg->msg_namelen = 0;
2474
2475 if (kmsg->msg_namelen < 0)
2476 return -EINVAL;
2477
2478 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480
2481 if (save_addr)
2482 *save_addr = msg->msg_name;
2483
2484 if (msg->msg_name && kmsg->msg_namelen) {
2485 if (!save_addr) {
2486 err = move_addr_to_kernel(msg->msg_name,
2487 kmsg->msg_namelen,
2488 kmsg->msg_name);
2489 if (err < 0)
2490 return err;
2491 }
2492 } else {
2493 kmsg->msg_name = NULL;
2494 kmsg->msg_namelen = 0;
2495 }
2496
2497 if (msg->msg_iovlen > UIO_MAXIOV)
2498 return -EMSGSIZE;
2499
2500 kmsg->msg_iocb = NULL;
2501 kmsg->msg_ubuf = NULL;
2502 return 0;
2503}
2504
2505static int copy_msghdr_from_user(struct msghdr *kmsg,
2506 struct user_msghdr __user *umsg,
2507 struct sockaddr __user **save_addr,
2508 struct iovec **iov)
2509{
2510 struct user_msghdr msg;
2511 ssize_t err;
2512
2513 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514 return -EFAULT;
2515
2516 err = __copy_msghdr(kmsg, &msg, save_addr);
2517 if (err)
2518 return err;
2519
2520 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521 msg.msg_iov, msg.msg_iovlen,
2522 UIO_FASTIOV, iov, &kmsg->msg_iter);
2523 return err < 0 ? err : 0;
2524}
2525
2526static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527 unsigned int flags, struct used_address *used_address,
2528 unsigned int allowed_msghdr_flags)
2529{
2530 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531 __aligned(sizeof(__kernel_size_t));
2532 /* 20 is size of ipv6_pktinfo */
2533 unsigned char *ctl_buf = ctl;
2534 int ctl_len;
2535 ssize_t err;
2536
2537 err = -ENOBUFS;
2538
2539 if (msg_sys->msg_controllen > INT_MAX)
2540 goto out;
2541 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542 ctl_len = msg_sys->msg_controllen;
2543 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544 err =
2545 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546 sizeof(ctl));
2547 if (err)
2548 goto out;
2549 ctl_buf = msg_sys->msg_control;
2550 ctl_len = msg_sys->msg_controllen;
2551 } else if (ctl_len) {
2552 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553 CMSG_ALIGN(sizeof(struct cmsghdr)));
2554 if (ctl_len > sizeof(ctl)) {
2555 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556 if (ctl_buf == NULL)
2557 goto out;
2558 }
2559 err = -EFAULT;
2560 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2561 goto out_freectl;
2562 msg_sys->msg_control = ctl_buf;
2563 msg_sys->msg_control_is_user = false;
2564 }
2565 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566 msg_sys->msg_flags = flags;
2567
2568 if (sock->file->f_flags & O_NONBLOCK)
2569 msg_sys->msg_flags |= MSG_DONTWAIT;
2570 /*
2571 * If this is sendmmsg() and current destination address is same as
2572 * previously succeeded address, omit asking LSM's decision.
2573 * used_address->name_len is initialized to UINT_MAX so that the first
2574 * destination address never matches.
2575 */
2576 if (used_address && msg_sys->msg_name &&
2577 used_address->name_len == msg_sys->msg_namelen &&
2578 !memcmp(&used_address->name, msg_sys->msg_name,
2579 used_address->name_len)) {
2580 err = sock_sendmsg_nosec(sock, msg_sys);
2581 goto out_freectl;
2582 }
2583 err = __sock_sendmsg(sock, msg_sys);
2584 /*
2585 * If this is sendmmsg() and sending to current destination address was
2586 * successful, remember it.
2587 */
2588 if (used_address && err >= 0) {
2589 used_address->name_len = msg_sys->msg_namelen;
2590 if (msg_sys->msg_name)
2591 memcpy(&used_address->name, msg_sys->msg_name,
2592 used_address->name_len);
2593 }
2594
2595out_freectl:
2596 if (ctl_buf != ctl)
2597 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598out:
2599 return err;
2600}
2601
2602static int sendmsg_copy_msghdr(struct msghdr *msg,
2603 struct user_msghdr __user *umsg, unsigned flags,
2604 struct iovec **iov)
2605{
2606 int err;
2607
2608 if (flags & MSG_CMSG_COMPAT) {
2609 struct compat_msghdr __user *msg_compat;
2610
2611 msg_compat = (struct compat_msghdr __user *) umsg;
2612 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613 } else {
2614 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615 }
2616 if (err < 0)
2617 return err;
2618
2619 return 0;
2620}
2621
2622static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623 struct msghdr *msg_sys, unsigned int flags,
2624 struct used_address *used_address,
2625 unsigned int allowed_msghdr_flags)
2626{
2627 struct sockaddr_storage address;
2628 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 ssize_t err;
2630
2631 msg_sys->msg_name = &address;
2632
2633 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634 if (err < 0)
2635 return err;
2636
2637 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638 allowed_msghdr_flags);
2639 kfree(iov);
2640 return err;
2641}
2642
2643/*
2644 * BSD sendmsg interface
2645 */
2646long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647 unsigned int flags)
2648{
2649 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650}
2651
2652long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653 bool forbid_cmsg_compat)
2654{
2655 struct msghdr msg_sys;
2656 struct socket *sock;
2657
2658 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659 return -EINVAL;
2660
2661 CLASS(fd, f)(fd);
2662
2663 if (fd_empty(f))
2664 return -EBADF;
2665 sock = sock_from_file(fd_file(f));
2666 if (unlikely(!sock))
2667 return -ENOTSOCK;
2668
2669 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2670}
2671
2672SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673{
2674 return __sys_sendmsg(fd, msg, flags, true);
2675}
2676
2677/*
2678 * Linux sendmmsg interface
2679 */
2680
2681int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682 unsigned int flags, bool forbid_cmsg_compat)
2683{
2684 int err, datagrams;
2685 struct socket *sock;
2686 struct mmsghdr __user *entry;
2687 struct compat_mmsghdr __user *compat_entry;
2688 struct msghdr msg_sys;
2689 struct used_address used_address;
2690 unsigned int oflags = flags;
2691
2692 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 return -EINVAL;
2694
2695 if (vlen > UIO_MAXIOV)
2696 vlen = UIO_MAXIOV;
2697
2698 datagrams = 0;
2699
2700 CLASS(fd, f)(fd);
2701
2702 if (fd_empty(f))
2703 return -EBADF;
2704 sock = sock_from_file(fd_file(f));
2705 if (unlikely(!sock))
2706 return -ENOTSOCK;
2707
2708 used_address.name_len = UINT_MAX;
2709 entry = mmsg;
2710 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 err = 0;
2712 flags |= MSG_BATCH;
2713
2714 while (datagrams < vlen) {
2715 if (datagrams == vlen - 1)
2716 flags = oflags;
2717
2718 if (MSG_CMSG_COMPAT & flags) {
2719 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720 &msg_sys, flags, &used_address, MSG_EOR);
2721 if (err < 0)
2722 break;
2723 err = __put_user(err, &compat_entry->msg_len);
2724 ++compat_entry;
2725 } else {
2726 err = ___sys_sendmsg(sock,
2727 (struct user_msghdr __user *)entry,
2728 &msg_sys, flags, &used_address, MSG_EOR);
2729 if (err < 0)
2730 break;
2731 err = put_user(err, &entry->msg_len);
2732 ++entry;
2733 }
2734
2735 if (err)
2736 break;
2737 ++datagrams;
2738 if (msg_data_left(&msg_sys))
2739 break;
2740 cond_resched();
2741 }
2742
2743 /* We only return an error if no datagrams were able to be sent */
2744 if (datagrams != 0)
2745 return datagrams;
2746
2747 return err;
2748}
2749
2750SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 unsigned int, vlen, unsigned int, flags)
2752{
2753 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2754}
2755
2756static int recvmsg_copy_msghdr(struct msghdr *msg,
2757 struct user_msghdr __user *umsg, unsigned flags,
2758 struct sockaddr __user **uaddr,
2759 struct iovec **iov)
2760{
2761 ssize_t err;
2762
2763 if (MSG_CMSG_COMPAT & flags) {
2764 struct compat_msghdr __user *msg_compat;
2765
2766 msg_compat = (struct compat_msghdr __user *) umsg;
2767 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 } else {
2769 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770 }
2771 if (err < 0)
2772 return err;
2773
2774 return 0;
2775}
2776
2777static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 struct user_msghdr __user *msg,
2779 struct sockaddr __user *uaddr,
2780 unsigned int flags, int nosec)
2781{
2782 struct compat_msghdr __user *msg_compat =
2783 (struct compat_msghdr __user *) msg;
2784 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 struct sockaddr_storage addr;
2786 unsigned long cmsg_ptr;
2787 int len;
2788 ssize_t err;
2789
2790 msg_sys->msg_name = &addr;
2791 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793
2794 /* We assume all kernel code knows the size of sockaddr_storage */
2795 msg_sys->msg_namelen = 0;
2796
2797 if (sock->file->f_flags & O_NONBLOCK)
2798 flags |= MSG_DONTWAIT;
2799
2800 if (unlikely(nosec))
2801 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 else
2803 err = sock_recvmsg(sock, msg_sys, flags);
2804
2805 if (err < 0)
2806 goto out;
2807 len = err;
2808
2809 if (uaddr != NULL) {
2810 err = move_addr_to_user(&addr,
2811 msg_sys->msg_namelen, uaddr,
2812 uaddr_len);
2813 if (err < 0)
2814 goto out;
2815 }
2816 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 COMPAT_FLAGS(msg));
2818 if (err)
2819 goto out;
2820 if (MSG_CMSG_COMPAT & flags)
2821 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 &msg_compat->msg_controllen);
2823 else
2824 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 &msg->msg_controllen);
2826 if (err)
2827 goto out;
2828 err = len;
2829out:
2830 return err;
2831}
2832
2833static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835{
2836 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 /* user mode address pointers */
2838 struct sockaddr __user *uaddr;
2839 ssize_t err;
2840
2841 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 if (err < 0)
2843 return err;
2844
2845 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 kfree(iov);
2847 return err;
2848}
2849
2850/*
2851 * BSD recvmsg interface
2852 */
2853
2854long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 struct user_msghdr __user *umsg,
2856 struct sockaddr __user *uaddr, unsigned int flags)
2857{
2858 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859}
2860
2861long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 bool forbid_cmsg_compat)
2863{
2864 struct msghdr msg_sys;
2865 struct socket *sock;
2866
2867 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868 return -EINVAL;
2869
2870 CLASS(fd, f)(fd);
2871
2872 if (fd_empty(f))
2873 return -EBADF;
2874 sock = sock_from_file(fd_file(f));
2875 if (unlikely(!sock))
2876 return -ENOTSOCK;
2877
2878 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2879}
2880
2881SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882 unsigned int, flags)
2883{
2884 return __sys_recvmsg(fd, msg, flags, true);
2885}
2886
2887/*
2888 * Linux recvmmsg interface
2889 */
2890
2891static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892 unsigned int vlen, unsigned int flags,
2893 struct timespec64 *timeout)
2894{
2895 int err = 0, datagrams;
2896 struct socket *sock;
2897 struct mmsghdr __user *entry;
2898 struct compat_mmsghdr __user *compat_entry;
2899 struct msghdr msg_sys;
2900 struct timespec64 end_time;
2901 struct timespec64 timeout64;
2902
2903 if (timeout &&
2904 poll_select_set_timeout(&end_time, timeout->tv_sec,
2905 timeout->tv_nsec))
2906 return -EINVAL;
2907
2908 datagrams = 0;
2909
2910 CLASS(fd, f)(fd);
2911
2912 if (fd_empty(f))
2913 return -EBADF;
2914 sock = sock_from_file(fd_file(f));
2915 if (unlikely(!sock))
2916 return -ENOTSOCK;
2917
2918 if (likely(!(flags & MSG_ERRQUEUE))) {
2919 err = sock_error(sock->sk);
2920 if (err)
2921 return err;
2922 }
2923
2924 entry = mmsg;
2925 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926
2927 while (datagrams < vlen) {
2928 /*
2929 * No need to ask LSM for more than the first datagram.
2930 */
2931 if (MSG_CMSG_COMPAT & flags) {
2932 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933 &msg_sys, flags & ~MSG_WAITFORONE,
2934 datagrams);
2935 if (err < 0)
2936 break;
2937 err = __put_user(err, &compat_entry->msg_len);
2938 ++compat_entry;
2939 } else {
2940 err = ___sys_recvmsg(sock,
2941 (struct user_msghdr __user *)entry,
2942 &msg_sys, flags & ~MSG_WAITFORONE,
2943 datagrams);
2944 if (err < 0)
2945 break;
2946 err = put_user(err, &entry->msg_len);
2947 ++entry;
2948 }
2949
2950 if (err)
2951 break;
2952 ++datagrams;
2953
2954 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955 if (flags & MSG_WAITFORONE)
2956 flags |= MSG_DONTWAIT;
2957
2958 if (timeout) {
2959 ktime_get_ts64(&timeout64);
2960 *timeout = timespec64_sub(end_time, timeout64);
2961 if (timeout->tv_sec < 0) {
2962 timeout->tv_sec = timeout->tv_nsec = 0;
2963 break;
2964 }
2965
2966 /* Timeout, return less than vlen datagrams */
2967 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968 break;
2969 }
2970
2971 /* Out of band data, return right away */
2972 if (msg_sys.msg_flags & MSG_OOB)
2973 break;
2974 cond_resched();
2975 }
2976
2977 if (err == 0)
2978 return datagrams;
2979
2980 if (datagrams == 0)
2981 return err;
2982
2983 /*
2984 * We may return less entries than requested (vlen) if the
2985 * sock is non block and there aren't enough datagrams...
2986 */
2987 if (err != -EAGAIN) {
2988 /*
2989 * ... or if recvmsg returns an error after we
2990 * received some datagrams, where we record the
2991 * error to return on the next call or if the
2992 * app asks about it using getsockopt(SO_ERROR).
2993 */
2994 WRITE_ONCE(sock->sk->sk_err, -err);
2995 }
2996 return datagrams;
2997}
2998
2999int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000 unsigned int vlen, unsigned int flags,
3001 struct __kernel_timespec __user *timeout,
3002 struct old_timespec32 __user *timeout32)
3003{
3004 int datagrams;
3005 struct timespec64 timeout_sys;
3006
3007 if (timeout && get_timespec64(&timeout_sys, timeout))
3008 return -EFAULT;
3009
3010 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011 return -EFAULT;
3012
3013 if (!timeout && !timeout32)
3014 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015
3016 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3017
3018 if (datagrams <= 0)
3019 return datagrams;
3020
3021 if (timeout && put_timespec64(&timeout_sys, timeout))
3022 datagrams = -EFAULT;
3023
3024 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025 datagrams = -EFAULT;
3026
3027 return datagrams;
3028}
3029
3030SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031 unsigned int, vlen, unsigned int, flags,
3032 struct __kernel_timespec __user *, timeout)
3033{
3034 if (flags & MSG_CMSG_COMPAT)
3035 return -EINVAL;
3036
3037 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038}
3039
3040#ifdef CONFIG_COMPAT_32BIT_TIME
3041SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042 unsigned int, vlen, unsigned int, flags,
3043 struct old_timespec32 __user *, timeout)
3044{
3045 if (flags & MSG_CMSG_COMPAT)
3046 return -EINVAL;
3047
3048 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3049}
3050#endif
3051
3052#ifdef __ARCH_WANT_SYS_SOCKETCALL
3053/* Argument list sizes for sys_socketcall */
3054#define AL(x) ((x) * sizeof(unsigned long))
3055static const unsigned char nargs[21] = {
3056 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059 AL(4), AL(5), AL(4)
3060};
3061
3062#undef AL
3063
3064/*
3065 * System call vectors.
3066 *
3067 * Argument checking cleaned up. Saved 20% in size.
3068 * This function doesn't need to set the kernel lock because
3069 * it is set by the callees.
3070 */
3071
3072SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073{
3074 unsigned long a[AUDITSC_ARGS];
3075 unsigned long a0, a1;
3076 int err;
3077 unsigned int len;
3078
3079 if (call < 1 || call > SYS_SENDMMSG)
3080 return -EINVAL;
3081 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082
3083 len = nargs[call];
3084 if (len > sizeof(a))
3085 return -EINVAL;
3086
3087 /* copy_from_user should be SMP safe. */
3088 if (copy_from_user(a, args, len))
3089 return -EFAULT;
3090
3091 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092 if (err)
3093 return err;
3094
3095 a0 = a[0];
3096 a1 = a[1];
3097
3098 switch (call) {
3099 case SYS_SOCKET:
3100 err = __sys_socket(a0, a1, a[2]);
3101 break;
3102 case SYS_BIND:
3103 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104 break;
3105 case SYS_CONNECT:
3106 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107 break;
3108 case SYS_LISTEN:
3109 err = __sys_listen(a0, a1);
3110 break;
3111 case SYS_ACCEPT:
3112 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113 (int __user *)a[2], 0);
3114 break;
3115 case SYS_GETSOCKNAME:
3116 err =
3117 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118 (int __user *)a[2]);
3119 break;
3120 case SYS_GETPEERNAME:
3121 err =
3122 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123 (int __user *)a[2]);
3124 break;
3125 case SYS_SOCKETPAIR:
3126 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127 break;
3128 case SYS_SEND:
3129 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130 NULL, 0);
3131 break;
3132 case SYS_SENDTO:
3133 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 (struct sockaddr __user *)a[4], a[5]);
3135 break;
3136 case SYS_RECV:
3137 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138 NULL, NULL);
3139 break;
3140 case SYS_RECVFROM:
3141 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 (struct sockaddr __user *)a[4],
3143 (int __user *)a[5]);
3144 break;
3145 case SYS_SHUTDOWN:
3146 err = __sys_shutdown(a0, a1);
3147 break;
3148 case SYS_SETSOCKOPT:
3149 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150 a[4]);
3151 break;
3152 case SYS_GETSOCKOPT:
3153 err =
3154 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155 (int __user *)a[4]);
3156 break;
3157 case SYS_SENDMSG:
3158 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159 a[2], true);
3160 break;
3161 case SYS_SENDMMSG:
3162 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163 a[3], true);
3164 break;
3165 case SYS_RECVMSG:
3166 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167 a[2], true);
3168 break;
3169 case SYS_RECVMMSG:
3170 if (IS_ENABLED(CONFIG_64BIT))
3171 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172 a[2], a[3],
3173 (struct __kernel_timespec __user *)a[4],
3174 NULL);
3175 else
3176 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177 a[2], a[3], NULL,
3178 (struct old_timespec32 __user *)a[4]);
3179 break;
3180 case SYS_ACCEPT4:
3181 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182 (int __user *)a[2], a[3]);
3183 break;
3184 default:
3185 err = -EINVAL;
3186 break;
3187 }
3188 return err;
3189}
3190
3191#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3192
3193/**
3194 * sock_register - add a socket protocol handler
3195 * @ops: description of protocol
3196 *
3197 * This function is called by a protocol handler that wants to
3198 * advertise its address family, and have it linked into the
3199 * socket interface. The value ops->family corresponds to the
3200 * socket system call protocol family.
3201 */
3202int sock_register(const struct net_proto_family *ops)
3203{
3204 int err;
3205
3206 if (ops->family >= NPROTO) {
3207 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208 return -ENOBUFS;
3209 }
3210
3211 spin_lock(&net_family_lock);
3212 if (rcu_dereference_protected(net_families[ops->family],
3213 lockdep_is_held(&net_family_lock)))
3214 err = -EEXIST;
3215 else {
3216 rcu_assign_pointer(net_families[ops->family], ops);
3217 err = 0;
3218 }
3219 spin_unlock(&net_family_lock);
3220
3221 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222 return err;
3223}
3224EXPORT_SYMBOL(sock_register);
3225
3226/**
3227 * sock_unregister - remove a protocol handler
3228 * @family: protocol family to remove
3229 *
3230 * This function is called by a protocol handler that wants to
3231 * remove its address family, and have it unlinked from the
3232 * new socket creation.
3233 *
3234 * If protocol handler is a module, then it can use module reference
3235 * counts to protect against new references. If protocol handler is not
3236 * a module then it needs to provide its own protection in
3237 * the ops->create routine.
3238 */
3239void sock_unregister(int family)
3240{
3241 BUG_ON(family < 0 || family >= NPROTO);
3242
3243 spin_lock(&net_family_lock);
3244 RCU_INIT_POINTER(net_families[family], NULL);
3245 spin_unlock(&net_family_lock);
3246
3247 synchronize_rcu();
3248
3249 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250}
3251EXPORT_SYMBOL(sock_unregister);
3252
3253bool sock_is_registered(int family)
3254{
3255 return family < NPROTO && rcu_access_pointer(net_families[family]);
3256}
3257
3258static int __init sock_init(void)
3259{
3260 int err;
3261 /*
3262 * Initialize the network sysctl infrastructure.
3263 */
3264 err = net_sysctl_init();
3265 if (err)
3266 goto out;
3267
3268 /*
3269 * Initialize skbuff SLAB cache
3270 */
3271 skb_init();
3272
3273 /*
3274 * Initialize the protocols module.
3275 */
3276
3277 init_inodecache();
3278
3279 err = register_filesystem(&sock_fs_type);
3280 if (err)
3281 goto out;
3282 sock_mnt = kern_mount(&sock_fs_type);
3283 if (IS_ERR(sock_mnt)) {
3284 err = PTR_ERR(sock_mnt);
3285 goto out_mount;
3286 }
3287
3288 /* The real protocol initialization is performed in later initcalls.
3289 */
3290
3291#ifdef CONFIG_NETFILTER
3292 err = netfilter_init();
3293 if (err)
3294 goto out;
3295#endif
3296
3297 ptp_classifier_init();
3298
3299out:
3300 return err;
3301
3302out_mount:
3303 unregister_filesystem(&sock_fs_type);
3304 goto out;
3305}
3306
3307core_initcall(sock_init); /* early initcall */
3308
3309#ifdef CONFIG_PROC_FS
3310void socket_seq_show(struct seq_file *seq)
3311{
3312 seq_printf(seq, "sockets: used %d\n",
3313 sock_inuse_get(seq->private));
3314}
3315#endif /* CONFIG_PROC_FS */
3316
3317/* Handle the fact that while struct ifreq has the same *layout* on
3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319 * which are handled elsewhere, it still has different *size* due to
3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321 * resulting in struct ifreq being 32 and 40 bytes respectively).
3322 * As a result, if the struct happens to be at the end of a page and
3323 * the next page isn't readable/writable, we get a fault. To prevent
3324 * that, copy back and forth to the full size.
3325 */
3326int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327{
3328 if (in_compat_syscall()) {
3329 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3330
3331 memset(ifr, 0, sizeof(*ifr));
3332 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333 return -EFAULT;
3334
3335 if (ifrdata)
3336 *ifrdata = compat_ptr(ifr32->ifr_data);
3337
3338 return 0;
3339 }
3340
3341 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342 return -EFAULT;
3343
3344 if (ifrdata)
3345 *ifrdata = ifr->ifr_data;
3346
3347 return 0;
3348}
3349EXPORT_SYMBOL(get_user_ifreq);
3350
3351int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352{
3353 size_t size = sizeof(*ifr);
3354
3355 if (in_compat_syscall())
3356 size = sizeof(struct compat_ifreq);
3357
3358 if (copy_to_user(arg, ifr, size))
3359 return -EFAULT;
3360
3361 return 0;
3362}
3363EXPORT_SYMBOL(put_user_ifreq);
3364
3365#ifdef CONFIG_COMPAT
3366static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367{
3368 compat_uptr_t uptr32;
3369 struct ifreq ifr;
3370 void __user *saved;
3371 int err;
3372
3373 if (get_user_ifreq(&ifr, NULL, uifr32))
3374 return -EFAULT;
3375
3376 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377 return -EFAULT;
3378
3379 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381
3382 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383 if (!err) {
3384 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385 if (put_user_ifreq(&ifr, uifr32))
3386 err = -EFAULT;
3387 }
3388 return err;
3389}
3390
3391/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393 struct compat_ifreq __user *u_ifreq32)
3394{
3395 struct ifreq ifreq;
3396 void __user *data;
3397
3398 if (!is_socket_ioctl_cmd(cmd))
3399 return -ENOTTY;
3400 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3401 return -EFAULT;
3402 ifreq.ifr_data = data;
3403
3404 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3405}
3406
3407static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408 unsigned int cmd, unsigned long arg)
3409{
3410 void __user *argp = compat_ptr(arg);
3411 struct sock *sk = sock->sk;
3412 struct net *net = sock_net(sk);
3413 const struct proto_ops *ops;
3414
3415 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 return sock_ioctl(file, cmd, (unsigned long)argp);
3417
3418 switch (cmd) {
3419 case SIOCWANDEV:
3420 return compat_siocwandev(net, argp);
3421 case SIOCGSTAMP_OLD:
3422 case SIOCGSTAMPNS_OLD:
3423 ops = READ_ONCE(sock->ops);
3424 if (!ops->gettstamp)
3425 return -ENOIOCTLCMD;
3426 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427 !COMPAT_USE_64BIT_TIME);
3428
3429 case SIOCETHTOOL:
3430 case SIOCBONDSLAVEINFOQUERY:
3431 case SIOCBONDINFOQUERY:
3432 case SIOCSHWTSTAMP:
3433 case SIOCGHWTSTAMP:
3434 return compat_ifr_data_ioctl(net, cmd, argp);
3435
3436 case FIOSETOWN:
3437 case SIOCSPGRP:
3438 case FIOGETOWN:
3439 case SIOCGPGRP:
3440 case SIOCBRADDBR:
3441 case SIOCBRDELBR:
3442 case SIOCGIFVLAN:
3443 case SIOCSIFVLAN:
3444 case SIOCGSKNS:
3445 case SIOCGSTAMP_NEW:
3446 case SIOCGSTAMPNS_NEW:
3447 case SIOCGIFCONF:
3448 case SIOCSIFBR:
3449 case SIOCGIFBR:
3450 return sock_ioctl(file, cmd, arg);
3451
3452 case SIOCGIFFLAGS:
3453 case SIOCSIFFLAGS:
3454 case SIOCGIFMAP:
3455 case SIOCSIFMAP:
3456 case SIOCGIFMETRIC:
3457 case SIOCSIFMETRIC:
3458 case SIOCGIFMTU:
3459 case SIOCSIFMTU:
3460 case SIOCGIFMEM:
3461 case SIOCSIFMEM:
3462 case SIOCGIFHWADDR:
3463 case SIOCSIFHWADDR:
3464 case SIOCADDMULTI:
3465 case SIOCDELMULTI:
3466 case SIOCGIFINDEX:
3467 case SIOCGIFADDR:
3468 case SIOCSIFADDR:
3469 case SIOCSIFHWBROADCAST:
3470 case SIOCDIFADDR:
3471 case SIOCGIFBRDADDR:
3472 case SIOCSIFBRDADDR:
3473 case SIOCGIFDSTADDR:
3474 case SIOCSIFDSTADDR:
3475 case SIOCGIFNETMASK:
3476 case SIOCSIFNETMASK:
3477 case SIOCSIFPFLAGS:
3478 case SIOCGIFPFLAGS:
3479 case SIOCGIFTXQLEN:
3480 case SIOCSIFTXQLEN:
3481 case SIOCBRADDIF:
3482 case SIOCBRDELIF:
3483 case SIOCGIFNAME:
3484 case SIOCSIFNAME:
3485 case SIOCGMIIPHY:
3486 case SIOCGMIIREG:
3487 case SIOCSMIIREG:
3488 case SIOCBONDENSLAVE:
3489 case SIOCBONDRELEASE:
3490 case SIOCBONDSETHWADDR:
3491 case SIOCBONDCHANGEACTIVE:
3492 case SIOCSARP:
3493 case SIOCGARP:
3494 case SIOCDARP:
3495 case SIOCOUTQ:
3496 case SIOCOUTQNSD:
3497 case SIOCATMARK:
3498 return sock_do_ioctl(net, sock, cmd, arg);
3499 }
3500
3501 return -ENOIOCTLCMD;
3502}
3503
3504static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505 unsigned long arg)
3506{
3507 struct socket *sock = file->private_data;
3508 const struct proto_ops *ops = READ_ONCE(sock->ops);
3509 int ret = -ENOIOCTLCMD;
3510 struct sock *sk;
3511 struct net *net;
3512
3513 sk = sock->sk;
3514 net = sock_net(sk);
3515
3516 if (ops->compat_ioctl)
3517 ret = ops->compat_ioctl(sock, cmd, arg);
3518
3519 if (ret == -ENOIOCTLCMD &&
3520 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521 ret = compat_wext_handle_ioctl(net, cmd, arg);
3522
3523 if (ret == -ENOIOCTLCMD)
3524 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525
3526 return ret;
3527}
3528#endif
3529
3530/**
3531 * kernel_bind - bind an address to a socket (kernel space)
3532 * @sock: socket
3533 * @addr: address
3534 * @addrlen: length of address
3535 *
3536 * Returns 0 or an error.
3537 */
3538
3539int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3540{
3541 struct sockaddr_storage address;
3542
3543 memcpy(&address, addr, addrlen);
3544
3545 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546 addrlen);
3547}
3548EXPORT_SYMBOL(kernel_bind);
3549
3550/**
3551 * kernel_listen - move socket to listening state (kernel space)
3552 * @sock: socket
3553 * @backlog: pending connections queue size
3554 *
3555 * Returns 0 or an error.
3556 */
3557
3558int kernel_listen(struct socket *sock, int backlog)
3559{
3560 return READ_ONCE(sock->ops)->listen(sock, backlog);
3561}
3562EXPORT_SYMBOL(kernel_listen);
3563
3564/**
3565 * kernel_accept - accept a connection (kernel space)
3566 * @sock: listening socket
3567 * @newsock: new connected socket
3568 * @flags: flags
3569 *
3570 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571 * If it fails, @newsock is guaranteed to be %NULL.
3572 * Returns 0 or an error.
3573 */
3574
3575int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576{
3577 struct sock *sk = sock->sk;
3578 const struct proto_ops *ops = READ_ONCE(sock->ops);
3579 struct proto_accept_arg arg = {
3580 .flags = flags,
3581 .kern = true,
3582 };
3583 int err;
3584
3585 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 newsock);
3587 if (err < 0)
3588 goto done;
3589
3590 err = ops->accept(sock, *newsock, &arg);
3591 if (err < 0) {
3592 sock_release(*newsock);
3593 *newsock = NULL;
3594 goto done;
3595 }
3596
3597 (*newsock)->ops = ops;
3598 __module_get(ops->owner);
3599
3600done:
3601 return err;
3602}
3603EXPORT_SYMBOL(kernel_accept);
3604
3605/**
3606 * kernel_connect - connect a socket (kernel space)
3607 * @sock: socket
3608 * @addr: address
3609 * @addrlen: address length
3610 * @flags: flags (O_NONBLOCK, ...)
3611 *
3612 * For datagram sockets, @addr is the address to which datagrams are sent
3613 * by default, and the only address from which datagrams are received.
3614 * For stream sockets, attempts to connect to @addr.
3615 * Returns 0 or an error code.
3616 */
3617
3618int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619 int flags)
3620{
3621 struct sockaddr_storage address;
3622
3623 memcpy(&address, addr, addrlen);
3624
3625 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626 addrlen, flags);
3627}
3628EXPORT_SYMBOL(kernel_connect);
3629
3630/**
3631 * kernel_getsockname - get the address which the socket is bound (kernel space)
3632 * @sock: socket
3633 * @addr: address holder
3634 *
3635 * Fills the @addr pointer with the address which the socket is bound.
3636 * Returns the length of the address in bytes or an error code.
3637 */
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640{
3641 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
3644
3645/**
3646 * kernel_getpeername - get the address which the socket is connected (kernel space)
3647 * @sock: socket
3648 * @addr: address holder
3649 *
3650 * Fills the @addr pointer with the address which the socket is connected.
3651 * Returns the length of the address in bytes or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 * @sock: socket
3663 * @how: connection part
3664 *
3665 * Returns 0 or an error.
3666 */
3667
3668int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669{
3670 return READ_ONCE(sock->ops)->shutdown(sock, how);
3671}
3672EXPORT_SYMBOL(kernel_sock_shutdown);
3673
3674/**
3675 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 * @sk: socket
3677 *
3678 * This routine returns the IP overhead imposed by a socket i.e.
3679 * the length of the underlying IP header, depending on whether
3680 * this is an IPv4 or IPv6 socket and the length from IP options turned
3681 * on at the socket. Assumes that the caller has a lock on the socket.
3682 */
3683
3684u32 kernel_sock_ip_overhead(struct sock *sk)
3685{
3686 struct inet_sock *inet;
3687 struct ip_options_rcu *opt;
3688 u32 overhead = 0;
3689#if IS_ENABLED(CONFIG_IPV6)
3690 struct ipv6_pinfo *np;
3691 struct ipv6_txoptions *optv6 = NULL;
3692#endif /* IS_ENABLED(CONFIG_IPV6) */
3693
3694 if (!sk)
3695 return overhead;
3696
3697 switch (sk->sk_family) {
3698 case AF_INET:
3699 inet = inet_sk(sk);
3700 overhead += sizeof(struct iphdr);
3701 opt = rcu_dereference_protected(inet->inet_opt,
3702 sock_owned_by_user(sk));
3703 if (opt)
3704 overhead += opt->opt.optlen;
3705 return overhead;
3706#if IS_ENABLED(CONFIG_IPV6)
3707 case AF_INET6:
3708 np = inet6_sk(sk);
3709 overhead += sizeof(struct ipv6hdr);
3710 if (np)
3711 optv6 = rcu_dereference_protected(np->opt,
3712 sock_owned_by_user(sk));
3713 if (optv6)
3714 overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 return overhead;
3716#endif /* IS_ENABLED(CONFIG_IPV6) */
3717 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 return overhead;
3719 }
3720}
3721EXPORT_SYMBOL(kernel_sock_ip_overhead);
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/wanrouter.h>
73#include <linux/if_bridge.h>
74#include <linux/if_frad.h>
75#include <linux/if_vlan.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91
92#include <asm/uaccess.h>
93#include <asm/unistd.h>
94
95#include <net/compat.h>
96#include <net/wext.h>
97#include <net/cls_cgroup.h>
98
99#include <net/sock.h>
100#include <linux/netfilter.h>
101
102#include <linux/if_tun.h>
103#include <linux/ipv6_route.h>
104#include <linux/route.h>
105#include <linux/sockios.h>
106#include <linux/atalk.h>
107
108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115static int sock_close(struct inode *inode, struct file *file);
116static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119#ifdef CONFIG_COMPAT
120static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122#endif
123static int sock_fasync(int fd, struct file *filp, int on);
124static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130/*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142#ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144#endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152};
153
154/*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158static DEFINE_SPINLOCK(net_family_lock);
159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161/*
162 * Statistics counters of the socket lists
163 */
164
165static DEFINE_PER_CPU(int, sockets_in_use);
166
167/*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173/**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185{
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193}
194
195/**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214{
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236}
237
238static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240static struct inode *sock_alloc_inode(struct super_block *sb)
241{
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264}
265
266static void sock_destroy_inode(struct inode *inode)
267{
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275}
276
277static void init_once(void *foo)
278{
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282}
283
284static int init_inodecache(void)
285{
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296}
297
298static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302};
303
304/*
305 * sockfs_dname() is called from d_path().
306 */
307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308{
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311}
312
313static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315};
316
317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319{
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322}
323
324static struct vfsmount *sock_mnt __read_mostly;
325
326static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330};
331
332/*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350{
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387}
388
389int sock_map_fd(struct socket *sock, int flags)
390{
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398}
399EXPORT_SYMBOL(sock_map_fd);
400
401static struct socket *sock_from_file(struct file *file, int *err)
402{
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408}
409
410/**
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
414 *
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
419 *
420 * On a success the socket object pointer is returned.
421 */
422
423struct socket *sockfd_lookup(int fd, int *err)
424{
425 struct file *file;
426 struct socket *sock;
427
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
432 }
433
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
438}
439EXPORT_SYMBOL(sockfd_lookup);
440
441static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442{
443 struct file *file;
444 struct socket *sock;
445
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
453 }
454 return NULL;
455}
456
457/**
458 * sock_alloc - allocate a socket
459 *
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
463 */
464
465static struct socket *sock_alloc(void)
466{
467 struct inode *inode;
468 struct socket *sock;
469
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
473
474 sock = SOCKET_I(inode);
475
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
481
482 this_cpu_add(sockets_in_use, 1);
483 return sock;
484}
485
486/*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493{
494 return -ENXIO;
495}
496
497const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
501};
502
503/**
504 * sock_release - close a socket
505 * @sock: socket to close
506 *
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
510 */
511
512void sock_release(struct socket *sock)
513{
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
516
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
520 }
521
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
524
525 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
526 return;
527
528 this_cpu_sub(sockets_in_use, 1);
529 if (!sock->file) {
530 iput(SOCK_INODE(sock));
531 return;
532 }
533 sock->file = NULL;
534}
535EXPORT_SYMBOL(sock_release);
536
537int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
538{
539 *tx_flags = 0;
540 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
541 *tx_flags |= SKBTX_HW_TSTAMP;
542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
543 *tx_flags |= SKBTX_SW_TSTAMP;
544 if (sock_flag(sk, SOCK_WIFI_STATUS))
545 *tx_flags |= SKBTX_WIFI_STATUS;
546 return 0;
547}
548EXPORT_SYMBOL(sock_tx_timestamp);
549
550static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
551 struct msghdr *msg, size_t size)
552{
553 struct sock_iocb *si = kiocb_to_siocb(iocb);
554
555 sock_update_classid(sock->sk);
556
557 sock_update_netprioidx(sock->sk);
558
559 si->sock = sock;
560 si->scm = NULL;
561 si->msg = msg;
562 si->size = size;
563
564 return sock->ops->sendmsg(iocb, sock, msg, size);
565}
566
567static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
568 struct msghdr *msg, size_t size)
569{
570 int err = security_socket_sendmsg(sock, msg, size);
571
572 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
573}
574
575int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
576{
577 struct kiocb iocb;
578 struct sock_iocb siocb;
579 int ret;
580
581 init_sync_kiocb(&iocb, NULL);
582 iocb.private = &siocb;
583 ret = __sock_sendmsg(&iocb, sock, msg, size);
584 if (-EIOCBQUEUED == ret)
585 ret = wait_on_sync_kiocb(&iocb);
586 return ret;
587}
588EXPORT_SYMBOL(sock_sendmsg);
589
590static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
591{
592 struct kiocb iocb;
593 struct sock_iocb siocb;
594 int ret;
595
596 init_sync_kiocb(&iocb, NULL);
597 iocb.private = &siocb;
598 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
599 if (-EIOCBQUEUED == ret)
600 ret = wait_on_sync_kiocb(&iocb);
601 return ret;
602}
603
604int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
605 struct kvec *vec, size_t num, size_t size)
606{
607 mm_segment_t oldfs = get_fs();
608 int result;
609
610 set_fs(KERNEL_DS);
611 /*
612 * the following is safe, since for compiler definitions of kvec and
613 * iovec are identical, yielding the same in-core layout and alignment
614 */
615 msg->msg_iov = (struct iovec *)vec;
616 msg->msg_iovlen = num;
617 result = sock_sendmsg(sock, msg, size);
618 set_fs(oldfs);
619 return result;
620}
621EXPORT_SYMBOL(kernel_sendmsg);
622
623static int ktime2ts(ktime_t kt, struct timespec *ts)
624{
625 if (kt.tv64) {
626 *ts = ktime_to_timespec(kt);
627 return 1;
628 } else {
629 return 0;
630 }
631}
632
633/*
634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635 */
636void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 struct sk_buff *skb)
638{
639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 struct timespec ts[3];
641 int empty = 1;
642 struct skb_shared_hwtstamps *shhwtstamps =
643 skb_hwtstamps(skb);
644
645 /* Race occurred between timestamp enabling and packet
646 receiving. Fill in the current time for now. */
647 if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 __net_timestamp(skb);
649
650 if (need_software_tstamp) {
651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 struct timeval tv;
653 skb_get_timestamp(skb, &tv);
654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 sizeof(tv), &tv);
656 } else {
657 skb_get_timestampns(skb, &ts[0]);
658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659 sizeof(ts[0]), &ts[0]);
660 }
661 }
662
663
664 memset(ts, 0, sizeof(ts));
665 if (skb->tstamp.tv64 &&
666 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
667 skb_get_timestampns(skb, ts + 0);
668 empty = 0;
669 }
670 if (shhwtstamps) {
671 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
672 ktime2ts(shhwtstamps->syststamp, ts + 1))
673 empty = 0;
674 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
675 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
676 empty = 0;
677 }
678 if (!empty)
679 put_cmsg(msg, SOL_SOCKET,
680 SCM_TIMESTAMPING, sizeof(ts), &ts);
681}
682EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
683
684void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
685 struct sk_buff *skb)
686{
687 int ack;
688
689 if (!sock_flag(sk, SOCK_WIFI_STATUS))
690 return;
691 if (!skb->wifi_acked_valid)
692 return;
693
694 ack = skb->wifi_acked;
695
696 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
697}
698EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
699
700static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
701 struct sk_buff *skb)
702{
703 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
704 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
705 sizeof(__u32), &skb->dropcount);
706}
707
708void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
709 struct sk_buff *skb)
710{
711 sock_recv_timestamp(msg, sk, skb);
712 sock_recv_drops(msg, sk, skb);
713}
714EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
715
716static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
717 struct msghdr *msg, size_t size, int flags)
718{
719 struct sock_iocb *si = kiocb_to_siocb(iocb);
720
721 sock_update_classid(sock->sk);
722
723 si->sock = sock;
724 si->scm = NULL;
725 si->msg = msg;
726 si->size = size;
727 si->flags = flags;
728
729 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
730}
731
732static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
733 struct msghdr *msg, size_t size, int flags)
734{
735 int err = security_socket_recvmsg(sock, msg, size, flags);
736
737 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
738}
739
740int sock_recvmsg(struct socket *sock, struct msghdr *msg,
741 size_t size, int flags)
742{
743 struct kiocb iocb;
744 struct sock_iocb siocb;
745 int ret;
746
747 init_sync_kiocb(&iocb, NULL);
748 iocb.private = &siocb;
749 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
750 if (-EIOCBQUEUED == ret)
751 ret = wait_on_sync_kiocb(&iocb);
752 return ret;
753}
754EXPORT_SYMBOL(sock_recvmsg);
755
756static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
757 size_t size, int flags)
758{
759 struct kiocb iocb;
760 struct sock_iocb siocb;
761 int ret;
762
763 init_sync_kiocb(&iocb, NULL);
764 iocb.private = &siocb;
765 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
766 if (-EIOCBQUEUED == ret)
767 ret = wait_on_sync_kiocb(&iocb);
768 return ret;
769}
770
771/**
772 * kernel_recvmsg - Receive a message from a socket (kernel space)
773 * @sock: The socket to receive the message from
774 * @msg: Received message
775 * @vec: Input s/g array for message data
776 * @num: Size of input s/g array
777 * @size: Number of bytes to read
778 * @flags: Message flags (MSG_DONTWAIT, etc...)
779 *
780 * On return the msg structure contains the scatter/gather array passed in the
781 * vec argument. The array is modified so that it consists of the unfilled
782 * portion of the original array.
783 *
784 * The returned value is the total number of bytes received, or an error.
785 */
786int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
787 struct kvec *vec, size_t num, size_t size, int flags)
788{
789 mm_segment_t oldfs = get_fs();
790 int result;
791
792 set_fs(KERNEL_DS);
793 /*
794 * the following is safe, since for compiler definitions of kvec and
795 * iovec are identical, yielding the same in-core layout and alignment
796 */
797 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
798 result = sock_recvmsg(sock, msg, size, flags);
799 set_fs(oldfs);
800 return result;
801}
802EXPORT_SYMBOL(kernel_recvmsg);
803
804static void sock_aio_dtor(struct kiocb *iocb)
805{
806 kfree(iocb->private);
807}
808
809static ssize_t sock_sendpage(struct file *file, struct page *page,
810 int offset, size_t size, loff_t *ppos, int more)
811{
812 struct socket *sock;
813 int flags;
814
815 sock = file->private_data;
816
817 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
818 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
819 flags |= more;
820
821 return kernel_sendpage(sock, page, offset, size, flags);
822}
823
824static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
825 struct pipe_inode_info *pipe, size_t len,
826 unsigned int flags)
827{
828 struct socket *sock = file->private_data;
829
830 if (unlikely(!sock->ops->splice_read))
831 return -EINVAL;
832
833 sock_update_classid(sock->sk);
834
835 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
836}
837
838static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
839 struct sock_iocb *siocb)
840{
841 if (!is_sync_kiocb(iocb)) {
842 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
843 if (!siocb)
844 return NULL;
845 iocb->ki_dtor = sock_aio_dtor;
846 }
847
848 siocb->kiocb = iocb;
849 iocb->private = siocb;
850 return siocb;
851}
852
853static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
854 struct file *file, const struct iovec *iov,
855 unsigned long nr_segs)
856{
857 struct socket *sock = file->private_data;
858 size_t size = 0;
859 int i;
860
861 for (i = 0; i < nr_segs; i++)
862 size += iov[i].iov_len;
863
864 msg->msg_name = NULL;
865 msg->msg_namelen = 0;
866 msg->msg_control = NULL;
867 msg->msg_controllen = 0;
868 msg->msg_iov = (struct iovec *)iov;
869 msg->msg_iovlen = nr_segs;
870 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871
872 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
873}
874
875static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
876 unsigned long nr_segs, loff_t pos)
877{
878 struct sock_iocb siocb, *x;
879
880 if (pos != 0)
881 return -ESPIPE;
882
883 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
884 return 0;
885
886
887 x = alloc_sock_iocb(iocb, &siocb);
888 if (!x)
889 return -ENOMEM;
890 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
891}
892
893static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
894 struct file *file, const struct iovec *iov,
895 unsigned long nr_segs)
896{
897 struct socket *sock = file->private_data;
898 size_t size = 0;
899 int i;
900
901 for (i = 0; i < nr_segs; i++)
902 size += iov[i].iov_len;
903
904 msg->msg_name = NULL;
905 msg->msg_namelen = 0;
906 msg->msg_control = NULL;
907 msg->msg_controllen = 0;
908 msg->msg_iov = (struct iovec *)iov;
909 msg->msg_iovlen = nr_segs;
910 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
911 if (sock->type == SOCK_SEQPACKET)
912 msg->msg_flags |= MSG_EOR;
913
914 return __sock_sendmsg(iocb, sock, msg, size);
915}
916
917static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
918 unsigned long nr_segs, loff_t pos)
919{
920 struct sock_iocb siocb, *x;
921
922 if (pos != 0)
923 return -ESPIPE;
924
925 x = alloc_sock_iocb(iocb, &siocb);
926 if (!x)
927 return -ENOMEM;
928
929 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
930}
931
932/*
933 * Atomic setting of ioctl hooks to avoid race
934 * with module unload.
935 */
936
937static DEFINE_MUTEX(br_ioctl_mutex);
938static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
939
940void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
941{
942 mutex_lock(&br_ioctl_mutex);
943 br_ioctl_hook = hook;
944 mutex_unlock(&br_ioctl_mutex);
945}
946EXPORT_SYMBOL(brioctl_set);
947
948static DEFINE_MUTEX(vlan_ioctl_mutex);
949static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
950
951void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
952{
953 mutex_lock(&vlan_ioctl_mutex);
954 vlan_ioctl_hook = hook;
955 mutex_unlock(&vlan_ioctl_mutex);
956}
957EXPORT_SYMBOL(vlan_ioctl_set);
958
959static DEFINE_MUTEX(dlci_ioctl_mutex);
960static int (*dlci_ioctl_hook) (unsigned int, void __user *);
961
962void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
963{
964 mutex_lock(&dlci_ioctl_mutex);
965 dlci_ioctl_hook = hook;
966 mutex_unlock(&dlci_ioctl_mutex);
967}
968EXPORT_SYMBOL(dlci_ioctl_set);
969
970static long sock_do_ioctl(struct net *net, struct socket *sock,
971 unsigned int cmd, unsigned long arg)
972{
973 int err;
974 void __user *argp = (void __user *)arg;
975
976 err = sock->ops->ioctl(sock, cmd, arg);
977
978 /*
979 * If this ioctl is unknown try to hand it down
980 * to the NIC driver.
981 */
982 if (err == -ENOIOCTLCMD)
983 err = dev_ioctl(net, cmd, argp);
984
985 return err;
986}
987
988/*
989 * With an ioctl, arg may well be a user mode pointer, but we don't know
990 * what to do with it - that's up to the protocol still.
991 */
992
993static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
994{
995 struct socket *sock;
996 struct sock *sk;
997 void __user *argp = (void __user *)arg;
998 int pid, err;
999 struct net *net;
1000
1001 sock = file->private_data;
1002 sk = sock->sk;
1003 net = sock_net(sk);
1004 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1005 err = dev_ioctl(net, cmd, argp);
1006 } else
1007#ifdef CONFIG_WEXT_CORE
1008 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1009 err = dev_ioctl(net, cmd, argp);
1010 } else
1011#endif
1012 switch (cmd) {
1013 case FIOSETOWN:
1014 case SIOCSPGRP:
1015 err = -EFAULT;
1016 if (get_user(pid, (int __user *)argp))
1017 break;
1018 err = f_setown(sock->file, pid, 1);
1019 break;
1020 case FIOGETOWN:
1021 case SIOCGPGRP:
1022 err = put_user(f_getown(sock->file),
1023 (int __user *)argp);
1024 break;
1025 case SIOCGIFBR:
1026 case SIOCSIFBR:
1027 case SIOCBRADDBR:
1028 case SIOCBRDELBR:
1029 err = -ENOPKG;
1030 if (!br_ioctl_hook)
1031 request_module("bridge");
1032
1033 mutex_lock(&br_ioctl_mutex);
1034 if (br_ioctl_hook)
1035 err = br_ioctl_hook(net, cmd, argp);
1036 mutex_unlock(&br_ioctl_mutex);
1037 break;
1038 case SIOCGIFVLAN:
1039 case SIOCSIFVLAN:
1040 err = -ENOPKG;
1041 if (!vlan_ioctl_hook)
1042 request_module("8021q");
1043
1044 mutex_lock(&vlan_ioctl_mutex);
1045 if (vlan_ioctl_hook)
1046 err = vlan_ioctl_hook(net, argp);
1047 mutex_unlock(&vlan_ioctl_mutex);
1048 break;
1049 case SIOCADDDLCI:
1050 case SIOCDELDLCI:
1051 err = -ENOPKG;
1052 if (!dlci_ioctl_hook)
1053 request_module("dlci");
1054
1055 mutex_lock(&dlci_ioctl_mutex);
1056 if (dlci_ioctl_hook)
1057 err = dlci_ioctl_hook(cmd, argp);
1058 mutex_unlock(&dlci_ioctl_mutex);
1059 break;
1060 default:
1061 err = sock_do_ioctl(net, sock, cmd, arg);
1062 break;
1063 }
1064 return err;
1065}
1066
1067int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068{
1069 int err;
1070 struct socket *sock = NULL;
1071
1072 err = security_socket_create(family, type, protocol, 1);
1073 if (err)
1074 goto out;
1075
1076 sock = sock_alloc();
1077 if (!sock) {
1078 err = -ENOMEM;
1079 goto out;
1080 }
1081
1082 sock->type = type;
1083 err = security_socket_post_create(sock, family, type, protocol, 1);
1084 if (err)
1085 goto out_release;
1086
1087out:
1088 *res = sock;
1089 return err;
1090out_release:
1091 sock_release(sock);
1092 sock = NULL;
1093 goto out;
1094}
1095EXPORT_SYMBOL(sock_create_lite);
1096
1097/* No kernel lock held - perfect */
1098static unsigned int sock_poll(struct file *file, poll_table *wait)
1099{
1100 struct socket *sock;
1101
1102 /*
1103 * We can't return errors to poll, so it's either yes or no.
1104 */
1105 sock = file->private_data;
1106 return sock->ops->poll(file, sock, wait);
1107}
1108
1109static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110{
1111 struct socket *sock = file->private_data;
1112
1113 return sock->ops->mmap(file, sock, vma);
1114}
1115
1116static int sock_close(struct inode *inode, struct file *filp)
1117{
1118 /*
1119 * It was possible the inode is NULL we were
1120 * closing an unfinished socket.
1121 */
1122
1123 if (!inode) {
1124 printk(KERN_DEBUG "sock_close: NULL inode\n");
1125 return 0;
1126 }
1127 sock_release(SOCKET_I(inode));
1128 return 0;
1129}
1130
1131/*
1132 * Update the socket async list
1133 *
1134 * Fasync_list locking strategy.
1135 *
1136 * 1. fasync_list is modified only under process context socket lock
1137 * i.e. under semaphore.
1138 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 * or under socket lock
1140 */
1141
1142static int sock_fasync(int fd, struct file *filp, int on)
1143{
1144 struct socket *sock = filp->private_data;
1145 struct sock *sk = sock->sk;
1146 struct socket_wq *wq;
1147
1148 if (sk == NULL)
1149 return -EINVAL;
1150
1151 lock_sock(sk);
1152 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1153 fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155 if (!wq->fasync_list)
1156 sock_reset_flag(sk, SOCK_FASYNC);
1157 else
1158 sock_set_flag(sk, SOCK_FASYNC);
1159
1160 release_sock(sk);
1161 return 0;
1162}
1163
1164/* This function may be called only under socket lock or callback_lock or rcu_lock */
1165
1166int sock_wake_async(struct socket *sock, int how, int band)
1167{
1168 struct socket_wq *wq;
1169
1170 if (!sock)
1171 return -1;
1172 rcu_read_lock();
1173 wq = rcu_dereference(sock->wq);
1174 if (!wq || !wq->fasync_list) {
1175 rcu_read_unlock();
1176 return -1;
1177 }
1178 switch (how) {
1179 case SOCK_WAKE_WAITD:
1180 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1181 break;
1182 goto call_kill;
1183 case SOCK_WAKE_SPACE:
1184 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1185 break;
1186 /* fall through */
1187 case SOCK_WAKE_IO:
1188call_kill:
1189 kill_fasync(&wq->fasync_list, SIGIO, band);
1190 break;
1191 case SOCK_WAKE_URG:
1192 kill_fasync(&wq->fasync_list, SIGURG, band);
1193 }
1194 rcu_read_unlock();
1195 return 0;
1196}
1197EXPORT_SYMBOL(sock_wake_async);
1198
1199int __sock_create(struct net *net, int family, int type, int protocol,
1200 struct socket **res, int kern)
1201{
1202 int err;
1203 struct socket *sock;
1204 const struct net_proto_family *pf;
1205
1206 /*
1207 * Check protocol is in range
1208 */
1209 if (family < 0 || family >= NPROTO)
1210 return -EAFNOSUPPORT;
1211 if (type < 0 || type >= SOCK_MAX)
1212 return -EINVAL;
1213
1214 /* Compatibility.
1215
1216 This uglymoron is moved from INET layer to here to avoid
1217 deadlock in module load.
1218 */
1219 if (family == PF_INET && type == SOCK_PACKET) {
1220 static int warned;
1221 if (!warned) {
1222 warned = 1;
1223 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1224 current->comm);
1225 }
1226 family = PF_PACKET;
1227 }
1228
1229 err = security_socket_create(family, type, protocol, kern);
1230 if (err)
1231 return err;
1232
1233 /*
1234 * Allocate the socket and allow the family to set things up. if
1235 * the protocol is 0, the family is instructed to select an appropriate
1236 * default.
1237 */
1238 sock = sock_alloc();
1239 if (!sock) {
1240 net_warn_ratelimited("socket: no more sockets\n");
1241 return -ENFILE; /* Not exactly a match, but its the
1242 closest posix thing */
1243 }
1244
1245 sock->type = type;
1246
1247#ifdef CONFIG_MODULES
1248 /* Attempt to load a protocol module if the find failed.
1249 *
1250 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1251 * requested real, full-featured networking support upon configuration.
1252 * Otherwise module support will break!
1253 */
1254 if (rcu_access_pointer(net_families[family]) == NULL)
1255 request_module("net-pf-%d", family);
1256#endif
1257
1258 rcu_read_lock();
1259 pf = rcu_dereference(net_families[family]);
1260 err = -EAFNOSUPPORT;
1261 if (!pf)
1262 goto out_release;
1263
1264 /*
1265 * We will call the ->create function, that possibly is in a loadable
1266 * module, so we have to bump that loadable module refcnt first.
1267 */
1268 if (!try_module_get(pf->owner))
1269 goto out_release;
1270
1271 /* Now protected by module ref count */
1272 rcu_read_unlock();
1273
1274 err = pf->create(net, sock, protocol, kern);
1275 if (err < 0)
1276 goto out_module_put;
1277
1278 /*
1279 * Now to bump the refcnt of the [loadable] module that owns this
1280 * socket at sock_release time we decrement its refcnt.
1281 */
1282 if (!try_module_get(sock->ops->owner))
1283 goto out_module_busy;
1284
1285 /*
1286 * Now that we're done with the ->create function, the [loadable]
1287 * module can have its refcnt decremented
1288 */
1289 module_put(pf->owner);
1290 err = security_socket_post_create(sock, family, type, protocol, kern);
1291 if (err)
1292 goto out_sock_release;
1293 *res = sock;
1294
1295 return 0;
1296
1297out_module_busy:
1298 err = -EAFNOSUPPORT;
1299out_module_put:
1300 sock->ops = NULL;
1301 module_put(pf->owner);
1302out_sock_release:
1303 sock_release(sock);
1304 return err;
1305
1306out_release:
1307 rcu_read_unlock();
1308 goto out_sock_release;
1309}
1310EXPORT_SYMBOL(__sock_create);
1311
1312int sock_create(int family, int type, int protocol, struct socket **res)
1313{
1314 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315}
1316EXPORT_SYMBOL(sock_create);
1317
1318int sock_create_kern(int family, int type, int protocol, struct socket **res)
1319{
1320 return __sock_create(&init_net, family, type, protocol, res, 1);
1321}
1322EXPORT_SYMBOL(sock_create_kern);
1323
1324SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325{
1326 int retval;
1327 struct socket *sock;
1328 int flags;
1329
1330 /* Check the SOCK_* constants for consistency. */
1331 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1332 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1333 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1334 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335
1336 flags = type & ~SOCK_TYPE_MASK;
1337 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338 return -EINVAL;
1339 type &= SOCK_TYPE_MASK;
1340
1341 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1342 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343
1344 retval = sock_create(family, type, protocol, &sock);
1345 if (retval < 0)
1346 goto out;
1347
1348 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1349 if (retval < 0)
1350 goto out_release;
1351
1352out:
1353 /* It may be already another descriptor 8) Not kernel problem. */
1354 return retval;
1355
1356out_release:
1357 sock_release(sock);
1358 return retval;
1359}
1360
1361/*
1362 * Create a pair of connected sockets.
1363 */
1364
1365SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366 int __user *, usockvec)
1367{
1368 struct socket *sock1, *sock2;
1369 int fd1, fd2, err;
1370 struct file *newfile1, *newfile2;
1371 int flags;
1372
1373 flags = type & ~SOCK_TYPE_MASK;
1374 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375 return -EINVAL;
1376 type &= SOCK_TYPE_MASK;
1377
1378 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380
1381 /*
1382 * Obtain the first socket and check if the underlying protocol
1383 * supports the socketpair call.
1384 */
1385
1386 err = sock_create(family, type, protocol, &sock1);
1387 if (err < 0)
1388 goto out;
1389
1390 err = sock_create(family, type, protocol, &sock2);
1391 if (err < 0)
1392 goto out_release_1;
1393
1394 err = sock1->ops->socketpair(sock1, sock2);
1395 if (err < 0)
1396 goto out_release_both;
1397
1398 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1399 if (unlikely(fd1 < 0)) {
1400 err = fd1;
1401 goto out_release_both;
1402 }
1403
1404 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1405 if (unlikely(fd2 < 0)) {
1406 err = fd2;
1407 fput(newfile1);
1408 put_unused_fd(fd1);
1409 sock_release(sock2);
1410 goto out;
1411 }
1412
1413 audit_fd_pair(fd1, fd2);
1414 fd_install(fd1, newfile1);
1415 fd_install(fd2, newfile2);
1416 /* fd1 and fd2 may be already another descriptors.
1417 * Not kernel problem.
1418 */
1419
1420 err = put_user(fd1, &usockvec[0]);
1421 if (!err)
1422 err = put_user(fd2, &usockvec[1]);
1423 if (!err)
1424 return 0;
1425
1426 sys_close(fd2);
1427 sys_close(fd1);
1428 return err;
1429
1430out_release_both:
1431 sock_release(sock2);
1432out_release_1:
1433 sock_release(sock1);
1434out:
1435 return err;
1436}
1437
1438/*
1439 * Bind a name to a socket. Nothing much to do here since it's
1440 * the protocol's responsibility to handle the local address.
1441 *
1442 * We move the socket address to kernel space before we call
1443 * the protocol layer (having also checked the address is ok).
1444 */
1445
1446SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447{
1448 struct socket *sock;
1449 struct sockaddr_storage address;
1450 int err, fput_needed;
1451
1452 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1453 if (sock) {
1454 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1455 if (err >= 0) {
1456 err = security_socket_bind(sock,
1457 (struct sockaddr *)&address,
1458 addrlen);
1459 if (!err)
1460 err = sock->ops->bind(sock,
1461 (struct sockaddr *)
1462 &address, addrlen);
1463 }
1464 fput_light(sock->file, fput_needed);
1465 }
1466 return err;
1467}
1468
1469/*
1470 * Perform a listen. Basically, we allow the protocol to do anything
1471 * necessary for a listen, and if that works, we mark the socket as
1472 * ready for listening.
1473 */
1474
1475SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476{
1477 struct socket *sock;
1478 int err, fput_needed;
1479 int somaxconn;
1480
1481 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482 if (sock) {
1483 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1484 if ((unsigned int)backlog > somaxconn)
1485 backlog = somaxconn;
1486
1487 err = security_socket_listen(sock, backlog);
1488 if (!err)
1489 err = sock->ops->listen(sock, backlog);
1490
1491 fput_light(sock->file, fput_needed);
1492 }
1493 return err;
1494}
1495
1496/*
1497 * For accept, we attempt to create a new socket, set up the link
1498 * with the client, wake up the client, then return the new
1499 * connected fd. We collect the address of the connector in kernel
1500 * space and move it to user at the very end. This is unclean because
1501 * we open the socket then return an error.
1502 *
1503 * 1003.1g adds the ability to recvmsg() to query connection pending
1504 * status to recvmsg. We need to add that support in a way thats
1505 * clean when we restucture accept also.
1506 */
1507
1508SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1509 int __user *, upeer_addrlen, int, flags)
1510{
1511 struct socket *sock, *newsock;
1512 struct file *newfile;
1513 int err, len, newfd, fput_needed;
1514 struct sockaddr_storage address;
1515
1516 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517 return -EINVAL;
1518
1519 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1523 if (!sock)
1524 goto out;
1525
1526 err = -ENFILE;
1527 newsock = sock_alloc();
1528 if (!newsock)
1529 goto out_put;
1530
1531 newsock->type = sock->type;
1532 newsock->ops = sock->ops;
1533
1534 /*
1535 * We don't need try_module_get here, as the listening socket (sock)
1536 * has the protocol module (sock->ops->owner) held.
1537 */
1538 __module_get(newsock->ops->owner);
1539
1540 newfd = sock_alloc_file(newsock, &newfile, flags);
1541 if (unlikely(newfd < 0)) {
1542 err = newfd;
1543 sock_release(newsock);
1544 goto out_put;
1545 }
1546
1547 err = security_socket_accept(sock, newsock);
1548 if (err)
1549 goto out_fd;
1550
1551 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1552 if (err < 0)
1553 goto out_fd;
1554
1555 if (upeer_sockaddr) {
1556 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557 &len, 2) < 0) {
1558 err = -ECONNABORTED;
1559 goto out_fd;
1560 }
1561 err = move_addr_to_user(&address,
1562 len, upeer_sockaddr, upeer_addrlen);
1563 if (err < 0)
1564 goto out_fd;
1565 }
1566
1567 /* File flags are not inherited via accept() unlike another OSes. */
1568
1569 fd_install(newfd, newfile);
1570 err = newfd;
1571
1572out_put:
1573 fput_light(sock->file, fput_needed);
1574out:
1575 return err;
1576out_fd:
1577 fput(newfile);
1578 put_unused_fd(newfd);
1579 goto out_put;
1580}
1581
1582SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 int __user *, upeer_addrlen)
1584{
1585 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586}
1587
1588/*
1589 * Attempt to connect to a socket with the server address. The address
1590 * is in user space so we verify it is OK and move it to kernel space.
1591 *
1592 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593 * break bindings
1594 *
1595 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596 * other SEQPACKET protocols that take time to connect() as it doesn't
1597 * include the -EINPROGRESS status for such sockets.
1598 */
1599
1600SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601 int, addrlen)
1602{
1603 struct socket *sock;
1604 struct sockaddr_storage address;
1605 int err, fput_needed;
1606
1607 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 if (!sock)
1609 goto out;
1610 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611 if (err < 0)
1612 goto out_put;
1613
1614 err =
1615 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616 if (err)
1617 goto out_put;
1618
1619 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620 sock->file->f_flags);
1621out_put:
1622 fput_light(sock->file, fput_needed);
1623out:
1624 return err;
1625}
1626
1627/*
1628 * Get the local address ('name') of a socket object. Move the obtained
1629 * name to user space.
1630 */
1631
1632SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633 int __user *, usockaddr_len)
1634{
1635 struct socket *sock;
1636 struct sockaddr_storage address;
1637 int len, err, fput_needed;
1638
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (!sock)
1641 goto out;
1642
1643 err = security_socket_getsockname(sock);
1644 if (err)
1645 goto out_put;
1646
1647 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648 if (err)
1649 goto out_put;
1650 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651
1652out_put:
1653 fput_light(sock->file, fput_needed);
1654out:
1655 return err;
1656}
1657
1658/*
1659 * Get the remote address ('name') of a socket object. Move the obtained
1660 * name to user space.
1661 */
1662
1663SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664 int __user *, usockaddr_len)
1665{
1666 struct socket *sock;
1667 struct sockaddr_storage address;
1668 int len, err, fput_needed;
1669
1670 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 if (sock != NULL) {
1672 err = security_socket_getpeername(sock);
1673 if (err) {
1674 fput_light(sock->file, fput_needed);
1675 return err;
1676 }
1677
1678 err =
1679 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680 1);
1681 if (!err)
1682 err = move_addr_to_user(&address, len, usockaddr,
1683 usockaddr_len);
1684 fput_light(sock->file, fput_needed);
1685 }
1686 return err;
1687}
1688
1689/*
1690 * Send a datagram to a given address. We move the address into kernel
1691 * space and check the user space data area is readable before invoking
1692 * the protocol.
1693 */
1694
1695SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696 unsigned int, flags, struct sockaddr __user *, addr,
1697 int, addr_len)
1698{
1699 struct socket *sock;
1700 struct sockaddr_storage address;
1701 int err;
1702 struct msghdr msg;
1703 struct iovec iov;
1704 int fput_needed;
1705
1706 if (len > INT_MAX)
1707 len = INT_MAX;
1708 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709 if (!sock)
1710 goto out;
1711
1712 iov.iov_base = buff;
1713 iov.iov_len = len;
1714 msg.msg_name = NULL;
1715 msg.msg_iov = &iov;
1716 msg.msg_iovlen = 1;
1717 msg.msg_control = NULL;
1718 msg.msg_controllen = 0;
1719 msg.msg_namelen = 0;
1720 if (addr) {
1721 err = move_addr_to_kernel(addr, addr_len, &address);
1722 if (err < 0)
1723 goto out_put;
1724 msg.msg_name = (struct sockaddr *)&address;
1725 msg.msg_namelen = addr_len;
1726 }
1727 if (sock->file->f_flags & O_NONBLOCK)
1728 flags |= MSG_DONTWAIT;
1729 msg.msg_flags = flags;
1730 err = sock_sendmsg(sock, &msg, len);
1731
1732out_put:
1733 fput_light(sock->file, fput_needed);
1734out:
1735 return err;
1736}
1737
1738/*
1739 * Send a datagram down a socket.
1740 */
1741
1742SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1743 unsigned int, flags)
1744{
1745 return sys_sendto(fd, buff, len, flags, NULL, 0);
1746}
1747
1748/*
1749 * Receive a frame from the socket and optionally record the address of the
1750 * sender. We verify the buffers are writable and if needed move the
1751 * sender address from kernel to user space.
1752 */
1753
1754SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1755 unsigned int, flags, struct sockaddr __user *, addr,
1756 int __user *, addr_len)
1757{
1758 struct socket *sock;
1759 struct iovec iov;
1760 struct msghdr msg;
1761 struct sockaddr_storage address;
1762 int err, err2;
1763 int fput_needed;
1764
1765 if (size > INT_MAX)
1766 size = INT_MAX;
1767 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 if (!sock)
1769 goto out;
1770
1771 msg.msg_control = NULL;
1772 msg.msg_controllen = 0;
1773 msg.msg_iovlen = 1;
1774 msg.msg_iov = &iov;
1775 iov.iov_len = size;
1776 iov.iov_base = ubuf;
1777 msg.msg_name = (struct sockaddr *)&address;
1778 msg.msg_namelen = sizeof(address);
1779 if (sock->file->f_flags & O_NONBLOCK)
1780 flags |= MSG_DONTWAIT;
1781 err = sock_recvmsg(sock, &msg, size, flags);
1782
1783 if (err >= 0 && addr != NULL) {
1784 err2 = move_addr_to_user(&address,
1785 msg.msg_namelen, addr, addr_len);
1786 if (err2 < 0)
1787 err = err2;
1788 }
1789
1790 fput_light(sock->file, fput_needed);
1791out:
1792 return err;
1793}
1794
1795/*
1796 * Receive a datagram from a socket.
1797 */
1798
1799asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1800 unsigned int flags)
1801{
1802 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1803}
1804
1805/*
1806 * Set a socket option. Because we don't know the option lengths we have
1807 * to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811 char __user *, optval, int, optlen)
1812{
1813 int err, fput_needed;
1814 struct socket *sock;
1815
1816 if (optlen < 0)
1817 return -EINVAL;
1818
1819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820 if (sock != NULL) {
1821 err = security_socket_setsockopt(sock, level, optname);
1822 if (err)
1823 goto out_put;
1824
1825 if (level == SOL_SOCKET)
1826 err =
1827 sock_setsockopt(sock, level, optname, optval,
1828 optlen);
1829 else
1830 err =
1831 sock->ops->setsockopt(sock, level, optname, optval,
1832 optlen);
1833out_put:
1834 fput_light(sock->file, fput_needed);
1835 }
1836 return err;
1837}
1838
1839/*
1840 * Get a socket option. Because we don't know the option lengths we have
1841 * to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845 char __user *, optval, int __user *, optlen)
1846{
1847 int err, fput_needed;
1848 struct socket *sock;
1849
1850 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851 if (sock != NULL) {
1852 err = security_socket_getsockopt(sock, level, optname);
1853 if (err)
1854 goto out_put;
1855
1856 if (level == SOL_SOCKET)
1857 err =
1858 sock_getsockopt(sock, level, optname, optval,
1859 optlen);
1860 else
1861 err =
1862 sock->ops->getsockopt(sock, level, optname, optval,
1863 optlen);
1864out_put:
1865 fput_light(sock->file, fput_needed);
1866 }
1867 return err;
1868}
1869
1870/*
1871 * Shutdown a socket.
1872 */
1873
1874SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875{
1876 int err, fput_needed;
1877 struct socket *sock;
1878
1879 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 if (sock != NULL) {
1881 err = security_socket_shutdown(sock, how);
1882 if (!err)
1883 err = sock->ops->shutdown(sock, how);
1884 fput_light(sock->file, fput_needed);
1885 }
1886 return err;
1887}
1888
1889/* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1894#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1895
1896struct used_address {
1897 struct sockaddr_storage name;
1898 unsigned int name_len;
1899};
1900
1901static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1902 struct msghdr *msg_sys, unsigned int flags,
1903 struct used_address *used_address)
1904{
1905 struct compat_msghdr __user *msg_compat =
1906 (struct compat_msghdr __user *)msg;
1907 struct sockaddr_storage address;
1908 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911 /* 20 is size of ipv6_pktinfo */
1912 unsigned char *ctl_buf = ctl;
1913 int err, ctl_len, total_len;
1914
1915 err = -EFAULT;
1916 if (MSG_CMSG_COMPAT & flags) {
1917 if (get_compat_msghdr(msg_sys, msg_compat))
1918 return -EFAULT;
1919 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1920 return -EFAULT;
1921
1922 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1923 err = -EMSGSIZE;
1924 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1925 goto out;
1926 err = -ENOMEM;
1927 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1928 GFP_KERNEL);
1929 if (!iov)
1930 goto out;
1931 }
1932
1933 /* This will also move the address data into kernel space */
1934 if (MSG_CMSG_COMPAT & flags) {
1935 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1936 } else
1937 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1938 if (err < 0)
1939 goto out_freeiov;
1940 total_len = err;
1941
1942 err = -ENOBUFS;
1943
1944 if (msg_sys->msg_controllen > INT_MAX)
1945 goto out_freeiov;
1946 ctl_len = msg_sys->msg_controllen;
1947 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948 err =
1949 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1950 sizeof(ctl));
1951 if (err)
1952 goto out_freeiov;
1953 ctl_buf = msg_sys->msg_control;
1954 ctl_len = msg_sys->msg_controllen;
1955 } else if (ctl_len) {
1956 if (ctl_len > sizeof(ctl)) {
1957 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958 if (ctl_buf == NULL)
1959 goto out_freeiov;
1960 }
1961 err = -EFAULT;
1962 /*
1963 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1964 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965 * checking falls down on this.
1966 */
1967 if (copy_from_user(ctl_buf,
1968 (void __user __force *)msg_sys->msg_control,
1969 ctl_len))
1970 goto out_freectl;
1971 msg_sys->msg_control = ctl_buf;
1972 }
1973 msg_sys->msg_flags = flags;
1974
1975 if (sock->file->f_flags & O_NONBLOCK)
1976 msg_sys->msg_flags |= MSG_DONTWAIT;
1977 /*
1978 * If this is sendmmsg() and current destination address is same as
1979 * previously succeeded address, omit asking LSM's decision.
1980 * used_address->name_len is initialized to UINT_MAX so that the first
1981 * destination address never matches.
1982 */
1983 if (used_address && msg_sys->msg_name &&
1984 used_address->name_len == msg_sys->msg_namelen &&
1985 !memcmp(&used_address->name, msg_sys->msg_name,
1986 used_address->name_len)) {
1987 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1988 goto out_freectl;
1989 }
1990 err = sock_sendmsg(sock, msg_sys, total_len);
1991 /*
1992 * If this is sendmmsg() and sending to current destination address was
1993 * successful, remember it.
1994 */
1995 if (used_address && err >= 0) {
1996 used_address->name_len = msg_sys->msg_namelen;
1997 if (msg_sys->msg_name)
1998 memcpy(&used_address->name, msg_sys->msg_name,
1999 used_address->name_len);
2000 }
2001
2002out_freectl:
2003 if (ctl_buf != ctl)
2004 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2005out_freeiov:
2006 if (iov != iovstack)
2007 kfree(iov);
2008out:
2009 return err;
2010}
2011
2012/*
2013 * BSD sendmsg interface
2014 */
2015
2016SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2017{
2018 int fput_needed, err;
2019 struct msghdr msg_sys;
2020 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021
2022 if (!sock)
2023 goto out;
2024
2025 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026
2027 fput_light(sock->file, fput_needed);
2028out:
2029 return err;
2030}
2031
2032/*
2033 * Linux sendmmsg interface
2034 */
2035
2036int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037 unsigned int flags)
2038{
2039 int fput_needed, err, datagrams;
2040 struct socket *sock;
2041 struct mmsghdr __user *entry;
2042 struct compat_mmsghdr __user *compat_entry;
2043 struct msghdr msg_sys;
2044 struct used_address used_address;
2045
2046 if (vlen > UIO_MAXIOV)
2047 vlen = UIO_MAXIOV;
2048
2049 datagrams = 0;
2050
2051 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052 if (!sock)
2053 return err;
2054
2055 used_address.name_len = UINT_MAX;
2056 entry = mmsg;
2057 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058 err = 0;
2059
2060 while (datagrams < vlen) {
2061 if (MSG_CMSG_COMPAT & flags) {
2062 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2063 &msg_sys, flags, &used_address);
2064 if (err < 0)
2065 break;
2066 err = __put_user(err, &compat_entry->msg_len);
2067 ++compat_entry;
2068 } else {
2069 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2070 &msg_sys, flags, &used_address);
2071 if (err < 0)
2072 break;
2073 err = put_user(err, &entry->msg_len);
2074 ++entry;
2075 }
2076
2077 if (err)
2078 break;
2079 ++datagrams;
2080 }
2081
2082 fput_light(sock->file, fput_needed);
2083
2084 /* We only return an error if no datagrams were able to be sent */
2085 if (datagrams != 0)
2086 return datagrams;
2087
2088 return err;
2089}
2090
2091SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2092 unsigned int, vlen, unsigned int, flags)
2093{
2094 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2095}
2096
2097static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2098 struct msghdr *msg_sys, unsigned int flags, int nosec)
2099{
2100 struct compat_msghdr __user *msg_compat =
2101 (struct compat_msghdr __user *)msg;
2102 struct iovec iovstack[UIO_FASTIOV];
2103 struct iovec *iov = iovstack;
2104 unsigned long cmsg_ptr;
2105 int err, total_len, len;
2106
2107 /* kernel mode address */
2108 struct sockaddr_storage addr;
2109
2110 /* user mode address pointers */
2111 struct sockaddr __user *uaddr;
2112 int __user *uaddr_len;
2113
2114 if (MSG_CMSG_COMPAT & flags) {
2115 if (get_compat_msghdr(msg_sys, msg_compat))
2116 return -EFAULT;
2117 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2118 return -EFAULT;
2119
2120 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2121 err = -EMSGSIZE;
2122 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123 goto out;
2124 err = -ENOMEM;
2125 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2126 GFP_KERNEL);
2127 if (!iov)
2128 goto out;
2129 }
2130
2131 /*
2132 * Save the user-mode address (verify_iovec will change the
2133 * kernel msghdr to use the kernel address space)
2134 */
2135
2136 uaddr = (__force void __user *)msg_sys->msg_name;
2137 uaddr_len = COMPAT_NAMELEN(msg);
2138 if (MSG_CMSG_COMPAT & flags) {
2139 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2140 } else
2141 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2142 if (err < 0)
2143 goto out_freeiov;
2144 total_len = err;
2145
2146 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2147 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148
2149 if (sock->file->f_flags & O_NONBLOCK)
2150 flags |= MSG_DONTWAIT;
2151 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2152 total_len, flags);
2153 if (err < 0)
2154 goto out_freeiov;
2155 len = err;
2156
2157 if (uaddr != NULL) {
2158 err = move_addr_to_user(&addr,
2159 msg_sys->msg_namelen, uaddr,
2160 uaddr_len);
2161 if (err < 0)
2162 goto out_freeiov;
2163 }
2164 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2165 COMPAT_FLAGS(msg));
2166 if (err)
2167 goto out_freeiov;
2168 if (MSG_CMSG_COMPAT & flags)
2169 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170 &msg_compat->msg_controllen);
2171 else
2172 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173 &msg->msg_controllen);
2174 if (err)
2175 goto out_freeiov;
2176 err = len;
2177
2178out_freeiov:
2179 if (iov != iovstack)
2180 kfree(iov);
2181out:
2182 return err;
2183}
2184
2185/*
2186 * BSD recvmsg interface
2187 */
2188
2189SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2190 unsigned int, flags)
2191{
2192 int fput_needed, err;
2193 struct msghdr msg_sys;
2194 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195
2196 if (!sock)
2197 goto out;
2198
2199 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200
2201 fput_light(sock->file, fput_needed);
2202out:
2203 return err;
2204}
2205
2206/*
2207 * Linux recvmmsg interface
2208 */
2209
2210int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2211 unsigned int flags, struct timespec *timeout)
2212{
2213 int fput_needed, err, datagrams;
2214 struct socket *sock;
2215 struct mmsghdr __user *entry;
2216 struct compat_mmsghdr __user *compat_entry;
2217 struct msghdr msg_sys;
2218 struct timespec end_time;
2219
2220 if (timeout &&
2221 poll_select_set_timeout(&end_time, timeout->tv_sec,
2222 timeout->tv_nsec))
2223 return -EINVAL;
2224
2225 datagrams = 0;
2226
2227 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228 if (!sock)
2229 return err;
2230
2231 err = sock_error(sock->sk);
2232 if (err)
2233 goto out_put;
2234
2235 entry = mmsg;
2236 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237
2238 while (datagrams < vlen) {
2239 /*
2240 * No need to ask LSM for more than the first datagram.
2241 */
2242 if (MSG_CMSG_COMPAT & flags) {
2243 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2244 &msg_sys, flags & ~MSG_WAITFORONE,
2245 datagrams);
2246 if (err < 0)
2247 break;
2248 err = __put_user(err, &compat_entry->msg_len);
2249 ++compat_entry;
2250 } else {
2251 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2253 datagrams);
2254 if (err < 0)
2255 break;
2256 err = put_user(err, &entry->msg_len);
2257 ++entry;
2258 }
2259
2260 if (err)
2261 break;
2262 ++datagrams;
2263
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2267
2268 if (timeout) {
2269 ktime_get_ts(timeout);
2270 *timeout = timespec_sub(end_time, *timeout);
2271 if (timeout->tv_sec < 0) {
2272 timeout->tv_sec = timeout->tv_nsec = 0;
2273 break;
2274 }
2275
2276 /* Timeout, return less than vlen datagrams */
2277 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2278 break;
2279 }
2280
2281 /* Out of band data, return right away */
2282 if (msg_sys.msg_flags & MSG_OOB)
2283 break;
2284 }
2285
2286out_put:
2287 fput_light(sock->file, fput_needed);
2288
2289 if (err == 0)
2290 return datagrams;
2291
2292 if (datagrams != 0) {
2293 /*
2294 * We may return less entries than requested (vlen) if the
2295 * sock is non block and there aren't enough datagrams...
2296 */
2297 if (err != -EAGAIN) {
2298 /*
2299 * ... or if recvmsg returns an error after we
2300 * received some datagrams, where we record the
2301 * error to return on the next call or if the
2302 * app asks about it using getsockopt(SO_ERROR).
2303 */
2304 sock->sk->sk_err = -err;
2305 }
2306
2307 return datagrams;
2308 }
2309
2310 return err;
2311}
2312
2313SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2314 unsigned int, vlen, unsigned int, flags,
2315 struct timespec __user *, timeout)
2316{
2317 int datagrams;
2318 struct timespec timeout_sys;
2319
2320 if (!timeout)
2321 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324 return -EFAULT;
2325
2326 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327
2328 if (datagrams > 0 &&
2329 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330 datagrams = -EFAULT;
2331
2332 return datagrams;
2333}
2334
2335#ifdef __ARCH_WANT_SYS_SOCKETCALL
2336/* Argument list sizes for sys_socketcall */
2337#define AL(x) ((x) * sizeof(unsigned long))
2338static const unsigned char nargs[21] = {
2339 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342 AL(4), AL(5), AL(4)
2343};
2344
2345#undef AL
2346
2347/*
2348 * System call vectors.
2349 *
2350 * Argument checking cleaned up. Saved 20% in size.
2351 * This function doesn't need to set the kernel lock because
2352 * it is set by the callees.
2353 */
2354
2355SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356{
2357 unsigned long a[6];
2358 unsigned long a0, a1;
2359 int err;
2360 unsigned int len;
2361
2362 if (call < 1 || call > SYS_SENDMMSG)
2363 return -EINVAL;
2364
2365 len = nargs[call];
2366 if (len > sizeof(a))
2367 return -EINVAL;
2368
2369 /* copy_from_user should be SMP safe. */
2370 if (copy_from_user(a, args, len))
2371 return -EFAULT;
2372
2373 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374
2375 a0 = a[0];
2376 a1 = a[1];
2377
2378 switch (call) {
2379 case SYS_SOCKET:
2380 err = sys_socket(a0, a1, a[2]);
2381 break;
2382 case SYS_BIND:
2383 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2384 break;
2385 case SYS_CONNECT:
2386 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2387 break;
2388 case SYS_LISTEN:
2389 err = sys_listen(a0, a1);
2390 break;
2391 case SYS_ACCEPT:
2392 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2393 (int __user *)a[2], 0);
2394 break;
2395 case SYS_GETSOCKNAME:
2396 err =
2397 sys_getsockname(a0, (struct sockaddr __user *)a1,
2398 (int __user *)a[2]);
2399 break;
2400 case SYS_GETPEERNAME:
2401 err =
2402 sys_getpeername(a0, (struct sockaddr __user *)a1,
2403 (int __user *)a[2]);
2404 break;
2405 case SYS_SOCKETPAIR:
2406 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2407 break;
2408 case SYS_SEND:
2409 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2410 break;
2411 case SYS_SENDTO:
2412 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2413 (struct sockaddr __user *)a[4], a[5]);
2414 break;
2415 case SYS_RECV:
2416 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2417 break;
2418 case SYS_RECVFROM:
2419 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2420 (struct sockaddr __user *)a[4],
2421 (int __user *)a[5]);
2422 break;
2423 case SYS_SHUTDOWN:
2424 err = sys_shutdown(a0, a1);
2425 break;
2426 case SYS_SETSOCKOPT:
2427 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2428 break;
2429 case SYS_GETSOCKOPT:
2430 err =
2431 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2432 (int __user *)a[4]);
2433 break;
2434 case SYS_SENDMSG:
2435 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2436 break;
2437 case SYS_SENDMMSG:
2438 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2439 break;
2440 case SYS_RECVMSG:
2441 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2442 break;
2443 case SYS_RECVMMSG:
2444 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2445 (struct timespec __user *)a[4]);
2446 break;
2447 case SYS_ACCEPT4:
2448 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2449 (int __user *)a[2], a[3]);
2450 break;
2451 default:
2452 err = -EINVAL;
2453 break;
2454 }
2455 return err;
2456}
2457
2458#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2459
2460/**
2461 * sock_register - add a socket protocol handler
2462 * @ops: description of protocol
2463 *
2464 * This function is called by a protocol handler that wants to
2465 * advertise its address family, and have it linked into the
2466 * socket interface. The value ops->family coresponds to the
2467 * socket system call protocol family.
2468 */
2469int sock_register(const struct net_proto_family *ops)
2470{
2471 int err;
2472
2473 if (ops->family >= NPROTO) {
2474 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2475 NPROTO);
2476 return -ENOBUFS;
2477 }
2478
2479 spin_lock(&net_family_lock);
2480 if (rcu_dereference_protected(net_families[ops->family],
2481 lockdep_is_held(&net_family_lock)))
2482 err = -EEXIST;
2483 else {
2484 rcu_assign_pointer(net_families[ops->family], ops);
2485 err = 0;
2486 }
2487 spin_unlock(&net_family_lock);
2488
2489 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2490 return err;
2491}
2492EXPORT_SYMBOL(sock_register);
2493
2494/**
2495 * sock_unregister - remove a protocol handler
2496 * @family: protocol family to remove
2497 *
2498 * This function is called by a protocol handler that wants to
2499 * remove its address family, and have it unlinked from the
2500 * new socket creation.
2501 *
2502 * If protocol handler is a module, then it can use module reference
2503 * counts to protect against new references. If protocol handler is not
2504 * a module then it needs to provide its own protection in
2505 * the ops->create routine.
2506 */
2507void sock_unregister(int family)
2508{
2509 BUG_ON(family < 0 || family >= NPROTO);
2510
2511 spin_lock(&net_family_lock);
2512 RCU_INIT_POINTER(net_families[family], NULL);
2513 spin_unlock(&net_family_lock);
2514
2515 synchronize_rcu();
2516
2517 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518}
2519EXPORT_SYMBOL(sock_unregister);
2520
2521static int __init sock_init(void)
2522{
2523 int err;
2524 /*
2525 * Initialize the network sysctl infrastructure.
2526 */
2527 err = net_sysctl_init();
2528 if (err)
2529 goto out;
2530
2531 /*
2532 * Initialize sock SLAB cache.
2533 */
2534
2535 sk_init();
2536
2537 /*
2538 * Initialize skbuff SLAB cache
2539 */
2540 skb_init();
2541
2542 /*
2543 * Initialize the protocols module.
2544 */
2545
2546 init_inodecache();
2547
2548 err = register_filesystem(&sock_fs_type);
2549 if (err)
2550 goto out_fs;
2551 sock_mnt = kern_mount(&sock_fs_type);
2552 if (IS_ERR(sock_mnt)) {
2553 err = PTR_ERR(sock_mnt);
2554 goto out_mount;
2555 }
2556
2557 /* The real protocol initialization is performed in later initcalls.
2558 */
2559
2560#ifdef CONFIG_NETFILTER
2561 netfilter_init();
2562#endif
2563
2564#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2565 skb_timestamping_init();
2566#endif
2567
2568out:
2569 return err;
2570
2571out_mount:
2572 unregister_filesystem(&sock_fs_type);
2573out_fs:
2574 goto out;
2575}
2576
2577core_initcall(sock_init); /* early initcall */
2578
2579#ifdef CONFIG_PROC_FS
2580void socket_seq_show(struct seq_file *seq)
2581{
2582 int cpu;
2583 int counter = 0;
2584
2585 for_each_possible_cpu(cpu)
2586 counter += per_cpu(sockets_in_use, cpu);
2587
2588 /* It can be negative, by the way. 8) */
2589 if (counter < 0)
2590 counter = 0;
2591
2592 seq_printf(seq, "sockets: used %d\n", counter);
2593}
2594#endif /* CONFIG_PROC_FS */
2595
2596#ifdef CONFIG_COMPAT
2597static int do_siocgstamp(struct net *net, struct socket *sock,
2598 unsigned int cmd, void __user *up)
2599{
2600 mm_segment_t old_fs = get_fs();
2601 struct timeval ktv;
2602 int err;
2603
2604 set_fs(KERNEL_DS);
2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606 set_fs(old_fs);
2607 if (!err)
2608 err = compat_put_timeval(&ktv, up);
2609
2610 return err;
2611}
2612
2613static int do_siocgstampns(struct net *net, struct socket *sock,
2614 unsigned int cmd, void __user *up)
2615{
2616 mm_segment_t old_fs = get_fs();
2617 struct timespec kts;
2618 int err;
2619
2620 set_fs(KERNEL_DS);
2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622 set_fs(old_fs);
2623 if (!err)
2624 err = compat_put_timespec(&kts, up);
2625
2626 return err;
2627}
2628
2629static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630{
2631 struct ifreq __user *uifr;
2632 int err;
2633
2634 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636 return -EFAULT;
2637
2638 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639 if (err)
2640 return err;
2641
2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2644
2645 return 0;
2646}
2647
2648static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649{
2650 struct compat_ifconf ifc32;
2651 struct ifconf ifc;
2652 struct ifconf __user *uifc;
2653 struct compat_ifreq __user *ifr32;
2654 struct ifreq __user *ifr;
2655 unsigned int i, j;
2656 int err;
2657
2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659 return -EFAULT;
2660
2661 memset(&ifc, 0, sizeof(ifc));
2662 if (ifc32.ifcbuf == 0) {
2663 ifc32.ifc_len = 0;
2664 ifc.ifc_len = 0;
2665 ifc.ifc_req = NULL;
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667 } else {
2668 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669 sizeof(struct ifreq);
2670 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671 ifc.ifc_len = len;
2672 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673 ifr32 = compat_ptr(ifc32.ifcbuf);
2674 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676 return -EFAULT;
2677 ifr++;
2678 ifr32++;
2679 }
2680 }
2681 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682 return -EFAULT;
2683
2684 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685 if (err)
2686 return err;
2687
2688 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689 return -EFAULT;
2690
2691 ifr = ifc.ifc_req;
2692 ifr32 = compat_ptr(ifc32.ifcbuf);
2693 for (i = 0, j = 0;
2694 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698 ifr32++;
2699 ifr++;
2700 }
2701
2702 if (ifc32.ifcbuf == 0) {
2703 /* Translate from 64-bit structure multiple to
2704 * a 32-bit one.
2705 */
2706 i = ifc.ifc_len;
2707 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708 ifc32.ifc_len = i;
2709 } else {
2710 ifc32.ifc_len = i;
2711 }
2712 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2714
2715 return 0;
2716}
2717
2718static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719{
2720 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721 bool convert_in = false, convert_out = false;
2722 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723 struct ethtool_rxnfc __user *rxnfc;
2724 struct ifreq __user *ifr;
2725 u32 rule_cnt = 0, actual_rule_cnt;
2726 u32 ethcmd;
2727 u32 data;
2728 int ret;
2729
2730 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731 return -EFAULT;
2732
2733 compat_rxnfc = compat_ptr(data);
2734
2735 if (get_user(ethcmd, &compat_rxnfc->cmd))
2736 return -EFAULT;
2737
2738 /* Most ethtool structures are defined without padding.
2739 * Unfortunately struct ethtool_rxnfc is an exception.
2740 */
2741 switch (ethcmd) {
2742 default:
2743 break;
2744 case ETHTOOL_GRXCLSRLALL:
2745 /* Buffer size is variable */
2746 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747 return -EFAULT;
2748 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749 return -ENOMEM;
2750 buf_size += rule_cnt * sizeof(u32);
2751 /* fall through */
2752 case ETHTOOL_GRXRINGS:
2753 case ETHTOOL_GRXCLSRLCNT:
2754 case ETHTOOL_GRXCLSRULE:
2755 case ETHTOOL_SRXCLSRLINS:
2756 convert_out = true;
2757 /* fall through */
2758 case ETHTOOL_SRXCLSRLDEL:
2759 buf_size += sizeof(struct ethtool_rxnfc);
2760 convert_in = true;
2761 break;
2762 }
2763
2764 ifr = compat_alloc_user_space(buf_size);
2765 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768 return -EFAULT;
2769
2770 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771 &ifr->ifr_ifru.ifru_data))
2772 return -EFAULT;
2773
2774 if (convert_in) {
2775 /* We expect there to be holes between fs.m_ext and
2776 * fs.ring_cookie and at the end of fs, but nowhere else.
2777 */
2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779 sizeof(compat_rxnfc->fs.m_ext) !=
2780 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781 sizeof(rxnfc->fs.m_ext));
2782 BUILD_BUG_ON(
2783 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785 offsetof(struct ethtool_rxnfc, fs.location) -
2786 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788 if (copy_in_user(rxnfc, compat_rxnfc,
2789 (void *)(&rxnfc->fs.m_ext + 1) -
2790 (void *)rxnfc) ||
2791 copy_in_user(&rxnfc->fs.ring_cookie,
2792 &compat_rxnfc->fs.ring_cookie,
2793 (void *)(&rxnfc->fs.location + 1) -
2794 (void *)&rxnfc->fs.ring_cookie) ||
2795 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796 sizeof(rxnfc->rule_cnt)))
2797 return -EFAULT;
2798 }
2799
2800 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801 if (ret)
2802 return ret;
2803
2804 if (convert_out) {
2805 if (copy_in_user(compat_rxnfc, rxnfc,
2806 (const void *)(&rxnfc->fs.m_ext + 1) -
2807 (const void *)rxnfc) ||
2808 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809 &rxnfc->fs.ring_cookie,
2810 (const void *)(&rxnfc->fs.location + 1) -
2811 (const void *)&rxnfc->fs.ring_cookie) ||
2812 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813 sizeof(rxnfc->rule_cnt)))
2814 return -EFAULT;
2815
2816 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817 /* As an optimisation, we only copy the actual
2818 * number of rules that the underlying
2819 * function returned. Since Mallory might
2820 * change the rule count in user memory, we
2821 * check that it is less than the rule count
2822 * originally given (as the user buffer size),
2823 * which has been range-checked.
2824 */
2825 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826 return -EFAULT;
2827 if (actual_rule_cnt < rule_cnt)
2828 rule_cnt = actual_rule_cnt;
2829 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830 &rxnfc->rule_locs[0],
2831 rule_cnt * sizeof(u32)))
2832 return -EFAULT;
2833 }
2834 }
2835
2836 return 0;
2837}
2838
2839static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840{
2841 void __user *uptr;
2842 compat_uptr_t uptr32;
2843 struct ifreq __user *uifr;
2844
2845 uifr = compat_alloc_user_space(sizeof(*uifr));
2846 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847 return -EFAULT;
2848
2849 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850 return -EFAULT;
2851
2852 uptr = compat_ptr(uptr32);
2853
2854 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855 return -EFAULT;
2856
2857 return dev_ioctl(net, SIOCWANDEV, uifr);
2858}
2859
2860static int bond_ioctl(struct net *net, unsigned int cmd,
2861 struct compat_ifreq __user *ifr32)
2862{
2863 struct ifreq kifr;
2864 struct ifreq __user *uifr;
2865 mm_segment_t old_fs;
2866 int err;
2867 u32 data;
2868 void __user *datap;
2869
2870 switch (cmd) {
2871 case SIOCBONDENSLAVE:
2872 case SIOCBONDRELEASE:
2873 case SIOCBONDSETHWADDR:
2874 case SIOCBONDCHANGEACTIVE:
2875 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2876 return -EFAULT;
2877
2878 old_fs = get_fs();
2879 set_fs(KERNEL_DS);
2880 err = dev_ioctl(net, cmd,
2881 (struct ifreq __user __force *) &kifr);
2882 set_fs(old_fs);
2883
2884 return err;
2885 case SIOCBONDSLAVEINFOQUERY:
2886 case SIOCBONDINFOQUERY:
2887 uifr = compat_alloc_user_space(sizeof(*uifr));
2888 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889 return -EFAULT;
2890
2891 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2892 return -EFAULT;
2893
2894 datap = compat_ptr(data);
2895 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2896 return -EFAULT;
2897
2898 return dev_ioctl(net, cmd, uifr);
2899 default:
2900 return -ENOIOCTLCMD;
2901 }
2902}
2903
2904static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2905 struct compat_ifreq __user *u_ifreq32)
2906{
2907 struct ifreq __user *u_ifreq64;
2908 char tmp_buf[IFNAMSIZ];
2909 void __user *data64;
2910 u32 data32;
2911
2912 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2913 IFNAMSIZ))
2914 return -EFAULT;
2915 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2916 return -EFAULT;
2917 data64 = compat_ptr(data32);
2918
2919 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2920
2921 /* Don't check these user accesses, just let that get trapped
2922 * in the ioctl handler instead.
2923 */
2924 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2925 IFNAMSIZ))
2926 return -EFAULT;
2927 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2928 return -EFAULT;
2929
2930 return dev_ioctl(net, cmd, u_ifreq64);
2931}
2932
2933static int dev_ifsioc(struct net *net, struct socket *sock,
2934 unsigned int cmd, struct compat_ifreq __user *uifr32)
2935{
2936 struct ifreq __user *uifr;
2937 int err;
2938
2939 uifr = compat_alloc_user_space(sizeof(*uifr));
2940 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2941 return -EFAULT;
2942
2943 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2944
2945 if (!err) {
2946 switch (cmd) {
2947 case SIOCGIFFLAGS:
2948 case SIOCGIFMETRIC:
2949 case SIOCGIFMTU:
2950 case SIOCGIFMEM:
2951 case SIOCGIFHWADDR:
2952 case SIOCGIFINDEX:
2953 case SIOCGIFADDR:
2954 case SIOCGIFBRDADDR:
2955 case SIOCGIFDSTADDR:
2956 case SIOCGIFNETMASK:
2957 case SIOCGIFPFLAGS:
2958 case SIOCGIFTXQLEN:
2959 case SIOCGMIIPHY:
2960 case SIOCGMIIREG:
2961 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2962 err = -EFAULT;
2963 break;
2964 }
2965 }
2966 return err;
2967}
2968
2969static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2970 struct compat_ifreq __user *uifr32)
2971{
2972 struct ifreq ifr;
2973 struct compat_ifmap __user *uifmap32;
2974 mm_segment_t old_fs;
2975 int err;
2976
2977 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2978 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2979 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2980 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2981 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2982 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2983 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2984 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2985 if (err)
2986 return -EFAULT;
2987
2988 old_fs = get_fs();
2989 set_fs(KERNEL_DS);
2990 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2991 set_fs(old_fs);
2992
2993 if (cmd == SIOCGIFMAP && !err) {
2994 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3001 if (err)
3002 err = -EFAULT;
3003 }
3004 return err;
3005}
3006
3007static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3008{
3009 void __user *uptr;
3010 compat_uptr_t uptr32;
3011 struct ifreq __user *uifr;
3012
3013 uifr = compat_alloc_user_space(sizeof(*uifr));
3014 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3015 return -EFAULT;
3016
3017 if (get_user(uptr32, &uifr32->ifr_data))
3018 return -EFAULT;
3019
3020 uptr = compat_ptr(uptr32);
3021
3022 if (put_user(uptr, &uifr->ifr_data))
3023 return -EFAULT;
3024
3025 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3026}
3027
3028struct rtentry32 {
3029 u32 rt_pad1;
3030 struct sockaddr rt_dst; /* target address */
3031 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3032 struct sockaddr rt_genmask; /* target network mask (IP) */
3033 unsigned short rt_flags;
3034 short rt_pad2;
3035 u32 rt_pad3;
3036 unsigned char rt_tos;
3037 unsigned char rt_class;
3038 short rt_pad4;
3039 short rt_metric; /* +1 for binary compatibility! */
3040 /* char * */ u32 rt_dev; /* forcing the device at add */
3041 u32 rt_mtu; /* per route MTU/Window */
3042 u32 rt_window; /* Window clamping */
3043 unsigned short rt_irtt; /* Initial RTT */
3044};
3045
3046struct in6_rtmsg32 {
3047 struct in6_addr rtmsg_dst;
3048 struct in6_addr rtmsg_src;
3049 struct in6_addr rtmsg_gateway;
3050 u32 rtmsg_type;
3051 u16 rtmsg_dst_len;
3052 u16 rtmsg_src_len;
3053 u32 rtmsg_metric;
3054 u32 rtmsg_info;
3055 u32 rtmsg_flags;
3056 s32 rtmsg_ifindex;
3057};
3058
3059static int routing_ioctl(struct net *net, struct socket *sock,
3060 unsigned int cmd, void __user *argp)
3061{
3062 int ret;
3063 void *r = NULL;
3064 struct in6_rtmsg r6;
3065 struct rtentry r4;
3066 char devname[16];
3067 u32 rtdev;
3068 mm_segment_t old_fs = get_fs();
3069
3070 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3071 struct in6_rtmsg32 __user *ur6 = argp;
3072 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3073 3 * sizeof(struct in6_addr));
3074 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3075 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3076 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3077 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3078 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3079 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3080 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081
3082 r = (void *) &r6;
3083 } else { /* ipv4 */
3084 struct rtentry32 __user *ur4 = argp;
3085 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3086 3 * sizeof(struct sockaddr));
3087 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3088 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3089 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3090 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3091 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3092 ret |= __get_user(rtdev, &(ur4->rt_dev));
3093 if (rtdev) {
3094 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3095 r4.rt_dev = (char __user __force *)devname;
3096 devname[15] = 0;
3097 } else
3098 r4.rt_dev = NULL;
3099
3100 r = (void *) &r4;
3101 }
3102
3103 if (ret) {
3104 ret = -EFAULT;
3105 goto out;
3106 }
3107
3108 set_fs(KERNEL_DS);
3109 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3110 set_fs(old_fs);
3111
3112out:
3113 return ret;
3114}
3115
3116/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3117 * for some operations; this forces use of the newer bridge-utils that
3118 * use compatible ioctls
3119 */
3120static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121{
3122 compat_ulong_t tmp;
3123
3124 if (get_user(tmp, argp))
3125 return -EFAULT;
3126 if (tmp == BRCTL_GET_VERSION)
3127 return BRCTL_VERSION + 1;
3128 return -EINVAL;
3129}
3130
3131static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3132 unsigned int cmd, unsigned long arg)
3133{
3134 void __user *argp = compat_ptr(arg);
3135 struct sock *sk = sock->sk;
3136 struct net *net = sock_net(sk);
3137
3138 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3139 return siocdevprivate_ioctl(net, cmd, argp);
3140
3141 switch (cmd) {
3142 case SIOCSIFBR:
3143 case SIOCGIFBR:
3144 return old_bridge_ioctl(argp);
3145 case SIOCGIFNAME:
3146 return dev_ifname32(net, argp);
3147 case SIOCGIFCONF:
3148 return dev_ifconf(net, argp);
3149 case SIOCETHTOOL:
3150 return ethtool_ioctl(net, argp);
3151 case SIOCWANDEV:
3152 return compat_siocwandev(net, argp);
3153 case SIOCGIFMAP:
3154 case SIOCSIFMAP:
3155 return compat_sioc_ifmap(net, cmd, argp);
3156 case SIOCBONDENSLAVE:
3157 case SIOCBONDRELEASE:
3158 case SIOCBONDSETHWADDR:
3159 case SIOCBONDSLAVEINFOQUERY:
3160 case SIOCBONDINFOQUERY:
3161 case SIOCBONDCHANGEACTIVE:
3162 return bond_ioctl(net, cmd, argp);
3163 case SIOCADDRT:
3164 case SIOCDELRT:
3165 return routing_ioctl(net, sock, cmd, argp);
3166 case SIOCGSTAMP:
3167 return do_siocgstamp(net, sock, cmd, argp);
3168 case SIOCGSTAMPNS:
3169 return do_siocgstampns(net, sock, cmd, argp);
3170 case SIOCSHWTSTAMP:
3171 return compat_siocshwtstamp(net, argp);
3172
3173 case FIOSETOWN:
3174 case SIOCSPGRP:
3175 case FIOGETOWN:
3176 case SIOCGPGRP:
3177 case SIOCBRADDBR:
3178 case SIOCBRDELBR:
3179 case SIOCGIFVLAN:
3180 case SIOCSIFVLAN:
3181 case SIOCADDDLCI:
3182 case SIOCDELDLCI:
3183 return sock_ioctl(file, cmd, arg);
3184
3185 case SIOCGIFFLAGS:
3186 case SIOCSIFFLAGS:
3187 case SIOCGIFMETRIC:
3188 case SIOCSIFMETRIC:
3189 case SIOCGIFMTU:
3190 case SIOCSIFMTU:
3191 case SIOCGIFMEM:
3192 case SIOCSIFMEM:
3193 case SIOCGIFHWADDR:
3194 case SIOCSIFHWADDR:
3195 case SIOCADDMULTI:
3196 case SIOCDELMULTI:
3197 case SIOCGIFINDEX:
3198 case SIOCGIFADDR:
3199 case SIOCSIFADDR:
3200 case SIOCSIFHWBROADCAST:
3201 case SIOCDIFADDR:
3202 case SIOCGIFBRDADDR:
3203 case SIOCSIFBRDADDR:
3204 case SIOCGIFDSTADDR:
3205 case SIOCSIFDSTADDR:
3206 case SIOCGIFNETMASK:
3207 case SIOCSIFNETMASK:
3208 case SIOCSIFPFLAGS:
3209 case SIOCGIFPFLAGS:
3210 case SIOCGIFTXQLEN:
3211 case SIOCSIFTXQLEN:
3212 case SIOCBRADDIF:
3213 case SIOCBRDELIF:
3214 case SIOCSIFNAME:
3215 case SIOCGMIIPHY:
3216 case SIOCGMIIREG:
3217 case SIOCSMIIREG:
3218 return dev_ifsioc(net, sock, cmd, argp);
3219
3220 case SIOCSARP:
3221 case SIOCGARP:
3222 case SIOCDARP:
3223 case SIOCATMARK:
3224 return sock_do_ioctl(net, sock, cmd, arg);
3225 }
3226
3227 return -ENOIOCTLCMD;
3228}
3229
3230static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3231 unsigned long arg)
3232{
3233 struct socket *sock = file->private_data;
3234 int ret = -ENOIOCTLCMD;
3235 struct sock *sk;
3236 struct net *net;
3237
3238 sk = sock->sk;
3239 net = sock_net(sk);
3240
3241 if (sock->ops->compat_ioctl)
3242 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243
3244 if (ret == -ENOIOCTLCMD &&
3245 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246 ret = compat_wext_handle_ioctl(net, cmd, arg);
3247
3248 if (ret == -ENOIOCTLCMD)
3249 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250
3251 return ret;
3252}
3253#endif
3254
3255int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256{
3257 return sock->ops->bind(sock, addr, addrlen);
3258}
3259EXPORT_SYMBOL(kernel_bind);
3260
3261int kernel_listen(struct socket *sock, int backlog)
3262{
3263 return sock->ops->listen(sock, backlog);
3264}
3265EXPORT_SYMBOL(kernel_listen);
3266
3267int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268{
3269 struct sock *sk = sock->sk;
3270 int err;
3271
3272 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273 newsock);
3274 if (err < 0)
3275 goto done;
3276
3277 err = sock->ops->accept(sock, *newsock, flags);
3278 if (err < 0) {
3279 sock_release(*newsock);
3280 *newsock = NULL;
3281 goto done;
3282 }
3283
3284 (*newsock)->ops = sock->ops;
3285 __module_get((*newsock)->ops->owner);
3286
3287done:
3288 return err;
3289}
3290EXPORT_SYMBOL(kernel_accept);
3291
3292int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293 int flags)
3294{
3295 return sock->ops->connect(sock, addr, addrlen, flags);
3296}
3297EXPORT_SYMBOL(kernel_connect);
3298
3299int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300 int *addrlen)
3301{
3302 return sock->ops->getname(sock, addr, addrlen, 0);
3303}
3304EXPORT_SYMBOL(kernel_getsockname);
3305
3306int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307 int *addrlen)
3308{
3309 return sock->ops->getname(sock, addr, addrlen, 1);
3310}
3311EXPORT_SYMBOL(kernel_getpeername);
3312
3313int kernel_getsockopt(struct socket *sock, int level, int optname,
3314 char *optval, int *optlen)
3315{
3316 mm_segment_t oldfs = get_fs();
3317 char __user *uoptval;
3318 int __user *uoptlen;
3319 int err;
3320
3321 uoptval = (char __user __force *) optval;
3322 uoptlen = (int __user __force *) optlen;
3323
3324 set_fs(KERNEL_DS);
3325 if (level == SOL_SOCKET)
3326 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327 else
3328 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329 uoptlen);
3330 set_fs(oldfs);
3331 return err;
3332}
3333EXPORT_SYMBOL(kernel_getsockopt);
3334
3335int kernel_setsockopt(struct socket *sock, int level, int optname,
3336 char *optval, unsigned int optlen)
3337{
3338 mm_segment_t oldfs = get_fs();
3339 char __user *uoptval;
3340 int err;
3341
3342 uoptval = (char __user __force *) optval;
3343
3344 set_fs(KERNEL_DS);
3345 if (level == SOL_SOCKET)
3346 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347 else
3348 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349 optlen);
3350 set_fs(oldfs);
3351 return err;
3352}
3353EXPORT_SYMBOL(kernel_setsockopt);
3354
3355int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356 size_t size, int flags)
3357{
3358 sock_update_classid(sock->sk);
3359
3360 if (sock->ops->sendpage)
3361 return sock->ops->sendpage(sock, page, offset, size, flags);
3362
3363 return sock_no_sendpage(sock, page, offset, size, flags);
3364}
3365EXPORT_SYMBOL(kernel_sendpage);
3366
3367int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368{
3369 mm_segment_t oldfs = get_fs();
3370 int err;
3371
3372 set_fs(KERNEL_DS);
3373 err = sock->ops->ioctl(sock, cmd, arg);
3374 set_fs(oldfs);
3375
3376 return err;
3377}
3378EXPORT_SYMBOL(kernel_sock_ioctl);
3379
3380int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381{
3382 return sock->ops->shutdown(sock, how);
3383}
3384EXPORT_SYMBOL(kernel_sock_shutdown);