Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/bpf-cgroup.h>
  56#include <linux/ethtool.h>
  57#include <linux/mm.h>
  58#include <linux/socket.h>
  59#include <linux/file.h>
  60#include <linux/splice.h>
  61#include <linux/net.h>
  62#include <linux/interrupt.h>
  63#include <linux/thread_info.h>
  64#include <linux/rcupdate.h>
  65#include <linux/netdevice.h>
  66#include <linux/proc_fs.h>
  67#include <linux/seq_file.h>
  68#include <linux/mutex.h>
  69#include <linux/if_bridge.h>
 
  70#include <linux/if_vlan.h>
  71#include <linux/ptp_classify.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/cache.h>
  75#include <linux/module.h>
  76#include <linux/highmem.h>
  77#include <linux/mount.h>
  78#include <linux/pseudo_fs.h>
  79#include <linux/security.h>
  80#include <linux/syscalls.h>
  81#include <linux/compat.h>
  82#include <linux/kmod.h>
  83#include <linux/audit.h>
  84#include <linux/wireless.h>
  85#include <linux/nsproxy.h>
  86#include <linux/magic.h>
  87#include <linux/slab.h>
  88#include <linux/xattr.h>
  89#include <linux/nospec.h>
  90#include <linux/indirect_call_wrapper.h>
  91#include <linux/io_uring/net.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/termios.h>
 107#include <linux/sockios.h>
 
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110#include <linux/ptp_clock_kernel.h>
 111#include <trace/events/sock.h>
 112
 113#ifdef CONFIG_NET_RX_BUSY_POLL
 114unsigned int sysctl_net_busy_read __read_mostly;
 115unsigned int sysctl_net_busy_poll __read_mostly;
 116#endif
 117
 118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 
 
 
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static __poll_t sock_poll(struct file *file,
 124			      struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128			      unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 
 
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134static void sock_splice_eof(struct file *file);
 135
 136#ifdef CONFIG_PROC_FS
 137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 138{
 139	struct socket *sock = f->private_data;
 140	const struct proto_ops *ops = READ_ONCE(sock->ops);
 141
 142	if (ops->show_fdinfo)
 143		ops->show_fdinfo(m, sock);
 144}
 145#else
 146#define sock_show_fdinfo NULL
 147#endif
 148
 149/*
 150 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 151 *	in the operation structures but are done directly via the socketcall() multiplexor.
 152 */
 153
 154static const struct file_operations socket_file_ops = {
 155	.owner =	THIS_MODULE,
 156	.read_iter =	sock_read_iter,
 157	.write_iter =	sock_write_iter,
 
 158	.poll =		sock_poll,
 159	.unlocked_ioctl = sock_ioctl,
 160#ifdef CONFIG_COMPAT
 161	.compat_ioctl = compat_sock_ioctl,
 162#endif
 163	.uring_cmd =    io_uring_cmd_sock,
 164	.mmap =		sock_mmap,
 
 165	.release =	sock_close,
 166	.fasync =	sock_fasync,
 167	.splice_write = splice_to_socket,
 
 168	.splice_read =	sock_splice_read,
 169	.splice_eof =	sock_splice_eof,
 170	.show_fdinfo =	sock_show_fdinfo,
 171};
 172
 173static const char * const pf_family_names[] = {
 174	[PF_UNSPEC]	= "PF_UNSPEC",
 175	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 176	[PF_INET]	= "PF_INET",
 177	[PF_AX25]	= "PF_AX25",
 178	[PF_IPX]	= "PF_IPX",
 179	[PF_APPLETALK]	= "PF_APPLETALK",
 180	[PF_NETROM]	= "PF_NETROM",
 181	[PF_BRIDGE]	= "PF_BRIDGE",
 182	[PF_ATMPVC]	= "PF_ATMPVC",
 183	[PF_X25]	= "PF_X25",
 184	[PF_INET6]	= "PF_INET6",
 185	[PF_ROSE]	= "PF_ROSE",
 186	[PF_DECnet]	= "PF_DECnet",
 187	[PF_NETBEUI]	= "PF_NETBEUI",
 188	[PF_SECURITY]	= "PF_SECURITY",
 189	[PF_KEY]	= "PF_KEY",
 190	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 191	[PF_PACKET]	= "PF_PACKET",
 192	[PF_ASH]	= "PF_ASH",
 193	[PF_ECONET]	= "PF_ECONET",
 194	[PF_ATMSVC]	= "PF_ATMSVC",
 195	[PF_RDS]	= "PF_RDS",
 196	[PF_SNA]	= "PF_SNA",
 197	[PF_IRDA]	= "PF_IRDA",
 198	[PF_PPPOX]	= "PF_PPPOX",
 199	[PF_WANPIPE]	= "PF_WANPIPE",
 200	[PF_LLC]	= "PF_LLC",
 201	[PF_IB]		= "PF_IB",
 202	[PF_MPLS]	= "PF_MPLS",
 203	[PF_CAN]	= "PF_CAN",
 204	[PF_TIPC]	= "PF_TIPC",
 205	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 206	[PF_IUCV]	= "PF_IUCV",
 207	[PF_RXRPC]	= "PF_RXRPC",
 208	[PF_ISDN]	= "PF_ISDN",
 209	[PF_PHONET]	= "PF_PHONET",
 210	[PF_IEEE802154]	= "PF_IEEE802154",
 211	[PF_CAIF]	= "PF_CAIF",
 212	[PF_ALG]	= "PF_ALG",
 213	[PF_NFC]	= "PF_NFC",
 214	[PF_VSOCK]	= "PF_VSOCK",
 215	[PF_KCM]	= "PF_KCM",
 216	[PF_QIPCRTR]	= "PF_QIPCRTR",
 217	[PF_SMC]	= "PF_SMC",
 218	[PF_XDP]	= "PF_XDP",
 219	[PF_MCTP]	= "PF_MCTP",
 220};
 221
 222/*
 223 *	The protocol list. Each protocol is registered in here.
 224 */
 225
 226static DEFINE_SPINLOCK(net_family_lock);
 227static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 228
 229/*
 
 
 
 
 
 
 230 * Support routines.
 231 * Move socket addresses back and forth across the kernel/user
 232 * divide and look after the messy bits.
 233 */
 234
 235/**
 236 *	move_addr_to_kernel	-	copy a socket address into kernel space
 237 *	@uaddr: Address in user space
 238 *	@kaddr: Address in kernel space
 239 *	@ulen: Length in user space
 240 *
 241 *	The address is copied into kernel space. If the provided address is
 242 *	too long an error code of -EINVAL is returned. If the copy gives
 243 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 244 */
 245
 246int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 247{
 248	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 249		return -EINVAL;
 250	if (ulen == 0)
 251		return 0;
 252	if (copy_from_user(kaddr, uaddr, ulen))
 253		return -EFAULT;
 254	return audit_sockaddr(ulen, kaddr);
 255}
 256
 257/**
 258 *	move_addr_to_user	-	copy an address to user space
 259 *	@kaddr: kernel space address
 260 *	@klen: length of address in kernel
 261 *	@uaddr: user space address
 262 *	@ulen: pointer to user length field
 263 *
 264 *	The value pointed to by ulen on entry is the buffer length available.
 265 *	This is overwritten with the buffer space used. -EINVAL is returned
 266 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 267 *	is returned if either the buffer or the length field are not
 268 *	accessible.
 269 *	After copying the data up to the limit the user specifies, the true
 270 *	length of the data is written over the length limit the user
 271 *	specified. Zero is returned for a success.
 272 */
 273
 274static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 275			     void __user *uaddr, int __user *ulen)
 276{
 277	int err;
 278	int len;
 279
 280	BUG_ON(klen > sizeof(struct sockaddr_storage));
 281	err = get_user(len, ulen);
 282	if (err)
 283		return err;
 284	if (len > klen)
 285		len = klen;
 286	if (len < 0)
 287		return -EINVAL;
 288	if (len) {
 289		if (audit_sockaddr(klen, kaddr))
 290			return -ENOMEM;
 291		if (copy_to_user(uaddr, kaddr, len))
 292			return -EFAULT;
 293	}
 294	/*
 295	 *      "fromlen shall refer to the value before truncation.."
 296	 *                      1003.1g
 297	 */
 298	return __put_user(klen, ulen);
 299}
 300
 301static struct kmem_cache *sock_inode_cachep __ro_after_init;
 302
 303static struct inode *sock_alloc_inode(struct super_block *sb)
 304{
 305	struct socket_alloc *ei;
 
 306
 307	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
 308	if (!ei)
 309		return NULL;
 310	init_waitqueue_head(&ei->socket.wq.wait);
 311	ei->socket.wq.fasync_list = NULL;
 312	ei->socket.wq.flags = 0;
 
 
 
 
 
 313
 314	ei->socket.state = SS_UNCONNECTED;
 315	ei->socket.flags = 0;
 316	ei->socket.ops = NULL;
 317	ei->socket.sk = NULL;
 318	ei->socket.file = NULL;
 319
 320	return &ei->vfs_inode;
 321}
 322
 323static void sock_free_inode(struct inode *inode)
 324{
 325	struct socket_alloc *ei;
 
 326
 327	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 328	kmem_cache_free(sock_inode_cachep, ei);
 329}
 330
 331static void init_once(void *foo)
 332{
 333	struct socket_alloc *ei = (struct socket_alloc *)foo;
 334
 335	inode_init_once(&ei->vfs_inode);
 336}
 337
 338static void init_inodecache(void)
 339{
 340	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 341					      sizeof(struct socket_alloc),
 342					      0,
 343					      (SLAB_HWCACHE_ALIGN |
 344					       SLAB_RECLAIM_ACCOUNT |
 345					       SLAB_ACCOUNT),
 346					      init_once);
 347	BUG_ON(sock_inode_cachep == NULL);
 
 
 348}
 349
 350static const struct super_operations sockfs_ops = {
 351	.alloc_inode	= sock_alloc_inode,
 352	.free_inode	= sock_free_inode,
 353	.statfs		= simple_statfs,
 354};
 355
 356/*
 357 * sockfs_dname() is called from d_path().
 358 */
 359static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 360{
 361	return dynamic_dname(buffer, buflen, "socket:[%lu]",
 362				d_inode(dentry)->i_ino);
 363}
 364
 365static const struct dentry_operations sockfs_dentry_operations = {
 366	.d_dname  = sockfs_dname,
 367};
 368
 369static int sockfs_xattr_get(const struct xattr_handler *handler,
 370			    struct dentry *dentry, struct inode *inode,
 371			    const char *suffix, void *value, size_t size)
 372{
 373	if (value) {
 374		if (dentry->d_name.len + 1 > size)
 375			return -ERANGE;
 376		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 377	}
 378	return dentry->d_name.len + 1;
 379}
 380
 381#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 382#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 383#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 384
 385static const struct xattr_handler sockfs_xattr_handler = {
 386	.name = XATTR_NAME_SOCKPROTONAME,
 387	.get = sockfs_xattr_get,
 388};
 389
 390static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 391				     struct mnt_idmap *idmap,
 392				     struct dentry *dentry, struct inode *inode,
 393				     const char *suffix, const void *value,
 394				     size_t size, int flags)
 395{
 396	/* Handled by LSM. */
 397	return -EAGAIN;
 398}
 399
 400static const struct xattr_handler sockfs_security_xattr_handler = {
 401	.prefix = XATTR_SECURITY_PREFIX,
 402	.set = sockfs_security_xattr_set,
 403};
 404
 405static const struct xattr_handler * const sockfs_xattr_handlers[] = {
 406	&sockfs_xattr_handler,
 407	&sockfs_security_xattr_handler,
 408	NULL
 409};
 410
 411static int sockfs_init_fs_context(struct fs_context *fc)
 412{
 413	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 414	if (!ctx)
 415		return -ENOMEM;
 416	ctx->ops = &sockfs_ops;
 417	ctx->dops = &sockfs_dentry_operations;
 418	ctx->xattr = sockfs_xattr_handlers;
 419	return 0;
 420}
 421
 422static struct vfsmount *sock_mnt __read_mostly;
 423
 424static struct file_system_type sock_fs_type = {
 425	.name =		"sockfs",
 426	.init_fs_context = sockfs_init_fs_context,
 427	.kill_sb =	kill_anon_super,
 428};
 429
 430/*
 431 *	Obtains the first available file descriptor and sets it up for use.
 432 *
 433 *	These functions create file structures and maps them to fd space
 434 *	of the current process. On success it returns file descriptor
 435 *	and file struct implicitly stored in sock->file.
 436 *	Note that another thread may close file descriptor before we return
 437 *	from this function. We use the fact that now we do not refer
 438 *	to socket after mapping. If one day we will need it, this
 439 *	function will increment ref. count on file by 1.
 440 *
 441 *	In any case returned fd MAY BE not valid!
 442 *	This race condition is unavoidable
 443 *	with shared fd spaces, we cannot solve it inside kernel,
 444 *	but we take care of internal coherence yet.
 445 */
 446
 447/**
 448 *	sock_alloc_file - Bind a &socket to a &file
 449 *	@sock: socket
 450 *	@flags: file status flags
 451 *	@dname: protocol name
 452 *
 453 *	Returns the &file bound with @sock, implicitly storing it
 454 *	in sock->file. If dname is %NULL, sets to "".
 455 *
 456 *	On failure @sock is released, and an ERR pointer is returned.
 457 *
 458 *	This function uses GFP_KERNEL internally.
 459 */
 460
 461struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 462{
 
 
 463	struct file *file;
 464
 465	if (!dname)
 466		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 467
 468	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 469				O_RDWR | (flags & O_NONBLOCK),
 470				&socket_file_ops);
 471	if (IS_ERR(file)) {
 472		sock_release(sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 473		return file;
 474	}
 475
 476	file->f_mode |= FMODE_NOWAIT;
 477	sock->file = file;
 
 478	file->private_data = sock;
 479	stream_open(SOCK_INODE(sock), file);
 480	return file;
 481}
 482EXPORT_SYMBOL(sock_alloc_file);
 483
 484static int sock_map_fd(struct socket *sock, int flags)
 485{
 486	struct file *newfile;
 487	int fd = get_unused_fd_flags(flags);
 488	if (unlikely(fd < 0)) {
 489		sock_release(sock);
 490		return fd;
 491	}
 492
 493	newfile = sock_alloc_file(sock, flags, NULL);
 494	if (!IS_ERR(newfile)) {
 495		fd_install(fd, newfile);
 496		return fd;
 497	}
 498
 499	put_unused_fd(fd);
 500	return PTR_ERR(newfile);
 501}
 502
 503/**
 504 *	sock_from_file - Return the &socket bounded to @file.
 505 *	@file: file
 506 *
 507 *	On failure returns %NULL.
 508 */
 509
 510struct socket *sock_from_file(struct file *file)
 511{
 512	if (likely(file->f_op == &socket_file_ops))
 513		return file->private_data;	/* set in sock_alloc_file */
 514
 
 515	return NULL;
 516}
 517EXPORT_SYMBOL(sock_from_file);
 518
 519/**
 520 *	sockfd_lookup - Go from a file number to its socket slot
 521 *	@fd: file handle
 522 *	@err: pointer to an error code return
 523 *
 524 *	The file handle passed in is locked and the socket it is bound
 525 *	to is returned. If an error occurs the err pointer is overwritten
 526 *	with a negative errno code and NULL is returned. The function checks
 527 *	for both invalid handles and passing a handle which is not a socket.
 528 *
 529 *	On a success the socket object pointer is returned.
 530 */
 531
 532struct socket *sockfd_lookup(int fd, int *err)
 533{
 534	struct file *file;
 535	struct socket *sock;
 536
 537	file = fget(fd);
 538	if (!file) {
 539		*err = -EBADF;
 540		return NULL;
 541	}
 542
 543	sock = sock_from_file(file);
 544	if (!sock) {
 545		*err = -ENOTSOCK;
 546		fput(file);
 547	}
 548	return sock;
 549}
 550EXPORT_SYMBOL(sockfd_lookup);
 551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 553				size_t size)
 554{
 555	ssize_t len;
 556	ssize_t used = 0;
 557
 558	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 559	if (len < 0)
 560		return len;
 561	used += len;
 562	if (buffer) {
 563		if (size < used)
 564			return -ERANGE;
 565		buffer += len;
 566	}
 567
 568	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 569	used += len;
 570	if (buffer) {
 571		if (size < used)
 572			return -ERANGE;
 573		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 574		buffer += len;
 575	}
 576
 577	return used;
 578}
 579
 580static int sockfs_setattr(struct mnt_idmap *idmap,
 581			  struct dentry *dentry, struct iattr *iattr)
 582{
 583	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
 584
 585	if (!err && (iattr->ia_valid & ATTR_UID)) {
 586		struct socket *sock = SOCKET_I(d_inode(dentry));
 587
 588		if (sock->sk)
 589			sock->sk->sk_uid = iattr->ia_uid;
 590		else
 591			err = -ENOENT;
 592	}
 593
 594	return err;
 595}
 596
 597static const struct inode_operations sockfs_inode_ops = {
 
 598	.listxattr = sockfs_listxattr,
 599	.setattr = sockfs_setattr,
 600};
 601
 602/**
 603 *	sock_alloc - allocate a socket
 604 *
 605 *	Allocate a new inode and socket object. The two are bound together
 606 *	and initialised. The socket is then returned. If we are out of inodes
 607 *	NULL is returned. This functions uses GFP_KERNEL internally.
 608 */
 609
 610struct socket *sock_alloc(void)
 611{
 612	struct inode *inode;
 613	struct socket *sock;
 614
 615	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 616	if (!inode)
 617		return NULL;
 618
 619	sock = SOCKET_I(inode);
 620
 
 621	inode->i_ino = get_next_ino();
 622	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 623	inode->i_uid = current_fsuid();
 624	inode->i_gid = current_fsgid();
 625	inode->i_op = &sockfs_inode_ops;
 626
 
 627	return sock;
 628}
 629EXPORT_SYMBOL(sock_alloc);
 630
 631static void __sock_release(struct socket *sock, struct inode *inode)
 632{
 633	const struct proto_ops *ops = READ_ONCE(sock->ops);
 634
 635	if (ops) {
 636		struct module *owner = ops->owner;
 637
 638		if (inode)
 639			inode_lock(inode);
 640		ops->release(sock);
 641		sock->sk = NULL;
 642		if (inode)
 643			inode_unlock(inode);
 644		sock->ops = NULL;
 645		module_put(owner);
 646	}
 647
 648	if (sock->wq.fasync_list)
 649		pr_err("%s: fasync list not empty!\n", __func__);
 650
 651	if (!sock->file) {
 652		iput(SOCK_INODE(sock));
 653		return;
 654	}
 655	sock->file = NULL;
 656}
 657
 
 
 
 
 
 
 658/**
 659 *	sock_release - close a socket
 660 *	@sock: socket to close
 661 *
 662 *	The socket is released from the protocol stack if it has a release
 663 *	callback, and the inode is then released if the socket is bound to
 664 *	an inode not a file.
 665 */
 666void sock_release(struct socket *sock)
 667{
 668	__sock_release(sock, NULL);
 669}
 670EXPORT_SYMBOL(sock_release);
 671
 672void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
 673{
 674	u8 flags = *tx_flags;
 675
 676	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
 677		flags |= SKBTX_HW_TSTAMP;
 678
 679		/* PTP hardware clocks can provide a free running cycle counter
 680		 * as a time base for virtual clocks. Tell driver to use the
 681		 * free running cycle counter for timestamp if socket is bound
 682		 * to virtual clock.
 683		 */
 684		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 685			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
 686	}
 687
 688	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 689		flags |= SKBTX_SW_TSTAMP;
 690
 691	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 692		flags |= SKBTX_SCHED_TSTAMP;
 693
 694	*tx_flags = flags;
 
 
 
 
 
 695}
 696EXPORT_SYMBOL(__sock_tx_timestamp);
 697
 698INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 699					   size_t));
 700INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 701					    size_t));
 702
 703static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
 704						 int flags)
 705{
 706	trace_sock_send_length(sk, ret, 0);
 
 
 
 
 
 
 707}
 
 708
 709static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 
 710{
 711	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
 712				     inet_sendmsg, sock, msg,
 713				     msg_data_left(msg));
 714	BUG_ON(ret == -EIOCBQUEUED);
 715
 716	if (trace_sock_send_length_enabled())
 717		call_trace_sock_send_length(sock->sk, ret, 0);
 718	return ret;
 
 
 
 719}
 720
 721static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
 
 722{
 723	int err = security_socket_sendmsg(sock, msg,
 724					  msg_data_left(msg));
 725
 726	return err ?: sock_sendmsg_nosec(sock, msg);
 727}
 728
 729/**
 730 *	sock_sendmsg - send a message through @sock
 731 *	@sock: socket
 732 *	@msg: message to send
 733 *
 734 *	Sends @msg through @sock, passing through LSM.
 735 *	Returns the number of bytes sent, or an error code.
 736 */
 737int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 738{
 739	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
 740	struct sockaddr_storage address;
 741	int save_len = msg->msg_namelen;
 742	int ret;
 743
 744	if (msg->msg_name) {
 745		memcpy(&address, msg->msg_name, msg->msg_namelen);
 746		msg->msg_name = &address;
 747	}
 748
 749	ret = __sock_sendmsg(sock, msg);
 750	msg->msg_name = save_addr;
 751	msg->msg_namelen = save_len;
 752
 753	return ret;
 754}
 755EXPORT_SYMBOL(sock_sendmsg);
 756
 757/**
 758 *	kernel_sendmsg - send a message through @sock (kernel-space)
 759 *	@sock: socket
 760 *	@msg: message header
 761 *	@vec: kernel vec
 762 *	@num: vec array length
 763 *	@size: total message data size
 764 *
 765 *	Builds the message data with @vec and sends it through @sock.
 766 *	Returns the number of bytes sent, or an error code.
 767 */
 768
 769int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 770		   struct kvec *vec, size_t num, size_t size)
 771{
 772	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 773	return sock_sendmsg(sock, msg);
 774}
 775EXPORT_SYMBOL(kernel_sendmsg);
 776
 777/**
 778 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 779 *	@sk: sock
 780 *	@msg: message header
 781 *	@vec: output s/g array
 782 *	@num: output s/g array length
 783 *	@size: total message data size
 784 *
 785 *	Builds the message data with @vec and sends it through @sock.
 786 *	Returns the number of bytes sent, or an error code.
 787 *	Caller must hold @sk.
 788 */
 789
 790int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 791			  struct kvec *vec, size_t num, size_t size)
 792{
 793	struct socket *sock = sk->sk_socket;
 794	const struct proto_ops *ops = READ_ONCE(sock->ops);
 795
 796	if (!ops->sendmsg_locked)
 797		return sock_no_sendmsg_locked(sk, msg, size);
 798
 799	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 800
 801	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 802}
 803EXPORT_SYMBOL(kernel_sendmsg_locked);
 804
 805static bool skb_is_err_queue(const struct sk_buff *skb)
 806{
 807	/* pkt_type of skbs enqueued on the error queue are set to
 808	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 809	 * in recvmsg, since skbs received on a local socket will never
 810	 * have a pkt_type of PACKET_OUTGOING.
 811	 */
 812	return skb->pkt_type == PACKET_OUTGOING;
 813}
 814
 815/* On transmit, software and hardware timestamps are returned independently.
 816 * As the two skb clones share the hardware timestamp, which may be updated
 817 * before the software timestamp is received, a hardware TX timestamp may be
 818 * returned only if there is no software TX timestamp. Ignore false software
 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 821 * hardware timestamp.
 822 */
 823static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 824{
 825	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 826}
 827
 828static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
 829{
 830	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
 831	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 832	struct net_device *orig_dev;
 833	ktime_t hwtstamp;
 834
 835	rcu_read_lock();
 836	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 837	if (orig_dev) {
 838		*if_index = orig_dev->ifindex;
 839		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
 840	} else {
 841		hwtstamp = shhwtstamps->hwtstamp;
 842	}
 843	rcu_read_unlock();
 844
 845	return hwtstamp;
 
 
 
 
 
 846}
 847
 848static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
 849			   int if_index)
 850{
 851	struct scm_ts_pktinfo ts_pktinfo;
 852	struct net_device *orig_dev;
 853
 854	if (!skb_mac_header_was_set(skb))
 855		return;
 856
 857	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 858
 859	if (!if_index) {
 860		rcu_read_lock();
 861		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 862		if (orig_dev)
 863			if_index = orig_dev->ifindex;
 864		rcu_read_unlock();
 865	}
 866	ts_pktinfo.if_index = if_index;
 867
 868	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 869	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 870		 sizeof(ts_pktinfo), &ts_pktinfo);
 
 
 
 
 
 
 
 871}
 
 872
 873/*
 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 875 */
 876void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 877	struct sk_buff *skb)
 878{
 879	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 880	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 881	struct scm_timestamping_internal tss;
 882	int empty = 1, false_tstamp = 0;
 883	struct skb_shared_hwtstamps *shhwtstamps =
 884		skb_hwtstamps(skb);
 885	int if_index;
 886	ktime_t hwtstamp;
 887	u32 tsflags;
 888
 889	/* Race occurred between timestamp enabling and packet
 890	   receiving.  Fill in the current time for now. */
 891	if (need_software_tstamp && skb->tstamp == 0) {
 892		__net_timestamp(skb);
 893		false_tstamp = 1;
 894	}
 895
 896	if (need_software_tstamp) {
 897		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 898			if (new_tstamp) {
 899				struct __kernel_sock_timeval tv;
 900
 901				skb_get_new_timestamp(skb, &tv);
 902				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 903					 sizeof(tv), &tv);
 904			} else {
 905				struct __kernel_old_timeval tv;
 906
 907				skb_get_timestamp(skb, &tv);
 908				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 909					 sizeof(tv), &tv);
 910			}
 911		} else {
 912			if (new_tstamp) {
 913				struct __kernel_timespec ts;
 914
 915				skb_get_new_timestampns(skb, &ts);
 916				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 917					 sizeof(ts), &ts);
 918			} else {
 919				struct __kernel_old_timespec ts;
 920
 921				skb_get_timestampns(skb, &ts);
 922				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 923					 sizeof(ts), &ts);
 924			}
 925		}
 926	}
 927
 928	memset(&tss, 0, sizeof(tss));
 929	tsflags = READ_ONCE(sk->sk_tsflags);
 930	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
 931	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
 932	      skb_is_err_queue(skb) ||
 933	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
 934	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 935		empty = 0;
 936	if (shhwtstamps &&
 937	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
 938	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
 939	      skb_is_err_queue(skb) ||
 940	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
 941	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 942		if_index = 0;
 943		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
 944			hwtstamp = get_timestamp(sk, skb, &if_index);
 945		else
 946			hwtstamp = shhwtstamps->hwtstamp;
 947
 948		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 949			hwtstamp = ptp_convert_timestamp(&hwtstamp,
 950							 READ_ONCE(sk->sk_bind_phc));
 951
 952		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
 
 
 
 
 
 
 
 
 
 953			empty = 0;
 954
 955			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 956			    !skb_is_err_queue(skb))
 957				put_ts_pktinfo(msg, skb, if_index);
 958		}
 959	}
 960	if (!empty) {
 961		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 962			put_cmsg_scm_timestamping64(msg, &tss);
 963		else
 964			put_cmsg_scm_timestamping(msg, &tss);
 965
 966		if (skb_is_err_queue(skb) && skb->len &&
 967		    SKB_EXT_ERR(skb)->opt_stats)
 968			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 969				 skb->len, skb->data);
 970	}
 
 
 
 971}
 972EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 973
 974#ifdef CONFIG_WIRELESS
 975void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 976	struct sk_buff *skb)
 977{
 978	int ack;
 979
 980	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 981		return;
 982	if (!skb->wifi_acked_valid)
 983		return;
 984
 985	ack = skb->wifi_acked;
 986
 987	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 988}
 989EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 990#endif
 991
 992static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 993				   struct sk_buff *skb)
 994{
 995	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 996		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 997			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 998}
 999
1000static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001			   struct sk_buff *skb)
1002{
1003	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005		__u32 mark = skb->mark;
1006
1007		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008	}
1009}
1010
1011void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012		       struct sk_buff *skb)
1013{
1014	sock_recv_timestamp(msg, sk, skb);
1015	sock_recv_drops(msg, sk, skb);
1016	sock_recv_mark(msg, sk, skb);
1017}
1018EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
 
 
 
 
 
1019
1020INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021					   size_t, int));
1022INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023					    size_t, int));
 
1024
1025static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
 
 
 
 
1026{
1027	trace_sock_recv_length(sk, ret, flags);
 
 
1028}
1029
1030static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031				     int flags)
1032{
1033	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034				     inet6_recvmsg,
1035				     inet_recvmsg, sock, msg,
1036				     msg_data_left(msg), flags);
1037	if (trace_sock_recv_length_enabled())
1038		call_trace_sock_recv_length(sock->sk, ret, flags);
 
 
 
1039	return ret;
1040}
 
1041
1042/**
1043 *	sock_recvmsg - receive a message from @sock
1044 *	@sock: socket
1045 *	@msg: message to receive
1046 *	@flags: message flags
1047 *
1048 *	Receives @msg from @sock, passing through LSM. Returns the total number
1049 *	of bytes received, or an error.
1050 */
1051int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052{
1053	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
1054
1055	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 
 
 
 
 
1056}
1057EXPORT_SYMBOL(sock_recvmsg);
1058
1059/**
1060 *	kernel_recvmsg - Receive a message from a socket (kernel space)
1061 *	@sock: The socket to receive the message from
1062 *	@msg: Received message
1063 *	@vec: Input s/g array for message data
1064 *	@num: Size of input s/g array
1065 *	@size: Number of bytes to read
1066 *	@flags: Message flags (MSG_DONTWAIT, etc...)
1067 *
1068 *	On return the msg structure contains the scatter/gather array passed in the
1069 *	vec argument. The array is modified so that it consists of the unfilled
1070 *	portion of the original array.
1071 *
1072 *	The returned value is the total number of bytes received, or an error.
1073 */
1074
1075int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076		   struct kvec *vec, size_t num, size_t size, int flags)
1077{
1078	msg->msg_control_is_user = false;
1079	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 
 
 
 
1081}
1082EXPORT_SYMBOL(kernel_recvmsg);
1083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085				struct pipe_inode_info *pipe, size_t len,
1086				unsigned int flags)
1087{
1088	struct socket *sock = file->private_data;
1089	const struct proto_ops *ops;
1090
1091	ops = READ_ONCE(sock->ops);
1092	if (unlikely(!ops->splice_read))
1093		return copy_splice_read(file, ppos, pipe, len, flags);
1094
1095	return ops->splice_read(sock, ppos, pipe, len, flags);
1096}
1097
1098static void sock_splice_eof(struct file *file)
 
1099{
1100	struct socket *sock = file->private_data;
1101	const struct proto_ops *ops;
1102
1103	ops = READ_ONCE(sock->ops);
1104	if (ops->splice_eof)
1105		ops->splice_eof(sock);
1106}
1107
1108static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 
 
1109{
1110	struct file *file = iocb->ki_filp;
1111	struct socket *sock = file->private_data;
1112	struct msghdr msg = {.msg_iter = *to,
1113			     .msg_iocb = iocb};
1114	ssize_t res;
 
 
1115
1116	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117		msg.msg_flags = MSG_DONTWAIT;
 
 
 
 
 
1118
1119	if (iocb->ki_pos != 0)
 
 
 
 
 
 
 
 
1120		return -ESPIPE;
1121
1122	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1123		return 0;
1124
1125	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126	*to = msg.msg_iter;
1127	return res;
 
 
1128}
1129
1130static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
1131{
1132	struct file *file = iocb->ki_filp;
1133	struct socket *sock = file->private_data;
1134	struct msghdr msg = {.msg_iter = *from,
1135			     .msg_iocb = iocb};
1136	ssize_t res;
1137
1138	if (iocb->ki_pos != 0)
1139		return -ESPIPE;
1140
1141	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142		msg.msg_flags = MSG_DONTWAIT;
1143
 
 
 
 
 
 
 
1144	if (sock->type == SOCK_SEQPACKET)
1145		msg.msg_flags |= MSG_EOR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146
1147	res = __sock_sendmsg(sock, &msg);
1148	*from = msg.msg_iter;
1149	return res;
1150}
1151
1152/*
1153 * Atomic setting of ioctl hooks to avoid race
1154 * with module unload.
1155 */
1156
1157static DEFINE_MUTEX(br_ioctl_mutex);
1158static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159			    unsigned int cmd, struct ifreq *ifr,
1160			    void __user *uarg);
1161
1162void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163			     unsigned int cmd, struct ifreq *ifr,
1164			     void __user *uarg))
1165{
1166	mutex_lock(&br_ioctl_mutex);
1167	br_ioctl_hook = hook;
1168	mutex_unlock(&br_ioctl_mutex);
1169}
1170EXPORT_SYMBOL(brioctl_set);
1171
1172int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173		  struct ifreq *ifr, void __user *uarg)
1174{
1175	int err = -ENOPKG;
1176
1177	if (!br_ioctl_hook)
1178		request_module("bridge");
1179
1180	mutex_lock(&br_ioctl_mutex);
1181	if (br_ioctl_hook)
1182		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183	mutex_unlock(&br_ioctl_mutex);
1184
1185	return err;
1186}
1187
1188static DEFINE_MUTEX(vlan_ioctl_mutex);
1189static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190
1191void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192{
1193	mutex_lock(&vlan_ioctl_mutex);
1194	vlan_ioctl_hook = hook;
1195	mutex_unlock(&vlan_ioctl_mutex);
1196}
1197EXPORT_SYMBOL(vlan_ioctl_set);
1198
 
 
 
 
 
 
 
 
 
 
 
1199static long sock_do_ioctl(struct net *net, struct socket *sock,
1200			  unsigned int cmd, unsigned long arg)
1201{
1202	const struct proto_ops *ops = READ_ONCE(sock->ops);
1203	struct ifreq ifr;
1204	bool need_copyout;
1205	int err;
1206	void __user *argp = (void __user *)arg;
1207	void __user *data;
1208
1209	err = ops->ioctl(sock, cmd, arg);
1210
1211	/*
1212	 * If this ioctl is unknown try to hand it down
1213	 * to the NIC driver.
1214	 */
1215	if (err != -ENOIOCTLCMD)
1216		return err;
1217
1218	if (!is_socket_ioctl_cmd(cmd))
1219		return -ENOTTY;
1220
1221	if (get_user_ifreq(&ifr, &data, argp))
1222		return -EFAULT;
1223	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224	if (!err && need_copyout)
1225		if (put_user_ifreq(&ifr, argp))
1226			return -EFAULT;
1227
1228	return err;
1229}
1230
1231/*
1232 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1233 *	what to do with it - that's up to the protocol still.
1234 */
1235
1236static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237{
1238	const struct proto_ops  *ops;
1239	struct socket *sock;
1240	struct sock *sk;
1241	void __user *argp = (void __user *)arg;
1242	int pid, err;
1243	struct net *net;
1244
1245	sock = file->private_data;
1246	ops = READ_ONCE(sock->ops);
1247	sk = sock->sk;
1248	net = sock_net(sk);
1249	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250		struct ifreq ifr;
1251		void __user *data;
1252		bool need_copyout;
1253		if (get_user_ifreq(&ifr, &data, argp))
1254			return -EFAULT;
1255		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256		if (!err && need_copyout)
1257			if (put_user_ifreq(&ifr, argp))
1258				return -EFAULT;
1259	} else
1260#ifdef CONFIG_WEXT_CORE
1261	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262		err = wext_handle_ioctl(net, cmd, argp);
1263	} else
1264#endif
1265		switch (cmd) {
1266		case FIOSETOWN:
1267		case SIOCSPGRP:
1268			err = -EFAULT;
1269			if (get_user(pid, (int __user *)argp))
1270				break;
1271			err = f_setown(sock->file, pid, 1);
1272			break;
1273		case FIOGETOWN:
1274		case SIOCGPGRP:
1275			err = put_user(f_getown(sock->file),
1276				       (int __user *)argp);
1277			break;
1278		case SIOCGIFBR:
1279		case SIOCSIFBR:
1280		case SIOCBRADDBR:
1281		case SIOCBRDELBR:
1282			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
 
 
 
 
 
 
 
1283			break;
1284		case SIOCGIFVLAN:
1285		case SIOCSIFVLAN:
1286			err = -ENOPKG;
1287			if (!vlan_ioctl_hook)
1288				request_module("8021q");
1289
1290			mutex_lock(&vlan_ioctl_mutex);
1291			if (vlan_ioctl_hook)
1292				err = vlan_ioctl_hook(net, argp);
1293			mutex_unlock(&vlan_ioctl_mutex);
1294			break;
1295		case SIOCGSKNS:
1296			err = -EPERM;
1297			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298				break;
1299
1300			err = open_related_ns(&net->ns, get_net_ns);
1301			break;
1302		case SIOCGSTAMP_OLD:
1303		case SIOCGSTAMPNS_OLD:
1304			if (!ops->gettstamp) {
1305				err = -ENOIOCTLCMD;
1306				break;
1307			}
1308			err = ops->gettstamp(sock, argp,
1309					     cmd == SIOCGSTAMP_OLD,
1310					     !IS_ENABLED(CONFIG_64BIT));
1311			break;
1312		case SIOCGSTAMP_NEW:
1313		case SIOCGSTAMPNS_NEW:
1314			if (!ops->gettstamp) {
1315				err = -ENOIOCTLCMD;
1316				break;
1317			}
1318			err = ops->gettstamp(sock, argp,
1319					     cmd == SIOCGSTAMP_NEW,
1320					     false);
1321			break;
1322
1323		case SIOCGIFCONF:
1324			err = dev_ifconf(net, argp);
 
 
1325			break;
1326
1327		default:
1328			err = sock_do_ioctl(net, sock, cmd, arg);
1329			break;
1330		}
1331	return err;
1332}
1333
1334/**
1335 *	sock_create_lite - creates a socket
1336 *	@family: protocol family (AF_INET, ...)
1337 *	@type: communication type (SOCK_STREAM, ...)
1338 *	@protocol: protocol (0, ...)
1339 *	@res: new socket
1340 *
1341 *	Creates a new socket and assigns it to @res, passing through LSM.
1342 *	The new socket initialization is not complete, see kernel_accept().
1343 *	Returns 0 or an error. On failure @res is set to %NULL.
1344 *	This function internally uses GFP_KERNEL.
1345 */
1346
1347int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348{
1349	int err;
1350	struct socket *sock = NULL;
1351
1352	err = security_socket_create(family, type, protocol, 1);
1353	if (err)
1354		goto out;
1355
1356	sock = sock_alloc();
1357	if (!sock) {
1358		err = -ENOMEM;
1359		goto out;
1360	}
1361
1362	sock->type = type;
1363	err = security_socket_post_create(sock, family, type, protocol, 1);
1364	if (err)
1365		goto out_release;
1366
1367out:
1368	*res = sock;
1369	return err;
1370out_release:
1371	sock_release(sock);
1372	sock = NULL;
1373	goto out;
1374}
1375EXPORT_SYMBOL(sock_create_lite);
1376
1377/* No kernel lock held - perfect */
1378static __poll_t sock_poll(struct file *file, poll_table *wait)
1379{
1380	struct socket *sock = file->private_data;
1381	const struct proto_ops *ops = READ_ONCE(sock->ops);
1382	__poll_t events = poll_requested_events(wait), flag = 0;
1383
1384	if (!ops->poll)
1385		return 0;
 
 
1386
1387	if (sk_can_busy_loop(sock->sk)) {
1388		/* poll once if requested by the syscall */
1389		if (events & POLL_BUSY_LOOP)
1390			sk_busy_loop(sock->sk, 1);
1391
1392		/* if this socket can poll_ll, tell the system call */
1393		flag = POLL_BUSY_LOOP;
 
1394	}
1395
1396	return ops->poll(file, sock, wait) | flag;
1397}
1398
1399static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400{
1401	struct socket *sock = file->private_data;
1402
1403	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404}
1405
1406static int sock_close(struct inode *inode, struct file *filp)
1407{
1408	__sock_release(SOCKET_I(inode), inode);
1409	return 0;
1410}
1411
1412/*
1413 *	Update the socket async list
1414 *
1415 *	Fasync_list locking strategy.
1416 *
1417 *	1. fasync_list is modified only under process context socket lock
1418 *	   i.e. under semaphore.
1419 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420 *	   or under socket lock
1421 */
1422
1423static int sock_fasync(int fd, struct file *filp, int on)
1424{
1425	struct socket *sock = filp->private_data;
1426	struct sock *sk = sock->sk;
1427	struct socket_wq *wq = &sock->wq;
1428
1429	if (sk == NULL)
1430		return -EINVAL;
1431
1432	lock_sock(sk);
 
1433	fasync_helper(fd, filp, on, &wq->fasync_list);
1434
1435	if (!wq->fasync_list)
1436		sock_reset_flag(sk, SOCK_FASYNC);
1437	else
1438		sock_set_flag(sk, SOCK_FASYNC);
1439
1440	release_sock(sk);
1441	return 0;
1442}
1443
1444/* This function may be called only under rcu_lock */
1445
1446int sock_wake_async(struct socket_wq *wq, int how, int band)
1447{
1448	if (!wq || !wq->fasync_list)
1449		return -1;
1450
 
 
 
 
 
 
 
 
1451	switch (how) {
1452	case SOCK_WAKE_WAITD:
1453		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454			break;
1455		goto call_kill;
1456	case SOCK_WAKE_SPACE:
1457		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458			break;
1459		fallthrough;
1460	case SOCK_WAKE_IO:
1461call_kill:
1462		kill_fasync(&wq->fasync_list, SIGIO, band);
1463		break;
1464	case SOCK_WAKE_URG:
1465		kill_fasync(&wq->fasync_list, SIGURG, band);
1466	}
1467
1468	return 0;
1469}
1470EXPORT_SYMBOL(sock_wake_async);
1471
1472/**
1473 *	__sock_create - creates a socket
1474 *	@net: net namespace
1475 *	@family: protocol family (AF_INET, ...)
1476 *	@type: communication type (SOCK_STREAM, ...)
1477 *	@protocol: protocol (0, ...)
1478 *	@res: new socket
1479 *	@kern: boolean for kernel space sockets
1480 *
1481 *	Creates a new socket and assigns it to @res, passing through LSM.
1482 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483 *	be set to true if the socket resides in kernel space.
1484 *	This function internally uses GFP_KERNEL.
1485 */
1486
1487int __sock_create(struct net *net, int family, int type, int protocol,
1488			 struct socket **res, int kern)
1489{
1490	int err;
1491	struct socket *sock;
1492	const struct net_proto_family *pf;
1493
1494	/*
1495	 *      Check protocol is in range
1496	 */
1497	if (family < 0 || family >= NPROTO)
1498		return -EAFNOSUPPORT;
1499	if (type < 0 || type >= SOCK_MAX)
1500		return -EINVAL;
1501
1502	/* Compatibility.
1503
1504	   This uglymoron is moved from INET layer to here to avoid
1505	   deadlock in module load.
1506	 */
1507	if (family == PF_INET && type == SOCK_PACKET) {
1508		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509			     current->comm);
 
 
 
 
1510		family = PF_PACKET;
1511	}
1512
1513	err = security_socket_create(family, type, protocol, kern);
1514	if (err)
1515		return err;
1516
1517	/*
1518	 *	Allocate the socket and allow the family to set things up. if
1519	 *	the protocol is 0, the family is instructed to select an appropriate
1520	 *	default.
1521	 */
1522	sock = sock_alloc();
1523	if (!sock) {
1524		net_warn_ratelimited("socket: no more sockets\n");
1525		return -ENFILE;	/* Not exactly a match, but its the
1526				   closest posix thing */
1527	}
1528
1529	sock->type = type;
1530
1531#ifdef CONFIG_MODULES
1532	/* Attempt to load a protocol module if the find failed.
1533	 *
1534	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535	 * requested real, full-featured networking support upon configuration.
1536	 * Otherwise module support will break!
1537	 */
1538	if (rcu_access_pointer(net_families[family]) == NULL)
1539		request_module("net-pf-%d", family);
1540#endif
1541
1542	rcu_read_lock();
1543	pf = rcu_dereference(net_families[family]);
1544	err = -EAFNOSUPPORT;
1545	if (!pf)
1546		goto out_release;
1547
1548	/*
1549	 * We will call the ->create function, that possibly is in a loadable
1550	 * module, so we have to bump that loadable module refcnt first.
1551	 */
1552	if (!try_module_get(pf->owner))
1553		goto out_release;
1554
1555	/* Now protected by module ref count */
1556	rcu_read_unlock();
1557
1558	err = pf->create(net, sock, protocol, kern);
1559	if (err < 0) {
1560		/* ->create should release the allocated sock->sk object on error
1561		 * and make sure sock->sk is set to NULL to avoid use-after-free
1562		 */
1563		DEBUG_NET_WARN_ONCE(sock->sk,
1564				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565				    pf->create, family, type, protocol);
1566		goto out_module_put;
1567	}
1568
1569	/*
1570	 * Now to bump the refcnt of the [loadable] module that owns this
1571	 * socket at sock_release time we decrement its refcnt.
1572	 */
1573	if (!try_module_get(sock->ops->owner))
1574		goto out_module_busy;
1575
1576	/*
1577	 * Now that we're done with the ->create function, the [loadable]
1578	 * module can have its refcnt decremented
1579	 */
1580	module_put(pf->owner);
1581	err = security_socket_post_create(sock, family, type, protocol, kern);
1582	if (err)
1583		goto out_sock_release;
1584	*res = sock;
1585
1586	return 0;
1587
1588out_module_busy:
1589	err = -EAFNOSUPPORT;
1590out_module_put:
1591	sock->ops = NULL;
1592	module_put(pf->owner);
1593out_sock_release:
1594	sock_release(sock);
1595	return err;
1596
1597out_release:
1598	rcu_read_unlock();
1599	goto out_sock_release;
1600}
1601EXPORT_SYMBOL(__sock_create);
1602
1603/**
1604 *	sock_create - creates a socket
1605 *	@family: protocol family (AF_INET, ...)
1606 *	@type: communication type (SOCK_STREAM, ...)
1607 *	@protocol: protocol (0, ...)
1608 *	@res: new socket
1609 *
1610 *	A wrapper around __sock_create().
1611 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1612 */
1613
1614int sock_create(int family, int type, int protocol, struct socket **res)
1615{
1616	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1617}
1618EXPORT_SYMBOL(sock_create);
1619
1620/**
1621 *	sock_create_kern - creates a socket (kernel space)
1622 *	@net: net namespace
1623 *	@family: protocol family (AF_INET, ...)
1624 *	@type: communication type (SOCK_STREAM, ...)
1625 *	@protocol: protocol (0, ...)
1626 *	@res: new socket
1627 *
1628 *	A wrapper around __sock_create().
1629 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1630 */
1631
1632int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1633{
1634	return __sock_create(net, family, type, protocol, res, 1);
1635}
1636EXPORT_SYMBOL(sock_create_kern);
1637
1638static struct socket *__sys_socket_create(int family, int type, int protocol)
1639{
1640	struct socket *sock;
1641	int retval;
 
 
1642
1643	/* Check the SOCK_* constants for consistency.  */
1644	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1648
1649	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650		return ERR_PTR(-EINVAL);
 
1651	type &= SOCK_TYPE_MASK;
1652
1653	retval = sock_create(family, type, protocol, &sock);
1654	if (retval < 0)
1655		return ERR_PTR(retval);
1656
1657	return sock;
1658}
1659
1660struct file *__sys_socket_file(int family, int type, int protocol)
1661{
1662	struct socket *sock;
1663	int flags;
1664
1665	sock = __sys_socket_create(family, type, protocol);
1666	if (IS_ERR(sock))
1667		return ERR_CAST(sock);
1668
1669	flags = type & ~SOCK_TYPE_MASK;
1670	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672
1673	return sock_alloc_file(sock, flags, NULL);
1674}
1675
1676/*	A hook for bpf progs to attach to and update socket protocol.
1677 *
1678 *	A static noinline declaration here could cause the compiler to
1679 *	optimize away the function. A global noinline declaration will
1680 *	keep the definition, but may optimize away the callsite.
1681 *	Therefore, __weak is needed to ensure that the call is still
1682 *	emitted, by telling the compiler that we don't know what the
1683 *	function might eventually be.
1684 */
1685
1686__bpf_hook_start();
1687
1688__weak noinline int update_socket_protocol(int family, int type, int protocol)
1689{
1690	return protocol;
1691}
1692
1693__bpf_hook_end();
1694
1695int __sys_socket(int family, int type, int protocol)
1696{
1697	struct socket *sock;
1698	int flags;
1699
1700	sock = __sys_socket_create(family, type,
1701				   update_socket_protocol(family, type, protocol));
1702	if (IS_ERR(sock))
1703		return PTR_ERR(sock);
1704
1705	flags = type & ~SOCK_TYPE_MASK;
1706	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708
1709	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1710}
 
1711
1712SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1713{
1714	return __sys_socket(family, type, protocol);
1715}
1716
1717/*
1718 *	Create a pair of connected sockets.
1719 */
1720
1721int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1722{
1723	struct socket *sock1, *sock2;
1724	int fd1, fd2, err;
1725	struct file *newfile1, *newfile2;
1726	int flags;
1727
1728	flags = type & ~SOCK_TYPE_MASK;
1729	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730		return -EINVAL;
1731	type &= SOCK_TYPE_MASK;
1732
1733	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735
1736	/*
1737	 * reserve descriptors and make sure we won't fail
1738	 * to return them to userland.
1739	 */
1740	fd1 = get_unused_fd_flags(flags);
1741	if (unlikely(fd1 < 0))
1742		return fd1;
1743
1744	fd2 = get_unused_fd_flags(flags);
1745	if (unlikely(fd2 < 0)) {
1746		put_unused_fd(fd1);
1747		return fd2;
1748	}
1749
1750	err = put_user(fd1, &usockvec[0]);
1751	if (err)
1752		goto out;
1753
1754	err = put_user(fd2, &usockvec[1]);
1755	if (err)
1756		goto out;
1757
1758	/*
1759	 * Obtain the first socket and check if the underlying protocol
1760	 * supports the socketpair call.
1761	 */
1762
1763	err = sock_create(family, type, protocol, &sock1);
1764	if (unlikely(err < 0))
1765		goto out;
1766
1767	err = sock_create(family, type, protocol, &sock2);
1768	if (unlikely(err < 0)) {
1769		sock_release(sock1);
1770		goto out;
1771	}
1772
1773	err = security_socket_socketpair(sock1, sock2);
1774	if (unlikely(err)) {
1775		sock_release(sock2);
1776		sock_release(sock1);
1777		goto out;
 
 
 
1778	}
1779
1780	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781	if (unlikely(err < 0)) {
1782		sock_release(sock2);
1783		sock_release(sock1);
1784		goto out;
1785	}
1786
1787	newfile1 = sock_alloc_file(sock1, flags, NULL);
1788	if (IS_ERR(newfile1)) {
1789		err = PTR_ERR(newfile1);
1790		sock_release(sock2);
1791		goto out;
1792	}
1793
1794	newfile2 = sock_alloc_file(sock2, flags, NULL);
1795	if (IS_ERR(newfile2)) {
1796		err = PTR_ERR(newfile2);
1797		fput(newfile1);
1798		goto out;
1799	}
1800
 
 
 
 
 
 
 
 
1801	audit_fd_pair(fd1, fd2);
1802
1803	fd_install(fd1, newfile1);
1804	fd_install(fd2, newfile2);
 
 
 
 
1805	return 0;
1806
1807out:
 
 
1808	put_unused_fd(fd2);
1809	put_unused_fd(fd1);
1810	return err;
1811}
1812
1813SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814		int __user *, usockvec)
1815{
1816	return __sys_socketpair(family, type, protocol, usockvec);
1817}
1818
1819int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820		      int addrlen)
1821{
1822	int err;
 
 
1823
1824	err = security_socket_bind(sock, (struct sockaddr *)address,
1825				   addrlen);
1826	if (!err)
1827		err = READ_ONCE(sock->ops)->bind(sock,
1828						 (struct sockaddr *)address,
1829						 addrlen);
 
 
 
1830	return err;
1831}
1832
1833/*
1834 *	Bind a name to a socket. Nothing much to do here since it's
1835 *	the protocol's responsibility to handle the local address.
1836 *
1837 *	We move the socket address to kernel space before we call
1838 *	the protocol layer (having also checked the address is ok).
1839 */
1840
1841int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1842{
1843	struct socket *sock;
1844	struct sockaddr_storage address;
1845	CLASS(fd, f)(fd);
1846	int err;
1847
1848	if (fd_empty(f))
1849		return -EBADF;
1850	sock = sock_from_file(fd_file(f));
1851	if (unlikely(!sock))
1852		return -ENOTSOCK;
1853
1854	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855	if (unlikely(err))
1856		return err;
1857
1858	return __sys_bind_socket(sock, &address, addrlen);
1859}
1860
1861SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1862{
1863	return __sys_bind(fd, umyaddr, addrlen);
 
 
 
 
 
1864}
1865
1866/*
1867 *	Perform a listen. Basically, we allow the protocol to do anything
1868 *	necessary for a listen, and if that works, we mark the socket as
1869 *	ready for listening.
1870 */
1871int __sys_listen_socket(struct socket *sock, int backlog)
1872{
1873	int somaxconn, err;
1874
1875	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876	if ((unsigned int)backlog > somaxconn)
1877		backlog = somaxconn;
1878
1879	err = security_socket_listen(sock, backlog);
1880	if (!err)
1881		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882	return err;
1883}
1884
1885int __sys_listen(int fd, int backlog)
1886{
1887	CLASS(fd, f)(fd);
1888	struct socket *sock;
 
 
1889
1890	if (fd_empty(f))
1891		return -EBADF;
1892	sock = sock_from_file(fd_file(f));
1893	if (unlikely(!sock))
1894		return -ENOTSOCK;
 
 
 
 
1895
1896	return __sys_listen_socket(sock, backlog);
 
 
1897}
1898
1899SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1900{
1901	return __sys_listen(fd, backlog);
1902}
 
 
 
 
 
 
 
1903
1904struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905		       struct sockaddr __user *upeer_sockaddr,
1906		       int __user *upeer_addrlen, int flags)
1907{
1908	struct socket *sock, *newsock;
1909	struct file *newfile;
1910	int err, len;
1911	struct sockaddr_storage address;
1912	const struct proto_ops *ops;
1913
1914	sock = sock_from_file(file);
 
 
 
 
 
 
1915	if (!sock)
1916		return ERR_PTR(-ENOTSOCK);
1917
 
1918	newsock = sock_alloc();
1919	if (!newsock)
1920		return ERR_PTR(-ENFILE);
1921	ops = READ_ONCE(sock->ops);
1922
1923	newsock->type = sock->type;
1924	newsock->ops = ops;
1925
1926	/*
1927	 * We don't need try_module_get here, as the listening socket (sock)
1928	 * has the protocol module (sock->ops->owner) held.
1929	 */
1930	__module_get(ops->owner);
1931
 
 
 
 
 
 
1932	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933	if (IS_ERR(newfile))
1934		return newfile;
 
 
 
 
1935
1936	err = security_socket_accept(sock, newsock);
1937	if (err)
1938		goto out_fd;
1939
1940	arg->flags |= sock->file->f_flags;
1941	err = ops->accept(sock, newsock, arg);
1942	if (err < 0)
1943		goto out_fd;
1944
1945	if (upeer_sockaddr) {
1946		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947		if (len < 0) {
1948			err = -ECONNABORTED;
1949			goto out_fd;
1950		}
1951		err = move_addr_to_user(&address,
1952					len, upeer_sockaddr, upeer_addrlen);
1953		if (err < 0)
1954			goto out_fd;
1955	}
1956
1957	/* File flags are not inherited via accept() unlike another OSes. */
1958	return newfile;
1959out_fd:
1960	fput(newfile);
1961	return ERR_PTR(err);
1962}
1963
1964static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965			      int __user *upeer_addrlen, int flags)
1966{
1967	struct proto_accept_arg arg = { };
1968	struct file *newfile;
1969	int newfd;
1970
1971	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972		return -EINVAL;
1973
1974	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1976
1977	newfd = get_unused_fd_flags(flags);
1978	if (unlikely(newfd < 0))
1979		return newfd;
1980
1981	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982			    flags);
1983	if (IS_ERR(newfile)) {
1984		put_unused_fd(newfd);
1985		return PTR_ERR(newfile);
1986	}
1987	fd_install(newfd, newfile);
1988	return newfd;
1989}
1990
1991/*
1992 *	For accept, we attempt to create a new socket, set up the link
1993 *	with the client, wake up the client, then return the new
1994 *	connected fd. We collect the address of the connector in kernel
1995 *	space and move it to user at the very end. This is unclean because
1996 *	we open the socket then return an error.
1997 *
1998 *	1003.1g adds the ability to recvmsg() to query connection pending
1999 *	status to recvmsg. We need to add that support in a way thats
2000 *	clean when we restructure accept also.
2001 */
2002
2003int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004		  int __user *upeer_addrlen, int flags)
2005{
2006	CLASS(fd, f)(fd);
2007
2008	if (fd_empty(f))
2009		return -EBADF;
2010	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011					 upeer_addrlen, flags);
2012}
2013
2014SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015		int __user *, upeer_addrlen, int, flags)
2016{
2017	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
 
 
 
 
2018}
2019
2020SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021		int __user *, upeer_addrlen)
2022{
2023	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024}
2025
2026/*
2027 *	Attempt to connect to a socket with the server address.  The address
2028 *	is in user space so we verify it is OK and move it to kernel space.
2029 *
2030 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 *	break bindings
2032 *
2033 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 *	other SEQPACKET protocols that take time to connect() as it doesn't
2035 *	include the -EINPROGRESS status for such sockets.
2036 */
2037
2038int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039		       int addrlen, int file_flags)
2040{
2041	struct socket *sock;
2042	int err;
 
2043
2044	sock = sock_from_file(file);
2045	if (!sock) {
2046		err = -ENOTSOCK;
2047		goto out;
2048	}
 
 
2049
2050	err =
2051	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052	if (err)
2053		goto out;
2054
2055	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056				addrlen, sock->file->f_flags | file_flags);
 
 
2057out:
2058	return err;
2059}
2060
2061int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062{
2063	struct sockaddr_storage address;
2064	CLASS(fd, f)(fd);
2065	int ret;
2066
2067	if (fd_empty(f))
2068		return -EBADF;
2069
2070	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071	if (ret)
2072		return ret;
2073
2074	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2075}
2076
2077SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078		int, addrlen)
2079{
2080	return __sys_connect(fd, uservaddr, addrlen);
2081}
2082
2083/*
2084 *	Get the local address ('name') of a socket object. Move the obtained
2085 *	name to user space.
2086 */
2087
2088int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089		      int __user *usockaddr_len)
2090{
2091	struct socket *sock;
2092	struct sockaddr_storage address;
2093	CLASS(fd, f)(fd);
2094	int err;
2095
2096	if (fd_empty(f))
2097		return -EBADF;
2098	sock = sock_from_file(fd_file(f));
2099	if (unlikely(!sock))
2100		return -ENOTSOCK;
2101
2102	err = security_socket_getsockname(sock);
2103	if (err)
2104		return err;
2105
2106	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107	if (err < 0)
2108		return err;
2109
2110	/* "err" is actually length in this case */
2111	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112}
 
2113
2114SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115		int __user *, usockaddr_len)
2116{
2117	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118}
2119
2120/*
2121 *	Get the remote address ('name') of a socket object. Move the obtained
2122 *	name to user space.
2123 */
2124
2125int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126		      int __user *usockaddr_len)
2127{
2128	struct socket *sock;
2129	struct sockaddr_storage address;
2130	CLASS(fd, f)(fd);
2131	int err;
2132
2133	if (fd_empty(f))
2134		return -EBADF;
2135	sock = sock_from_file(fd_file(f));
2136	if (unlikely(!sock))
2137		return -ENOTSOCK;
2138
2139	err = security_socket_getpeername(sock);
2140	if (err)
2141		return err;
2142
2143	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144	if (err < 0)
2145		return err;
2146
2147	/* "err" is actually length in this case */
2148	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2149}
2150
2151SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152		int __user *, usockaddr_len)
2153{
2154	return __sys_getpeername(fd, usockaddr, usockaddr_len);
 
 
 
 
 
2155}
2156
2157/*
2158 *	Send a datagram to a given address. We move the address into kernel
2159 *	space and check the user space data area is readable before invoking
2160 *	the protocol.
2161 */
2162int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163		 struct sockaddr __user *addr,  int addr_len)
 
 
2164{
2165	struct socket *sock;
2166	struct sockaddr_storage address;
2167	int err;
2168	struct msghdr msg;
 
 
2169
2170	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171	if (unlikely(err))
2172		return err;
2173
2174	CLASS(fd, f)(fd);
2175	if (fd_empty(f))
2176		return -EBADF;
2177	sock = sock_from_file(fd_file(f));
2178	if (unlikely(!sock))
2179		return -ENOTSOCK;
2180
 
 
2181	msg.msg_name = NULL;
 
 
2182	msg.msg_control = NULL;
2183	msg.msg_controllen = 0;
2184	msg.msg_namelen = 0;
2185	msg.msg_ubuf = NULL;
2186	if (addr) {
2187		err = move_addr_to_kernel(addr, addr_len, &address);
2188		if (err < 0)
2189			return err;
2190		msg.msg_name = (struct sockaddr *)&address;
2191		msg.msg_namelen = addr_len;
2192	}
2193	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194	if (sock->file->f_flags & O_NONBLOCK)
2195		flags |= MSG_DONTWAIT;
2196	msg.msg_flags = flags;
2197	return __sock_sendmsg(sock, &msg);
2198}
2199
2200SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201		unsigned int, flags, struct sockaddr __user *, addr,
2202		int, addr_len)
2203{
2204	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205}
2206
2207/*
2208 *	Send a datagram down a socket.
2209 */
2210
2211SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212		unsigned int, flags)
2213{
2214	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215}
2216
2217/*
2218 *	Receive a frame from the socket and optionally record the address of the
2219 *	sender. We verify the buffers are writable and if needed move the
2220 *	sender address from kernel to user space.
2221 */
2222int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2224{
2225	struct sockaddr_storage address;
2226	struct msghdr msg = {
2227		/* Save some cycles and don't copy the address if not needed */
2228		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2229	};
2230	struct socket *sock;
 
 
 
2231	int err, err2;
 
2232
2233	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234	if (unlikely(err))
2235		return err;
2236
2237	CLASS(fd, f)(fd);
2238
2239	if (fd_empty(f))
2240		return -EBADF;
2241	sock = sock_from_file(fd_file(f));
2242	if (unlikely(!sock))
2243		return -ENOTSOCK;
2244
 
 
 
 
 
 
 
 
 
 
2245	if (sock->file->f_flags & O_NONBLOCK)
2246		flags |= MSG_DONTWAIT;
2247	err = sock_recvmsg(sock, &msg, flags);
2248
2249	if (err >= 0 && addr != NULL) {
2250		err2 = move_addr_to_user(&address,
2251					 msg.msg_namelen, addr, addr_len);
2252		if (err2 < 0)
2253			err = err2;
2254	}
2255	return err;
2256}
2257
2258SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259		unsigned int, flags, struct sockaddr __user *, addr,
2260		int __user *, addr_len)
2261{
2262	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263}
2264
2265/*
2266 *	Receive a datagram from a socket.
2267 */
2268
2269SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270		unsigned int, flags)
2271{
2272	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273}
2274
2275static bool sock_use_custom_sol_socket(const struct socket *sock)
2276{
2277	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278}
2279
2280int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281		       int optname, sockptr_t optval, int optlen)
2282{
2283	const struct proto_ops *ops;
2284	char *kernel_optval = NULL;
2285	int err;
2286
2287	if (optlen < 0)
2288		return -EINVAL;
2289
2290	err = security_socket_setsockopt(sock, level, optname);
2291	if (err)
2292		goto out_put;
2293
2294	if (!compat)
2295		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296						     optval, &optlen,
2297						     &kernel_optval);
2298	if (err < 0)
2299		goto out_put;
2300	if (err > 0) {
2301		err = 0;
2302		goto out_put;
2303	}
2304
2305	if (kernel_optval)
2306		optval = KERNEL_SOCKPTR(kernel_optval);
2307	ops = READ_ONCE(sock->ops);
2308	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309		err = sock_setsockopt(sock, level, optname, optval, optlen);
2310	else if (unlikely(!ops->setsockopt))
2311		err = -EOPNOTSUPP;
2312	else
2313		err = ops->setsockopt(sock, level, optname, optval,
2314					    optlen);
2315	kfree(kernel_optval);
 
 
 
2316out_put:
2317	return err;
2318}
2319EXPORT_SYMBOL(do_sock_setsockopt);
2320
2321/* Set a socket option. Because we don't know the option lengths we have
2322 * to pass the user mode parameter for the protocols to sort out.
2323 */
2324int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325		     int optlen)
2326{
2327	sockptr_t optval = USER_SOCKPTR(user_optval);
2328	bool compat = in_compat_syscall();
2329	struct socket *sock;
2330	CLASS(fd, f)(fd);
2331
2332	if (fd_empty(f))
2333		return -EBADF;
2334	sock = sock_from_file(fd_file(f));
2335	if (unlikely(!sock))
2336		return -ENOTSOCK;
2337
2338	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339}
2340
2341SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342		char __user *, optval, int, optlen)
2343{
2344	return __sys_setsockopt(fd, level, optname, optval, optlen);
2345}
2346
2347INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348							 int optname));
2349
2350int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351		       int optname, sockptr_t optval, sockptr_t optlen)
2352{
2353	int max_optlen __maybe_unused = 0;
2354	const struct proto_ops *ops;
2355	int err;
2356
2357	err = security_socket_getsockopt(sock, level, optname);
2358	if (err)
2359		return err;
2360
2361	if (!compat)
2362		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363
2364	ops = READ_ONCE(sock->ops);
2365	if (level == SOL_SOCKET) {
2366		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367	} else if (unlikely(!ops->getsockopt)) {
2368		err = -EOPNOTSUPP;
2369	} else {
2370		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371			      "Invalid argument type"))
2372			return -EOPNOTSUPP;
2373
2374		err = ops->getsockopt(sock, level, optname, optval.user,
2375				      optlen.user);
2376	}
2377
2378	if (!compat)
2379		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380						     optval, optlen, max_optlen,
2381						     err);
2382
2383	return err;
2384}
2385EXPORT_SYMBOL(do_sock_getsockopt);
2386
2387/*
2388 *	Get a socket option. Because we don't know the option lengths we have
2389 *	to pass a user mode parameter for the protocols to sort out.
2390 */
2391int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392		int __user *optlen)
2393{
2394	struct socket *sock;
2395	CLASS(fd, f)(fd);
2396
2397	if (fd_empty(f))
2398		return -EBADF;
2399	sock = sock_from_file(fd_file(f));
2400	if (unlikely(!sock))
2401		return -ENOTSOCK;
2402
2403	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405}
2406
2407SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408		char __user *, optval, int __user *, optlen)
2409{
2410	return __sys_getsockopt(fd, level, optname, optval, optlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411}
2412
2413/*
2414 *	Shutdown a socket.
2415 */
2416
2417int __sys_shutdown_sock(struct socket *sock, int how)
2418{
2419	int err;
2420
2421	err = security_socket_shutdown(sock, how);
2422	if (!err)
2423		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424
2425	return err;
2426}
2427
2428int __sys_shutdown(int fd, int how)
2429{
 
2430	struct socket *sock;
2431	CLASS(fd, f)(fd);
2432
2433	if (fd_empty(f))
2434		return -EBADF;
2435	sock = sock_from_file(fd_file(f));
2436	if (unlikely(!sock))
2437		return -ENOTSOCK;
2438
2439	return __sys_shutdown_sock(sock, how);
2440}
2441
2442SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443{
2444	return __sys_shutdown(fd, how);
2445}
2446
2447/* A couple of helpful macros for getting the address of the 32/64 bit
2448 * fields which are the same type (int / unsigned) on our platforms.
2449 */
2450#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2452#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2453
2454struct used_address {
2455	struct sockaddr_storage name;
2456	unsigned int name_len;
2457};
2458
2459int __copy_msghdr(struct msghdr *kmsg,
2460		  struct user_msghdr *msg,
2461		  struct sockaddr __user **save_addr)
2462{
2463	ssize_t err;
2464
2465	kmsg->msg_control_is_user = true;
2466	kmsg->msg_get_inq = 0;
2467	kmsg->msg_control_user = msg->msg_control;
2468	kmsg->msg_controllen = msg->msg_controllen;
2469	kmsg->msg_flags = msg->msg_flags;
2470
2471	kmsg->msg_namelen = msg->msg_namelen;
2472	if (!msg->msg_name)
2473		kmsg->msg_namelen = 0;
2474
2475	if (kmsg->msg_namelen < 0)
2476		return -EINVAL;
2477
2478	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480
2481	if (save_addr)
2482		*save_addr = msg->msg_name;
2483
2484	if (msg->msg_name && kmsg->msg_namelen) {
2485		if (!save_addr) {
2486			err = move_addr_to_kernel(msg->msg_name,
2487						  kmsg->msg_namelen,
2488						  kmsg->msg_name);
2489			if (err < 0)
2490				return err;
2491		}
2492	} else {
2493		kmsg->msg_name = NULL;
2494		kmsg->msg_namelen = 0;
2495	}
2496
2497	if (msg->msg_iovlen > UIO_MAXIOV)
2498		return -EMSGSIZE;
2499
2500	kmsg->msg_iocb = NULL;
2501	kmsg->msg_ubuf = NULL;
2502	return 0;
2503}
2504
2505static int copy_msghdr_from_user(struct msghdr *kmsg,
2506				 struct user_msghdr __user *umsg,
2507				 struct sockaddr __user **save_addr,
2508				 struct iovec **iov)
2509{
2510	struct user_msghdr msg;
2511	ssize_t err;
2512
2513	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514		return -EFAULT;
2515
2516	err = __copy_msghdr(kmsg, &msg, save_addr);
2517	if (err)
2518		return err;
2519
2520	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521			    msg.msg_iov, msg.msg_iovlen,
2522			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2523	return err < 0 ? err : 0;
2524}
2525
2526static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527			   unsigned int flags, struct used_address *used_address,
2528			   unsigned int allowed_msghdr_flags)
2529{
 
 
 
 
2530	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531				__aligned(sizeof(__kernel_size_t));
2532	/* 20 is size of ipv6_pktinfo */
2533	unsigned char *ctl_buf = ctl;
2534	int ctl_len;
2535	ssize_t err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536
2537	err = -ENOBUFS;
2538
2539	if (msg_sys->msg_controllen > INT_MAX)
2540		goto out;
2541	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542	ctl_len = msg_sys->msg_controllen;
2543	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544		err =
2545		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546						     sizeof(ctl));
2547		if (err)
2548			goto out;
2549		ctl_buf = msg_sys->msg_control;
2550		ctl_len = msg_sys->msg_controllen;
2551	} else if (ctl_len) {
2552		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2554		if (ctl_len > sizeof(ctl)) {
2555			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556			if (ctl_buf == NULL)
2557				goto out;
2558		}
2559		err = -EFAULT;
2560		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2561			goto out_freectl;
2562		msg_sys->msg_control = ctl_buf;
2563		msg_sys->msg_control_is_user = false;
2564	}
2565	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566	msg_sys->msg_flags = flags;
2567
2568	if (sock->file->f_flags & O_NONBLOCK)
2569		msg_sys->msg_flags |= MSG_DONTWAIT;
2570	/*
2571	 * If this is sendmmsg() and current destination address is same as
2572	 * previously succeeded address, omit asking LSM's decision.
2573	 * used_address->name_len is initialized to UINT_MAX so that the first
2574	 * destination address never matches.
2575	 */
2576	if (used_address && msg_sys->msg_name &&
2577	    used_address->name_len == msg_sys->msg_namelen &&
2578	    !memcmp(&used_address->name, msg_sys->msg_name,
2579		    used_address->name_len)) {
2580		err = sock_sendmsg_nosec(sock, msg_sys);
2581		goto out_freectl;
2582	}
2583	err = __sock_sendmsg(sock, msg_sys);
2584	/*
2585	 * If this is sendmmsg() and sending to current destination address was
2586	 * successful, remember it.
2587	 */
2588	if (used_address && err >= 0) {
2589		used_address->name_len = msg_sys->msg_namelen;
2590		if (msg_sys->msg_name)
2591			memcpy(&used_address->name, msg_sys->msg_name,
2592			       used_address->name_len);
2593	}
2594
2595out_freectl:
2596	if (ctl_buf != ctl)
2597		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
 
 
 
2598out:
2599	return err;
2600}
2601
2602static int sendmsg_copy_msghdr(struct msghdr *msg,
2603			       struct user_msghdr __user *umsg, unsigned flags,
2604			       struct iovec **iov)
2605{
2606	int err;
2607
2608	if (flags & MSG_CMSG_COMPAT) {
2609		struct compat_msghdr __user *msg_compat;
2610
2611		msg_compat = (struct compat_msghdr __user *) umsg;
2612		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613	} else {
2614		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615	}
2616	if (err < 0)
2617		return err;
2618
2619	return 0;
2620}
2621
2622static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623			 struct msghdr *msg_sys, unsigned int flags,
2624			 struct used_address *used_address,
2625			 unsigned int allowed_msghdr_flags)
2626{
2627	struct sockaddr_storage address;
2628	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629	ssize_t err;
2630
2631	msg_sys->msg_name = &address;
2632
2633	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634	if (err < 0)
2635		return err;
2636
2637	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638				allowed_msghdr_flags);
2639	kfree(iov);
2640	return err;
2641}
2642
2643/*
2644 *	BSD sendmsg interface
2645 */
2646long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647			unsigned int flags)
2648{
2649	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650}
2651
2652long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653		   bool forbid_cmsg_compat)
2654{
 
2655	struct msghdr msg_sys;
2656	struct socket *sock;
2657
2658	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659		return -EINVAL;
2660
2661	CLASS(fd, f)(fd);
2662
2663	if (fd_empty(f))
2664		return -EBADF;
2665	sock = sock_from_file(fd_file(f));
2666	if (unlikely(!sock))
2667		return -ENOTSOCK;
2668
2669	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
 
 
2670}
2671
2672SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673{
2674	return __sys_sendmsg(fd, msg, flags, true);
 
 
2675}
2676
2677/*
2678 *	Linux sendmmsg interface
2679 */
2680
2681int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682		   unsigned int flags, bool forbid_cmsg_compat)
2683{
2684	int err, datagrams;
2685	struct socket *sock;
2686	struct mmsghdr __user *entry;
2687	struct compat_mmsghdr __user *compat_entry;
2688	struct msghdr msg_sys;
2689	struct used_address used_address;
2690	unsigned int oflags = flags;
2691
2692	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693		return -EINVAL;
2694
2695	if (vlen > UIO_MAXIOV)
2696		vlen = UIO_MAXIOV;
2697
2698	datagrams = 0;
2699
2700	CLASS(fd, f)(fd);
2701
2702	if (fd_empty(f))
2703		return -EBADF;
2704	sock = sock_from_file(fd_file(f));
2705	if (unlikely(!sock))
2706		return -ENOTSOCK;
2707
2708	used_address.name_len = UINT_MAX;
2709	entry = mmsg;
2710	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711	err = 0;
2712	flags |= MSG_BATCH;
2713
2714	while (datagrams < vlen) {
2715		if (datagrams == vlen - 1)
2716			flags = oflags;
2717
2718		if (MSG_CMSG_COMPAT & flags) {
2719			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720					     &msg_sys, flags, &used_address, MSG_EOR);
2721			if (err < 0)
2722				break;
2723			err = __put_user(err, &compat_entry->msg_len);
2724			++compat_entry;
2725		} else {
2726			err = ___sys_sendmsg(sock,
2727					     (struct user_msghdr __user *)entry,
2728					     &msg_sys, flags, &used_address, MSG_EOR);
2729			if (err < 0)
2730				break;
2731			err = put_user(err, &entry->msg_len);
2732			++entry;
2733		}
2734
2735		if (err)
2736			break;
2737		++datagrams;
2738		if (msg_data_left(&msg_sys))
2739			break;
2740		cond_resched();
2741	}
2742
 
 
2743	/* We only return an error if no datagrams were able to be sent */
2744	if (datagrams != 0)
2745		return datagrams;
2746
2747	return err;
2748}
2749
2750SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751		unsigned int, vlen, unsigned int, flags)
2752{
2753	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2754}
2755
2756static int recvmsg_copy_msghdr(struct msghdr *msg,
2757			       struct user_msghdr __user *umsg, unsigned flags,
2758			       struct sockaddr __user **uaddr,
2759			       struct iovec **iov)
2760{
2761	ssize_t err;
 
 
 
 
 
2762
2763	if (MSG_CMSG_COMPAT & flags) {
2764		struct compat_msghdr __user *msg_compat;
2765
2766		msg_compat = (struct compat_msghdr __user *) umsg;
2767		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
 
 
 
 
 
2768	} else {
2769		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
 
 
2770	}
2771	if (err < 0)
2772		return err;
2773
2774	return 0;
2775}
 
 
 
 
 
 
 
 
2776
2777static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778			   struct user_msghdr __user *msg,
2779			   struct sockaddr __user *uaddr,
2780			   unsigned int flags, int nosec)
2781{
2782	struct compat_msghdr __user *msg_compat =
2783					(struct compat_msghdr __user *) msg;
2784	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785	struct sockaddr_storage addr;
2786	unsigned long cmsg_ptr;
2787	int len;
2788	ssize_t err;
2789
2790	msg_sys->msg_name = &addr;
2791	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793
2794	/* We assume all kernel code knows the size of sockaddr_storage */
2795	msg_sys->msg_namelen = 0;
2796
2797	if (sock->file->f_flags & O_NONBLOCK)
2798		flags |= MSG_DONTWAIT;
2799
2800	if (unlikely(nosec))
2801		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802	else
2803		err = sock_recvmsg(sock, msg_sys, flags);
2804
2805	if (err < 0)
2806		goto out;
2807	len = err;
2808
2809	if (uaddr != NULL) {
2810		err = move_addr_to_user(&addr,
2811					msg_sys->msg_namelen, uaddr,
2812					uaddr_len);
2813		if (err < 0)
2814			goto out;
2815	}
2816	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817			 COMPAT_FLAGS(msg));
2818	if (err)
2819		goto out;
2820	if (MSG_CMSG_COMPAT & flags)
2821		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822				 &msg_compat->msg_controllen);
2823	else
2824		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825				 &msg->msg_controllen);
2826	if (err)
2827		goto out;
2828	err = len;
2829out:
2830	return err;
2831}
2832
2833static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835{
2836	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837	/* user mode address pointers */
2838	struct sockaddr __user *uaddr;
2839	ssize_t err;
2840
2841	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842	if (err < 0)
2843		return err;
2844
2845	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846	kfree(iov);
2847	return err;
2848}
2849
2850/*
2851 *	BSD recvmsg interface
2852 */
2853
2854long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855			struct user_msghdr __user *umsg,
2856			struct sockaddr __user *uaddr, unsigned int flags)
2857{
2858	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859}
2860
2861long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862		   bool forbid_cmsg_compat)
2863{
 
2864	struct msghdr msg_sys;
2865	struct socket *sock;
2866
2867	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868		return -EINVAL;
2869
2870	CLASS(fd, f)(fd);
2871
2872	if (fd_empty(f))
2873		return -EBADF;
2874	sock = sock_from_file(fd_file(f));
2875	if (unlikely(!sock))
2876		return -ENOTSOCK;
2877
2878	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
 
 
2879}
2880
2881SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882		unsigned int, flags)
2883{
2884	return __sys_recvmsg(fd, msg, flags, true);
 
 
2885}
2886
2887/*
2888 *     Linux recvmmsg interface
2889 */
2890
2891static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892			  unsigned int vlen, unsigned int flags,
2893			  struct timespec64 *timeout)
2894{
2895	int err = 0, datagrams;
2896	struct socket *sock;
2897	struct mmsghdr __user *entry;
2898	struct compat_mmsghdr __user *compat_entry;
2899	struct msghdr msg_sys;
2900	struct timespec64 end_time;
2901	struct timespec64 timeout64;
2902
2903	if (timeout &&
2904	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2905				    timeout->tv_nsec))
2906		return -EINVAL;
2907
2908	datagrams = 0;
2909
2910	CLASS(fd, f)(fd);
2911
2912	if (fd_empty(f))
2913		return -EBADF;
2914	sock = sock_from_file(fd_file(f));
2915	if (unlikely(!sock))
2916		return -ENOTSOCK;
2917
2918	if (likely(!(flags & MSG_ERRQUEUE))) {
2919		err = sock_error(sock->sk);
2920		if (err)
2921			return err;
2922	}
2923
2924	entry = mmsg;
2925	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926
2927	while (datagrams < vlen) {
2928		/*
2929		 * No need to ask LSM for more than the first datagram.
2930		 */
2931		if (MSG_CMSG_COMPAT & flags) {
2932			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933					     &msg_sys, flags & ~MSG_WAITFORONE,
2934					     datagrams);
2935			if (err < 0)
2936				break;
2937			err = __put_user(err, &compat_entry->msg_len);
2938			++compat_entry;
2939		} else {
2940			err = ___sys_recvmsg(sock,
2941					     (struct user_msghdr __user *)entry,
2942					     &msg_sys, flags & ~MSG_WAITFORONE,
2943					     datagrams);
2944			if (err < 0)
2945				break;
2946			err = put_user(err, &entry->msg_len);
2947			++entry;
2948		}
2949
2950		if (err)
2951			break;
2952		++datagrams;
2953
2954		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955		if (flags & MSG_WAITFORONE)
2956			flags |= MSG_DONTWAIT;
2957
2958		if (timeout) {
2959			ktime_get_ts64(&timeout64);
2960			*timeout = timespec64_sub(end_time, timeout64);
2961			if (timeout->tv_sec < 0) {
2962				timeout->tv_sec = timeout->tv_nsec = 0;
2963				break;
2964			}
2965
2966			/* Timeout, return less than vlen datagrams */
2967			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968				break;
2969		}
2970
2971		/* Out of band data, return right away */
2972		if (msg_sys.msg_flags & MSG_OOB)
2973			break;
2974		cond_resched();
2975	}
2976
 
 
 
2977	if (err == 0)
2978		return datagrams;
2979
2980	if (datagrams == 0)
2981		return err;
2982
2983	/*
2984	 * We may return less entries than requested (vlen) if the
2985	 * sock is non block and there aren't enough datagrams...
2986	 */
2987	if (err != -EAGAIN) {
2988		/*
2989		 * ... or  if recvmsg returns an error after we
2990		 * received some datagrams, where we record the
2991		 * error to return on the next call or if the
2992		 * app asks about it using getsockopt(SO_ERROR).
2993		 */
2994		WRITE_ONCE(sock->sk->sk_err, -err);
2995	}
2996	return datagrams;
2997}
2998
2999int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000		   unsigned int vlen, unsigned int flags,
3001		   struct __kernel_timespec __user *timeout,
3002		   struct old_timespec32 __user *timeout32)
3003{
3004	int datagrams;
3005	struct timespec64 timeout_sys;
3006
3007	if (timeout && get_timespec64(&timeout_sys, timeout))
3008		return -EFAULT;
3009
3010	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011		return -EFAULT;
3012
3013	if (!timeout && !timeout32)
3014		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015
3016	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3017
3018	if (datagrams <= 0)
3019		return datagrams;
 
3020
3021	if (timeout && put_timespec64(&timeout_sys, timeout))
3022		datagrams = -EFAULT;
3023
3024	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025		datagrams = -EFAULT;
3026
3027	return datagrams;
3028}
3029
3030SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031		unsigned int, vlen, unsigned int, flags,
3032		struct __kernel_timespec __user *, timeout)
3033{
 
 
 
3034	if (flags & MSG_CMSG_COMPAT)
3035		return -EINVAL;
3036
3037	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038}
3039
3040#ifdef CONFIG_COMPAT_32BIT_TIME
3041SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042		unsigned int, vlen, unsigned int, flags,
3043		struct old_timespec32 __user *, timeout)
3044{
3045	if (flags & MSG_CMSG_COMPAT)
3046		return -EINVAL;
3047
3048	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
 
 
 
 
 
 
3049}
3050#endif
3051
3052#ifdef __ARCH_WANT_SYS_SOCKETCALL
3053/* Argument list sizes for sys_socketcall */
3054#define AL(x) ((x) * sizeof(unsigned long))
3055static const unsigned char nargs[21] = {
3056	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059	AL(4), AL(5), AL(4)
3060};
3061
3062#undef AL
3063
3064/*
3065 *	System call vectors.
3066 *
3067 *	Argument checking cleaned up. Saved 20% in size.
3068 *  This function doesn't need to set the kernel lock because
3069 *  it is set by the callees.
3070 */
3071
3072SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073{
3074	unsigned long a[AUDITSC_ARGS];
3075	unsigned long a0, a1;
3076	int err;
3077	unsigned int len;
3078
3079	if (call < 1 || call > SYS_SENDMMSG)
3080		return -EINVAL;
3081	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082
3083	len = nargs[call];
3084	if (len > sizeof(a))
3085		return -EINVAL;
3086
3087	/* copy_from_user should be SMP safe. */
3088	if (copy_from_user(a, args, len))
3089		return -EFAULT;
3090
3091	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092	if (err)
3093		return err;
3094
3095	a0 = a[0];
3096	a1 = a[1];
3097
3098	switch (call) {
3099	case SYS_SOCKET:
3100		err = __sys_socket(a0, a1, a[2]);
3101		break;
3102	case SYS_BIND:
3103		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104		break;
3105	case SYS_CONNECT:
3106		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107		break;
3108	case SYS_LISTEN:
3109		err = __sys_listen(a0, a1);
3110		break;
3111	case SYS_ACCEPT:
3112		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113				    (int __user *)a[2], 0);
3114		break;
3115	case SYS_GETSOCKNAME:
3116		err =
3117		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118				      (int __user *)a[2]);
3119		break;
3120	case SYS_GETPEERNAME:
3121		err =
3122		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123				      (int __user *)a[2]);
3124		break;
3125	case SYS_SOCKETPAIR:
3126		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127		break;
3128	case SYS_SEND:
3129		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130				   NULL, 0);
3131		break;
3132	case SYS_SENDTO:
3133		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134				   (struct sockaddr __user *)a[4], a[5]);
3135		break;
3136	case SYS_RECV:
3137		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138				     NULL, NULL);
3139		break;
3140	case SYS_RECVFROM:
3141		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142				     (struct sockaddr __user *)a[4],
3143				     (int __user *)a[5]);
3144		break;
3145	case SYS_SHUTDOWN:
3146		err = __sys_shutdown(a0, a1);
3147		break;
3148	case SYS_SETSOCKOPT:
3149		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150				       a[4]);
3151		break;
3152	case SYS_GETSOCKOPT:
3153		err =
3154		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155				     (int __user *)a[4]);
3156		break;
3157	case SYS_SENDMSG:
3158		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159				    a[2], true);
3160		break;
3161	case SYS_SENDMMSG:
3162		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163				     a[3], true);
3164		break;
3165	case SYS_RECVMSG:
3166		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167				    a[2], true);
3168		break;
3169	case SYS_RECVMMSG:
3170		if (IS_ENABLED(CONFIG_64BIT))
3171			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172					     a[2], a[3],
3173					     (struct __kernel_timespec __user *)a[4],
3174					     NULL);
3175		else
3176			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177					     a[2], a[3], NULL,
3178					     (struct old_timespec32 __user *)a[4]);
3179		break;
3180	case SYS_ACCEPT4:
3181		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182				    (int __user *)a[2], a[3]);
3183		break;
3184	default:
3185		err = -EINVAL;
3186		break;
3187	}
3188	return err;
3189}
3190
3191#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3192
3193/**
3194 *	sock_register - add a socket protocol handler
3195 *	@ops: description of protocol
3196 *
3197 *	This function is called by a protocol handler that wants to
3198 *	advertise its address family, and have it linked into the
3199 *	socket interface. The value ops->family corresponds to the
3200 *	socket system call protocol family.
3201 */
3202int sock_register(const struct net_proto_family *ops)
3203{
3204	int err;
3205
3206	if (ops->family >= NPROTO) {
3207		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208		return -ENOBUFS;
3209	}
3210
3211	spin_lock(&net_family_lock);
3212	if (rcu_dereference_protected(net_families[ops->family],
3213				      lockdep_is_held(&net_family_lock)))
3214		err = -EEXIST;
3215	else {
3216		rcu_assign_pointer(net_families[ops->family], ops);
3217		err = 0;
3218	}
3219	spin_unlock(&net_family_lock);
3220
3221	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222	return err;
3223}
3224EXPORT_SYMBOL(sock_register);
3225
3226/**
3227 *	sock_unregister - remove a protocol handler
3228 *	@family: protocol family to remove
3229 *
3230 *	This function is called by a protocol handler that wants to
3231 *	remove its address family, and have it unlinked from the
3232 *	new socket creation.
3233 *
3234 *	If protocol handler is a module, then it can use module reference
3235 *	counts to protect against new references. If protocol handler is not
3236 *	a module then it needs to provide its own protection in
3237 *	the ops->create routine.
3238 */
3239void sock_unregister(int family)
3240{
3241	BUG_ON(family < 0 || family >= NPROTO);
3242
3243	spin_lock(&net_family_lock);
3244	RCU_INIT_POINTER(net_families[family], NULL);
3245	spin_unlock(&net_family_lock);
3246
3247	synchronize_rcu();
3248
3249	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250}
3251EXPORT_SYMBOL(sock_unregister);
3252
3253bool sock_is_registered(int family)
3254{
3255	return family < NPROTO && rcu_access_pointer(net_families[family]);
3256}
3257
3258static int __init sock_init(void)
3259{
3260	int err;
3261	/*
3262	 *      Initialize the network sysctl infrastructure.
3263	 */
3264	err = net_sysctl_init();
3265	if (err)
3266		goto out;
3267
3268	/*
3269	 *      Initialize skbuff SLAB cache
3270	 */
3271	skb_init();
3272
3273	/*
3274	 *      Initialize the protocols module.
3275	 */
3276
3277	init_inodecache();
3278
3279	err = register_filesystem(&sock_fs_type);
3280	if (err)
3281		goto out;
3282	sock_mnt = kern_mount(&sock_fs_type);
3283	if (IS_ERR(sock_mnt)) {
3284		err = PTR_ERR(sock_mnt);
3285		goto out_mount;
3286	}
3287
3288	/* The real protocol initialization is performed in later initcalls.
3289	 */
3290
3291#ifdef CONFIG_NETFILTER
3292	err = netfilter_init();
3293	if (err)
3294		goto out;
3295#endif
3296
3297	ptp_classifier_init();
3298
3299out:
3300	return err;
3301
3302out_mount:
3303	unregister_filesystem(&sock_fs_type);
 
3304	goto out;
3305}
3306
3307core_initcall(sock_init);	/* early initcall */
3308
3309#ifdef CONFIG_PROC_FS
3310void socket_seq_show(struct seq_file *seq)
3311{
3312	seq_printf(seq, "sockets: used %d\n",
3313		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3314}
3315#endif				/* CONFIG_PROC_FS */
3316
3317/* Handle the fact that while struct ifreq has the same *layout* on
3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319 * which are handled elsewhere, it still has different *size* due to
3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321 * resulting in struct ifreq being 32 and 40 bytes respectively).
3322 * As a result, if the struct happens to be at the end of a page and
3323 * the next page isn't readable/writable, we get a fault. To prevent
3324 * that, copy back and forth to the full size.
3325 */
3326int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327{
3328	if (in_compat_syscall()) {
3329		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
 
3330
3331		memset(ifr, 0, sizeof(*ifr));
3332		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333			return -EFAULT;
 
 
3334
3335		if (ifrdata)
3336			*ifrdata = compat_ptr(ifr32->ifr_data);
3337
3338		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339	}
 
 
 
 
 
 
3340
3341	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342		return -EFAULT;
3343
3344	if (ifrdata)
3345		*ifrdata = ifr->ifr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346
3347	return 0;
3348}
3349EXPORT_SYMBOL(get_user_ifreq);
3350
3351int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352{
3353	size_t size = sizeof(*ifr);
 
 
 
 
 
 
 
 
3354
3355	if (in_compat_syscall())
3356		size = sizeof(struct compat_ifreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357
3358	if (copy_to_user(arg, ifr, size))
 
 
 
3359		return -EFAULT;
3360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3361	return 0;
3362}
3363EXPORT_SYMBOL(put_user_ifreq);
3364
3365#ifdef CONFIG_COMPAT
3366static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367{
 
3368	compat_uptr_t uptr32;
3369	struct ifreq ifr;
3370	void __user *saved;
3371	int err;
3372
3373	if (get_user_ifreq(&ifr, NULL, uifr32))
 
3374		return -EFAULT;
3375
3376	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377		return -EFAULT;
3378
3379	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381
3382	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383	if (!err) {
3384		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385		if (put_user_ifreq(&ifr, uifr32))
3386			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3387	}
3388	return err;
3389}
3390
3391/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393				 struct compat_ifreq __user *u_ifreq32)
3394{
3395	struct ifreq ifreq;
3396	void __user *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397
3398	if (!is_socket_ioctl_cmd(cmd))
3399		return -ENOTTY;
3400	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
 
 
 
 
 
 
3401		return -EFAULT;
3402	ifreq.ifr_data = data;
3403
3404	return dev_ioctl(net, cmd, &ifreq, data, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405}
3406
3407static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408			 unsigned int cmd, unsigned long arg)
3409{
3410	void __user *argp = compat_ptr(arg);
3411	struct sock *sk = sock->sk;
3412	struct net *net = sock_net(sk);
3413	const struct proto_ops *ops;
3414
3415	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416		return sock_ioctl(file, cmd, (unsigned long)argp);
3417
3418	switch (cmd) {
 
 
 
 
 
 
 
 
 
3419	case SIOCWANDEV:
3420		return compat_siocwandev(net, argp);
3421	case SIOCGSTAMP_OLD:
3422	case SIOCGSTAMPNS_OLD:
3423		ops = READ_ONCE(sock->ops);
3424		if (!ops->gettstamp)
3425			return -ENOIOCTLCMD;
3426		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427				      !COMPAT_USE_64BIT_TIME);
3428
3429	case SIOCETHTOOL:
 
 
 
 
 
 
3430	case SIOCBONDSLAVEINFOQUERY:
3431	case SIOCBONDINFOQUERY:
3432	case SIOCSHWTSTAMP:
3433	case SIOCGHWTSTAMP:
3434		return compat_ifr_data_ioctl(net, cmd, argp);
3435
3436	case FIOSETOWN:
3437	case SIOCSPGRP:
3438	case FIOGETOWN:
3439	case SIOCGPGRP:
3440	case SIOCBRADDBR:
3441	case SIOCBRDELBR:
3442	case SIOCGIFVLAN:
3443	case SIOCSIFVLAN:
3444	case SIOCGSKNS:
3445	case SIOCGSTAMP_NEW:
3446	case SIOCGSTAMPNS_NEW:
3447	case SIOCGIFCONF:
3448	case SIOCSIFBR:
3449	case SIOCGIFBR:
3450		return sock_ioctl(file, cmd, arg);
3451
3452	case SIOCGIFFLAGS:
3453	case SIOCSIFFLAGS:
3454	case SIOCGIFMAP:
3455	case SIOCSIFMAP:
3456	case SIOCGIFMETRIC:
3457	case SIOCSIFMETRIC:
3458	case SIOCGIFMTU:
3459	case SIOCSIFMTU:
3460	case SIOCGIFMEM:
3461	case SIOCSIFMEM:
3462	case SIOCGIFHWADDR:
3463	case SIOCSIFHWADDR:
3464	case SIOCADDMULTI:
3465	case SIOCDELMULTI:
3466	case SIOCGIFINDEX:
3467	case SIOCGIFADDR:
3468	case SIOCSIFADDR:
3469	case SIOCSIFHWBROADCAST:
3470	case SIOCDIFADDR:
3471	case SIOCGIFBRDADDR:
3472	case SIOCSIFBRDADDR:
3473	case SIOCGIFDSTADDR:
3474	case SIOCSIFDSTADDR:
3475	case SIOCGIFNETMASK:
3476	case SIOCSIFNETMASK:
3477	case SIOCSIFPFLAGS:
3478	case SIOCGIFPFLAGS:
3479	case SIOCGIFTXQLEN:
3480	case SIOCSIFTXQLEN:
3481	case SIOCBRADDIF:
3482	case SIOCBRDELIF:
3483	case SIOCGIFNAME:
3484	case SIOCSIFNAME:
3485	case SIOCGMIIPHY:
3486	case SIOCGMIIREG:
3487	case SIOCSMIIREG:
3488	case SIOCBONDENSLAVE:
3489	case SIOCBONDRELEASE:
3490	case SIOCBONDSETHWADDR:
3491	case SIOCBONDCHANGEACTIVE:
3492	case SIOCSARP:
3493	case SIOCGARP:
3494	case SIOCDARP:
3495	case SIOCOUTQ:
3496	case SIOCOUTQNSD:
3497	case SIOCATMARK:
3498		return sock_do_ioctl(net, sock, cmd, arg);
3499	}
3500
3501	return -ENOIOCTLCMD;
3502}
3503
3504static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505			      unsigned long arg)
3506{
3507	struct socket *sock = file->private_data;
3508	const struct proto_ops *ops = READ_ONCE(sock->ops);
3509	int ret = -ENOIOCTLCMD;
3510	struct sock *sk;
3511	struct net *net;
3512
3513	sk = sock->sk;
3514	net = sock_net(sk);
3515
3516	if (ops->compat_ioctl)
3517		ret = ops->compat_ioctl(sock, cmd, arg);
3518
3519	if (ret == -ENOIOCTLCMD &&
3520	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521		ret = compat_wext_handle_ioctl(net, cmd, arg);
3522
3523	if (ret == -ENOIOCTLCMD)
3524		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525
3526	return ret;
3527}
3528#endif
3529
3530/**
3531 *	kernel_bind - bind an address to a socket (kernel space)
3532 *	@sock: socket
3533 *	@addr: address
3534 *	@addrlen: length of address
3535 *
3536 *	Returns 0 or an error.
3537 */
3538
3539int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3540{
3541	struct sockaddr_storage address;
3542
3543	memcpy(&address, addr, addrlen);
3544
3545	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546					  addrlen);
3547}
3548EXPORT_SYMBOL(kernel_bind);
3549
3550/**
3551 *	kernel_listen - move socket to listening state (kernel space)
3552 *	@sock: socket
3553 *	@backlog: pending connections queue size
3554 *
3555 *	Returns 0 or an error.
3556 */
3557
3558int kernel_listen(struct socket *sock, int backlog)
3559{
3560	return READ_ONCE(sock->ops)->listen(sock, backlog);
3561}
3562EXPORT_SYMBOL(kernel_listen);
3563
3564/**
3565 *	kernel_accept - accept a connection (kernel space)
3566 *	@sock: listening socket
3567 *	@newsock: new connected socket
3568 *	@flags: flags
3569 *
3570 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571 *	If it fails, @newsock is guaranteed to be %NULL.
3572 *	Returns 0 or an error.
3573 */
3574
3575int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576{
3577	struct sock *sk = sock->sk;
3578	const struct proto_ops *ops = READ_ONCE(sock->ops);
3579	struct proto_accept_arg arg = {
3580		.flags = flags,
3581		.kern = true,
3582	};
3583	int err;
3584
3585	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586			       newsock);
3587	if (err < 0)
3588		goto done;
3589
3590	err = ops->accept(sock, *newsock, &arg);
3591	if (err < 0) {
3592		sock_release(*newsock);
3593		*newsock = NULL;
3594		goto done;
3595	}
3596
3597	(*newsock)->ops = ops;
3598	__module_get(ops->owner);
3599
3600done:
3601	return err;
3602}
3603EXPORT_SYMBOL(kernel_accept);
3604
3605/**
3606 *	kernel_connect - connect a socket (kernel space)
3607 *	@sock: socket
3608 *	@addr: address
3609 *	@addrlen: address length
3610 *	@flags: flags (O_NONBLOCK, ...)
3611 *
3612 *	For datagram sockets, @addr is the address to which datagrams are sent
3613 *	by default, and the only address from which datagrams are received.
3614 *	For stream sockets, attempts to connect to @addr.
3615 *	Returns 0 or an error code.
3616 */
3617
3618int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619		   int flags)
3620{
3621	struct sockaddr_storage address;
3622
3623	memcpy(&address, addr, addrlen);
3624
3625	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626					     addrlen, flags);
3627}
3628EXPORT_SYMBOL(kernel_connect);
3629
3630/**
3631 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632 *	@sock: socket
3633 *	@addr: address holder
3634 *
3635 * 	Fills the @addr pointer with the address which the socket is bound.
3636 *	Returns the length of the address in bytes or an error code.
3637 */
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640{
3641	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
3644
3645/**
3646 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647 *	@sock: socket
3648 *	@addr: address holder
3649 *
3650 * 	Fills the @addr pointer with the address which the socket is connected.
3651 *	Returns the length of the address in bytes or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 *	@sock: socket
3663 *	@how: connection part
3664 *
3665 *	Returns 0 or an error.
3666 */
3667
3668int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669{
3670	return READ_ONCE(sock->ops)->shutdown(sock, how);
 
 
 
 
 
 
 
 
 
 
 
 
 
3671}
3672EXPORT_SYMBOL(kernel_sock_shutdown);
3673
3674/**
3675 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 *	@sk: socket
3677 *
3678 *	This routine returns the IP overhead imposed by a socket i.e.
3679 *	the length of the underlying IP header, depending on whether
3680 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681 *	on at the socket. Assumes that the caller has a lock on the socket.
3682 */
3683
3684u32 kernel_sock_ip_overhead(struct sock *sk)
3685{
3686	struct inet_sock *inet;
3687	struct ip_options_rcu *opt;
3688	u32 overhead = 0;
3689#if IS_ENABLED(CONFIG_IPV6)
3690	struct ipv6_pinfo *np;
3691	struct ipv6_txoptions *optv6 = NULL;
3692#endif /* IS_ENABLED(CONFIG_IPV6) */
3693
3694	if (!sk)
3695		return overhead;
3696
3697	switch (sk->sk_family) {
3698	case AF_INET:
3699		inet = inet_sk(sk);
3700		overhead += sizeof(struct iphdr);
3701		opt = rcu_dereference_protected(inet->inet_opt,
3702						sock_owned_by_user(sk));
3703		if (opt)
3704			overhead += opt->opt.optlen;
3705		return overhead;
3706#if IS_ENABLED(CONFIG_IPV6)
3707	case AF_INET6:
3708		np = inet6_sk(sk);
3709		overhead += sizeof(struct ipv6hdr);
3710		if (np)
3711			optv6 = rcu_dereference_protected(np->opt,
3712							  sock_owned_by_user(sk));
3713		if (optv6)
3714			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715		return overhead;
3716#endif /* IS_ENABLED(CONFIG_IPV6) */
3717	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718		return overhead;
3719	}
3720}
3721EXPORT_SYMBOL(kernel_sock_ip_overhead);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
 
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
 
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 
 
 
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 116static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 117			 unsigned long nr_segs, loff_t pos);
 118static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 119			  unsigned long nr_segs, loff_t pos);
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static unsigned int sock_poll(struct file *file,
 124			      struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128			      unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 131static ssize_t sock_sendpage(struct file *file, struct page *page,
 132			     int offset, size_t size, loff_t *ppos, int more);
 133static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 134				struct pipe_inode_info *pipe, size_t len,
 135				unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137/*
 138 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 139 *	in the operation structures but are done directly via the socketcall() multiplexor.
 140 */
 141
 142static const struct file_operations socket_file_ops = {
 143	.owner =	THIS_MODULE,
 144	.llseek =	no_llseek,
 145	.aio_read =	sock_aio_read,
 146	.aio_write =	sock_aio_write,
 147	.poll =		sock_poll,
 148	.unlocked_ioctl = sock_ioctl,
 149#ifdef CONFIG_COMPAT
 150	.compat_ioctl = compat_sock_ioctl,
 151#endif
 
 152	.mmap =		sock_mmap,
 153	.open =		sock_no_open,	/* special open code to disallow open via /proc */
 154	.release =	sock_close,
 155	.fasync =	sock_fasync,
 156	.sendpage =	sock_sendpage,
 157	.splice_write = generic_splice_sendpage,
 158	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159};
 160
 161/*
 162 *	The protocol list. Each protocol is registered in here.
 163 */
 164
 165static DEFINE_SPINLOCK(net_family_lock);
 166static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 167
 168/*
 169 *	Statistics counters of the socket lists
 170 */
 171
 172static DEFINE_PER_CPU(int, sockets_in_use);
 173
 174/*
 175 * Support routines.
 176 * Move socket addresses back and forth across the kernel/user
 177 * divide and look after the messy bits.
 178 */
 179
 180/**
 181 *	move_addr_to_kernel	-	copy a socket address into kernel space
 182 *	@uaddr: Address in user space
 183 *	@kaddr: Address in kernel space
 184 *	@ulen: Length in user space
 185 *
 186 *	The address is copied into kernel space. If the provided address is
 187 *	too long an error code of -EINVAL is returned. If the copy gives
 188 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 189 */
 190
 191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 192{
 193	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 194		return -EINVAL;
 195	if (ulen == 0)
 196		return 0;
 197	if (copy_from_user(kaddr, uaddr, ulen))
 198		return -EFAULT;
 199	return audit_sockaddr(ulen, kaddr);
 200}
 201
 202/**
 203 *	move_addr_to_user	-	copy an address to user space
 204 *	@kaddr: kernel space address
 205 *	@klen: length of address in kernel
 206 *	@uaddr: user space address
 207 *	@ulen: pointer to user length field
 208 *
 209 *	The value pointed to by ulen on entry is the buffer length available.
 210 *	This is overwritten with the buffer space used. -EINVAL is returned
 211 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 212 *	is returned if either the buffer or the length field are not
 213 *	accessible.
 214 *	After copying the data up to the limit the user specifies, the true
 215 *	length of the data is written over the length limit the user
 216 *	specified. Zero is returned for a success.
 217 */
 218
 219static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 220			     void __user *uaddr, int __user *ulen)
 221{
 222	int err;
 223	int len;
 224
 225	BUG_ON(klen > sizeof(struct sockaddr_storage));
 226	err = get_user(len, ulen);
 227	if (err)
 228		return err;
 229	if (len > klen)
 230		len = klen;
 231	if (len < 0)
 232		return -EINVAL;
 233	if (len) {
 234		if (audit_sockaddr(klen, kaddr))
 235			return -ENOMEM;
 236		if (copy_to_user(uaddr, kaddr, len))
 237			return -EFAULT;
 238	}
 239	/*
 240	 *      "fromlen shall refer to the value before truncation.."
 241	 *                      1003.1g
 242	 */
 243	return __put_user(klen, ulen);
 244}
 245
 246static struct kmem_cache *sock_inode_cachep __read_mostly;
 247
 248static struct inode *sock_alloc_inode(struct super_block *sb)
 249{
 250	struct socket_alloc *ei;
 251	struct socket_wq *wq;
 252
 253	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254	if (!ei)
 255		return NULL;
 256	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 257	if (!wq) {
 258		kmem_cache_free(sock_inode_cachep, ei);
 259		return NULL;
 260	}
 261	init_waitqueue_head(&wq->wait);
 262	wq->fasync_list = NULL;
 263	RCU_INIT_POINTER(ei->socket.wq, wq);
 264
 265	ei->socket.state = SS_UNCONNECTED;
 266	ei->socket.flags = 0;
 267	ei->socket.ops = NULL;
 268	ei->socket.sk = NULL;
 269	ei->socket.file = NULL;
 270
 271	return &ei->vfs_inode;
 272}
 273
 274static void sock_destroy_inode(struct inode *inode)
 275{
 276	struct socket_alloc *ei;
 277	struct socket_wq *wq;
 278
 279	ei = container_of(inode, struct socket_alloc, vfs_inode);
 280	wq = rcu_dereference_protected(ei->socket.wq, 1);
 281	kfree_rcu(wq, rcu);
 282	kmem_cache_free(sock_inode_cachep, ei);
 283}
 284
 285static void init_once(void *foo)
 286{
 287	struct socket_alloc *ei = (struct socket_alloc *)foo;
 288
 289	inode_init_once(&ei->vfs_inode);
 290}
 291
 292static int init_inodecache(void)
 293{
 294	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 295					      sizeof(struct socket_alloc),
 296					      0,
 297					      (SLAB_HWCACHE_ALIGN |
 298					       SLAB_RECLAIM_ACCOUNT |
 299					       SLAB_MEM_SPREAD),
 300					      init_once);
 301	if (sock_inode_cachep == NULL)
 302		return -ENOMEM;
 303	return 0;
 304}
 305
 306static const struct super_operations sockfs_ops = {
 307	.alloc_inode	= sock_alloc_inode,
 308	.destroy_inode	= sock_destroy_inode,
 309	.statfs		= simple_statfs,
 310};
 311
 312/*
 313 * sockfs_dname() is called from d_path().
 314 */
 315static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 316{
 317	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 318				dentry->d_inode->i_ino);
 319}
 320
 321static const struct dentry_operations sockfs_dentry_operations = {
 322	.d_dname  = sockfs_dname,
 323};
 324
 325static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327{
 328	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 329		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 
 330}
 331
 332static struct vfsmount *sock_mnt __read_mostly;
 333
 334static struct file_system_type sock_fs_type = {
 335	.name =		"sockfs",
 336	.mount =	sockfs_mount,
 337	.kill_sb =	kill_anon_super,
 338};
 339
 340/*
 341 *	Obtains the first available file descriptor and sets it up for use.
 342 *
 343 *	These functions create file structures and maps them to fd space
 344 *	of the current process. On success it returns file descriptor
 345 *	and file struct implicitly stored in sock->file.
 346 *	Note that another thread may close file descriptor before we return
 347 *	from this function. We use the fact that now we do not refer
 348 *	to socket after mapping. If one day we will need it, this
 349 *	function will increment ref. count on file by 1.
 350 *
 351 *	In any case returned fd MAY BE not valid!
 352 *	This race condition is unavoidable
 353 *	with shared fd spaces, we cannot solve it inside kernel,
 354 *	but we take care of internal coherence yet.
 355 */
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 358{
 359	struct qstr name = { .name = "" };
 360	struct path path;
 361	struct file *file;
 362
 363	if (dname) {
 364		name.name = dname;
 365		name.len = strlen(name.name);
 366	} else if (sock->sk) {
 367		name.name = sock->sk->sk_prot_creator->name;
 368		name.len = strlen(name.name);
 369	}
 370	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 371	if (unlikely(!path.dentry))
 372		return ERR_PTR(-ENOMEM);
 373	path.mnt = mntget(sock_mnt);
 374
 375	d_instantiate(path.dentry, SOCK_INODE(sock));
 376	SOCK_INODE(sock)->i_fop = &socket_file_ops;
 377
 378	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 379		  &socket_file_ops);
 380	if (unlikely(IS_ERR(file))) {
 381		/* drop dentry, keep inode */
 382		ihold(path.dentry->d_inode);
 383		path_put(&path);
 384		return file;
 385	}
 386
 
 387	sock->file = file;
 388	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 389	file->private_data = sock;
 
 390	return file;
 391}
 392EXPORT_SYMBOL(sock_alloc_file);
 393
 394static int sock_map_fd(struct socket *sock, int flags)
 395{
 396	struct file *newfile;
 397	int fd = get_unused_fd_flags(flags);
 398	if (unlikely(fd < 0))
 
 399		return fd;
 
 400
 401	newfile = sock_alloc_file(sock, flags, NULL);
 402	if (likely(!IS_ERR(newfile))) {
 403		fd_install(fd, newfile);
 404		return fd;
 405	}
 406
 407	put_unused_fd(fd);
 408	return PTR_ERR(newfile);
 409}
 410
 411struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 412{
 413	if (file->f_op == &socket_file_ops)
 414		return file->private_data;	/* set in sock_map_fd */
 415
 416	*err = -ENOTSOCK;
 417	return NULL;
 418}
 419EXPORT_SYMBOL(sock_from_file);
 420
 421/**
 422 *	sockfd_lookup - Go from a file number to its socket slot
 423 *	@fd: file handle
 424 *	@err: pointer to an error code return
 425 *
 426 *	The file handle passed in is locked and the socket it is bound
 427 *	too is returned. If an error occurs the err pointer is overwritten
 428 *	with a negative errno code and NULL is returned. The function checks
 429 *	for both invalid handles and passing a handle which is not a socket.
 430 *
 431 *	On a success the socket object pointer is returned.
 432 */
 433
 434struct socket *sockfd_lookup(int fd, int *err)
 435{
 436	struct file *file;
 437	struct socket *sock;
 438
 439	file = fget(fd);
 440	if (!file) {
 441		*err = -EBADF;
 442		return NULL;
 443	}
 444
 445	sock = sock_from_file(file, err);
 446	if (!sock)
 
 447		fput(file);
 
 448	return sock;
 449}
 450EXPORT_SYMBOL(sockfd_lookup);
 451
 452static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 453{
 454	struct fd f = fdget(fd);
 455	struct socket *sock;
 456
 457	*err = -EBADF;
 458	if (f.file) {
 459		sock = sock_from_file(f.file, err);
 460		if (likely(sock)) {
 461			*fput_needed = f.flags;
 462			return sock;
 463		}
 464		fdput(f);
 465	}
 466	return NULL;
 467}
 468
 469#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 470#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 471#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 472static ssize_t sockfs_getxattr(struct dentry *dentry,
 473			       const char *name, void *value, size_t size)
 474{
 475	const char *proto_name;
 476	size_t proto_size;
 477	int error;
 478
 479	error = -ENODATA;
 480	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 481		proto_name = dentry->d_name.name;
 482		proto_size = strlen(proto_name);
 483
 484		if (value) {
 485			error = -ERANGE;
 486			if (proto_size + 1 > size)
 487				goto out;
 488
 489			strncpy(value, proto_name, proto_size + 1);
 490		}
 491		error = proto_size + 1;
 492	}
 493
 494out:
 495	return error;
 496}
 497
 498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 499				size_t size)
 500{
 501	ssize_t len;
 502	ssize_t used = 0;
 503
 504	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
 505	if (len < 0)
 506		return len;
 507	used += len;
 508	if (buffer) {
 509		if (size < used)
 510			return -ERANGE;
 511		buffer += len;
 512	}
 513
 514	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 515	used += len;
 516	if (buffer) {
 517		if (size < used)
 518			return -ERANGE;
 519		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 520		buffer += len;
 521	}
 522
 523	return used;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526static const struct inode_operations sockfs_inode_ops = {
 527	.getxattr = sockfs_getxattr,
 528	.listxattr = sockfs_listxattr,
 
 529};
 530
 531/**
 532 *	sock_alloc	-	allocate a socket
 533 *
 534 *	Allocate a new inode and socket object. The two are bound together
 535 *	and initialised. The socket is then returned. If we are out of inodes
 536 *	NULL is returned.
 537 */
 538
 539static struct socket *sock_alloc(void)
 540{
 541	struct inode *inode;
 542	struct socket *sock;
 543
 544	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 545	if (!inode)
 546		return NULL;
 547
 548	sock = SOCKET_I(inode);
 549
 550	kmemcheck_annotate_bitfield(sock, type);
 551	inode->i_ino = get_next_ino();
 552	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 553	inode->i_uid = current_fsuid();
 554	inode->i_gid = current_fsgid();
 555	inode->i_op = &sockfs_inode_ops;
 556
 557	this_cpu_add(sockets_in_use, 1);
 558	return sock;
 559}
 
 
 
 
 
 560
 561/*
 562 *	In theory you can't get an open on this inode, but /proc provides
 563 *	a back door. Remember to keep it shut otherwise you'll let the
 564 *	creepy crawlies in.
 565 */
 
 
 
 
 
 
 
 
 
 
 566
 567static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 568{
 569	return -ENXIO;
 
 
 570}
 571
 572const struct file_operations bad_sock_fops = {
 573	.owner = THIS_MODULE,
 574	.open = sock_no_open,
 575	.llseek = noop_llseek,
 576};
 577
 578/**
 579 *	sock_release	-	close a socket
 580 *	@sock: socket to close
 581 *
 582 *	The socket is released from the protocol stack if it has a release
 583 *	callback, and the inode is then released if the socket is bound to
 584 *	an inode not a file.
 585 */
 
 
 
 
 
 586
 587void sock_release(struct socket *sock)
 588{
 589	if (sock->ops) {
 590		struct module *owner = sock->ops->owner;
 
 
 591
 592		sock->ops->release(sock);
 593		sock->ops = NULL;
 594		module_put(owner);
 
 
 
 
 595	}
 596
 597	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 598		pr_err("%s: fasync list not empty!\n", __func__);
 599
 600	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 601		return;
 602
 603	this_cpu_sub(sockets_in_use, 1);
 604	if (!sock->file) {
 605		iput(SOCK_INODE(sock));
 606		return;
 607	}
 608	sock->file = NULL;
 609}
 610EXPORT_SYMBOL(sock_release);
 
 
 
 
 
 611
 612void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 
 613{
 614	*tx_flags = 0;
 615	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 616		*tx_flags |= SKBTX_HW_TSTAMP;
 617	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 618		*tx_flags |= SKBTX_SW_TSTAMP;
 619	if (sock_flag(sk, SOCK_WIFI_STATUS))
 620		*tx_flags |= SKBTX_WIFI_STATUS;
 621}
 622EXPORT_SYMBOL(sock_tx_timestamp);
 623
 624static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 625				       struct msghdr *msg, size_t size)
 626{
 627	struct sock_iocb *si = kiocb_to_siocb(iocb);
 
 
 
 628
 629	si->sock = sock;
 630	si->scm = NULL;
 631	si->msg = msg;
 632	si->size = size;
 633
 634	return sock->ops->sendmsg(iocb, sock, msg, size);
 635}
 636
 637static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 638				 struct msghdr *msg, size_t size)
 639{
 640	int err = security_socket_sendmsg(sock, msg, size);
 
 641
 642	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 643}
 644
 645int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 
 
 
 
 
 
 
 
 646{
 647	struct kiocb iocb;
 648	struct sock_iocb siocb;
 
 649	int ret;
 650
 651	init_sync_kiocb(&iocb, NULL);
 652	iocb.private = &siocb;
 653	ret = __sock_sendmsg(&iocb, sock, msg, size);
 654	if (-EIOCBQUEUED == ret)
 655		ret = wait_on_sync_kiocb(&iocb);
 
 
 
 
 656	return ret;
 657}
 658EXPORT_SYMBOL(sock_sendmsg);
 659
 660static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 661{
 662	struct kiocb iocb;
 663	struct sock_iocb siocb;
 664	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666	init_sync_kiocb(&iocb, NULL);
 667	iocb.private = &siocb;
 668	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 669	if (-EIOCBQUEUED == ret)
 670		ret = wait_on_sync_kiocb(&iocb);
 671	return ret;
 672}
 673
 674int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 675		   struct kvec *vec, size_t num, size_t size)
 676{
 677	mm_segment_t oldfs = get_fs();
 678	int result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679
 680	set_fs(KERNEL_DS);
 681	/*
 682	 * the following is safe, since for compiler definitions of kvec and
 683	 * iovec are identical, yielding the same in-core layout and alignment
 684	 */
 685	msg->msg_iov = (struct iovec *)vec;
 686	msg->msg_iovlen = num;
 687	result = sock_sendmsg(sock, msg, size);
 688	set_fs(oldfs);
 689	return result;
 690}
 691EXPORT_SYMBOL(kernel_sendmsg);
 692
 693/*
 694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 695 */
 696void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 697	struct sk_buff *skb)
 698{
 699	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 700	struct timespec ts[3];
 701	int empty = 1;
 
 702	struct skb_shared_hwtstamps *shhwtstamps =
 703		skb_hwtstamps(skb);
 
 
 
 704
 705	/* Race occurred between timestamp enabling and packet
 706	   receiving.  Fill in the current time for now. */
 707	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 708		__net_timestamp(skb);
 
 
 709
 710	if (need_software_tstamp) {
 711		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 712			struct timeval tv;
 713			skb_get_timestamp(skb, &tv);
 714			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 715				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 716		} else {
 717			skb_get_timestampns(skb, &ts[0]);
 718			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 719				 sizeof(ts[0]), &ts[0]);
 
 
 
 
 
 
 
 
 
 
 720		}
 721	}
 722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724	memset(ts, 0, sizeof(ts));
 725	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
 726	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
 727		empty = 0;
 728	if (shhwtstamps) {
 729		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 730		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
 731			empty = 0;
 732		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 733		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
 734			empty = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	}
 736	if (!empty)
 737		put_cmsg(msg, SOL_SOCKET,
 738			 SCM_TIMESTAMPING, sizeof(ts), &ts);
 739}
 740EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 741
 
 742void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 743	struct sk_buff *skb)
 744{
 745	int ack;
 746
 747	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 748		return;
 749	if (!skb->wifi_acked_valid)
 750		return;
 751
 752	ack = skb->wifi_acked;
 753
 754	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 755}
 756EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 
 757
 758static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 759				   struct sk_buff *skb)
 760{
 761	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 762		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 763			sizeof(__u32), &skb->dropcount);
 764}
 765
 766void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 767	struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 768{
 769	sock_recv_timestamp(msg, sk, skb);
 770	sock_recv_drops(msg, sk, skb);
 
 771}
 772EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 773
 774static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 775				       struct msghdr *msg, size_t size, int flags)
 776{
 777	struct sock_iocb *si = kiocb_to_siocb(iocb);
 778
 779	si->sock = sock;
 780	si->scm = NULL;
 781	si->msg = msg;
 782	si->size = size;
 783	si->flags = flags;
 784
 785	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 786}
 787
 788static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 789				 struct msghdr *msg, size_t size, int flags)
 790{
 791	int err = security_socket_recvmsg(sock, msg, size, flags);
 792
 793	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 794}
 795
 796int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 797		 size_t size, int flags)
 798{
 799	struct kiocb iocb;
 800	struct sock_iocb siocb;
 801	int ret;
 802
 803	init_sync_kiocb(&iocb, NULL);
 804	iocb.private = &siocb;
 805	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 806	if (-EIOCBQUEUED == ret)
 807		ret = wait_on_sync_kiocb(&iocb);
 808	return ret;
 809}
 810EXPORT_SYMBOL(sock_recvmsg);
 811
 812static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 813			      size_t size, int flags)
 
 
 
 
 
 
 
 
 814{
 815	struct kiocb iocb;
 816	struct sock_iocb siocb;
 817	int ret;
 818
 819	init_sync_kiocb(&iocb, NULL);
 820	iocb.private = &siocb;
 821	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 822	if (-EIOCBQUEUED == ret)
 823		ret = wait_on_sync_kiocb(&iocb);
 824	return ret;
 825}
 
 826
 827/**
 828 * kernel_recvmsg - Receive a message from a socket (kernel space)
 829 * @sock:       The socket to receive the message from
 830 * @msg:        Received message
 831 * @vec:        Input s/g array for message data
 832 * @num:        Size of input s/g array
 833 * @size:       Number of bytes to read
 834 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 835 *
 836 * On return the msg structure contains the scatter/gather array passed in the
 837 * vec argument. The array is modified so that it consists of the unfilled
 838 * portion of the original array.
 839 *
 840 * The returned value is the total number of bytes received, or an error.
 841 */
 
 842int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 843		   struct kvec *vec, size_t num, size_t size, int flags)
 844{
 845	mm_segment_t oldfs = get_fs();
 846	int result;
 847
 848	set_fs(KERNEL_DS);
 849	/*
 850	 * the following is safe, since for compiler definitions of kvec and
 851	 * iovec are identical, yielding the same in-core layout and alignment
 852	 */
 853	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 854	result = sock_recvmsg(sock, msg, size, flags);
 855	set_fs(oldfs);
 856	return result;
 857}
 858EXPORT_SYMBOL(kernel_recvmsg);
 859
 860static ssize_t sock_sendpage(struct file *file, struct page *page,
 861			     int offset, size_t size, loff_t *ppos, int more)
 862{
 863	struct socket *sock;
 864	int flags;
 865
 866	sock = file->private_data;
 867
 868	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 869	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 870	flags |= more;
 871
 872	return kernel_sendpage(sock, page, offset, size, flags);
 873}
 874
 875static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 876				struct pipe_inode_info *pipe, size_t len,
 877				unsigned int flags)
 878{
 879	struct socket *sock = file->private_data;
 
 880
 881	if (unlikely(!sock->ops->splice_read))
 882		return -EINVAL;
 
 883
 884	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 885}
 886
 887static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 888					 struct sock_iocb *siocb)
 889{
 890	if (!is_sync_kiocb(iocb))
 891		BUG();
 892
 893	siocb->kiocb = iocb;
 894	iocb->private = siocb;
 895	return siocb;
 896}
 897
 898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 899		struct file *file, const struct iovec *iov,
 900		unsigned long nr_segs)
 901{
 
 902	struct socket *sock = file->private_data;
 903	size_t size = 0;
 904	int i;
 905
 906	for (i = 0; i < nr_segs; i++)
 907		size += iov[i].iov_len;
 908
 909	msg->msg_name = NULL;
 910	msg->msg_namelen = 0;
 911	msg->msg_control = NULL;
 912	msg->msg_controllen = 0;
 913	msg->msg_iov = (struct iovec *)iov;
 914	msg->msg_iovlen = nr_segs;
 915	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 916
 917	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 918}
 919
 920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 921				unsigned long nr_segs, loff_t pos)
 922{
 923	struct sock_iocb siocb, *x;
 924
 925	if (pos != 0)
 926		return -ESPIPE;
 927
 928	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
 929		return 0;
 930
 931
 932	x = alloc_sock_iocb(iocb, &siocb);
 933	if (!x)
 934		return -ENOMEM;
 935	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 936}
 937
 938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 939			struct file *file, const struct iovec *iov,
 940			unsigned long nr_segs)
 941{
 
 942	struct socket *sock = file->private_data;
 943	size_t size = 0;
 944	int i;
 
 
 
 
 945
 946	for (i = 0; i < nr_segs; i++)
 947		size += iov[i].iov_len;
 948
 949	msg->msg_name = NULL;
 950	msg->msg_namelen = 0;
 951	msg->msg_control = NULL;
 952	msg->msg_controllen = 0;
 953	msg->msg_iov = (struct iovec *)iov;
 954	msg->msg_iovlen = nr_segs;
 955	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 956	if (sock->type == SOCK_SEQPACKET)
 957		msg->msg_flags |= MSG_EOR;
 958
 959	return __sock_sendmsg(iocb, sock, msg, size);
 960}
 961
 962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 963			  unsigned long nr_segs, loff_t pos)
 964{
 965	struct sock_iocb siocb, *x;
 966
 967	if (pos != 0)
 968		return -ESPIPE;
 969
 970	x = alloc_sock_iocb(iocb, &siocb);
 971	if (!x)
 972		return -ENOMEM;
 973
 974	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 
 
 975}
 976
 977/*
 978 * Atomic setting of ioctl hooks to avoid race
 979 * with module unload.
 980 */
 981
 982static DEFINE_MUTEX(br_ioctl_mutex);
 983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 984
 985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 
 
 
 
 986{
 987	mutex_lock(&br_ioctl_mutex);
 988	br_ioctl_hook = hook;
 989	mutex_unlock(&br_ioctl_mutex);
 990}
 991EXPORT_SYMBOL(brioctl_set);
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993static DEFINE_MUTEX(vlan_ioctl_mutex);
 994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 995
 996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 997{
 998	mutex_lock(&vlan_ioctl_mutex);
 999	vlan_ioctl_hook = hook;
1000	mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009	mutex_lock(&dlci_ioctl_mutex);
1010	dlci_ioctl_hook = hook;
1011	mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016				 unsigned int cmd, unsigned long arg)
1017{
 
 
 
1018	int err;
1019	void __user *argp = (void __user *)arg;
 
1020
1021	err = sock->ops->ioctl(sock, cmd, arg);
1022
1023	/*
1024	 * If this ioctl is unknown try to hand it down
1025	 * to the NIC driver.
1026	 */
1027	if (err == -ENOIOCTLCMD)
1028		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 
 
1029
1030	return err;
1031}
1032
1033/*
1034 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035 *	what to do with it - that's up to the protocol still.
1036 */
1037
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
 
1040	struct socket *sock;
1041	struct sock *sk;
1042	void __user *argp = (void __user *)arg;
1043	int pid, err;
1044	struct net *net;
1045
1046	sock = file->private_data;
 
1047	sk = sock->sk;
1048	net = sock_net(sk);
1049	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
1051	} else
1052#ifdef CONFIG_WEXT_CORE
1053	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054		err = dev_ioctl(net, cmd, argp);
1055	} else
1056#endif
1057		switch (cmd) {
1058		case FIOSETOWN:
1059		case SIOCSPGRP:
1060			err = -EFAULT;
1061			if (get_user(pid, (int __user *)argp))
1062				break;
1063			err = f_setown(sock->file, pid, 1);
1064			break;
1065		case FIOGETOWN:
1066		case SIOCGPGRP:
1067			err = put_user(f_getown(sock->file),
1068				       (int __user *)argp);
1069			break;
1070		case SIOCGIFBR:
1071		case SIOCSIFBR:
1072		case SIOCBRADDBR:
1073		case SIOCBRDELBR:
1074			err = -ENOPKG;
1075			if (!br_ioctl_hook)
1076				request_module("bridge");
1077
1078			mutex_lock(&br_ioctl_mutex);
1079			if (br_ioctl_hook)
1080				err = br_ioctl_hook(net, cmd, argp);
1081			mutex_unlock(&br_ioctl_mutex);
1082			break;
1083		case SIOCGIFVLAN:
1084		case SIOCSIFVLAN:
1085			err = -ENOPKG;
1086			if (!vlan_ioctl_hook)
1087				request_module("8021q");
1088
1089			mutex_lock(&vlan_ioctl_mutex);
1090			if (vlan_ioctl_hook)
1091				err = vlan_ioctl_hook(net, argp);
1092			mutex_unlock(&vlan_ioctl_mutex);
1093			break;
1094		case SIOCADDDLCI:
1095		case SIOCDELDLCI:
1096			err = -ENOPKG;
1097			if (!dlci_ioctl_hook)
1098				request_module("dlci");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
1100			mutex_lock(&dlci_ioctl_mutex);
1101			if (dlci_ioctl_hook)
1102				err = dlci_ioctl_hook(cmd, argp);
1103			mutex_unlock(&dlci_ioctl_mutex);
1104			break;
 
1105		default:
1106			err = sock_do_ioctl(net, sock, cmd, arg);
1107			break;
1108		}
1109	return err;
1110}
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114	int err;
1115	struct socket *sock = NULL;
1116
1117	err = security_socket_create(family, type, protocol, 1);
1118	if (err)
1119		goto out;
1120
1121	sock = sock_alloc();
1122	if (!sock) {
1123		err = -ENOMEM;
1124		goto out;
1125	}
1126
1127	sock->type = type;
1128	err = security_socket_post_create(sock, family, type, protocol, 1);
1129	if (err)
1130		goto out_release;
1131
1132out:
1133	*res = sock;
1134	return err;
1135out_release:
1136	sock_release(sock);
1137	sock = NULL;
1138	goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145	unsigned int busy_flag = 0;
1146	struct socket *sock;
 
1147
1148	/*
1149	 *      We can't return errors to poll, so it's either yes or no.
1150	 */
1151	sock = file->private_data;
1152
1153	if (sk_can_busy_loop(sock->sk)) {
1154		/* this socket can poll_ll so tell the system call */
1155		busy_flag = POLL_BUSY_LOOP;
 
1156
1157		/* once, only if requested by syscall */
1158		if (wait && (wait->_key & POLL_BUSY_LOOP))
1159			sk_busy_loop(sock->sk, 1);
1160	}
1161
1162	return busy_flag | sock->ops->poll(file, sock, wait);
1163}
1164
1165static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166{
1167	struct socket *sock = file->private_data;
1168
1169	return sock->ops->mmap(file, sock, vma);
1170}
1171
1172static int sock_close(struct inode *inode, struct file *filp)
1173{
1174	sock_release(SOCKET_I(inode));
1175	return 0;
1176}
1177
1178/*
1179 *	Update the socket async list
1180 *
1181 *	Fasync_list locking strategy.
1182 *
1183 *	1. fasync_list is modified only under process context socket lock
1184 *	   i.e. under semaphore.
1185 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 *	   or under socket lock
1187 */
1188
1189static int sock_fasync(int fd, struct file *filp, int on)
1190{
1191	struct socket *sock = filp->private_data;
1192	struct sock *sk = sock->sk;
1193	struct socket_wq *wq;
1194
1195	if (sk == NULL)
1196		return -EINVAL;
1197
1198	lock_sock(sk);
1199	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200	fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202	if (!wq->fasync_list)
1203		sock_reset_flag(sk, SOCK_FASYNC);
1204	else
1205		sock_set_flag(sk, SOCK_FASYNC);
1206
1207	release_sock(sk);
1208	return 0;
1209}
1210
1211/* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213int sock_wake_async(struct socket *sock, int how, int band)
1214{
1215	struct socket_wq *wq;
 
1216
1217	if (!sock)
1218		return -1;
1219	rcu_read_lock();
1220	wq = rcu_dereference(sock->wq);
1221	if (!wq || !wq->fasync_list) {
1222		rcu_read_unlock();
1223		return -1;
1224	}
1225	switch (how) {
1226	case SOCK_WAKE_WAITD:
1227		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228			break;
1229		goto call_kill;
1230	case SOCK_WAKE_SPACE:
1231		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232			break;
1233		/* fall through */
1234	case SOCK_WAKE_IO:
1235call_kill:
1236		kill_fasync(&wq->fasync_list, SIGIO, band);
1237		break;
1238	case SOCK_WAKE_URG:
1239		kill_fasync(&wq->fasync_list, SIGURG, band);
1240	}
1241	rcu_read_unlock();
1242	return 0;
1243}
1244EXPORT_SYMBOL(sock_wake_async);
1245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246int __sock_create(struct net *net, int family, int type, int protocol,
1247			 struct socket **res, int kern)
1248{
1249	int err;
1250	struct socket *sock;
1251	const struct net_proto_family *pf;
1252
1253	/*
1254	 *      Check protocol is in range
1255	 */
1256	if (family < 0 || family >= NPROTO)
1257		return -EAFNOSUPPORT;
1258	if (type < 0 || type >= SOCK_MAX)
1259		return -EINVAL;
1260
1261	/* Compatibility.
1262
1263	   This uglymoron is moved from INET layer to here to avoid
1264	   deadlock in module load.
1265	 */
1266	if (family == PF_INET && type == SOCK_PACKET) {
1267		static int warned;
1268		if (!warned) {
1269			warned = 1;
1270			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271				current->comm);
1272		}
1273		family = PF_PACKET;
1274	}
1275
1276	err = security_socket_create(family, type, protocol, kern);
1277	if (err)
1278		return err;
1279
1280	/*
1281	 *	Allocate the socket and allow the family to set things up. if
1282	 *	the protocol is 0, the family is instructed to select an appropriate
1283	 *	default.
1284	 */
1285	sock = sock_alloc();
1286	if (!sock) {
1287		net_warn_ratelimited("socket: no more sockets\n");
1288		return -ENFILE;	/* Not exactly a match, but its the
1289				   closest posix thing */
1290	}
1291
1292	sock->type = type;
1293
1294#ifdef CONFIG_MODULES
1295	/* Attempt to load a protocol module if the find failed.
1296	 *
1297	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298	 * requested real, full-featured networking support upon configuration.
1299	 * Otherwise module support will break!
1300	 */
1301	if (rcu_access_pointer(net_families[family]) == NULL)
1302		request_module("net-pf-%d", family);
1303#endif
1304
1305	rcu_read_lock();
1306	pf = rcu_dereference(net_families[family]);
1307	err = -EAFNOSUPPORT;
1308	if (!pf)
1309		goto out_release;
1310
1311	/*
1312	 * We will call the ->create function, that possibly is in a loadable
1313	 * module, so we have to bump that loadable module refcnt first.
1314	 */
1315	if (!try_module_get(pf->owner))
1316		goto out_release;
1317
1318	/* Now protected by module ref count */
1319	rcu_read_unlock();
1320
1321	err = pf->create(net, sock, protocol, kern);
1322	if (err < 0)
 
 
 
 
 
 
1323		goto out_module_put;
 
1324
1325	/*
1326	 * Now to bump the refcnt of the [loadable] module that owns this
1327	 * socket at sock_release time we decrement its refcnt.
1328	 */
1329	if (!try_module_get(sock->ops->owner))
1330		goto out_module_busy;
1331
1332	/*
1333	 * Now that we're done with the ->create function, the [loadable]
1334	 * module can have its refcnt decremented
1335	 */
1336	module_put(pf->owner);
1337	err = security_socket_post_create(sock, family, type, protocol, kern);
1338	if (err)
1339		goto out_sock_release;
1340	*res = sock;
1341
1342	return 0;
1343
1344out_module_busy:
1345	err = -EAFNOSUPPORT;
1346out_module_put:
1347	sock->ops = NULL;
1348	module_put(pf->owner);
1349out_sock_release:
1350	sock_release(sock);
1351	return err;
1352
1353out_release:
1354	rcu_read_unlock();
1355	goto out_sock_release;
1356}
1357EXPORT_SYMBOL(__sock_create);
1358
 
 
 
 
 
 
 
 
 
 
 
1359int sock_create(int family, int type, int protocol, struct socket **res)
1360{
1361	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362}
1363EXPORT_SYMBOL(sock_create);
1364
1365int sock_create_kern(int family, int type, int protocol, struct socket **res)
 
 
 
 
 
 
 
 
 
 
 
 
1366{
1367	return __sock_create(&init_net, family, type, protocol, res, 1);
1368}
1369EXPORT_SYMBOL(sock_create_kern);
1370
1371SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372{
 
1373	int retval;
1374	struct socket *sock;
1375	int flags;
1376
1377	/* Check the SOCK_* constants for consistency.  */
1378	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383	flags = type & ~SOCK_TYPE_MASK;
1384	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385		return -EINVAL;
1386	type &= SOCK_TYPE_MASK;
1387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391	retval = sock_create(family, type, protocol, &sock);
1392	if (retval < 0)
1393		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
1395	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396	if (retval < 0)
1397		goto out_release;
1398
1399out:
1400	/* It may be already another descriptor 8) Not kernel problem. */
1401	return retval;
1402
1403out_release:
1404	sock_release(sock);
1405	return retval;
1406}
1407
1408/*
1409 *	Create a pair of connected sockets.
1410 */
1411
1412SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413		int __user *, usockvec)
1414{
1415	struct socket *sock1, *sock2;
1416	int fd1, fd2, err;
1417	struct file *newfile1, *newfile2;
1418	int flags;
1419
1420	flags = type & ~SOCK_TYPE_MASK;
1421	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422		return -EINVAL;
1423	type &= SOCK_TYPE_MASK;
1424
1425	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429	 * Obtain the first socket and check if the underlying protocol
1430	 * supports the socketpair call.
1431	 */
1432
1433	err = sock_create(family, type, protocol, &sock1);
1434	if (err < 0)
1435		goto out;
1436
1437	err = sock_create(family, type, protocol, &sock2);
1438	if (err < 0)
1439		goto out_release_1;
 
 
1440
1441	err = sock1->ops->socketpair(sock1, sock2);
1442	if (err < 0)
1443		goto out_release_both;
1444
1445	fd1 = get_unused_fd_flags(flags);
1446	if (unlikely(fd1 < 0)) {
1447		err = fd1;
1448		goto out_release_both;
1449	}
1450
1451	fd2 = get_unused_fd_flags(flags);
1452	if (unlikely(fd2 < 0)) {
1453		err = fd2;
1454		goto out_put_unused_1;
 
1455	}
1456
1457	newfile1 = sock_alloc_file(sock1, flags, NULL);
1458	if (unlikely(IS_ERR(newfile1))) {
1459		err = PTR_ERR(newfile1);
1460		goto out_put_unused_both;
 
1461	}
1462
1463	newfile2 = sock_alloc_file(sock2, flags, NULL);
1464	if (IS_ERR(newfile2)) {
1465		err = PTR_ERR(newfile2);
1466		goto out_fput_1;
 
1467	}
1468
1469	err = put_user(fd1, &usockvec[0]);
1470	if (err)
1471		goto out_fput_both;
1472
1473	err = put_user(fd2, &usockvec[1]);
1474	if (err)
1475		goto out_fput_both;
1476
1477	audit_fd_pair(fd1, fd2);
1478
1479	fd_install(fd1, newfile1);
1480	fd_install(fd2, newfile2);
1481	/* fd1 and fd2 may be already another descriptors.
1482	 * Not kernel problem.
1483	 */
1484
1485	return 0;
1486
1487out_fput_both:
1488	fput(newfile2);
1489	fput(newfile1);
1490	put_unused_fd(fd2);
1491	put_unused_fd(fd1);
1492	goto out;
 
 
 
 
 
 
 
1493
1494out_fput_1:
1495	fput(newfile1);
1496	put_unused_fd(fd2);
1497	put_unused_fd(fd1);
1498	sock_release(sock2);
1499	goto out;
1500
1501out_put_unused_both:
1502	put_unused_fd(fd2);
1503out_put_unused_1:
1504	put_unused_fd(fd1);
1505out_release_both:
1506	sock_release(sock2);
1507out_release_1:
1508	sock_release(sock1);
1509out:
1510	return err;
1511}
1512
1513/*
1514 *	Bind a name to a socket. Nothing much to do here since it's
1515 *	the protocol's responsibility to handle the local address.
1516 *
1517 *	We move the socket address to kernel space before we call
1518 *	the protocol layer (having also checked the address is ok).
1519 */
1520
1521SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522{
1523	struct socket *sock;
1524	struct sockaddr_storage address;
1525	int err, fput_needed;
 
 
 
 
 
 
 
1526
1527	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528	if (sock) {
1529		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530		if (err >= 0) {
1531			err = security_socket_bind(sock,
1532						   (struct sockaddr *)&address,
1533						   addrlen);
1534			if (!err)
1535				err = sock->ops->bind(sock,
1536						      (struct sockaddr *)
1537						      &address, addrlen);
1538		}
1539		fput_light(sock->file, fput_needed);
1540	}
1541	return err;
1542}
1543
1544/*
1545 *	Perform a listen. Basically, we allow the protocol to do anything
1546 *	necessary for a listen, and if that works, we mark the socket as
1547 *	ready for listening.
1548 */
 
 
 
 
 
 
 
1549
1550SYSCALL_DEFINE2(listen, int, fd, int, backlog)
 
 
 
 
 
 
1551{
 
1552	struct socket *sock;
1553	int err, fput_needed;
1554	int somaxconn;
1555
1556	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557	if (sock) {
1558		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559		if ((unsigned int)backlog > somaxconn)
1560			backlog = somaxconn;
1561
1562		err = security_socket_listen(sock, backlog);
1563		if (!err)
1564			err = sock->ops->listen(sock, backlog);
1565
1566		fput_light(sock->file, fput_needed);
1567	}
1568	return err;
1569}
1570
1571/*
1572 *	For accept, we attempt to create a new socket, set up the link
1573 *	with the client, wake up the client, then return the new
1574 *	connected fd. We collect the address of the connector in kernel
1575 *	space and move it to user at the very end. This is unclean because
1576 *	we open the socket then return an error.
1577 *
1578 *	1003.1g adds the ability to recvmsg() to query connection pending
1579 *	status to recvmsg. We need to add that support in a way thats
1580 *	clean when we restucture accept also.
1581 */
1582
1583SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584		int __user *, upeer_addrlen, int, flags)
 
1585{
1586	struct socket *sock, *newsock;
1587	struct file *newfile;
1588	int err, len, newfd, fput_needed;
1589	struct sockaddr_storage address;
 
1590
1591	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592		return -EINVAL;
1593
1594	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598	if (!sock)
1599		goto out;
1600
1601	err = -ENFILE;
1602	newsock = sock_alloc();
1603	if (!newsock)
1604		goto out_put;
 
1605
1606	newsock->type = sock->type;
1607	newsock->ops = sock->ops;
1608
1609	/*
1610	 * We don't need try_module_get here, as the listening socket (sock)
1611	 * has the protocol module (sock->ops->owner) held.
1612	 */
1613	__module_get(newsock->ops->owner);
1614
1615	newfd = get_unused_fd_flags(flags);
1616	if (unlikely(newfd < 0)) {
1617		err = newfd;
1618		sock_release(newsock);
1619		goto out_put;
1620	}
1621	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622	if (unlikely(IS_ERR(newfile))) {
1623		err = PTR_ERR(newfile);
1624		put_unused_fd(newfd);
1625		sock_release(newsock);
1626		goto out_put;
1627	}
1628
1629	err = security_socket_accept(sock, newsock);
1630	if (err)
1631		goto out_fd;
1632
1633	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1634	if (err < 0)
1635		goto out_fd;
1636
1637	if (upeer_sockaddr) {
1638		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639					  &len, 2) < 0) {
1640			err = -ECONNABORTED;
1641			goto out_fd;
1642		}
1643		err = move_addr_to_user(&address,
1644					len, upeer_sockaddr, upeer_addrlen);
1645		if (err < 0)
1646			goto out_fd;
1647	}
1648
1649	/* File flags are not inherited via accept() unlike another OSes. */
 
 
 
 
 
 
 
 
 
 
 
 
1650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651	fd_install(newfd, newfile);
1652	err = newfd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653
1654out_put:
1655	fput_light(sock->file, fput_needed);
1656out:
1657	return err;
1658out_fd:
1659	fput(newfile);
1660	put_unused_fd(newfd);
1661	goto out_put;
1662}
1663
1664SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665		int __user *, upeer_addrlen)
1666{
1667	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668}
1669
1670/*
1671 *	Attempt to connect to a socket with the server address.  The address
1672 *	is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 *	break bindings
1676 *
1677 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 *	other SEQPACKET protocols that take time to connect() as it doesn't
1679 *	include the -EINPROGRESS status for such sockets.
1680 */
1681
1682SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683		int, addrlen)
1684{
1685	struct socket *sock;
1686	struct sockaddr_storage address;
1687	int err, fput_needed;
1688
1689	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690	if (!sock)
 
1691		goto out;
1692	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693	if (err < 0)
1694		goto out_put;
1695
1696	err =
1697	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698	if (err)
1699		goto out_put;
1700
1701	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702				 sock->file->f_flags);
1703out_put:
1704	fput_light(sock->file, fput_needed);
1705out:
1706	return err;
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709/*
1710 *	Get the local address ('name') of a socket object. Move the obtained
1711 *	name to user space.
1712 */
1713
1714SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715		int __user *, usockaddr_len)
1716{
1717	struct socket *sock;
1718	struct sockaddr_storage address;
1719	int len, err, fput_needed;
 
1720
1721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722	if (!sock)
1723		goto out;
 
 
1724
1725	err = security_socket_getsockname(sock);
1726	if (err)
1727		goto out_put;
 
 
 
 
1728
1729	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730	if (err)
1731		goto out_put;
1732	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734out_put:
1735	fput_light(sock->file, fput_needed);
1736out:
1737	return err;
1738}
1739
1740/*
1741 *	Get the remote address ('name') of a socket object. Move the obtained
1742 *	name to user space.
1743 */
1744
1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746		int __user *, usockaddr_len)
1747{
1748	struct socket *sock;
1749	struct sockaddr_storage address;
1750	int len, err, fput_needed;
 
1751
1752	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753	if (sock != NULL) {
1754		err = security_socket_getpeername(sock);
1755		if (err) {
1756			fput_light(sock->file, fput_needed);
1757			return err;
1758		}
 
 
 
 
 
 
 
 
 
 
1759
1760		err =
1761		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762				       1);
1763		if (!err)
1764			err = move_addr_to_user(&address, len, usockaddr,
1765						usockaddr_len);
1766		fput_light(sock->file, fput_needed);
1767	}
1768	return err;
1769}
1770
1771/*
1772 *	Send a datagram to a given address. We move the address into kernel
1773 *	space and check the user space data area is readable before invoking
1774 *	the protocol.
1775 */
1776
1777SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778		unsigned int, flags, struct sockaddr __user *, addr,
1779		int, addr_len)
1780{
1781	struct socket *sock;
1782	struct sockaddr_storage address;
1783	int err;
1784	struct msghdr msg;
1785	struct iovec iov;
1786	int fput_needed;
1787
1788	if (len > INT_MAX)
1789		len = INT_MAX;
1790	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791	if (!sock)
1792		goto out;
 
 
 
 
 
1793
1794	iov.iov_base = buff;
1795	iov.iov_len = len;
1796	msg.msg_name = NULL;
1797	msg.msg_iov = &iov;
1798	msg.msg_iovlen = 1;
1799	msg.msg_control = NULL;
1800	msg.msg_controllen = 0;
1801	msg.msg_namelen = 0;
 
1802	if (addr) {
1803		err = move_addr_to_kernel(addr, addr_len, &address);
1804		if (err < 0)
1805			goto out_put;
1806		msg.msg_name = (struct sockaddr *)&address;
1807		msg.msg_namelen = addr_len;
1808	}
 
1809	if (sock->file->f_flags & O_NONBLOCK)
1810		flags |= MSG_DONTWAIT;
1811	msg.msg_flags = flags;
1812	err = sock_sendmsg(sock, &msg, len);
 
1813
1814out_put:
1815	fput_light(sock->file, fput_needed);
1816out:
1817	return err;
 
1818}
1819
1820/*
1821 *	Send a datagram down a socket.
1822 */
1823
1824SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825		unsigned int, flags)
1826{
1827	return sys_sendto(fd, buff, len, flags, NULL, 0);
1828}
1829
1830/*
1831 *	Receive a frame from the socket and optionally record the address of the
1832 *	sender. We verify the buffers are writable and if needed move the
1833 *	sender address from kernel to user space.
1834 */
1835
1836SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837		unsigned int, flags, struct sockaddr __user *, addr,
1838		int __user *, addr_len)
1839{
 
 
 
 
 
1840	struct socket *sock;
1841	struct iovec iov;
1842	struct msghdr msg;
1843	struct sockaddr_storage address;
1844	int err, err2;
1845	int fput_needed;
1846
1847	if (size > INT_MAX)
1848		size = INT_MAX;
1849	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850	if (!sock)
1851		goto out;
 
 
 
 
 
 
1852
1853	msg.msg_control = NULL;
1854	msg.msg_controllen = 0;
1855	msg.msg_iovlen = 1;
1856	msg.msg_iov = &iov;
1857	iov.iov_len = size;
1858	iov.iov_base = ubuf;
1859	/* Save some cycles and don't copy the address if not needed */
1860	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861	/* We assume all kernel code knows the size of sockaddr_storage */
1862	msg.msg_namelen = 0;
1863	if (sock->file->f_flags & O_NONBLOCK)
1864		flags |= MSG_DONTWAIT;
1865	err = sock_recvmsg(sock, &msg, size, flags);
1866
1867	if (err >= 0 && addr != NULL) {
1868		err2 = move_addr_to_user(&address,
1869					 msg.msg_namelen, addr, addr_len);
1870		if (err2 < 0)
1871			err = err2;
1872	}
 
 
1873
1874	fput_light(sock->file, fput_needed);
1875out:
1876	return err;
 
 
1877}
1878
1879/*
1880 *	Receive a datagram from a socket.
1881 */
1882
1883SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884		unsigned int, flags)
1885{
1886	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887}
1888
1889/*
1890 *	Set a socket option. Because we don't know the option lengths we have
1891 *	to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895		char __user *, optval, int, optlen)
1896{
1897	int err, fput_needed;
1898	struct socket *sock;
 
1899
1900	if (optlen < 0)
1901		return -EINVAL;
1902
1903	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904	if (sock != NULL) {
1905		err = security_socket_setsockopt(sock, level, optname);
1906		if (err)
1907			goto out_put;
 
 
 
 
 
 
 
 
 
1908
1909		if (level == SOL_SOCKET)
1910			err =
1911			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
 
1912					    optlen);
1913		else
1914			err =
1915			    sock->ops->setsockopt(sock, level, optname, optval,
1916						  optlen);
1917out_put:
1918		fput_light(sock->file, fput_needed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919	}
 
 
 
 
 
 
1920	return err;
1921}
 
1922
1923/*
1924 *	Get a socket option. Because we don't know the option lengths we have
1925 *	to pass a user mode parameter for the protocols to sort out.
1926 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927
1928SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929		char __user *, optval, int __user *, optlen)
1930{
1931	int err, fput_needed;
1932	struct socket *sock;
1933
1934	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935	if (sock != NULL) {
1936		err = security_socket_getsockopt(sock, level, optname);
1937		if (err)
1938			goto out_put;
1939
1940		if (level == SOL_SOCKET)
1941			err =
1942			    sock_getsockopt(sock, level, optname, optval,
1943					    optlen);
1944		else
1945			err =
1946			    sock->ops->getsockopt(sock, level, optname, optval,
1947						  optlen);
1948out_put:
1949		fput_light(sock->file, fput_needed);
1950	}
1951	return err;
1952}
1953
1954/*
1955 *	Shutdown a socket.
1956 */
1957
1958SYSCALL_DEFINE2(shutdown, int, fd, int, how)
 
 
 
 
 
 
 
 
 
 
 
1959{
1960	int err, fput_needed;
1961	struct socket *sock;
 
1962
1963	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964	if (sock != NULL) {
1965		err = security_socket_shutdown(sock, how);
1966		if (!err)
1967			err = sock->ops->shutdown(sock, how);
1968		fput_light(sock->file, fput_needed);
1969	}
1970	return err;
 
 
 
 
1971}
1972
1973/* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1978#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1979
1980struct used_address {
1981	struct sockaddr_storage name;
1982	unsigned int name_len;
1983};
1984
1985static int copy_msghdr_from_user(struct msghdr *kmsg,
1986				 struct msghdr __user *umsg)
1987{
1988	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
1990
1991	if (kmsg->msg_namelen < 0)
1992		return -EINVAL;
1993
1994	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1996	return 0;
1997}
1998
1999static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000			 struct msghdr *msg_sys, unsigned int flags,
2001			 struct used_address *used_address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002{
2003	struct compat_msghdr __user *msg_compat =
2004	    (struct compat_msghdr __user *)msg;
2005	struct sockaddr_storage address;
2006	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009	/* 20 is size of ipv6_pktinfo */
2010	unsigned char *ctl_buf = ctl;
2011	int err, ctl_len, total_len;
2012
2013	err = -EFAULT;
2014	if (MSG_CMSG_COMPAT & flags) {
2015		if (get_compat_msghdr(msg_sys, msg_compat))
2016			return -EFAULT;
2017	} else {
2018		err = copy_msghdr_from_user(msg_sys, msg);
2019		if (err)
2020			return err;
2021	}
2022
2023	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024		err = -EMSGSIZE;
2025		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026			goto out;
2027		err = -ENOMEM;
2028		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029			      GFP_KERNEL);
2030		if (!iov)
2031			goto out;
2032	}
2033
2034	/* This will also move the address data into kernel space */
2035	if (MSG_CMSG_COMPAT & flags) {
2036		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037	} else
2038		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039	if (err < 0)
2040		goto out_freeiov;
2041	total_len = err;
2042
2043	err = -ENOBUFS;
2044
2045	if (msg_sys->msg_controllen > INT_MAX)
2046		goto out_freeiov;
 
2047	ctl_len = msg_sys->msg_controllen;
2048	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049		err =
2050		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051						     sizeof(ctl));
2052		if (err)
2053			goto out_freeiov;
2054		ctl_buf = msg_sys->msg_control;
2055		ctl_len = msg_sys->msg_controllen;
2056	} else if (ctl_len) {
 
 
2057		if (ctl_len > sizeof(ctl)) {
2058			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059			if (ctl_buf == NULL)
2060				goto out_freeiov;
2061		}
2062		err = -EFAULT;
2063		/*
2064		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066		 * checking falls down on this.
2067		 */
2068		if (copy_from_user(ctl_buf,
2069				   (void __user __force *)msg_sys->msg_control,
2070				   ctl_len))
2071			goto out_freectl;
2072		msg_sys->msg_control = ctl_buf;
 
2073	}
 
2074	msg_sys->msg_flags = flags;
2075
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		msg_sys->msg_flags |= MSG_DONTWAIT;
2078	/*
2079	 * If this is sendmmsg() and current destination address is same as
2080	 * previously succeeded address, omit asking LSM's decision.
2081	 * used_address->name_len is initialized to UINT_MAX so that the first
2082	 * destination address never matches.
2083	 */
2084	if (used_address && msg_sys->msg_name &&
2085	    used_address->name_len == msg_sys->msg_namelen &&
2086	    !memcmp(&used_address->name, msg_sys->msg_name,
2087		    used_address->name_len)) {
2088		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089		goto out_freectl;
2090	}
2091	err = sock_sendmsg(sock, msg_sys, total_len);
2092	/*
2093	 * If this is sendmmsg() and sending to current destination address was
2094	 * successful, remember it.
2095	 */
2096	if (used_address && err >= 0) {
2097		used_address->name_len = msg_sys->msg_namelen;
2098		if (msg_sys->msg_name)
2099			memcpy(&used_address->name, msg_sys->msg_name,
2100			       used_address->name_len);
2101	}
2102
2103out_freectl:
2104	if (ctl_buf != ctl)
2105		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106out_freeiov:
2107	if (iov != iovstack)
2108		kfree(iov);
2109out:
2110	return err;
2111}
2112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113/*
2114 *	BSD sendmsg interface
2115 */
 
 
 
 
 
2116
2117long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
 
2118{
2119	int fput_needed, err;
2120	struct msghdr msg_sys;
2121	struct socket *sock;
2122
2123	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124	if (!sock)
2125		goto out;
 
2126
2127	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
 
 
 
 
2128
2129	fput_light(sock->file, fput_needed);
2130out:
2131	return err;
2132}
2133
2134SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135{
2136	if (flags & MSG_CMSG_COMPAT)
2137		return -EINVAL;
2138	return __sys_sendmsg(fd, msg, flags);
2139}
2140
2141/*
2142 *	Linux sendmmsg interface
2143 */
2144
2145int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146		   unsigned int flags)
2147{
2148	int fput_needed, err, datagrams;
2149	struct socket *sock;
2150	struct mmsghdr __user *entry;
2151	struct compat_mmsghdr __user *compat_entry;
2152	struct msghdr msg_sys;
2153	struct used_address used_address;
 
 
 
 
2154
2155	if (vlen > UIO_MAXIOV)
2156		vlen = UIO_MAXIOV;
2157
2158	datagrams = 0;
2159
2160	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161	if (!sock)
2162		return err;
 
 
 
 
2163
2164	used_address.name_len = UINT_MAX;
2165	entry = mmsg;
2166	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167	err = 0;
 
2168
2169	while (datagrams < vlen) {
 
 
 
2170		if (MSG_CMSG_COMPAT & flags) {
2171			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172					     &msg_sys, flags, &used_address);
2173			if (err < 0)
2174				break;
2175			err = __put_user(err, &compat_entry->msg_len);
2176			++compat_entry;
2177		} else {
2178			err = ___sys_sendmsg(sock,
2179					     (struct msghdr __user *)entry,
2180					     &msg_sys, flags, &used_address);
2181			if (err < 0)
2182				break;
2183			err = put_user(err, &entry->msg_len);
2184			++entry;
2185		}
2186
2187		if (err)
2188			break;
2189		++datagrams;
 
 
 
2190	}
2191
2192	fput_light(sock->file, fput_needed);
2193
2194	/* We only return an error if no datagrams were able to be sent */
2195	if (datagrams != 0)
2196		return datagrams;
2197
2198	return err;
2199}
2200
2201SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202		unsigned int, vlen, unsigned int, flags)
2203{
2204	if (flags & MSG_CMSG_COMPAT)
2205		return -EINVAL;
2206	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207}
2208
2209static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2211{
2212	struct compat_msghdr __user *msg_compat =
2213	    (struct compat_msghdr __user *)msg;
2214	struct iovec iovstack[UIO_FASTIOV];
2215	struct iovec *iov = iovstack;
2216	unsigned long cmsg_ptr;
2217	int err, total_len, len;
2218
2219	/* kernel mode address */
2220	struct sockaddr_storage addr;
2221
2222	/* user mode address pointers */
2223	struct sockaddr __user *uaddr;
2224	int __user *uaddr_len;
2225
2226	if (MSG_CMSG_COMPAT & flags) {
2227		if (get_compat_msghdr(msg_sys, msg_compat))
2228			return -EFAULT;
2229	} else {
2230		err = copy_msghdr_from_user(msg_sys, msg);
2231		if (err)
2232			return err;
2233	}
 
 
2234
2235	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236		err = -EMSGSIZE;
2237		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238			goto out;
2239		err = -ENOMEM;
2240		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241			      GFP_KERNEL);
2242		if (!iov)
2243			goto out;
2244	}
2245
2246	/* Save the user-mode address (verify_iovec will change the
2247	 * kernel msghdr to use the kernel address space)
2248	 */
2249	uaddr = (__force void __user *)msg_sys->msg_name;
2250	uaddr_len = COMPAT_NAMELEN(msg);
2251	if (MSG_CMSG_COMPAT & flags)
2252		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253	else
2254		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255	if (err < 0)
2256		goto out_freeiov;
2257	total_len = err;
2258
 
2259	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262	/* We assume all kernel code knows the size of sockaddr_storage */
2263	msg_sys->msg_namelen = 0;
2264
2265	if (sock->file->f_flags & O_NONBLOCK)
2266		flags |= MSG_DONTWAIT;
2267	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268							  total_len, flags);
 
 
 
 
2269	if (err < 0)
2270		goto out_freeiov;
2271	len = err;
2272
2273	if (uaddr != NULL) {
2274		err = move_addr_to_user(&addr,
2275					msg_sys->msg_namelen, uaddr,
2276					uaddr_len);
2277		if (err < 0)
2278			goto out_freeiov;
2279	}
2280	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281			 COMPAT_FLAGS(msg));
2282	if (err)
2283		goto out_freeiov;
2284	if (MSG_CMSG_COMPAT & flags)
2285		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286				 &msg_compat->msg_controllen);
2287	else
2288		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289				 &msg->msg_controllen);
2290	if (err)
2291		goto out_freeiov;
2292	err = len;
 
 
 
2293
2294out_freeiov:
2295	if (iov != iovstack)
2296		kfree(iov);
2297out:
 
 
 
 
 
 
 
 
 
 
2298	return err;
2299}
2300
2301/*
2302 *	BSD recvmsg interface
2303 */
2304
2305long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
2306{
2307	int fput_needed, err;
2308	struct msghdr msg_sys;
2309	struct socket *sock;
2310
2311	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312	if (!sock)
2313		goto out;
 
2314
2315	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
 
 
 
 
2316
2317	fput_light(sock->file, fput_needed);
2318out:
2319	return err;
2320}
2321
2322SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323		unsigned int, flags)
2324{
2325	if (flags & MSG_CMSG_COMPAT)
2326		return -EINVAL;
2327	return __sys_recvmsg(fd, msg, flags);
2328}
2329
2330/*
2331 *     Linux recvmmsg interface
2332 */
2333
2334int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335		   unsigned int flags, struct timespec *timeout)
 
2336{
2337	int fput_needed, err, datagrams;
2338	struct socket *sock;
2339	struct mmsghdr __user *entry;
2340	struct compat_mmsghdr __user *compat_entry;
2341	struct msghdr msg_sys;
2342	struct timespec end_time;
 
2343
2344	if (timeout &&
2345	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2346				    timeout->tv_nsec))
2347		return -EINVAL;
2348
2349	datagrams = 0;
2350
2351	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352	if (!sock)
2353		return err;
 
 
 
 
2354
2355	err = sock_error(sock->sk);
2356	if (err)
2357		goto out_put;
 
 
2358
2359	entry = mmsg;
2360	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362	while (datagrams < vlen) {
2363		/*
2364		 * No need to ask LSM for more than the first datagram.
2365		 */
2366		if (MSG_CMSG_COMPAT & flags) {
2367			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368					     &msg_sys, flags & ~MSG_WAITFORONE,
2369					     datagrams);
2370			if (err < 0)
2371				break;
2372			err = __put_user(err, &compat_entry->msg_len);
2373			++compat_entry;
2374		} else {
2375			err = ___sys_recvmsg(sock,
2376					     (struct msghdr __user *)entry,
2377					     &msg_sys, flags & ~MSG_WAITFORONE,
2378					     datagrams);
2379			if (err < 0)
2380				break;
2381			err = put_user(err, &entry->msg_len);
2382			++entry;
2383		}
2384
2385		if (err)
2386			break;
2387		++datagrams;
2388
2389		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390		if (flags & MSG_WAITFORONE)
2391			flags |= MSG_DONTWAIT;
2392
2393		if (timeout) {
2394			ktime_get_ts(timeout);
2395			*timeout = timespec_sub(end_time, *timeout);
2396			if (timeout->tv_sec < 0) {
2397				timeout->tv_sec = timeout->tv_nsec = 0;
2398				break;
2399			}
2400
2401			/* Timeout, return less than vlen datagrams */
2402			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403				break;
2404		}
2405
2406		/* Out of band data, return right away */
2407		if (msg_sys.msg_flags & MSG_OOB)
2408			break;
 
2409	}
2410
2411out_put:
2412	fput_light(sock->file, fput_needed);
2413
2414	if (err == 0)
2415		return datagrams;
2416
2417	if (datagrams != 0) {
 
 
 
 
 
 
 
2418		/*
2419		 * We may return less entries than requested (vlen) if the
2420		 * sock is non block and there aren't enough datagrams...
 
 
2421		 */
2422		if (err != -EAGAIN) {
2423			/*
2424			 * ... or  if recvmsg returns an error after we
2425			 * received some datagrams, where we record the
2426			 * error to return on the next call or if the
2427			 * app asks about it using getsockopt(SO_ERROR).
2428			 */
2429			sock->sk->sk_err = -err;
2430		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
 
2432		return datagrams;
2433	}
2434
2435	return err;
 
 
 
 
 
 
2436}
2437
2438SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439		unsigned int, vlen, unsigned int, flags,
2440		struct timespec __user *, timeout)
2441{
2442	int datagrams;
2443	struct timespec timeout_sys;
2444
2445	if (flags & MSG_CMSG_COMPAT)
2446		return -EINVAL;
2447
2448	if (!timeout)
2449		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452		return -EFAULT;
 
 
 
 
 
2453
2454	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456	if (datagrams > 0 &&
2457	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458		datagrams = -EFAULT;
2459
2460	return datagrams;
2461}
 
2462
2463#ifdef __ARCH_WANT_SYS_SOCKETCALL
2464/* Argument list sizes for sys_socketcall */
2465#define AL(x) ((x) * sizeof(unsigned long))
2466static const unsigned char nargs[21] = {
2467	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470	AL(4), AL(5), AL(4)
2471};
2472
2473#undef AL
2474
2475/*
2476 *	System call vectors.
2477 *
2478 *	Argument checking cleaned up. Saved 20% in size.
2479 *  This function doesn't need to set the kernel lock because
2480 *  it is set by the callees.
2481 */
2482
2483SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484{
2485	unsigned long a[AUDITSC_ARGS];
2486	unsigned long a0, a1;
2487	int err;
2488	unsigned int len;
2489
2490	if (call < 1 || call > SYS_SENDMMSG)
2491		return -EINVAL;
 
2492
2493	len = nargs[call];
2494	if (len > sizeof(a))
2495		return -EINVAL;
2496
2497	/* copy_from_user should be SMP safe. */
2498	if (copy_from_user(a, args, len))
2499		return -EFAULT;
2500
2501	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502	if (err)
2503		return err;
2504
2505	a0 = a[0];
2506	a1 = a[1];
2507
2508	switch (call) {
2509	case SYS_SOCKET:
2510		err = sys_socket(a0, a1, a[2]);
2511		break;
2512	case SYS_BIND:
2513		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514		break;
2515	case SYS_CONNECT:
2516		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517		break;
2518	case SYS_LISTEN:
2519		err = sys_listen(a0, a1);
2520		break;
2521	case SYS_ACCEPT:
2522		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523				  (int __user *)a[2], 0);
2524		break;
2525	case SYS_GETSOCKNAME:
2526		err =
2527		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2528				    (int __user *)a[2]);
2529		break;
2530	case SYS_GETPEERNAME:
2531		err =
2532		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2533				    (int __user *)a[2]);
2534		break;
2535	case SYS_SOCKETPAIR:
2536		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537		break;
2538	case SYS_SEND:
2539		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2540		break;
2541	case SYS_SENDTO:
2542		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543				 (struct sockaddr __user *)a[4], a[5]);
2544		break;
2545	case SYS_RECV:
2546		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2547		break;
2548	case SYS_RECVFROM:
2549		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550				   (struct sockaddr __user *)a[4],
2551				   (int __user *)a[5]);
2552		break;
2553	case SYS_SHUTDOWN:
2554		err = sys_shutdown(a0, a1);
2555		break;
2556	case SYS_SETSOCKOPT:
2557		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2558		break;
2559	case SYS_GETSOCKOPT:
2560		err =
2561		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562				   (int __user *)a[4]);
2563		break;
2564	case SYS_SENDMSG:
2565		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
 
2566		break;
2567	case SYS_SENDMMSG:
2568		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2569		break;
2570	case SYS_RECVMSG:
2571		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
 
2572		break;
2573	case SYS_RECVMMSG:
2574		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2576		break;
2577	case SYS_ACCEPT4:
2578		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579				  (int __user *)a[2], a[3]);
2580		break;
2581	default:
2582		err = -EINVAL;
2583		break;
2584	}
2585	return err;
2586}
2587
2588#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590/**
2591 *	sock_register - add a socket protocol handler
2592 *	@ops: description of protocol
2593 *
2594 *	This function is called by a protocol handler that wants to
2595 *	advertise its address family, and have it linked into the
2596 *	socket interface. The value ops->family coresponds to the
2597 *	socket system call protocol family.
2598 */
2599int sock_register(const struct net_proto_family *ops)
2600{
2601	int err;
2602
2603	if (ops->family >= NPROTO) {
2604		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605		return -ENOBUFS;
2606	}
2607
2608	spin_lock(&net_family_lock);
2609	if (rcu_dereference_protected(net_families[ops->family],
2610				      lockdep_is_held(&net_family_lock)))
2611		err = -EEXIST;
2612	else {
2613		rcu_assign_pointer(net_families[ops->family], ops);
2614		err = 0;
2615	}
2616	spin_unlock(&net_family_lock);
2617
2618	pr_info("NET: Registered protocol family %d\n", ops->family);
2619	return err;
2620}
2621EXPORT_SYMBOL(sock_register);
2622
2623/**
2624 *	sock_unregister - remove a protocol handler
2625 *	@family: protocol family to remove
2626 *
2627 *	This function is called by a protocol handler that wants to
2628 *	remove its address family, and have it unlinked from the
2629 *	new socket creation.
2630 *
2631 *	If protocol handler is a module, then it can use module reference
2632 *	counts to protect against new references. If protocol handler is not
2633 *	a module then it needs to provide its own protection in
2634 *	the ops->create routine.
2635 */
2636void sock_unregister(int family)
2637{
2638	BUG_ON(family < 0 || family >= NPROTO);
2639
2640	spin_lock(&net_family_lock);
2641	RCU_INIT_POINTER(net_families[family], NULL);
2642	spin_unlock(&net_family_lock);
2643
2644	synchronize_rcu();
2645
2646	pr_info("NET: Unregistered protocol family %d\n", family);
2647}
2648EXPORT_SYMBOL(sock_unregister);
2649
 
 
 
 
 
2650static int __init sock_init(void)
2651{
2652	int err;
2653	/*
2654	 *      Initialize the network sysctl infrastructure.
2655	 */
2656	err = net_sysctl_init();
2657	if (err)
2658		goto out;
2659
2660	/*
2661	 *      Initialize skbuff SLAB cache
2662	 */
2663	skb_init();
2664
2665	/*
2666	 *      Initialize the protocols module.
2667	 */
2668
2669	init_inodecache();
2670
2671	err = register_filesystem(&sock_fs_type);
2672	if (err)
2673		goto out_fs;
2674	sock_mnt = kern_mount(&sock_fs_type);
2675	if (IS_ERR(sock_mnt)) {
2676		err = PTR_ERR(sock_mnt);
2677		goto out_mount;
2678	}
2679
2680	/* The real protocol initialization is performed in later initcalls.
2681	 */
2682
2683#ifdef CONFIG_NETFILTER
2684	err = netfilter_init();
2685	if (err)
2686		goto out;
2687#endif
2688
2689	ptp_classifier_init();
2690
2691out:
2692	return err;
2693
2694out_mount:
2695	unregister_filesystem(&sock_fs_type);
2696out_fs:
2697	goto out;
2698}
2699
2700core_initcall(sock_init);	/* early initcall */
2701
2702#ifdef CONFIG_PROC_FS
2703void socket_seq_show(struct seq_file *seq)
2704{
2705	int cpu;
2706	int counter = 0;
2707
2708	for_each_possible_cpu(cpu)
2709	    counter += per_cpu(sockets_in_use, cpu);
2710
2711	/* It can be negative, by the way. 8) */
2712	if (counter < 0)
2713		counter = 0;
2714
2715	seq_printf(seq, "sockets: used %d\n", counter);
2716}
2717#endif				/* CONFIG_PROC_FS */
2718
2719#ifdef CONFIG_COMPAT
2720static int do_siocgstamp(struct net *net, struct socket *sock,
2721			 unsigned int cmd, void __user *up)
 
 
 
 
 
 
 
2722{
2723	mm_segment_t old_fs = get_fs();
2724	struct timeval ktv;
2725	int err;
2726
2727	set_fs(KERNEL_DS);
2728	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729	set_fs(old_fs);
2730	if (!err)
2731		err = compat_put_timeval(&ktv, up);
2732
2733	return err;
2734}
2735
2736static int do_siocgstampns(struct net *net, struct socket *sock,
2737			   unsigned int cmd, void __user *up)
2738{
2739	mm_segment_t old_fs = get_fs();
2740	struct timespec kts;
2741	int err;
2742
2743	set_fs(KERNEL_DS);
2744	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745	set_fs(old_fs);
2746	if (!err)
2747		err = compat_put_timespec(&kts, up);
2748
2749	return err;
2750}
2751
2752static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753{
2754	struct ifreq __user *uifr;
2755	int err;
2756
2757	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759		return -EFAULT;
2760
2761	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762	if (err)
2763		return err;
2764
2765	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766		return -EFAULT;
2767
2768	return 0;
2769}
2770
2771static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772{
2773	struct compat_ifconf ifc32;
2774	struct ifconf ifc;
2775	struct ifconf __user *uifc;
2776	struct compat_ifreq __user *ifr32;
2777	struct ifreq __user *ifr;
2778	unsigned int i, j;
2779	int err;
2780
2781	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782		return -EFAULT;
2783
2784	memset(&ifc, 0, sizeof(ifc));
2785	if (ifc32.ifcbuf == 0) {
2786		ifc32.ifc_len = 0;
2787		ifc.ifc_len = 0;
2788		ifc.ifc_req = NULL;
2789		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790	} else {
2791		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792			sizeof(struct ifreq);
2793		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794		ifc.ifc_len = len;
2795		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796		ifr32 = compat_ptr(ifc32.ifcbuf);
2797		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799				return -EFAULT;
2800			ifr++;
2801			ifr32++;
2802		}
2803	}
2804	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805		return -EFAULT;
2806
2807	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808	if (err)
2809		return err;
2810
2811	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812		return -EFAULT;
2813
2814	ifr = ifc.ifc_req;
2815	ifr32 = compat_ptr(ifc32.ifcbuf);
2816	for (i = 0, j = 0;
2817	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820			return -EFAULT;
2821		ifr32++;
2822		ifr++;
2823	}
2824
2825	if (ifc32.ifcbuf == 0) {
2826		/* Translate from 64-bit structure multiple to
2827		 * a 32-bit one.
2828		 */
2829		i = ifc.ifc_len;
2830		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831		ifc32.ifc_len = i;
2832	} else {
2833		ifc32.ifc_len = i;
2834	}
2835	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836		return -EFAULT;
2837
2838	return 0;
2839}
 
2840
2841static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842{
2843	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844	bool convert_in = false, convert_out = false;
2845	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846	struct ethtool_rxnfc __user *rxnfc;
2847	struct ifreq __user *ifr;
2848	u32 rule_cnt = 0, actual_rule_cnt;
2849	u32 ethcmd;
2850	u32 data;
2851	int ret;
2852
2853	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854		return -EFAULT;
2855
2856	compat_rxnfc = compat_ptr(data);
2857
2858	if (get_user(ethcmd, &compat_rxnfc->cmd))
2859		return -EFAULT;
2860
2861	/* Most ethtool structures are defined without padding.
2862	 * Unfortunately struct ethtool_rxnfc is an exception.
2863	 */
2864	switch (ethcmd) {
2865	default:
2866		break;
2867	case ETHTOOL_GRXCLSRLALL:
2868		/* Buffer size is variable */
2869		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870			return -EFAULT;
2871		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872			return -ENOMEM;
2873		buf_size += rule_cnt * sizeof(u32);
2874		/* fall through */
2875	case ETHTOOL_GRXRINGS:
2876	case ETHTOOL_GRXCLSRLCNT:
2877	case ETHTOOL_GRXCLSRULE:
2878	case ETHTOOL_SRXCLSRLINS:
2879		convert_out = true;
2880		/* fall through */
2881	case ETHTOOL_SRXCLSRLDEL:
2882		buf_size += sizeof(struct ethtool_rxnfc);
2883		convert_in = true;
2884		break;
2885	}
2886
2887	ifr = compat_alloc_user_space(buf_size);
2888	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891		return -EFAULT;
2892
2893	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894		     &ifr->ifr_ifru.ifru_data))
2895		return -EFAULT;
2896
2897	if (convert_in) {
2898		/* We expect there to be holes between fs.m_ext and
2899		 * fs.ring_cookie and at the end of fs, but nowhere else.
2900		 */
2901		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902			     sizeof(compat_rxnfc->fs.m_ext) !=
2903			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904			     sizeof(rxnfc->fs.m_ext));
2905		BUILD_BUG_ON(
2906			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908			offsetof(struct ethtool_rxnfc, fs.location) -
2909			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911		if (copy_in_user(rxnfc, compat_rxnfc,
2912				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913				 (void __user *)rxnfc) ||
2914		    copy_in_user(&rxnfc->fs.ring_cookie,
2915				 &compat_rxnfc->fs.ring_cookie,
2916				 (void __user *)(&rxnfc->fs.location + 1) -
2917				 (void __user *)&rxnfc->fs.ring_cookie) ||
2918		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919				 sizeof(rxnfc->rule_cnt)))
2920			return -EFAULT;
2921	}
2922
2923	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924	if (ret)
2925		return ret;
2926
2927	if (convert_out) {
2928		if (copy_in_user(compat_rxnfc, rxnfc,
2929				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930				 (const void __user *)rxnfc) ||
2931		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932				 &rxnfc->fs.ring_cookie,
2933				 (const void __user *)(&rxnfc->fs.location + 1) -
2934				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936				 sizeof(rxnfc->rule_cnt)))
2937			return -EFAULT;
2938
2939		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940			/* As an optimisation, we only copy the actual
2941			 * number of rules that the underlying
2942			 * function returned.  Since Mallory might
2943			 * change the rule count in user memory, we
2944			 * check that it is less than the rule count
2945			 * originally given (as the user buffer size),
2946			 * which has been range-checked.
2947			 */
2948			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949				return -EFAULT;
2950			if (actual_rule_cnt < rule_cnt)
2951				rule_cnt = actual_rule_cnt;
2952			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953					 &rxnfc->rule_locs[0],
2954					 rule_cnt * sizeof(u32)))
2955				return -EFAULT;
2956		}
2957	}
2958
2959	return 0;
2960}
 
2961
 
2962static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963{
2964	void __user *uptr;
2965	compat_uptr_t uptr32;
2966	struct ifreq __user *uifr;
 
 
2967
2968	uifr = compat_alloc_user_space(sizeof(*uifr));
2969	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970		return -EFAULT;
2971
2972	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973		return -EFAULT;
2974
2975	uptr = compat_ptr(uptr32);
 
2976
2977	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978		return -EFAULT;
2979
2980	return dev_ioctl(net, SIOCWANDEV, uifr);
2981}
2982
2983static int bond_ioctl(struct net *net, unsigned int cmd,
2984			 struct compat_ifreq __user *ifr32)
2985{
2986	struct ifreq kifr;
2987	mm_segment_t old_fs;
2988	int err;
2989
2990	switch (cmd) {
2991	case SIOCBONDENSLAVE:
2992	case SIOCBONDRELEASE:
2993	case SIOCBONDSETHWADDR:
2994	case SIOCBONDCHANGEACTIVE:
2995		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996			return -EFAULT;
2997
2998		old_fs = get_fs();
2999		set_fs(KERNEL_DS);
3000		err = dev_ioctl(net, cmd,
3001				(struct ifreq __user __force *) &kifr);
3002		set_fs(old_fs);
3003
3004		return err;
3005	default:
3006		return -ENOIOCTLCMD;
3007	}
 
3008}
3009
3010/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012				 struct compat_ifreq __user *u_ifreq32)
3013{
3014	struct ifreq __user *u_ifreq64;
3015	char tmp_buf[IFNAMSIZ];
3016	void __user *data64;
3017	u32 data32;
3018
3019	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020			   IFNAMSIZ))
3021		return -EFAULT;
3022	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023		return -EFAULT;
3024	data64 = compat_ptr(data32);
3025
3026	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029			 IFNAMSIZ))
3030		return -EFAULT;
3031	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032		return -EFAULT;
3033
3034	return dev_ioctl(net, cmd, u_ifreq64);
3035}
3036
3037static int dev_ifsioc(struct net *net, struct socket *sock,
3038			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039{
3040	struct ifreq __user *uifr;
3041	int err;
3042
3043	uifr = compat_alloc_user_space(sizeof(*uifr));
3044	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045		return -EFAULT;
3046
3047	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049	if (!err) {
3050		switch (cmd) {
3051		case SIOCGIFFLAGS:
3052		case SIOCGIFMETRIC:
3053		case SIOCGIFMTU:
3054		case SIOCGIFMEM:
3055		case SIOCGIFHWADDR:
3056		case SIOCGIFINDEX:
3057		case SIOCGIFADDR:
3058		case SIOCGIFBRDADDR:
3059		case SIOCGIFDSTADDR:
3060		case SIOCGIFNETMASK:
3061		case SIOCGIFPFLAGS:
3062		case SIOCGIFTXQLEN:
3063		case SIOCGMIIPHY:
3064		case SIOCGMIIREG:
3065			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066				err = -EFAULT;
3067			break;
3068		}
3069	}
3070	return err;
3071}
3072
3073static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074			struct compat_ifreq __user *uifr32)
3075{
3076	struct ifreq ifr;
3077	struct compat_ifmap __user *uifmap32;
3078	mm_segment_t old_fs;
3079	int err;
3080
3081	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089	if (err)
3090		return -EFAULT;
 
3091
3092	old_fs = get_fs();
3093	set_fs(KERNEL_DS);
3094	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3095	set_fs(old_fs);
3096
3097	if (cmd == SIOCGIFMAP && !err) {
3098		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105		if (err)
3106			err = -EFAULT;
3107	}
3108	return err;
3109}
3110
3111struct rtentry32 {
3112	u32		rt_pad1;
3113	struct sockaddr rt_dst;         /* target address               */
3114	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3115	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3116	unsigned short	rt_flags;
3117	short		rt_pad2;
3118	u32		rt_pad3;
3119	unsigned char	rt_tos;
3120	unsigned char	rt_class;
3121	short		rt_pad4;
3122	short		rt_metric;      /* +1 for binary compatibility! */
3123	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3124	u32		rt_mtu;         /* per route MTU/Window         */
3125	u32		rt_window;      /* Window clamping              */
3126	unsigned short  rt_irtt;        /* Initial RTT                  */
3127};
3128
3129struct in6_rtmsg32 {
3130	struct in6_addr		rtmsg_dst;
3131	struct in6_addr		rtmsg_src;
3132	struct in6_addr		rtmsg_gateway;
3133	u32			rtmsg_type;
3134	u16			rtmsg_dst_len;
3135	u16			rtmsg_src_len;
3136	u32			rtmsg_metric;
3137	u32			rtmsg_info;
3138	u32			rtmsg_flags;
3139	s32			rtmsg_ifindex;
3140};
3141
3142static int routing_ioctl(struct net *net, struct socket *sock,
3143			 unsigned int cmd, void __user *argp)
3144{
3145	int ret;
3146	void *r = NULL;
3147	struct in6_rtmsg r6;
3148	struct rtentry r4;
3149	char devname[16];
3150	u32 rtdev;
3151	mm_segment_t old_fs = get_fs();
3152
3153	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154		struct in6_rtmsg32 __user *ur6 = argp;
3155		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156			3 * sizeof(struct in6_addr));
3157		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165		r = (void *) &r6;
3166	} else { /* ipv4 */
3167		struct rtentry32 __user *ur4 = argp;
3168		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169					3 * sizeof(struct sockaddr));
3170		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175		ret |= get_user(rtdev, &(ur4->rt_dev));
3176		if (rtdev) {
3177			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178			r4.rt_dev = (char __user __force *)devname;
3179			devname[15] = 0;
3180		} else
3181			r4.rt_dev = NULL;
3182
3183		r = (void *) &r4;
3184	}
3185
3186	if (ret) {
3187		ret = -EFAULT;
3188		goto out;
3189	}
3190
3191	set_fs(KERNEL_DS);
3192	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193	set_fs(old_fs);
3194
3195out:
3196	return ret;
3197}
3198
3199/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204{
3205	compat_ulong_t tmp;
3206
3207	if (get_user(tmp, argp))
3208		return -EFAULT;
3209	if (tmp == BRCTL_GET_VERSION)
3210		return BRCTL_VERSION + 1;
3211	return -EINVAL;
3212}
3213
3214static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215			 unsigned int cmd, unsigned long arg)
3216{
3217	void __user *argp = compat_ptr(arg);
3218	struct sock *sk = sock->sk;
3219	struct net *net = sock_net(sk);
 
3220
3221	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222		return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224	switch (cmd) {
3225	case SIOCSIFBR:
3226	case SIOCGIFBR:
3227		return old_bridge_ioctl(argp);
3228	case SIOCGIFNAME:
3229		return dev_ifname32(net, argp);
3230	case SIOCGIFCONF:
3231		return dev_ifconf(net, argp);
3232	case SIOCETHTOOL:
3233		return ethtool_ioctl(net, argp);
3234	case SIOCWANDEV:
3235		return compat_siocwandev(net, argp);
3236	case SIOCGIFMAP:
3237	case SIOCSIFMAP:
3238		return compat_sioc_ifmap(net, cmd, argp);
3239	case SIOCBONDENSLAVE:
3240	case SIOCBONDRELEASE:
3241	case SIOCBONDSETHWADDR:
3242	case SIOCBONDCHANGEACTIVE:
3243		return bond_ioctl(net, cmd, argp);
3244	case SIOCADDRT:
3245	case SIOCDELRT:
3246		return routing_ioctl(net, sock, cmd, argp);
3247	case SIOCGSTAMP:
3248		return do_siocgstamp(net, sock, cmd, argp);
3249	case SIOCGSTAMPNS:
3250		return do_siocgstampns(net, sock, cmd, argp);
3251	case SIOCBONDSLAVEINFOQUERY:
3252	case SIOCBONDINFOQUERY:
3253	case SIOCSHWTSTAMP:
3254	case SIOCGHWTSTAMP:
3255		return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257	case FIOSETOWN:
3258	case SIOCSPGRP:
3259	case FIOGETOWN:
3260	case SIOCGPGRP:
3261	case SIOCBRADDBR:
3262	case SIOCBRDELBR:
3263	case SIOCGIFVLAN:
3264	case SIOCSIFVLAN:
3265	case SIOCADDDLCI:
3266	case SIOCDELDLCI:
 
 
 
 
3267		return sock_ioctl(file, cmd, arg);
3268
3269	case SIOCGIFFLAGS:
3270	case SIOCSIFFLAGS:
 
 
3271	case SIOCGIFMETRIC:
3272	case SIOCSIFMETRIC:
3273	case SIOCGIFMTU:
3274	case SIOCSIFMTU:
3275	case SIOCGIFMEM:
3276	case SIOCSIFMEM:
3277	case SIOCGIFHWADDR:
3278	case SIOCSIFHWADDR:
3279	case SIOCADDMULTI:
3280	case SIOCDELMULTI:
3281	case SIOCGIFINDEX:
3282	case SIOCGIFADDR:
3283	case SIOCSIFADDR:
3284	case SIOCSIFHWBROADCAST:
3285	case SIOCDIFADDR:
3286	case SIOCGIFBRDADDR:
3287	case SIOCSIFBRDADDR:
3288	case SIOCGIFDSTADDR:
3289	case SIOCSIFDSTADDR:
3290	case SIOCGIFNETMASK:
3291	case SIOCSIFNETMASK:
3292	case SIOCSIFPFLAGS:
3293	case SIOCGIFPFLAGS:
3294	case SIOCGIFTXQLEN:
3295	case SIOCSIFTXQLEN:
3296	case SIOCBRADDIF:
3297	case SIOCBRDELIF:
 
3298	case SIOCSIFNAME:
3299	case SIOCGMIIPHY:
3300	case SIOCGMIIREG:
3301	case SIOCSMIIREG:
3302		return dev_ifsioc(net, sock, cmd, argp);
3303
 
 
3304	case SIOCSARP:
3305	case SIOCGARP:
3306	case SIOCDARP:
 
 
3307	case SIOCATMARK:
3308		return sock_do_ioctl(net, sock, cmd, arg);
3309	}
3310
3311	return -ENOIOCTLCMD;
3312}
3313
3314static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315			      unsigned long arg)
3316{
3317	struct socket *sock = file->private_data;
 
3318	int ret = -ENOIOCTLCMD;
3319	struct sock *sk;
3320	struct net *net;
3321
3322	sk = sock->sk;
3323	net = sock_net(sk);
3324
3325	if (sock->ops->compat_ioctl)
3326		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328	if (ret == -ENOIOCTLCMD &&
3329	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330		ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332	if (ret == -ENOIOCTLCMD)
3333		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335	return ret;
3336}
3337#endif
3338
 
 
 
 
 
 
 
 
 
3339int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340{
3341	return sock->ops->bind(sock, addr, addrlen);
 
 
 
 
 
3342}
3343EXPORT_SYMBOL(kernel_bind);
3344
 
 
 
 
 
 
 
 
3345int kernel_listen(struct socket *sock, int backlog)
3346{
3347	return sock->ops->listen(sock, backlog);
3348}
3349EXPORT_SYMBOL(kernel_listen);
3350
 
 
 
 
 
 
 
 
 
 
 
3351int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352{
3353	struct sock *sk = sock->sk;
 
 
 
 
 
3354	int err;
3355
3356	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357			       newsock);
3358	if (err < 0)
3359		goto done;
3360
3361	err = sock->ops->accept(sock, *newsock, flags);
3362	if (err < 0) {
3363		sock_release(*newsock);
3364		*newsock = NULL;
3365		goto done;
3366	}
3367
3368	(*newsock)->ops = sock->ops;
3369	__module_get((*newsock)->ops->owner);
3370
3371done:
3372	return err;
3373}
3374EXPORT_SYMBOL(kernel_accept);
3375
 
 
 
 
 
 
 
 
 
 
 
 
 
3376int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377		   int flags)
3378{
3379	return sock->ops->connect(sock, addr, addrlen, flags);
 
 
 
 
 
3380}
3381EXPORT_SYMBOL(kernel_connect);
3382
3383int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384			 int *addrlen)
 
 
 
 
 
 
 
 
3385{
3386	return sock->ops->getname(sock, addr, addrlen, 0);
3387}
3388EXPORT_SYMBOL(kernel_getsockname);
3389
3390int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391			 int *addrlen)
 
 
 
 
 
 
 
 
3392{
3393	return sock->ops->getname(sock, addr, addrlen, 1);
3394}
3395EXPORT_SYMBOL(kernel_getpeername);
3396
3397int kernel_getsockopt(struct socket *sock, int level, int optname,
3398			char *optval, int *optlen)
3399{
3400	mm_segment_t oldfs = get_fs();
3401	char __user *uoptval;
3402	int __user *uoptlen;
3403	int err;
3404
3405	uoptval = (char __user __force *) optval;
3406	uoptlen = (int __user __force *) optlen;
3407
3408	set_fs(KERNEL_DS);
3409	if (level == SOL_SOCKET)
3410		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411	else
3412		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413					    uoptlen);
3414	set_fs(oldfs);
3415	return err;
3416}
3417EXPORT_SYMBOL(kernel_getsockopt);
3418
3419int kernel_setsockopt(struct socket *sock, int level, int optname,
3420			char *optval, unsigned int optlen)
3421{
3422	mm_segment_t oldfs = get_fs();
3423	char __user *uoptval;
3424	int err;
3425
3426	uoptval = (char __user __force *) optval;
3427
3428	set_fs(KERNEL_DS);
3429	if (level == SOL_SOCKET)
3430		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431	else
3432		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433					    optlen);
3434	set_fs(oldfs);
3435	return err;
3436}
3437EXPORT_SYMBOL(kernel_setsockopt);
3438
3439int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440		    size_t size, int flags)
3441{
3442	if (sock->ops->sendpage)
3443		return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445	return sock_no_sendpage(sock, page, offset, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451	mm_segment_t oldfs = get_fs();
3452	int err;
3453
3454	set_fs(KERNEL_DS);
3455	err = sock->ops->ioctl(sock, cmd, arg);
3456	set_fs(oldfs);
3457
3458	return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464	return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);