Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/splice.h>
61#include <linux/net.h>
62#include <linux/interrupt.h>
63#include <linux/thread_info.h>
64#include <linux/rcupdate.h>
65#include <linux/netdevice.h>
66#include <linux/proc_fs.h>
67#include <linux/seq_file.h>
68#include <linux/mutex.h>
69#include <linux/if_bridge.h>
70#include <linux/if_vlan.h>
71#include <linux/ptp_classify.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/cache.h>
75#include <linux/module.h>
76#include <linux/highmem.h>
77#include <linux/mount.h>
78#include <linux/pseudo_fs.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/compat.h>
82#include <linux/kmod.h>
83#include <linux/audit.h>
84#include <linux/wireless.h>
85#include <linux/nsproxy.h>
86#include <linux/magic.h>
87#include <linux/slab.h>
88#include <linux/xattr.h>
89#include <linux/nospec.h>
90#include <linux/indirect_call_wrapper.h>
91#include <linux/io_uring/net.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/termios.h>
107#include <linux/sockios.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110#include <linux/ptp_clock_kernel.h>
111#include <trace/events/sock.h>
112
113#ifdef CONFIG_NET_RX_BUSY_POLL
114unsigned int sysctl_net_busy_read __read_mostly;
115unsigned int sysctl_net_busy_poll __read_mostly;
116#endif
117
118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134static void sock_splice_eof(struct file *file);
135
136#ifdef CONFIG_PROC_FS
137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138{
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144}
145#else
146#define sock_show_fdinfo NULL
147#endif
148
149/*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
158 .poll = sock_poll,
159 .unlocked_ioctl = sock_ioctl,
160#ifdef CONFIG_COMPAT
161 .compat_ioctl = compat_sock_ioctl,
162#endif
163 .uring_cmd = io_uring_cmd_sock,
164 .mmap = sock_mmap,
165 .release = sock_close,
166 .fasync = sock_fasync,
167 .splice_write = splice_to_socket,
168 .splice_read = sock_splice_read,
169 .splice_eof = sock_splice_eof,
170 .show_fdinfo = sock_show_fdinfo,
171};
172
173static const char * const pf_family_names[] = {
174 [PF_UNSPEC] = "PF_UNSPEC",
175 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
176 [PF_INET] = "PF_INET",
177 [PF_AX25] = "PF_AX25",
178 [PF_IPX] = "PF_IPX",
179 [PF_APPLETALK] = "PF_APPLETALK",
180 [PF_NETROM] = "PF_NETROM",
181 [PF_BRIDGE] = "PF_BRIDGE",
182 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_X25] = "PF_X25",
184 [PF_INET6] = "PF_INET6",
185 [PF_ROSE] = "PF_ROSE",
186 [PF_DECnet] = "PF_DECnet",
187 [PF_NETBEUI] = "PF_NETBEUI",
188 [PF_SECURITY] = "PF_SECURITY",
189 [PF_KEY] = "PF_KEY",
190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET] = "PF_PACKET",
192 [PF_ASH] = "PF_ASH",
193 [PF_ECONET] = "PF_ECONET",
194 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_RDS] = "PF_RDS",
196 [PF_SNA] = "PF_SNA",
197 [PF_IRDA] = "PF_IRDA",
198 [PF_PPPOX] = "PF_PPPOX",
199 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_LLC] = "PF_LLC",
201 [PF_IB] = "PF_IB",
202 [PF_MPLS] = "PF_MPLS",
203 [PF_CAN] = "PF_CAN",
204 [PF_TIPC] = "PF_TIPC",
205 [PF_BLUETOOTH] = "PF_BLUETOOTH",
206 [PF_IUCV] = "PF_IUCV",
207 [PF_RXRPC] = "PF_RXRPC",
208 [PF_ISDN] = "PF_ISDN",
209 [PF_PHONET] = "PF_PHONET",
210 [PF_IEEE802154] = "PF_IEEE802154",
211 [PF_CAIF] = "PF_CAIF",
212 [PF_ALG] = "PF_ALG",
213 [PF_NFC] = "PF_NFC",
214 [PF_VSOCK] = "PF_VSOCK",
215 [PF_KCM] = "PF_KCM",
216 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_SMC] = "PF_SMC",
218 [PF_XDP] = "PF_XDP",
219 [PF_MCTP] = "PF_MCTP",
220};
221
222/*
223 * The protocol list. Each protocol is registered in here.
224 */
225
226static DEFINE_SPINLOCK(net_family_lock);
227static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228
229/*
230 * Support routines.
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
233 */
234
235/**
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
240 *
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
244 */
245
246int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247{
248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 return -EINVAL;
250 if (ulen == 0)
251 return 0;
252 if (copy_from_user(kaddr, uaddr, ulen))
253 return -EFAULT;
254 return audit_sockaddr(ulen, kaddr);
255}
256
257/**
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
263 *
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
268 * accessible.
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
272 */
273
274static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 void __user *uaddr, int __user *ulen)
276{
277 int err;
278 int len;
279
280 BUG_ON(klen > sizeof(struct sockaddr_storage));
281 err = get_user(len, ulen);
282 if (err)
283 return err;
284 if (len > klen)
285 len = klen;
286 if (len < 0)
287 return -EINVAL;
288 if (len) {
289 if (audit_sockaddr(klen, kaddr))
290 return -ENOMEM;
291 if (copy_to_user(uaddr, kaddr, len))
292 return -EFAULT;
293 }
294 /*
295 * "fromlen shall refer to the value before truncation.."
296 * 1003.1g
297 */
298 return __put_user(klen, ulen);
299}
300
301static struct kmem_cache *sock_inode_cachep __ro_after_init;
302
303static struct inode *sock_alloc_inode(struct super_block *sb)
304{
305 struct socket_alloc *ei;
306
307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 if (!ei)
309 return NULL;
310 init_waitqueue_head(&ei->socket.wq.wait);
311 ei->socket.wq.fasync_list = NULL;
312 ei->socket.wq.flags = 0;
313
314 ei->socket.state = SS_UNCONNECTED;
315 ei->socket.flags = 0;
316 ei->socket.ops = NULL;
317 ei->socket.sk = NULL;
318 ei->socket.file = NULL;
319
320 return &ei->vfs_inode;
321}
322
323static void sock_free_inode(struct inode *inode)
324{
325 struct socket_alloc *ei;
326
327 ei = container_of(inode, struct socket_alloc, vfs_inode);
328 kmem_cache_free(sock_inode_cachep, ei);
329}
330
331static void init_once(void *foo)
332{
333 struct socket_alloc *ei = (struct socket_alloc *)foo;
334
335 inode_init_once(&ei->vfs_inode);
336}
337
338static void init_inodecache(void)
339{
340 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc),
342 0,
343 (SLAB_HWCACHE_ALIGN |
344 SLAB_RECLAIM_ACCOUNT |
345 SLAB_ACCOUNT),
346 init_once);
347 BUG_ON(sock_inode_cachep == NULL);
348}
349
350static const struct super_operations sockfs_ops = {
351 .alloc_inode = sock_alloc_inode,
352 .free_inode = sock_free_inode,
353 .statfs = simple_statfs,
354};
355
356/*
357 * sockfs_dname() is called from d_path().
358 */
359static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360{
361 return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 d_inode(dentry)->i_ino);
363}
364
365static const struct dentry_operations sockfs_dentry_operations = {
366 .d_dname = sockfs_dname,
367};
368
369static int sockfs_xattr_get(const struct xattr_handler *handler,
370 struct dentry *dentry, struct inode *inode,
371 const char *suffix, void *value, size_t size)
372{
373 if (value) {
374 if (dentry->d_name.len + 1 > size)
375 return -ERANGE;
376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 }
378 return dentry->d_name.len + 1;
379}
380
381#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384
385static const struct xattr_handler sockfs_xattr_handler = {
386 .name = XATTR_NAME_SOCKPROTONAME,
387 .get = sockfs_xattr_get,
388};
389
390static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 struct mnt_idmap *idmap,
392 struct dentry *dentry, struct inode *inode,
393 const char *suffix, const void *value,
394 size_t size, int flags)
395{
396 /* Handled by LSM. */
397 return -EAGAIN;
398}
399
400static const struct xattr_handler sockfs_security_xattr_handler = {
401 .prefix = XATTR_SECURITY_PREFIX,
402 .set = sockfs_security_xattr_set,
403};
404
405static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 &sockfs_xattr_handler,
407 &sockfs_security_xattr_handler,
408 NULL
409};
410
411static int sockfs_init_fs_context(struct fs_context *fc)
412{
413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 if (!ctx)
415 return -ENOMEM;
416 ctx->ops = &sockfs_ops;
417 ctx->dops = &sockfs_dentry_operations;
418 ctx->xattr = sockfs_xattr_handlers;
419 return 0;
420}
421
422static struct vfsmount *sock_mnt __read_mostly;
423
424static struct file_system_type sock_fs_type = {
425 .name = "sockfs",
426 .init_fs_context = sockfs_init_fs_context,
427 .kill_sb = kill_anon_super,
428};
429
430/*
431 * Obtains the first available file descriptor and sets it up for use.
432 *
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
440 *
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
445 */
446
447/**
448 * sock_alloc_file - Bind a &socket to a &file
449 * @sock: socket
450 * @flags: file status flags
451 * @dname: protocol name
452 *
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
455 *
456 * On failure @sock is released, and an ERR pointer is returned.
457 *
458 * This function uses GFP_KERNEL internally.
459 */
460
461struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462{
463 struct file *file;
464
465 if (!dname)
466 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467
468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 O_RDWR | (flags & O_NONBLOCK),
470 &socket_file_ops);
471 if (IS_ERR(file)) {
472 sock_release(sock);
473 return file;
474 }
475
476 file->f_mode |= FMODE_NOWAIT;
477 sock->file = file;
478 file->private_data = sock;
479 stream_open(SOCK_INODE(sock), file);
480 return file;
481}
482EXPORT_SYMBOL(sock_alloc_file);
483
484static int sock_map_fd(struct socket *sock, int flags)
485{
486 struct file *newfile;
487 int fd = get_unused_fd_flags(flags);
488 if (unlikely(fd < 0)) {
489 sock_release(sock);
490 return fd;
491 }
492
493 newfile = sock_alloc_file(sock, flags, NULL);
494 if (!IS_ERR(newfile)) {
495 fd_install(fd, newfile);
496 return fd;
497 }
498
499 put_unused_fd(fd);
500 return PTR_ERR(newfile);
501}
502
503/**
504 * sock_from_file - Return the &socket bounded to @file.
505 * @file: file
506 *
507 * On failure returns %NULL.
508 */
509
510struct socket *sock_from_file(struct file *file)
511{
512 if (likely(file->f_op == &socket_file_ops))
513 return file->private_data; /* set in sock_alloc_file */
514
515 return NULL;
516}
517EXPORT_SYMBOL(sock_from_file);
518
519/**
520 * sockfd_lookup - Go from a file number to its socket slot
521 * @fd: file handle
522 * @err: pointer to an error code return
523 *
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
528 *
529 * On a success the socket object pointer is returned.
530 */
531
532struct socket *sockfd_lookup(int fd, int *err)
533{
534 struct file *file;
535 struct socket *sock;
536
537 file = fget(fd);
538 if (!file) {
539 *err = -EBADF;
540 return NULL;
541 }
542
543 sock = sock_from_file(file);
544 if (!sock) {
545 *err = -ENOTSOCK;
546 fput(file);
547 }
548 return sock;
549}
550EXPORT_SYMBOL(sockfd_lookup);
551
552static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
553 size_t size)
554{
555 ssize_t len;
556 ssize_t used = 0;
557
558 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
559 if (len < 0)
560 return len;
561 used += len;
562 if (buffer) {
563 if (size < used)
564 return -ERANGE;
565 buffer += len;
566 }
567
568 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
569 used += len;
570 if (buffer) {
571 if (size < used)
572 return -ERANGE;
573 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
574 buffer += len;
575 }
576
577 return used;
578}
579
580static int sockfs_setattr(struct mnt_idmap *idmap,
581 struct dentry *dentry, struct iattr *iattr)
582{
583 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
584
585 if (!err && (iattr->ia_valid & ATTR_UID)) {
586 struct socket *sock = SOCKET_I(d_inode(dentry));
587
588 if (sock->sk)
589 sock->sk->sk_uid = iattr->ia_uid;
590 else
591 err = -ENOENT;
592 }
593
594 return err;
595}
596
597static const struct inode_operations sockfs_inode_ops = {
598 .listxattr = sockfs_listxattr,
599 .setattr = sockfs_setattr,
600};
601
602/**
603 * sock_alloc - allocate a socket
604 *
605 * Allocate a new inode and socket object. The two are bound together
606 * and initialised. The socket is then returned. If we are out of inodes
607 * NULL is returned. This functions uses GFP_KERNEL internally.
608 */
609
610struct socket *sock_alloc(void)
611{
612 struct inode *inode;
613 struct socket *sock;
614
615 inode = new_inode_pseudo(sock_mnt->mnt_sb);
616 if (!inode)
617 return NULL;
618
619 sock = SOCKET_I(inode);
620
621 inode->i_ino = get_next_ino();
622 inode->i_mode = S_IFSOCK | S_IRWXUGO;
623 inode->i_uid = current_fsuid();
624 inode->i_gid = current_fsgid();
625 inode->i_op = &sockfs_inode_ops;
626
627 return sock;
628}
629EXPORT_SYMBOL(sock_alloc);
630
631static void __sock_release(struct socket *sock, struct inode *inode)
632{
633 const struct proto_ops *ops = READ_ONCE(sock->ops);
634
635 if (ops) {
636 struct module *owner = ops->owner;
637
638 if (inode)
639 inode_lock(inode);
640 ops->release(sock);
641 sock->sk = NULL;
642 if (inode)
643 inode_unlock(inode);
644 sock->ops = NULL;
645 module_put(owner);
646 }
647
648 if (sock->wq.fasync_list)
649 pr_err("%s: fasync list not empty!\n", __func__);
650
651 if (!sock->file) {
652 iput(SOCK_INODE(sock));
653 return;
654 }
655 sock->file = NULL;
656}
657
658/**
659 * sock_release - close a socket
660 * @sock: socket to close
661 *
662 * The socket is released from the protocol stack if it has a release
663 * callback, and the inode is then released if the socket is bound to
664 * an inode not a file.
665 */
666void sock_release(struct socket *sock)
667{
668 __sock_release(sock, NULL);
669}
670EXPORT_SYMBOL(sock_release);
671
672void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
673{
674 u8 flags = *tx_flags;
675
676 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
677 flags |= SKBTX_HW_TSTAMP;
678
679 /* PTP hardware clocks can provide a free running cycle counter
680 * as a time base for virtual clocks. Tell driver to use the
681 * free running cycle counter for timestamp if socket is bound
682 * to virtual clock.
683 */
684 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
685 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
686 }
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695}
696EXPORT_SYMBOL(__sock_tx_timestamp);
697
698INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
702
703static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
704 int flags)
705{
706 trace_sock_send_length(sk, ret, 0);
707}
708
709static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
710{
711 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
712 inet_sendmsg, sock, msg,
713 msg_data_left(msg));
714 BUG_ON(ret == -EIOCBQUEUED);
715
716 if (trace_sock_send_length_enabled())
717 call_trace_sock_send_length(sock->sk, ret, 0);
718 return ret;
719}
720
721static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
722{
723 int err = security_socket_sendmsg(sock, msg,
724 msg_data_left(msg));
725
726 return err ?: sock_sendmsg_nosec(sock, msg);
727}
728
729/**
730 * sock_sendmsg - send a message through @sock
731 * @sock: socket
732 * @msg: message to send
733 *
734 * Sends @msg through @sock, passing through LSM.
735 * Returns the number of bytes sent, or an error code.
736 */
737int sock_sendmsg(struct socket *sock, struct msghdr *msg)
738{
739 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
740 struct sockaddr_storage address;
741 int save_len = msg->msg_namelen;
742 int ret;
743
744 if (msg->msg_name) {
745 memcpy(&address, msg->msg_name, msg->msg_namelen);
746 msg->msg_name = &address;
747 }
748
749 ret = __sock_sendmsg(sock, msg);
750 msg->msg_name = save_addr;
751 msg->msg_namelen = save_len;
752
753 return ret;
754}
755EXPORT_SYMBOL(sock_sendmsg);
756
757/**
758 * kernel_sendmsg - send a message through @sock (kernel-space)
759 * @sock: socket
760 * @msg: message header
761 * @vec: kernel vec
762 * @num: vec array length
763 * @size: total message data size
764 *
765 * Builds the message data with @vec and sends it through @sock.
766 * Returns the number of bytes sent, or an error code.
767 */
768
769int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 struct kvec *vec, size_t num, size_t size)
771{
772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 return sock_sendmsg(sock, msg);
774}
775EXPORT_SYMBOL(kernel_sendmsg);
776
777/**
778 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
779 * @sk: sock
780 * @msg: message header
781 * @vec: output s/g array
782 * @num: output s/g array length
783 * @size: total message data size
784 *
785 * Builds the message data with @vec and sends it through @sock.
786 * Returns the number of bytes sent, or an error code.
787 * Caller must hold @sk.
788 */
789
790int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 struct kvec *vec, size_t num, size_t size)
792{
793 struct socket *sock = sk->sk_socket;
794 const struct proto_ops *ops = READ_ONCE(sock->ops);
795
796 if (!ops->sendmsg_locked)
797 return sock_no_sendmsg_locked(sk, msg, size);
798
799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800
801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802}
803EXPORT_SYMBOL(kernel_sendmsg_locked);
804
805static bool skb_is_err_queue(const struct sk_buff *skb)
806{
807 /* pkt_type of skbs enqueued on the error queue are set to
808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 * in recvmsg, since skbs received on a local socket will never
810 * have a pkt_type of PACKET_OUTGOING.
811 */
812 return skb->pkt_type == PACKET_OUTGOING;
813}
814
815/* On transmit, software and hardware timestamps are returned independently.
816 * As the two skb clones share the hardware timestamp, which may be updated
817 * before the software timestamp is received, a hardware TX timestamp may be
818 * returned only if there is no software TX timestamp. Ignore false software
819 * timestamps, which may be made in the __sock_recv_timestamp() call when the
820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821 * hardware timestamp.
822 */
823static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824{
825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826}
827
828static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829{
830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 struct net_device *orig_dev;
833 ktime_t hwtstamp;
834
835 rcu_read_lock();
836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 if (orig_dev) {
838 *if_index = orig_dev->ifindex;
839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 } else {
841 hwtstamp = shhwtstamps->hwtstamp;
842 }
843 rcu_read_unlock();
844
845 return hwtstamp;
846}
847
848static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 int if_index)
850{
851 struct scm_ts_pktinfo ts_pktinfo;
852 struct net_device *orig_dev;
853
854 if (!skb_mac_header_was_set(skb))
855 return;
856
857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858
859 if (!if_index) {
860 rcu_read_lock();
861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 if (orig_dev)
863 if_index = orig_dev->ifindex;
864 rcu_read_unlock();
865 }
866 ts_pktinfo.if_index = if_index;
867
868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 sizeof(ts_pktinfo), &ts_pktinfo);
871}
872
873/*
874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875 */
876void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 struct sk_buff *skb)
878{
879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 struct scm_timestamping_internal tss;
882 int empty = 1, false_tstamp = 0;
883 struct skb_shared_hwtstamps *shhwtstamps =
884 skb_hwtstamps(skb);
885 int if_index;
886 ktime_t hwtstamp;
887 u32 tsflags;
888
889 /* Race occurred between timestamp enabling and packet
890 receiving. Fill in the current time for now. */
891 if (need_software_tstamp && skb->tstamp == 0) {
892 __net_timestamp(skb);
893 false_tstamp = 1;
894 }
895
896 if (need_software_tstamp) {
897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 if (new_tstamp) {
899 struct __kernel_sock_timeval tv;
900
901 skb_get_new_timestamp(skb, &tv);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 sizeof(tv), &tv);
904 } else {
905 struct __kernel_old_timeval tv;
906
907 skb_get_timestamp(skb, &tv);
908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 sizeof(tv), &tv);
910 }
911 } else {
912 if (new_tstamp) {
913 struct __kernel_timespec ts;
914
915 skb_get_new_timestampns(skb, &ts);
916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 sizeof(ts), &ts);
918 } else {
919 struct __kernel_old_timespec ts;
920
921 skb_get_timestampns(skb, &ts);
922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 sizeof(ts), &ts);
924 }
925 }
926 }
927
928 memset(&tss, 0, sizeof(tss));
929 tsflags = READ_ONCE(sk->sk_tsflags);
930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
931 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
932 skb_is_err_queue(skb) ||
933 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
934 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
935 empty = 0;
936 if (shhwtstamps &&
937 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
938 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
939 skb_is_err_queue(skb) ||
940 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
941 !skb_is_swtx_tstamp(skb, false_tstamp)) {
942 if_index = 0;
943 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
944 hwtstamp = get_timestamp(sk, skb, &if_index);
945 else
946 hwtstamp = shhwtstamps->hwtstamp;
947
948 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
949 hwtstamp = ptp_convert_timestamp(&hwtstamp,
950 READ_ONCE(sk->sk_bind_phc));
951
952 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
953 empty = 0;
954
955 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
956 !skb_is_err_queue(skb))
957 put_ts_pktinfo(msg, skb, if_index);
958 }
959 }
960 if (!empty) {
961 if (sock_flag(sk, SOCK_TSTAMP_NEW))
962 put_cmsg_scm_timestamping64(msg, &tss);
963 else
964 put_cmsg_scm_timestamping(msg, &tss);
965
966 if (skb_is_err_queue(skb) && skb->len &&
967 SKB_EXT_ERR(skb)->opt_stats)
968 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
969 skb->len, skb->data);
970 }
971}
972EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
973
974#ifdef CONFIG_WIRELESS
975void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
976 struct sk_buff *skb)
977{
978 int ack;
979
980 if (!sock_flag(sk, SOCK_WIFI_STATUS))
981 return;
982 if (!skb->wifi_acked_valid)
983 return;
984
985 ack = skb->wifi_acked;
986
987 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
988}
989EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
990#endif
991
992static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
993 struct sk_buff *skb)
994{
995 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
996 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
997 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
998}
999
1000static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001 struct sk_buff *skb)
1002{
1003 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005 __u32 mark = skb->mark;
1006
1007 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1008 }
1009}
1010
1011void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1013{
1014 sock_recv_timestamp(msg, sk, skb);
1015 sock_recv_drops(msg, sk, skb);
1016 sock_recv_mark(msg, sk, skb);
1017}
1018EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1019
1020INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021 size_t, int));
1022INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023 size_t, int));
1024
1025static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1026{
1027 trace_sock_recv_length(sk, ret, flags);
1028}
1029
1030static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031 int flags)
1032{
1033 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034 inet6_recvmsg,
1035 inet_recvmsg, sock, msg,
1036 msg_data_left(msg), flags);
1037 if (trace_sock_recv_length_enabled())
1038 call_trace_sock_recv_length(sock->sk, ret, flags);
1039 return ret;
1040}
1041
1042/**
1043 * sock_recvmsg - receive a message from @sock
1044 * @sock: socket
1045 * @msg: message to receive
1046 * @flags: message flags
1047 *
1048 * Receives @msg from @sock, passing through LSM. Returns the total number
1049 * of bytes received, or an error.
1050 */
1051int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1052{
1053 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1054
1055 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1056}
1057EXPORT_SYMBOL(sock_recvmsg);
1058
1059/**
1060 * kernel_recvmsg - Receive a message from a socket (kernel space)
1061 * @sock: The socket to receive the message from
1062 * @msg: Received message
1063 * @vec: Input s/g array for message data
1064 * @num: Size of input s/g array
1065 * @size: Number of bytes to read
1066 * @flags: Message flags (MSG_DONTWAIT, etc...)
1067 *
1068 * On return the msg structure contains the scatter/gather array passed in the
1069 * vec argument. The array is modified so that it consists of the unfilled
1070 * portion of the original array.
1071 *
1072 * The returned value is the total number of bytes received, or an error.
1073 */
1074
1075int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076 struct kvec *vec, size_t num, size_t size, int flags)
1077{
1078 msg->msg_control_is_user = false;
1079 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080 return sock_recvmsg(sock, msg, flags);
1081}
1082EXPORT_SYMBOL(kernel_recvmsg);
1083
1084static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085 struct pipe_inode_info *pipe, size_t len,
1086 unsigned int flags)
1087{
1088 struct socket *sock = file->private_data;
1089 const struct proto_ops *ops;
1090
1091 ops = READ_ONCE(sock->ops);
1092 if (unlikely(!ops->splice_read))
1093 return copy_splice_read(file, ppos, pipe, len, flags);
1094
1095 return ops->splice_read(sock, ppos, pipe, len, flags);
1096}
1097
1098static void sock_splice_eof(struct file *file)
1099{
1100 struct socket *sock = file->private_data;
1101 const struct proto_ops *ops;
1102
1103 ops = READ_ONCE(sock->ops);
1104 if (ops->splice_eof)
1105 ops->splice_eof(sock);
1106}
1107
1108static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1109{
1110 struct file *file = iocb->ki_filp;
1111 struct socket *sock = file->private_data;
1112 struct msghdr msg = {.msg_iter = *to,
1113 .msg_iocb = iocb};
1114 ssize_t res;
1115
1116 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117 msg.msg_flags = MSG_DONTWAIT;
1118
1119 if (iocb->ki_pos != 0)
1120 return -ESPIPE;
1121
1122 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1123 return 0;
1124
1125 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126 *to = msg.msg_iter;
1127 return res;
1128}
1129
1130static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1131{
1132 struct file *file = iocb->ki_filp;
1133 struct socket *sock = file->private_data;
1134 struct msghdr msg = {.msg_iter = *from,
1135 .msg_iocb = iocb};
1136 ssize_t res;
1137
1138 if (iocb->ki_pos != 0)
1139 return -ESPIPE;
1140
1141 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142 msg.msg_flags = MSG_DONTWAIT;
1143
1144 if (sock->type == SOCK_SEQPACKET)
1145 msg.msg_flags |= MSG_EOR;
1146
1147 res = __sock_sendmsg(sock, &msg);
1148 *from = msg.msg_iter;
1149 return res;
1150}
1151
1152/*
1153 * Atomic setting of ioctl hooks to avoid race
1154 * with module unload.
1155 */
1156
1157static DEFINE_MUTEX(br_ioctl_mutex);
1158static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159 unsigned int cmd, struct ifreq *ifr,
1160 void __user *uarg);
1161
1162void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163 unsigned int cmd, struct ifreq *ifr,
1164 void __user *uarg))
1165{
1166 mutex_lock(&br_ioctl_mutex);
1167 br_ioctl_hook = hook;
1168 mutex_unlock(&br_ioctl_mutex);
1169}
1170EXPORT_SYMBOL(brioctl_set);
1171
1172int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173 struct ifreq *ifr, void __user *uarg)
1174{
1175 int err = -ENOPKG;
1176
1177 if (!br_ioctl_hook)
1178 request_module("bridge");
1179
1180 mutex_lock(&br_ioctl_mutex);
1181 if (br_ioctl_hook)
1182 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183 mutex_unlock(&br_ioctl_mutex);
1184
1185 return err;
1186}
1187
1188static DEFINE_MUTEX(vlan_ioctl_mutex);
1189static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1190
1191void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1192{
1193 mutex_lock(&vlan_ioctl_mutex);
1194 vlan_ioctl_hook = hook;
1195 mutex_unlock(&vlan_ioctl_mutex);
1196}
1197EXPORT_SYMBOL(vlan_ioctl_set);
1198
1199static long sock_do_ioctl(struct net *net, struct socket *sock,
1200 unsigned int cmd, unsigned long arg)
1201{
1202 const struct proto_ops *ops = READ_ONCE(sock->ops);
1203 struct ifreq ifr;
1204 bool need_copyout;
1205 int err;
1206 void __user *argp = (void __user *)arg;
1207 void __user *data;
1208
1209 err = ops->ioctl(sock, cmd, arg);
1210
1211 /*
1212 * If this ioctl is unknown try to hand it down
1213 * to the NIC driver.
1214 */
1215 if (err != -ENOIOCTLCMD)
1216 return err;
1217
1218 if (!is_socket_ioctl_cmd(cmd))
1219 return -ENOTTY;
1220
1221 if (get_user_ifreq(&ifr, &data, argp))
1222 return -EFAULT;
1223 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224 if (!err && need_copyout)
1225 if (put_user_ifreq(&ifr, argp))
1226 return -EFAULT;
1227
1228 return err;
1229}
1230
1231/*
1232 * With an ioctl, arg may well be a user mode pointer, but we don't know
1233 * what to do with it - that's up to the protocol still.
1234 */
1235
1236static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1237{
1238 const struct proto_ops *ops;
1239 struct socket *sock;
1240 struct sock *sk;
1241 void __user *argp = (void __user *)arg;
1242 int pid, err;
1243 struct net *net;
1244
1245 sock = file->private_data;
1246 ops = READ_ONCE(sock->ops);
1247 sk = sock->sk;
1248 net = sock_net(sk);
1249 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250 struct ifreq ifr;
1251 void __user *data;
1252 bool need_copyout;
1253 if (get_user_ifreq(&ifr, &data, argp))
1254 return -EFAULT;
1255 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 if (!err && need_copyout)
1257 if (put_user_ifreq(&ifr, argp))
1258 return -EFAULT;
1259 } else
1260#ifdef CONFIG_WEXT_CORE
1261 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262 err = wext_handle_ioctl(net, cmd, argp);
1263 } else
1264#endif
1265 switch (cmd) {
1266 case FIOSETOWN:
1267 case SIOCSPGRP:
1268 err = -EFAULT;
1269 if (get_user(pid, (int __user *)argp))
1270 break;
1271 err = f_setown(sock->file, pid, 1);
1272 break;
1273 case FIOGETOWN:
1274 case SIOCGPGRP:
1275 err = put_user(f_getown(sock->file),
1276 (int __user *)argp);
1277 break;
1278 case SIOCGIFBR:
1279 case SIOCSIFBR:
1280 case SIOCBRADDBR:
1281 case SIOCBRDELBR:
1282 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1283 break;
1284 case SIOCGIFVLAN:
1285 case SIOCSIFVLAN:
1286 err = -ENOPKG;
1287 if (!vlan_ioctl_hook)
1288 request_module("8021q");
1289
1290 mutex_lock(&vlan_ioctl_mutex);
1291 if (vlan_ioctl_hook)
1292 err = vlan_ioctl_hook(net, argp);
1293 mutex_unlock(&vlan_ioctl_mutex);
1294 break;
1295 case SIOCGSKNS:
1296 err = -EPERM;
1297 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298 break;
1299
1300 err = open_related_ns(&net->ns, get_net_ns);
1301 break;
1302 case SIOCGSTAMP_OLD:
1303 case SIOCGSTAMPNS_OLD:
1304 if (!ops->gettstamp) {
1305 err = -ENOIOCTLCMD;
1306 break;
1307 }
1308 err = ops->gettstamp(sock, argp,
1309 cmd == SIOCGSTAMP_OLD,
1310 !IS_ENABLED(CONFIG_64BIT));
1311 break;
1312 case SIOCGSTAMP_NEW:
1313 case SIOCGSTAMPNS_NEW:
1314 if (!ops->gettstamp) {
1315 err = -ENOIOCTLCMD;
1316 break;
1317 }
1318 err = ops->gettstamp(sock, argp,
1319 cmd == SIOCGSTAMP_NEW,
1320 false);
1321 break;
1322
1323 case SIOCGIFCONF:
1324 err = dev_ifconf(net, argp);
1325 break;
1326
1327 default:
1328 err = sock_do_ioctl(net, sock, cmd, arg);
1329 break;
1330 }
1331 return err;
1332}
1333
1334/**
1335 * sock_create_lite - creates a socket
1336 * @family: protocol family (AF_INET, ...)
1337 * @type: communication type (SOCK_STREAM, ...)
1338 * @protocol: protocol (0, ...)
1339 * @res: new socket
1340 *
1341 * Creates a new socket and assigns it to @res, passing through LSM.
1342 * The new socket initialization is not complete, see kernel_accept().
1343 * Returns 0 or an error. On failure @res is set to %NULL.
1344 * This function internally uses GFP_KERNEL.
1345 */
1346
1347int sock_create_lite(int family, int type, int protocol, struct socket **res)
1348{
1349 int err;
1350 struct socket *sock = NULL;
1351
1352 err = security_socket_create(family, type, protocol, 1);
1353 if (err)
1354 goto out;
1355
1356 sock = sock_alloc();
1357 if (!sock) {
1358 err = -ENOMEM;
1359 goto out;
1360 }
1361
1362 sock->type = type;
1363 err = security_socket_post_create(sock, family, type, protocol, 1);
1364 if (err)
1365 goto out_release;
1366
1367out:
1368 *res = sock;
1369 return err;
1370out_release:
1371 sock_release(sock);
1372 sock = NULL;
1373 goto out;
1374}
1375EXPORT_SYMBOL(sock_create_lite);
1376
1377/* No kernel lock held - perfect */
1378static __poll_t sock_poll(struct file *file, poll_table *wait)
1379{
1380 struct socket *sock = file->private_data;
1381 const struct proto_ops *ops = READ_ONCE(sock->ops);
1382 __poll_t events = poll_requested_events(wait), flag = 0;
1383
1384 if (!ops->poll)
1385 return 0;
1386
1387 if (sk_can_busy_loop(sock->sk)) {
1388 /* poll once if requested by the syscall */
1389 if (events & POLL_BUSY_LOOP)
1390 sk_busy_loop(sock->sk, 1);
1391
1392 /* if this socket can poll_ll, tell the system call */
1393 flag = POLL_BUSY_LOOP;
1394 }
1395
1396 return ops->poll(file, sock, wait) | flag;
1397}
1398
1399static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1400{
1401 struct socket *sock = file->private_data;
1402
1403 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1404}
1405
1406static int sock_close(struct inode *inode, struct file *filp)
1407{
1408 __sock_release(SOCKET_I(inode), inode);
1409 return 0;
1410}
1411
1412/*
1413 * Update the socket async list
1414 *
1415 * Fasync_list locking strategy.
1416 *
1417 * 1. fasync_list is modified only under process context socket lock
1418 * i.e. under semaphore.
1419 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420 * or under socket lock
1421 */
1422
1423static int sock_fasync(int fd, struct file *filp, int on)
1424{
1425 struct socket *sock = filp->private_data;
1426 struct sock *sk = sock->sk;
1427 struct socket_wq *wq = &sock->wq;
1428
1429 if (sk == NULL)
1430 return -EINVAL;
1431
1432 lock_sock(sk);
1433 fasync_helper(fd, filp, on, &wq->fasync_list);
1434
1435 if (!wq->fasync_list)
1436 sock_reset_flag(sk, SOCK_FASYNC);
1437 else
1438 sock_set_flag(sk, SOCK_FASYNC);
1439
1440 release_sock(sk);
1441 return 0;
1442}
1443
1444/* This function may be called only under rcu_lock */
1445
1446int sock_wake_async(struct socket_wq *wq, int how, int band)
1447{
1448 if (!wq || !wq->fasync_list)
1449 return -1;
1450
1451 switch (how) {
1452 case SOCK_WAKE_WAITD:
1453 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454 break;
1455 goto call_kill;
1456 case SOCK_WAKE_SPACE:
1457 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458 break;
1459 fallthrough;
1460 case SOCK_WAKE_IO:
1461call_kill:
1462 kill_fasync(&wq->fasync_list, SIGIO, band);
1463 break;
1464 case SOCK_WAKE_URG:
1465 kill_fasync(&wq->fasync_list, SIGURG, band);
1466 }
1467
1468 return 0;
1469}
1470EXPORT_SYMBOL(sock_wake_async);
1471
1472/**
1473 * __sock_create - creates a socket
1474 * @net: net namespace
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1478 * @res: new socket
1479 * @kern: boolean for kernel space sockets
1480 *
1481 * Creates a new socket and assigns it to @res, passing through LSM.
1482 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483 * be set to true if the socket resides in kernel space.
1484 * This function internally uses GFP_KERNEL.
1485 */
1486
1487int __sock_create(struct net *net, int family, int type, int protocol,
1488 struct socket **res, int kern)
1489{
1490 int err;
1491 struct socket *sock;
1492 const struct net_proto_family *pf;
1493
1494 /*
1495 * Check protocol is in range
1496 */
1497 if (family < 0 || family >= NPROTO)
1498 return -EAFNOSUPPORT;
1499 if (type < 0 || type >= SOCK_MAX)
1500 return -EINVAL;
1501
1502 /* Compatibility.
1503
1504 This uglymoron is moved from INET layer to here to avoid
1505 deadlock in module load.
1506 */
1507 if (family == PF_INET && type == SOCK_PACKET) {
1508 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509 current->comm);
1510 family = PF_PACKET;
1511 }
1512
1513 err = security_socket_create(family, type, protocol, kern);
1514 if (err)
1515 return err;
1516
1517 /*
1518 * Allocate the socket and allow the family to set things up. if
1519 * the protocol is 0, the family is instructed to select an appropriate
1520 * default.
1521 */
1522 sock = sock_alloc();
1523 if (!sock) {
1524 net_warn_ratelimited("socket: no more sockets\n");
1525 return -ENFILE; /* Not exactly a match, but its the
1526 closest posix thing */
1527 }
1528
1529 sock->type = type;
1530
1531#ifdef CONFIG_MODULES
1532 /* Attempt to load a protocol module if the find failed.
1533 *
1534 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535 * requested real, full-featured networking support upon configuration.
1536 * Otherwise module support will break!
1537 */
1538 if (rcu_access_pointer(net_families[family]) == NULL)
1539 request_module("net-pf-%d", family);
1540#endif
1541
1542 rcu_read_lock();
1543 pf = rcu_dereference(net_families[family]);
1544 err = -EAFNOSUPPORT;
1545 if (!pf)
1546 goto out_release;
1547
1548 /*
1549 * We will call the ->create function, that possibly is in a loadable
1550 * module, so we have to bump that loadable module refcnt first.
1551 */
1552 if (!try_module_get(pf->owner))
1553 goto out_release;
1554
1555 /* Now protected by module ref count */
1556 rcu_read_unlock();
1557
1558 err = pf->create(net, sock, protocol, kern);
1559 if (err < 0) {
1560 /* ->create should release the allocated sock->sk object on error
1561 * and make sure sock->sk is set to NULL to avoid use-after-free
1562 */
1563 DEBUG_NET_WARN_ONCE(sock->sk,
1564 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565 pf->create, family, type, protocol);
1566 goto out_module_put;
1567 }
1568
1569 /*
1570 * Now to bump the refcnt of the [loadable] module that owns this
1571 * socket at sock_release time we decrement its refcnt.
1572 */
1573 if (!try_module_get(sock->ops->owner))
1574 goto out_module_busy;
1575
1576 /*
1577 * Now that we're done with the ->create function, the [loadable]
1578 * module can have its refcnt decremented
1579 */
1580 module_put(pf->owner);
1581 err = security_socket_post_create(sock, family, type, protocol, kern);
1582 if (err)
1583 goto out_sock_release;
1584 *res = sock;
1585
1586 return 0;
1587
1588out_module_busy:
1589 err = -EAFNOSUPPORT;
1590out_module_put:
1591 sock->ops = NULL;
1592 module_put(pf->owner);
1593out_sock_release:
1594 sock_release(sock);
1595 return err;
1596
1597out_release:
1598 rcu_read_unlock();
1599 goto out_sock_release;
1600}
1601EXPORT_SYMBOL(__sock_create);
1602
1603/**
1604 * sock_create - creates a socket
1605 * @family: protocol family (AF_INET, ...)
1606 * @type: communication type (SOCK_STREAM, ...)
1607 * @protocol: protocol (0, ...)
1608 * @res: new socket
1609 *
1610 * A wrapper around __sock_create().
1611 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1612 */
1613
1614int sock_create(int family, int type, int protocol, struct socket **res)
1615{
1616 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1617}
1618EXPORT_SYMBOL(sock_create);
1619
1620/**
1621 * sock_create_kern - creates a socket (kernel space)
1622 * @net: net namespace
1623 * @family: protocol family (AF_INET, ...)
1624 * @type: communication type (SOCK_STREAM, ...)
1625 * @protocol: protocol (0, ...)
1626 * @res: new socket
1627 *
1628 * A wrapper around __sock_create().
1629 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1630 */
1631
1632int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1633{
1634 return __sock_create(net, family, type, protocol, res, 1);
1635}
1636EXPORT_SYMBOL(sock_create_kern);
1637
1638static struct socket *__sys_socket_create(int family, int type, int protocol)
1639{
1640 struct socket *sock;
1641 int retval;
1642
1643 /* Check the SOCK_* constants for consistency. */
1644 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1648
1649 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650 return ERR_PTR(-EINVAL);
1651 type &= SOCK_TYPE_MASK;
1652
1653 retval = sock_create(family, type, protocol, &sock);
1654 if (retval < 0)
1655 return ERR_PTR(retval);
1656
1657 return sock;
1658}
1659
1660struct file *__sys_socket_file(int family, int type, int protocol)
1661{
1662 struct socket *sock;
1663 int flags;
1664
1665 sock = __sys_socket_create(family, type, protocol);
1666 if (IS_ERR(sock))
1667 return ERR_CAST(sock);
1668
1669 flags = type & ~SOCK_TYPE_MASK;
1670 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672
1673 return sock_alloc_file(sock, flags, NULL);
1674}
1675
1676/* A hook for bpf progs to attach to and update socket protocol.
1677 *
1678 * A static noinline declaration here could cause the compiler to
1679 * optimize away the function. A global noinline declaration will
1680 * keep the definition, but may optimize away the callsite.
1681 * Therefore, __weak is needed to ensure that the call is still
1682 * emitted, by telling the compiler that we don't know what the
1683 * function might eventually be.
1684 */
1685
1686__bpf_hook_start();
1687
1688__weak noinline int update_socket_protocol(int family, int type, int protocol)
1689{
1690 return protocol;
1691}
1692
1693__bpf_hook_end();
1694
1695int __sys_socket(int family, int type, int protocol)
1696{
1697 struct socket *sock;
1698 int flags;
1699
1700 sock = __sys_socket_create(family, type,
1701 update_socket_protocol(family, type, protocol));
1702 if (IS_ERR(sock))
1703 return PTR_ERR(sock);
1704
1705 flags = type & ~SOCK_TYPE_MASK;
1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1708
1709 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1710}
1711
1712SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1713{
1714 return __sys_socket(family, type, protocol);
1715}
1716
1717/*
1718 * Create a pair of connected sockets.
1719 */
1720
1721int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1722{
1723 struct socket *sock1, *sock2;
1724 int fd1, fd2, err;
1725 struct file *newfile1, *newfile2;
1726 int flags;
1727
1728 flags = type & ~SOCK_TYPE_MASK;
1729 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730 return -EINVAL;
1731 type &= SOCK_TYPE_MASK;
1732
1733 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735
1736 /*
1737 * reserve descriptors and make sure we won't fail
1738 * to return them to userland.
1739 */
1740 fd1 = get_unused_fd_flags(flags);
1741 if (unlikely(fd1 < 0))
1742 return fd1;
1743
1744 fd2 = get_unused_fd_flags(flags);
1745 if (unlikely(fd2 < 0)) {
1746 put_unused_fd(fd1);
1747 return fd2;
1748 }
1749
1750 err = put_user(fd1, &usockvec[0]);
1751 if (err)
1752 goto out;
1753
1754 err = put_user(fd2, &usockvec[1]);
1755 if (err)
1756 goto out;
1757
1758 /*
1759 * Obtain the first socket and check if the underlying protocol
1760 * supports the socketpair call.
1761 */
1762
1763 err = sock_create(family, type, protocol, &sock1);
1764 if (unlikely(err < 0))
1765 goto out;
1766
1767 err = sock_create(family, type, protocol, &sock2);
1768 if (unlikely(err < 0)) {
1769 sock_release(sock1);
1770 goto out;
1771 }
1772
1773 err = security_socket_socketpair(sock1, sock2);
1774 if (unlikely(err)) {
1775 sock_release(sock2);
1776 sock_release(sock1);
1777 goto out;
1778 }
1779
1780 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781 if (unlikely(err < 0)) {
1782 sock_release(sock2);
1783 sock_release(sock1);
1784 goto out;
1785 }
1786
1787 newfile1 = sock_alloc_file(sock1, flags, NULL);
1788 if (IS_ERR(newfile1)) {
1789 err = PTR_ERR(newfile1);
1790 sock_release(sock2);
1791 goto out;
1792 }
1793
1794 newfile2 = sock_alloc_file(sock2, flags, NULL);
1795 if (IS_ERR(newfile2)) {
1796 err = PTR_ERR(newfile2);
1797 fput(newfile1);
1798 goto out;
1799 }
1800
1801 audit_fd_pair(fd1, fd2);
1802
1803 fd_install(fd1, newfile1);
1804 fd_install(fd2, newfile2);
1805 return 0;
1806
1807out:
1808 put_unused_fd(fd2);
1809 put_unused_fd(fd1);
1810 return err;
1811}
1812
1813SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814 int __user *, usockvec)
1815{
1816 return __sys_socketpair(family, type, protocol, usockvec);
1817}
1818
1819int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820 int addrlen)
1821{
1822 int err;
1823
1824 err = security_socket_bind(sock, (struct sockaddr *)address,
1825 addrlen);
1826 if (!err)
1827 err = READ_ONCE(sock->ops)->bind(sock,
1828 (struct sockaddr *)address,
1829 addrlen);
1830 return err;
1831}
1832
1833/*
1834 * Bind a name to a socket. Nothing much to do here since it's
1835 * the protocol's responsibility to handle the local address.
1836 *
1837 * We move the socket address to kernel space before we call
1838 * the protocol layer (having also checked the address is ok).
1839 */
1840
1841int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1842{
1843 struct socket *sock;
1844 struct sockaddr_storage address;
1845 CLASS(fd, f)(fd);
1846 int err;
1847
1848 if (fd_empty(f))
1849 return -EBADF;
1850 sock = sock_from_file(fd_file(f));
1851 if (unlikely(!sock))
1852 return -ENOTSOCK;
1853
1854 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855 if (unlikely(err))
1856 return err;
1857
1858 return __sys_bind_socket(sock, &address, addrlen);
1859}
1860
1861SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1862{
1863 return __sys_bind(fd, umyaddr, addrlen);
1864}
1865
1866/*
1867 * Perform a listen. Basically, we allow the protocol to do anything
1868 * necessary for a listen, and if that works, we mark the socket as
1869 * ready for listening.
1870 */
1871int __sys_listen_socket(struct socket *sock, int backlog)
1872{
1873 int somaxconn, err;
1874
1875 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876 if ((unsigned int)backlog > somaxconn)
1877 backlog = somaxconn;
1878
1879 err = security_socket_listen(sock, backlog);
1880 if (!err)
1881 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882 return err;
1883}
1884
1885int __sys_listen(int fd, int backlog)
1886{
1887 CLASS(fd, f)(fd);
1888 struct socket *sock;
1889
1890 if (fd_empty(f))
1891 return -EBADF;
1892 sock = sock_from_file(fd_file(f));
1893 if (unlikely(!sock))
1894 return -ENOTSOCK;
1895
1896 return __sys_listen_socket(sock, backlog);
1897}
1898
1899SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1900{
1901 return __sys_listen(fd, backlog);
1902}
1903
1904struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905 struct sockaddr __user *upeer_sockaddr,
1906 int __user *upeer_addrlen, int flags)
1907{
1908 struct socket *sock, *newsock;
1909 struct file *newfile;
1910 int err, len;
1911 struct sockaddr_storage address;
1912 const struct proto_ops *ops;
1913
1914 sock = sock_from_file(file);
1915 if (!sock)
1916 return ERR_PTR(-ENOTSOCK);
1917
1918 newsock = sock_alloc();
1919 if (!newsock)
1920 return ERR_PTR(-ENFILE);
1921 ops = READ_ONCE(sock->ops);
1922
1923 newsock->type = sock->type;
1924 newsock->ops = ops;
1925
1926 /*
1927 * We don't need try_module_get here, as the listening socket (sock)
1928 * has the protocol module (sock->ops->owner) held.
1929 */
1930 __module_get(ops->owner);
1931
1932 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933 if (IS_ERR(newfile))
1934 return newfile;
1935
1936 err = security_socket_accept(sock, newsock);
1937 if (err)
1938 goto out_fd;
1939
1940 arg->flags |= sock->file->f_flags;
1941 err = ops->accept(sock, newsock, arg);
1942 if (err < 0)
1943 goto out_fd;
1944
1945 if (upeer_sockaddr) {
1946 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947 if (len < 0) {
1948 err = -ECONNABORTED;
1949 goto out_fd;
1950 }
1951 err = move_addr_to_user(&address,
1952 len, upeer_sockaddr, upeer_addrlen);
1953 if (err < 0)
1954 goto out_fd;
1955 }
1956
1957 /* File flags are not inherited via accept() unlike another OSes. */
1958 return newfile;
1959out_fd:
1960 fput(newfile);
1961 return ERR_PTR(err);
1962}
1963
1964static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965 int __user *upeer_addrlen, int flags)
1966{
1967 struct proto_accept_arg arg = { };
1968 struct file *newfile;
1969 int newfd;
1970
1971 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972 return -EINVAL;
1973
1974 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1976
1977 newfd = get_unused_fd_flags(flags);
1978 if (unlikely(newfd < 0))
1979 return newfd;
1980
1981 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982 flags);
1983 if (IS_ERR(newfile)) {
1984 put_unused_fd(newfd);
1985 return PTR_ERR(newfile);
1986 }
1987 fd_install(newfd, newfile);
1988 return newfd;
1989}
1990
1991/*
1992 * For accept, we attempt to create a new socket, set up the link
1993 * with the client, wake up the client, then return the new
1994 * connected fd. We collect the address of the connector in kernel
1995 * space and move it to user at the very end. This is unclean because
1996 * we open the socket then return an error.
1997 *
1998 * 1003.1g adds the ability to recvmsg() to query connection pending
1999 * status to recvmsg. We need to add that support in a way thats
2000 * clean when we restructure accept also.
2001 */
2002
2003int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004 int __user *upeer_addrlen, int flags)
2005{
2006 CLASS(fd, f)(fd);
2007
2008 if (fd_empty(f))
2009 return -EBADF;
2010 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011 upeer_addrlen, flags);
2012}
2013
2014SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015 int __user *, upeer_addrlen, int, flags)
2016{
2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2018}
2019
2020SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 int __user *, upeer_addrlen)
2022{
2023 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024}
2025
2026/*
2027 * Attempt to connect to a socket with the server address. The address
2028 * is in user space so we verify it is OK and move it to kernel space.
2029 *
2030 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 * break bindings
2032 *
2033 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 * other SEQPACKET protocols that take time to connect() as it doesn't
2035 * include the -EINPROGRESS status for such sockets.
2036 */
2037
2038int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039 int addrlen, int file_flags)
2040{
2041 struct socket *sock;
2042 int err;
2043
2044 sock = sock_from_file(file);
2045 if (!sock) {
2046 err = -ENOTSOCK;
2047 goto out;
2048 }
2049
2050 err =
2051 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052 if (err)
2053 goto out;
2054
2055 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056 addrlen, sock->file->f_flags | file_flags);
2057out:
2058 return err;
2059}
2060
2061int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062{
2063 struct sockaddr_storage address;
2064 CLASS(fd, f)(fd);
2065 int ret;
2066
2067 if (fd_empty(f))
2068 return -EBADF;
2069
2070 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071 if (ret)
2072 return ret;
2073
2074 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2075}
2076
2077SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078 int, addrlen)
2079{
2080 return __sys_connect(fd, uservaddr, addrlen);
2081}
2082
2083/*
2084 * Get the local address ('name') of a socket object. Move the obtained
2085 * name to user space.
2086 */
2087
2088int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089 int __user *usockaddr_len)
2090{
2091 struct socket *sock;
2092 struct sockaddr_storage address;
2093 CLASS(fd, f)(fd);
2094 int err;
2095
2096 if (fd_empty(f))
2097 return -EBADF;
2098 sock = sock_from_file(fd_file(f));
2099 if (unlikely(!sock))
2100 return -ENOTSOCK;
2101
2102 err = security_socket_getsockname(sock);
2103 if (err)
2104 return err;
2105
2106 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107 if (err < 0)
2108 return err;
2109
2110 /* "err" is actually length in this case */
2111 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112}
2113
2114SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115 int __user *, usockaddr_len)
2116{
2117 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2118}
2119
2120/*
2121 * Get the remote address ('name') of a socket object. Move the obtained
2122 * name to user space.
2123 */
2124
2125int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126 int __user *usockaddr_len)
2127{
2128 struct socket *sock;
2129 struct sockaddr_storage address;
2130 CLASS(fd, f)(fd);
2131 int err;
2132
2133 if (fd_empty(f))
2134 return -EBADF;
2135 sock = sock_from_file(fd_file(f));
2136 if (unlikely(!sock))
2137 return -ENOTSOCK;
2138
2139 err = security_socket_getpeername(sock);
2140 if (err)
2141 return err;
2142
2143 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144 if (err < 0)
2145 return err;
2146
2147 /* "err" is actually length in this case */
2148 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2149}
2150
2151SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152 int __user *, usockaddr_len)
2153{
2154 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2155}
2156
2157/*
2158 * Send a datagram to a given address. We move the address into kernel
2159 * space and check the user space data area is readable before invoking
2160 * the protocol.
2161 */
2162int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163 struct sockaddr __user *addr, int addr_len)
2164{
2165 struct socket *sock;
2166 struct sockaddr_storage address;
2167 int err;
2168 struct msghdr msg;
2169
2170 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171 if (unlikely(err))
2172 return err;
2173
2174 CLASS(fd, f)(fd);
2175 if (fd_empty(f))
2176 return -EBADF;
2177 sock = sock_from_file(fd_file(f));
2178 if (unlikely(!sock))
2179 return -ENOTSOCK;
2180
2181 msg.msg_name = NULL;
2182 msg.msg_control = NULL;
2183 msg.msg_controllen = 0;
2184 msg.msg_namelen = 0;
2185 msg.msg_ubuf = NULL;
2186 if (addr) {
2187 err = move_addr_to_kernel(addr, addr_len, &address);
2188 if (err < 0)
2189 return err;
2190 msg.msg_name = (struct sockaddr *)&address;
2191 msg.msg_namelen = addr_len;
2192 }
2193 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194 if (sock->file->f_flags & O_NONBLOCK)
2195 flags |= MSG_DONTWAIT;
2196 msg.msg_flags = flags;
2197 return __sock_sendmsg(sock, &msg);
2198}
2199
2200SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201 unsigned int, flags, struct sockaddr __user *, addr,
2202 int, addr_len)
2203{
2204 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2205}
2206
2207/*
2208 * Send a datagram down a socket.
2209 */
2210
2211SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212 unsigned int, flags)
2213{
2214 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2215}
2216
2217/*
2218 * Receive a frame from the socket and optionally record the address of the
2219 * sender. We verify the buffers are writable and if needed move the
2220 * sender address from kernel to user space.
2221 */
2222int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223 struct sockaddr __user *addr, int __user *addr_len)
2224{
2225 struct sockaddr_storage address;
2226 struct msghdr msg = {
2227 /* Save some cycles and don't copy the address if not needed */
2228 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2229 };
2230 struct socket *sock;
2231 int err, err2;
2232
2233 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234 if (unlikely(err))
2235 return err;
2236
2237 CLASS(fd, f)(fd);
2238
2239 if (fd_empty(f))
2240 return -EBADF;
2241 sock = sock_from_file(fd_file(f));
2242 if (unlikely(!sock))
2243 return -ENOTSOCK;
2244
2245 if (sock->file->f_flags & O_NONBLOCK)
2246 flags |= MSG_DONTWAIT;
2247 err = sock_recvmsg(sock, &msg, flags);
2248
2249 if (err >= 0 && addr != NULL) {
2250 err2 = move_addr_to_user(&address,
2251 msg.msg_namelen, addr, addr_len);
2252 if (err2 < 0)
2253 err = err2;
2254 }
2255 return err;
2256}
2257
2258SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259 unsigned int, flags, struct sockaddr __user *, addr,
2260 int __user *, addr_len)
2261{
2262 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2263}
2264
2265/*
2266 * Receive a datagram from a socket.
2267 */
2268
2269SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270 unsigned int, flags)
2271{
2272 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2273}
2274
2275static bool sock_use_custom_sol_socket(const struct socket *sock)
2276{
2277 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2278}
2279
2280int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281 int optname, sockptr_t optval, int optlen)
2282{
2283 const struct proto_ops *ops;
2284 char *kernel_optval = NULL;
2285 int err;
2286
2287 if (optlen < 0)
2288 return -EINVAL;
2289
2290 err = security_socket_setsockopt(sock, level, optname);
2291 if (err)
2292 goto out_put;
2293
2294 if (!compat)
2295 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296 optval, &optlen,
2297 &kernel_optval);
2298 if (err < 0)
2299 goto out_put;
2300 if (err > 0) {
2301 err = 0;
2302 goto out_put;
2303 }
2304
2305 if (kernel_optval)
2306 optval = KERNEL_SOCKPTR(kernel_optval);
2307 ops = READ_ONCE(sock->ops);
2308 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309 err = sock_setsockopt(sock, level, optname, optval, optlen);
2310 else if (unlikely(!ops->setsockopt))
2311 err = -EOPNOTSUPP;
2312 else
2313 err = ops->setsockopt(sock, level, optname, optval,
2314 optlen);
2315 kfree(kernel_optval);
2316out_put:
2317 return err;
2318}
2319EXPORT_SYMBOL(do_sock_setsockopt);
2320
2321/* Set a socket option. Because we don't know the option lengths we have
2322 * to pass the user mode parameter for the protocols to sort out.
2323 */
2324int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325 int optlen)
2326{
2327 sockptr_t optval = USER_SOCKPTR(user_optval);
2328 bool compat = in_compat_syscall();
2329 struct socket *sock;
2330 CLASS(fd, f)(fd);
2331
2332 if (fd_empty(f))
2333 return -EBADF;
2334 sock = sock_from_file(fd_file(f));
2335 if (unlikely(!sock))
2336 return -ENOTSOCK;
2337
2338 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339}
2340
2341SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342 char __user *, optval, int, optlen)
2343{
2344 return __sys_setsockopt(fd, level, optname, optval, optlen);
2345}
2346
2347INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348 int optname));
2349
2350int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351 int optname, sockptr_t optval, sockptr_t optlen)
2352{
2353 int max_optlen __maybe_unused = 0;
2354 const struct proto_ops *ops;
2355 int err;
2356
2357 err = security_socket_getsockopt(sock, level, optname);
2358 if (err)
2359 return err;
2360
2361 if (!compat)
2362 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2363
2364 ops = READ_ONCE(sock->ops);
2365 if (level == SOL_SOCKET) {
2366 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367 } else if (unlikely(!ops->getsockopt)) {
2368 err = -EOPNOTSUPP;
2369 } else {
2370 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371 "Invalid argument type"))
2372 return -EOPNOTSUPP;
2373
2374 err = ops->getsockopt(sock, level, optname, optval.user,
2375 optlen.user);
2376 }
2377
2378 if (!compat)
2379 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380 optval, optlen, max_optlen,
2381 err);
2382
2383 return err;
2384}
2385EXPORT_SYMBOL(do_sock_getsockopt);
2386
2387/*
2388 * Get a socket option. Because we don't know the option lengths we have
2389 * to pass a user mode parameter for the protocols to sort out.
2390 */
2391int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392 int __user *optlen)
2393{
2394 struct socket *sock;
2395 CLASS(fd, f)(fd);
2396
2397 if (fd_empty(f))
2398 return -EBADF;
2399 sock = sock_from_file(fd_file(f));
2400 if (unlikely(!sock))
2401 return -ENOTSOCK;
2402
2403 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2405}
2406
2407SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408 char __user *, optval, int __user *, optlen)
2409{
2410 return __sys_getsockopt(fd, level, optname, optval, optlen);
2411}
2412
2413/*
2414 * Shutdown a socket.
2415 */
2416
2417int __sys_shutdown_sock(struct socket *sock, int how)
2418{
2419 int err;
2420
2421 err = security_socket_shutdown(sock, how);
2422 if (!err)
2423 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2424
2425 return err;
2426}
2427
2428int __sys_shutdown(int fd, int how)
2429{
2430 struct socket *sock;
2431 CLASS(fd, f)(fd);
2432
2433 if (fd_empty(f))
2434 return -EBADF;
2435 sock = sock_from_file(fd_file(f));
2436 if (unlikely(!sock))
2437 return -ENOTSOCK;
2438
2439 return __sys_shutdown_sock(sock, how);
2440}
2441
2442SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2443{
2444 return __sys_shutdown(fd, how);
2445}
2446
2447/* A couple of helpful macros for getting the address of the 32/64 bit
2448 * fields which are the same type (int / unsigned) on our platforms.
2449 */
2450#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2452#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2453
2454struct used_address {
2455 struct sockaddr_storage name;
2456 unsigned int name_len;
2457};
2458
2459int __copy_msghdr(struct msghdr *kmsg,
2460 struct user_msghdr *msg,
2461 struct sockaddr __user **save_addr)
2462{
2463 ssize_t err;
2464
2465 kmsg->msg_control_is_user = true;
2466 kmsg->msg_get_inq = 0;
2467 kmsg->msg_control_user = msg->msg_control;
2468 kmsg->msg_controllen = msg->msg_controllen;
2469 kmsg->msg_flags = msg->msg_flags;
2470
2471 kmsg->msg_namelen = msg->msg_namelen;
2472 if (!msg->msg_name)
2473 kmsg->msg_namelen = 0;
2474
2475 if (kmsg->msg_namelen < 0)
2476 return -EINVAL;
2477
2478 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2480
2481 if (save_addr)
2482 *save_addr = msg->msg_name;
2483
2484 if (msg->msg_name && kmsg->msg_namelen) {
2485 if (!save_addr) {
2486 err = move_addr_to_kernel(msg->msg_name,
2487 kmsg->msg_namelen,
2488 kmsg->msg_name);
2489 if (err < 0)
2490 return err;
2491 }
2492 } else {
2493 kmsg->msg_name = NULL;
2494 kmsg->msg_namelen = 0;
2495 }
2496
2497 if (msg->msg_iovlen > UIO_MAXIOV)
2498 return -EMSGSIZE;
2499
2500 kmsg->msg_iocb = NULL;
2501 kmsg->msg_ubuf = NULL;
2502 return 0;
2503}
2504
2505static int copy_msghdr_from_user(struct msghdr *kmsg,
2506 struct user_msghdr __user *umsg,
2507 struct sockaddr __user **save_addr,
2508 struct iovec **iov)
2509{
2510 struct user_msghdr msg;
2511 ssize_t err;
2512
2513 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514 return -EFAULT;
2515
2516 err = __copy_msghdr(kmsg, &msg, save_addr);
2517 if (err)
2518 return err;
2519
2520 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521 msg.msg_iov, msg.msg_iovlen,
2522 UIO_FASTIOV, iov, &kmsg->msg_iter);
2523 return err < 0 ? err : 0;
2524}
2525
2526static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527 unsigned int flags, struct used_address *used_address,
2528 unsigned int allowed_msghdr_flags)
2529{
2530 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531 __aligned(sizeof(__kernel_size_t));
2532 /* 20 is size of ipv6_pktinfo */
2533 unsigned char *ctl_buf = ctl;
2534 int ctl_len;
2535 ssize_t err;
2536
2537 err = -ENOBUFS;
2538
2539 if (msg_sys->msg_controllen > INT_MAX)
2540 goto out;
2541 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542 ctl_len = msg_sys->msg_controllen;
2543 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544 err =
2545 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546 sizeof(ctl));
2547 if (err)
2548 goto out;
2549 ctl_buf = msg_sys->msg_control;
2550 ctl_len = msg_sys->msg_controllen;
2551 } else if (ctl_len) {
2552 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553 CMSG_ALIGN(sizeof(struct cmsghdr)));
2554 if (ctl_len > sizeof(ctl)) {
2555 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556 if (ctl_buf == NULL)
2557 goto out;
2558 }
2559 err = -EFAULT;
2560 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2561 goto out_freectl;
2562 msg_sys->msg_control = ctl_buf;
2563 msg_sys->msg_control_is_user = false;
2564 }
2565 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566 msg_sys->msg_flags = flags;
2567
2568 if (sock->file->f_flags & O_NONBLOCK)
2569 msg_sys->msg_flags |= MSG_DONTWAIT;
2570 /*
2571 * If this is sendmmsg() and current destination address is same as
2572 * previously succeeded address, omit asking LSM's decision.
2573 * used_address->name_len is initialized to UINT_MAX so that the first
2574 * destination address never matches.
2575 */
2576 if (used_address && msg_sys->msg_name &&
2577 used_address->name_len == msg_sys->msg_namelen &&
2578 !memcmp(&used_address->name, msg_sys->msg_name,
2579 used_address->name_len)) {
2580 err = sock_sendmsg_nosec(sock, msg_sys);
2581 goto out_freectl;
2582 }
2583 err = __sock_sendmsg(sock, msg_sys);
2584 /*
2585 * If this is sendmmsg() and sending to current destination address was
2586 * successful, remember it.
2587 */
2588 if (used_address && err >= 0) {
2589 used_address->name_len = msg_sys->msg_namelen;
2590 if (msg_sys->msg_name)
2591 memcpy(&used_address->name, msg_sys->msg_name,
2592 used_address->name_len);
2593 }
2594
2595out_freectl:
2596 if (ctl_buf != ctl)
2597 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598out:
2599 return err;
2600}
2601
2602static int sendmsg_copy_msghdr(struct msghdr *msg,
2603 struct user_msghdr __user *umsg, unsigned flags,
2604 struct iovec **iov)
2605{
2606 int err;
2607
2608 if (flags & MSG_CMSG_COMPAT) {
2609 struct compat_msghdr __user *msg_compat;
2610
2611 msg_compat = (struct compat_msghdr __user *) umsg;
2612 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613 } else {
2614 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2615 }
2616 if (err < 0)
2617 return err;
2618
2619 return 0;
2620}
2621
2622static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623 struct msghdr *msg_sys, unsigned int flags,
2624 struct used_address *used_address,
2625 unsigned int allowed_msghdr_flags)
2626{
2627 struct sockaddr_storage address;
2628 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 ssize_t err;
2630
2631 msg_sys->msg_name = &address;
2632
2633 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634 if (err < 0)
2635 return err;
2636
2637 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638 allowed_msghdr_flags);
2639 kfree(iov);
2640 return err;
2641}
2642
2643/*
2644 * BSD sendmsg interface
2645 */
2646long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647 unsigned int flags)
2648{
2649 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2650}
2651
2652long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653 bool forbid_cmsg_compat)
2654{
2655 struct msghdr msg_sys;
2656 struct socket *sock;
2657
2658 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659 return -EINVAL;
2660
2661 CLASS(fd, f)(fd);
2662
2663 if (fd_empty(f))
2664 return -EBADF;
2665 sock = sock_from_file(fd_file(f));
2666 if (unlikely(!sock))
2667 return -ENOTSOCK;
2668
2669 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2670}
2671
2672SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2673{
2674 return __sys_sendmsg(fd, msg, flags, true);
2675}
2676
2677/*
2678 * Linux sendmmsg interface
2679 */
2680
2681int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682 unsigned int flags, bool forbid_cmsg_compat)
2683{
2684 int err, datagrams;
2685 struct socket *sock;
2686 struct mmsghdr __user *entry;
2687 struct compat_mmsghdr __user *compat_entry;
2688 struct msghdr msg_sys;
2689 struct used_address used_address;
2690 unsigned int oflags = flags;
2691
2692 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 return -EINVAL;
2694
2695 if (vlen > UIO_MAXIOV)
2696 vlen = UIO_MAXIOV;
2697
2698 datagrams = 0;
2699
2700 CLASS(fd, f)(fd);
2701
2702 if (fd_empty(f))
2703 return -EBADF;
2704 sock = sock_from_file(fd_file(f));
2705 if (unlikely(!sock))
2706 return -ENOTSOCK;
2707
2708 used_address.name_len = UINT_MAX;
2709 entry = mmsg;
2710 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 err = 0;
2712 flags |= MSG_BATCH;
2713
2714 while (datagrams < vlen) {
2715 if (datagrams == vlen - 1)
2716 flags = oflags;
2717
2718 if (MSG_CMSG_COMPAT & flags) {
2719 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720 &msg_sys, flags, &used_address, MSG_EOR);
2721 if (err < 0)
2722 break;
2723 err = __put_user(err, &compat_entry->msg_len);
2724 ++compat_entry;
2725 } else {
2726 err = ___sys_sendmsg(sock,
2727 (struct user_msghdr __user *)entry,
2728 &msg_sys, flags, &used_address, MSG_EOR);
2729 if (err < 0)
2730 break;
2731 err = put_user(err, &entry->msg_len);
2732 ++entry;
2733 }
2734
2735 if (err)
2736 break;
2737 ++datagrams;
2738 if (msg_data_left(&msg_sys))
2739 break;
2740 cond_resched();
2741 }
2742
2743 /* We only return an error if no datagrams were able to be sent */
2744 if (datagrams != 0)
2745 return datagrams;
2746
2747 return err;
2748}
2749
2750SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 unsigned int, vlen, unsigned int, flags)
2752{
2753 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2754}
2755
2756static int recvmsg_copy_msghdr(struct msghdr *msg,
2757 struct user_msghdr __user *umsg, unsigned flags,
2758 struct sockaddr __user **uaddr,
2759 struct iovec **iov)
2760{
2761 ssize_t err;
2762
2763 if (MSG_CMSG_COMPAT & flags) {
2764 struct compat_msghdr __user *msg_compat;
2765
2766 msg_compat = (struct compat_msghdr __user *) umsg;
2767 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 } else {
2769 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770 }
2771 if (err < 0)
2772 return err;
2773
2774 return 0;
2775}
2776
2777static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 struct user_msghdr __user *msg,
2779 struct sockaddr __user *uaddr,
2780 unsigned int flags, int nosec)
2781{
2782 struct compat_msghdr __user *msg_compat =
2783 (struct compat_msghdr __user *) msg;
2784 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 struct sockaddr_storage addr;
2786 unsigned long cmsg_ptr;
2787 int len;
2788 ssize_t err;
2789
2790 msg_sys->msg_name = &addr;
2791 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793
2794 /* We assume all kernel code knows the size of sockaddr_storage */
2795 msg_sys->msg_namelen = 0;
2796
2797 if (sock->file->f_flags & O_NONBLOCK)
2798 flags |= MSG_DONTWAIT;
2799
2800 if (unlikely(nosec))
2801 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 else
2803 err = sock_recvmsg(sock, msg_sys, flags);
2804
2805 if (err < 0)
2806 goto out;
2807 len = err;
2808
2809 if (uaddr != NULL) {
2810 err = move_addr_to_user(&addr,
2811 msg_sys->msg_namelen, uaddr,
2812 uaddr_len);
2813 if (err < 0)
2814 goto out;
2815 }
2816 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 COMPAT_FLAGS(msg));
2818 if (err)
2819 goto out;
2820 if (MSG_CMSG_COMPAT & flags)
2821 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 &msg_compat->msg_controllen);
2823 else
2824 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 &msg->msg_controllen);
2826 if (err)
2827 goto out;
2828 err = len;
2829out:
2830 return err;
2831}
2832
2833static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835{
2836 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 /* user mode address pointers */
2838 struct sockaddr __user *uaddr;
2839 ssize_t err;
2840
2841 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 if (err < 0)
2843 return err;
2844
2845 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 kfree(iov);
2847 return err;
2848}
2849
2850/*
2851 * BSD recvmsg interface
2852 */
2853
2854long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 struct user_msghdr __user *umsg,
2856 struct sockaddr __user *uaddr, unsigned int flags)
2857{
2858 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859}
2860
2861long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 bool forbid_cmsg_compat)
2863{
2864 struct msghdr msg_sys;
2865 struct socket *sock;
2866
2867 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868 return -EINVAL;
2869
2870 CLASS(fd, f)(fd);
2871
2872 if (fd_empty(f))
2873 return -EBADF;
2874 sock = sock_from_file(fd_file(f));
2875 if (unlikely(!sock))
2876 return -ENOTSOCK;
2877
2878 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2879}
2880
2881SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882 unsigned int, flags)
2883{
2884 return __sys_recvmsg(fd, msg, flags, true);
2885}
2886
2887/*
2888 * Linux recvmmsg interface
2889 */
2890
2891static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892 unsigned int vlen, unsigned int flags,
2893 struct timespec64 *timeout)
2894{
2895 int err = 0, datagrams;
2896 struct socket *sock;
2897 struct mmsghdr __user *entry;
2898 struct compat_mmsghdr __user *compat_entry;
2899 struct msghdr msg_sys;
2900 struct timespec64 end_time;
2901 struct timespec64 timeout64;
2902
2903 if (timeout &&
2904 poll_select_set_timeout(&end_time, timeout->tv_sec,
2905 timeout->tv_nsec))
2906 return -EINVAL;
2907
2908 datagrams = 0;
2909
2910 CLASS(fd, f)(fd);
2911
2912 if (fd_empty(f))
2913 return -EBADF;
2914 sock = sock_from_file(fd_file(f));
2915 if (unlikely(!sock))
2916 return -ENOTSOCK;
2917
2918 if (likely(!(flags & MSG_ERRQUEUE))) {
2919 err = sock_error(sock->sk);
2920 if (err)
2921 return err;
2922 }
2923
2924 entry = mmsg;
2925 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2926
2927 while (datagrams < vlen) {
2928 /*
2929 * No need to ask LSM for more than the first datagram.
2930 */
2931 if (MSG_CMSG_COMPAT & flags) {
2932 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933 &msg_sys, flags & ~MSG_WAITFORONE,
2934 datagrams);
2935 if (err < 0)
2936 break;
2937 err = __put_user(err, &compat_entry->msg_len);
2938 ++compat_entry;
2939 } else {
2940 err = ___sys_recvmsg(sock,
2941 (struct user_msghdr __user *)entry,
2942 &msg_sys, flags & ~MSG_WAITFORONE,
2943 datagrams);
2944 if (err < 0)
2945 break;
2946 err = put_user(err, &entry->msg_len);
2947 ++entry;
2948 }
2949
2950 if (err)
2951 break;
2952 ++datagrams;
2953
2954 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955 if (flags & MSG_WAITFORONE)
2956 flags |= MSG_DONTWAIT;
2957
2958 if (timeout) {
2959 ktime_get_ts64(&timeout64);
2960 *timeout = timespec64_sub(end_time, timeout64);
2961 if (timeout->tv_sec < 0) {
2962 timeout->tv_sec = timeout->tv_nsec = 0;
2963 break;
2964 }
2965
2966 /* Timeout, return less than vlen datagrams */
2967 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968 break;
2969 }
2970
2971 /* Out of band data, return right away */
2972 if (msg_sys.msg_flags & MSG_OOB)
2973 break;
2974 cond_resched();
2975 }
2976
2977 if (err == 0)
2978 return datagrams;
2979
2980 if (datagrams == 0)
2981 return err;
2982
2983 /*
2984 * We may return less entries than requested (vlen) if the
2985 * sock is non block and there aren't enough datagrams...
2986 */
2987 if (err != -EAGAIN) {
2988 /*
2989 * ... or if recvmsg returns an error after we
2990 * received some datagrams, where we record the
2991 * error to return on the next call or if the
2992 * app asks about it using getsockopt(SO_ERROR).
2993 */
2994 WRITE_ONCE(sock->sk->sk_err, -err);
2995 }
2996 return datagrams;
2997}
2998
2999int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000 unsigned int vlen, unsigned int flags,
3001 struct __kernel_timespec __user *timeout,
3002 struct old_timespec32 __user *timeout32)
3003{
3004 int datagrams;
3005 struct timespec64 timeout_sys;
3006
3007 if (timeout && get_timespec64(&timeout_sys, timeout))
3008 return -EFAULT;
3009
3010 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011 return -EFAULT;
3012
3013 if (!timeout && !timeout32)
3014 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3015
3016 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3017
3018 if (datagrams <= 0)
3019 return datagrams;
3020
3021 if (timeout && put_timespec64(&timeout_sys, timeout))
3022 datagrams = -EFAULT;
3023
3024 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025 datagrams = -EFAULT;
3026
3027 return datagrams;
3028}
3029
3030SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031 unsigned int, vlen, unsigned int, flags,
3032 struct __kernel_timespec __user *, timeout)
3033{
3034 if (flags & MSG_CMSG_COMPAT)
3035 return -EINVAL;
3036
3037 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3038}
3039
3040#ifdef CONFIG_COMPAT_32BIT_TIME
3041SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042 unsigned int, vlen, unsigned int, flags,
3043 struct old_timespec32 __user *, timeout)
3044{
3045 if (flags & MSG_CMSG_COMPAT)
3046 return -EINVAL;
3047
3048 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3049}
3050#endif
3051
3052#ifdef __ARCH_WANT_SYS_SOCKETCALL
3053/* Argument list sizes for sys_socketcall */
3054#define AL(x) ((x) * sizeof(unsigned long))
3055static const unsigned char nargs[21] = {
3056 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059 AL(4), AL(5), AL(4)
3060};
3061
3062#undef AL
3063
3064/*
3065 * System call vectors.
3066 *
3067 * Argument checking cleaned up. Saved 20% in size.
3068 * This function doesn't need to set the kernel lock because
3069 * it is set by the callees.
3070 */
3071
3072SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3073{
3074 unsigned long a[AUDITSC_ARGS];
3075 unsigned long a0, a1;
3076 int err;
3077 unsigned int len;
3078
3079 if (call < 1 || call > SYS_SENDMMSG)
3080 return -EINVAL;
3081 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3082
3083 len = nargs[call];
3084 if (len > sizeof(a))
3085 return -EINVAL;
3086
3087 /* copy_from_user should be SMP safe. */
3088 if (copy_from_user(a, args, len))
3089 return -EFAULT;
3090
3091 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092 if (err)
3093 return err;
3094
3095 a0 = a[0];
3096 a1 = a[1];
3097
3098 switch (call) {
3099 case SYS_SOCKET:
3100 err = __sys_socket(a0, a1, a[2]);
3101 break;
3102 case SYS_BIND:
3103 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104 break;
3105 case SYS_CONNECT:
3106 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107 break;
3108 case SYS_LISTEN:
3109 err = __sys_listen(a0, a1);
3110 break;
3111 case SYS_ACCEPT:
3112 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113 (int __user *)a[2], 0);
3114 break;
3115 case SYS_GETSOCKNAME:
3116 err =
3117 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118 (int __user *)a[2]);
3119 break;
3120 case SYS_GETPEERNAME:
3121 err =
3122 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123 (int __user *)a[2]);
3124 break;
3125 case SYS_SOCKETPAIR:
3126 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127 break;
3128 case SYS_SEND:
3129 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130 NULL, 0);
3131 break;
3132 case SYS_SENDTO:
3133 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 (struct sockaddr __user *)a[4], a[5]);
3135 break;
3136 case SYS_RECV:
3137 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138 NULL, NULL);
3139 break;
3140 case SYS_RECVFROM:
3141 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 (struct sockaddr __user *)a[4],
3143 (int __user *)a[5]);
3144 break;
3145 case SYS_SHUTDOWN:
3146 err = __sys_shutdown(a0, a1);
3147 break;
3148 case SYS_SETSOCKOPT:
3149 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150 a[4]);
3151 break;
3152 case SYS_GETSOCKOPT:
3153 err =
3154 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155 (int __user *)a[4]);
3156 break;
3157 case SYS_SENDMSG:
3158 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159 a[2], true);
3160 break;
3161 case SYS_SENDMMSG:
3162 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163 a[3], true);
3164 break;
3165 case SYS_RECVMSG:
3166 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167 a[2], true);
3168 break;
3169 case SYS_RECVMMSG:
3170 if (IS_ENABLED(CONFIG_64BIT))
3171 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172 a[2], a[3],
3173 (struct __kernel_timespec __user *)a[4],
3174 NULL);
3175 else
3176 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177 a[2], a[3], NULL,
3178 (struct old_timespec32 __user *)a[4]);
3179 break;
3180 case SYS_ACCEPT4:
3181 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182 (int __user *)a[2], a[3]);
3183 break;
3184 default:
3185 err = -EINVAL;
3186 break;
3187 }
3188 return err;
3189}
3190
3191#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3192
3193/**
3194 * sock_register - add a socket protocol handler
3195 * @ops: description of protocol
3196 *
3197 * This function is called by a protocol handler that wants to
3198 * advertise its address family, and have it linked into the
3199 * socket interface. The value ops->family corresponds to the
3200 * socket system call protocol family.
3201 */
3202int sock_register(const struct net_proto_family *ops)
3203{
3204 int err;
3205
3206 if (ops->family >= NPROTO) {
3207 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208 return -ENOBUFS;
3209 }
3210
3211 spin_lock(&net_family_lock);
3212 if (rcu_dereference_protected(net_families[ops->family],
3213 lockdep_is_held(&net_family_lock)))
3214 err = -EEXIST;
3215 else {
3216 rcu_assign_pointer(net_families[ops->family], ops);
3217 err = 0;
3218 }
3219 spin_unlock(&net_family_lock);
3220
3221 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222 return err;
3223}
3224EXPORT_SYMBOL(sock_register);
3225
3226/**
3227 * sock_unregister - remove a protocol handler
3228 * @family: protocol family to remove
3229 *
3230 * This function is called by a protocol handler that wants to
3231 * remove its address family, and have it unlinked from the
3232 * new socket creation.
3233 *
3234 * If protocol handler is a module, then it can use module reference
3235 * counts to protect against new references. If protocol handler is not
3236 * a module then it needs to provide its own protection in
3237 * the ops->create routine.
3238 */
3239void sock_unregister(int family)
3240{
3241 BUG_ON(family < 0 || family >= NPROTO);
3242
3243 spin_lock(&net_family_lock);
3244 RCU_INIT_POINTER(net_families[family], NULL);
3245 spin_unlock(&net_family_lock);
3246
3247 synchronize_rcu();
3248
3249 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3250}
3251EXPORT_SYMBOL(sock_unregister);
3252
3253bool sock_is_registered(int family)
3254{
3255 return family < NPROTO && rcu_access_pointer(net_families[family]);
3256}
3257
3258static int __init sock_init(void)
3259{
3260 int err;
3261 /*
3262 * Initialize the network sysctl infrastructure.
3263 */
3264 err = net_sysctl_init();
3265 if (err)
3266 goto out;
3267
3268 /*
3269 * Initialize skbuff SLAB cache
3270 */
3271 skb_init();
3272
3273 /*
3274 * Initialize the protocols module.
3275 */
3276
3277 init_inodecache();
3278
3279 err = register_filesystem(&sock_fs_type);
3280 if (err)
3281 goto out;
3282 sock_mnt = kern_mount(&sock_fs_type);
3283 if (IS_ERR(sock_mnt)) {
3284 err = PTR_ERR(sock_mnt);
3285 goto out_mount;
3286 }
3287
3288 /* The real protocol initialization is performed in later initcalls.
3289 */
3290
3291#ifdef CONFIG_NETFILTER
3292 err = netfilter_init();
3293 if (err)
3294 goto out;
3295#endif
3296
3297 ptp_classifier_init();
3298
3299out:
3300 return err;
3301
3302out_mount:
3303 unregister_filesystem(&sock_fs_type);
3304 goto out;
3305}
3306
3307core_initcall(sock_init); /* early initcall */
3308
3309#ifdef CONFIG_PROC_FS
3310void socket_seq_show(struct seq_file *seq)
3311{
3312 seq_printf(seq, "sockets: used %d\n",
3313 sock_inuse_get(seq->private));
3314}
3315#endif /* CONFIG_PROC_FS */
3316
3317/* Handle the fact that while struct ifreq has the same *layout* on
3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319 * which are handled elsewhere, it still has different *size* due to
3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321 * resulting in struct ifreq being 32 and 40 bytes respectively).
3322 * As a result, if the struct happens to be at the end of a page and
3323 * the next page isn't readable/writable, we get a fault. To prevent
3324 * that, copy back and forth to the full size.
3325 */
3326int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3327{
3328 if (in_compat_syscall()) {
3329 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3330
3331 memset(ifr, 0, sizeof(*ifr));
3332 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333 return -EFAULT;
3334
3335 if (ifrdata)
3336 *ifrdata = compat_ptr(ifr32->ifr_data);
3337
3338 return 0;
3339 }
3340
3341 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342 return -EFAULT;
3343
3344 if (ifrdata)
3345 *ifrdata = ifr->ifr_data;
3346
3347 return 0;
3348}
3349EXPORT_SYMBOL(get_user_ifreq);
3350
3351int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3352{
3353 size_t size = sizeof(*ifr);
3354
3355 if (in_compat_syscall())
3356 size = sizeof(struct compat_ifreq);
3357
3358 if (copy_to_user(arg, ifr, size))
3359 return -EFAULT;
3360
3361 return 0;
3362}
3363EXPORT_SYMBOL(put_user_ifreq);
3364
3365#ifdef CONFIG_COMPAT
3366static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3367{
3368 compat_uptr_t uptr32;
3369 struct ifreq ifr;
3370 void __user *saved;
3371 int err;
3372
3373 if (get_user_ifreq(&ifr, NULL, uifr32))
3374 return -EFAULT;
3375
3376 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377 return -EFAULT;
3378
3379 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3381
3382 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383 if (!err) {
3384 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385 if (put_user_ifreq(&ifr, uifr32))
3386 err = -EFAULT;
3387 }
3388 return err;
3389}
3390
3391/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393 struct compat_ifreq __user *u_ifreq32)
3394{
3395 struct ifreq ifreq;
3396 void __user *data;
3397
3398 if (!is_socket_ioctl_cmd(cmd))
3399 return -ENOTTY;
3400 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3401 return -EFAULT;
3402 ifreq.ifr_data = data;
3403
3404 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3405}
3406
3407static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408 unsigned int cmd, unsigned long arg)
3409{
3410 void __user *argp = compat_ptr(arg);
3411 struct sock *sk = sock->sk;
3412 struct net *net = sock_net(sk);
3413 const struct proto_ops *ops;
3414
3415 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 return sock_ioctl(file, cmd, (unsigned long)argp);
3417
3418 switch (cmd) {
3419 case SIOCWANDEV:
3420 return compat_siocwandev(net, argp);
3421 case SIOCGSTAMP_OLD:
3422 case SIOCGSTAMPNS_OLD:
3423 ops = READ_ONCE(sock->ops);
3424 if (!ops->gettstamp)
3425 return -ENOIOCTLCMD;
3426 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427 !COMPAT_USE_64BIT_TIME);
3428
3429 case SIOCETHTOOL:
3430 case SIOCBONDSLAVEINFOQUERY:
3431 case SIOCBONDINFOQUERY:
3432 case SIOCSHWTSTAMP:
3433 case SIOCGHWTSTAMP:
3434 return compat_ifr_data_ioctl(net, cmd, argp);
3435
3436 case FIOSETOWN:
3437 case SIOCSPGRP:
3438 case FIOGETOWN:
3439 case SIOCGPGRP:
3440 case SIOCBRADDBR:
3441 case SIOCBRDELBR:
3442 case SIOCGIFVLAN:
3443 case SIOCSIFVLAN:
3444 case SIOCGSKNS:
3445 case SIOCGSTAMP_NEW:
3446 case SIOCGSTAMPNS_NEW:
3447 case SIOCGIFCONF:
3448 case SIOCSIFBR:
3449 case SIOCGIFBR:
3450 return sock_ioctl(file, cmd, arg);
3451
3452 case SIOCGIFFLAGS:
3453 case SIOCSIFFLAGS:
3454 case SIOCGIFMAP:
3455 case SIOCSIFMAP:
3456 case SIOCGIFMETRIC:
3457 case SIOCSIFMETRIC:
3458 case SIOCGIFMTU:
3459 case SIOCSIFMTU:
3460 case SIOCGIFMEM:
3461 case SIOCSIFMEM:
3462 case SIOCGIFHWADDR:
3463 case SIOCSIFHWADDR:
3464 case SIOCADDMULTI:
3465 case SIOCDELMULTI:
3466 case SIOCGIFINDEX:
3467 case SIOCGIFADDR:
3468 case SIOCSIFADDR:
3469 case SIOCSIFHWBROADCAST:
3470 case SIOCDIFADDR:
3471 case SIOCGIFBRDADDR:
3472 case SIOCSIFBRDADDR:
3473 case SIOCGIFDSTADDR:
3474 case SIOCSIFDSTADDR:
3475 case SIOCGIFNETMASK:
3476 case SIOCSIFNETMASK:
3477 case SIOCSIFPFLAGS:
3478 case SIOCGIFPFLAGS:
3479 case SIOCGIFTXQLEN:
3480 case SIOCSIFTXQLEN:
3481 case SIOCBRADDIF:
3482 case SIOCBRDELIF:
3483 case SIOCGIFNAME:
3484 case SIOCSIFNAME:
3485 case SIOCGMIIPHY:
3486 case SIOCGMIIREG:
3487 case SIOCSMIIREG:
3488 case SIOCBONDENSLAVE:
3489 case SIOCBONDRELEASE:
3490 case SIOCBONDSETHWADDR:
3491 case SIOCBONDCHANGEACTIVE:
3492 case SIOCSARP:
3493 case SIOCGARP:
3494 case SIOCDARP:
3495 case SIOCOUTQ:
3496 case SIOCOUTQNSD:
3497 case SIOCATMARK:
3498 return sock_do_ioctl(net, sock, cmd, arg);
3499 }
3500
3501 return -ENOIOCTLCMD;
3502}
3503
3504static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505 unsigned long arg)
3506{
3507 struct socket *sock = file->private_data;
3508 const struct proto_ops *ops = READ_ONCE(sock->ops);
3509 int ret = -ENOIOCTLCMD;
3510 struct sock *sk;
3511 struct net *net;
3512
3513 sk = sock->sk;
3514 net = sock_net(sk);
3515
3516 if (ops->compat_ioctl)
3517 ret = ops->compat_ioctl(sock, cmd, arg);
3518
3519 if (ret == -ENOIOCTLCMD &&
3520 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521 ret = compat_wext_handle_ioctl(net, cmd, arg);
3522
3523 if (ret == -ENOIOCTLCMD)
3524 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3525
3526 return ret;
3527}
3528#endif
3529
3530/**
3531 * kernel_bind - bind an address to a socket (kernel space)
3532 * @sock: socket
3533 * @addr: address
3534 * @addrlen: length of address
3535 *
3536 * Returns 0 or an error.
3537 */
3538
3539int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3540{
3541 struct sockaddr_storage address;
3542
3543 memcpy(&address, addr, addrlen);
3544
3545 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546 addrlen);
3547}
3548EXPORT_SYMBOL(kernel_bind);
3549
3550/**
3551 * kernel_listen - move socket to listening state (kernel space)
3552 * @sock: socket
3553 * @backlog: pending connections queue size
3554 *
3555 * Returns 0 or an error.
3556 */
3557
3558int kernel_listen(struct socket *sock, int backlog)
3559{
3560 return READ_ONCE(sock->ops)->listen(sock, backlog);
3561}
3562EXPORT_SYMBOL(kernel_listen);
3563
3564/**
3565 * kernel_accept - accept a connection (kernel space)
3566 * @sock: listening socket
3567 * @newsock: new connected socket
3568 * @flags: flags
3569 *
3570 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571 * If it fails, @newsock is guaranteed to be %NULL.
3572 * Returns 0 or an error.
3573 */
3574
3575int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3576{
3577 struct sock *sk = sock->sk;
3578 const struct proto_ops *ops = READ_ONCE(sock->ops);
3579 struct proto_accept_arg arg = {
3580 .flags = flags,
3581 .kern = true,
3582 };
3583 int err;
3584
3585 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 newsock);
3587 if (err < 0)
3588 goto done;
3589
3590 err = ops->accept(sock, *newsock, &arg);
3591 if (err < 0) {
3592 sock_release(*newsock);
3593 *newsock = NULL;
3594 goto done;
3595 }
3596
3597 (*newsock)->ops = ops;
3598 __module_get(ops->owner);
3599
3600done:
3601 return err;
3602}
3603EXPORT_SYMBOL(kernel_accept);
3604
3605/**
3606 * kernel_connect - connect a socket (kernel space)
3607 * @sock: socket
3608 * @addr: address
3609 * @addrlen: address length
3610 * @flags: flags (O_NONBLOCK, ...)
3611 *
3612 * For datagram sockets, @addr is the address to which datagrams are sent
3613 * by default, and the only address from which datagrams are received.
3614 * For stream sockets, attempts to connect to @addr.
3615 * Returns 0 or an error code.
3616 */
3617
3618int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619 int flags)
3620{
3621 struct sockaddr_storage address;
3622
3623 memcpy(&address, addr, addrlen);
3624
3625 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626 addrlen, flags);
3627}
3628EXPORT_SYMBOL(kernel_connect);
3629
3630/**
3631 * kernel_getsockname - get the address which the socket is bound (kernel space)
3632 * @sock: socket
3633 * @addr: address holder
3634 *
3635 * Fills the @addr pointer with the address which the socket is bound.
3636 * Returns the length of the address in bytes or an error code.
3637 */
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640{
3641 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
3644
3645/**
3646 * kernel_getpeername - get the address which the socket is connected (kernel space)
3647 * @sock: socket
3648 * @addr: address holder
3649 *
3650 * Fills the @addr pointer with the address which the socket is connected.
3651 * Returns the length of the address in bytes or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 * @sock: socket
3663 * @how: connection part
3664 *
3665 * Returns 0 or an error.
3666 */
3667
3668int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669{
3670 return READ_ONCE(sock->ops)->shutdown(sock, how);
3671}
3672EXPORT_SYMBOL(kernel_sock_shutdown);
3673
3674/**
3675 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 * @sk: socket
3677 *
3678 * This routine returns the IP overhead imposed by a socket i.e.
3679 * the length of the underlying IP header, depending on whether
3680 * this is an IPv4 or IPv6 socket and the length from IP options turned
3681 * on at the socket. Assumes that the caller has a lock on the socket.
3682 */
3683
3684u32 kernel_sock_ip_overhead(struct sock *sk)
3685{
3686 struct inet_sock *inet;
3687 struct ip_options_rcu *opt;
3688 u32 overhead = 0;
3689#if IS_ENABLED(CONFIG_IPV6)
3690 struct ipv6_pinfo *np;
3691 struct ipv6_txoptions *optv6 = NULL;
3692#endif /* IS_ENABLED(CONFIG_IPV6) */
3693
3694 if (!sk)
3695 return overhead;
3696
3697 switch (sk->sk_family) {
3698 case AF_INET:
3699 inet = inet_sk(sk);
3700 overhead += sizeof(struct iphdr);
3701 opt = rcu_dereference_protected(inet->inet_opt,
3702 sock_owned_by_user(sk));
3703 if (opt)
3704 overhead += opt->opt.optlen;
3705 return overhead;
3706#if IS_ENABLED(CONFIG_IPV6)
3707 case AF_INET6:
3708 np = inet6_sk(sk);
3709 overhead += sizeof(struct ipv6hdr);
3710 if (np)
3711 optv6 = rcu_dereference_protected(np->opt,
3712 sock_owned_by_user(sk));
3713 if (optv6)
3714 overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 return overhead;
3716#endif /* IS_ENABLED(CONFIG_IPV6) */
3717 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 return overhead;
3719 }
3720}
3721EXPORT_SYMBOL(kernel_sock_ip_overhead);
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109
110#ifdef CONFIG_NET_RX_BUSY_POLL
111unsigned int sysctl_net_busy_read __read_mostly;
112unsigned int sysctl_net_busy_poll __read_mostly;
113#endif
114
115static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
116static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137/*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149#ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151#endif
152 .mmap = sock_mmap,
153 .open = sock_no_open, /* special open code to disallow open via /proc */
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
159};
160
161/*
162 * The protocol list. Each protocol is registered in here.
163 */
164
165static DEFINE_SPINLOCK(net_family_lock);
166static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168/*
169 * Statistics counters of the socket lists
170 */
171
172static DEFINE_PER_CPU(int, sockets_in_use);
173
174/*
175 * Support routines.
176 * Move socket addresses back and forth across the kernel/user
177 * divide and look after the messy bits.
178 */
179
180/**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192{
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200}
201
202/**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220 void __user *uaddr, int __user *ulen)
221{
222 int err;
223 int len;
224
225 BUG_ON(klen > sizeof(struct sockaddr_storage));
226 err = get_user(len, ulen);
227 if (err)
228 return err;
229 if (len > klen)
230 len = klen;
231 if (len < 0)
232 return -EINVAL;
233 if (len) {
234 if (audit_sockaddr(klen, kaddr))
235 return -ENOMEM;
236 if (copy_to_user(uaddr, kaddr, len))
237 return -EFAULT;
238 }
239 /*
240 * "fromlen shall refer to the value before truncation.."
241 * 1003.1g
242 */
243 return __put_user(klen, ulen);
244}
245
246static struct kmem_cache *sock_inode_cachep __read_mostly;
247
248static struct inode *sock_alloc_inode(struct super_block *sb)
249{
250 struct socket_alloc *ei;
251 struct socket_wq *wq;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
257 if (!wq) {
258 kmem_cache_free(sock_inode_cachep, ei);
259 return NULL;
260 }
261 init_waitqueue_head(&wq->wait);
262 wq->fasync_list = NULL;
263 RCU_INIT_POINTER(ei->socket.wq, wq);
264
265 ei->socket.state = SS_UNCONNECTED;
266 ei->socket.flags = 0;
267 ei->socket.ops = NULL;
268 ei->socket.sk = NULL;
269 ei->socket.file = NULL;
270
271 return &ei->vfs_inode;
272}
273
274static void sock_destroy_inode(struct inode *inode)
275{
276 struct socket_alloc *ei;
277 struct socket_wq *wq;
278
279 ei = container_of(inode, struct socket_alloc, vfs_inode);
280 wq = rcu_dereference_protected(ei->socket.wq, 1);
281 kfree_rcu(wq, rcu);
282 kmem_cache_free(sock_inode_cachep, ei);
283}
284
285static void init_once(void *foo)
286{
287 struct socket_alloc *ei = (struct socket_alloc *)foo;
288
289 inode_init_once(&ei->vfs_inode);
290}
291
292static int init_inodecache(void)
293{
294 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
295 sizeof(struct socket_alloc),
296 0,
297 (SLAB_HWCACHE_ALIGN |
298 SLAB_RECLAIM_ACCOUNT |
299 SLAB_MEM_SPREAD),
300 init_once);
301 if (sock_inode_cachep == NULL)
302 return -ENOMEM;
303 return 0;
304}
305
306static const struct super_operations sockfs_ops = {
307 .alloc_inode = sock_alloc_inode,
308 .destroy_inode = sock_destroy_inode,
309 .statfs = simple_statfs,
310};
311
312/*
313 * sockfs_dname() is called from d_path().
314 */
315static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316{
317 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
318 dentry->d_inode->i_ino);
319}
320
321static const struct dentry_operations sockfs_dentry_operations = {
322 .d_dname = sockfs_dname,
323};
324
325static struct dentry *sockfs_mount(struct file_system_type *fs_type,
326 int flags, const char *dev_name, void *data)
327{
328 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
329 &sockfs_dentry_operations, SOCKFS_MAGIC);
330}
331
332static struct vfsmount *sock_mnt __read_mostly;
333
334static struct file_system_type sock_fs_type = {
335 .name = "sockfs",
336 .mount = sockfs_mount,
337 .kill_sb = kill_anon_super,
338};
339
340/*
341 * Obtains the first available file descriptor and sets it up for use.
342 *
343 * These functions create file structures and maps them to fd space
344 * of the current process. On success it returns file descriptor
345 * and file struct implicitly stored in sock->file.
346 * Note that another thread may close file descriptor before we return
347 * from this function. We use the fact that now we do not refer
348 * to socket after mapping. If one day we will need it, this
349 * function will increment ref. count on file by 1.
350 *
351 * In any case returned fd MAY BE not valid!
352 * This race condition is unavoidable
353 * with shared fd spaces, we cannot solve it inside kernel,
354 * but we take care of internal coherence yet.
355 */
356
357struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358{
359 struct qstr name = { .name = "" };
360 struct path path;
361 struct file *file;
362
363 if (dname) {
364 name.name = dname;
365 name.len = strlen(name.name);
366 } else if (sock->sk) {
367 name.name = sock->sk->sk_prot_creator->name;
368 name.len = strlen(name.name);
369 }
370 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
371 if (unlikely(!path.dentry))
372 return ERR_PTR(-ENOMEM);
373 path.mnt = mntget(sock_mnt);
374
375 d_instantiate(path.dentry, SOCK_INODE(sock));
376 SOCK_INODE(sock)->i_fop = &socket_file_ops;
377
378 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
379 &socket_file_ops);
380 if (unlikely(IS_ERR(file))) {
381 /* drop dentry, keep inode */
382 ihold(path.dentry->d_inode);
383 path_put(&path);
384 return file;
385 }
386
387 sock->file = file;
388 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
389 file->private_data = sock;
390 return file;
391}
392EXPORT_SYMBOL(sock_alloc_file);
393
394static int sock_map_fd(struct socket *sock, int flags)
395{
396 struct file *newfile;
397 int fd = get_unused_fd_flags(flags);
398 if (unlikely(fd < 0))
399 return fd;
400
401 newfile = sock_alloc_file(sock, flags, NULL);
402 if (likely(!IS_ERR(newfile))) {
403 fd_install(fd, newfile);
404 return fd;
405 }
406
407 put_unused_fd(fd);
408 return PTR_ERR(newfile);
409}
410
411struct socket *sock_from_file(struct file *file, int *err)
412{
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
415
416 *err = -ENOTSOCK;
417 return NULL;
418}
419EXPORT_SYMBOL(sock_from_file);
420
421/**
422 * sockfd_lookup - Go from a file number to its socket slot
423 * @fd: file handle
424 * @err: pointer to an error code return
425 *
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
430 *
431 * On a success the socket object pointer is returned.
432 */
433
434struct socket *sockfd_lookup(int fd, int *err)
435{
436 struct file *file;
437 struct socket *sock;
438
439 file = fget(fd);
440 if (!file) {
441 *err = -EBADF;
442 return NULL;
443 }
444
445 sock = sock_from_file(file, err);
446 if (!sock)
447 fput(file);
448 return sock;
449}
450EXPORT_SYMBOL(sockfd_lookup);
451
452static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453{
454 struct fd f = fdget(fd);
455 struct socket *sock;
456
457 *err = -EBADF;
458 if (f.file) {
459 sock = sock_from_file(f.file, err);
460 if (likely(sock)) {
461 *fput_needed = f.flags;
462 return sock;
463 }
464 fdput(f);
465 }
466 return NULL;
467}
468
469#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472static ssize_t sockfs_getxattr(struct dentry *dentry,
473 const char *name, void *value, size_t size)
474{
475 const char *proto_name;
476 size_t proto_size;
477 int error;
478
479 error = -ENODATA;
480 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
481 proto_name = dentry->d_name.name;
482 proto_size = strlen(proto_name);
483
484 if (value) {
485 error = -ERANGE;
486 if (proto_size + 1 > size)
487 goto out;
488
489 strncpy(value, proto_name, proto_size + 1);
490 }
491 error = proto_size + 1;
492 }
493
494out:
495 return error;
496}
497
498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499 size_t size)
500{
501 ssize_t len;
502 ssize_t used = 0;
503
504 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
505 if (len < 0)
506 return len;
507 used += len;
508 if (buffer) {
509 if (size < used)
510 return -ERANGE;
511 buffer += len;
512 }
513
514 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520 buffer += len;
521 }
522
523 return used;
524}
525
526static const struct inode_operations sockfs_inode_ops = {
527 .getxattr = sockfs_getxattr,
528 .listxattr = sockfs_listxattr,
529};
530
531/**
532 * sock_alloc - allocate a socket
533 *
534 * Allocate a new inode and socket object. The two are bound together
535 * and initialised. The socket is then returned. If we are out of inodes
536 * NULL is returned.
537 */
538
539static struct socket *sock_alloc(void)
540{
541 struct inode *inode;
542 struct socket *sock;
543
544 inode = new_inode_pseudo(sock_mnt->mnt_sb);
545 if (!inode)
546 return NULL;
547
548 sock = SOCKET_I(inode);
549
550 kmemcheck_annotate_bitfield(sock, type);
551 inode->i_ino = get_next_ino();
552 inode->i_mode = S_IFSOCK | S_IRWXUGO;
553 inode->i_uid = current_fsuid();
554 inode->i_gid = current_fsgid();
555 inode->i_op = &sockfs_inode_ops;
556
557 this_cpu_add(sockets_in_use, 1);
558 return sock;
559}
560
561/*
562 * In theory you can't get an open on this inode, but /proc provides
563 * a back door. Remember to keep it shut otherwise you'll let the
564 * creepy crawlies in.
565 */
566
567static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
568{
569 return -ENXIO;
570}
571
572const struct file_operations bad_sock_fops = {
573 .owner = THIS_MODULE,
574 .open = sock_no_open,
575 .llseek = noop_llseek,
576};
577
578/**
579 * sock_release - close a socket
580 * @sock: socket to close
581 *
582 * The socket is released from the protocol stack if it has a release
583 * callback, and the inode is then released if the socket is bound to
584 * an inode not a file.
585 */
586
587void sock_release(struct socket *sock)
588{
589 if (sock->ops) {
590 struct module *owner = sock->ops->owner;
591
592 sock->ops->release(sock);
593 sock->ops = NULL;
594 module_put(owner);
595 }
596
597 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
598 pr_err("%s: fasync list not empty!\n", __func__);
599
600 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601 return;
602
603 this_cpu_sub(sockets_in_use, 1);
604 if (!sock->file) {
605 iput(SOCK_INODE(sock));
606 return;
607 }
608 sock->file = NULL;
609}
610EXPORT_SYMBOL(sock_release);
611
612void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613{
614 *tx_flags = 0;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
616 *tx_flags |= SKBTX_HW_TSTAMP;
617 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
618 *tx_flags |= SKBTX_SW_TSTAMP;
619 if (sock_flag(sk, SOCK_WIFI_STATUS))
620 *tx_flags |= SKBTX_WIFI_STATUS;
621}
622EXPORT_SYMBOL(sock_tx_timestamp);
623
624static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
625 struct msghdr *msg, size_t size)
626{
627 struct sock_iocb *si = kiocb_to_siocb(iocb);
628
629 si->sock = sock;
630 si->scm = NULL;
631 si->msg = msg;
632 si->size = size;
633
634 return sock->ops->sendmsg(iocb, sock, msg, size);
635}
636
637static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
638 struct msghdr *msg, size_t size)
639{
640 int err = security_socket_sendmsg(sock, msg, size);
641
642 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643}
644
645int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
646{
647 struct kiocb iocb;
648 struct sock_iocb siocb;
649 int ret;
650
651 init_sync_kiocb(&iocb, NULL);
652 iocb.private = &siocb;
653 ret = __sock_sendmsg(&iocb, sock, msg, size);
654 if (-EIOCBQUEUED == ret)
655 ret = wait_on_sync_kiocb(&iocb);
656 return ret;
657}
658EXPORT_SYMBOL(sock_sendmsg);
659
660static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
661{
662 struct kiocb iocb;
663 struct sock_iocb siocb;
664 int ret;
665
666 init_sync_kiocb(&iocb, NULL);
667 iocb.private = &siocb;
668 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
669 if (-EIOCBQUEUED == ret)
670 ret = wait_on_sync_kiocb(&iocb);
671 return ret;
672}
673
674int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 struct kvec *vec, size_t num, size_t size)
676{
677 mm_segment_t oldfs = get_fs();
678 int result;
679
680 set_fs(KERNEL_DS);
681 /*
682 * the following is safe, since for compiler definitions of kvec and
683 * iovec are identical, yielding the same in-core layout and alignment
684 */
685 msg->msg_iov = (struct iovec *)vec;
686 msg->msg_iovlen = num;
687 result = sock_sendmsg(sock, msg, size);
688 set_fs(oldfs);
689 return result;
690}
691EXPORT_SYMBOL(kernel_sendmsg);
692
693/*
694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695 */
696void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
697 struct sk_buff *skb)
698{
699 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
700 struct timespec ts[3];
701 int empty = 1;
702 struct skb_shared_hwtstamps *shhwtstamps =
703 skb_hwtstamps(skb);
704
705 /* Race occurred between timestamp enabling and packet
706 receiving. Fill in the current time for now. */
707 if (need_software_tstamp && skb->tstamp.tv64 == 0)
708 __net_timestamp(skb);
709
710 if (need_software_tstamp) {
711 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
712 struct timeval tv;
713 skb_get_timestamp(skb, &tv);
714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
715 sizeof(tv), &tv);
716 } else {
717 skb_get_timestampns(skb, &ts[0]);
718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
719 sizeof(ts[0]), &ts[0]);
720 }
721 }
722
723
724 memset(ts, 0, sizeof(ts));
725 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
726 ktime_to_timespec_cond(skb->tstamp, ts + 0))
727 empty = 0;
728 if (shhwtstamps) {
729 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
731 empty = 0;
732 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
733 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
734 empty = 0;
735 }
736 if (!empty)
737 put_cmsg(msg, SOL_SOCKET,
738 SCM_TIMESTAMPING, sizeof(ts), &ts);
739}
740EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
741
742void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
743 struct sk_buff *skb)
744{
745 int ack;
746
747 if (!sock_flag(sk, SOCK_WIFI_STATUS))
748 return;
749 if (!skb->wifi_acked_valid)
750 return;
751
752 ack = skb->wifi_acked;
753
754 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
755}
756EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
757
758static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
759 struct sk_buff *skb)
760{
761 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
762 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
763 sizeof(__u32), &skb->dropcount);
764}
765
766void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
767 struct sk_buff *skb)
768{
769 sock_recv_timestamp(msg, sk, skb);
770 sock_recv_drops(msg, sk, skb);
771}
772EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
773
774static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
775 struct msghdr *msg, size_t size, int flags)
776{
777 struct sock_iocb *si = kiocb_to_siocb(iocb);
778
779 si->sock = sock;
780 si->scm = NULL;
781 si->msg = msg;
782 si->size = size;
783 si->flags = flags;
784
785 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786}
787
788static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
789 struct msghdr *msg, size_t size, int flags)
790{
791 int err = security_socket_recvmsg(sock, msg, size, flags);
792
793 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794}
795
796int sock_recvmsg(struct socket *sock, struct msghdr *msg,
797 size_t size, int flags)
798{
799 struct kiocb iocb;
800 struct sock_iocb siocb;
801 int ret;
802
803 init_sync_kiocb(&iocb, NULL);
804 iocb.private = &siocb;
805 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
806 if (-EIOCBQUEUED == ret)
807 ret = wait_on_sync_kiocb(&iocb);
808 return ret;
809}
810EXPORT_SYMBOL(sock_recvmsg);
811
812static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 size_t size, int flags)
814{
815 struct kiocb iocb;
816 struct sock_iocb siocb;
817 int ret;
818
819 init_sync_kiocb(&iocb, NULL);
820 iocb.private = &siocb;
821 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
822 if (-EIOCBQUEUED == ret)
823 ret = wait_on_sync_kiocb(&iocb);
824 return ret;
825}
826
827/**
828 * kernel_recvmsg - Receive a message from a socket (kernel space)
829 * @sock: The socket to receive the message from
830 * @msg: Received message
831 * @vec: Input s/g array for message data
832 * @num: Size of input s/g array
833 * @size: Number of bytes to read
834 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 *
836 * On return the msg structure contains the scatter/gather array passed in the
837 * vec argument. The array is modified so that it consists of the unfilled
838 * portion of the original array.
839 *
840 * The returned value is the total number of bytes received, or an error.
841 */
842int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843 struct kvec *vec, size_t num, size_t size, int flags)
844{
845 mm_segment_t oldfs = get_fs();
846 int result;
847
848 set_fs(KERNEL_DS);
849 /*
850 * the following is safe, since for compiler definitions of kvec and
851 * iovec are identical, yielding the same in-core layout and alignment
852 */
853 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
854 result = sock_recvmsg(sock, msg, size, flags);
855 set_fs(oldfs);
856 return result;
857}
858EXPORT_SYMBOL(kernel_recvmsg);
859
860static ssize_t sock_sendpage(struct file *file, struct page *page,
861 int offset, size_t size, loff_t *ppos, int more)
862{
863 struct socket *sock;
864 int flags;
865
866 sock = file->private_data;
867
868 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
870 flags |= more;
871
872 return kernel_sendpage(sock, page, offset, size, flags);
873}
874
875static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
876 struct pipe_inode_info *pipe, size_t len,
877 unsigned int flags)
878{
879 struct socket *sock = file->private_data;
880
881 if (unlikely(!sock->ops->splice_read))
882 return -EINVAL;
883
884 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885}
886
887static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
888 struct sock_iocb *siocb)
889{
890 if (!is_sync_kiocb(iocb))
891 BUG();
892
893 siocb->kiocb = iocb;
894 iocb->private = siocb;
895 return siocb;
896}
897
898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 struct file *file, const struct iovec *iov,
900 unsigned long nr_segs)
901{
902 struct socket *sock = file->private_data;
903 size_t size = 0;
904 int i;
905
906 for (i = 0; i < nr_segs; i++)
907 size += iov[i].iov_len;
908
909 msg->msg_name = NULL;
910 msg->msg_namelen = 0;
911 msg->msg_control = NULL;
912 msg->msg_controllen = 0;
913 msg->msg_iov = (struct iovec *)iov;
914 msg->msg_iovlen = nr_segs;
915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918}
919
920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 unsigned long nr_segs, loff_t pos)
922{
923 struct sock_iocb siocb, *x;
924
925 if (pos != 0)
926 return -ESPIPE;
927
928 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
929 return 0;
930
931
932 x = alloc_sock_iocb(iocb, &siocb);
933 if (!x)
934 return -ENOMEM;
935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936}
937
938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 struct file *file, const struct iovec *iov,
940 unsigned long nr_segs)
941{
942 struct socket *sock = file->private_data;
943 size_t size = 0;
944 int i;
945
946 for (i = 0; i < nr_segs; i++)
947 size += iov[i].iov_len;
948
949 msg->msg_name = NULL;
950 msg->msg_namelen = 0;
951 msg->msg_control = NULL;
952 msg->msg_controllen = 0;
953 msg->msg_iov = (struct iovec *)iov;
954 msg->msg_iovlen = nr_segs;
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
958
959 return __sock_sendmsg(iocb, sock, msg, size);
960}
961
962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
964{
965 struct sock_iocb siocb, *x;
966
967 if (pos != 0)
968 return -ESPIPE;
969
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
973
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975}
976
977/*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982static DEFINE_MUTEX(br_ioctl_mutex);
983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986{
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
990}
991EXPORT_SYMBOL(brioctl_set);
992
993static DEFINE_MUTEX(vlan_ioctl_mutex);
994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997{
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1017{
1018 int err;
1019 void __user *argp = (void __user *)arg;
1020
1021 err = sock->ops->ioctl(sock, cmd, arg);
1022
1023 /*
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1026 */
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1029
1030 return err;
1031}
1032
1033/*
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1036 */
1037
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1045
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052#ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056#endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 err = f_setown(sock->file, pid, 1);
1064 break;
1065 case FIOGETOWN:
1066 case SIOCGPGRP:
1067 err = put_user(f_getown(sock->file),
1068 (int __user *)argp);
1069 break;
1070 case SIOCGIFBR:
1071 case SIOCSIFBR:
1072 case SIOCBRADDBR:
1073 case SIOCBRDELBR:
1074 err = -ENOPKG;
1075 if (!br_ioctl_hook)
1076 request_module("bridge");
1077
1078 mutex_lock(&br_ioctl_mutex);
1079 if (br_ioctl_hook)
1080 err = br_ioctl_hook(net, cmd, argp);
1081 mutex_unlock(&br_ioctl_mutex);
1082 break;
1083 case SIOCGIFVLAN:
1084 case SIOCSIFVLAN:
1085 err = -ENOPKG;
1086 if (!vlan_ioctl_hook)
1087 request_module("8021q");
1088
1089 mutex_lock(&vlan_ioctl_mutex);
1090 if (vlan_ioctl_hook)
1091 err = vlan_ioctl_hook(net, argp);
1092 mutex_unlock(&vlan_ioctl_mutex);
1093 break;
1094 case SIOCADDDLCI:
1095 case SIOCDELDLCI:
1096 err = -ENOPKG;
1097 if (!dlci_ioctl_hook)
1098 request_module("dlci");
1099
1100 mutex_lock(&dlci_ioctl_mutex);
1101 if (dlci_ioctl_hook)
1102 err = dlci_ioctl_hook(cmd, argp);
1103 mutex_unlock(&dlci_ioctl_mutex);
1104 break;
1105 default:
1106 err = sock_do_ioctl(net, sock, cmd, arg);
1107 break;
1108 }
1109 return err;
1110}
1111
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114 int err;
1115 struct socket *sock = NULL;
1116
1117 err = security_socket_create(family, type, protocol, 1);
1118 if (err)
1119 goto out;
1120
1121 sock = sock_alloc();
1122 if (!sock) {
1123 err = -ENOMEM;
1124 goto out;
1125 }
1126
1127 sock->type = type;
1128 err = security_socket_post_create(sock, family, type, protocol, 1);
1129 if (err)
1130 goto out_release;
1131
1132out:
1133 *res = sock;
1134 return err;
1135out_release:
1136 sock_release(sock);
1137 sock = NULL;
1138 goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145 unsigned int busy_flag = 0;
1146 struct socket *sock;
1147
1148 /*
1149 * We can't return errors to poll, so it's either yes or no.
1150 */
1151 sock = file->private_data;
1152
1153 if (sk_can_busy_loop(sock->sk)) {
1154 /* this socket can poll_ll so tell the system call */
1155 busy_flag = POLL_BUSY_LOOP;
1156
1157 /* once, only if requested by syscall */
1158 if (wait && (wait->_key & POLL_BUSY_LOOP))
1159 sk_busy_loop(sock->sk, 1);
1160 }
1161
1162 return busy_flag | sock->ops->poll(file, sock, wait);
1163}
1164
1165static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166{
1167 struct socket *sock = file->private_data;
1168
1169 return sock->ops->mmap(file, sock, vma);
1170}
1171
1172static int sock_close(struct inode *inode, struct file *filp)
1173{
1174 sock_release(SOCKET_I(inode));
1175 return 0;
1176}
1177
1178/*
1179 * Update the socket async list
1180 *
1181 * Fasync_list locking strategy.
1182 *
1183 * 1. fasync_list is modified only under process context socket lock
1184 * i.e. under semaphore.
1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 * or under socket lock
1187 */
1188
1189static int sock_fasync(int fd, struct file *filp, int on)
1190{
1191 struct socket *sock = filp->private_data;
1192 struct sock *sk = sock->sk;
1193 struct socket_wq *wq;
1194
1195 if (sk == NULL)
1196 return -EINVAL;
1197
1198 lock_sock(sk);
1199 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200 fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202 if (!wq->fasync_list)
1203 sock_reset_flag(sk, SOCK_FASYNC);
1204 else
1205 sock_set_flag(sk, SOCK_FASYNC);
1206
1207 release_sock(sk);
1208 return 0;
1209}
1210
1211/* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213int sock_wake_async(struct socket *sock, int how, int band)
1214{
1215 struct socket_wq *wq;
1216
1217 if (!sock)
1218 return -1;
1219 rcu_read_lock();
1220 wq = rcu_dereference(sock->wq);
1221 if (!wq || !wq->fasync_list) {
1222 rcu_read_unlock();
1223 return -1;
1224 }
1225 switch (how) {
1226 case SOCK_WAKE_WAITD:
1227 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228 break;
1229 goto call_kill;
1230 case SOCK_WAKE_SPACE:
1231 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232 break;
1233 /* fall through */
1234 case SOCK_WAKE_IO:
1235call_kill:
1236 kill_fasync(&wq->fasync_list, SIGIO, band);
1237 break;
1238 case SOCK_WAKE_URG:
1239 kill_fasync(&wq->fasync_list, SIGURG, band);
1240 }
1241 rcu_read_unlock();
1242 return 0;
1243}
1244EXPORT_SYMBOL(sock_wake_async);
1245
1246int __sock_create(struct net *net, int family, int type, int protocol,
1247 struct socket **res, int kern)
1248{
1249 int err;
1250 struct socket *sock;
1251 const struct net_proto_family *pf;
1252
1253 /*
1254 * Check protocol is in range
1255 */
1256 if (family < 0 || family >= NPROTO)
1257 return -EAFNOSUPPORT;
1258 if (type < 0 || type >= SOCK_MAX)
1259 return -EINVAL;
1260
1261 /* Compatibility.
1262
1263 This uglymoron is moved from INET layer to here to avoid
1264 deadlock in module load.
1265 */
1266 if (family == PF_INET && type == SOCK_PACKET) {
1267 static int warned;
1268 if (!warned) {
1269 warned = 1;
1270 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271 current->comm);
1272 }
1273 family = PF_PACKET;
1274 }
1275
1276 err = security_socket_create(family, type, protocol, kern);
1277 if (err)
1278 return err;
1279
1280 /*
1281 * Allocate the socket and allow the family to set things up. if
1282 * the protocol is 0, the family is instructed to select an appropriate
1283 * default.
1284 */
1285 sock = sock_alloc();
1286 if (!sock) {
1287 net_warn_ratelimited("socket: no more sockets\n");
1288 return -ENFILE; /* Not exactly a match, but its the
1289 closest posix thing */
1290 }
1291
1292 sock->type = type;
1293
1294#ifdef CONFIG_MODULES
1295 /* Attempt to load a protocol module if the find failed.
1296 *
1297 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298 * requested real, full-featured networking support upon configuration.
1299 * Otherwise module support will break!
1300 */
1301 if (rcu_access_pointer(net_families[family]) == NULL)
1302 request_module("net-pf-%d", family);
1303#endif
1304
1305 rcu_read_lock();
1306 pf = rcu_dereference(net_families[family]);
1307 err = -EAFNOSUPPORT;
1308 if (!pf)
1309 goto out_release;
1310
1311 /*
1312 * We will call the ->create function, that possibly is in a loadable
1313 * module, so we have to bump that loadable module refcnt first.
1314 */
1315 if (!try_module_get(pf->owner))
1316 goto out_release;
1317
1318 /* Now protected by module ref count */
1319 rcu_read_unlock();
1320
1321 err = pf->create(net, sock, protocol, kern);
1322 if (err < 0)
1323 goto out_module_put;
1324
1325 /*
1326 * Now to bump the refcnt of the [loadable] module that owns this
1327 * socket at sock_release time we decrement its refcnt.
1328 */
1329 if (!try_module_get(sock->ops->owner))
1330 goto out_module_busy;
1331
1332 /*
1333 * Now that we're done with the ->create function, the [loadable]
1334 * module can have its refcnt decremented
1335 */
1336 module_put(pf->owner);
1337 err = security_socket_post_create(sock, family, type, protocol, kern);
1338 if (err)
1339 goto out_sock_release;
1340 *res = sock;
1341
1342 return 0;
1343
1344out_module_busy:
1345 err = -EAFNOSUPPORT;
1346out_module_put:
1347 sock->ops = NULL;
1348 module_put(pf->owner);
1349out_sock_release:
1350 sock_release(sock);
1351 return err;
1352
1353out_release:
1354 rcu_read_unlock();
1355 goto out_sock_release;
1356}
1357EXPORT_SYMBOL(__sock_create);
1358
1359int sock_create(int family, int type, int protocol, struct socket **res)
1360{
1361 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362}
1363EXPORT_SYMBOL(sock_create);
1364
1365int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366{
1367 return __sock_create(&init_net, family, type, protocol, res, 1);
1368}
1369EXPORT_SYMBOL(sock_create_kern);
1370
1371SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372{
1373 int retval;
1374 struct socket *sock;
1375 int flags;
1376
1377 /* Check the SOCK_* constants for consistency. */
1378 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383 flags = type & ~SOCK_TYPE_MASK;
1384 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385 return -EINVAL;
1386 type &= SOCK_TYPE_MASK;
1387
1388 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391 retval = sock_create(family, type, protocol, &sock);
1392 if (retval < 0)
1393 goto out;
1394
1395 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396 if (retval < 0)
1397 goto out_release;
1398
1399out:
1400 /* It may be already another descriptor 8) Not kernel problem. */
1401 return retval;
1402
1403out_release:
1404 sock_release(sock);
1405 return retval;
1406}
1407
1408/*
1409 * Create a pair of connected sockets.
1410 */
1411
1412SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413 int __user *, usockvec)
1414{
1415 struct socket *sock1, *sock2;
1416 int fd1, fd2, err;
1417 struct file *newfile1, *newfile2;
1418 int flags;
1419
1420 flags = type & ~SOCK_TYPE_MASK;
1421 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422 return -EINVAL;
1423 type &= SOCK_TYPE_MASK;
1424
1425 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428 /*
1429 * Obtain the first socket and check if the underlying protocol
1430 * supports the socketpair call.
1431 */
1432
1433 err = sock_create(family, type, protocol, &sock1);
1434 if (err < 0)
1435 goto out;
1436
1437 err = sock_create(family, type, protocol, &sock2);
1438 if (err < 0)
1439 goto out_release_1;
1440
1441 err = sock1->ops->socketpair(sock1, sock2);
1442 if (err < 0)
1443 goto out_release_both;
1444
1445 fd1 = get_unused_fd_flags(flags);
1446 if (unlikely(fd1 < 0)) {
1447 err = fd1;
1448 goto out_release_both;
1449 }
1450
1451 fd2 = get_unused_fd_flags(flags);
1452 if (unlikely(fd2 < 0)) {
1453 err = fd2;
1454 goto out_put_unused_1;
1455 }
1456
1457 newfile1 = sock_alloc_file(sock1, flags, NULL);
1458 if (unlikely(IS_ERR(newfile1))) {
1459 err = PTR_ERR(newfile1);
1460 goto out_put_unused_both;
1461 }
1462
1463 newfile2 = sock_alloc_file(sock2, flags, NULL);
1464 if (IS_ERR(newfile2)) {
1465 err = PTR_ERR(newfile2);
1466 goto out_fput_1;
1467 }
1468
1469 err = put_user(fd1, &usockvec[0]);
1470 if (err)
1471 goto out_fput_both;
1472
1473 err = put_user(fd2, &usockvec[1]);
1474 if (err)
1475 goto out_fput_both;
1476
1477 audit_fd_pair(fd1, fd2);
1478
1479 fd_install(fd1, newfile1);
1480 fd_install(fd2, newfile2);
1481 /* fd1 and fd2 may be already another descriptors.
1482 * Not kernel problem.
1483 */
1484
1485 return 0;
1486
1487out_fput_both:
1488 fput(newfile2);
1489 fput(newfile1);
1490 put_unused_fd(fd2);
1491 put_unused_fd(fd1);
1492 goto out;
1493
1494out_fput_1:
1495 fput(newfile1);
1496 put_unused_fd(fd2);
1497 put_unused_fd(fd1);
1498 sock_release(sock2);
1499 goto out;
1500
1501out_put_unused_both:
1502 put_unused_fd(fd2);
1503out_put_unused_1:
1504 put_unused_fd(fd1);
1505out_release_both:
1506 sock_release(sock2);
1507out_release_1:
1508 sock_release(sock1);
1509out:
1510 return err;
1511}
1512
1513/*
1514 * Bind a name to a socket. Nothing much to do here since it's
1515 * the protocol's responsibility to handle the local address.
1516 *
1517 * We move the socket address to kernel space before we call
1518 * the protocol layer (having also checked the address is ok).
1519 */
1520
1521SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522{
1523 struct socket *sock;
1524 struct sockaddr_storage address;
1525 int err, fput_needed;
1526
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (sock) {
1529 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 if (err >= 0) {
1531 err = security_socket_bind(sock,
1532 (struct sockaddr *)&address,
1533 addrlen);
1534 if (!err)
1535 err = sock->ops->bind(sock,
1536 (struct sockaddr *)
1537 &address, addrlen);
1538 }
1539 fput_light(sock->file, fput_needed);
1540 }
1541 return err;
1542}
1543
1544/*
1545 * Perform a listen. Basically, we allow the protocol to do anything
1546 * necessary for a listen, and if that works, we mark the socket as
1547 * ready for listening.
1548 */
1549
1550SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551{
1552 struct socket *sock;
1553 int err, fput_needed;
1554 int somaxconn;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (sock) {
1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 if ((unsigned int)backlog > somaxconn)
1560 backlog = somaxconn;
1561
1562 err = security_socket_listen(sock, backlog);
1563 if (!err)
1564 err = sock->ops->listen(sock, backlog);
1565
1566 fput_light(sock->file, fput_needed);
1567 }
1568 return err;
1569}
1570
1571/*
1572 * For accept, we attempt to create a new socket, set up the link
1573 * with the client, wake up the client, then return the new
1574 * connected fd. We collect the address of the connector in kernel
1575 * space and move it to user at the very end. This is unclean because
1576 * we open the socket then return an error.
1577 *
1578 * 1003.1g adds the ability to recvmsg() to query connection pending
1579 * status to recvmsg. We need to add that support in a way thats
1580 * clean when we restucture accept also.
1581 */
1582
1583SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 int __user *, upeer_addrlen, int, flags)
1585{
1586 struct socket *sock, *newsock;
1587 struct file *newfile;
1588 int err, len, newfd, fput_needed;
1589 struct sockaddr_storage address;
1590
1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 return -EINVAL;
1593
1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 if (!sock)
1599 goto out;
1600
1601 err = -ENFILE;
1602 newsock = sock_alloc();
1603 if (!newsock)
1604 goto out_put;
1605
1606 newsock->type = sock->type;
1607 newsock->ops = sock->ops;
1608
1609 /*
1610 * We don't need try_module_get here, as the listening socket (sock)
1611 * has the protocol module (sock->ops->owner) held.
1612 */
1613 __module_get(newsock->ops->owner);
1614
1615 newfd = get_unused_fd_flags(flags);
1616 if (unlikely(newfd < 0)) {
1617 err = newfd;
1618 sock_release(newsock);
1619 goto out_put;
1620 }
1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 if (unlikely(IS_ERR(newfile))) {
1623 err = PTR_ERR(newfile);
1624 put_unused_fd(newfd);
1625 sock_release(newsock);
1626 goto out_put;
1627 }
1628
1629 err = security_socket_accept(sock, newsock);
1630 if (err)
1631 goto out_fd;
1632
1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 if (err < 0)
1635 goto out_fd;
1636
1637 if (upeer_sockaddr) {
1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 &len, 2) < 0) {
1640 err = -ECONNABORTED;
1641 goto out_fd;
1642 }
1643 err = move_addr_to_user(&address,
1644 len, upeer_sockaddr, upeer_addrlen);
1645 if (err < 0)
1646 goto out_fd;
1647 }
1648
1649 /* File flags are not inherited via accept() unlike another OSes. */
1650
1651 fd_install(newfd, newfile);
1652 err = newfd;
1653
1654out_put:
1655 fput_light(sock->file, fput_needed);
1656out:
1657 return err;
1658out_fd:
1659 fput(newfile);
1660 put_unused_fd(newfd);
1661 goto out_put;
1662}
1663
1664SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 int __user *, upeer_addrlen)
1666{
1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668}
1669
1670/*
1671 * Attempt to connect to a socket with the server address. The address
1672 * is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 * break bindings
1676 *
1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 * other SEQPACKET protocols that take time to connect() as it doesn't
1679 * include the -EINPROGRESS status for such sockets.
1680 */
1681
1682SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 int, addrlen)
1684{
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1688
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1692 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 if (err < 0)
1694 goto out_put;
1695
1696 err =
1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 if (err)
1699 goto out_put;
1700
1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 sock->file->f_flags);
1703out_put:
1704 fput_light(sock->file, fput_needed);
1705out:
1706 return err;
1707}
1708
1709/*
1710 * Get the local address ('name') of a socket object. Move the obtained
1711 * name to user space.
1712 */
1713
1714SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 int __user *, usockaddr_len)
1716{
1717 struct socket *sock;
1718 struct sockaddr_storage address;
1719 int len, err, fput_needed;
1720
1721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 if (!sock)
1723 goto out;
1724
1725 err = security_socket_getsockname(sock);
1726 if (err)
1727 goto out_put;
1728
1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 if (err)
1731 goto out_put;
1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734out_put:
1735 fput_light(sock->file, fput_needed);
1736out:
1737 return err;
1738}
1739
1740/*
1741 * Get the remote address ('name') of a socket object. Move the obtained
1742 * name to user space.
1743 */
1744
1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 int __user *, usockaddr_len)
1747{
1748 struct socket *sock;
1749 struct sockaddr_storage address;
1750 int len, err, fput_needed;
1751
1752 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 if (sock != NULL) {
1754 err = security_socket_getpeername(sock);
1755 if (err) {
1756 fput_light(sock->file, fput_needed);
1757 return err;
1758 }
1759
1760 err =
1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762 1);
1763 if (!err)
1764 err = move_addr_to_user(&address, len, usockaddr,
1765 usockaddr_len);
1766 fput_light(sock->file, fput_needed);
1767 }
1768 return err;
1769}
1770
1771/*
1772 * Send a datagram to a given address. We move the address into kernel
1773 * space and check the user space data area is readable before invoking
1774 * the protocol.
1775 */
1776
1777SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 unsigned int, flags, struct sockaddr __user *, addr,
1779 int, addr_len)
1780{
1781 struct socket *sock;
1782 struct sockaddr_storage address;
1783 int err;
1784 struct msghdr msg;
1785 struct iovec iov;
1786 int fput_needed;
1787
1788 if (len > INT_MAX)
1789 len = INT_MAX;
1790 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 if (!sock)
1792 goto out;
1793
1794 iov.iov_base = buff;
1795 iov.iov_len = len;
1796 msg.msg_name = NULL;
1797 msg.msg_iov = &iov;
1798 msg.msg_iovlen = 1;
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1802 if (addr) {
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1804 if (err < 0)
1805 goto out_put;
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1808 }
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1813
1814out_put:
1815 fput_light(sock->file, fput_needed);
1816out:
1817 return err;
1818}
1819
1820/*
1821 * Send a datagram down a socket.
1822 */
1823
1824SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1826{
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1828}
1829
1830/*
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1834 */
1835
1836SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1839{
1840 struct socket *sock;
1841 struct iovec iov;
1842 struct msghdr msg;
1843 struct sockaddr_storage address;
1844 int err, err2;
1845 int fput_needed;
1846
1847 if (size > INT_MAX)
1848 size = INT_MAX;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1852
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 msg.msg_iovlen = 1;
1856 msg.msg_iov = &iov;
1857 iov.iov_len = size;
1858 iov.iov_base = ubuf;
1859 /* Save some cycles and don't copy the address if not needed */
1860 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861 /* We assume all kernel code knows the size of sockaddr_storage */
1862 msg.msg_namelen = 0;
1863 if (sock->file->f_flags & O_NONBLOCK)
1864 flags |= MSG_DONTWAIT;
1865 err = sock_recvmsg(sock, &msg, size, flags);
1866
1867 if (err >= 0 && addr != NULL) {
1868 err2 = move_addr_to_user(&address,
1869 msg.msg_namelen, addr, addr_len);
1870 if (err2 < 0)
1871 err = err2;
1872 }
1873
1874 fput_light(sock->file, fput_needed);
1875out:
1876 return err;
1877}
1878
1879/*
1880 * Receive a datagram from a socket.
1881 */
1882
1883SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884 unsigned int, flags)
1885{
1886 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887}
1888
1889/*
1890 * Set a socket option. Because we don't know the option lengths we have
1891 * to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895 char __user *, optval, int, optlen)
1896{
1897 int err, fput_needed;
1898 struct socket *sock;
1899
1900 if (optlen < 0)
1901 return -EINVAL;
1902
1903 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 if (sock != NULL) {
1905 err = security_socket_setsockopt(sock, level, optname);
1906 if (err)
1907 goto out_put;
1908
1909 if (level == SOL_SOCKET)
1910 err =
1911 sock_setsockopt(sock, level, optname, optval,
1912 optlen);
1913 else
1914 err =
1915 sock->ops->setsockopt(sock, level, optname, optval,
1916 optlen);
1917out_put:
1918 fput_light(sock->file, fput_needed);
1919 }
1920 return err;
1921}
1922
1923/*
1924 * Get a socket option. Because we don't know the option lengths we have
1925 * to pass a user mode parameter for the protocols to sort out.
1926 */
1927
1928SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929 char __user *, optval, int __user *, optlen)
1930{
1931 int err, fput_needed;
1932 struct socket *sock;
1933
1934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 if (sock != NULL) {
1936 err = security_socket_getsockopt(sock, level, optname);
1937 if (err)
1938 goto out_put;
1939
1940 if (level == SOL_SOCKET)
1941 err =
1942 sock_getsockopt(sock, level, optname, optval,
1943 optlen);
1944 else
1945 err =
1946 sock->ops->getsockopt(sock, level, optname, optval,
1947 optlen);
1948out_put:
1949 fput_light(sock->file, fput_needed);
1950 }
1951 return err;
1952}
1953
1954/*
1955 * Shutdown a socket.
1956 */
1957
1958SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959{
1960 int err, fput_needed;
1961 struct socket *sock;
1962
1963 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 if (sock != NULL) {
1965 err = security_socket_shutdown(sock, how);
1966 if (!err)
1967 err = sock->ops->shutdown(sock, how);
1968 fput_light(sock->file, fput_needed);
1969 }
1970 return err;
1971}
1972
1973/* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1978#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1979
1980struct used_address {
1981 struct sockaddr_storage name;
1982 unsigned int name_len;
1983};
1984
1985static int copy_msghdr_from_user(struct msghdr *kmsg,
1986 struct msghdr __user *umsg)
1987{
1988 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989 return -EFAULT;
1990
1991 if (kmsg->msg_namelen < 0)
1992 return -EINVAL;
1993
1994 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996 return 0;
1997}
1998
1999static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000 struct msghdr *msg_sys, unsigned int flags,
2001 struct used_address *used_address)
2002{
2003 struct compat_msghdr __user *msg_compat =
2004 (struct compat_msghdr __user *)msg;
2005 struct sockaddr_storage address;
2006 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009 /* 20 is size of ipv6_pktinfo */
2010 unsigned char *ctl_buf = ctl;
2011 int err, ctl_len, total_len;
2012
2013 err = -EFAULT;
2014 if (MSG_CMSG_COMPAT & flags) {
2015 if (get_compat_msghdr(msg_sys, msg_compat))
2016 return -EFAULT;
2017 } else {
2018 err = copy_msghdr_from_user(msg_sys, msg);
2019 if (err)
2020 return err;
2021 }
2022
2023 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024 err = -EMSGSIZE;
2025 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026 goto out;
2027 err = -ENOMEM;
2028 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029 GFP_KERNEL);
2030 if (!iov)
2031 goto out;
2032 }
2033
2034 /* This will also move the address data into kernel space */
2035 if (MSG_CMSG_COMPAT & flags) {
2036 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037 } else
2038 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039 if (err < 0)
2040 goto out_freeiov;
2041 total_len = err;
2042
2043 err = -ENOBUFS;
2044
2045 if (msg_sys->msg_controllen > INT_MAX)
2046 goto out_freeiov;
2047 ctl_len = msg_sys->msg_controllen;
2048 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049 err =
2050 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051 sizeof(ctl));
2052 if (err)
2053 goto out_freeiov;
2054 ctl_buf = msg_sys->msg_control;
2055 ctl_len = msg_sys->msg_controllen;
2056 } else if (ctl_len) {
2057 if (ctl_len > sizeof(ctl)) {
2058 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059 if (ctl_buf == NULL)
2060 goto out_freeiov;
2061 }
2062 err = -EFAULT;
2063 /*
2064 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066 * checking falls down on this.
2067 */
2068 if (copy_from_user(ctl_buf,
2069 (void __user __force *)msg_sys->msg_control,
2070 ctl_len))
2071 goto out_freectl;
2072 msg_sys->msg_control = ctl_buf;
2073 }
2074 msg_sys->msg_flags = flags;
2075
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 msg_sys->msg_flags |= MSG_DONTWAIT;
2078 /*
2079 * If this is sendmmsg() and current destination address is same as
2080 * previously succeeded address, omit asking LSM's decision.
2081 * used_address->name_len is initialized to UINT_MAX so that the first
2082 * destination address never matches.
2083 */
2084 if (used_address && msg_sys->msg_name &&
2085 used_address->name_len == msg_sys->msg_namelen &&
2086 !memcmp(&used_address->name, msg_sys->msg_name,
2087 used_address->name_len)) {
2088 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089 goto out_freectl;
2090 }
2091 err = sock_sendmsg(sock, msg_sys, total_len);
2092 /*
2093 * If this is sendmmsg() and sending to current destination address was
2094 * successful, remember it.
2095 */
2096 if (used_address && err >= 0) {
2097 used_address->name_len = msg_sys->msg_namelen;
2098 if (msg_sys->msg_name)
2099 memcpy(&used_address->name, msg_sys->msg_name,
2100 used_address->name_len);
2101 }
2102
2103out_freectl:
2104 if (ctl_buf != ctl)
2105 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106out_freeiov:
2107 if (iov != iovstack)
2108 kfree(iov);
2109out:
2110 return err;
2111}
2112
2113/*
2114 * BSD sendmsg interface
2115 */
2116
2117long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118{
2119 int fput_needed, err;
2120 struct msghdr msg_sys;
2121 struct socket *sock;
2122
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 if (!sock)
2125 goto out;
2126
2127 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129 fput_light(sock->file, fput_needed);
2130out:
2131 return err;
2132}
2133
2134SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135{
2136 if (flags & MSG_CMSG_COMPAT)
2137 return -EINVAL;
2138 return __sys_sendmsg(fd, msg, flags);
2139}
2140
2141/*
2142 * Linux sendmmsg interface
2143 */
2144
2145int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146 unsigned int flags)
2147{
2148 int fput_needed, err, datagrams;
2149 struct socket *sock;
2150 struct mmsghdr __user *entry;
2151 struct compat_mmsghdr __user *compat_entry;
2152 struct msghdr msg_sys;
2153 struct used_address used_address;
2154
2155 if (vlen > UIO_MAXIOV)
2156 vlen = UIO_MAXIOV;
2157
2158 datagrams = 0;
2159
2160 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 if (!sock)
2162 return err;
2163
2164 used_address.name_len = UINT_MAX;
2165 entry = mmsg;
2166 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167 err = 0;
2168
2169 while (datagrams < vlen) {
2170 if (MSG_CMSG_COMPAT & flags) {
2171 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172 &msg_sys, flags, &used_address);
2173 if (err < 0)
2174 break;
2175 err = __put_user(err, &compat_entry->msg_len);
2176 ++compat_entry;
2177 } else {
2178 err = ___sys_sendmsg(sock,
2179 (struct msghdr __user *)entry,
2180 &msg_sys, flags, &used_address);
2181 if (err < 0)
2182 break;
2183 err = put_user(err, &entry->msg_len);
2184 ++entry;
2185 }
2186
2187 if (err)
2188 break;
2189 ++datagrams;
2190 }
2191
2192 fput_light(sock->file, fput_needed);
2193
2194 /* We only return an error if no datagrams were able to be sent */
2195 if (datagrams != 0)
2196 return datagrams;
2197
2198 return err;
2199}
2200
2201SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202 unsigned int, vlen, unsigned int, flags)
2203{
2204 if (flags & MSG_CMSG_COMPAT)
2205 return -EINVAL;
2206 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207}
2208
2209static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210 struct msghdr *msg_sys, unsigned int flags, int nosec)
2211{
2212 struct compat_msghdr __user *msg_compat =
2213 (struct compat_msghdr __user *)msg;
2214 struct iovec iovstack[UIO_FASTIOV];
2215 struct iovec *iov = iovstack;
2216 unsigned long cmsg_ptr;
2217 int err, total_len, len;
2218
2219 /* kernel mode address */
2220 struct sockaddr_storage addr;
2221
2222 /* user mode address pointers */
2223 struct sockaddr __user *uaddr;
2224 int __user *uaddr_len;
2225
2226 if (MSG_CMSG_COMPAT & flags) {
2227 if (get_compat_msghdr(msg_sys, msg_compat))
2228 return -EFAULT;
2229 } else {
2230 err = copy_msghdr_from_user(msg_sys, msg);
2231 if (err)
2232 return err;
2233 }
2234
2235 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236 err = -EMSGSIZE;
2237 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238 goto out;
2239 err = -ENOMEM;
2240 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241 GFP_KERNEL);
2242 if (!iov)
2243 goto out;
2244 }
2245
2246 /* Save the user-mode address (verify_iovec will change the
2247 * kernel msghdr to use the kernel address space)
2248 */
2249 uaddr = (__force void __user *)msg_sys->msg_name;
2250 uaddr_len = COMPAT_NAMELEN(msg);
2251 if (MSG_CMSG_COMPAT & flags)
2252 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253 else
2254 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255 if (err < 0)
2256 goto out_freeiov;
2257 total_len = err;
2258
2259 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262 /* We assume all kernel code knows the size of sockaddr_storage */
2263 msg_sys->msg_namelen = 0;
2264
2265 if (sock->file->f_flags & O_NONBLOCK)
2266 flags |= MSG_DONTWAIT;
2267 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268 total_len, flags);
2269 if (err < 0)
2270 goto out_freeiov;
2271 len = err;
2272
2273 if (uaddr != NULL) {
2274 err = move_addr_to_user(&addr,
2275 msg_sys->msg_namelen, uaddr,
2276 uaddr_len);
2277 if (err < 0)
2278 goto out_freeiov;
2279 }
2280 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281 COMPAT_FLAGS(msg));
2282 if (err)
2283 goto out_freeiov;
2284 if (MSG_CMSG_COMPAT & flags)
2285 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286 &msg_compat->msg_controllen);
2287 else
2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 &msg->msg_controllen);
2290 if (err)
2291 goto out_freeiov;
2292 err = len;
2293
2294out_freeiov:
2295 if (iov != iovstack)
2296 kfree(iov);
2297out:
2298 return err;
2299}
2300
2301/*
2302 * BSD recvmsg interface
2303 */
2304
2305long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306{
2307 int fput_needed, err;
2308 struct msghdr msg_sys;
2309 struct socket *sock;
2310
2311 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312 if (!sock)
2313 goto out;
2314
2315 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317 fput_light(sock->file, fput_needed);
2318out:
2319 return err;
2320}
2321
2322SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323 unsigned int, flags)
2324{
2325 if (flags & MSG_CMSG_COMPAT)
2326 return -EINVAL;
2327 return __sys_recvmsg(fd, msg, flags);
2328}
2329
2330/*
2331 * Linux recvmmsg interface
2332 */
2333
2334int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335 unsigned int flags, struct timespec *timeout)
2336{
2337 int fput_needed, err, datagrams;
2338 struct socket *sock;
2339 struct mmsghdr __user *entry;
2340 struct compat_mmsghdr __user *compat_entry;
2341 struct msghdr msg_sys;
2342 struct timespec end_time;
2343
2344 if (timeout &&
2345 poll_select_set_timeout(&end_time, timeout->tv_sec,
2346 timeout->tv_nsec))
2347 return -EINVAL;
2348
2349 datagrams = 0;
2350
2351 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352 if (!sock)
2353 return err;
2354
2355 err = sock_error(sock->sk);
2356 if (err)
2357 goto out_put;
2358
2359 entry = mmsg;
2360 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362 while (datagrams < vlen) {
2363 /*
2364 * No need to ask LSM for more than the first datagram.
2365 */
2366 if (MSG_CMSG_COMPAT & flags) {
2367 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368 &msg_sys, flags & ~MSG_WAITFORONE,
2369 datagrams);
2370 if (err < 0)
2371 break;
2372 err = __put_user(err, &compat_entry->msg_len);
2373 ++compat_entry;
2374 } else {
2375 err = ___sys_recvmsg(sock,
2376 (struct msghdr __user *)entry,
2377 &msg_sys, flags & ~MSG_WAITFORONE,
2378 datagrams);
2379 if (err < 0)
2380 break;
2381 err = put_user(err, &entry->msg_len);
2382 ++entry;
2383 }
2384
2385 if (err)
2386 break;
2387 ++datagrams;
2388
2389 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390 if (flags & MSG_WAITFORONE)
2391 flags |= MSG_DONTWAIT;
2392
2393 if (timeout) {
2394 ktime_get_ts(timeout);
2395 *timeout = timespec_sub(end_time, *timeout);
2396 if (timeout->tv_sec < 0) {
2397 timeout->tv_sec = timeout->tv_nsec = 0;
2398 break;
2399 }
2400
2401 /* Timeout, return less than vlen datagrams */
2402 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403 break;
2404 }
2405
2406 /* Out of band data, return right away */
2407 if (msg_sys.msg_flags & MSG_OOB)
2408 break;
2409 }
2410
2411out_put:
2412 fput_light(sock->file, fput_needed);
2413
2414 if (err == 0)
2415 return datagrams;
2416
2417 if (datagrams != 0) {
2418 /*
2419 * We may return less entries than requested (vlen) if the
2420 * sock is non block and there aren't enough datagrams...
2421 */
2422 if (err != -EAGAIN) {
2423 /*
2424 * ... or if recvmsg returns an error after we
2425 * received some datagrams, where we record the
2426 * error to return on the next call or if the
2427 * app asks about it using getsockopt(SO_ERROR).
2428 */
2429 sock->sk->sk_err = -err;
2430 }
2431
2432 return datagrams;
2433 }
2434
2435 return err;
2436}
2437
2438SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439 unsigned int, vlen, unsigned int, flags,
2440 struct timespec __user *, timeout)
2441{
2442 int datagrams;
2443 struct timespec timeout_sys;
2444
2445 if (flags & MSG_CMSG_COMPAT)
2446 return -EINVAL;
2447
2448 if (!timeout)
2449 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452 return -EFAULT;
2453
2454 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456 if (datagrams > 0 &&
2457 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458 datagrams = -EFAULT;
2459
2460 return datagrams;
2461}
2462
2463#ifdef __ARCH_WANT_SYS_SOCKETCALL
2464/* Argument list sizes for sys_socketcall */
2465#define AL(x) ((x) * sizeof(unsigned long))
2466static const unsigned char nargs[21] = {
2467 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470 AL(4), AL(5), AL(4)
2471};
2472
2473#undef AL
2474
2475/*
2476 * System call vectors.
2477 *
2478 * Argument checking cleaned up. Saved 20% in size.
2479 * This function doesn't need to set the kernel lock because
2480 * it is set by the callees.
2481 */
2482
2483SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484{
2485 unsigned long a[AUDITSC_ARGS];
2486 unsigned long a0, a1;
2487 int err;
2488 unsigned int len;
2489
2490 if (call < 1 || call > SYS_SENDMMSG)
2491 return -EINVAL;
2492
2493 len = nargs[call];
2494 if (len > sizeof(a))
2495 return -EINVAL;
2496
2497 /* copy_from_user should be SMP safe. */
2498 if (copy_from_user(a, args, len))
2499 return -EFAULT;
2500
2501 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502 if (err)
2503 return err;
2504
2505 a0 = a[0];
2506 a1 = a[1];
2507
2508 switch (call) {
2509 case SYS_SOCKET:
2510 err = sys_socket(a0, a1, a[2]);
2511 break;
2512 case SYS_BIND:
2513 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514 break;
2515 case SYS_CONNECT:
2516 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517 break;
2518 case SYS_LISTEN:
2519 err = sys_listen(a0, a1);
2520 break;
2521 case SYS_ACCEPT:
2522 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523 (int __user *)a[2], 0);
2524 break;
2525 case SYS_GETSOCKNAME:
2526 err =
2527 sys_getsockname(a0, (struct sockaddr __user *)a1,
2528 (int __user *)a[2]);
2529 break;
2530 case SYS_GETPEERNAME:
2531 err =
2532 sys_getpeername(a0, (struct sockaddr __user *)a1,
2533 (int __user *)a[2]);
2534 break;
2535 case SYS_SOCKETPAIR:
2536 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537 break;
2538 case SYS_SEND:
2539 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540 break;
2541 case SYS_SENDTO:
2542 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543 (struct sockaddr __user *)a[4], a[5]);
2544 break;
2545 case SYS_RECV:
2546 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547 break;
2548 case SYS_RECVFROM:
2549 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550 (struct sockaddr __user *)a[4],
2551 (int __user *)a[5]);
2552 break;
2553 case SYS_SHUTDOWN:
2554 err = sys_shutdown(a0, a1);
2555 break;
2556 case SYS_SETSOCKOPT:
2557 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558 break;
2559 case SYS_GETSOCKOPT:
2560 err =
2561 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562 (int __user *)a[4]);
2563 break;
2564 case SYS_SENDMSG:
2565 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566 break;
2567 case SYS_SENDMMSG:
2568 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569 break;
2570 case SYS_RECVMSG:
2571 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572 break;
2573 case SYS_RECVMMSG:
2574 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575 (struct timespec __user *)a[4]);
2576 break;
2577 case SYS_ACCEPT4:
2578 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579 (int __user *)a[2], a[3]);
2580 break;
2581 default:
2582 err = -EINVAL;
2583 break;
2584 }
2585 return err;
2586}
2587
2588#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590/**
2591 * sock_register - add a socket protocol handler
2592 * @ops: description of protocol
2593 *
2594 * This function is called by a protocol handler that wants to
2595 * advertise its address family, and have it linked into the
2596 * socket interface. The value ops->family coresponds to the
2597 * socket system call protocol family.
2598 */
2599int sock_register(const struct net_proto_family *ops)
2600{
2601 int err;
2602
2603 if (ops->family >= NPROTO) {
2604 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605 return -ENOBUFS;
2606 }
2607
2608 spin_lock(&net_family_lock);
2609 if (rcu_dereference_protected(net_families[ops->family],
2610 lockdep_is_held(&net_family_lock)))
2611 err = -EEXIST;
2612 else {
2613 rcu_assign_pointer(net_families[ops->family], ops);
2614 err = 0;
2615 }
2616 spin_unlock(&net_family_lock);
2617
2618 pr_info("NET: Registered protocol family %d\n", ops->family);
2619 return err;
2620}
2621EXPORT_SYMBOL(sock_register);
2622
2623/**
2624 * sock_unregister - remove a protocol handler
2625 * @family: protocol family to remove
2626 *
2627 * This function is called by a protocol handler that wants to
2628 * remove its address family, and have it unlinked from the
2629 * new socket creation.
2630 *
2631 * If protocol handler is a module, then it can use module reference
2632 * counts to protect against new references. If protocol handler is not
2633 * a module then it needs to provide its own protection in
2634 * the ops->create routine.
2635 */
2636void sock_unregister(int family)
2637{
2638 BUG_ON(family < 0 || family >= NPROTO);
2639
2640 spin_lock(&net_family_lock);
2641 RCU_INIT_POINTER(net_families[family], NULL);
2642 spin_unlock(&net_family_lock);
2643
2644 synchronize_rcu();
2645
2646 pr_info("NET: Unregistered protocol family %d\n", family);
2647}
2648EXPORT_SYMBOL(sock_unregister);
2649
2650static int __init sock_init(void)
2651{
2652 int err;
2653 /*
2654 * Initialize the network sysctl infrastructure.
2655 */
2656 err = net_sysctl_init();
2657 if (err)
2658 goto out;
2659
2660 /*
2661 * Initialize skbuff SLAB cache
2662 */
2663 skb_init();
2664
2665 /*
2666 * Initialize the protocols module.
2667 */
2668
2669 init_inodecache();
2670
2671 err = register_filesystem(&sock_fs_type);
2672 if (err)
2673 goto out_fs;
2674 sock_mnt = kern_mount(&sock_fs_type);
2675 if (IS_ERR(sock_mnt)) {
2676 err = PTR_ERR(sock_mnt);
2677 goto out_mount;
2678 }
2679
2680 /* The real protocol initialization is performed in later initcalls.
2681 */
2682
2683#ifdef CONFIG_NETFILTER
2684 err = netfilter_init();
2685 if (err)
2686 goto out;
2687#endif
2688
2689 ptp_classifier_init();
2690
2691out:
2692 return err;
2693
2694out_mount:
2695 unregister_filesystem(&sock_fs_type);
2696out_fs:
2697 goto out;
2698}
2699
2700core_initcall(sock_init); /* early initcall */
2701
2702#ifdef CONFIG_PROC_FS
2703void socket_seq_show(struct seq_file *seq)
2704{
2705 int cpu;
2706 int counter = 0;
2707
2708 for_each_possible_cpu(cpu)
2709 counter += per_cpu(sockets_in_use, cpu);
2710
2711 /* It can be negative, by the way. 8) */
2712 if (counter < 0)
2713 counter = 0;
2714
2715 seq_printf(seq, "sockets: used %d\n", counter);
2716}
2717#endif /* CONFIG_PROC_FS */
2718
2719#ifdef CONFIG_COMPAT
2720static int do_siocgstamp(struct net *net, struct socket *sock,
2721 unsigned int cmd, void __user *up)
2722{
2723 mm_segment_t old_fs = get_fs();
2724 struct timeval ktv;
2725 int err;
2726
2727 set_fs(KERNEL_DS);
2728 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729 set_fs(old_fs);
2730 if (!err)
2731 err = compat_put_timeval(&ktv, up);
2732
2733 return err;
2734}
2735
2736static int do_siocgstampns(struct net *net, struct socket *sock,
2737 unsigned int cmd, void __user *up)
2738{
2739 mm_segment_t old_fs = get_fs();
2740 struct timespec kts;
2741 int err;
2742
2743 set_fs(KERNEL_DS);
2744 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745 set_fs(old_fs);
2746 if (!err)
2747 err = compat_put_timespec(&kts, up);
2748
2749 return err;
2750}
2751
2752static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753{
2754 struct ifreq __user *uifr;
2755 int err;
2756
2757 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 return -EFAULT;
2760
2761 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762 if (err)
2763 return err;
2764
2765 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766 return -EFAULT;
2767
2768 return 0;
2769}
2770
2771static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772{
2773 struct compat_ifconf ifc32;
2774 struct ifconf ifc;
2775 struct ifconf __user *uifc;
2776 struct compat_ifreq __user *ifr32;
2777 struct ifreq __user *ifr;
2778 unsigned int i, j;
2779 int err;
2780
2781 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 return -EFAULT;
2783
2784 memset(&ifc, 0, sizeof(ifc));
2785 if (ifc32.ifcbuf == 0) {
2786 ifc32.ifc_len = 0;
2787 ifc.ifc_len = 0;
2788 ifc.ifc_req = NULL;
2789 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790 } else {
2791 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792 sizeof(struct ifreq);
2793 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794 ifc.ifc_len = len;
2795 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796 ifr32 = compat_ptr(ifc32.ifcbuf);
2797 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799 return -EFAULT;
2800 ifr++;
2801 ifr32++;
2802 }
2803 }
2804 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805 return -EFAULT;
2806
2807 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808 if (err)
2809 return err;
2810
2811 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812 return -EFAULT;
2813
2814 ifr = ifc.ifc_req;
2815 ifr32 = compat_ptr(ifc32.ifcbuf);
2816 for (i = 0, j = 0;
2817 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820 return -EFAULT;
2821 ifr32++;
2822 ifr++;
2823 }
2824
2825 if (ifc32.ifcbuf == 0) {
2826 /* Translate from 64-bit structure multiple to
2827 * a 32-bit one.
2828 */
2829 i = ifc.ifc_len;
2830 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831 ifc32.ifc_len = i;
2832 } else {
2833 ifc32.ifc_len = i;
2834 }
2835 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836 return -EFAULT;
2837
2838 return 0;
2839}
2840
2841static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842{
2843 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844 bool convert_in = false, convert_out = false;
2845 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846 struct ethtool_rxnfc __user *rxnfc;
2847 struct ifreq __user *ifr;
2848 u32 rule_cnt = 0, actual_rule_cnt;
2849 u32 ethcmd;
2850 u32 data;
2851 int ret;
2852
2853 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854 return -EFAULT;
2855
2856 compat_rxnfc = compat_ptr(data);
2857
2858 if (get_user(ethcmd, &compat_rxnfc->cmd))
2859 return -EFAULT;
2860
2861 /* Most ethtool structures are defined without padding.
2862 * Unfortunately struct ethtool_rxnfc is an exception.
2863 */
2864 switch (ethcmd) {
2865 default:
2866 break;
2867 case ETHTOOL_GRXCLSRLALL:
2868 /* Buffer size is variable */
2869 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870 return -EFAULT;
2871 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872 return -ENOMEM;
2873 buf_size += rule_cnt * sizeof(u32);
2874 /* fall through */
2875 case ETHTOOL_GRXRINGS:
2876 case ETHTOOL_GRXCLSRLCNT:
2877 case ETHTOOL_GRXCLSRULE:
2878 case ETHTOOL_SRXCLSRLINS:
2879 convert_out = true;
2880 /* fall through */
2881 case ETHTOOL_SRXCLSRLDEL:
2882 buf_size += sizeof(struct ethtool_rxnfc);
2883 convert_in = true;
2884 break;
2885 }
2886
2887 ifr = compat_alloc_user_space(buf_size);
2888 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891 return -EFAULT;
2892
2893 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894 &ifr->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896
2897 if (convert_in) {
2898 /* We expect there to be holes between fs.m_ext and
2899 * fs.ring_cookie and at the end of fs, but nowhere else.
2900 */
2901 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902 sizeof(compat_rxnfc->fs.m_ext) !=
2903 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904 sizeof(rxnfc->fs.m_ext));
2905 BUILD_BUG_ON(
2906 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908 offsetof(struct ethtool_rxnfc, fs.location) -
2909 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911 if (copy_in_user(rxnfc, compat_rxnfc,
2912 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913 (void __user *)rxnfc) ||
2914 copy_in_user(&rxnfc->fs.ring_cookie,
2915 &compat_rxnfc->fs.ring_cookie,
2916 (void __user *)(&rxnfc->fs.location + 1) -
2917 (void __user *)&rxnfc->fs.ring_cookie) ||
2918 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919 sizeof(rxnfc->rule_cnt)))
2920 return -EFAULT;
2921 }
2922
2923 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924 if (ret)
2925 return ret;
2926
2927 if (convert_out) {
2928 if (copy_in_user(compat_rxnfc, rxnfc,
2929 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930 (const void __user *)rxnfc) ||
2931 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932 &rxnfc->fs.ring_cookie,
2933 (const void __user *)(&rxnfc->fs.location + 1) -
2934 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936 sizeof(rxnfc->rule_cnt)))
2937 return -EFAULT;
2938
2939 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940 /* As an optimisation, we only copy the actual
2941 * number of rules that the underlying
2942 * function returned. Since Mallory might
2943 * change the rule count in user memory, we
2944 * check that it is less than the rule count
2945 * originally given (as the user buffer size),
2946 * which has been range-checked.
2947 */
2948 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949 return -EFAULT;
2950 if (actual_rule_cnt < rule_cnt)
2951 rule_cnt = actual_rule_cnt;
2952 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953 &rxnfc->rule_locs[0],
2954 rule_cnt * sizeof(u32)))
2955 return -EFAULT;
2956 }
2957 }
2958
2959 return 0;
2960}
2961
2962static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963{
2964 void __user *uptr;
2965 compat_uptr_t uptr32;
2966 struct ifreq __user *uifr;
2967
2968 uifr = compat_alloc_user_space(sizeof(*uifr));
2969 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970 return -EFAULT;
2971
2972 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973 return -EFAULT;
2974
2975 uptr = compat_ptr(uptr32);
2976
2977 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978 return -EFAULT;
2979
2980 return dev_ioctl(net, SIOCWANDEV, uifr);
2981}
2982
2983static int bond_ioctl(struct net *net, unsigned int cmd,
2984 struct compat_ifreq __user *ifr32)
2985{
2986 struct ifreq kifr;
2987 mm_segment_t old_fs;
2988 int err;
2989
2990 switch (cmd) {
2991 case SIOCBONDENSLAVE:
2992 case SIOCBONDRELEASE:
2993 case SIOCBONDSETHWADDR:
2994 case SIOCBONDCHANGEACTIVE:
2995 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996 return -EFAULT;
2997
2998 old_fs = get_fs();
2999 set_fs(KERNEL_DS);
3000 err = dev_ioctl(net, cmd,
3001 (struct ifreq __user __force *) &kifr);
3002 set_fs(old_fs);
3003
3004 return err;
3005 default:
3006 return -ENOIOCTLCMD;
3007 }
3008}
3009
3010/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012 struct compat_ifreq __user *u_ifreq32)
3013{
3014 struct ifreq __user *u_ifreq64;
3015 char tmp_buf[IFNAMSIZ];
3016 void __user *data64;
3017 u32 data32;
3018
3019 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 IFNAMSIZ))
3021 return -EFAULT;
3022 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023 return -EFAULT;
3024 data64 = compat_ptr(data32);
3025
3026 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 return -EFAULT;
3033
3034 return dev_ioctl(net, cmd, u_ifreq64);
3035}
3036
3037static int dev_ifsioc(struct net *net, struct socket *sock,
3038 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039{
3040 struct ifreq __user *uifr;
3041 int err;
3042
3043 uifr = compat_alloc_user_space(sizeof(*uifr));
3044 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 return -EFAULT;
3046
3047 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049 if (!err) {
3050 switch (cmd) {
3051 case SIOCGIFFLAGS:
3052 case SIOCGIFMETRIC:
3053 case SIOCGIFMTU:
3054 case SIOCGIFMEM:
3055 case SIOCGIFHWADDR:
3056 case SIOCGIFINDEX:
3057 case SIOCGIFADDR:
3058 case SIOCGIFBRDADDR:
3059 case SIOCGIFDSTADDR:
3060 case SIOCGIFNETMASK:
3061 case SIOCGIFPFLAGS:
3062 case SIOCGIFTXQLEN:
3063 case SIOCGMIIPHY:
3064 case SIOCGMIIREG:
3065 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066 err = -EFAULT;
3067 break;
3068 }
3069 }
3070 return err;
3071}
3072
3073static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074 struct compat_ifreq __user *uifr32)
3075{
3076 struct ifreq ifr;
3077 struct compat_ifmap __user *uifmap32;
3078 mm_segment_t old_fs;
3079 int err;
3080
3081 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089 if (err)
3090 return -EFAULT;
3091
3092 old_fs = get_fs();
3093 set_fs(KERNEL_DS);
3094 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3095 set_fs(old_fs);
3096
3097 if (cmd == SIOCGIFMAP && !err) {
3098 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105 if (err)
3106 err = -EFAULT;
3107 }
3108 return err;
3109}
3110
3111struct rtentry32 {
3112 u32 rt_pad1;
3113 struct sockaddr rt_dst; /* target address */
3114 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3115 struct sockaddr rt_genmask; /* target network mask (IP) */
3116 unsigned short rt_flags;
3117 short rt_pad2;
3118 u32 rt_pad3;
3119 unsigned char rt_tos;
3120 unsigned char rt_class;
3121 short rt_pad4;
3122 short rt_metric; /* +1 for binary compatibility! */
3123 /* char * */ u32 rt_dev; /* forcing the device at add */
3124 u32 rt_mtu; /* per route MTU/Window */
3125 u32 rt_window; /* Window clamping */
3126 unsigned short rt_irtt; /* Initial RTT */
3127};
3128
3129struct in6_rtmsg32 {
3130 struct in6_addr rtmsg_dst;
3131 struct in6_addr rtmsg_src;
3132 struct in6_addr rtmsg_gateway;
3133 u32 rtmsg_type;
3134 u16 rtmsg_dst_len;
3135 u16 rtmsg_src_len;
3136 u32 rtmsg_metric;
3137 u32 rtmsg_info;
3138 u32 rtmsg_flags;
3139 s32 rtmsg_ifindex;
3140};
3141
3142static int routing_ioctl(struct net *net, struct socket *sock,
3143 unsigned int cmd, void __user *argp)
3144{
3145 int ret;
3146 void *r = NULL;
3147 struct in6_rtmsg r6;
3148 struct rtentry r4;
3149 char devname[16];
3150 u32 rtdev;
3151 mm_segment_t old_fs = get_fs();
3152
3153 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154 struct in6_rtmsg32 __user *ur6 = argp;
3155 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156 3 * sizeof(struct in6_addr));
3157 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165 r = (void *) &r6;
3166 } else { /* ipv4 */
3167 struct rtentry32 __user *ur4 = argp;
3168 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169 3 * sizeof(struct sockaddr));
3170 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175 ret |= get_user(rtdev, &(ur4->rt_dev));
3176 if (rtdev) {
3177 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178 r4.rt_dev = (char __user __force *)devname;
3179 devname[15] = 0;
3180 } else
3181 r4.rt_dev = NULL;
3182
3183 r = (void *) &r4;
3184 }
3185
3186 if (ret) {
3187 ret = -EFAULT;
3188 goto out;
3189 }
3190
3191 set_fs(KERNEL_DS);
3192 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193 set_fs(old_fs);
3194
3195out:
3196 return ret;
3197}
3198
3199/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204{
3205 compat_ulong_t tmp;
3206
3207 if (get_user(tmp, argp))
3208 return -EFAULT;
3209 if (tmp == BRCTL_GET_VERSION)
3210 return BRCTL_VERSION + 1;
3211 return -EINVAL;
3212}
3213
3214static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215 unsigned int cmd, unsigned long arg)
3216{
3217 void __user *argp = compat_ptr(arg);
3218 struct sock *sk = sock->sk;
3219 struct net *net = sock_net(sk);
3220
3221 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222 return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224 switch (cmd) {
3225 case SIOCSIFBR:
3226 case SIOCGIFBR:
3227 return old_bridge_ioctl(argp);
3228 case SIOCGIFNAME:
3229 return dev_ifname32(net, argp);
3230 case SIOCGIFCONF:
3231 return dev_ifconf(net, argp);
3232 case SIOCETHTOOL:
3233 return ethtool_ioctl(net, argp);
3234 case SIOCWANDEV:
3235 return compat_siocwandev(net, argp);
3236 case SIOCGIFMAP:
3237 case SIOCSIFMAP:
3238 return compat_sioc_ifmap(net, cmd, argp);
3239 case SIOCBONDENSLAVE:
3240 case SIOCBONDRELEASE:
3241 case SIOCBONDSETHWADDR:
3242 case SIOCBONDCHANGEACTIVE:
3243 return bond_ioctl(net, cmd, argp);
3244 case SIOCADDRT:
3245 case SIOCDELRT:
3246 return routing_ioctl(net, sock, cmd, argp);
3247 case SIOCGSTAMP:
3248 return do_siocgstamp(net, sock, cmd, argp);
3249 case SIOCGSTAMPNS:
3250 return do_siocgstampns(net, sock, cmd, argp);
3251 case SIOCBONDSLAVEINFOQUERY:
3252 case SIOCBONDINFOQUERY:
3253 case SIOCSHWTSTAMP:
3254 case SIOCGHWTSTAMP:
3255 return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257 case FIOSETOWN:
3258 case SIOCSPGRP:
3259 case FIOGETOWN:
3260 case SIOCGPGRP:
3261 case SIOCBRADDBR:
3262 case SIOCBRDELBR:
3263 case SIOCGIFVLAN:
3264 case SIOCSIFVLAN:
3265 case SIOCADDDLCI:
3266 case SIOCDELDLCI:
3267 return sock_ioctl(file, cmd, arg);
3268
3269 case SIOCGIFFLAGS:
3270 case SIOCSIFFLAGS:
3271 case SIOCGIFMETRIC:
3272 case SIOCSIFMETRIC:
3273 case SIOCGIFMTU:
3274 case SIOCSIFMTU:
3275 case SIOCGIFMEM:
3276 case SIOCSIFMEM:
3277 case SIOCGIFHWADDR:
3278 case SIOCSIFHWADDR:
3279 case SIOCADDMULTI:
3280 case SIOCDELMULTI:
3281 case SIOCGIFINDEX:
3282 case SIOCGIFADDR:
3283 case SIOCSIFADDR:
3284 case SIOCSIFHWBROADCAST:
3285 case SIOCDIFADDR:
3286 case SIOCGIFBRDADDR:
3287 case SIOCSIFBRDADDR:
3288 case SIOCGIFDSTADDR:
3289 case SIOCSIFDSTADDR:
3290 case SIOCGIFNETMASK:
3291 case SIOCSIFNETMASK:
3292 case SIOCSIFPFLAGS:
3293 case SIOCGIFPFLAGS:
3294 case SIOCGIFTXQLEN:
3295 case SIOCSIFTXQLEN:
3296 case SIOCBRADDIF:
3297 case SIOCBRDELIF:
3298 case SIOCSIFNAME:
3299 case SIOCGMIIPHY:
3300 case SIOCGMIIREG:
3301 case SIOCSMIIREG:
3302 return dev_ifsioc(net, sock, cmd, argp);
3303
3304 case SIOCSARP:
3305 case SIOCGARP:
3306 case SIOCDARP:
3307 case SIOCATMARK:
3308 return sock_do_ioctl(net, sock, cmd, arg);
3309 }
3310
3311 return -ENOIOCTLCMD;
3312}
3313
3314static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 unsigned long arg)
3316{
3317 struct socket *sock = file->private_data;
3318 int ret = -ENOIOCTLCMD;
3319 struct sock *sk;
3320 struct net *net;
3321
3322 sk = sock->sk;
3323 net = sock_net(sk);
3324
3325 if (sock->ops->compat_ioctl)
3326 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328 if (ret == -ENOIOCTLCMD &&
3329 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330 ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332 if (ret == -ENOIOCTLCMD)
3333 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335 return ret;
3336}
3337#endif
3338
3339int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340{
3341 return sock->ops->bind(sock, addr, addrlen);
3342}
3343EXPORT_SYMBOL(kernel_bind);
3344
3345int kernel_listen(struct socket *sock, int backlog)
3346{
3347 return sock->ops->listen(sock, backlog);
3348}
3349EXPORT_SYMBOL(kernel_listen);
3350
3351int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352{
3353 struct sock *sk = sock->sk;
3354 int err;
3355
3356 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357 newsock);
3358 if (err < 0)
3359 goto done;
3360
3361 err = sock->ops->accept(sock, *newsock, flags);
3362 if (err < 0) {
3363 sock_release(*newsock);
3364 *newsock = NULL;
3365 goto done;
3366 }
3367
3368 (*newsock)->ops = sock->ops;
3369 __module_get((*newsock)->ops->owner);
3370
3371done:
3372 return err;
3373}
3374EXPORT_SYMBOL(kernel_accept);
3375
3376int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 int flags)
3378{
3379 return sock->ops->connect(sock, addr, addrlen, flags);
3380}
3381EXPORT_SYMBOL(kernel_connect);
3382
3383int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 int *addrlen)
3385{
3386 return sock->ops->getname(sock, addr, addrlen, 0);
3387}
3388EXPORT_SYMBOL(kernel_getsockname);
3389
3390int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 int *addrlen)
3392{
3393 return sock->ops->getname(sock, addr, addrlen, 1);
3394}
3395EXPORT_SYMBOL(kernel_getpeername);
3396
3397int kernel_getsockopt(struct socket *sock, int level, int optname,
3398 char *optval, int *optlen)
3399{
3400 mm_segment_t oldfs = get_fs();
3401 char __user *uoptval;
3402 int __user *uoptlen;
3403 int err;
3404
3405 uoptval = (char __user __force *) optval;
3406 uoptlen = (int __user __force *) optlen;
3407
3408 set_fs(KERNEL_DS);
3409 if (level == SOL_SOCKET)
3410 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411 else
3412 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413 uoptlen);
3414 set_fs(oldfs);
3415 return err;
3416}
3417EXPORT_SYMBOL(kernel_getsockopt);
3418
3419int kernel_setsockopt(struct socket *sock, int level, int optname,
3420 char *optval, unsigned int optlen)
3421{
3422 mm_segment_t oldfs = get_fs();
3423 char __user *uoptval;
3424 int err;
3425
3426 uoptval = (char __user __force *) optval;
3427
3428 set_fs(KERNEL_DS);
3429 if (level == SOL_SOCKET)
3430 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431 else
3432 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433 optlen);
3434 set_fs(oldfs);
3435 return err;
3436}
3437EXPORT_SYMBOL(kernel_setsockopt);
3438
3439int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440 size_t size, int flags)
3441{
3442 if (sock->ops->sendpage)
3443 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445 return sock_no_sendpage(sock, page, offset, size, flags);
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451 mm_segment_t oldfs = get_fs();
3452 int err;
3453
3454 set_fs(KERNEL_DS);
3455 err = sock->ops->ioctl(sock, cmd, arg);
3456 set_fs(oldfs);
3457
3458 return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464 return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);