Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62#include <linux/kernel.h>
63#include <linux/platform_device.h>
64#include <linux/string.h>
65#include <linux/errno.h>
66#include <linux/unistd.h>
67#include <linux/slab.h>
68#include <linux/interrupt.h>
69#include <linux/delay.h>
70#include <linux/netdevice.h>
71#include <linux/etherdevice.h>
72#include <linux/skbuff.h>
73#include <linux/if_vlan.h>
74#include <linux/spinlock.h>
75#include <linux/mm.h>
76#include <linux/of_address.h>
77#include <linux/of_irq.h>
78#include <linux/of_mdio.h>
79#include <linux/ip.h>
80#include <linux/tcp.h>
81#include <linux/udp.h>
82#include <linux/in.h>
83#include <linux/net_tstamp.h>
84
85#include <asm/io.h>
86#ifdef CONFIG_PPC
87#include <asm/reg.h>
88#include <asm/mpc85xx.h>
89#endif
90#include <asm/irq.h>
91#include <linux/uaccess.h>
92#include <linux/module.h>
93#include <linux/dma-mapping.h>
94#include <linux/crc32.h>
95#include <linux/mii.h>
96#include <linux/phy.h>
97#include <linux/phy_fixed.h>
98#include <linux/of.h>
99#include <linux/of_net.h>
100
101#include "gianfar.h"
102
103#define TX_TIMEOUT (5*HZ)
104
105MODULE_AUTHOR("Freescale Semiconductor, Inc");
106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107MODULE_LICENSE("GPL");
108
109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 dma_addr_t buf)
111{
112 u32 lstatus;
113
114 bdp->bufPtr = cpu_to_be32(buf);
115
116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120 gfar_wmb();
121
122 bdp->lstatus = cpu_to_be32(lstatus);
123}
124
125static void gfar_init_tx_rx_base(struct gfar_private *priv)
126{
127 struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 u32 __iomem *baddr;
129 int i;
130
131 baddr = ®s->tbase0;
132 for (i = 0; i < priv->num_tx_queues; i++) {
133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 baddr += 2;
135 }
136
137 baddr = ®s->rbase0;
138 for (i = 0; i < priv->num_rx_queues; i++) {
139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 baddr += 2;
141 }
142}
143
144static void gfar_init_rqprm(struct gfar_private *priv)
145{
146 struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 u32 __iomem *baddr;
148 int i;
149
150 baddr = ®s->rqprm0;
151 for (i = 0; i < priv->num_rx_queues; i++) {
152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 baddr++;
155 }
156}
157
158static void gfar_rx_offload_en(struct gfar_private *priv)
159{
160 /* set this when rx hw offload (TOE) functions are being used */
161 priv->uses_rxfcb = 0;
162
163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 priv->uses_rxfcb = 1;
165
166 if (priv->hwts_rx_en || priv->rx_filer_enable)
167 priv->uses_rxfcb = 1;
168}
169
170static void gfar_mac_rx_config(struct gfar_private *priv)
171{
172 struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 u32 rctrl = 0;
174
175 if (priv->rx_filer_enable) {
176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 /* Program the RIR0 reg with the required distribution */
178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
179 }
180
181 /* Restore PROMISC mode */
182 if (priv->ndev->flags & IFF_PROMISC)
183 rctrl |= RCTRL_PROM;
184
185 if (priv->ndev->features & NETIF_F_RXCSUM)
186 rctrl |= RCTRL_CHECKSUMMING;
187
188 if (priv->extended_hash)
189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190
191 if (priv->padding) {
192 rctrl &= ~RCTRL_PAL_MASK;
193 rctrl |= RCTRL_PADDING(priv->padding);
194 }
195
196 /* Enable HW time stamping if requested from user space */
197 if (priv->hwts_rx_en)
198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199
200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202
203 /* Clear the LFC bit */
204 gfar_write(®s->rctrl, rctrl);
205 /* Init flow control threshold values */
206 gfar_init_rqprm(priv);
207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
208 rctrl |= RCTRL_LFC;
209
210 /* Init rctrl based on our settings */
211 gfar_write(®s->rctrl, rctrl);
212}
213
214static void gfar_mac_tx_config(struct gfar_private *priv)
215{
216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 u32 tctrl = 0;
218
219 if (priv->ndev->features & NETIF_F_IP_CSUM)
220 tctrl |= TCTRL_INIT_CSUM;
221
222 if (priv->prio_sched_en)
223 tctrl |= TCTRL_TXSCHED_PRIO;
224 else {
225 tctrl |= TCTRL_TXSCHED_WRRS;
226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
228 }
229
230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 tctrl |= TCTRL_VLINS;
232
233 gfar_write(®s->tctrl, tctrl);
234}
235
236static void gfar_configure_coalescing(struct gfar_private *priv,
237 unsigned long tx_mask, unsigned long rx_mask)
238{
239 struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 u32 __iomem *baddr;
241
242 if (priv->mode == MQ_MG_MODE) {
243 int i = 0;
244
245 baddr = ®s->txic0;
246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 gfar_write(baddr + i, 0);
248 if (likely(priv->tx_queue[i]->txcoalescing))
249 gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 }
251
252 baddr = ®s->rxic0;
253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 gfar_write(baddr + i, 0);
255 if (likely(priv->rx_queue[i]->rxcoalescing))
256 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 }
258 } else {
259 /* Backward compatible case -- even if we enable
260 * multiple queues, there's only single reg to program
261 */
262 gfar_write(®s->txic, 0);
263 if (likely(priv->tx_queue[0]->txcoalescing))
264 gfar_write(®s->txic, priv->tx_queue[0]->txic);
265
266 gfar_write(®s->rxic, 0);
267 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
269 }
270}
271
272static void gfar_configure_coalescing_all(struct gfar_private *priv)
273{
274 gfar_configure_coalescing(priv, 0xFF, 0xFF);
275}
276
277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278{
279 struct gfar_private *priv = netdev_priv(dev);
280 int i;
281
282 for (i = 0; i < priv->num_rx_queues; i++) {
283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 }
287
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 }
292
293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 unsigned long flags;
296 u32 rdrp, car, car_before;
297 u64 rdrp_offset;
298
299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301 do {
302 car_before = car;
303 rdrp = gfar_read(&rmon->rdrp);
304 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 } while (car != car_before);
306 if (car) {
307 priv->rmon_overflow.rdrp++;
308 gfar_write(&rmon->car1, car);
309 }
310 rdrp_offset = priv->rmon_overflow.rdrp;
311 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312
313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 }
315}
316
317/* Set the appropriate hash bit for the given addr */
318/* The algorithm works like so:
319 * 1) Take the Destination Address (ie the multicast address), and
320 * do a CRC on it (little endian), and reverse the bits of the
321 * result.
322 * 2) Use the 8 most significant bits as a hash into a 256-entry
323 * table. The table is controlled through 8 32-bit registers:
324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
325 * gaddr7. This means that the 3 most significant bits in the
326 * hash index which gaddr register to use, and the 5 other bits
327 * indicate which bit (assuming an IBM numbering scheme, which
328 * for PowerPC (tm) is usually the case) in the register holds
329 * the entry.
330 */
331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332{
333 u32 tempval;
334 struct gfar_private *priv = netdev_priv(dev);
335 u32 result = ether_crc(ETH_ALEN, addr);
336 int width = priv->hash_width;
337 u8 whichbit = (result >> (32 - width)) & 0x1f;
338 u8 whichreg = result >> (32 - width + 5);
339 u32 value = (1 << (31-whichbit));
340
341 tempval = gfar_read(priv->hash_regs[whichreg]);
342 tempval |= value;
343 gfar_write(priv->hash_regs[whichreg], tempval);
344}
345
346/* There are multiple MAC Address register pairs on some controllers
347 * This function sets the numth pair to a given address
348 */
349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 const u8 *addr)
351{
352 struct gfar_private *priv = netdev_priv(dev);
353 struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 u32 tempval;
355 u32 __iomem *macptr = ®s->macstnaddr1;
356
357 macptr += num*2;
358
359 /* For a station address of 0x12345678ABCD in transmission
360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 * MACnADDR2 is set to 0x34120000.
362 */
363 tempval = (addr[5] << 24) | (addr[4] << 16) |
364 (addr[3] << 8) | addr[2];
365
366 gfar_write(macptr, tempval);
367
368 tempval = (addr[1] << 24) | (addr[0] << 16);
369
370 gfar_write(macptr+1, tempval);
371}
372
373static int gfar_set_mac_addr(struct net_device *dev, void *p)
374{
375 int ret;
376
377 ret = eth_mac_addr(dev, p);
378 if (ret)
379 return ret;
380
381 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382
383 return 0;
384}
385
386static void gfar_ints_disable(struct gfar_private *priv)
387{
388 int i;
389 for (i = 0; i < priv->num_grps; i++) {
390 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 /* Clear IEVENT */
392 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
393
394 /* Initialize IMASK */
395 gfar_write(®s->imask, IMASK_INIT_CLEAR);
396 }
397}
398
399static void gfar_ints_enable(struct gfar_private *priv)
400{
401 int i;
402 for (i = 0; i < priv->num_grps; i++) {
403 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 /* Unmask the interrupts we look for */
405 gfar_write(®s->imask,
406 IMASK_DEFAULT | priv->rmon_overflow.imask);
407 }
408}
409
410static int gfar_alloc_tx_queues(struct gfar_private *priv)
411{
412 int i;
413
414 for (i = 0; i < priv->num_tx_queues; i++) {
415 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416 GFP_KERNEL);
417 if (!priv->tx_queue[i])
418 return -ENOMEM;
419
420 priv->tx_queue[i]->tx_skbuff = NULL;
421 priv->tx_queue[i]->qindex = i;
422 priv->tx_queue[i]->dev = priv->ndev;
423 spin_lock_init(&(priv->tx_queue[i]->txlock));
424 }
425 return 0;
426}
427
428static int gfar_alloc_rx_queues(struct gfar_private *priv)
429{
430 int i;
431
432 for (i = 0; i < priv->num_rx_queues; i++) {
433 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434 GFP_KERNEL);
435 if (!priv->rx_queue[i])
436 return -ENOMEM;
437
438 priv->rx_queue[i]->qindex = i;
439 priv->rx_queue[i]->ndev = priv->ndev;
440 }
441 return 0;
442}
443
444static void gfar_free_tx_queues(struct gfar_private *priv)
445{
446 int i;
447
448 for (i = 0; i < priv->num_tx_queues; i++)
449 kfree(priv->tx_queue[i]);
450}
451
452static void gfar_free_rx_queues(struct gfar_private *priv)
453{
454 int i;
455
456 for (i = 0; i < priv->num_rx_queues; i++)
457 kfree(priv->rx_queue[i]);
458}
459
460static void unmap_group_regs(struct gfar_private *priv)
461{
462 int i;
463
464 for (i = 0; i < MAXGROUPS; i++)
465 if (priv->gfargrp[i].regs)
466 iounmap(priv->gfargrp[i].regs);
467}
468
469static void free_gfar_dev(struct gfar_private *priv)
470{
471 int i, j;
472
473 for (i = 0; i < priv->num_grps; i++)
474 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 kfree(priv->gfargrp[i].irqinfo[j]);
476 priv->gfargrp[i].irqinfo[j] = NULL;
477 }
478
479 free_netdev(priv->ndev);
480}
481
482static void disable_napi(struct gfar_private *priv)
483{
484 int i;
485
486 for (i = 0; i < priv->num_grps; i++) {
487 napi_disable(&priv->gfargrp[i].napi_rx);
488 napi_disable(&priv->gfargrp[i].napi_tx);
489 }
490}
491
492static void enable_napi(struct gfar_private *priv)
493{
494 int i;
495
496 for (i = 0; i < priv->num_grps; i++) {
497 napi_enable(&priv->gfargrp[i].napi_rx);
498 napi_enable(&priv->gfargrp[i].napi_tx);
499 }
500}
501
502static int gfar_parse_group(struct device_node *np,
503 struct gfar_private *priv, const char *model)
504{
505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 int i;
507
508 for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510 GFP_KERNEL);
511 if (!grp->irqinfo[i])
512 return -ENOMEM;
513 }
514
515 grp->regs = of_iomap(np, 0);
516 if (!grp->regs)
517 return -ENOMEM;
518
519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520
521 /* If we aren't the FEC we have multiple interrupts */
522 if (model && strcasecmp(model, "FEC")) {
523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 if (!gfar_irq(grp, TX)->irq ||
526 !gfar_irq(grp, RX)->irq ||
527 !gfar_irq(grp, ER)->irq)
528 return -EINVAL;
529 }
530
531 grp->priv = priv;
532 spin_lock_init(&grp->grplock);
533 if (priv->mode == MQ_MG_MODE) {
534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 } else {
538 grp->rx_bit_map = 0xFF;
539 grp->tx_bit_map = 0xFF;
540 }
541
542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 * right to left, so we need to revert the 8 bits to get the q index
544 */
545 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547
548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 * also assign queues to groups
550 */
551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 if (!grp->rx_queue)
553 grp->rx_queue = priv->rx_queue[i];
554 grp->num_rx_queues++;
555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 priv->rx_queue[i]->grp = grp;
558 }
559
560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 if (!grp->tx_queue)
562 grp->tx_queue = priv->tx_queue[i];
563 grp->num_tx_queues++;
564 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 priv->tqueue |= (TQUEUE_EN0 >> i);
566 priv->tx_queue[i]->grp = grp;
567 }
568
569 priv->num_grps++;
570
571 return 0;
572}
573
574static int gfar_of_group_count(struct device_node *np)
575{
576 struct device_node *child;
577 int num = 0;
578
579 for_each_available_child_of_node(np, child)
580 if (of_node_name_eq(child, "queue-group"))
581 num++;
582
583 return num;
584}
585
586/* Reads the controller's registers to determine what interface
587 * connects it to the PHY.
588 */
589static phy_interface_t gfar_get_interface(struct net_device *dev)
590{
591 struct gfar_private *priv = netdev_priv(dev);
592 struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 u32 ecntrl;
594
595 ecntrl = gfar_read(®s->ecntrl);
596
597 if (ecntrl & ECNTRL_SGMII_MODE)
598 return PHY_INTERFACE_MODE_SGMII;
599
600 if (ecntrl & ECNTRL_TBI_MODE) {
601 if (ecntrl & ECNTRL_REDUCED_MODE)
602 return PHY_INTERFACE_MODE_RTBI;
603 else
604 return PHY_INTERFACE_MODE_TBI;
605 }
606
607 if (ecntrl & ECNTRL_REDUCED_MODE) {
608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 return PHY_INTERFACE_MODE_RMII;
610 }
611 else {
612 phy_interface_t interface = priv->interface;
613
614 /* This isn't autodetected right now, so it must
615 * be set by the device tree or platform code.
616 */
617 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 return PHY_INTERFACE_MODE_RGMII_ID;
619
620 return PHY_INTERFACE_MODE_RGMII;
621 }
622 }
623
624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 return PHY_INTERFACE_MODE_GMII;
626
627 return PHY_INTERFACE_MODE_MII;
628}
629
630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631{
632 const char *model;
633 int err = 0, i;
634 phy_interface_t interface;
635 struct net_device *dev = NULL;
636 struct gfar_private *priv = NULL;
637 struct device_node *np = ofdev->dev.of_node;
638 struct device_node *child = NULL;
639 u32 stash_len = 0;
640 u32 stash_idx = 0;
641 unsigned int num_tx_qs, num_rx_qs;
642 unsigned short mode;
643
644 if (!np)
645 return -ENODEV;
646
647 if (of_device_is_compatible(np, "fsl,etsec2"))
648 mode = MQ_MG_MODE;
649 else
650 mode = SQ_SG_MODE;
651
652 if (mode == SQ_SG_MODE) {
653 num_tx_qs = 1;
654 num_rx_qs = 1;
655 } else { /* MQ_MG_MODE */
656 /* get the actual number of supported groups */
657 unsigned int num_grps = gfar_of_group_count(np);
658
659 if (num_grps == 0 || num_grps > MAXGROUPS) {
660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 num_grps);
662 pr_err("Cannot do alloc_etherdev, aborting\n");
663 return -EINVAL;
664 }
665
666 num_tx_qs = num_grps; /* one txq per int group */
667 num_rx_qs = num_grps; /* one rxq per int group */
668 }
669
670 if (num_tx_qs > MAX_TX_QS) {
671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 num_tx_qs, MAX_TX_QS);
673 pr_err("Cannot do alloc_etherdev, aborting\n");
674 return -EINVAL;
675 }
676
677 if (num_rx_qs > MAX_RX_QS) {
678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 num_rx_qs, MAX_RX_QS);
680 pr_err("Cannot do alloc_etherdev, aborting\n");
681 return -EINVAL;
682 }
683
684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 dev = *pdev;
686 if (NULL == dev)
687 return -ENOMEM;
688
689 priv = netdev_priv(dev);
690 priv->ndev = dev;
691
692 priv->mode = mode;
693
694 priv->num_tx_queues = num_tx_qs;
695 netif_set_real_num_rx_queues(dev, num_rx_qs);
696 priv->num_rx_queues = num_rx_qs;
697
698 err = gfar_alloc_tx_queues(priv);
699 if (err)
700 goto tx_alloc_failed;
701
702 err = gfar_alloc_rx_queues(priv);
703 if (err)
704 goto rx_alloc_failed;
705
706 err = of_property_read_string(np, "model", &model);
707 if (err) {
708 pr_err("Device model property missing, aborting\n");
709 goto rx_alloc_failed;
710 }
711
712 /* Init Rx queue filer rule set linked list */
713 INIT_LIST_HEAD(&priv->rx_list.list);
714 priv->rx_list.count = 0;
715 mutex_init(&priv->rx_queue_access);
716
717 for (i = 0; i < MAXGROUPS; i++)
718 priv->gfargrp[i].regs = NULL;
719
720 /* Parse and initialize group specific information */
721 if (priv->mode == MQ_MG_MODE) {
722 for_each_available_child_of_node(np, child) {
723 if (!of_node_name_eq(child, "queue-group"))
724 continue;
725
726 err = gfar_parse_group(child, priv, model);
727 if (err) {
728 of_node_put(child);
729 goto err_grp_init;
730 }
731 }
732 } else { /* SQ_SG_MODE */
733 err = gfar_parse_group(np, priv, model);
734 if (err)
735 goto err_grp_init;
736 }
737
738 if (of_property_read_bool(np, "bd-stash")) {
739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 priv->bd_stash_en = 1;
741 }
742
743 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744
745 if (err == 0)
746 priv->rx_stash_size = stash_len;
747
748 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749
750 if (err == 0)
751 priv->rx_stash_index = stash_idx;
752
753 if (stash_len || stash_idx)
754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755
756 err = of_get_ethdev_address(np, dev);
757 if (err == -EPROBE_DEFER)
758 goto err_grp_init;
759 if (err) {
760 eth_hw_addr_random(dev);
761 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
762 }
763
764 if (model && !strcasecmp(model, "TSEC"))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
766 FSL_GIANFAR_DEV_HAS_COALESCE |
767 FSL_GIANFAR_DEV_HAS_RMON |
768 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
769
770 if (model && !strcasecmp(model, "eTSEC"))
771 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
772 FSL_GIANFAR_DEV_HAS_COALESCE |
773 FSL_GIANFAR_DEV_HAS_RMON |
774 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
775 FSL_GIANFAR_DEV_HAS_CSUM |
776 FSL_GIANFAR_DEV_HAS_VLAN |
777 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
778 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
779 FSL_GIANFAR_DEV_HAS_TIMER |
780 FSL_GIANFAR_DEV_HAS_RX_FILER;
781
782 /* Use PHY connection type from the DT node if one is specified there.
783 * rgmii-id really needs to be specified. Other types can be
784 * detected by hardware
785 */
786 err = of_get_phy_mode(np, &interface);
787 if (!err)
788 priv->interface = interface;
789 else
790 priv->interface = gfar_get_interface(dev);
791
792 if (of_property_read_bool(np, "fsl,magic-packet"))
793 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
794
795 if (of_property_read_bool(np, "fsl,wake-on-filer"))
796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
797
798 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
799
800 /* In the case of a fixed PHY, the DT node associated
801 * to the PHY is the Ethernet MAC DT node.
802 */
803 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
804 err = of_phy_register_fixed_link(np);
805 if (err)
806 goto err_grp_init;
807
808 priv->phy_node = of_node_get(np);
809 }
810
811 /* Find the TBI PHY. If it's not there, we don't support SGMII */
812 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
813
814 return 0;
815
816err_grp_init:
817 unmap_group_regs(priv);
818rx_alloc_failed:
819 gfar_free_rx_queues(priv);
820tx_alloc_failed:
821 gfar_free_tx_queues(priv);
822 free_gfar_dev(priv);
823 return err;
824}
825
826static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
827 u32 class)
828{
829 u32 rqfpr = FPR_FILER_MASK;
830 u32 rqfcr = 0x0;
831
832 rqfar--;
833 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
834 priv->ftp_rqfpr[rqfar] = rqfpr;
835 priv->ftp_rqfcr[rqfar] = rqfcr;
836 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
837
838 rqfar--;
839 rqfcr = RQFCR_CMP_NOMATCH;
840 priv->ftp_rqfpr[rqfar] = rqfpr;
841 priv->ftp_rqfcr[rqfar] = rqfcr;
842 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
843
844 rqfar--;
845 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
846 rqfpr = class;
847 priv->ftp_rqfcr[rqfar] = rqfcr;
848 priv->ftp_rqfpr[rqfar] = rqfpr;
849 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
850
851 rqfar--;
852 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
853 rqfpr = class;
854 priv->ftp_rqfcr[rqfar] = rqfcr;
855 priv->ftp_rqfpr[rqfar] = rqfpr;
856 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
857
858 return rqfar;
859}
860
861static void gfar_init_filer_table(struct gfar_private *priv)
862{
863 int i = 0x0;
864 u32 rqfar = MAX_FILER_IDX;
865 u32 rqfcr = 0x0;
866 u32 rqfpr = FPR_FILER_MASK;
867
868 /* Default rule */
869 rqfcr = RQFCR_CMP_MATCH;
870 priv->ftp_rqfcr[rqfar] = rqfcr;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
878 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
879 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
880
881 /* cur_filer_idx indicated the first non-masked rule */
882 priv->cur_filer_idx = rqfar;
883
884 /* Rest are masked rules */
885 rqfcr = RQFCR_CMP_NOMATCH;
886 for (i = 0; i < rqfar; i++) {
887 priv->ftp_rqfcr[i] = rqfcr;
888 priv->ftp_rqfpr[i] = rqfpr;
889 gfar_write_filer(priv, i, rqfcr, rqfpr);
890 }
891}
892
893#ifdef CONFIG_PPC
894static void __gfar_detect_errata_83xx(struct gfar_private *priv)
895{
896 unsigned int pvr = mfspr(SPRN_PVR);
897 unsigned int svr = mfspr(SPRN_SVR);
898 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
899 unsigned int rev = svr & 0xffff;
900
901 /* MPC8313 Rev 2.0 and higher; All MPC837x */
902 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
903 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
904 priv->errata |= GFAR_ERRATA_74;
905
906 /* MPC8313 and MPC837x all rev */
907 if ((pvr == 0x80850010 && mod == 0x80b0) ||
908 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
909 priv->errata |= GFAR_ERRATA_76;
910
911 /* MPC8313 Rev < 2.0 */
912 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
913 priv->errata |= GFAR_ERRATA_12;
914}
915
916static void __gfar_detect_errata_85xx(struct gfar_private *priv)
917{
918 unsigned int svr = mfspr(SPRN_SVR);
919
920 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
921 priv->errata |= GFAR_ERRATA_12;
922 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
923 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
924 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
925 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
926 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
927}
928#endif
929
930static void gfar_detect_errata(struct gfar_private *priv)
931{
932 struct device *dev = &priv->ofdev->dev;
933
934 /* no plans to fix */
935 priv->errata |= GFAR_ERRATA_A002;
936
937#ifdef CONFIG_PPC
938 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
939 __gfar_detect_errata_85xx(priv);
940 else /* non-mpc85xx parts, i.e. e300 core based */
941 __gfar_detect_errata_83xx(priv);
942#endif
943
944 if (priv->errata)
945 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
946 priv->errata);
947}
948
949static void gfar_init_addr_hash_table(struct gfar_private *priv)
950{
951 struct gfar __iomem *regs = priv->gfargrp[0].regs;
952
953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
954 priv->extended_hash = 1;
955 priv->hash_width = 9;
956
957 priv->hash_regs[0] = ®s->igaddr0;
958 priv->hash_regs[1] = ®s->igaddr1;
959 priv->hash_regs[2] = ®s->igaddr2;
960 priv->hash_regs[3] = ®s->igaddr3;
961 priv->hash_regs[4] = ®s->igaddr4;
962 priv->hash_regs[5] = ®s->igaddr5;
963 priv->hash_regs[6] = ®s->igaddr6;
964 priv->hash_regs[7] = ®s->igaddr7;
965 priv->hash_regs[8] = ®s->gaddr0;
966 priv->hash_regs[9] = ®s->gaddr1;
967 priv->hash_regs[10] = ®s->gaddr2;
968 priv->hash_regs[11] = ®s->gaddr3;
969 priv->hash_regs[12] = ®s->gaddr4;
970 priv->hash_regs[13] = ®s->gaddr5;
971 priv->hash_regs[14] = ®s->gaddr6;
972 priv->hash_regs[15] = ®s->gaddr7;
973
974 } else {
975 priv->extended_hash = 0;
976 priv->hash_width = 8;
977
978 priv->hash_regs[0] = ®s->gaddr0;
979 priv->hash_regs[1] = ®s->gaddr1;
980 priv->hash_regs[2] = ®s->gaddr2;
981 priv->hash_regs[3] = ®s->gaddr3;
982 priv->hash_regs[4] = ®s->gaddr4;
983 priv->hash_regs[5] = ®s->gaddr5;
984 priv->hash_regs[6] = ®s->gaddr6;
985 priv->hash_regs[7] = ®s->gaddr7;
986 }
987}
988
989static int __gfar_is_rx_idle(struct gfar_private *priv)
990{
991 u32 res;
992
993 /* Normaly TSEC should not hang on GRS commands, so we should
994 * actually wait for IEVENT_GRSC flag.
995 */
996 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
997 return 0;
998
999 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001 * and the Rx can be safely reset.
1002 */
1003 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004 res &= 0x7f807f80;
1005 if ((res & 0xffff) == (res >> 16))
1006 return 1;
1007
1008 return 0;
1009}
1010
1011/* Halt the receive and transmit queues */
1012static void gfar_halt_nodisable(struct gfar_private *priv)
1013{
1014 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1015 u32 tempval;
1016 unsigned int timeout;
1017 int stopped;
1018
1019 gfar_ints_disable(priv);
1020
1021 if (gfar_is_dma_stopped(priv))
1022 return;
1023
1024 /* Stop the DMA, and wait for it to stop */
1025 tempval = gfar_read(®s->dmactrl);
1026 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027 gfar_write(®s->dmactrl, tempval);
1028
1029retry:
1030 timeout = 1000;
1031 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032 cpu_relax();
1033 timeout--;
1034 }
1035
1036 if (!timeout)
1037 stopped = gfar_is_dma_stopped(priv);
1038
1039 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040 !__gfar_is_rx_idle(priv))
1041 goto retry;
1042}
1043
1044/* Halt the receive and transmit queues */
1045static void gfar_halt(struct gfar_private *priv)
1046{
1047 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048 u32 tempval;
1049
1050 /* Dissable the Rx/Tx hw queues */
1051 gfar_write(®s->rqueue, 0);
1052 gfar_write(®s->tqueue, 0);
1053
1054 mdelay(10);
1055
1056 gfar_halt_nodisable(priv);
1057
1058 /* Disable Rx/Tx DMA */
1059 tempval = gfar_read(®s->maccfg1);
1060 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061 gfar_write(®s->maccfg1, tempval);
1062}
1063
1064static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065{
1066 struct txbd8 *txbdp;
1067 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068 int i, j;
1069
1070 txbdp = tx_queue->tx_bd_base;
1071
1072 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073 if (!tx_queue->tx_skbuff[i])
1074 continue;
1075
1076 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078 txbdp->lstatus = 0;
1079 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080 j++) {
1081 txbdp++;
1082 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083 be16_to_cpu(txbdp->length),
1084 DMA_TO_DEVICE);
1085 }
1086 txbdp++;
1087 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088 tx_queue->tx_skbuff[i] = NULL;
1089 }
1090 kfree(tx_queue->tx_skbuff);
1091 tx_queue->tx_skbuff = NULL;
1092}
1093
1094static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095{
1096 int i;
1097
1098 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099
1100 dev_kfree_skb(rx_queue->skb);
1101
1102 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104
1105 rxbdp->lstatus = 0;
1106 rxbdp->bufPtr = 0;
1107 rxbdp++;
1108
1109 if (!rxb->page)
1110 continue;
1111
1112 dma_unmap_page(rx_queue->dev, rxb->dma,
1113 PAGE_SIZE, DMA_FROM_DEVICE);
1114 __free_page(rxb->page);
1115
1116 rxb->page = NULL;
1117 }
1118
1119 kfree(rx_queue->rx_buff);
1120 rx_queue->rx_buff = NULL;
1121}
1122
1123/* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1125 */
1126static void free_skb_resources(struct gfar_private *priv)
1127{
1128 struct gfar_priv_tx_q *tx_queue = NULL;
1129 struct gfar_priv_rx_q *rx_queue = NULL;
1130 int i;
1131
1132 /* Go through all the buffer descriptors and free their data buffers */
1133 for (i = 0; i < priv->num_tx_queues; i++) {
1134 struct netdev_queue *txq;
1135
1136 tx_queue = priv->tx_queue[i];
1137 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138 if (tx_queue->tx_skbuff)
1139 free_skb_tx_queue(tx_queue);
1140 netdev_tx_reset_queue(txq);
1141 }
1142
1143 for (i = 0; i < priv->num_rx_queues; i++) {
1144 rx_queue = priv->rx_queue[i];
1145 if (rx_queue->rx_buff)
1146 free_skb_rx_queue(rx_queue);
1147 }
1148
1149 dma_free_coherent(priv->dev,
1150 sizeof(struct txbd8) * priv->total_tx_ring_size +
1151 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152 priv->tx_queue[0]->tx_bd_base,
1153 priv->tx_queue[0]->tx_bd_dma_base);
1154}
1155
1156void stop_gfar(struct net_device *dev)
1157{
1158 struct gfar_private *priv = netdev_priv(dev);
1159
1160 netif_tx_stop_all_queues(dev);
1161
1162 smp_mb__before_atomic();
1163 set_bit(GFAR_DOWN, &priv->state);
1164 smp_mb__after_atomic();
1165
1166 disable_napi(priv);
1167
1168 /* disable ints and gracefully shut down Rx/Tx DMA */
1169 gfar_halt(priv);
1170
1171 phy_stop(dev->phydev);
1172
1173 free_skb_resources(priv);
1174}
1175
1176static void gfar_start(struct gfar_private *priv)
1177{
1178 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179 u32 tempval;
1180 int i = 0;
1181
1182 /* Enable Rx/Tx hw queues */
1183 gfar_write(®s->rqueue, priv->rqueue);
1184 gfar_write(®s->tqueue, priv->tqueue);
1185
1186 /* Initialize DMACTRL to have WWR and WOP */
1187 tempval = gfar_read(®s->dmactrl);
1188 tempval |= DMACTRL_INIT_SETTINGS;
1189 gfar_write(®s->dmactrl, tempval);
1190
1191 /* Make sure we aren't stopped */
1192 tempval = gfar_read(®s->dmactrl);
1193 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194 gfar_write(®s->dmactrl, tempval);
1195
1196 for (i = 0; i < priv->num_grps; i++) {
1197 regs = priv->gfargrp[i].regs;
1198 /* Clear THLT/RHLT, so that the DMA starts polling now */
1199 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1200 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1201 }
1202
1203 /* Enable Rx/Tx DMA */
1204 tempval = gfar_read(®s->maccfg1);
1205 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206 gfar_write(®s->maccfg1, tempval);
1207
1208 gfar_ints_enable(priv);
1209
1210 netif_trans_update(priv->ndev); /* prevent tx timeout */
1211}
1212
1213static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214{
1215 struct page *page;
1216 dma_addr_t addr;
1217
1218 page = dev_alloc_page();
1219 if (unlikely(!page))
1220 return false;
1221
1222 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224 __free_page(page);
1225
1226 return false;
1227 }
1228
1229 rxb->dma = addr;
1230 rxb->page = page;
1231 rxb->page_offset = 0;
1232
1233 return true;
1234}
1235
1236static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1237{
1238 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239 struct gfar_extra_stats *estats = &priv->extra_stats;
1240
1241 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242 atomic64_inc(&estats->rx_alloc_err);
1243}
1244
1245static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246 int alloc_cnt)
1247{
1248 struct rxbd8 *bdp;
1249 struct gfar_rx_buff *rxb;
1250 int i;
1251
1252 i = rx_queue->next_to_use;
1253 bdp = &rx_queue->rx_bd_base[i];
1254 rxb = &rx_queue->rx_buff[i];
1255
1256 while (alloc_cnt--) {
1257 /* try reuse page */
1258 if (unlikely(!rxb->page)) {
1259 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260 gfar_rx_alloc_err(rx_queue);
1261 break;
1262 }
1263 }
1264
1265 /* Setup the new RxBD */
1266 gfar_init_rxbdp(rx_queue, bdp,
1267 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268
1269 /* Update to the next pointer */
1270 bdp++;
1271 rxb++;
1272
1273 if (unlikely(++i == rx_queue->rx_ring_size)) {
1274 i = 0;
1275 bdp = rx_queue->rx_bd_base;
1276 rxb = rx_queue->rx_buff;
1277 }
1278 }
1279
1280 rx_queue->next_to_use = i;
1281 rx_queue->next_to_alloc = i;
1282}
1283
1284static void gfar_init_bds(struct net_device *ndev)
1285{
1286 struct gfar_private *priv = netdev_priv(ndev);
1287 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 struct gfar_priv_tx_q *tx_queue = NULL;
1289 struct gfar_priv_rx_q *rx_queue = NULL;
1290 struct txbd8 *txbdp;
1291 u32 __iomem *rfbptr;
1292 int i, j;
1293
1294 for (i = 0; i < priv->num_tx_queues; i++) {
1295 tx_queue = priv->tx_queue[i];
1296 /* Initialize some variables in our dev structure */
1297 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299 tx_queue->cur_tx = tx_queue->tx_bd_base;
1300 tx_queue->skb_curtx = 0;
1301 tx_queue->skb_dirtytx = 0;
1302
1303 /* Initialize Transmit Descriptor Ring */
1304 txbdp = tx_queue->tx_bd_base;
1305 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306 txbdp->lstatus = 0;
1307 txbdp->bufPtr = 0;
1308 txbdp++;
1309 }
1310
1311 /* Set the last descriptor in the ring to indicate wrap */
1312 txbdp--;
1313 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314 TXBD_WRAP);
1315 }
1316
1317 rfbptr = ®s->rfbptr0;
1318 for (i = 0; i < priv->num_rx_queues; i++) {
1319 rx_queue = priv->rx_queue[i];
1320
1321 rx_queue->next_to_clean = 0;
1322 rx_queue->next_to_use = 0;
1323 rx_queue->next_to_alloc = 0;
1324
1325 /* make sure next_to_clean != next_to_use after this
1326 * by leaving at least 1 unused descriptor
1327 */
1328 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1329
1330 rx_queue->rfbptr = rfbptr;
1331 rfbptr += 2;
1332 }
1333}
1334
1335static int gfar_alloc_skb_resources(struct net_device *ndev)
1336{
1337 void *vaddr;
1338 dma_addr_t addr;
1339 int i, j;
1340 struct gfar_private *priv = netdev_priv(ndev);
1341 struct device *dev = priv->dev;
1342 struct gfar_priv_tx_q *tx_queue = NULL;
1343 struct gfar_priv_rx_q *rx_queue = NULL;
1344
1345 priv->total_tx_ring_size = 0;
1346 for (i = 0; i < priv->num_tx_queues; i++)
1347 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348
1349 priv->total_rx_ring_size = 0;
1350 for (i = 0; i < priv->num_rx_queues; i++)
1351 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352
1353 /* Allocate memory for the buffer descriptors */
1354 vaddr = dma_alloc_coherent(dev,
1355 (priv->total_tx_ring_size *
1356 sizeof(struct txbd8)) +
1357 (priv->total_rx_ring_size *
1358 sizeof(struct rxbd8)),
1359 &addr, GFP_KERNEL);
1360 if (!vaddr)
1361 return -ENOMEM;
1362
1363 for (i = 0; i < priv->num_tx_queues; i++) {
1364 tx_queue = priv->tx_queue[i];
1365 tx_queue->tx_bd_base = vaddr;
1366 tx_queue->tx_bd_dma_base = addr;
1367 tx_queue->dev = ndev;
1368 /* enet DMA only understands physical addresses */
1369 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371 }
1372
1373 /* Start the rx descriptor ring where the tx ring leaves off */
1374 for (i = 0; i < priv->num_rx_queues; i++) {
1375 rx_queue = priv->rx_queue[i];
1376 rx_queue->rx_bd_base = vaddr;
1377 rx_queue->rx_bd_dma_base = addr;
1378 rx_queue->ndev = ndev;
1379 rx_queue->dev = dev;
1380 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382 }
1383
1384 /* Setup the skbuff rings */
1385 for (i = 0; i < priv->num_tx_queues; i++) {
1386 tx_queue = priv->tx_queue[i];
1387 tx_queue->tx_skbuff =
1388 kmalloc_array(tx_queue->tx_ring_size,
1389 sizeof(*tx_queue->tx_skbuff),
1390 GFP_KERNEL);
1391 if (!tx_queue->tx_skbuff)
1392 goto cleanup;
1393
1394 for (j = 0; j < tx_queue->tx_ring_size; j++)
1395 tx_queue->tx_skbuff[j] = NULL;
1396 }
1397
1398 for (i = 0; i < priv->num_rx_queues; i++) {
1399 rx_queue = priv->rx_queue[i];
1400 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401 sizeof(*rx_queue->rx_buff),
1402 GFP_KERNEL);
1403 if (!rx_queue->rx_buff)
1404 goto cleanup;
1405 }
1406
1407 gfar_init_bds(ndev);
1408
1409 return 0;
1410
1411cleanup:
1412 free_skb_resources(priv);
1413 return -ENOMEM;
1414}
1415
1416/* Bring the controller up and running */
1417int startup_gfar(struct net_device *ndev)
1418{
1419 struct gfar_private *priv = netdev_priv(ndev);
1420 int err;
1421
1422 gfar_mac_reset(priv);
1423
1424 err = gfar_alloc_skb_resources(ndev);
1425 if (err)
1426 return err;
1427
1428 gfar_init_tx_rx_base(priv);
1429
1430 smp_mb__before_atomic();
1431 clear_bit(GFAR_DOWN, &priv->state);
1432 smp_mb__after_atomic();
1433
1434 /* Start Rx/Tx DMA and enable the interrupts */
1435 gfar_start(priv);
1436
1437 /* force link state update after mac reset */
1438 priv->oldlink = 0;
1439 priv->oldspeed = 0;
1440 priv->oldduplex = -1;
1441
1442 phy_start(ndev->phydev);
1443
1444 enable_napi(priv);
1445
1446 netif_tx_wake_all_queues(ndev);
1447
1448 return 0;
1449}
1450
1451static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452{
1453 struct net_device *ndev = priv->ndev;
1454 struct phy_device *phydev = ndev->phydev;
1455 u32 val = 0;
1456
1457 if (!phydev->duplex)
1458 return val;
1459
1460 if (!priv->pause_aneg_en) {
1461 if (priv->tx_pause_en)
1462 val |= MACCFG1_TX_FLOW;
1463 if (priv->rx_pause_en)
1464 val |= MACCFG1_RX_FLOW;
1465 } else {
1466 u16 lcl_adv, rmt_adv;
1467 u8 flowctrl;
1468 /* get link partner capabilities */
1469 rmt_adv = 0;
1470 if (phydev->pause)
1471 rmt_adv = LPA_PAUSE_CAP;
1472 if (phydev->asym_pause)
1473 rmt_adv |= LPA_PAUSE_ASYM;
1474
1475 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477 if (flowctrl & FLOW_CTRL_TX)
1478 val |= MACCFG1_TX_FLOW;
1479 if (flowctrl & FLOW_CTRL_RX)
1480 val |= MACCFG1_RX_FLOW;
1481 }
1482
1483 return val;
1484}
1485
1486static noinline void gfar_update_link_state(struct gfar_private *priv)
1487{
1488 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489 struct net_device *ndev = priv->ndev;
1490 struct phy_device *phydev = ndev->phydev;
1491 struct gfar_priv_rx_q *rx_queue = NULL;
1492 int i;
1493
1494 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495 return;
1496
1497 if (phydev->link) {
1498 u32 tempval1 = gfar_read(®s->maccfg1);
1499 u32 tempval = gfar_read(®s->maccfg2);
1500 u32 ecntrl = gfar_read(®s->ecntrl);
1501 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502
1503 if (phydev->duplex != priv->oldduplex) {
1504 if (!(phydev->duplex))
1505 tempval &= ~(MACCFG2_FULL_DUPLEX);
1506 else
1507 tempval |= MACCFG2_FULL_DUPLEX;
1508
1509 priv->oldduplex = phydev->duplex;
1510 }
1511
1512 if (phydev->speed != priv->oldspeed) {
1513 switch (phydev->speed) {
1514 case 1000:
1515 tempval =
1516 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517
1518 ecntrl &= ~(ECNTRL_R100);
1519 break;
1520 case 100:
1521 case 10:
1522 tempval =
1523 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524
1525 /* Reduced mode distinguishes
1526 * between 10 and 100
1527 */
1528 if (phydev->speed == SPEED_100)
1529 ecntrl |= ECNTRL_R100;
1530 else
1531 ecntrl &= ~(ECNTRL_R100);
1532 break;
1533 default:
1534 netif_warn(priv, link, priv->ndev,
1535 "Ack! Speed (%d) is not 10/100/1000!\n",
1536 phydev->speed);
1537 break;
1538 }
1539
1540 priv->oldspeed = phydev->speed;
1541 }
1542
1543 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544 tempval1 |= gfar_get_flowctrl_cfg(priv);
1545
1546 /* Turn last free buffer recording on */
1547 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548 for (i = 0; i < priv->num_rx_queues; i++) {
1549 u32 bdp_dma;
1550
1551 rx_queue = priv->rx_queue[i];
1552 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553 gfar_write(rx_queue->rfbptr, bdp_dma);
1554 }
1555
1556 priv->tx_actual_en = 1;
1557 }
1558
1559 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560 priv->tx_actual_en = 0;
1561
1562 gfar_write(®s->maccfg1, tempval1);
1563 gfar_write(®s->maccfg2, tempval);
1564 gfar_write(®s->ecntrl, ecntrl);
1565
1566 if (!priv->oldlink)
1567 priv->oldlink = 1;
1568
1569 } else if (priv->oldlink) {
1570 priv->oldlink = 0;
1571 priv->oldspeed = 0;
1572 priv->oldduplex = -1;
1573 }
1574
1575 if (netif_msg_link(priv))
1576 phy_print_status(phydev);
1577}
1578
1579/* Called every time the controller might need to be made
1580 * aware of new link state. The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1584 */
1585static void adjust_link(struct net_device *dev)
1586{
1587 struct gfar_private *priv = netdev_priv(dev);
1588 struct phy_device *phydev = dev->phydev;
1589
1590 if (unlikely(phydev->link != priv->oldlink ||
1591 (phydev->link && (phydev->duplex != priv->oldduplex ||
1592 phydev->speed != priv->oldspeed))))
1593 gfar_update_link_state(priv);
1594}
1595
1596/* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip. We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register. We assume
1600 * that the TBIPA register is valid. Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1603 */
1604static void gfar_configure_serdes(struct net_device *dev)
1605{
1606 struct gfar_private *priv = netdev_priv(dev);
1607 struct phy_device *tbiphy;
1608
1609 if (!priv->tbi_node) {
1610 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611 "device tree specify a tbi-handle\n");
1612 return;
1613 }
1614
1615 tbiphy = of_phy_find_device(priv->tbi_node);
1616 if (!tbiphy) {
1617 dev_err(&dev->dev, "error: Could not get TBI device\n");
1618 return;
1619 }
1620
1621 /* If the link is already up, we must already be ok, and don't need to
1622 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1623 * everything for us? Resetting it takes the link down and requires
1624 * several seconds for it to come back.
1625 */
1626 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627 put_device(&tbiphy->mdio.dev);
1628 return;
1629 }
1630
1631 /* Single clk mode, mii mode off(for serdes communication) */
1632 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633
1634 phy_write(tbiphy, MII_ADVERTISE,
1635 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636 ADVERTISE_1000XPSE_ASYM);
1637
1638 phy_write(tbiphy, MII_BMCR,
1639 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640 BMCR_SPEED1000);
1641
1642 put_device(&tbiphy->mdio.dev);
1643}
1644
1645/* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1647 */
1648static int init_phy(struct net_device *dev)
1649{
1650 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651 struct gfar_private *priv = netdev_priv(dev);
1652 phy_interface_t interface = priv->interface;
1653 struct phy_device *phydev;
1654 struct ethtool_keee edata;
1655
1656 linkmode_set_bit_array(phy_10_100_features_array,
1657 ARRAY_SIZE(phy_10_100_features_array),
1658 mask);
1659 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1663
1664 priv->oldlink = 0;
1665 priv->oldspeed = 0;
1666 priv->oldduplex = -1;
1667
1668 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669 interface);
1670 if (!phydev) {
1671 dev_err(&dev->dev, "could not attach to PHY\n");
1672 return -ENODEV;
1673 }
1674
1675 if (interface == PHY_INTERFACE_MODE_SGMII)
1676 gfar_configure_serdes(dev);
1677
1678 /* Remove any features not supported by the controller */
1679 linkmode_and(phydev->supported, phydev->supported, mask);
1680 linkmode_copy(phydev->advertising, phydev->supported);
1681
1682 /* Add support for flow control */
1683 phy_support_asym_pause(phydev);
1684
1685 /* disable EEE autoneg, EEE not supported by eTSEC */
1686 memset(&edata, 0, sizeof(struct ethtool_keee));
1687 phy_ethtool_set_eee(phydev, &edata);
1688
1689 return 0;
1690}
1691
1692static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1693{
1694 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1695
1696 memset(fcb, 0, GMAC_FCB_LEN);
1697
1698 return fcb;
1699}
1700
1701static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1702 int fcb_length)
1703{
1704 /* If we're here, it's a IP packet with a TCP or UDP
1705 * payload. We set it to checksum, using a pseudo-header
1706 * we provide
1707 */
1708 u8 flags = TXFCB_DEFAULT;
1709
1710 /* Tell the controller what the protocol is
1711 * And provide the already calculated phcs
1712 */
1713 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1714 flags |= TXFCB_UDP;
1715 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1716 } else
1717 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1718
1719 /* l3os is the distance between the start of the
1720 * frame (skb->data) and the start of the IP hdr.
1721 * l4os is the distance between the start of the
1722 * l3 hdr and the l4 hdr
1723 */
1724 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725 fcb->l4os = skb_network_header_len(skb);
1726
1727 fcb->flags = flags;
1728}
1729
1730static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1731{
1732 fcb->flags |= TXFCB_VLN;
1733 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1734}
1735
1736static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737 struct txbd8 *base, int ring_size)
1738{
1739 struct txbd8 *new_bd = bdp + stride;
1740
1741 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1742}
1743
1744static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1745 int ring_size)
1746{
1747 return skip_txbd(bdp, 1, base, ring_size);
1748}
1749
1750/* eTSEC12: csum generation not supported for some fcb offsets */
1751static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752 unsigned long fcb_addr)
1753{
1754 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755 (fcb_addr % 0x20) > 0x18);
1756}
1757
1758/* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1760 */
1761static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1762 unsigned int len)
1763{
1764 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1765 (len > 2500));
1766}
1767
1768/* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1770 */
1771static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772{
1773 struct gfar_private *priv = netdev_priv(dev);
1774 struct gfar_priv_tx_q *tx_queue = NULL;
1775 struct netdev_queue *txq;
1776 struct gfar __iomem *regs = NULL;
1777 struct txfcb *fcb = NULL;
1778 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1779 u32 lstatus;
1780 skb_frag_t *frag;
1781 int i, rq = 0;
1782 int do_tstamp, do_csum, do_vlan;
1783 u32 bufaddr;
1784 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1785
1786 rq = skb->queue_mapping;
1787 tx_queue = priv->tx_queue[rq];
1788 txq = netdev_get_tx_queue(dev, rq);
1789 base = tx_queue->tx_bd_base;
1790 regs = tx_queue->grp->regs;
1791
1792 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793 do_vlan = skb_vlan_tag_present(skb);
1794 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1795 priv->hwts_tx_en;
1796
1797 if (do_csum || do_vlan)
1798 fcb_len = GMAC_FCB_LEN;
1799
1800 /* check if time stamp should be generated */
1801 if (unlikely(do_tstamp))
1802 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1803
1804 /* make space for additional header when fcb is needed */
1805 if (fcb_len) {
1806 if (unlikely(skb_cow_head(skb, fcb_len))) {
1807 dev->stats.tx_errors++;
1808 dev_kfree_skb_any(skb);
1809 return NETDEV_TX_OK;
1810 }
1811 }
1812
1813 /* total number of fragments in the SKB */
1814 nr_frags = skb_shinfo(skb)->nr_frags;
1815
1816 /* calculate the required number of TxBDs for this skb */
1817 if (unlikely(do_tstamp))
1818 nr_txbds = nr_frags + 2;
1819 else
1820 nr_txbds = nr_frags + 1;
1821
1822 /* check if there is space to queue this packet */
1823 if (nr_txbds > tx_queue->num_txbdfree) {
1824 /* no space, stop the queue */
1825 netif_tx_stop_queue(txq);
1826 dev->stats.tx_fifo_errors++;
1827 return NETDEV_TX_BUSY;
1828 }
1829
1830 /* Update transmit stats */
1831 bytes_sent = skb->len;
1832 tx_queue->stats.tx_bytes += bytes_sent;
1833 /* keep Tx bytes on wire for BQL accounting */
1834 GFAR_CB(skb)->bytes_sent = bytes_sent;
1835 tx_queue->stats.tx_packets++;
1836
1837 txbdp = txbdp_start = tx_queue->cur_tx;
1838 lstatus = be32_to_cpu(txbdp->lstatus);
1839
1840 /* Add TxPAL between FCB and frame if required */
1841 if (unlikely(do_tstamp)) {
1842 skb_push(skb, GMAC_TXPAL_LEN);
1843 memset(skb->data, 0, GMAC_TXPAL_LEN);
1844 }
1845
1846 /* Add TxFCB if required */
1847 if (fcb_len) {
1848 fcb = gfar_add_fcb(skb);
1849 lstatus |= BD_LFLAG(TXBD_TOE);
1850 }
1851
1852 /* Set up checksumming */
1853 if (do_csum) {
1854 gfar_tx_checksum(skb, fcb, fcb_len);
1855
1856 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858 __skb_pull(skb, GMAC_FCB_LEN);
1859 skb_checksum_help(skb);
1860 if (do_vlan || do_tstamp) {
1861 /* put back a new fcb for vlan/tstamp TOE */
1862 fcb = gfar_add_fcb(skb);
1863 } else {
1864 /* Tx TOE not used */
1865 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1866 fcb = NULL;
1867 }
1868 }
1869 }
1870
1871 if (do_vlan)
1872 gfar_tx_vlan(skb, fcb);
1873
1874 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1875 DMA_TO_DEVICE);
1876 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1877 goto dma_map_err;
1878
1879 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1880
1881 /* Time stamp insertion requires one additional TxBD */
1882 if (unlikely(do_tstamp))
1883 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884 tx_queue->tx_ring_size);
1885
1886 if (likely(!nr_frags)) {
1887 if (likely(!do_tstamp))
1888 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1889 } else {
1890 u32 lstatus_start = lstatus;
1891
1892 /* Place the fragment addresses and lengths into the TxBDs */
1893 frag = &skb_shinfo(skb)->frags[0];
1894 for (i = 0; i < nr_frags; i++, frag++) {
1895 unsigned int size;
1896
1897 /* Point at the next BD, wrapping as needed */
1898 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1899
1900 size = skb_frag_size(frag);
1901
1902 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903 BD_LFLAG(TXBD_READY);
1904
1905 /* Handle the last BD specially */
1906 if (i == nr_frags - 1)
1907 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1908
1909 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910 size, DMA_TO_DEVICE);
1911 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912 goto dma_map_err;
1913
1914 /* set the TxBD length and buffer pointer */
1915 txbdp->bufPtr = cpu_to_be32(bufaddr);
1916 txbdp->lstatus = cpu_to_be32(lstatus);
1917 }
1918
1919 lstatus = lstatus_start;
1920 }
1921
1922 /* If time stamping is requested one additional TxBD must be set up. The
1923 * first TxBD points to the FCB and must have a data length of
1924 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925 * the full frame length.
1926 */
1927 if (unlikely(do_tstamp)) {
1928 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1929
1930 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1931 bufaddr += fcb_len;
1932
1933 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934 (skb_headlen(skb) - fcb_len);
1935 if (!nr_frags)
1936 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1941
1942 /* Setup tx hardware time stamping */
1943 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1944 fcb->ptp = 1;
1945 } else {
1946 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1947 }
1948
1949 skb_tx_timestamp(skb);
1950 netdev_tx_sent_queue(txq, bytes_sent);
1951
1952 gfar_wmb();
1953
1954 txbdp_start->lstatus = cpu_to_be32(lstatus);
1955
1956 gfar_wmb(); /* force lstatus write before tx_skbuff */
1957
1958 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1959
1960 /* Update the current skb pointer to the next entry we will use
1961 * (wrapping if necessary)
1962 */
1963 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1965
1966 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1967
1968 /* We can work in parallel with gfar_clean_tx_ring(), except
1969 * when modifying num_txbdfree. Note that we didn't grab the lock
1970 * when we were reading the num_txbdfree and checking for available
1971 * space, that's because outside of this function it can only grow.
1972 */
1973 spin_lock_bh(&tx_queue->txlock);
1974 /* reduce TxBD free count */
1975 tx_queue->num_txbdfree -= (nr_txbds);
1976 spin_unlock_bh(&tx_queue->txlock);
1977
1978 /* If the next BD still needs to be cleaned up, then the bds
1979 * are full. We need to tell the kernel to stop sending us stuff.
1980 */
1981 if (!tx_queue->num_txbdfree) {
1982 netif_tx_stop_queue(txq);
1983
1984 dev->stats.tx_fifo_errors++;
1985 }
1986
1987 /* Tell the DMA to go go go */
1988 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1989
1990 return NETDEV_TX_OK;
1991
1992dma_map_err:
1993 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1994 if (do_tstamp)
1995 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 for (i = 0; i < nr_frags; i++) {
1997 lstatus = be32_to_cpu(txbdp->lstatus);
1998 if (!(lstatus & BD_LFLAG(TXBD_READY)))
1999 break;
2000
2001 lstatus &= ~BD_LFLAG(TXBD_READY);
2002 txbdp->lstatus = cpu_to_be32(lstatus);
2003 bufaddr = be32_to_cpu(txbdp->bufPtr);
2004 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2005 DMA_TO_DEVICE);
2006 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2007 }
2008 gfar_wmb();
2009 dev_kfree_skb_any(skb);
2010 return NETDEV_TX_OK;
2011}
2012
2013/* Changes the mac address if the controller is not running. */
2014static int gfar_set_mac_address(struct net_device *dev)
2015{
2016 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2017
2018 return 0;
2019}
2020
2021static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2022{
2023 struct gfar_private *priv = netdev_priv(dev);
2024
2025 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2026 cpu_relax();
2027
2028 if (dev->flags & IFF_UP)
2029 stop_gfar(dev);
2030
2031 WRITE_ONCE(dev->mtu, new_mtu);
2032
2033 if (dev->flags & IFF_UP)
2034 startup_gfar(dev);
2035
2036 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2037
2038 return 0;
2039}
2040
2041static void reset_gfar(struct net_device *ndev)
2042{
2043 struct gfar_private *priv = netdev_priv(ndev);
2044
2045 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2046 cpu_relax();
2047
2048 stop_gfar(ndev);
2049 startup_gfar(ndev);
2050
2051 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2052}
2053
2054/* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2058 */
2059static void gfar_reset_task(struct work_struct *work)
2060{
2061 struct gfar_private *priv = container_of(work, struct gfar_private,
2062 reset_task);
2063 reset_gfar(priv->ndev);
2064}
2065
2066static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2067{
2068 struct gfar_private *priv = netdev_priv(dev);
2069
2070 dev->stats.tx_errors++;
2071 schedule_work(&priv->reset_task);
2072}
2073
2074static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2075{
2076 struct hwtstamp_config config;
2077 struct gfar_private *priv = netdev_priv(netdev);
2078
2079 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2080 return -EFAULT;
2081
2082 switch (config.tx_type) {
2083 case HWTSTAMP_TX_OFF:
2084 priv->hwts_tx_en = 0;
2085 break;
2086 case HWTSTAMP_TX_ON:
2087 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2088 return -ERANGE;
2089 priv->hwts_tx_en = 1;
2090 break;
2091 default:
2092 return -ERANGE;
2093 }
2094
2095 switch (config.rx_filter) {
2096 case HWTSTAMP_FILTER_NONE:
2097 if (priv->hwts_rx_en) {
2098 priv->hwts_rx_en = 0;
2099 reset_gfar(netdev);
2100 }
2101 break;
2102 default:
2103 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2104 return -ERANGE;
2105 if (!priv->hwts_rx_en) {
2106 priv->hwts_rx_en = 1;
2107 reset_gfar(netdev);
2108 }
2109 config.rx_filter = HWTSTAMP_FILTER_ALL;
2110 break;
2111 }
2112
2113 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2114 -EFAULT : 0;
2115}
2116
2117static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2118{
2119 struct hwtstamp_config config;
2120 struct gfar_private *priv = netdev_priv(netdev);
2121
2122 config.flags = 0;
2123 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124 config.rx_filter = (priv->hwts_rx_en ?
2125 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2126
2127 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2128 -EFAULT : 0;
2129}
2130
2131static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2132{
2133 struct phy_device *phydev = dev->phydev;
2134
2135 if (!netif_running(dev))
2136 return -EINVAL;
2137
2138 if (cmd == SIOCSHWTSTAMP)
2139 return gfar_hwtstamp_set(dev, rq);
2140 if (cmd == SIOCGHWTSTAMP)
2141 return gfar_hwtstamp_get(dev, rq);
2142
2143 if (!phydev)
2144 return -ENODEV;
2145
2146 return phy_mii_ioctl(phydev, rq, cmd);
2147}
2148
2149/* Interrupt Handler for Transmit complete */
2150static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2151{
2152 struct net_device *dev = tx_queue->dev;
2153 struct netdev_queue *txq;
2154 struct gfar_private *priv = netdev_priv(dev);
2155 struct txbd8 *bdp, *next = NULL;
2156 struct txbd8 *lbdp = NULL;
2157 struct txbd8 *base = tx_queue->tx_bd_base;
2158 struct sk_buff *skb;
2159 int skb_dirtytx;
2160 int tx_ring_size = tx_queue->tx_ring_size;
2161 int frags = 0, nr_txbds = 0;
2162 int i;
2163 int howmany = 0;
2164 int tqi = tx_queue->qindex;
2165 unsigned int bytes_sent = 0;
2166 u32 lstatus;
2167 size_t buflen;
2168
2169 txq = netdev_get_tx_queue(dev, tqi);
2170 bdp = tx_queue->dirty_tx;
2171 skb_dirtytx = tx_queue->skb_dirtytx;
2172
2173 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2174 bool do_tstamp;
2175
2176 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2177 priv->hwts_tx_en;
2178
2179 frags = skb_shinfo(skb)->nr_frags;
2180
2181 /* When time stamping, one additional TxBD must be freed.
2182 * Also, we need to dma_unmap_single() the TxPAL.
2183 */
2184 if (unlikely(do_tstamp))
2185 nr_txbds = frags + 2;
2186 else
2187 nr_txbds = frags + 1;
2188
2189 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2190
2191 lstatus = be32_to_cpu(lbdp->lstatus);
2192
2193 /* Only clean completed frames */
2194 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195 (lstatus & BD_LENGTH_MASK))
2196 break;
2197
2198 if (unlikely(do_tstamp)) {
2199 next = next_txbd(bdp, base, tx_ring_size);
2200 buflen = be16_to_cpu(next->length) +
2201 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202 } else
2203 buflen = be16_to_cpu(bdp->length);
2204
2205 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206 buflen, DMA_TO_DEVICE);
2207
2208 if (unlikely(do_tstamp)) {
2209 struct skb_shared_hwtstamps shhwtstamps;
2210 __be64 *ns;
2211
2212 ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2213
2214 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217 skb_tstamp_tx(skb, &shhwtstamps);
2218 gfar_clear_txbd_status(bdp);
2219 bdp = next;
2220 }
2221
2222 gfar_clear_txbd_status(bdp);
2223 bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225 for (i = 0; i < frags; i++) {
2226 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227 be16_to_cpu(bdp->length),
2228 DMA_TO_DEVICE);
2229 gfar_clear_txbd_status(bdp);
2230 bdp = next_txbd(bdp, base, tx_ring_size);
2231 }
2232
2233 bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235 dev_kfree_skb_any(skb);
2236
2237 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239 skb_dirtytx = (skb_dirtytx + 1) &
2240 TX_RING_MOD_MASK(tx_ring_size);
2241
2242 howmany++;
2243 spin_lock(&tx_queue->txlock);
2244 tx_queue->num_txbdfree += nr_txbds;
2245 spin_unlock(&tx_queue->txlock);
2246 }
2247
2248 /* If we freed a buffer, we can restart transmission, if necessary */
2249 if (tx_queue->num_txbdfree &&
2250 netif_tx_queue_stopped(txq) &&
2251 !(test_bit(GFAR_DOWN, &priv->state)))
2252 netif_wake_subqueue(priv->ndev, tqi);
2253
2254 /* Update dirty indicators */
2255 tx_queue->skb_dirtytx = skb_dirtytx;
2256 tx_queue->dirty_tx = bdp;
2257
2258 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259}
2260
2261static void count_errors(u32 lstatus, struct net_device *ndev)
2262{
2263 struct gfar_private *priv = netdev_priv(ndev);
2264 struct net_device_stats *stats = &ndev->stats;
2265 struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267 /* If the packet was truncated, none of the other errors matter */
2268 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269 stats->rx_length_errors++;
2270
2271 atomic64_inc(&estats->rx_trunc);
2272
2273 return;
2274 }
2275 /* Count the errors, if there were any */
2276 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277 stats->rx_length_errors++;
2278
2279 if (lstatus & BD_LFLAG(RXBD_LARGE))
2280 atomic64_inc(&estats->rx_large);
2281 else
2282 atomic64_inc(&estats->rx_short);
2283 }
2284 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285 stats->rx_frame_errors++;
2286 atomic64_inc(&estats->rx_nonoctet);
2287 }
2288 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289 atomic64_inc(&estats->rx_crcerr);
2290 stats->rx_crc_errors++;
2291 }
2292 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293 atomic64_inc(&estats->rx_overrun);
2294 stats->rx_over_errors++;
2295 }
2296}
2297
2298static irqreturn_t gfar_receive(int irq, void *grp_id)
2299{
2300 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301 unsigned long flags;
2302 u32 imask, ievent;
2303
2304 ievent = gfar_read(&grp->regs->ievent);
2305
2306 if (unlikely(ievent & IEVENT_FGPI)) {
2307 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308 return IRQ_HANDLED;
2309 }
2310
2311 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312 spin_lock_irqsave(&grp->grplock, flags);
2313 imask = gfar_read(&grp->regs->imask);
2314 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315 gfar_write(&grp->regs->imask, imask);
2316 spin_unlock_irqrestore(&grp->grplock, flags);
2317 __napi_schedule(&grp->napi_rx);
2318 } else {
2319 /* Clear IEVENT, so interrupts aren't called again
2320 * because of the packets that have already arrived.
2321 */
2322 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323 }
2324
2325 return IRQ_HANDLED;
2326}
2327
2328/* Interrupt Handler for Transmit complete */
2329static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330{
2331 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332 unsigned long flags;
2333 u32 imask;
2334
2335 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336 spin_lock_irqsave(&grp->grplock, flags);
2337 imask = gfar_read(&grp->regs->imask);
2338 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339 gfar_write(&grp->regs->imask, imask);
2340 spin_unlock_irqrestore(&grp->grplock, flags);
2341 __napi_schedule(&grp->napi_tx);
2342 } else {
2343 /* Clear IEVENT, so interrupts aren't called again
2344 * because of the packets that have already arrived.
2345 */
2346 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347 }
2348
2349 return IRQ_HANDLED;
2350}
2351
2352static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353 struct sk_buff *skb, bool first)
2354{
2355 int size = lstatus & BD_LENGTH_MASK;
2356 struct page *page = rxb->page;
2357
2358 if (likely(first)) {
2359 skb_put(skb, size);
2360 } else {
2361 /* the last fragments' length contains the full frame length */
2362 if (lstatus & BD_LFLAG(RXBD_LAST))
2363 size -= skb->len;
2364
2365 WARN(size < 0, "gianfar: rx fragment size underflow");
2366 if (size < 0)
2367 return false;
2368
2369 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370 rxb->page_offset + RXBUF_ALIGNMENT,
2371 size, GFAR_RXB_TRUESIZE);
2372 }
2373
2374 /* try reuse page */
2375 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376 return false;
2377
2378 /* change offset to the other half */
2379 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2380
2381 page_ref_inc(page);
2382
2383 return true;
2384}
2385
2386static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387 struct gfar_rx_buff *old_rxb)
2388{
2389 struct gfar_rx_buff *new_rxb;
2390 u16 nta = rxq->next_to_alloc;
2391
2392 new_rxb = &rxq->rx_buff[nta];
2393
2394 /* find next buf that can reuse a page */
2395 nta++;
2396 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398 /* copy page reference */
2399 *new_rxb = *old_rxb;
2400
2401 /* sync for use by the device */
2402 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403 old_rxb->page_offset,
2404 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405}
2406
2407static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408 u32 lstatus, struct sk_buff *skb)
2409{
2410 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411 struct page *page = rxb->page;
2412 bool first = false;
2413
2414 if (likely(!skb)) {
2415 void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418 if (unlikely(!skb)) {
2419 gfar_rx_alloc_err(rx_queue);
2420 return NULL;
2421 }
2422 skb_reserve(skb, RXBUF_ALIGNMENT);
2423 first = true;
2424 }
2425
2426 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430 /* reuse the free half of the page */
2431 gfar_reuse_rx_page(rx_queue, rxb);
2432 } else {
2433 /* page cannot be reused, unmap it */
2434 dma_unmap_page(rx_queue->dev, rxb->dma,
2435 PAGE_SIZE, DMA_FROM_DEVICE);
2436 }
2437
2438 /* clear rxb content */
2439 rxb->page = NULL;
2440
2441 return skb;
2442}
2443
2444static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445{
2446 /* If valid headers were found, and valid sums
2447 * were verified, then we tell the kernel that no
2448 * checksumming is necessary. Otherwise, it is [FIXME]
2449 */
2450 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451 (RXFCB_CIP | RXFCB_CTU))
2452 skb->ip_summed = CHECKSUM_UNNECESSARY;
2453 else
2454 skb_checksum_none_assert(skb);
2455}
2456
2457/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2459{
2460 struct gfar_private *priv = netdev_priv(ndev);
2461 struct rxfcb *fcb = NULL;
2462
2463 /* fcb is at the beginning if exists */
2464 fcb = (struct rxfcb *)skb->data;
2465
2466 /* Remove the FCB from the skb
2467 * Remove the padded bytes, if there are any
2468 */
2469 if (priv->uses_rxfcb)
2470 skb_pull(skb, GMAC_FCB_LEN);
2471
2472 /* Get receive timestamp from the skb */
2473 if (priv->hwts_rx_en) {
2474 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475 __be64 *ns = (__be64 *)skb->data;
2476
2477 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479 }
2480
2481 if (priv->padding)
2482 skb_pull(skb, priv->padding);
2483
2484 /* Trim off the FCS */
2485 pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487 if (ndev->features & NETIF_F_RXCSUM)
2488 gfar_rx_checksum(skb, fcb);
2489
2490 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491 * Even if vlan rx accel is disabled, on some chips
2492 * RXFCB_VLN is pseudo randomly set.
2493 */
2494 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497 be16_to_cpu(fcb->vlctl));
2498}
2499
2500/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
2504static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505 int rx_work_limit)
2506{
2507 struct net_device *ndev = rx_queue->ndev;
2508 struct gfar_private *priv = netdev_priv(ndev);
2509 struct rxbd8 *bdp;
2510 int i, howmany = 0;
2511 struct sk_buff *skb = rx_queue->skb;
2512 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513 unsigned int total_bytes = 0, total_pkts = 0;
2514
2515 /* Get the first full descriptor */
2516 i = rx_queue->next_to_clean;
2517
2518 while (rx_work_limit--) {
2519 u32 lstatus;
2520
2521 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523 cleaned_cnt = 0;
2524 }
2525
2526 bdp = &rx_queue->rx_bd_base[i];
2527 lstatus = be32_to_cpu(bdp->lstatus);
2528 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529 break;
2530
2531 /* lost RXBD_LAST descriptor due to overrun */
2532 if (skb &&
2533 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534 /* discard faulty buffer */
2535 dev_kfree_skb(skb);
2536 skb = NULL;
2537 rx_queue->stats.rx_dropped++;
2538
2539 /* can continue normally */
2540 }
2541
2542 /* order rx buffer descriptor reads */
2543 rmb();
2544
2545 /* fetch next to clean buffer from the ring */
2546 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547 if (unlikely(!skb))
2548 break;
2549
2550 cleaned_cnt++;
2551 howmany++;
2552
2553 if (unlikely(++i == rx_queue->rx_ring_size))
2554 i = 0;
2555
2556 rx_queue->next_to_clean = i;
2557
2558 /* fetch next buffer if not the last in frame */
2559 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560 continue;
2561
2562 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563 count_errors(lstatus, ndev);
2564
2565 /* discard faulty buffer */
2566 dev_kfree_skb(skb);
2567 skb = NULL;
2568 rx_queue->stats.rx_dropped++;
2569 continue;
2570 }
2571
2572 gfar_process_frame(ndev, skb);
2573
2574 /* Increment the number of packets */
2575 total_pkts++;
2576 total_bytes += skb->len;
2577
2578 skb_record_rx_queue(skb, rx_queue->qindex);
2579
2580 skb->protocol = eth_type_trans(skb, ndev);
2581
2582 /* Send the packet up the stack */
2583 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585 skb = NULL;
2586 }
2587
2588 /* Store incomplete frames for completion */
2589 rx_queue->skb = skb;
2590
2591 rx_queue->stats.rx_packets += total_pkts;
2592 rx_queue->stats.rx_bytes += total_bytes;
2593
2594 if (cleaned_cnt)
2595 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597 /* Update Last Free RxBD pointer for LFC */
2598 if (unlikely(priv->tx_actual_en)) {
2599 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601 gfar_write(rx_queue->rfbptr, bdp_dma);
2602 }
2603
2604 return howmany;
2605}
2606
2607static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608{
2609 struct gfar_priv_grp *gfargrp =
2610 container_of(napi, struct gfar_priv_grp, napi_rx);
2611 struct gfar __iomem *regs = gfargrp->regs;
2612 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613 int work_done = 0;
2614
2615 /* Clear IEVENT, so interrupts aren't called again
2616 * because of the packets that have already arrived
2617 */
2618 gfar_write(®s->ievent, IEVENT_RX_MASK);
2619
2620 work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622 if (work_done < budget) {
2623 u32 imask;
2624 napi_complete_done(napi, work_done);
2625 /* Clear the halt bit in RSTAT */
2626 gfar_write(®s->rstat, gfargrp->rstat);
2627
2628 spin_lock_irq(&gfargrp->grplock);
2629 imask = gfar_read(®s->imask);
2630 imask |= IMASK_RX_DEFAULT;
2631 gfar_write(®s->imask, imask);
2632 spin_unlock_irq(&gfargrp->grplock);
2633 }
2634
2635 return work_done;
2636}
2637
2638static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639{
2640 struct gfar_priv_grp *gfargrp =
2641 container_of(napi, struct gfar_priv_grp, napi_tx);
2642 struct gfar __iomem *regs = gfargrp->regs;
2643 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644 u32 imask;
2645
2646 /* Clear IEVENT, so interrupts aren't called again
2647 * because of the packets that have already arrived
2648 */
2649 gfar_write(®s->ievent, IEVENT_TX_MASK);
2650
2651 /* run Tx cleanup to completion */
2652 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653 gfar_clean_tx_ring(tx_queue);
2654
2655 napi_complete(napi);
2656
2657 spin_lock_irq(&gfargrp->grplock);
2658 imask = gfar_read(®s->imask);
2659 imask |= IMASK_TX_DEFAULT;
2660 gfar_write(®s->imask, imask);
2661 spin_unlock_irq(&gfargrp->grplock);
2662
2663 return 0;
2664}
2665
2666/* GFAR error interrupt handler */
2667static irqreturn_t gfar_error(int irq, void *grp_id)
2668{
2669 struct gfar_priv_grp *gfargrp = grp_id;
2670 struct gfar __iomem *regs = gfargrp->regs;
2671 struct gfar_private *priv= gfargrp->priv;
2672 struct net_device *dev = priv->ndev;
2673
2674 /* Save ievent for future reference */
2675 u32 events = gfar_read(®s->ievent);
2676
2677 /* Clear IEVENT */
2678 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
2679
2680 /* Magic Packet is not an error. */
2681 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682 (events & IEVENT_MAG))
2683 events &= ~IEVENT_MAG;
2684
2685 /* Hmm... */
2686 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687 netdev_dbg(dev,
2688 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689 events, gfar_read(®s->imask));
2690
2691 /* Update the error counters */
2692 if (events & IEVENT_TXE) {
2693 dev->stats.tx_errors++;
2694
2695 if (events & IEVENT_LC)
2696 dev->stats.tx_window_errors++;
2697 if (events & IEVENT_CRL)
2698 dev->stats.tx_aborted_errors++;
2699 if (events & IEVENT_XFUN) {
2700 netif_dbg(priv, tx_err, dev,
2701 "TX FIFO underrun, packet dropped\n");
2702 dev->stats.tx_dropped++;
2703 atomic64_inc(&priv->extra_stats.tx_underrun);
2704
2705 schedule_work(&priv->reset_task);
2706 }
2707 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708 }
2709 if (events & IEVENT_MSRO) {
2710 struct rmon_mib __iomem *rmon = ®s->rmon;
2711 u32 car;
2712
2713 spin_lock(&priv->rmon_overflow.lock);
2714 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715 if (car) {
2716 priv->rmon_overflow.rdrp++;
2717 gfar_write(&rmon->car1, car);
2718 }
2719 spin_unlock(&priv->rmon_overflow.lock);
2720 }
2721 if (events & IEVENT_BSY) {
2722 dev->stats.rx_over_errors++;
2723 atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726 gfar_read(®s->rstat));
2727 }
2728 if (events & IEVENT_BABR) {
2729 dev->stats.rx_errors++;
2730 atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733 }
2734 if (events & IEVENT_EBERR) {
2735 atomic64_inc(&priv->extra_stats.eberr);
2736 netif_dbg(priv, rx_err, dev, "bus error\n");
2737 }
2738 if (events & IEVENT_RXC)
2739 netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741 if (events & IEVENT_BABT) {
2742 atomic64_inc(&priv->extra_stats.tx_babt);
2743 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2744 }
2745 return IRQ_HANDLED;
2746}
2747
2748/* The interrupt handler for devices with one interrupt */
2749static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750{
2751 struct gfar_priv_grp *gfargrp = grp_id;
2752
2753 /* Save ievent for future reference */
2754 u32 events = gfar_read(&gfargrp->regs->ievent);
2755
2756 /* Check for reception */
2757 if (events & IEVENT_RX_MASK)
2758 gfar_receive(irq, grp_id);
2759
2760 /* Check for transmit completion */
2761 if (events & IEVENT_TX_MASK)
2762 gfar_transmit(irq, grp_id);
2763
2764 /* Check for errors */
2765 if (events & IEVENT_ERR_MASK)
2766 gfar_error(irq, grp_id);
2767
2768 return IRQ_HANDLED;
2769}
2770
2771#ifdef CONFIG_NET_POLL_CONTROLLER
2772/* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2775 */
2776static void gfar_netpoll(struct net_device *dev)
2777{
2778 struct gfar_private *priv = netdev_priv(dev);
2779 int i;
2780
2781 /* If the device has multiple interrupts, run tx/rx */
2782 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783 for (i = 0; i < priv->num_grps; i++) {
2784 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786 disable_irq(gfar_irq(grp, TX)->irq);
2787 disable_irq(gfar_irq(grp, RX)->irq);
2788 disable_irq(gfar_irq(grp, ER)->irq);
2789 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790 enable_irq(gfar_irq(grp, ER)->irq);
2791 enable_irq(gfar_irq(grp, RX)->irq);
2792 enable_irq(gfar_irq(grp, TX)->irq);
2793 }
2794 } else {
2795 for (i = 0; i < priv->num_grps; i++) {
2796 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798 disable_irq(gfar_irq(grp, TX)->irq);
2799 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800 enable_irq(gfar_irq(grp, TX)->irq);
2801 }
2802 }
2803}
2804#endif
2805
2806static void free_grp_irqs(struct gfar_priv_grp *grp)
2807{
2808 free_irq(gfar_irq(grp, TX)->irq, grp);
2809 free_irq(gfar_irq(grp, RX)->irq, grp);
2810 free_irq(gfar_irq(grp, ER)->irq, grp);
2811}
2812
2813static int register_grp_irqs(struct gfar_priv_grp *grp)
2814{
2815 struct gfar_private *priv = grp->priv;
2816 struct net_device *dev = priv->ndev;
2817 int err;
2818
2819 /* If the device has multiple interrupts, register for
2820 * them. Otherwise, only register for the one
2821 */
2822 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823 /* Install our interrupt handlers for Error,
2824 * Transmit, and Receive
2825 */
2826 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827 gfar_irq(grp, ER)->name, grp);
2828 if (err < 0) {
2829 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830 gfar_irq(grp, ER)->irq);
2831
2832 goto err_irq_fail;
2833 }
2834 enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837 gfar_irq(grp, TX)->name, grp);
2838 if (err < 0) {
2839 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840 gfar_irq(grp, TX)->irq);
2841 goto tx_irq_fail;
2842 }
2843 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844 gfar_irq(grp, RX)->name, grp);
2845 if (err < 0) {
2846 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847 gfar_irq(grp, RX)->irq);
2848 goto rx_irq_fail;
2849 }
2850 enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852 } else {
2853 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854 gfar_irq(grp, TX)->name, grp);
2855 if (err < 0) {
2856 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857 gfar_irq(grp, TX)->irq);
2858 goto err_irq_fail;
2859 }
2860 enable_irq_wake(gfar_irq(grp, TX)->irq);
2861 }
2862
2863 return 0;
2864
2865rx_irq_fail:
2866 free_irq(gfar_irq(grp, TX)->irq, grp);
2867tx_irq_fail:
2868 free_irq(gfar_irq(grp, ER)->irq, grp);
2869err_irq_fail:
2870 return err;
2871
2872}
2873
2874static void gfar_free_irq(struct gfar_private *priv)
2875{
2876 int i;
2877
2878 /* Free the IRQs */
2879 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880 for (i = 0; i < priv->num_grps; i++)
2881 free_grp_irqs(&priv->gfargrp[i]);
2882 } else {
2883 for (i = 0; i < priv->num_grps; i++)
2884 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885 &priv->gfargrp[i]);
2886 }
2887}
2888
2889static int gfar_request_irq(struct gfar_private *priv)
2890{
2891 int err, i, j;
2892
2893 for (i = 0; i < priv->num_grps; i++) {
2894 err = register_grp_irqs(&priv->gfargrp[i]);
2895 if (err) {
2896 for (j = 0; j < i; j++)
2897 free_grp_irqs(&priv->gfargrp[j]);
2898 return err;
2899 }
2900 }
2901
2902 return 0;
2903}
2904
2905/* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2907 */
2908static int gfar_enet_open(struct net_device *dev)
2909{
2910 struct gfar_private *priv = netdev_priv(dev);
2911 int err;
2912
2913 err = init_phy(dev);
2914 if (err)
2915 return err;
2916
2917 err = gfar_request_irq(priv);
2918 if (err)
2919 return err;
2920
2921 err = startup_gfar(dev);
2922 if (err)
2923 return err;
2924
2925 return err;
2926}
2927
2928/* Stops the kernel queue, and halts the controller */
2929static int gfar_close(struct net_device *dev)
2930{
2931 struct gfar_private *priv = netdev_priv(dev);
2932
2933 cancel_work_sync(&priv->reset_task);
2934 stop_gfar(dev);
2935
2936 /* Disconnect from the PHY */
2937 phy_disconnect(dev->phydev);
2938
2939 gfar_free_irq(priv);
2940
2941 return 0;
2942}
2943
2944/* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
2947static void gfar_clear_exact_match(struct net_device *dev)
2948{
2949 int idx;
2950 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953 gfar_set_mac_for_addr(dev, idx, zero_arr);
2954}
2955
2956/* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to. Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
2961static void gfar_set_multi(struct net_device *dev)
2962{
2963 struct netdev_hw_addr *ha;
2964 struct gfar_private *priv = netdev_priv(dev);
2965 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966 u32 tempval;
2967
2968 if (dev->flags & IFF_PROMISC) {
2969 /* Set RCTRL to PROM */
2970 tempval = gfar_read(®s->rctrl);
2971 tempval |= RCTRL_PROM;
2972 gfar_write(®s->rctrl, tempval);
2973 } else {
2974 /* Set RCTRL to not PROM */
2975 tempval = gfar_read(®s->rctrl);
2976 tempval &= ~(RCTRL_PROM);
2977 gfar_write(®s->rctrl, tempval);
2978 }
2979
2980 if (dev->flags & IFF_ALLMULTI) {
2981 /* Set the hash to rx all multicast frames */
2982 gfar_write(®s->igaddr0, 0xffffffff);
2983 gfar_write(®s->igaddr1, 0xffffffff);
2984 gfar_write(®s->igaddr2, 0xffffffff);
2985 gfar_write(®s->igaddr3, 0xffffffff);
2986 gfar_write(®s->igaddr4, 0xffffffff);
2987 gfar_write(®s->igaddr5, 0xffffffff);
2988 gfar_write(®s->igaddr6, 0xffffffff);
2989 gfar_write(®s->igaddr7, 0xffffffff);
2990 gfar_write(®s->gaddr0, 0xffffffff);
2991 gfar_write(®s->gaddr1, 0xffffffff);
2992 gfar_write(®s->gaddr2, 0xffffffff);
2993 gfar_write(®s->gaddr3, 0xffffffff);
2994 gfar_write(®s->gaddr4, 0xffffffff);
2995 gfar_write(®s->gaddr5, 0xffffffff);
2996 gfar_write(®s->gaddr6, 0xffffffff);
2997 gfar_write(®s->gaddr7, 0xffffffff);
2998 } else {
2999 int em_num;
3000 int idx;
3001
3002 /* zero out the hash */
3003 gfar_write(®s->igaddr0, 0x0);
3004 gfar_write(®s->igaddr1, 0x0);
3005 gfar_write(®s->igaddr2, 0x0);
3006 gfar_write(®s->igaddr3, 0x0);
3007 gfar_write(®s->igaddr4, 0x0);
3008 gfar_write(®s->igaddr5, 0x0);
3009 gfar_write(®s->igaddr6, 0x0);
3010 gfar_write(®s->igaddr7, 0x0);
3011 gfar_write(®s->gaddr0, 0x0);
3012 gfar_write(®s->gaddr1, 0x0);
3013 gfar_write(®s->gaddr2, 0x0);
3014 gfar_write(®s->gaddr3, 0x0);
3015 gfar_write(®s->gaddr4, 0x0);
3016 gfar_write(®s->gaddr5, 0x0);
3017 gfar_write(®s->gaddr6, 0x0);
3018 gfar_write(®s->gaddr7, 0x0);
3019
3020 /* If we have extended hash tables, we need to
3021 * clear the exact match registers to prepare for
3022 * setting them
3023 */
3024 if (priv->extended_hash) {
3025 em_num = GFAR_EM_NUM + 1;
3026 gfar_clear_exact_match(dev);
3027 idx = 1;
3028 } else {
3029 idx = 0;
3030 em_num = 0;
3031 }
3032
3033 if (netdev_mc_empty(dev))
3034 return;
3035
3036 /* Parse the list, and set the appropriate bits */
3037 netdev_for_each_mc_addr(ha, dev) {
3038 if (idx < em_num) {
3039 gfar_set_mac_for_addr(dev, idx, ha->addr);
3040 idx++;
3041 } else
3042 gfar_set_hash_for_addr(dev, ha->addr);
3043 }
3044 }
3045}
3046
3047void gfar_mac_reset(struct gfar_private *priv)
3048{
3049 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050 u32 tempval;
3051
3052 /* Reset MAC layer */
3053 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
3054
3055 /* We need to delay at least 3 TX clocks */
3056 udelay(3);
3057
3058 /* the soft reset bit is not self-resetting, so we need to
3059 * clear it before resuming normal operation
3060 */
3061 gfar_write(®s->maccfg1, 0);
3062
3063 udelay(3);
3064
3065 gfar_rx_offload_en(priv);
3066
3067 /* Initialize the max receive frame/buffer lengths */
3068 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
3070
3071 /* Initialize the Minimum Frame Length Register */
3072 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
3073
3074 /* Initialize MACCFG2. */
3075 tempval = MACCFG2_INIT_SETTINGS;
3076
3077 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3079 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080 */
3081 if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084 gfar_write(®s->maccfg2, tempval);
3085
3086 /* Clear mac addr hash registers */
3087 gfar_write(®s->igaddr0, 0);
3088 gfar_write(®s->igaddr1, 0);
3089 gfar_write(®s->igaddr2, 0);
3090 gfar_write(®s->igaddr3, 0);
3091 gfar_write(®s->igaddr4, 0);
3092 gfar_write(®s->igaddr5, 0);
3093 gfar_write(®s->igaddr6, 0);
3094 gfar_write(®s->igaddr7, 0);
3095
3096 gfar_write(®s->gaddr0, 0);
3097 gfar_write(®s->gaddr1, 0);
3098 gfar_write(®s->gaddr2, 0);
3099 gfar_write(®s->gaddr3, 0);
3100 gfar_write(®s->gaddr4, 0);
3101 gfar_write(®s->gaddr5, 0);
3102 gfar_write(®s->gaddr6, 0);
3103 gfar_write(®s->gaddr7, 0);
3104
3105 if (priv->extended_hash)
3106 gfar_clear_exact_match(priv->ndev);
3107
3108 gfar_mac_rx_config(priv);
3109
3110 gfar_mac_tx_config(priv);
3111
3112 gfar_set_mac_address(priv->ndev);
3113
3114 gfar_set_multi(priv->ndev);
3115
3116 /* clear ievent and imask before configuring coalescing */
3117 gfar_ints_disable(priv);
3118
3119 /* Configure the coalescing support */
3120 gfar_configure_coalescing_all(priv);
3121}
3122
3123static void gfar_hw_init(struct gfar_private *priv)
3124{
3125 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126 u32 attrs;
3127
3128 /* Stop the DMA engine now, in case it was running before
3129 * (The firmware could have used it, and left it running).
3130 */
3131 gfar_halt(priv);
3132
3133 gfar_mac_reset(priv);
3134
3135 /* Zero out the rmon mib registers if it has them */
3136 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139 /* Mask off the CAM interrupts */
3140 gfar_write(®s->rmon.cam1, 0xffffffff);
3141 gfar_write(®s->rmon.cam2, 0xffffffff);
3142 /* Clear the CAR registers (w1c style) */
3143 gfar_write(®s->rmon.car1, 0xffffffff);
3144 gfar_write(®s->rmon.car2, 0xffffffff);
3145 }
3146
3147 /* Initialize ECNTRL */
3148 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150 /* Set the extraction length and index */
3151 attrs = ATTRELI_EL(priv->rx_stash_size) |
3152 ATTRELI_EI(priv->rx_stash_index);
3153
3154 gfar_write(®s->attreli, attrs);
3155
3156 /* Start with defaults, and add stashing
3157 * depending on driver parameters
3158 */
3159 attrs = ATTR_INIT_SETTINGS;
3160
3161 if (priv->bd_stash_en)
3162 attrs |= ATTR_BDSTASH;
3163
3164 if (priv->rx_stash_size != 0)
3165 attrs |= ATTR_BUFSTASH;
3166
3167 gfar_write(®s->attr, attrs);
3168
3169 /* FIFO configs */
3170 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174 /* Program the interrupt steering regs, only for MG devices */
3175 if (priv->num_grps > 1)
3176 gfar_write_isrg(priv);
3177}
3178
3179static const struct net_device_ops gfar_netdev_ops = {
3180 .ndo_open = gfar_enet_open,
3181 .ndo_start_xmit = gfar_start_xmit,
3182 .ndo_stop = gfar_close,
3183 .ndo_change_mtu = gfar_change_mtu,
3184 .ndo_set_features = gfar_set_features,
3185 .ndo_set_rx_mode = gfar_set_multi,
3186 .ndo_tx_timeout = gfar_timeout,
3187 .ndo_eth_ioctl = gfar_ioctl,
3188 .ndo_get_stats64 = gfar_get_stats64,
3189 .ndo_change_carrier = fixed_phy_change_carrier,
3190 .ndo_set_mac_address = gfar_set_mac_addr,
3191 .ndo_validate_addr = eth_validate_addr,
3192#ifdef CONFIG_NET_POLL_CONTROLLER
3193 .ndo_poll_controller = gfar_netpoll,
3194#endif
3195};
3196
3197/* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
3200static int gfar_probe(struct platform_device *ofdev)
3201{
3202 struct device_node *np = ofdev->dev.of_node;
3203 struct net_device *dev = NULL;
3204 struct gfar_private *priv = NULL;
3205 int err = 0, i;
3206
3207 err = gfar_of_init(ofdev, &dev);
3208
3209 if (err)
3210 return err;
3211
3212 priv = netdev_priv(dev);
3213 priv->ndev = dev;
3214 priv->ofdev = ofdev;
3215 priv->dev = &ofdev->dev;
3216 SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218 INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220 platform_set_drvdata(ofdev, priv);
3221
3222 gfar_detect_errata(priv);
3223
3224 /* Set the dev->base_addr to the gfar reg region */
3225 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227 /* Fill in the dev structure */
3228 dev->watchdog_timeo = TX_TIMEOUT;
3229 /* MTU range: 50 - 9586 */
3230 dev->mtu = 1500;
3231 dev->min_mtu = 50;
3232 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233 dev->netdev_ops = &gfar_netdev_ops;
3234 dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236 /* Register for napi ...We are registering NAPI for each grp */
3237 for (i = 0; i < priv->num_grps; i++) {
3238 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239 gfar_poll_rx_sq);
3240 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3241 gfar_poll_tx_sq, 2);
3242 }
3243
3244 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246 NETIF_F_RXCSUM;
3247 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249 }
3250
3251 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253 NETIF_F_HW_VLAN_CTAG_RX;
3254 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255 }
3256
3257 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3258
3259 gfar_init_addr_hash_table(priv);
3260
3261 /* Insert receive time stamps into padding alignment bytes, and
3262 * plus 2 bytes padding to ensure the cpu alignment.
3263 */
3264 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265 priv->padding = 8 + DEFAULT_PADDING;
3266
3267 if (dev->features & NETIF_F_IP_CSUM ||
3268 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3270
3271 /* Initializing some of the rx/tx queue level parameters */
3272 for (i = 0; i < priv->num_tx_queues; i++) {
3273 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277 }
3278
3279 for (i = 0; i < priv->num_rx_queues; i++) {
3280 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283 }
3284
3285 /* Always enable rx filer if available */
3286 priv->rx_filer_enable =
3287 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288 /* Enable most messages by default */
3289 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290 /* use pritority h/w tx queue scheduling for single queue devices */
3291 if (priv->num_tx_queues == 1)
3292 priv->prio_sched_en = 1;
3293
3294 set_bit(GFAR_DOWN, &priv->state);
3295
3296 gfar_hw_init(priv);
3297
3298 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301 spin_lock_init(&priv->rmon_overflow.lock);
3302 priv->rmon_overflow.imask = IMASK_MSRO;
3303 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304 }
3305
3306 /* Carrier starts down, phylib will bring it up */
3307 netif_carrier_off(dev);
3308
3309 err = register_netdev(dev);
3310
3311 if (err) {
3312 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313 goto register_fail;
3314 }
3315
3316 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317 priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320 priv->rx_filer_enable)
3321 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325 /* fill out IRQ number and name fields */
3326 for (i = 0; i < priv->num_grps; i++) {
3327 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330 dev->name, "_g", '0' + i, "_tx");
3331 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332 dev->name, "_g", '0' + i, "_rx");
3333 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334 dev->name, "_g", '0' + i, "_er");
3335 } else
3336 strcpy(gfar_irq(grp, TX)->name, dev->name);
3337 }
3338
3339 /* Initialize the filer table */
3340 gfar_init_filer_table(priv);
3341
3342 /* Print out the device info */
3343 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345 /* Even more device info helps when determining which kernel
3346 * provided which set of benchmarks.
3347 */
3348 netdev_info(dev, "Running with NAPI enabled\n");
3349 for (i = 0; i < priv->num_rx_queues; i++)
3350 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351 i, priv->rx_queue[i]->rx_ring_size);
3352 for (i = 0; i < priv->num_tx_queues; i++)
3353 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354 i, priv->tx_queue[i]->tx_ring_size);
3355
3356 return 0;
3357
3358register_fail:
3359 if (of_phy_is_fixed_link(np))
3360 of_phy_deregister_fixed_link(np);
3361 unmap_group_regs(priv);
3362 gfar_free_rx_queues(priv);
3363 gfar_free_tx_queues(priv);
3364 of_node_put(priv->phy_node);
3365 of_node_put(priv->tbi_node);
3366 free_gfar_dev(priv);
3367 return err;
3368}
3369
3370static void gfar_remove(struct platform_device *ofdev)
3371{
3372 struct gfar_private *priv = platform_get_drvdata(ofdev);
3373 struct device_node *np = ofdev->dev.of_node;
3374
3375 of_node_put(priv->phy_node);
3376 of_node_put(priv->tbi_node);
3377
3378 unregister_netdev(priv->ndev);
3379
3380 if (of_phy_is_fixed_link(np))
3381 of_phy_deregister_fixed_link(np);
3382
3383 unmap_group_regs(priv);
3384 gfar_free_rx_queues(priv);
3385 gfar_free_tx_queues(priv);
3386 free_gfar_dev(priv);
3387}
3388
3389#ifdef CONFIG_PM
3390
3391static void __gfar_filer_disable(struct gfar_private *priv)
3392{
3393 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3394 u32 temp;
3395
3396 temp = gfar_read(®s->rctrl);
3397 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3398 gfar_write(®s->rctrl, temp);
3399}
3400
3401static void __gfar_filer_enable(struct gfar_private *priv)
3402{
3403 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3404 u32 temp;
3405
3406 temp = gfar_read(®s->rctrl);
3407 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3408 gfar_write(®s->rctrl, temp);
3409}
3410
3411/* Filer rules implementing wol capabilities */
3412static void gfar_filer_config_wol(struct gfar_private *priv)
3413{
3414 unsigned int i;
3415 u32 rqfcr;
3416
3417 __gfar_filer_disable(priv);
3418
3419 /* clear the filer table, reject any packet by default */
3420 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3421 for (i = 0; i <= MAX_FILER_IDX; i++)
3422 gfar_write_filer(priv, i, rqfcr, 0);
3423
3424 i = 0;
3425 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3426 /* unicast packet, accept it */
3427 struct net_device *ndev = priv->ndev;
3428 /* get the default rx queue index */
3429 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3430 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3431 (ndev->dev_addr[1] << 8) |
3432 ndev->dev_addr[2];
3433
3434 rqfcr = (qindex << 10) | RQFCR_AND |
3435 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3436
3437 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3438
3439 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3440 (ndev->dev_addr[4] << 8) |
3441 ndev->dev_addr[5];
3442 rqfcr = (qindex << 10) | RQFCR_GPI |
3443 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3444 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3445 }
3446
3447 __gfar_filer_enable(priv);
3448}
3449
3450static void gfar_filer_restore_table(struct gfar_private *priv)
3451{
3452 u32 rqfcr, rqfpr;
3453 unsigned int i;
3454
3455 __gfar_filer_disable(priv);
3456
3457 for (i = 0; i <= MAX_FILER_IDX; i++) {
3458 rqfcr = priv->ftp_rqfcr[i];
3459 rqfpr = priv->ftp_rqfpr[i];
3460 gfar_write_filer(priv, i, rqfcr, rqfpr);
3461 }
3462
3463 __gfar_filer_enable(priv);
3464}
3465
3466/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3467static void gfar_start_wol_filer(struct gfar_private *priv)
3468{
3469 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3470 u32 tempval;
3471 int i = 0;
3472
3473 /* Enable Rx hw queues */
3474 gfar_write(®s->rqueue, priv->rqueue);
3475
3476 /* Initialize DMACTRL to have WWR and WOP */
3477 tempval = gfar_read(®s->dmactrl);
3478 tempval |= DMACTRL_INIT_SETTINGS;
3479 gfar_write(®s->dmactrl, tempval);
3480
3481 /* Make sure we aren't stopped */
3482 tempval = gfar_read(®s->dmactrl);
3483 tempval &= ~DMACTRL_GRS;
3484 gfar_write(®s->dmactrl, tempval);
3485
3486 for (i = 0; i < priv->num_grps; i++) {
3487 regs = priv->gfargrp[i].regs;
3488 /* Clear RHLT, so that the DMA starts polling now */
3489 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
3490 /* enable the Filer General Purpose Interrupt */
3491 gfar_write(®s->imask, IMASK_FGPI);
3492 }
3493
3494 /* Enable Rx DMA */
3495 tempval = gfar_read(®s->maccfg1);
3496 tempval |= MACCFG1_RX_EN;
3497 gfar_write(®s->maccfg1, tempval);
3498}
3499
3500static int gfar_suspend(struct device *dev)
3501{
3502 struct gfar_private *priv = dev_get_drvdata(dev);
3503 struct net_device *ndev = priv->ndev;
3504 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3505 u32 tempval;
3506 u16 wol = priv->wol_opts;
3507
3508 if (!netif_running(ndev))
3509 return 0;
3510
3511 disable_napi(priv);
3512 netif_tx_lock(ndev);
3513 netif_device_detach(ndev);
3514 netif_tx_unlock(ndev);
3515
3516 gfar_halt(priv);
3517
3518 if (wol & GFAR_WOL_MAGIC) {
3519 /* Enable interrupt on Magic Packet */
3520 gfar_write(®s->imask, IMASK_MAG);
3521
3522 /* Enable Magic Packet mode */
3523 tempval = gfar_read(®s->maccfg2);
3524 tempval |= MACCFG2_MPEN;
3525 gfar_write(®s->maccfg2, tempval);
3526
3527 /* re-enable the Rx block */
3528 tempval = gfar_read(®s->maccfg1);
3529 tempval |= MACCFG1_RX_EN;
3530 gfar_write(®s->maccfg1, tempval);
3531
3532 } else if (wol & GFAR_WOL_FILER_UCAST) {
3533 gfar_filer_config_wol(priv);
3534 gfar_start_wol_filer(priv);
3535
3536 } else {
3537 phy_stop(ndev->phydev);
3538 }
3539
3540 return 0;
3541}
3542
3543static int gfar_resume(struct device *dev)
3544{
3545 struct gfar_private *priv = dev_get_drvdata(dev);
3546 struct net_device *ndev = priv->ndev;
3547 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3548 u32 tempval;
3549 u16 wol = priv->wol_opts;
3550
3551 if (!netif_running(ndev))
3552 return 0;
3553
3554 if (wol & GFAR_WOL_MAGIC) {
3555 /* Disable Magic Packet mode */
3556 tempval = gfar_read(®s->maccfg2);
3557 tempval &= ~MACCFG2_MPEN;
3558 gfar_write(®s->maccfg2, tempval);
3559
3560 } else if (wol & GFAR_WOL_FILER_UCAST) {
3561 /* need to stop rx only, tx is already down */
3562 gfar_halt(priv);
3563 gfar_filer_restore_table(priv);
3564
3565 } else {
3566 phy_start(ndev->phydev);
3567 }
3568
3569 gfar_start(priv);
3570
3571 netif_device_attach(ndev);
3572 enable_napi(priv);
3573
3574 return 0;
3575}
3576
3577static int gfar_restore(struct device *dev)
3578{
3579 struct gfar_private *priv = dev_get_drvdata(dev);
3580 struct net_device *ndev = priv->ndev;
3581
3582 if (!netif_running(ndev)) {
3583 netif_device_attach(ndev);
3584
3585 return 0;
3586 }
3587
3588 gfar_init_bds(ndev);
3589
3590 gfar_mac_reset(priv);
3591
3592 gfar_init_tx_rx_base(priv);
3593
3594 gfar_start(priv);
3595
3596 priv->oldlink = 0;
3597 priv->oldspeed = 0;
3598 priv->oldduplex = -1;
3599
3600 if (ndev->phydev)
3601 phy_start(ndev->phydev);
3602
3603 netif_device_attach(ndev);
3604 enable_napi(priv);
3605
3606 return 0;
3607}
3608
3609static const struct dev_pm_ops gfar_pm_ops = {
3610 .suspend = gfar_suspend,
3611 .resume = gfar_resume,
3612 .freeze = gfar_suspend,
3613 .thaw = gfar_resume,
3614 .restore = gfar_restore,
3615};
3616
3617#define GFAR_PM_OPS (&gfar_pm_ops)
3618
3619#else
3620
3621#define GFAR_PM_OPS NULL
3622
3623#endif
3624
3625static const struct of_device_id gfar_match[] =
3626{
3627 {
3628 .type = "network",
3629 .compatible = "gianfar",
3630 },
3631 {
3632 .compatible = "fsl,etsec2",
3633 },
3634 {},
3635};
3636MODULE_DEVICE_TABLE(of, gfar_match);
3637
3638/* Structure for a device driver */
3639static struct platform_driver gfar_driver = {
3640 .driver = {
3641 .name = "fsl-gianfar",
3642 .pm = GFAR_PM_OPS,
3643 .of_match_table = gfar_match,
3644 },
3645 .probe = gfar_probe,
3646 .remove = gfar_remove,
3647};
3648
3649module_platform_driver(gfar_driver);
1/* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65#define DEBUG
66
67#include <linux/kernel.h>
68#include <linux/string.h>
69#include <linux/errno.h>
70#include <linux/unistd.h>
71#include <linux/slab.h>
72#include <linux/interrupt.h>
73#include <linux/delay.h>
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77#include <linux/if_vlan.h>
78#include <linux/spinlock.h>
79#include <linux/mm.h>
80#include <linux/of_address.h>
81#include <linux/of_irq.h>
82#include <linux/of_mdio.h>
83#include <linux/of_platform.h>
84#include <linux/ip.h>
85#include <linux/tcp.h>
86#include <linux/udp.h>
87#include <linux/in.h>
88#include <linux/net_tstamp.h>
89
90#include <asm/io.h>
91#ifdef CONFIG_PPC
92#include <asm/reg.h>
93#include <asm/mpc85xx.h>
94#endif
95#include <asm/irq.h>
96#include <asm/uaccess.h>
97#include <linux/module.h>
98#include <linux/dma-mapping.h>
99#include <linux/crc32.h>
100#include <linux/mii.h>
101#include <linux/phy.h>
102#include <linux/phy_fixed.h>
103#include <linux/of.h>
104#include <linux/of_net.h>
105#include <linux/of_address.h>
106#include <linux/of_irq.h>
107
108#include "gianfar.h"
109
110#define TX_TIMEOUT (5*HZ)
111
112const char gfar_driver_version[] = "2.0";
113
114static int gfar_enet_open(struct net_device *dev);
115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116static void gfar_reset_task(struct work_struct *work);
117static void gfar_timeout(struct net_device *dev);
118static int gfar_close(struct net_device *dev);
119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121static int gfar_set_mac_address(struct net_device *dev);
122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123static irqreturn_t gfar_error(int irq, void *dev_id);
124static irqreturn_t gfar_transmit(int irq, void *dev_id);
125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126static void adjust_link(struct net_device *dev);
127static noinline void gfar_update_link_state(struct gfar_private *priv);
128static int init_phy(struct net_device *dev);
129static int gfar_probe(struct platform_device *ofdev);
130static int gfar_remove(struct platform_device *ofdev);
131static void free_skb_resources(struct gfar_private *priv);
132static void gfar_set_multi(struct net_device *dev);
133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134static void gfar_configure_serdes(struct net_device *dev);
135static int gfar_poll_rx(struct napi_struct *napi, int budget);
136static int gfar_poll_tx(struct napi_struct *napi, int budget);
137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139#ifdef CONFIG_NET_POLL_CONTROLLER
140static void gfar_netpoll(struct net_device *dev);
141#endif
142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145static void gfar_halt_nodisable(struct gfar_private *priv);
146static void gfar_clear_exact_match(struct net_device *dev);
147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151MODULE_AUTHOR("Freescale Semiconductor, Inc");
152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153MODULE_LICENSE("GPL");
154
155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157{
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169}
170
171static void gfar_init_bds(struct net_device *ndev)
172{
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = ®s->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220}
221
222static int gfar_alloc_skb_resources(struct net_device *ndev)
223{
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301}
302
303static void gfar_init_tx_rx_base(struct gfar_private *priv)
304{
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = ®s->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = ®s->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320}
321
322static void gfar_init_rqprm(struct gfar_private *priv)
323{
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = ®s->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334}
335
336static void gfar_rx_offload_en(struct gfar_private *priv)
337{
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346}
347
348static void gfar_mac_rx_config(struct gfar_private *priv)
349{
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(®s->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(®s->rctrl, rctrl);
393}
394
395static void gfar_mac_tx_config(struct gfar_private *priv)
396{
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(®s->tctrl, tctrl);
415}
416
417static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419{
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = ®s->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = ®s->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(®s->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(®s->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(®s->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
450 }
451}
452
453void gfar_configure_coalescing_all(struct gfar_private *priv)
454{
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456}
457
458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459{
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484}
485
486static int gfar_set_mac_addr(struct net_device *dev, void *p)
487{
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493}
494
495static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507#ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509#endif
510};
511
512static void gfar_ints_disable(struct gfar_private *priv)
513{
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(®s->imask, IMASK_INIT_CLEAR);
522 }
523}
524
525static void gfar_ints_enable(struct gfar_private *priv)
526{
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(®s->imask, IMASK_DEFAULT);
532 }
533}
534
535static int gfar_alloc_tx_queues(struct gfar_private *priv)
536{
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551}
552
553static int gfar_alloc_rx_queues(struct gfar_private *priv)
554{
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567}
568
569static void gfar_free_tx_queues(struct gfar_private *priv)
570{
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575}
576
577static void gfar_free_rx_queues(struct gfar_private *priv)
578{
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583}
584
585static void unmap_group_regs(struct gfar_private *priv)
586{
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592}
593
594static void free_gfar_dev(struct gfar_private *priv)
595{
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605}
606
607static void disable_napi(struct gfar_private *priv)
608{
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615}
616
617static void enable_napi(struct gfar_private *priv)
618{
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625}
626
627static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629{
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717}
718
719static int gfar_of_group_count(struct device_node *np)
720{
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729}
730
731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732{
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850 } else { /* SQ_SG_MODE */
851 err = gfar_parse_group(np, priv, model);
852 if (err)
853 goto err_grp_init;
854 }
855
856 if (of_property_read_bool(np, "bd-stash")) {
857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 priv->bd_stash_en = 1;
859 }
860
861 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863 if (err == 0)
864 priv->rx_stash_size = stash_len;
865
866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868 if (err == 0)
869 priv->rx_stash_index = stash_idx;
870
871 if (stash_len || stash_idx)
872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874 mac_addr = of_get_mac_address(np);
875
876 if (mac_addr)
877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879 if (model && !strcasecmp(model, "TSEC"))
880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 FSL_GIANFAR_DEV_HAS_COALESCE |
882 FSL_GIANFAR_DEV_HAS_RMON |
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885 if (model && !strcasecmp(model, "eTSEC"))
886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 FSL_GIANFAR_DEV_HAS_COALESCE |
888 FSL_GIANFAR_DEV_HAS_RMON |
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 FSL_GIANFAR_DEV_HAS_CSUM |
891 FSL_GIANFAR_DEV_HAS_VLAN |
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 FSL_GIANFAR_DEV_HAS_TIMER |
895 FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897 err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 else
903 priv->interface = PHY_INTERFACE_MODE_MII;
904
905 if (of_find_property(np, "fsl,magic-packet", NULL))
906 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908 if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
915 */
916 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 err = of_phy_register_fixed_link(np);
918 if (err)
919 goto err_grp_init;
920
921 priv->phy_node = of_node_get(np);
922 }
923
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927 return 0;
928
929err_grp_init:
930 unmap_group_regs(priv);
931rx_alloc_failed:
932 gfar_free_rx_queues(priv);
933tx_alloc_failed:
934 gfar_free_tx_queues(priv);
935 free_gfar_dev(priv);
936 return err;
937}
938
939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940{
941 struct hwtstamp_config config;
942 struct gfar_private *priv = netdev_priv(netdev);
943
944 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 return -EFAULT;
946
947 /* reserved for future extensions */
948 if (config.flags)
949 return -EINVAL;
950
951 switch (config.tx_type) {
952 case HWTSTAMP_TX_OFF:
953 priv->hwts_tx_en = 0;
954 break;
955 case HWTSTAMP_TX_ON:
956 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 return -ERANGE;
958 priv->hwts_tx_en = 1;
959 break;
960 default:
961 return -ERANGE;
962 }
963
964 switch (config.rx_filter) {
965 case HWTSTAMP_FILTER_NONE:
966 if (priv->hwts_rx_en) {
967 priv->hwts_rx_en = 0;
968 reset_gfar(netdev);
969 }
970 break;
971 default:
972 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 return -ERANGE;
974 if (!priv->hwts_rx_en) {
975 priv->hwts_rx_en = 1;
976 reset_gfar(netdev);
977 }
978 config.rx_filter = HWTSTAMP_FILTER_ALL;
979 break;
980 }
981
982 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 -EFAULT : 0;
984}
985
986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987{
988 struct hwtstamp_config config;
989 struct gfar_private *priv = netdev_priv(netdev);
990
991 config.flags = 0;
992 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 config.rx_filter = (priv->hwts_rx_en ?
994 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 -EFAULT : 0;
998}
999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002 struct gfar_private *priv = netdev_priv(dev);
1003
1004 if (!netif_running(dev))
1005 return -EINVAL;
1006
1007 if (cmd == SIOCSHWTSTAMP)
1008 return gfar_hwtstamp_set(dev, rq);
1009 if (cmd == SIOCGHWTSTAMP)
1010 return gfar_hwtstamp_get(dev, rq);
1011
1012 if (!priv->phydev)
1013 return -ENODEV;
1014
1015 return phy_mii_ioctl(priv->phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 u32 class)
1020{
1021 u32 rqfpr = FPR_FILER_MASK;
1022 u32 rqfcr = 0x0;
1023
1024 rqfar--;
1025 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 priv->ftp_rqfpr[rqfar] = rqfpr;
1027 priv->ftp_rqfcr[rqfar] = rqfcr;
1028 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030 rqfar--;
1031 rqfcr = RQFCR_CMP_NOMATCH;
1032 priv->ftp_rqfpr[rqfar] = rqfpr;
1033 priv->ftp_rqfcr[rqfar] = rqfcr;
1034 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036 rqfar--;
1037 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 rqfpr = class;
1039 priv->ftp_rqfcr[rqfar] = rqfcr;
1040 priv->ftp_rqfpr[rqfar] = rqfpr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050 return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055 int i = 0x0;
1056 u32 rqfar = MAX_FILER_IDX;
1057 u32 rqfcr = 0x0;
1058 u32 rqfpr = FPR_FILER_MASK;
1059
1060 /* Default rule */
1061 rqfcr = RQFCR_CMP_MATCH;
1062 priv->ftp_rqfcr[rqfar] = rqfcr;
1063 priv->ftp_rqfpr[rqfar] = rqfpr;
1064 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv->cur_filer_idx = rqfar;
1075
1076 /* Rest are masked rules */
1077 rqfcr = RQFCR_CMP_NOMATCH;
1078 for (i = 0; i < rqfar; i++) {
1079 priv->ftp_rqfcr[i] = rqfcr;
1080 priv->ftp_rqfpr[i] = rqfpr;
1081 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 }
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088 unsigned int pvr = mfspr(SPRN_PVR);
1089 unsigned int svr = mfspr(SPRN_SVR);
1090 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev = svr & 0xffff;
1092
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_74;
1097
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 priv->errata |= GFAR_ERRATA_76;
1102
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110 unsigned int svr = mfspr(SPRN_SVR);
1111
1112 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 priv->errata |= GFAR_ERRATA_12;
1114 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124 struct device *dev = &priv->ofdev->dev;
1125
1126 /* no plans to fix */
1127 priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 __gfar_detect_errata_85xx(priv);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv);
1134#endif
1135
1136 if (priv->errata)
1137 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 u32 tempval;
1145
1146 /* Reset MAC layer */
1147 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
1148
1149 /* We need to delay at least 3 TX clocks */
1150 udelay(3);
1151
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1154 */
1155 gfar_write(®s->maccfg1, 0);
1156
1157 udelay(3);
1158
1159 gfar_rx_offload_en(priv);
1160
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
1164
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
1167
1168 /* Initialize MACCFG2. */
1169 tempval = MACCFG2_INIT_SETTINGS;
1170
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 */
1175 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178 gfar_write(®s->maccfg2, tempval);
1179
1180 /* Clear mac addr hash registers */
1181 gfar_write(®s->igaddr0, 0);
1182 gfar_write(®s->igaddr1, 0);
1183 gfar_write(®s->igaddr2, 0);
1184 gfar_write(®s->igaddr3, 0);
1185 gfar_write(®s->igaddr4, 0);
1186 gfar_write(®s->igaddr5, 0);
1187 gfar_write(®s->igaddr6, 0);
1188 gfar_write(®s->igaddr7, 0);
1189
1190 gfar_write(®s->gaddr0, 0);
1191 gfar_write(®s->gaddr1, 0);
1192 gfar_write(®s->gaddr2, 0);
1193 gfar_write(®s->gaddr3, 0);
1194 gfar_write(®s->gaddr4, 0);
1195 gfar_write(®s->gaddr5, 0);
1196 gfar_write(®s->gaddr6, 0);
1197 gfar_write(®s->gaddr7, 0);
1198
1199 if (priv->extended_hash)
1200 gfar_clear_exact_match(priv->ndev);
1201
1202 gfar_mac_rx_config(priv);
1203
1204 gfar_mac_tx_config(priv);
1205
1206 gfar_set_mac_address(priv->ndev);
1207
1208 gfar_set_multi(priv->ndev);
1209
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv);
1212
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 u32 attrs;
1221
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1224 */
1225 gfar_halt(priv);
1226
1227 gfar_mac_reset(priv);
1228
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233 /* Mask off the CAM interrupts */
1234 gfar_write(®s->rmon.cam1, 0xffffffff);
1235 gfar_write(®s->rmon.cam2, 0xffffffff);
1236 }
1237
1238 /* Initialize ECNTRL */
1239 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241 /* Set the extraction length and index */
1242 attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 ATTRELI_EI(priv->rx_stash_index);
1244
1245 gfar_write(®s->attreli, attrs);
1246
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1249 */
1250 attrs = ATTR_INIT_SETTINGS;
1251
1252 if (priv->bd_stash_en)
1253 attrs |= ATTR_BDSTASH;
1254
1255 if (priv->rx_stash_size != 0)
1256 attrs |= ATTR_BUFSTASH;
1257
1258 gfar_write(®s->attr, attrs);
1259
1260 /* FIFO configs */
1261 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv->num_grps > 1)
1267 gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 priv->extended_hash = 1;
1276 priv->hash_width = 9;
1277
1278 priv->hash_regs[0] = ®s->igaddr0;
1279 priv->hash_regs[1] = ®s->igaddr1;
1280 priv->hash_regs[2] = ®s->igaddr2;
1281 priv->hash_regs[3] = ®s->igaddr3;
1282 priv->hash_regs[4] = ®s->igaddr4;
1283 priv->hash_regs[5] = ®s->igaddr5;
1284 priv->hash_regs[6] = ®s->igaddr6;
1285 priv->hash_regs[7] = ®s->igaddr7;
1286 priv->hash_regs[8] = ®s->gaddr0;
1287 priv->hash_regs[9] = ®s->gaddr1;
1288 priv->hash_regs[10] = ®s->gaddr2;
1289 priv->hash_regs[11] = ®s->gaddr3;
1290 priv->hash_regs[12] = ®s->gaddr4;
1291 priv->hash_regs[13] = ®s->gaddr5;
1292 priv->hash_regs[14] = ®s->gaddr6;
1293 priv->hash_regs[15] = ®s->gaddr7;
1294
1295 } else {
1296 priv->extended_hash = 0;
1297 priv->hash_width = 8;
1298
1299 priv->hash_regs[0] = ®s->gaddr0;
1300 priv->hash_regs[1] = ®s->gaddr1;
1301 priv->hash_regs[2] = ®s->gaddr2;
1302 priv->hash_regs[3] = ®s->gaddr3;
1303 priv->hash_regs[4] = ®s->gaddr4;
1304 priv->hash_regs[5] = ®s->gaddr5;
1305 priv->hash_regs[6] = ®s->gaddr6;
1306 priv->hash_regs[7] = ®s->gaddr7;
1307 }
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315 struct net_device *dev = NULL;
1316 struct gfar_private *priv = NULL;
1317 int err = 0, i;
1318
1319 err = gfar_of_init(ofdev, &dev);
1320
1321 if (err)
1322 return err;
1323
1324 priv = netdev_priv(dev);
1325 priv->ndev = dev;
1326 priv->ofdev = ofdev;
1327 priv->dev = &ofdev->dev;
1328 SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330 INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332 platform_set_drvdata(ofdev, priv);
1333
1334 gfar_detect_errata(priv);
1335
1336 /* Set the dev->base_addr to the gfar reg region */
1337 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339 /* Fill in the dev structure */
1340 dev->watchdog_timeo = TX_TIMEOUT;
1341 dev->mtu = 1500;
1342 dev->netdev_ops = &gfar_netdev_ops;
1343 dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345 /* Register for napi ...We are registering NAPI for each grp */
1346 for (i = 0; i < priv->num_grps; i++) {
1347 if (priv->poll_mode == GFAR_SQ_POLLING) {
1348 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351 gfar_poll_tx_sq, 2);
1352 } else {
1353 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354 gfar_poll_rx, GFAR_DEV_WEIGHT);
1355 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356 gfar_poll_tx, 2);
1357 }
1358 }
1359
1360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362 NETIF_F_RXCSUM;
1363 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365 }
1366
1367 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369 NETIF_F_HW_VLAN_CTAG_RX;
1370 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371 }
1372
1373 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375 gfar_init_addr_hash_table(priv);
1376
1377 /* Insert receive time stamps into padding alignment bytes */
1378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379 priv->padding = 8;
1380
1381 if (dev->features & NETIF_F_IP_CSUM ||
1382 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383 dev->needed_headroom = GMAC_FCB_LEN;
1384
1385 /* Initializing some of the rx/tx queue level parameters */
1386 for (i = 0; i < priv->num_tx_queues; i++) {
1387 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391 }
1392
1393 for (i = 0; i < priv->num_rx_queues; i++) {
1394 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397 }
1398
1399 /* Always enable rx filer if available */
1400 priv->rx_filer_enable =
1401 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402 /* Enable most messages by default */
1403 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404 /* use pritority h/w tx queue scheduling for single queue devices */
1405 if (priv->num_tx_queues == 1)
1406 priv->prio_sched_en = 1;
1407
1408 set_bit(GFAR_DOWN, &priv->state);
1409
1410 gfar_hw_init(priv);
1411
1412 /* Carrier starts down, phylib will bring it up */
1413 netif_carrier_off(dev);
1414
1415 err = register_netdev(dev);
1416
1417 if (err) {
1418 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419 goto register_fail;
1420 }
1421
1422 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423 priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426 priv->rx_filer_enable)
1427 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431 /* fill out IRQ number and name fields */
1432 for (i = 0; i < priv->num_grps; i++) {
1433 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436 dev->name, "_g", '0' + i, "_tx");
1437 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438 dev->name, "_g", '0' + i, "_rx");
1439 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440 dev->name, "_g", '0' + i, "_er");
1441 } else
1442 strcpy(gfar_irq(grp, TX)->name, dev->name);
1443 }
1444
1445 /* Initialize the filer table */
1446 gfar_init_filer_table(priv);
1447
1448 /* Print out the device info */
1449 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451 /* Even more device info helps when determining which kernel
1452 * provided which set of benchmarks.
1453 */
1454 netdev_info(dev, "Running with NAPI enabled\n");
1455 for (i = 0; i < priv->num_rx_queues; i++)
1456 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457 i, priv->rx_queue[i]->rx_ring_size);
1458 for (i = 0; i < priv->num_tx_queues; i++)
1459 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460 i, priv->tx_queue[i]->tx_ring_size);
1461
1462 return 0;
1463
1464register_fail:
1465 unmap_group_regs(priv);
1466 gfar_free_rx_queues(priv);
1467 gfar_free_tx_queues(priv);
1468 of_node_put(priv->phy_node);
1469 of_node_put(priv->tbi_node);
1470 free_gfar_dev(priv);
1471 return err;
1472}
1473
1474static int gfar_remove(struct platform_device *ofdev)
1475{
1476 struct gfar_private *priv = platform_get_drvdata(ofdev);
1477
1478 of_node_put(priv->phy_node);
1479 of_node_put(priv->tbi_node);
1480
1481 unregister_netdev(priv->ndev);
1482 unmap_group_regs(priv);
1483 gfar_free_rx_queues(priv);
1484 gfar_free_tx_queues(priv);
1485 free_gfar_dev(priv);
1486
1487 return 0;
1488}
1489
1490#ifdef CONFIG_PM
1491
1492static void __gfar_filer_disable(struct gfar_private *priv)
1493{
1494 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495 u32 temp;
1496
1497 temp = gfar_read(®s->rctrl);
1498 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499 gfar_write(®s->rctrl, temp);
1500}
1501
1502static void __gfar_filer_enable(struct gfar_private *priv)
1503{
1504 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505 u32 temp;
1506
1507 temp = gfar_read(®s->rctrl);
1508 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509 gfar_write(®s->rctrl, temp);
1510}
1511
1512/* Filer rules implementing wol capabilities */
1513static void gfar_filer_config_wol(struct gfar_private *priv)
1514{
1515 unsigned int i;
1516 u32 rqfcr;
1517
1518 __gfar_filer_disable(priv);
1519
1520 /* clear the filer table, reject any packet by default */
1521 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522 for (i = 0; i <= MAX_FILER_IDX; i++)
1523 gfar_write_filer(priv, i, rqfcr, 0);
1524
1525 i = 0;
1526 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527 /* unicast packet, accept it */
1528 struct net_device *ndev = priv->ndev;
1529 /* get the default rx queue index */
1530 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532 (ndev->dev_addr[1] << 8) |
1533 ndev->dev_addr[2];
1534
1535 rqfcr = (qindex << 10) | RQFCR_AND |
1536 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541 (ndev->dev_addr[4] << 8) |
1542 ndev->dev_addr[5];
1543 rqfcr = (qindex << 10) | RQFCR_GPI |
1544 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546 }
1547
1548 __gfar_filer_enable(priv);
1549}
1550
1551static void gfar_filer_restore_table(struct gfar_private *priv)
1552{
1553 u32 rqfcr, rqfpr;
1554 unsigned int i;
1555
1556 __gfar_filer_disable(priv);
1557
1558 for (i = 0; i <= MAX_FILER_IDX; i++) {
1559 rqfcr = priv->ftp_rqfcr[i];
1560 rqfpr = priv->ftp_rqfpr[i];
1561 gfar_write_filer(priv, i, rqfcr, rqfpr);
1562 }
1563
1564 __gfar_filer_enable(priv);
1565}
1566
1567/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568static void gfar_start_wol_filer(struct gfar_private *priv)
1569{
1570 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571 u32 tempval;
1572 int i = 0;
1573
1574 /* Enable Rx hw queues */
1575 gfar_write(®s->rqueue, priv->rqueue);
1576
1577 /* Initialize DMACTRL to have WWR and WOP */
1578 tempval = gfar_read(®s->dmactrl);
1579 tempval |= DMACTRL_INIT_SETTINGS;
1580 gfar_write(®s->dmactrl, tempval);
1581
1582 /* Make sure we aren't stopped */
1583 tempval = gfar_read(®s->dmactrl);
1584 tempval &= ~DMACTRL_GRS;
1585 gfar_write(®s->dmactrl, tempval);
1586
1587 for (i = 0; i < priv->num_grps; i++) {
1588 regs = priv->gfargrp[i].regs;
1589 /* Clear RHLT, so that the DMA starts polling now */
1590 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1591 /* enable the Filer General Purpose Interrupt */
1592 gfar_write(®s->imask, IMASK_FGPI);
1593 }
1594
1595 /* Enable Rx DMA */
1596 tempval = gfar_read(®s->maccfg1);
1597 tempval |= MACCFG1_RX_EN;
1598 gfar_write(®s->maccfg1, tempval);
1599}
1600
1601static int gfar_suspend(struct device *dev)
1602{
1603 struct gfar_private *priv = dev_get_drvdata(dev);
1604 struct net_device *ndev = priv->ndev;
1605 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606 u32 tempval;
1607 u16 wol = priv->wol_opts;
1608
1609 if (!netif_running(ndev))
1610 return 0;
1611
1612 disable_napi(priv);
1613 netif_tx_lock(ndev);
1614 netif_device_detach(ndev);
1615 netif_tx_unlock(ndev);
1616
1617 gfar_halt(priv);
1618
1619 if (wol & GFAR_WOL_MAGIC) {
1620 /* Enable interrupt on Magic Packet */
1621 gfar_write(®s->imask, IMASK_MAG);
1622
1623 /* Enable Magic Packet mode */
1624 tempval = gfar_read(®s->maccfg2);
1625 tempval |= MACCFG2_MPEN;
1626 gfar_write(®s->maccfg2, tempval);
1627
1628 /* re-enable the Rx block */
1629 tempval = gfar_read(®s->maccfg1);
1630 tempval |= MACCFG1_RX_EN;
1631 gfar_write(®s->maccfg1, tempval);
1632
1633 } else if (wol & GFAR_WOL_FILER_UCAST) {
1634 gfar_filer_config_wol(priv);
1635 gfar_start_wol_filer(priv);
1636
1637 } else {
1638 phy_stop(priv->phydev);
1639 }
1640
1641 return 0;
1642}
1643
1644static int gfar_resume(struct device *dev)
1645{
1646 struct gfar_private *priv = dev_get_drvdata(dev);
1647 struct net_device *ndev = priv->ndev;
1648 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649 u32 tempval;
1650 u16 wol = priv->wol_opts;
1651
1652 if (!netif_running(ndev))
1653 return 0;
1654
1655 if (wol & GFAR_WOL_MAGIC) {
1656 /* Disable Magic Packet mode */
1657 tempval = gfar_read(®s->maccfg2);
1658 tempval &= ~MACCFG2_MPEN;
1659 gfar_write(®s->maccfg2, tempval);
1660
1661 } else if (wol & GFAR_WOL_FILER_UCAST) {
1662 /* need to stop rx only, tx is already down */
1663 gfar_halt(priv);
1664 gfar_filer_restore_table(priv);
1665
1666 } else {
1667 phy_start(priv->phydev);
1668 }
1669
1670 gfar_start(priv);
1671
1672 netif_device_attach(ndev);
1673 enable_napi(priv);
1674
1675 return 0;
1676}
1677
1678static int gfar_restore(struct device *dev)
1679{
1680 struct gfar_private *priv = dev_get_drvdata(dev);
1681 struct net_device *ndev = priv->ndev;
1682
1683 if (!netif_running(ndev)) {
1684 netif_device_attach(ndev);
1685
1686 return 0;
1687 }
1688
1689 gfar_init_bds(ndev);
1690
1691 gfar_mac_reset(priv);
1692
1693 gfar_init_tx_rx_base(priv);
1694
1695 gfar_start(priv);
1696
1697 priv->oldlink = 0;
1698 priv->oldspeed = 0;
1699 priv->oldduplex = -1;
1700
1701 if (priv->phydev)
1702 phy_start(priv->phydev);
1703
1704 netif_device_attach(ndev);
1705 enable_napi(priv);
1706
1707 return 0;
1708}
1709
1710static struct dev_pm_ops gfar_pm_ops = {
1711 .suspend = gfar_suspend,
1712 .resume = gfar_resume,
1713 .freeze = gfar_suspend,
1714 .thaw = gfar_resume,
1715 .restore = gfar_restore,
1716};
1717
1718#define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720#else
1721
1722#define GFAR_PM_OPS NULL
1723
1724#endif
1725
1726/* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729static phy_interface_t gfar_get_interface(struct net_device *dev)
1730{
1731 struct gfar_private *priv = netdev_priv(dev);
1732 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733 u32 ecntrl;
1734
1735 ecntrl = gfar_read(®s->ecntrl);
1736
1737 if (ecntrl & ECNTRL_SGMII_MODE)
1738 return PHY_INTERFACE_MODE_SGMII;
1739
1740 if (ecntrl & ECNTRL_TBI_MODE) {
1741 if (ecntrl & ECNTRL_REDUCED_MODE)
1742 return PHY_INTERFACE_MODE_RTBI;
1743 else
1744 return PHY_INTERFACE_MODE_TBI;
1745 }
1746
1747 if (ecntrl & ECNTRL_REDUCED_MODE) {
1748 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749 return PHY_INTERFACE_MODE_RMII;
1750 }
1751 else {
1752 phy_interface_t interface = priv->interface;
1753
1754 /* This isn't autodetected right now, so it must
1755 * be set by the device tree or platform code.
1756 */
1757 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758 return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760 return PHY_INTERFACE_MODE_RGMII;
1761 }
1762 }
1763
1764 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765 return PHY_INTERFACE_MODE_GMII;
1766
1767 return PHY_INTERFACE_MODE_MII;
1768}
1769
1770
1771/* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774static int init_phy(struct net_device *dev)
1775{
1776 struct gfar_private *priv = netdev_priv(dev);
1777 uint gigabit_support =
1778 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779 GFAR_SUPPORTED_GBIT : 0;
1780 phy_interface_t interface;
1781
1782 priv->oldlink = 0;
1783 priv->oldspeed = 0;
1784 priv->oldduplex = -1;
1785
1786 interface = gfar_get_interface(dev);
1787
1788 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1789 interface);
1790 if (!priv->phydev) {
1791 dev_err(&dev->dev, "could not attach to PHY\n");
1792 return -ENODEV;
1793 }
1794
1795 if (interface == PHY_INTERFACE_MODE_SGMII)
1796 gfar_configure_serdes(dev);
1797
1798 /* Remove any features not supported by the controller */
1799 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1800 priv->phydev->advertising = priv->phydev->supported;
1801
1802 /* Add support for flow control, but don't advertise it by default */
1803 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1804
1805 return 0;
1806}
1807
1808/* Initialize TBI PHY interface for communicating with the
1809 * SERDES lynx PHY on the chip. We communicate with this PHY
1810 * through the MDIO bus on each controller, treating it as a
1811 * "normal" PHY at the address found in the TBIPA register. We assume
1812 * that the TBIPA register is valid. Either the MDIO bus code will set
1813 * it to a value that doesn't conflict with other PHYs on the bus, or the
1814 * value doesn't matter, as there are no other PHYs on the bus.
1815 */
1816static void gfar_configure_serdes(struct net_device *dev)
1817{
1818 struct gfar_private *priv = netdev_priv(dev);
1819 struct phy_device *tbiphy;
1820
1821 if (!priv->tbi_node) {
1822 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1823 "device tree specify a tbi-handle\n");
1824 return;
1825 }
1826
1827 tbiphy = of_phy_find_device(priv->tbi_node);
1828 if (!tbiphy) {
1829 dev_err(&dev->dev, "error: Could not get TBI device\n");
1830 return;
1831 }
1832
1833 /* If the link is already up, we must already be ok, and don't need to
1834 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1835 * everything for us? Resetting it takes the link down and requires
1836 * several seconds for it to come back.
1837 */
1838 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1839 put_device(&tbiphy->mdio.dev);
1840 return;
1841 }
1842
1843 /* Single clk mode, mii mode off(for serdes communication) */
1844 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1845
1846 phy_write(tbiphy, MII_ADVERTISE,
1847 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1848 ADVERTISE_1000XPSE_ASYM);
1849
1850 phy_write(tbiphy, MII_BMCR,
1851 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1852 BMCR_SPEED1000);
1853
1854 put_device(&tbiphy->mdio.dev);
1855}
1856
1857static int __gfar_is_rx_idle(struct gfar_private *priv)
1858{
1859 u32 res;
1860
1861 /* Normaly TSEC should not hang on GRS commands, so we should
1862 * actually wait for IEVENT_GRSC flag.
1863 */
1864 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1865 return 0;
1866
1867 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1868 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1869 * and the Rx can be safely reset.
1870 */
1871 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1872 res &= 0x7f807f80;
1873 if ((res & 0xffff) == (res >> 16))
1874 return 1;
1875
1876 return 0;
1877}
1878
1879/* Halt the receive and transmit queues */
1880static void gfar_halt_nodisable(struct gfar_private *priv)
1881{
1882 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1883 u32 tempval;
1884 unsigned int timeout;
1885 int stopped;
1886
1887 gfar_ints_disable(priv);
1888
1889 if (gfar_is_dma_stopped(priv))
1890 return;
1891
1892 /* Stop the DMA, and wait for it to stop */
1893 tempval = gfar_read(®s->dmactrl);
1894 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1895 gfar_write(®s->dmactrl, tempval);
1896
1897retry:
1898 timeout = 1000;
1899 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1900 cpu_relax();
1901 timeout--;
1902 }
1903
1904 if (!timeout)
1905 stopped = gfar_is_dma_stopped(priv);
1906
1907 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1908 !__gfar_is_rx_idle(priv))
1909 goto retry;
1910}
1911
1912/* Halt the receive and transmit queues */
1913void gfar_halt(struct gfar_private *priv)
1914{
1915 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1916 u32 tempval;
1917
1918 /* Dissable the Rx/Tx hw queues */
1919 gfar_write(®s->rqueue, 0);
1920 gfar_write(®s->tqueue, 0);
1921
1922 mdelay(10);
1923
1924 gfar_halt_nodisable(priv);
1925
1926 /* Disable Rx/Tx DMA */
1927 tempval = gfar_read(®s->maccfg1);
1928 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1929 gfar_write(®s->maccfg1, tempval);
1930}
1931
1932void stop_gfar(struct net_device *dev)
1933{
1934 struct gfar_private *priv = netdev_priv(dev);
1935
1936 netif_tx_stop_all_queues(dev);
1937
1938 smp_mb__before_atomic();
1939 set_bit(GFAR_DOWN, &priv->state);
1940 smp_mb__after_atomic();
1941
1942 disable_napi(priv);
1943
1944 /* disable ints and gracefully shut down Rx/Tx DMA */
1945 gfar_halt(priv);
1946
1947 phy_stop(priv->phydev);
1948
1949 free_skb_resources(priv);
1950}
1951
1952static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1953{
1954 struct txbd8 *txbdp;
1955 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1956 int i, j;
1957
1958 txbdp = tx_queue->tx_bd_base;
1959
1960 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1961 if (!tx_queue->tx_skbuff[i])
1962 continue;
1963
1964 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1965 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1966 txbdp->lstatus = 0;
1967 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1968 j++) {
1969 txbdp++;
1970 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1971 be16_to_cpu(txbdp->length),
1972 DMA_TO_DEVICE);
1973 }
1974 txbdp++;
1975 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1976 tx_queue->tx_skbuff[i] = NULL;
1977 }
1978 kfree(tx_queue->tx_skbuff);
1979 tx_queue->tx_skbuff = NULL;
1980}
1981
1982static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1983{
1984 int i;
1985
1986 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1987
1988 if (rx_queue->skb)
1989 dev_kfree_skb(rx_queue->skb);
1990
1991 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1992 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1993
1994 rxbdp->lstatus = 0;
1995 rxbdp->bufPtr = 0;
1996 rxbdp++;
1997
1998 if (!rxb->page)
1999 continue;
2000
2001 dma_unmap_single(rx_queue->dev, rxb->dma,
2002 PAGE_SIZE, DMA_FROM_DEVICE);
2003 __free_page(rxb->page);
2004
2005 rxb->page = NULL;
2006 }
2007
2008 kfree(rx_queue->rx_buff);
2009 rx_queue->rx_buff = NULL;
2010}
2011
2012/* If there are any tx skbs or rx skbs still around, free them.
2013 * Then free tx_skbuff and rx_skbuff
2014 */
2015static void free_skb_resources(struct gfar_private *priv)
2016{
2017 struct gfar_priv_tx_q *tx_queue = NULL;
2018 struct gfar_priv_rx_q *rx_queue = NULL;
2019 int i;
2020
2021 /* Go through all the buffer descriptors and free their data buffers */
2022 for (i = 0; i < priv->num_tx_queues; i++) {
2023 struct netdev_queue *txq;
2024
2025 tx_queue = priv->tx_queue[i];
2026 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2027 if (tx_queue->tx_skbuff)
2028 free_skb_tx_queue(tx_queue);
2029 netdev_tx_reset_queue(txq);
2030 }
2031
2032 for (i = 0; i < priv->num_rx_queues; i++) {
2033 rx_queue = priv->rx_queue[i];
2034 if (rx_queue->rx_buff)
2035 free_skb_rx_queue(rx_queue);
2036 }
2037
2038 dma_free_coherent(priv->dev,
2039 sizeof(struct txbd8) * priv->total_tx_ring_size +
2040 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2041 priv->tx_queue[0]->tx_bd_base,
2042 priv->tx_queue[0]->tx_bd_dma_base);
2043}
2044
2045void gfar_start(struct gfar_private *priv)
2046{
2047 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2048 u32 tempval;
2049 int i = 0;
2050
2051 /* Enable Rx/Tx hw queues */
2052 gfar_write(®s->rqueue, priv->rqueue);
2053 gfar_write(®s->tqueue, priv->tqueue);
2054
2055 /* Initialize DMACTRL to have WWR and WOP */
2056 tempval = gfar_read(®s->dmactrl);
2057 tempval |= DMACTRL_INIT_SETTINGS;
2058 gfar_write(®s->dmactrl, tempval);
2059
2060 /* Make sure we aren't stopped */
2061 tempval = gfar_read(®s->dmactrl);
2062 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2063 gfar_write(®s->dmactrl, tempval);
2064
2065 for (i = 0; i < priv->num_grps; i++) {
2066 regs = priv->gfargrp[i].regs;
2067 /* Clear THLT/RHLT, so that the DMA starts polling now */
2068 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
2069 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
2070 }
2071
2072 /* Enable Rx/Tx DMA */
2073 tempval = gfar_read(®s->maccfg1);
2074 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2075 gfar_write(®s->maccfg1, tempval);
2076
2077 gfar_ints_enable(priv);
2078
2079 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2080}
2081
2082static void free_grp_irqs(struct gfar_priv_grp *grp)
2083{
2084 free_irq(gfar_irq(grp, TX)->irq, grp);
2085 free_irq(gfar_irq(grp, RX)->irq, grp);
2086 free_irq(gfar_irq(grp, ER)->irq, grp);
2087}
2088
2089static int register_grp_irqs(struct gfar_priv_grp *grp)
2090{
2091 struct gfar_private *priv = grp->priv;
2092 struct net_device *dev = priv->ndev;
2093 int err;
2094
2095 /* If the device has multiple interrupts, register for
2096 * them. Otherwise, only register for the one
2097 */
2098 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2099 /* Install our interrupt handlers for Error,
2100 * Transmit, and Receive
2101 */
2102 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2103 gfar_irq(grp, ER)->name, grp);
2104 if (err < 0) {
2105 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2106 gfar_irq(grp, ER)->irq);
2107
2108 goto err_irq_fail;
2109 }
2110 enable_irq_wake(gfar_irq(grp, ER)->irq);
2111
2112 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2113 gfar_irq(grp, TX)->name, grp);
2114 if (err < 0) {
2115 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2116 gfar_irq(grp, TX)->irq);
2117 goto tx_irq_fail;
2118 }
2119 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2120 gfar_irq(grp, RX)->name, grp);
2121 if (err < 0) {
2122 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2123 gfar_irq(grp, RX)->irq);
2124 goto rx_irq_fail;
2125 }
2126 enable_irq_wake(gfar_irq(grp, RX)->irq);
2127
2128 } else {
2129 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2130 gfar_irq(grp, TX)->name, grp);
2131 if (err < 0) {
2132 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2133 gfar_irq(grp, TX)->irq);
2134 goto err_irq_fail;
2135 }
2136 enable_irq_wake(gfar_irq(grp, TX)->irq);
2137 }
2138
2139 return 0;
2140
2141rx_irq_fail:
2142 free_irq(gfar_irq(grp, TX)->irq, grp);
2143tx_irq_fail:
2144 free_irq(gfar_irq(grp, ER)->irq, grp);
2145err_irq_fail:
2146 return err;
2147
2148}
2149
2150static void gfar_free_irq(struct gfar_private *priv)
2151{
2152 int i;
2153
2154 /* Free the IRQs */
2155 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2156 for (i = 0; i < priv->num_grps; i++)
2157 free_grp_irqs(&priv->gfargrp[i]);
2158 } else {
2159 for (i = 0; i < priv->num_grps; i++)
2160 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2161 &priv->gfargrp[i]);
2162 }
2163}
2164
2165static int gfar_request_irq(struct gfar_private *priv)
2166{
2167 int err, i, j;
2168
2169 for (i = 0; i < priv->num_grps; i++) {
2170 err = register_grp_irqs(&priv->gfargrp[i]);
2171 if (err) {
2172 for (j = 0; j < i; j++)
2173 free_grp_irqs(&priv->gfargrp[j]);
2174 return err;
2175 }
2176 }
2177
2178 return 0;
2179}
2180
2181/* Bring the controller up and running */
2182int startup_gfar(struct net_device *ndev)
2183{
2184 struct gfar_private *priv = netdev_priv(ndev);
2185 int err;
2186
2187 gfar_mac_reset(priv);
2188
2189 err = gfar_alloc_skb_resources(ndev);
2190 if (err)
2191 return err;
2192
2193 gfar_init_tx_rx_base(priv);
2194
2195 smp_mb__before_atomic();
2196 clear_bit(GFAR_DOWN, &priv->state);
2197 smp_mb__after_atomic();
2198
2199 /* Start Rx/Tx DMA and enable the interrupts */
2200 gfar_start(priv);
2201
2202 /* force link state update after mac reset */
2203 priv->oldlink = 0;
2204 priv->oldspeed = 0;
2205 priv->oldduplex = -1;
2206
2207 phy_start(priv->phydev);
2208
2209 enable_napi(priv);
2210
2211 netif_tx_wake_all_queues(ndev);
2212
2213 return 0;
2214}
2215
2216/* Called when something needs to use the ethernet device
2217 * Returns 0 for success.
2218 */
2219static int gfar_enet_open(struct net_device *dev)
2220{
2221 struct gfar_private *priv = netdev_priv(dev);
2222 int err;
2223
2224 err = init_phy(dev);
2225 if (err)
2226 return err;
2227
2228 err = gfar_request_irq(priv);
2229 if (err)
2230 return err;
2231
2232 err = startup_gfar(dev);
2233 if (err)
2234 return err;
2235
2236 return err;
2237}
2238
2239static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2240{
2241 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2242
2243 memset(fcb, 0, GMAC_FCB_LEN);
2244
2245 return fcb;
2246}
2247
2248static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2249 int fcb_length)
2250{
2251 /* If we're here, it's a IP packet with a TCP or UDP
2252 * payload. We set it to checksum, using a pseudo-header
2253 * we provide
2254 */
2255 u8 flags = TXFCB_DEFAULT;
2256
2257 /* Tell the controller what the protocol is
2258 * And provide the already calculated phcs
2259 */
2260 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2261 flags |= TXFCB_UDP;
2262 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2263 } else
2264 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2265
2266 /* l3os is the distance between the start of the
2267 * frame (skb->data) and the start of the IP hdr.
2268 * l4os is the distance between the start of the
2269 * l3 hdr and the l4 hdr
2270 */
2271 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2272 fcb->l4os = skb_network_header_len(skb);
2273
2274 fcb->flags = flags;
2275}
2276
2277void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2278{
2279 fcb->flags |= TXFCB_VLN;
2280 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2281}
2282
2283static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2284 struct txbd8 *base, int ring_size)
2285{
2286 struct txbd8 *new_bd = bdp + stride;
2287
2288 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2289}
2290
2291static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2292 int ring_size)
2293{
2294 return skip_txbd(bdp, 1, base, ring_size);
2295}
2296
2297/* eTSEC12: csum generation not supported for some fcb offsets */
2298static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2299 unsigned long fcb_addr)
2300{
2301 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2302 (fcb_addr % 0x20) > 0x18);
2303}
2304
2305/* eTSEC76: csum generation for frames larger than 2500 may
2306 * cause excess delays before start of transmission
2307 */
2308static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2309 unsigned int len)
2310{
2311 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2312 (len > 2500));
2313}
2314
2315/* This is called by the kernel when a frame is ready for transmission.
2316 * It is pointed to by the dev->hard_start_xmit function pointer
2317 */
2318static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2319{
2320 struct gfar_private *priv = netdev_priv(dev);
2321 struct gfar_priv_tx_q *tx_queue = NULL;
2322 struct netdev_queue *txq;
2323 struct gfar __iomem *regs = NULL;
2324 struct txfcb *fcb = NULL;
2325 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2326 u32 lstatus;
2327 skb_frag_t *frag;
2328 int i, rq = 0;
2329 int do_tstamp, do_csum, do_vlan;
2330 u32 bufaddr;
2331 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2332
2333 rq = skb->queue_mapping;
2334 tx_queue = priv->tx_queue[rq];
2335 txq = netdev_get_tx_queue(dev, rq);
2336 base = tx_queue->tx_bd_base;
2337 regs = tx_queue->grp->regs;
2338
2339 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340 do_vlan = skb_vlan_tag_present(skb);
2341 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342 priv->hwts_tx_en;
2343
2344 if (do_csum || do_vlan)
2345 fcb_len = GMAC_FCB_LEN;
2346
2347 /* check if time stamp should be generated */
2348 if (unlikely(do_tstamp))
2349 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2350
2351 /* make space for additional header when fcb is needed */
2352 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353 struct sk_buff *skb_new;
2354
2355 skb_new = skb_realloc_headroom(skb, fcb_len);
2356 if (!skb_new) {
2357 dev->stats.tx_errors++;
2358 dev_kfree_skb_any(skb);
2359 return NETDEV_TX_OK;
2360 }
2361
2362 if (skb->sk)
2363 skb_set_owner_w(skb_new, skb->sk);
2364 dev_consume_skb_any(skb);
2365 skb = skb_new;
2366 }
2367
2368 /* total number of fragments in the SKB */
2369 nr_frags = skb_shinfo(skb)->nr_frags;
2370
2371 /* calculate the required number of TxBDs for this skb */
2372 if (unlikely(do_tstamp))
2373 nr_txbds = nr_frags + 2;
2374 else
2375 nr_txbds = nr_frags + 1;
2376
2377 /* check if there is space to queue this packet */
2378 if (nr_txbds > tx_queue->num_txbdfree) {
2379 /* no space, stop the queue */
2380 netif_tx_stop_queue(txq);
2381 dev->stats.tx_fifo_errors++;
2382 return NETDEV_TX_BUSY;
2383 }
2384
2385 /* Update transmit stats */
2386 bytes_sent = skb->len;
2387 tx_queue->stats.tx_bytes += bytes_sent;
2388 /* keep Tx bytes on wire for BQL accounting */
2389 GFAR_CB(skb)->bytes_sent = bytes_sent;
2390 tx_queue->stats.tx_packets++;
2391
2392 txbdp = txbdp_start = tx_queue->cur_tx;
2393 lstatus = be32_to_cpu(txbdp->lstatus);
2394
2395 /* Add TxPAL between FCB and frame if required */
2396 if (unlikely(do_tstamp)) {
2397 skb_push(skb, GMAC_TXPAL_LEN);
2398 memset(skb->data, 0, GMAC_TXPAL_LEN);
2399 }
2400
2401 /* Add TxFCB if required */
2402 if (fcb_len) {
2403 fcb = gfar_add_fcb(skb);
2404 lstatus |= BD_LFLAG(TXBD_TOE);
2405 }
2406
2407 /* Set up checksumming */
2408 if (do_csum) {
2409 gfar_tx_checksum(skb, fcb, fcb_len);
2410
2411 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2412 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2413 __skb_pull(skb, GMAC_FCB_LEN);
2414 skb_checksum_help(skb);
2415 if (do_vlan || do_tstamp) {
2416 /* put back a new fcb for vlan/tstamp TOE */
2417 fcb = gfar_add_fcb(skb);
2418 } else {
2419 /* Tx TOE not used */
2420 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2421 fcb = NULL;
2422 }
2423 }
2424 }
2425
2426 if (do_vlan)
2427 gfar_tx_vlan(skb, fcb);
2428
2429 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2430 DMA_TO_DEVICE);
2431 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2432 goto dma_map_err;
2433
2434 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2435
2436 /* Time stamp insertion requires one additional TxBD */
2437 if (unlikely(do_tstamp))
2438 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2439 tx_queue->tx_ring_size);
2440
2441 if (likely(!nr_frags)) {
2442 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2443 } else {
2444 u32 lstatus_start = lstatus;
2445
2446 /* Place the fragment addresses and lengths into the TxBDs */
2447 frag = &skb_shinfo(skb)->frags[0];
2448 for (i = 0; i < nr_frags; i++, frag++) {
2449 unsigned int size;
2450
2451 /* Point at the next BD, wrapping as needed */
2452 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2453
2454 size = skb_frag_size(frag);
2455
2456 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2457 BD_LFLAG(TXBD_READY);
2458
2459 /* Handle the last BD specially */
2460 if (i == nr_frags - 1)
2461 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2462
2463 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2464 size, DMA_TO_DEVICE);
2465 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2466 goto dma_map_err;
2467
2468 /* set the TxBD length and buffer pointer */
2469 txbdp->bufPtr = cpu_to_be32(bufaddr);
2470 txbdp->lstatus = cpu_to_be32(lstatus);
2471 }
2472
2473 lstatus = lstatus_start;
2474 }
2475
2476 /* If time stamping is requested one additional TxBD must be set up. The
2477 * first TxBD points to the FCB and must have a data length of
2478 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2479 * the full frame length.
2480 */
2481 if (unlikely(do_tstamp)) {
2482 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2483
2484 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2485 bufaddr += fcb_len;
2486
2487 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2488 (skb_headlen(skb) - fcb_len);
2489 if (!nr_frags)
2490 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2491
2492 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2493 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2494 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2495
2496 /* Setup tx hardware time stamping */
2497 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2498 fcb->ptp = 1;
2499 } else {
2500 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2501 }
2502
2503 netdev_tx_sent_queue(txq, bytes_sent);
2504
2505 gfar_wmb();
2506
2507 txbdp_start->lstatus = cpu_to_be32(lstatus);
2508
2509 gfar_wmb(); /* force lstatus write before tx_skbuff */
2510
2511 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2512
2513 /* Update the current skb pointer to the next entry we will use
2514 * (wrapping if necessary)
2515 */
2516 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2517 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2518
2519 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2520
2521 /* We can work in parallel with gfar_clean_tx_ring(), except
2522 * when modifying num_txbdfree. Note that we didn't grab the lock
2523 * when we were reading the num_txbdfree and checking for available
2524 * space, that's because outside of this function it can only grow.
2525 */
2526 spin_lock_bh(&tx_queue->txlock);
2527 /* reduce TxBD free count */
2528 tx_queue->num_txbdfree -= (nr_txbds);
2529 spin_unlock_bh(&tx_queue->txlock);
2530
2531 /* If the next BD still needs to be cleaned up, then the bds
2532 * are full. We need to tell the kernel to stop sending us stuff.
2533 */
2534 if (!tx_queue->num_txbdfree) {
2535 netif_tx_stop_queue(txq);
2536
2537 dev->stats.tx_fifo_errors++;
2538 }
2539
2540 /* Tell the DMA to go go go */
2541 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2542
2543 return NETDEV_TX_OK;
2544
2545dma_map_err:
2546 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2547 if (do_tstamp)
2548 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2549 for (i = 0; i < nr_frags; i++) {
2550 lstatus = be32_to_cpu(txbdp->lstatus);
2551 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2552 break;
2553
2554 lstatus &= ~BD_LFLAG(TXBD_READY);
2555 txbdp->lstatus = cpu_to_be32(lstatus);
2556 bufaddr = be32_to_cpu(txbdp->bufPtr);
2557 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2558 DMA_TO_DEVICE);
2559 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2560 }
2561 gfar_wmb();
2562 dev_kfree_skb_any(skb);
2563 return NETDEV_TX_OK;
2564}
2565
2566/* Stops the kernel queue, and halts the controller */
2567static int gfar_close(struct net_device *dev)
2568{
2569 struct gfar_private *priv = netdev_priv(dev);
2570
2571 cancel_work_sync(&priv->reset_task);
2572 stop_gfar(dev);
2573
2574 /* Disconnect from the PHY */
2575 phy_disconnect(priv->phydev);
2576 priv->phydev = NULL;
2577
2578 gfar_free_irq(priv);
2579
2580 return 0;
2581}
2582
2583/* Changes the mac address if the controller is not running. */
2584static int gfar_set_mac_address(struct net_device *dev)
2585{
2586 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2587
2588 return 0;
2589}
2590
2591static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2592{
2593 struct gfar_private *priv = netdev_priv(dev);
2594 int frame_size = new_mtu + ETH_HLEN;
2595
2596 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2597 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2598 return -EINVAL;
2599 }
2600
2601 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2602 cpu_relax();
2603
2604 if (dev->flags & IFF_UP)
2605 stop_gfar(dev);
2606
2607 dev->mtu = new_mtu;
2608
2609 if (dev->flags & IFF_UP)
2610 startup_gfar(dev);
2611
2612 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2613
2614 return 0;
2615}
2616
2617void reset_gfar(struct net_device *ndev)
2618{
2619 struct gfar_private *priv = netdev_priv(ndev);
2620
2621 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2622 cpu_relax();
2623
2624 stop_gfar(ndev);
2625 startup_gfar(ndev);
2626
2627 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628}
2629
2630/* gfar_reset_task gets scheduled when a packet has not been
2631 * transmitted after a set amount of time.
2632 * For now, assume that clearing out all the structures, and
2633 * starting over will fix the problem.
2634 */
2635static void gfar_reset_task(struct work_struct *work)
2636{
2637 struct gfar_private *priv = container_of(work, struct gfar_private,
2638 reset_task);
2639 reset_gfar(priv->ndev);
2640}
2641
2642static void gfar_timeout(struct net_device *dev)
2643{
2644 struct gfar_private *priv = netdev_priv(dev);
2645
2646 dev->stats.tx_errors++;
2647 schedule_work(&priv->reset_task);
2648}
2649
2650/* Interrupt Handler for Transmit complete */
2651static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2652{
2653 struct net_device *dev = tx_queue->dev;
2654 struct netdev_queue *txq;
2655 struct gfar_private *priv = netdev_priv(dev);
2656 struct txbd8 *bdp, *next = NULL;
2657 struct txbd8 *lbdp = NULL;
2658 struct txbd8 *base = tx_queue->tx_bd_base;
2659 struct sk_buff *skb;
2660 int skb_dirtytx;
2661 int tx_ring_size = tx_queue->tx_ring_size;
2662 int frags = 0, nr_txbds = 0;
2663 int i;
2664 int howmany = 0;
2665 int tqi = tx_queue->qindex;
2666 unsigned int bytes_sent = 0;
2667 u32 lstatus;
2668 size_t buflen;
2669
2670 txq = netdev_get_tx_queue(dev, tqi);
2671 bdp = tx_queue->dirty_tx;
2672 skb_dirtytx = tx_queue->skb_dirtytx;
2673
2674 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2675
2676 frags = skb_shinfo(skb)->nr_frags;
2677
2678 /* When time stamping, one additional TxBD must be freed.
2679 * Also, we need to dma_unmap_single() the TxPAL.
2680 */
2681 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2682 nr_txbds = frags + 2;
2683 else
2684 nr_txbds = frags + 1;
2685
2686 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2687
2688 lstatus = be32_to_cpu(lbdp->lstatus);
2689
2690 /* Only clean completed frames */
2691 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2692 (lstatus & BD_LENGTH_MASK))
2693 break;
2694
2695 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2696 next = next_txbd(bdp, base, tx_ring_size);
2697 buflen = be16_to_cpu(next->length) +
2698 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2699 } else
2700 buflen = be16_to_cpu(bdp->length);
2701
2702 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2703 buflen, DMA_TO_DEVICE);
2704
2705 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2706 struct skb_shared_hwtstamps shhwtstamps;
2707 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2708 ~0x7UL);
2709
2710 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2712 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2713 skb_tstamp_tx(skb, &shhwtstamps);
2714 gfar_clear_txbd_status(bdp);
2715 bdp = next;
2716 }
2717
2718 gfar_clear_txbd_status(bdp);
2719 bdp = next_txbd(bdp, base, tx_ring_size);
2720
2721 for (i = 0; i < frags; i++) {
2722 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2723 be16_to_cpu(bdp->length),
2724 DMA_TO_DEVICE);
2725 gfar_clear_txbd_status(bdp);
2726 bdp = next_txbd(bdp, base, tx_ring_size);
2727 }
2728
2729 bytes_sent += GFAR_CB(skb)->bytes_sent;
2730
2731 dev_kfree_skb_any(skb);
2732
2733 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2734
2735 skb_dirtytx = (skb_dirtytx + 1) &
2736 TX_RING_MOD_MASK(tx_ring_size);
2737
2738 howmany++;
2739 spin_lock(&tx_queue->txlock);
2740 tx_queue->num_txbdfree += nr_txbds;
2741 spin_unlock(&tx_queue->txlock);
2742 }
2743
2744 /* If we freed a buffer, we can restart transmission, if necessary */
2745 if (tx_queue->num_txbdfree &&
2746 netif_tx_queue_stopped(txq) &&
2747 !(test_bit(GFAR_DOWN, &priv->state)))
2748 netif_wake_subqueue(priv->ndev, tqi);
2749
2750 /* Update dirty indicators */
2751 tx_queue->skb_dirtytx = skb_dirtytx;
2752 tx_queue->dirty_tx = bdp;
2753
2754 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2755}
2756
2757static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2758{
2759 struct page *page;
2760 dma_addr_t addr;
2761
2762 page = dev_alloc_page();
2763 if (unlikely(!page))
2764 return false;
2765
2766 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2767 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2768 __free_page(page);
2769
2770 return false;
2771 }
2772
2773 rxb->dma = addr;
2774 rxb->page = page;
2775 rxb->page_offset = 0;
2776
2777 return true;
2778}
2779
2780static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2781{
2782 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2783 struct gfar_extra_stats *estats = &priv->extra_stats;
2784
2785 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2786 atomic64_inc(&estats->rx_alloc_err);
2787}
2788
2789static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2790 int alloc_cnt)
2791{
2792 struct rxbd8 *bdp;
2793 struct gfar_rx_buff *rxb;
2794 int i;
2795
2796 i = rx_queue->next_to_use;
2797 bdp = &rx_queue->rx_bd_base[i];
2798 rxb = &rx_queue->rx_buff[i];
2799
2800 while (alloc_cnt--) {
2801 /* try reuse page */
2802 if (unlikely(!rxb->page)) {
2803 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2804 gfar_rx_alloc_err(rx_queue);
2805 break;
2806 }
2807 }
2808
2809 /* Setup the new RxBD */
2810 gfar_init_rxbdp(rx_queue, bdp,
2811 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2812
2813 /* Update to the next pointer */
2814 bdp++;
2815 rxb++;
2816
2817 if (unlikely(++i == rx_queue->rx_ring_size)) {
2818 i = 0;
2819 bdp = rx_queue->rx_bd_base;
2820 rxb = rx_queue->rx_buff;
2821 }
2822 }
2823
2824 rx_queue->next_to_use = i;
2825 rx_queue->next_to_alloc = i;
2826}
2827
2828static void count_errors(u32 lstatus, struct net_device *ndev)
2829{
2830 struct gfar_private *priv = netdev_priv(ndev);
2831 struct net_device_stats *stats = &ndev->stats;
2832 struct gfar_extra_stats *estats = &priv->extra_stats;
2833
2834 /* If the packet was truncated, none of the other errors matter */
2835 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2836 stats->rx_length_errors++;
2837
2838 atomic64_inc(&estats->rx_trunc);
2839
2840 return;
2841 }
2842 /* Count the errors, if there were any */
2843 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2844 stats->rx_length_errors++;
2845
2846 if (lstatus & BD_LFLAG(RXBD_LARGE))
2847 atomic64_inc(&estats->rx_large);
2848 else
2849 atomic64_inc(&estats->rx_short);
2850 }
2851 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2852 stats->rx_frame_errors++;
2853 atomic64_inc(&estats->rx_nonoctet);
2854 }
2855 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2856 atomic64_inc(&estats->rx_crcerr);
2857 stats->rx_crc_errors++;
2858 }
2859 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2860 atomic64_inc(&estats->rx_overrun);
2861 stats->rx_over_errors++;
2862 }
2863}
2864
2865irqreturn_t gfar_receive(int irq, void *grp_id)
2866{
2867 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2868 unsigned long flags;
2869 u32 imask, ievent;
2870
2871 ievent = gfar_read(&grp->regs->ievent);
2872
2873 if (unlikely(ievent & IEVENT_FGPI)) {
2874 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2875 return IRQ_HANDLED;
2876 }
2877
2878 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2879 spin_lock_irqsave(&grp->grplock, flags);
2880 imask = gfar_read(&grp->regs->imask);
2881 imask &= IMASK_RX_DISABLED;
2882 gfar_write(&grp->regs->imask, imask);
2883 spin_unlock_irqrestore(&grp->grplock, flags);
2884 __napi_schedule(&grp->napi_rx);
2885 } else {
2886 /* Clear IEVENT, so interrupts aren't called again
2887 * because of the packets that have already arrived.
2888 */
2889 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2890 }
2891
2892 return IRQ_HANDLED;
2893}
2894
2895/* Interrupt Handler for Transmit complete */
2896static irqreturn_t gfar_transmit(int irq, void *grp_id)
2897{
2898 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2899 unsigned long flags;
2900 u32 imask;
2901
2902 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2903 spin_lock_irqsave(&grp->grplock, flags);
2904 imask = gfar_read(&grp->regs->imask);
2905 imask &= IMASK_TX_DISABLED;
2906 gfar_write(&grp->regs->imask, imask);
2907 spin_unlock_irqrestore(&grp->grplock, flags);
2908 __napi_schedule(&grp->napi_tx);
2909 } else {
2910 /* Clear IEVENT, so interrupts aren't called again
2911 * because of the packets that have already arrived.
2912 */
2913 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2914 }
2915
2916 return IRQ_HANDLED;
2917}
2918
2919static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2920 struct sk_buff *skb, bool first)
2921{
2922 unsigned int size = lstatus & BD_LENGTH_MASK;
2923 struct page *page = rxb->page;
2924
2925 /* Remove the FCS from the packet length */
2926 if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2927 size -= ETH_FCS_LEN;
2928
2929 if (likely(first))
2930 skb_put(skb, size);
2931 else
2932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2933 rxb->page_offset + RXBUF_ALIGNMENT,
2934 size, GFAR_RXB_TRUESIZE);
2935
2936 /* try reuse page */
2937 if (unlikely(page_count(page) != 1))
2938 return false;
2939
2940 /* change offset to the other half */
2941 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2942
2943 page_ref_inc(page);
2944
2945 return true;
2946}
2947
2948static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2949 struct gfar_rx_buff *old_rxb)
2950{
2951 struct gfar_rx_buff *new_rxb;
2952 u16 nta = rxq->next_to_alloc;
2953
2954 new_rxb = &rxq->rx_buff[nta];
2955
2956 /* find next buf that can reuse a page */
2957 nta++;
2958 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2959
2960 /* copy page reference */
2961 *new_rxb = *old_rxb;
2962
2963 /* sync for use by the device */
2964 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2965 old_rxb->page_offset,
2966 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2967}
2968
2969static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2970 u32 lstatus, struct sk_buff *skb)
2971{
2972 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2973 struct page *page = rxb->page;
2974 bool first = false;
2975
2976 if (likely(!skb)) {
2977 void *buff_addr = page_address(page) + rxb->page_offset;
2978
2979 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2980 if (unlikely(!skb)) {
2981 gfar_rx_alloc_err(rx_queue);
2982 return NULL;
2983 }
2984 skb_reserve(skb, RXBUF_ALIGNMENT);
2985 first = true;
2986 }
2987
2988 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2989 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2990
2991 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2992 /* reuse the free half of the page */
2993 gfar_reuse_rx_page(rx_queue, rxb);
2994 } else {
2995 /* page cannot be reused, unmap it */
2996 dma_unmap_page(rx_queue->dev, rxb->dma,
2997 PAGE_SIZE, DMA_FROM_DEVICE);
2998 }
2999
3000 /* clear rxb content */
3001 rxb->page = NULL;
3002
3003 return skb;
3004}
3005
3006static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3007{
3008 /* If valid headers were found, and valid sums
3009 * were verified, then we tell the kernel that no
3010 * checksumming is necessary. Otherwise, it is [FIXME]
3011 */
3012 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3013 (RXFCB_CIP | RXFCB_CTU))
3014 skb->ip_summed = CHECKSUM_UNNECESSARY;
3015 else
3016 skb_checksum_none_assert(skb);
3017}
3018
3019/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3020static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3021{
3022 struct gfar_private *priv = netdev_priv(ndev);
3023 struct rxfcb *fcb = NULL;
3024
3025 /* fcb is at the beginning if exists */
3026 fcb = (struct rxfcb *)skb->data;
3027
3028 /* Remove the FCB from the skb
3029 * Remove the padded bytes, if there are any
3030 */
3031 if (priv->uses_rxfcb)
3032 skb_pull(skb, GMAC_FCB_LEN);
3033
3034 /* Get receive timestamp from the skb */
3035 if (priv->hwts_rx_en) {
3036 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3037 u64 *ns = (u64 *) skb->data;
3038
3039 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3040 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3041 }
3042
3043 if (priv->padding)
3044 skb_pull(skb, priv->padding);
3045
3046 if (ndev->features & NETIF_F_RXCSUM)
3047 gfar_rx_checksum(skb, fcb);
3048
3049 /* Tell the skb what kind of packet this is */
3050 skb->protocol = eth_type_trans(skb, ndev);
3051
3052 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3053 * Even if vlan rx accel is disabled, on some chips
3054 * RXFCB_VLN is pseudo randomly set.
3055 */
3056 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3057 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3058 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3059 be16_to_cpu(fcb->vlctl));
3060}
3061
3062/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3063 * until the budget/quota has been reached. Returns the number
3064 * of frames handled
3065 */
3066int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3067{
3068 struct net_device *ndev = rx_queue->ndev;
3069 struct gfar_private *priv = netdev_priv(ndev);
3070 struct rxbd8 *bdp;
3071 int i, howmany = 0;
3072 struct sk_buff *skb = rx_queue->skb;
3073 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3074 unsigned int total_bytes = 0, total_pkts = 0;
3075
3076 /* Get the first full descriptor */
3077 i = rx_queue->next_to_clean;
3078
3079 while (rx_work_limit--) {
3080 u32 lstatus;
3081
3082 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3083 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3084 cleaned_cnt = 0;
3085 }
3086
3087 bdp = &rx_queue->rx_bd_base[i];
3088 lstatus = be32_to_cpu(bdp->lstatus);
3089 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3090 break;
3091
3092 /* order rx buffer descriptor reads */
3093 rmb();
3094
3095 /* fetch next to clean buffer from the ring */
3096 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3097 if (unlikely(!skb))
3098 break;
3099
3100 cleaned_cnt++;
3101 howmany++;
3102
3103 if (unlikely(++i == rx_queue->rx_ring_size))
3104 i = 0;
3105
3106 rx_queue->next_to_clean = i;
3107
3108 /* fetch next buffer if not the last in frame */
3109 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3110 continue;
3111
3112 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3113 count_errors(lstatus, ndev);
3114
3115 /* discard faulty buffer */
3116 dev_kfree_skb(skb);
3117 skb = NULL;
3118 rx_queue->stats.rx_dropped++;
3119 continue;
3120 }
3121
3122 /* Increment the number of packets */
3123 total_pkts++;
3124 total_bytes += skb->len;
3125
3126 skb_record_rx_queue(skb, rx_queue->qindex);
3127
3128 gfar_process_frame(ndev, skb);
3129
3130 /* Send the packet up the stack */
3131 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3132
3133 skb = NULL;
3134 }
3135
3136 /* Store incomplete frames for completion */
3137 rx_queue->skb = skb;
3138
3139 rx_queue->stats.rx_packets += total_pkts;
3140 rx_queue->stats.rx_bytes += total_bytes;
3141
3142 if (cleaned_cnt)
3143 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3144
3145 /* Update Last Free RxBD pointer for LFC */
3146 if (unlikely(priv->tx_actual_en)) {
3147 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3148
3149 gfar_write(rx_queue->rfbptr, bdp_dma);
3150 }
3151
3152 return howmany;
3153}
3154
3155static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3156{
3157 struct gfar_priv_grp *gfargrp =
3158 container_of(napi, struct gfar_priv_grp, napi_rx);
3159 struct gfar __iomem *regs = gfargrp->regs;
3160 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3161 int work_done = 0;
3162
3163 /* Clear IEVENT, so interrupts aren't called again
3164 * because of the packets that have already arrived
3165 */
3166 gfar_write(®s->ievent, IEVENT_RX_MASK);
3167
3168 work_done = gfar_clean_rx_ring(rx_queue, budget);
3169
3170 if (work_done < budget) {
3171 u32 imask;
3172 napi_complete(napi);
3173 /* Clear the halt bit in RSTAT */
3174 gfar_write(®s->rstat, gfargrp->rstat);
3175
3176 spin_lock_irq(&gfargrp->grplock);
3177 imask = gfar_read(®s->imask);
3178 imask |= IMASK_RX_DEFAULT;
3179 gfar_write(®s->imask, imask);
3180 spin_unlock_irq(&gfargrp->grplock);
3181 }
3182
3183 return work_done;
3184}
3185
3186static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3187{
3188 struct gfar_priv_grp *gfargrp =
3189 container_of(napi, struct gfar_priv_grp, napi_tx);
3190 struct gfar __iomem *regs = gfargrp->regs;
3191 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3192 u32 imask;
3193
3194 /* Clear IEVENT, so interrupts aren't called again
3195 * because of the packets that have already arrived
3196 */
3197 gfar_write(®s->ievent, IEVENT_TX_MASK);
3198
3199 /* run Tx cleanup to completion */
3200 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3201 gfar_clean_tx_ring(tx_queue);
3202
3203 napi_complete(napi);
3204
3205 spin_lock_irq(&gfargrp->grplock);
3206 imask = gfar_read(®s->imask);
3207 imask |= IMASK_TX_DEFAULT;
3208 gfar_write(®s->imask, imask);
3209 spin_unlock_irq(&gfargrp->grplock);
3210
3211 return 0;
3212}
3213
3214static int gfar_poll_rx(struct napi_struct *napi, int budget)
3215{
3216 struct gfar_priv_grp *gfargrp =
3217 container_of(napi, struct gfar_priv_grp, napi_rx);
3218 struct gfar_private *priv = gfargrp->priv;
3219 struct gfar __iomem *regs = gfargrp->regs;
3220 struct gfar_priv_rx_q *rx_queue = NULL;
3221 int work_done = 0, work_done_per_q = 0;
3222 int i, budget_per_q = 0;
3223 unsigned long rstat_rxf;
3224 int num_act_queues;
3225
3226 /* Clear IEVENT, so interrupts aren't called again
3227 * because of the packets that have already arrived
3228 */
3229 gfar_write(®s->ievent, IEVENT_RX_MASK);
3230
3231 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK;
3232
3233 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3234 if (num_act_queues)
3235 budget_per_q = budget/num_act_queues;
3236
3237 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3238 /* skip queue if not active */
3239 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3240 continue;
3241
3242 rx_queue = priv->rx_queue[i];
3243 work_done_per_q =
3244 gfar_clean_rx_ring(rx_queue, budget_per_q);
3245 work_done += work_done_per_q;
3246
3247 /* finished processing this queue */
3248 if (work_done_per_q < budget_per_q) {
3249 /* clear active queue hw indication */
3250 gfar_write(®s->rstat,
3251 RSTAT_CLEAR_RXF0 >> i);
3252 num_act_queues--;
3253
3254 if (!num_act_queues)
3255 break;
3256 }
3257 }
3258
3259 if (!num_act_queues) {
3260 u32 imask;
3261 napi_complete(napi);
3262
3263 /* Clear the halt bit in RSTAT */
3264 gfar_write(®s->rstat, gfargrp->rstat);
3265
3266 spin_lock_irq(&gfargrp->grplock);
3267 imask = gfar_read(®s->imask);
3268 imask |= IMASK_RX_DEFAULT;
3269 gfar_write(®s->imask, imask);
3270 spin_unlock_irq(&gfargrp->grplock);
3271 }
3272
3273 return work_done;
3274}
3275
3276static int gfar_poll_tx(struct napi_struct *napi, int budget)
3277{
3278 struct gfar_priv_grp *gfargrp =
3279 container_of(napi, struct gfar_priv_grp, napi_tx);
3280 struct gfar_private *priv = gfargrp->priv;
3281 struct gfar __iomem *regs = gfargrp->regs;
3282 struct gfar_priv_tx_q *tx_queue = NULL;
3283 int has_tx_work = 0;
3284 int i;
3285
3286 /* Clear IEVENT, so interrupts aren't called again
3287 * because of the packets that have already arrived
3288 */
3289 gfar_write(®s->ievent, IEVENT_TX_MASK);
3290
3291 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3292 tx_queue = priv->tx_queue[i];
3293 /* run Tx cleanup to completion */
3294 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3295 gfar_clean_tx_ring(tx_queue);
3296 has_tx_work = 1;
3297 }
3298 }
3299
3300 if (!has_tx_work) {
3301 u32 imask;
3302 napi_complete(napi);
3303
3304 spin_lock_irq(&gfargrp->grplock);
3305 imask = gfar_read(®s->imask);
3306 imask |= IMASK_TX_DEFAULT;
3307 gfar_write(®s->imask, imask);
3308 spin_unlock_irq(&gfargrp->grplock);
3309 }
3310
3311 return 0;
3312}
3313
3314
3315#ifdef CONFIG_NET_POLL_CONTROLLER
3316/* Polling 'interrupt' - used by things like netconsole to send skbs
3317 * without having to re-enable interrupts. It's not called while
3318 * the interrupt routine is executing.
3319 */
3320static void gfar_netpoll(struct net_device *dev)
3321{
3322 struct gfar_private *priv = netdev_priv(dev);
3323 int i;
3324
3325 /* If the device has multiple interrupts, run tx/rx */
3326 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3327 for (i = 0; i < priv->num_grps; i++) {
3328 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3329
3330 disable_irq(gfar_irq(grp, TX)->irq);
3331 disable_irq(gfar_irq(grp, RX)->irq);
3332 disable_irq(gfar_irq(grp, ER)->irq);
3333 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3334 enable_irq(gfar_irq(grp, ER)->irq);
3335 enable_irq(gfar_irq(grp, RX)->irq);
3336 enable_irq(gfar_irq(grp, TX)->irq);
3337 }
3338 } else {
3339 for (i = 0; i < priv->num_grps; i++) {
3340 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3341
3342 disable_irq(gfar_irq(grp, TX)->irq);
3343 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3344 enable_irq(gfar_irq(grp, TX)->irq);
3345 }
3346 }
3347}
3348#endif
3349
3350/* The interrupt handler for devices with one interrupt */
3351static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3352{
3353 struct gfar_priv_grp *gfargrp = grp_id;
3354
3355 /* Save ievent for future reference */
3356 u32 events = gfar_read(&gfargrp->regs->ievent);
3357
3358 /* Check for reception */
3359 if (events & IEVENT_RX_MASK)
3360 gfar_receive(irq, grp_id);
3361
3362 /* Check for transmit completion */
3363 if (events & IEVENT_TX_MASK)
3364 gfar_transmit(irq, grp_id);
3365
3366 /* Check for errors */
3367 if (events & IEVENT_ERR_MASK)
3368 gfar_error(irq, grp_id);
3369
3370 return IRQ_HANDLED;
3371}
3372
3373/* Called every time the controller might need to be made
3374 * aware of new link state. The PHY code conveys this
3375 * information through variables in the phydev structure, and this
3376 * function converts those variables into the appropriate
3377 * register values, and can bring down the device if needed.
3378 */
3379static void adjust_link(struct net_device *dev)
3380{
3381 struct gfar_private *priv = netdev_priv(dev);
3382 struct phy_device *phydev = priv->phydev;
3383
3384 if (unlikely(phydev->link != priv->oldlink ||
3385 (phydev->link && (phydev->duplex != priv->oldduplex ||
3386 phydev->speed != priv->oldspeed))))
3387 gfar_update_link_state(priv);
3388}
3389
3390/* Update the hash table based on the current list of multicast
3391 * addresses we subscribe to. Also, change the promiscuity of
3392 * the device based on the flags (this function is called
3393 * whenever dev->flags is changed
3394 */
3395static void gfar_set_multi(struct net_device *dev)
3396{
3397 struct netdev_hw_addr *ha;
3398 struct gfar_private *priv = netdev_priv(dev);
3399 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3400 u32 tempval;
3401
3402 if (dev->flags & IFF_PROMISC) {
3403 /* Set RCTRL to PROM */
3404 tempval = gfar_read(®s->rctrl);
3405 tempval |= RCTRL_PROM;
3406 gfar_write(®s->rctrl, tempval);
3407 } else {
3408 /* Set RCTRL to not PROM */
3409 tempval = gfar_read(®s->rctrl);
3410 tempval &= ~(RCTRL_PROM);
3411 gfar_write(®s->rctrl, tempval);
3412 }
3413
3414 if (dev->flags & IFF_ALLMULTI) {
3415 /* Set the hash to rx all multicast frames */
3416 gfar_write(®s->igaddr0, 0xffffffff);
3417 gfar_write(®s->igaddr1, 0xffffffff);
3418 gfar_write(®s->igaddr2, 0xffffffff);
3419 gfar_write(®s->igaddr3, 0xffffffff);
3420 gfar_write(®s->igaddr4, 0xffffffff);
3421 gfar_write(®s->igaddr5, 0xffffffff);
3422 gfar_write(®s->igaddr6, 0xffffffff);
3423 gfar_write(®s->igaddr7, 0xffffffff);
3424 gfar_write(®s->gaddr0, 0xffffffff);
3425 gfar_write(®s->gaddr1, 0xffffffff);
3426 gfar_write(®s->gaddr2, 0xffffffff);
3427 gfar_write(®s->gaddr3, 0xffffffff);
3428 gfar_write(®s->gaddr4, 0xffffffff);
3429 gfar_write(®s->gaddr5, 0xffffffff);
3430 gfar_write(®s->gaddr6, 0xffffffff);
3431 gfar_write(®s->gaddr7, 0xffffffff);
3432 } else {
3433 int em_num;
3434 int idx;
3435
3436 /* zero out the hash */
3437 gfar_write(®s->igaddr0, 0x0);
3438 gfar_write(®s->igaddr1, 0x0);
3439 gfar_write(®s->igaddr2, 0x0);
3440 gfar_write(®s->igaddr3, 0x0);
3441 gfar_write(®s->igaddr4, 0x0);
3442 gfar_write(®s->igaddr5, 0x0);
3443 gfar_write(®s->igaddr6, 0x0);
3444 gfar_write(®s->igaddr7, 0x0);
3445 gfar_write(®s->gaddr0, 0x0);
3446 gfar_write(®s->gaddr1, 0x0);
3447 gfar_write(®s->gaddr2, 0x0);
3448 gfar_write(®s->gaddr3, 0x0);
3449 gfar_write(®s->gaddr4, 0x0);
3450 gfar_write(®s->gaddr5, 0x0);
3451 gfar_write(®s->gaddr6, 0x0);
3452 gfar_write(®s->gaddr7, 0x0);
3453
3454 /* If we have extended hash tables, we need to
3455 * clear the exact match registers to prepare for
3456 * setting them
3457 */
3458 if (priv->extended_hash) {
3459 em_num = GFAR_EM_NUM + 1;
3460 gfar_clear_exact_match(dev);
3461 idx = 1;
3462 } else {
3463 idx = 0;
3464 em_num = 0;
3465 }
3466
3467 if (netdev_mc_empty(dev))
3468 return;
3469
3470 /* Parse the list, and set the appropriate bits */
3471 netdev_for_each_mc_addr(ha, dev) {
3472 if (idx < em_num) {
3473 gfar_set_mac_for_addr(dev, idx, ha->addr);
3474 idx++;
3475 } else
3476 gfar_set_hash_for_addr(dev, ha->addr);
3477 }
3478 }
3479}
3480
3481
3482/* Clears each of the exact match registers to zero, so they
3483 * don't interfere with normal reception
3484 */
3485static void gfar_clear_exact_match(struct net_device *dev)
3486{
3487 int idx;
3488 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3489
3490 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3491 gfar_set_mac_for_addr(dev, idx, zero_arr);
3492}
3493
3494/* Set the appropriate hash bit for the given addr */
3495/* The algorithm works like so:
3496 * 1) Take the Destination Address (ie the multicast address), and
3497 * do a CRC on it (little endian), and reverse the bits of the
3498 * result.
3499 * 2) Use the 8 most significant bits as a hash into a 256-entry
3500 * table. The table is controlled through 8 32-bit registers:
3501 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3502 * gaddr7. This means that the 3 most significant bits in the
3503 * hash index which gaddr register to use, and the 5 other bits
3504 * indicate which bit (assuming an IBM numbering scheme, which
3505 * for PowerPC (tm) is usually the case) in the register holds
3506 * the entry.
3507 */
3508static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3509{
3510 u32 tempval;
3511 struct gfar_private *priv = netdev_priv(dev);
3512 u32 result = ether_crc(ETH_ALEN, addr);
3513 int width = priv->hash_width;
3514 u8 whichbit = (result >> (32 - width)) & 0x1f;
3515 u8 whichreg = result >> (32 - width + 5);
3516 u32 value = (1 << (31-whichbit));
3517
3518 tempval = gfar_read(priv->hash_regs[whichreg]);
3519 tempval |= value;
3520 gfar_write(priv->hash_regs[whichreg], tempval);
3521}
3522
3523
3524/* There are multiple MAC Address register pairs on some controllers
3525 * This function sets the numth pair to a given address
3526 */
3527static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3528 const u8 *addr)
3529{
3530 struct gfar_private *priv = netdev_priv(dev);
3531 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3532 u32 tempval;
3533 u32 __iomem *macptr = ®s->macstnaddr1;
3534
3535 macptr += num*2;
3536
3537 /* For a station address of 0x12345678ABCD in transmission
3538 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3539 * MACnADDR2 is set to 0x34120000.
3540 */
3541 tempval = (addr[5] << 24) | (addr[4] << 16) |
3542 (addr[3] << 8) | addr[2];
3543
3544 gfar_write(macptr, tempval);
3545
3546 tempval = (addr[1] << 24) | (addr[0] << 16);
3547
3548 gfar_write(macptr+1, tempval);
3549}
3550
3551/* GFAR error interrupt handler */
3552static irqreturn_t gfar_error(int irq, void *grp_id)
3553{
3554 struct gfar_priv_grp *gfargrp = grp_id;
3555 struct gfar __iomem *regs = gfargrp->regs;
3556 struct gfar_private *priv= gfargrp->priv;
3557 struct net_device *dev = priv->ndev;
3558
3559 /* Save ievent for future reference */
3560 u32 events = gfar_read(®s->ievent);
3561
3562 /* Clear IEVENT */
3563 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
3564
3565 /* Magic Packet is not an error. */
3566 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3567 (events & IEVENT_MAG))
3568 events &= ~IEVENT_MAG;
3569
3570 /* Hmm... */
3571 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3572 netdev_dbg(dev,
3573 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3574 events, gfar_read(®s->imask));
3575
3576 /* Update the error counters */
3577 if (events & IEVENT_TXE) {
3578 dev->stats.tx_errors++;
3579
3580 if (events & IEVENT_LC)
3581 dev->stats.tx_window_errors++;
3582 if (events & IEVENT_CRL)
3583 dev->stats.tx_aborted_errors++;
3584 if (events & IEVENT_XFUN) {
3585 netif_dbg(priv, tx_err, dev,
3586 "TX FIFO underrun, packet dropped\n");
3587 dev->stats.tx_dropped++;
3588 atomic64_inc(&priv->extra_stats.tx_underrun);
3589
3590 schedule_work(&priv->reset_task);
3591 }
3592 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3593 }
3594 if (events & IEVENT_BSY) {
3595 dev->stats.rx_over_errors++;
3596 atomic64_inc(&priv->extra_stats.rx_bsy);
3597
3598 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3599 gfar_read(®s->rstat));
3600 }
3601 if (events & IEVENT_BABR) {
3602 dev->stats.rx_errors++;
3603 atomic64_inc(&priv->extra_stats.rx_babr);
3604
3605 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3606 }
3607 if (events & IEVENT_EBERR) {
3608 atomic64_inc(&priv->extra_stats.eberr);
3609 netif_dbg(priv, rx_err, dev, "bus error\n");
3610 }
3611 if (events & IEVENT_RXC)
3612 netif_dbg(priv, rx_status, dev, "control frame\n");
3613
3614 if (events & IEVENT_BABT) {
3615 atomic64_inc(&priv->extra_stats.tx_babt);
3616 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3617 }
3618 return IRQ_HANDLED;
3619}
3620
3621static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3622{
3623 struct phy_device *phydev = priv->phydev;
3624 u32 val = 0;
3625
3626 if (!phydev->duplex)
3627 return val;
3628
3629 if (!priv->pause_aneg_en) {
3630 if (priv->tx_pause_en)
3631 val |= MACCFG1_TX_FLOW;
3632 if (priv->rx_pause_en)
3633 val |= MACCFG1_RX_FLOW;
3634 } else {
3635 u16 lcl_adv, rmt_adv;
3636 u8 flowctrl;
3637 /* get link partner capabilities */
3638 rmt_adv = 0;
3639 if (phydev->pause)
3640 rmt_adv = LPA_PAUSE_CAP;
3641 if (phydev->asym_pause)
3642 rmt_adv |= LPA_PAUSE_ASYM;
3643
3644 lcl_adv = 0;
3645 if (phydev->advertising & ADVERTISED_Pause)
3646 lcl_adv |= ADVERTISE_PAUSE_CAP;
3647 if (phydev->advertising & ADVERTISED_Asym_Pause)
3648 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3649
3650 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3651 if (flowctrl & FLOW_CTRL_TX)
3652 val |= MACCFG1_TX_FLOW;
3653 if (flowctrl & FLOW_CTRL_RX)
3654 val |= MACCFG1_RX_FLOW;
3655 }
3656
3657 return val;
3658}
3659
3660static noinline void gfar_update_link_state(struct gfar_private *priv)
3661{
3662 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3663 struct phy_device *phydev = priv->phydev;
3664 struct gfar_priv_rx_q *rx_queue = NULL;
3665 int i;
3666
3667 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3668 return;
3669
3670 if (phydev->link) {
3671 u32 tempval1 = gfar_read(®s->maccfg1);
3672 u32 tempval = gfar_read(®s->maccfg2);
3673 u32 ecntrl = gfar_read(®s->ecntrl);
3674 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3675
3676 if (phydev->duplex != priv->oldduplex) {
3677 if (!(phydev->duplex))
3678 tempval &= ~(MACCFG2_FULL_DUPLEX);
3679 else
3680 tempval |= MACCFG2_FULL_DUPLEX;
3681
3682 priv->oldduplex = phydev->duplex;
3683 }
3684
3685 if (phydev->speed != priv->oldspeed) {
3686 switch (phydev->speed) {
3687 case 1000:
3688 tempval =
3689 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3690
3691 ecntrl &= ~(ECNTRL_R100);
3692 break;
3693 case 100:
3694 case 10:
3695 tempval =
3696 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3697
3698 /* Reduced mode distinguishes
3699 * between 10 and 100
3700 */
3701 if (phydev->speed == SPEED_100)
3702 ecntrl |= ECNTRL_R100;
3703 else
3704 ecntrl &= ~(ECNTRL_R100);
3705 break;
3706 default:
3707 netif_warn(priv, link, priv->ndev,
3708 "Ack! Speed (%d) is not 10/100/1000!\n",
3709 phydev->speed);
3710 break;
3711 }
3712
3713 priv->oldspeed = phydev->speed;
3714 }
3715
3716 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3717 tempval1 |= gfar_get_flowctrl_cfg(priv);
3718
3719 /* Turn last free buffer recording on */
3720 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3721 for (i = 0; i < priv->num_rx_queues; i++) {
3722 u32 bdp_dma;
3723
3724 rx_queue = priv->rx_queue[i];
3725 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3726 gfar_write(rx_queue->rfbptr, bdp_dma);
3727 }
3728
3729 priv->tx_actual_en = 1;
3730 }
3731
3732 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3733 priv->tx_actual_en = 0;
3734
3735 gfar_write(®s->maccfg1, tempval1);
3736 gfar_write(®s->maccfg2, tempval);
3737 gfar_write(®s->ecntrl, ecntrl);
3738
3739 if (!priv->oldlink)
3740 priv->oldlink = 1;
3741
3742 } else if (priv->oldlink) {
3743 priv->oldlink = 0;
3744 priv->oldspeed = 0;
3745 priv->oldduplex = -1;
3746 }
3747
3748 if (netif_msg_link(priv))
3749 phy_print_status(phydev);
3750}
3751
3752static const struct of_device_id gfar_match[] =
3753{
3754 {
3755 .type = "network",
3756 .compatible = "gianfar",
3757 },
3758 {
3759 .compatible = "fsl,etsec2",
3760 },
3761 {},
3762};
3763MODULE_DEVICE_TABLE(of, gfar_match);
3764
3765/* Structure for a device driver */
3766static struct platform_driver gfar_driver = {
3767 .driver = {
3768 .name = "fsl-gianfar",
3769 .pm = GFAR_PM_OPS,
3770 .of_match_table = gfar_match,
3771 },
3772 .probe = gfar_probe,
3773 .remove = gfar_remove,
3774};
3775
3776module_platform_driver(gfar_driver);