Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
 
 
 
 
 
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
  61
  62#include <linux/kernel.h>
  63#include <linux/platform_device.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
 
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 
 
 100
 101#include "gianfar.h"
 102
 103#define TX_TIMEOUT      (5*HZ)
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110			    dma_addr_t buf)
 111{
 112	u32 lstatus;
 113
 114	bdp->bufPtr = cpu_to_be32(buf);
 115
 116	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118		lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120	gfar_wmb();
 121
 122	bdp->lstatus = cpu_to_be32(lstatus);
 123}
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128	u32 __iomem *baddr;
 129	int i;
 130
 131	baddr = &regs->tbase0;
 132	for (i = 0; i < priv->num_tx_queues; i++) {
 133		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134		baddr += 2;
 135	}
 136
 137	baddr = &regs->rbase0;
 138	for (i = 0; i < priv->num_rx_queues; i++) {
 139		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140		baddr += 2;
 141	}
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147	u32 __iomem *baddr;
 148	int i;
 149
 150	baddr = &regs->rqprm0;
 151	for (i = 0; i < priv->num_rx_queues; i++) {
 152		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154		baddr++;
 155	}
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160	/* set this when rx hw offload (TOE) functions are being used */
 161	priv->uses_rxfcb = 0;
 162
 163	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164		priv->uses_rxfcb = 1;
 165
 166	if (priv->hwts_rx_en || priv->rx_filer_enable)
 167		priv->uses_rxfcb = 1;
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 172	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173	u32 rctrl = 0;
 174
 175	if (priv->rx_filer_enable) {
 176		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177		/* Program the RIR0 reg with the required distribution */
 178		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 
 
 
 179	}
 180
 181	/* Restore PROMISC mode */
 182	if (priv->ndev->flags & IFF_PROMISC)
 183		rctrl |= RCTRL_PROM;
 184
 185	if (priv->ndev->features & NETIF_F_RXCSUM)
 186		rctrl |= RCTRL_CHECKSUMMING;
 187
 188	if (priv->extended_hash)
 189		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 190
 191	if (priv->padding) {
 192		rctrl &= ~RCTRL_PAL_MASK;
 193		rctrl |= RCTRL_PADDING(priv->padding);
 194	}
 195
 196	/* Enable HW time stamping if requested from user space */
 197	if (priv->hwts_rx_en)
 198		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203	/* Clear the LFC bit */
 204	gfar_write(&regs->rctrl, rctrl);
 205	/* Init flow control threshold values */
 206	gfar_init_rqprm(priv);
 207	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208	rctrl |= RCTRL_LFC;
 209
 210	/* Init rctrl based on our settings */
 211	gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217	u32 tctrl = 0;
 218
 219	if (priv->ndev->features & NETIF_F_IP_CSUM)
 220		tctrl |= TCTRL_INIT_CSUM;
 221
 222	if (priv->prio_sched_en)
 223		tctrl |= TCTRL_TXSCHED_PRIO;
 224	else {
 225		tctrl |= TCTRL_TXSCHED_WRRS;
 226		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228	}
 229
 230	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231		tctrl |= TCTRL_VLINS;
 232
 233	gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237			       unsigned long tx_mask, unsigned long rx_mask)
 238{
 239	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240	u32 __iomem *baddr;
 241
 242	if (priv->mode == MQ_MG_MODE) {
 243		int i = 0;
 244
 245		baddr = &regs->txic0;
 246		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247			gfar_write(baddr + i, 0);
 248			if (likely(priv->tx_queue[i]->txcoalescing))
 249				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250		}
 251
 252		baddr = &regs->rxic0;
 253		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254			gfar_write(baddr + i, 0);
 255			if (likely(priv->rx_queue[i]->rxcoalescing))
 256				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257		}
 258	} else {
 259		/* Backward compatible case -- even if we enable
 260		 * multiple queues, there's only single reg to program
 261		 */
 262		gfar_write(&regs->txic, 0);
 263		if (likely(priv->tx_queue[0]->txcoalescing))
 264			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266		gfar_write(&regs->rxic, 0);
 267		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269	}
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279	struct gfar_private *priv = netdev_priv(dev);
 
 
 280	int i;
 281
 282	for (i = 0; i < priv->num_rx_queues; i++) {
 283		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286	}
 287
 288	for (i = 0; i < priv->num_tx_queues; i++) {
 289		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291	}
 292
 293	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295		unsigned long flags;
 296		u32 rdrp, car, car_before;
 297		u64 rdrp_offset;
 298
 299		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301		do {
 302			car_before = car;
 303			rdrp = gfar_read(&rmon->rdrp);
 304			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305		} while (car != car_before);
 306		if (car) {
 307			priv->rmon_overflow.rdrp++;
 308			gfar_write(&rmon->car1, car);
 309		}
 310		rdrp_offset = priv->rmon_overflow.rdrp;
 311		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314	}
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333	u32 tempval;
 334	struct gfar_private *priv = netdev_priv(dev);
 335	u32 result = ether_crc(ETH_ALEN, addr);
 336	int width = priv->hash_width;
 337	u8 whichbit = (result >> (32 - width)) & 0x1f;
 338	u8 whichreg = result >> (32 - width + 5);
 339	u32 value = (1 << (31-whichbit));
 340
 341	tempval = gfar_read(priv->hash_regs[whichreg]);
 342	tempval |= value;
 343	gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350				  const u8 *addr)
 351{
 352	struct gfar_private *priv = netdev_priv(dev);
 353	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354	u32 tempval;
 355	u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357	macptr += num*2;
 
 358
 359	/* For a station address of 0x12345678ABCD in transmission
 360	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361	 * MACnADDR2 is set to 0x34120000.
 362	 */
 363	tempval = (addr[5] << 24) | (addr[4] << 16) |
 364		  (addr[3] << 8)  |  addr[2];
 365
 366	gfar_write(macptr, tempval);
 367
 368	tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370	gfar_write(macptr+1, tempval);
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375	int ret;
 376
 377	ret = eth_mac_addr(dev, p);
 378	if (ret)
 379		return ret;
 380
 381	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383	return 0;
 384}
 385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388	int i;
 389	for (i = 0; i < priv->num_grps; i++) {
 390		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391		/* Clear IEVENT */
 392		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394		/* Initialize IMASK */
 395		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396	}
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401	int i;
 402	for (i = 0; i < priv->num_grps; i++) {
 403		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404		/* Unmask the interrupts we look for */
 405		gfar_write(&regs->imask,
 406			   IMASK_DEFAULT | priv->rmon_overflow.imask);
 407	}
 408}
 409
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412	int i;
 413
 414	for (i = 0; i < priv->num_tx_queues; i++) {
 415		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416					    GFP_KERNEL);
 417		if (!priv->tx_queue[i])
 418			return -ENOMEM;
 419
 420		priv->tx_queue[i]->tx_skbuff = NULL;
 421		priv->tx_queue[i]->qindex = i;
 422		priv->tx_queue[i]->dev = priv->ndev;
 423		spin_lock_init(&(priv->tx_queue[i]->txlock));
 424	}
 425	return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 429{
 430	int i;
 431
 432	for (i = 0; i < priv->num_rx_queues; i++) {
 433		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434					    GFP_KERNEL);
 435		if (!priv->rx_queue[i])
 436			return -ENOMEM;
 437
 438		priv->rx_queue[i]->qindex = i;
 439		priv->rx_queue[i]->ndev = priv->ndev;
 440	}
 441	return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446	int i;
 447
 448	for (i = 0; i < priv->num_tx_queues; i++)
 449		kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454	int i;
 455
 456	for (i = 0; i < priv->num_rx_queues; i++)
 457		kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462	int i;
 463
 464	for (i = 0; i < MAXGROUPS; i++)
 465		if (priv->gfargrp[i].regs)
 466			iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471	int i, j;
 472
 473	for (i = 0; i < priv->num_grps; i++)
 474		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475			kfree(priv->gfargrp[i].irqinfo[j]);
 476			priv->gfargrp[i].irqinfo[j] = NULL;
 477		}
 478
 479	free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484	int i;
 485
 486	for (i = 0; i < priv->num_grps; i++) {
 487		napi_disable(&priv->gfargrp[i].napi_rx);
 488		napi_disable(&priv->gfargrp[i].napi_tx);
 489	}
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494	int i;
 495
 496	for (i = 0; i < priv->num_grps; i++) {
 497		napi_enable(&priv->gfargrp[i].napi_rx);
 498		napi_enable(&priv->gfargrp[i].napi_tx);
 499	}
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503			    struct gfar_private *priv, const char *model)
 504{
 505	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506	int i;
 507
 508	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510					  GFP_KERNEL);
 511		if (!grp->irqinfo[i])
 512			return -ENOMEM;
 513	}
 514
 515	grp->regs = of_iomap(np, 0);
 516	if (!grp->regs)
 517		return -ENOMEM;
 518
 519	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 520
 521	/* If we aren't the FEC we have multiple interrupts */
 522	if (model && strcasecmp(model, "FEC")) {
 523		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525		if (!gfar_irq(grp, TX)->irq ||
 526		    !gfar_irq(grp, RX)->irq ||
 527		    !gfar_irq(grp, ER)->irq)
 528			return -EINVAL;
 529	}
 530
 531	grp->priv = priv;
 532	spin_lock_init(&grp->grplock);
 533	if (priv->mode == MQ_MG_MODE) {
 534		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 
 
 535		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	} else {
 538		grp->rx_bit_map = 0xFF;
 539		grp->tx_bit_map = 0xFF;
 540	}
 541
 542	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543	 * right to left, so we need to revert the 8 bits to get the q index
 544	 */
 545	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549	 * also assign queues to groups
 550	 */
 551	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552		if (!grp->rx_queue)
 553			grp->rx_queue = priv->rx_queue[i];
 554		grp->num_rx_queues++;
 555		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557		priv->rx_queue[i]->grp = grp;
 558	}
 559
 560	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561		if (!grp->tx_queue)
 562			grp->tx_queue = priv->tx_queue[i];
 563		grp->num_tx_queues++;
 564		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565		priv->tqueue |= (TQUEUE_EN0 >> i);
 566		priv->tx_queue[i]->grp = grp;
 567	}
 568
 569	priv->num_grps++;
 570
 571	return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576	struct device_node *child;
 577	int num = 0;
 578
 579	for_each_available_child_of_node(np, child)
 580		if (of_node_name_eq(child, "queue-group"))
 581			num++;
 582
 583	return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591	struct gfar_private *priv = netdev_priv(dev);
 592	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593	u32 ecntrl;
 594
 595	ecntrl = gfar_read(&regs->ecntrl);
 596
 597	if (ecntrl & ECNTRL_SGMII_MODE)
 598		return PHY_INTERFACE_MODE_SGMII;
 599
 600	if (ecntrl & ECNTRL_TBI_MODE) {
 601		if (ecntrl & ECNTRL_REDUCED_MODE)
 602			return PHY_INTERFACE_MODE_RTBI;
 603		else
 604			return PHY_INTERFACE_MODE_TBI;
 605	}
 606
 607	if (ecntrl & ECNTRL_REDUCED_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609			return PHY_INTERFACE_MODE_RMII;
 610		}
 611		else {
 612			phy_interface_t interface = priv->interface;
 613
 614			/* This isn't autodetected right now, so it must
 615			 * be set by the device tree or platform code.
 616			 */
 617			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618				return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620			return PHY_INTERFACE_MODE_RGMII;
 621		}
 622	}
 623
 624	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625		return PHY_INTERFACE_MODE_GMII;
 626
 627	return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632	const char *model;
 
 
 633	int err = 0, i;
 634	phy_interface_t interface;
 635	struct net_device *dev = NULL;
 636	struct gfar_private *priv = NULL;
 637	struct device_node *np = ofdev->dev.of_node;
 638	struct device_node *child = NULL;
 639	u32 stash_len = 0;
 640	u32 stash_idx = 0;
 641	unsigned int num_tx_qs, num_rx_qs;
 642	unsigned short mode;
 643
 644	if (!np)
 645		return -ENODEV;
 646
 647	if (of_device_is_compatible(np, "fsl,etsec2"))
 648		mode = MQ_MG_MODE;
 649	else
 
 650		mode = SQ_SG_MODE;
 
 
 651
 652	if (mode == SQ_SG_MODE) {
 653		num_tx_qs = 1;
 654		num_rx_qs = 1;
 655	} else { /* MQ_MG_MODE */
 656		/* get the actual number of supported groups */
 657		unsigned int num_grps = gfar_of_group_count(np);
 658
 659		if (num_grps == 0 || num_grps > MAXGROUPS) {
 660			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661				num_grps);
 662			pr_err("Cannot do alloc_etherdev, aborting\n");
 663			return -EINVAL;
 664		}
 665
 666		num_tx_qs = num_grps; /* one txq per int group */
 667		num_rx_qs = num_grps; /* one rxq per int group */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668	}
 669
 670	if (num_tx_qs > MAX_TX_QS) {
 671		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672		       num_tx_qs, MAX_TX_QS);
 673		pr_err("Cannot do alloc_etherdev, aborting\n");
 674		return -EINVAL;
 675	}
 676
 677	if (num_rx_qs > MAX_RX_QS) {
 678		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679		       num_rx_qs, MAX_RX_QS);
 680		pr_err("Cannot do alloc_etherdev, aborting\n");
 681		return -EINVAL;
 682	}
 683
 684	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685	dev = *pdev;
 686	if (NULL == dev)
 687		return -ENOMEM;
 688
 689	priv = netdev_priv(dev);
 690	priv->ndev = dev;
 691
 692	priv->mode = mode;
 
 693
 694	priv->num_tx_queues = num_tx_qs;
 695	netif_set_real_num_rx_queues(dev, num_rx_qs);
 696	priv->num_rx_queues = num_rx_qs;
 697
 698	err = gfar_alloc_tx_queues(priv);
 699	if (err)
 700		goto tx_alloc_failed;
 701
 702	err = gfar_alloc_rx_queues(priv);
 703	if (err)
 704		goto rx_alloc_failed;
 705
 706	err = of_property_read_string(np, "model", &model);
 707	if (err) {
 708		pr_err("Device model property missing, aborting\n");
 709		goto rx_alloc_failed;
 710	}
 711
 712	/* Init Rx queue filer rule set linked list */
 713	INIT_LIST_HEAD(&priv->rx_list.list);
 714	priv->rx_list.count = 0;
 715	mutex_init(&priv->rx_queue_access);
 716
 717	for (i = 0; i < MAXGROUPS; i++)
 718		priv->gfargrp[i].regs = NULL;
 719
 720	/* Parse and initialize group specific information */
 721	if (priv->mode == MQ_MG_MODE) {
 722		for_each_available_child_of_node(np, child) {
 723			if (!of_node_name_eq(child, "queue-group"))
 724				continue;
 725
 726			err = gfar_parse_group(child, priv, model);
 727			if (err) {
 728				of_node_put(child);
 729				goto err_grp_init;
 730			}
 731		}
 732	} else { /* SQ_SG_MODE */
 733		err = gfar_parse_group(np, priv, model);
 734		if (err)
 735			goto err_grp_init;
 736	}
 737
 738	if (of_property_read_bool(np, "bd-stash")) {
 739		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740		priv->bd_stash_en = 1;
 741	}
 742
 743	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745	if (err == 0)
 746		priv->rx_stash_size = stash_len;
 747
 748	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750	if (err == 0)
 751		priv->rx_stash_index = stash_idx;
 752
 753	if (stash_len || stash_idx)
 754		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756	err = of_get_ethdev_address(np, dev);
 757	if (err == -EPROBE_DEFER)
 758		goto err_grp_init;
 759	if (err) {
 760		eth_hw_addr_random(dev);
 761		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 762	}
 763
 764	if (model && !strcasecmp(model, "TSEC"))
 765		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 766				     FSL_GIANFAR_DEV_HAS_COALESCE |
 767				     FSL_GIANFAR_DEV_HAS_RMON |
 768				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 769
 770	if (model && !strcasecmp(model, "eTSEC"))
 771		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 772				     FSL_GIANFAR_DEV_HAS_COALESCE |
 773				     FSL_GIANFAR_DEV_HAS_RMON |
 774				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 775				     FSL_GIANFAR_DEV_HAS_CSUM |
 776				     FSL_GIANFAR_DEV_HAS_VLAN |
 777				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 778				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 779				     FSL_GIANFAR_DEV_HAS_TIMER |
 780				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 781
 782	/* Use PHY connection type from the DT node if one is specified there.
 783	 * rgmii-id really needs to be specified. Other types can be
 784	 * detected by hardware
 785	 */
 786	err = of_get_phy_mode(np, &interface);
 787	if (!err)
 788		priv->interface = interface;
 789	else
 790		priv->interface = gfar_get_interface(dev);
 791
 792	if (of_property_read_bool(np, "fsl,magic-packet"))
 793		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 794
 795	if (of_property_read_bool(np, "fsl,wake-on-filer"))
 796		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 797
 798	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 799
 800	/* In the case of a fixed PHY, the DT node associated
 801	 * to the PHY is the Ethernet MAC DT node.
 802	 */
 803	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 804		err = of_phy_register_fixed_link(np);
 805		if (err)
 806			goto err_grp_init;
 807
 808		priv->phy_node = of_node_get(np);
 809	}
 810
 811	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 812	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 813
 814	return 0;
 815
 816err_grp_init:
 817	unmap_group_regs(priv);
 818rx_alloc_failed:
 819	gfar_free_rx_queues(priv);
 820tx_alloc_failed:
 821	gfar_free_tx_queues(priv);
 822	free_gfar_dev(priv);
 823	return err;
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 827				   u32 class)
 828{
 829	u32 rqfpr = FPR_FILER_MASK;
 830	u32 rqfcr = 0x0;
 831
 832	rqfar--;
 833	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 834	priv->ftp_rqfpr[rqfar] = rqfpr;
 835	priv->ftp_rqfcr[rqfar] = rqfcr;
 836	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 837
 838	rqfar--;
 839	rqfcr = RQFCR_CMP_NOMATCH;
 840	priv->ftp_rqfpr[rqfar] = rqfpr;
 841	priv->ftp_rqfcr[rqfar] = rqfcr;
 842	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 843
 844	rqfar--;
 845	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 846	rqfpr = class;
 847	priv->ftp_rqfcr[rqfar] = rqfcr;
 848	priv->ftp_rqfpr[rqfar] = rqfpr;
 849	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 850
 851	rqfar--;
 852	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 853	rqfpr = class;
 854	priv->ftp_rqfcr[rqfar] = rqfcr;
 855	priv->ftp_rqfpr[rqfar] = rqfpr;
 856	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 857
 858	return rqfar;
 859}
 860
 861static void gfar_init_filer_table(struct gfar_private *priv)
 862{
 863	int i = 0x0;
 864	u32 rqfar = MAX_FILER_IDX;
 865	u32 rqfcr = 0x0;
 866	u32 rqfpr = FPR_FILER_MASK;
 867
 868	/* Default rule */
 869	rqfcr = RQFCR_CMP_MATCH;
 870	priv->ftp_rqfcr[rqfar] = rqfcr;
 871	priv->ftp_rqfpr[rqfar] = rqfpr;
 872	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 873
 874	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 875	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 876	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 877	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 878	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 879	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 880
 881	/* cur_filer_idx indicated the first non-masked rule */
 882	priv->cur_filer_idx = rqfar;
 883
 884	/* Rest are masked rules */
 885	rqfcr = RQFCR_CMP_NOMATCH;
 886	for (i = 0; i < rqfar; i++) {
 887		priv->ftp_rqfcr[i] = rqfcr;
 888		priv->ftp_rqfpr[i] = rqfpr;
 889		gfar_write_filer(priv, i, rqfcr, rqfpr);
 890	}
 891}
 892
 893#ifdef CONFIG_PPC
 894static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 895{
 896	unsigned int pvr = mfspr(SPRN_PVR);
 897	unsigned int svr = mfspr(SPRN_SVR);
 898	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 899	unsigned int rev = svr & 0xffff;
 900
 901	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 902	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 903	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 904		priv->errata |= GFAR_ERRATA_74;
 905
 906	/* MPC8313 and MPC837x all rev */
 907	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 908	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 909		priv->errata |= GFAR_ERRATA_76;
 910
 911	/* MPC8313 Rev < 2.0 */
 912	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 913		priv->errata |= GFAR_ERRATA_12;
 914}
 915
 916static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 917{
 918	unsigned int svr = mfspr(SPRN_SVR);
 919
 920	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 921		priv->errata |= GFAR_ERRATA_12;
 922	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 923	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 924	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 925	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 926		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 927}
 928#endif
 929
 930static void gfar_detect_errata(struct gfar_private *priv)
 931{
 932	struct device *dev = &priv->ofdev->dev;
 933
 934	/* no plans to fix */
 935	priv->errata |= GFAR_ERRATA_A002;
 936
 937#ifdef CONFIG_PPC
 938	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 939		__gfar_detect_errata_85xx(priv);
 940	else /* non-mpc85xx parts, i.e. e300 core based */
 941		__gfar_detect_errata_83xx(priv);
 942#endif
 943
 944	if (priv->errata)
 945		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 946			 priv->errata);
 947}
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949static void gfar_init_addr_hash_table(struct gfar_private *priv)
 950{
 951	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 952
 953	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 954		priv->extended_hash = 1;
 955		priv->hash_width = 9;
 956
 957		priv->hash_regs[0] = &regs->igaddr0;
 958		priv->hash_regs[1] = &regs->igaddr1;
 959		priv->hash_regs[2] = &regs->igaddr2;
 960		priv->hash_regs[3] = &regs->igaddr3;
 961		priv->hash_regs[4] = &regs->igaddr4;
 962		priv->hash_regs[5] = &regs->igaddr5;
 963		priv->hash_regs[6] = &regs->igaddr6;
 964		priv->hash_regs[7] = &regs->igaddr7;
 965		priv->hash_regs[8] = &regs->gaddr0;
 966		priv->hash_regs[9] = &regs->gaddr1;
 967		priv->hash_regs[10] = &regs->gaddr2;
 968		priv->hash_regs[11] = &regs->gaddr3;
 969		priv->hash_regs[12] = &regs->gaddr4;
 970		priv->hash_regs[13] = &regs->gaddr5;
 971		priv->hash_regs[14] = &regs->gaddr6;
 972		priv->hash_regs[15] = &regs->gaddr7;
 973
 974	} else {
 975		priv->extended_hash = 0;
 976		priv->hash_width = 8;
 977
 978		priv->hash_regs[0] = &regs->gaddr0;
 979		priv->hash_regs[1] = &regs->gaddr1;
 980		priv->hash_regs[2] = &regs->gaddr2;
 981		priv->hash_regs[3] = &regs->gaddr3;
 982		priv->hash_regs[4] = &regs->gaddr4;
 983		priv->hash_regs[5] = &regs->gaddr5;
 984		priv->hash_regs[6] = &regs->gaddr6;
 985		priv->hash_regs[7] = &regs->gaddr7;
 986	}
 987}
 988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989static int __gfar_is_rx_idle(struct gfar_private *priv)
 990{
 991	u32 res;
 992
 993	/* Normaly TSEC should not hang on GRS commands, so we should
 994	 * actually wait for IEVENT_GRSC flag.
 995	 */
 996	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 997		return 0;
 998
 999	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001	 * and the Rx can be safely reset.
1002	 */
1003	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004	res &= 0x7f807f80;
1005	if ((res & 0xffff) == (res >> 16))
1006		return 1;
1007
1008	return 0;
1009}
1010
1011/* Halt the receive and transmit queues */
1012static void gfar_halt_nodisable(struct gfar_private *priv)
1013{
1014	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1015	u32 tempval;
1016	unsigned int timeout;
1017	int stopped;
1018
1019	gfar_ints_disable(priv);
1020
1021	if (gfar_is_dma_stopped(priv))
1022		return;
1023
1024	/* Stop the DMA, and wait for it to stop */
1025	tempval = gfar_read(&regs->dmactrl);
1026	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027	gfar_write(&regs->dmactrl, tempval);
1028
1029retry:
1030	timeout = 1000;
1031	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032		cpu_relax();
1033		timeout--;
1034	}
1035
1036	if (!timeout)
1037		stopped = gfar_is_dma_stopped(priv);
1038
1039	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040	    !__gfar_is_rx_idle(priv))
1041		goto retry;
1042}
1043
1044/* Halt the receive and transmit queues */
1045static void gfar_halt(struct gfar_private *priv)
1046{
1047	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048	u32 tempval;
1049
1050	/* Dissable the Rx/Tx hw queues */
1051	gfar_write(&regs->rqueue, 0);
1052	gfar_write(&regs->tqueue, 0);
1053
1054	mdelay(10);
1055
1056	gfar_halt_nodisable(priv);
1057
1058	/* Disable Rx/Tx DMA */
1059	tempval = gfar_read(&regs->maccfg1);
1060	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061	gfar_write(&regs->maccfg1, tempval);
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065{
1066	struct txbd8 *txbdp;
1067	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068	int i, j;
1069
1070	txbdp = tx_queue->tx_bd_base;
1071
1072	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073		if (!tx_queue->tx_skbuff[i])
1074			continue;
1075
1076		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078		txbdp->lstatus = 0;
1079		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080		     j++) {
1081			txbdp++;
1082			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083				       be16_to_cpu(txbdp->length),
1084				       DMA_TO_DEVICE);
1085		}
1086		txbdp++;
1087		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088		tx_queue->tx_skbuff[i] = NULL;
1089	}
1090	kfree(tx_queue->tx_skbuff);
1091	tx_queue->tx_skbuff = NULL;
1092}
1093
1094static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095{
1096	int i;
1097
1098	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099
1100	dev_kfree_skb(rx_queue->skb);
 
1101
1102	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104
1105		rxbdp->lstatus = 0;
1106		rxbdp->bufPtr = 0;
1107		rxbdp++;
1108
1109		if (!rxb->page)
1110			continue;
1111
1112		dma_unmap_page(rx_queue->dev, rxb->dma,
1113			       PAGE_SIZE, DMA_FROM_DEVICE);
1114		__free_page(rxb->page);
1115
1116		rxb->page = NULL;
1117	}
1118
1119	kfree(rx_queue->rx_buff);
1120	rx_queue->rx_buff = NULL;
1121}
1122
1123/* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1125 */
1126static void free_skb_resources(struct gfar_private *priv)
1127{
1128	struct gfar_priv_tx_q *tx_queue = NULL;
1129	struct gfar_priv_rx_q *rx_queue = NULL;
1130	int i;
1131
1132	/* Go through all the buffer descriptors and free their data buffers */
1133	for (i = 0; i < priv->num_tx_queues; i++) {
1134		struct netdev_queue *txq;
1135
1136		tx_queue = priv->tx_queue[i];
1137		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138		if (tx_queue->tx_skbuff)
1139			free_skb_tx_queue(tx_queue);
1140		netdev_tx_reset_queue(txq);
1141	}
1142
1143	for (i = 0; i < priv->num_rx_queues; i++) {
1144		rx_queue = priv->rx_queue[i];
1145		if (rx_queue->rx_buff)
1146			free_skb_rx_queue(rx_queue);
1147	}
1148
1149	dma_free_coherent(priv->dev,
1150			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1151			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152			  priv->tx_queue[0]->tx_bd_base,
1153			  priv->tx_queue[0]->tx_bd_dma_base);
1154}
1155
1156void stop_gfar(struct net_device *dev)
1157{
1158	struct gfar_private *priv = netdev_priv(dev);
1159
1160	netif_tx_stop_all_queues(dev);
1161
1162	smp_mb__before_atomic();
1163	set_bit(GFAR_DOWN, &priv->state);
1164	smp_mb__after_atomic();
1165
1166	disable_napi(priv);
1167
1168	/* disable ints and gracefully shut down Rx/Tx DMA */
1169	gfar_halt(priv);
1170
1171	phy_stop(dev->phydev);
1172
1173	free_skb_resources(priv);
1174}
1175
1176static void gfar_start(struct gfar_private *priv)
1177{
1178	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179	u32 tempval;
1180	int i = 0;
1181
1182	/* Enable Rx/Tx hw queues */
1183	gfar_write(&regs->rqueue, priv->rqueue);
1184	gfar_write(&regs->tqueue, priv->tqueue);
1185
1186	/* Initialize DMACTRL to have WWR and WOP */
1187	tempval = gfar_read(&regs->dmactrl);
1188	tempval |= DMACTRL_INIT_SETTINGS;
1189	gfar_write(&regs->dmactrl, tempval);
1190
1191	/* Make sure we aren't stopped */
1192	tempval = gfar_read(&regs->dmactrl);
1193	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194	gfar_write(&regs->dmactrl, tempval);
1195
1196	for (i = 0; i < priv->num_grps; i++) {
1197		regs = priv->gfargrp[i].regs;
1198		/* Clear THLT/RHLT, so that the DMA starts polling now */
1199		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1200		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1201	}
1202
1203	/* Enable Rx/Tx DMA */
1204	tempval = gfar_read(&regs->maccfg1);
1205	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206	gfar_write(&regs->maccfg1, tempval);
1207
1208	gfar_ints_enable(priv);
1209
1210	netif_trans_update(priv->ndev); /* prevent tx timeout */
1211}
1212
1213static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214{
1215	struct page *page;
1216	dma_addr_t addr;
1217
1218	page = dev_alloc_page();
1219	if (unlikely(!page))
1220		return false;
1221
1222	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224		__free_page(page);
1225
1226		return false;
1227	}
1228
1229	rxb->dma = addr;
1230	rxb->page = page;
1231	rxb->page_offset = 0;
1232
1233	return true;
1234}
1235
1236static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1237{
1238	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239	struct gfar_extra_stats *estats = &priv->extra_stats;
1240
1241	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242	atomic64_inc(&estats->rx_alloc_err);
1243}
1244
1245static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246				int alloc_cnt)
1247{
1248	struct rxbd8 *bdp;
1249	struct gfar_rx_buff *rxb;
1250	int i;
1251
1252	i = rx_queue->next_to_use;
1253	bdp = &rx_queue->rx_bd_base[i];
1254	rxb = &rx_queue->rx_buff[i];
 
 
 
 
 
 
 
 
 
1255
1256	while (alloc_cnt--) {
1257		/* try reuse page */
1258		if (unlikely(!rxb->page)) {
1259			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260				gfar_rx_alloc_err(rx_queue);
1261				break;
1262			}
1263		}
 
1264
1265		/* Setup the new RxBD */
1266		gfar_init_rxbdp(rx_queue, bdp,
1267				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268
1269		/* Update to the next pointer */
1270		bdp++;
1271		rxb++;
1272
1273		if (unlikely(++i == rx_queue->rx_ring_size)) {
1274			i = 0;
1275			bdp = rx_queue->rx_bd_base;
1276			rxb = rx_queue->rx_buff;
1277		}
1278	}
1279
1280	rx_queue->next_to_use = i;
1281	rx_queue->next_to_alloc = i;
1282}
1283
1284static void gfar_init_bds(struct net_device *ndev)
1285{
1286	struct gfar_private *priv = netdev_priv(ndev);
1287	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288	struct gfar_priv_tx_q *tx_queue = NULL;
1289	struct gfar_priv_rx_q *rx_queue = NULL;
1290	struct txbd8 *txbdp;
1291	u32 __iomem *rfbptr;
1292	int i, j;
1293
1294	for (i = 0; i < priv->num_tx_queues; i++) {
1295		tx_queue = priv->tx_queue[i];
1296		/* Initialize some variables in our dev structure */
1297		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299		tx_queue->cur_tx = tx_queue->tx_bd_base;
1300		tx_queue->skb_curtx = 0;
1301		tx_queue->skb_dirtytx = 0;
1302
1303		/* Initialize Transmit Descriptor Ring */
1304		txbdp = tx_queue->tx_bd_base;
1305		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306			txbdp->lstatus = 0;
1307			txbdp->bufPtr = 0;
1308			txbdp++;
1309		}
 
1310
1311		/* Set the last descriptor in the ring to indicate wrap */
1312		txbdp--;
1313		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314					    TXBD_WRAP);
 
 
 
 
 
1315	}
1316
1317	rfbptr = &regs->rfbptr0;
1318	for (i = 0; i < priv->num_rx_queues; i++) {
1319		rx_queue = priv->rx_queue[i];
1320
1321		rx_queue->next_to_clean = 0;
1322		rx_queue->next_to_use = 0;
1323		rx_queue->next_to_alloc = 0;
1324
1325		/* make sure next_to_clean != next_to_use after this
1326		 * by leaving at least 1 unused descriptor
1327		 */
1328		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 
 
1329
1330		rx_queue->rfbptr = rfbptr;
1331		rfbptr += 2;
1332	}
1333}
1334
1335static int gfar_alloc_skb_resources(struct net_device *ndev)
1336{
1337	void *vaddr;
1338	dma_addr_t addr;
1339	int i, j;
1340	struct gfar_private *priv = netdev_priv(ndev);
1341	struct device *dev = priv->dev;
1342	struct gfar_priv_tx_q *tx_queue = NULL;
1343	struct gfar_priv_rx_q *rx_queue = NULL;
1344
1345	priv->total_tx_ring_size = 0;
1346	for (i = 0; i < priv->num_tx_queues; i++)
1347		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348
1349	priv->total_rx_ring_size = 0;
1350	for (i = 0; i < priv->num_rx_queues; i++)
1351		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352
1353	/* Allocate memory for the buffer descriptors */
1354	vaddr = dma_alloc_coherent(dev,
1355				   (priv->total_tx_ring_size *
1356				    sizeof(struct txbd8)) +
1357				   (priv->total_rx_ring_size *
1358				    sizeof(struct rxbd8)),
1359				   &addr, GFP_KERNEL);
1360	if (!vaddr)
1361		return -ENOMEM;
1362
1363	for (i = 0; i < priv->num_tx_queues; i++) {
1364		tx_queue = priv->tx_queue[i];
1365		tx_queue->tx_bd_base = vaddr;
1366		tx_queue->tx_bd_dma_base = addr;
1367		tx_queue->dev = ndev;
1368		/* enet DMA only understands physical addresses */
1369		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371	}
1372
1373	/* Start the rx descriptor ring where the tx ring leaves off */
1374	for (i = 0; i < priv->num_rx_queues; i++) {
1375		rx_queue = priv->rx_queue[i];
1376		rx_queue->rx_bd_base = vaddr;
1377		rx_queue->rx_bd_dma_base = addr;
1378		rx_queue->ndev = ndev;
1379		rx_queue->dev = dev;
1380		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382	}
 
1383
1384	/* Setup the skbuff rings */
1385	for (i = 0; i < priv->num_tx_queues; i++) {
1386		tx_queue = priv->tx_queue[i];
1387		tx_queue->tx_skbuff =
1388			kmalloc_array(tx_queue->tx_ring_size,
1389				      sizeof(*tx_queue->tx_skbuff),
1390				      GFP_KERNEL);
1391		if (!tx_queue->tx_skbuff)
1392			goto cleanup;
1393
1394		for (j = 0; j < tx_queue->tx_ring_size; j++)
1395			tx_queue->tx_skbuff[j] = NULL;
1396	}
1397
1398	for (i = 0; i < priv->num_rx_queues; i++) {
1399		rx_queue = priv->rx_queue[i];
1400		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401					    sizeof(*rx_queue->rx_buff),
1402					    GFP_KERNEL);
1403		if (!rx_queue->rx_buff)
1404			goto cleanup;
1405	}
1406
1407	gfar_init_bds(ndev);
1408
1409	return 0;
1410
1411cleanup:
1412	free_skb_resources(priv);
1413	return -ENOMEM;
1414}
1415
1416/* Bring the controller up and running */
1417int startup_gfar(struct net_device *ndev)
1418{
1419	struct gfar_private *priv = netdev_priv(ndev);
1420	int err;
1421
1422	gfar_mac_reset(priv);
1423
1424	err = gfar_alloc_skb_resources(ndev);
1425	if (err)
1426		return err;
1427
1428	gfar_init_tx_rx_base(priv);
1429
1430	smp_mb__before_atomic();
1431	clear_bit(GFAR_DOWN, &priv->state);
1432	smp_mb__after_atomic();
1433
1434	/* Start Rx/Tx DMA and enable the interrupts */
1435	gfar_start(priv);
1436
1437	/* force link state update after mac reset */
1438	priv->oldlink = 0;
1439	priv->oldspeed = 0;
1440	priv->oldduplex = -1;
1441
1442	phy_start(ndev->phydev);
1443
1444	enable_napi(priv);
1445
1446	netif_tx_wake_all_queues(ndev);
1447
1448	return 0;
1449}
1450
1451static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452{
1453	struct net_device *ndev = priv->ndev;
1454	struct phy_device *phydev = ndev->phydev;
1455	u32 val = 0;
1456
1457	if (!phydev->duplex)
1458		return val;
1459
1460	if (!priv->pause_aneg_en) {
1461		if (priv->tx_pause_en)
1462			val |= MACCFG1_TX_FLOW;
1463		if (priv->rx_pause_en)
1464			val |= MACCFG1_RX_FLOW;
1465	} else {
1466		u16 lcl_adv, rmt_adv;
1467		u8 flowctrl;
1468		/* get link partner capabilities */
1469		rmt_adv = 0;
1470		if (phydev->pause)
1471			rmt_adv = LPA_PAUSE_CAP;
1472		if (phydev->asym_pause)
1473			rmt_adv |= LPA_PAUSE_ASYM;
1474
1475		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477		if (flowctrl & FLOW_CTRL_TX)
1478			val |= MACCFG1_TX_FLOW;
1479		if (flowctrl & FLOW_CTRL_RX)
1480			val |= MACCFG1_RX_FLOW;
1481	}
1482
1483	return val;
1484}
1485
1486static noinline void gfar_update_link_state(struct gfar_private *priv)
1487{
1488	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489	struct net_device *ndev = priv->ndev;
1490	struct phy_device *phydev = ndev->phydev;
1491	struct gfar_priv_rx_q *rx_queue = NULL;
1492	int i;
1493
1494	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495		return;
1496
1497	if (phydev->link) {
1498		u32 tempval1 = gfar_read(&regs->maccfg1);
1499		u32 tempval = gfar_read(&regs->maccfg2);
1500		u32 ecntrl = gfar_read(&regs->ecntrl);
1501		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502
1503		if (phydev->duplex != priv->oldduplex) {
1504			if (!(phydev->duplex))
1505				tempval &= ~(MACCFG2_FULL_DUPLEX);
1506			else
1507				tempval |= MACCFG2_FULL_DUPLEX;
1508
1509			priv->oldduplex = phydev->duplex;
1510		}
1511
1512		if (phydev->speed != priv->oldspeed) {
1513			switch (phydev->speed) {
1514			case 1000:
1515				tempval =
1516				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517
1518				ecntrl &= ~(ECNTRL_R100);
1519				break;
1520			case 100:
1521			case 10:
1522				tempval =
1523				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524
1525				/* Reduced mode distinguishes
1526				 * between 10 and 100
1527				 */
1528				if (phydev->speed == SPEED_100)
1529					ecntrl |= ECNTRL_R100;
1530				else
1531					ecntrl &= ~(ECNTRL_R100);
1532				break;
1533			default:
1534				netif_warn(priv, link, priv->ndev,
1535					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1536					   phydev->speed);
1537				break;
1538			}
1539
1540			priv->oldspeed = phydev->speed;
1541		}
1542
1543		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544		tempval1 |= gfar_get_flowctrl_cfg(priv);
1545
1546		/* Turn last free buffer recording on */
1547		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548			for (i = 0; i < priv->num_rx_queues; i++) {
1549				u32 bdp_dma;
1550
1551				rx_queue = priv->rx_queue[i];
1552				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553				gfar_write(rx_queue->rfbptr, bdp_dma);
1554			}
1555
1556			priv->tx_actual_en = 1;
1557		}
1558
1559		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560			priv->tx_actual_en = 0;
1561
1562		gfar_write(&regs->maccfg1, tempval1);
1563		gfar_write(&regs->maccfg2, tempval);
1564		gfar_write(&regs->ecntrl, ecntrl);
1565
1566		if (!priv->oldlink)
1567			priv->oldlink = 1;
1568
1569	} else if (priv->oldlink) {
1570		priv->oldlink = 0;
1571		priv->oldspeed = 0;
1572		priv->oldduplex = -1;
1573	}
1574
1575	if (netif_msg_link(priv))
1576		phy_print_status(phydev);
1577}
1578
1579/* Called every time the controller might need to be made
1580 * aware of new link state.  The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1584 */
1585static void adjust_link(struct net_device *dev)
1586{
1587	struct gfar_private *priv = netdev_priv(dev);
1588	struct phy_device *phydev = dev->phydev;
1589
1590	if (unlikely(phydev->link != priv->oldlink ||
1591		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1592				       phydev->speed != priv->oldspeed))))
1593		gfar_update_link_state(priv);
1594}
1595
1596/* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip.  We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register.  We assume
1600 * that the TBIPA register is valid.  Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1603 */
1604static void gfar_configure_serdes(struct net_device *dev)
1605{
1606	struct gfar_private *priv = netdev_priv(dev);
1607	struct phy_device *tbiphy;
1608
1609	if (!priv->tbi_node) {
1610		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611				    "device tree specify a tbi-handle\n");
1612		return;
1613	}
1614
1615	tbiphy = of_phy_find_device(priv->tbi_node);
1616	if (!tbiphy) {
1617		dev_err(&dev->dev, "error: Could not get TBI device\n");
1618		return;
1619	}
1620
1621	/* If the link is already up, we must already be ok, and don't need to
1622	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1623	 * everything for us?  Resetting it takes the link down and requires
1624	 * several seconds for it to come back.
1625	 */
1626	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627		put_device(&tbiphy->mdio.dev);
1628		return;
1629	}
1630
1631	/* Single clk mode, mii mode off(for serdes communication) */
1632	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633
1634	phy_write(tbiphy, MII_ADVERTISE,
1635		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636		  ADVERTISE_1000XPSE_ASYM);
1637
1638	phy_write(tbiphy, MII_BMCR,
1639		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640		  BMCR_SPEED1000);
1641
1642	put_device(&tbiphy->mdio.dev);
1643}
1644
1645/* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1647 */
1648static int init_phy(struct net_device *dev)
1649{
1650	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651	struct gfar_private *priv = netdev_priv(dev);
1652	phy_interface_t interface = priv->interface;
1653	struct phy_device *phydev;
1654	struct ethtool_keee edata;
1655
1656	linkmode_set_bit_array(phy_10_100_features_array,
1657			       ARRAY_SIZE(phy_10_100_features_array),
1658			       mask);
1659	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1663
1664	priv->oldlink = 0;
1665	priv->oldspeed = 0;
1666	priv->oldduplex = -1;
1667
1668	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669				interface);
1670	if (!phydev) {
1671		dev_err(&dev->dev, "could not attach to PHY\n");
1672		return -ENODEV;
1673	}
1674
1675	if (interface == PHY_INTERFACE_MODE_SGMII)
1676		gfar_configure_serdes(dev);
1677
1678	/* Remove any features not supported by the controller */
1679	linkmode_and(phydev->supported, phydev->supported, mask);
1680	linkmode_copy(phydev->advertising, phydev->supported);
1681
1682	/* Add support for flow control */
1683	phy_support_asym_pause(phydev);
 
1684
1685	/* disable EEE autoneg, EEE not supported by eTSEC */
1686	memset(&edata, 0, sizeof(struct ethtool_keee));
1687	phy_ethtool_set_eee(phydev, &edata);
1688
1689	return 0;
1690}
1691
1692static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1693{
1694	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1695
1696	memset(fcb, 0, GMAC_FCB_LEN);
1697
1698	return fcb;
1699}
1700
1701static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1702				    int fcb_length)
1703{
1704	/* If we're here, it's a IP packet with a TCP or UDP
1705	 * payload.  We set it to checksum, using a pseudo-header
1706	 * we provide
1707	 */
1708	u8 flags = TXFCB_DEFAULT;
1709
1710	/* Tell the controller what the protocol is
1711	 * And provide the already calculated phcs
1712	 */
1713	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1714		flags |= TXFCB_UDP;
1715		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1716	} else
1717		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1718
1719	/* l3os is the distance between the start of the
1720	 * frame (skb->data) and the start of the IP hdr.
1721	 * l4os is the distance between the start of the
1722	 * l3 hdr and the l4 hdr
1723	 */
1724	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725	fcb->l4os = skb_network_header_len(skb);
1726
1727	fcb->flags = flags;
1728}
1729
1730static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1731{
1732	fcb->flags |= TXFCB_VLN;
1733	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1734}
1735
1736static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737				      struct txbd8 *base, int ring_size)
1738{
1739	struct txbd8 *new_bd = bdp + stride;
1740
1741	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1742}
1743
1744static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1745				      int ring_size)
1746{
1747	return skip_txbd(bdp, 1, base, ring_size);
1748}
1749
1750/* eTSEC12: csum generation not supported for some fcb offsets */
1751static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752				       unsigned long fcb_addr)
1753{
1754	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755	       (fcb_addr % 0x20) > 0x18);
1756}
1757
1758/* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1760 */
1761static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1762				       unsigned int len)
1763{
1764	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1765	       (len > 2500));
1766}
1767
1768/* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1770 */
1771static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772{
1773	struct gfar_private *priv = netdev_priv(dev);
1774	struct gfar_priv_tx_q *tx_queue = NULL;
1775	struct netdev_queue *txq;
1776	struct gfar __iomem *regs = NULL;
1777	struct txfcb *fcb = NULL;
1778	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1779	u32 lstatus;
1780	skb_frag_t *frag;
1781	int i, rq = 0;
1782	int do_tstamp, do_csum, do_vlan;
1783	u32 bufaddr;
1784	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1785
1786	rq = skb->queue_mapping;
1787	tx_queue = priv->tx_queue[rq];
1788	txq = netdev_get_tx_queue(dev, rq);
1789	base = tx_queue->tx_bd_base;
1790	regs = tx_queue->grp->regs;
1791
1792	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793	do_vlan = skb_vlan_tag_present(skb);
1794	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1795		    priv->hwts_tx_en;
1796
1797	if (do_csum || do_vlan)
1798		fcb_len = GMAC_FCB_LEN;
1799
1800	/* check if time stamp should be generated */
1801	if (unlikely(do_tstamp))
1802		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1803
1804	/* make space for additional header when fcb is needed */
1805	if (fcb_len) {
1806		if (unlikely(skb_cow_head(skb, fcb_len))) {
 
 
 
1807			dev->stats.tx_errors++;
1808			dev_kfree_skb_any(skb);
1809			return NETDEV_TX_OK;
1810		}
 
 
 
 
 
1811	}
1812
1813	/* total number of fragments in the SKB */
1814	nr_frags = skb_shinfo(skb)->nr_frags;
1815
1816	/* calculate the required number of TxBDs for this skb */
1817	if (unlikely(do_tstamp))
1818		nr_txbds = nr_frags + 2;
1819	else
1820		nr_txbds = nr_frags + 1;
1821
1822	/* check if there is space to queue this packet */
1823	if (nr_txbds > tx_queue->num_txbdfree) {
1824		/* no space, stop the queue */
1825		netif_tx_stop_queue(txq);
1826		dev->stats.tx_fifo_errors++;
1827		return NETDEV_TX_BUSY;
1828	}
1829
1830	/* Update transmit stats */
1831	bytes_sent = skb->len;
1832	tx_queue->stats.tx_bytes += bytes_sent;
1833	/* keep Tx bytes on wire for BQL accounting */
1834	GFAR_CB(skb)->bytes_sent = bytes_sent;
1835	tx_queue->stats.tx_packets++;
1836
1837	txbdp = txbdp_start = tx_queue->cur_tx;
1838	lstatus = be32_to_cpu(txbdp->lstatus);
1839
1840	/* Add TxPAL between FCB and frame if required */
1841	if (unlikely(do_tstamp)) {
1842		skb_push(skb, GMAC_TXPAL_LEN);
1843		memset(skb->data, 0, GMAC_TXPAL_LEN);
1844	}
1845
1846	/* Add TxFCB if required */
1847	if (fcb_len) {
1848		fcb = gfar_add_fcb(skb);
1849		lstatus |= BD_LFLAG(TXBD_TOE);
1850	}
1851
1852	/* Set up checksumming */
1853	if (do_csum) {
1854		gfar_tx_checksum(skb, fcb, fcb_len);
1855
1856		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858			__skb_pull(skb, GMAC_FCB_LEN);
1859			skb_checksum_help(skb);
1860			if (do_vlan || do_tstamp) {
1861				/* put back a new fcb for vlan/tstamp TOE */
1862				fcb = gfar_add_fcb(skb);
1863			} else {
1864				/* Tx TOE not used */
1865				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1866				fcb = NULL;
1867			}
1868		}
1869	}
1870
1871	if (do_vlan)
1872		gfar_tx_vlan(skb, fcb);
1873
1874	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1875				 DMA_TO_DEVICE);
1876	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1877		goto dma_map_err;
1878
1879	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1880
1881	/* Time stamp insertion requires one additional TxBD */
1882	if (unlikely(do_tstamp))
1883		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884						 tx_queue->tx_ring_size);
1885
1886	if (likely(!nr_frags)) {
1887		if (likely(!do_tstamp))
1888			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1889	} else {
1890		u32 lstatus_start = lstatus;
1891
1892		/* Place the fragment addresses and lengths into the TxBDs */
1893		frag = &skb_shinfo(skb)->frags[0];
1894		for (i = 0; i < nr_frags; i++, frag++) {
1895			unsigned int size;
1896
1897			/* Point at the next BD, wrapping as needed */
1898			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1899
1900			size = skb_frag_size(frag);
1901
1902			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903				  BD_LFLAG(TXBD_READY);
1904
1905			/* Handle the last BD specially */
1906			if (i == nr_frags - 1)
1907				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1908
1909			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910						   size, DMA_TO_DEVICE);
1911			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912				goto dma_map_err;
1913
1914			/* set the TxBD length and buffer pointer */
1915			txbdp->bufPtr = cpu_to_be32(bufaddr);
1916			txbdp->lstatus = cpu_to_be32(lstatus);
1917		}
1918
1919		lstatus = lstatus_start;
1920	}
1921
1922	/* If time stamping is requested one additional TxBD must be set up. The
1923	 * first TxBD points to the FCB and must have a data length of
1924	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925	 * the full frame length.
1926	 */
1927	if (unlikely(do_tstamp)) {
1928		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1929
1930		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1931		bufaddr += fcb_len;
1932
1933		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934			      (skb_headlen(skb) - fcb_len);
1935		if (!nr_frags)
1936			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1941
1942		/* Setup tx hardware time stamping */
1943		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1944		fcb->ptp = 1;
1945	} else {
1946		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1947	}
1948
1949	skb_tx_timestamp(skb);
1950	netdev_tx_sent_queue(txq, bytes_sent);
1951
1952	gfar_wmb();
1953
1954	txbdp_start->lstatus = cpu_to_be32(lstatus);
1955
1956	gfar_wmb(); /* force lstatus write before tx_skbuff */
1957
1958	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1959
1960	/* Update the current skb pointer to the next entry we will use
1961	 * (wrapping if necessary)
1962	 */
1963	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1965
1966	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1967
1968	/* We can work in parallel with gfar_clean_tx_ring(), except
1969	 * when modifying num_txbdfree. Note that we didn't grab the lock
1970	 * when we were reading the num_txbdfree and checking for available
1971	 * space, that's because outside of this function it can only grow.
1972	 */
1973	spin_lock_bh(&tx_queue->txlock);
1974	/* reduce TxBD free count */
1975	tx_queue->num_txbdfree -= (nr_txbds);
1976	spin_unlock_bh(&tx_queue->txlock);
1977
1978	/* If the next BD still needs to be cleaned up, then the bds
1979	 * are full.  We need to tell the kernel to stop sending us stuff.
1980	 */
1981	if (!tx_queue->num_txbdfree) {
1982		netif_tx_stop_queue(txq);
1983
1984		dev->stats.tx_fifo_errors++;
1985	}
1986
1987	/* Tell the DMA to go go go */
1988	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1989
1990	return NETDEV_TX_OK;
1991
1992dma_map_err:
1993	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1994	if (do_tstamp)
1995		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996	for (i = 0; i < nr_frags; i++) {
1997		lstatus = be32_to_cpu(txbdp->lstatus);
1998		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1999			break;
2000
2001		lstatus &= ~BD_LFLAG(TXBD_READY);
2002		txbdp->lstatus = cpu_to_be32(lstatus);
2003		bufaddr = be32_to_cpu(txbdp->bufPtr);
2004		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2005			       DMA_TO_DEVICE);
2006		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2007	}
2008	gfar_wmb();
2009	dev_kfree_skb_any(skb);
2010	return NETDEV_TX_OK;
2011}
2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013/* Changes the mac address if the controller is not running. */
2014static int gfar_set_mac_address(struct net_device *dev)
2015{
2016	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2017
2018	return 0;
2019}
2020
2021static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2022{
2023	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
2024
2025	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2026		cpu_relax();
2027
2028	if (dev->flags & IFF_UP)
2029		stop_gfar(dev);
2030
2031	WRITE_ONCE(dev->mtu, new_mtu);
2032
2033	if (dev->flags & IFF_UP)
2034		startup_gfar(dev);
2035
2036	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2037
2038	return 0;
2039}
2040
2041static void reset_gfar(struct net_device *ndev)
2042{
2043	struct gfar_private *priv = netdev_priv(ndev);
2044
2045	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2046		cpu_relax();
2047
2048	stop_gfar(ndev);
2049	startup_gfar(ndev);
2050
2051	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2052}
2053
2054/* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2058 */
2059static void gfar_reset_task(struct work_struct *work)
2060{
2061	struct gfar_private *priv = container_of(work, struct gfar_private,
2062						 reset_task);
2063	reset_gfar(priv->ndev);
2064}
2065
2066static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2067{
2068	struct gfar_private *priv = netdev_priv(dev);
2069
2070	dev->stats.tx_errors++;
2071	schedule_work(&priv->reset_task);
2072}
2073
2074static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2075{
2076	struct hwtstamp_config config;
2077	struct gfar_private *priv = netdev_priv(netdev);
2078
2079	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2080		return -EFAULT;
2081
2082	switch (config.tx_type) {
2083	case HWTSTAMP_TX_OFF:
2084		priv->hwts_tx_en = 0;
2085		break;
2086	case HWTSTAMP_TX_ON:
2087		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2088			return -ERANGE;
2089		priv->hwts_tx_en = 1;
2090		break;
2091	default:
2092		return -ERANGE;
2093	}
2094
2095	switch (config.rx_filter) {
2096	case HWTSTAMP_FILTER_NONE:
2097		if (priv->hwts_rx_en) {
2098			priv->hwts_rx_en = 0;
2099			reset_gfar(netdev);
2100		}
2101		break;
2102	default:
2103		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2104			return -ERANGE;
2105		if (!priv->hwts_rx_en) {
2106			priv->hwts_rx_en = 1;
2107			reset_gfar(netdev);
2108		}
2109		config.rx_filter = HWTSTAMP_FILTER_ALL;
2110		break;
2111	}
2112
2113	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2114		-EFAULT : 0;
2115}
2116
2117static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2118{
2119	struct hwtstamp_config config;
2120	struct gfar_private *priv = netdev_priv(netdev);
2121
2122	config.flags = 0;
2123	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124	config.rx_filter = (priv->hwts_rx_en ?
2125			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2126
2127	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2128		-EFAULT : 0;
2129}
2130
2131static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2132{
2133	struct phy_device *phydev = dev->phydev;
2134
2135	if (!netif_running(dev))
2136		return -EINVAL;
2137
2138	if (cmd == SIOCSHWTSTAMP)
2139		return gfar_hwtstamp_set(dev, rq);
2140	if (cmd == SIOCGHWTSTAMP)
2141		return gfar_hwtstamp_get(dev, rq);
2142
2143	if (!phydev)
2144		return -ENODEV;
2145
2146	return phy_mii_ioctl(phydev, rq, cmd);
2147}
2148
2149/* Interrupt Handler for Transmit complete */
2150static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2151{
2152	struct net_device *dev = tx_queue->dev;
2153	struct netdev_queue *txq;
2154	struct gfar_private *priv = netdev_priv(dev);
2155	struct txbd8 *bdp, *next = NULL;
2156	struct txbd8 *lbdp = NULL;
2157	struct txbd8 *base = tx_queue->tx_bd_base;
2158	struct sk_buff *skb;
2159	int skb_dirtytx;
2160	int tx_ring_size = tx_queue->tx_ring_size;
2161	int frags = 0, nr_txbds = 0;
2162	int i;
2163	int howmany = 0;
2164	int tqi = tx_queue->qindex;
2165	unsigned int bytes_sent = 0;
2166	u32 lstatus;
2167	size_t buflen;
2168
2169	txq = netdev_get_tx_queue(dev, tqi);
2170	bdp = tx_queue->dirty_tx;
2171	skb_dirtytx = tx_queue->skb_dirtytx;
2172
2173	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2174		bool do_tstamp;
2175
2176		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2177			    priv->hwts_tx_en;
2178
2179		frags = skb_shinfo(skb)->nr_frags;
2180
2181		/* When time stamping, one additional TxBD must be freed.
2182		 * Also, we need to dma_unmap_single() the TxPAL.
2183		 */
2184		if (unlikely(do_tstamp))
2185			nr_txbds = frags + 2;
2186		else
2187			nr_txbds = frags + 1;
2188
2189		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2190
2191		lstatus = be32_to_cpu(lbdp->lstatus);
2192
2193		/* Only clean completed frames */
2194		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195		    (lstatus & BD_LENGTH_MASK))
2196			break;
2197
2198		if (unlikely(do_tstamp)) {
2199			next = next_txbd(bdp, base, tx_ring_size);
2200			buflen = be16_to_cpu(next->length) +
2201				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202		} else
2203			buflen = be16_to_cpu(bdp->length);
2204
2205		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206				 buflen, DMA_TO_DEVICE);
2207
2208		if (unlikely(do_tstamp)) {
2209			struct skb_shared_hwtstamps shhwtstamps;
2210			__be64 *ns;
2211
2212			ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2213
2214			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217			skb_tstamp_tx(skb, &shhwtstamps);
2218			gfar_clear_txbd_status(bdp);
2219			bdp = next;
2220		}
2221
2222		gfar_clear_txbd_status(bdp);
2223		bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225		for (i = 0; i < frags; i++) {
2226			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227				       be16_to_cpu(bdp->length),
2228				       DMA_TO_DEVICE);
2229			gfar_clear_txbd_status(bdp);
2230			bdp = next_txbd(bdp, base, tx_ring_size);
2231		}
2232
2233		bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235		dev_kfree_skb_any(skb);
2236
2237		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239		skb_dirtytx = (skb_dirtytx + 1) &
2240			      TX_RING_MOD_MASK(tx_ring_size);
2241
2242		howmany++;
2243		spin_lock(&tx_queue->txlock);
2244		tx_queue->num_txbdfree += nr_txbds;
2245		spin_unlock(&tx_queue->txlock);
2246	}
2247
2248	/* If we freed a buffer, we can restart transmission, if necessary */
2249	if (tx_queue->num_txbdfree &&
2250	    netif_tx_queue_stopped(txq) &&
2251	    !(test_bit(GFAR_DOWN, &priv->state)))
2252		netif_wake_subqueue(priv->ndev, tqi);
2253
2254	/* Update dirty indicators */
2255	tx_queue->skb_dirtytx = skb_dirtytx;
2256	tx_queue->dirty_tx = bdp;
2257
2258	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259}
2260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261static void count_errors(u32 lstatus, struct net_device *ndev)
2262{
2263	struct gfar_private *priv = netdev_priv(ndev);
2264	struct net_device_stats *stats = &ndev->stats;
2265	struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267	/* If the packet was truncated, none of the other errors matter */
2268	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269		stats->rx_length_errors++;
2270
2271		atomic64_inc(&estats->rx_trunc);
2272
2273		return;
2274	}
2275	/* Count the errors, if there were any */
2276	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277		stats->rx_length_errors++;
2278
2279		if (lstatus & BD_LFLAG(RXBD_LARGE))
2280			atomic64_inc(&estats->rx_large);
2281		else
2282			atomic64_inc(&estats->rx_short);
2283	}
2284	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285		stats->rx_frame_errors++;
2286		atomic64_inc(&estats->rx_nonoctet);
2287	}
2288	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289		atomic64_inc(&estats->rx_crcerr);
2290		stats->rx_crc_errors++;
2291	}
2292	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293		atomic64_inc(&estats->rx_overrun);
2294		stats->rx_over_errors++;
2295	}
2296}
2297
2298static irqreturn_t gfar_receive(int irq, void *grp_id)
2299{
2300	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301	unsigned long flags;
2302	u32 imask, ievent;
2303
2304	ievent = gfar_read(&grp->regs->ievent);
2305
2306	if (unlikely(ievent & IEVENT_FGPI)) {
2307		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308		return IRQ_HANDLED;
2309	}
2310
2311	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312		spin_lock_irqsave(&grp->grplock, flags);
2313		imask = gfar_read(&grp->regs->imask);
2314		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315		gfar_write(&grp->regs->imask, imask);
2316		spin_unlock_irqrestore(&grp->grplock, flags);
2317		__napi_schedule(&grp->napi_rx);
2318	} else {
2319		/* Clear IEVENT, so interrupts aren't called again
2320		 * because of the packets that have already arrived.
2321		 */
2322		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323	}
2324
2325	return IRQ_HANDLED;
2326}
2327
2328/* Interrupt Handler for Transmit complete */
2329static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330{
2331	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332	unsigned long flags;
2333	u32 imask;
2334
2335	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336		spin_lock_irqsave(&grp->grplock, flags);
2337		imask = gfar_read(&grp->regs->imask);
2338		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339		gfar_write(&grp->regs->imask, imask);
2340		spin_unlock_irqrestore(&grp->grplock, flags);
2341		__napi_schedule(&grp->napi_tx);
2342	} else {
2343		/* Clear IEVENT, so interrupts aren't called again
2344		 * because of the packets that have already arrived.
2345		 */
2346		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347	}
2348
2349	return IRQ_HANDLED;
2350}
2351
2352static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353			     struct sk_buff *skb, bool first)
2354{
2355	int size = lstatus & BD_LENGTH_MASK;
2356	struct page *page = rxb->page;
2357
2358	if (likely(first)) {
2359		skb_put(skb, size);
2360	} else {
2361		/* the last fragments' length contains the full frame length */
2362		if (lstatus & BD_LFLAG(RXBD_LAST))
2363			size -= skb->len;
2364
2365		WARN(size < 0, "gianfar: rx fragment size underflow");
2366		if (size < 0)
2367			return false;
2368
 
 
 
2369		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370				rxb->page_offset + RXBUF_ALIGNMENT,
2371				size, GFAR_RXB_TRUESIZE);
2372	}
2373
2374	/* try reuse page */
2375	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376		return false;
2377
2378	/* change offset to the other half */
2379	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2380
2381	page_ref_inc(page);
2382
2383	return true;
2384}
2385
2386static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387			       struct gfar_rx_buff *old_rxb)
2388{
2389	struct gfar_rx_buff *new_rxb;
2390	u16 nta = rxq->next_to_alloc;
2391
2392	new_rxb = &rxq->rx_buff[nta];
2393
2394	/* find next buf that can reuse a page */
2395	nta++;
2396	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398	/* copy page reference */
2399	*new_rxb = *old_rxb;
2400
2401	/* sync for use by the device */
2402	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403					 old_rxb->page_offset,
2404					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405}
2406
2407static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408					    u32 lstatus, struct sk_buff *skb)
2409{
2410	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411	struct page *page = rxb->page;
2412	bool first = false;
2413
2414	if (likely(!skb)) {
2415		void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418		if (unlikely(!skb)) {
2419			gfar_rx_alloc_err(rx_queue);
2420			return NULL;
2421		}
2422		skb_reserve(skb, RXBUF_ALIGNMENT);
2423		first = true;
2424	}
2425
2426	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430		/* reuse the free half of the page */
2431		gfar_reuse_rx_page(rx_queue, rxb);
2432	} else {
2433		/* page cannot be reused, unmap it */
2434		dma_unmap_page(rx_queue->dev, rxb->dma,
2435			       PAGE_SIZE, DMA_FROM_DEVICE);
2436	}
2437
2438	/* clear rxb content */
2439	rxb->page = NULL;
2440
2441	return skb;
2442}
2443
2444static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445{
2446	/* If valid headers were found, and valid sums
2447	 * were verified, then we tell the kernel that no
2448	 * checksumming is necessary.  Otherwise, it is [FIXME]
2449	 */
2450	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451	    (RXFCB_CIP | RXFCB_CTU))
2452		skb->ip_summed = CHECKSUM_UNNECESSARY;
2453	else
2454		skb_checksum_none_assert(skb);
2455}
2456
2457/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2459{
2460	struct gfar_private *priv = netdev_priv(ndev);
2461	struct rxfcb *fcb = NULL;
2462
2463	/* fcb is at the beginning if exists */
2464	fcb = (struct rxfcb *)skb->data;
2465
2466	/* Remove the FCB from the skb
2467	 * Remove the padded bytes, if there are any
2468	 */
2469	if (priv->uses_rxfcb)
2470		skb_pull(skb, GMAC_FCB_LEN);
2471
2472	/* Get receive timestamp from the skb */
2473	if (priv->hwts_rx_en) {
2474		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475		__be64 *ns = (__be64 *)skb->data;
2476
2477		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479	}
2480
2481	if (priv->padding)
2482		skb_pull(skb, priv->padding);
2483
2484	/* Trim off the FCS */
2485	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487	if (ndev->features & NETIF_F_RXCSUM)
2488		gfar_rx_checksum(skb, fcb);
2489
 
 
 
2490	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491	 * Even if vlan rx accel is disabled, on some chips
2492	 * RXFCB_VLN is pseudo randomly set.
2493	 */
2494	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497				       be16_to_cpu(fcb->vlctl));
2498}
2499
2500/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
2504static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505			      int rx_work_limit)
2506{
2507	struct net_device *ndev = rx_queue->ndev;
2508	struct gfar_private *priv = netdev_priv(ndev);
2509	struct rxbd8 *bdp;
2510	int i, howmany = 0;
2511	struct sk_buff *skb = rx_queue->skb;
2512	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513	unsigned int total_bytes = 0, total_pkts = 0;
2514
2515	/* Get the first full descriptor */
2516	i = rx_queue->next_to_clean;
2517
2518	while (rx_work_limit--) {
2519		u32 lstatus;
2520
2521		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523			cleaned_cnt = 0;
2524		}
2525
2526		bdp = &rx_queue->rx_bd_base[i];
2527		lstatus = be32_to_cpu(bdp->lstatus);
2528		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529			break;
2530
2531		/* lost RXBD_LAST descriptor due to overrun */
2532		if (skb &&
2533		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534			/* discard faulty buffer */
2535			dev_kfree_skb(skb);
2536			skb = NULL;
2537			rx_queue->stats.rx_dropped++;
2538
2539			/* can continue normally */
2540		}
2541
2542		/* order rx buffer descriptor reads */
2543		rmb();
2544
2545		/* fetch next to clean buffer from the ring */
2546		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547		if (unlikely(!skb))
2548			break;
2549
2550		cleaned_cnt++;
2551		howmany++;
2552
2553		if (unlikely(++i == rx_queue->rx_ring_size))
2554			i = 0;
2555
2556		rx_queue->next_to_clean = i;
2557
2558		/* fetch next buffer if not the last in frame */
2559		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560			continue;
2561
2562		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563			count_errors(lstatus, ndev);
2564
2565			/* discard faulty buffer */
2566			dev_kfree_skb(skb);
2567			skb = NULL;
2568			rx_queue->stats.rx_dropped++;
2569			continue;
2570		}
2571
2572		gfar_process_frame(ndev, skb);
2573
2574		/* Increment the number of packets */
2575		total_pkts++;
2576		total_bytes += skb->len;
2577
2578		skb_record_rx_queue(skb, rx_queue->qindex);
2579
2580		skb->protocol = eth_type_trans(skb, ndev);
2581
2582		/* Send the packet up the stack */
2583		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585		skb = NULL;
2586	}
2587
2588	/* Store incomplete frames for completion */
2589	rx_queue->skb = skb;
2590
2591	rx_queue->stats.rx_packets += total_pkts;
2592	rx_queue->stats.rx_bytes += total_bytes;
2593
2594	if (cleaned_cnt)
2595		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597	/* Update Last Free RxBD pointer for LFC */
2598	if (unlikely(priv->tx_actual_en)) {
2599		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601		gfar_write(rx_queue->rfbptr, bdp_dma);
2602	}
2603
2604	return howmany;
2605}
2606
2607static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608{
2609	struct gfar_priv_grp *gfargrp =
2610		container_of(napi, struct gfar_priv_grp, napi_rx);
2611	struct gfar __iomem *regs = gfargrp->regs;
2612	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613	int work_done = 0;
2614
2615	/* Clear IEVENT, so interrupts aren't called again
2616	 * because of the packets that have already arrived
2617	 */
2618	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2619
2620	work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622	if (work_done < budget) {
2623		u32 imask;
2624		napi_complete_done(napi, work_done);
2625		/* Clear the halt bit in RSTAT */
2626		gfar_write(&regs->rstat, gfargrp->rstat);
2627
2628		spin_lock_irq(&gfargrp->grplock);
2629		imask = gfar_read(&regs->imask);
2630		imask |= IMASK_RX_DEFAULT;
2631		gfar_write(&regs->imask, imask);
2632		spin_unlock_irq(&gfargrp->grplock);
2633	}
2634
2635	return work_done;
2636}
2637
2638static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639{
2640	struct gfar_priv_grp *gfargrp =
2641		container_of(napi, struct gfar_priv_grp, napi_tx);
2642	struct gfar __iomem *regs = gfargrp->regs;
2643	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644	u32 imask;
2645
2646	/* Clear IEVENT, so interrupts aren't called again
2647	 * because of the packets that have already arrived
2648	 */
2649	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2650
2651	/* run Tx cleanup to completion */
2652	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653		gfar_clean_tx_ring(tx_queue);
2654
2655	napi_complete(napi);
2656
2657	spin_lock_irq(&gfargrp->grplock);
2658	imask = gfar_read(&regs->imask);
2659	imask |= IMASK_TX_DEFAULT;
2660	gfar_write(&regs->imask, imask);
2661	spin_unlock_irq(&gfargrp->grplock);
2662
2663	return 0;
2664}
2665
2666/* GFAR error interrupt handler */
2667static irqreturn_t gfar_error(int irq, void *grp_id)
2668{
2669	struct gfar_priv_grp *gfargrp = grp_id;
 
 
2670	struct gfar __iomem *regs = gfargrp->regs;
2671	struct gfar_private *priv= gfargrp->priv;
2672	struct net_device *dev = priv->ndev;
2673
2674	/* Save ievent for future reference */
2675	u32 events = gfar_read(&regs->ievent);
2676
2677	/* Clear IEVENT */
2678	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
 
 
2679
2680	/* Magic Packet is not an error. */
2681	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682	    (events & IEVENT_MAG))
2683		events &= ~IEVENT_MAG;
2684
2685	/* Hmm... */
2686	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687		netdev_dbg(dev,
2688			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689			   events, gfar_read(&regs->imask));
2690
2691	/* Update the error counters */
2692	if (events & IEVENT_TXE) {
2693		dev->stats.tx_errors++;
2694
2695		if (events & IEVENT_LC)
2696			dev->stats.tx_window_errors++;
2697		if (events & IEVENT_CRL)
2698			dev->stats.tx_aborted_errors++;
2699		if (events & IEVENT_XFUN) {
2700			netif_dbg(priv, tx_err, dev,
2701				  "TX FIFO underrun, packet dropped\n");
2702			dev->stats.tx_dropped++;
2703			atomic64_inc(&priv->extra_stats.tx_underrun);
 
 
2704
2705			schedule_work(&priv->reset_task);
2706		}
2707		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708	}
2709	if (events & IEVENT_MSRO) {
2710		struct rmon_mib __iomem *rmon = &regs->rmon;
2711		u32 car;
2712
2713		spin_lock(&priv->rmon_overflow.lock);
2714		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715		if (car) {
2716			priv->rmon_overflow.rdrp++;
2717			gfar_write(&rmon->car1, car);
2718		}
2719		spin_unlock(&priv->rmon_overflow.lock);
2720	}
2721	if (events & IEVENT_BSY) {
2722		dev->stats.rx_over_errors++;
2723		atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726			  gfar_read(&regs->rstat));
2727	}
2728	if (events & IEVENT_BABR) {
2729		dev->stats.rx_errors++;
2730		atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733	}
2734	if (events & IEVENT_EBERR) {
2735		atomic64_inc(&priv->extra_stats.eberr);
2736		netif_dbg(priv, rx_err, dev, "bus error\n");
2737	}
2738	if (events & IEVENT_RXC)
2739		netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741	if (events & IEVENT_BABT) {
2742		atomic64_inc(&priv->extra_stats.tx_babt);
2743		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
 
 
2744	}
2745	return IRQ_HANDLED;
 
2746}
2747
2748/* The interrupt handler for devices with one interrupt */
2749static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750{
2751	struct gfar_priv_grp *gfargrp = grp_id;
 
 
 
 
 
 
2752
2753	/* Save ievent for future reference */
2754	u32 events = gfar_read(&gfargrp->regs->ievent);
 
 
2755
2756	/* Check for reception */
2757	if (events & IEVENT_RX_MASK)
2758		gfar_receive(irq, grp_id);
 
 
 
 
 
2759
2760	/* Check for transmit completion */
2761	if (events & IEVENT_TX_MASK)
2762		gfar_transmit(irq, grp_id);
2763
2764	/* Check for errors */
2765	if (events & IEVENT_ERR_MASK)
2766		gfar_error(irq, grp_id);
 
 
 
2767
2768	return IRQ_HANDLED;
2769}
2770
 
2771#ifdef CONFIG_NET_POLL_CONTROLLER
2772/* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2775 */
2776static void gfar_netpoll(struct net_device *dev)
2777{
2778	struct gfar_private *priv = netdev_priv(dev);
2779	int i;
2780
2781	/* If the device has multiple interrupts, run tx/rx */
2782	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783		for (i = 0; i < priv->num_grps; i++) {
2784			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786			disable_irq(gfar_irq(grp, TX)->irq);
2787			disable_irq(gfar_irq(grp, RX)->irq);
2788			disable_irq(gfar_irq(grp, ER)->irq);
2789			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790			enable_irq(gfar_irq(grp, ER)->irq);
2791			enable_irq(gfar_irq(grp, RX)->irq);
2792			enable_irq(gfar_irq(grp, TX)->irq);
2793		}
2794	} else {
2795		for (i = 0; i < priv->num_grps; i++) {
2796			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798			disable_irq(gfar_irq(grp, TX)->irq);
2799			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800			enable_irq(gfar_irq(grp, TX)->irq);
2801		}
2802	}
2803}
2804#endif
2805
2806static void free_grp_irqs(struct gfar_priv_grp *grp)
2807{
2808	free_irq(gfar_irq(grp, TX)->irq, grp);
2809	free_irq(gfar_irq(grp, RX)->irq, grp);
2810	free_irq(gfar_irq(grp, ER)->irq, grp);
2811}
2812
2813static int register_grp_irqs(struct gfar_priv_grp *grp)
2814{
2815	struct gfar_private *priv = grp->priv;
2816	struct net_device *dev = priv->ndev;
2817	int err;
2818
2819	/* If the device has multiple interrupts, register for
2820	 * them.  Otherwise, only register for the one
2821	 */
2822	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823		/* Install our interrupt handlers for Error,
2824		 * Transmit, and Receive
2825		 */
2826		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827				  gfar_irq(grp, ER)->name, grp);
2828		if (err < 0) {
2829			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830				  gfar_irq(grp, ER)->irq);
2831
2832			goto err_irq_fail;
2833		}
2834		enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837				  gfar_irq(grp, TX)->name, grp);
2838		if (err < 0) {
2839			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840				  gfar_irq(grp, TX)->irq);
2841			goto tx_irq_fail;
2842		}
2843		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844				  gfar_irq(grp, RX)->name, grp);
2845		if (err < 0) {
2846			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847				  gfar_irq(grp, RX)->irq);
2848			goto rx_irq_fail;
2849		}
2850		enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852	} else {
2853		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854				  gfar_irq(grp, TX)->name, grp);
2855		if (err < 0) {
2856			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857				  gfar_irq(grp, TX)->irq);
2858			goto err_irq_fail;
2859		}
2860		enable_irq_wake(gfar_irq(grp, TX)->irq);
2861	}
2862
2863	return 0;
2864
2865rx_irq_fail:
2866	free_irq(gfar_irq(grp, TX)->irq, grp);
2867tx_irq_fail:
2868	free_irq(gfar_irq(grp, ER)->irq, grp);
2869err_irq_fail:
2870	return err;
2871
2872}
2873
2874static void gfar_free_irq(struct gfar_private *priv)
2875{
2876	int i;
2877
2878	/* Free the IRQs */
2879	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880		for (i = 0; i < priv->num_grps; i++)
2881			free_grp_irqs(&priv->gfargrp[i]);
2882	} else {
2883		for (i = 0; i < priv->num_grps; i++)
2884			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885				 &priv->gfargrp[i]);
2886	}
2887}
2888
2889static int gfar_request_irq(struct gfar_private *priv)
2890{
2891	int err, i, j;
2892
2893	for (i = 0; i < priv->num_grps; i++) {
2894		err = register_grp_irqs(&priv->gfargrp[i]);
2895		if (err) {
2896			for (j = 0; j < i; j++)
2897				free_grp_irqs(&priv->gfargrp[j]);
2898			return err;
2899		}
2900	}
2901
2902	return 0;
2903}
2904
2905/* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
 
 
 
2907 */
2908static int gfar_enet_open(struct net_device *dev)
2909{
2910	struct gfar_private *priv = netdev_priv(dev);
2911	int err;
2912
2913	err = init_phy(dev);
2914	if (err)
2915		return err;
2916
2917	err = gfar_request_irq(priv);
2918	if (err)
2919		return err;
2920
2921	err = startup_gfar(dev);
2922	if (err)
2923		return err;
2924
2925	return err;
2926}
2927
2928/* Stops the kernel queue, and halts the controller */
2929static int gfar_close(struct net_device *dev)
2930{
2931	struct gfar_private *priv = netdev_priv(dev);
 
2932
2933	cancel_work_sync(&priv->reset_task);
2934	stop_gfar(dev);
2935
2936	/* Disconnect from the PHY */
2937	phy_disconnect(dev->phydev);
2938
2939	gfar_free_irq(priv);
2940
2941	return 0;
2942}
2943
2944/* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
2947static void gfar_clear_exact_match(struct net_device *dev)
2948{
2949	int idx;
2950	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953		gfar_set_mac_for_addr(dev, idx, zero_arr);
2954}
2955
2956/* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to.  Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
2961static void gfar_set_multi(struct net_device *dev)
2962{
2963	struct netdev_hw_addr *ha;
2964	struct gfar_private *priv = netdev_priv(dev);
2965	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966	u32 tempval;
2967
2968	if (dev->flags & IFF_PROMISC) {
2969		/* Set RCTRL to PROM */
2970		tempval = gfar_read(&regs->rctrl);
2971		tempval |= RCTRL_PROM;
2972		gfar_write(&regs->rctrl, tempval);
2973	} else {
2974		/* Set RCTRL to not PROM */
2975		tempval = gfar_read(&regs->rctrl);
2976		tempval &= ~(RCTRL_PROM);
2977		gfar_write(&regs->rctrl, tempval);
2978	}
2979
2980	if (dev->flags & IFF_ALLMULTI) {
2981		/* Set the hash to rx all multicast frames */
2982		gfar_write(&regs->igaddr0, 0xffffffff);
2983		gfar_write(&regs->igaddr1, 0xffffffff);
2984		gfar_write(&regs->igaddr2, 0xffffffff);
2985		gfar_write(&regs->igaddr3, 0xffffffff);
2986		gfar_write(&regs->igaddr4, 0xffffffff);
2987		gfar_write(&regs->igaddr5, 0xffffffff);
2988		gfar_write(&regs->igaddr6, 0xffffffff);
2989		gfar_write(&regs->igaddr7, 0xffffffff);
2990		gfar_write(&regs->gaddr0, 0xffffffff);
2991		gfar_write(&regs->gaddr1, 0xffffffff);
2992		gfar_write(&regs->gaddr2, 0xffffffff);
2993		gfar_write(&regs->gaddr3, 0xffffffff);
2994		gfar_write(&regs->gaddr4, 0xffffffff);
2995		gfar_write(&regs->gaddr5, 0xffffffff);
2996		gfar_write(&regs->gaddr6, 0xffffffff);
2997		gfar_write(&regs->gaddr7, 0xffffffff);
2998	} else {
2999		int em_num;
3000		int idx;
3001
3002		/* zero out the hash */
3003		gfar_write(&regs->igaddr0, 0x0);
3004		gfar_write(&regs->igaddr1, 0x0);
3005		gfar_write(&regs->igaddr2, 0x0);
3006		gfar_write(&regs->igaddr3, 0x0);
3007		gfar_write(&regs->igaddr4, 0x0);
3008		gfar_write(&regs->igaddr5, 0x0);
3009		gfar_write(&regs->igaddr6, 0x0);
3010		gfar_write(&regs->igaddr7, 0x0);
3011		gfar_write(&regs->gaddr0, 0x0);
3012		gfar_write(&regs->gaddr1, 0x0);
3013		gfar_write(&regs->gaddr2, 0x0);
3014		gfar_write(&regs->gaddr3, 0x0);
3015		gfar_write(&regs->gaddr4, 0x0);
3016		gfar_write(&regs->gaddr5, 0x0);
3017		gfar_write(&regs->gaddr6, 0x0);
3018		gfar_write(&regs->gaddr7, 0x0);
3019
3020		/* If we have extended hash tables, we need to
3021		 * clear the exact match registers to prepare for
3022		 * setting them
3023		 */
3024		if (priv->extended_hash) {
3025			em_num = GFAR_EM_NUM + 1;
3026			gfar_clear_exact_match(dev);
3027			idx = 1;
3028		} else {
3029			idx = 0;
3030			em_num = 0;
3031		}
3032
3033		if (netdev_mc_empty(dev))
3034			return;
3035
3036		/* Parse the list, and set the appropriate bits */
3037		netdev_for_each_mc_addr(ha, dev) {
3038			if (idx < em_num) {
3039				gfar_set_mac_for_addr(dev, idx, ha->addr);
3040				idx++;
3041			} else
3042				gfar_set_hash_for_addr(dev, ha->addr);
3043		}
3044	}
3045}
3046
3047void gfar_mac_reset(struct gfar_private *priv)
3048{
3049	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050	u32 tempval;
3051
3052	/* Reset MAC layer */
3053	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3054
3055	/* We need to delay at least 3 TX clocks */
3056	udelay(3);
3057
3058	/* the soft reset bit is not self-resetting, so we need to
3059	 * clear it before resuming normal operation
3060	 */
3061	gfar_write(&regs->maccfg1, 0);
3062
3063	udelay(3);
3064
3065	gfar_rx_offload_en(priv);
3066
3067	/* Initialize the max receive frame/buffer lengths */
3068	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3070
3071	/* Initialize the Minimum Frame Length Register */
3072	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3073
3074	/* Initialize MACCFG2. */
3075	tempval = MACCFG2_INIT_SETTINGS;
3076
3077	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3079	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080	 */
3081	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084	gfar_write(&regs->maccfg2, tempval);
3085
3086	/* Clear mac addr hash registers */
3087	gfar_write(&regs->igaddr0, 0);
3088	gfar_write(&regs->igaddr1, 0);
3089	gfar_write(&regs->igaddr2, 0);
3090	gfar_write(&regs->igaddr3, 0);
3091	gfar_write(&regs->igaddr4, 0);
3092	gfar_write(&regs->igaddr5, 0);
3093	gfar_write(&regs->igaddr6, 0);
3094	gfar_write(&regs->igaddr7, 0);
3095
3096	gfar_write(&regs->gaddr0, 0);
3097	gfar_write(&regs->gaddr1, 0);
3098	gfar_write(&regs->gaddr2, 0);
3099	gfar_write(&regs->gaddr3, 0);
3100	gfar_write(&regs->gaddr4, 0);
3101	gfar_write(&regs->gaddr5, 0);
3102	gfar_write(&regs->gaddr6, 0);
3103	gfar_write(&regs->gaddr7, 0);
3104
3105	if (priv->extended_hash)
3106		gfar_clear_exact_match(priv->ndev);
3107
3108	gfar_mac_rx_config(priv);
3109
3110	gfar_mac_tx_config(priv);
3111
3112	gfar_set_mac_address(priv->ndev);
3113
3114	gfar_set_multi(priv->ndev);
3115
3116	/* clear ievent and imask before configuring coalescing */
3117	gfar_ints_disable(priv);
3118
3119	/* Configure the coalescing support */
3120	gfar_configure_coalescing_all(priv);
3121}
3122
3123static void gfar_hw_init(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124{
3125	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126	u32 attrs;
3127
3128	/* Stop the DMA engine now, in case it was running before
3129	 * (The firmware could have used it, and left it running).
3130	 */
3131	gfar_halt(priv);
3132
3133	gfar_mac_reset(priv);
3134
3135	/* Zero out the rmon mib registers if it has them */
3136	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139		/* Mask off the CAM interrupts */
3140		gfar_write(&regs->rmon.cam1, 0xffffffff);
3141		gfar_write(&regs->rmon.cam2, 0xffffffff);
3142		/* Clear the CAR registers (w1c style) */
3143		gfar_write(&regs->rmon.car1, 0xffffffff);
3144		gfar_write(&regs->rmon.car2, 0xffffffff);
3145	}
3146
3147	/* Initialize ECNTRL */
3148	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150	/* Set the extraction length and index */
3151	attrs = ATTRELI_EL(priv->rx_stash_size) |
3152		ATTRELI_EI(priv->rx_stash_index);
3153
3154	gfar_write(&regs->attreli, attrs);
3155
3156	/* Start with defaults, and add stashing
3157	 * depending on driver parameters
3158	 */
3159	attrs = ATTR_INIT_SETTINGS;
3160
3161	if (priv->bd_stash_en)
3162		attrs |= ATTR_BDSTASH;
3163
3164	if (priv->rx_stash_size != 0)
3165		attrs |= ATTR_BUFSTASH;
3166
3167	gfar_write(&regs->attr, attrs);
3168
3169	/* FIFO configs */
3170	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174	/* Program the interrupt steering regs, only for MG devices */
3175	if (priv->num_grps > 1)
3176		gfar_write_isrg(priv);
3177}
3178
3179static const struct net_device_ops gfar_netdev_ops = {
3180	.ndo_open = gfar_enet_open,
3181	.ndo_start_xmit = gfar_start_xmit,
3182	.ndo_stop = gfar_close,
3183	.ndo_change_mtu = gfar_change_mtu,
3184	.ndo_set_features = gfar_set_features,
3185	.ndo_set_rx_mode = gfar_set_multi,
3186	.ndo_tx_timeout = gfar_timeout,
3187	.ndo_eth_ioctl = gfar_ioctl,
3188	.ndo_get_stats64 = gfar_get_stats64,
3189	.ndo_change_carrier = fixed_phy_change_carrier,
3190	.ndo_set_mac_address = gfar_set_mac_addr,
3191	.ndo_validate_addr = eth_validate_addr,
3192#ifdef CONFIG_NET_POLL_CONTROLLER
3193	.ndo_poll_controller = gfar_netpoll,
3194#endif
3195};
3196
3197/* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
3200static int gfar_probe(struct platform_device *ofdev)
 
3201{
3202	struct device_node *np = ofdev->dev.of_node;
3203	struct net_device *dev = NULL;
3204	struct gfar_private *priv = NULL;
3205	int err = 0, i;
3206
3207	err = gfar_of_init(ofdev, &dev);
3208
3209	if (err)
3210		return err;
3211
3212	priv = netdev_priv(dev);
3213	priv->ndev = dev;
3214	priv->ofdev = ofdev;
3215	priv->dev = &ofdev->dev;
3216	SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218	INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220	platform_set_drvdata(ofdev, priv);
 
 
 
 
 
3221
3222	gfar_detect_errata(priv);
3223
3224	/* Set the dev->base_addr to the gfar reg region */
3225	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227	/* Fill in the dev structure */
3228	dev->watchdog_timeo = TX_TIMEOUT;
3229	/* MTU range: 50 - 9586 */
3230	dev->mtu = 1500;
3231	dev->min_mtu = 50;
3232	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233	dev->netdev_ops = &gfar_netdev_ops;
3234	dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236	/* Register for napi ...We are registering NAPI for each grp */
3237	for (i = 0; i < priv->num_grps; i++) {
3238		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239			       gfar_poll_rx_sq);
3240		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3241					 gfar_poll_tx_sq, 2);
3242	}
3243
3244	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246				   NETIF_F_RXCSUM;
3247		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249	}
3250
3251	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253				    NETIF_F_HW_VLAN_CTAG_RX;
3254		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255	}
3256
3257	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
 
 
 
3258
3259	gfar_init_addr_hash_table(priv);
 
 
 
 
3260
3261	/* Insert receive time stamps into padding alignment bytes, and
3262	 * plus 2 bytes padding to ensure the cpu alignment.
3263	 */
3264	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265		priv->padding = 8 + DEFAULT_PADDING;
3266
3267	if (dev->features & NETIF_F_IP_CSUM ||
3268	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
 
 
 
 
 
 
3270
3271	/* Initializing some of the rx/tx queue level parameters */
3272	for (i = 0; i < priv->num_tx_queues; i++) {
3273		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277	}
 
 
 
3278
3279	for (i = 0; i < priv->num_rx_queues; i++) {
3280		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283	}
 
 
 
3284
3285	/* Always enable rx filer if available */
3286	priv->rx_filer_enable =
3287	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288	/* Enable most messages by default */
3289	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290	/* use pritority h/w tx queue scheduling for single queue devices */
3291	if (priv->num_tx_queues == 1)
3292		priv->prio_sched_en = 1;
3293
3294	set_bit(GFAR_DOWN, &priv->state);
3295
3296	gfar_hw_init(priv);
3297
3298	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301		spin_lock_init(&priv->rmon_overflow.lock);
3302		priv->rmon_overflow.imask = IMASK_MSRO;
3303		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304	}
3305
3306	/* Carrier starts down, phylib will bring it up */
3307	netif_carrier_off(dev);
3308
3309	err = register_netdev(dev);
3310
3311	if (err) {
3312		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313		goto register_fail;
3314	}
 
 
3315
3316	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317		priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320	    priv->rx_filer_enable)
3321		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325	/* fill out IRQ number and name fields */
3326	for (i = 0; i < priv->num_grps; i++) {
3327		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330				dev->name, "_g", '0' + i, "_tx");
3331			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332				dev->name, "_g", '0' + i, "_rx");
3333			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334				dev->name, "_g", '0' + i, "_er");
3335		} else
3336			strcpy(gfar_irq(grp, TX)->name, dev->name);
3337	}
3338
3339	/* Initialize the filer table */
3340	gfar_init_filer_table(priv);
3341
3342	/* Print out the device info */
3343	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345	/* Even more device info helps when determining which kernel
3346	 * provided which set of benchmarks.
3347	 */
3348	netdev_info(dev, "Running with NAPI enabled\n");
3349	for (i = 0; i < priv->num_rx_queues; i++)
3350		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351			    i, priv->rx_queue[i]->rx_ring_size);
3352	for (i = 0; i < priv->num_tx_queues; i++)
3353		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354			    i, priv->tx_queue[i]->tx_ring_size);
3355
3356	return 0;
3357
3358register_fail:
3359	if (of_phy_is_fixed_link(np))
3360		of_phy_deregister_fixed_link(np);
3361	unmap_group_regs(priv);
3362	gfar_free_rx_queues(priv);
3363	gfar_free_tx_queues(priv);
3364	of_node_put(priv->phy_node);
3365	of_node_put(priv->tbi_node);
3366	free_gfar_dev(priv);
3367	return err;
3368}
3369
3370static void gfar_remove(struct platform_device *ofdev)
3371{
3372	struct gfar_private *priv = platform_get_drvdata(ofdev);
3373	struct device_node *np = ofdev->dev.of_node;
3374
3375	of_node_put(priv->phy_node);
3376	of_node_put(priv->tbi_node);
3377
3378	unregister_netdev(priv->ndev);
3379
3380	if (of_phy_is_fixed_link(np))
3381		of_phy_deregister_fixed_link(np);
3382
3383	unmap_group_regs(priv);
3384	gfar_free_rx_queues(priv);
3385	gfar_free_tx_queues(priv);
3386	free_gfar_dev(priv);
3387}
3388
3389#ifdef CONFIG_PM
3390
3391static void __gfar_filer_disable(struct gfar_private *priv)
3392{
3393	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3394	u32 temp;
3395
3396	temp = gfar_read(&regs->rctrl);
3397	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3398	gfar_write(&regs->rctrl, temp);
3399}
3400
3401static void __gfar_filer_enable(struct gfar_private *priv)
3402{
3403	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3404	u32 temp;
3405
3406	temp = gfar_read(&regs->rctrl);
3407	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3408	gfar_write(&regs->rctrl, temp);
3409}
3410
3411/* Filer rules implementing wol capabilities */
3412static void gfar_filer_config_wol(struct gfar_private *priv)
3413{
3414	unsigned int i;
3415	u32 rqfcr;
3416
3417	__gfar_filer_disable(priv);
3418
3419	/* clear the filer table, reject any packet by default */
3420	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3421	for (i = 0; i <= MAX_FILER_IDX; i++)
3422		gfar_write_filer(priv, i, rqfcr, 0);
3423
3424	i = 0;
3425	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3426		/* unicast packet, accept it */
3427		struct net_device *ndev = priv->ndev;
3428		/* get the default rx queue index */
3429		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3430		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3431				    (ndev->dev_addr[1] << 8) |
3432				     ndev->dev_addr[2];
3433
3434		rqfcr = (qindex << 10) | RQFCR_AND |
3435			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3436
3437		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3438
3439		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3440				(ndev->dev_addr[4] << 8) |
3441				 ndev->dev_addr[5];
3442		rqfcr = (qindex << 10) | RQFCR_GPI |
3443			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3444		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3445	}
3446
3447	__gfar_filer_enable(priv);
3448}
3449
3450static void gfar_filer_restore_table(struct gfar_private *priv)
3451{
3452	u32 rqfcr, rqfpr;
3453	unsigned int i;
 
 
 
 
 
 
 
 
 
 
3454
3455	__gfar_filer_disable(priv);
 
 
 
 
3456
3457	for (i = 0; i <= MAX_FILER_IDX; i++) {
3458		rqfcr = priv->ftp_rqfcr[i];
3459		rqfpr = priv->ftp_rqfpr[i];
3460		gfar_write_filer(priv, i, rqfcr, rqfpr);
 
3461	}
3462
3463	__gfar_filer_enable(priv);
3464}
3465
3466/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3467static void gfar_start_wol_filer(struct gfar_private *priv)
3468{
3469	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3470	u32 tempval;
3471	int i = 0;
3472
3473	/* Enable Rx hw queues */
3474	gfar_write(&regs->rqueue, priv->rqueue);
3475
3476	/* Initialize DMACTRL to have WWR and WOP */
3477	tempval = gfar_read(&regs->dmactrl);
3478	tempval |= DMACTRL_INIT_SETTINGS;
3479	gfar_write(&regs->dmactrl, tempval);
3480
3481	/* Make sure we aren't stopped */
3482	tempval = gfar_read(&regs->dmactrl);
3483	tempval &= ~DMACTRL_GRS;
3484	gfar_write(&regs->dmactrl, tempval);
3485
3486	for (i = 0; i < priv->num_grps; i++) {
3487		regs = priv->gfargrp[i].regs;
3488		/* Clear RHLT, so that the DMA starts polling now */
3489		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3490		/* enable the Filer General Purpose Interrupt */
3491		gfar_write(&regs->imask, IMASK_FGPI);
3492	}
3493
3494	/* Enable Rx DMA */
3495	tempval = gfar_read(&regs->maccfg1);
3496	tempval |= MACCFG1_RX_EN;
3497	gfar_write(&regs->maccfg1, tempval);
3498}
3499
3500static int gfar_suspend(struct device *dev)
3501{
3502	struct gfar_private *priv = dev_get_drvdata(dev);
3503	struct net_device *ndev = priv->ndev;
3504	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3505	u32 tempval;
3506	u16 wol = priv->wol_opts;
3507
3508	if (!netif_running(ndev))
3509		return 0;
 
 
 
3510
3511	disable_napi(priv);
3512	netif_tx_lock(ndev);
3513	netif_device_detach(ndev);
3514	netif_tx_unlock(ndev);
3515
3516	gfar_halt(priv);
 
 
 
 
3517
3518	if (wol & GFAR_WOL_MAGIC) {
3519		/* Enable interrupt on Magic Packet */
3520		gfar_write(&regs->imask, IMASK_MAG);
 
 
 
3521
3522		/* Enable Magic Packet mode */
3523		tempval = gfar_read(&regs->maccfg2);
3524		tempval |= MACCFG2_MPEN;
3525		gfar_write(&regs->maccfg2, tempval);
 
 
 
 
 
 
 
 
 
 
3526
3527		/* re-enable the Rx block */
3528		tempval = gfar_read(&regs->maccfg1);
3529		tempval |= MACCFG1_RX_EN;
3530		gfar_write(&regs->maccfg1, tempval);
3531
3532	} else if (wol & GFAR_WOL_FILER_UCAST) {
3533		gfar_filer_config_wol(priv);
3534		gfar_start_wol_filer(priv);
3535
3536	} else {
3537		phy_stop(ndev->phydev);
3538	}
 
3539
3540	return 0;
3541}
 
 
3542
3543static int gfar_resume(struct device *dev)
3544{
3545	struct gfar_private *priv = dev_get_drvdata(dev);
3546	struct net_device *ndev = priv->ndev;
3547	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3548	u32 tempval;
3549	u16 wol = priv->wol_opts;
3550
3551	if (!netif_running(ndev))
3552		return 0;
3553
3554	if (wol & GFAR_WOL_MAGIC) {
3555		/* Disable Magic Packet mode */
3556		tempval = gfar_read(&regs->maccfg2);
3557		tempval &= ~MACCFG2_MPEN;
3558		gfar_write(&regs->maccfg2, tempval);
 
3559
3560	} else if (wol & GFAR_WOL_FILER_UCAST) {
3561		/* need to stop rx only, tx is already down */
3562		gfar_halt(priv);
3563		gfar_filer_restore_table(priv);
3564
3565	} else {
3566		phy_start(ndev->phydev);
3567	}
3568
3569	gfar_start(priv);
3570
3571	netif_device_attach(ndev);
3572	enable_napi(priv);
3573
3574	return 0;
3575}
3576
3577static int gfar_restore(struct device *dev)
3578{
3579	struct gfar_private *priv = dev_get_drvdata(dev);
3580	struct net_device *ndev = priv->ndev;
3581
3582	if (!netif_running(ndev)) {
3583		netif_device_attach(ndev);
3584
3585		return 0;
 
 
 
3586	}
3587
3588	gfar_init_bds(ndev);
3589
3590	gfar_mac_reset(priv);
3591
3592	gfar_init_tx_rx_base(priv);
3593
3594	gfar_start(priv);
3595
3596	priv->oldlink = 0;
3597	priv->oldspeed = 0;
3598	priv->oldduplex = -1;
3599
3600	if (ndev->phydev)
3601		phy_start(ndev->phydev);
3602
3603	netif_device_attach(ndev);
3604	enable_napi(priv);
3605
3606	return 0;
3607}
3608
3609static const struct dev_pm_ops gfar_pm_ops = {
3610	.suspend = gfar_suspend,
3611	.resume = gfar_resume,
3612	.freeze = gfar_suspend,
3613	.thaw = gfar_resume,
3614	.restore = gfar_restore,
3615};
3616
3617#define GFAR_PM_OPS (&gfar_pm_ops)
3618
3619#else
3620
3621#define GFAR_PM_OPS NULL
3622
3623#endif
3624
3625static const struct of_device_id gfar_match[] =
3626{
3627	{
3628		.type = "network",
3629		.compatible = "gianfar",
3630	},
3631	{
3632		.compatible = "fsl,etsec2",
3633	},
3634	{},
3635};
3636MODULE_DEVICE_TABLE(of, gfar_match);
3637
3638/* Structure for a device driver */
3639static struct platform_driver gfar_driver = {
3640	.driver = {
3641		.name = "fsl-gianfar",
3642		.pm = GFAR_PM_OPS,
3643		.of_match_table = gfar_match,
3644	},
3645	.probe = gfar_probe,
3646	.remove = gfar_remove,
3647};
3648
3649module_platform_driver(gfar_driver);
v4.6
 
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
 
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <asm/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120				int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148				  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156			    dma_addr_t buf)
 157{
 158	u32 lstatus;
 159
 160	bdp->bufPtr = cpu_to_be32(buf);
 161
 162	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164		lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166	gfar_wmb();
 167
 168	bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173	struct gfar_private *priv = netdev_priv(ndev);
 174	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175	struct gfar_priv_tx_q *tx_queue = NULL;
 176	struct gfar_priv_rx_q *rx_queue = NULL;
 177	struct txbd8 *txbdp;
 178	u32 __iomem *rfbptr;
 179	int i, j;
 180
 181	for (i = 0; i < priv->num_tx_queues; i++) {
 182		tx_queue = priv->tx_queue[i];
 183		/* Initialize some variables in our dev structure */
 184		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186		tx_queue->cur_tx = tx_queue->tx_bd_base;
 187		tx_queue->skb_curtx = 0;
 188		tx_queue->skb_dirtytx = 0;
 189
 190		/* Initialize Transmit Descriptor Ring */
 191		txbdp = tx_queue->tx_bd_base;
 192		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193			txbdp->lstatus = 0;
 194			txbdp->bufPtr = 0;
 195			txbdp++;
 196		}
 197
 198		/* Set the last descriptor in the ring to indicate wrap */
 199		txbdp--;
 200		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201					    TXBD_WRAP);
 202	}
 203
 204	rfbptr = &regs->rfbptr0;
 205	for (i = 0; i < priv->num_rx_queues; i++) {
 206		rx_queue = priv->rx_queue[i];
 207
 208		rx_queue->next_to_clean = 0;
 209		rx_queue->next_to_use = 0;
 210		rx_queue->next_to_alloc = 0;
 211
 212		/* make sure next_to_clean != next_to_use after this
 213		 * by leaving at least 1 unused descriptor
 214		 */
 215		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217		rx_queue->rfbptr = rfbptr;
 218		rfbptr += 2;
 219	}
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224	void *vaddr;
 225	dma_addr_t addr;
 226	int i, j;
 227	struct gfar_private *priv = netdev_priv(ndev);
 228	struct device *dev = priv->dev;
 229	struct gfar_priv_tx_q *tx_queue = NULL;
 230	struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232	priv->total_tx_ring_size = 0;
 233	for (i = 0; i < priv->num_tx_queues; i++)
 234		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236	priv->total_rx_ring_size = 0;
 237	for (i = 0; i < priv->num_rx_queues; i++)
 238		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240	/* Allocate memory for the buffer descriptors */
 241	vaddr = dma_alloc_coherent(dev,
 242				   (priv->total_tx_ring_size *
 243				    sizeof(struct txbd8)) +
 244				   (priv->total_rx_ring_size *
 245				    sizeof(struct rxbd8)),
 246				   &addr, GFP_KERNEL);
 247	if (!vaddr)
 248		return -ENOMEM;
 249
 250	for (i = 0; i < priv->num_tx_queues; i++) {
 251		tx_queue = priv->tx_queue[i];
 252		tx_queue->tx_bd_base = vaddr;
 253		tx_queue->tx_bd_dma_base = addr;
 254		tx_queue->dev = ndev;
 255		/* enet DMA only understands physical addresses */
 256		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258	}
 259
 260	/* Start the rx descriptor ring where the tx ring leaves off */
 261	for (i = 0; i < priv->num_rx_queues; i++) {
 262		rx_queue = priv->rx_queue[i];
 263		rx_queue->rx_bd_base = vaddr;
 264		rx_queue->rx_bd_dma_base = addr;
 265		rx_queue->ndev = ndev;
 266		rx_queue->dev = dev;
 267		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269	}
 270
 271	/* Setup the skbuff rings */
 272	for (i = 0; i < priv->num_tx_queues; i++) {
 273		tx_queue = priv->tx_queue[i];
 274		tx_queue->tx_skbuff =
 275			kmalloc_array(tx_queue->tx_ring_size,
 276				      sizeof(*tx_queue->tx_skbuff),
 277				      GFP_KERNEL);
 278		if (!tx_queue->tx_skbuff)
 279			goto cleanup;
 280
 281		for (j = 0; j < tx_queue->tx_ring_size; j++)
 282			tx_queue->tx_skbuff[j] = NULL;
 283	}
 284
 285	for (i = 0; i < priv->num_rx_queues; i++) {
 286		rx_queue = priv->rx_queue[i];
 287		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288					    sizeof(*rx_queue->rx_buff),
 289					    GFP_KERNEL);
 290		if (!rx_queue->rx_buff)
 291			goto cleanup;
 292	}
 293
 294	gfar_init_bds(ndev);
 295
 296	return 0;
 297
 298cleanup:
 299	free_skb_resources(priv);
 300	return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306	u32 __iomem *baddr;
 307	int i;
 308
 309	baddr = &regs->tbase0;
 310	for (i = 0; i < priv->num_tx_queues; i++) {
 311		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312		baddr += 2;
 313	}
 314
 315	baddr = &regs->rbase0;
 316	for (i = 0; i < priv->num_rx_queues; i++) {
 317		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318		baddr += 2;
 319	}
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325	u32 __iomem *baddr;
 326	int i;
 327
 328	baddr = &regs->rqprm0;
 329	for (i = 0; i < priv->num_rx_queues; i++) {
 330		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332		baddr++;
 333	}
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338	/* set this when rx hw offload (TOE) functions are being used */
 339	priv->uses_rxfcb = 0;
 340
 341	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342		priv->uses_rxfcb = 1;
 343
 344	if (priv->hwts_rx_en || priv->rx_filer_enable)
 345		priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351	u32 rctrl = 0;
 352
 353	if (priv->rx_filer_enable) {
 354		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355		/* Program the RIR0 reg with the required distribution */
 356		if (priv->poll_mode == GFAR_SQ_POLLING)
 357			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358		else /* GFAR_MQ_POLLING */
 359			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360	}
 361
 362	/* Restore PROMISC mode */
 363	if (priv->ndev->flags & IFF_PROMISC)
 364		rctrl |= RCTRL_PROM;
 365
 366	if (priv->ndev->features & NETIF_F_RXCSUM)
 367		rctrl |= RCTRL_CHECKSUMMING;
 368
 369	if (priv->extended_hash)
 370		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Enable HW time stamping if requested from user space */
 378	if (priv->hwts_rx_en)
 379		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384	/* Clear the LFC bit */
 385	gfar_write(&regs->rctrl, rctrl);
 386	/* Init flow control threshold values */
 387	gfar_init_rqprm(priv);
 388	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389	rctrl |= RCTRL_LFC;
 390
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398	u32 tctrl = 0;
 399
 400	if (priv->ndev->features & NETIF_F_IP_CSUM)
 401		tctrl |= TCTRL_INIT_CSUM;
 402
 403	if (priv->prio_sched_en)
 404		tctrl |= TCTRL_TXSCHED_PRIO;
 405	else {
 406		tctrl |= TCTRL_TXSCHED_WRRS;
 407		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409	}
 410
 411	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412		tctrl |= TCTRL_VLINS;
 413
 414	gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418			       unsigned long tx_mask, unsigned long rx_mask)
 419{
 420	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421	u32 __iomem *baddr;
 422
 423	if (priv->mode == MQ_MG_MODE) {
 424		int i = 0;
 425
 426		baddr = &regs->txic0;
 427		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428			gfar_write(baddr + i, 0);
 429			if (likely(priv->tx_queue[i]->txcoalescing))
 430				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431		}
 432
 433		baddr = &regs->rxic0;
 434		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435			gfar_write(baddr + i, 0);
 436			if (likely(priv->rx_queue[i]->rxcoalescing))
 437				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438		}
 439	} else {
 440		/* Backward compatible case -- even if we enable
 441		 * multiple queues, there's only single reg to program
 442		 */
 443		gfar_write(&regs->txic, 0);
 444		if (likely(priv->tx_queue[0]->txcoalescing))
 445			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447		gfar_write(&regs->rxic, 0);
 448		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450	}
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460	struct gfar_private *priv = netdev_priv(dev);
 461	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462	unsigned long tx_packets = 0, tx_bytes = 0;
 463	int i;
 464
 465	for (i = 0; i < priv->num_rx_queues; i++) {
 466		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469	}
 470
 471	dev->stats.rx_packets = rx_packets;
 472	dev->stats.rx_bytes   = rx_bytes;
 473	dev->stats.rx_dropped = rx_dropped;
 
 474
 475	for (i = 0; i < priv->num_tx_queues; i++) {
 476		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	dev->stats.tx_bytes   = tx_bytes;
 481	dev->stats.tx_packets = tx_packets;
 482
 483	return &dev->stats;
 
 
 
 
 
 
 
 
 
 
 
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488	eth_mac_addr(dev, p);
 
 
 
 
 489
 490	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492	return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496	.ndo_open = gfar_enet_open,
 497	.ndo_start_xmit = gfar_start_xmit,
 498	.ndo_stop = gfar_close,
 499	.ndo_change_mtu = gfar_change_mtu,
 500	.ndo_set_features = gfar_set_features,
 501	.ndo_set_rx_mode = gfar_set_multi,
 502	.ndo_tx_timeout = gfar_timeout,
 503	.ndo_do_ioctl = gfar_ioctl,
 504	.ndo_get_stats = gfar_get_stats,
 505	.ndo_set_mac_address = gfar_set_mac_addr,
 506	.ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508	.ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514	int i;
 515	for (i = 0; i < priv->num_grps; i++) {
 516		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517		/* Clear IEVENT */
 518		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520		/* Initialize IMASK */
 521		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522	}
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527	int i;
 528	for (i = 0; i < priv->num_grps; i++) {
 529		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530		/* Unmask the interrupts we look for */
 531		gfar_write(&regs->imask, IMASK_DEFAULT);
 
 532	}
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537	int i;
 538
 539	for (i = 0; i < priv->num_tx_queues; i++) {
 540		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541					    GFP_KERNEL);
 542		if (!priv->tx_queue[i])
 543			return -ENOMEM;
 544
 545		priv->tx_queue[i]->tx_skbuff = NULL;
 546		priv->tx_queue[i]->qindex = i;
 547		priv->tx_queue[i]->dev = priv->ndev;
 548		spin_lock_init(&(priv->tx_queue[i]->txlock));
 549	}
 550	return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555	int i;
 556
 557	for (i = 0; i < priv->num_rx_queues; i++) {
 558		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559					    GFP_KERNEL);
 560		if (!priv->rx_queue[i])
 561			return -ENOMEM;
 562
 563		priv->rx_queue[i]->qindex = i;
 564		priv->rx_queue[i]->ndev = priv->ndev;
 565	}
 566	return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571	int i;
 572
 573	for (i = 0; i < priv->num_tx_queues; i++)
 574		kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579	int i;
 580
 581	for (i = 0; i < priv->num_rx_queues; i++)
 582		kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587	int i;
 588
 589	for (i = 0; i < MAXGROUPS; i++)
 590		if (priv->gfargrp[i].regs)
 591			iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596	int i, j;
 597
 598	for (i = 0; i < priv->num_grps; i++)
 599		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600			kfree(priv->gfargrp[i].irqinfo[j]);
 601			priv->gfargrp[i].irqinfo[j] = NULL;
 602		}
 603
 604	free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609	int i;
 610
 611	for (i = 0; i < priv->num_grps; i++) {
 612		napi_disable(&priv->gfargrp[i].napi_rx);
 613		napi_disable(&priv->gfargrp[i].napi_tx);
 614	}
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619	int i;
 620
 621	for (i = 0; i < priv->num_grps; i++) {
 622		napi_enable(&priv->gfargrp[i].napi_rx);
 623		napi_enable(&priv->gfargrp[i].napi_tx);
 624	}
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628			    struct gfar_private *priv, const char *model)
 629{
 630	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631	int i;
 632
 633	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635					  GFP_KERNEL);
 636		if (!grp->irqinfo[i])
 637			return -ENOMEM;
 638	}
 639
 640	grp->regs = of_iomap(np, 0);
 641	if (!grp->regs)
 642		return -ENOMEM;
 643
 644	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646	/* If we aren't the FEC we have multiple interrupts */
 647	if (model && strcasecmp(model, "FEC")) {
 648		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650		if (!gfar_irq(grp, TX)->irq ||
 651		    !gfar_irq(grp, RX)->irq ||
 652		    !gfar_irq(grp, ER)->irq)
 653			return -EINVAL;
 654	}
 655
 656	grp->priv = priv;
 657	spin_lock_init(&grp->grplock);
 658	if (priv->mode == MQ_MG_MODE) {
 659		u32 rxq_mask, txq_mask;
 660		int ret;
 661
 662		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666		if (!ret) {
 667			grp->rx_bit_map = rxq_mask ?
 668			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669		}
 670
 671		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672		if (!ret) {
 673			grp->tx_bit_map = txq_mask ?
 674			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675		}
 676
 677		if (priv->poll_mode == GFAR_SQ_POLLING) {
 678			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681		}
 682	} else {
 683		grp->rx_bit_map = 0xFF;
 684		grp->tx_bit_map = 0xFF;
 685	}
 686
 687	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688	 * right to left, so we need to revert the 8 bits to get the q index
 689	 */
 690	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694	 * also assign queues to groups
 695	 */
 696	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697		if (!grp->rx_queue)
 698			grp->rx_queue = priv->rx_queue[i];
 699		grp->num_rx_queues++;
 700		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702		priv->rx_queue[i]->grp = grp;
 703	}
 704
 705	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706		if (!grp->tx_queue)
 707			grp->tx_queue = priv->tx_queue[i];
 708		grp->num_tx_queues++;
 709		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710		priv->tqueue |= (TQUEUE_EN0 >> i);
 711		priv->tx_queue[i]->grp = grp;
 712	}
 713
 714	priv->num_grps++;
 715
 716	return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721	struct device_node *child;
 722	int num = 0;
 723
 724	for_each_available_child_of_node(np, child)
 725		if (!of_node_cmp(child->name, "queue-group"))
 726			num++;
 727
 728	return num;
 729}
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733	const char *model;
 734	const char *ctype;
 735	const void *mac_addr;
 736	int err = 0, i;
 
 737	struct net_device *dev = NULL;
 738	struct gfar_private *priv = NULL;
 739	struct device_node *np = ofdev->dev.of_node;
 740	struct device_node *child = NULL;
 741	u32 stash_len = 0;
 742	u32 stash_idx = 0;
 743	unsigned int num_tx_qs, num_rx_qs;
 744	unsigned short mode, poll_mode;
 745
 746	if (!np)
 747		return -ENODEV;
 748
 749	if (of_device_is_compatible(np, "fsl,etsec2")) {
 750		mode = MQ_MG_MODE;
 751		poll_mode = GFAR_SQ_POLLING;
 752	} else {
 753		mode = SQ_SG_MODE;
 754		poll_mode = GFAR_SQ_POLLING;
 755	}
 756
 757	if (mode == SQ_SG_MODE) {
 758		num_tx_qs = 1;
 759		num_rx_qs = 1;
 760	} else { /* MQ_MG_MODE */
 761		/* get the actual number of supported groups */
 762		unsigned int num_grps = gfar_of_group_count(np);
 763
 764		if (num_grps == 0 || num_grps > MAXGROUPS) {
 765			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766				num_grps);
 767			pr_err("Cannot do alloc_etherdev, aborting\n");
 768			return -EINVAL;
 769		}
 770
 771		if (poll_mode == GFAR_SQ_POLLING) {
 772			num_tx_qs = num_grps; /* one txq per int group */
 773			num_rx_qs = num_grps; /* one rxq per int group */
 774		} else { /* GFAR_MQ_POLLING */
 775			u32 tx_queues, rx_queues;
 776			int ret;
 777
 778			/* parse the num of HW tx and rx queues */
 779			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780						   &tx_queues);
 781			num_tx_qs = ret ? 1 : tx_queues;
 782
 783			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784						   &rx_queues);
 785			num_rx_qs = ret ? 1 : rx_queues;
 786		}
 787	}
 788
 789	if (num_tx_qs > MAX_TX_QS) {
 790		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791		       num_tx_qs, MAX_TX_QS);
 792		pr_err("Cannot do alloc_etherdev, aborting\n");
 793		return -EINVAL;
 794	}
 795
 796	if (num_rx_qs > MAX_RX_QS) {
 797		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798		       num_rx_qs, MAX_RX_QS);
 799		pr_err("Cannot do alloc_etherdev, aborting\n");
 800		return -EINVAL;
 801	}
 802
 803	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804	dev = *pdev;
 805	if (NULL == dev)
 806		return -ENOMEM;
 807
 808	priv = netdev_priv(dev);
 809	priv->ndev = dev;
 810
 811	priv->mode = mode;
 812	priv->poll_mode = poll_mode;
 813
 814	priv->num_tx_queues = num_tx_qs;
 815	netif_set_real_num_rx_queues(dev, num_rx_qs);
 816	priv->num_rx_queues = num_rx_qs;
 817
 818	err = gfar_alloc_tx_queues(priv);
 819	if (err)
 820		goto tx_alloc_failed;
 821
 822	err = gfar_alloc_rx_queues(priv);
 823	if (err)
 824		goto rx_alloc_failed;
 825
 826	err = of_property_read_string(np, "model", &model);
 827	if (err) {
 828		pr_err("Device model property missing, aborting\n");
 829		goto rx_alloc_failed;
 830	}
 831
 832	/* Init Rx queue filer rule set linked list */
 833	INIT_LIST_HEAD(&priv->rx_list.list);
 834	priv->rx_list.count = 0;
 835	mutex_init(&priv->rx_queue_access);
 836
 837	for (i = 0; i < MAXGROUPS; i++)
 838		priv->gfargrp[i].regs = NULL;
 839
 840	/* Parse and initialize group specific information */
 841	if (priv->mode == MQ_MG_MODE) {
 842		for_each_available_child_of_node(np, child) {
 843			if (of_node_cmp(child->name, "queue-group"))
 844				continue;
 845
 846			err = gfar_parse_group(child, priv, model);
 847			if (err)
 
 848				goto err_grp_init;
 
 849		}
 850	} else { /* SQ_SG_MODE */
 851		err = gfar_parse_group(np, priv, model);
 852		if (err)
 853			goto err_grp_init;
 854	}
 855
 856	if (of_property_read_bool(np, "bd-stash")) {
 857		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858		priv->bd_stash_en = 1;
 859	}
 860
 861	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863	if (err == 0)
 864		priv->rx_stash_size = stash_len;
 865
 866	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868	if (err == 0)
 869		priv->rx_stash_index = stash_idx;
 870
 871	if (stash_len || stash_idx)
 872		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874	mac_addr = of_get_mac_address(np);
 875
 876	if (mac_addr)
 877		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 
 
 
 878
 879	if (model && !strcasecmp(model, "TSEC"))
 880		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881				     FSL_GIANFAR_DEV_HAS_COALESCE |
 882				     FSL_GIANFAR_DEV_HAS_RMON |
 883				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885	if (model && !strcasecmp(model, "eTSEC"))
 886		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887				     FSL_GIANFAR_DEV_HAS_COALESCE |
 888				     FSL_GIANFAR_DEV_HAS_RMON |
 889				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890				     FSL_GIANFAR_DEV_HAS_CSUM |
 891				     FSL_GIANFAR_DEV_HAS_VLAN |
 892				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894				     FSL_GIANFAR_DEV_HAS_TIMER |
 895				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897	err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899	/* We only care about rgmii-id.  The rest are autodetected */
 900	if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 
 
 902	else
 903		priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905	if (of_find_property(np, "fsl,magic-packet", NULL))
 906		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913	/* In the case of a fixed PHY, the DT node associated
 914	 * to the PHY is the Ethernet MAC DT node.
 915	 */
 916	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917		err = of_phy_register_fixed_link(np);
 918		if (err)
 919			goto err_grp_init;
 920
 921		priv->phy_node = of_node_get(np);
 922	}
 923
 924	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927	return 0;
 928
 929err_grp_init:
 930	unmap_group_regs(priv);
 931rx_alloc_failed:
 932	gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934	gfar_free_tx_queues(priv);
 935	free_gfar_dev(priv);
 936	return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941	struct hwtstamp_config config;
 942	struct gfar_private *priv = netdev_priv(netdev);
 943
 944	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945		return -EFAULT;
 946
 947	/* reserved for future extensions */
 948	if (config.flags)
 949		return -EINVAL;
 950
 951	switch (config.tx_type) {
 952	case HWTSTAMP_TX_OFF:
 953		priv->hwts_tx_en = 0;
 954		break;
 955	case HWTSTAMP_TX_ON:
 956		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957			return -ERANGE;
 958		priv->hwts_tx_en = 1;
 959		break;
 960	default:
 961		return -ERANGE;
 962	}
 963
 964	switch (config.rx_filter) {
 965	case HWTSTAMP_FILTER_NONE:
 966		if (priv->hwts_rx_en) {
 967			priv->hwts_rx_en = 0;
 968			reset_gfar(netdev);
 969		}
 970		break;
 971	default:
 972		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973			return -ERANGE;
 974		if (!priv->hwts_rx_en) {
 975			priv->hwts_rx_en = 1;
 976			reset_gfar(netdev);
 977		}
 978		config.rx_filter = HWTSTAMP_FILTER_ALL;
 979		break;
 980	}
 981
 982	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983		-EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988	struct hwtstamp_config config;
 989	struct gfar_private *priv = netdev_priv(netdev);
 990
 991	config.flags = 0;
 992	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993	config.rx_filter = (priv->hwts_rx_en ?
 994			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997		-EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002	struct gfar_private *priv = netdev_priv(dev);
1003
1004	if (!netif_running(dev))
1005		return -EINVAL;
1006
1007	if (cmd == SIOCSHWTSTAMP)
1008		return gfar_hwtstamp_set(dev, rq);
1009	if (cmd == SIOCGHWTSTAMP)
1010		return gfar_hwtstamp_get(dev, rq);
1011
1012	if (!priv->phydev)
1013		return -ENODEV;
1014
1015	return phy_mii_ioctl(priv->phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019				   u32 class)
1020{
1021	u32 rqfpr = FPR_FILER_MASK;
1022	u32 rqfcr = 0x0;
1023
1024	rqfar--;
1025	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026	priv->ftp_rqfpr[rqfar] = rqfpr;
1027	priv->ftp_rqfcr[rqfar] = rqfcr;
1028	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030	rqfar--;
1031	rqfcr = RQFCR_CMP_NOMATCH;
1032	priv->ftp_rqfpr[rqfar] = rqfpr;
1033	priv->ftp_rqfcr[rqfar] = rqfcr;
1034	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036	rqfar--;
1037	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038	rqfpr = class;
1039	priv->ftp_rqfcr[rqfar] = rqfcr;
1040	priv->ftp_rqfpr[rqfar] = rqfpr;
1041	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043	rqfar--;
1044	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045	rqfpr = class;
1046	priv->ftp_rqfcr[rqfar] = rqfcr;
1047	priv->ftp_rqfpr[rqfar] = rqfpr;
1048	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050	return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055	int i = 0x0;
1056	u32 rqfar = MAX_FILER_IDX;
1057	u32 rqfcr = 0x0;
1058	u32 rqfpr = FPR_FILER_MASK;
1059
1060	/* Default rule */
1061	rqfcr = RQFCR_CMP_MATCH;
1062	priv->ftp_rqfcr[rqfar] = rqfcr;
1063	priv->ftp_rqfpr[rqfar] = rqfpr;
1064	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073	/* cur_filer_idx indicated the first non-masked rule */
1074	priv->cur_filer_idx = rqfar;
1075
1076	/* Rest are masked rules */
1077	rqfcr = RQFCR_CMP_NOMATCH;
1078	for (i = 0; i < rqfar; i++) {
1079		priv->ftp_rqfcr[i] = rqfcr;
1080		priv->ftp_rqfpr[i] = rqfpr;
1081		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082	}
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088	unsigned int pvr = mfspr(SPRN_PVR);
1089	unsigned int svr = mfspr(SPRN_SVR);
1090	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091	unsigned int rev = svr & 0xffff;
1092
1093	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096		priv->errata |= GFAR_ERRATA_74;
1097
1098	/* MPC8313 and MPC837x all rev */
1099	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101		priv->errata |= GFAR_ERRATA_76;
1102
1103	/* MPC8313 Rev < 2.0 */
1104	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105		priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110	unsigned int svr = mfspr(SPRN_SVR);
1111
1112	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113		priv->errata |= GFAR_ERRATA_12;
1114	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124	struct device *dev = &priv->ofdev->dev;
1125
1126	/* no plans to fix */
1127	priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131		__gfar_detect_errata_85xx(priv);
1132	else /* non-mpc85xx parts, i.e. e300 core based */
1133		__gfar_detect_errata_83xx(priv);
1134#endif
1135
1136	if (priv->errata)
1137		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138			 priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144	u32 tempval;
1145
1146	/* Reset MAC layer */
1147	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149	/* We need to delay at least 3 TX clocks */
1150	udelay(3);
1151
1152	/* the soft reset bit is not self-resetting, so we need to
1153	 * clear it before resuming normal operation
1154	 */
1155	gfar_write(&regs->maccfg1, 0);
1156
1157	udelay(3);
1158
1159	gfar_rx_offload_en(priv);
1160
1161	/* Initialize the max receive frame/buffer lengths */
1162	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165	/* Initialize the Minimum Frame Length Register */
1166	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168	/* Initialize MACCFG2. */
1169	tempval = MACCFG2_INIT_SETTINGS;
1170
1171	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174	 */
1175	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178	gfar_write(&regs->maccfg2, tempval);
1179
1180	/* Clear mac addr hash registers */
1181	gfar_write(&regs->igaddr0, 0);
1182	gfar_write(&regs->igaddr1, 0);
1183	gfar_write(&regs->igaddr2, 0);
1184	gfar_write(&regs->igaddr3, 0);
1185	gfar_write(&regs->igaddr4, 0);
1186	gfar_write(&regs->igaddr5, 0);
1187	gfar_write(&regs->igaddr6, 0);
1188	gfar_write(&regs->igaddr7, 0);
1189
1190	gfar_write(&regs->gaddr0, 0);
1191	gfar_write(&regs->gaddr1, 0);
1192	gfar_write(&regs->gaddr2, 0);
1193	gfar_write(&regs->gaddr3, 0);
1194	gfar_write(&regs->gaddr4, 0);
1195	gfar_write(&regs->gaddr5, 0);
1196	gfar_write(&regs->gaddr6, 0);
1197	gfar_write(&regs->gaddr7, 0);
1198
1199	if (priv->extended_hash)
1200		gfar_clear_exact_match(priv->ndev);
1201
1202	gfar_mac_rx_config(priv);
1203
1204	gfar_mac_tx_config(priv);
1205
1206	gfar_set_mac_address(priv->ndev);
1207
1208	gfar_set_multi(priv->ndev);
1209
1210	/* clear ievent and imask before configuring coalescing */
1211	gfar_ints_disable(priv);
1212
1213	/* Configure the coalescing support */
1214	gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220	u32 attrs;
1221
1222	/* Stop the DMA engine now, in case it was running before
1223	 * (The firmware could have used it, and left it running).
1224	 */
1225	gfar_halt(priv);
1226
1227	gfar_mac_reset(priv);
1228
1229	/* Zero out the rmon mib registers if it has them */
1230	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233		/* Mask off the CAM interrupts */
1234		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236	}
1237
1238	/* Initialize ECNTRL */
1239	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241	/* Set the extraction length and index */
1242	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243		ATTRELI_EI(priv->rx_stash_index);
1244
1245	gfar_write(&regs->attreli, attrs);
1246
1247	/* Start with defaults, and add stashing
1248	 * depending on driver parameters
1249	 */
1250	attrs = ATTR_INIT_SETTINGS;
1251
1252	if (priv->bd_stash_en)
1253		attrs |= ATTR_BDSTASH;
1254
1255	if (priv->rx_stash_size != 0)
1256		attrs |= ATTR_BUFSTASH;
1257
1258	gfar_write(&regs->attr, attrs);
1259
1260	/* FIFO configs */
1261	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265	/* Program the interrupt steering regs, only for MG devices */
1266	if (priv->num_grps > 1)
1267		gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275		priv->extended_hash = 1;
1276		priv->hash_width = 9;
1277
1278		priv->hash_regs[0] = &regs->igaddr0;
1279		priv->hash_regs[1] = &regs->igaddr1;
1280		priv->hash_regs[2] = &regs->igaddr2;
1281		priv->hash_regs[3] = &regs->igaddr3;
1282		priv->hash_regs[4] = &regs->igaddr4;
1283		priv->hash_regs[5] = &regs->igaddr5;
1284		priv->hash_regs[6] = &regs->igaddr6;
1285		priv->hash_regs[7] = &regs->igaddr7;
1286		priv->hash_regs[8] = &regs->gaddr0;
1287		priv->hash_regs[9] = &regs->gaddr1;
1288		priv->hash_regs[10] = &regs->gaddr2;
1289		priv->hash_regs[11] = &regs->gaddr3;
1290		priv->hash_regs[12] = &regs->gaddr4;
1291		priv->hash_regs[13] = &regs->gaddr5;
1292		priv->hash_regs[14] = &regs->gaddr6;
1293		priv->hash_regs[15] = &regs->gaddr7;
1294
1295	} else {
1296		priv->extended_hash = 0;
1297		priv->hash_width = 8;
1298
1299		priv->hash_regs[0] = &regs->gaddr0;
1300		priv->hash_regs[1] = &regs->gaddr1;
1301		priv->hash_regs[2] = &regs->gaddr2;
1302		priv->hash_regs[3] = &regs->gaddr3;
1303		priv->hash_regs[4] = &regs->gaddr4;
1304		priv->hash_regs[5] = &regs->gaddr5;
1305		priv->hash_regs[6] = &regs->gaddr6;
1306		priv->hash_regs[7] = &regs->gaddr7;
1307	}
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315	struct net_device *dev = NULL;
1316	struct gfar_private *priv = NULL;
1317	int err = 0, i;
1318
1319	err = gfar_of_init(ofdev, &dev);
1320
1321	if (err)
1322		return err;
1323
1324	priv = netdev_priv(dev);
1325	priv->ndev = dev;
1326	priv->ofdev = ofdev;
1327	priv->dev = &ofdev->dev;
1328	SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330	INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332	platform_set_drvdata(ofdev, priv);
1333
1334	gfar_detect_errata(priv);
1335
1336	/* Set the dev->base_addr to the gfar reg region */
1337	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339	/* Fill in the dev structure */
1340	dev->watchdog_timeo = TX_TIMEOUT;
1341	dev->mtu = 1500;
1342	dev->netdev_ops = &gfar_netdev_ops;
1343	dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345	/* Register for napi ...We are registering NAPI for each grp */
1346	for (i = 0; i < priv->num_grps; i++) {
1347		if (priv->poll_mode == GFAR_SQ_POLLING) {
1348			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351				       gfar_poll_tx_sq, 2);
1352		} else {
1353			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1355			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356				       gfar_poll_tx, 2);
1357		}
1358	}
1359
1360	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362				   NETIF_F_RXCSUM;
1363		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365	}
1366
1367	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369				    NETIF_F_HW_VLAN_CTAG_RX;
1370		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371	}
1372
1373	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375	gfar_init_addr_hash_table(priv);
1376
1377	/* Insert receive time stamps into padding alignment bytes */
1378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379		priv->padding = 8;
1380
1381	if (dev->features & NETIF_F_IP_CSUM ||
1382	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383		dev->needed_headroom = GMAC_FCB_LEN;
1384
1385	/* Initializing some of the rx/tx queue level parameters */
1386	for (i = 0; i < priv->num_tx_queues; i++) {
1387		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391	}
1392
1393	for (i = 0; i < priv->num_rx_queues; i++) {
1394		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397	}
1398
1399	/* Always enable rx filer if available */
1400	priv->rx_filer_enable =
1401	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402	/* Enable most messages by default */
1403	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404	/* use pritority h/w tx queue scheduling for single queue devices */
1405	if (priv->num_tx_queues == 1)
1406		priv->prio_sched_en = 1;
1407
1408	set_bit(GFAR_DOWN, &priv->state);
1409
1410	gfar_hw_init(priv);
1411
1412	/* Carrier starts down, phylib will bring it up */
1413	netif_carrier_off(dev);
1414
1415	err = register_netdev(dev);
1416
1417	if (err) {
1418		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419		goto register_fail;
1420	}
1421
1422	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423		priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426	    priv->rx_filer_enable)
1427		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431	/* fill out IRQ number and name fields */
1432	for (i = 0; i < priv->num_grps; i++) {
1433		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436				dev->name, "_g", '0' + i, "_tx");
1437			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438				dev->name, "_g", '0' + i, "_rx");
1439			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440				dev->name, "_g", '0' + i, "_er");
1441		} else
1442			strcpy(gfar_irq(grp, TX)->name, dev->name);
1443	}
1444
1445	/* Initialize the filer table */
1446	gfar_init_filer_table(priv);
1447
1448	/* Print out the device info */
1449	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451	/* Even more device info helps when determining which kernel
1452	 * provided which set of benchmarks.
1453	 */
1454	netdev_info(dev, "Running with NAPI enabled\n");
1455	for (i = 0; i < priv->num_rx_queues; i++)
1456		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457			    i, priv->rx_queue[i]->rx_ring_size);
1458	for (i = 0; i < priv->num_tx_queues; i++)
1459		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460			    i, priv->tx_queue[i]->tx_ring_size);
1461
1462	return 0;
1463
1464register_fail:
1465	unmap_group_regs(priv);
1466	gfar_free_rx_queues(priv);
1467	gfar_free_tx_queues(priv);
1468	of_node_put(priv->phy_node);
1469	of_node_put(priv->tbi_node);
1470	free_gfar_dev(priv);
1471	return err;
1472}
1473
1474static int gfar_remove(struct platform_device *ofdev)
1475{
1476	struct gfar_private *priv = platform_get_drvdata(ofdev);
1477
1478	of_node_put(priv->phy_node);
1479	of_node_put(priv->tbi_node);
1480
1481	unregister_netdev(priv->ndev);
1482	unmap_group_regs(priv);
1483	gfar_free_rx_queues(priv);
1484	gfar_free_tx_queues(priv);
1485	free_gfar_dev(priv);
1486
1487	return 0;
1488}
1489
1490#ifdef CONFIG_PM
1491
1492static void __gfar_filer_disable(struct gfar_private *priv)
1493{
1494	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495	u32 temp;
1496
1497	temp = gfar_read(&regs->rctrl);
1498	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499	gfar_write(&regs->rctrl, temp);
1500}
1501
1502static void __gfar_filer_enable(struct gfar_private *priv)
1503{
1504	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505	u32 temp;
1506
1507	temp = gfar_read(&regs->rctrl);
1508	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509	gfar_write(&regs->rctrl, temp);
1510}
1511
1512/* Filer rules implementing wol capabilities */
1513static void gfar_filer_config_wol(struct gfar_private *priv)
1514{
1515	unsigned int i;
1516	u32 rqfcr;
1517
1518	__gfar_filer_disable(priv);
1519
1520	/* clear the filer table, reject any packet by default */
1521	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522	for (i = 0; i <= MAX_FILER_IDX; i++)
1523		gfar_write_filer(priv, i, rqfcr, 0);
1524
1525	i = 0;
1526	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527		/* unicast packet, accept it */
1528		struct net_device *ndev = priv->ndev;
1529		/* get the default rx queue index */
1530		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532				    (ndev->dev_addr[1] << 8) |
1533				     ndev->dev_addr[2];
1534
1535		rqfcr = (qindex << 10) | RQFCR_AND |
1536			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541				(ndev->dev_addr[4] << 8) |
1542				 ndev->dev_addr[5];
1543		rqfcr = (qindex << 10) | RQFCR_GPI |
1544			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546	}
1547
1548	__gfar_filer_enable(priv);
1549}
1550
1551static void gfar_filer_restore_table(struct gfar_private *priv)
1552{
1553	u32 rqfcr, rqfpr;
1554	unsigned int i;
1555
1556	__gfar_filer_disable(priv);
1557
1558	for (i = 0; i <= MAX_FILER_IDX; i++) {
1559		rqfcr = priv->ftp_rqfcr[i];
1560		rqfpr = priv->ftp_rqfpr[i];
1561		gfar_write_filer(priv, i, rqfcr, rqfpr);
1562	}
1563
1564	__gfar_filer_enable(priv);
1565}
1566
1567/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568static void gfar_start_wol_filer(struct gfar_private *priv)
1569{
1570	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571	u32 tempval;
1572	int i = 0;
1573
1574	/* Enable Rx hw queues */
1575	gfar_write(&regs->rqueue, priv->rqueue);
1576
1577	/* Initialize DMACTRL to have WWR and WOP */
1578	tempval = gfar_read(&regs->dmactrl);
1579	tempval |= DMACTRL_INIT_SETTINGS;
1580	gfar_write(&regs->dmactrl, tempval);
1581
1582	/* Make sure we aren't stopped */
1583	tempval = gfar_read(&regs->dmactrl);
1584	tempval &= ~DMACTRL_GRS;
1585	gfar_write(&regs->dmactrl, tempval);
1586
1587	for (i = 0; i < priv->num_grps; i++) {
1588		regs = priv->gfargrp[i].regs;
1589		/* Clear RHLT, so that the DMA starts polling now */
1590		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1591		/* enable the Filer General Purpose Interrupt */
1592		gfar_write(&regs->imask, IMASK_FGPI);
1593	}
1594
1595	/* Enable Rx DMA */
1596	tempval = gfar_read(&regs->maccfg1);
1597	tempval |= MACCFG1_RX_EN;
1598	gfar_write(&regs->maccfg1, tempval);
1599}
1600
1601static int gfar_suspend(struct device *dev)
1602{
1603	struct gfar_private *priv = dev_get_drvdata(dev);
1604	struct net_device *ndev = priv->ndev;
1605	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606	u32 tempval;
1607	u16 wol = priv->wol_opts;
1608
1609	if (!netif_running(ndev))
1610		return 0;
1611
1612	disable_napi(priv);
1613	netif_tx_lock(ndev);
1614	netif_device_detach(ndev);
1615	netif_tx_unlock(ndev);
1616
1617	gfar_halt(priv);
1618
1619	if (wol & GFAR_WOL_MAGIC) {
1620		/* Enable interrupt on Magic Packet */
1621		gfar_write(&regs->imask, IMASK_MAG);
1622
1623		/* Enable Magic Packet mode */
1624		tempval = gfar_read(&regs->maccfg2);
1625		tempval |= MACCFG2_MPEN;
1626		gfar_write(&regs->maccfg2, tempval);
1627
1628		/* re-enable the Rx block */
1629		tempval = gfar_read(&regs->maccfg1);
1630		tempval |= MACCFG1_RX_EN;
1631		gfar_write(&regs->maccfg1, tempval);
1632
1633	} else if (wol & GFAR_WOL_FILER_UCAST) {
1634		gfar_filer_config_wol(priv);
1635		gfar_start_wol_filer(priv);
1636
1637	} else {
1638		phy_stop(priv->phydev);
1639	}
1640
1641	return 0;
1642}
1643
1644static int gfar_resume(struct device *dev)
1645{
1646	struct gfar_private *priv = dev_get_drvdata(dev);
1647	struct net_device *ndev = priv->ndev;
1648	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649	u32 tempval;
1650	u16 wol = priv->wol_opts;
1651
1652	if (!netif_running(ndev))
1653		return 0;
1654
1655	if (wol & GFAR_WOL_MAGIC) {
1656		/* Disable Magic Packet mode */
1657		tempval = gfar_read(&regs->maccfg2);
1658		tempval &= ~MACCFG2_MPEN;
1659		gfar_write(&regs->maccfg2, tempval);
1660
1661	} else if (wol & GFAR_WOL_FILER_UCAST) {
1662		/* need to stop rx only, tx is already down */
1663		gfar_halt(priv);
1664		gfar_filer_restore_table(priv);
1665
1666	} else {
1667		phy_start(priv->phydev);
1668	}
1669
1670	gfar_start(priv);
1671
1672	netif_device_attach(ndev);
1673	enable_napi(priv);
1674
1675	return 0;
1676}
1677
1678static int gfar_restore(struct device *dev)
1679{
1680	struct gfar_private *priv = dev_get_drvdata(dev);
1681	struct net_device *ndev = priv->ndev;
1682
1683	if (!netif_running(ndev)) {
1684		netif_device_attach(ndev);
1685
1686		return 0;
1687	}
1688
1689	gfar_init_bds(ndev);
1690
1691	gfar_mac_reset(priv);
1692
1693	gfar_init_tx_rx_base(priv);
1694
1695	gfar_start(priv);
1696
1697	priv->oldlink = 0;
1698	priv->oldspeed = 0;
1699	priv->oldduplex = -1;
1700
1701	if (priv->phydev)
1702		phy_start(priv->phydev);
1703
1704	netif_device_attach(ndev);
1705	enable_napi(priv);
1706
1707	return 0;
1708}
1709
1710static struct dev_pm_ops gfar_pm_ops = {
1711	.suspend = gfar_suspend,
1712	.resume = gfar_resume,
1713	.freeze = gfar_suspend,
1714	.thaw = gfar_resume,
1715	.restore = gfar_restore,
1716};
1717
1718#define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720#else
1721
1722#define GFAR_PM_OPS NULL
1723
1724#endif
1725
1726/* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729static phy_interface_t gfar_get_interface(struct net_device *dev)
1730{
1731	struct gfar_private *priv = netdev_priv(dev);
1732	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733	u32 ecntrl;
1734
1735	ecntrl = gfar_read(&regs->ecntrl);
1736
1737	if (ecntrl & ECNTRL_SGMII_MODE)
1738		return PHY_INTERFACE_MODE_SGMII;
1739
1740	if (ecntrl & ECNTRL_TBI_MODE) {
1741		if (ecntrl & ECNTRL_REDUCED_MODE)
1742			return PHY_INTERFACE_MODE_RTBI;
1743		else
1744			return PHY_INTERFACE_MODE_TBI;
1745	}
1746
1747	if (ecntrl & ECNTRL_REDUCED_MODE) {
1748		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749			return PHY_INTERFACE_MODE_RMII;
1750		}
1751		else {
1752			phy_interface_t interface = priv->interface;
1753
1754			/* This isn't autodetected right now, so it must
1755			 * be set by the device tree or platform code.
1756			 */
1757			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758				return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760			return PHY_INTERFACE_MODE_RGMII;
1761		}
1762	}
1763
1764	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765		return PHY_INTERFACE_MODE_GMII;
1766
1767	return PHY_INTERFACE_MODE_MII;
1768}
1769
1770
1771/* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774static int init_phy(struct net_device *dev)
1775{
1776	struct gfar_private *priv = netdev_priv(dev);
1777	uint gigabit_support =
1778		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779		GFAR_SUPPORTED_GBIT : 0;
1780	phy_interface_t interface;
1781
1782	priv->oldlink = 0;
1783	priv->oldspeed = 0;
1784	priv->oldduplex = -1;
1785
1786	interface = gfar_get_interface(dev);
1787
1788	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1789				      interface);
1790	if (!priv->phydev) {
1791		dev_err(&dev->dev, "could not attach to PHY\n");
1792		return -ENODEV;
1793	}
1794
1795	if (interface == PHY_INTERFACE_MODE_SGMII)
1796		gfar_configure_serdes(dev);
1797
1798	/* Remove any features not supported by the controller */
1799	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1800	priv->phydev->advertising = priv->phydev->supported;
1801
1802	/* Add support for flow control, but don't advertise it by default */
1803	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1804
1805	return 0;
1806}
1807
1808/* Initialize TBI PHY interface for communicating with the
1809 * SERDES lynx PHY on the chip.  We communicate with this PHY
1810 * through the MDIO bus on each controller, treating it as a
1811 * "normal" PHY at the address found in the TBIPA register.  We assume
1812 * that the TBIPA register is valid.  Either the MDIO bus code will set
1813 * it to a value that doesn't conflict with other PHYs on the bus, or the
1814 * value doesn't matter, as there are no other PHYs on the bus.
1815 */
1816static void gfar_configure_serdes(struct net_device *dev)
1817{
1818	struct gfar_private *priv = netdev_priv(dev);
1819	struct phy_device *tbiphy;
1820
1821	if (!priv->tbi_node) {
1822		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1823				    "device tree specify a tbi-handle\n");
1824		return;
1825	}
1826
1827	tbiphy = of_phy_find_device(priv->tbi_node);
1828	if (!tbiphy) {
1829		dev_err(&dev->dev, "error: Could not get TBI device\n");
1830		return;
1831	}
1832
1833	/* If the link is already up, we must already be ok, and don't need to
1834	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1835	 * everything for us?  Resetting it takes the link down and requires
1836	 * several seconds for it to come back.
1837	 */
1838	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1839		put_device(&tbiphy->mdio.dev);
1840		return;
1841	}
1842
1843	/* Single clk mode, mii mode off(for serdes communication) */
1844	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1845
1846	phy_write(tbiphy, MII_ADVERTISE,
1847		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1848		  ADVERTISE_1000XPSE_ASYM);
1849
1850	phy_write(tbiphy, MII_BMCR,
1851		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1852		  BMCR_SPEED1000);
1853
1854	put_device(&tbiphy->mdio.dev);
1855}
1856
1857static int __gfar_is_rx_idle(struct gfar_private *priv)
1858{
1859	u32 res;
1860
1861	/* Normaly TSEC should not hang on GRS commands, so we should
1862	 * actually wait for IEVENT_GRSC flag.
1863	 */
1864	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1865		return 0;
1866
1867	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1868	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1869	 * and the Rx can be safely reset.
1870	 */
1871	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1872	res &= 0x7f807f80;
1873	if ((res & 0xffff) == (res >> 16))
1874		return 1;
1875
1876	return 0;
1877}
1878
1879/* Halt the receive and transmit queues */
1880static void gfar_halt_nodisable(struct gfar_private *priv)
1881{
1882	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1883	u32 tempval;
1884	unsigned int timeout;
1885	int stopped;
1886
1887	gfar_ints_disable(priv);
1888
1889	if (gfar_is_dma_stopped(priv))
1890		return;
1891
1892	/* Stop the DMA, and wait for it to stop */
1893	tempval = gfar_read(&regs->dmactrl);
1894	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1895	gfar_write(&regs->dmactrl, tempval);
1896
1897retry:
1898	timeout = 1000;
1899	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1900		cpu_relax();
1901		timeout--;
1902	}
1903
1904	if (!timeout)
1905		stopped = gfar_is_dma_stopped(priv);
1906
1907	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1908	    !__gfar_is_rx_idle(priv))
1909		goto retry;
1910}
1911
1912/* Halt the receive and transmit queues */
1913void gfar_halt(struct gfar_private *priv)
1914{
1915	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1916	u32 tempval;
1917
1918	/* Dissable the Rx/Tx hw queues */
1919	gfar_write(&regs->rqueue, 0);
1920	gfar_write(&regs->tqueue, 0);
1921
1922	mdelay(10);
1923
1924	gfar_halt_nodisable(priv);
1925
1926	/* Disable Rx/Tx DMA */
1927	tempval = gfar_read(&regs->maccfg1);
1928	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1929	gfar_write(&regs->maccfg1, tempval);
1930}
1931
1932void stop_gfar(struct net_device *dev)
1933{
1934	struct gfar_private *priv = netdev_priv(dev);
1935
1936	netif_tx_stop_all_queues(dev);
1937
1938	smp_mb__before_atomic();
1939	set_bit(GFAR_DOWN, &priv->state);
1940	smp_mb__after_atomic();
1941
1942	disable_napi(priv);
1943
1944	/* disable ints and gracefully shut down Rx/Tx DMA */
1945	gfar_halt(priv);
1946
1947	phy_stop(priv->phydev);
1948
1949	free_skb_resources(priv);
1950}
1951
1952static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1953{
1954	struct txbd8 *txbdp;
1955	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1956	int i, j;
1957
1958	txbdp = tx_queue->tx_bd_base;
1959
1960	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1961		if (!tx_queue->tx_skbuff[i])
1962			continue;
1963
1964		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1965				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1966		txbdp->lstatus = 0;
1967		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1968		     j++) {
1969			txbdp++;
1970			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1971				       be16_to_cpu(txbdp->length),
1972				       DMA_TO_DEVICE);
1973		}
1974		txbdp++;
1975		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1976		tx_queue->tx_skbuff[i] = NULL;
1977	}
1978	kfree(tx_queue->tx_skbuff);
1979	tx_queue->tx_skbuff = NULL;
1980}
1981
1982static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1983{
1984	int i;
1985
1986	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1987
1988	if (rx_queue->skb)
1989		dev_kfree_skb(rx_queue->skb);
1990
1991	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1992		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1993
1994		rxbdp->lstatus = 0;
1995		rxbdp->bufPtr = 0;
1996		rxbdp++;
1997
1998		if (!rxb->page)
1999			continue;
2000
2001		dma_unmap_single(rx_queue->dev, rxb->dma,
2002				 PAGE_SIZE, DMA_FROM_DEVICE);
2003		__free_page(rxb->page);
2004
2005		rxb->page = NULL;
2006	}
2007
2008	kfree(rx_queue->rx_buff);
2009	rx_queue->rx_buff = NULL;
2010}
2011
2012/* If there are any tx skbs or rx skbs still around, free them.
2013 * Then free tx_skbuff and rx_skbuff
2014 */
2015static void free_skb_resources(struct gfar_private *priv)
2016{
2017	struct gfar_priv_tx_q *tx_queue = NULL;
2018	struct gfar_priv_rx_q *rx_queue = NULL;
2019	int i;
2020
2021	/* Go through all the buffer descriptors and free their data buffers */
2022	for (i = 0; i < priv->num_tx_queues; i++) {
2023		struct netdev_queue *txq;
2024
2025		tx_queue = priv->tx_queue[i];
2026		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2027		if (tx_queue->tx_skbuff)
2028			free_skb_tx_queue(tx_queue);
2029		netdev_tx_reset_queue(txq);
2030	}
2031
2032	for (i = 0; i < priv->num_rx_queues; i++) {
2033		rx_queue = priv->rx_queue[i];
2034		if (rx_queue->rx_buff)
2035			free_skb_rx_queue(rx_queue);
2036	}
2037
2038	dma_free_coherent(priv->dev,
2039			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2040			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2041			  priv->tx_queue[0]->tx_bd_base,
2042			  priv->tx_queue[0]->tx_bd_dma_base);
2043}
2044
2045void gfar_start(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046{
2047	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2048	u32 tempval;
2049	int i = 0;
2050
2051	/* Enable Rx/Tx hw queues */
2052	gfar_write(&regs->rqueue, priv->rqueue);
2053	gfar_write(&regs->tqueue, priv->tqueue);
2054
2055	/* Initialize DMACTRL to have WWR and WOP */
2056	tempval = gfar_read(&regs->dmactrl);
2057	tempval |= DMACTRL_INIT_SETTINGS;
2058	gfar_write(&regs->dmactrl, tempval);
2059
2060	/* Make sure we aren't stopped */
2061	tempval = gfar_read(&regs->dmactrl);
2062	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2063	gfar_write(&regs->dmactrl, tempval);
2064
2065	for (i = 0; i < priv->num_grps; i++) {
2066		regs = priv->gfargrp[i].regs;
2067		/* Clear THLT/RHLT, so that the DMA starts polling now */
2068		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2069		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2070	}
2071
2072	/* Enable Rx/Tx DMA */
2073	tempval = gfar_read(&regs->maccfg1);
2074	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2075	gfar_write(&regs->maccfg1, tempval);
2076
2077	gfar_ints_enable(priv);
2078
2079	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2080}
2081
2082static void free_grp_irqs(struct gfar_priv_grp *grp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083{
2084	free_irq(gfar_irq(grp, TX)->irq, grp);
2085	free_irq(gfar_irq(grp, RX)->irq, grp);
2086	free_irq(gfar_irq(grp, ER)->irq, grp);
 
 
2087}
2088
2089static int register_grp_irqs(struct gfar_priv_grp *grp)
 
2090{
2091	struct gfar_private *priv = grp->priv;
2092	struct net_device *dev = priv->ndev;
2093	int err;
2094
2095	/* If the device has multiple interrupts, register for
2096	 * them.  Otherwise, only register for the one
2097	 */
2098	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2099		/* Install our interrupt handlers for Error,
2100		 * Transmit, and Receive
2101		 */
2102		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2103				  gfar_irq(grp, ER)->name, grp);
2104		if (err < 0) {
2105			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2106				  gfar_irq(grp, ER)->irq);
2107
2108			goto err_irq_fail;
 
 
 
 
 
 
2109		}
2110		enable_irq_wake(gfar_irq(grp, ER)->irq);
2111
2112		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2113				  gfar_irq(grp, TX)->name, grp);
2114		if (err < 0) {
2115			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2116				  gfar_irq(grp, TX)->irq);
2117			goto tx_irq_fail;
 
 
 
 
 
 
2118		}
2119		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2120				  gfar_irq(grp, RX)->name, grp);
2121		if (err < 0) {
2122			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2123				  gfar_irq(grp, RX)->irq);
2124			goto rx_irq_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125		}
2126		enable_irq_wake(gfar_irq(grp, RX)->irq);
2127
2128	} else {
2129		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2130				  gfar_irq(grp, TX)->name, grp);
2131		if (err < 0) {
2132			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2133				  gfar_irq(grp, TX)->irq);
2134			goto err_irq_fail;
2135		}
2136		enable_irq_wake(gfar_irq(grp, TX)->irq);
2137	}
2138
2139	return 0;
 
 
 
 
 
 
2140
2141rx_irq_fail:
2142	free_irq(gfar_irq(grp, TX)->irq, grp);
2143tx_irq_fail:
2144	free_irq(gfar_irq(grp, ER)->irq, grp);
2145err_irq_fail:
2146	return err;
2147
 
 
 
2148}
2149
2150static void gfar_free_irq(struct gfar_private *priv)
2151{
2152	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153
2154	/* Free the IRQs */
2155	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2156		for (i = 0; i < priv->num_grps; i++)
2157			free_grp_irqs(&priv->gfargrp[i]);
2158	} else {
2159		for (i = 0; i < priv->num_grps; i++)
2160			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2161				 &priv->gfargrp[i]);
 
2162	}
2163}
2164
2165static int gfar_request_irq(struct gfar_private *priv)
2166{
2167	int err, i, j;
 
 
 
 
 
 
 
 
 
 
2168
2169	for (i = 0; i < priv->num_grps; i++) {
2170		err = register_grp_irqs(&priv->gfargrp[i]);
2171		if (err) {
2172			for (j = 0; j < i; j++)
2173				free_grp_irqs(&priv->gfargrp[j]);
2174			return err;
2175		}
2176	}
2177
 
 
2178	return 0;
 
 
 
 
2179}
2180
2181/* Bring the controller up and running */
2182int startup_gfar(struct net_device *ndev)
2183{
2184	struct gfar_private *priv = netdev_priv(ndev);
2185	int err;
2186
2187	gfar_mac_reset(priv);
2188
2189	err = gfar_alloc_skb_resources(ndev);
2190	if (err)
2191		return err;
2192
2193	gfar_init_tx_rx_base(priv);
2194
2195	smp_mb__before_atomic();
2196	clear_bit(GFAR_DOWN, &priv->state);
2197	smp_mb__after_atomic();
2198
2199	/* Start Rx/Tx DMA and enable the interrupts */
2200	gfar_start(priv);
2201
2202	/* force link state update after mac reset */
2203	priv->oldlink = 0;
2204	priv->oldspeed = 0;
2205	priv->oldduplex = -1;
2206
2207	phy_start(priv->phydev);
2208
2209	enable_napi(priv);
2210
2211	netif_tx_wake_all_queues(ndev);
2212
2213	return 0;
2214}
2215
2216/* Called when something needs to use the ethernet device
2217 * Returns 0 for success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218 */
2219static int gfar_enet_open(struct net_device *dev)
2220{
 
2221	struct gfar_private *priv = netdev_priv(dev);
2222	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223
2224	err = init_phy(dev);
2225	if (err)
2226		return err;
2227
2228	err = gfar_request_irq(priv);
2229	if (err)
2230		return err;
2231
2232	err = startup_gfar(dev);
2233	if (err)
2234		return err;
2235
2236	return err;
2237}
2238
2239static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2240{
2241	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2242
2243	memset(fcb, 0, GMAC_FCB_LEN);
2244
2245	return fcb;
2246}
2247
2248static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2249				    int fcb_length)
2250{
2251	/* If we're here, it's a IP packet with a TCP or UDP
2252	 * payload.  We set it to checksum, using a pseudo-header
2253	 * we provide
2254	 */
2255	u8 flags = TXFCB_DEFAULT;
2256
2257	/* Tell the controller what the protocol is
2258	 * And provide the already calculated phcs
2259	 */
2260	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2261		flags |= TXFCB_UDP;
2262		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2263	} else
2264		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2265
2266	/* l3os is the distance between the start of the
2267	 * frame (skb->data) and the start of the IP hdr.
2268	 * l4os is the distance between the start of the
2269	 * l3 hdr and the l4 hdr
2270	 */
2271	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2272	fcb->l4os = skb_network_header_len(skb);
2273
2274	fcb->flags = flags;
2275}
2276
2277void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2278{
2279	fcb->flags |= TXFCB_VLN;
2280	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2281}
2282
2283static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2284				      struct txbd8 *base, int ring_size)
2285{
2286	struct txbd8 *new_bd = bdp + stride;
2287
2288	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2289}
2290
2291static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2292				      int ring_size)
2293{
2294	return skip_txbd(bdp, 1, base, ring_size);
2295}
2296
2297/* eTSEC12: csum generation not supported for some fcb offsets */
2298static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2299				       unsigned long fcb_addr)
2300{
2301	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2302	       (fcb_addr % 0x20) > 0x18);
2303}
2304
2305/* eTSEC76: csum generation for frames larger than 2500 may
2306 * cause excess delays before start of transmission
2307 */
2308static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2309				       unsigned int len)
2310{
2311	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2312	       (len > 2500));
2313}
2314
2315/* This is called by the kernel when a frame is ready for transmission.
2316 * It is pointed to by the dev->hard_start_xmit function pointer
2317 */
2318static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2319{
2320	struct gfar_private *priv = netdev_priv(dev);
2321	struct gfar_priv_tx_q *tx_queue = NULL;
2322	struct netdev_queue *txq;
2323	struct gfar __iomem *regs = NULL;
2324	struct txfcb *fcb = NULL;
2325	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2326	u32 lstatus;
2327	skb_frag_t *frag;
2328	int i, rq = 0;
2329	int do_tstamp, do_csum, do_vlan;
2330	u32 bufaddr;
2331	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2332
2333	rq = skb->queue_mapping;
2334	tx_queue = priv->tx_queue[rq];
2335	txq = netdev_get_tx_queue(dev, rq);
2336	base = tx_queue->tx_bd_base;
2337	regs = tx_queue->grp->regs;
2338
2339	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340	do_vlan = skb_vlan_tag_present(skb);
2341	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342		    priv->hwts_tx_en;
2343
2344	if (do_csum || do_vlan)
2345		fcb_len = GMAC_FCB_LEN;
2346
2347	/* check if time stamp should be generated */
2348	if (unlikely(do_tstamp))
2349		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2350
2351	/* make space for additional header when fcb is needed */
2352	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353		struct sk_buff *skb_new;
2354
2355		skb_new = skb_realloc_headroom(skb, fcb_len);
2356		if (!skb_new) {
2357			dev->stats.tx_errors++;
2358			dev_kfree_skb_any(skb);
2359			return NETDEV_TX_OK;
2360		}
2361
2362		if (skb->sk)
2363			skb_set_owner_w(skb_new, skb->sk);
2364		dev_consume_skb_any(skb);
2365		skb = skb_new;
2366	}
2367
2368	/* total number of fragments in the SKB */
2369	nr_frags = skb_shinfo(skb)->nr_frags;
2370
2371	/* calculate the required number of TxBDs for this skb */
2372	if (unlikely(do_tstamp))
2373		nr_txbds = nr_frags + 2;
2374	else
2375		nr_txbds = nr_frags + 1;
2376
2377	/* check if there is space to queue this packet */
2378	if (nr_txbds > tx_queue->num_txbdfree) {
2379		/* no space, stop the queue */
2380		netif_tx_stop_queue(txq);
2381		dev->stats.tx_fifo_errors++;
2382		return NETDEV_TX_BUSY;
2383	}
2384
2385	/* Update transmit stats */
2386	bytes_sent = skb->len;
2387	tx_queue->stats.tx_bytes += bytes_sent;
2388	/* keep Tx bytes on wire for BQL accounting */
2389	GFAR_CB(skb)->bytes_sent = bytes_sent;
2390	tx_queue->stats.tx_packets++;
2391
2392	txbdp = txbdp_start = tx_queue->cur_tx;
2393	lstatus = be32_to_cpu(txbdp->lstatus);
2394
2395	/* Add TxPAL between FCB and frame if required */
2396	if (unlikely(do_tstamp)) {
2397		skb_push(skb, GMAC_TXPAL_LEN);
2398		memset(skb->data, 0, GMAC_TXPAL_LEN);
2399	}
2400
2401	/* Add TxFCB if required */
2402	if (fcb_len) {
2403		fcb = gfar_add_fcb(skb);
2404		lstatus |= BD_LFLAG(TXBD_TOE);
2405	}
2406
2407	/* Set up checksumming */
2408	if (do_csum) {
2409		gfar_tx_checksum(skb, fcb, fcb_len);
2410
2411		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2412		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2413			__skb_pull(skb, GMAC_FCB_LEN);
2414			skb_checksum_help(skb);
2415			if (do_vlan || do_tstamp) {
2416				/* put back a new fcb for vlan/tstamp TOE */
2417				fcb = gfar_add_fcb(skb);
2418			} else {
2419				/* Tx TOE not used */
2420				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2421				fcb = NULL;
2422			}
2423		}
2424	}
2425
2426	if (do_vlan)
2427		gfar_tx_vlan(skb, fcb);
2428
2429	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2430				 DMA_TO_DEVICE);
2431	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2432		goto dma_map_err;
2433
2434	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2435
2436	/* Time stamp insertion requires one additional TxBD */
2437	if (unlikely(do_tstamp))
2438		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2439						 tx_queue->tx_ring_size);
2440
2441	if (likely(!nr_frags)) {
2442		lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 
2443	} else {
2444		u32 lstatus_start = lstatus;
2445
2446		/* Place the fragment addresses and lengths into the TxBDs */
2447		frag = &skb_shinfo(skb)->frags[0];
2448		for (i = 0; i < nr_frags; i++, frag++) {
2449			unsigned int size;
2450
2451			/* Point at the next BD, wrapping as needed */
2452			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2453
2454			size = skb_frag_size(frag);
2455
2456			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2457				  BD_LFLAG(TXBD_READY);
2458
2459			/* Handle the last BD specially */
2460			if (i == nr_frags - 1)
2461				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2462
2463			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2464						   size, DMA_TO_DEVICE);
2465			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2466				goto dma_map_err;
2467
2468			/* set the TxBD length and buffer pointer */
2469			txbdp->bufPtr = cpu_to_be32(bufaddr);
2470			txbdp->lstatus = cpu_to_be32(lstatus);
2471		}
2472
2473		lstatus = lstatus_start;
2474	}
2475
2476	/* If time stamping is requested one additional TxBD must be set up. The
2477	 * first TxBD points to the FCB and must have a data length of
2478	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2479	 * the full frame length.
2480	 */
2481	if (unlikely(do_tstamp)) {
2482		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2483
2484		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2485		bufaddr += fcb_len;
2486
2487		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2488			      (skb_headlen(skb) - fcb_len);
2489		if (!nr_frags)
2490			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2491
2492		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2493		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2494		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2495
2496		/* Setup tx hardware time stamping */
2497		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2498		fcb->ptp = 1;
2499	} else {
2500		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2501	}
2502
 
2503	netdev_tx_sent_queue(txq, bytes_sent);
2504
2505	gfar_wmb();
2506
2507	txbdp_start->lstatus = cpu_to_be32(lstatus);
2508
2509	gfar_wmb(); /* force lstatus write before tx_skbuff */
2510
2511	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2512
2513	/* Update the current skb pointer to the next entry we will use
2514	 * (wrapping if necessary)
2515	 */
2516	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2517			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2518
2519	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2520
2521	/* We can work in parallel with gfar_clean_tx_ring(), except
2522	 * when modifying num_txbdfree. Note that we didn't grab the lock
2523	 * when we were reading the num_txbdfree and checking for available
2524	 * space, that's because outside of this function it can only grow.
2525	 */
2526	spin_lock_bh(&tx_queue->txlock);
2527	/* reduce TxBD free count */
2528	tx_queue->num_txbdfree -= (nr_txbds);
2529	spin_unlock_bh(&tx_queue->txlock);
2530
2531	/* If the next BD still needs to be cleaned up, then the bds
2532	 * are full.  We need to tell the kernel to stop sending us stuff.
2533	 */
2534	if (!tx_queue->num_txbdfree) {
2535		netif_tx_stop_queue(txq);
2536
2537		dev->stats.tx_fifo_errors++;
2538	}
2539
2540	/* Tell the DMA to go go go */
2541	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2542
2543	return NETDEV_TX_OK;
2544
2545dma_map_err:
2546	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2547	if (do_tstamp)
2548		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2549	for (i = 0; i < nr_frags; i++) {
2550		lstatus = be32_to_cpu(txbdp->lstatus);
2551		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2552			break;
2553
2554		lstatus &= ~BD_LFLAG(TXBD_READY);
2555		txbdp->lstatus = cpu_to_be32(lstatus);
2556		bufaddr = be32_to_cpu(txbdp->bufPtr);
2557		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2558			       DMA_TO_DEVICE);
2559		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2560	}
2561	gfar_wmb();
2562	dev_kfree_skb_any(skb);
2563	return NETDEV_TX_OK;
2564}
2565
2566/* Stops the kernel queue, and halts the controller */
2567static int gfar_close(struct net_device *dev)
2568{
2569	struct gfar_private *priv = netdev_priv(dev);
2570
2571	cancel_work_sync(&priv->reset_task);
2572	stop_gfar(dev);
2573
2574	/* Disconnect from the PHY */
2575	phy_disconnect(priv->phydev);
2576	priv->phydev = NULL;
2577
2578	gfar_free_irq(priv);
2579
2580	return 0;
2581}
2582
2583/* Changes the mac address if the controller is not running. */
2584static int gfar_set_mac_address(struct net_device *dev)
2585{
2586	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2587
2588	return 0;
2589}
2590
2591static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2592{
2593	struct gfar_private *priv = netdev_priv(dev);
2594	int frame_size = new_mtu + ETH_HLEN;
2595
2596	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2597		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2598		return -EINVAL;
2599	}
2600
2601	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2602		cpu_relax();
2603
2604	if (dev->flags & IFF_UP)
2605		stop_gfar(dev);
2606
2607	dev->mtu = new_mtu;
2608
2609	if (dev->flags & IFF_UP)
2610		startup_gfar(dev);
2611
2612	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2613
2614	return 0;
2615}
2616
2617void reset_gfar(struct net_device *ndev)
2618{
2619	struct gfar_private *priv = netdev_priv(ndev);
2620
2621	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2622		cpu_relax();
2623
2624	stop_gfar(ndev);
2625	startup_gfar(ndev);
2626
2627	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628}
2629
2630/* gfar_reset_task gets scheduled when a packet has not been
2631 * transmitted after a set amount of time.
2632 * For now, assume that clearing out all the structures, and
2633 * starting over will fix the problem.
2634 */
2635static void gfar_reset_task(struct work_struct *work)
2636{
2637	struct gfar_private *priv = container_of(work, struct gfar_private,
2638						 reset_task);
2639	reset_gfar(priv->ndev);
2640}
2641
2642static void gfar_timeout(struct net_device *dev)
2643{
2644	struct gfar_private *priv = netdev_priv(dev);
2645
2646	dev->stats.tx_errors++;
2647	schedule_work(&priv->reset_task);
2648}
2649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650/* Interrupt Handler for Transmit complete */
2651static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2652{
2653	struct net_device *dev = tx_queue->dev;
2654	struct netdev_queue *txq;
2655	struct gfar_private *priv = netdev_priv(dev);
2656	struct txbd8 *bdp, *next = NULL;
2657	struct txbd8 *lbdp = NULL;
2658	struct txbd8 *base = tx_queue->tx_bd_base;
2659	struct sk_buff *skb;
2660	int skb_dirtytx;
2661	int tx_ring_size = tx_queue->tx_ring_size;
2662	int frags = 0, nr_txbds = 0;
2663	int i;
2664	int howmany = 0;
2665	int tqi = tx_queue->qindex;
2666	unsigned int bytes_sent = 0;
2667	u32 lstatus;
2668	size_t buflen;
2669
2670	txq = netdev_get_tx_queue(dev, tqi);
2671	bdp = tx_queue->dirty_tx;
2672	skb_dirtytx = tx_queue->skb_dirtytx;
2673
2674	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
 
 
 
 
2675
2676		frags = skb_shinfo(skb)->nr_frags;
2677
2678		/* When time stamping, one additional TxBD must be freed.
2679		 * Also, we need to dma_unmap_single() the TxPAL.
2680		 */
2681		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2682			nr_txbds = frags + 2;
2683		else
2684			nr_txbds = frags + 1;
2685
2686		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2687
2688		lstatus = be32_to_cpu(lbdp->lstatus);
2689
2690		/* Only clean completed frames */
2691		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2692		    (lstatus & BD_LENGTH_MASK))
2693			break;
2694
2695		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2696			next = next_txbd(bdp, base, tx_ring_size);
2697			buflen = be16_to_cpu(next->length) +
2698				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2699		} else
2700			buflen = be16_to_cpu(bdp->length);
2701
2702		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2703				 buflen, DMA_TO_DEVICE);
2704
2705		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2706			struct skb_shared_hwtstamps shhwtstamps;
2707			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2708					  ~0x7UL);
 
2709
2710			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2712			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2713			skb_tstamp_tx(skb, &shhwtstamps);
2714			gfar_clear_txbd_status(bdp);
2715			bdp = next;
2716		}
2717
2718		gfar_clear_txbd_status(bdp);
2719		bdp = next_txbd(bdp, base, tx_ring_size);
2720
2721		for (i = 0; i < frags; i++) {
2722			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2723				       be16_to_cpu(bdp->length),
2724				       DMA_TO_DEVICE);
2725			gfar_clear_txbd_status(bdp);
2726			bdp = next_txbd(bdp, base, tx_ring_size);
2727		}
2728
2729		bytes_sent += GFAR_CB(skb)->bytes_sent;
2730
2731		dev_kfree_skb_any(skb);
2732
2733		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2734
2735		skb_dirtytx = (skb_dirtytx + 1) &
2736			      TX_RING_MOD_MASK(tx_ring_size);
2737
2738		howmany++;
2739		spin_lock(&tx_queue->txlock);
2740		tx_queue->num_txbdfree += nr_txbds;
2741		spin_unlock(&tx_queue->txlock);
2742	}
2743
2744	/* If we freed a buffer, we can restart transmission, if necessary */
2745	if (tx_queue->num_txbdfree &&
2746	    netif_tx_queue_stopped(txq) &&
2747	    !(test_bit(GFAR_DOWN, &priv->state)))
2748		netif_wake_subqueue(priv->ndev, tqi);
2749
2750	/* Update dirty indicators */
2751	tx_queue->skb_dirtytx = skb_dirtytx;
2752	tx_queue->dirty_tx = bdp;
2753
2754	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2755}
2756
2757static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2758{
2759	struct page *page;
2760	dma_addr_t addr;
2761
2762	page = dev_alloc_page();
2763	if (unlikely(!page))
2764		return false;
2765
2766	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2767	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2768		__free_page(page);
2769
2770		return false;
2771	}
2772
2773	rxb->dma = addr;
2774	rxb->page = page;
2775	rxb->page_offset = 0;
2776
2777	return true;
2778}
2779
2780static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2781{
2782	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2783	struct gfar_extra_stats *estats = &priv->extra_stats;
2784
2785	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2786	atomic64_inc(&estats->rx_alloc_err);
2787}
2788
2789static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2790				int alloc_cnt)
2791{
2792	struct rxbd8 *bdp;
2793	struct gfar_rx_buff *rxb;
2794	int i;
2795
2796	i = rx_queue->next_to_use;
2797	bdp = &rx_queue->rx_bd_base[i];
2798	rxb = &rx_queue->rx_buff[i];
2799
2800	while (alloc_cnt--) {
2801		/* try reuse page */
2802		if (unlikely(!rxb->page)) {
2803			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2804				gfar_rx_alloc_err(rx_queue);
2805				break;
2806			}
2807		}
2808
2809		/* Setup the new RxBD */
2810		gfar_init_rxbdp(rx_queue, bdp,
2811				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2812
2813		/* Update to the next pointer */
2814		bdp++;
2815		rxb++;
2816
2817		if (unlikely(++i == rx_queue->rx_ring_size)) {
2818			i = 0;
2819			bdp = rx_queue->rx_bd_base;
2820			rxb = rx_queue->rx_buff;
2821		}
2822	}
2823
2824	rx_queue->next_to_use = i;
2825	rx_queue->next_to_alloc = i;
2826}
2827
2828static void count_errors(u32 lstatus, struct net_device *ndev)
2829{
2830	struct gfar_private *priv = netdev_priv(ndev);
2831	struct net_device_stats *stats = &ndev->stats;
2832	struct gfar_extra_stats *estats = &priv->extra_stats;
2833
2834	/* If the packet was truncated, none of the other errors matter */
2835	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2836		stats->rx_length_errors++;
2837
2838		atomic64_inc(&estats->rx_trunc);
2839
2840		return;
2841	}
2842	/* Count the errors, if there were any */
2843	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2844		stats->rx_length_errors++;
2845
2846		if (lstatus & BD_LFLAG(RXBD_LARGE))
2847			atomic64_inc(&estats->rx_large);
2848		else
2849			atomic64_inc(&estats->rx_short);
2850	}
2851	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2852		stats->rx_frame_errors++;
2853		atomic64_inc(&estats->rx_nonoctet);
2854	}
2855	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2856		atomic64_inc(&estats->rx_crcerr);
2857		stats->rx_crc_errors++;
2858	}
2859	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2860		atomic64_inc(&estats->rx_overrun);
2861		stats->rx_over_errors++;
2862	}
2863}
2864
2865irqreturn_t gfar_receive(int irq, void *grp_id)
2866{
2867	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2868	unsigned long flags;
2869	u32 imask, ievent;
2870
2871	ievent = gfar_read(&grp->regs->ievent);
2872
2873	if (unlikely(ievent & IEVENT_FGPI)) {
2874		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2875		return IRQ_HANDLED;
2876	}
2877
2878	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2879		spin_lock_irqsave(&grp->grplock, flags);
2880		imask = gfar_read(&grp->regs->imask);
2881		imask &= IMASK_RX_DISABLED;
2882		gfar_write(&grp->regs->imask, imask);
2883		spin_unlock_irqrestore(&grp->grplock, flags);
2884		__napi_schedule(&grp->napi_rx);
2885	} else {
2886		/* Clear IEVENT, so interrupts aren't called again
2887		 * because of the packets that have already arrived.
2888		 */
2889		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2890	}
2891
2892	return IRQ_HANDLED;
2893}
2894
2895/* Interrupt Handler for Transmit complete */
2896static irqreturn_t gfar_transmit(int irq, void *grp_id)
2897{
2898	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2899	unsigned long flags;
2900	u32 imask;
2901
2902	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2903		spin_lock_irqsave(&grp->grplock, flags);
2904		imask = gfar_read(&grp->regs->imask);
2905		imask &= IMASK_TX_DISABLED;
2906		gfar_write(&grp->regs->imask, imask);
2907		spin_unlock_irqrestore(&grp->grplock, flags);
2908		__napi_schedule(&grp->napi_tx);
2909	} else {
2910		/* Clear IEVENT, so interrupts aren't called again
2911		 * because of the packets that have already arrived.
2912		 */
2913		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2914	}
2915
2916	return IRQ_HANDLED;
2917}
2918
2919static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2920			     struct sk_buff *skb, bool first)
2921{
2922	unsigned int size = lstatus & BD_LENGTH_MASK;
2923	struct page *page = rxb->page;
2924
2925	/* Remove the FCS from the packet length */
2926	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2927		size -= ETH_FCS_LEN;
 
 
 
 
 
 
 
2928
2929	if (likely(first))
2930		skb_put(skb, size);
2931	else
2932		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2933				rxb->page_offset + RXBUF_ALIGNMENT,
2934				size, GFAR_RXB_TRUESIZE);
 
2935
2936	/* try reuse page */
2937	if (unlikely(page_count(page) != 1))
2938		return false;
2939
2940	/* change offset to the other half */
2941	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2942
2943	page_ref_inc(page);
2944
2945	return true;
2946}
2947
2948static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2949			       struct gfar_rx_buff *old_rxb)
2950{
2951	struct gfar_rx_buff *new_rxb;
2952	u16 nta = rxq->next_to_alloc;
2953
2954	new_rxb = &rxq->rx_buff[nta];
2955
2956	/* find next buf that can reuse a page */
2957	nta++;
2958	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2959
2960	/* copy page reference */
2961	*new_rxb = *old_rxb;
2962
2963	/* sync for use by the device */
2964	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2965					 old_rxb->page_offset,
2966					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2967}
2968
2969static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2970					    u32 lstatus, struct sk_buff *skb)
2971{
2972	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2973	struct page *page = rxb->page;
2974	bool first = false;
2975
2976	if (likely(!skb)) {
2977		void *buff_addr = page_address(page) + rxb->page_offset;
2978
2979		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2980		if (unlikely(!skb)) {
2981			gfar_rx_alloc_err(rx_queue);
2982			return NULL;
2983		}
2984		skb_reserve(skb, RXBUF_ALIGNMENT);
2985		first = true;
2986	}
2987
2988	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2989				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2990
2991	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2992		/* reuse the free half of the page */
2993		gfar_reuse_rx_page(rx_queue, rxb);
2994	} else {
2995		/* page cannot be reused, unmap it */
2996		dma_unmap_page(rx_queue->dev, rxb->dma,
2997			       PAGE_SIZE, DMA_FROM_DEVICE);
2998	}
2999
3000	/* clear rxb content */
3001	rxb->page = NULL;
3002
3003	return skb;
3004}
3005
3006static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3007{
3008	/* If valid headers were found, and valid sums
3009	 * were verified, then we tell the kernel that no
3010	 * checksumming is necessary.  Otherwise, it is [FIXME]
3011	 */
3012	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3013	    (RXFCB_CIP | RXFCB_CTU))
3014		skb->ip_summed = CHECKSUM_UNNECESSARY;
3015	else
3016		skb_checksum_none_assert(skb);
3017}
3018
3019/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3020static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3021{
3022	struct gfar_private *priv = netdev_priv(ndev);
3023	struct rxfcb *fcb = NULL;
3024
3025	/* fcb is at the beginning if exists */
3026	fcb = (struct rxfcb *)skb->data;
3027
3028	/* Remove the FCB from the skb
3029	 * Remove the padded bytes, if there are any
3030	 */
3031	if (priv->uses_rxfcb)
3032		skb_pull(skb, GMAC_FCB_LEN);
3033
3034	/* Get receive timestamp from the skb */
3035	if (priv->hwts_rx_en) {
3036		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3037		u64 *ns = (u64 *) skb->data;
3038
3039		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3040		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3041	}
3042
3043	if (priv->padding)
3044		skb_pull(skb, priv->padding);
3045
 
 
 
3046	if (ndev->features & NETIF_F_RXCSUM)
3047		gfar_rx_checksum(skb, fcb);
3048
3049	/* Tell the skb what kind of packet this is */
3050	skb->protocol = eth_type_trans(skb, ndev);
3051
3052	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3053	 * Even if vlan rx accel is disabled, on some chips
3054	 * RXFCB_VLN is pseudo randomly set.
3055	 */
3056	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3057	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3058		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3059				       be16_to_cpu(fcb->vlctl));
3060}
3061
3062/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3063 * until the budget/quota has been reached. Returns the number
3064 * of frames handled
3065 */
3066int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
 
3067{
3068	struct net_device *ndev = rx_queue->ndev;
3069	struct gfar_private *priv = netdev_priv(ndev);
3070	struct rxbd8 *bdp;
3071	int i, howmany = 0;
3072	struct sk_buff *skb = rx_queue->skb;
3073	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3074	unsigned int total_bytes = 0, total_pkts = 0;
3075
3076	/* Get the first full descriptor */
3077	i = rx_queue->next_to_clean;
3078
3079	while (rx_work_limit--) {
3080		u32 lstatus;
3081
3082		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3083			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3084			cleaned_cnt = 0;
3085		}
3086
3087		bdp = &rx_queue->rx_bd_base[i];
3088		lstatus = be32_to_cpu(bdp->lstatus);
3089		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3090			break;
3091
 
 
 
 
 
 
 
 
 
 
 
3092		/* order rx buffer descriptor reads */
3093		rmb();
3094
3095		/* fetch next to clean buffer from the ring */
3096		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3097		if (unlikely(!skb))
3098			break;
3099
3100		cleaned_cnt++;
3101		howmany++;
3102
3103		if (unlikely(++i == rx_queue->rx_ring_size))
3104			i = 0;
3105
3106		rx_queue->next_to_clean = i;
3107
3108		/* fetch next buffer if not the last in frame */
3109		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3110			continue;
3111
3112		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3113			count_errors(lstatus, ndev);
3114
3115			/* discard faulty buffer */
3116			dev_kfree_skb(skb);
3117			skb = NULL;
3118			rx_queue->stats.rx_dropped++;
3119			continue;
3120		}
3121
 
 
3122		/* Increment the number of packets */
3123		total_pkts++;
3124		total_bytes += skb->len;
3125
3126		skb_record_rx_queue(skb, rx_queue->qindex);
3127
3128		gfar_process_frame(ndev, skb);
3129
3130		/* Send the packet up the stack */
3131		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3132
3133		skb = NULL;
3134	}
3135
3136	/* Store incomplete frames for completion */
3137	rx_queue->skb = skb;
3138
3139	rx_queue->stats.rx_packets += total_pkts;
3140	rx_queue->stats.rx_bytes += total_bytes;
3141
3142	if (cleaned_cnt)
3143		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3144
3145	/* Update Last Free RxBD pointer for LFC */
3146	if (unlikely(priv->tx_actual_en)) {
3147		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3148
3149		gfar_write(rx_queue->rfbptr, bdp_dma);
3150	}
3151
3152	return howmany;
3153}
3154
3155static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3156{
3157	struct gfar_priv_grp *gfargrp =
3158		container_of(napi, struct gfar_priv_grp, napi_rx);
3159	struct gfar __iomem *regs = gfargrp->regs;
3160	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3161	int work_done = 0;
3162
3163	/* Clear IEVENT, so interrupts aren't called again
3164	 * because of the packets that have already arrived
3165	 */
3166	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3167
3168	work_done = gfar_clean_rx_ring(rx_queue, budget);
3169
3170	if (work_done < budget) {
3171		u32 imask;
3172		napi_complete(napi);
3173		/* Clear the halt bit in RSTAT */
3174		gfar_write(&regs->rstat, gfargrp->rstat);
3175
3176		spin_lock_irq(&gfargrp->grplock);
3177		imask = gfar_read(&regs->imask);
3178		imask |= IMASK_RX_DEFAULT;
3179		gfar_write(&regs->imask, imask);
3180		spin_unlock_irq(&gfargrp->grplock);
3181	}
3182
3183	return work_done;
3184}
3185
3186static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3187{
3188	struct gfar_priv_grp *gfargrp =
3189		container_of(napi, struct gfar_priv_grp, napi_tx);
3190	struct gfar __iomem *regs = gfargrp->regs;
3191	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3192	u32 imask;
3193
3194	/* Clear IEVENT, so interrupts aren't called again
3195	 * because of the packets that have already arrived
3196	 */
3197	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3198
3199	/* run Tx cleanup to completion */
3200	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3201		gfar_clean_tx_ring(tx_queue);
3202
3203	napi_complete(napi);
3204
3205	spin_lock_irq(&gfargrp->grplock);
3206	imask = gfar_read(&regs->imask);
3207	imask |= IMASK_TX_DEFAULT;
3208	gfar_write(&regs->imask, imask);
3209	spin_unlock_irq(&gfargrp->grplock);
3210
3211	return 0;
3212}
3213
3214static int gfar_poll_rx(struct napi_struct *napi, int budget)
 
3215{
3216	struct gfar_priv_grp *gfargrp =
3217		container_of(napi, struct gfar_priv_grp, napi_rx);
3218	struct gfar_private *priv = gfargrp->priv;
3219	struct gfar __iomem *regs = gfargrp->regs;
3220	struct gfar_priv_rx_q *rx_queue = NULL;
3221	int work_done = 0, work_done_per_q = 0;
3222	int i, budget_per_q = 0;
3223	unsigned long rstat_rxf;
3224	int num_act_queues;
3225
3226	/* Clear IEVENT, so interrupts aren't called again
3227	 * because of the packets that have already arrived
3228	 */
3229	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3230
3231	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
 
 
 
3232
3233	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3234	if (num_act_queues)
3235		budget_per_q = budget/num_act_queues;
3236
3237	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3238		/* skip queue if not active */
3239		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3240			continue;
 
3241
3242		rx_queue = priv->rx_queue[i];
3243		work_done_per_q =
3244			gfar_clean_rx_ring(rx_queue, budget_per_q);
3245		work_done += work_done_per_q;
3246
3247		/* finished processing this queue */
3248		if (work_done_per_q < budget_per_q) {
3249			/* clear active queue hw indication */
3250			gfar_write(&regs->rstat,
3251				   RSTAT_CLEAR_RXF0 >> i);
3252			num_act_queues--;
3253
3254			if (!num_act_queues)
3255				break;
 
 
 
 
 
 
 
 
 
 
 
3256		}
 
3257	}
 
 
 
3258
3259	if (!num_act_queues) {
3260		u32 imask;
3261		napi_complete(napi);
 
 
 
3262
3263		/* Clear the halt bit in RSTAT */
3264		gfar_write(&regs->rstat, gfargrp->rstat);
 
 
 
 
 
 
3265
3266		spin_lock_irq(&gfargrp->grplock);
3267		imask = gfar_read(&regs->imask);
3268		imask |= IMASK_RX_DEFAULT;
3269		gfar_write(&regs->imask, imask);
3270		spin_unlock_irq(&gfargrp->grplock);
3271	}
3272
3273	return work_done;
3274}
3275
3276static int gfar_poll_tx(struct napi_struct *napi, int budget)
 
3277{
3278	struct gfar_priv_grp *gfargrp =
3279		container_of(napi, struct gfar_priv_grp, napi_tx);
3280	struct gfar_private *priv = gfargrp->priv;
3281	struct gfar __iomem *regs = gfargrp->regs;
3282	struct gfar_priv_tx_q *tx_queue = NULL;
3283	int has_tx_work = 0;
3284	int i;
3285
3286	/* Clear IEVENT, so interrupts aren't called again
3287	 * because of the packets that have already arrived
3288	 */
3289	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3290
3291	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3292		tx_queue = priv->tx_queue[i];
3293		/* run Tx cleanup to completion */
3294		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3295			gfar_clean_tx_ring(tx_queue);
3296			has_tx_work = 1;
3297		}
3298	}
3299
3300	if (!has_tx_work) {
3301		u32 imask;
3302		napi_complete(napi);
3303
3304		spin_lock_irq(&gfargrp->grplock);
3305		imask = gfar_read(&regs->imask);
3306		imask |= IMASK_TX_DEFAULT;
3307		gfar_write(&regs->imask, imask);
3308		spin_unlock_irq(&gfargrp->grplock);
3309	}
3310
3311	return 0;
3312}
3313
3314
3315#ifdef CONFIG_NET_POLL_CONTROLLER
3316/* Polling 'interrupt' - used by things like netconsole to send skbs
3317 * without having to re-enable interrupts. It's not called while
3318 * the interrupt routine is executing.
3319 */
3320static void gfar_netpoll(struct net_device *dev)
3321{
3322	struct gfar_private *priv = netdev_priv(dev);
3323	int i;
3324
3325	/* If the device has multiple interrupts, run tx/rx */
3326	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3327		for (i = 0; i < priv->num_grps; i++) {
3328			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3329
3330			disable_irq(gfar_irq(grp, TX)->irq);
3331			disable_irq(gfar_irq(grp, RX)->irq);
3332			disable_irq(gfar_irq(grp, ER)->irq);
3333			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3334			enable_irq(gfar_irq(grp, ER)->irq);
3335			enable_irq(gfar_irq(grp, RX)->irq);
3336			enable_irq(gfar_irq(grp, TX)->irq);
3337		}
3338	} else {
3339		for (i = 0; i < priv->num_grps; i++) {
3340			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3341
3342			disable_irq(gfar_irq(grp, TX)->irq);
3343			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3344			enable_irq(gfar_irq(grp, TX)->irq);
3345		}
3346	}
3347}
3348#endif
3349
3350/* The interrupt handler for devices with one interrupt */
3351static irqreturn_t gfar_interrupt(int irq, void *grp_id)
 
 
 
 
 
 
3352{
3353	struct gfar_priv_grp *gfargrp = grp_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354
3355	/* Save ievent for future reference */
3356	u32 events = gfar_read(&gfargrp->regs->ievent);
 
3357
3358	/* Check for reception */
3359	if (events & IEVENT_RX_MASK)
3360		gfar_receive(irq, grp_id);
 
 
 
 
 
 
 
3361
3362	/* Check for transmit completion */
3363	if (events & IEVENT_TX_MASK)
3364		gfar_transmit(irq, grp_id);
3365
3366	/* Check for errors */
3367	if (events & IEVENT_ERR_MASK)
3368		gfar_error(irq, grp_id);
 
 
 
 
 
3369
3370	return IRQ_HANDLED;
3371}
3372
3373/* Called every time the controller might need to be made
3374 * aware of new link state.  The PHY code conveys this
3375 * information through variables in the phydev structure, and this
3376 * function converts those variables into the appropriate
3377 * register values, and can bring down the device if needed.
3378 */
3379static void adjust_link(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380{
3381	struct gfar_private *priv = netdev_priv(dev);
3382	struct phy_device *phydev = priv->phydev;
3383
3384	if (unlikely(phydev->link != priv->oldlink ||
3385		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3386				       phydev->speed != priv->oldspeed))))
3387		gfar_update_link_state(priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388}
3389
3390/* Update the hash table based on the current list of multicast
3391 * addresses we subscribe to.  Also, change the promiscuity of
3392 * the device based on the flags (this function is called
3393 * whenever dev->flags is changed
3394 */
3395static void gfar_set_multi(struct net_device *dev)
3396{
3397	struct netdev_hw_addr *ha;
3398	struct gfar_private *priv = netdev_priv(dev);
3399	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3400	u32 tempval;
3401
3402	if (dev->flags & IFF_PROMISC) {
3403		/* Set RCTRL to PROM */
3404		tempval = gfar_read(&regs->rctrl);
3405		tempval |= RCTRL_PROM;
3406		gfar_write(&regs->rctrl, tempval);
3407	} else {
3408		/* Set RCTRL to not PROM */
3409		tempval = gfar_read(&regs->rctrl);
3410		tempval &= ~(RCTRL_PROM);
3411		gfar_write(&regs->rctrl, tempval);
3412	}
3413
3414	if (dev->flags & IFF_ALLMULTI) {
3415		/* Set the hash to rx all multicast frames */
3416		gfar_write(&regs->igaddr0, 0xffffffff);
3417		gfar_write(&regs->igaddr1, 0xffffffff);
3418		gfar_write(&regs->igaddr2, 0xffffffff);
3419		gfar_write(&regs->igaddr3, 0xffffffff);
3420		gfar_write(&regs->igaddr4, 0xffffffff);
3421		gfar_write(&regs->igaddr5, 0xffffffff);
3422		gfar_write(&regs->igaddr6, 0xffffffff);
3423		gfar_write(&regs->igaddr7, 0xffffffff);
3424		gfar_write(&regs->gaddr0, 0xffffffff);
3425		gfar_write(&regs->gaddr1, 0xffffffff);
3426		gfar_write(&regs->gaddr2, 0xffffffff);
3427		gfar_write(&regs->gaddr3, 0xffffffff);
3428		gfar_write(&regs->gaddr4, 0xffffffff);
3429		gfar_write(&regs->gaddr5, 0xffffffff);
3430		gfar_write(&regs->gaddr6, 0xffffffff);
3431		gfar_write(&regs->gaddr7, 0xffffffff);
3432	} else {
3433		int em_num;
3434		int idx;
3435
3436		/* zero out the hash */
3437		gfar_write(&regs->igaddr0, 0x0);
3438		gfar_write(&regs->igaddr1, 0x0);
3439		gfar_write(&regs->igaddr2, 0x0);
3440		gfar_write(&regs->igaddr3, 0x0);
3441		gfar_write(&regs->igaddr4, 0x0);
3442		gfar_write(&regs->igaddr5, 0x0);
3443		gfar_write(&regs->igaddr6, 0x0);
3444		gfar_write(&regs->igaddr7, 0x0);
3445		gfar_write(&regs->gaddr0, 0x0);
3446		gfar_write(&regs->gaddr1, 0x0);
3447		gfar_write(&regs->gaddr2, 0x0);
3448		gfar_write(&regs->gaddr3, 0x0);
3449		gfar_write(&regs->gaddr4, 0x0);
3450		gfar_write(&regs->gaddr5, 0x0);
3451		gfar_write(&regs->gaddr6, 0x0);
3452		gfar_write(&regs->gaddr7, 0x0);
3453
3454		/* If we have extended hash tables, we need to
3455		 * clear the exact match registers to prepare for
3456		 * setting them
3457		 */
3458		if (priv->extended_hash) {
3459			em_num = GFAR_EM_NUM + 1;
3460			gfar_clear_exact_match(dev);
3461			idx = 1;
3462		} else {
3463			idx = 0;
3464			em_num = 0;
3465		}
3466
3467		if (netdev_mc_empty(dev))
3468			return;
3469
3470		/* Parse the list, and set the appropriate bits */
3471		netdev_for_each_mc_addr(ha, dev) {
3472			if (idx < em_num) {
3473				gfar_set_mac_for_addr(dev, idx, ha->addr);
3474				idx++;
3475			} else
3476				gfar_set_hash_for_addr(dev, ha->addr);
3477		}
3478	}
3479}
3480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3481
3482/* Clears each of the exact match registers to zero, so they
3483 * don't interfere with normal reception
3484 */
3485static void gfar_clear_exact_match(struct net_device *dev)
3486{
3487	int idx;
3488	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3489
3490	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3491		gfar_set_mac_for_addr(dev, idx, zero_arr);
3492}
3493
3494/* Set the appropriate hash bit for the given addr */
3495/* The algorithm works like so:
3496 * 1) Take the Destination Address (ie the multicast address), and
3497 * do a CRC on it (little endian), and reverse the bits of the
3498 * result.
3499 * 2) Use the 8 most significant bits as a hash into a 256-entry
3500 * table.  The table is controlled through 8 32-bit registers:
3501 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3502 * gaddr7.  This means that the 3 most significant bits in the
3503 * hash index which gaddr register to use, and the 5 other bits
3504 * indicate which bit (assuming an IBM numbering scheme, which
3505 * for PowerPC (tm) is usually the case) in the register holds
3506 * the entry.
3507 */
3508static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3509{
3510	u32 tempval;
3511	struct gfar_private *priv = netdev_priv(dev);
3512	u32 result = ether_crc(ETH_ALEN, addr);
3513	int width = priv->hash_width;
3514	u8 whichbit = (result >> (32 - width)) & 0x1f;
3515	u8 whichreg = result >> (32 - width + 5);
3516	u32 value = (1 << (31-whichbit));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3517
3518	tempval = gfar_read(priv->hash_regs[whichreg]);
3519	tempval |= value;
3520	gfar_write(priv->hash_regs[whichreg], tempval);
3521}
3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3523
3524/* There are multiple MAC Address register pairs on some controllers
3525 * This function sets the numth pair to a given address
3526 */
3527static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3528				  const u8 *addr)
3529{
3530	struct gfar_private *priv = netdev_priv(dev);
3531	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3532	u32 tempval;
3533	u32 __iomem *macptr = &regs->macstnaddr1;
 
 
 
 
 
 
 
 
 
 
 
3534
3535	macptr += num*2;
3536
3537	/* For a station address of 0x12345678ABCD in transmission
3538	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3539	 * MACnADDR2 is set to 0x34120000.
3540	 */
3541	tempval = (addr[5] << 24) | (addr[4] << 16) |
3542		  (addr[3] << 8)  |  addr[2];
3543
3544	gfar_write(macptr, tempval);
3545
3546	tempval = (addr[1] << 24) | (addr[0] << 16);
 
3547
3548	gfar_write(macptr+1, tempval);
3549}
 
 
 
 
 
 
3550
3551/* GFAR error interrupt handler */
3552static irqreturn_t gfar_error(int irq, void *grp_id)
3553{
3554	struct gfar_priv_grp *gfargrp = grp_id;
3555	struct gfar __iomem *regs = gfargrp->regs;
3556	struct gfar_private *priv= gfargrp->priv;
3557	struct net_device *dev = priv->ndev;
3558
3559	/* Save ievent for future reference */
3560	u32 events = gfar_read(&regs->ievent);
 
 
 
 
3561
3562	/* Clear IEVENT */
3563	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
 
 
 
3564
3565	/* Magic Packet is not an error. */
3566	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3567	    (events & IEVENT_MAG))
3568		events &= ~IEVENT_MAG;
3569
3570	/* Hmm... */
3571	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3572		netdev_dbg(dev,
3573			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3574			   events, gfar_read(&regs->imask));
3575
3576	/* Update the error counters */
3577	if (events & IEVENT_TXE) {
3578		dev->stats.tx_errors++;
 
 
3579
3580		if (events & IEVENT_LC)
3581			dev->stats.tx_window_errors++;
3582		if (events & IEVENT_CRL)
3583			dev->stats.tx_aborted_errors++;
3584		if (events & IEVENT_XFUN) {
3585			netif_dbg(priv, tx_err, dev,
3586				  "TX FIFO underrun, packet dropped\n");
3587			dev->stats.tx_dropped++;
3588			atomic64_inc(&priv->extra_stats.tx_underrun);
3589
3590			schedule_work(&priv->reset_task);
3591		}
3592		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
 
 
 
3593	}
3594	if (events & IEVENT_BSY) {
3595		dev->stats.rx_over_errors++;
3596		atomic64_inc(&priv->extra_stats.rx_bsy);
3597
3598		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3599			  gfar_read(&regs->rstat));
 
 
3600	}
3601	if (events & IEVENT_BABR) {
3602		dev->stats.rx_errors++;
3603		atomic64_inc(&priv->extra_stats.rx_babr);
3604
3605		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3606	}
3607	if (events & IEVENT_EBERR) {
3608		atomic64_inc(&priv->extra_stats.eberr);
3609		netif_dbg(priv, rx_err, dev, "bus error\n");
 
 
 
 
 
 
3610	}
3611	if (events & IEVENT_RXC)
3612		netif_dbg(priv, rx_status, dev, "control frame\n");
3613
3614	if (events & IEVENT_BABT) {
3615		atomic64_inc(&priv->extra_stats.tx_babt);
3616		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3617	}
3618	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619}
3620
3621static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
 
3622{
3623	struct phy_device *phydev = priv->phydev;
3624	u32 val = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3625
3626	if (!phydev->duplex)
3627		return val;
3628
3629	if (!priv->pause_aneg_en) {
3630		if (priv->tx_pause_en)
3631			val |= MACCFG1_TX_FLOW;
3632		if (priv->rx_pause_en)
3633			val |= MACCFG1_RX_FLOW;
3634	} else {
3635		u16 lcl_adv, rmt_adv;
3636		u8 flowctrl;
3637		/* get link partner capabilities */
3638		rmt_adv = 0;
3639		if (phydev->pause)
3640			rmt_adv = LPA_PAUSE_CAP;
3641		if (phydev->asym_pause)
3642			rmt_adv |= LPA_PAUSE_ASYM;
3643
3644		lcl_adv = 0;
3645		if (phydev->advertising & ADVERTISED_Pause)
3646			lcl_adv |= ADVERTISE_PAUSE_CAP;
3647		if (phydev->advertising & ADVERTISED_Asym_Pause)
3648			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3649
3650		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3651		if (flowctrl & FLOW_CTRL_TX)
3652			val |= MACCFG1_TX_FLOW;
3653		if (flowctrl & FLOW_CTRL_RX)
3654			val |= MACCFG1_RX_FLOW;
3655	}
3656
3657	return val;
3658}
3659
3660static noinline void gfar_update_link_state(struct gfar_private *priv)
 
3661{
3662	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3663	struct phy_device *phydev = priv->phydev;
3664	struct gfar_priv_rx_q *rx_queue = NULL;
3665	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3666
3667	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3668		return;
 
 
 
3669
3670	if (phydev->link) {
3671		u32 tempval1 = gfar_read(&regs->maccfg1);
3672		u32 tempval = gfar_read(&regs->maccfg2);
3673		u32 ecntrl = gfar_read(&regs->ecntrl);
3674		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
 
 
3675
3676		if (phydev->duplex != priv->oldduplex) {
3677			if (!(phydev->duplex))
3678				tempval &= ~(MACCFG2_FULL_DUPLEX);
3679			else
3680				tempval |= MACCFG2_FULL_DUPLEX;
3681
3682			priv->oldduplex = phydev->duplex;
3683		}
 
 
3684
3685		if (phydev->speed != priv->oldspeed) {
3686			switch (phydev->speed) {
3687			case 1000:
3688				tempval =
3689				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3690
3691				ecntrl &= ~(ECNTRL_R100);
3692				break;
3693			case 100:
3694			case 10:
3695				tempval =
3696				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3697
3698				/* Reduced mode distinguishes
3699				 * between 10 and 100
3700				 */
3701				if (phydev->speed == SPEED_100)
3702					ecntrl |= ECNTRL_R100;
3703				else
3704					ecntrl &= ~(ECNTRL_R100);
3705				break;
3706			default:
3707				netif_warn(priv, link, priv->ndev,
3708					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3709					   phydev->speed);
3710				break;
3711			}
3712
3713			priv->oldspeed = phydev->speed;
3714		}
 
 
3715
3716		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3717		tempval1 |= gfar_get_flowctrl_cfg(priv);
 
3718
3719		/* Turn last free buffer recording on */
3720		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3721			for (i = 0; i < priv->num_rx_queues; i++) {
3722				u32 bdp_dma;
3723
3724				rx_queue = priv->rx_queue[i];
3725				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3726				gfar_write(rx_queue->rfbptr, bdp_dma);
3727			}
3728
3729			priv->tx_actual_en = 1;
3730		}
 
 
 
 
 
3731
3732		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3733			priv->tx_actual_en = 0;
3734
3735		gfar_write(&regs->maccfg1, tempval1);
 
 
 
3736		gfar_write(&regs->maccfg2, tempval);
3737		gfar_write(&regs->ecntrl, ecntrl);
3738
3739		if (!priv->oldlink)
3740			priv->oldlink = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3741
3742	} else if (priv->oldlink) {
3743		priv->oldlink = 0;
3744		priv->oldspeed = 0;
3745		priv->oldduplex = -1;
3746	}
3747
3748	if (netif_msg_link(priv))
3749		phy_print_status(phydev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3750}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751
3752static const struct of_device_id gfar_match[] =
3753{
3754	{
3755		.type = "network",
3756		.compatible = "gianfar",
3757	},
3758	{
3759		.compatible = "fsl,etsec2",
3760	},
3761	{},
3762};
3763MODULE_DEVICE_TABLE(of, gfar_match);
3764
3765/* Structure for a device driver */
3766static struct platform_driver gfar_driver = {
3767	.driver = {
3768		.name = "fsl-gianfar",
3769		.pm = GFAR_PM_OPS,
3770		.of_match_table = gfar_match,
3771	},
3772	.probe = gfar_probe,
3773	.remove = gfar_remove,
3774};
3775
3776module_platform_driver(gfar_driver);