Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
 
 
 
 
 
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
  61
  62#include <linux/kernel.h>
  63#include <linux/platform_device.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
 
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
 
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 100
 101#include "gianfar.h"
 
 
 
 102
 103#define TX_TIMEOUT      (5*HZ)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110			    dma_addr_t buf)
 111{
 112	u32 lstatus;
 113
 114	bdp->bufPtr = cpu_to_be32(buf);
 115
 116	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118		lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120	gfar_wmb();
 121
 122	bdp->lstatus = cpu_to_be32(lstatus);
 123}
 124
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128	u32 __iomem *baddr;
 129	int i;
 
 
 
 130
 131	baddr = &regs->tbase0;
 132	for (i = 0; i < priv->num_tx_queues; i++) {
 133		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134		baddr += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135	}
 136
 137	baddr = &regs->rbase0;
 138	for (i = 0; i < priv->num_rx_queues; i++) {
 139		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140		baddr += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141	}
 
 
 
 
 
 
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147	u32 __iomem *baddr;
 148	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150	baddr = &regs->rqprm0;
 151	for (i = 0; i < priv->num_rx_queues; i++) {
 152		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154		baddr++;
 
 
 
 
 
 
 
 
 
 155	}
 
 
 
 
 
 
 
 
 
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160	/* set this when rx hw offload (TOE) functions are being used */
 161	priv->uses_rxfcb = 0;
 
 162
 163	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164		priv->uses_rxfcb = 1;
 
 
 
 165
 166	if (priv->hwts_rx_en || priv->rx_filer_enable)
 167		priv->uses_rxfcb = 1;
 
 
 
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 
 172	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173	u32 rctrl = 0;
 
 
 
 
 
 
 
 
 174
 175	if (priv->rx_filer_enable) {
 176		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177		/* Program the RIR0 reg with the required distribution */
 178		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 179	}
 180
 181	/* Restore PROMISC mode */
 182	if (priv->ndev->flags & IFF_PROMISC)
 183		rctrl |= RCTRL_PROM;
 184
 185	if (priv->ndev->features & NETIF_F_RXCSUM)
 186		rctrl |= RCTRL_CHECKSUMMING;
 187
 188	if (priv->extended_hash)
 189		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 
 
 
 
 190
 191	if (priv->padding) {
 192		rctrl &= ~RCTRL_PAL_MASK;
 193		rctrl |= RCTRL_PADDING(priv->padding);
 194	}
 195
 
 
 
 
 
 
 
 196	/* Enable HW time stamping if requested from user space */
 197	if (priv->hwts_rx_en)
 198		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203	/* Clear the LFC bit */
 204	gfar_write(&regs->rctrl, rctrl);
 205	/* Init flow control threshold values */
 206	gfar_init_rqprm(priv);
 207	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208	rctrl |= RCTRL_LFC;
 209
 210	/* Init rctrl based on our settings */
 211	gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217	u32 tctrl = 0;
 218
 219	if (priv->ndev->features & NETIF_F_IP_CSUM)
 220		tctrl |= TCTRL_INIT_CSUM;
 221
 222	if (priv->prio_sched_en)
 223		tctrl |= TCTRL_TXSCHED_PRIO;
 224	else {
 225		tctrl |= TCTRL_TXSCHED_WRRS;
 226		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228	}
 229
 230	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231		tctrl |= TCTRL_VLINS;
 232
 233	gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237			       unsigned long tx_mask, unsigned long rx_mask)
 238{
 239	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240	u32 __iomem *baddr;
 241
 242	if (priv->mode == MQ_MG_MODE) {
 243		int i = 0;
 244
 245		baddr = &regs->txic0;
 246		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247			gfar_write(baddr + i, 0);
 248			if (likely(priv->tx_queue[i]->txcoalescing))
 249				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250		}
 251
 252		baddr = &regs->rxic0;
 253		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254			gfar_write(baddr + i, 0);
 255			if (likely(priv->rx_queue[i]->rxcoalescing))
 256				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257		}
 258	} else {
 259		/* Backward compatible case -- even if we enable
 260		 * multiple queues, there's only single reg to program
 261		 */
 262		gfar_write(&regs->txic, 0);
 263		if (likely(priv->tx_queue[0]->txcoalescing))
 264			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266		gfar_write(&regs->rxic, 0);
 267		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269	}
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 
 
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279	struct gfar_private *priv = netdev_priv(dev);
 280	int i;
 
 
 281
 282	for (i = 0; i < priv->num_rx_queues; i++) {
 283		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286	}
 287
 
 
 
 
 288	for (i = 0; i < priv->num_tx_queues; i++) {
 289		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291	}
 292
 293	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295		unsigned long flags;
 296		u32 rdrp, car, car_before;
 297		u64 rdrp_offset;
 298
 299		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301		do {
 302			car_before = car;
 303			rdrp = gfar_read(&rmon->rdrp);
 304			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305		} while (car != car_before);
 306		if (car) {
 307			priv->rmon_overflow.rdrp++;
 308			gfar_write(&rmon->car1, car);
 309		}
 310		rdrp_offset = priv->rmon_overflow.rdrp;
 311		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314	}
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333	u32 tempval;
 334	struct gfar_private *priv = netdev_priv(dev);
 335	u32 result = ether_crc(ETH_ALEN, addr);
 336	int width = priv->hash_width;
 337	u8 whichbit = (result >> (32 - width)) & 0x1f;
 338	u8 whichreg = result >> (32 - width + 5);
 339	u32 value = (1 << (31-whichbit));
 340
 341	tempval = gfar_read(priv->hash_regs[whichreg]);
 342	tempval |= value;
 343	gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350				  const u8 *addr)
 351{
 352	struct gfar_private *priv = netdev_priv(dev);
 353	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354	u32 tempval;
 355	u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357	macptr += num*2;
 358
 359	/* For a station address of 0x12345678ABCD in transmission
 360	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361	 * MACnADDR2 is set to 0x34120000.
 362	 */
 363	tempval = (addr[5] << 24) | (addr[4] << 16) |
 364		  (addr[3] << 8)  |  addr[2];
 365
 366	gfar_write(macptr, tempval);
 367
 368	tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370	gfar_write(macptr+1, tempval);
 
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375	int ret;
 376
 377	ret = eth_mac_addr(dev, p);
 378	if (ret)
 379		return ret;
 380
 381	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383	return 0;
 
 384}
 385
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388	int i;
 389	for (i = 0; i < priv->num_grps; i++) {
 390		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391		/* Clear IEVENT */
 392		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394		/* Initialize IMASK */
 395		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396	}
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401	int i;
 402	for (i = 0; i < priv->num_grps; i++) {
 403		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404		/* Unmask the interrupts we look for */
 405		gfar_write(&regs->imask,
 406			   IMASK_DEFAULT | priv->rmon_overflow.imask);
 407	}
 408}
 409
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412	int i;
 413
 414	for (i = 0; i < priv->num_tx_queues; i++) {
 415		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416					    GFP_KERNEL);
 417		if (!priv->tx_queue[i])
 418			return -ENOMEM;
 419
 420		priv->tx_queue[i]->tx_skbuff = NULL;
 421		priv->tx_queue[i]->qindex = i;
 422		priv->tx_queue[i]->dev = priv->ndev;
 423		spin_lock_init(&(priv->tx_queue[i]->txlock));
 424	}
 425	return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 
 429{
 430	int i;
 431
 432	for (i = 0; i < priv->num_rx_queues; i++) {
 433		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434					    GFP_KERNEL);
 435		if (!priv->rx_queue[i])
 436			return -ENOMEM;
 437
 438		priv->rx_queue[i]->qindex = i;
 439		priv->rx_queue[i]->ndev = priv->ndev;
 440	}
 441	return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446	int i;
 447
 448	for (i = 0; i < priv->num_tx_queues; i++)
 449		kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454	int i;
 455
 456	for (i = 0; i < priv->num_rx_queues; i++)
 457		kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462	int i;
 463
 464	for (i = 0; i < MAXGROUPS; i++)
 465		if (priv->gfargrp[i].regs)
 466			iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471	int i, j;
 472
 473	for (i = 0; i < priv->num_grps; i++)
 474		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475			kfree(priv->gfargrp[i].irqinfo[j]);
 476			priv->gfargrp[i].irqinfo[j] = NULL;
 477		}
 478
 479	free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484	int i;
 485
 486	for (i = 0; i < priv->num_grps; i++) {
 487		napi_disable(&priv->gfargrp[i].napi_rx);
 488		napi_disable(&priv->gfargrp[i].napi_tx);
 489	}
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494	int i;
 495
 496	for (i = 0; i < priv->num_grps; i++) {
 497		napi_enable(&priv->gfargrp[i].napi_rx);
 498		napi_enable(&priv->gfargrp[i].napi_tx);
 499	}
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503			    struct gfar_private *priv, const char *model)
 504{
 505	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506	int i;
 507
 508	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510					  GFP_KERNEL);
 511		if (!grp->irqinfo[i])
 512			return -ENOMEM;
 513	}
 514
 515	grp->regs = of_iomap(np, 0);
 516	if (!grp->regs)
 517		return -ENOMEM;
 518
 519	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 
 520
 521	/* If we aren't the FEC we have multiple interrupts */
 522	if (model && strcasecmp(model, "FEC")) {
 523		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525		if (!gfar_irq(grp, TX)->irq ||
 526		    !gfar_irq(grp, RX)->irq ||
 527		    !gfar_irq(grp, ER)->irq)
 
 
 528			return -EINVAL;
 529	}
 530
 531	grp->priv = priv;
 532	spin_lock_init(&grp->grplock);
 533	if (priv->mode == MQ_MG_MODE) {
 534		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 535		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 
 
 
 
 
 
 537	} else {
 538		grp->rx_bit_map = 0xFF;
 539		grp->tx_bit_map = 0xFF;
 540	}
 541
 542	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543	 * right to left, so we need to revert the 8 bits to get the q index
 544	 */
 545	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549	 * also assign queues to groups
 550	 */
 551	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552		if (!grp->rx_queue)
 553			grp->rx_queue = priv->rx_queue[i];
 554		grp->num_rx_queues++;
 555		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557		priv->rx_queue[i]->grp = grp;
 558	}
 559
 560	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561		if (!grp->tx_queue)
 562			grp->tx_queue = priv->tx_queue[i];
 563		grp->num_tx_queues++;
 564		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565		priv->tqueue |= (TQUEUE_EN0 >> i);
 566		priv->tx_queue[i]->grp = grp;
 567	}
 568
 569	priv->num_grps++;
 570
 571	return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576	struct device_node *child;
 577	int num = 0;
 578
 579	for_each_available_child_of_node(np, child)
 580		if (of_node_name_eq(child, "queue-group"))
 581			num++;
 582
 583	return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591	struct gfar_private *priv = netdev_priv(dev);
 592	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593	u32 ecntrl;
 594
 595	ecntrl = gfar_read(&regs->ecntrl);
 596
 597	if (ecntrl & ECNTRL_SGMII_MODE)
 598		return PHY_INTERFACE_MODE_SGMII;
 599
 600	if (ecntrl & ECNTRL_TBI_MODE) {
 601		if (ecntrl & ECNTRL_REDUCED_MODE)
 602			return PHY_INTERFACE_MODE_RTBI;
 603		else
 604			return PHY_INTERFACE_MODE_TBI;
 605	}
 606
 607	if (ecntrl & ECNTRL_REDUCED_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609			return PHY_INTERFACE_MODE_RMII;
 610		}
 611		else {
 612			phy_interface_t interface = priv->interface;
 613
 614			/* This isn't autodetected right now, so it must
 615			 * be set by the device tree or platform code.
 616			 */
 617			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618				return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620			return PHY_INTERFACE_MODE_RGMII;
 621		}
 622	}
 623
 624	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625		return PHY_INTERFACE_MODE_GMII;
 626
 627	return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632	const char *model;
 
 
 633	int err = 0, i;
 634	phy_interface_t interface;
 635	struct net_device *dev = NULL;
 636	struct gfar_private *priv = NULL;
 637	struct device_node *np = ofdev->dev.of_node;
 638	struct device_node *child = NULL;
 639	u32 stash_len = 0;
 640	u32 stash_idx = 0;
 
 641	unsigned int num_tx_qs, num_rx_qs;
 642	unsigned short mode;
 643
 644	if (!np)
 645		return -ENODEV;
 646
 647	if (of_device_is_compatible(np, "fsl,etsec2"))
 648		mode = MQ_MG_MODE;
 649	else
 650		mode = SQ_SG_MODE;
 651
 652	if (mode == SQ_SG_MODE) {
 653		num_tx_qs = 1;
 654		num_rx_qs = 1;
 655	} else { /* MQ_MG_MODE */
 656		/* get the actual number of supported groups */
 657		unsigned int num_grps = gfar_of_group_count(np);
 658
 659		if (num_grps == 0 || num_grps > MAXGROUPS) {
 660			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661				num_grps);
 662			pr_err("Cannot do alloc_etherdev, aborting\n");
 663			return -EINVAL;
 664		}
 665
 666		num_tx_qs = num_grps; /* one txq per int group */
 667		num_rx_qs = num_grps; /* one rxq per int group */
 668	}
 669
 670	if (num_tx_qs > MAX_TX_QS) {
 671		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672		       num_tx_qs, MAX_TX_QS);
 673		pr_err("Cannot do alloc_etherdev, aborting\n");
 674		return -EINVAL;
 675	}
 676
 
 
 
 677	if (num_rx_qs > MAX_RX_QS) {
 678		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679		       num_rx_qs, MAX_RX_QS);
 680		pr_err("Cannot do alloc_etherdev, aborting\n");
 681		return -EINVAL;
 682	}
 683
 684	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685	dev = *pdev;
 686	if (NULL == dev)
 687		return -ENOMEM;
 688
 689	priv = netdev_priv(dev);
 
 690	priv->ndev = dev;
 691
 692	priv->mode = mode;
 693
 694	priv->num_tx_queues = num_tx_qs;
 695	netif_set_real_num_rx_queues(dev, num_rx_qs);
 696	priv->num_rx_queues = num_rx_qs;
 
 697
 698	err = gfar_alloc_tx_queues(priv);
 699	if (err)
 700		goto tx_alloc_failed;
 701
 702	err = gfar_alloc_rx_queues(priv);
 703	if (err)
 704		goto rx_alloc_failed;
 705
 706	err = of_property_read_string(np, "model", &model);
 707	if (err) {
 708		pr_err("Device model property missing, aborting\n");
 709		goto rx_alloc_failed;
 710	}
 711
 712	/* Init Rx queue filer rule set linked list */
 713	INIT_LIST_HEAD(&priv->rx_list.list);
 714	priv->rx_list.count = 0;
 715	mutex_init(&priv->rx_queue_access);
 716
 
 
 717	for (i = 0; i < MAXGROUPS; i++)
 718		priv->gfargrp[i].regs = NULL;
 719
 720	/* Parse and initialize group specific information */
 721	if (priv->mode == MQ_MG_MODE) {
 722		for_each_available_child_of_node(np, child) {
 723			if (!of_node_name_eq(child, "queue-group"))
 724				continue;
 725
 726			err = gfar_parse_group(child, priv, model);
 727			if (err) {
 728				of_node_put(child);
 729				goto err_grp_init;
 730			}
 731		}
 732	} else { /* SQ_SG_MODE */
 
 733		err = gfar_parse_group(np, priv, model);
 734		if (err)
 735			goto err_grp_init;
 736	}
 737
 738	if (of_property_read_bool(np, "bd-stash")) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740		priv->bd_stash_en = 1;
 741	}
 742
 743	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745	if (err == 0)
 746		priv->rx_stash_size = stash_len;
 747
 748	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750	if (err == 0)
 751		priv->rx_stash_index = stash_idx;
 752
 753	if (stash_len || stash_idx)
 754		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756	err = of_get_ethdev_address(np, dev);
 757	if (err == -EPROBE_DEFER)
 758		goto err_grp_init;
 759	if (err) {
 760		eth_hw_addr_random(dev);
 761		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 762	}
 763
 764	if (model && !strcasecmp(model, "TSEC"))
 765		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 766				     FSL_GIANFAR_DEV_HAS_COALESCE |
 767				     FSL_GIANFAR_DEV_HAS_RMON |
 768				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 769
 770	if (model && !strcasecmp(model, "eTSEC"))
 771		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 772				     FSL_GIANFAR_DEV_HAS_COALESCE |
 773				     FSL_GIANFAR_DEV_HAS_RMON |
 774				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 775				     FSL_GIANFAR_DEV_HAS_CSUM |
 776				     FSL_GIANFAR_DEV_HAS_VLAN |
 777				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 778				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 779				     FSL_GIANFAR_DEV_HAS_TIMER |
 780				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 781
 782	/* Use PHY connection type from the DT node if one is specified there.
 783	 * rgmii-id really needs to be specified. Other types can be
 784	 * detected by hardware
 785	 */
 786	err = of_get_phy_mode(np, &interface);
 787	if (!err)
 788		priv->interface = interface;
 789	else
 790		priv->interface = gfar_get_interface(dev);
 791
 792	if (of_property_read_bool(np, "fsl,magic-packet"))
 793		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 794
 795	if (of_property_read_bool(np, "fsl,wake-on-filer"))
 796		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 797
 798	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 799
 800	/* In the case of a fixed PHY, the DT node associated
 801	 * to the PHY is the Ethernet MAC DT node.
 802	 */
 803	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 804		err = of_phy_register_fixed_link(np);
 805		if (err)
 806			goto err_grp_init;
 807
 808		priv->phy_node = of_node_get(np);
 809	}
 810
 811	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 812	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 813
 814	return 0;
 815
 816err_grp_init:
 817	unmap_group_regs(priv);
 818rx_alloc_failed:
 819	gfar_free_rx_queues(priv);
 820tx_alloc_failed:
 821	gfar_free_tx_queues(priv);
 822	free_gfar_dev(priv);
 
 
 823	return err;
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 827				   u32 class)
 828{
 829	u32 rqfpr = FPR_FILER_MASK;
 830	u32 rqfcr = 0x0;
 831
 832	rqfar--;
 833	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 834	priv->ftp_rqfpr[rqfar] = rqfpr;
 835	priv->ftp_rqfcr[rqfar] = rqfcr;
 836	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 837
 838	rqfar--;
 839	rqfcr = RQFCR_CMP_NOMATCH;
 840	priv->ftp_rqfpr[rqfar] = rqfpr;
 841	priv->ftp_rqfcr[rqfar] = rqfcr;
 842	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 843
 844	rqfar--;
 845	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 846	rqfpr = class;
 847	priv->ftp_rqfcr[rqfar] = rqfcr;
 848	priv->ftp_rqfpr[rqfar] = rqfpr;
 849	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 850
 851	rqfar--;
 852	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 853	rqfpr = class;
 854	priv->ftp_rqfcr[rqfar] = rqfcr;
 855	priv->ftp_rqfpr[rqfar] = rqfpr;
 856	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 857
 858	return rqfar;
 859}
 860
 861static void gfar_init_filer_table(struct gfar_private *priv)
 862{
 863	int i = 0x0;
 864	u32 rqfar = MAX_FILER_IDX;
 865	u32 rqfcr = 0x0;
 866	u32 rqfpr = FPR_FILER_MASK;
 867
 868	/* Default rule */
 869	rqfcr = RQFCR_CMP_MATCH;
 870	priv->ftp_rqfcr[rqfar] = rqfcr;
 871	priv->ftp_rqfpr[rqfar] = rqfpr;
 872	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 873
 874	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 875	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 876	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 877	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 878	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 879	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 880
 881	/* cur_filer_idx indicated the first non-masked rule */
 882	priv->cur_filer_idx = rqfar;
 883
 884	/* Rest are masked rules */
 885	rqfcr = RQFCR_CMP_NOMATCH;
 886	for (i = 0; i < rqfar; i++) {
 887		priv->ftp_rqfcr[i] = rqfcr;
 888		priv->ftp_rqfpr[i] = rqfpr;
 889		gfar_write_filer(priv, i, rqfcr, rqfpr);
 890	}
 891}
 892
 893#ifdef CONFIG_PPC
 894static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 895{
 
 896	unsigned int pvr = mfspr(SPRN_PVR);
 897	unsigned int svr = mfspr(SPRN_SVR);
 898	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 899	unsigned int rev = svr & 0xffff;
 900
 901	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 902	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 903	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 904		priv->errata |= GFAR_ERRATA_74;
 905
 906	/* MPC8313 and MPC837x all rev */
 907	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 908	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 909		priv->errata |= GFAR_ERRATA_76;
 910
 911	/* MPC8313 Rev < 2.0 */
 912	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 
 
 
 
 
 
 913		priv->errata |= GFAR_ERRATA_12;
 
 
 
 
 914}
 915
 916static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 
 
 917{
 918	unsigned int svr = mfspr(SPRN_SVR);
 
 
 
 
 
 
 
 919
 920	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 921		priv->errata |= GFAR_ERRATA_12;
 922	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 923	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 924	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 925	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 926		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 927}
 928#endif
 929
 930static void gfar_detect_errata(struct gfar_private *priv)
 931{
 932	struct device *dev = &priv->ofdev->dev;
 933
 934	/* no plans to fix */
 935	priv->errata |= GFAR_ERRATA_A002;
 
 
 
 936
 937#ifdef CONFIG_PPC
 938	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 939		__gfar_detect_errata_85xx(priv);
 940	else /* non-mpc85xx parts, i.e. e300 core based */
 941		__gfar_detect_errata_83xx(priv);
 942#endif
 943
 944	if (priv->errata)
 945		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 946			 priv->errata);
 947}
 948
 949static void gfar_init_addr_hash_table(struct gfar_private *priv)
 950{
 951	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 954		priv->extended_hash = 1;
 955		priv->hash_width = 9;
 956
 957		priv->hash_regs[0] = &regs->igaddr0;
 958		priv->hash_regs[1] = &regs->igaddr1;
 959		priv->hash_regs[2] = &regs->igaddr2;
 960		priv->hash_regs[3] = &regs->igaddr3;
 961		priv->hash_regs[4] = &regs->igaddr4;
 962		priv->hash_regs[5] = &regs->igaddr5;
 963		priv->hash_regs[6] = &regs->igaddr6;
 964		priv->hash_regs[7] = &regs->igaddr7;
 965		priv->hash_regs[8] = &regs->gaddr0;
 966		priv->hash_regs[9] = &regs->gaddr1;
 967		priv->hash_regs[10] = &regs->gaddr2;
 968		priv->hash_regs[11] = &regs->gaddr3;
 969		priv->hash_regs[12] = &regs->gaddr4;
 970		priv->hash_regs[13] = &regs->gaddr5;
 971		priv->hash_regs[14] = &regs->gaddr6;
 972		priv->hash_regs[15] = &regs->gaddr7;
 973
 974	} else {
 975		priv->extended_hash = 0;
 976		priv->hash_width = 8;
 977
 978		priv->hash_regs[0] = &regs->gaddr0;
 979		priv->hash_regs[1] = &regs->gaddr1;
 980		priv->hash_regs[2] = &regs->gaddr2;
 981		priv->hash_regs[3] = &regs->gaddr3;
 982		priv->hash_regs[4] = &regs->gaddr4;
 983		priv->hash_regs[5] = &regs->gaddr5;
 984		priv->hash_regs[6] = &regs->gaddr6;
 985		priv->hash_regs[7] = &regs->gaddr7;
 986	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987}
 988
 989static int __gfar_is_rx_idle(struct gfar_private *priv)
 990{
 991	u32 res;
 992
 993	/* Normaly TSEC should not hang on GRS commands, so we should
 
 994	 * actually wait for IEVENT_GRSC flag.
 995	 */
 996	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 997		return 0;
 998
 999	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
 
1000	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001	 * and the Rx can be safely reset.
1002	 */
1003	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004	res &= 0x7f807f80;
1005	if ((res & 0xffff) == (res >> 16))
1006		return 1;
1007
1008	return 0;
1009}
1010
1011/* Halt the receive and transmit queues */
1012static void gfar_halt_nodisable(struct gfar_private *priv)
1013{
1014	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 
1015	u32 tempval;
1016	unsigned int timeout;
1017	int stopped;
1018
1019	gfar_ints_disable(priv);
 
 
 
1020
1021	if (gfar_is_dma_stopped(priv))
1022		return;
 
1023
 
1024	/* Stop the DMA, and wait for it to stop */
1025	tempval = gfar_read(&regs->dmactrl);
1026	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027	gfar_write(&regs->dmactrl, tempval);
 
1028
1029retry:
1030	timeout = 1000;
1031	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032		cpu_relax();
1033		timeout--;
1034	}
1035
1036	if (!timeout)
1037		stopped = gfar_is_dma_stopped(priv);
1038
1039	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040	    !__gfar_is_rx_idle(priv))
1041		goto retry;
 
 
1042}
1043
1044/* Halt the receive and transmit queues */
1045static void gfar_halt(struct gfar_private *priv)
1046{
 
1047	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048	u32 tempval;
1049
1050	/* Dissable the Rx/Tx hw queues */
1051	gfar_write(&regs->rqueue, 0);
1052	gfar_write(&regs->tqueue, 0);
1053
1054	mdelay(10);
1055
1056	gfar_halt_nodisable(priv);
1057
1058	/* Disable Rx/Tx DMA */
1059	tempval = gfar_read(&regs->maccfg1);
1060	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061	gfar_write(&regs->maccfg1, tempval);
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065{
1066	struct txbd8 *txbdp;
1067	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068	int i, j;
1069
1070	txbdp = tx_queue->tx_bd_base;
1071
1072	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073		if (!tx_queue->tx_skbuff[i])
1074			continue;
1075
1076		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078		txbdp->lstatus = 0;
1079		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080		     j++) {
1081			txbdp++;
1082			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083				       be16_to_cpu(txbdp->length),
1084				       DMA_TO_DEVICE);
1085		}
1086		txbdp++;
1087		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088		tx_queue->tx_skbuff[i] = NULL;
1089	}
1090	kfree(tx_queue->tx_skbuff);
1091	tx_queue->tx_skbuff = NULL;
1092}
1093
1094static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095{
 
 
1096	int i;
1097
1098	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099
1100	dev_kfree_skb(rx_queue->skb);
1101
1102	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104
 
 
 
 
 
1105		rxbdp->lstatus = 0;
1106		rxbdp->bufPtr = 0;
1107		rxbdp++;
1108
1109		if (!rxb->page)
1110			continue;
1111
1112		dma_unmap_page(rx_queue->dev, rxb->dma,
1113			       PAGE_SIZE, DMA_FROM_DEVICE);
1114		__free_page(rxb->page);
1115
1116		rxb->page = NULL;
1117	}
1118
1119	kfree(rx_queue->rx_buff);
1120	rx_queue->rx_buff = NULL;
1121}
1122
1123/* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1125 */
1126static void free_skb_resources(struct gfar_private *priv)
1127{
1128	struct gfar_priv_tx_q *tx_queue = NULL;
1129	struct gfar_priv_rx_q *rx_queue = NULL;
1130	int i;
1131
1132	/* Go through all the buffer descriptors and free their data buffers */
1133	for (i = 0; i < priv->num_tx_queues; i++) {
1134		struct netdev_queue *txq;
1135
1136		tx_queue = priv->tx_queue[i];
1137		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138		if (tx_queue->tx_skbuff)
1139			free_skb_tx_queue(tx_queue);
1140		netdev_tx_reset_queue(txq);
1141	}
1142
1143	for (i = 0; i < priv->num_rx_queues; i++) {
1144		rx_queue = priv->rx_queue[i];
1145		if (rx_queue->rx_buff)
1146			free_skb_rx_queue(rx_queue);
1147	}
1148
1149	dma_free_coherent(priv->dev,
1150			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1151			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152			  priv->tx_queue[0]->tx_bd_base,
1153			  priv->tx_queue[0]->tx_bd_dma_base);
 
1154}
1155
1156void stop_gfar(struct net_device *dev)
1157{
1158	struct gfar_private *priv = netdev_priv(dev);
1159
1160	netif_tx_stop_all_queues(dev);
1161
1162	smp_mb__before_atomic();
1163	set_bit(GFAR_DOWN, &priv->state);
1164	smp_mb__after_atomic();
1165
1166	disable_napi(priv);
1167
1168	/* disable ints and gracefully shut down Rx/Tx DMA */
1169	gfar_halt(priv);
1170
1171	phy_stop(dev->phydev);
1172
1173	free_skb_resources(priv);
1174}
1175
1176static void gfar_start(struct gfar_private *priv)
1177{
1178	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179	u32 tempval;
1180	int i = 0;
1181
1182	/* Enable Rx/Tx hw queues */
1183	gfar_write(&regs->rqueue, priv->rqueue);
1184	gfar_write(&regs->tqueue, priv->tqueue);
 
1185
1186	/* Initialize DMACTRL to have WWR and WOP */
1187	tempval = gfar_read(&regs->dmactrl);
1188	tempval |= DMACTRL_INIT_SETTINGS;
1189	gfar_write(&regs->dmactrl, tempval);
1190
1191	/* Make sure we aren't stopped */
1192	tempval = gfar_read(&regs->dmactrl);
1193	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194	gfar_write(&regs->dmactrl, tempval);
1195
1196	for (i = 0; i < priv->num_grps; i++) {
1197		regs = priv->gfargrp[i].regs;
1198		/* Clear THLT/RHLT, so that the DMA starts polling now */
1199		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1200		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
 
 
1201	}
1202
1203	/* Enable Rx/Tx DMA */
1204	tempval = gfar_read(&regs->maccfg1);
1205	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206	gfar_write(&regs->maccfg1, tempval);
1207
1208	gfar_ints_enable(priv);
1209
1210	netif_trans_update(priv->ndev); /* prevent tx timeout */
1211}
1212
1213static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214{
1215	struct page *page;
1216	dma_addr_t addr;
1217
1218	page = dev_alloc_page();
1219	if (unlikely(!page))
1220		return false;
1221
1222	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224		__free_page(page);
1225
1226		return false;
1227	}
1228
1229	rxb->dma = addr;
1230	rxb->page = page;
1231	rxb->page_offset = 0;
1232
1233	return true;
1234}
1235
1236static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
 
1237{
1238	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239	struct gfar_extra_stats *estats = &priv->extra_stats;
1240
1241	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242	atomic64_inc(&estats->rx_alloc_err);
1243}
1244
1245static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246				int alloc_cnt)
1247{
1248	struct rxbd8 *bdp;
1249	struct gfar_rx_buff *rxb;
1250	int i;
 
 
 
 
1251
1252	i = rx_queue->next_to_use;
1253	bdp = &rx_queue->rx_bd_base[i];
1254	rxb = &rx_queue->rx_buff[i];
1255
1256	while (alloc_cnt--) {
1257		/* try reuse page */
1258		if (unlikely(!rxb->page)) {
1259			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260				gfar_rx_alloc_err(rx_queue);
1261				break;
1262			}
1263		}
1264
1265		/* Setup the new RxBD */
1266		gfar_init_rxbdp(rx_queue, bdp,
1267				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268
1269		/* Update to the next pointer */
1270		bdp++;
1271		rxb++;
1272
1273		if (unlikely(++i == rx_queue->rx_ring_size)) {
1274			i = 0;
1275			bdp = rx_queue->rx_bd_base;
1276			rxb = rx_queue->rx_buff;
1277		}
1278	}
1279
1280	rx_queue->next_to_use = i;
1281	rx_queue->next_to_alloc = i;
1282}
1283
1284static void gfar_init_bds(struct net_device *ndev)
1285{
1286	struct gfar_private *priv = netdev_priv(ndev);
1287	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288	struct gfar_priv_tx_q *tx_queue = NULL;
1289	struct gfar_priv_rx_q *rx_queue = NULL;
1290	struct txbd8 *txbdp;
1291	u32 __iomem *rfbptr;
1292	int i, j;
1293
1294	for (i = 0; i < priv->num_tx_queues; i++) {
1295		tx_queue = priv->tx_queue[i];
1296		/* Initialize some variables in our dev structure */
1297		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299		tx_queue->cur_tx = tx_queue->tx_bd_base;
1300		tx_queue->skb_curtx = 0;
1301		tx_queue->skb_dirtytx = 0;
 
1302
1303		/* Initialize Transmit Descriptor Ring */
1304		txbdp = tx_queue->tx_bd_base;
1305		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306			txbdp->lstatus = 0;
1307			txbdp->bufPtr = 0;
1308			txbdp++;
1309		}
1310
1311		/* Set the last descriptor in the ring to indicate wrap */
1312		txbdp--;
1313		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314					    TXBD_WRAP);
1315	}
1316
1317	rfbptr = &regs->rfbptr0;
1318	for (i = 0; i < priv->num_rx_queues; i++) {
1319		rx_queue = priv->rx_queue[i];
1320
1321		rx_queue->next_to_clean = 0;
1322		rx_queue->next_to_use = 0;
1323		rx_queue->next_to_alloc = 0;
1324
1325		/* make sure next_to_clean != next_to_use after this
1326		 * by leaving at least 1 unused descriptor
1327		 */
1328		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1329
1330		rx_queue->rfbptr = rfbptr;
1331		rfbptr += 2;
1332	}
1333}
1334
1335static int gfar_alloc_skb_resources(struct net_device *ndev)
1336{
1337	void *vaddr;
1338	dma_addr_t addr;
1339	int i, j;
1340	struct gfar_private *priv = netdev_priv(ndev);
1341	struct device *dev = priv->dev;
1342	struct gfar_priv_tx_q *tx_queue = NULL;
1343	struct gfar_priv_rx_q *rx_queue = NULL;
1344
1345	priv->total_tx_ring_size = 0;
1346	for (i = 0; i < priv->num_tx_queues; i++)
1347		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348
1349	priv->total_rx_ring_size = 0;
1350	for (i = 0; i < priv->num_rx_queues; i++)
1351		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352
1353	/* Allocate memory for the buffer descriptors */
1354	vaddr = dma_alloc_coherent(dev,
1355				   (priv->total_tx_ring_size *
1356				    sizeof(struct txbd8)) +
1357				   (priv->total_rx_ring_size *
1358				    sizeof(struct rxbd8)),
1359				   &addr, GFP_KERNEL);
1360	if (!vaddr)
1361		return -ENOMEM;
1362
1363	for (i = 0; i < priv->num_tx_queues; i++) {
1364		tx_queue = priv->tx_queue[i];
1365		tx_queue->tx_bd_base = vaddr;
1366		tx_queue->tx_bd_dma_base = addr;
1367		tx_queue->dev = ndev;
1368		/* enet DMA only understands physical addresses */
1369		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371	}
1372
1373	/* Start the rx descriptor ring where the tx ring leaves off */
1374	for (i = 0; i < priv->num_rx_queues; i++) {
1375		rx_queue = priv->rx_queue[i];
1376		rx_queue->rx_bd_base = vaddr;
1377		rx_queue->rx_bd_dma_base = addr;
1378		rx_queue->ndev = ndev;
1379		rx_queue->dev = dev;
1380		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382	}
1383
1384	/* Setup the skbuff rings */
1385	for (i = 0; i < priv->num_tx_queues; i++) {
1386		tx_queue = priv->tx_queue[i];
1387		tx_queue->tx_skbuff =
1388			kmalloc_array(tx_queue->tx_ring_size,
1389				      sizeof(*tx_queue->tx_skbuff),
1390				      GFP_KERNEL);
1391		if (!tx_queue->tx_skbuff)
1392			goto cleanup;
1393
1394		for (j = 0; j < tx_queue->tx_ring_size; j++)
1395			tx_queue->tx_skbuff[j] = NULL;
1396	}
1397
1398	for (i = 0; i < priv->num_rx_queues; i++) {
1399		rx_queue = priv->rx_queue[i];
1400		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401					    sizeof(*rx_queue->rx_buff),
1402					    GFP_KERNEL);
1403		if (!rx_queue->rx_buff)
1404			goto cleanup;
 
 
 
 
 
 
1405	}
1406
1407	gfar_init_bds(ndev);
1408
1409	return 0;
1410
1411cleanup:
1412	free_skb_resources(priv);
1413	return -ENOMEM;
 
 
 
 
1414}
1415
1416/* Bring the controller up and running */
1417int startup_gfar(struct net_device *ndev)
1418{
1419	struct gfar_private *priv = netdev_priv(ndev);
1420	int err;
 
1421
1422	gfar_mac_reset(priv);
 
 
 
1423
 
1424	err = gfar_alloc_skb_resources(ndev);
1425	if (err)
1426		return err;
1427
1428	gfar_init_tx_rx_base(priv);
1429
1430	smp_mb__before_atomic();
1431	clear_bit(GFAR_DOWN, &priv->state);
1432	smp_mb__after_atomic();
1433
1434	/* Start Rx/Tx DMA and enable the interrupts */
1435	gfar_start(priv);
1436
1437	/* force link state update after mac reset */
1438	priv->oldlink = 0;
1439	priv->oldspeed = 0;
1440	priv->oldduplex = -1;
1441
1442	phy_start(ndev->phydev);
1443
1444	enable_napi(priv);
1445
1446	netif_tx_wake_all_queues(ndev);
1447
1448	return 0;
1449}
1450
1451static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452{
1453	struct net_device *ndev = priv->ndev;
1454	struct phy_device *phydev = ndev->phydev;
1455	u32 val = 0;
1456
1457	if (!phydev->duplex)
1458		return val;
1459
1460	if (!priv->pause_aneg_en) {
1461		if (priv->tx_pause_en)
1462			val |= MACCFG1_TX_FLOW;
1463		if (priv->rx_pause_en)
1464			val |= MACCFG1_RX_FLOW;
1465	} else {
1466		u16 lcl_adv, rmt_adv;
1467		u8 flowctrl;
1468		/* get link partner capabilities */
1469		rmt_adv = 0;
1470		if (phydev->pause)
1471			rmt_adv = LPA_PAUSE_CAP;
1472		if (phydev->asym_pause)
1473			rmt_adv |= LPA_PAUSE_ASYM;
1474
1475		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477		if (flowctrl & FLOW_CTRL_TX)
1478			val |= MACCFG1_TX_FLOW;
1479		if (flowctrl & FLOW_CTRL_RX)
1480			val |= MACCFG1_RX_FLOW;
1481	}
1482
1483	return val;
1484}
1485
1486static noinline void gfar_update_link_state(struct gfar_private *priv)
1487{
1488	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489	struct net_device *ndev = priv->ndev;
1490	struct phy_device *phydev = ndev->phydev;
1491	struct gfar_priv_rx_q *rx_queue = NULL;
1492	int i;
1493
1494	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495		return;
1496
1497	if (phydev->link) {
1498		u32 tempval1 = gfar_read(&regs->maccfg1);
1499		u32 tempval = gfar_read(&regs->maccfg2);
1500		u32 ecntrl = gfar_read(&regs->ecntrl);
1501		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502
1503		if (phydev->duplex != priv->oldduplex) {
1504			if (!(phydev->duplex))
1505				tempval &= ~(MACCFG2_FULL_DUPLEX);
1506			else
1507				tempval |= MACCFG2_FULL_DUPLEX;
1508
1509			priv->oldduplex = phydev->duplex;
1510		}
1511
1512		if (phydev->speed != priv->oldspeed) {
1513			switch (phydev->speed) {
1514			case 1000:
1515				tempval =
1516				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517
1518				ecntrl &= ~(ECNTRL_R100);
1519				break;
1520			case 100:
1521			case 10:
1522				tempval =
1523				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524
1525				/* Reduced mode distinguishes
1526				 * between 10 and 100
1527				 */
1528				if (phydev->speed == SPEED_100)
1529					ecntrl |= ECNTRL_R100;
1530				else
1531					ecntrl &= ~(ECNTRL_R100);
1532				break;
1533			default:
1534				netif_warn(priv, link, priv->ndev,
1535					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1536					   phydev->speed);
1537				break;
1538			}
1539
1540			priv->oldspeed = phydev->speed;
1541		}
1542
1543		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544		tempval1 |= gfar_get_flowctrl_cfg(priv);
1545
1546		/* Turn last free buffer recording on */
1547		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548			for (i = 0; i < priv->num_rx_queues; i++) {
1549				u32 bdp_dma;
1550
1551				rx_queue = priv->rx_queue[i];
1552				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553				gfar_write(rx_queue->rfbptr, bdp_dma);
1554			}
1555
1556			priv->tx_actual_en = 1;
1557		}
 
1558
1559		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560			priv->tx_actual_en = 0;
1561
1562		gfar_write(&regs->maccfg1, tempval1);
1563		gfar_write(&regs->maccfg2, tempval);
1564		gfar_write(&regs->ecntrl, ecntrl);
1565
1566		if (!priv->oldlink)
1567			priv->oldlink = 1;
1568
1569	} else if (priv->oldlink) {
1570		priv->oldlink = 0;
1571		priv->oldspeed = 0;
1572		priv->oldduplex = -1;
1573	}
1574
1575	if (netif_msg_link(priv))
1576		phy_print_status(phydev);
1577}
1578
1579/* Called every time the controller might need to be made
1580 * aware of new link state.  The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1584 */
1585static void adjust_link(struct net_device *dev)
1586{
1587	struct gfar_private *priv = netdev_priv(dev);
1588	struct phy_device *phydev = dev->phydev;
1589
1590	if (unlikely(phydev->link != priv->oldlink ||
1591		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1592				       phydev->speed != priv->oldspeed))))
1593		gfar_update_link_state(priv);
1594}
1595
1596/* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip.  We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register.  We assume
1600 * that the TBIPA register is valid.  Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1603 */
1604static void gfar_configure_serdes(struct net_device *dev)
1605{
1606	struct gfar_private *priv = netdev_priv(dev);
1607	struct phy_device *tbiphy;
1608
1609	if (!priv->tbi_node) {
1610		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611				    "device tree specify a tbi-handle\n");
1612		return;
1613	}
1614
1615	tbiphy = of_phy_find_device(priv->tbi_node);
1616	if (!tbiphy) {
1617		dev_err(&dev->dev, "error: Could not get TBI device\n");
1618		return;
1619	}
1620
1621	/* If the link is already up, we must already be ok, and don't need to
1622	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1623	 * everything for us?  Resetting it takes the link down and requires
1624	 * several seconds for it to come back.
1625	 */
1626	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627		put_device(&tbiphy->mdio.dev);
1628		return;
1629	}
1630
1631	/* Single clk mode, mii mode off(for serdes communication) */
1632	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633
1634	phy_write(tbiphy, MII_ADVERTISE,
1635		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636		  ADVERTISE_1000XPSE_ASYM);
1637
1638	phy_write(tbiphy, MII_BMCR,
1639		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640		  BMCR_SPEED1000);
1641
1642	put_device(&tbiphy->mdio.dev);
1643}
1644
1645/* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1647 */
1648static int init_phy(struct net_device *dev)
1649{
1650	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651	struct gfar_private *priv = netdev_priv(dev);
1652	phy_interface_t interface = priv->interface;
1653	struct phy_device *phydev;
1654	struct ethtool_keee edata;
1655
1656	linkmode_set_bit_array(phy_10_100_features_array,
1657			       ARRAY_SIZE(phy_10_100_features_array),
1658			       mask);
1659	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1663
1664	priv->oldlink = 0;
1665	priv->oldspeed = 0;
1666	priv->oldduplex = -1;
1667
1668	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669				interface);
1670	if (!phydev) {
1671		dev_err(&dev->dev, "could not attach to PHY\n");
1672		return -ENODEV;
1673	}
1674
1675	if (interface == PHY_INTERFACE_MODE_SGMII)
1676		gfar_configure_serdes(dev);
1677
1678	/* Remove any features not supported by the controller */
1679	linkmode_and(phydev->supported, phydev->supported, mask);
1680	linkmode_copy(phydev->advertising, phydev->supported);
1681
1682	/* Add support for flow control */
1683	phy_support_asym_pause(phydev);
1684
1685	/* disable EEE autoneg, EEE not supported by eTSEC */
1686	memset(&edata, 0, sizeof(struct ethtool_keee));
1687	phy_ethtool_set_eee(phydev, &edata);
1688
1689	return 0;
1690}
1691
1692static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1693{
1694	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1695
1696	memset(fcb, 0, GMAC_FCB_LEN);
1697
1698	return fcb;
1699}
1700
1701static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1702				    int fcb_length)
1703{
 
 
1704	/* If we're here, it's a IP packet with a TCP or UDP
1705	 * payload.  We set it to checksum, using a pseudo-header
1706	 * we provide
1707	 */
1708	u8 flags = TXFCB_DEFAULT;
1709
1710	/* Tell the controller what the protocol is
1711	 * And provide the already calculated phcs
1712	 */
1713	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1714		flags |= TXFCB_UDP;
1715		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1716	} else
1717		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1718
1719	/* l3os is the distance between the start of the
1720	 * frame (skb->data) and the start of the IP hdr.
1721	 * l4os is the distance between the start of the
1722	 * l3 hdr and the l4 hdr
1723	 */
1724	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725	fcb->l4os = skb_network_header_len(skb);
1726
1727	fcb->flags = flags;
1728}
1729
1730static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1731{
1732	fcb->flags |= TXFCB_VLN;
1733	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1734}
1735
1736static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737				      struct txbd8 *base, int ring_size)
1738{
1739	struct txbd8 *new_bd = bdp + stride;
1740
1741	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1742}
1743
1744static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1745				      int ring_size)
1746{
1747	return skip_txbd(bdp, 1, base, ring_size);
1748}
1749
1750/* eTSEC12: csum generation not supported for some fcb offsets */
1751static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752				       unsigned long fcb_addr)
1753{
1754	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755	       (fcb_addr % 0x20) > 0x18);
1756}
1757
1758/* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1760 */
1761static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1762				       unsigned int len)
1763{
1764	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1765	       (len > 2500));
1766}
1767
1768/* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1770 */
1771static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772{
1773	struct gfar_private *priv = netdev_priv(dev);
1774	struct gfar_priv_tx_q *tx_queue = NULL;
1775	struct netdev_queue *txq;
1776	struct gfar __iomem *regs = NULL;
1777	struct txfcb *fcb = NULL;
1778	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1779	u32 lstatus;
1780	skb_frag_t *frag;
1781	int i, rq = 0;
1782	int do_tstamp, do_csum, do_vlan;
1783	u32 bufaddr;
1784	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	rq = skb->queue_mapping;
1787	tx_queue = priv->tx_queue[rq];
1788	txq = netdev_get_tx_queue(dev, rq);
1789	base = tx_queue->tx_bd_base;
1790	regs = tx_queue->grp->regs;
1791
1792	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793	do_vlan = skb_vlan_tag_present(skb);
1794	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1795		    priv->hwts_tx_en;
1796
1797	if (do_csum || do_vlan)
1798		fcb_len = GMAC_FCB_LEN;
1799
1800	/* check if time stamp should be generated */
1801	if (unlikely(do_tstamp))
1802		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
 
 
 
1803
1804	/* make space for additional header when fcb is needed */
1805	if (fcb_len) {
1806		if (unlikely(skb_cow_head(skb, fcb_len))) {
 
 
 
 
 
 
1807			dev->stats.tx_errors++;
1808			dev_kfree_skb_any(skb);
1809			return NETDEV_TX_OK;
1810		}
 
 
 
 
 
1811	}
1812
1813	/* total number of fragments in the SKB */
1814	nr_frags = skb_shinfo(skb)->nr_frags;
1815
1816	/* calculate the required number of TxBDs for this skb */
1817	if (unlikely(do_tstamp))
1818		nr_txbds = nr_frags + 2;
1819	else
1820		nr_txbds = nr_frags + 1;
1821
1822	/* check if there is space to queue this packet */
1823	if (nr_txbds > tx_queue->num_txbdfree) {
1824		/* no space, stop the queue */
1825		netif_tx_stop_queue(txq);
1826		dev->stats.tx_fifo_errors++;
1827		return NETDEV_TX_BUSY;
1828	}
1829
1830	/* Update transmit stats */
1831	bytes_sent = skb->len;
1832	tx_queue->stats.tx_bytes += bytes_sent;
1833	/* keep Tx bytes on wire for BQL accounting */
1834	GFAR_CB(skb)->bytes_sent = bytes_sent;
1835	tx_queue->stats.tx_packets++;
1836
1837	txbdp = txbdp_start = tx_queue->cur_tx;
1838	lstatus = be32_to_cpu(txbdp->lstatus);
1839
1840	/* Add TxPAL between FCB and frame if required */
1841	if (unlikely(do_tstamp)) {
1842		skb_push(skb, GMAC_TXPAL_LEN);
1843		memset(skb->data, 0, GMAC_TXPAL_LEN);
1844	}
1845
1846	/* Add TxFCB if required */
1847	if (fcb_len) {
1848		fcb = gfar_add_fcb(skb);
1849		lstatus |= BD_LFLAG(TXBD_TOE);
1850	}
1851
1852	/* Set up checksumming */
1853	if (do_csum) {
1854		gfar_tx_checksum(skb, fcb, fcb_len);
1855
1856		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858			__skb_pull(skb, GMAC_FCB_LEN);
1859			skb_checksum_help(skb);
1860			if (do_vlan || do_tstamp) {
1861				/* put back a new fcb for vlan/tstamp TOE */
1862				fcb = gfar_add_fcb(skb);
1863			} else {
1864				/* Tx TOE not used */
1865				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1866				fcb = NULL;
1867			}
1868		}
1869	}
1870
1871	if (do_vlan)
1872		gfar_tx_vlan(skb, fcb);
1873
1874	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1875				 DMA_TO_DEVICE);
1876	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1877		goto dma_map_err;
1878
1879	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1880
1881	/* Time stamp insertion requires one additional TxBD */
1882	if (unlikely(do_tstamp))
1883		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884						 tx_queue->tx_ring_size);
1885
1886	if (likely(!nr_frags)) {
1887		if (likely(!do_tstamp))
 
 
 
1888			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1889	} else {
1890		u32 lstatus_start = lstatus;
1891
1892		/* Place the fragment addresses and lengths into the TxBDs */
1893		frag = &skb_shinfo(skb)->frags[0];
1894		for (i = 0; i < nr_frags; i++, frag++) {
1895			unsigned int size;
1896
1897			/* Point at the next BD, wrapping as needed */
1898			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1899
1900			size = skb_frag_size(frag);
1901
1902			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903				  BD_LFLAG(TXBD_READY);
1904
1905			/* Handle the last BD specially */
1906			if (i == nr_frags - 1)
1907				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1908
1909			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910						   size, DMA_TO_DEVICE);
1911			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912				goto dma_map_err;
 
1913
1914			/* set the TxBD length and buffer pointer */
1915			txbdp->bufPtr = cpu_to_be32(bufaddr);
1916			txbdp->lstatus = cpu_to_be32(lstatus);
1917		}
1918
1919		lstatus = lstatus_start;
1920	}
1921
1922	/* If time stamping is requested one additional TxBD must be set up. The
1923	 * first TxBD points to the FCB and must have a data length of
1924	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925	 * the full frame length.
1926	 */
1927	if (unlikely(do_tstamp)) {
1928		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
 
 
1929
1930		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1931		bufaddr += fcb_len;
 
 
 
 
 
 
 
 
 
 
 
1932
1933		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934			      (skb_headlen(skb) - fcb_len);
1935		if (!nr_frags)
1936			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 
1937
1938		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1941
1942		/* Setup tx hardware time stamping */
 
1943		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
1944		fcb->ptp = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945	} else {
1946		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1947	}
1948
1949	skb_tx_timestamp(skb);
1950	netdev_tx_sent_queue(txq, bytes_sent);
1951
1952	gfar_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953
1954	txbdp_start->lstatus = cpu_to_be32(lstatus);
1955
1956	gfar_wmb(); /* force lstatus write before tx_skbuff */
1957
1958	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1959
1960	/* Update the current skb pointer to the next entry we will use
1961	 * (wrapping if necessary)
1962	 */
1963	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1965
1966	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1967
1968	/* We can work in parallel with gfar_clean_tx_ring(), except
1969	 * when modifying num_txbdfree. Note that we didn't grab the lock
1970	 * when we were reading the num_txbdfree and checking for available
1971	 * space, that's because outside of this function it can only grow.
1972	 */
1973	spin_lock_bh(&tx_queue->txlock);
1974	/* reduce TxBD free count */
1975	tx_queue->num_txbdfree -= (nr_txbds);
1976	spin_unlock_bh(&tx_queue->txlock);
1977
1978	/* If the next BD still needs to be cleaned up, then the bds
1979	 * are full.  We need to tell the kernel to stop sending us stuff.
1980	 */
1981	if (!tx_queue->num_txbdfree) {
1982		netif_tx_stop_queue(txq);
1983
1984		dev->stats.tx_fifo_errors++;
1985	}
1986
1987	/* Tell the DMA to go go go */
1988	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1989
 
 
 
1990	return NETDEV_TX_OK;
 
1991
1992dma_map_err:
1993	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1994	if (do_tstamp)
1995		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996	for (i = 0; i < nr_frags; i++) {
1997		lstatus = be32_to_cpu(txbdp->lstatus);
1998		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1999			break;
2000
2001		lstatus &= ~BD_LFLAG(TXBD_READY);
2002		txbdp->lstatus = cpu_to_be32(lstatus);
2003		bufaddr = be32_to_cpu(txbdp->bufPtr);
2004		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2005			       DMA_TO_DEVICE);
2006		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2007	}
2008	gfar_wmb();
2009	dev_kfree_skb_any(skb);
2010	return NETDEV_TX_OK;
 
 
2011}
2012
2013/* Changes the mac address if the controller is not running. */
2014static int gfar_set_mac_address(struct net_device *dev)
2015{
2016	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2017
2018	return 0;
2019}
2020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2022{
 
2023	struct gfar_private *priv = netdev_priv(dev);
 
 
 
2024
2025	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2026		cpu_relax();
2027
2028	if (dev->flags & IFF_UP)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2029		stop_gfar(dev);
2030
2031	WRITE_ONCE(dev->mtu, new_mtu);
2032
2033	if (dev->flags & IFF_UP)
2034		startup_gfar(dev);
2035
2036	clear_bit_unlock(GFAR_RESETTING, &priv->state);
 
2037
2038	return 0;
2039}
 
 
2040
2041static void reset_gfar(struct net_device *ndev)
2042{
2043	struct gfar_private *priv = netdev_priv(ndev);
 
 
2044
2045	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2046		cpu_relax();
2047
2048	stop_gfar(ndev);
2049	startup_gfar(ndev);
2050
2051	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2052}
2053
2054/* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2058 */
2059static void gfar_reset_task(struct work_struct *work)
2060{
2061	struct gfar_private *priv = container_of(work, struct gfar_private,
2062						 reset_task);
2063	reset_gfar(priv->ndev);
2064}
2065
2066static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2067{
2068	struct gfar_private *priv = netdev_priv(dev);
2069
2070	dev->stats.tx_errors++;
2071	schedule_work(&priv->reset_task);
2072}
2073
2074static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2075{
2076	struct hwtstamp_config config;
2077	struct gfar_private *priv = netdev_priv(netdev);
2078
2079	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2080		return -EFAULT;
2081
2082	switch (config.tx_type) {
2083	case HWTSTAMP_TX_OFF:
2084		priv->hwts_tx_en = 0;
2085		break;
2086	case HWTSTAMP_TX_ON:
2087		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2088			return -ERANGE;
2089		priv->hwts_tx_en = 1;
2090		break;
2091	default:
2092		return -ERANGE;
2093	}
2094
2095	switch (config.rx_filter) {
2096	case HWTSTAMP_FILTER_NONE:
2097		if (priv->hwts_rx_en) {
2098			priv->hwts_rx_en = 0;
2099			reset_gfar(netdev);
2100		}
2101		break;
2102	default:
2103		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2104			return -ERANGE;
2105		if (!priv->hwts_rx_en) {
2106			priv->hwts_rx_en = 1;
2107			reset_gfar(netdev);
2108		}
2109		config.rx_filter = HWTSTAMP_FILTER_ALL;
2110		break;
2111	}
2112
2113	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2114		-EFAULT : 0;
2115}
2116
2117static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2118{
2119	struct hwtstamp_config config;
2120	struct gfar_private *priv = netdev_priv(netdev);
2121
2122	config.flags = 0;
2123	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124	config.rx_filter = (priv->hwts_rx_en ?
2125			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2126
2127	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2128		-EFAULT : 0;
2129}
2130
2131static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2132{
2133	struct phy_device *phydev = dev->phydev;
2134
2135	if (!netif_running(dev))
2136		return -EINVAL;
2137
2138	if (cmd == SIOCSHWTSTAMP)
2139		return gfar_hwtstamp_set(dev, rq);
2140	if (cmd == SIOCGHWTSTAMP)
2141		return gfar_hwtstamp_get(dev, rq);
2142
2143	if (!phydev)
2144		return -ENODEV;
2145
2146	return phy_mii_ioctl(phydev, rq, cmd);
2147}
2148
2149/* Interrupt Handler for Transmit complete */
2150static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2151{
2152	struct net_device *dev = tx_queue->dev;
2153	struct netdev_queue *txq;
2154	struct gfar_private *priv = netdev_priv(dev);
 
2155	struct txbd8 *bdp, *next = NULL;
2156	struct txbd8 *lbdp = NULL;
2157	struct txbd8 *base = tx_queue->tx_bd_base;
2158	struct sk_buff *skb;
2159	int skb_dirtytx;
2160	int tx_ring_size = tx_queue->tx_ring_size;
2161	int frags = 0, nr_txbds = 0;
2162	int i;
2163	int howmany = 0;
2164	int tqi = tx_queue->qindex;
2165	unsigned int bytes_sent = 0;
2166	u32 lstatus;
2167	size_t buflen;
2168
 
2169	txq = netdev_get_tx_queue(dev, tqi);
2170	bdp = tx_queue->dirty_tx;
2171	skb_dirtytx = tx_queue->skb_dirtytx;
2172
2173	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2174		bool do_tstamp;
2175
2176		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2177			    priv->hwts_tx_en;
2178
2179		frags = skb_shinfo(skb)->nr_frags;
2180
2181		/* When time stamping, one additional TxBD must be freed.
 
2182		 * Also, we need to dma_unmap_single() the TxPAL.
2183		 */
2184		if (unlikely(do_tstamp))
2185			nr_txbds = frags + 2;
2186		else
2187			nr_txbds = frags + 1;
2188
2189		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2190
2191		lstatus = be32_to_cpu(lbdp->lstatus);
2192
2193		/* Only clean completed frames */
2194		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195		    (lstatus & BD_LENGTH_MASK))
2196			break;
2197
2198		if (unlikely(do_tstamp)) {
2199			next = next_txbd(bdp, base, tx_ring_size);
2200			buflen = be16_to_cpu(next->length) +
2201				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202		} else
2203			buflen = be16_to_cpu(bdp->length);
2204
2205		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206				 buflen, DMA_TO_DEVICE);
2207
2208		if (unlikely(do_tstamp)) {
2209			struct skb_shared_hwtstamps shhwtstamps;
2210			__be64 *ns;
2211
2212			ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2213
2214			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217			skb_tstamp_tx(skb, &shhwtstamps);
2218			gfar_clear_txbd_status(bdp);
2219			bdp = next;
2220		}
2221
2222		gfar_clear_txbd_status(bdp);
2223		bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225		for (i = 0; i < frags; i++) {
2226			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227				       be16_to_cpu(bdp->length),
2228				       DMA_TO_DEVICE);
2229			gfar_clear_txbd_status(bdp);
 
2230			bdp = next_txbd(bdp, base, tx_ring_size);
2231		}
2232
2233		bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235		dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
2236
2237		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239		skb_dirtytx = (skb_dirtytx + 1) &
2240			      TX_RING_MOD_MASK(tx_ring_size);
2241
2242		howmany++;
2243		spin_lock(&tx_queue->txlock);
2244		tx_queue->num_txbdfree += nr_txbds;
2245		spin_unlock(&tx_queue->txlock);
2246	}
2247
2248	/* If we freed a buffer, we can restart transmission, if necessary */
2249	if (tx_queue->num_txbdfree &&
2250	    netif_tx_queue_stopped(txq) &&
2251	    !(test_bit(GFAR_DOWN, &priv->state)))
2252		netif_wake_subqueue(priv->ndev, tqi);
2253
2254	/* Update dirty indicators */
2255	tx_queue->skb_dirtytx = skb_dirtytx;
2256	tx_queue->dirty_tx = bdp;
2257
2258	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259}
2260
2261static void count_errors(u32 lstatus, struct net_device *ndev)
2262{
2263	struct gfar_private *priv = netdev_priv(ndev);
2264	struct net_device_stats *stats = &ndev->stats;
2265	struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267	/* If the packet was truncated, none of the other errors matter */
2268	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269		stats->rx_length_errors++;
2270
2271		atomic64_inc(&estats->rx_trunc);
2272
2273		return;
2274	}
2275	/* Count the errors, if there were any */
2276	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277		stats->rx_length_errors++;
2278
2279		if (lstatus & BD_LFLAG(RXBD_LARGE))
2280			atomic64_inc(&estats->rx_large);
2281		else
2282			atomic64_inc(&estats->rx_short);
2283	}
2284	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285		stats->rx_frame_errors++;
2286		atomic64_inc(&estats->rx_nonoctet);
2287	}
2288	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289		atomic64_inc(&estats->rx_crcerr);
2290		stats->rx_crc_errors++;
2291	}
2292	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293		atomic64_inc(&estats->rx_overrun);
2294		stats->rx_over_errors++;
2295	}
2296}
2297
2298static irqreturn_t gfar_receive(int irq, void *grp_id)
2299{
2300	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301	unsigned long flags;
2302	u32 imask, ievent;
2303
2304	ievent = gfar_read(&grp->regs->ievent);
2305
2306	if (unlikely(ievent & IEVENT_FGPI)) {
2307		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308		return IRQ_HANDLED;
2309	}
2310
2311	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312		spin_lock_irqsave(&grp->grplock, flags);
2313		imask = gfar_read(&grp->regs->imask);
2314		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315		gfar_write(&grp->regs->imask, imask);
2316		spin_unlock_irqrestore(&grp->grplock, flags);
2317		__napi_schedule(&grp->napi_rx);
2318	} else {
2319		/* Clear IEVENT, so interrupts aren't called again
 
2320		 * because of the packets that have already arrived.
2321		 */
2322		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323	}
 
2324
2325	return IRQ_HANDLED;
2326}
2327
2328/* Interrupt Handler for Transmit complete */
2329static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330{
2331	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332	unsigned long flags;
2333	u32 imask;
2334
2335	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336		spin_lock_irqsave(&grp->grplock, flags);
2337		imask = gfar_read(&grp->regs->imask);
2338		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339		gfar_write(&grp->regs->imask, imask);
2340		spin_unlock_irqrestore(&grp->grplock, flags);
2341		__napi_schedule(&grp->napi_tx);
2342	} else {
2343		/* Clear IEVENT, so interrupts aren't called again
2344		 * because of the packets that have already arrived.
2345		 */
2346		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347	}
2348
2349	return IRQ_HANDLED;
2350}
2351
2352static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353			     struct sk_buff *skb, bool first)
2354{
2355	int size = lstatus & BD_LENGTH_MASK;
2356	struct page *page = rxb->page;
2357
2358	if (likely(first)) {
2359		skb_put(skb, size);
2360	} else {
2361		/* the last fragments' length contains the full frame length */
2362		if (lstatus & BD_LFLAG(RXBD_LAST))
2363			size -= skb->len;
2364
2365		WARN(size < 0, "gianfar: rx fragment size underflow");
2366		if (size < 0)
2367			return false;
2368
2369		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370				rxb->page_offset + RXBUF_ALIGNMENT,
2371				size, GFAR_RXB_TRUESIZE);
2372	}
2373
2374	/* try reuse page */
2375	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376		return false;
 
2377
2378	/* change offset to the other half */
2379	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
 
2380
2381	page_ref_inc(page);
2382
2383	return true;
2384}
2385
2386static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387			       struct gfar_rx_buff *old_rxb)
2388{
2389	struct gfar_rx_buff *new_rxb;
2390	u16 nta = rxq->next_to_alloc;
2391
2392	new_rxb = &rxq->rx_buff[nta];
2393
2394	/* find next buf that can reuse a page */
2395	nta++;
2396	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398	/* copy page reference */
2399	*new_rxb = *old_rxb;
 
2400
2401	/* sync for use by the device */
2402	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403					 old_rxb->page_offset,
2404					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405}
2406
2407static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408					    u32 lstatus, struct sk_buff *skb)
2409{
2410	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411	struct page *page = rxb->page;
2412	bool first = false;
2413
2414	if (likely(!skb)) {
2415		void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418		if (unlikely(!skb)) {
2419			gfar_rx_alloc_err(rx_queue);
2420			return NULL;
2421		}
2422		skb_reserve(skb, RXBUF_ALIGNMENT);
2423		first = true;
2424	}
2425
2426	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430		/* reuse the free half of the page */
2431		gfar_reuse_rx_page(rx_queue, rxb);
2432	} else {
2433		/* page cannot be reused, unmap it */
2434		dma_unmap_page(rx_queue->dev, rxb->dma,
2435			       PAGE_SIZE, DMA_FROM_DEVICE);
2436	}
 
 
 
2437
2438	/* clear rxb content */
2439	rxb->page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	return skb;
 
 
 
2442}
2443
2444static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445{
2446	/* If valid headers were found, and valid sums
2447	 * were verified, then we tell the kernel that no
2448	 * checksumming is necessary.  Otherwise, it is [FIXME]
2449	 */
2450	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451	    (RXFCB_CIP | RXFCB_CTU))
2452		skb->ip_summed = CHECKSUM_UNNECESSARY;
2453	else
2454		skb_checksum_none_assert(skb);
2455}
2456
2457/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
 
 
 
2459{
2460	struct gfar_private *priv = netdev_priv(ndev);
2461	struct rxfcb *fcb = NULL;
2462
 
 
2463	/* fcb is at the beginning if exists */
2464	fcb = (struct rxfcb *)skb->data;
2465
2466	/* Remove the FCB from the skb
2467	 * Remove the padded bytes, if there are any
2468	 */
2469	if (priv->uses_rxfcb)
2470		skb_pull(skb, GMAC_FCB_LEN);
 
2471
2472	/* Get receive timestamp from the skb */
2473	if (priv->hwts_rx_en) {
2474		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475		__be64 *ns = (__be64 *)skb->data;
2476
2477		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479	}
2480
2481	if (priv->padding)
2482		skb_pull(skb, priv->padding);
2483
2484	/* Trim off the FCS */
2485	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487	if (ndev->features & NETIF_F_RXCSUM)
2488		gfar_rx_checksum(skb, fcb);
2489
2490	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
 
 
 
 
2491	 * Even if vlan rx accel is disabled, on some chips
2492	 * RXFCB_VLN is pseudo randomly set.
2493	 */
2494	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497				       be16_to_cpu(fcb->vlctl));
 
 
 
 
 
 
 
2498}
2499
2500/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
2504static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505			      int rx_work_limit)
2506{
2507	struct net_device *ndev = rx_queue->ndev;
2508	struct gfar_private *priv = netdev_priv(ndev);
2509	struct rxbd8 *bdp;
2510	int i, howmany = 0;
2511	struct sk_buff *skb = rx_queue->skb;
2512	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513	unsigned int total_bytes = 0, total_pkts = 0;
2514
2515	/* Get the first full descriptor */
2516	i = rx_queue->next_to_clean;
2517
2518	while (rx_work_limit--) {
2519		u32 lstatus;
2520
2521		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523			cleaned_cnt = 0;
2524		}
2525
2526		bdp = &rx_queue->rx_bd_base[i];
2527		lstatus = be32_to_cpu(bdp->lstatus);
2528		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529			break;
2530
2531		/* lost RXBD_LAST descriptor due to overrun */
2532		if (skb &&
2533		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534			/* discard faulty buffer */
2535			dev_kfree_skb(skb);
2536			skb = NULL;
2537			rx_queue->stats.rx_dropped++;
2538
2539			/* can continue normally */
2540		}
2541
2542		/* order rx buffer descriptor reads */
 
2543		rmb();
2544
2545		/* fetch next to clean buffer from the ring */
2546		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547		if (unlikely(!skb))
2548			break;
2549
2550		cleaned_cnt++;
2551		howmany++;
2552
2553		if (unlikely(++i == rx_queue->rx_ring_size))
2554			i = 0;
2555
2556		rx_queue->next_to_clean = i;
 
2557
2558		/* fetch next buffer if not the last in frame */
2559		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561
2562		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563			count_errors(lstatus, ndev);
 
 
 
2564
2565			/* discard faulty buffer */
2566			dev_kfree_skb(skb);
2567			skb = NULL;
2568			rx_queue->stats.rx_dropped++;
2569			continue;
2570		}
2571
2572		gfar_process_frame(ndev, skb);
2573
2574		/* Increment the number of packets */
2575		total_pkts++;
2576		total_bytes += skb->len;
2577
2578		skb_record_rx_queue(skb, rx_queue->qindex);
 
2579
2580		skb->protocol = eth_type_trans(skb, ndev);
2581
2582		/* Send the packet up the stack */
2583		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585		skb = NULL;
 
 
 
2586	}
2587
2588	/* Store incomplete frames for completion */
2589	rx_queue->skb = skb;
2590
2591	rx_queue->stats.rx_packets += total_pkts;
2592	rx_queue->stats.rx_bytes += total_bytes;
2593
2594	if (cleaned_cnt)
2595		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597	/* Update Last Free RxBD pointer for LFC */
2598	if (unlikely(priv->tx_actual_en)) {
2599		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601		gfar_write(rx_queue->rfbptr, bdp_dma);
2602	}
2603
2604	return howmany;
2605}
2606
2607static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608{
2609	struct gfar_priv_grp *gfargrp =
2610		container_of(napi, struct gfar_priv_grp, napi_rx);
 
2611	struct gfar __iomem *regs = gfargrp->regs;
2612	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613	int work_done = 0;
 
 
 
 
 
 
 
2614
2615	/* Clear IEVENT, so interrupts aren't called again
2616	 * because of the packets that have already arrived
2617	 */
2618	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2619
2620	work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622	if (work_done < budget) {
2623		u32 imask;
2624		napi_complete_done(napi, work_done);
2625		/* Clear the halt bit in RSTAT */
2626		gfar_write(&regs->rstat, gfargrp->rstat);
2627
2628		spin_lock_irq(&gfargrp->grplock);
2629		imask = gfar_read(&regs->imask);
2630		imask |= IMASK_RX_DEFAULT;
2631		gfar_write(&regs->imask, imask);
2632		spin_unlock_irq(&gfargrp->grplock);
 
 
 
 
 
 
 
 
 
 
 
 
2633	}
2634
2635	return work_done;
2636}
2637
2638static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639{
2640	struct gfar_priv_grp *gfargrp =
2641		container_of(napi, struct gfar_priv_grp, napi_tx);
2642	struct gfar __iomem *regs = gfargrp->regs;
2643	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644	u32 imask;
2645
2646	/* Clear IEVENT, so interrupts aren't called again
2647	 * because of the packets that have already arrived
2648	 */
2649	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2650
2651	/* run Tx cleanup to completion */
2652	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653		gfar_clean_tx_ring(tx_queue);
2654
2655	napi_complete(napi);
2656
2657	spin_lock_irq(&gfargrp->grplock);
2658	imask = gfar_read(&regs->imask);
2659	imask |= IMASK_TX_DEFAULT;
2660	gfar_write(&regs->imask, imask);
2661	spin_unlock_irq(&gfargrp->grplock);
2662
2663	return 0;
 
 
 
 
 
 
2664}
2665
2666/* GFAR error interrupt handler */
2667static irqreturn_t gfar_error(int irq, void *grp_id)
 
 
 
 
 
2668{
2669	struct gfar_priv_grp *gfargrp = grp_id;
2670	struct gfar __iomem *regs = gfargrp->regs;
2671	struct gfar_private *priv= gfargrp->priv;
2672	struct net_device *dev = priv->ndev;
2673
2674	/* Save ievent for future reference */
2675	u32 events = gfar_read(&regs->ievent);
2676
2677	/* Clear IEVENT */
2678	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2679
2680	/* Magic Packet is not an error. */
2681	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682	    (events & IEVENT_MAG))
2683		events &= ~IEVENT_MAG;
2684
2685	/* Hmm... */
2686	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687		netdev_dbg(dev,
2688			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689			   events, gfar_read(&regs->imask));
2690
2691	/* Update the error counters */
2692	if (events & IEVENT_TXE) {
2693		dev->stats.tx_errors++;
2694
2695		if (events & IEVENT_LC)
2696			dev->stats.tx_window_errors++;
2697		if (events & IEVENT_CRL)
2698			dev->stats.tx_aborted_errors++;
2699		if (events & IEVENT_XFUN) {
2700			netif_dbg(priv, tx_err, dev,
2701				  "TX FIFO underrun, packet dropped\n");
2702			dev->stats.tx_dropped++;
2703			atomic64_inc(&priv->extra_stats.tx_underrun);
2704
2705			schedule_work(&priv->reset_task);
 
 
 
 
 
 
 
 
 
 
2706		}
2707		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708	}
2709	if (events & IEVENT_MSRO) {
2710		struct rmon_mib __iomem *rmon = &regs->rmon;
2711		u32 car;
2712
2713		spin_lock(&priv->rmon_overflow.lock);
2714		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715		if (car) {
2716			priv->rmon_overflow.rdrp++;
2717			gfar_write(&rmon->car1, car);
2718		}
2719		spin_unlock(&priv->rmon_overflow.lock);
2720	}
2721	if (events & IEVENT_BSY) {
2722		dev->stats.rx_over_errors++;
2723		atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726			  gfar_read(&regs->rstat));
2727	}
2728	if (events & IEVENT_BABR) {
2729		dev->stats.rx_errors++;
2730		atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733	}
2734	if (events & IEVENT_EBERR) {
2735		atomic64_inc(&priv->extra_stats.eberr);
2736		netif_dbg(priv, rx_err, dev, "bus error\n");
2737	}
2738	if (events & IEVENT_RXC)
2739		netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741	if (events & IEVENT_BABT) {
2742		atomic64_inc(&priv->extra_stats.tx_babt);
2743		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2744	}
2745	return IRQ_HANDLED;
2746}
 
2747
2748/* The interrupt handler for devices with one interrupt */
2749static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750{
2751	struct gfar_priv_grp *gfargrp = grp_id;
2752
2753	/* Save ievent for future reference */
2754	u32 events = gfar_read(&gfargrp->regs->ievent);
2755
2756	/* Check for reception */
2757	if (events & IEVENT_RX_MASK)
2758		gfar_receive(irq, grp_id);
2759
2760	/* Check for transmit completion */
2761	if (events & IEVENT_TX_MASK)
2762		gfar_transmit(irq, grp_id);
2763
2764	/* Check for errors */
2765	if (events & IEVENT_ERR_MASK)
2766		gfar_error(irq, grp_id);
2767
2768	return IRQ_HANDLED;
2769}
2770
2771#ifdef CONFIG_NET_POLL_CONTROLLER
2772/* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
 
2775 */
2776static void gfar_netpoll(struct net_device *dev)
2777{
2778	struct gfar_private *priv = netdev_priv(dev);
2779	int i;
2780
2781	/* If the device has multiple interrupts, run tx/rx */
2782	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783		for (i = 0; i < priv->num_grps; i++) {
2784			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786			disable_irq(gfar_irq(grp, TX)->irq);
2787			disable_irq(gfar_irq(grp, RX)->irq);
2788			disable_irq(gfar_irq(grp, ER)->irq);
2789			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790			enable_irq(gfar_irq(grp, ER)->irq);
2791			enable_irq(gfar_irq(grp, RX)->irq);
2792			enable_irq(gfar_irq(grp, TX)->irq);
2793		}
2794	} else {
2795		for (i = 0; i < priv->num_grps; i++) {
2796			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798			disable_irq(gfar_irq(grp, TX)->irq);
2799			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800			enable_irq(gfar_irq(grp, TX)->irq);
2801		}
2802	}
2803}
2804#endif
2805
2806static void free_grp_irqs(struct gfar_priv_grp *grp)
2807{
2808	free_irq(gfar_irq(grp, TX)->irq, grp);
2809	free_irq(gfar_irq(grp, RX)->irq, grp);
2810	free_irq(gfar_irq(grp, ER)->irq, grp);
2811}
2812
2813static int register_grp_irqs(struct gfar_priv_grp *grp)
2814{
2815	struct gfar_private *priv = grp->priv;
2816	struct net_device *dev = priv->ndev;
2817	int err;
2818
2819	/* If the device has multiple interrupts, register for
2820	 * them.  Otherwise, only register for the one
2821	 */
2822	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823		/* Install our interrupt handlers for Error,
2824		 * Transmit, and Receive
2825		 */
2826		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827				  gfar_irq(grp, ER)->name, grp);
2828		if (err < 0) {
2829			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830				  gfar_irq(grp, ER)->irq);
2831
2832			goto err_irq_fail;
2833		}
2834		enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837				  gfar_irq(grp, TX)->name, grp);
2838		if (err < 0) {
2839			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840				  gfar_irq(grp, TX)->irq);
2841			goto tx_irq_fail;
2842		}
2843		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844				  gfar_irq(grp, RX)->name, grp);
2845		if (err < 0) {
2846			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847				  gfar_irq(grp, RX)->irq);
2848			goto rx_irq_fail;
2849		}
2850		enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852	} else {
2853		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854				  gfar_irq(grp, TX)->name, grp);
2855		if (err < 0) {
2856			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857				  gfar_irq(grp, TX)->irq);
2858			goto err_irq_fail;
2859		}
2860		enable_irq_wake(gfar_irq(grp, TX)->irq);
2861	}
2862
2863	return 0;
2864
2865rx_irq_fail:
2866	free_irq(gfar_irq(grp, TX)->irq, grp);
2867tx_irq_fail:
2868	free_irq(gfar_irq(grp, ER)->irq, grp);
2869err_irq_fail:
2870	return err;
2871
2872}
 
 
 
 
 
2873
2874static void gfar_free_irq(struct gfar_private *priv)
2875{
2876	int i;
 
 
 
 
 
 
 
 
 
 
2877
2878	/* Free the IRQs */
2879	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880		for (i = 0; i < priv->num_grps; i++)
2881			free_grp_irqs(&priv->gfargrp[i]);
2882	} else {
2883		for (i = 0; i < priv->num_grps; i++)
2884			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885				 &priv->gfargrp[i]);
2886	}
2887}
2888
2889static int gfar_request_irq(struct gfar_private *priv)
2890{
2891	int err, i, j;
2892
2893	for (i = 0; i < priv->num_grps; i++) {
2894		err = register_grp_irqs(&priv->gfargrp[i]);
2895		if (err) {
2896			for (j = 0; j < i; j++)
2897				free_grp_irqs(&priv->gfargrp[j]);
2898			return err;
2899		}
 
 
 
 
 
2900	}
2901
2902	return 0;
2903}
2904
2905/* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2907 */
2908static int gfar_enet_open(struct net_device *dev)
2909{
2910	struct gfar_private *priv = netdev_priv(dev);
2911	int err;
2912
2913	err = init_phy(dev);
2914	if (err)
2915		return err;
2916
2917	err = gfar_request_irq(priv);
2918	if (err)
2919		return err;
2920
2921	err = startup_gfar(dev);
2922	if (err)
2923		return err;
2924
2925	return err;
2926}
2927
2928/* Stops the kernel queue, and halts the controller */
2929static int gfar_close(struct net_device *dev)
2930{
2931	struct gfar_private *priv = netdev_priv(dev);
2932
2933	cancel_work_sync(&priv->reset_task);
2934	stop_gfar(dev);
2935
2936	/* Disconnect from the PHY */
2937	phy_disconnect(dev->phydev);
2938
2939	gfar_free_irq(priv);
2940
2941	return 0;
2942}
2943
2944/* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
2947static void gfar_clear_exact_match(struct net_device *dev)
2948{
2949	int idx;
2950	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953		gfar_set_mac_for_addr(dev, idx, zero_arr);
2954}
2955
2956/* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to.  Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
2961static void gfar_set_multi(struct net_device *dev)
2962{
2963	struct netdev_hw_addr *ha;
2964	struct gfar_private *priv = netdev_priv(dev);
2965	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966	u32 tempval;
2967
2968	if (dev->flags & IFF_PROMISC) {
2969		/* Set RCTRL to PROM */
2970		tempval = gfar_read(&regs->rctrl);
2971		tempval |= RCTRL_PROM;
2972		gfar_write(&regs->rctrl, tempval);
2973	} else {
2974		/* Set RCTRL to not PROM */
2975		tempval = gfar_read(&regs->rctrl);
2976		tempval &= ~(RCTRL_PROM);
2977		gfar_write(&regs->rctrl, tempval);
2978	}
2979
2980	if (dev->flags & IFF_ALLMULTI) {
2981		/* Set the hash to rx all multicast frames */
2982		gfar_write(&regs->igaddr0, 0xffffffff);
2983		gfar_write(&regs->igaddr1, 0xffffffff);
2984		gfar_write(&regs->igaddr2, 0xffffffff);
2985		gfar_write(&regs->igaddr3, 0xffffffff);
2986		gfar_write(&regs->igaddr4, 0xffffffff);
2987		gfar_write(&regs->igaddr5, 0xffffffff);
2988		gfar_write(&regs->igaddr6, 0xffffffff);
2989		gfar_write(&regs->igaddr7, 0xffffffff);
2990		gfar_write(&regs->gaddr0, 0xffffffff);
2991		gfar_write(&regs->gaddr1, 0xffffffff);
2992		gfar_write(&regs->gaddr2, 0xffffffff);
2993		gfar_write(&regs->gaddr3, 0xffffffff);
2994		gfar_write(&regs->gaddr4, 0xffffffff);
2995		gfar_write(&regs->gaddr5, 0xffffffff);
2996		gfar_write(&regs->gaddr6, 0xffffffff);
2997		gfar_write(&regs->gaddr7, 0xffffffff);
2998	} else {
2999		int em_num;
3000		int idx;
3001
3002		/* zero out the hash */
3003		gfar_write(&regs->igaddr0, 0x0);
3004		gfar_write(&regs->igaddr1, 0x0);
3005		gfar_write(&regs->igaddr2, 0x0);
3006		gfar_write(&regs->igaddr3, 0x0);
3007		gfar_write(&regs->igaddr4, 0x0);
3008		gfar_write(&regs->igaddr5, 0x0);
3009		gfar_write(&regs->igaddr6, 0x0);
3010		gfar_write(&regs->igaddr7, 0x0);
3011		gfar_write(&regs->gaddr0, 0x0);
3012		gfar_write(&regs->gaddr1, 0x0);
3013		gfar_write(&regs->gaddr2, 0x0);
3014		gfar_write(&regs->gaddr3, 0x0);
3015		gfar_write(&regs->gaddr4, 0x0);
3016		gfar_write(&regs->gaddr5, 0x0);
3017		gfar_write(&regs->gaddr6, 0x0);
3018		gfar_write(&regs->gaddr7, 0x0);
3019
3020		/* If we have extended hash tables, we need to
3021		 * clear the exact match registers to prepare for
3022		 * setting them
3023		 */
3024		if (priv->extended_hash) {
3025			em_num = GFAR_EM_NUM + 1;
3026			gfar_clear_exact_match(dev);
3027			idx = 1;
3028		} else {
3029			idx = 0;
3030			em_num = 0;
3031		}
3032
3033		if (netdev_mc_empty(dev))
3034			return;
3035
3036		/* Parse the list, and set the appropriate bits */
3037		netdev_for_each_mc_addr(ha, dev) {
3038			if (idx < em_num) {
3039				gfar_set_mac_for_addr(dev, idx, ha->addr);
3040				idx++;
3041			} else
3042				gfar_set_hash_for_addr(dev, ha->addr);
3043		}
3044	}
3045}
3046
3047void gfar_mac_reset(struct gfar_private *priv)
3048{
3049	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050	u32 tempval;
3051
3052	/* Reset MAC layer */
3053	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3054
3055	/* We need to delay at least 3 TX clocks */
3056	udelay(3);
3057
3058	/* the soft reset bit is not self-resetting, so we need to
3059	 * clear it before resuming normal operation
3060	 */
3061	gfar_write(&regs->maccfg1, 0);
3062
3063	udelay(3);
3064
3065	gfar_rx_offload_en(priv);
3066
3067	/* Initialize the max receive frame/buffer lengths */
3068	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3070
3071	/* Initialize the Minimum Frame Length Register */
3072	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3073
3074	/* Initialize MACCFG2. */
3075	tempval = MACCFG2_INIT_SETTINGS;
3076
3077	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3079	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080	 */
3081	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084	gfar_write(&regs->maccfg2, tempval);
3085
3086	/* Clear mac addr hash registers */
3087	gfar_write(&regs->igaddr0, 0);
3088	gfar_write(&regs->igaddr1, 0);
3089	gfar_write(&regs->igaddr2, 0);
3090	gfar_write(&regs->igaddr3, 0);
3091	gfar_write(&regs->igaddr4, 0);
3092	gfar_write(&regs->igaddr5, 0);
3093	gfar_write(&regs->igaddr6, 0);
3094	gfar_write(&regs->igaddr7, 0);
3095
3096	gfar_write(&regs->gaddr0, 0);
3097	gfar_write(&regs->gaddr1, 0);
3098	gfar_write(&regs->gaddr2, 0);
3099	gfar_write(&regs->gaddr3, 0);
3100	gfar_write(&regs->gaddr4, 0);
3101	gfar_write(&regs->gaddr5, 0);
3102	gfar_write(&regs->gaddr6, 0);
3103	gfar_write(&regs->gaddr7, 0);
3104
3105	if (priv->extended_hash)
3106		gfar_clear_exact_match(priv->ndev);
3107
3108	gfar_mac_rx_config(priv);
3109
3110	gfar_mac_tx_config(priv);
3111
3112	gfar_set_mac_address(priv->ndev);
3113
3114	gfar_set_multi(priv->ndev);
3115
3116	/* clear ievent and imask before configuring coalescing */
3117	gfar_ints_disable(priv);
3118
3119	/* Configure the coalescing support */
3120	gfar_configure_coalescing_all(priv);
3121}
3122
3123static void gfar_hw_init(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
3124{
3125	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126	u32 attrs;
3127
3128	/* Stop the DMA engine now, in case it was running before
3129	 * (The firmware could have used it, and left it running).
3130	 */
3131	gfar_halt(priv);
3132
3133	gfar_mac_reset(priv);
3134
3135	/* Zero out the rmon mib registers if it has them */
3136	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139		/* Mask off the CAM interrupts */
3140		gfar_write(&regs->rmon.cam1, 0xffffffff);
3141		gfar_write(&regs->rmon.cam2, 0xffffffff);
3142		/* Clear the CAR registers (w1c style) */
3143		gfar_write(&regs->rmon.car1, 0xffffffff);
3144		gfar_write(&regs->rmon.car2, 0xffffffff);
3145	}
3146
3147	/* Initialize ECNTRL */
3148	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150	/* Set the extraction length and index */
3151	attrs = ATTRELI_EL(priv->rx_stash_size) |
3152		ATTRELI_EI(priv->rx_stash_index);
3153
3154	gfar_write(&regs->attreli, attrs);
3155
3156	/* Start with defaults, and add stashing
3157	 * depending on driver parameters
3158	 */
3159	attrs = ATTR_INIT_SETTINGS;
3160
3161	if (priv->bd_stash_en)
3162		attrs |= ATTR_BDSTASH;
3163
3164	if (priv->rx_stash_size != 0)
3165		attrs |= ATTR_BUFSTASH;
3166
3167	gfar_write(&regs->attr, attrs);
3168
3169	/* FIFO configs */
3170	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174	/* Program the interrupt steering regs, only for MG devices */
3175	if (priv->num_grps > 1)
3176		gfar_write_isrg(priv);
3177}
3178
3179static const struct net_device_ops gfar_netdev_ops = {
3180	.ndo_open = gfar_enet_open,
3181	.ndo_start_xmit = gfar_start_xmit,
3182	.ndo_stop = gfar_close,
3183	.ndo_change_mtu = gfar_change_mtu,
3184	.ndo_set_features = gfar_set_features,
3185	.ndo_set_rx_mode = gfar_set_multi,
3186	.ndo_tx_timeout = gfar_timeout,
3187	.ndo_eth_ioctl = gfar_ioctl,
3188	.ndo_get_stats64 = gfar_get_stats64,
3189	.ndo_change_carrier = fixed_phy_change_carrier,
3190	.ndo_set_mac_address = gfar_set_mac_addr,
3191	.ndo_validate_addr = eth_validate_addr,
3192#ifdef CONFIG_NET_POLL_CONTROLLER
3193	.ndo_poll_controller = gfar_netpoll,
3194#endif
3195};
3196
3197/* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
3200static int gfar_probe(struct platform_device *ofdev)
3201{
3202	struct device_node *np = ofdev->dev.of_node;
3203	struct net_device *dev = NULL;
3204	struct gfar_private *priv = NULL;
3205	int err = 0, i;
3206
3207	err = gfar_of_init(ofdev, &dev);
3208
3209	if (err)
3210		return err;
3211
3212	priv = netdev_priv(dev);
3213	priv->ndev = dev;
3214	priv->ofdev = ofdev;
3215	priv->dev = &ofdev->dev;
3216	SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218	INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220	platform_set_drvdata(ofdev, priv);
3221
3222	gfar_detect_errata(priv);
3223
3224	/* Set the dev->base_addr to the gfar reg region */
3225	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227	/* Fill in the dev structure */
3228	dev->watchdog_timeo = TX_TIMEOUT;
3229	/* MTU range: 50 - 9586 */
3230	dev->mtu = 1500;
3231	dev->min_mtu = 50;
3232	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233	dev->netdev_ops = &gfar_netdev_ops;
3234	dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236	/* Register for napi ...We are registering NAPI for each grp */
3237	for (i = 0; i < priv->num_grps; i++) {
3238		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239			       gfar_poll_rx_sq);
3240		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3241					 gfar_poll_tx_sq, 2);
3242	}
3243
3244	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246				   NETIF_F_RXCSUM;
3247		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249	}
3250
3251	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253				    NETIF_F_HW_VLAN_CTAG_RX;
3254		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255	}
3256
3257	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3258
3259	gfar_init_addr_hash_table(priv);
3260
3261	/* Insert receive time stamps into padding alignment bytes, and
3262	 * plus 2 bytes padding to ensure the cpu alignment.
3263	 */
3264	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265		priv->padding = 8 + DEFAULT_PADDING;
3266
3267	if (dev->features & NETIF_F_IP_CSUM ||
3268	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3270
3271	/* Initializing some of the rx/tx queue level parameters */
3272	for (i = 0; i < priv->num_tx_queues; i++) {
3273		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277	}
3278
3279	for (i = 0; i < priv->num_rx_queues; i++) {
3280		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283	}
3284
3285	/* Always enable rx filer if available */
3286	priv->rx_filer_enable =
3287	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288	/* Enable most messages by default */
3289	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290	/* use pritority h/w tx queue scheduling for single queue devices */
3291	if (priv->num_tx_queues == 1)
3292		priv->prio_sched_en = 1;
3293
3294	set_bit(GFAR_DOWN, &priv->state);
3295
3296	gfar_hw_init(priv);
3297
3298	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301		spin_lock_init(&priv->rmon_overflow.lock);
3302		priv->rmon_overflow.imask = IMASK_MSRO;
3303		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304	}
3305
3306	/* Carrier starts down, phylib will bring it up */
3307	netif_carrier_off(dev);
3308
3309	err = register_netdev(dev);
3310
3311	if (err) {
3312		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313		goto register_fail;
3314	}
3315
3316	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317		priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320	    priv->rx_filer_enable)
3321		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325	/* fill out IRQ number and name fields */
3326	for (i = 0; i < priv->num_grps; i++) {
3327		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330				dev->name, "_g", '0' + i, "_tx");
3331			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332				dev->name, "_g", '0' + i, "_rx");
3333			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334				dev->name, "_g", '0' + i, "_er");
3335		} else
3336			strcpy(gfar_irq(grp, TX)->name, dev->name);
3337	}
3338
3339	/* Initialize the filer table */
3340	gfar_init_filer_table(priv);
3341
3342	/* Print out the device info */
3343	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345	/* Even more device info helps when determining which kernel
3346	 * provided which set of benchmarks.
3347	 */
3348	netdev_info(dev, "Running with NAPI enabled\n");
3349	for (i = 0; i < priv->num_rx_queues; i++)
3350		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351			    i, priv->rx_queue[i]->rx_ring_size);
3352	for (i = 0; i < priv->num_tx_queues; i++)
3353		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354			    i, priv->tx_queue[i]->tx_ring_size);
3355
3356	return 0;
3357
3358register_fail:
3359	if (of_phy_is_fixed_link(np))
3360		of_phy_deregister_fixed_link(np);
3361	unmap_group_regs(priv);
3362	gfar_free_rx_queues(priv);
3363	gfar_free_tx_queues(priv);
3364	of_node_put(priv->phy_node);
3365	of_node_put(priv->tbi_node);
3366	free_gfar_dev(priv);
3367	return err;
3368}
3369
3370static void gfar_remove(struct platform_device *ofdev)
3371{
3372	struct gfar_private *priv = platform_get_drvdata(ofdev);
3373	struct device_node *np = ofdev->dev.of_node;
3374
3375	of_node_put(priv->phy_node);
3376	of_node_put(priv->tbi_node);
3377
3378	unregister_netdev(priv->ndev);
3379
3380	if (of_phy_is_fixed_link(np))
3381		of_phy_deregister_fixed_link(np);
3382
3383	unmap_group_regs(priv);
3384	gfar_free_rx_queues(priv);
3385	gfar_free_tx_queues(priv);
3386	free_gfar_dev(priv);
3387}
3388
3389#ifdef CONFIG_PM
3390
3391static void __gfar_filer_disable(struct gfar_private *priv)
3392{
3393	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3394	u32 temp;
3395
3396	temp = gfar_read(&regs->rctrl);
3397	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3398	gfar_write(&regs->rctrl, temp);
3399}
3400
3401static void __gfar_filer_enable(struct gfar_private *priv)
3402{
3403	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3404	u32 temp;
3405
3406	temp = gfar_read(&regs->rctrl);
3407	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3408	gfar_write(&regs->rctrl, temp);
3409}
3410
3411/* Filer rules implementing wol capabilities */
3412static void gfar_filer_config_wol(struct gfar_private *priv)
3413{
3414	unsigned int i;
3415	u32 rqfcr;
 
 
3416
3417	__gfar_filer_disable(priv);
 
3418
3419	/* clear the filer table, reject any packet by default */
3420	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3421	for (i = 0; i <= MAX_FILER_IDX; i++)
3422		gfar_write_filer(priv, i, rqfcr, 0);
3423
3424	i = 0;
3425	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3426		/* unicast packet, accept it */
3427		struct net_device *ndev = priv->ndev;
3428		/* get the default rx queue index */
3429		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3430		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3431				    (ndev->dev_addr[1] << 8) |
3432				     ndev->dev_addr[2];
3433
3434		rqfcr = (qindex << 10) | RQFCR_AND |
3435			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
 
 
3436
3437		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
 
 
3438
3439		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3440				(ndev->dev_addr[4] << 8) |
3441				 ndev->dev_addr[5];
3442		rqfcr = (qindex << 10) | RQFCR_GPI |
3443			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3444		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3445	}
3446
3447	__gfar_filer_enable(priv);
3448}
 
 
3449
3450static void gfar_filer_restore_table(struct gfar_private *priv)
3451{
3452	u32 rqfcr, rqfpr;
3453	unsigned int i;
3454
3455	__gfar_filer_disable(priv);
 
3456
3457	for (i = 0; i <= MAX_FILER_IDX; i++) {
3458		rqfcr = priv->ftp_rqfcr[i];
3459		rqfpr = priv->ftp_rqfpr[i];
3460		gfar_write_filer(priv, i, rqfcr, rqfpr);
3461	}
 
 
 
3462
3463	__gfar_filer_enable(priv);
3464}
3465
3466/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3467static void gfar_start_wol_filer(struct gfar_private *priv)
3468{
3469	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3470	u32 tempval;
3471	int i = 0;
3472
3473	/* Enable Rx hw queues */
3474	gfar_write(&regs->rqueue, priv->rqueue);
3475
3476	/* Initialize DMACTRL to have WWR and WOP */
3477	tempval = gfar_read(&regs->dmactrl);
3478	tempval |= DMACTRL_INIT_SETTINGS;
3479	gfar_write(&regs->dmactrl, tempval);
3480
3481	/* Make sure we aren't stopped */
3482	tempval = gfar_read(&regs->dmactrl);
3483	tempval &= ~DMACTRL_GRS;
3484	gfar_write(&regs->dmactrl, tempval);
3485
3486	for (i = 0; i < priv->num_grps; i++) {
3487		regs = priv->gfargrp[i].regs;
3488		/* Clear RHLT, so that the DMA starts polling now */
3489		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3490		/* enable the Filer General Purpose Interrupt */
3491		gfar_write(&regs->imask, IMASK_FGPI);
3492	}
 
 
 
3493
3494	/* Enable Rx DMA */
3495	tempval = gfar_read(&regs->maccfg1);
3496	tempval |= MACCFG1_RX_EN;
3497	gfar_write(&regs->maccfg1, tempval);
3498}
3499
3500static int gfar_suspend(struct device *dev)
3501{
3502	struct gfar_private *priv = dev_get_drvdata(dev);
3503	struct net_device *ndev = priv->ndev;
3504	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3505	u32 tempval;
3506	u16 wol = priv->wol_opts;
3507
3508	if (!netif_running(ndev))
3509		return 0;
3510
3511	disable_napi(priv);
3512	netif_tx_lock(ndev);
3513	netif_device_detach(ndev);
3514	netif_tx_unlock(ndev);
3515
3516	gfar_halt(priv);
3517
3518	if (wol & GFAR_WOL_MAGIC) {
3519		/* Enable interrupt on Magic Packet */
3520		gfar_write(&regs->imask, IMASK_MAG);
3521
3522		/* Enable Magic Packet mode */
3523		tempval = gfar_read(&regs->maccfg2);
3524		tempval |= MACCFG2_MPEN;
3525		gfar_write(&regs->maccfg2, tempval);
3526
3527		/* re-enable the Rx block */
3528		tempval = gfar_read(&regs->maccfg1);
3529		tempval |= MACCFG1_RX_EN;
3530		gfar_write(&regs->maccfg1, tempval);
3531
3532	} else if (wol & GFAR_WOL_FILER_UCAST) {
3533		gfar_filer_config_wol(priv);
3534		gfar_start_wol_filer(priv);
3535
3536	} else {
3537		phy_stop(ndev->phydev);
3538	}
3539
3540	return 0;
3541}
3542
3543static int gfar_resume(struct device *dev)
3544{
3545	struct gfar_private *priv = dev_get_drvdata(dev);
3546	struct net_device *ndev = priv->ndev;
3547	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3548	u32 tempval;
3549	u16 wol = priv->wol_opts;
3550
3551	if (!netif_running(ndev))
3552		return 0;
3553
3554	if (wol & GFAR_WOL_MAGIC) {
3555		/* Disable Magic Packet mode */
3556		tempval = gfar_read(&regs->maccfg2);
3557		tempval &= ~MACCFG2_MPEN;
3558		gfar_write(&regs->maccfg2, tempval);
3559
3560	} else if (wol & GFAR_WOL_FILER_UCAST) {
3561		/* need to stop rx only, tx is already down */
3562		gfar_halt(priv);
3563		gfar_filer_restore_table(priv);
3564
3565	} else {
3566		phy_start(ndev->phydev);
3567	}
 
 
3568
3569	gfar_start(priv);
3570
3571	netif_device_attach(ndev);
3572	enable_napi(priv);
3573
3574	return 0;
3575}
3576
3577static int gfar_restore(struct device *dev)
3578{
3579	struct gfar_private *priv = dev_get_drvdata(dev);
3580	struct net_device *ndev = priv->ndev;
3581
3582	if (!netif_running(ndev)) {
3583		netif_device_attach(ndev);
3584
3585		return 0;
3586	}
3587
3588	gfar_init_bds(ndev);
3589
3590	gfar_mac_reset(priv);
3591
3592	gfar_init_tx_rx_base(priv);
3593
3594	gfar_start(priv);
3595
3596	priv->oldlink = 0;
3597	priv->oldspeed = 0;
3598	priv->oldduplex = -1;
3599
3600	if (ndev->phydev)
3601		phy_start(ndev->phydev);
3602
3603	netif_device_attach(ndev);
3604	enable_napi(priv);
3605
3606	return 0;
3607}
3608
3609static const struct dev_pm_ops gfar_pm_ops = {
3610	.suspend = gfar_suspend,
3611	.resume = gfar_resume,
3612	.freeze = gfar_suspend,
3613	.thaw = gfar_resume,
3614	.restore = gfar_restore,
3615};
3616
3617#define GFAR_PM_OPS (&gfar_pm_ops)
3618
3619#else
3620
3621#define GFAR_PM_OPS NULL
3622
3623#endif
3624
3625static const struct of_device_id gfar_match[] =
3626{
3627	{
3628		.type = "network",
3629		.compatible = "gianfar",
3630	},
3631	{
3632		.compatible = "fsl,etsec2",
3633	},
3634	{},
3635};
3636MODULE_DEVICE_TABLE(of, gfar_match);
3637
3638/* Structure for a device driver */
3639static struct platform_driver gfar_driver = {
3640	.driver = {
3641		.name = "fsl-gianfar",
 
3642		.pm = GFAR_PM_OPS,
3643		.of_match_table = gfar_match,
3644	},
3645	.probe = gfar_probe,
3646	.remove = gfar_remove,
3647};
3648
3649module_platform_driver(gfar_driver);
v3.5.6
   1/*
   2 * drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 * This program is free software; you can redistribute  it and/or modify it
  17 * under  the terms of  the GNU General  Public License as published by the
  18 * Free Software Foundation;  either version 2 of the  License, or (at your
  19 * option) any later version.
  20 *
  21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  22 *  RA 11 31 24.2
  23 *  Dec +69 19 52
  24 *  V 3.84
  25 *  B-V +1.62
  26 *
  27 *  Theory of operation
  28 *
  29 *  The driver is initialized through of_device. Configuration information
  30 *  is therefore conveyed through an OF-style device tree.
  31 *
  32 *  The Gianfar Ethernet Controller uses a ring of buffer
  33 *  descriptors.  The beginning is indicated by a register
  34 *  pointing to the physical address of the start of the ring.
  35 *  The end is determined by a "wrap" bit being set in the
  36 *  last descriptor of the ring.
  37 *
  38 *  When a packet is received, the RXF bit in the
  39 *  IEVENT register is set, triggering an interrupt when the
  40 *  corresponding bit in the IMASK register is also set (if
  41 *  interrupt coalescing is active, then the interrupt may not
  42 *  happen immediately, but will wait until either a set number
  43 *  of frames or amount of time have passed).  In NAPI, the
  44 *  interrupt handler will signal there is work to be done, and
  45 *  exit. This method will start at the last known empty
  46 *  descriptor, and process every subsequent descriptor until there
  47 *  are none left with data (NAPI will stop after a set number of
  48 *  packets to give time to other tasks, but will eventually
  49 *  process all the packets).  The data arrives inside a
  50 *  pre-allocated skb, and so after the skb is passed up to the
  51 *  stack, a new skb must be allocated, and the address field in
  52 *  the buffer descriptor must be updated to indicate this new
  53 *  skb.
  54 *
  55 *  When the kernel requests that a packet be transmitted, the
  56 *  driver starts where it left off last time, and points the
  57 *  descriptor at the buffer which was passed in.  The driver
  58 *  then informs the DMA engine that there are packets ready to
  59 *  be transmitted.  Once the controller is finished transmitting
  60 *  the packet, an interrupt may be triggered (under the same
  61 *  conditions as for reception, but depending on the TXF bit).
  62 *  The driver then cleans up the buffer.
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66#define DEBUG
  67
  68#include <linux/kernel.h>
 
  69#include <linux/string.h>
  70#include <linux/errno.h>
  71#include <linux/unistd.h>
  72#include <linux/slab.h>
  73#include <linux/interrupt.h>
  74#include <linux/init.h>
  75#include <linux/delay.h>
  76#include <linux/netdevice.h>
  77#include <linux/etherdevice.h>
  78#include <linux/skbuff.h>
  79#include <linux/if_vlan.h>
  80#include <linux/spinlock.h>
  81#include <linux/mm.h>
 
 
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
 
  91#include <asm/reg.h>
 
 
  92#include <asm/irq.h>
  93#include <asm/uaccess.h>
  94#include <linux/module.h>
  95#include <linux/dma-mapping.h>
  96#include <linux/crc32.h>
  97#include <linux/mii.h>
  98#include <linux/phy.h>
  99#include <linux/phy_fixed.h>
 100#include <linux/of.h>
 101#include <linux/of_net.h>
 102
 103#include "gianfar.h"
 104#include "fsl_pq_mdio.h"
 105
 106#define TX_TIMEOUT      (1*HZ)
 107
 108const char gfar_driver_version[] = "1.3";
 109
 110static int gfar_enet_open(struct net_device *dev);
 111static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 112static void gfar_reset_task(struct work_struct *work);
 113static void gfar_timeout(struct net_device *dev);
 114static int gfar_close(struct net_device *dev);
 115struct sk_buff *gfar_new_skb(struct net_device *dev);
 116static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 117		struct sk_buff *skb);
 118static int gfar_set_mac_address(struct net_device *dev);
 119static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 120static irqreturn_t gfar_error(int irq, void *dev_id);
 121static irqreturn_t gfar_transmit(int irq, void *dev_id);
 122static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 123static void adjust_link(struct net_device *dev);
 124static void init_registers(struct net_device *dev);
 125static int init_phy(struct net_device *dev);
 126static int gfar_probe(struct platform_device *ofdev);
 127static int gfar_remove(struct platform_device *ofdev);
 128static void free_skb_resources(struct gfar_private *priv);
 129static void gfar_set_multi(struct net_device *dev);
 130static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 131static void gfar_configure_serdes(struct net_device *dev);
 132static int gfar_poll(struct napi_struct *napi, int budget);
 133#ifdef CONFIG_NET_POLL_CONTROLLER
 134static void gfar_netpoll(struct net_device *dev);
 135#endif
 136int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 137static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 138static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 139			      int amount_pull, struct napi_struct *napi);
 140void gfar_halt(struct net_device *dev);
 141static void gfar_halt_nodisable(struct net_device *dev);
 142void gfar_start(struct net_device *dev);
 143static void gfar_clear_exact_match(struct net_device *dev);
 144static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 145				  const u8 *addr);
 146static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 147
 148MODULE_AUTHOR("Freescale Semiconductor, Inc");
 149MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 150MODULE_LICENSE("GPL");
 151
 152static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 153			    dma_addr_t buf)
 154{
 155	u32 lstatus;
 156
 157	bdp->bufPtr = buf;
 158
 159	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 160	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 161		lstatus |= BD_LFLAG(RXBD_WRAP);
 162
 163	eieio();
 164
 165	bdp->lstatus = lstatus;
 166}
 167
 168static int gfar_init_bds(struct net_device *ndev)
 169{
 170	struct gfar_private *priv = netdev_priv(ndev);
 171	struct gfar_priv_tx_q *tx_queue = NULL;
 172	struct gfar_priv_rx_q *rx_queue = NULL;
 173	struct txbd8 *txbdp;
 174	struct rxbd8 *rxbdp;
 175	int i, j;
 176
 
 177	for (i = 0; i < priv->num_tx_queues; i++) {
 178		tx_queue = priv->tx_queue[i];
 179		/* Initialize some variables in our dev structure */
 180		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 181		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 182		tx_queue->cur_tx = tx_queue->tx_bd_base;
 183		tx_queue->skb_curtx = 0;
 184		tx_queue->skb_dirtytx = 0;
 185
 186		/* Initialize Transmit Descriptor Ring */
 187		txbdp = tx_queue->tx_bd_base;
 188		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 189			txbdp->lstatus = 0;
 190			txbdp->bufPtr = 0;
 191			txbdp++;
 192		}
 193
 194		/* Set the last descriptor in the ring to indicate wrap */
 195		txbdp--;
 196		txbdp->status |= TXBD_WRAP;
 197	}
 198
 
 199	for (i = 0; i < priv->num_rx_queues; i++) {
 200		rx_queue = priv->rx_queue[i];
 201		rx_queue->cur_rx = rx_queue->rx_bd_base;
 202		rx_queue->skb_currx = 0;
 203		rxbdp = rx_queue->rx_bd_base;
 204
 205		for (j = 0; j < rx_queue->rx_ring_size; j++) {
 206			struct sk_buff *skb = rx_queue->rx_skbuff[j];
 207
 208			if (skb) {
 209				gfar_init_rxbdp(rx_queue, rxbdp,
 210						rxbdp->bufPtr);
 211			} else {
 212				skb = gfar_new_skb(ndev);
 213				if (!skb) {
 214					netdev_err(ndev, "Can't allocate RX buffers\n");
 215					goto err_rxalloc_fail;
 216				}
 217				rx_queue->rx_skbuff[j] = skb;
 218
 219				gfar_new_rxbdp(rx_queue, rxbdp, skb);
 220			}
 221
 222			rxbdp++;
 223		}
 224
 225	}
 226
 227	return 0;
 228
 229err_rxalloc_fail:
 230	free_skb_resources(priv);
 231	return -ENOMEM;
 232}
 233
 234static int gfar_alloc_skb_resources(struct net_device *ndev)
 235{
 236	void *vaddr;
 237	dma_addr_t addr;
 238	int i, j, k;
 239	struct gfar_private *priv = netdev_priv(ndev);
 240	struct device *dev = &priv->ofdev->dev;
 241	struct gfar_priv_tx_q *tx_queue = NULL;
 242	struct gfar_priv_rx_q *rx_queue = NULL;
 243
 244	priv->total_tx_ring_size = 0;
 245	for (i = 0; i < priv->num_tx_queues; i++)
 246		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 247
 248	priv->total_rx_ring_size = 0;
 249	for (i = 0; i < priv->num_rx_queues; i++)
 250		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 251
 252	/* Allocate memory for the buffer descriptors */
 253	vaddr = dma_alloc_coherent(dev,
 254			sizeof(struct txbd8) * priv->total_tx_ring_size +
 255			sizeof(struct rxbd8) * priv->total_rx_ring_size,
 256			&addr, GFP_KERNEL);
 257	if (!vaddr) {
 258		netif_err(priv, ifup, ndev,
 259			  "Could not allocate buffer descriptors!\n");
 260		return -ENOMEM;
 261	}
 262
 263	for (i = 0; i < priv->num_tx_queues; i++) {
 264		tx_queue = priv->tx_queue[i];
 265		tx_queue->tx_bd_base = vaddr;
 266		tx_queue->tx_bd_dma_base = addr;
 267		tx_queue->dev = ndev;
 268		/* enet DMA only understands physical addresses */
 269		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 270		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 271	}
 272
 273	/* Start the rx descriptor ring where the tx ring leaves off */
 274	for (i = 0; i < priv->num_rx_queues; i++) {
 275		rx_queue = priv->rx_queue[i];
 276		rx_queue->rx_bd_base = vaddr;
 277		rx_queue->rx_bd_dma_base = addr;
 278		rx_queue->dev = ndev;
 279		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 280		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 281	}
 282
 283	/* Setup the skbuff rings */
 284	for (i = 0; i < priv->num_tx_queues; i++) {
 285		tx_queue = priv->tx_queue[i];
 286		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
 287				  tx_queue->tx_ring_size, GFP_KERNEL);
 288		if (!tx_queue->tx_skbuff) {
 289			netif_err(priv, ifup, ndev,
 290				  "Could not allocate tx_skbuff\n");
 291			goto cleanup;
 292		}
 293
 294		for (k = 0; k < tx_queue->tx_ring_size; k++)
 295			tx_queue->tx_skbuff[k] = NULL;
 296	}
 297
 
 298	for (i = 0; i < priv->num_rx_queues; i++) {
 299		rx_queue = priv->rx_queue[i];
 300		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
 301				  rx_queue->rx_ring_size, GFP_KERNEL);
 302
 303		if (!rx_queue->rx_skbuff) {
 304			netif_err(priv, ifup, ndev,
 305				  "Could not allocate rx_skbuff\n");
 306			goto cleanup;
 307		}
 308
 309		for (j = 0; j < rx_queue->rx_ring_size; j++)
 310			rx_queue->rx_skbuff[j] = NULL;
 311	}
 312
 313	if (gfar_init_bds(ndev))
 314		goto cleanup;
 315
 316	return 0;
 317
 318cleanup:
 319	free_skb_resources(priv);
 320	return -ENOMEM;
 321}
 322
 323static void gfar_init_tx_rx_base(struct gfar_private *priv)
 324{
 325	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 326	u32 __iomem *baddr;
 327	int i;
 328
 329	baddr = &regs->tbase0;
 330	for(i = 0; i < priv->num_tx_queues; i++) {
 331		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 332		baddr	+= 2;
 333	}
 334
 335	baddr = &regs->rbase0;
 336	for(i = 0; i < priv->num_rx_queues; i++) {
 337		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 338		baddr   += 2;
 339	}
 340}
 341
 342static void gfar_init_mac(struct net_device *ndev)
 343{
 344	struct gfar_private *priv = netdev_priv(ndev);
 345	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 346	u32 rctrl = 0;
 347	u32 tctrl = 0;
 348	u32 attrs = 0;
 349
 350	/* write the tx/rx base registers */
 351	gfar_init_tx_rx_base(priv);
 352
 353	/* Configure the coalescing support */
 354	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 355
 356	if (priv->rx_filer_enable) {
 357		rctrl |= RCTRL_FILREN;
 358		/* Program the RIR0 reg with the required distribution */
 359		gfar_write(&regs->rir0, DEFAULT_RIR0);
 360	}
 361
 362	if (ndev->features & NETIF_F_RXCSUM)
 
 
 
 
 363		rctrl |= RCTRL_CHECKSUMMING;
 364
 365	if (priv->extended_hash) {
 366		rctrl |= RCTRL_EXTHASH;
 367
 368		gfar_clear_exact_match(ndev);
 369		rctrl |= RCTRL_EMEN;
 370	}
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Insert receive time stamps into padding alignment bytes */
 378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
 379		rctrl &= ~RCTRL_PAL_MASK;
 380		rctrl |= RCTRL_PADDING(8);
 381		priv->padding = 8;
 382	}
 383
 384	/* Enable HW time stamping if requested from user space */
 385	if (priv->hwts_rx_en)
 386		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 387
 388	if (ndev->features & NETIF_F_HW_VLAN_RX)
 389		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 390
 
 
 
 
 
 
 
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 
 393
 394	if (ndev->features & NETIF_F_IP_CSUM)
 
 
 
 
 
 395		tctrl |= TCTRL_INIT_CSUM;
 396
 397	tctrl |= TCTRL_TXSCHED_PRIO;
 
 
 
 
 
 
 
 
 
 398
 399	gfar_write(&regs->tctrl, tctrl);
 
 400
 401	/* Set the extraction length and index */
 402	attrs = ATTRELI_EL(priv->rx_stash_size) |
 403		ATTRELI_EI(priv->rx_stash_index);
 
 
 404
 405	gfar_write(&regs->attreli, attrs);
 
 406
 407	/* Start with defaults, and add stashing or locking
 408	 * depending on the approprate variables */
 409	attrs = ATTR_INIT_SETTINGS;
 
 
 
 410
 411	if (priv->bd_stash_en)
 412		attrs |= ATTR_BDSTASH;
 
 
 
 
 
 
 
 
 
 
 
 413
 414	if (priv->rx_stash_size != 0)
 415		attrs |= ATTR_BUFSTASH;
 
 
 
 416
 417	gfar_write(&regs->attr, attrs);
 418
 419	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
 420	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
 421	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 422}
 423
 424static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 425{
 426	struct gfar_private *priv = netdev_priv(dev);
 427	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 428	unsigned long tx_packets = 0, tx_bytes = 0;
 429	int i = 0;
 430
 431	for (i = 0; i < priv->num_rx_queues; i++) {
 432		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 433		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
 434		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 435	}
 436
 437	dev->stats.rx_packets = rx_packets;
 438	dev->stats.rx_bytes = rx_bytes;
 439	dev->stats.rx_dropped = rx_dropped;
 440
 441	for (i = 0; i < priv->num_tx_queues; i++) {
 442		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 443		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 444	}
 445
 446	dev->stats.tx_bytes = tx_bytes;
 447	dev->stats.tx_packets = tx_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448
 449	return &dev->stats;
 
 450}
 451
 452static const struct net_device_ops gfar_netdev_ops = {
 453	.ndo_open = gfar_enet_open,
 454	.ndo_start_xmit = gfar_start_xmit,
 455	.ndo_stop = gfar_close,
 456	.ndo_change_mtu = gfar_change_mtu,
 457	.ndo_set_features = gfar_set_features,
 458	.ndo_set_rx_mode = gfar_set_multi,
 459	.ndo_tx_timeout = gfar_timeout,
 460	.ndo_do_ioctl = gfar_ioctl,
 461	.ndo_get_stats = gfar_get_stats,
 462	.ndo_set_mac_address = eth_mac_addr,
 463	.ndo_validate_addr = eth_validate_addr,
 464#ifdef CONFIG_NET_POLL_CONTROLLER
 465	.ndo_poll_controller = gfar_netpoll,
 466#endif
 467};
 
 
 
 
 
 
 
 
 
 
 
 
 468
 469void lock_rx_qs(struct gfar_private *priv)
 
 
 
 
 470{
 471	int i = 0x0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472
 473	for (i = 0; i < priv->num_rx_queues; i++)
 474		spin_lock(&priv->rx_queue[i]->rxlock);
 475}
 476
 477void lock_tx_qs(struct gfar_private *priv)
 478{
 479	int i = 0x0;
 
 
 
 
 
 
 480
 481	for (i = 0; i < priv->num_tx_queues; i++)
 482		spin_lock(&priv->tx_queue[i]->txlock);
 483}
 484
 485void unlock_rx_qs(struct gfar_private *priv)
 486{
 487	int i = 0x0;
 
 
 
 
 488
 489	for (i = 0; i < priv->num_rx_queues; i++)
 490		spin_unlock(&priv->rx_queue[i]->rxlock);
 
 491}
 492
 493void unlock_tx_qs(struct gfar_private *priv)
 494{
 495	int i = 0x0;
 496
 497	for (i = 0; i < priv->num_tx_queues; i++)
 498		spin_unlock(&priv->tx_queue[i]->txlock);
 
 
 
 499}
 500
 501static bool gfar_is_vlan_on(struct gfar_private *priv)
 502{
 503	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
 504	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506
 507/* Returns 1 if incoming frames use an FCB */
 508static inline int gfar_uses_fcb(struct gfar_private *priv)
 509{
 510	return gfar_is_vlan_on(priv) ||
 511		(priv->ndev->features & NETIF_F_RXCSUM) ||
 512		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
 
 
 
 
 
 
 
 
 
 513}
 514
 515static void free_tx_pointers(struct gfar_private *priv)
 516{
 517	int i = 0;
 518
 519	for (i = 0; i < priv->num_tx_queues; i++)
 520		kfree(priv->tx_queue[i]);
 521}
 522
 523static void free_rx_pointers(struct gfar_private *priv)
 524{
 525	int i = 0;
 526
 527	for (i = 0; i < priv->num_rx_queues; i++)
 528		kfree(priv->rx_queue[i]);
 529}
 530
 531static void unmap_group_regs(struct gfar_private *priv)
 532{
 533	int i = 0;
 534
 535	for (i = 0; i < MAXGROUPS; i++)
 536		if (priv->gfargrp[i].regs)
 537			iounmap(priv->gfargrp[i].regs);
 538}
 539
 
 
 
 
 
 
 
 
 
 
 
 
 
 540static void disable_napi(struct gfar_private *priv)
 541{
 542	int i = 0;
 543
 544	for (i = 0; i < priv->num_grps; i++)
 545		napi_disable(&priv->gfargrp[i].napi);
 
 
 546}
 547
 548static void enable_napi(struct gfar_private *priv)
 549{
 550	int i = 0;
 551
 552	for (i = 0; i < priv->num_grps; i++)
 553		napi_enable(&priv->gfargrp[i].napi);
 
 
 554}
 555
 556static int gfar_parse_group(struct device_node *np,
 557		struct gfar_private *priv, const char *model)
 558{
 559	u32 *queue_mask;
 
 
 
 
 
 
 
 
 560
 561	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
 562	if (!priv->gfargrp[priv->num_grps].regs)
 563		return -ENOMEM;
 564
 565	priv->gfargrp[priv->num_grps].interruptTransmit =
 566			irq_of_parse_and_map(np, 0);
 567
 568	/* If we aren't the FEC we have multiple interrupts */
 569	if (model && strcasecmp(model, "FEC")) {
 570		priv->gfargrp[priv->num_grps].interruptReceive =
 571			irq_of_parse_and_map(np, 1);
 572		priv->gfargrp[priv->num_grps].interruptError =
 573			irq_of_parse_and_map(np,2);
 574		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
 575		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
 576		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
 577			return -EINVAL;
 578	}
 579
 580	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
 581	priv->gfargrp[priv->num_grps].priv = priv;
 582	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
 583	if(priv->mode == MQ_MG_MODE) {
 584		queue_mask = (u32 *)of_get_property(np,
 585					"fsl,rx-bit-map", NULL);
 586		priv->gfargrp[priv->num_grps].rx_bit_map =
 587			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
 588		queue_mask = (u32 *)of_get_property(np,
 589					"fsl,tx-bit-map", NULL);
 590		priv->gfargrp[priv->num_grps].tx_bit_map =
 591			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 592	} else {
 593		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
 594		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
 595	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	priv->num_grps++;
 597
 598	return 0;
 599}
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 602{
 603	const char *model;
 604	const char *ctype;
 605	const void *mac_addr;
 606	int err = 0, i;
 
 607	struct net_device *dev = NULL;
 608	struct gfar_private *priv = NULL;
 609	struct device_node *np = ofdev->dev.of_node;
 610	struct device_node *child = NULL;
 611	const u32 *stash;
 612	const u32 *stash_len;
 613	const u32 *stash_idx;
 614	unsigned int num_tx_qs, num_rx_qs;
 615	u32 *tx_queues, *rx_queues;
 616
 617	if (!np || !of_device_is_available(np))
 618		return -ENODEV;
 619
 620	/* parse the num of tx and rx queues */
 621	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 622	num_tx_qs = tx_queues ? *tx_queues : 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623
 624	if (num_tx_qs > MAX_TX_QS) {
 625		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 626		       num_tx_qs, MAX_TX_QS);
 627		pr_err("Cannot do alloc_etherdev, aborting\n");
 628		return -EINVAL;
 629	}
 630
 631	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 632	num_rx_qs = rx_queues ? *rx_queues : 1;
 633
 634	if (num_rx_qs > MAX_RX_QS) {
 635		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 636		       num_rx_qs, MAX_RX_QS);
 637		pr_err("Cannot do alloc_etherdev, aborting\n");
 638		return -EINVAL;
 639	}
 640
 641	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 642	dev = *pdev;
 643	if (NULL == dev)
 644		return -ENOMEM;
 645
 646	priv = netdev_priv(dev);
 647	priv->node = ofdev->dev.of_node;
 648	priv->ndev = dev;
 649
 
 
 650	priv->num_tx_queues = num_tx_qs;
 651	netif_set_real_num_rx_queues(dev, num_rx_qs);
 652	priv->num_rx_queues = num_rx_qs;
 653	priv->num_grps = 0x0;
 654
 655	/* Init Rx queue filer rule set linked list*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	INIT_LIST_HEAD(&priv->rx_list.list);
 657	priv->rx_list.count = 0;
 658	mutex_init(&priv->rx_queue_access);
 659
 660	model = of_get_property(np, "model", NULL);
 661
 662	for (i = 0; i < MAXGROUPS; i++)
 663		priv->gfargrp[i].regs = NULL;
 664
 665	/* Parse and initialize group specific information */
 666	if (of_device_is_compatible(np, "fsl,etsec2")) {
 667		priv->mode = MQ_MG_MODE;
 668		for_each_child_of_node(np, child) {
 
 
 669			err = gfar_parse_group(child, priv, model);
 670			if (err)
 
 671				goto err_grp_init;
 
 672		}
 673	} else {
 674		priv->mode = SQ_SG_MODE;
 675		err = gfar_parse_group(np, priv, model);
 676		if(err)
 677			goto err_grp_init;
 678	}
 679
 680	for (i = 0; i < priv->num_tx_queues; i++)
 681	       priv->tx_queue[i] = NULL;
 682	for (i = 0; i < priv->num_rx_queues; i++)
 683		priv->rx_queue[i] = NULL;
 684
 685	for (i = 0; i < priv->num_tx_queues; i++) {
 686		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 687					    GFP_KERNEL);
 688		if (!priv->tx_queue[i]) {
 689			err = -ENOMEM;
 690			goto tx_alloc_failed;
 691		}
 692		priv->tx_queue[i]->tx_skbuff = NULL;
 693		priv->tx_queue[i]->qindex = i;
 694		priv->tx_queue[i]->dev = dev;
 695		spin_lock_init(&(priv->tx_queue[i]->txlock));
 696	}
 697
 698	for (i = 0; i < priv->num_rx_queues; i++) {
 699		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 700					    GFP_KERNEL);
 701		if (!priv->rx_queue[i]) {
 702			err = -ENOMEM;
 703			goto rx_alloc_failed;
 704		}
 705		priv->rx_queue[i]->rx_skbuff = NULL;
 706		priv->rx_queue[i]->qindex = i;
 707		priv->rx_queue[i]->dev = dev;
 708		spin_lock_init(&(priv->rx_queue[i]->rxlock));
 709	}
 710
 711
 712	stash = of_get_property(np, "bd-stash", NULL);
 713
 714	if (stash) {
 715		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 716		priv->bd_stash_en = 1;
 717	}
 718
 719	stash_len = of_get_property(np, "rx-stash-len", NULL);
 720
 721	if (stash_len)
 722		priv->rx_stash_size = *stash_len;
 723
 724	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 725
 726	if (stash_idx)
 727		priv->rx_stash_index = *stash_idx;
 728
 729	if (stash_len || stash_idx)
 730		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 731
 732	mac_addr = of_get_mac_address(np);
 733	if (mac_addr)
 734		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 
 
 
 
 735
 736	if (model && !strcasecmp(model, "TSEC"))
 737		priv->device_flags =
 738			FSL_GIANFAR_DEV_HAS_GIGABIT |
 739			FSL_GIANFAR_DEV_HAS_COALESCE |
 740			FSL_GIANFAR_DEV_HAS_RMON |
 741			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 742	if (model && !strcasecmp(model, "eTSEC"))
 743		priv->device_flags =
 744			FSL_GIANFAR_DEV_HAS_GIGABIT |
 745			FSL_GIANFAR_DEV_HAS_COALESCE |
 746			FSL_GIANFAR_DEV_HAS_RMON |
 747			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 748			FSL_GIANFAR_DEV_HAS_PADDING |
 749			FSL_GIANFAR_DEV_HAS_CSUM |
 750			FSL_GIANFAR_DEV_HAS_VLAN |
 751			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 752			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 753			FSL_GIANFAR_DEV_HAS_TIMER;
 754
 755	ctype = of_get_property(np, "phy-connection-type", NULL);
 756
 757	/* We only care about rgmii-id.  The rest are autodetected */
 758	if (ctype && !strcmp(ctype, "rgmii-id"))
 759		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 
 760	else
 761		priv->interface = PHY_INTERFACE_MODE_MII;
 762
 763	if (of_get_property(np, "fsl,magic-packet", NULL))
 764		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 765
 
 
 
 766	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 767
 
 
 
 
 
 
 
 
 
 
 
 768	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 769	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 770
 771	return 0;
 772
 
 
 773rx_alloc_failed:
 774	free_rx_pointers(priv);
 775tx_alloc_failed:
 776	free_tx_pointers(priv);
 777err_grp_init:
 778	unmap_group_regs(priv);
 779	free_netdev(dev);
 780	return err;
 781}
 782
 783static int gfar_hwtstamp_ioctl(struct net_device *netdev,
 784			struct ifreq *ifr, int cmd)
 785{
 786	struct hwtstamp_config config;
 787	struct gfar_private *priv = netdev_priv(netdev);
 788
 789	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 790		return -EFAULT;
 791
 792	/* reserved for future extensions */
 793	if (config.flags)
 794		return -EINVAL;
 795
 796	switch (config.tx_type) {
 797	case HWTSTAMP_TX_OFF:
 798		priv->hwts_tx_en = 0;
 799		break;
 800	case HWTSTAMP_TX_ON:
 801		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 802			return -ERANGE;
 803		priv->hwts_tx_en = 1;
 804		break;
 805	default:
 806		return -ERANGE;
 807	}
 808
 809	switch (config.rx_filter) {
 810	case HWTSTAMP_FILTER_NONE:
 811		if (priv->hwts_rx_en) {
 812			stop_gfar(netdev);
 813			priv->hwts_rx_en = 0;
 814			startup_gfar(netdev);
 815		}
 816		break;
 817	default:
 818		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 819			return -ERANGE;
 820		if (!priv->hwts_rx_en) {
 821			stop_gfar(netdev);
 822			priv->hwts_rx_en = 1;
 823			startup_gfar(netdev);
 824		}
 825		config.rx_filter = HWTSTAMP_FILTER_ALL;
 826		break;
 827	}
 828
 829	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 830		-EFAULT : 0;
 831}
 832
 833/* Ioctl MII Interface */
 834static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 835{
 836	struct gfar_private *priv = netdev_priv(dev);
 837
 838	if (!netif_running(dev))
 839		return -EINVAL;
 840
 841	if (cmd == SIOCSHWTSTAMP)
 842		return gfar_hwtstamp_ioctl(dev, rq, cmd);
 843
 844	if (!priv->phydev)
 845		return -ENODEV;
 846
 847	return phy_mii_ioctl(priv->phydev, rq, cmd);
 848}
 849
 850static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 851{
 852	unsigned int new_bit_map = 0x0;
 853	int mask = 0x1 << (max_qs - 1), i;
 854	for (i = 0; i < max_qs; i++) {
 855		if (bit_map & mask)
 856			new_bit_map = new_bit_map + (1 << i);
 857		mask = mask >> 0x1;
 858	}
 859	return new_bit_map;
 860}
 861
 862static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 863				   u32 class)
 864{
 865	u32 rqfpr = FPR_FILER_MASK;
 866	u32 rqfcr = 0x0;
 867
 868	rqfar--;
 869	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 870	priv->ftp_rqfpr[rqfar] = rqfpr;
 871	priv->ftp_rqfcr[rqfar] = rqfcr;
 872	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 873
 874	rqfar--;
 875	rqfcr = RQFCR_CMP_NOMATCH;
 876	priv->ftp_rqfpr[rqfar] = rqfpr;
 877	priv->ftp_rqfcr[rqfar] = rqfcr;
 878	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 879
 880	rqfar--;
 881	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 882	rqfpr = class;
 883	priv->ftp_rqfcr[rqfar] = rqfcr;
 884	priv->ftp_rqfpr[rqfar] = rqfpr;
 885	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 886
 887	rqfar--;
 888	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 889	rqfpr = class;
 890	priv->ftp_rqfcr[rqfar] = rqfcr;
 891	priv->ftp_rqfpr[rqfar] = rqfpr;
 892	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 893
 894	return rqfar;
 895}
 896
 897static void gfar_init_filer_table(struct gfar_private *priv)
 898{
 899	int i = 0x0;
 900	u32 rqfar = MAX_FILER_IDX;
 901	u32 rqfcr = 0x0;
 902	u32 rqfpr = FPR_FILER_MASK;
 903
 904	/* Default rule */
 905	rqfcr = RQFCR_CMP_MATCH;
 906	priv->ftp_rqfcr[rqfar] = rqfcr;
 907	priv->ftp_rqfpr[rqfar] = rqfpr;
 908	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 909
 910	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 911	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 912	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 913	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 914	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 915	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 916
 917	/* cur_filer_idx indicated the first non-masked rule */
 918	priv->cur_filer_idx = rqfar;
 919
 920	/* Rest are masked rules */
 921	rqfcr = RQFCR_CMP_NOMATCH;
 922	for (i = 0; i < rqfar; i++) {
 923		priv->ftp_rqfcr[i] = rqfcr;
 924		priv->ftp_rqfpr[i] = rqfpr;
 925		gfar_write_filer(priv, i, rqfcr, rqfpr);
 926	}
 927}
 928
 929static void gfar_detect_errata(struct gfar_private *priv)
 
 930{
 931	struct device *dev = &priv->ofdev->dev;
 932	unsigned int pvr = mfspr(SPRN_PVR);
 933	unsigned int svr = mfspr(SPRN_SVR);
 934	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 935	unsigned int rev = svr & 0xffff;
 936
 937	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 938	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 939			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 940		priv->errata |= GFAR_ERRATA_74;
 941
 942	/* MPC8313 and MPC837x all rev */
 943	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 944			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 945		priv->errata |= GFAR_ERRATA_76;
 946
 947	/* MPC8313 and MPC837x all rev */
 948	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 949			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 950		priv->errata |= GFAR_ERRATA_A002;
 951
 952	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
 953	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
 954			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
 955		priv->errata |= GFAR_ERRATA_12;
 956
 957	if (priv->errata)
 958		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 959			 priv->errata);
 960}
 961
 962/* Set up the ethernet device structure, private data,
 963 * and anything else we need before we start */
 964static int gfar_probe(struct platform_device *ofdev)
 965{
 966	u32 tempval;
 967	struct net_device *dev = NULL;
 968	struct gfar_private *priv = NULL;
 969	struct gfar __iomem *regs = NULL;
 970	int err = 0, i, grp_idx = 0;
 971	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 972	u32 isrg = 0;
 973	u32 __iomem *baddr;
 974
 975	err = gfar_of_init(ofdev, &dev);
 
 
 
 
 
 
 
 
 976
 977	if (err)
 978		return err;
 
 979
 980	priv = netdev_priv(dev);
 981	priv->ndev = dev;
 982	priv->ofdev = ofdev;
 983	priv->node = ofdev->dev.of_node;
 984	SET_NETDEV_DEV(dev, &ofdev->dev);
 985
 986	spin_lock_init(&priv->bflock);
 987	INIT_WORK(&priv->reset_task, gfar_reset_task);
 
 
 
 
 988
 989	dev_set_drvdata(&ofdev->dev, priv);
 990	regs = priv->gfargrp[0].regs;
 
 
 991
 992	gfar_detect_errata(priv);
 993
 994	/* Stop the DMA engine now, in case it was running before */
 995	/* (The firmware could have used it, and left it running). */
 996	gfar_halt(dev);
 997
 998	/* Reset MAC layer */
 999	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001	/* We need to delay at least 3 TX clocks */
1002	udelay(2);
1003
1004	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005	gfar_write(&regs->maccfg1, tempval);
1006
1007	/* Initialize MACCFG2. */
1008	tempval = MACCFG2_INIT_SETTINGS;
1009	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011	gfar_write(&regs->maccfg2, tempval);
1012
1013	/* Initialize ECNTRL */
1014	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016	/* Set the dev->base_addr to the gfar reg region */
1017	dev->base_addr = (unsigned long) regs;
1018
1019	SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021	/* Fill in the dev structure */
1022	dev->watchdog_timeo = TX_TIMEOUT;
1023	dev->mtu = 1500;
1024	dev->netdev_ops = &gfar_netdev_ops;
1025	dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027	/* Register for napi ...We are registering NAPI for each grp */
1028	for (i = 0; i < priv->num_grps; i++)
1029		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1033			NETIF_F_RXCSUM;
1034		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1035			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1036	}
1037
1038	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1039		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040		dev->features |= NETIF_F_HW_VLAN_RX;
1041	}
1042
1043	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1044		priv->extended_hash = 1;
1045		priv->hash_width = 9;
1046
1047		priv->hash_regs[0] = &regs->igaddr0;
1048		priv->hash_regs[1] = &regs->igaddr1;
1049		priv->hash_regs[2] = &regs->igaddr2;
1050		priv->hash_regs[3] = &regs->igaddr3;
1051		priv->hash_regs[4] = &regs->igaddr4;
1052		priv->hash_regs[5] = &regs->igaddr5;
1053		priv->hash_regs[6] = &regs->igaddr6;
1054		priv->hash_regs[7] = &regs->igaddr7;
1055		priv->hash_regs[8] = &regs->gaddr0;
1056		priv->hash_regs[9] = &regs->gaddr1;
1057		priv->hash_regs[10] = &regs->gaddr2;
1058		priv->hash_regs[11] = &regs->gaddr3;
1059		priv->hash_regs[12] = &regs->gaddr4;
1060		priv->hash_regs[13] = &regs->gaddr5;
1061		priv->hash_regs[14] = &regs->gaddr6;
1062		priv->hash_regs[15] = &regs->gaddr7;
1063
1064	} else {
1065		priv->extended_hash = 0;
1066		priv->hash_width = 8;
1067
1068		priv->hash_regs[0] = &regs->gaddr0;
1069		priv->hash_regs[1] = &regs->gaddr1;
1070		priv->hash_regs[2] = &regs->gaddr2;
1071		priv->hash_regs[3] = &regs->gaddr3;
1072		priv->hash_regs[4] = &regs->gaddr4;
1073		priv->hash_regs[5] = &regs->gaddr5;
1074		priv->hash_regs[6] = &regs->gaddr6;
1075		priv->hash_regs[7] = &regs->gaddr7;
1076	}
1077
1078	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1079		priv->padding = DEFAULT_PADDING;
1080	else
1081		priv->padding = 0;
1082
1083	if (dev->features & NETIF_F_IP_CSUM ||
1084			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1085		dev->needed_headroom = GMAC_FCB_LEN;
1086
1087	/* Program the isrg regs only if number of grps > 1 */
1088	if (priv->num_grps > 1) {
1089		baddr = &regs->isrg0;
1090		for (i = 0; i < priv->num_grps; i++) {
1091			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1092			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1093			gfar_write(baddr, isrg);
1094			baddr++;
1095			isrg = 0x0;
1096		}
1097	}
1098
1099	/* Need to reverse the bit maps as  bit_map's MSB is q0
1100	 * but, for_each_set_bit parses from right to left, which
1101	 * basically reverses the queue numbers */
1102	for (i = 0; i< priv->num_grps; i++) {
1103		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1104				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1105		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1106				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1107	}
1108
1109	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110	 * also assign queues to groups */
1111	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1112		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1113		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1114				priv->num_rx_queues) {
1115			priv->gfargrp[grp_idx].num_rx_queues++;
1116			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1117			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1118			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1119		}
1120		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1121		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1122				priv->num_tx_queues) {
1123			priv->gfargrp[grp_idx].num_tx_queues++;
1124			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1126			tqueue = tqueue | (TQUEUE_EN0 >> i);
1127		}
1128		priv->gfargrp[grp_idx].rstat = rstat;
1129		priv->gfargrp[grp_idx].tstat = tstat;
1130		rstat = tstat =0;
1131	}
1132
1133	gfar_write(&regs->rqueue, rqueue);
1134	gfar_write(&regs->tqueue, tqueue);
1135
1136	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1137
1138	/* Initializing some of the rx/tx queue level parameters */
1139	for (i = 0; i < priv->num_tx_queues; i++) {
1140		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1141		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1142		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1143		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1144	}
1145
1146	for (i = 0; i < priv->num_rx_queues; i++) {
1147		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1148		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1149		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1150	}
1151
1152	/* always enable rx filer*/
1153	priv->rx_filer_enable = 1;
1154	/* Enable most messages by default */
1155	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157	/* Carrier starts down, phylib will bring it up */
1158	netif_carrier_off(dev);
1159
1160	err = register_netdev(dev);
1161
1162	if (err) {
1163		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1164		goto register_fail;
1165	}
1166
1167	device_init_wakeup(&dev->dev,
1168		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170	/* fill out IRQ number and name fields */
1171	for (i = 0; i < priv->num_grps; i++) {
1172		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1174				dev->name, "_g", '0' + i, "_tx");
1175			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1176				dev->name, "_g", '0' + i, "_rx");
1177			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1178				dev->name, "_g", '0' + i, "_er");
1179		} else
1180			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1181	}
1182
1183	/* Initialize the filer table */
1184	gfar_init_filer_table(priv);
1185
1186	/* Create all the sysfs files */
1187	gfar_init_sysfs(dev);
1188
1189	/* Print out the device info */
1190	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1191
1192	/* Even more device info helps when determining which kernel */
1193	/* provided which set of benchmarks. */
1194	netdev_info(dev, "Running with NAPI enabled\n");
1195	for (i = 0; i < priv->num_rx_queues; i++)
1196		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1197			    i, priv->rx_queue[i]->rx_ring_size);
1198	for(i = 0; i < priv->num_tx_queues; i++)
1199		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1200			    i, priv->tx_queue[i]->tx_ring_size);
1201
1202	return 0;
1203
1204register_fail:
1205	unmap_group_regs(priv);
1206	free_tx_pointers(priv);
1207	free_rx_pointers(priv);
1208	if (priv->phy_node)
1209		of_node_put(priv->phy_node);
1210	if (priv->tbi_node)
1211		of_node_put(priv->tbi_node);
1212	free_netdev(dev);
1213	return err;
1214}
1215
1216static int gfar_remove(struct platform_device *ofdev)
1217{
1218	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1219
1220	if (priv->phy_node)
1221		of_node_put(priv->phy_node);
1222	if (priv->tbi_node)
1223		of_node_put(priv->tbi_node);
1224
1225	dev_set_drvdata(&ofdev->dev, NULL);
1226
1227	unregister_netdev(priv->ndev);
1228	unmap_group_regs(priv);
1229	free_netdev(priv->ndev);
1230
1231	return 0;
1232}
1233
1234#ifdef CONFIG_PM
1235
1236static int gfar_suspend(struct device *dev)
1237{
1238	struct gfar_private *priv = dev_get_drvdata(dev);
1239	struct net_device *ndev = priv->ndev;
1240	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1241	unsigned long flags;
1242	u32 tempval;
1243
1244	int magic_packet = priv->wol_en &&
1245		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1246
1247	netif_device_detach(ndev);
1248
1249	if (netif_running(ndev)) {
1250
1251		local_irq_save(flags);
1252		lock_tx_qs(priv);
1253		lock_rx_qs(priv);
1254
1255		gfar_halt_nodisable(ndev);
1256
1257		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1258		tempval = gfar_read(&regs->maccfg1);
1259
1260		tempval &= ~MACCFG1_TX_EN;
1261
1262		if (!magic_packet)
1263			tempval &= ~MACCFG1_RX_EN;
1264
1265		gfar_write(&regs->maccfg1, tempval);
1266
1267		unlock_rx_qs(priv);
1268		unlock_tx_qs(priv);
1269		local_irq_restore(flags);
1270
1271		disable_napi(priv);
1272
1273		if (magic_packet) {
1274			/* Enable interrupt on Magic Packet */
1275			gfar_write(&regs->imask, IMASK_MAG);
1276
1277			/* Enable Magic Packet mode */
1278			tempval = gfar_read(&regs->maccfg2);
1279			tempval |= MACCFG2_MPEN;
1280			gfar_write(&regs->maccfg2, tempval);
1281		} else {
1282			phy_stop(priv->phydev);
1283		}
1284	}
1285
1286	return 0;
1287}
1288
1289static int gfar_resume(struct device *dev)
1290{
1291	struct gfar_private *priv = dev_get_drvdata(dev);
1292	struct net_device *ndev = priv->ndev;
1293	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1294	unsigned long flags;
1295	u32 tempval;
1296	int magic_packet = priv->wol_en &&
1297		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1298
1299	if (!netif_running(ndev)) {
1300		netif_device_attach(ndev);
1301		return 0;
1302	}
1303
1304	if (!magic_packet && priv->phydev)
1305		phy_start(priv->phydev);
1306
1307	/* Disable Magic Packet mode, in case something
1308	 * else woke us up.
1309	 */
1310	local_irq_save(flags);
1311	lock_tx_qs(priv);
1312	lock_rx_qs(priv);
1313
1314	tempval = gfar_read(&regs->maccfg2);
1315	tempval &= ~MACCFG2_MPEN;
1316	gfar_write(&regs->maccfg2, tempval);
1317
1318	gfar_start(ndev);
1319
1320	unlock_rx_qs(priv);
1321	unlock_tx_qs(priv);
1322	local_irq_restore(flags);
1323
1324	netif_device_attach(ndev);
1325
1326	enable_napi(priv);
1327
1328	return 0;
1329}
1330
1331static int gfar_restore(struct device *dev)
1332{
1333	struct gfar_private *priv = dev_get_drvdata(dev);
1334	struct net_device *ndev = priv->ndev;
1335
1336	if (!netif_running(ndev))
1337		return 0;
1338
1339	gfar_init_bds(ndev);
1340	init_registers(ndev);
1341	gfar_set_mac_address(ndev);
1342	gfar_init_mac(ndev);
1343	gfar_start(ndev);
1344
1345	priv->oldlink = 0;
1346	priv->oldspeed = 0;
1347	priv->oldduplex = -1;
1348
1349	if (priv->phydev)
1350		phy_start(priv->phydev);
1351
1352	netif_device_attach(ndev);
1353	enable_napi(priv);
1354
1355	return 0;
1356}
1357
1358static struct dev_pm_ops gfar_pm_ops = {
1359	.suspend = gfar_suspend,
1360	.resume = gfar_resume,
1361	.freeze = gfar_suspend,
1362	.thaw = gfar_resume,
1363	.restore = gfar_restore,
1364};
1365
1366#define GFAR_PM_OPS (&gfar_pm_ops)
1367
1368#else
1369
1370#define GFAR_PM_OPS NULL
1371
1372#endif
1373
1374/* Reads the controller's registers to determine what interface
1375 * connects it to the PHY.
1376 */
1377static phy_interface_t gfar_get_interface(struct net_device *dev)
1378{
1379	struct gfar_private *priv = netdev_priv(dev);
1380	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1381	u32 ecntrl;
1382
1383	ecntrl = gfar_read(&regs->ecntrl);
1384
1385	if (ecntrl & ECNTRL_SGMII_MODE)
1386		return PHY_INTERFACE_MODE_SGMII;
1387
1388	if (ecntrl & ECNTRL_TBI_MODE) {
1389		if (ecntrl & ECNTRL_REDUCED_MODE)
1390			return PHY_INTERFACE_MODE_RTBI;
1391		else
1392			return PHY_INTERFACE_MODE_TBI;
1393	}
1394
1395	if (ecntrl & ECNTRL_REDUCED_MODE) {
1396		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1397			return PHY_INTERFACE_MODE_RMII;
1398		else {
1399			phy_interface_t interface = priv->interface;
1400
1401			/*
1402			 * This isn't autodetected right now, so it must
1403			 * be set by the device tree or platform code.
1404			 */
1405			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1406				return PHY_INTERFACE_MODE_RGMII_ID;
1407
1408			return PHY_INTERFACE_MODE_RGMII;
1409		}
1410	}
1411
1412	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1413		return PHY_INTERFACE_MODE_GMII;
1414
1415	return PHY_INTERFACE_MODE_MII;
1416}
1417
1418
1419/* Initializes driver's PHY state, and attaches to the PHY.
1420 * Returns 0 on success.
1421 */
1422static int init_phy(struct net_device *dev)
1423{
1424	struct gfar_private *priv = netdev_priv(dev);
1425	uint gigabit_support =
1426		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1427		SUPPORTED_1000baseT_Full : 0;
1428	phy_interface_t interface;
1429
1430	priv->oldlink = 0;
1431	priv->oldspeed = 0;
1432	priv->oldduplex = -1;
1433
1434	interface = gfar_get_interface(dev);
1435
1436	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1437				      interface);
1438	if (!priv->phydev)
1439		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1440							 interface);
1441	if (!priv->phydev) {
1442		dev_err(&dev->dev, "could not attach to PHY\n");
1443		return -ENODEV;
1444	}
1445
1446	if (interface == PHY_INTERFACE_MODE_SGMII)
1447		gfar_configure_serdes(dev);
1448
1449	/* Remove any features not supported by the controller */
1450	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1451	priv->phydev->advertising = priv->phydev->supported;
1452
1453	return 0;
1454}
1455
1456/*
1457 * Initialize TBI PHY interface for communicating with the
1458 * SERDES lynx PHY on the chip.  We communicate with this PHY
1459 * through the MDIO bus on each controller, treating it as a
1460 * "normal" PHY at the address found in the TBIPA register.  We assume
1461 * that the TBIPA register is valid.  Either the MDIO bus code will set
1462 * it to a value that doesn't conflict with other PHYs on the bus, or the
1463 * value doesn't matter, as there are no other PHYs on the bus.
1464 */
1465static void gfar_configure_serdes(struct net_device *dev)
1466{
1467	struct gfar_private *priv = netdev_priv(dev);
1468	struct phy_device *tbiphy;
1469
1470	if (!priv->tbi_node) {
1471		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1472				    "device tree specify a tbi-handle\n");
1473		return;
1474	}
1475
1476	tbiphy = of_phy_find_device(priv->tbi_node);
1477	if (!tbiphy) {
1478		dev_err(&dev->dev, "error: Could not get TBI device\n");
1479		return;
1480	}
1481
1482	/*
1483	 * If the link is already up, we must already be ok, and don't need to
1484	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1485	 * everything for us?  Resetting it takes the link down and requires
1486	 * several seconds for it to come back.
1487	 */
1488	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1489		return;
1490
1491	/* Single clk mode, mii mode off(for serdes communication) */
1492	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1493
1494	phy_write(tbiphy, MII_ADVERTISE,
1495			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1496			ADVERTISE_1000XPSE_ASYM);
1497
1498	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1499			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1500}
1501
1502static void init_registers(struct net_device *dev)
1503{
1504	struct gfar_private *priv = netdev_priv(dev);
1505	struct gfar __iomem *regs = NULL;
1506	int i = 0;
1507
1508	for (i = 0; i < priv->num_grps; i++) {
1509		regs = priv->gfargrp[i].regs;
1510		/* Clear IEVENT */
1511		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1512
1513		/* Initialize IMASK */
1514		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1515	}
1516
1517	regs = priv->gfargrp[0].regs;
1518	/* Init hash registers to zero */
1519	gfar_write(&regs->igaddr0, 0);
1520	gfar_write(&regs->igaddr1, 0);
1521	gfar_write(&regs->igaddr2, 0);
1522	gfar_write(&regs->igaddr3, 0);
1523	gfar_write(&regs->igaddr4, 0);
1524	gfar_write(&regs->igaddr5, 0);
1525	gfar_write(&regs->igaddr6, 0);
1526	gfar_write(&regs->igaddr7, 0);
1527
1528	gfar_write(&regs->gaddr0, 0);
1529	gfar_write(&regs->gaddr1, 0);
1530	gfar_write(&regs->gaddr2, 0);
1531	gfar_write(&regs->gaddr3, 0);
1532	gfar_write(&regs->gaddr4, 0);
1533	gfar_write(&regs->gaddr5, 0);
1534	gfar_write(&regs->gaddr6, 0);
1535	gfar_write(&regs->gaddr7, 0);
1536
1537	/* Zero out the rmon mib registers if it has them */
1538	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1539		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1540
1541		/* Mask off the CAM interrupts */
1542		gfar_write(&regs->rmon.cam1, 0xffffffff);
1543		gfar_write(&regs->rmon.cam2, 0xffffffff);
1544	}
1545
1546	/* Initialize the max receive buffer length */
1547	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1548
1549	/* Initialize the Minimum Frame Length Register */
1550	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1551}
1552
1553static int __gfar_is_rx_idle(struct gfar_private *priv)
1554{
1555	u32 res;
1556
1557	/*
1558	 * Normaly TSEC should not hang on GRS commands, so we should
1559	 * actually wait for IEVENT_GRSC flag.
1560	 */
1561	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1562		return 0;
1563
1564	/*
1565	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1566	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1567	 * and the Rx can be safely reset.
1568	 */
1569	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1570	res &= 0x7f807f80;
1571	if ((res & 0xffff) == (res >> 16))
1572		return 1;
1573
1574	return 0;
1575}
1576
1577/* Halt the receive and transmit queues */
1578static void gfar_halt_nodisable(struct net_device *dev)
1579{
1580	struct gfar_private *priv = netdev_priv(dev);
1581	struct gfar __iomem *regs = NULL;
1582	u32 tempval;
1583	int i = 0;
 
1584
1585	for (i = 0; i < priv->num_grps; i++) {
1586		regs = priv->gfargrp[i].regs;
1587		/* Mask all interrupts */
1588		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1589
1590		/* Clear all interrupts */
1591		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1592	}
1593
1594	regs = priv->gfargrp[0].regs;
1595	/* Stop the DMA, and wait for it to stop */
1596	tempval = gfar_read(&regs->dmactrl);
1597	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1598	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1599		int ret;
1600
1601		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1602		gfar_write(&regs->dmactrl, tempval);
 
 
 
 
1603
1604		do {
1605			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1606				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1607				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1608			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1609				ret = __gfar_is_rx_idle(priv);
1610		} while (!ret);
1611	}
1612}
1613
1614/* Halt the receive and transmit queues */
1615void gfar_halt(struct net_device *dev)
1616{
1617	struct gfar_private *priv = netdev_priv(dev);
1618	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619	u32 tempval;
1620
1621	gfar_halt_nodisable(dev);
 
 
 
 
 
 
1622
1623	/* Disable Rx and Tx */
1624	tempval = gfar_read(&regs->maccfg1);
1625	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1626	gfar_write(&regs->maccfg1, tempval);
1627}
1628
1629static void free_grp_irqs(struct gfar_priv_grp *grp)
1630{
1631	free_irq(grp->interruptError, grp);
1632	free_irq(grp->interruptTransmit, grp);
1633	free_irq(grp->interruptReceive, grp);
1634}
1635
1636void stop_gfar(struct net_device *dev)
1637{
1638	struct gfar_private *priv = netdev_priv(dev);
1639	unsigned long flags;
1640	int i;
1641
1642	phy_stop(priv->phydev);
1643
1644
1645	/* Lock it down */
1646	local_irq_save(flags);
1647	lock_tx_qs(priv);
1648	lock_rx_qs(priv);
1649
1650	gfar_halt(dev);
1651
1652	unlock_rx_qs(priv);
1653	unlock_tx_qs(priv);
1654	local_irq_restore(flags);
1655
1656	/* Free the IRQs */
1657	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1658		for (i = 0; i < priv->num_grps; i++)
1659			free_grp_irqs(&priv->gfargrp[i]);
1660	} else {
1661		for (i = 0; i < priv->num_grps; i++)
1662			free_irq(priv->gfargrp[i].interruptTransmit,
1663					&priv->gfargrp[i]);
1664	}
1665
1666	free_skb_resources(priv);
1667}
1668
1669static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1670{
1671	struct txbd8 *txbdp;
1672	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1673	int i, j;
1674
1675	txbdp = tx_queue->tx_bd_base;
1676
1677	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1678		if (!tx_queue->tx_skbuff[i])
1679			continue;
1680
1681		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1682				txbdp->length, DMA_TO_DEVICE);
1683		txbdp->lstatus = 0;
1684		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1685				j++) {
1686			txbdp++;
1687			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1688					txbdp->length, DMA_TO_DEVICE);
 
1689		}
1690		txbdp++;
1691		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1692		tx_queue->tx_skbuff[i] = NULL;
1693	}
1694	kfree(tx_queue->tx_skbuff);
 
1695}
1696
1697static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1698{
1699	struct rxbd8 *rxbdp;
1700	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1701	int i;
1702
1703	rxbdp = rx_queue->rx_bd_base;
 
 
1704
1705	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1706		if (rx_queue->rx_skbuff[i]) {
1707			dma_unmap_single(&priv->ofdev->dev,
1708					rxbdp->bufPtr, priv->rx_buffer_size,
1709					DMA_FROM_DEVICE);
1710			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1711			rx_queue->rx_skbuff[i] = NULL;
1712		}
1713		rxbdp->lstatus = 0;
1714		rxbdp->bufPtr = 0;
1715		rxbdp++;
 
 
 
 
 
 
 
 
 
1716	}
1717	kfree(rx_queue->rx_skbuff);
 
 
1718}
1719
1720/* If there are any tx skbs or rx skbs still around, free them.
1721 * Then free tx_skbuff and rx_skbuff */
 
1722static void free_skb_resources(struct gfar_private *priv)
1723{
1724	struct gfar_priv_tx_q *tx_queue = NULL;
1725	struct gfar_priv_rx_q *rx_queue = NULL;
1726	int i;
1727
1728	/* Go through all the buffer descriptors and free their data buffers */
1729	for (i = 0; i < priv->num_tx_queues; i++) {
1730		struct netdev_queue *txq;
 
1731		tx_queue = priv->tx_queue[i];
1732		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1733		if(tx_queue->tx_skbuff)
1734			free_skb_tx_queue(tx_queue);
1735		netdev_tx_reset_queue(txq);
1736	}
1737
1738	for (i = 0; i < priv->num_rx_queues; i++) {
1739		rx_queue = priv->rx_queue[i];
1740		if(rx_queue->rx_skbuff)
1741			free_skb_rx_queue(rx_queue);
1742	}
1743
1744	dma_free_coherent(&priv->ofdev->dev,
1745			sizeof(struct txbd8) * priv->total_tx_ring_size +
1746			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1747			priv->tx_queue[0]->tx_bd_base,
1748			priv->tx_queue[0]->tx_bd_dma_base);
1749	skb_queue_purge(&priv->rx_recycle);
1750}
1751
1752void gfar_start(struct net_device *dev)
1753{
1754	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756	u32 tempval;
1757	int i = 0;
1758
1759	/* Enable Rx and Tx in MACCFG1 */
1760	tempval = gfar_read(&regs->maccfg1);
1761	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1762	gfar_write(&regs->maccfg1, tempval);
1763
1764	/* Initialize DMACTRL to have WWR and WOP */
1765	tempval = gfar_read(&regs->dmactrl);
1766	tempval |= DMACTRL_INIT_SETTINGS;
1767	gfar_write(&regs->dmactrl, tempval);
1768
1769	/* Make sure we aren't stopped */
1770	tempval = gfar_read(&regs->dmactrl);
1771	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1772	gfar_write(&regs->dmactrl, tempval);
1773
1774	for (i = 0; i < priv->num_grps; i++) {
1775		regs = priv->gfargrp[i].regs;
1776		/* Clear THLT/RHLT, so that the DMA starts polling now */
1777		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1778		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1779		/* Unmask the interrupts we look for */
1780		gfar_write(&regs->imask, IMASK_DEFAULT);
1781	}
1782
1783	dev->trans_start = jiffies; /* prevent tx timeout */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784}
1785
1786void gfar_configure_coalescing(struct gfar_private *priv,
1787	unsigned long tx_mask, unsigned long rx_mask)
1788{
1789	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790	u32 __iomem *baddr;
1791	int i = 0;
 
 
 
1792
1793	/* Backward compatible case ---- even if we enable
1794	 * multiple queues, there's only single reg to program
1795	 */
1796	gfar_write(&regs->txic, 0);
1797	if(likely(priv->tx_queue[0]->txcoalescing))
1798		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1799
1800	gfar_write(&regs->rxic, 0);
1801	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1802		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1803
1804	if (priv->mode == MQ_MG_MODE) {
1805		baddr = &regs->txic0;
1806		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1807			gfar_write(baddr + i, 0);
1808			if (likely(priv->tx_queue[i]->txcoalescing))
1809				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 
 
 
 
 
1810		}
1811
1812		baddr = &regs->rxic0;
1813		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1814			gfar_write(baddr + i, 0);
1815			if (likely(priv->rx_queue[i]->rxcoalescing))
1816				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 
 
 
 
 
 
 
1817		}
1818	}
 
 
 
1819}
1820
1821static int register_grp_irqs(struct gfar_priv_grp *grp)
1822{
1823	struct gfar_private *priv = grp->priv;
1824	struct net_device *dev = priv->ndev;
1825	int err;
 
 
 
 
1826
1827	/* If the device has multiple interrupts, register for
1828	 * them.  Otherwise, only register for the one */
1829	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1830		/* Install our interrupt handlers for Error,
1831		 * Transmit, and Receive */
1832		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1833				grp->int_name_er,grp)) < 0) {
1834			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1835				  grp->interruptError);
1836
1837			goto err_irq_fail;
 
 
 
 
 
1838		}
1839
1840		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1841				0, grp->int_name_tx, grp)) < 0) {
1842			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1843				  grp->interruptTransmit);
1844			goto tx_irq_fail;
1845		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846
1847		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1848				grp->int_name_rx, grp)) < 0) {
1849			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1850				  grp->interruptReceive);
1851			goto rx_irq_fail;
1852		}
1853	} else {
1854		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1855				grp->int_name_tx, grp)) < 0) {
1856			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1857				  grp->interruptTransmit);
1858			goto err_irq_fail;
1859		}
1860	}
1861
 
 
1862	return 0;
1863
1864rx_irq_fail:
1865	free_irq(grp->interruptTransmit, grp);
1866tx_irq_fail:
1867	free_irq(grp->interruptError, grp);
1868err_irq_fail:
1869	return err;
1870
1871}
1872
1873/* Bring the controller up and running */
1874int startup_gfar(struct net_device *ndev)
1875{
1876	struct gfar_private *priv = netdev_priv(ndev);
1877	struct gfar __iomem *regs = NULL;
1878	int err, i, j;
1879
1880	for (i = 0; i < priv->num_grps; i++) {
1881		regs= priv->gfargrp[i].regs;
1882		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1883	}
1884
1885	regs= priv->gfargrp[0].regs;
1886	err = gfar_alloc_skb_resources(ndev);
1887	if (err)
1888		return err;
1889
1890	gfar_init_mac(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891
1892	for (i = 0; i < priv->num_grps; i++) {
1893		err = register_grp_irqs(&priv->gfargrp[i]);
1894		if (err) {
1895			for (j = 0; j < i; j++)
1896				free_grp_irqs(&priv->gfargrp[j]);
1897			goto irq_fail;
 
 
 
 
 
1898		}
1899	}
1900
1901	/* Start the controller */
1902	gfar_start(ndev);
 
 
 
 
 
 
 
1903
1904	phy_start(priv->phydev);
 
 
 
 
1905
1906	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 
 
1907
1908	return 0;
 
 
 
 
 
 
 
 
 
1909
1910irq_fail:
1911	free_skb_resources(priv);
1912	return err;
 
1913}
1914
1915/* Called when something needs to use the ethernet device */
1916/* Returns 0 for success. */
1917static int gfar_enet_open(struct net_device *dev)
 
 
 
 
 
 
1918{
1919	struct gfar_private *priv = netdev_priv(dev);
1920	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922	enable_napi(priv);
 
 
1923
1924	skb_queue_head_init(&priv->rx_recycle);
 
 
1925
1926	/* Initialize a bunch of registers */
1927	init_registers(dev);
1928
1929	gfar_set_mac_address(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930
1931	err = init_phy(dev);
 
 
1932
1933	if (err) {
1934		disable_napi(priv);
1935		return err;
 
 
1936	}
1937
1938	err = startup_gfar(dev);
1939	if (err) {
1940		disable_napi(priv);
1941		return err;
1942	}
 
1943
1944	netif_tx_start_all_queues(dev);
 
1945
1946	device_set_wakeup_enable(&dev->dev, priv->wol_en);
 
 
1947
1948	return err;
1949}
1950
1951static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1952{
1953	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1954
1955	memset(fcb, 0, GMAC_FCB_LEN);
1956
1957	return fcb;
1958}
1959
1960static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1961		int fcb_length)
1962{
1963	u8 flags = 0;
1964
1965	/* If we're here, it's a IP packet with a TCP or UDP
1966	 * payload.  We set it to checksum, using a pseudo-header
1967	 * we provide
1968	 */
1969	flags = TXFCB_DEFAULT;
1970
1971	/* Tell the controller what the protocol is */
1972	/* And provide the already calculated phcs */
 
1973	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1974		flags |= TXFCB_UDP;
1975		fcb->phcs = udp_hdr(skb)->check;
1976	} else
1977		fcb->phcs = tcp_hdr(skb)->check;
1978
1979	/* l3os is the distance between the start of the
1980	 * frame (skb->data) and the start of the IP hdr.
1981	 * l4os is the distance between the start of the
1982	 * l3 hdr and the l4 hdr */
1983	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
 
1984	fcb->l4os = skb_network_header_len(skb);
1985
1986	fcb->flags = flags;
1987}
1988
1989void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1990{
1991	fcb->flags |= TXFCB_VLN;
1992	fcb->vlctl = vlan_tx_tag_get(skb);
1993}
1994
1995static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1996			       struct txbd8 *base, int ring_size)
1997{
1998	struct txbd8 *new_bd = bdp + stride;
1999
2000	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2001}
2002
2003static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2004		int ring_size)
2005{
2006	return skip_txbd(bdp, 1, base, ring_size);
2007}
2008
2009/* This is called by the kernel when a frame is ready for transmission. */
2010/* It is pointed to by the dev->hard_start_xmit function pointer */
2011static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012{
2013	struct gfar_private *priv = netdev_priv(dev);
2014	struct gfar_priv_tx_q *tx_queue = NULL;
2015	struct netdev_queue *txq;
2016	struct gfar __iomem *regs = NULL;
2017	struct txfcb *fcb = NULL;
2018	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2019	u32 lstatus;
2020	int i, rq = 0, do_tstamp = 0;
 
 
2021	u32 bufaddr;
2022	unsigned long flags;
2023	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2024
2025	/*
2026	 * TOE=1 frames larger than 2500 bytes may see excess delays
2027	 * before start of transmission.
2028	 */
2029	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2030			skb->ip_summed == CHECKSUM_PARTIAL &&
2031			skb->len > 2500)) {
2032		int ret;
2033
2034		ret = skb_checksum_help(skb);
2035		if (ret)
2036			return ret;
2037	}
2038
2039	rq = skb->queue_mapping;
2040	tx_queue = priv->tx_queue[rq];
2041	txq = netdev_get_tx_queue(dev, rq);
2042	base = tx_queue->tx_bd_base;
2043	regs = tx_queue->grp->regs;
2044
 
 
 
 
 
 
 
 
2045	/* check if time stamp should be generated */
2046	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2047			priv->hwts_tx_en)) {
2048		do_tstamp = 1;
2049		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2050	}
2051
2052	/* make space for additional header when fcb is needed */
2053	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2054			vlan_tx_tag_present(skb) ||
2055			unlikely(do_tstamp)) &&
2056			(skb_headroom(skb) < fcb_length)) {
2057		struct sk_buff *skb_new;
2058
2059		skb_new = skb_realloc_headroom(skb, fcb_length);
2060		if (!skb_new) {
2061			dev->stats.tx_errors++;
2062			kfree_skb(skb);
2063			return NETDEV_TX_OK;
2064		}
2065
2066		if (skb->sk)
2067			skb_set_owner_w(skb_new, skb->sk);
2068		consume_skb(skb);
2069		skb = skb_new;
2070	}
2071
2072	/* total number of fragments in the SKB */
2073	nr_frags = skb_shinfo(skb)->nr_frags;
2074
2075	/* calculate the required number of TxBDs for this skb */
2076	if (unlikely(do_tstamp))
2077		nr_txbds = nr_frags + 2;
2078	else
2079		nr_txbds = nr_frags + 1;
2080
2081	/* check if there is space to queue this packet */
2082	if (nr_txbds > tx_queue->num_txbdfree) {
2083		/* no space, stop the queue */
2084		netif_tx_stop_queue(txq);
2085		dev->stats.tx_fifo_errors++;
2086		return NETDEV_TX_BUSY;
2087	}
2088
2089	/* Update transmit stats */
2090	tx_queue->stats.tx_bytes += skb->len;
 
 
 
2091	tx_queue->stats.tx_packets++;
2092
2093	txbdp = txbdp_start = tx_queue->cur_tx;
2094	lstatus = txbdp->lstatus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095
2096	/* Time stamp insertion requires one additional TxBD */
2097	if (unlikely(do_tstamp))
2098		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2099				tx_queue->tx_ring_size);
2100
2101	if (nr_frags == 0) {
2102		if (unlikely(do_tstamp))
2103			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2104					TXBD_INTERRUPT);
2105		else
2106			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2107	} else {
 
 
2108		/* Place the fragment addresses and lengths into the TxBDs */
2109		for (i = 0; i < nr_frags; i++) {
 
 
 
2110			/* Point at the next BD, wrapping as needed */
2111			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2112
2113			length = skb_shinfo(skb)->frags[i].size;
2114
2115			lstatus = txbdp->lstatus | length |
2116				BD_LFLAG(TXBD_READY);
2117
2118			/* Handle the last BD specially */
2119			if (i == nr_frags - 1)
2120				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2121
2122			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2123						   &skb_shinfo(skb)->frags[i],
2124						   0,
2125						   length,
2126						   DMA_TO_DEVICE);
2127
2128			/* set the TxBD length and buffer pointer */
2129			txbdp->bufPtr = bufaddr;
2130			txbdp->lstatus = lstatus;
2131		}
2132
2133		lstatus = txbdp_start->lstatus;
2134	}
2135
2136	/* Add TxPAL between FCB and frame if required */
 
 
 
 
2137	if (unlikely(do_tstamp)) {
2138		skb_push(skb, GMAC_TXPAL_LEN);
2139		memset(skb->data, 0, GMAC_TXPAL_LEN);
2140	}
2141
2142	/* Set up checksumming */
2143	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2144		fcb = gfar_add_fcb(skb);
2145		/* as specified by errata */
2146		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2147			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2148			__skb_pull(skb, GMAC_FCB_LEN);
2149			skb_checksum_help(skb);
2150		} else {
2151			lstatus |= BD_LFLAG(TXBD_TOE);
2152			gfar_tx_checksum(skb, fcb, fcb_length);
2153		}
2154	}
2155
2156	if (vlan_tx_tag_present(skb)) {
2157		if (unlikely(NULL == fcb)) {
2158			fcb = gfar_add_fcb(skb);
2159			lstatus |= BD_LFLAG(TXBD_TOE);
2160		}
2161
2162		gfar_tx_vlan(skb, fcb);
2163	}
 
2164
2165	/* Setup tx hardware time stamping if requested */
2166	if (unlikely(do_tstamp)) {
2167		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2168		if (fcb == NULL)
2169			fcb = gfar_add_fcb(skb);
2170		fcb->ptp = 1;
2171		lstatus |= BD_LFLAG(TXBD_TOE);
2172	}
2173
2174	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2175			skb_headlen(skb), DMA_TO_DEVICE);
2176
2177	/*
2178	 * If time stamping is requested one additional TxBD must be set up. The
2179	 * first TxBD points to the FCB and must have a data length of
2180	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2181	 * the full frame length.
2182	 */
2183	if (unlikely(do_tstamp)) {
2184		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2185		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2186				(skb_headlen(skb) - fcb_length);
2187		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2188	} else {
2189		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2190	}
2191
2192	netdev_tx_sent_queue(txq, skb->len);
 
2193
2194	/*
2195	 * We can work in parallel with gfar_clean_tx_ring(), except
2196	 * when modifying num_txbdfree. Note that we didn't grab the lock
2197	 * when we were reading the num_txbdfree and checking for available
2198	 * space, that's because outside of this function it can only grow,
2199	 * and once we've got needed space, it cannot suddenly disappear.
2200	 *
2201	 * The lock also protects us from gfar_error(), which can modify
2202	 * regs->tstat and thus retrigger the transfers, which is why we
2203	 * also must grab the lock before setting ready bit for the first
2204	 * to be transmitted BD.
2205	 */
2206	spin_lock_irqsave(&tx_queue->txlock, flags);
2207
2208	/*
2209	 * The powerpc-specific eieio() is used, as wmb() has too strong
2210	 * semantics (it requires synchronization between cacheable and
2211	 * uncacheable mappings, which eieio doesn't provide and which we
2212	 * don't need), thus requiring a more expensive sync instruction.  At
2213	 * some point, the set of architecture-independent barrier functions
2214	 * should be expanded to include weaker barriers.
2215	 */
2216	eieio();
2217
2218	txbdp_start->lstatus = lstatus;
2219
2220	eieio(); /* force lstatus write before tx_skbuff */
2221
2222	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2223
2224	/* Update the current skb pointer to the next entry we will use
2225	 * (wrapping if necessary) */
 
2226	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2227		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2228
2229	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2230
 
 
 
 
 
 
2231	/* reduce TxBD free count */
2232	tx_queue->num_txbdfree -= (nr_txbds);
 
2233
2234	/* If the next BD still needs to be cleaned up, then the bds
2235	   are full.  We need to tell the kernel to stop sending us stuff. */
 
2236	if (!tx_queue->num_txbdfree) {
2237		netif_tx_stop_queue(txq);
2238
2239		dev->stats.tx_fifo_errors++;
2240	}
2241
2242	/* Tell the DMA to go go go */
2243	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2244
2245	/* Unlock priv */
2246	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2247
2248	return NETDEV_TX_OK;
2249}
2250
2251/* Stops the kernel queue, and halts the controller */
2252static int gfar_close(struct net_device *dev)
2253{
2254	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
2255
2256	disable_napi(priv);
2257
2258	cancel_work_sync(&priv->reset_task);
2259	stop_gfar(dev);
2260
2261	/* Disconnect from the PHY */
2262	phy_disconnect(priv->phydev);
2263	priv->phydev = NULL;
2264
2265	netif_tx_stop_all_queues(dev);
2266
2267	return 0;
2268}
2269
2270/* Changes the mac address if the controller is not running. */
2271static int gfar_set_mac_address(struct net_device *dev)
2272{
2273	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2274
2275	return 0;
2276}
2277
2278/* Check if rx parser should be activated */
2279void gfar_check_rx_parser_mode(struct gfar_private *priv)
2280{
2281	struct gfar __iomem *regs;
2282	u32 tempval;
2283
2284	regs = priv->gfargrp[0].regs;
2285
2286	tempval = gfar_read(&regs->rctrl);
2287	/* If parse is no longer required, then disable parser */
2288	if (tempval & RCTRL_REQ_PARSER)
2289		tempval |= RCTRL_PRSDEP_INIT;
2290	else
2291		tempval &= ~RCTRL_PRSDEP_INIT;
2292	gfar_write(&regs->rctrl, tempval);
2293}
2294
2295/* Enables and disables VLAN insertion/extraction */
2296void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2297{
2298	struct gfar_private *priv = netdev_priv(dev);
2299	struct gfar __iomem *regs = NULL;
2300	unsigned long flags;
2301	u32 tempval;
2302
2303	regs = priv->gfargrp[0].regs;
2304	local_irq_save(flags);
2305	lock_rx_qs(priv);
2306
2307	if (features & NETIF_F_HW_VLAN_TX) {
2308		/* Enable VLAN tag insertion */
2309		tempval = gfar_read(&regs->tctrl);
2310		tempval |= TCTRL_VLINS;
2311		gfar_write(&regs->tctrl, tempval);
2312	} else {
2313		/* Disable VLAN tag insertion */
2314		tempval = gfar_read(&regs->tctrl);
2315		tempval &= ~TCTRL_VLINS;
2316		gfar_write(&regs->tctrl, tempval);
2317	}
2318
2319	if (features & NETIF_F_HW_VLAN_RX) {
2320		/* Enable VLAN tag extraction */
2321		tempval = gfar_read(&regs->rctrl);
2322		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2323		gfar_write(&regs->rctrl, tempval);
2324	} else {
2325		/* Disable VLAN tag extraction */
2326		tempval = gfar_read(&regs->rctrl);
2327		tempval &= ~RCTRL_VLEX;
2328		gfar_write(&regs->rctrl, tempval);
2329
2330		gfar_check_rx_parser_mode(priv);
2331	}
2332
2333	gfar_change_mtu(dev, dev->mtu);
2334
2335	unlock_rx_qs(priv);
2336	local_irq_restore(flags);
2337}
2338
2339static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2340{
2341	int tempsize, tempval;
2342	struct gfar_private *priv = netdev_priv(dev);
2343	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2344	int oldsize = priv->rx_buffer_size;
2345	int frame_size = new_mtu + ETH_HLEN;
2346
2347	if (gfar_is_vlan_on(priv))
2348		frame_size += VLAN_HLEN;
2349
2350	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2351		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2352		return -EINVAL;
2353	}
2354
2355	if (gfar_uses_fcb(priv))
2356		frame_size += GMAC_FCB_LEN;
2357
2358	frame_size += priv->padding;
2359
2360	tempsize =
2361	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2362	    INCREMENTAL_BUFFER_SIZE;
2363
2364	/* Only stop and start the controller if it isn't already
2365	 * stopped, and we changed something */
2366	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2367		stop_gfar(dev);
2368
2369	priv->rx_buffer_size = tempsize;
2370
2371	dev->mtu = new_mtu;
 
2372
2373	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2374	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2375
2376	/* If the mtu is larger than the max size for standard
2377	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2378	 * to allow huge frames, and to check the length */
2379	tempval = gfar_read(&regs->maccfg2);
2380
2381	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2382			gfar_has_errata(priv, GFAR_ERRATA_74))
2383		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2384	else
2385		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2386
2387	gfar_write(&regs->maccfg2, tempval);
 
2388
2389	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2390		startup_gfar(dev);
2391
2392	return 0;
2393}
2394
2395/* gfar_reset_task gets scheduled when a packet has not been
2396 * transmitted after a set amount of time.
2397 * For now, assume that clearing out all the structures, and
2398 * starting over will fix the problem.
2399 */
2400static void gfar_reset_task(struct work_struct *work)
2401{
2402	struct gfar_private *priv = container_of(work, struct gfar_private,
2403			reset_task);
2404	struct net_device *dev = priv->ndev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405
2406	if (dev->flags & IFF_UP) {
2407		netif_tx_stop_all_queues(dev);
2408		stop_gfar(dev);
2409		startup_gfar(dev);
2410		netif_tx_start_all_queues(dev);
 
 
 
 
 
 
 
 
 
 
 
2411	}
2412
2413	netif_tx_schedule_all(dev);
 
2414}
2415
2416static void gfar_timeout(struct net_device *dev)
2417{
2418	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
2419
2420	dev->stats.tx_errors++;
2421	schedule_work(&priv->reset_task);
2422}
2423
2424static void gfar_align_skb(struct sk_buff *skb)
2425{
2426	/* We need the data buffer to be aligned properly.  We will reserve
2427	 * as many bytes as needed to align the data properly
2428	 */
2429	skb_reserve(skb, RXBUF_ALIGNMENT -
2430		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
 
 
 
 
 
 
 
 
 
2431}
2432
2433/* Interrupt Handler for Transmit complete */
2434static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2435{
2436	struct net_device *dev = tx_queue->dev;
2437	struct netdev_queue *txq;
2438	struct gfar_private *priv = netdev_priv(dev);
2439	struct gfar_priv_rx_q *rx_queue = NULL;
2440	struct txbd8 *bdp, *next = NULL;
2441	struct txbd8 *lbdp = NULL;
2442	struct txbd8 *base = tx_queue->tx_bd_base;
2443	struct sk_buff *skb;
2444	int skb_dirtytx;
2445	int tx_ring_size = tx_queue->tx_ring_size;
2446	int frags = 0, nr_txbds = 0;
2447	int i;
2448	int howmany = 0;
2449	int tqi = tx_queue->qindex;
2450	unsigned int bytes_sent = 0;
2451	u32 lstatus;
2452	size_t buflen;
2453
2454	rx_queue = priv->rx_queue[tqi];
2455	txq = netdev_get_tx_queue(dev, tqi);
2456	bdp = tx_queue->dirty_tx;
2457	skb_dirtytx = tx_queue->skb_dirtytx;
2458
2459	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2460		unsigned long flags;
 
 
 
2461
2462		frags = skb_shinfo(skb)->nr_frags;
2463
2464		/*
2465		 * When time stamping, one additional TxBD must be freed.
2466		 * Also, we need to dma_unmap_single() the TxPAL.
2467		 */
2468		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2469			nr_txbds = frags + 2;
2470		else
2471			nr_txbds = frags + 1;
2472
2473		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2474
2475		lstatus = lbdp->lstatus;
2476
2477		/* Only clean completed frames */
2478		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2479				(lstatus & BD_LENGTH_MASK))
2480			break;
2481
2482		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2483			next = next_txbd(bdp, base, tx_ring_size);
2484			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
 
2485		} else
2486			buflen = bdp->length;
2487
2488		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2489				buflen, DMA_TO_DEVICE);
2490
2491		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2492			struct skb_shared_hwtstamps shhwtstamps;
2493			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
 
 
 
2494			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2495			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2496			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2497			skb_tstamp_tx(skb, &shhwtstamps);
2498			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2499			bdp = next;
2500		}
2501
2502		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2503		bdp = next_txbd(bdp, base, tx_ring_size);
2504
2505		for (i = 0; i < frags; i++) {
2506			dma_unmap_page(&priv->ofdev->dev,
2507					bdp->bufPtr,
2508					bdp->length,
2509					DMA_TO_DEVICE);
2510			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511			bdp = next_txbd(bdp, base, tx_ring_size);
2512		}
2513
2514		bytes_sent += skb->len;
2515
2516		/*
2517		 * If there's room in the queue (limit it to rx_buffer_size)
2518		 * we add this skb back into the pool, if it's the right size
2519		 */
2520		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2521				skb_recycle_check(skb, priv->rx_buffer_size +
2522					RXBUF_ALIGNMENT)) {
2523			gfar_align_skb(skb);
2524			skb_queue_head(&priv->rx_recycle, skb);
2525		} else
2526			dev_kfree_skb_any(skb);
2527
2528		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2529
2530		skb_dirtytx = (skb_dirtytx + 1) &
2531			TX_RING_MOD_MASK(tx_ring_size);
2532
2533		howmany++;
2534		spin_lock_irqsave(&tx_queue->txlock, flags);
2535		tx_queue->num_txbdfree += nr_txbds;
2536		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2537	}
2538
2539	/* If we freed a buffer, we can restart transmission, if necessary */
2540	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2541		netif_wake_subqueue(dev, tqi);
 
 
2542
2543	/* Update dirty indicators */
2544	tx_queue->skb_dirtytx = skb_dirtytx;
2545	tx_queue->dirty_tx = bdp;
2546
2547	netdev_tx_completed_queue(txq, howmany, bytes_sent);
 
2548
2549	return howmany;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550}
2551
2552static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2553{
 
2554	unsigned long flags;
 
 
 
2555
2556	spin_lock_irqsave(&gfargrp->grplock, flags);
2557	if (napi_schedule_prep(&gfargrp->napi)) {
2558		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2559		__napi_schedule(&gfargrp->napi);
 
 
 
 
 
 
 
 
2560	} else {
2561		/*
2562		 * Clear IEVENT, so interrupts aren't called again
2563		 * because of the packets that have already arrived.
2564		 */
2565		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2566	}
2567	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2568
 
2569}
2570
2571/* Interrupt Handler for Transmit complete */
2572static irqreturn_t gfar_transmit(int irq, void *grp_id)
2573{
2574	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575	return IRQ_HANDLED;
2576}
2577
2578static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2579		struct sk_buff *skb)
2580{
2581	struct net_device *dev = rx_queue->dev;
2582	struct gfar_private *priv = netdev_priv(dev);
2583	dma_addr_t buf;
 
 
 
 
 
 
 
 
 
 
2584
2585	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2586			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2587	gfar_init_rxbdp(rx_queue, bdp, buf);
2588}
2589
2590static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2591{
2592	struct gfar_private *priv = netdev_priv(dev);
2593	struct sk_buff *skb = NULL;
2594
2595	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2596	if (!skb)
2597		return NULL;
2598
2599	gfar_align_skb(skb);
2600
2601	return skb;
2602}
2603
2604struct sk_buff * gfar_new_skb(struct net_device *dev)
 
2605{
2606	struct gfar_private *priv = netdev_priv(dev);
2607	struct sk_buff *skb = NULL;
 
 
 
 
 
 
2608
2609	skb = skb_dequeue(&priv->rx_recycle);
2610	if (!skb)
2611		skb = gfar_alloc_skb(dev);
2612
2613	return skb;
 
 
 
2614}
2615
2616static inline void count_errors(unsigned short status, struct net_device *dev)
 
2617{
2618	struct gfar_private *priv = netdev_priv(dev);
2619	struct net_device_stats *stats = &dev->stats;
2620	struct gfar_extra_stats *estats = &priv->extra_stats;
 
 
 
2621
2622	/* If the packet was truncated, none of the other errors
2623	 * matter */
2624	if (status & RXBD_TRUNCATED) {
2625		stats->rx_length_errors++;
 
 
 
 
2626
2627		estats->rx_trunc++;
 
2628
2629		return;
 
 
 
 
 
 
2630	}
2631	/* Count the errors, if there were any */
2632	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2633		stats->rx_length_errors++;
2634
2635		if (status & RXBD_LARGE)
2636			estats->rx_large++;
2637		else
2638			estats->rx_short++;
2639	}
2640	if (status & RXBD_NONOCTET) {
2641		stats->rx_frame_errors++;
2642		estats->rx_nonoctet++;
2643	}
2644	if (status & RXBD_CRCERR) {
2645		estats->rx_crcerr++;
2646		stats->rx_crc_errors++;
2647	}
2648	if (status & RXBD_OVERRUN) {
2649		estats->rx_overrun++;
2650		stats->rx_crc_errors++;
2651	}
2652}
2653
2654irqreturn_t gfar_receive(int irq, void *grp_id)
2655{
2656	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2657	return IRQ_HANDLED;
2658}
2659
2660static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2661{
2662	/* If valid headers were found, and valid sums
2663	 * were verified, then we tell the kernel that no
2664	 * checksumming is necessary.  Otherwise, it is */
2665	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
 
 
2666		skb->ip_summed = CHECKSUM_UNNECESSARY;
2667	else
2668		skb_checksum_none_assert(skb);
2669}
2670
2671
2672/* gfar_process_frame() -- handle one incoming packet if skb
2673 * isn't NULL.  */
2674static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2675			      int amount_pull, struct napi_struct *napi)
2676{
2677	struct gfar_private *priv = netdev_priv(dev);
2678	struct rxfcb *fcb = NULL;
2679
2680	gro_result_t ret;
2681
2682	/* fcb is at the beginning if exists */
2683	fcb = (struct rxfcb *)skb->data;
2684
2685	/* Remove the FCB from the skb */
2686	/* Remove the padded bytes, if there are any */
2687	if (amount_pull) {
2688		skb_record_rx_queue(skb, fcb->rq);
2689		skb_pull(skb, amount_pull);
2690	}
2691
2692	/* Get receive timestamp from the skb */
2693	if (priv->hwts_rx_en) {
2694		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2695		u64 *ns = (u64 *) skb->data;
 
2696		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2697		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2698	}
2699
2700	if (priv->padding)
2701		skb_pull(skb, priv->padding);
2702
2703	if (dev->features & NETIF_F_RXCSUM)
 
 
 
2704		gfar_rx_checksum(skb, fcb);
2705
2706	/* Tell the skb what kind of packet this is */
2707	skb->protocol = eth_type_trans(skb, dev);
2708
2709	/*
2710	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2711	 * Even if vlan rx accel is disabled, on some chips
2712	 * RXFCB_VLN is pseudo randomly set.
2713	 */
2714	if (dev->features & NETIF_F_HW_VLAN_RX &&
2715	    fcb->flags & RXFCB_VLN)
2716		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2717
2718	/* Send the packet up the stack */
2719	ret = napi_gro_receive(napi, skb);
2720
2721	if (GRO_DROP == ret)
2722		priv->extra_stats.kernel_dropped++;
2723
2724	return 0;
2725}
2726
2727/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2728 *   until the budget/quota has been reached. Returns the number
2729 *   of frames handled
2730 */
2731int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
 
2732{
2733	struct net_device *dev = rx_queue->dev;
2734	struct rxbd8 *bdp, *base;
2735	struct sk_buff *skb;
2736	int pkt_len;
2737	int amount_pull;
2738	int howmany = 0;
2739	struct gfar_private *priv = netdev_priv(dev);
2740
2741	/* Get the first full descriptor */
2742	bdp = rx_queue->cur_rx;
2743	base = rx_queue->rx_bd_base;
 
 
 
 
 
 
 
2744
2745	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2746
2747	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2748		struct sk_buff *newskb;
2749		rmb();
2750
2751		/* Add another skb for the future */
2752		newskb = gfar_new_skb(dev);
 
 
 
 
 
2753
2754		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
 
2755
2756		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2757				priv->rx_buffer_size, DMA_FROM_DEVICE);
2758
2759		if (unlikely(!(bdp->status & RXBD_ERR) &&
2760				bdp->length > priv->rx_buffer_size))
2761			bdp->status = RXBD_LARGE;
2762
2763		/* We drop the frame if we failed to allocate a new buffer */
2764		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2765				 bdp->status & RXBD_ERR)) {
2766			count_errors(bdp->status, dev);
2767
2768			if (unlikely(!newskb))
2769				newskb = skb;
2770			else if (skb)
2771				skb_queue_head(&priv->rx_recycle, skb);
2772		} else {
2773			/* Increment the number of packets */
2774			rx_queue->stats.rx_packets++;
2775			howmany++;
2776
2777			if (likely(skb)) {
2778				pkt_len = bdp->length - ETH_FCS_LEN;
2779				/* Remove the FCS from the packet length */
2780				skb_put(skb, pkt_len);
2781				rx_queue->stats.rx_bytes += pkt_len;
2782				skb_record_rx_queue(skb, rx_queue->qindex);
2783				gfar_process_frame(dev, skb, amount_pull,
2784						&rx_queue->grp->napi);
2785
2786			} else {
2787				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2788				rx_queue->stats.rx_dropped++;
2789				priv->extra_stats.rx_skbmissing++;
2790			}
2791
 
 
 
 
 
2792		}
2793
2794		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
 
 
 
 
2795
2796		/* Setup the new bdp */
2797		gfar_new_rxbdp(rx_queue, bdp, newskb);
2798
2799		/* Update to the next pointer */
2800		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
 
 
2801
2802		/* update to point at the next skb */
2803		rx_queue->skb_currx =
2804		    (rx_queue->skb_currx + 1) &
2805		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2806	}
2807
2808	/* Update the current rxbd pointer to be the next one */
2809	rx_queue->cur_rx = bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
2810
2811	return howmany;
2812}
2813
2814static int gfar_poll(struct napi_struct *napi, int budget)
2815{
2816	struct gfar_priv_grp *gfargrp = container_of(napi,
2817			struct gfar_priv_grp, napi);
2818	struct gfar_private *priv = gfargrp->priv;
2819	struct gfar __iomem *regs = gfargrp->regs;
2820	struct gfar_priv_tx_q *tx_queue = NULL;
2821	struct gfar_priv_rx_q *rx_queue = NULL;
2822	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2823	int tx_cleaned = 0, i, left_over_budget = budget;
2824	unsigned long serviced_queues = 0;
2825	int num_queues = 0;
2826
2827	num_queues = gfargrp->num_rx_queues;
2828	budget_per_queue = budget/num_queues;
2829
2830	/* Clear IEVENT, so interrupts aren't called again
2831	 * because of the packets that have already arrived */
2832	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
 
2833
2834	while (num_queues && left_over_budget) {
2835
2836		budget_per_queue = left_over_budget/num_queues;
2837		left_over_budget = 0;
 
 
 
2838
2839		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2840			if (test_bit(i, &serviced_queues))
2841				continue;
2842			rx_queue = priv->rx_queue[i];
2843			tx_queue = priv->tx_queue[rx_queue->qindex];
2844
2845			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2846			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2847							budget_per_queue);
2848			rx_cleaned += rx_cleaned_per_queue;
2849			if(rx_cleaned_per_queue < budget_per_queue) {
2850				left_over_budget = left_over_budget +
2851					(budget_per_queue - rx_cleaned_per_queue);
2852				set_bit(i, &serviced_queues);
2853				num_queues--;
2854			}
2855		}
2856	}
2857
2858	if (tx_cleaned)
2859		return budget;
2860
2861	if (rx_cleaned < budget) {
2862		napi_complete(napi);
 
 
 
 
 
2863
2864		/* Clear the halt bit in RSTAT */
2865		gfar_write(&regs->rstat, gfargrp->rstat);
 
 
2866
2867		gfar_write(&regs->imask, IMASK_DEFAULT);
 
 
 
 
 
 
 
 
 
 
2868
2869		/* If we are coalescing interrupts, update the timer */
2870		/* Otherwise, clear it */
2871		gfar_configure_coalescing(priv,
2872				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2873	}
2874
2875	return rx_cleaned;
2876}
2877
2878#ifdef CONFIG_NET_POLL_CONTROLLER
2879/*
2880 * Polling 'interrupt' - used by things like netconsole to send skbs
2881 * without having to re-enable interrupts. It's not called while
2882 * the interrupt routine is executing.
2883 */
2884static void gfar_netpoll(struct net_device *dev)
2885{
2886	struct gfar_private *priv = netdev_priv(dev);
2887	int i = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888
2889	/* If the device has multiple interrupts, run tx/rx */
2890	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2891		for (i = 0; i < priv->num_grps; i++) {
2892			disable_irq(priv->gfargrp[i].interruptTransmit);
2893			disable_irq(priv->gfargrp[i].interruptReceive);
2894			disable_irq(priv->gfargrp[i].interruptError);
2895			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2896						&priv->gfargrp[i]);
2897			enable_irq(priv->gfargrp[i].interruptError);
2898			enable_irq(priv->gfargrp[i].interruptReceive);
2899			enable_irq(priv->gfargrp[i].interruptTransmit);
2900		}
2901	} else {
2902		for (i = 0; i < priv->num_grps; i++) {
2903			disable_irq(priv->gfargrp[i].interruptTransmit);
2904			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2905						&priv->gfargrp[i]);
2906			enable_irq(priv->gfargrp[i].interruptTransmit);
 
 
 
 
 
2907		}
 
 
 
 
 
 
 
 
2908	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2909}
2910#endif
2911
2912/* The interrupt handler for devices with one interrupt */
2913static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2914{
2915	struct gfar_priv_grp *gfargrp = grp_id;
2916
2917	/* Save ievent for future reference */
2918	u32 events = gfar_read(&gfargrp->regs->ievent);
2919
2920	/* Check for reception */
2921	if (events & IEVENT_RX_MASK)
2922		gfar_receive(irq, grp_id);
2923
2924	/* Check for transmit completion */
2925	if (events & IEVENT_TX_MASK)
2926		gfar_transmit(irq, grp_id);
2927
2928	/* Check for errors */
2929	if (events & IEVENT_ERR_MASK)
2930		gfar_error(irq, grp_id);
2931
2932	return IRQ_HANDLED;
2933}
2934
2935/* Called every time the controller might need to be made
2936 * aware of new link state.  The PHY code conveys this
2937 * information through variables in the phydev structure, and this
2938 * function converts those variables into the appropriate
2939 * register values, and can bring down the device if needed.
2940 */
2941static void adjust_link(struct net_device *dev)
2942{
2943	struct gfar_private *priv = netdev_priv(dev);
2944	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2945	unsigned long flags;
2946	struct phy_device *phydev = priv->phydev;
2947	int new_state = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948
2949	local_irq_save(flags);
2950	lock_tx_qs(priv);
 
 
 
 
 
 
 
 
 
 
2951
2952	if (phydev->link) {
2953		u32 tempval = gfar_read(&regs->maccfg2);
2954		u32 ecntrl = gfar_read(&regs->ecntrl);
2955
2956		/* Now we make sure that we can be in full duplex mode.
2957		 * If not, we operate in half-duplex mode. */
2958		if (phydev->duplex != priv->oldduplex) {
2959			new_state = 1;
2960			if (!(phydev->duplex))
2961				tempval &= ~(MACCFG2_FULL_DUPLEX);
2962			else
2963				tempval |= MACCFG2_FULL_DUPLEX;
 
 
 
 
 
 
 
2964
2965			priv->oldduplex = phydev->duplex;
 
 
 
 
 
 
2966		}
 
 
 
 
2967
2968		if (phydev->speed != priv->oldspeed) {
2969			new_state = 1;
2970			switch (phydev->speed) {
2971			case 1000:
2972				tempval =
2973				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2974
2975				ecntrl &= ~(ECNTRL_R100);
2976				break;
2977			case 100:
2978			case 10:
2979				tempval =
2980				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2981
2982				/* Reduced mode distinguishes
2983				 * between 10 and 100 */
2984				if (phydev->speed == SPEED_100)
2985					ecntrl |= ECNTRL_R100;
2986				else
2987					ecntrl &= ~(ECNTRL_R100);
2988				break;
2989			default:
2990				netif_warn(priv, link, dev,
2991					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2992					   phydev->speed);
2993				break;
2994			}
2995
2996			priv->oldspeed = phydev->speed;
2997		}
 
 
 
 
 
 
 
 
2998
2999		gfar_write(&regs->maccfg2, tempval);
3000		gfar_write(&regs->ecntrl, ecntrl);
 
3001
3002		if (!priv->oldlink) {
3003			new_state = 1;
3004			priv->oldlink = 1;
 
 
 
3005		}
3006	} else if (priv->oldlink) {
3007		new_state = 1;
3008		priv->oldlink = 0;
3009		priv->oldspeed = 0;
3010		priv->oldduplex = -1;
3011	}
3012
3013	if (new_state && netif_msg_link(priv))
3014		phy_print_status(phydev);
3015	unlock_tx_qs(priv);
3016	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017}
3018
3019/* Update the hash table based on the current list of multicast
3020 * addresses we subscribe to.  Also, change the promiscuity of
3021 * the device based on the flags (this function is called
3022 * whenever dev->flags is changed */
 
3023static void gfar_set_multi(struct net_device *dev)
3024{
3025	struct netdev_hw_addr *ha;
3026	struct gfar_private *priv = netdev_priv(dev);
3027	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3028	u32 tempval;
3029
3030	if (dev->flags & IFF_PROMISC) {
3031		/* Set RCTRL to PROM */
3032		tempval = gfar_read(&regs->rctrl);
3033		tempval |= RCTRL_PROM;
3034		gfar_write(&regs->rctrl, tempval);
3035	} else {
3036		/* Set RCTRL to not PROM */
3037		tempval = gfar_read(&regs->rctrl);
3038		tempval &= ~(RCTRL_PROM);
3039		gfar_write(&regs->rctrl, tempval);
3040	}
3041
3042	if (dev->flags & IFF_ALLMULTI) {
3043		/* Set the hash to rx all multicast frames */
3044		gfar_write(&regs->igaddr0, 0xffffffff);
3045		gfar_write(&regs->igaddr1, 0xffffffff);
3046		gfar_write(&regs->igaddr2, 0xffffffff);
3047		gfar_write(&regs->igaddr3, 0xffffffff);
3048		gfar_write(&regs->igaddr4, 0xffffffff);
3049		gfar_write(&regs->igaddr5, 0xffffffff);
3050		gfar_write(&regs->igaddr6, 0xffffffff);
3051		gfar_write(&regs->igaddr7, 0xffffffff);
3052		gfar_write(&regs->gaddr0, 0xffffffff);
3053		gfar_write(&regs->gaddr1, 0xffffffff);
3054		gfar_write(&regs->gaddr2, 0xffffffff);
3055		gfar_write(&regs->gaddr3, 0xffffffff);
3056		gfar_write(&regs->gaddr4, 0xffffffff);
3057		gfar_write(&regs->gaddr5, 0xffffffff);
3058		gfar_write(&regs->gaddr6, 0xffffffff);
3059		gfar_write(&regs->gaddr7, 0xffffffff);
3060	} else {
3061		int em_num;
3062		int idx;
3063
3064		/* zero out the hash */
3065		gfar_write(&regs->igaddr0, 0x0);
3066		gfar_write(&regs->igaddr1, 0x0);
3067		gfar_write(&regs->igaddr2, 0x0);
3068		gfar_write(&regs->igaddr3, 0x0);
3069		gfar_write(&regs->igaddr4, 0x0);
3070		gfar_write(&regs->igaddr5, 0x0);
3071		gfar_write(&regs->igaddr6, 0x0);
3072		gfar_write(&regs->igaddr7, 0x0);
3073		gfar_write(&regs->gaddr0, 0x0);
3074		gfar_write(&regs->gaddr1, 0x0);
3075		gfar_write(&regs->gaddr2, 0x0);
3076		gfar_write(&regs->gaddr3, 0x0);
3077		gfar_write(&regs->gaddr4, 0x0);
3078		gfar_write(&regs->gaddr5, 0x0);
3079		gfar_write(&regs->gaddr6, 0x0);
3080		gfar_write(&regs->gaddr7, 0x0);
3081
3082		/* If we have extended hash tables, we need to
3083		 * clear the exact match registers to prepare for
3084		 * setting them */
 
3085		if (priv->extended_hash) {
3086			em_num = GFAR_EM_NUM + 1;
3087			gfar_clear_exact_match(dev);
3088			idx = 1;
3089		} else {
3090			idx = 0;
3091			em_num = 0;
3092		}
3093
3094		if (netdev_mc_empty(dev))
3095			return;
3096
3097		/* Parse the list, and set the appropriate bits */
3098		netdev_for_each_mc_addr(ha, dev) {
3099			if (idx < em_num) {
3100				gfar_set_mac_for_addr(dev, idx, ha->addr);
3101				idx++;
3102			} else
3103				gfar_set_hash_for_addr(dev, ha->addr);
3104		}
3105	}
3106}
3107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3108
3109/* Clears each of the exact match registers to zero, so they
3110 * don't interfere with normal reception */
3111static void gfar_clear_exact_match(struct net_device *dev)
3112{
3113	int idx;
3114	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3115
3116	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3117		gfar_set_mac_for_addr(dev, idx, zero_arr);
3118}
3119
3120/* Set the appropriate hash bit for the given addr */
3121/* The algorithm works like so:
3122 * 1) Take the Destination Address (ie the multicast address), and
3123 * do a CRC on it (little endian), and reverse the bits of the
3124 * result.
3125 * 2) Use the 8 most significant bits as a hash into a 256-entry
3126 * table.  The table is controlled through 8 32-bit registers:
3127 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3128 * gaddr7.  This means that the 3 most significant bits in the
3129 * hash index which gaddr register to use, and the 5 other bits
3130 * indicate which bit (assuming an IBM numbering scheme, which
3131 * for PowerPC (tm) is usually the case) in the register holds
3132 * the entry. */
3133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3134{
3135	u32 tempval;
3136	struct gfar_private *priv = netdev_priv(dev);
3137	u32 result = ether_crc(ETH_ALEN, addr);
3138	int width = priv->hash_width;
3139	u8 whichbit = (result >> (32 - width)) & 0x1f;
3140	u8 whichreg = result >> (32 - width + 5);
3141	u32 value = (1 << (31-whichbit));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3142
3143	tempval = gfar_read(priv->hash_regs[whichreg]);
3144	tempval |= value;
3145	gfar_write(priv->hash_regs[whichreg], tempval);
 
 
 
 
 
3146}
3147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3148
3149/* There are multiple MAC Address register pairs on some controllers
3150 * This function sets the numth pair to a given address
3151 */
3152static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3153				  const u8 *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154{
3155	struct gfar_private *priv = netdev_priv(dev);
3156	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3157	int idx;
3158	char tmpbuf[ETH_ALEN];
3159	u32 tempval;
3160	u32 __iomem *macptr = &regs->macstnaddr1;
 
 
 
 
 
 
 
 
 
 
3161
3162	macptr += num*2;
3163
3164	/* Now copy it into the mac registers backwards, cuz */
3165	/* little endian is silly */
3166	for (idx = 0; idx < ETH_ALEN; idx++)
3167		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3168
3169	gfar_write(macptr, *((u32 *) (tmpbuf)));
 
 
 
3170
3171	tempval = *((u32 *) (tmpbuf + 4));
 
 
 
3172
3173	gfar_write(macptr+1, tempval);
 
 
3174}
3175
3176/* GFAR error interrupt handler */
3177static irqreturn_t gfar_error(int irq, void *grp_id)
3178{
3179	struct gfar_priv_grp *gfargrp = grp_id;
3180	struct gfar __iomem *regs = gfargrp->regs;
3181	struct gfar_private *priv= gfargrp->priv;
3182	struct net_device *dev = priv->ndev;
3183
3184	/* Save ievent for future reference */
3185	u32 events = gfar_read(&regs->ievent);
3186
3187	/* Clear IEVENT */
3188	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
 
 
3189
3190	/* Magic Packet is not an error. */
3191	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3192	    (events & IEVENT_MAG))
3193		events &= ~IEVENT_MAG;
 
 
 
 
 
3194
3195	/* Hmm... */
3196	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3197		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3198			   events, gfar_read(&regs->imask));
3199
3200	/* Update the error counters */
3201	if (events & IEVENT_TXE) {
3202		dev->stats.tx_errors++;
3203
3204		if (events & IEVENT_LC)
3205			dev->stats.tx_window_errors++;
3206		if (events & IEVENT_CRL)
3207			dev->stats.tx_aborted_errors++;
3208		if (events & IEVENT_XFUN) {
3209			unsigned long flags;
 
3210
3211			netif_dbg(priv, tx_err, dev,
3212				  "TX FIFO underrun, packet dropped\n");
3213			dev->stats.tx_dropped++;
3214			priv->extra_stats.tx_underrun++;
3215
3216			local_irq_save(flags);
3217			lock_tx_qs(priv);
 
 
3218
3219			/* Reactivate the Tx Queues */
3220			gfar_write(&regs->tstat, gfargrp->tstat);
3221
3222			unlock_tx_qs(priv);
3223			local_irq_restore(flags);
3224		}
3225		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3226	}
3227	if (events & IEVENT_BSY) {
3228		dev->stats.rx_errors++;
3229		priv->extra_stats.rx_bsy++;
3230
3231		gfar_receive(irq, grp_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3232
3233		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3234			  gfar_read(&regs->rstat));
 
 
 
 
3235	}
3236	if (events & IEVENT_BABR) {
3237		dev->stats.rx_errors++;
3238		priv->extra_stats.rx_babr++;
3239
3240		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241	}
3242	if (events & IEVENT_EBERR) {
3243		priv->extra_stats.eberr++;
3244		netif_dbg(priv, rx_err, dev, "bus error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245	}
3246	if (events & IEVENT_RXC)
3247		netif_dbg(priv, rx_status, dev, "control frame\n");
3248
3249	if (events & IEVENT_BABT) {
3250		priv->extra_stats.tx_babt++;
3251		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3252	}
3253	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254}
3255
3256static struct of_device_id gfar_match[] =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257{
3258	{
3259		.type = "network",
3260		.compatible = "gianfar",
3261	},
3262	{
3263		.compatible = "fsl,etsec2",
3264	},
3265	{},
3266};
3267MODULE_DEVICE_TABLE(of, gfar_match);
3268
3269/* Structure for a device driver */
3270static struct platform_driver gfar_driver = {
3271	.driver = {
3272		.name = "fsl-gianfar",
3273		.owner = THIS_MODULE,
3274		.pm = GFAR_PM_OPS,
3275		.of_match_table = gfar_match,
3276	},
3277	.probe = gfar_probe,
3278	.remove = gfar_remove,
3279};
3280
3281module_platform_driver(gfar_driver);