Linux Audio

Check our new training course

Loading...
   1/*
   2 * drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 * This program is free software; you can redistribute  it and/or modify it
  17 * under  the terms of  the GNU General  Public License as published by the
  18 * Free Software Foundation;  either version 2 of the  License, or (at your
  19 * option) any later version.
  20 *
  21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  22 *  RA 11 31 24.2
  23 *  Dec +69 19 52
  24 *  V 3.84
  25 *  B-V +1.62
  26 *
  27 *  Theory of operation
  28 *
  29 *  The driver is initialized through of_device. Configuration information
  30 *  is therefore conveyed through an OF-style device tree.
  31 *
  32 *  The Gianfar Ethernet Controller uses a ring of buffer
  33 *  descriptors.  The beginning is indicated by a register
  34 *  pointing to the physical address of the start of the ring.
  35 *  The end is determined by a "wrap" bit being set in the
  36 *  last descriptor of the ring.
  37 *
  38 *  When a packet is received, the RXF bit in the
  39 *  IEVENT register is set, triggering an interrupt when the
  40 *  corresponding bit in the IMASK register is also set (if
  41 *  interrupt coalescing is active, then the interrupt may not
  42 *  happen immediately, but will wait until either a set number
  43 *  of frames or amount of time have passed).  In NAPI, the
  44 *  interrupt handler will signal there is work to be done, and
  45 *  exit. This method will start at the last known empty
  46 *  descriptor, and process every subsequent descriptor until there
  47 *  are none left with data (NAPI will stop after a set number of
  48 *  packets to give time to other tasks, but will eventually
  49 *  process all the packets).  The data arrives inside a
  50 *  pre-allocated skb, and so after the skb is passed up to the
  51 *  stack, a new skb must be allocated, and the address field in
  52 *  the buffer descriptor must be updated to indicate this new
  53 *  skb.
  54 *
  55 *  When the kernel requests that a packet be transmitted, the
  56 *  driver starts where it left off last time, and points the
  57 *  descriptor at the buffer which was passed in.  The driver
  58 *  then informs the DMA engine that there are packets ready to
  59 *  be transmitted.  Once the controller is finished transmitting
  60 *  the packet, an interrupt may be triggered (under the same
  61 *  conditions as for reception, but depending on the TXF bit).
  62 *  The driver then cleans up the buffer.
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66#define DEBUG
  67
  68#include <linux/kernel.h>
  69#include <linux/string.h>
  70#include <linux/errno.h>
  71#include <linux/unistd.h>
  72#include <linux/slab.h>
  73#include <linux/interrupt.h>
  74#include <linux/init.h>
  75#include <linux/delay.h>
  76#include <linux/netdevice.h>
  77#include <linux/etherdevice.h>
  78#include <linux/skbuff.h>
  79#include <linux/if_vlan.h>
  80#include <linux/spinlock.h>
  81#include <linux/mm.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#include <asm/reg.h>
  92#include <asm/irq.h>
  93#include <asm/uaccess.h>
  94#include <linux/module.h>
  95#include <linux/dma-mapping.h>
  96#include <linux/crc32.h>
  97#include <linux/mii.h>
  98#include <linux/phy.h>
  99#include <linux/phy_fixed.h>
 100#include <linux/of.h>
 101#include <linux/of_net.h>
 102
 103#include "gianfar.h"
 104#include "fsl_pq_mdio.h"
 105
 106#define TX_TIMEOUT      (1*HZ)
 107
 108const char gfar_driver_version[] = "1.3";
 109
 110static int gfar_enet_open(struct net_device *dev);
 111static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 112static void gfar_reset_task(struct work_struct *work);
 113static void gfar_timeout(struct net_device *dev);
 114static int gfar_close(struct net_device *dev);
 115struct sk_buff *gfar_new_skb(struct net_device *dev);
 116static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 117		struct sk_buff *skb);
 118static int gfar_set_mac_address(struct net_device *dev);
 119static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 120static irqreturn_t gfar_error(int irq, void *dev_id);
 121static irqreturn_t gfar_transmit(int irq, void *dev_id);
 122static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 123static void adjust_link(struct net_device *dev);
 124static void init_registers(struct net_device *dev);
 125static int init_phy(struct net_device *dev);
 126static int gfar_probe(struct platform_device *ofdev);
 127static int gfar_remove(struct platform_device *ofdev);
 128static void free_skb_resources(struct gfar_private *priv);
 129static void gfar_set_multi(struct net_device *dev);
 130static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 131static void gfar_configure_serdes(struct net_device *dev);
 132static int gfar_poll(struct napi_struct *napi, int budget);
 133#ifdef CONFIG_NET_POLL_CONTROLLER
 134static void gfar_netpoll(struct net_device *dev);
 135#endif
 136int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 137static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 138static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 139			      int amount_pull, struct napi_struct *napi);
 140void gfar_halt(struct net_device *dev);
 141static void gfar_halt_nodisable(struct net_device *dev);
 142void gfar_start(struct net_device *dev);
 143static void gfar_clear_exact_match(struct net_device *dev);
 144static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 145				  const u8 *addr);
 146static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 147
 148MODULE_AUTHOR("Freescale Semiconductor, Inc");
 149MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 150MODULE_LICENSE("GPL");
 151
 152static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 153			    dma_addr_t buf)
 154{
 155	u32 lstatus;
 156
 157	bdp->bufPtr = buf;
 158
 159	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 160	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 161		lstatus |= BD_LFLAG(RXBD_WRAP);
 162
 163	eieio();
 164
 165	bdp->lstatus = lstatus;
 166}
 167
 168static int gfar_init_bds(struct net_device *ndev)
 169{
 170	struct gfar_private *priv = netdev_priv(ndev);
 171	struct gfar_priv_tx_q *tx_queue = NULL;
 172	struct gfar_priv_rx_q *rx_queue = NULL;
 173	struct txbd8 *txbdp;
 174	struct rxbd8 *rxbdp;
 175	int i, j;
 176
 177	for (i = 0; i < priv->num_tx_queues; i++) {
 178		tx_queue = priv->tx_queue[i];
 179		/* Initialize some variables in our dev structure */
 180		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 181		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 182		tx_queue->cur_tx = tx_queue->tx_bd_base;
 183		tx_queue->skb_curtx = 0;
 184		tx_queue->skb_dirtytx = 0;
 185
 186		/* Initialize Transmit Descriptor Ring */
 187		txbdp = tx_queue->tx_bd_base;
 188		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 189			txbdp->lstatus = 0;
 190			txbdp->bufPtr = 0;
 191			txbdp++;
 192		}
 193
 194		/* Set the last descriptor in the ring to indicate wrap */
 195		txbdp--;
 196		txbdp->status |= TXBD_WRAP;
 197	}
 198
 199	for (i = 0; i < priv->num_rx_queues; i++) {
 200		rx_queue = priv->rx_queue[i];
 201		rx_queue->cur_rx = rx_queue->rx_bd_base;
 202		rx_queue->skb_currx = 0;
 203		rxbdp = rx_queue->rx_bd_base;
 204
 205		for (j = 0; j < rx_queue->rx_ring_size; j++) {
 206			struct sk_buff *skb = rx_queue->rx_skbuff[j];
 207
 208			if (skb) {
 209				gfar_init_rxbdp(rx_queue, rxbdp,
 210						rxbdp->bufPtr);
 211			} else {
 212				skb = gfar_new_skb(ndev);
 213				if (!skb) {
 214					netdev_err(ndev, "Can't allocate RX buffers\n");
 215					goto err_rxalloc_fail;
 216				}
 217				rx_queue->rx_skbuff[j] = skb;
 218
 219				gfar_new_rxbdp(rx_queue, rxbdp, skb);
 220			}
 221
 222			rxbdp++;
 223		}
 224
 225	}
 226
 227	return 0;
 228
 229err_rxalloc_fail:
 230	free_skb_resources(priv);
 231	return -ENOMEM;
 232}
 233
 234static int gfar_alloc_skb_resources(struct net_device *ndev)
 235{
 236	void *vaddr;
 237	dma_addr_t addr;
 238	int i, j, k;
 239	struct gfar_private *priv = netdev_priv(ndev);
 240	struct device *dev = &priv->ofdev->dev;
 241	struct gfar_priv_tx_q *tx_queue = NULL;
 242	struct gfar_priv_rx_q *rx_queue = NULL;
 243
 244	priv->total_tx_ring_size = 0;
 245	for (i = 0; i < priv->num_tx_queues; i++)
 246		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 247
 248	priv->total_rx_ring_size = 0;
 249	for (i = 0; i < priv->num_rx_queues; i++)
 250		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 251
 252	/* Allocate memory for the buffer descriptors */
 253	vaddr = dma_alloc_coherent(dev,
 254			sizeof(struct txbd8) * priv->total_tx_ring_size +
 255			sizeof(struct rxbd8) * priv->total_rx_ring_size,
 256			&addr, GFP_KERNEL);
 257	if (!vaddr) {
 258		netif_err(priv, ifup, ndev,
 259			  "Could not allocate buffer descriptors!\n");
 260		return -ENOMEM;
 261	}
 262
 263	for (i = 0; i < priv->num_tx_queues; i++) {
 264		tx_queue = priv->tx_queue[i];
 265		tx_queue->tx_bd_base = vaddr;
 266		tx_queue->tx_bd_dma_base = addr;
 267		tx_queue->dev = ndev;
 268		/* enet DMA only understands physical addresses */
 269		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 270		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 271	}
 272
 273	/* Start the rx descriptor ring where the tx ring leaves off */
 274	for (i = 0; i < priv->num_rx_queues; i++) {
 275		rx_queue = priv->rx_queue[i];
 276		rx_queue->rx_bd_base = vaddr;
 277		rx_queue->rx_bd_dma_base = addr;
 278		rx_queue->dev = ndev;
 279		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 280		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 281	}
 282
 283	/* Setup the skbuff rings */
 284	for (i = 0; i < priv->num_tx_queues; i++) {
 285		tx_queue = priv->tx_queue[i];
 286		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
 287				  tx_queue->tx_ring_size, GFP_KERNEL);
 288		if (!tx_queue->tx_skbuff) {
 289			netif_err(priv, ifup, ndev,
 290				  "Could not allocate tx_skbuff\n");
 291			goto cleanup;
 292		}
 293
 294		for (k = 0; k < tx_queue->tx_ring_size; k++)
 295			tx_queue->tx_skbuff[k] = NULL;
 296	}
 297
 298	for (i = 0; i < priv->num_rx_queues; i++) {
 299		rx_queue = priv->rx_queue[i];
 300		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
 301				  rx_queue->rx_ring_size, GFP_KERNEL);
 302
 303		if (!rx_queue->rx_skbuff) {
 304			netif_err(priv, ifup, ndev,
 305				  "Could not allocate rx_skbuff\n");
 306			goto cleanup;
 307		}
 308
 309		for (j = 0; j < rx_queue->rx_ring_size; j++)
 310			rx_queue->rx_skbuff[j] = NULL;
 311	}
 312
 313	if (gfar_init_bds(ndev))
 314		goto cleanup;
 315
 316	return 0;
 317
 318cleanup:
 319	free_skb_resources(priv);
 320	return -ENOMEM;
 321}
 322
 323static void gfar_init_tx_rx_base(struct gfar_private *priv)
 324{
 325	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 326	u32 __iomem *baddr;
 327	int i;
 328
 329	baddr = &regs->tbase0;
 330	for(i = 0; i < priv->num_tx_queues; i++) {
 331		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 332		baddr	+= 2;
 333	}
 334
 335	baddr = &regs->rbase0;
 336	for(i = 0; i < priv->num_rx_queues; i++) {
 337		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 338		baddr   += 2;
 339	}
 340}
 341
 342static void gfar_init_mac(struct net_device *ndev)
 343{
 344	struct gfar_private *priv = netdev_priv(ndev);
 345	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 346	u32 rctrl = 0;
 347	u32 tctrl = 0;
 348	u32 attrs = 0;
 349
 350	/* write the tx/rx base registers */
 351	gfar_init_tx_rx_base(priv);
 352
 353	/* Configure the coalescing support */
 354	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 355
 356	if (priv->rx_filer_enable) {
 357		rctrl |= RCTRL_FILREN;
 358		/* Program the RIR0 reg with the required distribution */
 359		gfar_write(&regs->rir0, DEFAULT_RIR0);
 360	}
 361
 362	if (ndev->features & NETIF_F_RXCSUM)
 363		rctrl |= RCTRL_CHECKSUMMING;
 364
 365	if (priv->extended_hash) {
 366		rctrl |= RCTRL_EXTHASH;
 367
 368		gfar_clear_exact_match(ndev);
 369		rctrl |= RCTRL_EMEN;
 370	}
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Insert receive time stamps into padding alignment bytes */
 378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
 379		rctrl &= ~RCTRL_PAL_MASK;
 380		rctrl |= RCTRL_PADDING(8);
 381		priv->padding = 8;
 382	}
 383
 384	/* Enable HW time stamping if requested from user space */
 385	if (priv->hwts_rx_en)
 386		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 387
 388	if (ndev->features & NETIF_F_HW_VLAN_RX)
 389		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 390
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 393
 394	if (ndev->features & NETIF_F_IP_CSUM)
 395		tctrl |= TCTRL_INIT_CSUM;
 396
 397	tctrl |= TCTRL_TXSCHED_PRIO;
 398
 399	gfar_write(&regs->tctrl, tctrl);
 400
 401	/* Set the extraction length and index */
 402	attrs = ATTRELI_EL(priv->rx_stash_size) |
 403		ATTRELI_EI(priv->rx_stash_index);
 404
 405	gfar_write(&regs->attreli, attrs);
 406
 407	/* Start with defaults, and add stashing or locking
 408	 * depending on the approprate variables */
 409	attrs = ATTR_INIT_SETTINGS;
 410
 411	if (priv->bd_stash_en)
 412		attrs |= ATTR_BDSTASH;
 413
 414	if (priv->rx_stash_size != 0)
 415		attrs |= ATTR_BUFSTASH;
 416
 417	gfar_write(&regs->attr, attrs);
 418
 419	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
 420	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
 421	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 422}
 423
 424static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 425{
 426	struct gfar_private *priv = netdev_priv(dev);
 427	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 428	unsigned long tx_packets = 0, tx_bytes = 0;
 429	int i = 0;
 430
 431	for (i = 0; i < priv->num_rx_queues; i++) {
 432		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 433		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
 434		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 435	}
 436
 437	dev->stats.rx_packets = rx_packets;
 438	dev->stats.rx_bytes = rx_bytes;
 439	dev->stats.rx_dropped = rx_dropped;
 440
 441	for (i = 0; i < priv->num_tx_queues; i++) {
 442		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 443		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 444	}
 445
 446	dev->stats.tx_bytes = tx_bytes;
 447	dev->stats.tx_packets = tx_packets;
 448
 449	return &dev->stats;
 450}
 451
 452static const struct net_device_ops gfar_netdev_ops = {
 453	.ndo_open = gfar_enet_open,
 454	.ndo_start_xmit = gfar_start_xmit,
 455	.ndo_stop = gfar_close,
 456	.ndo_change_mtu = gfar_change_mtu,
 457	.ndo_set_features = gfar_set_features,
 458	.ndo_set_rx_mode = gfar_set_multi,
 459	.ndo_tx_timeout = gfar_timeout,
 460	.ndo_do_ioctl = gfar_ioctl,
 461	.ndo_get_stats = gfar_get_stats,
 462	.ndo_set_mac_address = eth_mac_addr,
 463	.ndo_validate_addr = eth_validate_addr,
 464#ifdef CONFIG_NET_POLL_CONTROLLER
 465	.ndo_poll_controller = gfar_netpoll,
 466#endif
 467};
 468
 469void lock_rx_qs(struct gfar_private *priv)
 470{
 471	int i = 0x0;
 472
 473	for (i = 0; i < priv->num_rx_queues; i++)
 474		spin_lock(&priv->rx_queue[i]->rxlock);
 475}
 476
 477void lock_tx_qs(struct gfar_private *priv)
 478{
 479	int i = 0x0;
 480
 481	for (i = 0; i < priv->num_tx_queues; i++)
 482		spin_lock(&priv->tx_queue[i]->txlock);
 483}
 484
 485void unlock_rx_qs(struct gfar_private *priv)
 486{
 487	int i = 0x0;
 488
 489	for (i = 0; i < priv->num_rx_queues; i++)
 490		spin_unlock(&priv->rx_queue[i]->rxlock);
 491}
 492
 493void unlock_tx_qs(struct gfar_private *priv)
 494{
 495	int i = 0x0;
 496
 497	for (i = 0; i < priv->num_tx_queues; i++)
 498		spin_unlock(&priv->tx_queue[i]->txlock);
 499}
 500
 501static bool gfar_is_vlan_on(struct gfar_private *priv)
 502{
 503	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
 504	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
 505}
 506
 507/* Returns 1 if incoming frames use an FCB */
 508static inline int gfar_uses_fcb(struct gfar_private *priv)
 509{
 510	return gfar_is_vlan_on(priv) ||
 511		(priv->ndev->features & NETIF_F_RXCSUM) ||
 512		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
 513}
 514
 515static void free_tx_pointers(struct gfar_private *priv)
 516{
 517	int i = 0;
 518
 519	for (i = 0; i < priv->num_tx_queues; i++)
 520		kfree(priv->tx_queue[i]);
 521}
 522
 523static void free_rx_pointers(struct gfar_private *priv)
 524{
 525	int i = 0;
 526
 527	for (i = 0; i < priv->num_rx_queues; i++)
 528		kfree(priv->rx_queue[i]);
 529}
 530
 531static void unmap_group_regs(struct gfar_private *priv)
 532{
 533	int i = 0;
 534
 535	for (i = 0; i < MAXGROUPS; i++)
 536		if (priv->gfargrp[i].regs)
 537			iounmap(priv->gfargrp[i].regs);
 538}
 539
 540static void disable_napi(struct gfar_private *priv)
 541{
 542	int i = 0;
 543
 544	for (i = 0; i < priv->num_grps; i++)
 545		napi_disable(&priv->gfargrp[i].napi);
 546}
 547
 548static void enable_napi(struct gfar_private *priv)
 549{
 550	int i = 0;
 551
 552	for (i = 0; i < priv->num_grps; i++)
 553		napi_enable(&priv->gfargrp[i].napi);
 554}
 555
 556static int gfar_parse_group(struct device_node *np,
 557		struct gfar_private *priv, const char *model)
 558{
 559	u32 *queue_mask;
 560
 561	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
 562	if (!priv->gfargrp[priv->num_grps].regs)
 563		return -ENOMEM;
 564
 565	priv->gfargrp[priv->num_grps].interruptTransmit =
 566			irq_of_parse_and_map(np, 0);
 567
 568	/* If we aren't the FEC we have multiple interrupts */
 569	if (model && strcasecmp(model, "FEC")) {
 570		priv->gfargrp[priv->num_grps].interruptReceive =
 571			irq_of_parse_and_map(np, 1);
 572		priv->gfargrp[priv->num_grps].interruptError =
 573			irq_of_parse_and_map(np,2);
 574		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
 575		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
 576		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
 577			return -EINVAL;
 578	}
 579
 580	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
 581	priv->gfargrp[priv->num_grps].priv = priv;
 582	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
 583	if(priv->mode == MQ_MG_MODE) {
 584		queue_mask = (u32 *)of_get_property(np,
 585					"fsl,rx-bit-map", NULL);
 586		priv->gfargrp[priv->num_grps].rx_bit_map =
 587			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
 588		queue_mask = (u32 *)of_get_property(np,
 589					"fsl,tx-bit-map", NULL);
 590		priv->gfargrp[priv->num_grps].tx_bit_map =
 591			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 592	} else {
 593		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
 594		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
 595	}
 596	priv->num_grps++;
 597
 598	return 0;
 599}
 600
 601static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 602{
 603	const char *model;
 604	const char *ctype;
 605	const void *mac_addr;
 606	int err = 0, i;
 607	struct net_device *dev = NULL;
 608	struct gfar_private *priv = NULL;
 609	struct device_node *np = ofdev->dev.of_node;
 610	struct device_node *child = NULL;
 611	const u32 *stash;
 612	const u32 *stash_len;
 613	const u32 *stash_idx;
 614	unsigned int num_tx_qs, num_rx_qs;
 615	u32 *tx_queues, *rx_queues;
 616
 617	if (!np || !of_device_is_available(np))
 618		return -ENODEV;
 619
 620	/* parse the num of tx and rx queues */
 621	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 622	num_tx_qs = tx_queues ? *tx_queues : 1;
 623
 624	if (num_tx_qs > MAX_TX_QS) {
 625		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 626		       num_tx_qs, MAX_TX_QS);
 627		pr_err("Cannot do alloc_etherdev, aborting\n");
 628		return -EINVAL;
 629	}
 630
 631	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 632	num_rx_qs = rx_queues ? *rx_queues : 1;
 633
 634	if (num_rx_qs > MAX_RX_QS) {
 635		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 636		       num_rx_qs, MAX_RX_QS);
 637		pr_err("Cannot do alloc_etherdev, aborting\n");
 638		return -EINVAL;
 639	}
 640
 641	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 642	dev = *pdev;
 643	if (NULL == dev)
 644		return -ENOMEM;
 645
 646	priv = netdev_priv(dev);
 647	priv->node = ofdev->dev.of_node;
 648	priv->ndev = dev;
 649
 650	priv->num_tx_queues = num_tx_qs;
 651	netif_set_real_num_rx_queues(dev, num_rx_qs);
 652	priv->num_rx_queues = num_rx_qs;
 653	priv->num_grps = 0x0;
 654
 655	/* Init Rx queue filer rule set linked list*/
 656	INIT_LIST_HEAD(&priv->rx_list.list);
 657	priv->rx_list.count = 0;
 658	mutex_init(&priv->rx_queue_access);
 659
 660	model = of_get_property(np, "model", NULL);
 661
 662	for (i = 0; i < MAXGROUPS; i++)
 663		priv->gfargrp[i].regs = NULL;
 664
 665	/* Parse and initialize group specific information */
 666	if (of_device_is_compatible(np, "fsl,etsec2")) {
 667		priv->mode = MQ_MG_MODE;
 668		for_each_child_of_node(np, child) {
 669			err = gfar_parse_group(child, priv, model);
 670			if (err)
 671				goto err_grp_init;
 672		}
 673	} else {
 674		priv->mode = SQ_SG_MODE;
 675		err = gfar_parse_group(np, priv, model);
 676		if(err)
 677			goto err_grp_init;
 678	}
 679
 680	for (i = 0; i < priv->num_tx_queues; i++)
 681	       priv->tx_queue[i] = NULL;
 682	for (i = 0; i < priv->num_rx_queues; i++)
 683		priv->rx_queue[i] = NULL;
 684
 685	for (i = 0; i < priv->num_tx_queues; i++) {
 686		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 687					    GFP_KERNEL);
 688		if (!priv->tx_queue[i]) {
 689			err = -ENOMEM;
 690			goto tx_alloc_failed;
 691		}
 692		priv->tx_queue[i]->tx_skbuff = NULL;
 693		priv->tx_queue[i]->qindex = i;
 694		priv->tx_queue[i]->dev = dev;
 695		spin_lock_init(&(priv->tx_queue[i]->txlock));
 696	}
 697
 698	for (i = 0; i < priv->num_rx_queues; i++) {
 699		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 700					    GFP_KERNEL);
 701		if (!priv->rx_queue[i]) {
 702			err = -ENOMEM;
 703			goto rx_alloc_failed;
 704		}
 705		priv->rx_queue[i]->rx_skbuff = NULL;
 706		priv->rx_queue[i]->qindex = i;
 707		priv->rx_queue[i]->dev = dev;
 708		spin_lock_init(&(priv->rx_queue[i]->rxlock));
 709	}
 710
 711
 712	stash = of_get_property(np, "bd-stash", NULL);
 713
 714	if (stash) {
 715		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 716		priv->bd_stash_en = 1;
 717	}
 718
 719	stash_len = of_get_property(np, "rx-stash-len", NULL);
 720
 721	if (stash_len)
 722		priv->rx_stash_size = *stash_len;
 723
 724	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 725
 726	if (stash_idx)
 727		priv->rx_stash_index = *stash_idx;
 728
 729	if (stash_len || stash_idx)
 730		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 731
 732	mac_addr = of_get_mac_address(np);
 733	if (mac_addr)
 734		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 735
 736	if (model && !strcasecmp(model, "TSEC"))
 737		priv->device_flags =
 738			FSL_GIANFAR_DEV_HAS_GIGABIT |
 739			FSL_GIANFAR_DEV_HAS_COALESCE |
 740			FSL_GIANFAR_DEV_HAS_RMON |
 741			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 742	if (model && !strcasecmp(model, "eTSEC"))
 743		priv->device_flags =
 744			FSL_GIANFAR_DEV_HAS_GIGABIT |
 745			FSL_GIANFAR_DEV_HAS_COALESCE |
 746			FSL_GIANFAR_DEV_HAS_RMON |
 747			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 748			FSL_GIANFAR_DEV_HAS_PADDING |
 749			FSL_GIANFAR_DEV_HAS_CSUM |
 750			FSL_GIANFAR_DEV_HAS_VLAN |
 751			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 752			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 753			FSL_GIANFAR_DEV_HAS_TIMER;
 754
 755	ctype = of_get_property(np, "phy-connection-type", NULL);
 756
 757	/* We only care about rgmii-id.  The rest are autodetected */
 758	if (ctype && !strcmp(ctype, "rgmii-id"))
 759		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 760	else
 761		priv->interface = PHY_INTERFACE_MODE_MII;
 762
 763	if (of_get_property(np, "fsl,magic-packet", NULL))
 764		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 765
 766	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 767
 768	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 769	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 770
 771	return 0;
 772
 773rx_alloc_failed:
 774	free_rx_pointers(priv);
 775tx_alloc_failed:
 776	free_tx_pointers(priv);
 777err_grp_init:
 778	unmap_group_regs(priv);
 779	free_netdev(dev);
 780	return err;
 781}
 782
 783static int gfar_hwtstamp_ioctl(struct net_device *netdev,
 784			struct ifreq *ifr, int cmd)
 785{
 786	struct hwtstamp_config config;
 787	struct gfar_private *priv = netdev_priv(netdev);
 788
 789	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 790		return -EFAULT;
 791
 792	/* reserved for future extensions */
 793	if (config.flags)
 794		return -EINVAL;
 795
 796	switch (config.tx_type) {
 797	case HWTSTAMP_TX_OFF:
 798		priv->hwts_tx_en = 0;
 799		break;
 800	case HWTSTAMP_TX_ON:
 801		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 802			return -ERANGE;
 803		priv->hwts_tx_en = 1;
 804		break;
 805	default:
 806		return -ERANGE;
 807	}
 808
 809	switch (config.rx_filter) {
 810	case HWTSTAMP_FILTER_NONE:
 811		if (priv->hwts_rx_en) {
 812			stop_gfar(netdev);
 813			priv->hwts_rx_en = 0;
 814			startup_gfar(netdev);
 815		}
 816		break;
 817	default:
 818		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 819			return -ERANGE;
 820		if (!priv->hwts_rx_en) {
 821			stop_gfar(netdev);
 822			priv->hwts_rx_en = 1;
 823			startup_gfar(netdev);
 824		}
 825		config.rx_filter = HWTSTAMP_FILTER_ALL;
 826		break;
 827	}
 828
 829	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 830		-EFAULT : 0;
 831}
 832
 833/* Ioctl MII Interface */
 834static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 835{
 836	struct gfar_private *priv = netdev_priv(dev);
 837
 838	if (!netif_running(dev))
 839		return -EINVAL;
 840
 841	if (cmd == SIOCSHWTSTAMP)
 842		return gfar_hwtstamp_ioctl(dev, rq, cmd);
 843
 844	if (!priv->phydev)
 845		return -ENODEV;
 846
 847	return phy_mii_ioctl(priv->phydev, rq, cmd);
 848}
 849
 850static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 851{
 852	unsigned int new_bit_map = 0x0;
 853	int mask = 0x1 << (max_qs - 1), i;
 854	for (i = 0; i < max_qs; i++) {
 855		if (bit_map & mask)
 856			new_bit_map = new_bit_map + (1 << i);
 857		mask = mask >> 0x1;
 858	}
 859	return new_bit_map;
 860}
 861
 862static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 863				   u32 class)
 864{
 865	u32 rqfpr = FPR_FILER_MASK;
 866	u32 rqfcr = 0x0;
 867
 868	rqfar--;
 869	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 870	priv->ftp_rqfpr[rqfar] = rqfpr;
 871	priv->ftp_rqfcr[rqfar] = rqfcr;
 872	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 873
 874	rqfar--;
 875	rqfcr = RQFCR_CMP_NOMATCH;
 876	priv->ftp_rqfpr[rqfar] = rqfpr;
 877	priv->ftp_rqfcr[rqfar] = rqfcr;
 878	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 879
 880	rqfar--;
 881	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 882	rqfpr = class;
 883	priv->ftp_rqfcr[rqfar] = rqfcr;
 884	priv->ftp_rqfpr[rqfar] = rqfpr;
 885	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 886
 887	rqfar--;
 888	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 889	rqfpr = class;
 890	priv->ftp_rqfcr[rqfar] = rqfcr;
 891	priv->ftp_rqfpr[rqfar] = rqfpr;
 892	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 893
 894	return rqfar;
 895}
 896
 897static void gfar_init_filer_table(struct gfar_private *priv)
 898{
 899	int i = 0x0;
 900	u32 rqfar = MAX_FILER_IDX;
 901	u32 rqfcr = 0x0;
 902	u32 rqfpr = FPR_FILER_MASK;
 903
 904	/* Default rule */
 905	rqfcr = RQFCR_CMP_MATCH;
 906	priv->ftp_rqfcr[rqfar] = rqfcr;
 907	priv->ftp_rqfpr[rqfar] = rqfpr;
 908	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 909
 910	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 911	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 912	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 913	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 914	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 915	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 916
 917	/* cur_filer_idx indicated the first non-masked rule */
 918	priv->cur_filer_idx = rqfar;
 919
 920	/* Rest are masked rules */
 921	rqfcr = RQFCR_CMP_NOMATCH;
 922	for (i = 0; i < rqfar; i++) {
 923		priv->ftp_rqfcr[i] = rqfcr;
 924		priv->ftp_rqfpr[i] = rqfpr;
 925		gfar_write_filer(priv, i, rqfcr, rqfpr);
 926	}
 927}
 928
 929static void gfar_detect_errata(struct gfar_private *priv)
 930{
 931	struct device *dev = &priv->ofdev->dev;
 932	unsigned int pvr = mfspr(SPRN_PVR);
 933	unsigned int svr = mfspr(SPRN_SVR);
 934	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 935	unsigned int rev = svr & 0xffff;
 936
 937	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 938	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 939			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 940		priv->errata |= GFAR_ERRATA_74;
 941
 942	/* MPC8313 and MPC837x all rev */
 943	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 944			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 945		priv->errata |= GFAR_ERRATA_76;
 946
 947	/* MPC8313 and MPC837x all rev */
 948	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 949			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 950		priv->errata |= GFAR_ERRATA_A002;
 951
 952	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
 953	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
 954			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
 955		priv->errata |= GFAR_ERRATA_12;
 956
 957	if (priv->errata)
 958		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 959			 priv->errata);
 960}
 961
 962/* Set up the ethernet device structure, private data,
 963 * and anything else we need before we start */
 964static int gfar_probe(struct platform_device *ofdev)
 965{
 966	u32 tempval;
 967	struct net_device *dev = NULL;
 968	struct gfar_private *priv = NULL;
 969	struct gfar __iomem *regs = NULL;
 970	int err = 0, i, grp_idx = 0;
 971	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 972	u32 isrg = 0;
 973	u32 __iomem *baddr;
 974
 975	err = gfar_of_init(ofdev, &dev);
 976
 977	if (err)
 978		return err;
 979
 980	priv = netdev_priv(dev);
 981	priv->ndev = dev;
 982	priv->ofdev = ofdev;
 983	priv->node = ofdev->dev.of_node;
 984	SET_NETDEV_DEV(dev, &ofdev->dev);
 985
 986	spin_lock_init(&priv->bflock);
 987	INIT_WORK(&priv->reset_task, gfar_reset_task);
 988
 989	dev_set_drvdata(&ofdev->dev, priv);
 990	regs = priv->gfargrp[0].regs;
 991
 992	gfar_detect_errata(priv);
 993
 994	/* Stop the DMA engine now, in case it was running before */
 995	/* (The firmware could have used it, and left it running). */
 996	gfar_halt(dev);
 997
 998	/* Reset MAC layer */
 999	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001	/* We need to delay at least 3 TX clocks */
1002	udelay(2);
1003
1004	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005	gfar_write(&regs->maccfg1, tempval);
1006
1007	/* Initialize MACCFG2. */
1008	tempval = MACCFG2_INIT_SETTINGS;
1009	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011	gfar_write(&regs->maccfg2, tempval);
1012
1013	/* Initialize ECNTRL */
1014	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016	/* Set the dev->base_addr to the gfar reg region */
1017	dev->base_addr = (unsigned long) regs;
1018
1019	SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021	/* Fill in the dev structure */
1022	dev->watchdog_timeo = TX_TIMEOUT;
1023	dev->mtu = 1500;
1024	dev->netdev_ops = &gfar_netdev_ops;
1025	dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027	/* Register for napi ...We are registering NAPI for each grp */
1028	for (i = 0; i < priv->num_grps; i++)
1029		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1033			NETIF_F_RXCSUM;
1034		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1035			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1036	}
1037
1038	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1039		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040		dev->features |= NETIF_F_HW_VLAN_RX;
1041	}
1042
1043	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1044		priv->extended_hash = 1;
1045		priv->hash_width = 9;
1046
1047		priv->hash_regs[0] = &regs->igaddr0;
1048		priv->hash_regs[1] = &regs->igaddr1;
1049		priv->hash_regs[2] = &regs->igaddr2;
1050		priv->hash_regs[3] = &regs->igaddr3;
1051		priv->hash_regs[4] = &regs->igaddr4;
1052		priv->hash_regs[5] = &regs->igaddr5;
1053		priv->hash_regs[6] = &regs->igaddr6;
1054		priv->hash_regs[7] = &regs->igaddr7;
1055		priv->hash_regs[8] = &regs->gaddr0;
1056		priv->hash_regs[9] = &regs->gaddr1;
1057		priv->hash_regs[10] = &regs->gaddr2;
1058		priv->hash_regs[11] = &regs->gaddr3;
1059		priv->hash_regs[12] = &regs->gaddr4;
1060		priv->hash_regs[13] = &regs->gaddr5;
1061		priv->hash_regs[14] = &regs->gaddr6;
1062		priv->hash_regs[15] = &regs->gaddr7;
1063
1064	} else {
1065		priv->extended_hash = 0;
1066		priv->hash_width = 8;
1067
1068		priv->hash_regs[0] = &regs->gaddr0;
1069		priv->hash_regs[1] = &regs->gaddr1;
1070		priv->hash_regs[2] = &regs->gaddr2;
1071		priv->hash_regs[3] = &regs->gaddr3;
1072		priv->hash_regs[4] = &regs->gaddr4;
1073		priv->hash_regs[5] = &regs->gaddr5;
1074		priv->hash_regs[6] = &regs->gaddr6;
1075		priv->hash_regs[7] = &regs->gaddr7;
1076	}
1077
1078	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1079		priv->padding = DEFAULT_PADDING;
1080	else
1081		priv->padding = 0;
1082
1083	if (dev->features & NETIF_F_IP_CSUM ||
1084			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1085		dev->needed_headroom = GMAC_FCB_LEN;
1086
1087	/* Program the isrg regs only if number of grps > 1 */
1088	if (priv->num_grps > 1) {
1089		baddr = &regs->isrg0;
1090		for (i = 0; i < priv->num_grps; i++) {
1091			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1092			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1093			gfar_write(baddr, isrg);
1094			baddr++;
1095			isrg = 0x0;
1096		}
1097	}
1098
1099	/* Need to reverse the bit maps as  bit_map's MSB is q0
1100	 * but, for_each_set_bit parses from right to left, which
1101	 * basically reverses the queue numbers */
1102	for (i = 0; i< priv->num_grps; i++) {
1103		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1104				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1105		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1106				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1107	}
1108
1109	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110	 * also assign queues to groups */
1111	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1112		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1113		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1114				priv->num_rx_queues) {
1115			priv->gfargrp[grp_idx].num_rx_queues++;
1116			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1117			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1118			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1119		}
1120		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1121		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1122				priv->num_tx_queues) {
1123			priv->gfargrp[grp_idx].num_tx_queues++;
1124			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1126			tqueue = tqueue | (TQUEUE_EN0 >> i);
1127		}
1128		priv->gfargrp[grp_idx].rstat = rstat;
1129		priv->gfargrp[grp_idx].tstat = tstat;
1130		rstat = tstat =0;
1131	}
1132
1133	gfar_write(&regs->rqueue, rqueue);
1134	gfar_write(&regs->tqueue, tqueue);
1135
1136	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1137
1138	/* Initializing some of the rx/tx queue level parameters */
1139	for (i = 0; i < priv->num_tx_queues; i++) {
1140		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1141		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1142		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1143		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1144	}
1145
1146	for (i = 0; i < priv->num_rx_queues; i++) {
1147		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1148		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1149		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1150	}
1151
1152	/* always enable rx filer*/
1153	priv->rx_filer_enable = 1;
1154	/* Enable most messages by default */
1155	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157	/* Carrier starts down, phylib will bring it up */
1158	netif_carrier_off(dev);
1159
1160	err = register_netdev(dev);
1161
1162	if (err) {
1163		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1164		goto register_fail;
1165	}
1166
1167	device_init_wakeup(&dev->dev,
1168		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170	/* fill out IRQ number and name fields */
1171	for (i = 0; i < priv->num_grps; i++) {
1172		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1174				dev->name, "_g", '0' + i, "_tx");
1175			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1176				dev->name, "_g", '0' + i, "_rx");
1177			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1178				dev->name, "_g", '0' + i, "_er");
1179		} else
1180			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1181	}
1182
1183	/* Initialize the filer table */
1184	gfar_init_filer_table(priv);
1185
1186	/* Create all the sysfs files */
1187	gfar_init_sysfs(dev);
1188
1189	/* Print out the device info */
1190	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1191
1192	/* Even more device info helps when determining which kernel */
1193	/* provided which set of benchmarks. */
1194	netdev_info(dev, "Running with NAPI enabled\n");
1195	for (i = 0; i < priv->num_rx_queues; i++)
1196		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1197			    i, priv->rx_queue[i]->rx_ring_size);
1198	for(i = 0; i < priv->num_tx_queues; i++)
1199		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1200			    i, priv->tx_queue[i]->tx_ring_size);
1201
1202	return 0;
1203
1204register_fail:
1205	unmap_group_regs(priv);
1206	free_tx_pointers(priv);
1207	free_rx_pointers(priv);
1208	if (priv->phy_node)
1209		of_node_put(priv->phy_node);
1210	if (priv->tbi_node)
1211		of_node_put(priv->tbi_node);
1212	free_netdev(dev);
1213	return err;
1214}
1215
1216static int gfar_remove(struct platform_device *ofdev)
1217{
1218	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1219
1220	if (priv->phy_node)
1221		of_node_put(priv->phy_node);
1222	if (priv->tbi_node)
1223		of_node_put(priv->tbi_node);
1224
1225	dev_set_drvdata(&ofdev->dev, NULL);
1226
1227	unregister_netdev(priv->ndev);
1228	unmap_group_regs(priv);
1229	free_netdev(priv->ndev);
1230
1231	return 0;
1232}
1233
1234#ifdef CONFIG_PM
1235
1236static int gfar_suspend(struct device *dev)
1237{
1238	struct gfar_private *priv = dev_get_drvdata(dev);
1239	struct net_device *ndev = priv->ndev;
1240	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1241	unsigned long flags;
1242	u32 tempval;
1243
1244	int magic_packet = priv->wol_en &&
1245		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1246
1247	netif_device_detach(ndev);
1248
1249	if (netif_running(ndev)) {
1250
1251		local_irq_save(flags);
1252		lock_tx_qs(priv);
1253		lock_rx_qs(priv);
1254
1255		gfar_halt_nodisable(ndev);
1256
1257		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1258		tempval = gfar_read(&regs->maccfg1);
1259
1260		tempval &= ~MACCFG1_TX_EN;
1261
1262		if (!magic_packet)
1263			tempval &= ~MACCFG1_RX_EN;
1264
1265		gfar_write(&regs->maccfg1, tempval);
1266
1267		unlock_rx_qs(priv);
1268		unlock_tx_qs(priv);
1269		local_irq_restore(flags);
1270
1271		disable_napi(priv);
1272
1273		if (magic_packet) {
1274			/* Enable interrupt on Magic Packet */
1275			gfar_write(&regs->imask, IMASK_MAG);
1276
1277			/* Enable Magic Packet mode */
1278			tempval = gfar_read(&regs->maccfg2);
1279			tempval |= MACCFG2_MPEN;
1280			gfar_write(&regs->maccfg2, tempval);
1281		} else {
1282			phy_stop(priv->phydev);
1283		}
1284	}
1285
1286	return 0;
1287}
1288
1289static int gfar_resume(struct device *dev)
1290{
1291	struct gfar_private *priv = dev_get_drvdata(dev);
1292	struct net_device *ndev = priv->ndev;
1293	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1294	unsigned long flags;
1295	u32 tempval;
1296	int magic_packet = priv->wol_en &&
1297		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1298
1299	if (!netif_running(ndev)) {
1300		netif_device_attach(ndev);
1301		return 0;
1302	}
1303
1304	if (!magic_packet && priv->phydev)
1305		phy_start(priv->phydev);
1306
1307	/* Disable Magic Packet mode, in case something
1308	 * else woke us up.
1309	 */
1310	local_irq_save(flags);
1311	lock_tx_qs(priv);
1312	lock_rx_qs(priv);
1313
1314	tempval = gfar_read(&regs->maccfg2);
1315	tempval &= ~MACCFG2_MPEN;
1316	gfar_write(&regs->maccfg2, tempval);
1317
1318	gfar_start(ndev);
1319
1320	unlock_rx_qs(priv);
1321	unlock_tx_qs(priv);
1322	local_irq_restore(flags);
1323
1324	netif_device_attach(ndev);
1325
1326	enable_napi(priv);
1327
1328	return 0;
1329}
1330
1331static int gfar_restore(struct device *dev)
1332{
1333	struct gfar_private *priv = dev_get_drvdata(dev);
1334	struct net_device *ndev = priv->ndev;
1335
1336	if (!netif_running(ndev))
1337		return 0;
1338
1339	gfar_init_bds(ndev);
1340	init_registers(ndev);
1341	gfar_set_mac_address(ndev);
1342	gfar_init_mac(ndev);
1343	gfar_start(ndev);
1344
1345	priv->oldlink = 0;
1346	priv->oldspeed = 0;
1347	priv->oldduplex = -1;
1348
1349	if (priv->phydev)
1350		phy_start(priv->phydev);
1351
1352	netif_device_attach(ndev);
1353	enable_napi(priv);
1354
1355	return 0;
1356}
1357
1358static struct dev_pm_ops gfar_pm_ops = {
1359	.suspend = gfar_suspend,
1360	.resume = gfar_resume,
1361	.freeze = gfar_suspend,
1362	.thaw = gfar_resume,
1363	.restore = gfar_restore,
1364};
1365
1366#define GFAR_PM_OPS (&gfar_pm_ops)
1367
1368#else
1369
1370#define GFAR_PM_OPS NULL
1371
1372#endif
1373
1374/* Reads the controller's registers to determine what interface
1375 * connects it to the PHY.
1376 */
1377static phy_interface_t gfar_get_interface(struct net_device *dev)
1378{
1379	struct gfar_private *priv = netdev_priv(dev);
1380	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1381	u32 ecntrl;
1382
1383	ecntrl = gfar_read(&regs->ecntrl);
1384
1385	if (ecntrl & ECNTRL_SGMII_MODE)
1386		return PHY_INTERFACE_MODE_SGMII;
1387
1388	if (ecntrl & ECNTRL_TBI_MODE) {
1389		if (ecntrl & ECNTRL_REDUCED_MODE)
1390			return PHY_INTERFACE_MODE_RTBI;
1391		else
1392			return PHY_INTERFACE_MODE_TBI;
1393	}
1394
1395	if (ecntrl & ECNTRL_REDUCED_MODE) {
1396		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1397			return PHY_INTERFACE_MODE_RMII;
1398		else {
1399			phy_interface_t interface = priv->interface;
1400
1401			/*
1402			 * This isn't autodetected right now, so it must
1403			 * be set by the device tree or platform code.
1404			 */
1405			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1406				return PHY_INTERFACE_MODE_RGMII_ID;
1407
1408			return PHY_INTERFACE_MODE_RGMII;
1409		}
1410	}
1411
1412	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1413		return PHY_INTERFACE_MODE_GMII;
1414
1415	return PHY_INTERFACE_MODE_MII;
1416}
1417
1418
1419/* Initializes driver's PHY state, and attaches to the PHY.
1420 * Returns 0 on success.
1421 */
1422static int init_phy(struct net_device *dev)
1423{
1424	struct gfar_private *priv = netdev_priv(dev);
1425	uint gigabit_support =
1426		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1427		SUPPORTED_1000baseT_Full : 0;
1428	phy_interface_t interface;
1429
1430	priv->oldlink = 0;
1431	priv->oldspeed = 0;
1432	priv->oldduplex = -1;
1433
1434	interface = gfar_get_interface(dev);
1435
1436	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1437				      interface);
1438	if (!priv->phydev)
1439		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1440							 interface);
1441	if (!priv->phydev) {
1442		dev_err(&dev->dev, "could not attach to PHY\n");
1443		return -ENODEV;
1444	}
1445
1446	if (interface == PHY_INTERFACE_MODE_SGMII)
1447		gfar_configure_serdes(dev);
1448
1449	/* Remove any features not supported by the controller */
1450	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1451	priv->phydev->advertising = priv->phydev->supported;
1452
1453	return 0;
1454}
1455
1456/*
1457 * Initialize TBI PHY interface for communicating with the
1458 * SERDES lynx PHY on the chip.  We communicate with this PHY
1459 * through the MDIO bus on each controller, treating it as a
1460 * "normal" PHY at the address found in the TBIPA register.  We assume
1461 * that the TBIPA register is valid.  Either the MDIO bus code will set
1462 * it to a value that doesn't conflict with other PHYs on the bus, or the
1463 * value doesn't matter, as there are no other PHYs on the bus.
1464 */
1465static void gfar_configure_serdes(struct net_device *dev)
1466{
1467	struct gfar_private *priv = netdev_priv(dev);
1468	struct phy_device *tbiphy;
1469
1470	if (!priv->tbi_node) {
1471		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1472				    "device tree specify a tbi-handle\n");
1473		return;
1474	}
1475
1476	tbiphy = of_phy_find_device(priv->tbi_node);
1477	if (!tbiphy) {
1478		dev_err(&dev->dev, "error: Could not get TBI device\n");
1479		return;
1480	}
1481
1482	/*
1483	 * If the link is already up, we must already be ok, and don't need to
1484	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1485	 * everything for us?  Resetting it takes the link down and requires
1486	 * several seconds for it to come back.
1487	 */
1488	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1489		return;
1490
1491	/* Single clk mode, mii mode off(for serdes communication) */
1492	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1493
1494	phy_write(tbiphy, MII_ADVERTISE,
1495			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1496			ADVERTISE_1000XPSE_ASYM);
1497
1498	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1499			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1500}
1501
1502static void init_registers(struct net_device *dev)
1503{
1504	struct gfar_private *priv = netdev_priv(dev);
1505	struct gfar __iomem *regs = NULL;
1506	int i = 0;
1507
1508	for (i = 0; i < priv->num_grps; i++) {
1509		regs = priv->gfargrp[i].regs;
1510		/* Clear IEVENT */
1511		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1512
1513		/* Initialize IMASK */
1514		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1515	}
1516
1517	regs = priv->gfargrp[0].regs;
1518	/* Init hash registers to zero */
1519	gfar_write(&regs->igaddr0, 0);
1520	gfar_write(&regs->igaddr1, 0);
1521	gfar_write(&regs->igaddr2, 0);
1522	gfar_write(&regs->igaddr3, 0);
1523	gfar_write(&regs->igaddr4, 0);
1524	gfar_write(&regs->igaddr5, 0);
1525	gfar_write(&regs->igaddr6, 0);
1526	gfar_write(&regs->igaddr7, 0);
1527
1528	gfar_write(&regs->gaddr0, 0);
1529	gfar_write(&regs->gaddr1, 0);
1530	gfar_write(&regs->gaddr2, 0);
1531	gfar_write(&regs->gaddr3, 0);
1532	gfar_write(&regs->gaddr4, 0);
1533	gfar_write(&regs->gaddr5, 0);
1534	gfar_write(&regs->gaddr6, 0);
1535	gfar_write(&regs->gaddr7, 0);
1536
1537	/* Zero out the rmon mib registers if it has them */
1538	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1539		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1540
1541		/* Mask off the CAM interrupts */
1542		gfar_write(&regs->rmon.cam1, 0xffffffff);
1543		gfar_write(&regs->rmon.cam2, 0xffffffff);
1544	}
1545
1546	/* Initialize the max receive buffer length */
1547	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1548
1549	/* Initialize the Minimum Frame Length Register */
1550	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1551}
1552
1553static int __gfar_is_rx_idle(struct gfar_private *priv)
1554{
1555	u32 res;
1556
1557	/*
1558	 * Normaly TSEC should not hang on GRS commands, so we should
1559	 * actually wait for IEVENT_GRSC flag.
1560	 */
1561	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1562		return 0;
1563
1564	/*
1565	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1566	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1567	 * and the Rx can be safely reset.
1568	 */
1569	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1570	res &= 0x7f807f80;
1571	if ((res & 0xffff) == (res >> 16))
1572		return 1;
1573
1574	return 0;
1575}
1576
1577/* Halt the receive and transmit queues */
1578static void gfar_halt_nodisable(struct net_device *dev)
1579{
1580	struct gfar_private *priv = netdev_priv(dev);
1581	struct gfar __iomem *regs = NULL;
1582	u32 tempval;
1583	int i = 0;
1584
1585	for (i = 0; i < priv->num_grps; i++) {
1586		regs = priv->gfargrp[i].regs;
1587		/* Mask all interrupts */
1588		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1589
1590		/* Clear all interrupts */
1591		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1592	}
1593
1594	regs = priv->gfargrp[0].regs;
1595	/* Stop the DMA, and wait for it to stop */
1596	tempval = gfar_read(&regs->dmactrl);
1597	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1598	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1599		int ret;
1600
1601		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1602		gfar_write(&regs->dmactrl, tempval);
1603
1604		do {
1605			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1606				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1607				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1608			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1609				ret = __gfar_is_rx_idle(priv);
1610		} while (!ret);
1611	}
1612}
1613
1614/* Halt the receive and transmit queues */
1615void gfar_halt(struct net_device *dev)
1616{
1617	struct gfar_private *priv = netdev_priv(dev);
1618	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619	u32 tempval;
1620
1621	gfar_halt_nodisable(dev);
1622
1623	/* Disable Rx and Tx */
1624	tempval = gfar_read(&regs->maccfg1);
1625	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1626	gfar_write(&regs->maccfg1, tempval);
1627}
1628
1629static void free_grp_irqs(struct gfar_priv_grp *grp)
1630{
1631	free_irq(grp->interruptError, grp);
1632	free_irq(grp->interruptTransmit, grp);
1633	free_irq(grp->interruptReceive, grp);
1634}
1635
1636void stop_gfar(struct net_device *dev)
1637{
1638	struct gfar_private *priv = netdev_priv(dev);
1639	unsigned long flags;
1640	int i;
1641
1642	phy_stop(priv->phydev);
1643
1644
1645	/* Lock it down */
1646	local_irq_save(flags);
1647	lock_tx_qs(priv);
1648	lock_rx_qs(priv);
1649
1650	gfar_halt(dev);
1651
1652	unlock_rx_qs(priv);
1653	unlock_tx_qs(priv);
1654	local_irq_restore(flags);
1655
1656	/* Free the IRQs */
1657	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1658		for (i = 0; i < priv->num_grps; i++)
1659			free_grp_irqs(&priv->gfargrp[i]);
1660	} else {
1661		for (i = 0; i < priv->num_grps; i++)
1662			free_irq(priv->gfargrp[i].interruptTransmit,
1663					&priv->gfargrp[i]);
1664	}
1665
1666	free_skb_resources(priv);
1667}
1668
1669static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1670{
1671	struct txbd8 *txbdp;
1672	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1673	int i, j;
1674
1675	txbdp = tx_queue->tx_bd_base;
1676
1677	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1678		if (!tx_queue->tx_skbuff[i])
1679			continue;
1680
1681		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1682				txbdp->length, DMA_TO_DEVICE);
1683		txbdp->lstatus = 0;
1684		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1685				j++) {
1686			txbdp++;
1687			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1688					txbdp->length, DMA_TO_DEVICE);
1689		}
1690		txbdp++;
1691		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1692		tx_queue->tx_skbuff[i] = NULL;
1693	}
1694	kfree(tx_queue->tx_skbuff);
1695}
1696
1697static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1698{
1699	struct rxbd8 *rxbdp;
1700	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1701	int i;
1702
1703	rxbdp = rx_queue->rx_bd_base;
1704
1705	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1706		if (rx_queue->rx_skbuff[i]) {
1707			dma_unmap_single(&priv->ofdev->dev,
1708					rxbdp->bufPtr, priv->rx_buffer_size,
1709					DMA_FROM_DEVICE);
1710			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1711			rx_queue->rx_skbuff[i] = NULL;
1712		}
1713		rxbdp->lstatus = 0;
1714		rxbdp->bufPtr = 0;
1715		rxbdp++;
1716	}
1717	kfree(rx_queue->rx_skbuff);
1718}
1719
1720/* If there are any tx skbs or rx skbs still around, free them.
1721 * Then free tx_skbuff and rx_skbuff */
1722static void free_skb_resources(struct gfar_private *priv)
1723{
1724	struct gfar_priv_tx_q *tx_queue = NULL;
1725	struct gfar_priv_rx_q *rx_queue = NULL;
1726	int i;
1727
1728	/* Go through all the buffer descriptors and free their data buffers */
1729	for (i = 0; i < priv->num_tx_queues; i++) {
1730		struct netdev_queue *txq;
1731		tx_queue = priv->tx_queue[i];
1732		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1733		if(tx_queue->tx_skbuff)
1734			free_skb_tx_queue(tx_queue);
1735		netdev_tx_reset_queue(txq);
1736	}
1737
1738	for (i = 0; i < priv->num_rx_queues; i++) {
1739		rx_queue = priv->rx_queue[i];
1740		if(rx_queue->rx_skbuff)
1741			free_skb_rx_queue(rx_queue);
1742	}
1743
1744	dma_free_coherent(&priv->ofdev->dev,
1745			sizeof(struct txbd8) * priv->total_tx_ring_size +
1746			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1747			priv->tx_queue[0]->tx_bd_base,
1748			priv->tx_queue[0]->tx_bd_dma_base);
1749	skb_queue_purge(&priv->rx_recycle);
1750}
1751
1752void gfar_start(struct net_device *dev)
1753{
1754	struct gfar_private *priv = netdev_priv(dev);
1755	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756	u32 tempval;
1757	int i = 0;
1758
1759	/* Enable Rx and Tx in MACCFG1 */
1760	tempval = gfar_read(&regs->maccfg1);
1761	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1762	gfar_write(&regs->maccfg1, tempval);
1763
1764	/* Initialize DMACTRL to have WWR and WOP */
1765	tempval = gfar_read(&regs->dmactrl);
1766	tempval |= DMACTRL_INIT_SETTINGS;
1767	gfar_write(&regs->dmactrl, tempval);
1768
1769	/* Make sure we aren't stopped */
1770	tempval = gfar_read(&regs->dmactrl);
1771	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1772	gfar_write(&regs->dmactrl, tempval);
1773
1774	for (i = 0; i < priv->num_grps; i++) {
1775		regs = priv->gfargrp[i].regs;
1776		/* Clear THLT/RHLT, so that the DMA starts polling now */
1777		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1778		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1779		/* Unmask the interrupts we look for */
1780		gfar_write(&regs->imask, IMASK_DEFAULT);
1781	}
1782
1783	dev->trans_start = jiffies; /* prevent tx timeout */
1784}
1785
1786void gfar_configure_coalescing(struct gfar_private *priv,
1787	unsigned long tx_mask, unsigned long rx_mask)
1788{
1789	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790	u32 __iomem *baddr;
1791	int i = 0;
1792
1793	/* Backward compatible case ---- even if we enable
1794	 * multiple queues, there's only single reg to program
1795	 */
1796	gfar_write(&regs->txic, 0);
1797	if(likely(priv->tx_queue[0]->txcoalescing))
1798		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1799
1800	gfar_write(&regs->rxic, 0);
1801	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1802		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1803
1804	if (priv->mode == MQ_MG_MODE) {
1805		baddr = &regs->txic0;
1806		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1807			gfar_write(baddr + i, 0);
1808			if (likely(priv->tx_queue[i]->txcoalescing))
1809				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1810		}
1811
1812		baddr = &regs->rxic0;
1813		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1814			gfar_write(baddr + i, 0);
1815			if (likely(priv->rx_queue[i]->rxcoalescing))
1816				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1817		}
1818	}
1819}
1820
1821static int register_grp_irqs(struct gfar_priv_grp *grp)
1822{
1823	struct gfar_private *priv = grp->priv;
1824	struct net_device *dev = priv->ndev;
1825	int err;
1826
1827	/* If the device has multiple interrupts, register for
1828	 * them.  Otherwise, only register for the one */
1829	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1830		/* Install our interrupt handlers for Error,
1831		 * Transmit, and Receive */
1832		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1833				grp->int_name_er,grp)) < 0) {
1834			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1835				  grp->interruptError);
1836
1837			goto err_irq_fail;
1838		}
1839
1840		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1841				0, grp->int_name_tx, grp)) < 0) {
1842			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1843				  grp->interruptTransmit);
1844			goto tx_irq_fail;
1845		}
1846
1847		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1848				grp->int_name_rx, grp)) < 0) {
1849			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1850				  grp->interruptReceive);
1851			goto rx_irq_fail;
1852		}
1853	} else {
1854		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1855				grp->int_name_tx, grp)) < 0) {
1856			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1857				  grp->interruptTransmit);
1858			goto err_irq_fail;
1859		}
1860	}
1861
1862	return 0;
1863
1864rx_irq_fail:
1865	free_irq(grp->interruptTransmit, grp);
1866tx_irq_fail:
1867	free_irq(grp->interruptError, grp);
1868err_irq_fail:
1869	return err;
1870
1871}
1872
1873/* Bring the controller up and running */
1874int startup_gfar(struct net_device *ndev)
1875{
1876	struct gfar_private *priv = netdev_priv(ndev);
1877	struct gfar __iomem *regs = NULL;
1878	int err, i, j;
1879
1880	for (i = 0; i < priv->num_grps; i++) {
1881		regs= priv->gfargrp[i].regs;
1882		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1883	}
1884
1885	regs= priv->gfargrp[0].regs;
1886	err = gfar_alloc_skb_resources(ndev);
1887	if (err)
1888		return err;
1889
1890	gfar_init_mac(ndev);
1891
1892	for (i = 0; i < priv->num_grps; i++) {
1893		err = register_grp_irqs(&priv->gfargrp[i]);
1894		if (err) {
1895			for (j = 0; j < i; j++)
1896				free_grp_irqs(&priv->gfargrp[j]);
1897			goto irq_fail;
1898		}
1899	}
1900
1901	/* Start the controller */
1902	gfar_start(ndev);
1903
1904	phy_start(priv->phydev);
1905
1906	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1907
1908	return 0;
1909
1910irq_fail:
1911	free_skb_resources(priv);
1912	return err;
1913}
1914
1915/* Called when something needs to use the ethernet device */
1916/* Returns 0 for success. */
1917static int gfar_enet_open(struct net_device *dev)
1918{
1919	struct gfar_private *priv = netdev_priv(dev);
1920	int err;
1921
1922	enable_napi(priv);
1923
1924	skb_queue_head_init(&priv->rx_recycle);
1925
1926	/* Initialize a bunch of registers */
1927	init_registers(dev);
1928
1929	gfar_set_mac_address(dev);
1930
1931	err = init_phy(dev);
1932
1933	if (err) {
1934		disable_napi(priv);
1935		return err;
1936	}
1937
1938	err = startup_gfar(dev);
1939	if (err) {
1940		disable_napi(priv);
1941		return err;
1942	}
1943
1944	netif_tx_start_all_queues(dev);
1945
1946	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1947
1948	return err;
1949}
1950
1951static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1952{
1953	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1954
1955	memset(fcb, 0, GMAC_FCB_LEN);
1956
1957	return fcb;
1958}
1959
1960static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1961		int fcb_length)
1962{
1963	u8 flags = 0;
1964
1965	/* If we're here, it's a IP packet with a TCP or UDP
1966	 * payload.  We set it to checksum, using a pseudo-header
1967	 * we provide
1968	 */
1969	flags = TXFCB_DEFAULT;
1970
1971	/* Tell the controller what the protocol is */
1972	/* And provide the already calculated phcs */
1973	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1974		flags |= TXFCB_UDP;
1975		fcb->phcs = udp_hdr(skb)->check;
1976	} else
1977		fcb->phcs = tcp_hdr(skb)->check;
1978
1979	/* l3os is the distance between the start of the
1980	 * frame (skb->data) and the start of the IP hdr.
1981	 * l4os is the distance between the start of the
1982	 * l3 hdr and the l4 hdr */
1983	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1984	fcb->l4os = skb_network_header_len(skb);
1985
1986	fcb->flags = flags;
1987}
1988
1989void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1990{
1991	fcb->flags |= TXFCB_VLN;
1992	fcb->vlctl = vlan_tx_tag_get(skb);
1993}
1994
1995static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1996			       struct txbd8 *base, int ring_size)
1997{
1998	struct txbd8 *new_bd = bdp + stride;
1999
2000	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2001}
2002
2003static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2004		int ring_size)
2005{
2006	return skip_txbd(bdp, 1, base, ring_size);
2007}
2008
2009/* This is called by the kernel when a frame is ready for transmission. */
2010/* It is pointed to by the dev->hard_start_xmit function pointer */
2011static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2012{
2013	struct gfar_private *priv = netdev_priv(dev);
2014	struct gfar_priv_tx_q *tx_queue = NULL;
2015	struct netdev_queue *txq;
2016	struct gfar __iomem *regs = NULL;
2017	struct txfcb *fcb = NULL;
2018	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2019	u32 lstatus;
2020	int i, rq = 0, do_tstamp = 0;
2021	u32 bufaddr;
2022	unsigned long flags;
2023	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2024
2025	/*
2026	 * TOE=1 frames larger than 2500 bytes may see excess delays
2027	 * before start of transmission.
2028	 */
2029	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2030			skb->ip_summed == CHECKSUM_PARTIAL &&
2031			skb->len > 2500)) {
2032		int ret;
2033
2034		ret = skb_checksum_help(skb);
2035		if (ret)
2036			return ret;
2037	}
2038
2039	rq = skb->queue_mapping;
2040	tx_queue = priv->tx_queue[rq];
2041	txq = netdev_get_tx_queue(dev, rq);
2042	base = tx_queue->tx_bd_base;
2043	regs = tx_queue->grp->regs;
2044
2045	/* check if time stamp should be generated */
2046	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2047			priv->hwts_tx_en)) {
2048		do_tstamp = 1;
2049		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2050	}
2051
2052	/* make space for additional header when fcb is needed */
2053	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2054			vlan_tx_tag_present(skb) ||
2055			unlikely(do_tstamp)) &&
2056			(skb_headroom(skb) < fcb_length)) {
2057		struct sk_buff *skb_new;
2058
2059		skb_new = skb_realloc_headroom(skb, fcb_length);
2060		if (!skb_new) {
2061			dev->stats.tx_errors++;
2062			kfree_skb(skb);
2063			return NETDEV_TX_OK;
2064		}
2065
2066		if (skb->sk)
2067			skb_set_owner_w(skb_new, skb->sk);
2068		consume_skb(skb);
2069		skb = skb_new;
2070	}
2071
2072	/* total number of fragments in the SKB */
2073	nr_frags = skb_shinfo(skb)->nr_frags;
2074
2075	/* calculate the required number of TxBDs for this skb */
2076	if (unlikely(do_tstamp))
2077		nr_txbds = nr_frags + 2;
2078	else
2079		nr_txbds = nr_frags + 1;
2080
2081	/* check if there is space to queue this packet */
2082	if (nr_txbds > tx_queue->num_txbdfree) {
2083		/* no space, stop the queue */
2084		netif_tx_stop_queue(txq);
2085		dev->stats.tx_fifo_errors++;
2086		return NETDEV_TX_BUSY;
2087	}
2088
2089	/* Update transmit stats */
2090	tx_queue->stats.tx_bytes += skb->len;
2091	tx_queue->stats.tx_packets++;
2092
2093	txbdp = txbdp_start = tx_queue->cur_tx;
2094	lstatus = txbdp->lstatus;
2095
2096	/* Time stamp insertion requires one additional TxBD */
2097	if (unlikely(do_tstamp))
2098		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2099				tx_queue->tx_ring_size);
2100
2101	if (nr_frags == 0) {
2102		if (unlikely(do_tstamp))
2103			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2104					TXBD_INTERRUPT);
2105		else
2106			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2107	} else {
2108		/* Place the fragment addresses and lengths into the TxBDs */
2109		for (i = 0; i < nr_frags; i++) {
2110			/* Point at the next BD, wrapping as needed */
2111			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2112
2113			length = skb_shinfo(skb)->frags[i].size;
2114
2115			lstatus = txbdp->lstatus | length |
2116				BD_LFLAG(TXBD_READY);
2117
2118			/* Handle the last BD specially */
2119			if (i == nr_frags - 1)
2120				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2121
2122			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2123						   &skb_shinfo(skb)->frags[i],
2124						   0,
2125						   length,
2126						   DMA_TO_DEVICE);
2127
2128			/* set the TxBD length and buffer pointer */
2129			txbdp->bufPtr = bufaddr;
2130			txbdp->lstatus = lstatus;
2131		}
2132
2133		lstatus = txbdp_start->lstatus;
2134	}
2135
2136	/* Add TxPAL between FCB and frame if required */
2137	if (unlikely(do_tstamp)) {
2138		skb_push(skb, GMAC_TXPAL_LEN);
2139		memset(skb->data, 0, GMAC_TXPAL_LEN);
2140	}
2141
2142	/* Set up checksumming */
2143	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2144		fcb = gfar_add_fcb(skb);
2145		/* as specified by errata */
2146		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2147			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2148			__skb_pull(skb, GMAC_FCB_LEN);
2149			skb_checksum_help(skb);
2150		} else {
2151			lstatus |= BD_LFLAG(TXBD_TOE);
2152			gfar_tx_checksum(skb, fcb, fcb_length);
2153		}
2154	}
2155
2156	if (vlan_tx_tag_present(skb)) {
2157		if (unlikely(NULL == fcb)) {
2158			fcb = gfar_add_fcb(skb);
2159			lstatus |= BD_LFLAG(TXBD_TOE);
2160		}
2161
2162		gfar_tx_vlan(skb, fcb);
2163	}
2164
2165	/* Setup tx hardware time stamping if requested */
2166	if (unlikely(do_tstamp)) {
2167		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2168		if (fcb == NULL)
2169			fcb = gfar_add_fcb(skb);
2170		fcb->ptp = 1;
2171		lstatus |= BD_LFLAG(TXBD_TOE);
2172	}
2173
2174	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2175			skb_headlen(skb), DMA_TO_DEVICE);
2176
2177	/*
2178	 * If time stamping is requested one additional TxBD must be set up. The
2179	 * first TxBD points to the FCB and must have a data length of
2180	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2181	 * the full frame length.
2182	 */
2183	if (unlikely(do_tstamp)) {
2184		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2185		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2186				(skb_headlen(skb) - fcb_length);
2187		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2188	} else {
2189		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2190	}
2191
2192	netdev_tx_sent_queue(txq, skb->len);
2193
2194	/*
2195	 * We can work in parallel with gfar_clean_tx_ring(), except
2196	 * when modifying num_txbdfree. Note that we didn't grab the lock
2197	 * when we were reading the num_txbdfree and checking for available
2198	 * space, that's because outside of this function it can only grow,
2199	 * and once we've got needed space, it cannot suddenly disappear.
2200	 *
2201	 * The lock also protects us from gfar_error(), which can modify
2202	 * regs->tstat and thus retrigger the transfers, which is why we
2203	 * also must grab the lock before setting ready bit for the first
2204	 * to be transmitted BD.
2205	 */
2206	spin_lock_irqsave(&tx_queue->txlock, flags);
2207
2208	/*
2209	 * The powerpc-specific eieio() is used, as wmb() has too strong
2210	 * semantics (it requires synchronization between cacheable and
2211	 * uncacheable mappings, which eieio doesn't provide and which we
2212	 * don't need), thus requiring a more expensive sync instruction.  At
2213	 * some point, the set of architecture-independent barrier functions
2214	 * should be expanded to include weaker barriers.
2215	 */
2216	eieio();
2217
2218	txbdp_start->lstatus = lstatus;
2219
2220	eieio(); /* force lstatus write before tx_skbuff */
2221
2222	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2223
2224	/* Update the current skb pointer to the next entry we will use
2225	 * (wrapping if necessary) */
2226	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2227		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2228
2229	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2230
2231	/* reduce TxBD free count */
2232	tx_queue->num_txbdfree -= (nr_txbds);
2233
2234	/* If the next BD still needs to be cleaned up, then the bds
2235	   are full.  We need to tell the kernel to stop sending us stuff. */
2236	if (!tx_queue->num_txbdfree) {
2237		netif_tx_stop_queue(txq);
2238
2239		dev->stats.tx_fifo_errors++;
2240	}
2241
2242	/* Tell the DMA to go go go */
2243	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2244
2245	/* Unlock priv */
2246	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2247
2248	return NETDEV_TX_OK;
2249}
2250
2251/* Stops the kernel queue, and halts the controller */
2252static int gfar_close(struct net_device *dev)
2253{
2254	struct gfar_private *priv = netdev_priv(dev);
2255
2256	disable_napi(priv);
2257
2258	cancel_work_sync(&priv->reset_task);
2259	stop_gfar(dev);
2260
2261	/* Disconnect from the PHY */
2262	phy_disconnect(priv->phydev);
2263	priv->phydev = NULL;
2264
2265	netif_tx_stop_all_queues(dev);
2266
2267	return 0;
2268}
2269
2270/* Changes the mac address if the controller is not running. */
2271static int gfar_set_mac_address(struct net_device *dev)
2272{
2273	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2274
2275	return 0;
2276}
2277
2278/* Check if rx parser should be activated */
2279void gfar_check_rx_parser_mode(struct gfar_private *priv)
2280{
2281	struct gfar __iomem *regs;
2282	u32 tempval;
2283
2284	regs = priv->gfargrp[0].regs;
2285
2286	tempval = gfar_read(&regs->rctrl);
2287	/* If parse is no longer required, then disable parser */
2288	if (tempval & RCTRL_REQ_PARSER)
2289		tempval |= RCTRL_PRSDEP_INIT;
2290	else
2291		tempval &= ~RCTRL_PRSDEP_INIT;
2292	gfar_write(&regs->rctrl, tempval);
2293}
2294
2295/* Enables and disables VLAN insertion/extraction */
2296void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2297{
2298	struct gfar_private *priv = netdev_priv(dev);
2299	struct gfar __iomem *regs = NULL;
2300	unsigned long flags;
2301	u32 tempval;
2302
2303	regs = priv->gfargrp[0].regs;
2304	local_irq_save(flags);
2305	lock_rx_qs(priv);
2306
2307	if (features & NETIF_F_HW_VLAN_TX) {
2308		/* Enable VLAN tag insertion */
2309		tempval = gfar_read(&regs->tctrl);
2310		tempval |= TCTRL_VLINS;
2311		gfar_write(&regs->tctrl, tempval);
2312	} else {
2313		/* Disable VLAN tag insertion */
2314		tempval = gfar_read(&regs->tctrl);
2315		tempval &= ~TCTRL_VLINS;
2316		gfar_write(&regs->tctrl, tempval);
2317	}
2318
2319	if (features & NETIF_F_HW_VLAN_RX) {
2320		/* Enable VLAN tag extraction */
2321		tempval = gfar_read(&regs->rctrl);
2322		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2323		gfar_write(&regs->rctrl, tempval);
2324	} else {
2325		/* Disable VLAN tag extraction */
2326		tempval = gfar_read(&regs->rctrl);
2327		tempval &= ~RCTRL_VLEX;
2328		gfar_write(&regs->rctrl, tempval);
2329
2330		gfar_check_rx_parser_mode(priv);
2331	}
2332
2333	gfar_change_mtu(dev, dev->mtu);
2334
2335	unlock_rx_qs(priv);
2336	local_irq_restore(flags);
2337}
2338
2339static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2340{
2341	int tempsize, tempval;
2342	struct gfar_private *priv = netdev_priv(dev);
2343	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2344	int oldsize = priv->rx_buffer_size;
2345	int frame_size = new_mtu + ETH_HLEN;
2346
2347	if (gfar_is_vlan_on(priv))
2348		frame_size += VLAN_HLEN;
2349
2350	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2351		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2352		return -EINVAL;
2353	}
2354
2355	if (gfar_uses_fcb(priv))
2356		frame_size += GMAC_FCB_LEN;
2357
2358	frame_size += priv->padding;
2359
2360	tempsize =
2361	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2362	    INCREMENTAL_BUFFER_SIZE;
2363
2364	/* Only stop and start the controller if it isn't already
2365	 * stopped, and we changed something */
2366	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2367		stop_gfar(dev);
2368
2369	priv->rx_buffer_size = tempsize;
2370
2371	dev->mtu = new_mtu;
2372
2373	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2374	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2375
2376	/* If the mtu is larger than the max size for standard
2377	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2378	 * to allow huge frames, and to check the length */
2379	tempval = gfar_read(&regs->maccfg2);
2380
2381	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2382			gfar_has_errata(priv, GFAR_ERRATA_74))
2383		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2384	else
2385		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2386
2387	gfar_write(&regs->maccfg2, tempval);
2388
2389	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2390		startup_gfar(dev);
2391
2392	return 0;
2393}
2394
2395/* gfar_reset_task gets scheduled when a packet has not been
2396 * transmitted after a set amount of time.
2397 * For now, assume that clearing out all the structures, and
2398 * starting over will fix the problem.
2399 */
2400static void gfar_reset_task(struct work_struct *work)
2401{
2402	struct gfar_private *priv = container_of(work, struct gfar_private,
2403			reset_task);
2404	struct net_device *dev = priv->ndev;
2405
2406	if (dev->flags & IFF_UP) {
2407		netif_tx_stop_all_queues(dev);
2408		stop_gfar(dev);
2409		startup_gfar(dev);
2410		netif_tx_start_all_queues(dev);
2411	}
2412
2413	netif_tx_schedule_all(dev);
2414}
2415
2416static void gfar_timeout(struct net_device *dev)
2417{
2418	struct gfar_private *priv = netdev_priv(dev);
2419
2420	dev->stats.tx_errors++;
2421	schedule_work(&priv->reset_task);
2422}
2423
2424static void gfar_align_skb(struct sk_buff *skb)
2425{
2426	/* We need the data buffer to be aligned properly.  We will reserve
2427	 * as many bytes as needed to align the data properly
2428	 */
2429	skb_reserve(skb, RXBUF_ALIGNMENT -
2430		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2431}
2432
2433/* Interrupt Handler for Transmit complete */
2434static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2435{
2436	struct net_device *dev = tx_queue->dev;
2437	struct netdev_queue *txq;
2438	struct gfar_private *priv = netdev_priv(dev);
2439	struct gfar_priv_rx_q *rx_queue = NULL;
2440	struct txbd8 *bdp, *next = NULL;
2441	struct txbd8 *lbdp = NULL;
2442	struct txbd8 *base = tx_queue->tx_bd_base;
2443	struct sk_buff *skb;
2444	int skb_dirtytx;
2445	int tx_ring_size = tx_queue->tx_ring_size;
2446	int frags = 0, nr_txbds = 0;
2447	int i;
2448	int howmany = 0;
2449	int tqi = tx_queue->qindex;
2450	unsigned int bytes_sent = 0;
2451	u32 lstatus;
2452	size_t buflen;
2453
2454	rx_queue = priv->rx_queue[tqi];
2455	txq = netdev_get_tx_queue(dev, tqi);
2456	bdp = tx_queue->dirty_tx;
2457	skb_dirtytx = tx_queue->skb_dirtytx;
2458
2459	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2460		unsigned long flags;
2461
2462		frags = skb_shinfo(skb)->nr_frags;
2463
2464		/*
2465		 * When time stamping, one additional TxBD must be freed.
2466		 * Also, we need to dma_unmap_single() the TxPAL.
2467		 */
2468		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2469			nr_txbds = frags + 2;
2470		else
2471			nr_txbds = frags + 1;
2472
2473		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2474
2475		lstatus = lbdp->lstatus;
2476
2477		/* Only clean completed frames */
2478		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2479				(lstatus & BD_LENGTH_MASK))
2480			break;
2481
2482		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2483			next = next_txbd(bdp, base, tx_ring_size);
2484			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2485		} else
2486			buflen = bdp->length;
2487
2488		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2489				buflen, DMA_TO_DEVICE);
2490
2491		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2492			struct skb_shared_hwtstamps shhwtstamps;
2493			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2494			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2495			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2496			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2497			skb_tstamp_tx(skb, &shhwtstamps);
2498			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2499			bdp = next;
2500		}
2501
2502		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2503		bdp = next_txbd(bdp, base, tx_ring_size);
2504
2505		for (i = 0; i < frags; i++) {
2506			dma_unmap_page(&priv->ofdev->dev,
2507					bdp->bufPtr,
2508					bdp->length,
2509					DMA_TO_DEVICE);
2510			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511			bdp = next_txbd(bdp, base, tx_ring_size);
2512		}
2513
2514		bytes_sent += skb->len;
2515
2516		/*
2517		 * If there's room in the queue (limit it to rx_buffer_size)
2518		 * we add this skb back into the pool, if it's the right size
2519		 */
2520		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2521				skb_recycle_check(skb, priv->rx_buffer_size +
2522					RXBUF_ALIGNMENT)) {
2523			gfar_align_skb(skb);
2524			skb_queue_head(&priv->rx_recycle, skb);
2525		} else
2526			dev_kfree_skb_any(skb);
2527
2528		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2529
2530		skb_dirtytx = (skb_dirtytx + 1) &
2531			TX_RING_MOD_MASK(tx_ring_size);
2532
2533		howmany++;
2534		spin_lock_irqsave(&tx_queue->txlock, flags);
2535		tx_queue->num_txbdfree += nr_txbds;
2536		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2537	}
2538
2539	/* If we freed a buffer, we can restart transmission, if necessary */
2540	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2541		netif_wake_subqueue(dev, tqi);
2542
2543	/* Update dirty indicators */
2544	tx_queue->skb_dirtytx = skb_dirtytx;
2545	tx_queue->dirty_tx = bdp;
2546
2547	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2548
2549	return howmany;
2550}
2551
2552static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2553{
2554	unsigned long flags;
2555
2556	spin_lock_irqsave(&gfargrp->grplock, flags);
2557	if (napi_schedule_prep(&gfargrp->napi)) {
2558		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2559		__napi_schedule(&gfargrp->napi);
2560	} else {
2561		/*
2562		 * Clear IEVENT, so interrupts aren't called again
2563		 * because of the packets that have already arrived.
2564		 */
2565		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2566	}
2567	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2568
2569}
2570
2571/* Interrupt Handler for Transmit complete */
2572static irqreturn_t gfar_transmit(int irq, void *grp_id)
2573{
2574	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2575	return IRQ_HANDLED;
2576}
2577
2578static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2579		struct sk_buff *skb)
2580{
2581	struct net_device *dev = rx_queue->dev;
2582	struct gfar_private *priv = netdev_priv(dev);
2583	dma_addr_t buf;
2584
2585	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2586			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2587	gfar_init_rxbdp(rx_queue, bdp, buf);
2588}
2589
2590static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2591{
2592	struct gfar_private *priv = netdev_priv(dev);
2593	struct sk_buff *skb = NULL;
2594
2595	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2596	if (!skb)
2597		return NULL;
2598
2599	gfar_align_skb(skb);
2600
2601	return skb;
2602}
2603
2604struct sk_buff * gfar_new_skb(struct net_device *dev)
2605{
2606	struct gfar_private *priv = netdev_priv(dev);
2607	struct sk_buff *skb = NULL;
2608
2609	skb = skb_dequeue(&priv->rx_recycle);
2610	if (!skb)
2611		skb = gfar_alloc_skb(dev);
2612
2613	return skb;
2614}
2615
2616static inline void count_errors(unsigned short status, struct net_device *dev)
2617{
2618	struct gfar_private *priv = netdev_priv(dev);
2619	struct net_device_stats *stats = &dev->stats;
2620	struct gfar_extra_stats *estats = &priv->extra_stats;
2621
2622	/* If the packet was truncated, none of the other errors
2623	 * matter */
2624	if (status & RXBD_TRUNCATED) {
2625		stats->rx_length_errors++;
2626
2627		estats->rx_trunc++;
2628
2629		return;
2630	}
2631	/* Count the errors, if there were any */
2632	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2633		stats->rx_length_errors++;
2634
2635		if (status & RXBD_LARGE)
2636			estats->rx_large++;
2637		else
2638			estats->rx_short++;
2639	}
2640	if (status & RXBD_NONOCTET) {
2641		stats->rx_frame_errors++;
2642		estats->rx_nonoctet++;
2643	}
2644	if (status & RXBD_CRCERR) {
2645		estats->rx_crcerr++;
2646		stats->rx_crc_errors++;
2647	}
2648	if (status & RXBD_OVERRUN) {
2649		estats->rx_overrun++;
2650		stats->rx_crc_errors++;
2651	}
2652}
2653
2654irqreturn_t gfar_receive(int irq, void *grp_id)
2655{
2656	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2657	return IRQ_HANDLED;
2658}
2659
2660static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2661{
2662	/* If valid headers were found, and valid sums
2663	 * were verified, then we tell the kernel that no
2664	 * checksumming is necessary.  Otherwise, it is */
2665	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2666		skb->ip_summed = CHECKSUM_UNNECESSARY;
2667	else
2668		skb_checksum_none_assert(skb);
2669}
2670
2671
2672/* gfar_process_frame() -- handle one incoming packet if skb
2673 * isn't NULL.  */
2674static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2675			      int amount_pull, struct napi_struct *napi)
2676{
2677	struct gfar_private *priv = netdev_priv(dev);
2678	struct rxfcb *fcb = NULL;
2679
2680	gro_result_t ret;
2681
2682	/* fcb is at the beginning if exists */
2683	fcb = (struct rxfcb *)skb->data;
2684
2685	/* Remove the FCB from the skb */
2686	/* Remove the padded bytes, if there are any */
2687	if (amount_pull) {
2688		skb_record_rx_queue(skb, fcb->rq);
2689		skb_pull(skb, amount_pull);
2690	}
2691
2692	/* Get receive timestamp from the skb */
2693	if (priv->hwts_rx_en) {
2694		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2695		u64 *ns = (u64 *) skb->data;
2696		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2697		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2698	}
2699
2700	if (priv->padding)
2701		skb_pull(skb, priv->padding);
2702
2703	if (dev->features & NETIF_F_RXCSUM)
2704		gfar_rx_checksum(skb, fcb);
2705
2706	/* Tell the skb what kind of packet this is */
2707	skb->protocol = eth_type_trans(skb, dev);
2708
2709	/*
2710	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2711	 * Even if vlan rx accel is disabled, on some chips
2712	 * RXFCB_VLN is pseudo randomly set.
2713	 */
2714	if (dev->features & NETIF_F_HW_VLAN_RX &&
2715	    fcb->flags & RXFCB_VLN)
2716		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2717
2718	/* Send the packet up the stack */
2719	ret = napi_gro_receive(napi, skb);
2720
2721	if (GRO_DROP == ret)
2722		priv->extra_stats.kernel_dropped++;
2723
2724	return 0;
2725}
2726
2727/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2728 *   until the budget/quota has been reached. Returns the number
2729 *   of frames handled
2730 */
2731int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2732{
2733	struct net_device *dev = rx_queue->dev;
2734	struct rxbd8 *bdp, *base;
2735	struct sk_buff *skb;
2736	int pkt_len;
2737	int amount_pull;
2738	int howmany = 0;
2739	struct gfar_private *priv = netdev_priv(dev);
2740
2741	/* Get the first full descriptor */
2742	bdp = rx_queue->cur_rx;
2743	base = rx_queue->rx_bd_base;
2744
2745	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2746
2747	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2748		struct sk_buff *newskb;
2749		rmb();
2750
2751		/* Add another skb for the future */
2752		newskb = gfar_new_skb(dev);
2753
2754		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2755
2756		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2757				priv->rx_buffer_size, DMA_FROM_DEVICE);
2758
2759		if (unlikely(!(bdp->status & RXBD_ERR) &&
2760				bdp->length > priv->rx_buffer_size))
2761			bdp->status = RXBD_LARGE;
2762
2763		/* We drop the frame if we failed to allocate a new buffer */
2764		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2765				 bdp->status & RXBD_ERR)) {
2766			count_errors(bdp->status, dev);
2767
2768			if (unlikely(!newskb))
2769				newskb = skb;
2770			else if (skb)
2771				skb_queue_head(&priv->rx_recycle, skb);
2772		} else {
2773			/* Increment the number of packets */
2774			rx_queue->stats.rx_packets++;
2775			howmany++;
2776
2777			if (likely(skb)) {
2778				pkt_len = bdp->length - ETH_FCS_LEN;
2779				/* Remove the FCS from the packet length */
2780				skb_put(skb, pkt_len);
2781				rx_queue->stats.rx_bytes += pkt_len;
2782				skb_record_rx_queue(skb, rx_queue->qindex);
2783				gfar_process_frame(dev, skb, amount_pull,
2784						&rx_queue->grp->napi);
2785
2786			} else {
2787				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2788				rx_queue->stats.rx_dropped++;
2789				priv->extra_stats.rx_skbmissing++;
2790			}
2791
2792		}
2793
2794		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2795
2796		/* Setup the new bdp */
2797		gfar_new_rxbdp(rx_queue, bdp, newskb);
2798
2799		/* Update to the next pointer */
2800		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2801
2802		/* update to point at the next skb */
2803		rx_queue->skb_currx =
2804		    (rx_queue->skb_currx + 1) &
2805		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2806	}
2807
2808	/* Update the current rxbd pointer to be the next one */
2809	rx_queue->cur_rx = bdp;
2810
2811	return howmany;
2812}
2813
2814static int gfar_poll(struct napi_struct *napi, int budget)
2815{
2816	struct gfar_priv_grp *gfargrp = container_of(napi,
2817			struct gfar_priv_grp, napi);
2818	struct gfar_private *priv = gfargrp->priv;
2819	struct gfar __iomem *regs = gfargrp->regs;
2820	struct gfar_priv_tx_q *tx_queue = NULL;
2821	struct gfar_priv_rx_q *rx_queue = NULL;
2822	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2823	int tx_cleaned = 0, i, left_over_budget = budget;
2824	unsigned long serviced_queues = 0;
2825	int num_queues = 0;
2826
2827	num_queues = gfargrp->num_rx_queues;
2828	budget_per_queue = budget/num_queues;
2829
2830	/* Clear IEVENT, so interrupts aren't called again
2831	 * because of the packets that have already arrived */
2832	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2833
2834	while (num_queues && left_over_budget) {
2835
2836		budget_per_queue = left_over_budget/num_queues;
2837		left_over_budget = 0;
2838
2839		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2840			if (test_bit(i, &serviced_queues))
2841				continue;
2842			rx_queue = priv->rx_queue[i];
2843			tx_queue = priv->tx_queue[rx_queue->qindex];
2844
2845			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2846			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2847							budget_per_queue);
2848			rx_cleaned += rx_cleaned_per_queue;
2849			if(rx_cleaned_per_queue < budget_per_queue) {
2850				left_over_budget = left_over_budget +
2851					(budget_per_queue - rx_cleaned_per_queue);
2852				set_bit(i, &serviced_queues);
2853				num_queues--;
2854			}
2855		}
2856	}
2857
2858	if (tx_cleaned)
2859		return budget;
2860
2861	if (rx_cleaned < budget) {
2862		napi_complete(napi);
2863
2864		/* Clear the halt bit in RSTAT */
2865		gfar_write(&regs->rstat, gfargrp->rstat);
2866
2867		gfar_write(&regs->imask, IMASK_DEFAULT);
2868
2869		/* If we are coalescing interrupts, update the timer */
2870		/* Otherwise, clear it */
2871		gfar_configure_coalescing(priv,
2872				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2873	}
2874
2875	return rx_cleaned;
2876}
2877
2878#ifdef CONFIG_NET_POLL_CONTROLLER
2879/*
2880 * Polling 'interrupt' - used by things like netconsole to send skbs
2881 * without having to re-enable interrupts. It's not called while
2882 * the interrupt routine is executing.
2883 */
2884static void gfar_netpoll(struct net_device *dev)
2885{
2886	struct gfar_private *priv = netdev_priv(dev);
2887	int i = 0;
2888
2889	/* If the device has multiple interrupts, run tx/rx */
2890	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2891		for (i = 0; i < priv->num_grps; i++) {
2892			disable_irq(priv->gfargrp[i].interruptTransmit);
2893			disable_irq(priv->gfargrp[i].interruptReceive);
2894			disable_irq(priv->gfargrp[i].interruptError);
2895			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2896						&priv->gfargrp[i]);
2897			enable_irq(priv->gfargrp[i].interruptError);
2898			enable_irq(priv->gfargrp[i].interruptReceive);
2899			enable_irq(priv->gfargrp[i].interruptTransmit);
2900		}
2901	} else {
2902		for (i = 0; i < priv->num_grps; i++) {
2903			disable_irq(priv->gfargrp[i].interruptTransmit);
2904			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2905						&priv->gfargrp[i]);
2906			enable_irq(priv->gfargrp[i].interruptTransmit);
2907		}
2908	}
2909}
2910#endif
2911
2912/* The interrupt handler for devices with one interrupt */
2913static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2914{
2915	struct gfar_priv_grp *gfargrp = grp_id;
2916
2917	/* Save ievent for future reference */
2918	u32 events = gfar_read(&gfargrp->regs->ievent);
2919
2920	/* Check for reception */
2921	if (events & IEVENT_RX_MASK)
2922		gfar_receive(irq, grp_id);
2923
2924	/* Check for transmit completion */
2925	if (events & IEVENT_TX_MASK)
2926		gfar_transmit(irq, grp_id);
2927
2928	/* Check for errors */
2929	if (events & IEVENT_ERR_MASK)
2930		gfar_error(irq, grp_id);
2931
2932	return IRQ_HANDLED;
2933}
2934
2935/* Called every time the controller might need to be made
2936 * aware of new link state.  The PHY code conveys this
2937 * information through variables in the phydev structure, and this
2938 * function converts those variables into the appropriate
2939 * register values, and can bring down the device if needed.
2940 */
2941static void adjust_link(struct net_device *dev)
2942{
2943	struct gfar_private *priv = netdev_priv(dev);
2944	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2945	unsigned long flags;
2946	struct phy_device *phydev = priv->phydev;
2947	int new_state = 0;
2948
2949	local_irq_save(flags);
2950	lock_tx_qs(priv);
2951
2952	if (phydev->link) {
2953		u32 tempval = gfar_read(&regs->maccfg2);
2954		u32 ecntrl = gfar_read(&regs->ecntrl);
2955
2956		/* Now we make sure that we can be in full duplex mode.
2957		 * If not, we operate in half-duplex mode. */
2958		if (phydev->duplex != priv->oldduplex) {
2959			new_state = 1;
2960			if (!(phydev->duplex))
2961				tempval &= ~(MACCFG2_FULL_DUPLEX);
2962			else
2963				tempval |= MACCFG2_FULL_DUPLEX;
2964
2965			priv->oldduplex = phydev->duplex;
2966		}
2967
2968		if (phydev->speed != priv->oldspeed) {
2969			new_state = 1;
2970			switch (phydev->speed) {
2971			case 1000:
2972				tempval =
2973				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2974
2975				ecntrl &= ~(ECNTRL_R100);
2976				break;
2977			case 100:
2978			case 10:
2979				tempval =
2980				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2981
2982				/* Reduced mode distinguishes
2983				 * between 10 and 100 */
2984				if (phydev->speed == SPEED_100)
2985					ecntrl |= ECNTRL_R100;
2986				else
2987					ecntrl &= ~(ECNTRL_R100);
2988				break;
2989			default:
2990				netif_warn(priv, link, dev,
2991					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2992					   phydev->speed);
2993				break;
2994			}
2995
2996			priv->oldspeed = phydev->speed;
2997		}
2998
2999		gfar_write(&regs->maccfg2, tempval);
3000		gfar_write(&regs->ecntrl, ecntrl);
3001
3002		if (!priv->oldlink) {
3003			new_state = 1;
3004			priv->oldlink = 1;
3005		}
3006	} else if (priv->oldlink) {
3007		new_state = 1;
3008		priv->oldlink = 0;
3009		priv->oldspeed = 0;
3010		priv->oldduplex = -1;
3011	}
3012
3013	if (new_state && netif_msg_link(priv))
3014		phy_print_status(phydev);
3015	unlock_tx_qs(priv);
3016	local_irq_restore(flags);
3017}
3018
3019/* Update the hash table based on the current list of multicast
3020 * addresses we subscribe to.  Also, change the promiscuity of
3021 * the device based on the flags (this function is called
3022 * whenever dev->flags is changed */
3023static void gfar_set_multi(struct net_device *dev)
3024{
3025	struct netdev_hw_addr *ha;
3026	struct gfar_private *priv = netdev_priv(dev);
3027	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3028	u32 tempval;
3029
3030	if (dev->flags & IFF_PROMISC) {
3031		/* Set RCTRL to PROM */
3032		tempval = gfar_read(&regs->rctrl);
3033		tempval |= RCTRL_PROM;
3034		gfar_write(&regs->rctrl, tempval);
3035	} else {
3036		/* Set RCTRL to not PROM */
3037		tempval = gfar_read(&regs->rctrl);
3038		tempval &= ~(RCTRL_PROM);
3039		gfar_write(&regs->rctrl, tempval);
3040	}
3041
3042	if (dev->flags & IFF_ALLMULTI) {
3043		/* Set the hash to rx all multicast frames */
3044		gfar_write(&regs->igaddr0, 0xffffffff);
3045		gfar_write(&regs->igaddr1, 0xffffffff);
3046		gfar_write(&regs->igaddr2, 0xffffffff);
3047		gfar_write(&regs->igaddr3, 0xffffffff);
3048		gfar_write(&regs->igaddr4, 0xffffffff);
3049		gfar_write(&regs->igaddr5, 0xffffffff);
3050		gfar_write(&regs->igaddr6, 0xffffffff);
3051		gfar_write(&regs->igaddr7, 0xffffffff);
3052		gfar_write(&regs->gaddr0, 0xffffffff);
3053		gfar_write(&regs->gaddr1, 0xffffffff);
3054		gfar_write(&regs->gaddr2, 0xffffffff);
3055		gfar_write(&regs->gaddr3, 0xffffffff);
3056		gfar_write(&regs->gaddr4, 0xffffffff);
3057		gfar_write(&regs->gaddr5, 0xffffffff);
3058		gfar_write(&regs->gaddr6, 0xffffffff);
3059		gfar_write(&regs->gaddr7, 0xffffffff);
3060	} else {
3061		int em_num;
3062		int idx;
3063
3064		/* zero out the hash */
3065		gfar_write(&regs->igaddr0, 0x0);
3066		gfar_write(&regs->igaddr1, 0x0);
3067		gfar_write(&regs->igaddr2, 0x0);
3068		gfar_write(&regs->igaddr3, 0x0);
3069		gfar_write(&regs->igaddr4, 0x0);
3070		gfar_write(&regs->igaddr5, 0x0);
3071		gfar_write(&regs->igaddr6, 0x0);
3072		gfar_write(&regs->igaddr7, 0x0);
3073		gfar_write(&regs->gaddr0, 0x0);
3074		gfar_write(&regs->gaddr1, 0x0);
3075		gfar_write(&regs->gaddr2, 0x0);
3076		gfar_write(&regs->gaddr3, 0x0);
3077		gfar_write(&regs->gaddr4, 0x0);
3078		gfar_write(&regs->gaddr5, 0x0);
3079		gfar_write(&regs->gaddr6, 0x0);
3080		gfar_write(&regs->gaddr7, 0x0);
3081
3082		/* If we have extended hash tables, we need to
3083		 * clear the exact match registers to prepare for
3084		 * setting them */
3085		if (priv->extended_hash) {
3086			em_num = GFAR_EM_NUM + 1;
3087			gfar_clear_exact_match(dev);
3088			idx = 1;
3089		} else {
3090			idx = 0;
3091			em_num = 0;
3092		}
3093
3094		if (netdev_mc_empty(dev))
3095			return;
3096
3097		/* Parse the list, and set the appropriate bits */
3098		netdev_for_each_mc_addr(ha, dev) {
3099			if (idx < em_num) {
3100				gfar_set_mac_for_addr(dev, idx, ha->addr);
3101				idx++;
3102			} else
3103				gfar_set_hash_for_addr(dev, ha->addr);
3104		}
3105	}
3106}
3107
3108
3109/* Clears each of the exact match registers to zero, so they
3110 * don't interfere with normal reception */
3111static void gfar_clear_exact_match(struct net_device *dev)
3112{
3113	int idx;
3114	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3115
3116	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3117		gfar_set_mac_for_addr(dev, idx, zero_arr);
3118}
3119
3120/* Set the appropriate hash bit for the given addr */
3121/* The algorithm works like so:
3122 * 1) Take the Destination Address (ie the multicast address), and
3123 * do a CRC on it (little endian), and reverse the bits of the
3124 * result.
3125 * 2) Use the 8 most significant bits as a hash into a 256-entry
3126 * table.  The table is controlled through 8 32-bit registers:
3127 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3128 * gaddr7.  This means that the 3 most significant bits in the
3129 * hash index which gaddr register to use, and the 5 other bits
3130 * indicate which bit (assuming an IBM numbering scheme, which
3131 * for PowerPC (tm) is usually the case) in the register holds
3132 * the entry. */
3133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3134{
3135	u32 tempval;
3136	struct gfar_private *priv = netdev_priv(dev);
3137	u32 result = ether_crc(ETH_ALEN, addr);
3138	int width = priv->hash_width;
3139	u8 whichbit = (result >> (32 - width)) & 0x1f;
3140	u8 whichreg = result >> (32 - width + 5);
3141	u32 value = (1 << (31-whichbit));
3142
3143	tempval = gfar_read(priv->hash_regs[whichreg]);
3144	tempval |= value;
3145	gfar_write(priv->hash_regs[whichreg], tempval);
3146}
3147
3148
3149/* There are multiple MAC Address register pairs on some controllers
3150 * This function sets the numth pair to a given address
3151 */
3152static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3153				  const u8 *addr)
3154{
3155	struct gfar_private *priv = netdev_priv(dev);
3156	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3157	int idx;
3158	char tmpbuf[ETH_ALEN];
3159	u32 tempval;
3160	u32 __iomem *macptr = &regs->macstnaddr1;
3161
3162	macptr += num*2;
3163
3164	/* Now copy it into the mac registers backwards, cuz */
3165	/* little endian is silly */
3166	for (idx = 0; idx < ETH_ALEN; idx++)
3167		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3168
3169	gfar_write(macptr, *((u32 *) (tmpbuf)));
3170
3171	tempval = *((u32 *) (tmpbuf + 4));
3172
3173	gfar_write(macptr+1, tempval);
3174}
3175
3176/* GFAR error interrupt handler */
3177static irqreturn_t gfar_error(int irq, void *grp_id)
3178{
3179	struct gfar_priv_grp *gfargrp = grp_id;
3180	struct gfar __iomem *regs = gfargrp->regs;
3181	struct gfar_private *priv= gfargrp->priv;
3182	struct net_device *dev = priv->ndev;
3183
3184	/* Save ievent for future reference */
3185	u32 events = gfar_read(&regs->ievent);
3186
3187	/* Clear IEVENT */
3188	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3189
3190	/* Magic Packet is not an error. */
3191	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3192	    (events & IEVENT_MAG))
3193		events &= ~IEVENT_MAG;
3194
3195	/* Hmm... */
3196	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3197		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3198			   events, gfar_read(&regs->imask));
3199
3200	/* Update the error counters */
3201	if (events & IEVENT_TXE) {
3202		dev->stats.tx_errors++;
3203
3204		if (events & IEVENT_LC)
3205			dev->stats.tx_window_errors++;
3206		if (events & IEVENT_CRL)
3207			dev->stats.tx_aborted_errors++;
3208		if (events & IEVENT_XFUN) {
3209			unsigned long flags;
3210
3211			netif_dbg(priv, tx_err, dev,
3212				  "TX FIFO underrun, packet dropped\n");
3213			dev->stats.tx_dropped++;
3214			priv->extra_stats.tx_underrun++;
3215
3216			local_irq_save(flags);
3217			lock_tx_qs(priv);
3218
3219			/* Reactivate the Tx Queues */
3220			gfar_write(&regs->tstat, gfargrp->tstat);
3221
3222			unlock_tx_qs(priv);
3223			local_irq_restore(flags);
3224		}
3225		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3226	}
3227	if (events & IEVENT_BSY) {
3228		dev->stats.rx_errors++;
3229		priv->extra_stats.rx_bsy++;
3230
3231		gfar_receive(irq, grp_id);
3232
3233		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3234			  gfar_read(&regs->rstat));
3235	}
3236	if (events & IEVENT_BABR) {
3237		dev->stats.rx_errors++;
3238		priv->extra_stats.rx_babr++;
3239
3240		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3241	}
3242	if (events & IEVENT_EBERR) {
3243		priv->extra_stats.eberr++;
3244		netif_dbg(priv, rx_err, dev, "bus error\n");
3245	}
3246	if (events & IEVENT_RXC)
3247		netif_dbg(priv, rx_status, dev, "control frame\n");
3248
3249	if (events & IEVENT_BABT) {
3250		priv->extra_stats.tx_babt++;
3251		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3252	}
3253	return IRQ_HANDLED;
3254}
3255
3256static struct of_device_id gfar_match[] =
3257{
3258	{
3259		.type = "network",
3260		.compatible = "gianfar",
3261	},
3262	{
3263		.compatible = "fsl,etsec2",
3264	},
3265	{},
3266};
3267MODULE_DEVICE_TABLE(of, gfar_match);
3268
3269/* Structure for a device driver */
3270static struct platform_driver gfar_driver = {
3271	.driver = {
3272		.name = "fsl-gianfar",
3273		.owner = THIS_MODULE,
3274		.pm = GFAR_PM_OPS,
3275		.of_match_table = gfar_match,
3276	},
3277	.probe = gfar_probe,
3278	.remove = gfar_remove,
3279};
3280
3281module_platform_driver(gfar_driver);