Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <linux/minmax.h>
  23#include <linux/perf_event.h>
  24#include <acpi/processor.h>
  25#include <linux/context_tracking.h>
  26
  27/*
  28 * Include the apic definitions for x86 to have the APIC timer related defines
  29 * available also for UP (on SMP it gets magically included via linux/smp.h).
  30 * asm/acpi.h is not an option, as it would require more include magic. Also
  31 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  32 */
  33#ifdef CONFIG_X86
  34#include <asm/apic.h>
  35#include <asm/cpu.h>
  36#endif
  37
  38#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
 
 
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0400);
  42static bool nocst __read_mostly;
  43module_param(nocst, bool, 0400);
  44static bool bm_check_disable __read_mostly;
  45module_param(bm_check_disable, bool, 0400);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53	.name =		"acpi_idle",
  54	.owner =	THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63	return boot_option_idle_override == IDLE_POLL ||
  64		boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76		return 0;
  77
  78	pr_notice("%s detected - limiting to C%ld max_cstate."
  79		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82	max_cstate = (long)id->driver_data;
  83
  84	return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
  88	{ set_max_cstate, "Clevo 5600D", {
  89	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91	 (void *)2},
  92	{ set_max_cstate, "Pavilion zv5000", {
  93	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95	 (void *)1},
  96	{ set_max_cstate, "Asus L8400B", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99	 (void *)1},
 100	{},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110	if (!tif_need_resched()) {
 111		raw_safe_halt();
 112		raw_local_irq_disable();
 113	}
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125				   struct acpi_processor_cx *cx)
 126{
 127	struct acpi_processor_power *pwr = &pr->power;
 128	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131		return;
 132
 133	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134		type = ACPI_STATE_C1;
 135
 136	/*
 137	 * Check, if one of the previous states already marked the lapic
 138	 * unstable
 139	 */
 140	if (pwr->timer_broadcast_on_state < state)
 141		return;
 142
 143	if (cx->type >= type)
 144		pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149	struct acpi_processor *pr = arg;
 150
 151	if (pr->power.timer_broadcast_on_state < INT_MAX)
 152		tick_broadcast_enable();
 153	else
 154		tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160				 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 165					struct acpi_processor_cx *cx)
 166{
 167	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 
 
 
 
 
 
 
 
 168}
 169
 170#else
 171
 172static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 173				   struct acpi_processor_cx *cstate) { }
 174static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 175
 176static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 177					struct acpi_processor_cx *cx)
 178{
 179	return false;
 180}
 181
 182#endif
 183
 184#if defined(CONFIG_X86)
 185static void tsc_check_state(int state)
 186{
 187	switch (boot_cpu_data.x86_vendor) {
 188	case X86_VENDOR_HYGON:
 189	case X86_VENDOR_AMD:
 190	case X86_VENDOR_INTEL:
 191	case X86_VENDOR_CENTAUR:
 192	case X86_VENDOR_ZHAOXIN:
 193		/*
 194		 * AMD Fam10h TSC will tick in all
 195		 * C/P/S0/S1 states when this bit is set.
 196		 */
 197		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 198			return;
 199		fallthrough;
 
 200	default:
 201		/* TSC could halt in idle, so notify users */
 202		if (state > ACPI_STATE_C1)
 203			mark_tsc_unstable("TSC halts in idle");
 204	}
 205}
 206#else
 207static void tsc_check_state(int state) { return; }
 208#endif
 209
 210static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 211{
 212
 213	if (!pr->pblk)
 214		return -ENODEV;
 215
 216	/* if info is obtained from pblk/fadt, type equals state */
 217	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 218	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 219
 220#ifndef CONFIG_HOTPLUG_CPU
 221	/*
 222	 * Check for P_LVL2_UP flag before entering C2 and above on
 223	 * an SMP system.
 224	 */
 225	if ((num_online_cpus() > 1) &&
 226	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 227		return -ENODEV;
 228#endif
 229
 230	/* determine C2 and C3 address from pblk */
 231	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 232	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 233
 234	/* determine latencies from FADT */
 235	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 236	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 237
 238	/*
 239	 * FADT specified C2 latency must be less than or equal to
 240	 * 100 microseconds.
 241	 */
 242	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 243		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 244				  acpi_gbl_FADT.c2_latency);
 245		/* invalidate C2 */
 246		pr->power.states[ACPI_STATE_C2].address = 0;
 247	}
 248
 249	/*
 250	 * FADT supplied C3 latency must be less than or equal to
 251	 * 1000 microseconds.
 252	 */
 253	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 254		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 255				  acpi_gbl_FADT.c3_latency);
 256		/* invalidate C3 */
 257		pr->power.states[ACPI_STATE_C3].address = 0;
 258	}
 259
 260	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 
 261			  pr->power.states[ACPI_STATE_C2].address,
 262			  pr->power.states[ACPI_STATE_C3].address);
 263
 264	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 265			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 266			 pr->power.states[ACPI_STATE_C2].address);
 267	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 268			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 269			 pr->power.states[ACPI_STATE_C3].address);
 270
 271	return 0;
 272}
 273
 274static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 275{
 276	if (!pr->power.states[ACPI_STATE_C1].valid) {
 277		/* set the first C-State to C1 */
 278		/* all processors need to support C1 */
 279		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 280		pr->power.states[ACPI_STATE_C1].valid = 1;
 281		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 282
 283		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 284			 ACPI_CX_DESC_LEN, "ACPI HLT");
 285	}
 286	/* the C0 state only exists as a filler in our array */
 287	pr->power.states[ACPI_STATE_C0].valid = 1;
 288	return 0;
 289}
 290
 291static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 292{
 293	int ret;
 
 
 
 
 
 
 294
 295	if (nocst)
 296		return -ENODEV;
 297
 298	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 299	if (ret)
 300		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302	if (!pr->power.count)
 303		return -EFAULT;
 304
 
 
 
 
 
 
 
 
 305	pr->flags.has_cst = 1;
 306	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307}
 308
 309static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 310					   struct acpi_processor_cx *cx)
 311{
 312	static int bm_check_flag = -1;
 313	static int bm_control_flag = -1;
 314
 315
 316	if (!cx->address)
 317		return;
 318
 319	/*
 320	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 321	 * DMA transfers are used by any ISA device to avoid livelock.
 322	 * Note that we could disable Type-F DMA (as recommended by
 323	 * the erratum), but this is known to disrupt certain ISA
 324	 * devices thus we take the conservative approach.
 325	 */
 326	if (errata.piix4.fdma) {
 327		acpi_handle_debug(pr->handle,
 328				  "C3 not supported on PIIX4 with Type-F DMA\n");
 329		return;
 330	}
 331
 332	/* All the logic here assumes flags.bm_check is same across all CPUs */
 333	if (bm_check_flag == -1) {
 334		/* Determine whether bm_check is needed based on CPU  */
 335		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 336		bm_check_flag = pr->flags.bm_check;
 337		bm_control_flag = pr->flags.bm_control;
 338	} else {
 339		pr->flags.bm_check = bm_check_flag;
 340		pr->flags.bm_control = bm_control_flag;
 341	}
 342
 343	if (pr->flags.bm_check) {
 344		if (!pr->flags.bm_control) {
 345			if (pr->flags.has_cst != 1) {
 346				/* bus mastering control is necessary */
 347				acpi_handle_debug(pr->handle,
 348						  "C3 support requires BM control\n");
 349				return;
 350			} else {
 351				/* Here we enter C3 without bus mastering */
 352				acpi_handle_debug(pr->handle,
 353						  "C3 support without BM control\n");
 354			}
 355		}
 356	} else {
 357		/*
 358		 * WBINVD should be set in fadt, for C3 state to be
 359		 * supported on when bm_check is not required.
 360		 */
 361		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 362			acpi_handle_debug(pr->handle,
 363					  "Cache invalidation should work properly"
 364					  " for C3 to be enabled on SMP systems\n");
 365			return;
 366		}
 367	}
 368
 369	/*
 370	 * Otherwise we've met all of our C3 requirements.
 371	 * Normalize the C3 latency to expidite policy.  Enable
 372	 * checking of bus mastering status (bm_check) so we can
 373	 * use this in our C3 policy
 374	 */
 375	cx->valid = 1;
 376
 377	/*
 378	 * On older chipsets, BM_RLD needs to be set
 379	 * in order for Bus Master activity to wake the
 380	 * system from C3.  Newer chipsets handle DMA
 381	 * during C3 automatically and BM_RLD is a NOP.
 382	 * In either case, the proper way to
 383	 * handle BM_RLD is to set it and leave it set.
 384	 */
 385	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 386}
 387
 388static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
 389{
 390	int i, j, k;
 391
 392	for (i = 1; i < length; i++) {
 393		if (!states[i].valid)
 394			continue;
 395
 396		for (j = i - 1, k = i; j >= 0; j--) {
 397			if (!states[j].valid)
 398				continue;
 399
 400			if (states[j].latency > states[k].latency)
 401				swap(states[j].latency, states[k].latency);
 402
 403			k = j;
 404		}
 405	}
 406}
 407
 408static int acpi_processor_power_verify(struct acpi_processor *pr)
 409{
 410	unsigned int i;
 411	unsigned int working = 0;
 412	unsigned int last_latency = 0;
 413	unsigned int last_type = 0;
 414	bool buggy_latency = false;
 415
 416	pr->power.timer_broadcast_on_state = INT_MAX;
 417
 418	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 419		struct acpi_processor_cx *cx = &pr->power.states[i];
 420
 421		switch (cx->type) {
 422		case ACPI_STATE_C1:
 423			cx->valid = 1;
 424			break;
 425
 426		case ACPI_STATE_C2:
 427			if (!cx->address)
 428				break;
 429			cx->valid = 1;
 430			break;
 431
 432		case ACPI_STATE_C3:
 433			acpi_processor_power_verify_c3(pr, cx);
 434			break;
 435		}
 436		if (!cx->valid)
 437			continue;
 438		if (cx->type >= last_type && cx->latency < last_latency)
 439			buggy_latency = true;
 440		last_latency = cx->latency;
 441		last_type = cx->type;
 442
 443		lapic_timer_check_state(i, pr, cx);
 444		tsc_check_state(cx->type);
 445		working++;
 446	}
 447
 448	if (buggy_latency) {
 449		pr_notice("FW issue: working around C-state latencies out of order\n");
 450		acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
 451	}
 452
 453	lapic_timer_propagate_broadcast(pr);
 454
 455	return working;
 456}
 457
 458static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 459{
 460	unsigned int i;
 461	int result;
 462
 463
 464	/* NOTE: the idle thread may not be running while calling
 465	 * this function */
 466
 467	/* Zero initialize all the C-states info. */
 468	memset(pr->power.states, 0, sizeof(pr->power.states));
 469
 470	result = acpi_processor_get_power_info_cst(pr);
 471	if (result == -ENODEV)
 472		result = acpi_processor_get_power_info_fadt(pr);
 473
 474	if (result)
 475		return result;
 476
 477	acpi_processor_get_power_info_default(pr);
 478
 479	pr->power.count = acpi_processor_power_verify(pr);
 480
 481	/*
 482	 * if one state of type C2 or C3 is available, mark this
 483	 * CPU as being "idle manageable"
 484	 */
 485	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 486		if (pr->power.states[i].valid) {
 487			pr->power.count = i;
 488			pr->flags.power = 1;
 
 489		}
 490	}
 491
 492	return 0;
 493}
 494
 495/**
 496 * acpi_idle_bm_check - checks if bus master activity was detected
 497 */
 498static int acpi_idle_bm_check(void)
 499{
 500	u32 bm_status = 0;
 501
 502	if (bm_check_disable)
 503		return 0;
 504
 505	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 506	if (bm_status)
 507		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 508	/*
 509	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 510	 * the true state of bus mastering activity; forcing us to
 511	 * manually check the BMIDEA bit of each IDE channel.
 512	 */
 513	else if (errata.piix4.bmisx) {
 514		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 515		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 516			bm_status = 1;
 517	}
 518	return bm_status;
 519}
 520
 521static __cpuidle void io_idle(unsigned long addr)
 522{
 523	/* IO port based C-state */
 524	inb(addr);
 525
 526#ifdef	CONFIG_X86
 527	/* No delay is needed if we are in guest */
 528	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 529		return;
 530	/*
 531	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
 532	 * not this code.  Assume that any Intel systems using this
 533	 * are ancient and may need the dummy wait.  This also assumes
 534	 * that the motivating chipset issue was Intel-only.
 535	 */
 536	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 537		return;
 538#endif
 539	/*
 540	 * Dummy wait op - must do something useless after P_LVL2 read
 541	 * because chipsets cannot guarantee that STPCLK# signal gets
 542	 * asserted in time to freeze execution properly
 543	 *
 544	 * This workaround has been in place since the original ACPI
 545	 * implementation was merged, circa 2002.
 546	 *
 547	 * If a profile is pointing to this instruction, please first
 548	 * consider moving your system to a more modern idle
 549	 * mechanism.
 550	 */
 551	inl(acpi_gbl_FADT.xpm_timer_block.address);
 552}
 553
 554/**
 555 * acpi_idle_do_entry - enter idle state using the appropriate method
 556 * @cx: cstate data
 557 *
 558 * Caller disables interrupt before call and enables interrupt after return.
 559 */
 560static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 561{
 562	perf_lopwr_cb(true);
 563
 564	if (cx->entry_method == ACPI_CSTATE_FFH) {
 565		/* Call into architectural FFH based C-state */
 566		acpi_processor_ffh_cstate_enter(cx);
 567	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 568		acpi_safe_halt();
 569	} else {
 570		io_idle(cx->address);
 
 
 
 
 
 571	}
 572
 573	perf_lopwr_cb(false);
 574}
 575
 576/**
 577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 578 * @dev: the target CPU
 579 * @index: the index of suggested state
 580 */
 581static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 582{
 583	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 584
 585	ACPI_FLUSH_CPU_CACHE();
 586
 587	while (1) {
 588
 589		if (cx->entry_method == ACPI_CSTATE_HALT)
 590			raw_safe_halt();
 591		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 592			io_idle(cx->address);
 
 
 593		} else
 594			return;
 595	}
 
 
 
 596}
 597
 598static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 599{
 600	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 601		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 602}
 603
 604static int c3_cpu_count;
 605static DEFINE_RAW_SPINLOCK(c3_lock);
 606
 607/**
 608 * acpi_idle_enter_bm - enters C3 with proper BM handling
 609 * @drv: cpuidle driver
 610 * @pr: Target processor
 611 * @cx: Target state context
 612 * @index: index of target state
 613 */
 614static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
 615			       struct acpi_processor *pr,
 616			       struct acpi_processor_cx *cx,
 617			       int index)
 618{
 619	static struct acpi_processor_cx safe_cx = {
 620		.entry_method = ACPI_CSTATE_HALT,
 621	};
 
 
 
 622
 623	/*
 624	 * disable bus master
 625	 * bm_check implies we need ARB_DIS
 626	 * bm_control implies whether we can do ARB_DIS
 627	 *
 628	 * That leaves a case where bm_check is set and bm_control is not set.
 629	 * In that case we cannot do much, we enter C3 without doing anything.
 
 630	 */
 631	bool dis_bm = pr->flags.bm_control;
 632
 633	instrumentation_begin();
 634
 635	/* If we can skip BM, demote to a safe state. */
 636	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 637		dis_bm = false;
 638		index = drv->safe_state_index;
 639		if (index >= 0) {
 640			cx = this_cpu_read(acpi_cstate[index]);
 641		} else {
 642			cx = &safe_cx;
 643			index = -EBUSY;
 644		}
 645	}
 646
 647	if (dis_bm) {
 648		raw_spin_lock(&c3_lock);
 649		c3_cpu_count++;
 650		/* Disable bus master arbitration when all CPUs are in C3 */
 651		if (c3_cpu_count == num_online_cpus())
 652			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 653		raw_spin_unlock(&c3_lock);
 654	}
 655
 656	ct_cpuidle_enter();
 657
 658	acpi_idle_do_entry(cx);
 659
 660	ct_cpuidle_exit();
 661
 662	/* Re-enable bus master arbitration */
 663	if (dis_bm) {
 664		raw_spin_lock(&c3_lock);
 665		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 666		c3_cpu_count--;
 667		raw_spin_unlock(&c3_lock);
 668	}
 669
 670	instrumentation_end();
 671
 672	return index;
 673}
 674
 675static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
 676			   struct cpuidle_driver *drv, int index)
 677{
 678	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 679	struct acpi_processor *pr;
 680
 681	pr = __this_cpu_read(processors);
 682	if (unlikely(!pr))
 683		return -EINVAL;
 684
 685	if (cx->type != ACPI_STATE_C1) {
 686		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 687			return acpi_idle_enter_bm(drv, pr, cx, index);
 688
 689		/* C2 to C1 demotion. */
 690		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 691			index = ACPI_IDLE_STATE_START;
 692			cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 
 
 
 
 
 
 
 693		}
 694	}
 695
 
 
 696	if (cx->type == ACPI_STATE_C3)
 697		ACPI_FLUSH_CPU_CACHE();
 698
 699	acpi_idle_do_entry(cx);
 700
 
 
 701	return index;
 702}
 703
 704static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 705				  struct cpuidle_driver *drv, int index)
 706{
 707	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 708
 709	if (cx->type == ACPI_STATE_C3) {
 710		struct acpi_processor *pr = __this_cpu_read(processors);
 711
 712		if (unlikely(!pr))
 713			return 0;
 714
 715		if (pr->flags.bm_check) {
 716			u8 bm_sts_skip = cx->bm_sts_skip;
 717
 718			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 719			cx->bm_sts_skip = 1;
 720			acpi_idle_enter_bm(drv, pr, cx, index);
 721			cx->bm_sts_skip = bm_sts_skip;
 722
 723			return 0;
 724		} else {
 725			ACPI_FLUSH_CPU_CACHE();
 726		}
 727	}
 728	acpi_idle_do_entry(cx);
 729
 730	return 0;
 731}
 732
 
 
 
 
 
 
 
 
 
 
 
 
 733static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 734					   struct cpuidle_device *dev)
 735{
 736	int i, count = ACPI_IDLE_STATE_START;
 737	struct acpi_processor_cx *cx;
 738	struct cpuidle_state *state;
 
 
 
 
 
 
 
 
 
 
 
 739
 740	if (max_cstate == 0)
 741		max_cstate = 1;
 742
 743	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 744		state = &acpi_idle_driver.states[count];
 745		cx = &pr->power.states[i];
 746
 747		if (!cx->valid)
 748			continue;
 749
 750		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 751
 752		if (lapic_timer_needs_broadcast(pr, cx))
 753			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 754
 755		if (cx->type == ACPI_STATE_C3) {
 756			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 757			if (pr->flags.bm_check)
 758				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 759		}
 760
 761		count++;
 762		if (count == CPUIDLE_STATE_MAX)
 763			break;
 764	}
 765
 766	if (!count)
 767		return -EINVAL;
 768
 769	return 0;
 770}
 771
 772static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 
 
 
 
 
 
 773{
 774	int i, count;
 775	struct acpi_processor_cx *cx;
 776	struct cpuidle_state *state;
 777	struct cpuidle_driver *drv = &acpi_idle_driver;
 778
 779	if (max_cstate == 0)
 780		max_cstate = 1;
 781
 782	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 783		cpuidle_poll_state_init(drv);
 784		count = 1;
 785	} else {
 786		count = 0;
 
 
 787	}
 788
 
 
 
 789	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 790		cx = &pr->power.states[i];
 791
 792		if (!cx->valid)
 793			continue;
 794
 795		state = &drv->states[count];
 796		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 797		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 798		state->exit_latency = cx->latency;
 799		state->target_residency = cx->latency * latency_factor;
 800		state->enter = acpi_idle_enter;
 801
 802		state->flags = 0;
 803
 804		state->enter_dead = acpi_idle_play_dead;
 805
 806		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
 807			drv->safe_state_index = count;
 808
 809		/*
 810		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 811		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 812		 * particularly interesting from the suspend-to-idle angle, so
 813		 * avoid C1 and the situations in which we may need to fall back
 814		 * to it altogether.
 815		 */
 816		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 817			state->enter_s2idle = acpi_idle_enter_s2idle;
 818
 819		count++;
 820		if (count == CPUIDLE_STATE_MAX)
 821			break;
 822	}
 823
 824	drv->state_count = count;
 825
 826	if (!count)
 827		return -EINVAL;
 828
 829	return 0;
 830}
 831
 832static inline void acpi_processor_cstate_first_run_checks(void)
 833{
 834	static int first_run;
 835
 836	if (first_run)
 837		return;
 838	dmi_check_system(processor_power_dmi_table);
 839	max_cstate = acpi_processor_cstate_check(max_cstate);
 840	if (max_cstate < ACPI_C_STATES_MAX)
 841		pr_notice("processor limited to max C-state %d\n", max_cstate);
 842
 843	first_run++;
 844
 845	if (nocst)
 846		return;
 847
 848	acpi_processor_claim_cst_control();
 849}
 850#else
 851
 852static inline int disabled_by_idle_boot_param(void) { return 0; }
 853static inline void acpi_processor_cstate_first_run_checks(void) { }
 854static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 855{
 856	return -ENODEV;
 857}
 858
 859static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 860					   struct cpuidle_device *dev)
 861{
 862	return -EINVAL;
 863}
 864
 865static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 866{
 867	return -EINVAL;
 868}
 869
 870#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 871
 872struct acpi_lpi_states_array {
 873	unsigned int size;
 874	unsigned int composite_states_size;
 875	struct acpi_lpi_state *entries;
 876	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 877};
 878
 879static int obj_get_integer(union acpi_object *obj, u32 *value)
 880{
 881	if (obj->type != ACPI_TYPE_INTEGER)
 882		return -EINVAL;
 883
 884	*value = obj->integer.value;
 885	return 0;
 886}
 887
 888static int acpi_processor_evaluate_lpi(acpi_handle handle,
 889				       struct acpi_lpi_states_array *info)
 890{
 891	acpi_status status;
 892	int ret = 0;
 893	int pkg_count, state_idx = 1, loop;
 894	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 895	union acpi_object *lpi_data;
 896	struct acpi_lpi_state *lpi_state;
 897
 898	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 899	if (ACPI_FAILURE(status)) {
 900		acpi_handle_debug(handle, "No _LPI, giving up\n");
 901		return -ENODEV;
 902	}
 903
 904	lpi_data = buffer.pointer;
 905
 906	/* There must be at least 4 elements = 3 elements + 1 package */
 907	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 908	    lpi_data->package.count < 4) {
 909		pr_debug("not enough elements in _LPI\n");
 910		ret = -ENODATA;
 911		goto end;
 912	}
 913
 914	pkg_count = lpi_data->package.elements[2].integer.value;
 915
 916	/* Validate number of power states. */
 917	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 918		pr_debug("count given by _LPI is not valid\n");
 919		ret = -ENODATA;
 920		goto end;
 921	}
 922
 923	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 924	if (!lpi_state) {
 925		ret = -ENOMEM;
 926		goto end;
 927	}
 928
 929	info->size = pkg_count;
 930	info->entries = lpi_state;
 931
 932	/* LPI States start at index 3 */
 933	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 934		union acpi_object *element, *pkg_elem, *obj;
 935
 936		element = &lpi_data->package.elements[loop];
 937		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 938			continue;
 939
 940		pkg_elem = element->package.elements;
 941
 942		obj = pkg_elem + 6;
 943		if (obj->type == ACPI_TYPE_BUFFER) {
 944			struct acpi_power_register *reg;
 945
 946			reg = (struct acpi_power_register *)obj->buffer.pointer;
 947			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 948			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 949				continue;
 950
 951			lpi_state->address = reg->address;
 952			lpi_state->entry_method =
 953				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 954				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 955		} else if (obj->type == ACPI_TYPE_INTEGER) {
 956			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 957			lpi_state->address = obj->integer.value;
 958		} else {
 959			continue;
 960		}
 961
 962		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 963
 964		obj = pkg_elem + 9;
 965		if (obj->type == ACPI_TYPE_STRING)
 966			strscpy(lpi_state->desc, obj->string.pointer,
 967				ACPI_CX_DESC_LEN);
 968
 969		lpi_state->index = state_idx;
 970		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 971			pr_debug("No min. residency found, assuming 10 us\n");
 972			lpi_state->min_residency = 10;
 973		}
 974
 975		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 976			pr_debug("No wakeup residency found, assuming 10 us\n");
 977			lpi_state->wake_latency = 10;
 978		}
 979
 980		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 981			lpi_state->flags = 0;
 982
 983		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 984			lpi_state->arch_flags = 0;
 985
 986		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 987			lpi_state->res_cnt_freq = 1;
 988
 989		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 990			lpi_state->enable_parent_state = 0;
 991	}
 992
 993	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 994end:
 995	kfree(buffer.pointer);
 996	return ret;
 997}
 998
 999/*
1000 * flat_state_cnt - the number of composite LPI states after the process of flattening
1001 */
1002static int flat_state_cnt;
1003
1004/**
1005 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1006 *
1007 * @local: local LPI state
1008 * @parent: parent LPI state
1009 * @result: composite LPI state
1010 */
1011static bool combine_lpi_states(struct acpi_lpi_state *local,
1012			       struct acpi_lpi_state *parent,
1013			       struct acpi_lpi_state *result)
1014{
1015	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1016		if (!parent->address) /* 0 means autopromotable */
1017			return false;
1018		result->address = local->address + parent->address;
1019	} else {
1020		result->address = parent->address;
1021	}
1022
1023	result->min_residency = max(local->min_residency, parent->min_residency);
1024	result->wake_latency = local->wake_latency + parent->wake_latency;
1025	result->enable_parent_state = parent->enable_parent_state;
1026	result->entry_method = local->entry_method;
1027
1028	result->flags = parent->flags;
1029	result->arch_flags = parent->arch_flags;
1030	result->index = parent->index;
1031
1032	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1033	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1034	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1035	return true;
1036}
1037
1038#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1039
1040static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1041				  struct acpi_lpi_state *t)
1042{
1043	curr_level->composite_states[curr_level->composite_states_size++] = t;
1044}
1045
1046static int flatten_lpi_states(struct acpi_processor *pr,
1047			      struct acpi_lpi_states_array *curr_level,
1048			      struct acpi_lpi_states_array *prev_level)
1049{
1050	int i, j, state_count = curr_level->size;
1051	struct acpi_lpi_state *p, *t = curr_level->entries;
1052
1053	curr_level->composite_states_size = 0;
1054	for (j = 0; j < state_count; j++, t++) {
1055		struct acpi_lpi_state *flpi;
1056
1057		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1058			continue;
1059
1060		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1061			pr_warn("Limiting number of LPI states to max (%d)\n",
1062				ACPI_PROCESSOR_MAX_POWER);
1063			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1064			break;
1065		}
1066
1067		flpi = &pr->power.lpi_states[flat_state_cnt];
1068
1069		if (!prev_level) { /* leaf/processor node */
1070			memcpy(flpi, t, sizeof(*t));
1071			stash_composite_state(curr_level, flpi);
1072			flat_state_cnt++;
1073			continue;
1074		}
1075
1076		for (i = 0; i < prev_level->composite_states_size; i++) {
1077			p = prev_level->composite_states[i];
1078			if (t->index <= p->enable_parent_state &&
1079			    combine_lpi_states(p, t, flpi)) {
1080				stash_composite_state(curr_level, flpi);
1081				flat_state_cnt++;
1082				flpi++;
1083			}
1084		}
1085	}
1086
1087	kfree(curr_level->entries);
1088	return 0;
1089}
1090
1091int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1092{
1093	return -EOPNOTSUPP;
1094}
1095
1096static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1097{
1098	int ret, i;
1099	acpi_status status;
1100	acpi_handle handle = pr->handle, pr_ahandle;
1101	struct acpi_device *d = NULL;
1102	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1103
1104	/* make sure our architecture has support */
1105	ret = acpi_processor_ffh_lpi_probe(pr->id);
1106	if (ret == -EOPNOTSUPP)
1107		return ret;
1108
1109	if (!osc_pc_lpi_support_confirmed)
1110		return -EOPNOTSUPP;
1111
1112	if (!acpi_has_method(handle, "_LPI"))
1113		return -EINVAL;
1114
1115	flat_state_cnt = 0;
1116	prev = &info[0];
1117	curr = &info[1];
1118	handle = pr->handle;
1119	ret = acpi_processor_evaluate_lpi(handle, prev);
1120	if (ret)
1121		return ret;
1122	flatten_lpi_states(pr, prev, NULL);
1123
1124	status = acpi_get_parent(handle, &pr_ahandle);
1125	while (ACPI_SUCCESS(status)) {
1126		d = acpi_fetch_acpi_dev(pr_ahandle);
1127		if (!d)
1128			break;
1129
1130		handle = pr_ahandle;
1131
1132		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1133			break;
1134
1135		/* can be optional ? */
1136		if (!acpi_has_method(handle, "_LPI"))
1137			break;
1138
1139		ret = acpi_processor_evaluate_lpi(handle, curr);
1140		if (ret)
1141			break;
1142
1143		/* flatten all the LPI states in this level of hierarchy */
1144		flatten_lpi_states(pr, curr, prev);
1145
1146		tmp = prev, prev = curr, curr = tmp;
1147
1148		status = acpi_get_parent(handle, &pr_ahandle);
1149	}
1150
1151	pr->power.count = flat_state_cnt;
1152	/* reset the index after flattening */
1153	for (i = 0; i < pr->power.count; i++)
1154		pr->power.lpi_states[i].index = i;
1155
1156	/* Tell driver that _LPI is supported. */
1157	pr->flags.has_lpi = 1;
1158	pr->flags.power = 1;
1159
1160	return 0;
1161}
1162
1163int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1164{
1165	return -ENODEV;
1166}
1167
1168/**
1169 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1170 * @dev: the target CPU
1171 * @drv: cpuidle driver containing cpuidle state info
1172 * @index: index of target state
1173 *
1174 * Return: 0 for success or negative value for error
1175 */
1176static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1177			       struct cpuidle_driver *drv, int index)
1178{
1179	struct acpi_processor *pr;
1180	struct acpi_lpi_state *lpi;
1181
1182	pr = __this_cpu_read(processors);
1183
1184	if (unlikely(!pr))
1185		return -EINVAL;
1186
1187	lpi = &pr->power.lpi_states[index];
1188	if (lpi->entry_method == ACPI_CSTATE_FFH)
1189		return acpi_processor_ffh_lpi_enter(lpi);
1190
1191	return -EINVAL;
1192}
1193
1194static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1195{
1196	int i;
1197	struct acpi_lpi_state *lpi;
1198	struct cpuidle_state *state;
1199	struct cpuidle_driver *drv = &acpi_idle_driver;
1200
1201	if (!pr->flags.has_lpi)
1202		return -EOPNOTSUPP;
1203
1204	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1205		lpi = &pr->power.lpi_states[i];
1206
1207		state = &drv->states[i];
1208		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1209		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1210		state->exit_latency = lpi->wake_latency;
1211		state->target_residency = lpi->min_residency;
1212		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1213		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1214			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1215		state->enter = acpi_idle_lpi_enter;
1216		drv->safe_state_index = i;
1217	}
1218
1219	drv->state_count = i;
1220
1221	return 0;
1222}
1223
1224/**
1225 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1226 * global state data i.e. idle routines
1227 *
1228 * @pr: the ACPI processor
1229 */
1230static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1231{
1232	int i;
1233	struct cpuidle_driver *drv = &acpi_idle_driver;
1234
1235	if (!pr->flags.power_setup_done || !pr->flags.power)
1236		return -EINVAL;
1237
1238	drv->safe_state_index = -1;
1239	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1240		drv->states[i].name[0] = '\0';
1241		drv->states[i].desc[0] = '\0';
1242	}
1243
1244	if (pr->flags.has_lpi)
1245		return acpi_processor_setup_lpi_states(pr);
1246
1247	return acpi_processor_setup_cstates(pr);
1248}
1249
1250/**
1251 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1252 * device i.e. per-cpu data
1253 *
1254 * @pr: the ACPI processor
1255 * @dev : the cpuidle device
1256 */
1257static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1258					    struct cpuidle_device *dev)
1259{
1260	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1261		return -EINVAL;
1262
1263	dev->cpu = pr->id;
1264	if (pr->flags.has_lpi)
1265		return acpi_processor_ffh_lpi_probe(pr->id);
1266
1267	return acpi_processor_setup_cpuidle_cx(pr, dev);
1268}
1269
1270static int acpi_processor_get_power_info(struct acpi_processor *pr)
1271{
1272	int ret;
1273
1274	ret = acpi_processor_get_lpi_info(pr);
1275	if (ret)
1276		ret = acpi_processor_get_cstate_info(pr);
1277
1278	return ret;
1279}
1280
1281int acpi_processor_hotplug(struct acpi_processor *pr)
1282{
1283	int ret = 0;
1284	struct cpuidle_device *dev;
1285
1286	if (disabled_by_idle_boot_param())
1287		return 0;
1288
 
 
 
1289	if (!pr->flags.power_setup_done)
1290		return -ENODEV;
1291
1292	dev = per_cpu(acpi_cpuidle_device, pr->id);
1293	cpuidle_pause_and_lock();
1294	cpuidle_disable_device(dev);
1295	ret = acpi_processor_get_power_info(pr);
1296	if (!ret && pr->flags.power) {
1297		acpi_processor_setup_cpuidle_dev(pr, dev);
1298		ret = cpuidle_enable_device(dev);
1299	}
1300	cpuidle_resume_and_unlock();
1301
1302	return ret;
1303}
1304
1305int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1306{
1307	int cpu;
1308	struct acpi_processor *_pr;
1309	struct cpuidle_device *dev;
1310
1311	if (disabled_by_idle_boot_param())
1312		return 0;
1313
 
 
 
1314	if (!pr->flags.power_setup_done)
1315		return -ENODEV;
1316
1317	/*
1318	 * FIXME:  Design the ACPI notification to make it once per
1319	 * system instead of once per-cpu.  This condition is a hack
1320	 * to make the code that updates C-States be called once.
1321	 */
1322
1323	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1324
1325		/* Protect against cpu-hotplug */
1326		cpus_read_lock();
1327		cpuidle_pause_and_lock();
1328
1329		/* Disable all cpuidle devices */
1330		for_each_online_cpu(cpu) {
1331			_pr = per_cpu(processors, cpu);
1332			if (!_pr || !_pr->flags.power_setup_done)
1333				continue;
1334			dev = per_cpu(acpi_cpuidle_device, cpu);
1335			cpuidle_disable_device(dev);
1336		}
1337
1338		/* Populate Updated C-state information */
1339		acpi_processor_get_power_info(pr);
1340		acpi_processor_setup_cpuidle_states(pr);
1341
1342		/* Enable all cpuidle devices */
1343		for_each_online_cpu(cpu) {
1344			_pr = per_cpu(processors, cpu);
1345			if (!_pr || !_pr->flags.power_setup_done)
1346				continue;
1347			acpi_processor_get_power_info(_pr);
1348			if (_pr->flags.power) {
1349				dev = per_cpu(acpi_cpuidle_device, cpu);
1350				acpi_processor_setup_cpuidle_dev(_pr, dev);
1351				cpuidle_enable_device(dev);
1352			}
1353		}
1354		cpuidle_resume_and_unlock();
1355		cpus_read_unlock();
1356	}
1357
1358	return 0;
1359}
1360
1361static int acpi_processor_registered;
1362
1363int acpi_processor_power_init(struct acpi_processor *pr)
1364{
 
1365	int retval;
1366	struct cpuidle_device *dev;
 
1367
1368	if (disabled_by_idle_boot_param())
1369		return 0;
1370
1371	acpi_processor_cstate_first_run_checks();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373	if (!acpi_processor_get_power_info(pr))
1374		pr->flags.power_setup_done = 1;
1375
1376	/*
1377	 * Install the idle handler if processor power management is supported.
1378	 * Note that we use previously set idle handler will be used on
1379	 * platforms that only support C1.
1380	 */
1381	if (pr->flags.power) {
1382		/* Register acpi_idle_driver if not already registered */
1383		if (!acpi_processor_registered) {
1384			acpi_processor_setup_cpuidle_states(pr);
1385			retval = cpuidle_register_driver(&acpi_idle_driver);
1386			if (retval)
1387				return retval;
1388			pr_debug("%s registered with cpuidle\n",
1389				 acpi_idle_driver.name);
1390		}
1391
1392		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1393		if (!dev)
1394			return -ENOMEM;
1395		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1396
1397		acpi_processor_setup_cpuidle_dev(pr, dev);
1398
1399		/* Register per-cpu cpuidle_device. Cpuidle driver
1400		 * must already be registered before registering device
1401		 */
1402		retval = cpuidle_register_device(dev);
1403		if (retval) {
1404			if (acpi_processor_registered == 0)
1405				cpuidle_unregister_driver(&acpi_idle_driver);
1406			return retval;
1407		}
1408		acpi_processor_registered++;
1409	}
1410	return 0;
1411}
1412
1413int acpi_processor_power_exit(struct acpi_processor *pr)
1414{
1415	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1416
1417	if (disabled_by_idle_boot_param())
1418		return 0;
1419
1420	if (pr->flags.power) {
1421		cpuidle_unregister_device(dev);
1422		acpi_processor_registered--;
1423		if (acpi_processor_registered == 0)
1424			cpuidle_unregister_driver(&acpi_idle_driver);
1425
1426		kfree(dev);
1427	}
1428
1429	pr->flags.power_setup_done = 0;
1430	return 0;
1431}
v4.6
 
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
 
 
 
  34#include <acpi/processor.h>
 
  35
  36/*
  37 * Include the apic definitions for x86 to have the APIC timer related defines
  38 * available also for UP (on SMP it gets magically included via linux/smp.h).
  39 * asm/acpi.h is not an option, as it would require more include magic. Also
  40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  41 */
  42#ifdef CONFIG_X86
  43#include <asm/apic.h>
 
  44#endif
  45
  46#define ACPI_PROCESSOR_CLASS            "processor"
  47#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  48ACPI_MODULE_NAME("processor_idle");
  49
  50static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  51module_param(max_cstate, uint, 0000);
  52static unsigned int nocst __read_mostly;
  53module_param(nocst, uint, 0000);
  54static int bm_check_disable __read_mostly;
  55module_param(bm_check_disable, uint, 0000);
  56
  57static unsigned int latency_factor __read_mostly = 2;
  58module_param(latency_factor, uint, 0644);
  59
  60static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  61
 
 
 
 
 
 
  62static
  63DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  64
  65static int disabled_by_idle_boot_param(void)
  66{
  67	return boot_option_idle_override == IDLE_POLL ||
  68		boot_option_idle_override == IDLE_HALT;
  69}
  70
  71/*
  72 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  73 * For now disable this. Probably a bug somewhere else.
  74 *
  75 * To skip this limit, boot/load with a large max_cstate limit.
  76 */
  77static int set_max_cstate(const struct dmi_system_id *id)
  78{
  79	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  80		return 0;
  81
  82	pr_notice("%s detected - limiting to C%ld max_cstate."
  83		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  84		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  85
  86	max_cstate = (long)id->driver_data;
  87
  88	return 0;
  89}
  90
  91static const struct dmi_system_id processor_power_dmi_table[] = {
  92	{ set_max_cstate, "Clevo 5600D", {
  93	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  94	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  95	 (void *)2},
  96	{ set_max_cstate, "Pavilion zv5000", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  99	 (void *)1},
 100	{ set_max_cstate, "Asus L8400B", {
 101	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 102	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 103	 (void *)1},
 104	{},
 105};
 106
 107
 108/*
 109 * Callers should disable interrupts before the call and enable
 110 * interrupts after return.
 111 */
 112static void acpi_safe_halt(void)
 113{
 114	if (!tif_need_resched()) {
 115		safe_halt();
 116		local_irq_disable();
 117	}
 118}
 119
 120#ifdef ARCH_APICTIMER_STOPS_ON_C3
 121
 122/*
 123 * Some BIOS implementations switch to C3 in the published C2 state.
 124 * This seems to be a common problem on AMD boxen, but other vendors
 125 * are affected too. We pick the most conservative approach: we assume
 126 * that the local APIC stops in both C2 and C3.
 127 */
 128static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 129				   struct acpi_processor_cx *cx)
 130{
 131	struct acpi_processor_power *pwr = &pr->power;
 132	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 133
 134	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 135		return;
 136
 137	if (amd_e400_c1e_detected)
 138		type = ACPI_STATE_C1;
 139
 140	/*
 141	 * Check, if one of the previous states already marked the lapic
 142	 * unstable
 143	 */
 144	if (pwr->timer_broadcast_on_state < state)
 145		return;
 146
 147	if (cx->type >= type)
 148		pr->power.timer_broadcast_on_state = state;
 149}
 150
 151static void __lapic_timer_propagate_broadcast(void *arg)
 152{
 153	struct acpi_processor *pr = (struct acpi_processor *) arg;
 154
 155	if (pr->power.timer_broadcast_on_state < INT_MAX)
 156		tick_broadcast_enable();
 157	else
 158		tick_broadcast_disable();
 159}
 160
 161static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 162{
 163	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 164				 (void *)pr, 1);
 165}
 166
 167/* Power(C) State timer broadcast control */
 168static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 169				       struct acpi_processor_cx *cx,
 170				       int broadcast)
 171{
 172	int state = cx - pr->power.states;
 173
 174	if (state >= pr->power.timer_broadcast_on_state) {
 175		if (broadcast)
 176			tick_broadcast_enter();
 177		else
 178			tick_broadcast_exit();
 179	}
 180}
 181
 182#else
 183
 184static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 185				   struct acpi_processor_cx *cstate) { }
 186static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 187static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 188				       struct acpi_processor_cx *cx,
 189				       int broadcast)
 190{
 
 191}
 192
 193#endif
 194
 195#if defined(CONFIG_X86)
 196static void tsc_check_state(int state)
 197{
 198	switch (boot_cpu_data.x86_vendor) {
 
 199	case X86_VENDOR_AMD:
 200	case X86_VENDOR_INTEL:
 
 
 201		/*
 202		 * AMD Fam10h TSC will tick in all
 203		 * C/P/S0/S1 states when this bit is set.
 204		 */
 205		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 206			return;
 207
 208		/*FALL THROUGH*/
 209	default:
 210		/* TSC could halt in idle, so notify users */
 211		if (state > ACPI_STATE_C1)
 212			mark_tsc_unstable("TSC halts in idle");
 213	}
 214}
 215#else
 216static void tsc_check_state(int state) { return; }
 217#endif
 218
 219static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 220{
 221
 222	if (!pr->pblk)
 223		return -ENODEV;
 224
 225	/* if info is obtained from pblk/fadt, type equals state */
 226	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 227	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 228
 229#ifndef CONFIG_HOTPLUG_CPU
 230	/*
 231	 * Check for P_LVL2_UP flag before entering C2 and above on
 232	 * an SMP system.
 233	 */
 234	if ((num_online_cpus() > 1) &&
 235	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 236		return -ENODEV;
 237#endif
 238
 239	/* determine C2 and C3 address from pblk */
 240	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 241	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 242
 243	/* determine latencies from FADT */
 244	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 245	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 246
 247	/*
 248	 * FADT specified C2 latency must be less than or equal to
 249	 * 100 microseconds.
 250	 */
 251	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 252		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 253			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 254		/* invalidate C2 */
 255		pr->power.states[ACPI_STATE_C2].address = 0;
 256	}
 257
 258	/*
 259	 * FADT supplied C3 latency must be less than or equal to
 260	 * 1000 microseconds.
 261	 */
 262	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 263		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 264			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 265		/* invalidate C3 */
 266		pr->power.states[ACPI_STATE_C3].address = 0;
 267	}
 268
 269	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 270			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 271			  pr->power.states[ACPI_STATE_C2].address,
 272			  pr->power.states[ACPI_STATE_C3].address));
 
 
 
 
 
 
 
 273
 274	return 0;
 275}
 276
 277static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 278{
 279	if (!pr->power.states[ACPI_STATE_C1].valid) {
 280		/* set the first C-State to C1 */
 281		/* all processors need to support C1 */
 282		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 283		pr->power.states[ACPI_STATE_C1].valid = 1;
 284		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 
 
 
 285	}
 286	/* the C0 state only exists as a filler in our array */
 287	pr->power.states[ACPI_STATE_C0].valid = 1;
 288	return 0;
 289}
 290
 291static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 292{
 293	acpi_status status;
 294	u64 count;
 295	int current_count;
 296	int i, ret = 0;
 297	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 298	union acpi_object *cst;
 299
 300
 301	if (nocst)
 302		return -ENODEV;
 303
 304	current_count = 0;
 305
 306	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 307	if (ACPI_FAILURE(status)) {
 308		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 309		return -ENODEV;
 310	}
 311
 312	cst = buffer.pointer;
 313
 314	/* There must be at least 2 elements */
 315	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 316		pr_err("not enough elements in _CST\n");
 317		ret = -EFAULT;
 318		goto end;
 319	}
 320
 321	count = cst->package.elements[0].integer.value;
 
 322
 323	/* Validate number of power states. */
 324	if (count < 1 || count != cst->package.count - 1) {
 325		pr_err("count given by _CST is not valid\n");
 326		ret = -EFAULT;
 327		goto end;
 328	}
 329
 330	/* Tell driver that at least _CST is supported. */
 331	pr->flags.has_cst = 1;
 332
 333	for (i = 1; i <= count; i++) {
 334		union acpi_object *element;
 335		union acpi_object *obj;
 336		struct acpi_power_register *reg;
 337		struct acpi_processor_cx cx;
 338
 339		memset(&cx, 0, sizeof(cx));
 340
 341		element = &(cst->package.elements[i]);
 342		if (element->type != ACPI_TYPE_PACKAGE)
 343			continue;
 344
 345		if (element->package.count != 4)
 346			continue;
 347
 348		obj = &(element->package.elements[0]);
 349
 350		if (obj->type != ACPI_TYPE_BUFFER)
 351			continue;
 352
 353		reg = (struct acpi_power_register *)obj->buffer.pointer;
 354
 355		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 356		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 357			continue;
 358
 359		/* There should be an easy way to extract an integer... */
 360		obj = &(element->package.elements[1]);
 361		if (obj->type != ACPI_TYPE_INTEGER)
 362			continue;
 363
 364		cx.type = obj->integer.value;
 365		/*
 366		 * Some buggy BIOSes won't list C1 in _CST -
 367		 * Let acpi_processor_get_power_info_default() handle them later
 368		 */
 369		if (i == 1 && cx.type != ACPI_STATE_C1)
 370			current_count++;
 371
 372		cx.address = reg->address;
 373		cx.index = current_count + 1;
 374
 375		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 376		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 377			if (acpi_processor_ffh_cstate_probe
 378					(pr->id, &cx, reg) == 0) {
 379				cx.entry_method = ACPI_CSTATE_FFH;
 380			} else if (cx.type == ACPI_STATE_C1) {
 381				/*
 382				 * C1 is a special case where FIXED_HARDWARE
 383				 * can be handled in non-MWAIT way as well.
 384				 * In that case, save this _CST entry info.
 385				 * Otherwise, ignore this info and continue.
 386				 */
 387				cx.entry_method = ACPI_CSTATE_HALT;
 388				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 389			} else {
 390				continue;
 391			}
 392			if (cx.type == ACPI_STATE_C1 &&
 393			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 394				/*
 395				 * In most cases the C1 space_id obtained from
 396				 * _CST object is FIXED_HARDWARE access mode.
 397				 * But when the option of idle=halt is added,
 398				 * the entry_method type should be changed from
 399				 * CSTATE_FFH to CSTATE_HALT.
 400				 * When the option of idle=nomwait is added,
 401				 * the C1 entry_method type should be
 402				 * CSTATE_HALT.
 403				 */
 404				cx.entry_method = ACPI_CSTATE_HALT;
 405				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 406			}
 407		} else {
 408			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 409				 cx.address);
 410		}
 411
 412		if (cx.type == ACPI_STATE_C1) {
 413			cx.valid = 1;
 414		}
 415
 416		obj = &(element->package.elements[2]);
 417		if (obj->type != ACPI_TYPE_INTEGER)
 418			continue;
 419
 420		cx.latency = obj->integer.value;
 421
 422		obj = &(element->package.elements[3]);
 423		if (obj->type != ACPI_TYPE_INTEGER)
 424			continue;
 425
 426		current_count++;
 427		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 428
 429		/*
 430		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 431		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 432		 */
 433		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 434			pr_warn("Limiting number of power states to max (%d)\n",
 435				ACPI_PROCESSOR_MAX_POWER);
 436			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 437			break;
 438		}
 439	}
 440
 441	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 442			  current_count));
 443
 444	/* Validate number of power states discovered */
 445	if (current_count < 2)
 446		ret = -EFAULT;
 447
 448      end:
 449	kfree(buffer.pointer);
 450
 451	return ret;
 452}
 453
 454static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 455					   struct acpi_processor_cx *cx)
 456{
 457	static int bm_check_flag = -1;
 458	static int bm_control_flag = -1;
 459
 460
 461	if (!cx->address)
 462		return;
 463
 464	/*
 465	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 466	 * DMA transfers are used by any ISA device to avoid livelock.
 467	 * Note that we could disable Type-F DMA (as recommended by
 468	 * the erratum), but this is known to disrupt certain ISA
 469	 * devices thus we take the conservative approach.
 470	 */
 471	else if (errata.piix4.fdma) {
 472		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 473				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 474		return;
 475	}
 476
 477	/* All the logic here assumes flags.bm_check is same across all CPUs */
 478	if (bm_check_flag == -1) {
 479		/* Determine whether bm_check is needed based on CPU  */
 480		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 481		bm_check_flag = pr->flags.bm_check;
 482		bm_control_flag = pr->flags.bm_control;
 483	} else {
 484		pr->flags.bm_check = bm_check_flag;
 485		pr->flags.bm_control = bm_control_flag;
 486	}
 487
 488	if (pr->flags.bm_check) {
 489		if (!pr->flags.bm_control) {
 490			if (pr->flags.has_cst != 1) {
 491				/* bus mastering control is necessary */
 492				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 493					"C3 support requires BM control\n"));
 494				return;
 495			} else {
 496				/* Here we enter C3 without bus mastering */
 497				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 498					"C3 support without BM control\n"));
 499			}
 500		}
 501	} else {
 502		/*
 503		 * WBINVD should be set in fadt, for C3 state to be
 504		 * supported on when bm_check is not required.
 505		 */
 506		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 507			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 508					  "Cache invalidation should work properly"
 509					  " for C3 to be enabled on SMP systems\n"));
 510			return;
 511		}
 512	}
 513
 514	/*
 515	 * Otherwise we've met all of our C3 requirements.
 516	 * Normalize the C3 latency to expidite policy.  Enable
 517	 * checking of bus mastering status (bm_check) so we can
 518	 * use this in our C3 policy
 519	 */
 520	cx->valid = 1;
 521
 522	/*
 523	 * On older chipsets, BM_RLD needs to be set
 524	 * in order for Bus Master activity to wake the
 525	 * system from C3.  Newer chipsets handle DMA
 526	 * during C3 automatically and BM_RLD is a NOP.
 527	 * In either case, the proper way to
 528	 * handle BM_RLD is to set it and leave it set.
 529	 */
 530	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 
 
 
 
 
 531
 532	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 533}
 534
 535static int acpi_processor_power_verify(struct acpi_processor *pr)
 536{
 537	unsigned int i;
 538	unsigned int working = 0;
 
 
 
 539
 540	pr->power.timer_broadcast_on_state = INT_MAX;
 541
 542	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 543		struct acpi_processor_cx *cx = &pr->power.states[i];
 544
 545		switch (cx->type) {
 546		case ACPI_STATE_C1:
 547			cx->valid = 1;
 548			break;
 549
 550		case ACPI_STATE_C2:
 551			if (!cx->address)
 552				break;
 553			cx->valid = 1;
 554			break;
 555
 556		case ACPI_STATE_C3:
 557			acpi_processor_power_verify_c3(pr, cx);
 558			break;
 559		}
 560		if (!cx->valid)
 561			continue;
 
 
 
 
 562
 563		lapic_timer_check_state(i, pr, cx);
 564		tsc_check_state(cx->type);
 565		working++;
 566	}
 567
 
 
 
 
 
 568	lapic_timer_propagate_broadcast(pr);
 569
 570	return (working);
 571}
 572
 573static int acpi_processor_get_power_info(struct acpi_processor *pr)
 574{
 575	unsigned int i;
 576	int result;
 577
 578
 579	/* NOTE: the idle thread may not be running while calling
 580	 * this function */
 581
 582	/* Zero initialize all the C-states info. */
 583	memset(pr->power.states, 0, sizeof(pr->power.states));
 584
 585	result = acpi_processor_get_power_info_cst(pr);
 586	if (result == -ENODEV)
 587		result = acpi_processor_get_power_info_fadt(pr);
 588
 589	if (result)
 590		return result;
 591
 592	acpi_processor_get_power_info_default(pr);
 593
 594	pr->power.count = acpi_processor_power_verify(pr);
 595
 596	/*
 597	 * if one state of type C2 or C3 is available, mark this
 598	 * CPU as being "idle manageable"
 599	 */
 600	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 601		if (pr->power.states[i].valid) {
 602			pr->power.count = i;
 603			if (pr->power.states[i].type >= ACPI_STATE_C2)
 604				pr->flags.power = 1;
 605		}
 606	}
 607
 608	return 0;
 609}
 610
 611/**
 612 * acpi_idle_bm_check - checks if bus master activity was detected
 613 */
 614static int acpi_idle_bm_check(void)
 615{
 616	u32 bm_status = 0;
 617
 618	if (bm_check_disable)
 619		return 0;
 620
 621	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 622	if (bm_status)
 623		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 624	/*
 625	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 626	 * the true state of bus mastering activity; forcing us to
 627	 * manually check the BMIDEA bit of each IDE channel.
 628	 */
 629	else if (errata.piix4.bmisx) {
 630		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 631		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 632			bm_status = 1;
 633	}
 634	return bm_status;
 635}
 636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637/**
 638 * acpi_idle_do_entry - enter idle state using the appropriate method
 639 * @cx: cstate data
 640 *
 641 * Caller disables interrupt before call and enables interrupt after return.
 642 */
 643static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 644{
 
 
 645	if (cx->entry_method == ACPI_CSTATE_FFH) {
 646		/* Call into architectural FFH based C-state */
 647		acpi_processor_ffh_cstate_enter(cx);
 648	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 649		acpi_safe_halt();
 650	} else {
 651		/* IO port based C-state */
 652		inb(cx->address);
 653		/* Dummy wait op - must do something useless after P_LVL2 read
 654		   because chipsets cannot guarantee that STPCLK# signal
 655		   gets asserted in time to freeze execution properly. */
 656		inl(acpi_gbl_FADT.xpm_timer_block.address);
 657	}
 
 
 658}
 659
 660/**
 661 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 662 * @dev: the target CPU
 663 * @index: the index of suggested state
 664 */
 665static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 666{
 667	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 668
 669	ACPI_FLUSH_CPU_CACHE();
 670
 671	while (1) {
 672
 673		if (cx->entry_method == ACPI_CSTATE_HALT)
 674			safe_halt();
 675		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 676			inb(cx->address);
 677			/* See comment in acpi_idle_do_entry() */
 678			inl(acpi_gbl_FADT.xpm_timer_block.address);
 679		} else
 680			return -ENODEV;
 681	}
 682
 683	/* Never reached */
 684	return 0;
 685}
 686
 687static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 688{
 689	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 690		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 691}
 692
 693static int c3_cpu_count;
 694static DEFINE_RAW_SPINLOCK(c3_lock);
 695
 696/**
 697 * acpi_idle_enter_bm - enters C3 with proper BM handling
 
 698 * @pr: Target processor
 699 * @cx: Target state context
 700 * @timer_bc: Whether or not to change timer mode to broadcast
 701 */
 702static void acpi_idle_enter_bm(struct acpi_processor *pr,
 703			       struct acpi_processor_cx *cx, bool timer_bc)
 704{
 705	acpi_unlazy_tlb(smp_processor_id());
 706
 707	/*
 708	 * Must be done before busmaster disable as we might need to
 709	 * access HPET !
 710	 */
 711	if (timer_bc)
 712		lapic_timer_state_broadcast(pr, cx, 1);
 713
 714	/*
 715	 * disable bus master
 716	 * bm_check implies we need ARB_DIS
 717	 * bm_control implies whether we can do ARB_DIS
 718	 *
 719	 * That leaves a case where bm_check is set and bm_control is
 720	 * not set. In that case we cannot do much, we enter C3
 721	 * without doing anything.
 722	 */
 723	if (pr->flags.bm_control) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724		raw_spin_lock(&c3_lock);
 725		c3_cpu_count++;
 726		/* Disable bus master arbitration when all CPUs are in C3 */
 727		if (c3_cpu_count == num_online_cpus())
 728			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 729		raw_spin_unlock(&c3_lock);
 730	}
 731
 
 
 732	acpi_idle_do_entry(cx);
 733
 
 
 734	/* Re-enable bus master arbitration */
 735	if (pr->flags.bm_control) {
 736		raw_spin_lock(&c3_lock);
 737		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 738		c3_cpu_count--;
 739		raw_spin_unlock(&c3_lock);
 740	}
 741
 742	if (timer_bc)
 743		lapic_timer_state_broadcast(pr, cx, 0);
 
 744}
 745
 746static int acpi_idle_enter(struct cpuidle_device *dev,
 747			   struct cpuidle_driver *drv, int index)
 748{
 749	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 750	struct acpi_processor *pr;
 751
 752	pr = __this_cpu_read(processors);
 753	if (unlikely(!pr))
 754		return -EINVAL;
 755
 756	if (cx->type != ACPI_STATE_C1) {
 
 
 
 
 757		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 758			index = CPUIDLE_DRIVER_STATE_START;
 759			cx = per_cpu(acpi_cstate[index], dev->cpu);
 760		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 761			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 762				acpi_idle_enter_bm(pr, cx, true);
 763				return index;
 764			} else if (drv->safe_state_index >= 0) {
 765				index = drv->safe_state_index;
 766				cx = per_cpu(acpi_cstate[index], dev->cpu);
 767			} else {
 768				acpi_safe_halt();
 769				return -EBUSY;
 770			}
 771		}
 772	}
 773
 774	lapic_timer_state_broadcast(pr, cx, 1);
 775
 776	if (cx->type == ACPI_STATE_C3)
 777		ACPI_FLUSH_CPU_CACHE();
 778
 779	acpi_idle_do_entry(cx);
 780
 781	lapic_timer_state_broadcast(pr, cx, 0);
 782
 783	return index;
 784}
 785
 786static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 787				   struct cpuidle_driver *drv, int index)
 788{
 789	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 790
 791	if (cx->type == ACPI_STATE_C3) {
 792		struct acpi_processor *pr = __this_cpu_read(processors);
 793
 794		if (unlikely(!pr))
 795			return;
 796
 797		if (pr->flags.bm_check) {
 798			acpi_idle_enter_bm(pr, cx, false);
 799			return;
 
 
 
 
 
 
 800		} else {
 801			ACPI_FLUSH_CPU_CACHE();
 802		}
 803	}
 804	acpi_idle_do_entry(cx);
 
 
 805}
 806
 807struct cpuidle_driver acpi_idle_driver = {
 808	.name =		"acpi_idle",
 809	.owner =	THIS_MODULE,
 810};
 811
 812/**
 813 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
 814 * device i.e. per-cpu data
 815 *
 816 * @pr: the ACPI processor
 817 * @dev : the cpuidle device
 818 */
 819static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 820					   struct cpuidle_device *dev)
 821{
 822	int i, count = CPUIDLE_DRIVER_STATE_START;
 823	struct acpi_processor_cx *cx;
 824
 825	if (!pr->flags.power_setup_done)
 826		return -EINVAL;
 827
 828	if (pr->flags.power == 0) {
 829		return -EINVAL;
 830	}
 831
 832	if (!dev)
 833		return -EINVAL;
 834
 835	dev->cpu = pr->id;
 836
 837	if (max_cstate == 0)
 838		max_cstate = 1;
 839
 840	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 
 841		cx = &pr->power.states[i];
 842
 843		if (!cx->valid)
 844			continue;
 845
 846		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 847
 
 
 
 
 
 
 
 
 
 848		count++;
 849		if (count == CPUIDLE_STATE_MAX)
 850			break;
 851	}
 852
 853	if (!count)
 854		return -EINVAL;
 855
 856	return 0;
 857}
 858
 859/**
 860 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
 861 * global state data i.e. idle routines
 862 *
 863 * @pr: the ACPI processor
 864 */
 865static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
 866{
 867	int i, count = CPUIDLE_DRIVER_STATE_START;
 868	struct acpi_processor_cx *cx;
 869	struct cpuidle_state *state;
 870	struct cpuidle_driver *drv = &acpi_idle_driver;
 871
 872	if (!pr->flags.power_setup_done)
 873		return -EINVAL;
 874
 875	if (pr->flags.power == 0)
 876		return -EINVAL;
 877
 878	drv->safe_state_index = -1;
 879	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
 880		drv->states[i].name[0] = '\0';
 881		drv->states[i].desc[0] = '\0';
 882	}
 883
 884	if (max_cstate == 0)
 885		max_cstate = 1;
 886
 887	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 888		cx = &pr->power.states[i];
 889
 890		if (!cx->valid)
 891			continue;
 892
 893		state = &drv->states[count];
 894		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 895		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 896		state->exit_latency = cx->latency;
 897		state->target_residency = cx->latency * latency_factor;
 898		state->enter = acpi_idle_enter;
 899
 900		state->flags = 0;
 901		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 902			state->enter_dead = acpi_idle_play_dead;
 
 
 903			drv->safe_state_index = count;
 904		}
 905		/*
 906		 * Halt-induced C1 is not good for ->enter_freeze, because it
 907		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 908		 * particularly interesting from the suspend-to-idle angle, so
 909		 * avoid C1 and the situations in which we may need to fall back
 910		 * to it altogether.
 911		 */
 912		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 913			state->enter_freeze = acpi_idle_enter_freeze;
 914
 915		count++;
 916		if (count == CPUIDLE_STATE_MAX)
 917			break;
 918	}
 919
 920	drv->state_count = count;
 921
 922	if (!count)
 923		return -EINVAL;
 924
 925	return 0;
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928int acpi_processor_hotplug(struct acpi_processor *pr)
 929{
 930	int ret = 0;
 931	struct cpuidle_device *dev;
 932
 933	if (disabled_by_idle_boot_param())
 934		return 0;
 935
 936	if (nocst)
 937		return -ENODEV;
 938
 939	if (!pr->flags.power_setup_done)
 940		return -ENODEV;
 941
 942	dev = per_cpu(acpi_cpuidle_device, pr->id);
 943	cpuidle_pause_and_lock();
 944	cpuidle_disable_device(dev);
 945	acpi_processor_get_power_info(pr);
 946	if (pr->flags.power) {
 947		acpi_processor_setup_cpuidle_cx(pr, dev);
 948		ret = cpuidle_enable_device(dev);
 949	}
 950	cpuidle_resume_and_unlock();
 951
 952	return ret;
 953}
 954
 955int acpi_processor_cst_has_changed(struct acpi_processor *pr)
 956{
 957	int cpu;
 958	struct acpi_processor *_pr;
 959	struct cpuidle_device *dev;
 960
 961	if (disabled_by_idle_boot_param())
 962		return 0;
 963
 964	if (nocst)
 965		return -ENODEV;
 966
 967	if (!pr->flags.power_setup_done)
 968		return -ENODEV;
 969
 970	/*
 971	 * FIXME:  Design the ACPI notification to make it once per
 972	 * system instead of once per-cpu.  This condition is a hack
 973	 * to make the code that updates C-States be called once.
 974	 */
 975
 976	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
 977
 978		/* Protect against cpu-hotplug */
 979		get_online_cpus();
 980		cpuidle_pause_and_lock();
 981
 982		/* Disable all cpuidle devices */
 983		for_each_online_cpu(cpu) {
 984			_pr = per_cpu(processors, cpu);
 985			if (!_pr || !_pr->flags.power_setup_done)
 986				continue;
 987			dev = per_cpu(acpi_cpuidle_device, cpu);
 988			cpuidle_disable_device(dev);
 989		}
 990
 991		/* Populate Updated C-state information */
 992		acpi_processor_get_power_info(pr);
 993		acpi_processor_setup_cpuidle_states(pr);
 994
 995		/* Enable all cpuidle devices */
 996		for_each_online_cpu(cpu) {
 997			_pr = per_cpu(processors, cpu);
 998			if (!_pr || !_pr->flags.power_setup_done)
 999				continue;
1000			acpi_processor_get_power_info(_pr);
1001			if (_pr->flags.power) {
1002				dev = per_cpu(acpi_cpuidle_device, cpu);
1003				acpi_processor_setup_cpuidle_cx(_pr, dev);
1004				cpuidle_enable_device(dev);
1005			}
1006		}
1007		cpuidle_resume_and_unlock();
1008		put_online_cpus();
1009	}
1010
1011	return 0;
1012}
1013
1014static int acpi_processor_registered;
1015
1016int acpi_processor_power_init(struct acpi_processor *pr)
1017{
1018	acpi_status status;
1019	int retval;
1020	struct cpuidle_device *dev;
1021	static int first_run;
1022
1023	if (disabled_by_idle_boot_param())
1024		return 0;
1025
1026	if (!first_run) {
1027		dmi_check_system(processor_power_dmi_table);
1028		max_cstate = acpi_processor_cstate_check(max_cstate);
1029		if (max_cstate < ACPI_C_STATES_MAX)
1030			printk(KERN_NOTICE
1031			       "ACPI: processor limited to max C-state %d\n",
1032			       max_cstate);
1033		first_run++;
1034	}
1035
1036	if (acpi_gbl_FADT.cst_control && !nocst) {
1037		status =
1038		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1039		if (ACPI_FAILURE(status)) {
1040			ACPI_EXCEPTION((AE_INFO, status,
1041					"Notifying BIOS of _CST ability failed"));
1042		}
1043	}
1044
1045	acpi_processor_get_power_info(pr);
1046	pr->flags.power_setup_done = 1;
1047
1048	/*
1049	 * Install the idle handler if processor power management is supported.
1050	 * Note that we use previously set idle handler will be used on
1051	 * platforms that only support C1.
1052	 */
1053	if (pr->flags.power) {
1054		/* Register acpi_idle_driver if not already registered */
1055		if (!acpi_processor_registered) {
1056			acpi_processor_setup_cpuidle_states(pr);
1057			retval = cpuidle_register_driver(&acpi_idle_driver);
1058			if (retval)
1059				return retval;
1060			pr_debug("%s registered with cpuidle\n",
1061				 acpi_idle_driver.name);
1062		}
1063
1064		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1065		if (!dev)
1066			return -ENOMEM;
1067		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1068
1069		acpi_processor_setup_cpuidle_cx(pr, dev);
1070
1071		/* Register per-cpu cpuidle_device. Cpuidle driver
1072		 * must already be registered before registering device
1073		 */
1074		retval = cpuidle_register_device(dev);
1075		if (retval) {
1076			if (acpi_processor_registered == 0)
1077				cpuidle_unregister_driver(&acpi_idle_driver);
1078			return retval;
1079		}
1080		acpi_processor_registered++;
1081	}
1082	return 0;
1083}
1084
1085int acpi_processor_power_exit(struct acpi_processor *pr)
1086{
1087	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1088
1089	if (disabled_by_idle_boot_param())
1090		return 0;
1091
1092	if (pr->flags.power) {
1093		cpuidle_unregister_device(dev);
1094		acpi_processor_registered--;
1095		if (acpi_processor_registered == 0)
1096			cpuidle_unregister_driver(&acpi_idle_driver);
 
 
1097	}
1098
1099	pr->flags.power_setup_done = 0;
1100	return 0;
1101}