Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <linux/minmax.h>
  23#include <linux/perf_event.h>
  24#include <acpi/processor.h>
  25#include <linux/context_tracking.h>
  26
  27/*
  28 * Include the apic definitions for x86 to have the APIC timer related defines
  29 * available also for UP (on SMP it gets magically included via linux/smp.h).
  30 * asm/acpi.h is not an option, as it would require more include magic. Also
  31 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  32 */
  33#ifdef CONFIG_X86
  34#include <asm/apic.h>
  35#include <asm/cpu.h>
  36#endif
  37
 
 
 
 
  38#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0400);
  42static bool nocst __read_mostly;
  43module_param(nocst, bool, 0400);
  44static bool bm_check_disable __read_mostly;
  45module_param(bm_check_disable, bool, 0400);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53	.name =		"acpi_idle",
  54	.owner =	THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63	return boot_option_idle_override == IDLE_POLL ||
  64		boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76		return 0;
  77
  78	pr_notice("%s detected - limiting to C%ld max_cstate."
  79		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82	max_cstate = (long)id->driver_data;
  83
  84	return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
  88	{ set_max_cstate, "Clevo 5600D", {
  89	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91	 (void *)2},
  92	{ set_max_cstate, "Pavilion zv5000", {
  93	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95	 (void *)1},
  96	{ set_max_cstate, "Asus L8400B", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99	 (void *)1},
 100	{},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110	if (!tif_need_resched()) {
 111		raw_safe_halt();
 112		raw_local_irq_disable();
 113	}
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125				   struct acpi_processor_cx *cx)
 126{
 127	struct acpi_processor_power *pwr = &pr->power;
 128	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131		return;
 132
 133	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134		type = ACPI_STATE_C1;
 135
 136	/*
 137	 * Check, if one of the previous states already marked the lapic
 138	 * unstable
 139	 */
 140	if (pwr->timer_broadcast_on_state < state)
 141		return;
 142
 143	if (cx->type >= type)
 144		pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149	struct acpi_processor *pr = arg;
 150
 151	if (pr->power.timer_broadcast_on_state < INT_MAX)
 152		tick_broadcast_enable();
 153	else
 154		tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160				 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 165					struct acpi_processor_cx *cx)
 166{
 167	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 
 
 
 
 
 
 
 
 168}
 169
 170#else
 171
 172static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 173				   struct acpi_processor_cx *cstate) { }
 174static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 175
 176static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 177					struct acpi_processor_cx *cx)
 178{
 179	return false;
 180}
 181
 182#endif
 183
 184#if defined(CONFIG_X86)
 185static void tsc_check_state(int state)
 186{
 187	switch (boot_cpu_data.x86_vendor) {
 188	case X86_VENDOR_HYGON:
 189	case X86_VENDOR_AMD:
 190	case X86_VENDOR_INTEL:
 191	case X86_VENDOR_CENTAUR:
 192	case X86_VENDOR_ZHAOXIN:
 193		/*
 194		 * AMD Fam10h TSC will tick in all
 195		 * C/P/S0/S1 states when this bit is set.
 196		 */
 197		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 198			return;
 199		fallthrough;
 
 200	default:
 201		/* TSC could halt in idle, so notify users */
 202		if (state > ACPI_STATE_C1)
 203			mark_tsc_unstable("TSC halts in idle");
 204	}
 205}
 206#else
 207static void tsc_check_state(int state) { return; }
 208#endif
 209
 210static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 211{
 212
 213	if (!pr->pblk)
 214		return -ENODEV;
 215
 216	/* if info is obtained from pblk/fadt, type equals state */
 217	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 218	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 219
 220#ifndef CONFIG_HOTPLUG_CPU
 221	/*
 222	 * Check for P_LVL2_UP flag before entering C2 and above on
 223	 * an SMP system.
 224	 */
 225	if ((num_online_cpus() > 1) &&
 226	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 227		return -ENODEV;
 228#endif
 229
 230	/* determine C2 and C3 address from pblk */
 231	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 232	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 233
 234	/* determine latencies from FADT */
 235	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 236	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 237
 238	/*
 239	 * FADT specified C2 latency must be less than or equal to
 240	 * 100 microseconds.
 241	 */
 242	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 243		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 244				  acpi_gbl_FADT.c2_latency);
 245		/* invalidate C2 */
 246		pr->power.states[ACPI_STATE_C2].address = 0;
 247	}
 248
 249	/*
 250	 * FADT supplied C3 latency must be less than or equal to
 251	 * 1000 microseconds.
 252	 */
 253	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 254		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 255				  acpi_gbl_FADT.c3_latency);
 256		/* invalidate C3 */
 257		pr->power.states[ACPI_STATE_C3].address = 0;
 258	}
 259
 260	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 
 261			  pr->power.states[ACPI_STATE_C2].address,
 262			  pr->power.states[ACPI_STATE_C3].address);
 263
 264	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 265			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 266			 pr->power.states[ACPI_STATE_C2].address);
 267	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 268			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 269			 pr->power.states[ACPI_STATE_C3].address);
 270
 271	return 0;
 272}
 273
 274static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 275{
 276	if (!pr->power.states[ACPI_STATE_C1].valid) {
 277		/* set the first C-State to C1 */
 278		/* all processors need to support C1 */
 279		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 280		pr->power.states[ACPI_STATE_C1].valid = 1;
 281		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 282
 283		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 284			 ACPI_CX_DESC_LEN, "ACPI HLT");
 285	}
 286	/* the C0 state only exists as a filler in our array */
 287	pr->power.states[ACPI_STATE_C0].valid = 1;
 288	return 0;
 289}
 290
 291static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 292{
 293	int ret;
 
 
 
 
 
 294
 295	if (nocst)
 296		return -ENODEV;
 297
 298	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 299	if (ret)
 300		return ret;
 
 
 
 
 301
 302	if (!pr->power.count)
 303		return -EFAULT;
 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305	pr->flags.has_cst = 1;
 306	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307}
 308
 309static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 310					   struct acpi_processor_cx *cx)
 311{
 312	static int bm_check_flag = -1;
 313	static int bm_control_flag = -1;
 314
 315
 316	if (!cx->address)
 317		return;
 318
 319	/*
 320	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 321	 * DMA transfers are used by any ISA device to avoid livelock.
 322	 * Note that we could disable Type-F DMA (as recommended by
 323	 * the erratum), but this is known to disrupt certain ISA
 324	 * devices thus we take the conservative approach.
 325	 */
 326	if (errata.piix4.fdma) {
 327		acpi_handle_debug(pr->handle,
 328				  "C3 not supported on PIIX4 with Type-F DMA\n");
 329		return;
 330	}
 331
 332	/* All the logic here assumes flags.bm_check is same across all CPUs */
 333	if (bm_check_flag == -1) {
 334		/* Determine whether bm_check is needed based on CPU  */
 335		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 336		bm_check_flag = pr->flags.bm_check;
 337		bm_control_flag = pr->flags.bm_control;
 338	} else {
 339		pr->flags.bm_check = bm_check_flag;
 340		pr->flags.bm_control = bm_control_flag;
 341	}
 342
 343	if (pr->flags.bm_check) {
 344		if (!pr->flags.bm_control) {
 345			if (pr->flags.has_cst != 1) {
 346				/* bus mastering control is necessary */
 347				acpi_handle_debug(pr->handle,
 348						  "C3 support requires BM control\n");
 349				return;
 350			} else {
 351				/* Here we enter C3 without bus mastering */
 352				acpi_handle_debug(pr->handle,
 353						  "C3 support without BM control\n");
 354			}
 355		}
 356	} else {
 357		/*
 358		 * WBINVD should be set in fadt, for C3 state to be
 359		 * supported on when bm_check is not required.
 360		 */
 361		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 362			acpi_handle_debug(pr->handle,
 363					  "Cache invalidation should work properly"
 364					  " for C3 to be enabled on SMP systems\n");
 365			return;
 366		}
 367	}
 368
 369	/*
 370	 * Otherwise we've met all of our C3 requirements.
 371	 * Normalize the C3 latency to expidite policy.  Enable
 372	 * checking of bus mastering status (bm_check) so we can
 373	 * use this in our C3 policy
 374	 */
 375	cx->valid = 1;
 376
 377	/*
 378	 * On older chipsets, BM_RLD needs to be set
 379	 * in order for Bus Master activity to wake the
 380	 * system from C3.  Newer chipsets handle DMA
 381	 * during C3 automatically and BM_RLD is a NOP.
 382	 * In either case, the proper way to
 383	 * handle BM_RLD is to set it and leave it set.
 384	 */
 385	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 386}
 387
 388static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
 389{
 390	int i, j, k;
 391
 392	for (i = 1; i < length; i++) {
 393		if (!states[i].valid)
 394			continue;
 395
 396		for (j = i - 1, k = i; j >= 0; j--) {
 397			if (!states[j].valid)
 398				continue;
 399
 400			if (states[j].latency > states[k].latency)
 401				swap(states[j].latency, states[k].latency);
 402
 403			k = j;
 404		}
 405	}
 406}
 407
 408static int acpi_processor_power_verify(struct acpi_processor *pr)
 409{
 410	unsigned int i;
 411	unsigned int working = 0;
 412	unsigned int last_latency = 0;
 413	unsigned int last_type = 0;
 414	bool buggy_latency = false;
 415
 416	pr->power.timer_broadcast_on_state = INT_MAX;
 417
 418	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 419		struct acpi_processor_cx *cx = &pr->power.states[i];
 420
 421		switch (cx->type) {
 422		case ACPI_STATE_C1:
 423			cx->valid = 1;
 424			break;
 425
 426		case ACPI_STATE_C2:
 427			if (!cx->address)
 428				break;
 429			cx->valid = 1;
 430			break;
 431
 432		case ACPI_STATE_C3:
 433			acpi_processor_power_verify_c3(pr, cx);
 434			break;
 435		}
 436		if (!cx->valid)
 437			continue;
 438		if (cx->type >= last_type && cx->latency < last_latency)
 439			buggy_latency = true;
 440		last_latency = cx->latency;
 441		last_type = cx->type;
 442
 443		lapic_timer_check_state(i, pr, cx);
 444		tsc_check_state(cx->type);
 445		working++;
 446	}
 447
 448	if (buggy_latency) {
 449		pr_notice("FW issue: working around C-state latencies out of order\n");
 450		acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
 451	}
 452
 453	lapic_timer_propagate_broadcast(pr);
 454
 455	return working;
 456}
 457
 458static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 459{
 460	unsigned int i;
 461	int result;
 462
 463
 464	/* NOTE: the idle thread may not be running while calling
 465	 * this function */
 466
 467	/* Zero initialize all the C-states info. */
 468	memset(pr->power.states, 0, sizeof(pr->power.states));
 469
 470	result = acpi_processor_get_power_info_cst(pr);
 471	if (result == -ENODEV)
 472		result = acpi_processor_get_power_info_fadt(pr);
 473
 474	if (result)
 475		return result;
 476
 477	acpi_processor_get_power_info_default(pr);
 478
 479	pr->power.count = acpi_processor_power_verify(pr);
 480
 481	/*
 482	 * if one state of type C2 or C3 is available, mark this
 483	 * CPU as being "idle manageable"
 484	 */
 485	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 486		if (pr->power.states[i].valid) {
 487			pr->power.count = i;
 488			pr->flags.power = 1;
 
 489		}
 490	}
 491
 492	return 0;
 493}
 494
 495/**
 496 * acpi_idle_bm_check - checks if bus master activity was detected
 497 */
 498static int acpi_idle_bm_check(void)
 499{
 500	u32 bm_status = 0;
 501
 502	if (bm_check_disable)
 503		return 0;
 504
 505	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 506	if (bm_status)
 507		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 508	/*
 509	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 510	 * the true state of bus mastering activity; forcing us to
 511	 * manually check the BMIDEA bit of each IDE channel.
 512	 */
 513	else if (errata.piix4.bmisx) {
 514		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 515		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 516			bm_status = 1;
 517	}
 518	return bm_status;
 519}
 520
 521static __cpuidle void io_idle(unsigned long addr)
 522{
 523	/* IO port based C-state */
 524	inb(addr);
 525
 526#ifdef	CONFIG_X86
 527	/* No delay is needed if we are in guest */
 528	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 529		return;
 530	/*
 531	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
 532	 * not this code.  Assume that any Intel systems using this
 533	 * are ancient and may need the dummy wait.  This also assumes
 534	 * that the motivating chipset issue was Intel-only.
 535	 */
 536	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 537		return;
 538#endif
 539	/*
 540	 * Dummy wait op - must do something useless after P_LVL2 read
 541	 * because chipsets cannot guarantee that STPCLK# signal gets
 542	 * asserted in time to freeze execution properly
 543	 *
 544	 * This workaround has been in place since the original ACPI
 545	 * implementation was merged, circa 2002.
 546	 *
 547	 * If a profile is pointing to this instruction, please first
 548	 * consider moving your system to a more modern idle
 549	 * mechanism.
 550	 */
 551	inl(acpi_gbl_FADT.xpm_timer_block.address);
 552}
 553
 554/**
 555 * acpi_idle_do_entry - enter idle state using the appropriate method
 556 * @cx: cstate data
 557 *
 558 * Caller disables interrupt before call and enables interrupt after return.
 559 */
 560static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 561{
 562	perf_lopwr_cb(true);
 563
 564	if (cx->entry_method == ACPI_CSTATE_FFH) {
 565		/* Call into architectural FFH based C-state */
 566		acpi_processor_ffh_cstate_enter(cx);
 567	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 568		acpi_safe_halt();
 569	} else {
 570		io_idle(cx->address);
 
 
 
 
 
 571	}
 572
 573	perf_lopwr_cb(false);
 574}
 575
 576/**
 577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 578 * @dev: the target CPU
 579 * @index: the index of suggested state
 580 */
 581static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 582{
 583	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 584
 585	ACPI_FLUSH_CPU_CACHE();
 586
 587	while (1) {
 588
 589		if (cx->entry_method == ACPI_CSTATE_HALT)
 590			raw_safe_halt();
 591		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 592			io_idle(cx->address);
 
 
 593		} else
 594			return;
 595	}
 
 
 
 596}
 597
 598static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 599{
 600	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 601		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 602}
 603
 604static int c3_cpu_count;
 605static DEFINE_RAW_SPINLOCK(c3_lock);
 606
 607/**
 608 * acpi_idle_enter_bm - enters C3 with proper BM handling
 609 * @drv: cpuidle driver
 610 * @pr: Target processor
 611 * @cx: Target state context
 612 * @index: index of target state
 613 */
 614static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
 615			       struct acpi_processor *pr,
 616			       struct acpi_processor_cx *cx,
 617			       int index)
 618{
 619	static struct acpi_processor_cx safe_cx = {
 620		.entry_method = ACPI_CSTATE_HALT,
 621	};
 
 
 
 622
 623	/*
 624	 * disable bus master
 625	 * bm_check implies we need ARB_DIS
 626	 * bm_control implies whether we can do ARB_DIS
 627	 *
 628	 * That leaves a case where bm_check is set and bm_control is not set.
 629	 * In that case we cannot do much, we enter C3 without doing anything.
 
 630	 */
 631	bool dis_bm = pr->flags.bm_control;
 632
 633	instrumentation_begin();
 634
 635	/* If we can skip BM, demote to a safe state. */
 636	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 637		dis_bm = false;
 638		index = drv->safe_state_index;
 639		if (index >= 0) {
 640			cx = this_cpu_read(acpi_cstate[index]);
 641		} else {
 642			cx = &safe_cx;
 643			index = -EBUSY;
 644		}
 645	}
 646
 647	if (dis_bm) {
 648		raw_spin_lock(&c3_lock);
 649		c3_cpu_count++;
 650		/* Disable bus master arbitration when all CPUs are in C3 */
 651		if (c3_cpu_count == num_online_cpus())
 652			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 653		raw_spin_unlock(&c3_lock);
 654	}
 655
 656	ct_cpuidle_enter();
 657
 658	acpi_idle_do_entry(cx);
 659
 660	ct_cpuidle_exit();
 661
 662	/* Re-enable bus master arbitration */
 663	if (dis_bm) {
 664		raw_spin_lock(&c3_lock);
 665		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 666		c3_cpu_count--;
 667		raw_spin_unlock(&c3_lock);
 668	}
 669
 670	instrumentation_end();
 671
 672	return index;
 673}
 674
 675static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
 676			   struct cpuidle_driver *drv, int index)
 677{
 678	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 679	struct acpi_processor *pr;
 680
 681	pr = __this_cpu_read(processors);
 682	if (unlikely(!pr))
 683		return -EINVAL;
 684
 685	if (cx->type != ACPI_STATE_C1) {
 686		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 687			return acpi_idle_enter_bm(drv, pr, cx, index);
 688
 689		/* C2 to C1 demotion. */
 690		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 691			index = ACPI_IDLE_STATE_START;
 692			cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 
 
 
 
 
 
 
 693		}
 694	}
 695
 
 
 696	if (cx->type == ACPI_STATE_C3)
 697		ACPI_FLUSH_CPU_CACHE();
 698
 699	acpi_idle_do_entry(cx);
 700
 
 
 701	return index;
 702}
 703
 704static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 705				  struct cpuidle_driver *drv, int index)
 706{
 707	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 708
 709	if (cx->type == ACPI_STATE_C3) {
 710		struct acpi_processor *pr = __this_cpu_read(processors);
 711
 712		if (unlikely(!pr))
 713			return 0;
 714
 715		if (pr->flags.bm_check) {
 716			u8 bm_sts_skip = cx->bm_sts_skip;
 717
 718			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 719			cx->bm_sts_skip = 1;
 720			acpi_idle_enter_bm(drv, pr, cx, index);
 721			cx->bm_sts_skip = bm_sts_skip;
 722
 723			return 0;
 724		} else {
 725			ACPI_FLUSH_CPU_CACHE();
 726		}
 727	}
 728	acpi_idle_do_entry(cx);
 729
 730	return 0;
 731}
 732
 733static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 734					   struct cpuidle_device *dev)
 735{
 736	int i, count = ACPI_IDLE_STATE_START;
 737	struct acpi_processor_cx *cx;
 738	struct cpuidle_state *state;
 739
 740	if (max_cstate == 0)
 741		max_cstate = 1;
 742
 743	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 744		state = &acpi_idle_driver.states[count];
 745		cx = &pr->power.states[i];
 746
 747		if (!cx->valid)
 748			continue;
 749
 750		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 751
 752		if (lapic_timer_needs_broadcast(pr, cx))
 753			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 754
 755		if (cx->type == ACPI_STATE_C3) {
 756			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 757			if (pr->flags.bm_check)
 758				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 759		}
 760
 761		count++;
 762		if (count == CPUIDLE_STATE_MAX)
 763			break;
 764	}
 765
 766	if (!count)
 767		return -EINVAL;
 768
 769	return 0;
 770}
 771
 772static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 773{
 774	int i, count;
 775	struct acpi_processor_cx *cx;
 776	struct cpuidle_state *state;
 777	struct cpuidle_driver *drv = &acpi_idle_driver;
 778
 779	if (max_cstate == 0)
 780		max_cstate = 1;
 781
 782	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 783		cpuidle_poll_state_init(drv);
 784		count = 1;
 785	} else {
 786		count = 0;
 787	}
 788
 789	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 790		cx = &pr->power.states[i];
 791
 792		if (!cx->valid)
 793			continue;
 794
 795		state = &drv->states[count];
 796		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 797		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 798		state->exit_latency = cx->latency;
 799		state->target_residency = cx->latency * latency_factor;
 800		state->enter = acpi_idle_enter;
 801
 802		state->flags = 0;
 803
 804		state->enter_dead = acpi_idle_play_dead;
 805
 806		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
 807			drv->safe_state_index = count;
 808
 809		/*
 810		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 811		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 812		 * particularly interesting from the suspend-to-idle angle, so
 813		 * avoid C1 and the situations in which we may need to fall back
 814		 * to it altogether.
 815		 */
 816		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 817			state->enter_s2idle = acpi_idle_enter_s2idle;
 818
 819		count++;
 820		if (count == CPUIDLE_STATE_MAX)
 821			break;
 822	}
 823
 824	drv->state_count = count;
 825
 826	if (!count)
 827		return -EINVAL;
 828
 829	return 0;
 830}
 831
 832static inline void acpi_processor_cstate_first_run_checks(void)
 833{
 
 834	static int first_run;
 835
 836	if (first_run)
 837		return;
 838	dmi_check_system(processor_power_dmi_table);
 839	max_cstate = acpi_processor_cstate_check(max_cstate);
 840	if (max_cstate < ACPI_C_STATES_MAX)
 841		pr_notice("processor limited to max C-state %d\n", max_cstate);
 842
 843	first_run++;
 844
 845	if (nocst)
 846		return;
 847
 848	acpi_processor_claim_cst_control();
 
 
 
 849}
 850#else
 851
 852static inline int disabled_by_idle_boot_param(void) { return 0; }
 853static inline void acpi_processor_cstate_first_run_checks(void) { }
 854static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 855{
 856	return -ENODEV;
 857}
 858
 859static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 860					   struct cpuidle_device *dev)
 861{
 862	return -EINVAL;
 863}
 864
 865static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 866{
 867	return -EINVAL;
 868}
 869
 870#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 871
 872struct acpi_lpi_states_array {
 873	unsigned int size;
 874	unsigned int composite_states_size;
 875	struct acpi_lpi_state *entries;
 876	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 877};
 878
 879static int obj_get_integer(union acpi_object *obj, u32 *value)
 880{
 881	if (obj->type != ACPI_TYPE_INTEGER)
 882		return -EINVAL;
 883
 884	*value = obj->integer.value;
 885	return 0;
 886}
 887
 888static int acpi_processor_evaluate_lpi(acpi_handle handle,
 889				       struct acpi_lpi_states_array *info)
 890{
 891	acpi_status status;
 892	int ret = 0;
 893	int pkg_count, state_idx = 1, loop;
 894	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 895	union acpi_object *lpi_data;
 896	struct acpi_lpi_state *lpi_state;
 897
 898	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 899	if (ACPI_FAILURE(status)) {
 900		acpi_handle_debug(handle, "No _LPI, giving up\n");
 901		return -ENODEV;
 902	}
 903
 904	lpi_data = buffer.pointer;
 905
 906	/* There must be at least 4 elements = 3 elements + 1 package */
 907	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 908	    lpi_data->package.count < 4) {
 909		pr_debug("not enough elements in _LPI\n");
 910		ret = -ENODATA;
 911		goto end;
 912	}
 913
 914	pkg_count = lpi_data->package.elements[2].integer.value;
 915
 916	/* Validate number of power states. */
 917	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 918		pr_debug("count given by _LPI is not valid\n");
 919		ret = -ENODATA;
 920		goto end;
 921	}
 922
 923	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 924	if (!lpi_state) {
 925		ret = -ENOMEM;
 926		goto end;
 927	}
 928
 929	info->size = pkg_count;
 930	info->entries = lpi_state;
 931
 932	/* LPI States start at index 3 */
 933	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 934		union acpi_object *element, *pkg_elem, *obj;
 935
 936		element = &lpi_data->package.elements[loop];
 937		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 938			continue;
 939
 940		pkg_elem = element->package.elements;
 941
 942		obj = pkg_elem + 6;
 943		if (obj->type == ACPI_TYPE_BUFFER) {
 944			struct acpi_power_register *reg;
 945
 946			reg = (struct acpi_power_register *)obj->buffer.pointer;
 947			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 948			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 949				continue;
 950
 951			lpi_state->address = reg->address;
 952			lpi_state->entry_method =
 953				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 954				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 955		} else if (obj->type == ACPI_TYPE_INTEGER) {
 956			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 957			lpi_state->address = obj->integer.value;
 958		} else {
 959			continue;
 960		}
 961
 962		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 963
 964		obj = pkg_elem + 9;
 965		if (obj->type == ACPI_TYPE_STRING)
 966			strscpy(lpi_state->desc, obj->string.pointer,
 967				ACPI_CX_DESC_LEN);
 968
 969		lpi_state->index = state_idx;
 970		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 971			pr_debug("No min. residency found, assuming 10 us\n");
 972			lpi_state->min_residency = 10;
 973		}
 974
 975		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 976			pr_debug("No wakeup residency found, assuming 10 us\n");
 977			lpi_state->wake_latency = 10;
 978		}
 979
 980		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 981			lpi_state->flags = 0;
 982
 983		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 984			lpi_state->arch_flags = 0;
 985
 986		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 987			lpi_state->res_cnt_freq = 1;
 988
 989		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 990			lpi_state->enable_parent_state = 0;
 991	}
 992
 993	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 994end:
 995	kfree(buffer.pointer);
 996	return ret;
 997}
 998
 999/*
1000 * flat_state_cnt - the number of composite LPI states after the process of flattening
1001 */
1002static int flat_state_cnt;
1003
1004/**
1005 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1006 *
1007 * @local: local LPI state
1008 * @parent: parent LPI state
1009 * @result: composite LPI state
1010 */
1011static bool combine_lpi_states(struct acpi_lpi_state *local,
1012			       struct acpi_lpi_state *parent,
1013			       struct acpi_lpi_state *result)
1014{
1015	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1016		if (!parent->address) /* 0 means autopromotable */
1017			return false;
1018		result->address = local->address + parent->address;
1019	} else {
1020		result->address = parent->address;
1021	}
1022
1023	result->min_residency = max(local->min_residency, parent->min_residency);
1024	result->wake_latency = local->wake_latency + parent->wake_latency;
1025	result->enable_parent_state = parent->enable_parent_state;
1026	result->entry_method = local->entry_method;
1027
1028	result->flags = parent->flags;
1029	result->arch_flags = parent->arch_flags;
1030	result->index = parent->index;
1031
1032	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1033	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1034	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1035	return true;
1036}
1037
1038#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1039
1040static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1041				  struct acpi_lpi_state *t)
1042{
1043	curr_level->composite_states[curr_level->composite_states_size++] = t;
1044}
1045
1046static int flatten_lpi_states(struct acpi_processor *pr,
1047			      struct acpi_lpi_states_array *curr_level,
1048			      struct acpi_lpi_states_array *prev_level)
1049{
1050	int i, j, state_count = curr_level->size;
1051	struct acpi_lpi_state *p, *t = curr_level->entries;
1052
1053	curr_level->composite_states_size = 0;
1054	for (j = 0; j < state_count; j++, t++) {
1055		struct acpi_lpi_state *flpi;
1056
1057		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1058			continue;
1059
1060		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1061			pr_warn("Limiting number of LPI states to max (%d)\n",
1062				ACPI_PROCESSOR_MAX_POWER);
1063			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1064			break;
1065		}
1066
1067		flpi = &pr->power.lpi_states[flat_state_cnt];
1068
1069		if (!prev_level) { /* leaf/processor node */
1070			memcpy(flpi, t, sizeof(*t));
1071			stash_composite_state(curr_level, flpi);
1072			flat_state_cnt++;
1073			continue;
1074		}
1075
1076		for (i = 0; i < prev_level->composite_states_size; i++) {
1077			p = prev_level->composite_states[i];
1078			if (t->index <= p->enable_parent_state &&
1079			    combine_lpi_states(p, t, flpi)) {
1080				stash_composite_state(curr_level, flpi);
1081				flat_state_cnt++;
1082				flpi++;
1083			}
1084		}
1085	}
1086
1087	kfree(curr_level->entries);
1088	return 0;
1089}
1090
1091int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1092{
1093	return -EOPNOTSUPP;
1094}
1095
1096static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1097{
1098	int ret, i;
1099	acpi_status status;
1100	acpi_handle handle = pr->handle, pr_ahandle;
1101	struct acpi_device *d = NULL;
1102	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1103
1104	/* make sure our architecture has support */
1105	ret = acpi_processor_ffh_lpi_probe(pr->id);
1106	if (ret == -EOPNOTSUPP)
1107		return ret;
1108
1109	if (!osc_pc_lpi_support_confirmed)
1110		return -EOPNOTSUPP;
1111
1112	if (!acpi_has_method(handle, "_LPI"))
1113		return -EINVAL;
1114
1115	flat_state_cnt = 0;
1116	prev = &info[0];
1117	curr = &info[1];
1118	handle = pr->handle;
1119	ret = acpi_processor_evaluate_lpi(handle, prev);
1120	if (ret)
1121		return ret;
1122	flatten_lpi_states(pr, prev, NULL);
1123
1124	status = acpi_get_parent(handle, &pr_ahandle);
1125	while (ACPI_SUCCESS(status)) {
1126		d = acpi_fetch_acpi_dev(pr_ahandle);
1127		if (!d)
1128			break;
1129
1130		handle = pr_ahandle;
1131
1132		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1133			break;
1134
1135		/* can be optional ? */
1136		if (!acpi_has_method(handle, "_LPI"))
1137			break;
1138
1139		ret = acpi_processor_evaluate_lpi(handle, curr);
1140		if (ret)
1141			break;
1142
1143		/* flatten all the LPI states in this level of hierarchy */
1144		flatten_lpi_states(pr, curr, prev);
1145
1146		tmp = prev, prev = curr, curr = tmp;
1147
1148		status = acpi_get_parent(handle, &pr_ahandle);
1149	}
1150
1151	pr->power.count = flat_state_cnt;
1152	/* reset the index after flattening */
1153	for (i = 0; i < pr->power.count; i++)
1154		pr->power.lpi_states[i].index = i;
1155
1156	/* Tell driver that _LPI is supported. */
1157	pr->flags.has_lpi = 1;
1158	pr->flags.power = 1;
1159
1160	return 0;
1161}
1162
 
 
 
 
 
1163int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1164{
1165	return -ENODEV;
1166}
1167
1168/**
1169 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1170 * @dev: the target CPU
1171 * @drv: cpuidle driver containing cpuidle state info
1172 * @index: index of target state
1173 *
1174 * Return: 0 for success or negative value for error
1175 */
1176static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1177			       struct cpuidle_driver *drv, int index)
1178{
1179	struct acpi_processor *pr;
1180	struct acpi_lpi_state *lpi;
1181
1182	pr = __this_cpu_read(processors);
1183
1184	if (unlikely(!pr))
1185		return -EINVAL;
1186
1187	lpi = &pr->power.lpi_states[index];
1188	if (lpi->entry_method == ACPI_CSTATE_FFH)
1189		return acpi_processor_ffh_lpi_enter(lpi);
1190
1191	return -EINVAL;
1192}
1193
1194static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1195{
1196	int i;
1197	struct acpi_lpi_state *lpi;
1198	struct cpuidle_state *state;
1199	struct cpuidle_driver *drv = &acpi_idle_driver;
1200
1201	if (!pr->flags.has_lpi)
1202		return -EOPNOTSUPP;
1203
1204	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1205		lpi = &pr->power.lpi_states[i];
1206
1207		state = &drv->states[i];
1208		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1209		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1210		state->exit_latency = lpi->wake_latency;
1211		state->target_residency = lpi->min_residency;
1212		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1213		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1214			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1215		state->enter = acpi_idle_lpi_enter;
1216		drv->safe_state_index = i;
1217	}
1218
1219	drv->state_count = i;
1220
1221	return 0;
1222}
1223
1224/**
1225 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1226 * global state data i.e. idle routines
1227 *
1228 * @pr: the ACPI processor
1229 */
1230static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1231{
1232	int i;
1233	struct cpuidle_driver *drv = &acpi_idle_driver;
1234
1235	if (!pr->flags.power_setup_done || !pr->flags.power)
1236		return -EINVAL;
1237
1238	drv->safe_state_index = -1;
1239	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1240		drv->states[i].name[0] = '\0';
1241		drv->states[i].desc[0] = '\0';
1242	}
1243
1244	if (pr->flags.has_lpi)
1245		return acpi_processor_setup_lpi_states(pr);
1246
1247	return acpi_processor_setup_cstates(pr);
1248}
1249
1250/**
1251 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1252 * device i.e. per-cpu data
1253 *
1254 * @pr: the ACPI processor
1255 * @dev : the cpuidle device
1256 */
1257static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1258					    struct cpuidle_device *dev)
1259{
1260	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1261		return -EINVAL;
1262
1263	dev->cpu = pr->id;
1264	if (pr->flags.has_lpi)
1265		return acpi_processor_ffh_lpi_probe(pr->id);
1266
1267	return acpi_processor_setup_cpuidle_cx(pr, dev);
1268}
1269
1270static int acpi_processor_get_power_info(struct acpi_processor *pr)
1271{
1272	int ret;
1273
1274	ret = acpi_processor_get_lpi_info(pr);
1275	if (ret)
1276		ret = acpi_processor_get_cstate_info(pr);
1277
1278	return ret;
1279}
1280
1281int acpi_processor_hotplug(struct acpi_processor *pr)
1282{
1283	int ret = 0;
1284	struct cpuidle_device *dev;
1285
1286	if (disabled_by_idle_boot_param())
1287		return 0;
1288
1289	if (!pr->flags.power_setup_done)
1290		return -ENODEV;
1291
1292	dev = per_cpu(acpi_cpuidle_device, pr->id);
1293	cpuidle_pause_and_lock();
1294	cpuidle_disable_device(dev);
1295	ret = acpi_processor_get_power_info(pr);
1296	if (!ret && pr->flags.power) {
1297		acpi_processor_setup_cpuidle_dev(pr, dev);
1298		ret = cpuidle_enable_device(dev);
1299	}
1300	cpuidle_resume_and_unlock();
1301
1302	return ret;
1303}
1304
1305int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1306{
1307	int cpu;
1308	struct acpi_processor *_pr;
1309	struct cpuidle_device *dev;
1310
1311	if (disabled_by_idle_boot_param())
1312		return 0;
1313
1314	if (!pr->flags.power_setup_done)
1315		return -ENODEV;
1316
1317	/*
1318	 * FIXME:  Design the ACPI notification to make it once per
1319	 * system instead of once per-cpu.  This condition is a hack
1320	 * to make the code that updates C-States be called once.
1321	 */
1322
1323	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1324
1325		/* Protect against cpu-hotplug */
1326		cpus_read_lock();
1327		cpuidle_pause_and_lock();
1328
1329		/* Disable all cpuidle devices */
1330		for_each_online_cpu(cpu) {
1331			_pr = per_cpu(processors, cpu);
1332			if (!_pr || !_pr->flags.power_setup_done)
1333				continue;
1334			dev = per_cpu(acpi_cpuidle_device, cpu);
1335			cpuidle_disable_device(dev);
1336		}
1337
1338		/* Populate Updated C-state information */
1339		acpi_processor_get_power_info(pr);
1340		acpi_processor_setup_cpuidle_states(pr);
1341
1342		/* Enable all cpuidle devices */
1343		for_each_online_cpu(cpu) {
1344			_pr = per_cpu(processors, cpu);
1345			if (!_pr || !_pr->flags.power_setup_done)
1346				continue;
1347			acpi_processor_get_power_info(_pr);
1348			if (_pr->flags.power) {
1349				dev = per_cpu(acpi_cpuidle_device, cpu);
1350				acpi_processor_setup_cpuidle_dev(_pr, dev);
1351				cpuidle_enable_device(dev);
1352			}
1353		}
1354		cpuidle_resume_and_unlock();
1355		cpus_read_unlock();
1356	}
1357
1358	return 0;
1359}
1360
1361static int acpi_processor_registered;
1362
1363int acpi_processor_power_init(struct acpi_processor *pr)
1364{
1365	int retval;
1366	struct cpuidle_device *dev;
1367
1368	if (disabled_by_idle_boot_param())
1369		return 0;
1370
1371	acpi_processor_cstate_first_run_checks();
1372
1373	if (!acpi_processor_get_power_info(pr))
1374		pr->flags.power_setup_done = 1;
1375
1376	/*
1377	 * Install the idle handler if processor power management is supported.
1378	 * Note that we use previously set idle handler will be used on
1379	 * platforms that only support C1.
1380	 */
1381	if (pr->flags.power) {
1382		/* Register acpi_idle_driver if not already registered */
1383		if (!acpi_processor_registered) {
1384			acpi_processor_setup_cpuidle_states(pr);
1385			retval = cpuidle_register_driver(&acpi_idle_driver);
1386			if (retval)
1387				return retval;
1388			pr_debug("%s registered with cpuidle\n",
1389				 acpi_idle_driver.name);
1390		}
1391
1392		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1393		if (!dev)
1394			return -ENOMEM;
1395		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1396
1397		acpi_processor_setup_cpuidle_dev(pr, dev);
1398
1399		/* Register per-cpu cpuidle_device. Cpuidle driver
1400		 * must already be registered before registering device
1401		 */
1402		retval = cpuidle_register_device(dev);
1403		if (retval) {
1404			if (acpi_processor_registered == 0)
1405				cpuidle_unregister_driver(&acpi_idle_driver);
1406			return retval;
1407		}
1408		acpi_processor_registered++;
1409	}
1410	return 0;
1411}
1412
1413int acpi_processor_power_exit(struct acpi_processor *pr)
1414{
1415	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1416
1417	if (disabled_by_idle_boot_param())
1418		return 0;
1419
1420	if (pr->flags.power) {
1421		cpuidle_unregister_device(dev);
1422		acpi_processor_registered--;
1423		if (acpi_processor_registered == 0)
1424			cpuidle_unregister_driver(&acpi_idle_driver);
1425
1426		kfree(dev);
1427	}
1428
1429	pr->flags.power_setup_done = 0;
1430	return 0;
1431}
v4.17
 
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
 
 
  35#include <acpi/processor.h>
 
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
 
  45#endif
  46
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
  50
  51#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  52
  53static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  54module_param(max_cstate, uint, 0000);
  55static unsigned int nocst __read_mostly;
  56module_param(nocst, uint, 0000);
  57static int bm_check_disable __read_mostly;
  58module_param(bm_check_disable, uint, 0000);
  59
  60static unsigned int latency_factor __read_mostly = 2;
  61module_param(latency_factor, uint, 0644);
  62
  63static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  64
  65struct cpuidle_driver acpi_idle_driver = {
  66	.name =		"acpi_idle",
  67	.owner =	THIS_MODULE,
  68};
  69
  70#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  71static
  72DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  73
  74static int disabled_by_idle_boot_param(void)
  75{
  76	return boot_option_idle_override == IDLE_POLL ||
  77		boot_option_idle_override == IDLE_HALT;
  78}
  79
  80/*
  81 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  82 * For now disable this. Probably a bug somewhere else.
  83 *
  84 * To skip this limit, boot/load with a large max_cstate limit.
  85 */
  86static int set_max_cstate(const struct dmi_system_id *id)
  87{
  88	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  89		return 0;
  90
  91	pr_notice("%s detected - limiting to C%ld max_cstate."
  92		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  93		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  94
  95	max_cstate = (long)id->driver_data;
  96
  97	return 0;
  98}
  99
 100static const struct dmi_system_id processor_power_dmi_table[] = {
 101	{ set_max_cstate, "Clevo 5600D", {
 102	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 103	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 104	 (void *)2},
 105	{ set_max_cstate, "Pavilion zv5000", {
 106	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 107	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 108	 (void *)1},
 109	{ set_max_cstate, "Asus L8400B", {
 110	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 111	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 112	 (void *)1},
 113	{},
 114};
 115
 116
 117/*
 118 * Callers should disable interrupts before the call and enable
 119 * interrupts after return.
 120 */
 121static void __cpuidle acpi_safe_halt(void)
 122{
 123	if (!tif_need_resched()) {
 124		safe_halt();
 125		local_irq_disable();
 126	}
 127}
 128
 129#ifdef ARCH_APICTIMER_STOPS_ON_C3
 130
 131/*
 132 * Some BIOS implementations switch to C3 in the published C2 state.
 133 * This seems to be a common problem on AMD boxen, but other vendors
 134 * are affected too. We pick the most conservative approach: we assume
 135 * that the local APIC stops in both C2 and C3.
 136 */
 137static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 138				   struct acpi_processor_cx *cx)
 139{
 140	struct acpi_processor_power *pwr = &pr->power;
 141	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 142
 143	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 144		return;
 145
 146	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 147		type = ACPI_STATE_C1;
 148
 149	/*
 150	 * Check, if one of the previous states already marked the lapic
 151	 * unstable
 152	 */
 153	if (pwr->timer_broadcast_on_state < state)
 154		return;
 155
 156	if (cx->type >= type)
 157		pr->power.timer_broadcast_on_state = state;
 158}
 159
 160static void __lapic_timer_propagate_broadcast(void *arg)
 161{
 162	struct acpi_processor *pr = (struct acpi_processor *) arg;
 163
 164	if (pr->power.timer_broadcast_on_state < INT_MAX)
 165		tick_broadcast_enable();
 166	else
 167		tick_broadcast_disable();
 168}
 169
 170static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 171{
 172	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 173				 (void *)pr, 1);
 174}
 175
 176/* Power(C) State timer broadcast control */
 177static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 178				       struct acpi_processor_cx *cx,
 179				       int broadcast)
 180{
 181	int state = cx - pr->power.states;
 182
 183	if (state >= pr->power.timer_broadcast_on_state) {
 184		if (broadcast)
 185			tick_broadcast_enter();
 186		else
 187			tick_broadcast_exit();
 188	}
 189}
 190
 191#else
 192
 193static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 194				   struct acpi_processor_cx *cstate) { }
 195static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 
 200}
 201
 202#endif
 203
 204#if defined(CONFIG_X86)
 205static void tsc_check_state(int state)
 206{
 207	switch (boot_cpu_data.x86_vendor) {
 
 208	case X86_VENDOR_AMD:
 209	case X86_VENDOR_INTEL:
 210	case X86_VENDOR_CENTAUR:
 
 211		/*
 212		 * AMD Fam10h TSC will tick in all
 213		 * C/P/S0/S1 states when this bit is set.
 214		 */
 215		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 216			return;
 217
 218		/*FALL THROUGH*/
 219	default:
 220		/* TSC could halt in idle, so notify users */
 221		if (state > ACPI_STATE_C1)
 222			mark_tsc_unstable("TSC halts in idle");
 223	}
 224}
 225#else
 226static void tsc_check_state(int state) { return; }
 227#endif
 228
 229static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 230{
 231
 232	if (!pr->pblk)
 233		return -ENODEV;
 234
 235	/* if info is obtained from pblk/fadt, type equals state */
 236	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 237	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 238
 239#ifndef CONFIG_HOTPLUG_CPU
 240	/*
 241	 * Check for P_LVL2_UP flag before entering C2 and above on
 242	 * an SMP system.
 243	 */
 244	if ((num_online_cpus() > 1) &&
 245	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 246		return -ENODEV;
 247#endif
 248
 249	/* determine C2 and C3 address from pblk */
 250	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 251	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 252
 253	/* determine latencies from FADT */
 254	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 255	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 256
 257	/*
 258	 * FADT specified C2 latency must be less than or equal to
 259	 * 100 microseconds.
 260	 */
 261	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 262		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 263			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 264		/* invalidate C2 */
 265		pr->power.states[ACPI_STATE_C2].address = 0;
 266	}
 267
 268	/*
 269	 * FADT supplied C3 latency must be less than or equal to
 270	 * 1000 microseconds.
 271	 */
 272	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 273		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 274			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 275		/* invalidate C3 */
 276		pr->power.states[ACPI_STATE_C3].address = 0;
 277	}
 278
 279	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 280			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 281			  pr->power.states[ACPI_STATE_C2].address,
 282			  pr->power.states[ACPI_STATE_C3].address));
 
 
 
 
 
 
 
 283
 284	return 0;
 285}
 286
 287static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 288{
 289	if (!pr->power.states[ACPI_STATE_C1].valid) {
 290		/* set the first C-State to C1 */
 291		/* all processors need to support C1 */
 292		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 293		pr->power.states[ACPI_STATE_C1].valid = 1;
 294		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 295
 296		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 297			 ACPI_CX_DESC_LEN, "ACPI HLT");
 298	}
 299	/* the C0 state only exists as a filler in our array */
 300	pr->power.states[ACPI_STATE_C0].valid = 1;
 301	return 0;
 302}
 303
 304static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 305{
 306	acpi_status status;
 307	u64 count;
 308	int current_count;
 309	int i, ret = 0;
 310	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 311	union acpi_object *cst;
 312
 313	if (nocst)
 314		return -ENODEV;
 315
 316	current_count = 0;
 317
 318	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 319	if (ACPI_FAILURE(status)) {
 320		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 321		return -ENODEV;
 322	}
 323
 324	cst = buffer.pointer;
 
 325
 326	/* There must be at least 2 elements */
 327	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 328		pr_err("not enough elements in _CST\n");
 329		ret = -EFAULT;
 330		goto end;
 331	}
 332
 333	count = cst->package.elements[0].integer.value;
 334
 335	/* Validate number of power states. */
 336	if (count < 1 || count != cst->package.count - 1) {
 337		pr_err("count given by _CST is not valid\n");
 338		ret = -EFAULT;
 339		goto end;
 340	}
 341
 342	/* Tell driver that at least _CST is supported. */
 343	pr->flags.has_cst = 1;
 344
 345	for (i = 1; i <= count; i++) {
 346		union acpi_object *element;
 347		union acpi_object *obj;
 348		struct acpi_power_register *reg;
 349		struct acpi_processor_cx cx;
 350
 351		memset(&cx, 0, sizeof(cx));
 352
 353		element = &(cst->package.elements[i]);
 354		if (element->type != ACPI_TYPE_PACKAGE)
 355			continue;
 356
 357		if (element->package.count != 4)
 358			continue;
 359
 360		obj = &(element->package.elements[0]);
 361
 362		if (obj->type != ACPI_TYPE_BUFFER)
 363			continue;
 364
 365		reg = (struct acpi_power_register *)obj->buffer.pointer;
 366
 367		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 368		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 369			continue;
 370
 371		/* There should be an easy way to extract an integer... */
 372		obj = &(element->package.elements[1]);
 373		if (obj->type != ACPI_TYPE_INTEGER)
 374			continue;
 375
 376		cx.type = obj->integer.value;
 377		/*
 378		 * Some buggy BIOSes won't list C1 in _CST -
 379		 * Let acpi_processor_get_power_info_default() handle them later
 380		 */
 381		if (i == 1 && cx.type != ACPI_STATE_C1)
 382			current_count++;
 383
 384		cx.address = reg->address;
 385		cx.index = current_count + 1;
 386
 387		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 388		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 389			if (acpi_processor_ffh_cstate_probe
 390					(pr->id, &cx, reg) == 0) {
 391				cx.entry_method = ACPI_CSTATE_FFH;
 392			} else if (cx.type == ACPI_STATE_C1) {
 393				/*
 394				 * C1 is a special case where FIXED_HARDWARE
 395				 * can be handled in non-MWAIT way as well.
 396				 * In that case, save this _CST entry info.
 397				 * Otherwise, ignore this info and continue.
 398				 */
 399				cx.entry_method = ACPI_CSTATE_HALT;
 400				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 401			} else {
 402				continue;
 403			}
 404			if (cx.type == ACPI_STATE_C1 &&
 405			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 406				/*
 407				 * In most cases the C1 space_id obtained from
 408				 * _CST object is FIXED_HARDWARE access mode.
 409				 * But when the option of idle=halt is added,
 410				 * the entry_method type should be changed from
 411				 * CSTATE_FFH to CSTATE_HALT.
 412				 * When the option of idle=nomwait is added,
 413				 * the C1 entry_method type should be
 414				 * CSTATE_HALT.
 415				 */
 416				cx.entry_method = ACPI_CSTATE_HALT;
 417				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 418			}
 419		} else {
 420			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 421				 cx.address);
 422		}
 423
 424		if (cx.type == ACPI_STATE_C1) {
 425			cx.valid = 1;
 426		}
 427
 428		obj = &(element->package.elements[2]);
 429		if (obj->type != ACPI_TYPE_INTEGER)
 430			continue;
 431
 432		cx.latency = obj->integer.value;
 433
 434		obj = &(element->package.elements[3]);
 435		if (obj->type != ACPI_TYPE_INTEGER)
 436			continue;
 437
 438		current_count++;
 439		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 440
 441		/*
 442		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 443		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 444		 */
 445		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 446			pr_warn("Limiting number of power states to max (%d)\n",
 447				ACPI_PROCESSOR_MAX_POWER);
 448			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 449			break;
 450		}
 451	}
 452
 453	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 454			  current_count));
 455
 456	/* Validate number of power states discovered */
 457	if (current_count < 2)
 458		ret = -EFAULT;
 459
 460      end:
 461	kfree(buffer.pointer);
 462
 463	return ret;
 464}
 465
 466static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 467					   struct acpi_processor_cx *cx)
 468{
 469	static int bm_check_flag = -1;
 470	static int bm_control_flag = -1;
 471
 472
 473	if (!cx->address)
 474		return;
 475
 476	/*
 477	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 478	 * DMA transfers are used by any ISA device to avoid livelock.
 479	 * Note that we could disable Type-F DMA (as recommended by
 480	 * the erratum), but this is known to disrupt certain ISA
 481	 * devices thus we take the conservative approach.
 482	 */
 483	else if (errata.piix4.fdma) {
 484		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 485				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 486		return;
 487	}
 488
 489	/* All the logic here assumes flags.bm_check is same across all CPUs */
 490	if (bm_check_flag == -1) {
 491		/* Determine whether bm_check is needed based on CPU  */
 492		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 493		bm_check_flag = pr->flags.bm_check;
 494		bm_control_flag = pr->flags.bm_control;
 495	} else {
 496		pr->flags.bm_check = bm_check_flag;
 497		pr->flags.bm_control = bm_control_flag;
 498	}
 499
 500	if (pr->flags.bm_check) {
 501		if (!pr->flags.bm_control) {
 502			if (pr->flags.has_cst != 1) {
 503				/* bus mastering control is necessary */
 504				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 505					"C3 support requires BM control\n"));
 506				return;
 507			} else {
 508				/* Here we enter C3 without bus mastering */
 509				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 510					"C3 support without BM control\n"));
 511			}
 512		}
 513	} else {
 514		/*
 515		 * WBINVD should be set in fadt, for C3 state to be
 516		 * supported on when bm_check is not required.
 517		 */
 518		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 519			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 520					  "Cache invalidation should work properly"
 521					  " for C3 to be enabled on SMP systems\n"));
 522			return;
 523		}
 524	}
 525
 526	/*
 527	 * Otherwise we've met all of our C3 requirements.
 528	 * Normalize the C3 latency to expidite policy.  Enable
 529	 * checking of bus mastering status (bm_check) so we can
 530	 * use this in our C3 policy
 531	 */
 532	cx->valid = 1;
 533
 534	/*
 535	 * On older chipsets, BM_RLD needs to be set
 536	 * in order for Bus Master activity to wake the
 537	 * system from C3.  Newer chipsets handle DMA
 538	 * during C3 automatically and BM_RLD is a NOP.
 539	 * In either case, the proper way to
 540	 * handle BM_RLD is to set it and leave it set.
 541	 */
 542	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 
 543
 544	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547static int acpi_processor_power_verify(struct acpi_processor *pr)
 548{
 549	unsigned int i;
 550	unsigned int working = 0;
 
 
 
 551
 552	pr->power.timer_broadcast_on_state = INT_MAX;
 553
 554	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 555		struct acpi_processor_cx *cx = &pr->power.states[i];
 556
 557		switch (cx->type) {
 558		case ACPI_STATE_C1:
 559			cx->valid = 1;
 560			break;
 561
 562		case ACPI_STATE_C2:
 563			if (!cx->address)
 564				break;
 565			cx->valid = 1;
 566			break;
 567
 568		case ACPI_STATE_C3:
 569			acpi_processor_power_verify_c3(pr, cx);
 570			break;
 571		}
 572		if (!cx->valid)
 573			continue;
 
 
 
 
 574
 575		lapic_timer_check_state(i, pr, cx);
 576		tsc_check_state(cx->type);
 577		working++;
 578	}
 579
 
 
 
 
 
 580	lapic_timer_propagate_broadcast(pr);
 581
 582	return (working);
 583}
 584
 585static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 586{
 587	unsigned int i;
 588	int result;
 589
 590
 591	/* NOTE: the idle thread may not be running while calling
 592	 * this function */
 593
 594	/* Zero initialize all the C-states info. */
 595	memset(pr->power.states, 0, sizeof(pr->power.states));
 596
 597	result = acpi_processor_get_power_info_cst(pr);
 598	if (result == -ENODEV)
 599		result = acpi_processor_get_power_info_fadt(pr);
 600
 601	if (result)
 602		return result;
 603
 604	acpi_processor_get_power_info_default(pr);
 605
 606	pr->power.count = acpi_processor_power_verify(pr);
 607
 608	/*
 609	 * if one state of type C2 or C3 is available, mark this
 610	 * CPU as being "idle manageable"
 611	 */
 612	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 613		if (pr->power.states[i].valid) {
 614			pr->power.count = i;
 615			if (pr->power.states[i].type >= ACPI_STATE_C2)
 616				pr->flags.power = 1;
 617		}
 618	}
 619
 620	return 0;
 621}
 622
 623/**
 624 * acpi_idle_bm_check - checks if bus master activity was detected
 625 */
 626static int acpi_idle_bm_check(void)
 627{
 628	u32 bm_status = 0;
 629
 630	if (bm_check_disable)
 631		return 0;
 632
 633	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 634	if (bm_status)
 635		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 636	/*
 637	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 638	 * the true state of bus mastering activity; forcing us to
 639	 * manually check the BMIDEA bit of each IDE channel.
 640	 */
 641	else if (errata.piix4.bmisx) {
 642		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 643		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 644			bm_status = 1;
 645	}
 646	return bm_status;
 647}
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/**
 650 * acpi_idle_do_entry - enter idle state using the appropriate method
 651 * @cx: cstate data
 652 *
 653 * Caller disables interrupt before call and enables interrupt after return.
 654 */
 655static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 656{
 
 
 657	if (cx->entry_method == ACPI_CSTATE_FFH) {
 658		/* Call into architectural FFH based C-state */
 659		acpi_processor_ffh_cstate_enter(cx);
 660	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 661		acpi_safe_halt();
 662	} else {
 663		/* IO port based C-state */
 664		inb(cx->address);
 665		/* Dummy wait op - must do something useless after P_LVL2 read
 666		   because chipsets cannot guarantee that STPCLK# signal
 667		   gets asserted in time to freeze execution properly. */
 668		inl(acpi_gbl_FADT.xpm_timer_block.address);
 669	}
 
 
 670}
 671
 672/**
 673 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 674 * @dev: the target CPU
 675 * @index: the index of suggested state
 676 */
 677static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 678{
 679	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 680
 681	ACPI_FLUSH_CPU_CACHE();
 682
 683	while (1) {
 684
 685		if (cx->entry_method == ACPI_CSTATE_HALT)
 686			safe_halt();
 687		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 688			inb(cx->address);
 689			/* See comment in acpi_idle_do_entry() */
 690			inl(acpi_gbl_FADT.xpm_timer_block.address);
 691		} else
 692			return -ENODEV;
 693	}
 694
 695	/* Never reached */
 696	return 0;
 697}
 698
 699static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 700{
 701	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 702		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 703}
 704
 705static int c3_cpu_count;
 706static DEFINE_RAW_SPINLOCK(c3_lock);
 707
 708/**
 709 * acpi_idle_enter_bm - enters C3 with proper BM handling
 
 710 * @pr: Target processor
 711 * @cx: Target state context
 712 * @timer_bc: Whether or not to change timer mode to broadcast
 713 */
 714static void acpi_idle_enter_bm(struct acpi_processor *pr,
 715			       struct acpi_processor_cx *cx, bool timer_bc)
 716{
 717	acpi_unlazy_tlb(smp_processor_id());
 718
 719	/*
 720	 * Must be done before busmaster disable as we might need to
 721	 * access HPET !
 722	 */
 723	if (timer_bc)
 724		lapic_timer_state_broadcast(pr, cx, 1);
 725
 726	/*
 727	 * disable bus master
 728	 * bm_check implies we need ARB_DIS
 729	 * bm_control implies whether we can do ARB_DIS
 730	 *
 731	 * That leaves a case where bm_check is set and bm_control is
 732	 * not set. In that case we cannot do much, we enter C3
 733	 * without doing anything.
 734	 */
 735	if (pr->flags.bm_control) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736		raw_spin_lock(&c3_lock);
 737		c3_cpu_count++;
 738		/* Disable bus master arbitration when all CPUs are in C3 */
 739		if (c3_cpu_count == num_online_cpus())
 740			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 741		raw_spin_unlock(&c3_lock);
 742	}
 743
 
 
 744	acpi_idle_do_entry(cx);
 745
 
 
 746	/* Re-enable bus master arbitration */
 747	if (pr->flags.bm_control) {
 748		raw_spin_lock(&c3_lock);
 749		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 750		c3_cpu_count--;
 751		raw_spin_unlock(&c3_lock);
 752	}
 753
 754	if (timer_bc)
 755		lapic_timer_state_broadcast(pr, cx, 0);
 
 756}
 757
 758static int acpi_idle_enter(struct cpuidle_device *dev,
 759			   struct cpuidle_driver *drv, int index)
 760{
 761	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 762	struct acpi_processor *pr;
 763
 764	pr = __this_cpu_read(processors);
 765	if (unlikely(!pr))
 766		return -EINVAL;
 767
 768	if (cx->type != ACPI_STATE_C1) {
 
 
 
 
 769		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 770			index = ACPI_IDLE_STATE_START;
 771			cx = per_cpu(acpi_cstate[index], dev->cpu);
 772		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 773			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 774				acpi_idle_enter_bm(pr, cx, true);
 775				return index;
 776			} else if (drv->safe_state_index >= 0) {
 777				index = drv->safe_state_index;
 778				cx = per_cpu(acpi_cstate[index], dev->cpu);
 779			} else {
 780				acpi_safe_halt();
 781				return -EBUSY;
 782			}
 783		}
 784	}
 785
 786	lapic_timer_state_broadcast(pr, cx, 1);
 787
 788	if (cx->type == ACPI_STATE_C3)
 789		ACPI_FLUSH_CPU_CACHE();
 790
 791	acpi_idle_do_entry(cx);
 792
 793	lapic_timer_state_broadcast(pr, cx, 0);
 794
 795	return index;
 796}
 797
 798static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 799				   struct cpuidle_driver *drv, int index)
 800{
 801	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 802
 803	if (cx->type == ACPI_STATE_C3) {
 804		struct acpi_processor *pr = __this_cpu_read(processors);
 805
 806		if (unlikely(!pr))
 807			return;
 808
 809		if (pr->flags.bm_check) {
 810			acpi_idle_enter_bm(pr, cx, false);
 811			return;
 
 
 
 
 
 
 812		} else {
 813			ACPI_FLUSH_CPU_CACHE();
 814		}
 815	}
 816	acpi_idle_do_entry(cx);
 
 
 817}
 818
 819static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 820					   struct cpuidle_device *dev)
 821{
 822	int i, count = ACPI_IDLE_STATE_START;
 823	struct acpi_processor_cx *cx;
 
 824
 825	if (max_cstate == 0)
 826		max_cstate = 1;
 827
 828	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 
 829		cx = &pr->power.states[i];
 830
 831		if (!cx->valid)
 832			continue;
 833
 834		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 835
 
 
 
 
 
 
 
 
 
 836		count++;
 837		if (count == CPUIDLE_STATE_MAX)
 838			break;
 839	}
 840
 841	if (!count)
 842		return -EINVAL;
 843
 844	return 0;
 845}
 846
 847static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 848{
 849	int i, count;
 850	struct acpi_processor_cx *cx;
 851	struct cpuidle_state *state;
 852	struct cpuidle_driver *drv = &acpi_idle_driver;
 853
 854	if (max_cstate == 0)
 855		max_cstate = 1;
 856
 857	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 858		cpuidle_poll_state_init(drv);
 859		count = 1;
 860	} else {
 861		count = 0;
 862	}
 863
 864	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 865		cx = &pr->power.states[i];
 866
 867		if (!cx->valid)
 868			continue;
 869
 870		state = &drv->states[count];
 871		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 872		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 873		state->exit_latency = cx->latency;
 874		state->target_residency = cx->latency * latency_factor;
 875		state->enter = acpi_idle_enter;
 876
 877		state->flags = 0;
 878		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 879			state->enter_dead = acpi_idle_play_dead;
 
 
 880			drv->safe_state_index = count;
 881		}
 882		/*
 883		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 884		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 885		 * particularly interesting from the suspend-to-idle angle, so
 886		 * avoid C1 and the situations in which we may need to fall back
 887		 * to it altogether.
 888		 */
 889		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 890			state->enter_s2idle = acpi_idle_enter_s2idle;
 891
 892		count++;
 893		if (count == CPUIDLE_STATE_MAX)
 894			break;
 895	}
 896
 897	drv->state_count = count;
 898
 899	if (!count)
 900		return -EINVAL;
 901
 902	return 0;
 903}
 904
 905static inline void acpi_processor_cstate_first_run_checks(void)
 906{
 907	acpi_status status;
 908	static int first_run;
 909
 910	if (first_run)
 911		return;
 912	dmi_check_system(processor_power_dmi_table);
 913	max_cstate = acpi_processor_cstate_check(max_cstate);
 914	if (max_cstate < ACPI_C_STATES_MAX)
 915		pr_notice("ACPI: processor limited to max C-state %d\n",
 916			  max_cstate);
 917	first_run++;
 918
 919	if (acpi_gbl_FADT.cst_control && !nocst) {
 920		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 921					    acpi_gbl_FADT.cst_control, 8);
 922		if (ACPI_FAILURE(status))
 923			ACPI_EXCEPTION((AE_INFO, status,
 924					"Notifying BIOS of _CST ability failed"));
 925	}
 926}
 927#else
 928
 929static inline int disabled_by_idle_boot_param(void) { return 0; }
 930static inline void acpi_processor_cstate_first_run_checks(void) { }
 931static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 932{
 933	return -ENODEV;
 934}
 935
 936static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 937					   struct cpuidle_device *dev)
 938{
 939	return -EINVAL;
 940}
 941
 942static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 943{
 944	return -EINVAL;
 945}
 946
 947#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 948
 949struct acpi_lpi_states_array {
 950	unsigned int size;
 951	unsigned int composite_states_size;
 952	struct acpi_lpi_state *entries;
 953	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 954};
 955
 956static int obj_get_integer(union acpi_object *obj, u32 *value)
 957{
 958	if (obj->type != ACPI_TYPE_INTEGER)
 959		return -EINVAL;
 960
 961	*value = obj->integer.value;
 962	return 0;
 963}
 964
 965static int acpi_processor_evaluate_lpi(acpi_handle handle,
 966				       struct acpi_lpi_states_array *info)
 967{
 968	acpi_status status;
 969	int ret = 0;
 970	int pkg_count, state_idx = 1, loop;
 971	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 972	union acpi_object *lpi_data;
 973	struct acpi_lpi_state *lpi_state;
 974
 975	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 976	if (ACPI_FAILURE(status)) {
 977		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 978		return -ENODEV;
 979	}
 980
 981	lpi_data = buffer.pointer;
 982
 983	/* There must be at least 4 elements = 3 elements + 1 package */
 984	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 985	    lpi_data->package.count < 4) {
 986		pr_debug("not enough elements in _LPI\n");
 987		ret = -ENODATA;
 988		goto end;
 989	}
 990
 991	pkg_count = lpi_data->package.elements[2].integer.value;
 992
 993	/* Validate number of power states. */
 994	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 995		pr_debug("count given by _LPI is not valid\n");
 996		ret = -ENODATA;
 997		goto end;
 998	}
 999
1000	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1001	if (!lpi_state) {
1002		ret = -ENOMEM;
1003		goto end;
1004	}
1005
1006	info->size = pkg_count;
1007	info->entries = lpi_state;
1008
1009	/* LPI States start at index 3 */
1010	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1011		union acpi_object *element, *pkg_elem, *obj;
1012
1013		element = &lpi_data->package.elements[loop];
1014		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1015			continue;
1016
1017		pkg_elem = element->package.elements;
1018
1019		obj = pkg_elem + 6;
1020		if (obj->type == ACPI_TYPE_BUFFER) {
1021			struct acpi_power_register *reg;
1022
1023			reg = (struct acpi_power_register *)obj->buffer.pointer;
1024			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1025			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1026				continue;
1027
1028			lpi_state->address = reg->address;
1029			lpi_state->entry_method =
1030				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1031				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1032		} else if (obj->type == ACPI_TYPE_INTEGER) {
1033			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1034			lpi_state->address = obj->integer.value;
1035		} else {
1036			continue;
1037		}
1038
1039		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1040
1041		obj = pkg_elem + 9;
1042		if (obj->type == ACPI_TYPE_STRING)
1043			strlcpy(lpi_state->desc, obj->string.pointer,
1044				ACPI_CX_DESC_LEN);
1045
1046		lpi_state->index = state_idx;
1047		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1048			pr_debug("No min. residency found, assuming 10 us\n");
1049			lpi_state->min_residency = 10;
1050		}
1051
1052		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1053			pr_debug("No wakeup residency found, assuming 10 us\n");
1054			lpi_state->wake_latency = 10;
1055		}
1056
1057		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1058			lpi_state->flags = 0;
1059
1060		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1061			lpi_state->arch_flags = 0;
1062
1063		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1064			lpi_state->res_cnt_freq = 1;
1065
1066		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1067			lpi_state->enable_parent_state = 0;
1068	}
1069
1070	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1071end:
1072	kfree(buffer.pointer);
1073	return ret;
1074}
1075
1076/*
1077 * flat_state_cnt - the number of composite LPI states after the process of flattening
1078 */
1079static int flat_state_cnt;
1080
1081/**
1082 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1083 *
1084 * @local: local LPI state
1085 * @parent: parent LPI state
1086 * @result: composite LPI state
1087 */
1088static bool combine_lpi_states(struct acpi_lpi_state *local,
1089			       struct acpi_lpi_state *parent,
1090			       struct acpi_lpi_state *result)
1091{
1092	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1093		if (!parent->address) /* 0 means autopromotable */
1094			return false;
1095		result->address = local->address + parent->address;
1096	} else {
1097		result->address = parent->address;
1098	}
1099
1100	result->min_residency = max(local->min_residency, parent->min_residency);
1101	result->wake_latency = local->wake_latency + parent->wake_latency;
1102	result->enable_parent_state = parent->enable_parent_state;
1103	result->entry_method = local->entry_method;
1104
1105	result->flags = parent->flags;
1106	result->arch_flags = parent->arch_flags;
1107	result->index = parent->index;
1108
1109	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1110	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1111	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1112	return true;
1113}
1114
1115#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1116
1117static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1118				  struct acpi_lpi_state *t)
1119{
1120	curr_level->composite_states[curr_level->composite_states_size++] = t;
1121}
1122
1123static int flatten_lpi_states(struct acpi_processor *pr,
1124			      struct acpi_lpi_states_array *curr_level,
1125			      struct acpi_lpi_states_array *prev_level)
1126{
1127	int i, j, state_count = curr_level->size;
1128	struct acpi_lpi_state *p, *t = curr_level->entries;
1129
1130	curr_level->composite_states_size = 0;
1131	for (j = 0; j < state_count; j++, t++) {
1132		struct acpi_lpi_state *flpi;
1133
1134		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1135			continue;
1136
1137		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1138			pr_warn("Limiting number of LPI states to max (%d)\n",
1139				ACPI_PROCESSOR_MAX_POWER);
1140			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1141			break;
1142		}
1143
1144		flpi = &pr->power.lpi_states[flat_state_cnt];
1145
1146		if (!prev_level) { /* leaf/processor node */
1147			memcpy(flpi, t, sizeof(*t));
1148			stash_composite_state(curr_level, flpi);
1149			flat_state_cnt++;
1150			continue;
1151		}
1152
1153		for (i = 0; i < prev_level->composite_states_size; i++) {
1154			p = prev_level->composite_states[i];
1155			if (t->index <= p->enable_parent_state &&
1156			    combine_lpi_states(p, t, flpi)) {
1157				stash_composite_state(curr_level, flpi);
1158				flat_state_cnt++;
1159				flpi++;
1160			}
1161		}
1162	}
1163
1164	kfree(curr_level->entries);
1165	return 0;
1166}
1167
 
 
 
 
 
1168static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1169{
1170	int ret, i;
1171	acpi_status status;
1172	acpi_handle handle = pr->handle, pr_ahandle;
1173	struct acpi_device *d = NULL;
1174	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1175
 
 
 
 
 
1176	if (!osc_pc_lpi_support_confirmed)
1177		return -EOPNOTSUPP;
1178
1179	if (!acpi_has_method(handle, "_LPI"))
1180		return -EINVAL;
1181
1182	flat_state_cnt = 0;
1183	prev = &info[0];
1184	curr = &info[1];
1185	handle = pr->handle;
1186	ret = acpi_processor_evaluate_lpi(handle, prev);
1187	if (ret)
1188		return ret;
1189	flatten_lpi_states(pr, prev, NULL);
1190
1191	status = acpi_get_parent(handle, &pr_ahandle);
1192	while (ACPI_SUCCESS(status)) {
1193		acpi_bus_get_device(pr_ahandle, &d);
 
 
 
1194		handle = pr_ahandle;
1195
1196		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1197			break;
1198
1199		/* can be optional ? */
1200		if (!acpi_has_method(handle, "_LPI"))
1201			break;
1202
1203		ret = acpi_processor_evaluate_lpi(handle, curr);
1204		if (ret)
1205			break;
1206
1207		/* flatten all the LPI states in this level of hierarchy */
1208		flatten_lpi_states(pr, curr, prev);
1209
1210		tmp = prev, prev = curr, curr = tmp;
1211
1212		status = acpi_get_parent(handle, &pr_ahandle);
1213	}
1214
1215	pr->power.count = flat_state_cnt;
1216	/* reset the index after flattening */
1217	for (i = 0; i < pr->power.count; i++)
1218		pr->power.lpi_states[i].index = i;
1219
1220	/* Tell driver that _LPI is supported. */
1221	pr->flags.has_lpi = 1;
1222	pr->flags.power = 1;
1223
1224	return 0;
1225}
1226
1227int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1228{
1229	return -ENODEV;
1230}
1231
1232int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1233{
1234	return -ENODEV;
1235}
1236
1237/**
1238 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1239 * @dev: the target CPU
1240 * @drv: cpuidle driver containing cpuidle state info
1241 * @index: index of target state
1242 *
1243 * Return: 0 for success or negative value for error
1244 */
1245static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1246			       struct cpuidle_driver *drv, int index)
1247{
1248	struct acpi_processor *pr;
1249	struct acpi_lpi_state *lpi;
1250
1251	pr = __this_cpu_read(processors);
1252
1253	if (unlikely(!pr))
1254		return -EINVAL;
1255
1256	lpi = &pr->power.lpi_states[index];
1257	if (lpi->entry_method == ACPI_CSTATE_FFH)
1258		return acpi_processor_ffh_lpi_enter(lpi);
1259
1260	return -EINVAL;
1261}
1262
1263static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1264{
1265	int i;
1266	struct acpi_lpi_state *lpi;
1267	struct cpuidle_state *state;
1268	struct cpuidle_driver *drv = &acpi_idle_driver;
1269
1270	if (!pr->flags.has_lpi)
1271		return -EOPNOTSUPP;
1272
1273	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1274		lpi = &pr->power.lpi_states[i];
1275
1276		state = &drv->states[i];
1277		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1278		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1279		state->exit_latency = lpi->wake_latency;
1280		state->target_residency = lpi->min_residency;
1281		if (lpi->arch_flags)
1282			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 
1283		state->enter = acpi_idle_lpi_enter;
1284		drv->safe_state_index = i;
1285	}
1286
1287	drv->state_count = i;
1288
1289	return 0;
1290}
1291
1292/**
1293 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1294 * global state data i.e. idle routines
1295 *
1296 * @pr: the ACPI processor
1297 */
1298static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1299{
1300	int i;
1301	struct cpuidle_driver *drv = &acpi_idle_driver;
1302
1303	if (!pr->flags.power_setup_done || !pr->flags.power)
1304		return -EINVAL;
1305
1306	drv->safe_state_index = -1;
1307	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1308		drv->states[i].name[0] = '\0';
1309		drv->states[i].desc[0] = '\0';
1310	}
1311
1312	if (pr->flags.has_lpi)
1313		return acpi_processor_setup_lpi_states(pr);
1314
1315	return acpi_processor_setup_cstates(pr);
1316}
1317
1318/**
1319 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1320 * device i.e. per-cpu data
1321 *
1322 * @pr: the ACPI processor
1323 * @dev : the cpuidle device
1324 */
1325static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1326					    struct cpuidle_device *dev)
1327{
1328	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1329		return -EINVAL;
1330
1331	dev->cpu = pr->id;
1332	if (pr->flags.has_lpi)
1333		return acpi_processor_ffh_lpi_probe(pr->id);
1334
1335	return acpi_processor_setup_cpuidle_cx(pr, dev);
1336}
1337
1338static int acpi_processor_get_power_info(struct acpi_processor *pr)
1339{
1340	int ret;
1341
1342	ret = acpi_processor_get_lpi_info(pr);
1343	if (ret)
1344		ret = acpi_processor_get_cstate_info(pr);
1345
1346	return ret;
1347}
1348
1349int acpi_processor_hotplug(struct acpi_processor *pr)
1350{
1351	int ret = 0;
1352	struct cpuidle_device *dev;
1353
1354	if (disabled_by_idle_boot_param())
1355		return 0;
1356
1357	if (!pr->flags.power_setup_done)
1358		return -ENODEV;
1359
1360	dev = per_cpu(acpi_cpuidle_device, pr->id);
1361	cpuidle_pause_and_lock();
1362	cpuidle_disable_device(dev);
1363	ret = acpi_processor_get_power_info(pr);
1364	if (!ret && pr->flags.power) {
1365		acpi_processor_setup_cpuidle_dev(pr, dev);
1366		ret = cpuidle_enable_device(dev);
1367	}
1368	cpuidle_resume_and_unlock();
1369
1370	return ret;
1371}
1372
1373int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1374{
1375	int cpu;
1376	struct acpi_processor *_pr;
1377	struct cpuidle_device *dev;
1378
1379	if (disabled_by_idle_boot_param())
1380		return 0;
1381
1382	if (!pr->flags.power_setup_done)
1383		return -ENODEV;
1384
1385	/*
1386	 * FIXME:  Design the ACPI notification to make it once per
1387	 * system instead of once per-cpu.  This condition is a hack
1388	 * to make the code that updates C-States be called once.
1389	 */
1390
1391	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1392
1393		/* Protect against cpu-hotplug */
1394		get_online_cpus();
1395		cpuidle_pause_and_lock();
1396
1397		/* Disable all cpuidle devices */
1398		for_each_online_cpu(cpu) {
1399			_pr = per_cpu(processors, cpu);
1400			if (!_pr || !_pr->flags.power_setup_done)
1401				continue;
1402			dev = per_cpu(acpi_cpuidle_device, cpu);
1403			cpuidle_disable_device(dev);
1404		}
1405
1406		/* Populate Updated C-state information */
1407		acpi_processor_get_power_info(pr);
1408		acpi_processor_setup_cpuidle_states(pr);
1409
1410		/* Enable all cpuidle devices */
1411		for_each_online_cpu(cpu) {
1412			_pr = per_cpu(processors, cpu);
1413			if (!_pr || !_pr->flags.power_setup_done)
1414				continue;
1415			acpi_processor_get_power_info(_pr);
1416			if (_pr->flags.power) {
1417				dev = per_cpu(acpi_cpuidle_device, cpu);
1418				acpi_processor_setup_cpuidle_dev(_pr, dev);
1419				cpuidle_enable_device(dev);
1420			}
1421		}
1422		cpuidle_resume_and_unlock();
1423		put_online_cpus();
1424	}
1425
1426	return 0;
1427}
1428
1429static int acpi_processor_registered;
1430
1431int acpi_processor_power_init(struct acpi_processor *pr)
1432{
1433	int retval;
1434	struct cpuidle_device *dev;
1435
1436	if (disabled_by_idle_boot_param())
1437		return 0;
1438
1439	acpi_processor_cstate_first_run_checks();
1440
1441	if (!acpi_processor_get_power_info(pr))
1442		pr->flags.power_setup_done = 1;
1443
1444	/*
1445	 * Install the idle handler if processor power management is supported.
1446	 * Note that we use previously set idle handler will be used on
1447	 * platforms that only support C1.
1448	 */
1449	if (pr->flags.power) {
1450		/* Register acpi_idle_driver if not already registered */
1451		if (!acpi_processor_registered) {
1452			acpi_processor_setup_cpuidle_states(pr);
1453			retval = cpuidle_register_driver(&acpi_idle_driver);
1454			if (retval)
1455				return retval;
1456			pr_debug("%s registered with cpuidle\n",
1457				 acpi_idle_driver.name);
1458		}
1459
1460		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1461		if (!dev)
1462			return -ENOMEM;
1463		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1464
1465		acpi_processor_setup_cpuidle_dev(pr, dev);
1466
1467		/* Register per-cpu cpuidle_device. Cpuidle driver
1468		 * must already be registered before registering device
1469		 */
1470		retval = cpuidle_register_device(dev);
1471		if (retval) {
1472			if (acpi_processor_registered == 0)
1473				cpuidle_unregister_driver(&acpi_idle_driver);
1474			return retval;
1475		}
1476		acpi_processor_registered++;
1477	}
1478	return 0;
1479}
1480
1481int acpi_processor_power_exit(struct acpi_processor *pr)
1482{
1483	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1484
1485	if (disabled_by_idle_boot_param())
1486		return 0;
1487
1488	if (pr->flags.power) {
1489		cpuidle_unregister_device(dev);
1490		acpi_processor_registered--;
1491		if (acpi_processor_registered == 0)
1492			cpuidle_unregister_driver(&acpi_idle_driver);
 
 
1493	}
1494
1495	pr->flags.power_setup_done = 0;
1496	return 0;
1497}