Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25#include <net/rstreason.h>
 26
 27static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 28{
 29	if (seq == s_win)
 30		return true;
 31	if (after(end_seq, s_win) && before(seq, e_win))
 32		return true;
 33	return seq == e_win && seq == end_seq;
 34}
 35
 36static enum tcp_tw_status
 37tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 38				  const struct sk_buff *skb, int mib_idx)
 39{
 40	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 41
 42	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 43				  &tcptw->tw_last_oow_ack_time)) {
 44		/* Send ACK. Note, we do not put the bucket,
 45		 * it will be released by caller.
 46		 */
 47		return TCP_TW_ACK;
 48	}
 49
 50	/* We are rate-limiting, so just release the tw sock and drop skb. */
 51	inet_twsk_put(tw);
 52	return TCP_TW_SUCCESS;
 53}
 54
 55static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
 56				u32 rcv_nxt)
 57{
 58#ifdef CONFIG_TCP_AO
 59	struct tcp_ao_info *ao;
 60
 61	ao = rcu_dereference(tcptw->ao_info);
 62	if (unlikely(ao && seq < rcv_nxt))
 63		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 64#endif
 65	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
 66}
 67
 68/*
 69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 71 *   (and, probably, tail of data) and one or more our ACKs are lost.
 72 * * What is TIME-WAIT timeout? It is associated with maximal packet
 73 *   lifetime in the internet, which results in wrong conclusion, that
 74 *   it is set to catch "old duplicate segments" wandering out of their path.
 75 *   It is not quite correct. This timeout is calculated so that it exceeds
 76 *   maximal retransmission timeout enough to allow to lose one (or more)
 77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 78 * * When TIME-WAIT socket receives RST, it means that another end
 79 *   finally closed and we are allowed to kill TIME-WAIT too.
 80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 83 * * If we invented some more clever way to catch duplicates
 84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 85 *
 86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 88 * from the very beginning.
 89 *
 90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 91 * is _not_ stateless. It means, that strictly speaking we must
 92 * spinlock it. I do not want! Well, probability of misbehaviour
 93 * is ridiculously low and, seems, we could use some mb() tricks
 94 * to avoid misread sequence numbers, states etc.  --ANK
 95 *
 96 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 97 */
 98enum tcp_tw_status
 99tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100			   const struct tcphdr *th, u32 *tw_isn)
101{
102	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104	struct tcp_options_received tmp_opt;
 
105	bool paws_reject = false;
106	int ts_recent_stamp;
107
108	tmp_opt.saw_tstamp = 0;
109	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112
113		if (tmp_opt.saw_tstamp) {
114			if (tmp_opt.rcv_tsecr)
115				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119		}
120	}
121
122	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123		/* Just repeat all the checks of tcp_rcv_state_process() */
124
125		/* Out of window, send ACK */
126		if (paws_reject ||
127		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128				   rcv_nxt,
129				   rcv_nxt + tcptw->tw_rcv_wnd))
130			return tcp_timewait_check_oow_rate_limit(
131				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132
133		if (th->rst)
134			goto kill;
135
136		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137			return TCP_TW_RST;
138
139		/* Dup ACK? */
140		if (!th->ack ||
141		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143			inet_twsk_put(tw);
144			return TCP_TW_SUCCESS;
145		}
146
147		/* New data or FIN. If new data arrive after half-duplex close,
148		 * reset.
149		 */
150		if (!th->fin ||
151		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152			return TCP_TW_RST;
153
154		/* FIN arrived, enter true time-wait state. */
155		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157				    rcv_nxt);
158
159		if (tmp_opt.saw_tstamp) {
160			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161				  ktime_get_seconds());
162			WRITE_ONCE(tcptw->tw_ts_recent,
163				   tmp_opt.rcv_tsval);
164		}
165
166		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167		return TCP_TW_ACK;
168	}
169
170	/*
171	 *	Now real TIME-WAIT state.
172	 *
173	 *	RFC 1122:
174	 *	"When a connection is [...] on TIME-WAIT state [...]
175	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176	 *	reopen the connection directly, if it:
177	 *
178	 *	(1)  assigns its initial sequence number for the new
179	 *	connection to be larger than the largest sequence
180	 *	number it used on the previous connection incarnation,
181	 *	and
182	 *
183	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184	 *	to be an old duplicate".
185	 */
186
187	if (!paws_reject &&
188	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190		/* In window segment, it may be only reset or bare ack. */
191
192		if (th->rst) {
193			/* This is TIME_WAIT assassination, in two flavors.
194			 * Oh well... nobody has a sufficient solution to this
195			 * protocol bug yet.
196			 */
197			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198kill:
199				inet_twsk_deschedule_put(tw);
200				return TCP_TW_SUCCESS;
201			}
202		} else {
203			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204		}
 
205
206		if (tmp_opt.saw_tstamp) {
207			WRITE_ONCE(tcptw->tw_ts_recent,
208				   tmp_opt.rcv_tsval);
209			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210				   ktime_get_seconds());
211		}
212
213		inet_twsk_put(tw);
214		return TCP_TW_SUCCESS;
215	}
216
217	/* Out of window segment.
218
219	   All the segments are ACKed immediately.
220
221	   The only exception is new SYN. We accept it, if it is
222	   not old duplicate and we are not in danger to be killed
223	   by delayed old duplicates. RFC check is that it has
224	   newer sequence number works at rates <40Mbit/sec.
225	   However, if paws works, it is reliable AND even more,
226	   we even may relax silly seq space cutoff.
227
228	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230	   we must return socket to time-wait state. It is not good,
231	   but not fatal yet.
232	 */
233
234	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236	     (tmp_opt.saw_tstamp &&
237	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239		if (isn == 0)
240			isn++;
241		*tw_isn = isn;
242		return TCP_TW_SYN;
243	}
244
245	if (paws_reject)
246		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248	if (!th->rst) {
249		/* In this case we must reset the TIMEWAIT timer.
250		 *
251		 * If it is ACKless SYN it may be both old duplicate
252		 * and new good SYN with random sequence number <rcv_nxt.
253		 * Do not reschedule in the last case.
254		 */
255		if (paws_reject || th->ack)
256			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257
258		return tcp_timewait_check_oow_rate_limit(
259			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267{
268#ifdef CONFIG_TCP_MD5SIG
269	const struct tcp_sock *tp = tcp_sk(sk);
270	struct tcp_md5sig_key *key;
271
272	/*
273	 * The timewait bucket does not have the key DB from the
274	 * sock structure. We just make a quick copy of the
275	 * md5 key being used (if indeed we are using one)
276	 * so the timewait ack generating code has the key.
277	 */
278	tcptw->tw_md5_key = NULL;
279	if (!static_branch_unlikely(&tcp_md5_needed.key))
280		return;
281
282	key = tp->af_specific->md5_lookup(sk, sk);
283	if (key) {
284		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285		if (!tcptw->tw_md5_key)
286			return;
287		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288			goto out_free;
289		tcp_md5_add_sigpool();
290	}
291	return;
292out_free:
293	WARN_ON_ONCE(1);
294	kfree(tcptw->tw_md5_key);
295	tcptw->tw_md5_key = NULL;
296#endif
297}
298
299/*
300 * Move a socket to time-wait or dead fin-wait-2 state.
301 */
302void tcp_time_wait(struct sock *sk, int state, int timeo)
303{
304	const struct inet_connection_sock *icsk = inet_csk(sk);
305	struct tcp_sock *tp = tcp_sk(sk);
306	struct net *net = sock_net(sk);
307	struct inet_timewait_sock *tw;
 
308
309	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310
311	if (tw) {
312		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
314
315		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316		tw->tw_mark		= sk->sk_mark;
317		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320		tcptw->tw_snd_nxt	= tp->snd_nxt;
321		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324		tcptw->tw_ts_offset	= tp->tsoffset;
325		tw->tw_usec_ts		= tp->tcp_usec_ts;
326		tcptw->tw_last_oow_ack_time = 0;
327		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328		tw->tw_txhash		= sk->sk_txhash;
329		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332#endif
333#if IS_ENABLED(CONFIG_IPV6)
334		if (tw->tw_family == PF_INET6) {
335			struct ipv6_pinfo *np = inet6_sk(sk);
336
337			tw->tw_v6_daddr = sk->sk_v6_daddr;
338			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
339			tw->tw_tclass = np->tclass;
340			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
341			tw->tw_ipv6only = sk->sk_ipv6only;
342		}
343#endif
344
345		tcp_time_wait_init(sk, tcptw);
346		tcp_ao_time_wait(tcptw, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347
348		/* Get the TIME_WAIT timeout firing. */
349		if (timeo < rto)
350			timeo = rto;
351
 
352		if (state == TCP_TIME_WAIT)
353			timeo = TCP_TIMEWAIT_LEN;
354
 
 
 
 
 
 
355		/* Linkage updates.
356		 * Note that access to tw after this point is illegal.
357		 */
358		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
 
359	} else {
360		/* Sorry, if we're out of memory, just CLOSE this
361		 * socket up.  We've got bigger problems than
362		 * non-graceful socket closings.
363		 */
364		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365	}
366
367	tcp_update_metrics(sk);
368	tcp_done(sk);
369}
370EXPORT_SYMBOL(tcp_time_wait);
371
372#ifdef CONFIG_TCP_MD5SIG
373static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374{
375	struct tcp_md5sig_key *key;
376
377	key = container_of(head, struct tcp_md5sig_key, rcu);
378	kfree(key);
379	static_branch_slow_dec_deferred(&tcp_md5_needed);
380	tcp_md5_release_sigpool();
381}
382#endif
383
384void tcp_twsk_destructor(struct sock *sk)
385{
386#ifdef CONFIG_TCP_MD5SIG
387	if (static_branch_unlikely(&tcp_md5_needed.key)) {
388		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389
390		if (twsk->tw_md5_key)
391			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
392	}
393#endif
394	tcp_ao_destroy_sock(sk, true);
395}
396EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397
398void tcp_twsk_purge(struct list_head *net_exit_list)
399{
400	bool purged_once = false;
401	struct net *net;
402
403	list_for_each_entry(net, net_exit_list, exit_list) {
404		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
406			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407		} else if (!purged_once) {
408			inet_twsk_purge(&tcp_hashinfo);
409			purged_once = true;
410		}
411	}
412}
413
414/* Warning : This function is called without sk_listener being locked.
415 * Be sure to read socket fields once, as their value could change under us.
416 */
417void tcp_openreq_init_rwin(struct request_sock *req,
418			   const struct sock *sk_listener,
419			   const struct dst_entry *dst)
420{
421	struct inet_request_sock *ireq = inet_rsk(req);
422	const struct tcp_sock *tp = tcp_sk(sk_listener);
423	int full_space = tcp_full_space(sk_listener);
424	u32 window_clamp;
425	__u8 rcv_wscale;
426	u32 rcv_wnd;
427	int mss;
428
429	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430	window_clamp = READ_ONCE(tp->window_clamp);
431	/* Set this up on the first call only */
432	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433
434	/* limit the window selection if the user enforce a smaller rx buffer */
435	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437		req->rsk_window_clamp = full_space;
438
439	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440	if (rcv_wnd == 0)
441		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442	else if (full_space < rcv_wnd * mss)
443		full_space = rcv_wnd * mss;
444
445	/* tcp_full_space because it is guaranteed to be the first packet */
446	tcp_select_initial_window(sk_listener, full_space,
447		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448		&req->rsk_rcv_wnd,
449		&req->rsk_window_clamp,
450		ireq->wscale_ok,
451		&rcv_wscale,
452		rcv_wnd);
453	ireq->rcv_wscale = rcv_wscale;
454}
455EXPORT_SYMBOL(tcp_openreq_init_rwin);
456
457static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458				  const struct request_sock *req)
459{
460	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461}
462
463void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464{
465	struct inet_connection_sock *icsk = inet_csk(sk);
466	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467	bool ca_got_dst = false;
468
469	if (ca_key != TCP_CA_UNSPEC) {
470		const struct tcp_congestion_ops *ca;
471
472		rcu_read_lock();
473		ca = tcp_ca_find_key(ca_key);
474		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476			icsk->icsk_ca_ops = ca;
477			ca_got_dst = true;
478		}
479		rcu_read_unlock();
480	}
481
482	/* If no valid choice made yet, assign current system default ca. */
483	if (!ca_got_dst &&
484	    (!icsk->icsk_ca_setsockopt ||
485	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486		tcp_assign_congestion_control(sk);
487
488	tcp_set_ca_state(sk, TCP_CA_Open);
489}
490EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491
492static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493				    struct request_sock *req,
494				    struct tcp_sock *newtp)
495{
496#if IS_ENABLED(CONFIG_SMC)
497	struct inet_request_sock *ireq;
498
499	if (static_branch_unlikely(&tcp_have_smc)) {
500		ireq = inet_rsk(req);
501		if (oldtp->syn_smc && !ireq->smc_ok)
502			newtp->syn_smc = 0;
503	}
504#endif
505}
506
507/* This is not only more efficient than what we used to do, it eliminates
508 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509 *
510 * Actually, we could lots of memory writes here. tp of listening
511 * socket contains all necessary default parameters.
512 */
513struct sock *tcp_create_openreq_child(const struct sock *sk,
514				      struct request_sock *req,
515				      struct sk_buff *skb)
516{
517	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518	const struct inet_request_sock *ireq = inet_rsk(req);
519	struct tcp_request_sock *treq = tcp_rsk(req);
520	struct inet_connection_sock *newicsk;
521	const struct tcp_sock *oldtp;
522	struct tcp_sock *newtp;
523	u32 seq;
524
525	if (!newsk)
526		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528	newicsk = inet_csk(newsk);
529	newtp = tcp_sk(newsk);
530	oldtp = tcp_sk(sk);
531
532	smc_check_reset_syn_req(oldtp, req, newtp);
533
534	/* Now setup tcp_sock */
535	newtp->pred_flags = 0;
536
537	seq = treq->rcv_isn + 1;
538	newtp->rcv_wup = seq;
539	WRITE_ONCE(newtp->copied_seq, seq);
540	WRITE_ONCE(newtp->rcv_nxt, seq);
541	newtp->segs_in = 1;
542
543	seq = treq->snt_isn + 1;
544	newtp->snd_sml = newtp->snd_una = seq;
545	WRITE_ONCE(newtp->snd_nxt, seq);
546	newtp->snd_up = seq;
547
548	INIT_LIST_HEAD(&newtp->tsq_node);
549	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550
551	tcp_init_wl(newtp, treq->rcv_isn);
552
553	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555
556	newtp->lsndtime = tcp_jiffies32;
557	newsk->sk_txhash = READ_ONCE(treq->txhash);
558	newtp->total_retrans = req->num_retrans;
559
560	tcp_init_xmit_timers(newsk);
561	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562
563	if (sock_flag(newsk, SOCK_KEEPOPEN))
564		inet_csk_reset_keepalive_timer(newsk,
565					       keepalive_time_when(newtp));
566
567	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568	newtp->rx_opt.sack_ok = ireq->sack_ok;
569	newtp->window_clamp = req->rsk_window_clamp;
570	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571	newtp->rcv_wnd = req->rsk_rcv_wnd;
572	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573	if (newtp->rx_opt.wscale_ok) {
574		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576	} else {
577		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578		newtp->window_clamp = min(newtp->window_clamp, 65535U);
579	}
580	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581	newtp->max_window = newtp->snd_wnd;
582
583	if (newtp->rx_opt.tstamp_ok) {
584		newtp->tcp_usec_ts = treq->req_usec_ts;
585		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588	} else {
589		newtp->tcp_usec_ts = 0;
590		newtp->rx_opt.ts_recent_stamp = 0;
591		newtp->tcp_header_len = sizeof(struct tcphdr);
592	}
593	if (req->num_timeout) {
594		newtp->total_rto = req->num_timeout;
595		newtp->undo_marker = treq->snt_isn;
596		if (newtp->tcp_usec_ts) {
597			newtp->retrans_stamp = treq->snt_synack;
598			newtp->total_rto_time = (u32)(tcp_clock_us() -
599						      newtp->retrans_stamp) / USEC_PER_MSEC;
 
 
 
 
 
 
600		} else {
601			newtp->retrans_stamp = div_u64(treq->snt_synack,
602						       USEC_PER_SEC / TCP_TS_HZ);
603			newtp->total_rto_time = tcp_clock_ms() -
604						newtp->retrans_stamp;
605		}
606		newtp->total_rto_recoveries = 1;
607	}
608	newtp->tsoffset = treq->ts_off;
 
 
 
 
 
 
 
 
 
 
609#ifdef CONFIG_TCP_MD5SIG
610	newtp->md5sig_info = NULL;	/*XXX*/
 
 
611#endif
612#ifdef CONFIG_TCP_AO
613	newtp->ao_info = NULL;
614
615	if (tcp_rsk_used_ao(req)) {
616		struct tcp_ao_key *ao_key;
617
618		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619		if (ao_key)
620			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621	}
622 #endif
623	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625	newtp->rx_opt.mss_clamp = req->mss;
626	tcp_ecn_openreq_child(newtp, req);
627	newtp->fastopen_req = NULL;
628	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629
630	newtp->bpf_chg_cc_inprogress = 0;
631	tcp_bpf_clone(sk, newsk);
632
633	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634
635	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636
 
 
637	return newsk;
638}
639EXPORT_SYMBOL(tcp_create_openreq_child);
640
641/*
642 * Process an incoming packet for SYN_RECV sockets represented as a
643 * request_sock. Normally sk is the listener socket but for TFO it
644 * points to the child socket.
645 *
646 * XXX (TFO) - The current impl contains a special check for ack
647 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648 *
649 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650 *
651 * Note: If @fastopen is true, this can be called from process context.
652 *       Otherwise, this is from BH context.
653 */
654
655struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656			   struct request_sock *req,
657			   bool fastopen, bool *req_stolen)
658{
659	struct tcp_options_received tmp_opt;
660	struct sock *child;
661	const struct tcphdr *th = tcp_hdr(skb);
662	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663	bool paws_reject = false;
664	bool own_req;
665
666	tmp_opt.saw_tstamp = 0;
667	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669
670		if (tmp_opt.saw_tstamp) {
671			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672			if (tmp_opt.rcv_tsecr)
673				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674			/* We do not store true stamp, but it is not required,
675			 * it can be estimated (approximately)
676			 * from another data.
677			 */
678			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680		}
681	}
682
683	/* Check for pure retransmitted SYN. */
684	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685	    flg == TCP_FLAG_SYN &&
686	    !paws_reject) {
687		/*
688		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689		 * this case on figure 6 and figure 8, but formal
690		 * protocol description says NOTHING.
691		 * To be more exact, it says that we should send ACK,
692		 * because this segment (at least, if it has no data)
693		 * is out of window.
694		 *
695		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696		 *  describe SYN-RECV state. All the description
697		 *  is wrong, we cannot believe to it and should
698		 *  rely only on common sense and implementation
699		 *  experience.
700		 *
701		 * Enforce "SYN-ACK" according to figure 8, figure 6
702		 * of RFC793, fixed by RFC1122.
703		 *
704		 * Note that even if there is new data in the SYN packet
705		 * they will be thrown away too.
706		 *
707		 * Reset timer after retransmitting SYNACK, similar to
708		 * the idea of fast retransmit in recovery.
709		 */
710		if (!tcp_oow_rate_limited(sock_net(sk), skb,
711					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712					  &tcp_rsk(req)->last_oow_ack_time) &&
713
714		    !inet_rtx_syn_ack(sk, req)) {
715			unsigned long expires = jiffies;
716
717			expires += reqsk_timeout(req, TCP_RTO_MAX);
 
718			if (!fastopen)
719				mod_timer_pending(&req->rsk_timer, expires);
720			else
721				req->rsk_timer.expires = expires;
722		}
723		return NULL;
724	}
725
726	/* Further reproduces section "SEGMENT ARRIVES"
727	   for state SYN-RECEIVED of RFC793.
728	   It is broken, however, it does not work only
729	   when SYNs are crossed.
730
731	   You would think that SYN crossing is impossible here, since
732	   we should have a SYN_SENT socket (from connect()) on our end,
733	   but this is not true if the crossed SYNs were sent to both
734	   ends by a malicious third party.  We must defend against this,
735	   and to do that we first verify the ACK (as per RFC793, page
736	   36) and reset if it is invalid.  Is this a true full defense?
737	   To convince ourselves, let us consider a way in which the ACK
738	   test can still pass in this 'malicious crossed SYNs' case.
739	   Malicious sender sends identical SYNs (and thus identical sequence
740	   numbers) to both A and B:
741
742		A: gets SYN, seq=7
743		B: gets SYN, seq=7
744
745	   By our good fortune, both A and B select the same initial
746	   send sequence number of seven :-)
747
748		A: sends SYN|ACK, seq=7, ack_seq=8
749		B: sends SYN|ACK, seq=7, ack_seq=8
750
751	   So we are now A eating this SYN|ACK, ACK test passes.  So
752	   does sequence test, SYN is truncated, and thus we consider
753	   it a bare ACK.
754
755	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756	   bare ACK.  Otherwise, we create an established connection.  Both
757	   ends (listening sockets) accept the new incoming connection and try
758	   to talk to each other. 8-)
759
760	   Note: This case is both harmless, and rare.  Possibility is about the
761	   same as us discovering intelligent life on another plant tomorrow.
762
763	   But generally, we should (RFC lies!) to accept ACK
764	   from SYNACK both here and in tcp_rcv_state_process().
765	   tcp_rcv_state_process() does not, hence, we do not too.
766
767	   Note that the case is absolutely generic:
768	   we cannot optimize anything here without
769	   violating protocol. All the checks must be made
770	   before attempt to create socket.
771	 */
772
773	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
774	 *                  and the incoming segment acknowledges something not yet
775	 *                  sent (the segment carries an unacceptable ACK) ...
776	 *                  a reset is sent."
777	 *
778	 * Invalid ACK: reset will be sent by listening socket.
779	 * Note that the ACK validity check for a Fast Open socket is done
780	 * elsewhere and is checked directly against the child socket rather
781	 * than req because user data may have been sent out.
782	 */
783	if ((flg & TCP_FLAG_ACK) && !fastopen &&
784	    (TCP_SKB_CB(skb)->ack_seq !=
785	     tcp_rsk(req)->snt_isn + 1))
786		return sk;
787
788	/* Also, it would be not so bad idea to check rcv_tsecr, which
789	 * is essentially ACK extension and too early or too late values
790	 * should cause reset in unsynchronized states.
791	 */
792
793	/* RFC793: "first check sequence number". */
794
795	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796					  TCP_SKB_CB(skb)->end_seq,
797					  tcp_rsk(req)->rcv_nxt,
798					  tcp_rsk(req)->rcv_nxt +
799					  tcp_synack_window(req))) {
800		/* Out of window: send ACK and drop. */
801		if (!(flg & TCP_FLAG_RST) &&
802		    !tcp_oow_rate_limited(sock_net(sk), skb,
803					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804					  &tcp_rsk(req)->last_oow_ack_time))
805			req->rsk_ops->send_ack(sk, skb, req);
806		if (paws_reject)
807			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808		return NULL;
809	}
810
811	/* In sequence, PAWS is OK. */
812
 
 
 
813	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
814		/* Truncate SYN, it is out of window starting
815		   at tcp_rsk(req)->rcv_isn + 1. */
816		flg &= ~TCP_FLAG_SYN;
817	}
818
819	/* RFC793: "second check the RST bit" and
820	 *	   "fourth, check the SYN bit"
821	 */
822	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
823		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
824		goto embryonic_reset;
825	}
826
827	/* ACK sequence verified above, just make sure ACK is
828	 * set.  If ACK not set, just silently drop the packet.
829	 *
830	 * XXX (TFO) - if we ever allow "data after SYN", the
831	 * following check needs to be removed.
832	 */
833	if (!(flg & TCP_FLAG_ACK))
834		return NULL;
835
836	/* For Fast Open no more processing is needed (sk is the
837	 * child socket).
838	 */
839	if (fastopen)
840		return sk;
841
842	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
843	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
844	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
845		inet_rsk(req)->acked = 1;
846		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
847		return NULL;
848	}
849
850	/* OK, ACK is valid, create big socket and
851	 * feed this segment to it. It will repeat all
852	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
853	 * ESTABLISHED STATE. If it will be dropped after
854	 * socket is created, wait for troubles.
855	 */
856	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
857							 req, &own_req);
858	if (!child)
859		goto listen_overflow;
860
861	if (own_req && tmp_opt.saw_tstamp &&
862	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
863		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
864
865	if (own_req && rsk_drop_req(req)) {
866		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
867		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
868		return child;
869	}
870
871	sock_rps_save_rxhash(child, skb);
872	tcp_synack_rtt_meas(child, req);
873	*req_stolen = !own_req;
874	return inet_csk_complete_hashdance(sk, child, req, own_req);
875
876listen_overflow:
877	if (sk != req->rsk_listener)
878		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
879
880	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
881		inet_rsk(req)->acked = 1;
882		return NULL;
883	}
884
885embryonic_reset:
886	if (!(flg & TCP_FLAG_RST)) {
887		/* Received a bad SYN pkt - for TFO We try not to reset
888		 * the local connection unless it's really necessary to
889		 * avoid becoming vulnerable to outside attack aiming at
890		 * resetting legit local connections.
891		 */
892		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
893	} else if (fastopen) { /* received a valid RST pkt */
894		reqsk_fastopen_remove(sk, req, true);
895		tcp_reset(sk, skb);
896	}
897	if (!fastopen) {
898		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
899
900		if (unlinked)
901			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
902		*req_stolen = !unlinked;
903	}
904	return NULL;
905}
906EXPORT_SYMBOL(tcp_check_req);
907
908/*
909 * Queue segment on the new socket if the new socket is active,
910 * otherwise we just shortcircuit this and continue with
911 * the new socket.
912 *
913 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
914 * when entering. But other states are possible due to a race condition
915 * where after __inet_lookup_established() fails but before the listener
916 * locked is obtained, other packets cause the same connection to
917 * be created.
918 */
919
920enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
921				       struct sk_buff *skb)
922	__releases(&((child)->sk_lock.slock))
923{
924	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
925	int state = child->sk_state;
926
927	/* record sk_napi_id and sk_rx_queue_mapping of child. */
928	sk_mark_napi_id_set(child, skb);
929
930	tcp_segs_in(tcp_sk(child), skb);
931	if (!sock_owned_by_user(child)) {
932		reason = tcp_rcv_state_process(child, skb);
933		/* Wakeup parent, send SIGIO */
934		if (state == TCP_SYN_RECV && child->sk_state != state)
935			parent->sk_data_ready(parent);
936	} else {
937		/* Alas, it is possible again, because we do lookup
938		 * in main socket hash table and lock on listening
939		 * socket does not protect us more.
940		 */
941		__sk_add_backlog(child, skb);
942	}
943
944	bh_unlock_sock(child);
945	sock_put(child);
946	return reason;
947}
948EXPORT_SYMBOL(tcp_child_process);
v4.17
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <linux/static_key.h>
 27#include <net/tcp.h>
 28#include <net/inet_common.h>
 29#include <net/xfrm.h>
 30#include <net/busy_poll.h>
 
 31
 32static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 33{
 34	if (seq == s_win)
 35		return true;
 36	if (after(end_seq, s_win) && before(seq, e_win))
 37		return true;
 38	return seq == e_win && seq == end_seq;
 39}
 40
 41static enum tcp_tw_status
 42tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 43				  const struct sk_buff *skb, int mib_idx)
 44{
 45	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 46
 47	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 48				  &tcptw->tw_last_oow_ack_time)) {
 49		/* Send ACK. Note, we do not put the bucket,
 50		 * it will be released by caller.
 51		 */
 52		return TCP_TW_ACK;
 53	}
 54
 55	/* We are rate-limiting, so just release the tw sock and drop skb. */
 56	inet_twsk_put(tw);
 57	return TCP_TW_SUCCESS;
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 60/*
 61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 62 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 63 *   (and, probably, tail of data) and one or more our ACKs are lost.
 64 * * What is TIME-WAIT timeout? It is associated with maximal packet
 65 *   lifetime in the internet, which results in wrong conclusion, that
 66 *   it is set to catch "old duplicate segments" wandering out of their path.
 67 *   It is not quite correct. This timeout is calculated so that it exceeds
 68 *   maximal retransmission timeout enough to allow to lose one (or more)
 69 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 70 * * When TIME-WAIT socket receives RST, it means that another end
 71 *   finally closed and we are allowed to kill TIME-WAIT too.
 72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 73 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 74 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 75 * * If we invented some more clever way to catch duplicates
 76 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 77 *
 78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 80 * from the very beginning.
 81 *
 82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 83 * is _not_ stateless. It means, that strictly speaking we must
 84 * spinlock it. I do not want! Well, probability of misbehaviour
 85 * is ridiculously low and, seems, we could use some mb() tricks
 86 * to avoid misread sequence numbers, states etc.  --ANK
 87 *
 88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 89 */
 90enum tcp_tw_status
 91tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 92			   const struct tcphdr *th)
 93{
 
 
 94	struct tcp_options_received tmp_opt;
 95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 96	bool paws_reject = false;
 
 97
 98	tmp_opt.saw_tstamp = 0;
 99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 
100		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101
102		if (tmp_opt.saw_tstamp) {
103			if (tmp_opt.rcv_tsecr)
104				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return tcp_timewait_check_oow_rate_limit(
120				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121
122		if (th->rst)
123			goto kill;
124
125		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126			return TCP_TW_RST;
127
128		/* Dup ACK? */
129		if (!th->ack ||
130		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132			inet_twsk_put(tw);
133			return TCP_TW_SUCCESS;
134		}
135
136		/* New data or FIN. If new data arrive after half-duplex close,
137		 * reset.
138		 */
139		if (!th->fin ||
140		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141			return TCP_TW_RST;
142
143		/* FIN arrived, enter true time-wait state. */
144		tw->tw_substate	  = TCP_TIME_WAIT;
145		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
 
146		if (tmp_opt.saw_tstamp) {
147			tcptw->tw_ts_recent_stamp = get_seconds();
148			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 
 
149		}
150
151		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152		return TCP_TW_ACK;
153	}
154
155	/*
156	 *	Now real TIME-WAIT state.
157	 *
158	 *	RFC 1122:
159	 *	"When a connection is [...] on TIME-WAIT state [...]
160	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161	 *	reopen the connection directly, if it:
162	 *
163	 *	(1)  assigns its initial sequence number for the new
164	 *	connection to be larger than the largest sequence
165	 *	number it used on the previous connection incarnation,
166	 *	and
167	 *
168	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169	 *	to be an old duplicate".
170	 */
171
172	if (!paws_reject &&
173	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175		/* In window segment, it may be only reset or bare ack. */
176
177		if (th->rst) {
178			/* This is TIME_WAIT assassination, in two flavors.
179			 * Oh well... nobody has a sufficient solution to this
180			 * protocol bug yet.
181			 */
182			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183kill:
184				inet_twsk_deschedule_put(tw);
185				return TCP_TW_SUCCESS;
186			}
 
 
187		}
188		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189
190		if (tmp_opt.saw_tstamp) {
191			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192			tcptw->tw_ts_recent_stamp = get_seconds();
 
 
193		}
194
195		inet_twsk_put(tw);
196		return TCP_TW_SUCCESS;
197	}
198
199	/* Out of window segment.
200
201	   All the segments are ACKed immediately.
202
203	   The only exception is new SYN. We accept it, if it is
204	   not old duplicate and we are not in danger to be killed
205	   by delayed old duplicates. RFC check is that it has
206	   newer sequence number works at rates <40Mbit/sec.
207	   However, if paws works, it is reliable AND even more,
208	   we even may relax silly seq space cutoff.
209
210	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212	   we must return socket to time-wait state. It is not good,
213	   but not fatal yet.
214	 */
215
216	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218	     (tmp_opt.saw_tstamp &&
219	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221		if (isn == 0)
222			isn++;
223		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224		return TCP_TW_SYN;
225	}
226
227	if (paws_reject)
228		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229
230	if (!th->rst) {
231		/* In this case we must reset the TIMEWAIT timer.
232		 *
233		 * If it is ACKless SYN it may be both old duplicate
234		 * and new good SYN with random sequence number <rcv_nxt.
235		 * Do not reschedule in the last case.
236		 */
237		if (paws_reject || th->ack)
238			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239
240		return tcp_timewait_check_oow_rate_limit(
241			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242	}
243	inet_twsk_put(tw);
244	return TCP_TW_SUCCESS;
245}
246EXPORT_SYMBOL(tcp_timewait_state_process);
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248/*
249 * Move a socket to time-wait or dead fin-wait-2 state.
250 */
251void tcp_time_wait(struct sock *sk, int state, int timeo)
252{
253	const struct inet_connection_sock *icsk = inet_csk(sk);
254	const struct tcp_sock *tp = tcp_sk(sk);
 
255	struct inet_timewait_sock *tw;
256	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
257
258	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259
260	if (tw) {
261		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263		struct inet_sock *inet = inet_sk(sk);
264
265		tw->tw_transparent	= inet->transparent;
 
 
266		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
267		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
268		tcptw->tw_snd_nxt	= tp->snd_nxt;
269		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
270		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
271		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
272		tcptw->tw_ts_offset	= tp->tsoffset;
 
273		tcptw->tw_last_oow_ack_time = 0;
274
 
 
 
 
 
275#if IS_ENABLED(CONFIG_IPV6)
276		if (tw->tw_family == PF_INET6) {
277			struct ipv6_pinfo *np = inet6_sk(sk);
278
279			tw->tw_v6_daddr = sk->sk_v6_daddr;
280			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
281			tw->tw_tclass = np->tclass;
282			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
283			tw->tw_ipv6only = sk->sk_ipv6only;
284		}
285#endif
286
287#ifdef CONFIG_TCP_MD5SIG
288		/*
289		 * The timewait bucket does not have the key DB from the
290		 * sock structure. We just make a quick copy of the
291		 * md5 key being used (if indeed we are using one)
292		 * so the timewait ack generating code has the key.
293		 */
294		do {
295			struct tcp_md5sig_key *key;
296			tcptw->tw_md5_key = NULL;
297			key = tp->af_specific->md5_lookup(sk, sk);
298			if (key) {
299				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301			}
302		} while (0);
303#endif
304
305		/* Get the TIME_WAIT timeout firing. */
306		if (timeo < rto)
307			timeo = rto;
308
309		tw->tw_timeout = TCP_TIMEWAIT_LEN;
310		if (state == TCP_TIME_WAIT)
311			timeo = TCP_TIMEWAIT_LEN;
312
313		/* tw_timer is pinned, so we need to make sure BH are disabled
314		 * in following section, otherwise timer handler could run before
315		 * we complete the initialization.
316		 */
317		local_bh_disable();
318		inet_twsk_schedule(tw, timeo);
319		/* Linkage updates.
320		 * Note that access to tw after this point is illegal.
321		 */
322		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323		local_bh_enable();
324	} else {
325		/* Sorry, if we're out of memory, just CLOSE this
326		 * socket up.  We've got bigger problems than
327		 * non-graceful socket closings.
328		 */
329		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330	}
331
332	tcp_update_metrics(sk);
333	tcp_done(sk);
334}
335EXPORT_SYMBOL(tcp_time_wait);
336
 
 
 
 
 
 
 
 
 
 
 
 
337void tcp_twsk_destructor(struct sock *sk)
338{
339#ifdef CONFIG_TCP_MD5SIG
340	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
341
342	if (twsk->tw_md5_key)
343		kfree_rcu(twsk->tw_md5_key, rcu);
 
344#endif
 
345}
346EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348/* Warning : This function is called without sk_listener being locked.
349 * Be sure to read socket fields once, as their value could change under us.
350 */
351void tcp_openreq_init_rwin(struct request_sock *req,
352			   const struct sock *sk_listener,
353			   const struct dst_entry *dst)
354{
355	struct inet_request_sock *ireq = inet_rsk(req);
356	const struct tcp_sock *tp = tcp_sk(sk_listener);
357	int full_space = tcp_full_space(sk_listener);
358	u32 window_clamp;
359	__u8 rcv_wscale;
360	u32 rcv_wnd;
361	int mss;
362
363	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
364	window_clamp = READ_ONCE(tp->window_clamp);
365	/* Set this up on the first call only */
366	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
367
368	/* limit the window selection if the user enforce a smaller rx buffer */
369	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
370	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
371		req->rsk_window_clamp = full_space;
372
373	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
374	if (rcv_wnd == 0)
375		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
376	else if (full_space < rcv_wnd * mss)
377		full_space = rcv_wnd * mss;
378
379	/* tcp_full_space because it is guaranteed to be the first packet */
380	tcp_select_initial_window(sk_listener, full_space,
381		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382		&req->rsk_rcv_wnd,
383		&req->rsk_window_clamp,
384		ireq->wscale_ok,
385		&rcv_wscale,
386		rcv_wnd);
387	ireq->rcv_wscale = rcv_wscale;
388}
389EXPORT_SYMBOL(tcp_openreq_init_rwin);
390
391static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392				  const struct request_sock *req)
393{
394	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395}
396
397void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398{
399	struct inet_connection_sock *icsk = inet_csk(sk);
400	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401	bool ca_got_dst = false;
402
403	if (ca_key != TCP_CA_UNSPEC) {
404		const struct tcp_congestion_ops *ca;
405
406		rcu_read_lock();
407		ca = tcp_ca_find_key(ca_key);
408		if (likely(ca && try_module_get(ca->owner))) {
409			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410			icsk->icsk_ca_ops = ca;
411			ca_got_dst = true;
412		}
413		rcu_read_unlock();
414	}
415
416	/* If no valid choice made yet, assign current system default ca. */
417	if (!ca_got_dst &&
418	    (!icsk->icsk_ca_setsockopt ||
419	     !try_module_get(icsk->icsk_ca_ops->owner)))
420		tcp_assign_congestion_control(sk);
421
422	tcp_set_ca_state(sk, TCP_CA_Open);
423}
424EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425
426static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
427				    struct request_sock *req,
428				    struct tcp_sock *newtp)
429{
430#if IS_ENABLED(CONFIG_SMC)
431	struct inet_request_sock *ireq;
432
433	if (static_branch_unlikely(&tcp_have_smc)) {
434		ireq = inet_rsk(req);
435		if (oldtp->syn_smc && !ireq->smc_ok)
436			newtp->syn_smc = 0;
437	}
438#endif
439}
440
441/* This is not only more efficient than what we used to do, it eliminates
442 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443 *
444 * Actually, we could lots of memory writes here. tp of listening
445 * socket contains all necessary default parameters.
446 */
447struct sock *tcp_create_openreq_child(const struct sock *sk,
448				      struct request_sock *req,
449				      struct sk_buff *skb)
450{
451	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
 
452
453	if (newsk) {
454		const struct inet_request_sock *ireq = inet_rsk(req);
455		struct tcp_request_sock *treq = tcp_rsk(req);
456		struct inet_connection_sock *newicsk = inet_csk(newsk);
457		struct tcp_sock *newtp = tcp_sk(newsk);
458		struct tcp_sock *oldtp = tcp_sk(sk);
459
460		smc_check_reset_syn_req(oldtp, req, newtp);
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467		newtp->segs_in = 1;
468
469		newtp->snd_sml = newtp->snd_una =
470		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
471
472		INIT_LIST_HEAD(&newtp->tsq_node);
473		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
474
475		tcp_init_wl(newtp, treq->rcv_isn);
476
477		newtp->srtt_us = 0;
478		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
479		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
480		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
481		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
482
483		newtp->packets_out = 0;
484		newtp->retrans_out = 0;
485		newtp->sacked_out = 0;
486		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
487		newtp->tlp_high_seq = 0;
488		newtp->lsndtime = tcp_jiffies32;
489		newsk->sk_txhash = treq->txhash;
490		newtp->last_oow_ack_time = 0;
491		newtp->total_retrans = req->num_retrans;
492
493		/* So many TCP implementations out there (incorrectly) count the
494		 * initial SYN frame in their delayed-ACK and congestion control
495		 * algorithms that we must have the following bandaid to talk
496		 * efficiently to them.  -DaveM
497		 */
498		newtp->snd_cwnd = TCP_INIT_CWND;
499		newtp->snd_cwnd_cnt = 0;
500
501		/* There's a bubble in the pipe until at least the first ACK. */
502		newtp->app_limited = ~0U;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503
504		tcp_init_xmit_timers(newsk);
505		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
506
507		newtp->rx_opt.saw_tstamp = 0;
508
509		newtp->rx_opt.dsack = 0;
510		newtp->rx_opt.num_sacks = 0;
511
512		newtp->urg_data = 0;
513
514		if (sock_flag(newsk, SOCK_KEEPOPEN))
515			inet_csk_reset_keepalive_timer(newsk,
516						       keepalive_time_when(newtp));
517
518		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
519		newtp->rx_opt.sack_ok = ireq->sack_ok;
520		newtp->window_clamp = req->rsk_window_clamp;
521		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
522		newtp->rcv_wnd = req->rsk_rcv_wnd;
523		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524		if (newtp->rx_opt.wscale_ok) {
525			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527		} else {
528			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529			newtp->window_clamp = min(newtp->window_clamp, 65535U);
 
 
530		}
531		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532				  newtp->rx_opt.snd_wscale);
533		newtp->max_window = newtp->snd_wnd;
534
535		if (newtp->rx_opt.tstamp_ok) {
536			newtp->rx_opt.ts_recent = req->ts_recent;
537			newtp->rx_opt.ts_recent_stamp = get_seconds();
538			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539		} else {
540			newtp->rx_opt.ts_recent_stamp = 0;
541			newtp->tcp_header_len = sizeof(struct tcphdr);
542		}
543		newtp->tsoffset = treq->ts_off;
544#ifdef CONFIG_TCP_MD5SIG
545		newtp->md5sig_info = NULL;	/*XXX*/
546		if (newtp->af_specific->md5_lookup(sk, newsk))
547			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548#endif
549		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551		newtp->rx_opt.mss_clamp = req->mss;
552		tcp_ecn_openreq_child(newtp, req);
553		newtp->fastopen_req = NULL;
554		newtp->fastopen_rsk = NULL;
555		newtp->syn_data_acked = 0;
556		newtp->rack.mstamp = 0;
557		newtp->rack.advanced = 0;
558		newtp->rack.reo_wnd_steps = 1;
559		newtp->rack.last_delivered = 0;
560		newtp->rack.reo_wnd_persist = 0;
561		newtp->rack.dsack_seen = 0;
 
 
 
 
 
 
 
 
 
 
 
562
563		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
564	}
565	return newsk;
566}
567EXPORT_SYMBOL(tcp_create_openreq_child);
568
569/*
570 * Process an incoming packet for SYN_RECV sockets represented as a
571 * request_sock. Normally sk is the listener socket but for TFO it
572 * points to the child socket.
573 *
574 * XXX (TFO) - The current impl contains a special check for ack
575 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576 *
577 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 
 
 
578 */
579
580struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
581			   struct request_sock *req,
582			   bool fastopen, bool *req_stolen)
583{
584	struct tcp_options_received tmp_opt;
585	struct sock *child;
586	const struct tcphdr *th = tcp_hdr(skb);
587	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588	bool paws_reject = false;
589	bool own_req;
590
591	tmp_opt.saw_tstamp = 0;
592	if (th->doff > (sizeof(struct tcphdr)>>2)) {
593		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
594
595		if (tmp_opt.saw_tstamp) {
596			tmp_opt.ts_recent = req->ts_recent;
597			if (tmp_opt.rcv_tsecr)
598				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
599			/* We do not store true stamp, but it is not required,
600			 * it can be estimated (approximately)
601			 * from another data.
602			 */
603			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
604			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605		}
606	}
607
608	/* Check for pure retransmitted SYN. */
609	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
610	    flg == TCP_FLAG_SYN &&
611	    !paws_reject) {
612		/*
613		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614		 * this case on figure 6 and figure 8, but formal
615		 * protocol description says NOTHING.
616		 * To be more exact, it says that we should send ACK,
617		 * because this segment (at least, if it has no data)
618		 * is out of window.
619		 *
620		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621		 *  describe SYN-RECV state. All the description
622		 *  is wrong, we cannot believe to it and should
623		 *  rely only on common sense and implementation
624		 *  experience.
625		 *
626		 * Enforce "SYN-ACK" according to figure 8, figure 6
627		 * of RFC793, fixed by RFC1122.
628		 *
629		 * Note that even if there is new data in the SYN packet
630		 * they will be thrown away too.
631		 *
632		 * Reset timer after retransmitting SYNACK, similar to
633		 * the idea of fast retransmit in recovery.
634		 */
635		if (!tcp_oow_rate_limited(sock_net(sk), skb,
636					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
637					  &tcp_rsk(req)->last_oow_ack_time) &&
638
639		    !inet_rtx_syn_ack(sk, req)) {
640			unsigned long expires = jiffies;
641
642			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
643				       TCP_RTO_MAX);
644			if (!fastopen)
645				mod_timer_pending(&req->rsk_timer, expires);
646			else
647				req->rsk_timer.expires = expires;
648		}
649		return NULL;
650	}
651
652	/* Further reproduces section "SEGMENT ARRIVES"
653	   for state SYN-RECEIVED of RFC793.
654	   It is broken, however, it does not work only
655	   when SYNs are crossed.
656
657	   You would think that SYN crossing is impossible here, since
658	   we should have a SYN_SENT socket (from connect()) on our end,
659	   but this is not true if the crossed SYNs were sent to both
660	   ends by a malicious third party.  We must defend against this,
661	   and to do that we first verify the ACK (as per RFC793, page
662	   36) and reset if it is invalid.  Is this a true full defense?
663	   To convince ourselves, let us consider a way in which the ACK
664	   test can still pass in this 'malicious crossed SYNs' case.
665	   Malicious sender sends identical SYNs (and thus identical sequence
666	   numbers) to both A and B:
667
668		A: gets SYN, seq=7
669		B: gets SYN, seq=7
670
671	   By our good fortune, both A and B select the same initial
672	   send sequence number of seven :-)
673
674		A: sends SYN|ACK, seq=7, ack_seq=8
675		B: sends SYN|ACK, seq=7, ack_seq=8
676
677	   So we are now A eating this SYN|ACK, ACK test passes.  So
678	   does sequence test, SYN is truncated, and thus we consider
679	   it a bare ACK.
680
681	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682	   bare ACK.  Otherwise, we create an established connection.  Both
683	   ends (listening sockets) accept the new incoming connection and try
684	   to talk to each other. 8-)
685
686	   Note: This case is both harmless, and rare.  Possibility is about the
687	   same as us discovering intelligent life on another plant tomorrow.
688
689	   But generally, we should (RFC lies!) to accept ACK
690	   from SYNACK both here and in tcp_rcv_state_process().
691	   tcp_rcv_state_process() does not, hence, we do not too.
692
693	   Note that the case is absolutely generic:
694	   we cannot optimize anything here without
695	   violating protocol. All the checks must be made
696	   before attempt to create socket.
697	 */
698
699	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
700	 *                  and the incoming segment acknowledges something not yet
701	 *                  sent (the segment carries an unacceptable ACK) ...
702	 *                  a reset is sent."
703	 *
704	 * Invalid ACK: reset will be sent by listening socket.
705	 * Note that the ACK validity check for a Fast Open socket is done
706	 * elsewhere and is checked directly against the child socket rather
707	 * than req because user data may have been sent out.
708	 */
709	if ((flg & TCP_FLAG_ACK) && !fastopen &&
710	    (TCP_SKB_CB(skb)->ack_seq !=
711	     tcp_rsk(req)->snt_isn + 1))
712		return sk;
713
714	/* Also, it would be not so bad idea to check rcv_tsecr, which
715	 * is essentially ACK extension and too early or too late values
716	 * should cause reset in unsynchronized states.
717	 */
718
719	/* RFC793: "first check sequence number". */
720
721	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
722					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
 
 
 
723		/* Out of window: send ACK and drop. */
724		if (!(flg & TCP_FLAG_RST) &&
725		    !tcp_oow_rate_limited(sock_net(sk), skb,
726					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727					  &tcp_rsk(req)->last_oow_ack_time))
728			req->rsk_ops->send_ack(sk, skb, req);
729		if (paws_reject)
730			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
731		return NULL;
732	}
733
734	/* In sequence, PAWS is OK. */
735
736	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
737		req->ts_recent = tmp_opt.rcv_tsval;
738
739	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
740		/* Truncate SYN, it is out of window starting
741		   at tcp_rsk(req)->rcv_isn + 1. */
742		flg &= ~TCP_FLAG_SYN;
743	}
744
745	/* RFC793: "second check the RST bit" and
746	 *	   "fourth, check the SYN bit"
747	 */
748	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
749		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
750		goto embryonic_reset;
751	}
752
753	/* ACK sequence verified above, just make sure ACK is
754	 * set.  If ACK not set, just silently drop the packet.
755	 *
756	 * XXX (TFO) - if we ever allow "data after SYN", the
757	 * following check needs to be removed.
758	 */
759	if (!(flg & TCP_FLAG_ACK))
760		return NULL;
761
762	/* For Fast Open no more processing is needed (sk is the
763	 * child socket).
764	 */
765	if (fastopen)
766		return sk;
767
768	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
770	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
771		inet_rsk(req)->acked = 1;
772		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
773		return NULL;
774	}
775
776	/* OK, ACK is valid, create big socket and
777	 * feed this segment to it. It will repeat all
778	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779	 * ESTABLISHED STATE. If it will be dropped after
780	 * socket is created, wait for troubles.
781	 */
782	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
783							 req, &own_req);
784	if (!child)
785		goto listen_overflow;
786
 
 
 
 
 
 
 
 
 
 
787	sock_rps_save_rxhash(child, skb);
788	tcp_synack_rtt_meas(child, req);
789	*req_stolen = !own_req;
790	return inet_csk_complete_hashdance(sk, child, req, own_req);
791
792listen_overflow:
793	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
 
 
 
794		inet_rsk(req)->acked = 1;
795		return NULL;
796	}
797
798embryonic_reset:
799	if (!(flg & TCP_FLAG_RST)) {
800		/* Received a bad SYN pkt - for TFO We try not to reset
801		 * the local connection unless it's really necessary to
802		 * avoid becoming vulnerable to outside attack aiming at
803		 * resetting legit local connections.
804		 */
805		req->rsk_ops->send_reset(sk, skb);
806	} else if (fastopen) { /* received a valid RST pkt */
807		reqsk_fastopen_remove(sk, req, true);
808		tcp_reset(sk);
809	}
810	if (!fastopen) {
811		inet_csk_reqsk_queue_drop(sk, req);
812		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
813	}
814	return NULL;
815}
816EXPORT_SYMBOL(tcp_check_req);
817
818/*
819 * Queue segment on the new socket if the new socket is active,
820 * otherwise we just shortcircuit this and continue with
821 * the new socket.
822 *
823 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824 * when entering. But other states are possible due to a race condition
825 * where after __inet_lookup_established() fails but before the listener
826 * locked is obtained, other packets cause the same connection to
827 * be created.
828 */
829
830int tcp_child_process(struct sock *parent, struct sock *child,
831		      struct sk_buff *skb)
 
832{
833	int ret = 0;
834	int state = child->sk_state;
835
836	/* record NAPI ID of child */
837	sk_mark_napi_id(child, skb);
838
839	tcp_segs_in(tcp_sk(child), skb);
840	if (!sock_owned_by_user(child)) {
841		ret = tcp_rcv_state_process(child, skb);
842		/* Wakeup parent, send SIGIO */
843		if (state == TCP_SYN_RECV && child->sk_state != state)
844			parent->sk_data_ready(parent);
845	} else {
846		/* Alas, it is possible again, because we do lookup
847		 * in main socket hash table and lock on listening
848		 * socket does not protect us more.
849		 */
850		__sk_add_backlog(child, skb);
851	}
852
853	bh_unlock_sock(child);
854	sock_put(child);
855	return ret;
856}
857EXPORT_SYMBOL(tcp_child_process);