Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25#include <net/rstreason.h>
 26
 27static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28{
 29	if (seq == s_win)
 30		return true;
 31	if (after(end_seq, s_win) && before(seq, e_win))
 
 
 
 
 
 
 
 
 
 
 
 
 32		return true;
 33	return seq == e_win && seq == end_seq;
 
 
 34}
 35
 36static enum tcp_tw_status
 37tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 38				  const struct sk_buff *skb, int mib_idx)
 39{
 40	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 
 41
 42	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 43				  &tcptw->tw_last_oow_ack_time)) {
 44		/* Send ACK. Note, we do not put the bucket,
 45		 * it will be released by caller.
 46		 */
 47		return TCP_TW_ACK;
 48	}
 49
 50	/* We are rate-limiting, so just release the tw sock and drop skb. */
 51	inet_twsk_put(tw);
 52	return TCP_TW_SUCCESS;
 
 
 
 
 
 
 
 53}
 54
 55static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
 56				u32 rcv_nxt)
 57{
 58#ifdef CONFIG_TCP_AO
 59	struct tcp_ao_info *ao;
 60
 61	ao = rcu_dereference(tcptw->ao_info);
 62	if (unlikely(ao && seq < rcv_nxt))
 63		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 64#endif
 65	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
 66}
 67
 68/*
 69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 71 *   (and, probably, tail of data) and one or more our ACKs are lost.
 72 * * What is TIME-WAIT timeout? It is associated with maximal packet
 73 *   lifetime in the internet, which results in wrong conclusion, that
 74 *   it is set to catch "old duplicate segments" wandering out of their path.
 75 *   It is not quite correct. This timeout is calculated so that it exceeds
 76 *   maximal retransmission timeout enough to allow to lose one (or more)
 77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 78 * * When TIME-WAIT socket receives RST, it means that another end
 79 *   finally closed and we are allowed to kill TIME-WAIT too.
 80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 83 * * If we invented some more clever way to catch duplicates
 84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 85 *
 86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 88 * from the very beginning.
 89 *
 90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 91 * is _not_ stateless. It means, that strictly speaking we must
 92 * spinlock it. I do not want! Well, probability of misbehaviour
 93 * is ridiculously low and, seems, we could use some mb() tricks
 94 * to avoid misread sequence numbers, states etc.  --ANK
 95 *
 96 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 97 */
 98enum tcp_tw_status
 99tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100			   const struct tcphdr *th, u32 *tw_isn)
101{
102	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104	struct tcp_options_received tmp_opt;
 
 
105	bool paws_reject = false;
106	int ts_recent_stamp;
107
108	tmp_opt.saw_tstamp = 0;
109	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112
113		if (tmp_opt.saw_tstamp) {
114			if (tmp_opt.rcv_tsecr)
115				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119		}
120	}
121
122	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123		/* Just repeat all the checks of tcp_rcv_state_process() */
124
125		/* Out of window, send ACK */
126		if (paws_reject ||
127		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128				   rcv_nxt,
129				   rcv_nxt + tcptw->tw_rcv_wnd))
130			return tcp_timewait_check_oow_rate_limit(
131				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132
133		if (th->rst)
134			goto kill;
135
136		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137			return TCP_TW_RST;
138
139		/* Dup ACK? */
140		if (!th->ack ||
141		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143			inet_twsk_put(tw);
144			return TCP_TW_SUCCESS;
145		}
146
147		/* New data or FIN. If new data arrive after half-duplex close,
148		 * reset.
149		 */
150		if (!th->fin ||
151		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
 
 
 
152			return TCP_TW_RST;
 
153
154		/* FIN arrived, enter true time-wait state. */
155		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157				    rcv_nxt);
158
159		if (tmp_opt.saw_tstamp) {
160			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161				  ktime_get_seconds());
162			WRITE_ONCE(tcptw->tw_ts_recent,
163				   tmp_opt.rcv_tsval);
164		}
165
166		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
 
 
167		return TCP_TW_ACK;
168	}
169
170	/*
171	 *	Now real TIME-WAIT state.
172	 *
173	 *	RFC 1122:
174	 *	"When a connection is [...] on TIME-WAIT state [...]
175	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176	 *	reopen the connection directly, if it:
177	 *
178	 *	(1)  assigns its initial sequence number for the new
179	 *	connection to be larger than the largest sequence
180	 *	number it used on the previous connection incarnation,
181	 *	and
182	 *
183	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184	 *	to be an old duplicate".
185	 */
186
187	if (!paws_reject &&
188	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190		/* In window segment, it may be only reset or bare ack. */
191
192		if (th->rst) {
193			/* This is TIME_WAIT assassination, in two flavors.
194			 * Oh well... nobody has a sufficient solution to this
195			 * protocol bug yet.
196			 */
197			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198kill:
199				inet_twsk_deschedule_put(tw);
 
200				return TCP_TW_SUCCESS;
201			}
202		} else {
203			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204		}
 
 
205
206		if (tmp_opt.saw_tstamp) {
207			WRITE_ONCE(tcptw->tw_ts_recent,
208				   tmp_opt.rcv_tsval);
209			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210				   ktime_get_seconds());
211		}
212
213		inet_twsk_put(tw);
214		return TCP_TW_SUCCESS;
215	}
216
217	/* Out of window segment.
218
219	   All the segments are ACKed immediately.
220
221	   The only exception is new SYN. We accept it, if it is
222	   not old duplicate and we are not in danger to be killed
223	   by delayed old duplicates. RFC check is that it has
224	   newer sequence number works at rates <40Mbit/sec.
225	   However, if paws works, it is reliable AND even more,
226	   we even may relax silly seq space cutoff.
227
228	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230	   we must return socket to time-wait state. It is not good,
231	   but not fatal yet.
232	 */
233
234	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236	     (tmp_opt.saw_tstamp &&
237	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239		if (isn == 0)
240			isn++;
241		*tw_isn = isn;
242		return TCP_TW_SYN;
243	}
244
245	if (paws_reject)
246		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248	if (!th->rst) {
249		/* In this case we must reset the TIMEWAIT timer.
250		 *
251		 * If it is ACKless SYN it may be both old duplicate
252		 * and new good SYN with random sequence number <rcv_nxt.
253		 * Do not reschedule in the last case.
254		 */
255		if (paws_reject || th->ack)
256			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
257
258		return tcp_timewait_check_oow_rate_limit(
259			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267{
268#ifdef CONFIG_TCP_MD5SIG
269	const struct tcp_sock *tp = tcp_sk(sk);
270	struct tcp_md5sig_key *key;
271
272	/*
273	 * The timewait bucket does not have the key DB from the
274	 * sock structure. We just make a quick copy of the
275	 * md5 key being used (if indeed we are using one)
276	 * so the timewait ack generating code has the key.
277	 */
278	tcptw->tw_md5_key = NULL;
279	if (!static_branch_unlikely(&tcp_md5_needed.key))
280		return;
281
282	key = tp->af_specific->md5_lookup(sk, sk);
283	if (key) {
284		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285		if (!tcptw->tw_md5_key)
286			return;
287		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288			goto out_free;
289		tcp_md5_add_sigpool();
290	}
291	return;
292out_free:
293	WARN_ON_ONCE(1);
294	kfree(tcptw->tw_md5_key);
295	tcptw->tw_md5_key = NULL;
296#endif
297}
298
299/*
300 * Move a socket to time-wait or dead fin-wait-2 state.
301 */
302void tcp_time_wait(struct sock *sk, int state, int timeo)
303{
 
304	const struct inet_connection_sock *icsk = inet_csk(sk);
305	struct tcp_sock *tp = tcp_sk(sk);
306	struct net *net = sock_net(sk);
307	struct inet_timewait_sock *tw;
308
309	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 
310
311	if (tw) {
 
 
 
312		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
314
315		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316		tw->tw_mark		= sk->sk_mark;
317		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320		tcptw->tw_snd_nxt	= tp->snd_nxt;
321		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324		tcptw->tw_ts_offset	= tp->tsoffset;
325		tw->tw_usec_ts		= tp->tcp_usec_ts;
326		tcptw->tw_last_oow_ack_time = 0;
327		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328		tw->tw_txhash		= sk->sk_txhash;
329		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332#endif
333#if IS_ENABLED(CONFIG_IPV6)
334		if (tw->tw_family == PF_INET6) {
335			struct ipv6_pinfo *np = inet6_sk(sk);
 
336
337			tw->tw_v6_daddr = sk->sk_v6_daddr;
338			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 
 
339			tw->tw_tclass = np->tclass;
340			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
341			tw->tw_ipv6only = sk->sk_ipv6only;
342		}
343#endif
344
345		tcp_time_wait_init(sk, tcptw);
346		tcp_ao_time_wait(tcptw, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347
348		/* Get the TIME_WAIT timeout firing. */
349		if (timeo < rto)
350			timeo = rto;
351
352		if (state == TCP_TIME_WAIT)
353			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
354
355		/* Linkage updates.
356		 * Note that access to tw after this point is illegal.
357		 */
358		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
359	} else {
360		/* Sorry, if we're out of memory, just CLOSE this
361		 * socket up.  We've got bigger problems than
362		 * non-graceful socket closings.
363		 */
364		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365	}
366
367	tcp_update_metrics(sk);
368	tcp_done(sk);
369}
370EXPORT_SYMBOL(tcp_time_wait);
371
372#ifdef CONFIG_TCP_MD5SIG
373static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374{
375	struct tcp_md5sig_key *key;
376
377	key = container_of(head, struct tcp_md5sig_key, rcu);
378	kfree(key);
379	static_branch_slow_dec_deferred(&tcp_md5_needed);
380	tcp_md5_release_sigpool();
381}
382#endif
383
384void tcp_twsk_destructor(struct sock *sk)
385{
386#ifdef CONFIG_TCP_MD5SIG
387	if (static_branch_unlikely(&tcp_md5_needed.key)) {
388		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389
390		if (twsk->tw_md5_key)
391			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
392	}
393#endif
394	tcp_ao_destroy_sock(sk, true);
395}
396EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397
398void tcp_twsk_purge(struct list_head *net_exit_list)
399{
400	bool purged_once = false;
401	struct net *net;
402
403	list_for_each_entry(net, net_exit_list, exit_list) {
404		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
406			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407		} else if (!purged_once) {
408			inet_twsk_purge(&tcp_hashinfo);
409			purged_once = true;
410		}
411	}
412}
413
414/* Warning : This function is called without sk_listener being locked.
415 * Be sure to read socket fields once, as their value could change under us.
416 */
417void tcp_openreq_init_rwin(struct request_sock *req,
418			   const struct sock *sk_listener,
419			   const struct dst_entry *dst)
420{
421	struct inet_request_sock *ireq = inet_rsk(req);
422	const struct tcp_sock *tp = tcp_sk(sk_listener);
423	int full_space = tcp_full_space(sk_listener);
424	u32 window_clamp;
425	__u8 rcv_wscale;
426	u32 rcv_wnd;
427	int mss;
428
429	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430	window_clamp = READ_ONCE(tp->window_clamp);
431	/* Set this up on the first call only */
432	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433
434	/* limit the window selection if the user enforce a smaller rx buffer */
435	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437		req->rsk_window_clamp = full_space;
438
439	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440	if (rcv_wnd == 0)
441		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442	else if (full_space < rcv_wnd * mss)
443		full_space = rcv_wnd * mss;
444
445	/* tcp_full_space because it is guaranteed to be the first packet */
446	tcp_select_initial_window(sk_listener, full_space,
447		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448		&req->rsk_rcv_wnd,
449		&req->rsk_window_clamp,
450		ireq->wscale_ok,
451		&rcv_wscale,
452		rcv_wnd);
453	ireq->rcv_wscale = rcv_wscale;
454}
455EXPORT_SYMBOL(tcp_openreq_init_rwin);
456
457static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458				  const struct request_sock *req)
459{
460	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461}
462
463void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464{
465	struct inet_connection_sock *icsk = inet_csk(sk);
466	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467	bool ca_got_dst = false;
468
469	if (ca_key != TCP_CA_UNSPEC) {
470		const struct tcp_congestion_ops *ca;
471
472		rcu_read_lock();
473		ca = tcp_ca_find_key(ca_key);
474		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476			icsk->icsk_ca_ops = ca;
477			ca_got_dst = true;
478		}
479		rcu_read_unlock();
480	}
481
482	/* If no valid choice made yet, assign current system default ca. */
483	if (!ca_got_dst &&
484	    (!icsk->icsk_ca_setsockopt ||
485	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486		tcp_assign_congestion_control(sk);
487
488	tcp_set_ca_state(sk, TCP_CA_Open);
489}
490EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491
492static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493				    struct request_sock *req,
494				    struct tcp_sock *newtp)
495{
496#if IS_ENABLED(CONFIG_SMC)
497	struct inet_request_sock *ireq;
498
499	if (static_branch_unlikely(&tcp_have_smc)) {
500		ireq = inet_rsk(req);
501		if (oldtp->syn_smc && !ireq->smc_ok)
502			newtp->syn_smc = 0;
503	}
504#endif
505}
506
507/* This is not only more efficient than what we used to do, it eliminates
508 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509 *
510 * Actually, we could lots of memory writes here. tp of listening
511 * socket contains all necessary default parameters.
512 */
513struct sock *tcp_create_openreq_child(const struct sock *sk,
514				      struct request_sock *req,
515				      struct sk_buff *skb)
516{
517	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518	const struct inet_request_sock *ireq = inet_rsk(req);
519	struct tcp_request_sock *treq = tcp_rsk(req);
520	struct inet_connection_sock *newicsk;
521	const struct tcp_sock *oldtp;
522	struct tcp_sock *newtp;
523	u32 seq;
524
525	if (!newsk)
526		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528	newicsk = inet_csk(newsk);
529	newtp = tcp_sk(newsk);
530	oldtp = tcp_sk(sk);
531
532	smc_check_reset_syn_req(oldtp, req, newtp);
533
534	/* Now setup tcp_sock */
535	newtp->pred_flags = 0;
536
537	seq = treq->rcv_isn + 1;
538	newtp->rcv_wup = seq;
539	WRITE_ONCE(newtp->copied_seq, seq);
540	WRITE_ONCE(newtp->rcv_nxt, seq);
541	newtp->segs_in = 1;
542
543	seq = treq->snt_isn + 1;
544	newtp->snd_sml = newtp->snd_una = seq;
545	WRITE_ONCE(newtp->snd_nxt, seq);
546	newtp->snd_up = seq;
547
548	INIT_LIST_HEAD(&newtp->tsq_node);
549	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550
551	tcp_init_wl(newtp, treq->rcv_isn);
552
553	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555
556	newtp->lsndtime = tcp_jiffies32;
557	newsk->sk_txhash = READ_ONCE(treq->txhash);
558	newtp->total_retrans = req->num_retrans;
559
560	tcp_init_xmit_timers(newsk);
561	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562
563	if (sock_flag(newsk, SOCK_KEEPOPEN))
564		inet_csk_reset_keepalive_timer(newsk,
565					       keepalive_time_when(newtp));
566
567	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568	newtp->rx_opt.sack_ok = ireq->sack_ok;
569	newtp->window_clamp = req->rsk_window_clamp;
570	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571	newtp->rcv_wnd = req->rsk_rcv_wnd;
572	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573	if (newtp->rx_opt.wscale_ok) {
574		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576	} else {
577		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578		newtp->window_clamp = min(newtp->window_clamp, 65535U);
579	}
580	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581	newtp->max_window = newtp->snd_wnd;
582
583	if (newtp->rx_opt.tstamp_ok) {
584		newtp->tcp_usec_ts = treq->req_usec_ts;
585		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588	} else {
589		newtp->tcp_usec_ts = 0;
590		newtp->rx_opt.ts_recent_stamp = 0;
591		newtp->tcp_header_len = sizeof(struct tcphdr);
592	}
593	if (req->num_timeout) {
594		newtp->total_rto = req->num_timeout;
595		newtp->undo_marker = treq->snt_isn;
596		if (newtp->tcp_usec_ts) {
597			newtp->retrans_stamp = treq->snt_synack;
598			newtp->total_rto_time = (u32)(tcp_clock_us() -
599						      newtp->retrans_stamp) / USEC_PER_MSEC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600		} else {
601			newtp->retrans_stamp = div_u64(treq->snt_synack,
602						       USEC_PER_SEC / TCP_TS_HZ);
603			newtp->total_rto_time = tcp_clock_ms() -
604						newtp->retrans_stamp;
 
 
 
 
 
 
 
 
 
 
605		}
606		newtp->total_rto_recoveries = 1;
607	}
608	newtp->tsoffset = treq->ts_off;
609#ifdef CONFIG_TCP_MD5SIG
610	newtp->md5sig_info = NULL;	/*XXX*/
 
 
611#endif
612#ifdef CONFIG_TCP_AO
613	newtp->ao_info = NULL;
614
615	if (tcp_rsk_used_ao(req)) {
616		struct tcp_ao_key *ao_key;
617
618		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619		if (ao_key)
620			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621	}
622 #endif
623	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625	newtp->rx_opt.mss_clamp = req->mss;
626	tcp_ecn_openreq_child(newtp, req);
627	newtp->fastopen_req = NULL;
628	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629
630	newtp->bpf_chg_cc_inprogress = 0;
631	tcp_bpf_clone(sk, newsk);
632
633	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634
635	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636
 
 
637	return newsk;
638}
639EXPORT_SYMBOL(tcp_create_openreq_child);
640
641/*
642 * Process an incoming packet for SYN_RECV sockets represented as a
643 * request_sock. Normally sk is the listener socket but for TFO it
644 * points to the child socket.
645 *
646 * XXX (TFO) - The current impl contains a special check for ack
647 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648 *
649 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650 *
651 * Note: If @fastopen is true, this can be called from process context.
652 *       Otherwise, this is from BH context.
653 */
654
655struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656			   struct request_sock *req,
657			   bool fastopen, bool *req_stolen)
658{
659	struct tcp_options_received tmp_opt;
 
660	struct sock *child;
661	const struct tcphdr *th = tcp_hdr(skb);
662	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663	bool paws_reject = false;
664	bool own_req;
665
666	tmp_opt.saw_tstamp = 0;
667	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669
670		if (tmp_opt.saw_tstamp) {
671			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672			if (tmp_opt.rcv_tsecr)
673				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674			/* We do not store true stamp, but it is not required,
675			 * it can be estimated (approximately)
676			 * from another data.
677			 */
678			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680		}
681	}
682
683	/* Check for pure retransmitted SYN. */
684	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685	    flg == TCP_FLAG_SYN &&
686	    !paws_reject) {
687		/*
688		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689		 * this case on figure 6 and figure 8, but formal
690		 * protocol description says NOTHING.
691		 * To be more exact, it says that we should send ACK,
692		 * because this segment (at least, if it has no data)
693		 * is out of window.
694		 *
695		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696		 *  describe SYN-RECV state. All the description
697		 *  is wrong, we cannot believe to it and should
698		 *  rely only on common sense and implementation
699		 *  experience.
700		 *
701		 * Enforce "SYN-ACK" according to figure 8, figure 6
702		 * of RFC793, fixed by RFC1122.
703		 *
704		 * Note that even if there is new data in the SYN packet
705		 * they will be thrown away too.
706		 *
707		 * Reset timer after retransmitting SYNACK, similar to
708		 * the idea of fast retransmit in recovery.
709		 */
710		if (!tcp_oow_rate_limited(sock_net(sk), skb,
711					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712					  &tcp_rsk(req)->last_oow_ack_time) &&
713
714		    !inet_rtx_syn_ack(sk, req)) {
715			unsigned long expires = jiffies;
716
717			expires += reqsk_timeout(req, TCP_RTO_MAX);
718			if (!fastopen)
719				mod_timer_pending(&req->rsk_timer, expires);
720			else
721				req->rsk_timer.expires = expires;
722		}
723		return NULL;
724	}
725
726	/* Further reproduces section "SEGMENT ARRIVES"
727	   for state SYN-RECEIVED of RFC793.
728	   It is broken, however, it does not work only
729	   when SYNs are crossed.
730
731	   You would think that SYN crossing is impossible here, since
732	   we should have a SYN_SENT socket (from connect()) on our end,
733	   but this is not true if the crossed SYNs were sent to both
734	   ends by a malicious third party.  We must defend against this,
735	   and to do that we first verify the ACK (as per RFC793, page
736	   36) and reset if it is invalid.  Is this a true full defense?
737	   To convince ourselves, let us consider a way in which the ACK
738	   test can still pass in this 'malicious crossed SYNs' case.
739	   Malicious sender sends identical SYNs (and thus identical sequence
740	   numbers) to both A and B:
741
742		A: gets SYN, seq=7
743		B: gets SYN, seq=7
744
745	   By our good fortune, both A and B select the same initial
746	   send sequence number of seven :-)
747
748		A: sends SYN|ACK, seq=7, ack_seq=8
749		B: sends SYN|ACK, seq=7, ack_seq=8
750
751	   So we are now A eating this SYN|ACK, ACK test passes.  So
752	   does sequence test, SYN is truncated, and thus we consider
753	   it a bare ACK.
754
755	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756	   bare ACK.  Otherwise, we create an established connection.  Both
757	   ends (listening sockets) accept the new incoming connection and try
758	   to talk to each other. 8-)
759
760	   Note: This case is both harmless, and rare.  Possibility is about the
761	   same as us discovering intelligent life on another plant tomorrow.
762
763	   But generally, we should (RFC lies!) to accept ACK
764	   from SYNACK both here and in tcp_rcv_state_process().
765	   tcp_rcv_state_process() does not, hence, we do not too.
766
767	   Note that the case is absolutely generic:
768	   we cannot optimize anything here without
769	   violating protocol. All the checks must be made
770	   before attempt to create socket.
771	 */
772
773	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
774	 *                  and the incoming segment acknowledges something not yet
775	 *                  sent (the segment carries an unacceptable ACK) ...
776	 *                  a reset is sent."
777	 *
778	 * Invalid ACK: reset will be sent by listening socket.
779	 * Note that the ACK validity check for a Fast Open socket is done
780	 * elsewhere and is checked directly against the child socket rather
781	 * than req because user data may have been sent out.
782	 */
783	if ((flg & TCP_FLAG_ACK) && !fastopen &&
784	    (TCP_SKB_CB(skb)->ack_seq !=
785	     tcp_rsk(req)->snt_isn + 1))
786		return sk;
787
788	/* Also, it would be not so bad idea to check rcv_tsecr, which
789	 * is essentially ACK extension and too early or too late values
790	 * should cause reset in unsynchronized states.
791	 */
792
793	/* RFC793: "first check sequence number". */
794
795	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796					  TCP_SKB_CB(skb)->end_seq,
797					  tcp_rsk(req)->rcv_nxt,
798					  tcp_rsk(req)->rcv_nxt +
799					  tcp_synack_window(req))) {
800		/* Out of window: send ACK and drop. */
801		if (!(flg & TCP_FLAG_RST) &&
802		    !tcp_oow_rate_limited(sock_net(sk), skb,
803					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804					  &tcp_rsk(req)->last_oow_ack_time))
805			req->rsk_ops->send_ack(sk, skb, req);
806		if (paws_reject)
807			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808		return NULL;
809	}
810
811	/* In sequence, PAWS is OK. */
812
 
 
 
813	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
814		/* Truncate SYN, it is out of window starting
815		   at tcp_rsk(req)->rcv_isn + 1. */
816		flg &= ~TCP_FLAG_SYN;
817	}
818
819	/* RFC793: "second check the RST bit" and
820	 *	   "fourth, check the SYN bit"
821	 */
822	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
823		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
824		goto embryonic_reset;
825	}
826
827	/* ACK sequence verified above, just make sure ACK is
828	 * set.  If ACK not set, just silently drop the packet.
829	 *
830	 * XXX (TFO) - if we ever allow "data after SYN", the
831	 * following check needs to be removed.
832	 */
833	if (!(flg & TCP_FLAG_ACK))
834		return NULL;
835
836	/* For Fast Open no more processing is needed (sk is the
837	 * child socket).
838	 */
839	if (fastopen)
840		return sk;
841
842	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
843	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
844	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
845		inet_rsk(req)->acked = 1;
846		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
847		return NULL;
848	}
 
 
 
 
849
850	/* OK, ACK is valid, create big socket and
851	 * feed this segment to it. It will repeat all
852	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
853	 * ESTABLISHED STATE. If it will be dropped after
854	 * socket is created, wait for troubles.
855	 */
856	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
857							 req, &own_req);
858	if (!child)
859		goto listen_overflow;
860
861	if (own_req && tmp_opt.saw_tstamp &&
862	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
863		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
864
865	if (own_req && rsk_drop_req(req)) {
866		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
867		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
868		return child;
869	}
870
871	sock_rps_save_rxhash(child, skb);
872	tcp_synack_rtt_meas(child, req);
873	*req_stolen = !own_req;
874	return inet_csk_complete_hashdance(sk, child, req, own_req);
875
876listen_overflow:
877	if (sk != req->rsk_listener)
878		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
879
880	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
881		inet_rsk(req)->acked = 1;
882		return NULL;
883	}
884
885embryonic_reset:
886	if (!(flg & TCP_FLAG_RST)) {
887		/* Received a bad SYN pkt - for TFO We try not to reset
888		 * the local connection unless it's really necessary to
889		 * avoid becoming vulnerable to outside attack aiming at
890		 * resetting legit local connections.
891		 */
892		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
893	} else if (fastopen) { /* received a valid RST pkt */
894		reqsk_fastopen_remove(sk, req, true);
895		tcp_reset(sk, skb);
896	}
897	if (!fastopen) {
898		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
899
900		if (unlinked)
901			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
902		*req_stolen = !unlinked;
903	}
904	return NULL;
905}
906EXPORT_SYMBOL(tcp_check_req);
907
908/*
909 * Queue segment on the new socket if the new socket is active,
910 * otherwise we just shortcircuit this and continue with
911 * the new socket.
912 *
913 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
914 * when entering. But other states are possible due to a race condition
915 * where after __inet_lookup_established() fails but before the listener
916 * locked is obtained, other packets cause the same connection to
917 * be created.
918 */
919
920enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
921				       struct sk_buff *skb)
922	__releases(&((child)->sk_lock.slock))
923{
924	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
925	int state = child->sk_state;
926
927	/* record sk_napi_id and sk_rx_queue_mapping of child. */
928	sk_mark_napi_id_set(child, skb);
929
930	tcp_segs_in(tcp_sk(child), skb);
931	if (!sock_owned_by_user(child)) {
932		reason = tcp_rcv_state_process(child, skb);
 
933		/* Wakeup parent, send SIGIO */
934		if (state == TCP_SYN_RECV && child->sk_state != state)
935			parent->sk_data_ready(parent);
936	} else {
937		/* Alas, it is possible again, because we do lookup
938		 * in main socket hash table and lock on listening
939		 * socket does not protect us more.
940		 */
941		__sk_add_backlog(child, skb);
942	}
943
944	bh_unlock_sock(child);
945	sock_put(child);
946	return reason;
947}
948EXPORT_SYMBOL(tcp_child_process);
v3.5.6
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 
 
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52/* VJ's idea. Save last timestamp seen from this destination
 53 * and hold it at least for normal timewait interval to use for duplicate
 54 * segment detection in subsequent connections, before they enter synchronized
 55 * state.
 56 */
 57
 58static bool tcp_remember_stamp(struct sock *sk)
 59{
 60	const struct inet_connection_sock *icsk = inet_csk(sk);
 61	struct tcp_sock *tp = tcp_sk(sk);
 62	struct inet_peer *peer;
 63	bool release_it;
 64
 65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
 66	if (peer) {
 67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
 68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
 70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
 71			peer->tcp_ts = tp->rx_opt.ts_recent;
 72		}
 73		if (release_it)
 74			inet_putpeer(peer);
 75		return true;
 76	}
 77
 78	return false;
 79}
 80
 81static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
 
 
 82{
 83	struct sock *sk = (struct sock *) tw;
 84	struct inet_peer *peer;
 85
 86	peer = twsk_getpeer(sk);
 87	if (peer) {
 88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 89
 90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
 91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
 93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
 94			peer->tcp_ts	   = tcptw->tw_ts_recent;
 95		}
 96		inet_putpeer(peer);
 97		return true;
 98	}
 99	return false;
100}
101
102static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 
103{
104	if (seq == s_win)
105		return true;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return true;
108	return seq == e_win && seq == end_seq;
 
 
 
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
 
 
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
 
 
143	struct tcp_options_received tmp_opt;
144	const u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	bool paws_reject = false;
 
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
 
151
152		if (tmp_opt.saw_tstamp) {
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
 
 
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
 
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
 
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 
 
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
 
 
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
 
 
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
319	bool recycle_ok = false;
 
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
 
 
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
 
 
 
 
 
 
 
 
339#if IS_ENABLED(CONFIG_IPV6)
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			tw6->tw_v6_daddr = np->daddr;
347			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348			tw->tw_tclass = np->tclass;
349			tw->tw_ipv6only = np->ipv6only;
 
350		}
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354		/*
355		 * The timewait bucket does not have the key DB from the
356		 * sock structure. We just make a quick copy of the
357		 * md5 key being used (if indeed we are using one)
358		 * so the timewait ack generating code has the key.
359		 */
360		do {
361			struct tcp_md5sig_key *key;
362			tcptw->tw_md5_key = NULL;
363			key = tp->af_specific->md5_lookup(sk, sk);
364			if (key != NULL) {
365				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367					BUG();
368			}
369		} while (0);
370#endif
371
372		/* Linkage updates. */
373		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374
375		/* Get the TIME_WAIT timeout firing. */
376		if (timeo < rto)
377			timeo = rto;
378
379		if (recycle_ok) {
380			tw->tw_timeout = rto;
381		} else {
382			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383			if (state == TCP_TIME_WAIT)
384				timeo = TCP_TIMEWAIT_LEN;
385		}
386
387		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388				   TCP_TIMEWAIT_LEN);
389		inet_twsk_put(tw);
 
390	} else {
391		/* Sorry, if we're out of memory, just CLOSE this
392		 * socket up.  We've got bigger problems than
393		 * non-graceful socket closings.
394		 */
395		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396	}
397
398	tcp_update_metrics(sk);
399	tcp_done(sk);
400}
 
 
 
 
 
 
 
 
 
 
 
 
 
401
402void tcp_twsk_destructor(struct sock *sk)
403{
404#ifdef CONFIG_TCP_MD5SIG
405	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406	if (twsk->tw_md5_key) {
407		tcp_free_md5sig_pool();
408		kfree_rcu(twsk->tw_md5_key, rcu);
 
409	}
410#endif
 
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416{
417	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
427{
428	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
 
429
430	if (newsk != NULL) {
431		const struct inet_request_sock *ireq = inet_rsk(req);
432		struct tcp_request_sock *treq = tcp_rsk(req);
433		struct inet_connection_sock *newicsk = inet_csk(newsk);
434		struct tcp_sock *newtp = tcp_sk(newsk);
435		struct tcp_sock *oldtp = tcp_sk(sk);
436		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438		/* TCP Cookie Transactions require space for the cookie pair,
439		 * as it differs for each connection.  There is no need to
440		 * copy any s_data_payload stored at the original socket.
441		 * Failure will prevent resuming the connection.
442		 *
443		 * Presumed copied, in order of appearance:
444		 *	cookie_in_always, cookie_out_never
445		 */
446		if (oldcvp != NULL) {
447			struct tcp_cookie_values *newcvp =
448				kzalloc(sizeof(*newtp->cookie_values),
449					GFP_ATOMIC);
450
451			if (newcvp != NULL) {
452				kref_init(&newcvp->kref);
453				newcvp->cookie_desired =
454						oldcvp->cookie_desired;
455				newtp->cookie_values = newcvp;
456			} else {
457				/* Not Yet Implemented */
458				newtp->cookie_values = NULL;
459			}
460		}
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467
468		newtp->snd_sml = newtp->snd_una =
469		newtp->snd_nxt = newtp->snd_up =
470			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472		tcp_prequeue_init(newtp);
473
474		tcp_init_wl(newtp, treq->rcv_isn);
475
476		newtp->srtt = 0;
477		newtp->mdev = TCP_TIMEOUT_INIT;
478		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480		newtp->packets_out = 0;
481		newtp->retrans_out = 0;
482		newtp->sacked_out = 0;
483		newtp->fackets_out = 0;
484		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485		tcp_enable_early_retrans(newtp);
486
487		/* So many TCP implementations out there (incorrectly) count the
488		 * initial SYN frame in their delayed-ACK and congestion control
489		 * algorithms that we must have the following bandaid to talk
490		 * efficiently to them.  -DaveM
491		 */
492		newtp->snd_cwnd = TCP_INIT_CWND;
493		newtp->snd_cwnd_cnt = 0;
494		newtp->bytes_acked = 0;
495
496		newtp->frto_counter = 0;
497		newtp->frto_highmark = 0;
498
499		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
500		    !try_module_get(newicsk->icsk_ca_ops->owner))
501			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
502
503		tcp_set_ca_state(newsk, TCP_CA_Open);
504		tcp_init_xmit_timers(newsk);
505		skb_queue_head_init(&newtp->out_of_order_queue);
506		newtp->write_seq = newtp->pushed_seq =
507			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
508
509		newtp->rx_opt.saw_tstamp = 0;
510
511		newtp->rx_opt.dsack = 0;
512		newtp->rx_opt.num_sacks = 0;
513
514		newtp->urg_data = 0;
515
516		if (sock_flag(newsk, SOCK_KEEPOPEN))
517			inet_csk_reset_keepalive_timer(newsk,
518						       keepalive_time_when(newtp));
519
520		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
521		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
522			if (sysctl_tcp_fack)
523				tcp_enable_fack(newtp);
524		}
525		newtp->window_clamp = req->window_clamp;
526		newtp->rcv_ssthresh = req->rcv_wnd;
527		newtp->rcv_wnd = req->rcv_wnd;
528		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529		if (newtp->rx_opt.wscale_ok) {
530			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532		} else {
533			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534			newtp->window_clamp = min(newtp->window_clamp, 65535U);
535		}
536		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
537				  newtp->rx_opt.snd_wscale);
538		newtp->max_window = newtp->snd_wnd;
539
540		if (newtp->rx_opt.tstamp_ok) {
541			newtp->rx_opt.ts_recent = req->ts_recent;
542			newtp->rx_opt.ts_recent_stamp = get_seconds();
543			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
544		} else {
545			newtp->rx_opt.ts_recent_stamp = 0;
546			newtp->tcp_header_len = sizeof(struct tcphdr);
547		}
 
 
 
548#ifdef CONFIG_TCP_MD5SIG
549		newtp->md5sig_info = NULL;	/*XXX*/
550		if (newtp->af_specific->md5_lookup(sk, newsk))
551			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552#endif
553		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555		newtp->rx_opt.mss_clamp = req->mss;
556		TCP_ECN_openreq_child(newtp, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
558		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559	}
560	return newsk;
561}
562EXPORT_SYMBOL(tcp_create_openreq_child);
563
564/*
565 *	Process an incoming packet for SYN_RECV sockets represented
566 *	as a request_sock.
 
 
 
 
 
 
 
 
 
567 */
568
569struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570			   struct request_sock *req,
571			   struct request_sock **prev)
572{
573	struct tcp_options_received tmp_opt;
574	const u8 *hash_location;
575	struct sock *child;
576	const struct tcphdr *th = tcp_hdr(skb);
577	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578	bool paws_reject = false;
 
579
580	tmp_opt.saw_tstamp = 0;
581	if (th->doff > (sizeof(struct tcphdr)>>2)) {
582		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
583
584		if (tmp_opt.saw_tstamp) {
585			tmp_opt.ts_recent = req->ts_recent;
 
 
586			/* We do not store true stamp, but it is not required,
587			 * it can be estimated (approximately)
588			 * from another data.
589			 */
590			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
591			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592		}
593	}
594
595	/* Check for pure retransmitted SYN. */
596	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597	    flg == TCP_FLAG_SYN &&
598	    !paws_reject) {
599		/*
600		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601		 * this case on figure 6 and figure 8, but formal
602		 * protocol description says NOTHING.
603		 * To be more exact, it says that we should send ACK,
604		 * because this segment (at least, if it has no data)
605		 * is out of window.
606		 *
607		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608		 *  describe SYN-RECV state. All the description
609		 *  is wrong, we cannot believe to it and should
610		 *  rely only on common sense and implementation
611		 *  experience.
612		 *
613		 * Enforce "SYN-ACK" according to figure 8, figure 6
614		 * of RFC793, fixed by RFC1122.
 
 
 
 
 
 
615		 */
616		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
617		return NULL;
618	}
619
620	/* Further reproduces section "SEGMENT ARRIVES"
621	   for state SYN-RECEIVED of RFC793.
622	   It is broken, however, it does not work only
623	   when SYNs are crossed.
624
625	   You would think that SYN crossing is impossible here, since
626	   we should have a SYN_SENT socket (from connect()) on our end,
627	   but this is not true if the crossed SYNs were sent to both
628	   ends by a malicious third party.  We must defend against this,
629	   and to do that we first verify the ACK (as per RFC793, page
630	   36) and reset if it is invalid.  Is this a true full defense?
631	   To convince ourselves, let us consider a way in which the ACK
632	   test can still pass in this 'malicious crossed SYNs' case.
633	   Malicious sender sends identical SYNs (and thus identical sequence
634	   numbers) to both A and B:
635
636		A: gets SYN, seq=7
637		B: gets SYN, seq=7
638
639	   By our good fortune, both A and B select the same initial
640	   send sequence number of seven :-)
641
642		A: sends SYN|ACK, seq=7, ack_seq=8
643		B: sends SYN|ACK, seq=7, ack_seq=8
644
645	   So we are now A eating this SYN|ACK, ACK test passes.  So
646	   does sequence test, SYN is truncated, and thus we consider
647	   it a bare ACK.
648
649	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
650	   bare ACK.  Otherwise, we create an established connection.  Both
651	   ends (listening sockets) accept the new incoming connection and try
652	   to talk to each other. 8-)
653
654	   Note: This case is both harmless, and rare.  Possibility is about the
655	   same as us discovering intelligent life on another plant tomorrow.
656
657	   But generally, we should (RFC lies!) to accept ACK
658	   from SYNACK both here and in tcp_rcv_state_process().
659	   tcp_rcv_state_process() does not, hence, we do not too.
660
661	   Note that the case is absolutely generic:
662	   we cannot optimize anything here without
663	   violating protocol. All the checks must be made
664	   before attempt to create socket.
665	 */
666
667	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
668	 *                  and the incoming segment acknowledges something not yet
669	 *                  sent (the segment carries an unacceptable ACK) ...
670	 *                  a reset is sent."
671	 *
672	 * Invalid ACK: reset will be sent by listening socket
 
 
 
673	 */
674	if ((flg & TCP_FLAG_ACK) &&
675	    (TCP_SKB_CB(skb)->ack_seq !=
676	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
677		return sk;
678
679	/* Also, it would be not so bad idea to check rcv_tsecr, which
680	 * is essentially ACK extension and too early or too late values
681	 * should cause reset in unsynchronized states.
682	 */
683
684	/* RFC793: "first check sequence number". */
685
686	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
687					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
 
 
 
688		/* Out of window: send ACK and drop. */
689		if (!(flg & TCP_FLAG_RST))
 
 
 
690			req->rsk_ops->send_ack(sk, skb, req);
691		if (paws_reject)
692			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
693		return NULL;
694	}
695
696	/* In sequence, PAWS is OK. */
697
698	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
699		req->ts_recent = tmp_opt.rcv_tsval;
700
701	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
702		/* Truncate SYN, it is out of window starting
703		   at tcp_rsk(req)->rcv_isn + 1. */
704		flg &= ~TCP_FLAG_SYN;
705	}
706
707	/* RFC793: "second check the RST bit" and
708	 *	   "fourth, check the SYN bit"
709	 */
710	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
711		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
712		goto embryonic_reset;
713	}
714
715	/* ACK sequence verified above, just make sure ACK is
716	 * set.  If ACK not set, just silently drop the packet.
 
 
 
717	 */
718	if (!(flg & TCP_FLAG_ACK))
719		return NULL;
720
 
 
 
 
 
 
721	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
722	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
723	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
724		inet_rsk(req)->acked = 1;
725		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
726		return NULL;
727	}
728	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
729		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
730	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
731		tcp_rsk(req)->snt_synack = 0;
732
733	/* OK, ACK is valid, create big socket and
734	 * feed this segment to it. It will repeat all
735	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
736	 * ESTABLISHED STATE. If it will be dropped after
737	 * socket is created, wait for troubles.
738	 */
739	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
740	if (child == NULL)
 
741		goto listen_overflow;
742
743	inet_csk_reqsk_queue_unlink(sk, req, prev);
744	inet_csk_reqsk_queue_removed(sk, req);
 
 
 
 
 
 
 
745
746	inet_csk_reqsk_queue_add(sk, req, child);
747	return child;
 
 
748
749listen_overflow:
750	if (!sysctl_tcp_abort_on_overflow) {
 
 
 
751		inet_rsk(req)->acked = 1;
752		return NULL;
753	}
754
755embryonic_reset:
756	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
757	if (!(flg & TCP_FLAG_RST))
758		req->rsk_ops->send_reset(sk, skb);
759
760	inet_csk_reqsk_queue_drop(sk, req, prev);
 
 
 
 
 
 
 
 
 
 
 
 
 
761	return NULL;
762}
763EXPORT_SYMBOL(tcp_check_req);
764
765/*
766 * Queue segment on the new socket if the new socket is active,
767 * otherwise we just shortcircuit this and continue with
768 * the new socket.
 
 
 
 
 
 
769 */
770
771int tcp_child_process(struct sock *parent, struct sock *child,
772		      struct sk_buff *skb)
 
773{
774	int ret = 0;
775	int state = child->sk_state;
776
 
 
 
 
777	if (!sock_owned_by_user(child)) {
778		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
779					    skb->len);
780		/* Wakeup parent, send SIGIO */
781		if (state == TCP_SYN_RECV && child->sk_state != state)
782			parent->sk_data_ready(parent, 0);
783	} else {
784		/* Alas, it is possible again, because we do lookup
785		 * in main socket hash table and lock on listening
786		 * socket does not protect us more.
787		 */
788		__sk_add_backlog(child, skb);
789	}
790
791	bh_unlock_sock(child);
792	sock_put(child);
793	return ret;
794}
795EXPORT_SYMBOL(tcp_child_process);