Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 22#include <net/tcp.h>
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25#include <net/rstreason.h>
 26
 27static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 28{
 29	if (seq == s_win)
 30		return true;
 31	if (after(end_seq, s_win) && before(seq, e_win))
 32		return true;
 33	return seq == e_win && seq == end_seq;
 34}
 35
 36static enum tcp_tw_status
 37tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 38				  const struct sk_buff *skb, int mib_idx)
 39{
 40	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 41
 42	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 43				  &tcptw->tw_last_oow_ack_time)) {
 44		/* Send ACK. Note, we do not put the bucket,
 45		 * it will be released by caller.
 46		 */
 47		return TCP_TW_ACK;
 48	}
 49
 50	/* We are rate-limiting, so just release the tw sock and drop skb. */
 51	inet_twsk_put(tw);
 52	return TCP_TW_SUCCESS;
 53}
 54
 55static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
 56				u32 rcv_nxt)
 57{
 58#ifdef CONFIG_TCP_AO
 59	struct tcp_ao_info *ao;
 60
 61	ao = rcu_dereference(tcptw->ao_info);
 62	if (unlikely(ao && seq < rcv_nxt))
 63		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 64#endif
 65	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
 66}
 67
 68/*
 69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 71 *   (and, probably, tail of data) and one or more our ACKs are lost.
 72 * * What is TIME-WAIT timeout? It is associated with maximal packet
 73 *   lifetime in the internet, which results in wrong conclusion, that
 74 *   it is set to catch "old duplicate segments" wandering out of their path.
 75 *   It is not quite correct. This timeout is calculated so that it exceeds
 76 *   maximal retransmission timeout enough to allow to lose one (or more)
 77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 78 * * When TIME-WAIT socket receives RST, it means that another end
 79 *   finally closed and we are allowed to kill TIME-WAIT too.
 80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 83 * * If we invented some more clever way to catch duplicates
 84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 85 *
 86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 88 * from the very beginning.
 89 *
 90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 91 * is _not_ stateless. It means, that strictly speaking we must
 92 * spinlock it. I do not want! Well, probability of misbehaviour
 93 * is ridiculously low and, seems, we could use some mb() tricks
 94 * to avoid misread sequence numbers, states etc.  --ANK
 95 *
 96 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 97 */
 98enum tcp_tw_status
 99tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100			   const struct tcphdr *th, u32 *tw_isn)
101{
102	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104	struct tcp_options_received tmp_opt;
 
105	bool paws_reject = false;
106	int ts_recent_stamp;
107
108	tmp_opt.saw_tstamp = 0;
109	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112
113		if (tmp_opt.saw_tstamp) {
114			if (tmp_opt.rcv_tsecr)
115				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119		}
120	}
121
122	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123		/* Just repeat all the checks of tcp_rcv_state_process() */
124
125		/* Out of window, send ACK */
126		if (paws_reject ||
127		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128				   rcv_nxt,
129				   rcv_nxt + tcptw->tw_rcv_wnd))
130			return tcp_timewait_check_oow_rate_limit(
131				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132
133		if (th->rst)
134			goto kill;
135
136		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137			return TCP_TW_RST;
138
139		/* Dup ACK? */
140		if (!th->ack ||
141		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143			inet_twsk_put(tw);
144			return TCP_TW_SUCCESS;
145		}
146
147		/* New data or FIN. If new data arrive after half-duplex close,
148		 * reset.
149		 */
150		if (!th->fin ||
151		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152			return TCP_TW_RST;
153
154		/* FIN arrived, enter true time-wait state. */
155		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157				    rcv_nxt);
158
159		if (tmp_opt.saw_tstamp) {
160			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161				  ktime_get_seconds());
162			WRITE_ONCE(tcptw->tw_ts_recent,
163				   tmp_opt.rcv_tsval);
164		}
165
166		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167		return TCP_TW_ACK;
168	}
169
170	/*
171	 *	Now real TIME-WAIT state.
172	 *
173	 *	RFC 1122:
174	 *	"When a connection is [...] on TIME-WAIT state [...]
175	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176	 *	reopen the connection directly, if it:
177	 *
178	 *	(1)  assigns its initial sequence number for the new
179	 *	connection to be larger than the largest sequence
180	 *	number it used on the previous connection incarnation,
181	 *	and
182	 *
183	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184	 *	to be an old duplicate".
185	 */
186
187	if (!paws_reject &&
188	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190		/* In window segment, it may be only reset or bare ack. */
191
192		if (th->rst) {
193			/* This is TIME_WAIT assassination, in two flavors.
194			 * Oh well... nobody has a sufficient solution to this
195			 * protocol bug yet.
196			 */
197			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198kill:
199				inet_twsk_deschedule_put(tw);
200				return TCP_TW_SUCCESS;
201			}
202		} else {
203			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204		}
205
206		if (tmp_opt.saw_tstamp) {
207			WRITE_ONCE(tcptw->tw_ts_recent,
208				   tmp_opt.rcv_tsval);
209			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210				   ktime_get_seconds());
211		}
212
213		inet_twsk_put(tw);
214		return TCP_TW_SUCCESS;
215	}
216
217	/* Out of window segment.
218
219	   All the segments are ACKed immediately.
220
221	   The only exception is new SYN. We accept it, if it is
222	   not old duplicate and we are not in danger to be killed
223	   by delayed old duplicates. RFC check is that it has
224	   newer sequence number works at rates <40Mbit/sec.
225	   However, if paws works, it is reliable AND even more,
226	   we even may relax silly seq space cutoff.
227
228	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230	   we must return socket to time-wait state. It is not good,
231	   but not fatal yet.
232	 */
233
234	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236	     (tmp_opt.saw_tstamp &&
237	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239		if (isn == 0)
240			isn++;
241		*tw_isn = isn;
242		return TCP_TW_SYN;
243	}
244
245	if (paws_reject)
246		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248	if (!th->rst) {
249		/* In this case we must reset the TIMEWAIT timer.
250		 *
251		 * If it is ACKless SYN it may be both old duplicate
252		 * and new good SYN with random sequence number <rcv_nxt.
253		 * Do not reschedule in the last case.
254		 */
255		if (paws_reject || th->ack)
256			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257
258		return tcp_timewait_check_oow_rate_limit(
259			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267{
268#ifdef CONFIG_TCP_MD5SIG
269	const struct tcp_sock *tp = tcp_sk(sk);
270	struct tcp_md5sig_key *key;
271
272	/*
273	 * The timewait bucket does not have the key DB from the
274	 * sock structure. We just make a quick copy of the
275	 * md5 key being used (if indeed we are using one)
276	 * so the timewait ack generating code has the key.
277	 */
278	tcptw->tw_md5_key = NULL;
279	if (!static_branch_unlikely(&tcp_md5_needed.key))
280		return;
281
282	key = tp->af_specific->md5_lookup(sk, sk);
283	if (key) {
284		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285		if (!tcptw->tw_md5_key)
286			return;
 
 
287		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288			goto out_free;
289		tcp_md5_add_sigpool();
290	}
291	return;
292out_free:
293	WARN_ON_ONCE(1);
294	kfree(tcptw->tw_md5_key);
295	tcptw->tw_md5_key = NULL;
296#endif
297}
298
299/*
300 * Move a socket to time-wait or dead fin-wait-2 state.
301 */
302void tcp_time_wait(struct sock *sk, int state, int timeo)
303{
304	const struct inet_connection_sock *icsk = inet_csk(sk);
305	struct tcp_sock *tp = tcp_sk(sk);
306	struct net *net = sock_net(sk);
307	struct inet_timewait_sock *tw;
308
309	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310
311	if (tw) {
312		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
314
315		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316		tw->tw_mark		= sk->sk_mark;
317		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320		tcptw->tw_snd_nxt	= tp->snd_nxt;
321		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324		tcptw->tw_ts_offset	= tp->tsoffset;
325		tw->tw_usec_ts		= tp->tcp_usec_ts;
326		tcptw->tw_last_oow_ack_time = 0;
327		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328		tw->tw_txhash		= sk->sk_txhash;
329		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332#endif
333#if IS_ENABLED(CONFIG_IPV6)
334		if (tw->tw_family == PF_INET6) {
335			struct ipv6_pinfo *np = inet6_sk(sk);
336
337			tw->tw_v6_daddr = sk->sk_v6_daddr;
338			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
339			tw->tw_tclass = np->tclass;
340			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 
341			tw->tw_ipv6only = sk->sk_ipv6only;
342		}
343#endif
344
345		tcp_time_wait_init(sk, tcptw);
346		tcp_ao_time_wait(tcptw, tp);
347
348		/* Get the TIME_WAIT timeout firing. */
349		if (timeo < rto)
350			timeo = rto;
351
352		if (state == TCP_TIME_WAIT)
353			timeo = TCP_TIMEWAIT_LEN;
354
 
 
 
 
 
 
355		/* Linkage updates.
356		 * Note that access to tw after this point is illegal.
357		 */
358		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
 
359	} else {
360		/* Sorry, if we're out of memory, just CLOSE this
361		 * socket up.  We've got bigger problems than
362		 * non-graceful socket closings.
363		 */
364		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365	}
366
367	tcp_update_metrics(sk);
368	tcp_done(sk);
369}
370EXPORT_SYMBOL(tcp_time_wait);
371
372#ifdef CONFIG_TCP_MD5SIG
373static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374{
375	struct tcp_md5sig_key *key;
376
377	key = container_of(head, struct tcp_md5sig_key, rcu);
378	kfree(key);
379	static_branch_slow_dec_deferred(&tcp_md5_needed);
380	tcp_md5_release_sigpool();
381}
382#endif
383
384void tcp_twsk_destructor(struct sock *sk)
385{
386#ifdef CONFIG_TCP_MD5SIG
387	if (static_branch_unlikely(&tcp_md5_needed.key)) {
388		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389
390		if (twsk->tw_md5_key)
391			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
 
 
392	}
393#endif
394	tcp_ao_destroy_sock(sk, true);
395}
396EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397
398void tcp_twsk_purge(struct list_head *net_exit_list)
399{
400	bool purged_once = false;
401	struct net *net;
402
403	list_for_each_entry(net, net_exit_list, exit_list) {
404		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
406			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407		} else if (!purged_once) {
408			inet_twsk_purge(&tcp_hashinfo);
 
 
 
 
409			purged_once = true;
410		}
411	}
412}
 
413
414/* Warning : This function is called without sk_listener being locked.
415 * Be sure to read socket fields once, as their value could change under us.
416 */
417void tcp_openreq_init_rwin(struct request_sock *req,
418			   const struct sock *sk_listener,
419			   const struct dst_entry *dst)
420{
421	struct inet_request_sock *ireq = inet_rsk(req);
422	const struct tcp_sock *tp = tcp_sk(sk_listener);
423	int full_space = tcp_full_space(sk_listener);
424	u32 window_clamp;
425	__u8 rcv_wscale;
426	u32 rcv_wnd;
427	int mss;
428
429	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430	window_clamp = READ_ONCE(tp->window_clamp);
431	/* Set this up on the first call only */
432	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433
434	/* limit the window selection if the user enforce a smaller rx buffer */
435	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437		req->rsk_window_clamp = full_space;
438
439	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440	if (rcv_wnd == 0)
441		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442	else if (full_space < rcv_wnd * mss)
443		full_space = rcv_wnd * mss;
444
445	/* tcp_full_space because it is guaranteed to be the first packet */
446	tcp_select_initial_window(sk_listener, full_space,
447		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448		&req->rsk_rcv_wnd,
449		&req->rsk_window_clamp,
450		ireq->wscale_ok,
451		&rcv_wscale,
452		rcv_wnd);
453	ireq->rcv_wscale = rcv_wscale;
454}
455EXPORT_SYMBOL(tcp_openreq_init_rwin);
456
457static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458				  const struct request_sock *req)
459{
460	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461}
462
463void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464{
465	struct inet_connection_sock *icsk = inet_csk(sk);
466	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467	bool ca_got_dst = false;
468
469	if (ca_key != TCP_CA_UNSPEC) {
470		const struct tcp_congestion_ops *ca;
471
472		rcu_read_lock();
473		ca = tcp_ca_find_key(ca_key);
474		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476			icsk->icsk_ca_ops = ca;
477			ca_got_dst = true;
478		}
479		rcu_read_unlock();
480	}
481
482	/* If no valid choice made yet, assign current system default ca. */
483	if (!ca_got_dst &&
484	    (!icsk->icsk_ca_setsockopt ||
485	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486		tcp_assign_congestion_control(sk);
487
488	tcp_set_ca_state(sk, TCP_CA_Open);
489}
490EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491
492static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493				    struct request_sock *req,
494				    struct tcp_sock *newtp)
495{
496#if IS_ENABLED(CONFIG_SMC)
497	struct inet_request_sock *ireq;
498
499	if (static_branch_unlikely(&tcp_have_smc)) {
500		ireq = inet_rsk(req);
501		if (oldtp->syn_smc && !ireq->smc_ok)
502			newtp->syn_smc = 0;
503	}
504#endif
505}
506
507/* This is not only more efficient than what we used to do, it eliminates
508 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509 *
510 * Actually, we could lots of memory writes here. tp of listening
511 * socket contains all necessary default parameters.
512 */
513struct sock *tcp_create_openreq_child(const struct sock *sk,
514				      struct request_sock *req,
515				      struct sk_buff *skb)
516{
517	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518	const struct inet_request_sock *ireq = inet_rsk(req);
519	struct tcp_request_sock *treq = tcp_rsk(req);
520	struct inet_connection_sock *newicsk;
521	const struct tcp_sock *oldtp;
522	struct tcp_sock *newtp;
523	u32 seq;
524
525	if (!newsk)
526		return NULL;
527
528	newicsk = inet_csk(newsk);
529	newtp = tcp_sk(newsk);
530	oldtp = tcp_sk(sk);
531
532	smc_check_reset_syn_req(oldtp, req, newtp);
533
534	/* Now setup tcp_sock */
535	newtp->pred_flags = 0;
536
537	seq = treq->rcv_isn + 1;
538	newtp->rcv_wup = seq;
539	WRITE_ONCE(newtp->copied_seq, seq);
540	WRITE_ONCE(newtp->rcv_nxt, seq);
541	newtp->segs_in = 1;
542
543	seq = treq->snt_isn + 1;
544	newtp->snd_sml = newtp->snd_una = seq;
545	WRITE_ONCE(newtp->snd_nxt, seq);
546	newtp->snd_up = seq;
547
548	INIT_LIST_HEAD(&newtp->tsq_node);
549	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550
551	tcp_init_wl(newtp, treq->rcv_isn);
552
553	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555
556	newtp->lsndtime = tcp_jiffies32;
557	newsk->sk_txhash = READ_ONCE(treq->txhash);
558	newtp->total_retrans = req->num_retrans;
559
560	tcp_init_xmit_timers(newsk);
561	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562
563	if (sock_flag(newsk, SOCK_KEEPOPEN))
564		inet_csk_reset_keepalive_timer(newsk,
565					       keepalive_time_when(newtp));
566
567	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568	newtp->rx_opt.sack_ok = ireq->sack_ok;
569	newtp->window_clamp = req->rsk_window_clamp;
570	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571	newtp->rcv_wnd = req->rsk_rcv_wnd;
572	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573	if (newtp->rx_opt.wscale_ok) {
574		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576	} else {
577		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578		newtp->window_clamp = min(newtp->window_clamp, 65535U);
579	}
580	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581	newtp->max_window = newtp->snd_wnd;
582
583	if (newtp->rx_opt.tstamp_ok) {
584		newtp->tcp_usec_ts = treq->req_usec_ts;
585		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588	} else {
589		newtp->tcp_usec_ts = 0;
590		newtp->rx_opt.ts_recent_stamp = 0;
591		newtp->tcp_header_len = sizeof(struct tcphdr);
592	}
593	if (req->num_timeout) {
594		newtp->total_rto = req->num_timeout;
595		newtp->undo_marker = treq->snt_isn;
596		if (newtp->tcp_usec_ts) {
597			newtp->retrans_stamp = treq->snt_synack;
598			newtp->total_rto_time = (u32)(tcp_clock_us() -
599						      newtp->retrans_stamp) / USEC_PER_MSEC;
600		} else {
601			newtp->retrans_stamp = div_u64(treq->snt_synack,
602						       USEC_PER_SEC / TCP_TS_HZ);
603			newtp->total_rto_time = tcp_clock_ms() -
604						newtp->retrans_stamp;
605		}
606		newtp->total_rto_recoveries = 1;
607	}
608	newtp->tsoffset = treq->ts_off;
609#ifdef CONFIG_TCP_MD5SIG
610	newtp->md5sig_info = NULL;	/*XXX*/
 
 
611#endif
612#ifdef CONFIG_TCP_AO
613	newtp->ao_info = NULL;
614
615	if (tcp_rsk_used_ao(req)) {
616		struct tcp_ao_key *ao_key;
617
618		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619		if (ao_key)
620			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621	}
622 #endif
623	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625	newtp->rx_opt.mss_clamp = req->mss;
626	tcp_ecn_openreq_child(newtp, req);
627	newtp->fastopen_req = NULL;
628	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629
630	newtp->bpf_chg_cc_inprogress = 0;
631	tcp_bpf_clone(sk, newsk);
632
633	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634
635	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636
637	return newsk;
638}
639EXPORT_SYMBOL(tcp_create_openreq_child);
640
641/*
642 * Process an incoming packet for SYN_RECV sockets represented as a
643 * request_sock. Normally sk is the listener socket but for TFO it
644 * points to the child socket.
645 *
646 * XXX (TFO) - The current impl contains a special check for ack
647 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648 *
649 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650 *
651 * Note: If @fastopen is true, this can be called from process context.
652 *       Otherwise, this is from BH context.
653 */
654
655struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656			   struct request_sock *req,
657			   bool fastopen, bool *req_stolen)
658{
659	struct tcp_options_received tmp_opt;
660	struct sock *child;
661	const struct tcphdr *th = tcp_hdr(skb);
662	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663	bool paws_reject = false;
664	bool own_req;
665
666	tmp_opt.saw_tstamp = 0;
667	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669
670		if (tmp_opt.saw_tstamp) {
671			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672			if (tmp_opt.rcv_tsecr)
673				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674			/* We do not store true stamp, but it is not required,
675			 * it can be estimated (approximately)
676			 * from another data.
677			 */
678			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680		}
681	}
682
683	/* Check for pure retransmitted SYN. */
684	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685	    flg == TCP_FLAG_SYN &&
686	    !paws_reject) {
687		/*
688		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689		 * this case on figure 6 and figure 8, but formal
690		 * protocol description says NOTHING.
691		 * To be more exact, it says that we should send ACK,
692		 * because this segment (at least, if it has no data)
693		 * is out of window.
694		 *
695		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696		 *  describe SYN-RECV state. All the description
697		 *  is wrong, we cannot believe to it and should
698		 *  rely only on common sense and implementation
699		 *  experience.
700		 *
701		 * Enforce "SYN-ACK" according to figure 8, figure 6
702		 * of RFC793, fixed by RFC1122.
703		 *
704		 * Note that even if there is new data in the SYN packet
705		 * they will be thrown away too.
706		 *
707		 * Reset timer after retransmitting SYNACK, similar to
708		 * the idea of fast retransmit in recovery.
709		 */
710		if (!tcp_oow_rate_limited(sock_net(sk), skb,
711					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712					  &tcp_rsk(req)->last_oow_ack_time) &&
713
714		    !inet_rtx_syn_ack(sk, req)) {
715			unsigned long expires = jiffies;
716
717			expires += reqsk_timeout(req, TCP_RTO_MAX);
718			if (!fastopen)
719				mod_timer_pending(&req->rsk_timer, expires);
720			else
721				req->rsk_timer.expires = expires;
722		}
723		return NULL;
724	}
725
726	/* Further reproduces section "SEGMENT ARRIVES"
727	   for state SYN-RECEIVED of RFC793.
728	   It is broken, however, it does not work only
729	   when SYNs are crossed.
730
731	   You would think that SYN crossing is impossible here, since
732	   we should have a SYN_SENT socket (from connect()) on our end,
733	   but this is not true if the crossed SYNs were sent to both
734	   ends by a malicious third party.  We must defend against this,
735	   and to do that we first verify the ACK (as per RFC793, page
736	   36) and reset if it is invalid.  Is this a true full defense?
737	   To convince ourselves, let us consider a way in which the ACK
738	   test can still pass in this 'malicious crossed SYNs' case.
739	   Malicious sender sends identical SYNs (and thus identical sequence
740	   numbers) to both A and B:
741
742		A: gets SYN, seq=7
743		B: gets SYN, seq=7
744
745	   By our good fortune, both A and B select the same initial
746	   send sequence number of seven :-)
747
748		A: sends SYN|ACK, seq=7, ack_seq=8
749		B: sends SYN|ACK, seq=7, ack_seq=8
750
751	   So we are now A eating this SYN|ACK, ACK test passes.  So
752	   does sequence test, SYN is truncated, and thus we consider
753	   it a bare ACK.
754
755	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756	   bare ACK.  Otherwise, we create an established connection.  Both
757	   ends (listening sockets) accept the new incoming connection and try
758	   to talk to each other. 8-)
759
760	   Note: This case is both harmless, and rare.  Possibility is about the
761	   same as us discovering intelligent life on another plant tomorrow.
762
763	   But generally, we should (RFC lies!) to accept ACK
764	   from SYNACK both here and in tcp_rcv_state_process().
765	   tcp_rcv_state_process() does not, hence, we do not too.
766
767	   Note that the case is absolutely generic:
768	   we cannot optimize anything here without
769	   violating protocol. All the checks must be made
770	   before attempt to create socket.
771	 */
772
773	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
774	 *                  and the incoming segment acknowledges something not yet
775	 *                  sent (the segment carries an unacceptable ACK) ...
776	 *                  a reset is sent."
777	 *
778	 * Invalid ACK: reset will be sent by listening socket.
779	 * Note that the ACK validity check for a Fast Open socket is done
780	 * elsewhere and is checked directly against the child socket rather
781	 * than req because user data may have been sent out.
782	 */
783	if ((flg & TCP_FLAG_ACK) && !fastopen &&
784	    (TCP_SKB_CB(skb)->ack_seq !=
785	     tcp_rsk(req)->snt_isn + 1))
786		return sk;
787
788	/* Also, it would be not so bad idea to check rcv_tsecr, which
789	 * is essentially ACK extension and too early or too late values
790	 * should cause reset in unsynchronized states.
791	 */
792
793	/* RFC793: "first check sequence number". */
794
795	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796					  TCP_SKB_CB(skb)->end_seq,
797					  tcp_rsk(req)->rcv_nxt,
798					  tcp_rsk(req)->rcv_nxt +
799					  tcp_synack_window(req))) {
800		/* Out of window: send ACK and drop. */
801		if (!(flg & TCP_FLAG_RST) &&
802		    !tcp_oow_rate_limited(sock_net(sk), skb,
803					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804					  &tcp_rsk(req)->last_oow_ack_time))
805			req->rsk_ops->send_ack(sk, skb, req);
806		if (paws_reject)
807			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808		return NULL;
809	}
810
811	/* In sequence, PAWS is OK. */
812
 
 
 
813	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
814		/* Truncate SYN, it is out of window starting
815		   at tcp_rsk(req)->rcv_isn + 1. */
816		flg &= ~TCP_FLAG_SYN;
817	}
818
819	/* RFC793: "second check the RST bit" and
820	 *	   "fourth, check the SYN bit"
821	 */
822	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
823		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
824		goto embryonic_reset;
825	}
826
827	/* ACK sequence verified above, just make sure ACK is
828	 * set.  If ACK not set, just silently drop the packet.
829	 *
830	 * XXX (TFO) - if we ever allow "data after SYN", the
831	 * following check needs to be removed.
832	 */
833	if (!(flg & TCP_FLAG_ACK))
834		return NULL;
835
836	/* For Fast Open no more processing is needed (sk is the
837	 * child socket).
838	 */
839	if (fastopen)
840		return sk;
841
842	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
843	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
844	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
845		inet_rsk(req)->acked = 1;
846		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
847		return NULL;
848	}
849
850	/* OK, ACK is valid, create big socket and
851	 * feed this segment to it. It will repeat all
852	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
853	 * ESTABLISHED STATE. If it will be dropped after
854	 * socket is created, wait for troubles.
855	 */
856	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
857							 req, &own_req);
858	if (!child)
859		goto listen_overflow;
860
861	if (own_req && tmp_opt.saw_tstamp &&
862	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
863		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
864
865	if (own_req && rsk_drop_req(req)) {
866		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
867		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
868		return child;
869	}
870
871	sock_rps_save_rxhash(child, skb);
872	tcp_synack_rtt_meas(child, req);
873	*req_stolen = !own_req;
874	return inet_csk_complete_hashdance(sk, child, req, own_req);
875
876listen_overflow:
877	if (sk != req->rsk_listener)
878		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
879
880	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
881		inet_rsk(req)->acked = 1;
882		return NULL;
883	}
884
885embryonic_reset:
886	if (!(flg & TCP_FLAG_RST)) {
887		/* Received a bad SYN pkt - for TFO We try not to reset
888		 * the local connection unless it's really necessary to
889		 * avoid becoming vulnerable to outside attack aiming at
890		 * resetting legit local connections.
891		 */
892		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
893	} else if (fastopen) { /* received a valid RST pkt */
894		reqsk_fastopen_remove(sk, req, true);
895		tcp_reset(sk, skb);
896	}
897	if (!fastopen) {
898		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
899
900		if (unlinked)
901			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
902		*req_stolen = !unlinked;
903	}
904	return NULL;
905}
906EXPORT_SYMBOL(tcp_check_req);
907
908/*
909 * Queue segment on the new socket if the new socket is active,
910 * otherwise we just shortcircuit this and continue with
911 * the new socket.
912 *
913 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
914 * when entering. But other states are possible due to a race condition
915 * where after __inet_lookup_established() fails but before the listener
916 * locked is obtained, other packets cause the same connection to
917 * be created.
918 */
919
920enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
921				       struct sk_buff *skb)
922	__releases(&((child)->sk_lock.slock))
923{
924	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
925	int state = child->sk_state;
926
927	/* record sk_napi_id and sk_rx_queue_mapping of child. */
928	sk_mark_napi_id_set(child, skb);
929
930	tcp_segs_in(tcp_sk(child), skb);
931	if (!sock_owned_by_user(child)) {
932		reason = tcp_rcv_state_process(child, skb);
933		/* Wakeup parent, send SIGIO */
934		if (state == TCP_SYN_RECV && child->sk_state != state)
935			parent->sk_data_ready(parent);
936	} else {
937		/* Alas, it is possible again, because we do lookup
938		 * in main socket hash table and lock on listening
939		 * socket does not protect us more.
940		 */
941		__sk_add_backlog(child, skb);
942	}
943
944	bh_unlock_sock(child);
945	sock_put(child);
946	return reason;
947}
948EXPORT_SYMBOL(tcp_child_process);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 22#include <net/tcp.h>
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 
 
 
 
 
 
 
 
 
 
 
 
 
 54/*
 55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 56 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 57 *   (and, probably, tail of data) and one or more our ACKs are lost.
 58 * * What is TIME-WAIT timeout? It is associated with maximal packet
 59 *   lifetime in the internet, which results in wrong conclusion, that
 60 *   it is set to catch "old duplicate segments" wandering out of their path.
 61 *   It is not quite correct. This timeout is calculated so that it exceeds
 62 *   maximal retransmission timeout enough to allow to lose one (or more)
 63 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 64 * * When TIME-WAIT socket receives RST, it means that another end
 65 *   finally closed and we are allowed to kill TIME-WAIT too.
 66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 67 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 68 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 69 * * If we invented some more clever way to catch duplicates
 70 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 71 *
 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 74 * from the very beginning.
 75 *
 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 77 * is _not_ stateless. It means, that strictly speaking we must
 78 * spinlock it. I do not want! Well, probability of misbehaviour
 79 * is ridiculously low and, seems, we could use some mb() tricks
 80 * to avoid misread sequence numbers, states etc.  --ANK
 81 *
 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 83 */
 84enum tcp_tw_status
 85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 86			   const struct tcphdr *th)
 87{
 
 
 88	struct tcp_options_received tmp_opt;
 89	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 90	bool paws_reject = false;
 
 91
 92	tmp_opt.saw_tstamp = 0;
 93	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 
 94		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 95
 96		if (tmp_opt.saw_tstamp) {
 97			if (tmp_opt.rcv_tsecr)
 98				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 99			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102		}
103	}
104
105	if (tw->tw_substate == TCP_FIN_WAIT2) {
106		/* Just repeat all the checks of tcp_rcv_state_process() */
107
108		/* Out of window, send ACK */
109		if (paws_reject ||
110		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111				   tcptw->tw_rcv_nxt,
112				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113			return tcp_timewait_check_oow_rate_limit(
114				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116		if (th->rst)
117			goto kill;
118
119		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120			return TCP_TW_RST;
121
122		/* Dup ACK? */
123		if (!th->ack ||
124		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126			inet_twsk_put(tw);
127			return TCP_TW_SUCCESS;
128		}
129
130		/* New data or FIN. If new data arrive after half-duplex close,
131		 * reset.
132		 */
133		if (!th->fin ||
134		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135			return TCP_TW_RST;
136
137		/* FIN arrived, enter true time-wait state. */
138		tw->tw_substate	  = TCP_TIME_WAIT;
139		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
 
140		if (tmp_opt.saw_tstamp) {
141			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 
 
143		}
144
145		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146		return TCP_TW_ACK;
147	}
148
149	/*
150	 *	Now real TIME-WAIT state.
151	 *
152	 *	RFC 1122:
153	 *	"When a connection is [...] on TIME-WAIT state [...]
154	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155	 *	reopen the connection directly, if it:
156	 *
157	 *	(1)  assigns its initial sequence number for the new
158	 *	connection to be larger than the largest sequence
159	 *	number it used on the previous connection incarnation,
160	 *	and
161	 *
162	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163	 *	to be an old duplicate".
164	 */
165
166	if (!paws_reject &&
167	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169		/* In window segment, it may be only reset or bare ack. */
170
171		if (th->rst) {
172			/* This is TIME_WAIT assassination, in two flavors.
173			 * Oh well... nobody has a sufficient solution to this
174			 * protocol bug yet.
175			 */
176			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178				inet_twsk_deschedule_put(tw);
179				return TCP_TW_SUCCESS;
180			}
181		} else {
182			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183		}
184
185		if (tmp_opt.saw_tstamp) {
186			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
 
 
188		}
189
190		inet_twsk_put(tw);
191		return TCP_TW_SUCCESS;
192	}
193
194	/* Out of window segment.
195
196	   All the segments are ACKed immediately.
197
198	   The only exception is new SYN. We accept it, if it is
199	   not old duplicate and we are not in danger to be killed
200	   by delayed old duplicates. RFC check is that it has
201	   newer sequence number works at rates <40Mbit/sec.
202	   However, if paws works, it is reliable AND even more,
203	   we even may relax silly seq space cutoff.
204
205	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207	   we must return socket to time-wait state. It is not good,
208	   but not fatal yet.
209	 */
210
211	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213	     (tmp_opt.saw_tstamp &&
214	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216		if (isn == 0)
217			isn++;
218		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219		return TCP_TW_SYN;
220	}
221
222	if (paws_reject)
223		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225	if (!th->rst) {
226		/* In this case we must reset the TIMEWAIT timer.
227		 *
228		 * If it is ACKless SYN it may be both old duplicate
229		 * and new good SYN with random sequence number <rcv_nxt.
230		 * Do not reschedule in the last case.
231		 */
232		if (paws_reject || th->ack)
233			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235		return tcp_timewait_check_oow_rate_limit(
236			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237	}
238	inet_twsk_put(tw);
239	return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246	const struct tcp_sock *tp = tcp_sk(sk);
247	struct tcp_md5sig_key *key;
248
249	/*
250	 * The timewait bucket does not have the key DB from the
251	 * sock structure. We just make a quick copy of the
252	 * md5 key being used (if indeed we are using one)
253	 * so the timewait ack generating code has the key.
254	 */
255	tcptw->tw_md5_key = NULL;
256	if (!static_branch_unlikely(&tcp_md5_needed.key))
257		return;
258
259	key = tp->af_specific->md5_lookup(sk, sk);
260	if (key) {
261		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262		if (!tcptw->tw_md5_key)
263			return;
264		if (!tcp_alloc_md5sig_pool())
265			goto out_free;
266		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267			goto out_free;
 
268	}
269	return;
270out_free:
271	WARN_ON_ONCE(1);
272	kfree(tcptw->tw_md5_key);
273	tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
282	const struct inet_connection_sock *icsk = inet_csk(sk);
283	const struct tcp_sock *tp = tcp_sk(sk);
284	struct net *net = sock_net(sk);
285	struct inet_timewait_sock *tw;
286
287	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288
289	if (tw) {
290		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292		struct inet_sock *inet = inet_sk(sk);
293
294		tw->tw_transparent	= inet->transparent;
295		tw->tw_mark		= sk->sk_mark;
296		tw->tw_priority		= sk->sk_priority;
297		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
298		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
299		tcptw->tw_snd_nxt	= tp->snd_nxt;
300		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
301		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
302		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303		tcptw->tw_ts_offset	= tp->tsoffset;
 
304		tcptw->tw_last_oow_ack_time = 0;
305		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
 
 
 
 
 
306#if IS_ENABLED(CONFIG_IPV6)
307		if (tw->tw_family == PF_INET6) {
308			struct ipv6_pinfo *np = inet6_sk(sk);
309
310			tw->tw_v6_daddr = sk->sk_v6_daddr;
311			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312			tw->tw_tclass = np->tclass;
313			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314			tw->tw_txhash = sk->sk_txhash;
315			tw->tw_ipv6only = sk->sk_ipv6only;
316		}
317#endif
318
319		tcp_time_wait_init(sk, tcptw);
 
320
321		/* Get the TIME_WAIT timeout firing. */
322		if (timeo < rto)
323			timeo = rto;
324
325		if (state == TCP_TIME_WAIT)
326			timeo = TCP_TIMEWAIT_LEN;
327
328		/* tw_timer is pinned, so we need to make sure BH are disabled
329		 * in following section, otherwise timer handler could run before
330		 * we complete the initialization.
331		 */
332		local_bh_disable();
333		inet_twsk_schedule(tw, timeo);
334		/* Linkage updates.
335		 * Note that access to tw after this point is illegal.
336		 */
337		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338		local_bh_enable();
339	} else {
340		/* Sorry, if we're out of memory, just CLOSE this
341		 * socket up.  We've got bigger problems than
342		 * non-graceful socket closings.
343		 */
344		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345	}
346
347	tcp_update_metrics(sk);
348	tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
 
 
 
 
 
 
 
 
 
 
 
 
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355	if (static_branch_unlikely(&tcp_md5_needed.key)) {
356		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358		if (twsk->tw_md5_key) {
359			kfree_rcu(twsk->tw_md5_key, rcu);
360			static_branch_slow_dec_deferred(&tcp_md5_needed);
361		}
362	}
363#endif
 
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369	bool purged_once = false;
370	struct net *net;
371
372	list_for_each_entry(net, net_exit_list, exit_list) {
373		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
375			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376		} else if (!purged_once) {
377			/* The last refcount is decremented in tcp_sk_exit_batch() */
378			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379				continue;
380
381			inet_twsk_purge(&tcp_hashinfo, family);
382			purged_once = true;
383		}
384	}
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392			   const struct sock *sk_listener,
393			   const struct dst_entry *dst)
394{
395	struct inet_request_sock *ireq = inet_rsk(req);
396	const struct tcp_sock *tp = tcp_sk(sk_listener);
397	int full_space = tcp_full_space(sk_listener);
398	u32 window_clamp;
399	__u8 rcv_wscale;
400	u32 rcv_wnd;
401	int mss;
402
403	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404	window_clamp = READ_ONCE(tp->window_clamp);
405	/* Set this up on the first call only */
406	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408	/* limit the window selection if the user enforce a smaller rx buffer */
409	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411		req->rsk_window_clamp = full_space;
412
413	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414	if (rcv_wnd == 0)
415		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416	else if (full_space < rcv_wnd * mss)
417		full_space = rcv_wnd * mss;
418
419	/* tcp_full_space because it is guaranteed to be the first packet */
420	tcp_select_initial_window(sk_listener, full_space,
421		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422		&req->rsk_rcv_wnd,
423		&req->rsk_window_clamp,
424		ireq->wscale_ok,
425		&rcv_wscale,
426		rcv_wnd);
427	ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432				  const struct request_sock *req)
433{
434	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439	struct inet_connection_sock *icsk = inet_csk(sk);
440	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441	bool ca_got_dst = false;
442
443	if (ca_key != TCP_CA_UNSPEC) {
444		const struct tcp_congestion_ops *ca;
445
446		rcu_read_lock();
447		ca = tcp_ca_find_key(ca_key);
448		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450			icsk->icsk_ca_ops = ca;
451			ca_got_dst = true;
452		}
453		rcu_read_unlock();
454	}
455
456	/* If no valid choice made yet, assign current system default ca. */
457	if (!ca_got_dst &&
458	    (!icsk->icsk_ca_setsockopt ||
459	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460		tcp_assign_congestion_control(sk);
461
462	tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467				    struct request_sock *req,
468				    struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471	struct inet_request_sock *ireq;
472
473	if (static_branch_unlikely(&tcp_have_smc)) {
474		ireq = inet_rsk(req);
475		if (oldtp->syn_smc && !ireq->smc_ok)
476			newtp->syn_smc = 0;
477	}
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488				      struct request_sock *req,
489				      struct sk_buff *skb)
490{
491	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492	const struct inet_request_sock *ireq = inet_rsk(req);
493	struct tcp_request_sock *treq = tcp_rsk(req);
494	struct inet_connection_sock *newicsk;
495	struct tcp_sock *oldtp, *newtp;
 
496	u32 seq;
497
498	if (!newsk)
499		return NULL;
500
501	newicsk = inet_csk(newsk);
502	newtp = tcp_sk(newsk);
503	oldtp = tcp_sk(sk);
504
505	smc_check_reset_syn_req(oldtp, req, newtp);
506
507	/* Now setup tcp_sock */
508	newtp->pred_flags = 0;
509
510	seq = treq->rcv_isn + 1;
511	newtp->rcv_wup = seq;
512	WRITE_ONCE(newtp->copied_seq, seq);
513	WRITE_ONCE(newtp->rcv_nxt, seq);
514	newtp->segs_in = 1;
515
516	seq = treq->snt_isn + 1;
517	newtp->snd_sml = newtp->snd_una = seq;
518	WRITE_ONCE(newtp->snd_nxt, seq);
519	newtp->snd_up = seq;
520
521	INIT_LIST_HEAD(&newtp->tsq_node);
522	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524	tcp_init_wl(newtp, treq->rcv_isn);
525
526	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529	newtp->lsndtime = tcp_jiffies32;
530	newsk->sk_txhash = treq->txhash;
531	newtp->total_retrans = req->num_retrans;
532
533	tcp_init_xmit_timers(newsk);
534	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536	if (sock_flag(newsk, SOCK_KEEPOPEN))
537		inet_csk_reset_keepalive_timer(newsk,
538					       keepalive_time_when(newtp));
539
540	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541	newtp->rx_opt.sack_ok = ireq->sack_ok;
542	newtp->window_clamp = req->rsk_window_clamp;
543	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544	newtp->rcv_wnd = req->rsk_rcv_wnd;
545	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546	if (newtp->rx_opt.wscale_ok) {
547		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549	} else {
550		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551		newtp->window_clamp = min(newtp->window_clamp, 65535U);
552	}
553	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554	newtp->max_window = newtp->snd_wnd;
555
556	if (newtp->rx_opt.tstamp_ok) {
557		newtp->rx_opt.ts_recent = req->ts_recent;
 
558		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560	} else {
 
561		newtp->rx_opt.ts_recent_stamp = 0;
562		newtp->tcp_header_len = sizeof(struct tcphdr);
563	}
564	if (req->num_timeout) {
 
565		newtp->undo_marker = treq->snt_isn;
566		newtp->retrans_stamp = div_u64(treq->snt_synack,
567					       USEC_PER_SEC / TCP_TS_HZ);
 
 
 
 
 
 
 
 
 
568	}
569	newtp->tsoffset = treq->ts_off;
570#ifdef CONFIG_TCP_MD5SIG
571	newtp->md5sig_info = NULL;	/*XXX*/
572	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
 
 
 
 
 
 
 
 
 
 
 
575	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577	newtp->rx_opt.mss_clamp = req->mss;
578	tcp_ecn_openreq_child(newtp, req);
579	newtp->fastopen_req = NULL;
580	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582	newtp->bpf_chg_cc_inprogress = 0;
583	tcp_bpf_clone(sk, newsk);
584
585	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
 
 
587	return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 
 
 
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603			   struct request_sock *req,
604			   bool fastopen, bool *req_stolen)
605{
606	struct tcp_options_received tmp_opt;
607	struct sock *child;
608	const struct tcphdr *th = tcp_hdr(skb);
609	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610	bool paws_reject = false;
611	bool own_req;
612
613	tmp_opt.saw_tstamp = 0;
614	if (th->doff > (sizeof(struct tcphdr)>>2)) {
615		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617		if (tmp_opt.saw_tstamp) {
618			tmp_opt.ts_recent = req->ts_recent;
619			if (tmp_opt.rcv_tsecr)
620				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621			/* We do not store true stamp, but it is not required,
622			 * it can be estimated (approximately)
623			 * from another data.
624			 */
625			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627		}
628	}
629
630	/* Check for pure retransmitted SYN. */
631	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632	    flg == TCP_FLAG_SYN &&
633	    !paws_reject) {
634		/*
635		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636		 * this case on figure 6 and figure 8, but formal
637		 * protocol description says NOTHING.
638		 * To be more exact, it says that we should send ACK,
639		 * because this segment (at least, if it has no data)
640		 * is out of window.
641		 *
642		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643		 *  describe SYN-RECV state. All the description
644		 *  is wrong, we cannot believe to it and should
645		 *  rely only on common sense and implementation
646		 *  experience.
647		 *
648		 * Enforce "SYN-ACK" according to figure 8, figure 6
649		 * of RFC793, fixed by RFC1122.
650		 *
651		 * Note that even if there is new data in the SYN packet
652		 * they will be thrown away too.
653		 *
654		 * Reset timer after retransmitting SYNACK, similar to
655		 * the idea of fast retransmit in recovery.
656		 */
657		if (!tcp_oow_rate_limited(sock_net(sk), skb,
658					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659					  &tcp_rsk(req)->last_oow_ack_time) &&
660
661		    !inet_rtx_syn_ack(sk, req)) {
662			unsigned long expires = jiffies;
663
664			expires += reqsk_timeout(req, TCP_RTO_MAX);
665			if (!fastopen)
666				mod_timer_pending(&req->rsk_timer, expires);
667			else
668				req->rsk_timer.expires = expires;
669		}
670		return NULL;
671	}
672
673	/* Further reproduces section "SEGMENT ARRIVES"
674	   for state SYN-RECEIVED of RFC793.
675	   It is broken, however, it does not work only
676	   when SYNs are crossed.
677
678	   You would think that SYN crossing is impossible here, since
679	   we should have a SYN_SENT socket (from connect()) on our end,
680	   but this is not true if the crossed SYNs were sent to both
681	   ends by a malicious third party.  We must defend against this,
682	   and to do that we first verify the ACK (as per RFC793, page
683	   36) and reset if it is invalid.  Is this a true full defense?
684	   To convince ourselves, let us consider a way in which the ACK
685	   test can still pass in this 'malicious crossed SYNs' case.
686	   Malicious sender sends identical SYNs (and thus identical sequence
687	   numbers) to both A and B:
688
689		A: gets SYN, seq=7
690		B: gets SYN, seq=7
691
692	   By our good fortune, both A and B select the same initial
693	   send sequence number of seven :-)
694
695		A: sends SYN|ACK, seq=7, ack_seq=8
696		B: sends SYN|ACK, seq=7, ack_seq=8
697
698	   So we are now A eating this SYN|ACK, ACK test passes.  So
699	   does sequence test, SYN is truncated, and thus we consider
700	   it a bare ACK.
701
702	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703	   bare ACK.  Otherwise, we create an established connection.  Both
704	   ends (listening sockets) accept the new incoming connection and try
705	   to talk to each other. 8-)
706
707	   Note: This case is both harmless, and rare.  Possibility is about the
708	   same as us discovering intelligent life on another plant tomorrow.
709
710	   But generally, we should (RFC lies!) to accept ACK
711	   from SYNACK both here and in tcp_rcv_state_process().
712	   tcp_rcv_state_process() does not, hence, we do not too.
713
714	   Note that the case is absolutely generic:
715	   we cannot optimize anything here without
716	   violating protocol. All the checks must be made
717	   before attempt to create socket.
718	 */
719
720	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
721	 *                  and the incoming segment acknowledges something not yet
722	 *                  sent (the segment carries an unacceptable ACK) ...
723	 *                  a reset is sent."
724	 *
725	 * Invalid ACK: reset will be sent by listening socket.
726	 * Note that the ACK validity check for a Fast Open socket is done
727	 * elsewhere and is checked directly against the child socket rather
728	 * than req because user data may have been sent out.
729	 */
730	if ((flg & TCP_FLAG_ACK) && !fastopen &&
731	    (TCP_SKB_CB(skb)->ack_seq !=
732	     tcp_rsk(req)->snt_isn + 1))
733		return sk;
734
735	/* Also, it would be not so bad idea to check rcv_tsecr, which
736	 * is essentially ACK extension and too early or too late values
737	 * should cause reset in unsynchronized states.
738	 */
739
740	/* RFC793: "first check sequence number". */
741
742	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
 
 
 
744		/* Out of window: send ACK and drop. */
745		if (!(flg & TCP_FLAG_RST) &&
746		    !tcp_oow_rate_limited(sock_net(sk), skb,
747					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748					  &tcp_rsk(req)->last_oow_ack_time))
749			req->rsk_ops->send_ack(sk, skb, req);
750		if (paws_reject)
751			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752		return NULL;
753	}
754
755	/* In sequence, PAWS is OK. */
756
757	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758		req->ts_recent = tmp_opt.rcv_tsval;
759
760	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761		/* Truncate SYN, it is out of window starting
762		   at tcp_rsk(req)->rcv_isn + 1. */
763		flg &= ~TCP_FLAG_SYN;
764	}
765
766	/* RFC793: "second check the RST bit" and
767	 *	   "fourth, check the SYN bit"
768	 */
769	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771		goto embryonic_reset;
772	}
773
774	/* ACK sequence verified above, just make sure ACK is
775	 * set.  If ACK not set, just silently drop the packet.
776	 *
777	 * XXX (TFO) - if we ever allow "data after SYN", the
778	 * following check needs to be removed.
779	 */
780	if (!(flg & TCP_FLAG_ACK))
781		return NULL;
782
783	/* For Fast Open no more processing is needed (sk is the
784	 * child socket).
785	 */
786	if (fastopen)
787		return sk;
788
789	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792		inet_rsk(req)->acked = 1;
793		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794		return NULL;
795	}
796
797	/* OK, ACK is valid, create big socket and
798	 * feed this segment to it. It will repeat all
799	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800	 * ESTABLISHED STATE. If it will be dropped after
801	 * socket is created, wait for troubles.
802	 */
803	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804							 req, &own_req);
805	if (!child)
806		goto listen_overflow;
807
 
 
 
 
808	if (own_req && rsk_drop_req(req)) {
809		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811		return child;
812	}
813
814	sock_rps_save_rxhash(child, skb);
815	tcp_synack_rtt_meas(child, req);
816	*req_stolen = !own_req;
817	return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820	if (sk != req->rsk_listener)
821		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824		inet_rsk(req)->acked = 1;
825		return NULL;
826	}
827
828embryonic_reset:
829	if (!(flg & TCP_FLAG_RST)) {
830		/* Received a bad SYN pkt - for TFO We try not to reset
831		 * the local connection unless it's really necessary to
832		 * avoid becoming vulnerable to outside attack aiming at
833		 * resetting legit local connections.
834		 */
835		req->rsk_ops->send_reset(sk, skb);
836	} else if (fastopen) { /* received a valid RST pkt */
837		reqsk_fastopen_remove(sk, req, true);
838		tcp_reset(sk, skb);
839	}
840	if (!fastopen) {
841		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843		if (unlinked)
844			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845		*req_stolen = !unlinked;
846	}
847	return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864		      struct sk_buff *skb)
865	__releases(&((child)->sk_lock.slock))
866{
867	int ret = 0;
868	int state = child->sk_state;
869
870	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871	sk_mark_napi_id_set(child, skb);
872
873	tcp_segs_in(tcp_sk(child), skb);
874	if (!sock_owned_by_user(child)) {
875		ret = tcp_rcv_state_process(child, skb);
876		/* Wakeup parent, send SIGIO */
877		if (state == TCP_SYN_RECV && child->sk_state != state)
878			parent->sk_data_ready(parent);
879	} else {
880		/* Alas, it is possible again, because we do lookup
881		 * in main socket hash table and lock on listening
882		 * socket does not protect us more.
883		 */
884		__sk_add_backlog(child, skb);
885	}
886
887	bh_unlock_sock(child);
888	sock_put(child);
889	return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);