Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <net/tcp.h>
23#include <net/xfrm.h>
24#include <net/busy_poll.h>
25#include <net/rstreason.h>
26
27static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28{
29 if (seq == s_win)
30 return true;
31 if (after(end_seq, s_win) && before(seq, e_win))
32 return true;
33 return seq == e_win && seq == end_seq;
34}
35
36static enum tcp_tw_status
37tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 const struct sk_buff *skb, int mib_idx)
39{
40 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41
42 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 &tcptw->tw_last_oow_ack_time)) {
44 /* Send ACK. Note, we do not put the bucket,
45 * it will be released by caller.
46 */
47 return TCP_TW_ACK;
48 }
49
50 /* We are rate-limiting, so just release the tw sock and drop skb. */
51 inet_twsk_put(tw);
52 return TCP_TW_SUCCESS;
53}
54
55static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 u32 rcv_nxt)
57{
58#ifdef CONFIG_TCP_AO
59 struct tcp_ao_info *ao;
60
61 ao = rcu_dereference(tcptw->ao_info);
62 if (unlikely(ao && seq < rcv_nxt))
63 WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64#endif
65 WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66}
67
68/*
69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
70 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71 * (and, probably, tail of data) and one or more our ACKs are lost.
72 * * What is TIME-WAIT timeout? It is associated with maximal packet
73 * lifetime in the internet, which results in wrong conclusion, that
74 * it is set to catch "old duplicate segments" wandering out of their path.
75 * It is not quite correct. This timeout is calculated so that it exceeds
76 * maximal retransmission timeout enough to allow to lose one (or more)
77 * segments sent by peer and our ACKs. This time may be calculated from RTO.
78 * * When TIME-WAIT socket receives RST, it means that another end
79 * finally closed and we are allowed to kill TIME-WAIT too.
80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
81 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
82 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83 * * If we invented some more clever way to catch duplicates
84 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85 *
86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88 * from the very beginning.
89 *
90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
91 * is _not_ stateless. It means, that strictly speaking we must
92 * spinlock it. I do not want! Well, probability of misbehaviour
93 * is ridiculously low and, seems, we could use some mb() tricks
94 * to avoid misread sequence numbers, states etc. --ANK
95 *
96 * We don't need to initialize tmp_out.sack_ok as we don't use the results
97 */
98enum tcp_tw_status
99tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 const struct tcphdr *th, u32 *tw_isn)
101{
102 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104 struct tcp_options_received tmp_opt;
105 bool paws_reject = false;
106 int ts_recent_stamp;
107
108 tmp_opt.saw_tstamp = 0;
109 ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110 if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112
113 if (tmp_opt.saw_tstamp) {
114 if (tmp_opt.rcv_tsecr)
115 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116 tmp_opt.ts_recent = READ_ONCE(tcptw->tw_ts_recent);
117 tmp_opt.ts_recent_stamp = ts_recent_stamp;
118 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 }
120 }
121
122 if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123 /* Just repeat all the checks of tcp_rcv_state_process() */
124
125 /* Out of window, send ACK */
126 if (paws_reject ||
127 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128 rcv_nxt,
129 rcv_nxt + tcptw->tw_rcv_wnd))
130 return tcp_timewait_check_oow_rate_limit(
131 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132
133 if (th->rst)
134 goto kill;
135
136 if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137 return TCP_TW_RST;
138
139 /* Dup ACK? */
140 if (!th->ack ||
141 !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143 inet_twsk_put(tw);
144 return TCP_TW_SUCCESS;
145 }
146
147 /* New data or FIN. If new data arrive after half-duplex close,
148 * reset.
149 */
150 if (!th->fin ||
151 TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152 return TCP_TW_RST;
153
154 /* FIN arrived, enter true time-wait state. */
155 WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156 twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157 rcv_nxt);
158
159 if (tmp_opt.saw_tstamp) {
160 WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161 ktime_get_seconds());
162 WRITE_ONCE(tcptw->tw_ts_recent,
163 tmp_opt.rcv_tsval);
164 }
165
166 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167 return TCP_TW_ACK;
168 }
169
170 /*
171 * Now real TIME-WAIT state.
172 *
173 * RFC 1122:
174 * "When a connection is [...] on TIME-WAIT state [...]
175 * [a TCP] MAY accept a new SYN from the remote TCP to
176 * reopen the connection directly, if it:
177 *
178 * (1) assigns its initial sequence number for the new
179 * connection to be larger than the largest sequence
180 * number it used on the previous connection incarnation,
181 * and
182 *
183 * (2) returns to TIME-WAIT state if the SYN turns out
184 * to be an old duplicate".
185 */
186
187 if (!paws_reject &&
188 (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190 /* In window segment, it may be only reset or bare ack. */
191
192 if (th->rst) {
193 /* This is TIME_WAIT assassination, in two flavors.
194 * Oh well... nobody has a sufficient solution to this
195 * protocol bug yet.
196 */
197 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198kill:
199 inet_twsk_deschedule_put(tw);
200 return TCP_TW_SUCCESS;
201 }
202 } else {
203 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204 }
205
206 if (tmp_opt.saw_tstamp) {
207 WRITE_ONCE(tcptw->tw_ts_recent,
208 tmp_opt.rcv_tsval);
209 WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210 ktime_get_seconds());
211 }
212
213 inet_twsk_put(tw);
214 return TCP_TW_SUCCESS;
215 }
216
217 /* Out of window segment.
218
219 All the segments are ACKed immediately.
220
221 The only exception is new SYN. We accept it, if it is
222 not old duplicate and we are not in danger to be killed
223 by delayed old duplicates. RFC check is that it has
224 newer sequence number works at rates <40Mbit/sec.
225 However, if paws works, it is reliable AND even more,
226 we even may relax silly seq space cutoff.
227
228 RED-PEN: we violate main RFC requirement, if this SYN will appear
229 old duplicate (i.e. we receive RST in reply to SYN-ACK),
230 we must return socket to time-wait state. It is not good,
231 but not fatal yet.
232 */
233
234 if (th->syn && !th->rst && !th->ack && !paws_reject &&
235 (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236 (tmp_opt.saw_tstamp &&
237 (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239 if (isn == 0)
240 isn++;
241 *tw_isn = isn;
242 return TCP_TW_SYN;
243 }
244
245 if (paws_reject)
246 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248 if (!th->rst) {
249 /* In this case we must reset the TIMEWAIT timer.
250 *
251 * If it is ACKless SYN it may be both old duplicate
252 * and new good SYN with random sequence number <rcv_nxt.
253 * Do not reschedule in the last case.
254 */
255 if (paws_reject || th->ack)
256 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257
258 return tcp_timewait_check_oow_rate_limit(
259 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260 }
261 inet_twsk_put(tw);
262 return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267{
268#ifdef CONFIG_TCP_MD5SIG
269 const struct tcp_sock *tp = tcp_sk(sk);
270 struct tcp_md5sig_key *key;
271
272 /*
273 * The timewait bucket does not have the key DB from the
274 * sock structure. We just make a quick copy of the
275 * md5 key being used (if indeed we are using one)
276 * so the timewait ack generating code has the key.
277 */
278 tcptw->tw_md5_key = NULL;
279 if (!static_branch_unlikely(&tcp_md5_needed.key))
280 return;
281
282 key = tp->af_specific->md5_lookup(sk, sk);
283 if (key) {
284 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285 if (!tcptw->tw_md5_key)
286 return;
287 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288 goto out_free;
289 tcp_md5_add_sigpool();
290 }
291 return;
292out_free:
293 WARN_ON_ONCE(1);
294 kfree(tcptw->tw_md5_key);
295 tcptw->tw_md5_key = NULL;
296#endif
297}
298
299/*
300 * Move a socket to time-wait or dead fin-wait-2 state.
301 */
302void tcp_time_wait(struct sock *sk, int state, int timeo)
303{
304 const struct inet_connection_sock *icsk = inet_csk(sk);
305 struct tcp_sock *tp = tcp_sk(sk);
306 struct net *net = sock_net(sk);
307 struct inet_timewait_sock *tw;
308
309 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310
311 if (tw) {
312 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
314
315 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
316 tw->tw_mark = sk->sk_mark;
317 tw->tw_priority = READ_ONCE(sk->sk_priority);
318 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
319 tcptw->tw_rcv_nxt = tp->rcv_nxt;
320 tcptw->tw_snd_nxt = tp->snd_nxt;
321 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
322 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
323 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324 tcptw->tw_ts_offset = tp->tsoffset;
325 tw->tw_usec_ts = tp->tcp_usec_ts;
326 tcptw->tw_last_oow_ack_time = 0;
327 tcptw->tw_tx_delay = tp->tcp_tx_delay;
328 tw->tw_txhash = sk->sk_txhash;
329 tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331 tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332#endif
333#if IS_ENABLED(CONFIG_IPV6)
334 if (tw->tw_family == PF_INET6) {
335 struct ipv6_pinfo *np = inet6_sk(sk);
336
337 tw->tw_v6_daddr = sk->sk_v6_daddr;
338 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
339 tw->tw_tclass = np->tclass;
340 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
341 tw->tw_ipv6only = sk->sk_ipv6only;
342 }
343#endif
344
345 tcp_time_wait_init(sk, tcptw);
346 tcp_ao_time_wait(tcptw, tp);
347
348 /* Get the TIME_WAIT timeout firing. */
349 if (timeo < rto)
350 timeo = rto;
351
352 if (state == TCP_TIME_WAIT)
353 timeo = TCP_TIMEWAIT_LEN;
354
355 /* Linkage updates.
356 * Note that access to tw after this point is illegal.
357 */
358 inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
359 } else {
360 /* Sorry, if we're out of memory, just CLOSE this
361 * socket up. We've got bigger problems than
362 * non-graceful socket closings.
363 */
364 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365 }
366
367 tcp_update_metrics(sk);
368 tcp_done(sk);
369}
370EXPORT_SYMBOL(tcp_time_wait);
371
372#ifdef CONFIG_TCP_MD5SIG
373static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374{
375 struct tcp_md5sig_key *key;
376
377 key = container_of(head, struct tcp_md5sig_key, rcu);
378 kfree(key);
379 static_branch_slow_dec_deferred(&tcp_md5_needed);
380 tcp_md5_release_sigpool();
381}
382#endif
383
384void tcp_twsk_destructor(struct sock *sk)
385{
386#ifdef CONFIG_TCP_MD5SIG
387 if (static_branch_unlikely(&tcp_md5_needed.key)) {
388 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389
390 if (twsk->tw_md5_key)
391 call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
392 }
393#endif
394 tcp_ao_destroy_sock(sk, true);
395}
396EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397
398void tcp_twsk_purge(struct list_head *net_exit_list)
399{
400 bool purged_once = false;
401 struct net *net;
402
403 list_for_each_entry(net, net_exit_list, exit_list) {
404 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
406 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407 } else if (!purged_once) {
408 inet_twsk_purge(&tcp_hashinfo);
409 purged_once = true;
410 }
411 }
412}
413
414/* Warning : This function is called without sk_listener being locked.
415 * Be sure to read socket fields once, as their value could change under us.
416 */
417void tcp_openreq_init_rwin(struct request_sock *req,
418 const struct sock *sk_listener,
419 const struct dst_entry *dst)
420{
421 struct inet_request_sock *ireq = inet_rsk(req);
422 const struct tcp_sock *tp = tcp_sk(sk_listener);
423 int full_space = tcp_full_space(sk_listener);
424 u32 window_clamp;
425 __u8 rcv_wscale;
426 u32 rcv_wnd;
427 int mss;
428
429 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430 window_clamp = READ_ONCE(tp->window_clamp);
431 /* Set this up on the first call only */
432 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433
434 /* limit the window selection if the user enforce a smaller rx buffer */
435 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437 req->rsk_window_clamp = full_space;
438
439 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440 if (rcv_wnd == 0)
441 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442 else if (full_space < rcv_wnd * mss)
443 full_space = rcv_wnd * mss;
444
445 /* tcp_full_space because it is guaranteed to be the first packet */
446 tcp_select_initial_window(sk_listener, full_space,
447 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448 &req->rsk_rcv_wnd,
449 &req->rsk_window_clamp,
450 ireq->wscale_ok,
451 &rcv_wscale,
452 rcv_wnd);
453 ireq->rcv_wscale = rcv_wscale;
454}
455EXPORT_SYMBOL(tcp_openreq_init_rwin);
456
457static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458 const struct request_sock *req)
459{
460 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461}
462
463void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464{
465 struct inet_connection_sock *icsk = inet_csk(sk);
466 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467 bool ca_got_dst = false;
468
469 if (ca_key != TCP_CA_UNSPEC) {
470 const struct tcp_congestion_ops *ca;
471
472 rcu_read_lock();
473 ca = tcp_ca_find_key(ca_key);
474 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476 icsk->icsk_ca_ops = ca;
477 ca_got_dst = true;
478 }
479 rcu_read_unlock();
480 }
481
482 /* If no valid choice made yet, assign current system default ca. */
483 if (!ca_got_dst &&
484 (!icsk->icsk_ca_setsockopt ||
485 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486 tcp_assign_congestion_control(sk);
487
488 tcp_set_ca_state(sk, TCP_CA_Open);
489}
490EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491
492static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493 struct request_sock *req,
494 struct tcp_sock *newtp)
495{
496#if IS_ENABLED(CONFIG_SMC)
497 struct inet_request_sock *ireq;
498
499 if (static_branch_unlikely(&tcp_have_smc)) {
500 ireq = inet_rsk(req);
501 if (oldtp->syn_smc && !ireq->smc_ok)
502 newtp->syn_smc = 0;
503 }
504#endif
505}
506
507/* This is not only more efficient than what we used to do, it eliminates
508 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509 *
510 * Actually, we could lots of memory writes here. tp of listening
511 * socket contains all necessary default parameters.
512 */
513struct sock *tcp_create_openreq_child(const struct sock *sk,
514 struct request_sock *req,
515 struct sk_buff *skb)
516{
517 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518 const struct inet_request_sock *ireq = inet_rsk(req);
519 struct tcp_request_sock *treq = tcp_rsk(req);
520 struct inet_connection_sock *newicsk;
521 const struct tcp_sock *oldtp;
522 struct tcp_sock *newtp;
523 u32 seq;
524
525 if (!newsk)
526 return NULL;
527
528 newicsk = inet_csk(newsk);
529 newtp = tcp_sk(newsk);
530 oldtp = tcp_sk(sk);
531
532 smc_check_reset_syn_req(oldtp, req, newtp);
533
534 /* Now setup tcp_sock */
535 newtp->pred_flags = 0;
536
537 seq = treq->rcv_isn + 1;
538 newtp->rcv_wup = seq;
539 WRITE_ONCE(newtp->copied_seq, seq);
540 WRITE_ONCE(newtp->rcv_nxt, seq);
541 newtp->segs_in = 1;
542
543 seq = treq->snt_isn + 1;
544 newtp->snd_sml = newtp->snd_una = seq;
545 WRITE_ONCE(newtp->snd_nxt, seq);
546 newtp->snd_up = seq;
547
548 INIT_LIST_HEAD(&newtp->tsq_node);
549 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550
551 tcp_init_wl(newtp, treq->rcv_isn);
552
553 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555
556 newtp->lsndtime = tcp_jiffies32;
557 newsk->sk_txhash = READ_ONCE(treq->txhash);
558 newtp->total_retrans = req->num_retrans;
559
560 tcp_init_xmit_timers(newsk);
561 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562
563 if (sock_flag(newsk, SOCK_KEEPOPEN))
564 inet_csk_reset_keepalive_timer(newsk,
565 keepalive_time_when(newtp));
566
567 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568 newtp->rx_opt.sack_ok = ireq->sack_ok;
569 newtp->window_clamp = req->rsk_window_clamp;
570 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571 newtp->rcv_wnd = req->rsk_rcv_wnd;
572 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573 if (newtp->rx_opt.wscale_ok) {
574 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576 } else {
577 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578 newtp->window_clamp = min(newtp->window_clamp, 65535U);
579 }
580 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581 newtp->max_window = newtp->snd_wnd;
582
583 if (newtp->rx_opt.tstamp_ok) {
584 newtp->tcp_usec_ts = treq->req_usec_ts;
585 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588 } else {
589 newtp->tcp_usec_ts = 0;
590 newtp->rx_opt.ts_recent_stamp = 0;
591 newtp->tcp_header_len = sizeof(struct tcphdr);
592 }
593 if (req->num_timeout) {
594 newtp->total_rto = req->num_timeout;
595 newtp->undo_marker = treq->snt_isn;
596 if (newtp->tcp_usec_ts) {
597 newtp->retrans_stamp = treq->snt_synack;
598 newtp->total_rto_time = (u32)(tcp_clock_us() -
599 newtp->retrans_stamp) / USEC_PER_MSEC;
600 } else {
601 newtp->retrans_stamp = div_u64(treq->snt_synack,
602 USEC_PER_SEC / TCP_TS_HZ);
603 newtp->total_rto_time = tcp_clock_ms() -
604 newtp->retrans_stamp;
605 }
606 newtp->total_rto_recoveries = 1;
607 }
608 newtp->tsoffset = treq->ts_off;
609#ifdef CONFIG_TCP_MD5SIG
610 newtp->md5sig_info = NULL; /*XXX*/
611#endif
612#ifdef CONFIG_TCP_AO
613 newtp->ao_info = NULL;
614
615 if (tcp_rsk_used_ao(req)) {
616 struct tcp_ao_key *ao_key;
617
618 ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619 if (ao_key)
620 newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621 }
622 #endif
623 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625 newtp->rx_opt.mss_clamp = req->mss;
626 tcp_ecn_openreq_child(newtp, req);
627 newtp->fastopen_req = NULL;
628 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629
630 newtp->bpf_chg_cc_inprogress = 0;
631 tcp_bpf_clone(sk, newsk);
632
633 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634
635 xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636
637 return newsk;
638}
639EXPORT_SYMBOL(tcp_create_openreq_child);
640
641/*
642 * Process an incoming packet for SYN_RECV sockets represented as a
643 * request_sock. Normally sk is the listener socket but for TFO it
644 * points to the child socket.
645 *
646 * XXX (TFO) - The current impl contains a special check for ack
647 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648 *
649 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650 *
651 * Note: If @fastopen is true, this can be called from process context.
652 * Otherwise, this is from BH context.
653 */
654
655struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656 struct request_sock *req,
657 bool fastopen, bool *req_stolen)
658{
659 struct tcp_options_received tmp_opt;
660 struct sock *child;
661 const struct tcphdr *th = tcp_hdr(skb);
662 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663 bool paws_reject = false;
664 bool own_req;
665
666 tmp_opt.saw_tstamp = 0;
667 if (th->doff > (sizeof(struct tcphdr)>>2)) {
668 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669
670 if (tmp_opt.saw_tstamp) {
671 tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672 if (tmp_opt.rcv_tsecr)
673 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674 /* We do not store true stamp, but it is not required,
675 * it can be estimated (approximately)
676 * from another data.
677 */
678 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680 }
681 }
682
683 /* Check for pure retransmitted SYN. */
684 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685 flg == TCP_FLAG_SYN &&
686 !paws_reject) {
687 /*
688 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689 * this case on figure 6 and figure 8, but formal
690 * protocol description says NOTHING.
691 * To be more exact, it says that we should send ACK,
692 * because this segment (at least, if it has no data)
693 * is out of window.
694 *
695 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696 * describe SYN-RECV state. All the description
697 * is wrong, we cannot believe to it and should
698 * rely only on common sense and implementation
699 * experience.
700 *
701 * Enforce "SYN-ACK" according to figure 8, figure 6
702 * of RFC793, fixed by RFC1122.
703 *
704 * Note that even if there is new data in the SYN packet
705 * they will be thrown away too.
706 *
707 * Reset timer after retransmitting SYNACK, similar to
708 * the idea of fast retransmit in recovery.
709 */
710 if (!tcp_oow_rate_limited(sock_net(sk), skb,
711 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712 &tcp_rsk(req)->last_oow_ack_time) &&
713
714 !inet_rtx_syn_ack(sk, req)) {
715 unsigned long expires = jiffies;
716
717 expires += reqsk_timeout(req, TCP_RTO_MAX);
718 if (!fastopen)
719 mod_timer_pending(&req->rsk_timer, expires);
720 else
721 req->rsk_timer.expires = expires;
722 }
723 return NULL;
724 }
725
726 /* Further reproduces section "SEGMENT ARRIVES"
727 for state SYN-RECEIVED of RFC793.
728 It is broken, however, it does not work only
729 when SYNs are crossed.
730
731 You would think that SYN crossing is impossible here, since
732 we should have a SYN_SENT socket (from connect()) on our end,
733 but this is not true if the crossed SYNs were sent to both
734 ends by a malicious third party. We must defend against this,
735 and to do that we first verify the ACK (as per RFC793, page
736 36) and reset if it is invalid. Is this a true full defense?
737 To convince ourselves, let us consider a way in which the ACK
738 test can still pass in this 'malicious crossed SYNs' case.
739 Malicious sender sends identical SYNs (and thus identical sequence
740 numbers) to both A and B:
741
742 A: gets SYN, seq=7
743 B: gets SYN, seq=7
744
745 By our good fortune, both A and B select the same initial
746 send sequence number of seven :-)
747
748 A: sends SYN|ACK, seq=7, ack_seq=8
749 B: sends SYN|ACK, seq=7, ack_seq=8
750
751 So we are now A eating this SYN|ACK, ACK test passes. So
752 does sequence test, SYN is truncated, and thus we consider
753 it a bare ACK.
754
755 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756 bare ACK. Otherwise, we create an established connection. Both
757 ends (listening sockets) accept the new incoming connection and try
758 to talk to each other. 8-)
759
760 Note: This case is both harmless, and rare. Possibility is about the
761 same as us discovering intelligent life on another plant tomorrow.
762
763 But generally, we should (RFC lies!) to accept ACK
764 from SYNACK both here and in tcp_rcv_state_process().
765 tcp_rcv_state_process() does not, hence, we do not too.
766
767 Note that the case is absolutely generic:
768 we cannot optimize anything here without
769 violating protocol. All the checks must be made
770 before attempt to create socket.
771 */
772
773 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
774 * and the incoming segment acknowledges something not yet
775 * sent (the segment carries an unacceptable ACK) ...
776 * a reset is sent."
777 *
778 * Invalid ACK: reset will be sent by listening socket.
779 * Note that the ACK validity check for a Fast Open socket is done
780 * elsewhere and is checked directly against the child socket rather
781 * than req because user data may have been sent out.
782 */
783 if ((flg & TCP_FLAG_ACK) && !fastopen &&
784 (TCP_SKB_CB(skb)->ack_seq !=
785 tcp_rsk(req)->snt_isn + 1))
786 return sk;
787
788 /* Also, it would be not so bad idea to check rcv_tsecr, which
789 * is essentially ACK extension and too early or too late values
790 * should cause reset in unsynchronized states.
791 */
792
793 /* RFC793: "first check sequence number". */
794
795 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796 TCP_SKB_CB(skb)->end_seq,
797 tcp_rsk(req)->rcv_nxt,
798 tcp_rsk(req)->rcv_nxt +
799 tcp_synack_window(req))) {
800 /* Out of window: send ACK and drop. */
801 if (!(flg & TCP_FLAG_RST) &&
802 !tcp_oow_rate_limited(sock_net(sk), skb,
803 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804 &tcp_rsk(req)->last_oow_ack_time))
805 req->rsk_ops->send_ack(sk, skb, req);
806 if (paws_reject)
807 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808 return NULL;
809 }
810
811 /* In sequence, PAWS is OK. */
812
813 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
814 /* Truncate SYN, it is out of window starting
815 at tcp_rsk(req)->rcv_isn + 1. */
816 flg &= ~TCP_FLAG_SYN;
817 }
818
819 /* RFC793: "second check the RST bit" and
820 * "fourth, check the SYN bit"
821 */
822 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
823 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
824 goto embryonic_reset;
825 }
826
827 /* ACK sequence verified above, just make sure ACK is
828 * set. If ACK not set, just silently drop the packet.
829 *
830 * XXX (TFO) - if we ever allow "data after SYN", the
831 * following check needs to be removed.
832 */
833 if (!(flg & TCP_FLAG_ACK))
834 return NULL;
835
836 /* For Fast Open no more processing is needed (sk is the
837 * child socket).
838 */
839 if (fastopen)
840 return sk;
841
842 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
843 if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
844 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
845 inet_rsk(req)->acked = 1;
846 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
847 return NULL;
848 }
849
850 /* OK, ACK is valid, create big socket and
851 * feed this segment to it. It will repeat all
852 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
853 * ESTABLISHED STATE. If it will be dropped after
854 * socket is created, wait for troubles.
855 */
856 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
857 req, &own_req);
858 if (!child)
859 goto listen_overflow;
860
861 if (own_req && tmp_opt.saw_tstamp &&
862 !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
863 tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
864
865 if (own_req && rsk_drop_req(req)) {
866 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
867 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
868 return child;
869 }
870
871 sock_rps_save_rxhash(child, skb);
872 tcp_synack_rtt_meas(child, req);
873 *req_stolen = !own_req;
874 return inet_csk_complete_hashdance(sk, child, req, own_req);
875
876listen_overflow:
877 if (sk != req->rsk_listener)
878 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
879
880 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
881 inet_rsk(req)->acked = 1;
882 return NULL;
883 }
884
885embryonic_reset:
886 if (!(flg & TCP_FLAG_RST)) {
887 /* Received a bad SYN pkt - for TFO We try not to reset
888 * the local connection unless it's really necessary to
889 * avoid becoming vulnerable to outside attack aiming at
890 * resetting legit local connections.
891 */
892 req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
893 } else if (fastopen) { /* received a valid RST pkt */
894 reqsk_fastopen_remove(sk, req, true);
895 tcp_reset(sk, skb);
896 }
897 if (!fastopen) {
898 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
899
900 if (unlinked)
901 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
902 *req_stolen = !unlinked;
903 }
904 return NULL;
905}
906EXPORT_SYMBOL(tcp_check_req);
907
908/*
909 * Queue segment on the new socket if the new socket is active,
910 * otherwise we just shortcircuit this and continue with
911 * the new socket.
912 *
913 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
914 * when entering. But other states are possible due to a race condition
915 * where after __inet_lookup_established() fails but before the listener
916 * locked is obtained, other packets cause the same connection to
917 * be created.
918 */
919
920enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
921 struct sk_buff *skb)
922 __releases(&((child)->sk_lock.slock))
923{
924 enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
925 int state = child->sk_state;
926
927 /* record sk_napi_id and sk_rx_queue_mapping of child. */
928 sk_mark_napi_id_set(child, skb);
929
930 tcp_segs_in(tcp_sk(child), skb);
931 if (!sock_owned_by_user(child)) {
932 reason = tcp_rcv_state_process(child, skb);
933 /* Wakeup parent, send SIGIO */
934 if (state == TCP_SYN_RECV && child->sk_state != state)
935 parent->sk_data_ready(parent);
936 } else {
937 /* Alas, it is possible again, because we do lookup
938 * in main socket hash table and lock on listening
939 * socket does not protect us more.
940 */
941 __sk_add_backlog(child, skb);
942 }
943
944 bh_unlock_sock(child);
945 sock_put(child);
946 return reason;
947}
948EXPORT_SYMBOL(tcp_child_process);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <net/tcp.h>
23#include <net/xfrm.h>
24#include <net/busy_poll.h>
25
26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27{
28 if (seq == s_win)
29 return true;
30 if (after(end_seq, s_win) && before(seq, e_win))
31 return true;
32 return seq == e_win && seq == end_seq;
33}
34
35static enum tcp_tw_status
36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 const struct sk_buff *skb, int mib_idx)
38{
39 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40
41 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 &tcptw->tw_last_oow_ack_time)) {
43 /* Send ACK. Note, we do not put the bucket,
44 * it will be released by caller.
45 */
46 return TCP_TW_ACK;
47 }
48
49 /* We are rate-limiting, so just release the tw sock and drop skb. */
50 inet_twsk_put(tw);
51 return TCP_TW_SUCCESS;
52}
53
54/*
55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
56 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57 * (and, probably, tail of data) and one or more our ACKs are lost.
58 * * What is TIME-WAIT timeout? It is associated with maximal packet
59 * lifetime in the internet, which results in wrong conclusion, that
60 * it is set to catch "old duplicate segments" wandering out of their path.
61 * It is not quite correct. This timeout is calculated so that it exceeds
62 * maximal retransmission timeout enough to allow to lose one (or more)
63 * segments sent by peer and our ACKs. This time may be calculated from RTO.
64 * * When TIME-WAIT socket receives RST, it means that another end
65 * finally closed and we are allowed to kill TIME-WAIT too.
66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
67 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
68 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69 * * If we invented some more clever way to catch duplicates
70 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71 *
72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74 * from the very beginning.
75 *
76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
77 * is _not_ stateless. It means, that strictly speaking we must
78 * spinlock it. I do not want! Well, probability of misbehaviour
79 * is ridiculously low and, seems, we could use some mb() tricks
80 * to avoid misread sequence numbers, states etc. --ANK
81 *
82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
83 */
84enum tcp_tw_status
85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 const struct tcphdr *th)
87{
88 struct tcp_options_received tmp_opt;
89 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 bool paws_reject = false;
91
92 tmp_opt.saw_tstamp = 0;
93 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95
96 if (tmp_opt.saw_tstamp) {
97 if (tmp_opt.rcv_tsecr)
98 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 tmp_opt.ts_recent = tcptw->tw_ts_recent;
100 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
101 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 }
103 }
104
105 if (tw->tw_substate == TCP_FIN_WAIT2) {
106 /* Just repeat all the checks of tcp_rcv_state_process() */
107
108 /* Out of window, send ACK */
109 if (paws_reject ||
110 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 tcptw->tw_rcv_nxt,
112 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 return tcp_timewait_check_oow_rate_limit(
114 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116 if (th->rst)
117 goto kill;
118
119 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 return TCP_TW_RST;
121
122 /* Dup ACK? */
123 if (!th->ack ||
124 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 inet_twsk_put(tw);
127 return TCP_TW_SUCCESS;
128 }
129
130 /* New data or FIN. If new data arrive after half-duplex close,
131 * reset.
132 */
133 if (!th->fin ||
134 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 return TCP_TW_RST;
136
137 /* FIN arrived, enter true time-wait state. */
138 tw->tw_substate = TCP_TIME_WAIT;
139 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 if (tmp_opt.saw_tstamp) {
141 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
143 }
144
145 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 return TCP_TW_ACK;
147 }
148
149 /*
150 * Now real TIME-WAIT state.
151 *
152 * RFC 1122:
153 * "When a connection is [...] on TIME-WAIT state [...]
154 * [a TCP] MAY accept a new SYN from the remote TCP to
155 * reopen the connection directly, if it:
156 *
157 * (1) assigns its initial sequence number for the new
158 * connection to be larger than the largest sequence
159 * number it used on the previous connection incarnation,
160 * and
161 *
162 * (2) returns to TIME-WAIT state if the SYN turns out
163 * to be an old duplicate".
164 */
165
166 if (!paws_reject &&
167 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 /* In window segment, it may be only reset or bare ack. */
170
171 if (th->rst) {
172 /* This is TIME_WAIT assassination, in two flavors.
173 * Oh well... nobody has a sufficient solution to this
174 * protocol bug yet.
175 */
176 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178 inet_twsk_deschedule_put(tw);
179 return TCP_TW_SUCCESS;
180 }
181 } else {
182 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 }
184
185 if (tmp_opt.saw_tstamp) {
186 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
187 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 }
189
190 inet_twsk_put(tw);
191 return TCP_TW_SUCCESS;
192 }
193
194 /* Out of window segment.
195
196 All the segments are ACKed immediately.
197
198 The only exception is new SYN. We accept it, if it is
199 not old duplicate and we are not in danger to be killed
200 by delayed old duplicates. RFC check is that it has
201 newer sequence number works at rates <40Mbit/sec.
202 However, if paws works, it is reliable AND even more,
203 we even may relax silly seq space cutoff.
204
205 RED-PEN: we violate main RFC requirement, if this SYN will appear
206 old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 we must return socket to time-wait state. It is not good,
208 but not fatal yet.
209 */
210
211 if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 (tmp_opt.saw_tstamp &&
214 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 if (isn == 0)
217 isn++;
218 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 return TCP_TW_SYN;
220 }
221
222 if (paws_reject)
223 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225 if (!th->rst) {
226 /* In this case we must reset the TIMEWAIT timer.
227 *
228 * If it is ACKless SYN it may be both old duplicate
229 * and new good SYN with random sequence number <rcv_nxt.
230 * Do not reschedule in the last case.
231 */
232 if (paws_reject || th->ack)
233 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235 return tcp_timewait_check_oow_rate_limit(
236 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 }
238 inet_twsk_put(tw);
239 return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246 const struct tcp_sock *tp = tcp_sk(sk);
247 struct tcp_md5sig_key *key;
248
249 /*
250 * The timewait bucket does not have the key DB from the
251 * sock structure. We just make a quick copy of the
252 * md5 key being used (if indeed we are using one)
253 * so the timewait ack generating code has the key.
254 */
255 tcptw->tw_md5_key = NULL;
256 if (!static_branch_unlikely(&tcp_md5_needed.key))
257 return;
258
259 key = tp->af_specific->md5_lookup(sk, sk);
260 if (key) {
261 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262 if (!tcptw->tw_md5_key)
263 return;
264 if (!tcp_alloc_md5sig_pool())
265 goto out_free;
266 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267 goto out_free;
268 }
269 return;
270out_free:
271 WARN_ON_ONCE(1);
272 kfree(tcptw->tw_md5_key);
273 tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
282 const struct inet_connection_sock *icsk = inet_csk(sk);
283 const struct tcp_sock *tp = tcp_sk(sk);
284 struct net *net = sock_net(sk);
285 struct inet_timewait_sock *tw;
286
287 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288
289 if (tw) {
290 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292 struct inet_sock *inet = inet_sk(sk);
293
294 tw->tw_transparent = inet->transparent;
295 tw->tw_mark = sk->sk_mark;
296 tw->tw_priority = sk->sk_priority;
297 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
298 tcptw->tw_rcv_nxt = tp->rcv_nxt;
299 tcptw->tw_snd_nxt = tp->snd_nxt;
300 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
301 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
302 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303 tcptw->tw_ts_offset = tp->tsoffset;
304 tcptw->tw_last_oow_ack_time = 0;
305 tcptw->tw_tx_delay = tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307 if (tw->tw_family == PF_INET6) {
308 struct ipv6_pinfo *np = inet6_sk(sk);
309
310 tw->tw_v6_daddr = sk->sk_v6_daddr;
311 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312 tw->tw_tclass = np->tclass;
313 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314 tw->tw_txhash = sk->sk_txhash;
315 tw->tw_ipv6only = sk->sk_ipv6only;
316 }
317#endif
318
319 tcp_time_wait_init(sk, tcptw);
320
321 /* Get the TIME_WAIT timeout firing. */
322 if (timeo < rto)
323 timeo = rto;
324
325 if (state == TCP_TIME_WAIT)
326 timeo = TCP_TIMEWAIT_LEN;
327
328 /* tw_timer is pinned, so we need to make sure BH are disabled
329 * in following section, otherwise timer handler could run before
330 * we complete the initialization.
331 */
332 local_bh_disable();
333 inet_twsk_schedule(tw, timeo);
334 /* Linkage updates.
335 * Note that access to tw after this point is illegal.
336 */
337 inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338 local_bh_enable();
339 } else {
340 /* Sorry, if we're out of memory, just CLOSE this
341 * socket up. We've got bigger problems than
342 * non-graceful socket closings.
343 */
344 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345 }
346
347 tcp_update_metrics(sk);
348 tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355 if (static_branch_unlikely(&tcp_md5_needed.key)) {
356 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358 if (twsk->tw_md5_key) {
359 kfree_rcu(twsk->tw_md5_key, rcu);
360 static_branch_slow_dec_deferred(&tcp_md5_needed);
361 }
362 }
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369 bool purged_once = false;
370 struct net *net;
371
372 list_for_each_entry(net, net_exit_list, exit_list) {
373 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
375 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376 } else if (!purged_once) {
377 /* The last refcount is decremented in tcp_sk_exit_batch() */
378 if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379 continue;
380
381 inet_twsk_purge(&tcp_hashinfo, family);
382 purged_once = true;
383 }
384 }
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392 const struct sock *sk_listener,
393 const struct dst_entry *dst)
394{
395 struct inet_request_sock *ireq = inet_rsk(req);
396 const struct tcp_sock *tp = tcp_sk(sk_listener);
397 int full_space = tcp_full_space(sk_listener);
398 u32 window_clamp;
399 __u8 rcv_wscale;
400 u32 rcv_wnd;
401 int mss;
402
403 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404 window_clamp = READ_ONCE(tp->window_clamp);
405 /* Set this up on the first call only */
406 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408 /* limit the window selection if the user enforce a smaller rx buffer */
409 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411 req->rsk_window_clamp = full_space;
412
413 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414 if (rcv_wnd == 0)
415 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416 else if (full_space < rcv_wnd * mss)
417 full_space = rcv_wnd * mss;
418
419 /* tcp_full_space because it is guaranteed to be the first packet */
420 tcp_select_initial_window(sk_listener, full_space,
421 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422 &req->rsk_rcv_wnd,
423 &req->rsk_window_clamp,
424 ireq->wscale_ok,
425 &rcv_wscale,
426 rcv_wnd);
427 ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432 const struct request_sock *req)
433{
434 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439 struct inet_connection_sock *icsk = inet_csk(sk);
440 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441 bool ca_got_dst = false;
442
443 if (ca_key != TCP_CA_UNSPEC) {
444 const struct tcp_congestion_ops *ca;
445
446 rcu_read_lock();
447 ca = tcp_ca_find_key(ca_key);
448 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450 icsk->icsk_ca_ops = ca;
451 ca_got_dst = true;
452 }
453 rcu_read_unlock();
454 }
455
456 /* If no valid choice made yet, assign current system default ca. */
457 if (!ca_got_dst &&
458 (!icsk->icsk_ca_setsockopt ||
459 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460 tcp_assign_congestion_control(sk);
461
462 tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467 struct request_sock *req,
468 struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471 struct inet_request_sock *ireq;
472
473 if (static_branch_unlikely(&tcp_have_smc)) {
474 ireq = inet_rsk(req);
475 if (oldtp->syn_smc && !ireq->smc_ok)
476 newtp->syn_smc = 0;
477 }
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488 struct request_sock *req,
489 struct sk_buff *skb)
490{
491 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492 const struct inet_request_sock *ireq = inet_rsk(req);
493 struct tcp_request_sock *treq = tcp_rsk(req);
494 struct inet_connection_sock *newicsk;
495 struct tcp_sock *oldtp, *newtp;
496 u32 seq;
497
498 if (!newsk)
499 return NULL;
500
501 newicsk = inet_csk(newsk);
502 newtp = tcp_sk(newsk);
503 oldtp = tcp_sk(sk);
504
505 smc_check_reset_syn_req(oldtp, req, newtp);
506
507 /* Now setup tcp_sock */
508 newtp->pred_flags = 0;
509
510 seq = treq->rcv_isn + 1;
511 newtp->rcv_wup = seq;
512 WRITE_ONCE(newtp->copied_seq, seq);
513 WRITE_ONCE(newtp->rcv_nxt, seq);
514 newtp->segs_in = 1;
515
516 seq = treq->snt_isn + 1;
517 newtp->snd_sml = newtp->snd_una = seq;
518 WRITE_ONCE(newtp->snd_nxt, seq);
519 newtp->snd_up = seq;
520
521 INIT_LIST_HEAD(&newtp->tsq_node);
522 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524 tcp_init_wl(newtp, treq->rcv_isn);
525
526 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529 newtp->lsndtime = tcp_jiffies32;
530 newsk->sk_txhash = treq->txhash;
531 newtp->total_retrans = req->num_retrans;
532
533 tcp_init_xmit_timers(newsk);
534 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536 if (sock_flag(newsk, SOCK_KEEPOPEN))
537 inet_csk_reset_keepalive_timer(newsk,
538 keepalive_time_when(newtp));
539
540 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541 newtp->rx_opt.sack_ok = ireq->sack_ok;
542 newtp->window_clamp = req->rsk_window_clamp;
543 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544 newtp->rcv_wnd = req->rsk_rcv_wnd;
545 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546 if (newtp->rx_opt.wscale_ok) {
547 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549 } else {
550 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551 newtp->window_clamp = min(newtp->window_clamp, 65535U);
552 }
553 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554 newtp->max_window = newtp->snd_wnd;
555
556 if (newtp->rx_opt.tstamp_ok) {
557 newtp->rx_opt.ts_recent = req->ts_recent;
558 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560 } else {
561 newtp->rx_opt.ts_recent_stamp = 0;
562 newtp->tcp_header_len = sizeof(struct tcphdr);
563 }
564 if (req->num_timeout) {
565 newtp->undo_marker = treq->snt_isn;
566 newtp->retrans_stamp = div_u64(treq->snt_synack,
567 USEC_PER_SEC / TCP_TS_HZ);
568 }
569 newtp->tsoffset = treq->ts_off;
570#ifdef CONFIG_TCP_MD5SIG
571 newtp->md5sig_info = NULL; /*XXX*/
572 if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577 newtp->rx_opt.mss_clamp = req->mss;
578 tcp_ecn_openreq_child(newtp, req);
579 newtp->fastopen_req = NULL;
580 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582 newtp->bpf_chg_cc_inprogress = 0;
583 tcp_bpf_clone(sk, newsk);
584
585 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
587 return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603 struct request_sock *req,
604 bool fastopen, bool *req_stolen)
605{
606 struct tcp_options_received tmp_opt;
607 struct sock *child;
608 const struct tcphdr *th = tcp_hdr(skb);
609 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610 bool paws_reject = false;
611 bool own_req;
612
613 tmp_opt.saw_tstamp = 0;
614 if (th->doff > (sizeof(struct tcphdr)>>2)) {
615 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617 if (tmp_opt.saw_tstamp) {
618 tmp_opt.ts_recent = req->ts_recent;
619 if (tmp_opt.rcv_tsecr)
620 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621 /* We do not store true stamp, but it is not required,
622 * it can be estimated (approximately)
623 * from another data.
624 */
625 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627 }
628 }
629
630 /* Check for pure retransmitted SYN. */
631 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632 flg == TCP_FLAG_SYN &&
633 !paws_reject) {
634 /*
635 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636 * this case on figure 6 and figure 8, but formal
637 * protocol description says NOTHING.
638 * To be more exact, it says that we should send ACK,
639 * because this segment (at least, if it has no data)
640 * is out of window.
641 *
642 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643 * describe SYN-RECV state. All the description
644 * is wrong, we cannot believe to it and should
645 * rely only on common sense and implementation
646 * experience.
647 *
648 * Enforce "SYN-ACK" according to figure 8, figure 6
649 * of RFC793, fixed by RFC1122.
650 *
651 * Note that even if there is new data in the SYN packet
652 * they will be thrown away too.
653 *
654 * Reset timer after retransmitting SYNACK, similar to
655 * the idea of fast retransmit in recovery.
656 */
657 if (!tcp_oow_rate_limited(sock_net(sk), skb,
658 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659 &tcp_rsk(req)->last_oow_ack_time) &&
660
661 !inet_rtx_syn_ack(sk, req)) {
662 unsigned long expires = jiffies;
663
664 expires += reqsk_timeout(req, TCP_RTO_MAX);
665 if (!fastopen)
666 mod_timer_pending(&req->rsk_timer, expires);
667 else
668 req->rsk_timer.expires = expires;
669 }
670 return NULL;
671 }
672
673 /* Further reproduces section "SEGMENT ARRIVES"
674 for state SYN-RECEIVED of RFC793.
675 It is broken, however, it does not work only
676 when SYNs are crossed.
677
678 You would think that SYN crossing is impossible here, since
679 we should have a SYN_SENT socket (from connect()) on our end,
680 but this is not true if the crossed SYNs were sent to both
681 ends by a malicious third party. We must defend against this,
682 and to do that we first verify the ACK (as per RFC793, page
683 36) and reset if it is invalid. Is this a true full defense?
684 To convince ourselves, let us consider a way in which the ACK
685 test can still pass in this 'malicious crossed SYNs' case.
686 Malicious sender sends identical SYNs (and thus identical sequence
687 numbers) to both A and B:
688
689 A: gets SYN, seq=7
690 B: gets SYN, seq=7
691
692 By our good fortune, both A and B select the same initial
693 send sequence number of seven :-)
694
695 A: sends SYN|ACK, seq=7, ack_seq=8
696 B: sends SYN|ACK, seq=7, ack_seq=8
697
698 So we are now A eating this SYN|ACK, ACK test passes. So
699 does sequence test, SYN is truncated, and thus we consider
700 it a bare ACK.
701
702 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703 bare ACK. Otherwise, we create an established connection. Both
704 ends (listening sockets) accept the new incoming connection and try
705 to talk to each other. 8-)
706
707 Note: This case is both harmless, and rare. Possibility is about the
708 same as us discovering intelligent life on another plant tomorrow.
709
710 But generally, we should (RFC lies!) to accept ACK
711 from SYNACK both here and in tcp_rcv_state_process().
712 tcp_rcv_state_process() does not, hence, we do not too.
713
714 Note that the case is absolutely generic:
715 we cannot optimize anything here without
716 violating protocol. All the checks must be made
717 before attempt to create socket.
718 */
719
720 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
721 * and the incoming segment acknowledges something not yet
722 * sent (the segment carries an unacceptable ACK) ...
723 * a reset is sent."
724 *
725 * Invalid ACK: reset will be sent by listening socket.
726 * Note that the ACK validity check for a Fast Open socket is done
727 * elsewhere and is checked directly against the child socket rather
728 * than req because user data may have been sent out.
729 */
730 if ((flg & TCP_FLAG_ACK) && !fastopen &&
731 (TCP_SKB_CB(skb)->ack_seq !=
732 tcp_rsk(req)->snt_isn + 1))
733 return sk;
734
735 /* Also, it would be not so bad idea to check rcv_tsecr, which
736 * is essentially ACK extension and too early or too late values
737 * should cause reset in unsynchronized states.
738 */
739
740 /* RFC793: "first check sequence number". */
741
742 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744 /* Out of window: send ACK and drop. */
745 if (!(flg & TCP_FLAG_RST) &&
746 !tcp_oow_rate_limited(sock_net(sk), skb,
747 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748 &tcp_rsk(req)->last_oow_ack_time))
749 req->rsk_ops->send_ack(sk, skb, req);
750 if (paws_reject)
751 __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752 return NULL;
753 }
754
755 /* In sequence, PAWS is OK. */
756
757 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758 req->ts_recent = tmp_opt.rcv_tsval;
759
760 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761 /* Truncate SYN, it is out of window starting
762 at tcp_rsk(req)->rcv_isn + 1. */
763 flg &= ~TCP_FLAG_SYN;
764 }
765
766 /* RFC793: "second check the RST bit" and
767 * "fourth, check the SYN bit"
768 */
769 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771 goto embryonic_reset;
772 }
773
774 /* ACK sequence verified above, just make sure ACK is
775 * set. If ACK not set, just silently drop the packet.
776 *
777 * XXX (TFO) - if we ever allow "data after SYN", the
778 * following check needs to be removed.
779 */
780 if (!(flg & TCP_FLAG_ACK))
781 return NULL;
782
783 /* For Fast Open no more processing is needed (sk is the
784 * child socket).
785 */
786 if (fastopen)
787 return sk;
788
789 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792 inet_rsk(req)->acked = 1;
793 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794 return NULL;
795 }
796
797 /* OK, ACK is valid, create big socket and
798 * feed this segment to it. It will repeat all
799 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800 * ESTABLISHED STATE. If it will be dropped after
801 * socket is created, wait for troubles.
802 */
803 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804 req, &own_req);
805 if (!child)
806 goto listen_overflow;
807
808 if (own_req && rsk_drop_req(req)) {
809 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811 return child;
812 }
813
814 sock_rps_save_rxhash(child, skb);
815 tcp_synack_rtt_meas(child, req);
816 *req_stolen = !own_req;
817 return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820 if (sk != req->rsk_listener)
821 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824 inet_rsk(req)->acked = 1;
825 return NULL;
826 }
827
828embryonic_reset:
829 if (!(flg & TCP_FLAG_RST)) {
830 /* Received a bad SYN pkt - for TFO We try not to reset
831 * the local connection unless it's really necessary to
832 * avoid becoming vulnerable to outside attack aiming at
833 * resetting legit local connections.
834 */
835 req->rsk_ops->send_reset(sk, skb);
836 } else if (fastopen) { /* received a valid RST pkt */
837 reqsk_fastopen_remove(sk, req, true);
838 tcp_reset(sk, skb);
839 }
840 if (!fastopen) {
841 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843 if (unlinked)
844 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845 *req_stolen = !unlinked;
846 }
847 return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864 struct sk_buff *skb)
865 __releases(&((child)->sk_lock.slock))
866{
867 int ret = 0;
868 int state = child->sk_state;
869
870 /* record sk_napi_id and sk_rx_queue_mapping of child. */
871 sk_mark_napi_id_set(child, skb);
872
873 tcp_segs_in(tcp_sk(child), skb);
874 if (!sock_owned_by_user(child)) {
875 ret = tcp_rcv_state_process(child, skb);
876 /* Wakeup parent, send SIGIO */
877 if (state == TCP_SYN_RECV && child->sk_state != state)
878 parent->sk_data_ready(parent);
879 } else {
880 /* Alas, it is possible again, because we do lookup
881 * in main socket hash table and lock on listening
882 * socket does not protect us more.
883 */
884 __sk_add_backlog(child, skb);
885 }
886
887 bh_unlock_sock(child);
888 sock_put(child);
889 return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);