Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
 
 
 
 
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	time64_t secs;
  26
  27	if (!rtc->offset_secs)
  28		return;
  29
  30	secs = rtc_tm_to_time64(tm);
  31
  32	/*
  33	 * Since the reading time values from RTC device are always in the RTC
  34	 * original valid range, but we need to skip the overlapped region
  35	 * between expanded range and original range, which is no need to add
  36	 * the offset.
  37	 */
  38	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39	    (rtc->start_secs < rtc->range_min &&
  40	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41		return;
  42
  43	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	time64_t secs;
  49
  50	if (!rtc->offset_secs)
  51		return;
  52
  53	secs = rtc_tm_to_time64(tm);
  54
  55	/*
  56	 * If the setting time values are in the valid range of RTC hardware
  57	 * device, then no need to subtract the offset when setting time to RTC
  58	 * device. Otherwise we need to subtract the offset to make the time
  59	 * values are valid for RTC hardware device.
  60	 */
  61	if (secs >= rtc->range_min && secs <= rtc->range_max)
  62		return;
  63
  64	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69	if (rtc->range_min != rtc->range_max) {
  70		time64_t time = rtc_tm_to_time64(tm);
  71		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72			rtc->range_min;
  73		timeu64_t range_max = rtc->set_start_time ?
  74			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  75			rtc->range_max;
  76
  77		if (time < range_min || time > range_max)
  78			return -ERANGE;
  79	}
  80
  81	return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86	int err;
  87
  88	if (!rtc->ops) {
  89		err = -ENODEV;
  90	} else if (!rtc->ops->read_time) {
  91		err = -EINVAL;
  92	} else {
  93		memset(tm, 0, sizeof(struct rtc_time));
  94		err = rtc->ops->read_time(rtc->dev.parent, tm);
  95		if (err < 0) {
  96			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97				err);
  98			return err;
  99		}
 100
 101		rtc_add_offset(rtc, tm);
 102
 103		err = rtc_valid_tm(tm);
 104		if (err < 0)
 105			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106	}
 107	return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112	int err;
 113
 114	err = mutex_lock_interruptible(&rtc->ops_lock);
 115	if (err)
 116		return err;
 117
 118	err = __rtc_read_time(rtc, tm);
 119	mutex_unlock(&rtc->ops_lock);
 120
 121	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122	return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128	int err, uie;
 129
 130	err = rtc_valid_tm(tm);
 131	if (err != 0)
 132		return err;
 133
 134	err = rtc_valid_range(rtc, tm);
 135	if (err)
 136		return err;
 137
 138	rtc_subtract_offset(rtc, tm);
 139
 140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 141	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
 142#else
 143	uie = rtc->uie_rtctimer.enabled;
 144#endif
 145	if (uie) {
 146		err = rtc_update_irq_enable(rtc, 0);
 147		if (err)
 148			return err;
 149	}
 150
 151	err = mutex_lock_interruptible(&rtc->ops_lock);
 152	if (err)
 153		return err;
 154
 155	if (!rtc->ops)
 156		err = -ENODEV;
 157	else if (rtc->ops->set_time)
 158		err = rtc->ops->set_time(rtc->dev.parent, tm);
 159	else
 
 
 
 
 
 
 
 160		err = -EINVAL;
 161
 162	pm_stay_awake(rtc->dev.parent);
 163	mutex_unlock(&rtc->ops_lock);
 164	/* A timer might have just expired */
 165	schedule_work(&rtc->irqwork);
 166
 167	if (uie) {
 168		err = rtc_update_irq_enable(rtc, 1);
 169		if (err)
 170			return err;
 171	}
 172
 173	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 174	return err;
 175}
 176EXPORT_SYMBOL_GPL(rtc_set_time);
 177
 178static int rtc_read_alarm_internal(struct rtc_device *rtc,
 179				   struct rtc_wkalrm *alarm)
 180{
 181	int err;
 182
 183	err = mutex_lock_interruptible(&rtc->ops_lock);
 184	if (err)
 185		return err;
 186
 187	if (!rtc->ops) {
 188		err = -ENODEV;
 189	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
 190		err = -EINVAL;
 191	} else {
 192		alarm->enabled = 0;
 193		alarm->pending = 0;
 194		alarm->time.tm_sec = -1;
 195		alarm->time.tm_min = -1;
 196		alarm->time.tm_hour = -1;
 197		alarm->time.tm_mday = -1;
 198		alarm->time.tm_mon = -1;
 199		alarm->time.tm_year = -1;
 200		alarm->time.tm_wday = -1;
 201		alarm->time.tm_yday = -1;
 202		alarm->time.tm_isdst = -1;
 203		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 204	}
 205
 206	mutex_unlock(&rtc->ops_lock);
 207
 208	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 209	return err;
 210}
 211
 212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 213{
 214	int err;
 215	struct rtc_time before, now;
 216	int first_time = 1;
 217	time64_t t_now, t_alm;
 218	enum { none, day, month, year } missing = none;
 219	unsigned int days;
 220
 221	/* The lower level RTC driver may return -1 in some fields,
 222	 * creating invalid alarm->time values, for reasons like:
 223	 *
 224	 *   - The hardware may not be capable of filling them in;
 225	 *     many alarms match only on time-of-day fields, not
 226	 *     day/month/year calendar data.
 227	 *
 228	 *   - Some hardware uses illegal values as "wildcard" match
 229	 *     values, which non-Linux firmware (like a BIOS) may try
 230	 *     to set up as e.g. "alarm 15 minutes after each hour".
 231	 *     Linux uses only oneshot alarms.
 232	 *
 233	 * When we see that here, we deal with it by using values from
 234	 * a current RTC timestamp for any missing (-1) values.  The
 235	 * RTC driver prevents "periodic alarm" modes.
 236	 *
 237	 * But this can be racey, because some fields of the RTC timestamp
 238	 * may have wrapped in the interval since we read the RTC alarm,
 239	 * which would lead to us inserting inconsistent values in place
 240	 * of the -1 fields.
 241	 *
 242	 * Reading the alarm and timestamp in the reverse sequence
 243	 * would have the same race condition, and not solve the issue.
 244	 *
 245	 * So, we must first read the RTC timestamp,
 246	 * then read the RTC alarm value,
 247	 * and then read a second RTC timestamp.
 248	 *
 249	 * If any fields of the second timestamp have changed
 250	 * when compared with the first timestamp, then we know
 251	 * our timestamp may be inconsistent with that used by
 252	 * the low-level rtc_read_alarm_internal() function.
 253	 *
 254	 * So, when the two timestamps disagree, we just loop and do
 255	 * the process again to get a fully consistent set of values.
 256	 *
 257	 * This could all instead be done in the lower level driver,
 258	 * but since more than one lower level RTC implementation needs it,
 259	 * then it's probably best to do it here instead of there..
 260	 */
 261
 262	/* Get the "before" timestamp */
 263	err = rtc_read_time(rtc, &before);
 264	if (err < 0)
 265		return err;
 266	do {
 267		if (!first_time)
 268			memcpy(&before, &now, sizeof(struct rtc_time));
 269		first_time = 0;
 270
 271		/* get the RTC alarm values, which may be incomplete */
 272		err = rtc_read_alarm_internal(rtc, alarm);
 273		if (err)
 274			return err;
 275
 276		/* full-function RTCs won't have such missing fields */
 277		err = rtc_valid_tm(&alarm->time);
 278		if (!err)
 279			goto done;
 280
 281		/* get the "after" timestamp, to detect wrapped fields */
 282		err = rtc_read_time(rtc, &now);
 283		if (err < 0)
 284			return err;
 285
 286		/* note that tm_sec is a "don't care" value here: */
 287	} while (before.tm_min  != now.tm_min ||
 288		 before.tm_hour != now.tm_hour ||
 289		 before.tm_mon  != now.tm_mon ||
 290		 before.tm_year != now.tm_year);
 291
 292	/* Fill in the missing alarm fields using the timestamp; we
 293	 * know there's at least one since alarm->time is invalid.
 294	 */
 295	if (alarm->time.tm_sec == -1)
 296		alarm->time.tm_sec = now.tm_sec;
 297	if (alarm->time.tm_min == -1)
 298		alarm->time.tm_min = now.tm_min;
 299	if (alarm->time.tm_hour == -1)
 300		alarm->time.tm_hour = now.tm_hour;
 301
 302	/* For simplicity, only support date rollover for now */
 303	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 304		alarm->time.tm_mday = now.tm_mday;
 305		missing = day;
 306	}
 307	if ((unsigned int)alarm->time.tm_mon >= 12) {
 308		alarm->time.tm_mon = now.tm_mon;
 309		if (missing == none)
 310			missing = month;
 311	}
 312	if (alarm->time.tm_year == -1) {
 313		alarm->time.tm_year = now.tm_year;
 314		if (missing == none)
 315			missing = year;
 316	}
 317
 318	/* Can't proceed if alarm is still invalid after replacing
 319	 * missing fields.
 320	 */
 321	err = rtc_valid_tm(&alarm->time);
 322	if (err)
 323		goto done;
 324
 325	/* with luck, no rollover is needed */
 326	t_now = rtc_tm_to_time64(&now);
 327	t_alm = rtc_tm_to_time64(&alarm->time);
 328	if (t_now < t_alm)
 329		goto done;
 330
 331	switch (missing) {
 
 332	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 333	 * that will trigger at 5am will do so at 5am Tuesday, which
 334	 * could also be in the next month or year.  This is a common
 335	 * case, especially for PCs.
 336	 */
 337	case day:
 338		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 339		t_alm += 24 * 60 * 60;
 340		rtc_time64_to_tm(t_alm, &alarm->time);
 341		break;
 342
 343	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 344	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 345	 * may end up in the month after that!  Many newer PCs support
 346	 * this type of alarm.
 347	 */
 348	case month:
 349		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 350		do {
 351			if (alarm->time.tm_mon < 11) {
 352				alarm->time.tm_mon++;
 353			} else {
 354				alarm->time.tm_mon = 0;
 355				alarm->time.tm_year++;
 356			}
 357			days = rtc_month_days(alarm->time.tm_mon,
 358					      alarm->time.tm_year);
 359		} while (days < alarm->time.tm_mday);
 360		break;
 361
 362	/* Year rollover ... easy except for leap years! */
 363	case year:
 364		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 365		do {
 366			alarm->time.tm_year++;
 367		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
 368			 rtc_valid_tm(&alarm->time) != 0);
 369		break;
 370
 371	default:
 372		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 373	}
 374
 375	err = rtc_valid_tm(&alarm->time);
 376
 377done:
 378	if (err && alarm->enabled)
 379		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 380			 &alarm->time);
 381	else
 382		rtc_add_offset(rtc, &alarm->time);
 
 383
 384	return err;
 385}
 386
 387int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 388{
 389	int err;
 390
 391	err = mutex_lock_interruptible(&rtc->ops_lock);
 392	if (err)
 393		return err;
 394	if (!rtc->ops) {
 395		err = -ENODEV;
 396	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) {
 397		err = -EINVAL;
 398	} else {
 399		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 400		alarm->enabled = rtc->aie_timer.enabled;
 401		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 402	}
 403	mutex_unlock(&rtc->ops_lock);
 404
 405	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 406	return err;
 407}
 408EXPORT_SYMBOL_GPL(rtc_read_alarm);
 409
 410static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 411{
 412	struct rtc_time tm;
 413	time64_t now, scheduled;
 414	int err;
 415
 416	err = rtc_valid_tm(&alarm->time);
 417	if (err)
 418		return err;
 419
 
 420	scheduled = rtc_tm_to_time64(&alarm->time);
 421
 422	/* Make sure we're not setting alarms in the past */
 423	err = __rtc_read_time(rtc, &tm);
 424	if (err)
 425		return err;
 426	now = rtc_tm_to_time64(&tm);
 427
 428	if (scheduled <= now)
 429		return -ETIME;
 430	/*
 431	 * XXX - We just checked to make sure the alarm time is not
 432	 * in the past, but there is still a race window where if
 433	 * the is alarm set for the next second and the second ticks
 434	 * over right here, before we set the alarm.
 435	 */
 436
 437	rtc_subtract_offset(rtc, &alarm->time);
 438
 439	if (!rtc->ops)
 440		err = -ENODEV;
 441	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 442		err = -EINVAL;
 443	else
 444		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 445
 446	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 447	return err;
 448}
 449
 450int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 451{
 452	ktime_t alarm_time;
 453	int err;
 454
 455	if (!rtc->ops)
 456		return -ENODEV;
 457	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 458		return -EINVAL;
 459
 460	err = rtc_valid_tm(&alarm->time);
 461	if (err != 0)
 462		return err;
 463
 464	err = rtc_valid_range(rtc, &alarm->time);
 465	if (err)
 466		return err;
 467
 468	err = mutex_lock_interruptible(&rtc->ops_lock);
 469	if (err)
 470		return err;
 471	if (rtc->aie_timer.enabled)
 472		rtc_timer_remove(rtc, &rtc->aie_timer);
 473
 474	alarm_time = rtc_tm_to_ktime(alarm->time);
 475	/*
 476	 * Round down so we never miss a deadline, checking for past deadline is
 477	 * done in __rtc_set_alarm
 478	 */
 479	if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
 480		alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
 481
 482	rtc->aie_timer.node.expires = alarm_time;
 483	rtc->aie_timer.period = 0;
 484	if (alarm->enabled)
 485		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 486
 487	mutex_unlock(&rtc->ops_lock);
 488
 
 489	return err;
 490}
 491EXPORT_SYMBOL_GPL(rtc_set_alarm);
 492
 493/* Called once per device from rtc_device_register */
 494int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 495{
 496	int err;
 497	struct rtc_time now;
 498
 499	err = rtc_valid_tm(&alarm->time);
 500	if (err != 0)
 501		return err;
 502
 503	err = rtc_read_time(rtc, &now);
 504	if (err)
 505		return err;
 506
 507	err = mutex_lock_interruptible(&rtc->ops_lock);
 508	if (err)
 509		return err;
 510
 511	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 512	rtc->aie_timer.period = 0;
 513
 514	/* Alarm has to be enabled & in the future for us to enqueue it */
 515	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 516			 rtc->aie_timer.node.expires)) {
 
 517		rtc->aie_timer.enabled = 1;
 518		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 519		trace_rtc_timer_enqueue(&rtc->aie_timer);
 520	}
 521	mutex_unlock(&rtc->ops_lock);
 522	return err;
 523}
 524EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 525
 526int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 527{
 528	int err;
 529
 530	err = mutex_lock_interruptible(&rtc->ops_lock);
 531	if (err)
 532		return err;
 533
 534	if (rtc->aie_timer.enabled != enabled) {
 535		if (enabled)
 536			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 537		else
 538			rtc_timer_remove(rtc, &rtc->aie_timer);
 539	}
 540
 541	if (err)
 542		/* nothing */;
 543	else if (!rtc->ops)
 544		err = -ENODEV;
 545	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 546		err = -EINVAL;
 547	else
 548		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 549
 550	mutex_unlock(&rtc->ops_lock);
 551
 552	trace_rtc_alarm_irq_enable(enabled, err);
 553	return err;
 554}
 555EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 556
 557int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 558{
 559	int err;
 560
 561	err = mutex_lock_interruptible(&rtc->ops_lock);
 562	if (err)
 563		return err;
 564
 565#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 566	if (enabled == 0 && rtc->uie_irq_active) {
 567		mutex_unlock(&rtc->ops_lock);
 568		return rtc_dev_update_irq_enable_emul(rtc, 0);
 569	}
 570#endif
 571	/* make sure we're changing state */
 572	if (rtc->uie_rtctimer.enabled == enabled)
 573		goto out;
 574
 575	if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
 576	    !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
 577		mutex_unlock(&rtc->ops_lock);
 578#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 579		return rtc_dev_update_irq_enable_emul(rtc, enabled);
 580#else
 581		return -EINVAL;
 582#endif
 583	}
 584
 585	if (enabled) {
 586		struct rtc_time tm;
 587		ktime_t now, onesec;
 588
 589		err = __rtc_read_time(rtc, &tm);
 590		if (err)
 591			goto out;
 592		onesec = ktime_set(1, 0);
 593		now = rtc_tm_to_ktime(tm);
 594		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 595		rtc->uie_rtctimer.period = ktime_set(1, 0);
 596		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 597	} else {
 598		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 599	}
 600
 601out:
 602	mutex_unlock(&rtc->ops_lock);
 603
 
 
 
 
 
 
 
 
 
 604	return err;
 
 605}
 606EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 607
 
 608/**
 609 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 610 * @rtc: pointer to the rtc device
 611 * @num: number of occurence of the event
 612 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
 613 *
 614 * This function is called when an AIE, UIE or PIE mode interrupt
 615 * has occurred (or been emulated).
 616 *
 
 617 */
 618void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 619{
 620	unsigned long flags;
 621
 622	/* mark one irq of the appropriate mode */
 623	spin_lock_irqsave(&rtc->irq_lock, flags);
 624	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 625	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 626
 
 
 
 
 
 
 627	wake_up_interruptible(&rtc->irq_queue);
 628	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 629}
 630
 
 631/**
 632 * rtc_aie_update_irq - AIE mode rtctimer hook
 633 * @rtc: pointer to the rtc_device
 634 *
 635 * This functions is called when the aie_timer expires.
 636 */
 637void rtc_aie_update_irq(struct rtc_device *rtc)
 638{
 
 639	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 640}
 641
 
 642/**
 643 * rtc_uie_update_irq - UIE mode rtctimer hook
 644 * @rtc: pointer to the rtc_device
 645 *
 646 * This functions is called when the uie_timer expires.
 647 */
 648void rtc_uie_update_irq(struct rtc_device *rtc)
 649{
 
 650	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 651}
 652
 
 653/**
 654 * rtc_pie_update_irq - PIE mode hrtimer hook
 655 * @timer: pointer to the pie mode hrtimer
 656 *
 657 * This function is used to emulate PIE mode interrupts
 658 * using an hrtimer. This function is called when the periodic
 659 * hrtimer expires.
 660 */
 661enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 662{
 663	struct rtc_device *rtc;
 664	ktime_t period;
 665	u64 count;
 666
 667	rtc = container_of(timer, struct rtc_device, pie_timer);
 668
 669	period = NSEC_PER_SEC / rtc->irq_freq;
 670	count = hrtimer_forward_now(timer, period);
 671
 672	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 673
 674	return HRTIMER_RESTART;
 675}
 676
 677/**
 678 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 679 * @rtc: the rtc device
 680 * @num: how many irqs are being reported (usually one)
 681 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 682 * Context: any
 683 */
 684void rtc_update_irq(struct rtc_device *rtc,
 685		    unsigned long num, unsigned long events)
 686{
 687	if (IS_ERR_OR_NULL(rtc))
 688		return;
 689
 690	pm_stay_awake(rtc->dev.parent);
 691	schedule_work(&rtc->irqwork);
 692}
 693EXPORT_SYMBOL_GPL(rtc_update_irq);
 694
 
 
 
 
 
 
 
 
 
 695struct rtc_device *rtc_class_open(const char *name)
 696{
 697	struct device *dev;
 698	struct rtc_device *rtc = NULL;
 699
 700	dev = class_find_device_by_name(&rtc_class, name);
 701	if (dev)
 702		rtc = to_rtc_device(dev);
 703
 704	if (rtc) {
 705		if (!try_module_get(rtc->owner)) {
 706			put_device(dev);
 707			rtc = NULL;
 708		}
 709	}
 710
 711	return rtc;
 712}
 713EXPORT_SYMBOL_GPL(rtc_class_open);
 714
 715void rtc_class_close(struct rtc_device *rtc)
 716{
 717	module_put(rtc->owner);
 718	put_device(&rtc->dev);
 719}
 720EXPORT_SYMBOL_GPL(rtc_class_close);
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 723{
 724	/*
 725	 * We always cancel the timer here first, because otherwise
 726	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 727	 * when we manage to start the timer before the callback
 728	 * returns HRTIMER_RESTART.
 729	 *
 730	 * We cannot use hrtimer_cancel() here as a running callback
 731	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 732	 * would spin forever.
 733	 */
 734	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 735		return -1;
 736
 737	if (enabled) {
 738		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 739
 740		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 741	}
 742	return 0;
 743}
 744
 745/**
 746 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 747 * @rtc: the rtc device
 
 748 * @enabled: true to enable periodic IRQs
 749 * Context: any
 750 *
 751 * Note that rtc_irq_set_freq() should previously have been used to
 752 * specify the desired frequency of periodic IRQ.
 753 */
 754int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 755{
 756	int err = 0;
 
 757
 758	while (rtc_update_hrtimer(rtc, enabled) < 0)
 759		cpu_relax();
 760
 761	rtc->pie_enabled = enabled;
 
 
 
 
 
 
 
 
 
 
 
 762
 763	trace_rtc_irq_set_state(enabled, err);
 764	return err;
 765}
 
 766
 767/**
 768 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 769 * @rtc: the rtc device
 770 * @freq: positive frequency
 
 771 * Context: any
 772 *
 773 * Note that rtc_irq_set_state() is used to enable or disable the
 774 * periodic IRQs.
 775 */
 776int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 777{
 778	int err = 0;
 
 779
 780	if (freq <= 0 || freq > RTC_MAX_FREQ)
 781		return -EINVAL;
 782
 783	rtc->irq_freq = freq;
 784	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 785		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 786
 787	trace_rtc_irq_set_freq(freq, err);
 788	return err;
 789}
 
 790
 791/**
 792 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 793 * @rtc: rtc device
 794 * @timer: timer being added.
 795 *
 796 * Enqueues a timer onto the rtc devices timerqueue and sets
 797 * the next alarm event appropriately.
 798 *
 799 * Sets the enabled bit on the added timer.
 800 *
 801 * Must hold ops_lock for proper serialization of timerqueue
 802 */
 803static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 804{
 805	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 806	struct rtc_time tm;
 807	ktime_t now;
 808	int err;
 809
 810	err = __rtc_read_time(rtc, &tm);
 811	if (err)
 812		return err;
 813
 814	timer->enabled = 1;
 
 815	now = rtc_tm_to_ktime(tm);
 816
 817	/* Skip over expired timers */
 818	while (next) {
 819		if (next->expires >= now)
 820			break;
 821		next = timerqueue_iterate_next(next);
 822	}
 823
 824	timerqueue_add(&rtc->timerqueue, &timer->node);
 825	trace_rtc_timer_enqueue(timer);
 826	if (!next || ktime_before(timer->node.expires, next->expires)) {
 827		struct rtc_wkalrm alarm;
 828
 829		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 830		alarm.enabled = 1;
 831		err = __rtc_set_alarm(rtc, &alarm);
 832		if (err == -ETIME) {
 833			pm_stay_awake(rtc->dev.parent);
 834			schedule_work(&rtc->irqwork);
 835		} else if (err) {
 836			timerqueue_del(&rtc->timerqueue, &timer->node);
 837			trace_rtc_timer_dequeue(timer);
 838			timer->enabled = 0;
 839			return err;
 840		}
 841	}
 842	return 0;
 843}
 844
 845static void rtc_alarm_disable(struct rtc_device *rtc)
 846{
 847	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 848		return;
 849
 850	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 851	trace_rtc_alarm_irq_enable(0, 0);
 852}
 853
 854/**
 855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 856 * @rtc: rtc device
 857 * @timer: timer being removed.
 858 *
 859 * Removes a timer onto the rtc devices timerqueue and sets
 860 * the next alarm event appropriately.
 861 *
 862 * Clears the enabled bit on the removed timer.
 863 *
 864 * Must hold ops_lock for proper serialization of timerqueue
 865 */
 866static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 867{
 868	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 869
 870	timerqueue_del(&rtc->timerqueue, &timer->node);
 871	trace_rtc_timer_dequeue(timer);
 872	timer->enabled = 0;
 873	if (next == &timer->node) {
 874		struct rtc_wkalrm alarm;
 875		int err;
 876
 877		next = timerqueue_getnext(&rtc->timerqueue);
 878		if (!next) {
 879			rtc_alarm_disable(rtc);
 880			return;
 881		}
 882		alarm.time = rtc_ktime_to_tm(next->expires);
 883		alarm.enabled = 1;
 884		err = __rtc_set_alarm(rtc, &alarm);
 885		if (err == -ETIME) {
 886			pm_stay_awake(rtc->dev.parent);
 887			schedule_work(&rtc->irqwork);
 888		}
 889	}
 890}
 891
 892/**
 893 * rtc_timer_do_work - Expires rtc timers
 894 * @work: work item
 
 895 *
 896 * Expires rtc timers. Reprograms next alarm event if needed.
 897 * Called via worktask.
 898 *
 899 * Serializes access to timerqueue via ops_lock mutex
 900 */
 901void rtc_timer_do_work(struct work_struct *work)
 902{
 903	struct rtc_timer *timer;
 904	struct timerqueue_node *next;
 905	ktime_t now;
 906	struct rtc_time tm;
 907	int err;
 908
 909	struct rtc_device *rtc =
 910		container_of(work, struct rtc_device, irqwork);
 911
 912	mutex_lock(&rtc->ops_lock);
 913again:
 914	err = __rtc_read_time(rtc, &tm);
 915	if (err) {
 916		mutex_unlock(&rtc->ops_lock);
 917		return;
 918	}
 919	now = rtc_tm_to_ktime(tm);
 920	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 921		if (next->expires > now)
 922			break;
 923
 924		/* expire timer */
 925		timer = container_of(next, struct rtc_timer, node);
 926		timerqueue_del(&rtc->timerqueue, &timer->node);
 927		trace_rtc_timer_dequeue(timer);
 928		timer->enabled = 0;
 929		if (timer->func)
 930			timer->func(timer->rtc);
 931
 932		trace_rtc_timer_fired(timer);
 933		/* Re-add/fwd periodic timers */
 934		if (ktime_to_ns(timer->period)) {
 935			timer->node.expires = ktime_add(timer->node.expires,
 936							timer->period);
 937			timer->enabled = 1;
 938			timerqueue_add(&rtc->timerqueue, &timer->node);
 939			trace_rtc_timer_enqueue(timer);
 940		}
 941	}
 942
 943	/* Set next alarm */
 944	if (next) {
 945		struct rtc_wkalrm alarm;
 946		int err;
 947		int retry = 3;
 948
 949		alarm.time = rtc_ktime_to_tm(next->expires);
 950		alarm.enabled = 1;
 951reprogram:
 952		err = __rtc_set_alarm(rtc, &alarm);
 953		if (err == -ETIME) {
 954			goto again;
 955		} else if (err) {
 956			if (retry-- > 0)
 957				goto reprogram;
 958
 959			timer = container_of(next, struct rtc_timer, node);
 960			timerqueue_del(&rtc->timerqueue, &timer->node);
 961			trace_rtc_timer_dequeue(timer);
 962			timer->enabled = 0;
 963			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 964			goto again;
 965		}
 966	} else {
 967		rtc_alarm_disable(rtc);
 968	}
 969
 970	pm_relax(rtc->dev.parent);
 971	mutex_unlock(&rtc->ops_lock);
 972}
 973
 
 974/* rtc_timer_init - Initializes an rtc_timer
 975 * @timer: timer to be intiialized
 976 * @f: function pointer to be called when timer fires
 977 * @rtc: pointer to the rtc_device
 978 *
 979 * Kernel interface to initializing an rtc_timer.
 980 */
 981void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 982		    struct rtc_device *rtc)
 983{
 984	timerqueue_init(&timer->node);
 985	timer->enabled = 0;
 986	timer->func = f;
 987	timer->rtc = rtc;
 988}
 989
 990/* rtc_timer_start - Sets an rtc_timer to fire in the future
 991 * @ rtc: rtc device to be used
 992 * @ timer: timer being set
 993 * @ expires: time at which to expire the timer
 994 * @ period: period that the timer will recur
 995 *
 996 * Kernel interface to set an rtc_timer
 997 */
 998int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 999		    ktime_t expires, ktime_t period)
1000{
1001	int ret = 0;
1002
1003	mutex_lock(&rtc->ops_lock);
1004	if (timer->enabled)
1005		rtc_timer_remove(rtc, timer);
1006
1007	timer->node.expires = expires;
1008	timer->period = period;
1009
1010	ret = rtc_timer_enqueue(rtc, timer);
1011
1012	mutex_unlock(&rtc->ops_lock);
1013	return ret;
1014}
1015
1016/* rtc_timer_cancel - Stops an rtc_timer
1017 * @ rtc: rtc device to be used
1018 * @ timer: timer being set
1019 *
1020 * Kernel interface to cancel an rtc_timer
1021 */
1022void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1023{
1024	mutex_lock(&rtc->ops_lock);
1025	if (timer->enabled)
1026		rtc_timer_remove(rtc, timer);
1027	mutex_unlock(&rtc->ops_lock);
1028}
1029
1030/**
1031 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1032 * @rtc: rtc device to be used
1033 * @offset: the offset in parts per billion
1034 *
1035 * see below for details.
1036 *
1037 * Kernel interface to read rtc clock offset
1038 * Returns 0 on success, or a negative number on error.
1039 * If read_offset() is not implemented for the rtc, return -EINVAL
1040 */
1041int rtc_read_offset(struct rtc_device *rtc, long *offset)
1042{
1043	int ret;
1044
1045	if (!rtc->ops)
1046		return -ENODEV;
1047
1048	if (!rtc->ops->read_offset)
1049		return -EINVAL;
1050
1051	mutex_lock(&rtc->ops_lock);
1052	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1053	mutex_unlock(&rtc->ops_lock);
1054
1055	trace_rtc_read_offset(*offset, ret);
1056	return ret;
1057}
1058
1059/**
1060 * rtc_set_offset - Adjusts the duration of the average second
1061 * @rtc: rtc device to be used
1062 * @offset: the offset in parts per billion
1063 *
1064 * Some rtc's allow an adjustment to the average duration of a second
1065 * to compensate for differences in the actual clock rate due to temperature,
1066 * the crystal, capacitor, etc.
1067 *
1068 * The adjustment applied is as follows:
1069 *   t = t0 * (1 + offset * 1e-9)
1070 * where t0 is the measured length of 1 RTC second with offset = 0
1071 *
1072 * Kernel interface to adjust an rtc clock offset.
1073 * Return 0 on success, or a negative number on error.
1074 * If the rtc offset is not setable (or not implemented), return -EINVAL
1075 */
1076int rtc_set_offset(struct rtc_device *rtc, long offset)
1077{
1078	int ret;
1079
1080	if (!rtc->ops)
1081		return -ENODEV;
1082
1083	if (!rtc->ops->set_offset)
1084		return -EINVAL;
1085
1086	mutex_lock(&rtc->ops_lock);
1087	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1088	mutex_unlock(&rtc->ops_lock);
1089
1090	trace_rtc_set_offset(offset, ret);
1091	return ret;
1092}
v4.17
 
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28	time64_t secs;
  29
  30	if (!rtc->offset_secs)
  31		return;
  32
  33	secs = rtc_tm_to_time64(tm);
  34
  35	/*
  36	 * Since the reading time values from RTC device are always in the RTC
  37	 * original valid range, but we need to skip the overlapped region
  38	 * between expanded range and original range, which is no need to add
  39	 * the offset.
  40	 */
  41	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42	    (rtc->start_secs < rtc->range_min &&
  43	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44		return;
  45
  46	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51	time64_t secs;
  52
  53	if (!rtc->offset_secs)
  54		return;
  55
  56	secs = rtc_tm_to_time64(tm);
  57
  58	/*
  59	 * If the setting time values are in the valid range of RTC hardware
  60	 * device, then no need to subtract the offset when setting time to RTC
  61	 * device. Otherwise we need to subtract the offset to make the time
  62	 * values are valid for RTC hardware device.
  63	 */
  64	if (secs >= rtc->range_min && secs <= rtc->range_max)
  65		return;
  66
  67	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72	if (rtc->range_min != rtc->range_max) {
  73		time64_t time = rtc_tm_to_time64(tm);
  74		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75			rtc->range_min;
  76		time64_t range_max = rtc->set_start_time ?
  77			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  78			rtc->range_max;
  79
  80		if (time < range_min || time > range_max)
  81			return -ERANGE;
  82	}
  83
  84	return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89	int err;
  90	if (!rtc->ops)
 
  91		err = -ENODEV;
  92	else if (!rtc->ops->read_time)
  93		err = -EINVAL;
  94	else {
  95		memset(tm, 0, sizeof(struct rtc_time));
  96		err = rtc->ops->read_time(rtc->dev.parent, tm);
  97		if (err < 0) {
  98			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99				err);
 100			return err;
 101		}
 102
 103		rtc_add_offset(rtc, tm);
 104
 105		err = rtc_valid_tm(tm);
 106		if (err < 0)
 107			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108	}
 109	return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114	int err;
 115
 116	err = mutex_lock_interruptible(&rtc->ops_lock);
 117	if (err)
 118		return err;
 119
 120	err = __rtc_read_time(rtc, tm);
 121	mutex_unlock(&rtc->ops_lock);
 122
 123	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124	return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130	int err;
 131
 132	err = rtc_valid_tm(tm);
 133	if (err != 0)
 134		return err;
 135
 136	err = rtc_valid_range(rtc, tm);
 137	if (err)
 138		return err;
 139
 140	rtc_subtract_offset(rtc, tm);
 141
 
 
 
 
 
 
 
 
 
 
 
 142	err = mutex_lock_interruptible(&rtc->ops_lock);
 143	if (err)
 144		return err;
 145
 146	if (!rtc->ops)
 147		err = -ENODEV;
 148	else if (rtc->ops->set_time)
 149		err = rtc->ops->set_time(rtc->dev.parent, tm);
 150	else if (rtc->ops->set_mmss64) {
 151		time64_t secs64 = rtc_tm_to_time64(tm);
 152
 153		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 154	} else if (rtc->ops->set_mmss) {
 155		time64_t secs64 = rtc_tm_to_time64(tm);
 156		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 157	} else
 158		err = -EINVAL;
 159
 160	pm_stay_awake(rtc->dev.parent);
 161	mutex_unlock(&rtc->ops_lock);
 162	/* A timer might have just expired */
 163	schedule_work(&rtc->irqwork);
 164
 
 
 
 
 
 
 165	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 166	return err;
 167}
 168EXPORT_SYMBOL_GPL(rtc_set_time);
 169
 170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 
 171{
 172	int err;
 173
 174	err = mutex_lock_interruptible(&rtc->ops_lock);
 175	if (err)
 176		return err;
 177
 178	if (rtc->ops == NULL)
 179		err = -ENODEV;
 180	else if (!rtc->ops->read_alarm)
 181		err = -EINVAL;
 182	else {
 183		alarm->enabled = 0;
 184		alarm->pending = 0;
 185		alarm->time.tm_sec = -1;
 186		alarm->time.tm_min = -1;
 187		alarm->time.tm_hour = -1;
 188		alarm->time.tm_mday = -1;
 189		alarm->time.tm_mon = -1;
 190		alarm->time.tm_year = -1;
 191		alarm->time.tm_wday = -1;
 192		alarm->time.tm_yday = -1;
 193		alarm->time.tm_isdst = -1;
 194		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 195	}
 196
 197	mutex_unlock(&rtc->ops_lock);
 198
 199	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 200	return err;
 201}
 202
 203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 204{
 205	int err;
 206	struct rtc_time before, now;
 207	int first_time = 1;
 208	time64_t t_now, t_alm;
 209	enum { none, day, month, year } missing = none;
 210	unsigned days;
 211
 212	/* The lower level RTC driver may return -1 in some fields,
 213	 * creating invalid alarm->time values, for reasons like:
 214	 *
 215	 *   - The hardware may not be capable of filling them in;
 216	 *     many alarms match only on time-of-day fields, not
 217	 *     day/month/year calendar data.
 218	 *
 219	 *   - Some hardware uses illegal values as "wildcard" match
 220	 *     values, which non-Linux firmware (like a BIOS) may try
 221	 *     to set up as e.g. "alarm 15 minutes after each hour".
 222	 *     Linux uses only oneshot alarms.
 223	 *
 224	 * When we see that here, we deal with it by using values from
 225	 * a current RTC timestamp for any missing (-1) values.  The
 226	 * RTC driver prevents "periodic alarm" modes.
 227	 *
 228	 * But this can be racey, because some fields of the RTC timestamp
 229	 * may have wrapped in the interval since we read the RTC alarm,
 230	 * which would lead to us inserting inconsistent values in place
 231	 * of the -1 fields.
 232	 *
 233	 * Reading the alarm and timestamp in the reverse sequence
 234	 * would have the same race condition, and not solve the issue.
 235	 *
 236	 * So, we must first read the RTC timestamp,
 237	 * then read the RTC alarm value,
 238	 * and then read a second RTC timestamp.
 239	 *
 240	 * If any fields of the second timestamp have changed
 241	 * when compared with the first timestamp, then we know
 242	 * our timestamp may be inconsistent with that used by
 243	 * the low-level rtc_read_alarm_internal() function.
 244	 *
 245	 * So, when the two timestamps disagree, we just loop and do
 246	 * the process again to get a fully consistent set of values.
 247	 *
 248	 * This could all instead be done in the lower level driver,
 249	 * but since more than one lower level RTC implementation needs it,
 250	 * then it's probably best best to do it here instead of there..
 251	 */
 252
 253	/* Get the "before" timestamp */
 254	err = rtc_read_time(rtc, &before);
 255	if (err < 0)
 256		return err;
 257	do {
 258		if (!first_time)
 259			memcpy(&before, &now, sizeof(struct rtc_time));
 260		first_time = 0;
 261
 262		/* get the RTC alarm values, which may be incomplete */
 263		err = rtc_read_alarm_internal(rtc, alarm);
 264		if (err)
 265			return err;
 266
 267		/* full-function RTCs won't have such missing fields */
 268		if (rtc_valid_tm(&alarm->time) == 0)
 269			return 0;
 
 270
 271		/* get the "after" timestamp, to detect wrapped fields */
 272		err = rtc_read_time(rtc, &now);
 273		if (err < 0)
 274			return err;
 275
 276		/* note that tm_sec is a "don't care" value here: */
 277	} while (   before.tm_min   != now.tm_min
 278		 || before.tm_hour  != now.tm_hour
 279		 || before.tm_mon   != now.tm_mon
 280		 || before.tm_year  != now.tm_year);
 281
 282	/* Fill in the missing alarm fields using the timestamp; we
 283	 * know there's at least one since alarm->time is invalid.
 284	 */
 285	if (alarm->time.tm_sec == -1)
 286		alarm->time.tm_sec = now.tm_sec;
 287	if (alarm->time.tm_min == -1)
 288		alarm->time.tm_min = now.tm_min;
 289	if (alarm->time.tm_hour == -1)
 290		alarm->time.tm_hour = now.tm_hour;
 291
 292	/* For simplicity, only support date rollover for now */
 293	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 294		alarm->time.tm_mday = now.tm_mday;
 295		missing = day;
 296	}
 297	if ((unsigned)alarm->time.tm_mon >= 12) {
 298		alarm->time.tm_mon = now.tm_mon;
 299		if (missing == none)
 300			missing = month;
 301	}
 302	if (alarm->time.tm_year == -1) {
 303		alarm->time.tm_year = now.tm_year;
 304		if (missing == none)
 305			missing = year;
 306	}
 307
 308	/* Can't proceed if alarm is still invalid after replacing
 309	 * missing fields.
 310	 */
 311	err = rtc_valid_tm(&alarm->time);
 312	if (err)
 313		goto done;
 314
 315	/* with luck, no rollover is needed */
 316	t_now = rtc_tm_to_time64(&now);
 317	t_alm = rtc_tm_to_time64(&alarm->time);
 318	if (t_now < t_alm)
 319		goto done;
 320
 321	switch (missing) {
 322
 323	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 324	 * that will trigger at 5am will do so at 5am Tuesday, which
 325	 * could also be in the next month or year.  This is a common
 326	 * case, especially for PCs.
 327	 */
 328	case day:
 329		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 330		t_alm += 24 * 60 * 60;
 331		rtc_time64_to_tm(t_alm, &alarm->time);
 332		break;
 333
 334	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 335	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 336	 * may end up in the month after that!  Many newer PCs support
 337	 * this type of alarm.
 338	 */
 339	case month:
 340		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 341		do {
 342			if (alarm->time.tm_mon < 11)
 343				alarm->time.tm_mon++;
 344			else {
 345				alarm->time.tm_mon = 0;
 346				alarm->time.tm_year++;
 347			}
 348			days = rtc_month_days(alarm->time.tm_mon,
 349					alarm->time.tm_year);
 350		} while (days < alarm->time.tm_mday);
 351		break;
 352
 353	/* Year rollover ... easy except for leap years! */
 354	case year:
 355		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 356		do {
 357			alarm->time.tm_year++;
 358		} while (!is_leap_year(alarm->time.tm_year + 1900)
 359			&& rtc_valid_tm(&alarm->time) != 0);
 360		break;
 361
 362	default:
 363		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 364	}
 365
 366	err = rtc_valid_tm(&alarm->time);
 367
 368done:
 369	if (err) {
 370		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 371			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 372			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 373			alarm->time.tm_sec);
 374	}
 375
 376	return err;
 377}
 378
 379int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 380{
 381	int err;
 382
 383	err = mutex_lock_interruptible(&rtc->ops_lock);
 384	if (err)
 385		return err;
 386	if (rtc->ops == NULL)
 387		err = -ENODEV;
 388	else if (!rtc->ops->read_alarm)
 389		err = -EINVAL;
 390	else {
 391		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 392		alarm->enabled = rtc->aie_timer.enabled;
 393		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 394	}
 395	mutex_unlock(&rtc->ops_lock);
 396
 397	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 398	return err;
 399}
 400EXPORT_SYMBOL_GPL(rtc_read_alarm);
 401
 402static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 403{
 404	struct rtc_time tm;
 405	time64_t now, scheduled;
 406	int err;
 407
 408	err = rtc_valid_tm(&alarm->time);
 409	if (err)
 410		return err;
 411
 412	rtc_subtract_offset(rtc, &alarm->time);
 413	scheduled = rtc_tm_to_time64(&alarm->time);
 414
 415	/* Make sure we're not setting alarms in the past */
 416	err = __rtc_read_time(rtc, &tm);
 417	if (err)
 418		return err;
 419	now = rtc_tm_to_time64(&tm);
 
 420	if (scheduled <= now)
 421		return -ETIME;
 422	/*
 423	 * XXX - We just checked to make sure the alarm time is not
 424	 * in the past, but there is still a race window where if
 425	 * the is alarm set for the next second and the second ticks
 426	 * over right here, before we set the alarm.
 427	 */
 428
 
 
 429	if (!rtc->ops)
 430		err = -ENODEV;
 431	else if (!rtc->ops->set_alarm)
 432		err = -EINVAL;
 433	else
 434		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 435
 436	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 437	return err;
 438}
 439
 440int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 441{
 
 442	int err;
 443
 
 
 
 
 
 444	err = rtc_valid_tm(&alarm->time);
 445	if (err != 0)
 446		return err;
 447
 448	err = rtc_valid_range(rtc, &alarm->time);
 449	if (err)
 450		return err;
 451
 452	err = mutex_lock_interruptible(&rtc->ops_lock);
 453	if (err)
 454		return err;
 455	if (rtc->aie_timer.enabled)
 456		rtc_timer_remove(rtc, &rtc->aie_timer);
 457
 458	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 
 
 
 
 
 
 
 
 459	rtc->aie_timer.period = 0;
 460	if (alarm->enabled)
 461		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 462
 463	mutex_unlock(&rtc->ops_lock);
 464
 465	rtc_add_offset(rtc, &alarm->time);
 466	return err;
 467}
 468EXPORT_SYMBOL_GPL(rtc_set_alarm);
 469
 470/* Called once per device from rtc_device_register */
 471int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 472{
 473	int err;
 474	struct rtc_time now;
 475
 476	err = rtc_valid_tm(&alarm->time);
 477	if (err != 0)
 478		return err;
 479
 480	err = rtc_read_time(rtc, &now);
 481	if (err)
 482		return err;
 483
 484	err = mutex_lock_interruptible(&rtc->ops_lock);
 485	if (err)
 486		return err;
 487
 488	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 489	rtc->aie_timer.period = 0;
 490
 491	/* Alarm has to be enabled & in the future for us to enqueue it */
 492	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 493			 rtc->aie_timer.node.expires)) {
 494
 495		rtc->aie_timer.enabled = 1;
 496		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 497		trace_rtc_timer_enqueue(&rtc->aie_timer);
 498	}
 499	mutex_unlock(&rtc->ops_lock);
 500	return err;
 501}
 502EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 503
 504int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 505{
 506	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
 507	if (err)
 508		return err;
 509
 510	if (rtc->aie_timer.enabled != enabled) {
 511		if (enabled)
 512			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 513		else
 514			rtc_timer_remove(rtc, &rtc->aie_timer);
 515	}
 516
 517	if (err)
 518		/* nothing */;
 519	else if (!rtc->ops)
 520		err = -ENODEV;
 521	else if (!rtc->ops->alarm_irq_enable)
 522		err = -EINVAL;
 523	else
 524		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 525
 526	mutex_unlock(&rtc->ops_lock);
 527
 528	trace_rtc_alarm_irq_enable(enabled, err);
 529	return err;
 530}
 531EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 532
 533int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 534{
 535	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
 536	if (err)
 537		return err;
 538
 539#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 540	if (enabled == 0 && rtc->uie_irq_active) {
 541		mutex_unlock(&rtc->ops_lock);
 542		return rtc_dev_update_irq_enable_emul(rtc, 0);
 543	}
 544#endif
 545	/* make sure we're changing state */
 546	if (rtc->uie_rtctimer.enabled == enabled)
 547		goto out;
 548
 549	if (rtc->uie_unsupported) {
 550		err = -EINVAL;
 551		goto out;
 
 
 
 
 
 552	}
 553
 554	if (enabled) {
 555		struct rtc_time tm;
 556		ktime_t now, onesec;
 557
 558		__rtc_read_time(rtc, &tm);
 
 
 559		onesec = ktime_set(1, 0);
 560		now = rtc_tm_to_ktime(tm);
 561		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 562		rtc->uie_rtctimer.period = ktime_set(1, 0);
 563		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 564	} else
 565		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
 566
 567out:
 568	mutex_unlock(&rtc->ops_lock);
 569#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 570	/*
 571	 * Enable emulation if the driver did not provide
 572	 * the update_irq_enable function pointer or if returned
 573	 * -EINVAL to signal that it has been configured without
 574	 * interrupts or that are not available at the moment.
 575	 */
 576	if (err == -EINVAL)
 577		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 578#endif
 579	return err;
 580
 581}
 582EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 583
 584
 585/**
 586 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 587 * @rtc: pointer to the rtc device
 
 
 588 *
 589 * This function is called when an AIE, UIE or PIE mode interrupt
 590 * has occurred (or been emulated).
 591 *
 592 * Triggers the registered irq_task function callback.
 593 */
 594void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 595{
 596	unsigned long flags;
 597
 598	/* mark one irq of the appropriate mode */
 599	spin_lock_irqsave(&rtc->irq_lock, flags);
 600	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 601	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 602
 603	/* call the task func */
 604	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 605	if (rtc->irq_task)
 606		rtc->irq_task->func(rtc->irq_task->private_data);
 607	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 608
 609	wake_up_interruptible(&rtc->irq_queue);
 610	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 611}
 612
 613
 614/**
 615 * rtc_aie_update_irq - AIE mode rtctimer hook
 616 * @private: pointer to the rtc_device
 617 *
 618 * This functions is called when the aie_timer expires.
 619 */
 620void rtc_aie_update_irq(void *private)
 621{
 622	struct rtc_device *rtc = (struct rtc_device *)private;
 623	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 624}
 625
 626
 627/**
 628 * rtc_uie_update_irq - UIE mode rtctimer hook
 629 * @private: pointer to the rtc_device
 630 *
 631 * This functions is called when the uie_timer expires.
 632 */
 633void rtc_uie_update_irq(void *private)
 634{
 635	struct rtc_device *rtc = (struct rtc_device *)private;
 636	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 637}
 638
 639
 640/**
 641 * rtc_pie_update_irq - PIE mode hrtimer hook
 642 * @timer: pointer to the pie mode hrtimer
 643 *
 644 * This function is used to emulate PIE mode interrupts
 645 * using an hrtimer. This function is called when the periodic
 646 * hrtimer expires.
 647 */
 648enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 649{
 650	struct rtc_device *rtc;
 651	ktime_t period;
 652	int count;
 
 653	rtc = container_of(timer, struct rtc_device, pie_timer);
 654
 655	period = NSEC_PER_SEC / rtc->irq_freq;
 656	count = hrtimer_forward_now(timer, period);
 657
 658	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 659
 660	return HRTIMER_RESTART;
 661}
 662
 663/**
 664 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 665 * @rtc: the rtc device
 666 * @num: how many irqs are being reported (usually one)
 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 668 * Context: any
 669 */
 670void rtc_update_irq(struct rtc_device *rtc,
 671		unsigned long num, unsigned long events)
 672{
 673	if (IS_ERR_OR_NULL(rtc))
 674		return;
 675
 676	pm_stay_awake(rtc->dev.parent);
 677	schedule_work(&rtc->irqwork);
 678}
 679EXPORT_SYMBOL_GPL(rtc_update_irq);
 680
 681static int __rtc_match(struct device *dev, const void *data)
 682{
 683	const char *name = data;
 684
 685	if (strcmp(dev_name(dev), name) == 0)
 686		return 1;
 687	return 0;
 688}
 689
 690struct rtc_device *rtc_class_open(const char *name)
 691{
 692	struct device *dev;
 693	struct rtc_device *rtc = NULL;
 694
 695	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 696	if (dev)
 697		rtc = to_rtc_device(dev);
 698
 699	if (rtc) {
 700		if (!try_module_get(rtc->owner)) {
 701			put_device(dev);
 702			rtc = NULL;
 703		}
 704	}
 705
 706	return rtc;
 707}
 708EXPORT_SYMBOL_GPL(rtc_class_open);
 709
 710void rtc_class_close(struct rtc_device *rtc)
 711{
 712	module_put(rtc->owner);
 713	put_device(&rtc->dev);
 714}
 715EXPORT_SYMBOL_GPL(rtc_class_close);
 716
 717int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 718{
 719	int retval = -EBUSY;
 720
 721	if (task == NULL || task->func == NULL)
 722		return -EINVAL;
 723
 724	/* Cannot register while the char dev is in use */
 725	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 726		return -EBUSY;
 727
 728	spin_lock_irq(&rtc->irq_task_lock);
 729	if (rtc->irq_task == NULL) {
 730		rtc->irq_task = task;
 731		retval = 0;
 732	}
 733	spin_unlock_irq(&rtc->irq_task_lock);
 734
 735	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 736
 737	return retval;
 738}
 739EXPORT_SYMBOL_GPL(rtc_irq_register);
 740
 741void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 742{
 743	spin_lock_irq(&rtc->irq_task_lock);
 744	if (rtc->irq_task == task)
 745		rtc->irq_task = NULL;
 746	spin_unlock_irq(&rtc->irq_task_lock);
 747}
 748EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 749
 750static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 751{
 752	/*
 753	 * We always cancel the timer here first, because otherwise
 754	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 755	 * when we manage to start the timer before the callback
 756	 * returns HRTIMER_RESTART.
 757	 *
 758	 * We cannot use hrtimer_cancel() here as a running callback
 759	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 760	 * would spin forever.
 761	 */
 762	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 763		return -1;
 764
 765	if (enabled) {
 766		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 767
 768		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 769	}
 770	return 0;
 771}
 772
 773/**
 774 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 775 * @rtc: the rtc device
 776 * @task: currently registered with rtc_irq_register()
 777 * @enabled: true to enable periodic IRQs
 778 * Context: any
 779 *
 780 * Note that rtc_irq_set_freq() should previously have been used to
 781 * specify the desired frequency of periodic IRQ task->func() callbacks.
 782 */
 783int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 784{
 785	int err = 0;
 786	unsigned long flags;
 787
 788retry:
 789	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 790	if (rtc->irq_task != NULL && task == NULL)
 791		err = -EBUSY;
 792	else if (rtc->irq_task != task)
 793		err = -EACCES;
 794	else {
 795		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 796			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 797			cpu_relax();
 798			goto retry;
 799		}
 800		rtc->pie_enabled = enabled;
 801	}
 802	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 803
 804	trace_rtc_irq_set_state(enabled, err);
 805	return err;
 806}
 807EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 808
 809/**
 810 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 811 * @rtc: the rtc device
 812 * @task: currently registered with rtc_irq_register()
 813 * @freq: positive frequency with which task->func() will be called
 814 * Context: any
 815 *
 816 * Note that rtc_irq_set_state() is used to enable or disable the
 817 * periodic IRQs.
 818 */
 819int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 820{
 821	int err = 0;
 822	unsigned long flags;
 823
 824	if (freq <= 0 || freq > RTC_MAX_FREQ)
 825		return -EINVAL;
 826retry:
 827	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 828	if (rtc->irq_task != NULL && task == NULL)
 829		err = -EBUSY;
 830	else if (rtc->irq_task != task)
 831		err = -EACCES;
 832	else {
 833		rtc->irq_freq = freq;
 834		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 835			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 836			cpu_relax();
 837			goto retry;
 838		}
 839	}
 840	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 841
 842	trace_rtc_irq_set_freq(freq, err);
 843	return err;
 844}
 845EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 846
 847/**
 848 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 849 * @rtc rtc device
 850 * @timer timer being added.
 851 *
 852 * Enqueues a timer onto the rtc devices timerqueue and sets
 853 * the next alarm event appropriately.
 854 *
 855 * Sets the enabled bit on the added timer.
 856 *
 857 * Must hold ops_lock for proper serialization of timerqueue
 858 */
 859static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 860{
 861	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 862	struct rtc_time tm;
 863	ktime_t now;
 
 
 
 
 
 864
 865	timer->enabled = 1;
 866	__rtc_read_time(rtc, &tm);
 867	now = rtc_tm_to_ktime(tm);
 868
 869	/* Skip over expired timers */
 870	while (next) {
 871		if (next->expires >= now)
 872			break;
 873		next = timerqueue_iterate_next(next);
 874	}
 875
 876	timerqueue_add(&rtc->timerqueue, &timer->node);
 877	trace_rtc_timer_enqueue(timer);
 878	if (!next || ktime_before(timer->node.expires, next->expires)) {
 879		struct rtc_wkalrm alarm;
 880		int err;
 881		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		} else if (err) {
 888			timerqueue_del(&rtc->timerqueue, &timer->node);
 889			trace_rtc_timer_dequeue(timer);
 890			timer->enabled = 0;
 891			return err;
 892		}
 893	}
 894	return 0;
 895}
 896
 897static void rtc_alarm_disable(struct rtc_device *rtc)
 898{
 899	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 900		return;
 901
 902	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 903	trace_rtc_alarm_irq_enable(0, 0);
 904}
 905
 906/**
 907 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 908 * @rtc rtc device
 909 * @timer timer being removed.
 910 *
 911 * Removes a timer onto the rtc devices timerqueue and sets
 912 * the next alarm event appropriately.
 913 *
 914 * Clears the enabled bit on the removed timer.
 915 *
 916 * Must hold ops_lock for proper serialization of timerqueue
 917 */
 918static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 919{
 920	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 
 921	timerqueue_del(&rtc->timerqueue, &timer->node);
 922	trace_rtc_timer_dequeue(timer);
 923	timer->enabled = 0;
 924	if (next == &timer->node) {
 925		struct rtc_wkalrm alarm;
 926		int err;
 
 927		next = timerqueue_getnext(&rtc->timerqueue);
 928		if (!next) {
 929			rtc_alarm_disable(rtc);
 930			return;
 931		}
 932		alarm.time = rtc_ktime_to_tm(next->expires);
 933		alarm.enabled = 1;
 934		err = __rtc_set_alarm(rtc, &alarm);
 935		if (err == -ETIME) {
 936			pm_stay_awake(rtc->dev.parent);
 937			schedule_work(&rtc->irqwork);
 938		}
 939	}
 940}
 941
 942/**
 943 * rtc_timer_do_work - Expires rtc timers
 944 * @rtc rtc device
 945 * @timer timer being removed.
 946 *
 947 * Expires rtc timers. Reprograms next alarm event if needed.
 948 * Called via worktask.
 949 *
 950 * Serializes access to timerqueue via ops_lock mutex
 951 */
 952void rtc_timer_do_work(struct work_struct *work)
 953{
 954	struct rtc_timer *timer;
 955	struct timerqueue_node *next;
 956	ktime_t now;
 957	struct rtc_time tm;
 
 958
 959	struct rtc_device *rtc =
 960		container_of(work, struct rtc_device, irqwork);
 961
 962	mutex_lock(&rtc->ops_lock);
 963again:
 964	__rtc_read_time(rtc, &tm);
 
 
 
 
 965	now = rtc_tm_to_ktime(tm);
 966	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 967		if (next->expires > now)
 968			break;
 969
 970		/* expire timer */
 971		timer = container_of(next, struct rtc_timer, node);
 972		timerqueue_del(&rtc->timerqueue, &timer->node);
 973		trace_rtc_timer_dequeue(timer);
 974		timer->enabled = 0;
 975		if (timer->task.func)
 976			timer->task.func(timer->task.private_data);
 977
 978		trace_rtc_timer_fired(timer);
 979		/* Re-add/fwd periodic timers */
 980		if (ktime_to_ns(timer->period)) {
 981			timer->node.expires = ktime_add(timer->node.expires,
 982							timer->period);
 983			timer->enabled = 1;
 984			timerqueue_add(&rtc->timerqueue, &timer->node);
 985			trace_rtc_timer_enqueue(timer);
 986		}
 987	}
 988
 989	/* Set next alarm */
 990	if (next) {
 991		struct rtc_wkalrm alarm;
 992		int err;
 993		int retry = 3;
 994
 995		alarm.time = rtc_ktime_to_tm(next->expires);
 996		alarm.enabled = 1;
 997reprogram:
 998		err = __rtc_set_alarm(rtc, &alarm);
 999		if (err == -ETIME)
1000			goto again;
1001		else if (err) {
1002			if (retry-- > 0)
1003				goto reprogram;
1004
1005			timer = container_of(next, struct rtc_timer, node);
1006			timerqueue_del(&rtc->timerqueue, &timer->node);
1007			trace_rtc_timer_dequeue(timer);
1008			timer->enabled = 0;
1009			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1010			goto again;
1011		}
1012	} else
1013		rtc_alarm_disable(rtc);
 
1014
1015	pm_relax(rtc->dev.parent);
1016	mutex_unlock(&rtc->ops_lock);
1017}
1018
1019
1020/* rtc_timer_init - Initializes an rtc_timer
1021 * @timer: timer to be intiialized
1022 * @f: function pointer to be called when timer fires
1023 * @data: private data passed to function pointer
1024 *
1025 * Kernel interface to initializing an rtc_timer.
1026 */
1027void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 
1028{
1029	timerqueue_init(&timer->node);
1030	timer->enabled = 0;
1031	timer->task.func = f;
1032	timer->task.private_data = data;
1033}
1034
1035/* rtc_timer_start - Sets an rtc_timer to fire in the future
1036 * @ rtc: rtc device to be used
1037 * @ timer: timer being set
1038 * @ expires: time at which to expire the timer
1039 * @ period: period that the timer will recur
1040 *
1041 * Kernel interface to set an rtc_timer
1042 */
1043int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1044			ktime_t expires, ktime_t period)
1045{
1046	int ret = 0;
 
1047	mutex_lock(&rtc->ops_lock);
1048	if (timer->enabled)
1049		rtc_timer_remove(rtc, timer);
1050
1051	timer->node.expires = expires;
1052	timer->period = period;
1053
1054	ret = rtc_timer_enqueue(rtc, timer);
1055
1056	mutex_unlock(&rtc->ops_lock);
1057	return ret;
1058}
1059
1060/* rtc_timer_cancel - Stops an rtc_timer
1061 * @ rtc: rtc device to be used
1062 * @ timer: timer being set
1063 *
1064 * Kernel interface to cancel an rtc_timer
1065 */
1066void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1067{
1068	mutex_lock(&rtc->ops_lock);
1069	if (timer->enabled)
1070		rtc_timer_remove(rtc, timer);
1071	mutex_unlock(&rtc->ops_lock);
1072}
1073
1074/**
1075 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1076 * @ rtc: rtc device to be used
1077 * @ offset: the offset in parts per billion
1078 *
1079 * see below for details.
1080 *
1081 * Kernel interface to read rtc clock offset
1082 * Returns 0 on success, or a negative number on error.
1083 * If read_offset() is not implemented for the rtc, return -EINVAL
1084 */
1085int rtc_read_offset(struct rtc_device *rtc, long *offset)
1086{
1087	int ret;
1088
1089	if (!rtc->ops)
1090		return -ENODEV;
1091
1092	if (!rtc->ops->read_offset)
1093		return -EINVAL;
1094
1095	mutex_lock(&rtc->ops_lock);
1096	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1097	mutex_unlock(&rtc->ops_lock);
1098
1099	trace_rtc_read_offset(*offset, ret);
1100	return ret;
1101}
1102
1103/**
1104 * rtc_set_offset - Adjusts the duration of the average second
1105 * @ rtc: rtc device to be used
1106 * @ offset: the offset in parts per billion
1107 *
1108 * Some rtc's allow an adjustment to the average duration of a second
1109 * to compensate for differences in the actual clock rate due to temperature,
1110 * the crystal, capacitor, etc.
1111 *
1112 * The adjustment applied is as follows:
1113 *   t = t0 * (1 + offset * 1e-9)
1114 * where t0 is the measured length of 1 RTC second with offset = 0
1115 *
1116 * Kernel interface to adjust an rtc clock offset.
1117 * Return 0 on success, or a negative number on error.
1118 * If the rtc offset is not setable (or not implemented), return -EINVAL
1119 */
1120int rtc_set_offset(struct rtc_device *rtc, long offset)
1121{
1122	int ret;
1123
1124	if (!rtc->ops)
1125		return -ENODEV;
1126
1127	if (!rtc->ops->set_offset)
1128		return -EINVAL;
1129
1130	mutex_lock(&rtc->ops_lock);
1131	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1132	mutex_unlock(&rtc->ops_lock);
1133
1134	trace_rtc_set_offset(offset, ret);
1135	return ret;
1136}