Linux Audio

Check our new training course

Loading...
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 72	} else
 73		err = -EINVAL;
 74
 75	mutex_unlock(&rtc->ops_lock);
 76	/* A timer might have just expired */
 77	schedule_work(&rtc->irqwork);
 78	return err;
 79}
 80EXPORT_SYMBOL_GPL(rtc_set_time);
 81
 82int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 83{
 84	int err;
 85
 86	err = mutex_lock_interruptible(&rtc->ops_lock);
 87	if (err)
 88		return err;
 89
 90	if (!rtc->ops)
 91		err = -ENODEV;
 92	else if (rtc->ops->set_mmss)
 93		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 94	else if (rtc->ops->read_time && rtc->ops->set_time) {
 95		struct rtc_time new, old;
 96
 97		err = rtc->ops->read_time(rtc->dev.parent, &old);
 98		if (err == 0) {
 99			rtc_time_to_tm(secs, &new);
100
101			/*
102			 * avoid writing when we're going to change the day of
103			 * the month. We will retry in the next minute. This
104			 * basically means that if the RTC must not drift
105			 * by more than 1 minute in 11 minutes.
106			 */
107			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108				(new.tm_hour == 23 && new.tm_min == 59)))
109				err = rtc->ops->set_time(rtc->dev.parent,
110						&new);
111		}
112	}
113	else
114		err = -EINVAL;
115
116	mutex_unlock(&rtc->ops_lock);
117	/* A timer might have just expired */
118	schedule_work(&rtc->irqwork);
119
120	return err;
121}
122EXPORT_SYMBOL_GPL(rtc_set_mmss);
123
124static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125{
126	int err;
127
128	err = mutex_lock_interruptible(&rtc->ops_lock);
129	if (err)
130		return err;
131
132	if (rtc->ops == NULL)
133		err = -ENODEV;
134	else if (!rtc->ops->read_alarm)
135		err = -EINVAL;
136	else {
137		memset(alarm, 0, sizeof(struct rtc_wkalrm));
138		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
139	}
140
141	mutex_unlock(&rtc->ops_lock);
142	return err;
143}
144
145int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
146{
147	int err;
148	struct rtc_time before, now;
149	int first_time = 1;
150	unsigned long t_now, t_alm;
151	enum { none, day, month, year } missing = none;
152	unsigned days;
153
154	/* The lower level RTC driver may return -1 in some fields,
155	 * creating invalid alarm->time values, for reasons like:
156	 *
157	 *   - The hardware may not be capable of filling them in;
158	 *     many alarms match only on time-of-day fields, not
159	 *     day/month/year calendar data.
160	 *
161	 *   - Some hardware uses illegal values as "wildcard" match
162	 *     values, which non-Linux firmware (like a BIOS) may try
163	 *     to set up as e.g. "alarm 15 minutes after each hour".
164	 *     Linux uses only oneshot alarms.
165	 *
166	 * When we see that here, we deal with it by using values from
167	 * a current RTC timestamp for any missing (-1) values.  The
168	 * RTC driver prevents "periodic alarm" modes.
169	 *
170	 * But this can be racey, because some fields of the RTC timestamp
171	 * may have wrapped in the interval since we read the RTC alarm,
172	 * which would lead to us inserting inconsistent values in place
173	 * of the -1 fields.
174	 *
175	 * Reading the alarm and timestamp in the reverse sequence
176	 * would have the same race condition, and not solve the issue.
177	 *
178	 * So, we must first read the RTC timestamp,
179	 * then read the RTC alarm value,
180	 * and then read a second RTC timestamp.
181	 *
182	 * If any fields of the second timestamp have changed
183	 * when compared with the first timestamp, then we know
184	 * our timestamp may be inconsistent with that used by
185	 * the low-level rtc_read_alarm_internal() function.
186	 *
187	 * So, when the two timestamps disagree, we just loop and do
188	 * the process again to get a fully consistent set of values.
189	 *
190	 * This could all instead be done in the lower level driver,
191	 * but since more than one lower level RTC implementation needs it,
192	 * then it's probably best best to do it here instead of there..
193	 */
194
195	/* Get the "before" timestamp */
196	err = rtc_read_time(rtc, &before);
197	if (err < 0)
198		return err;
199	do {
200		if (!first_time)
201			memcpy(&before, &now, sizeof(struct rtc_time));
202		first_time = 0;
203
204		/* get the RTC alarm values, which may be incomplete */
205		err = rtc_read_alarm_internal(rtc, alarm);
206		if (err)
207			return err;
208
209		/* full-function RTCs won't have such missing fields */
210		if (rtc_valid_tm(&alarm->time) == 0)
211			return 0;
212
213		/* get the "after" timestamp, to detect wrapped fields */
214		err = rtc_read_time(rtc, &now);
215		if (err < 0)
216			return err;
217
218		/* note that tm_sec is a "don't care" value here: */
219	} while (   before.tm_min   != now.tm_min
220		 || before.tm_hour  != now.tm_hour
221		 || before.tm_mon   != now.tm_mon
222		 || before.tm_year  != now.tm_year);
223
224	/* Fill in the missing alarm fields using the timestamp; we
225	 * know there's at least one since alarm->time is invalid.
226	 */
227	if (alarm->time.tm_sec == -1)
228		alarm->time.tm_sec = now.tm_sec;
229	if (alarm->time.tm_min == -1)
230		alarm->time.tm_min = now.tm_min;
231	if (alarm->time.tm_hour == -1)
232		alarm->time.tm_hour = now.tm_hour;
233
234	/* For simplicity, only support date rollover for now */
235	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236		alarm->time.tm_mday = now.tm_mday;
237		missing = day;
238	}
239	if ((unsigned)alarm->time.tm_mon >= 12) {
240		alarm->time.tm_mon = now.tm_mon;
241		if (missing == none)
242			missing = month;
243	}
244	if (alarm->time.tm_year == -1) {
245		alarm->time.tm_year = now.tm_year;
246		if (missing == none)
247			missing = year;
248	}
249
250	/* with luck, no rollover is needed */
251	rtc_tm_to_time(&now, &t_now);
252	rtc_tm_to_time(&alarm->time, &t_alm);
253	if (t_now < t_alm)
254		goto done;
255
256	switch (missing) {
257
258	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
259	 * that will trigger at 5am will do so at 5am Tuesday, which
260	 * could also be in the next month or year.  This is a common
261	 * case, especially for PCs.
262	 */
263	case day:
264		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265		t_alm += 24 * 60 * 60;
266		rtc_time_to_tm(t_alm, &alarm->time);
267		break;
268
269	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
270	 * be next month.  An alarm matching on the 30th, 29th, or 28th
271	 * may end up in the month after that!  Many newer PCs support
272	 * this type of alarm.
273	 */
274	case month:
275		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276		do {
277			if (alarm->time.tm_mon < 11)
278				alarm->time.tm_mon++;
279			else {
280				alarm->time.tm_mon = 0;
281				alarm->time.tm_year++;
282			}
283			days = rtc_month_days(alarm->time.tm_mon,
284					alarm->time.tm_year);
285		} while (days < alarm->time.tm_mday);
286		break;
287
288	/* Year rollover ... easy except for leap years! */
289	case year:
290		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291		do {
292			alarm->time.tm_year++;
293		} while (rtc_valid_tm(&alarm->time) != 0);
294		break;
295
296	default:
297		dev_warn(&rtc->dev, "alarm rollover not handled\n");
298	}
299
300done:
301	return 0;
302}
303
304int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
305{
306	int err;
307
308	err = mutex_lock_interruptible(&rtc->ops_lock);
309	if (err)
310		return err;
311	if (rtc->ops == NULL)
312		err = -ENODEV;
313	else if (!rtc->ops->read_alarm)
314		err = -EINVAL;
315	else {
316		memset(alarm, 0, sizeof(struct rtc_wkalrm));
317		alarm->enabled = rtc->aie_timer.enabled;
318		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
319	}
320	mutex_unlock(&rtc->ops_lock);
321
322	return err;
323}
324EXPORT_SYMBOL_GPL(rtc_read_alarm);
325
326static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
327{
328	struct rtc_time tm;
329	long now, scheduled;
330	int err;
331
332	err = rtc_valid_tm(&alarm->time);
333	if (err)
334		return err;
335	rtc_tm_to_time(&alarm->time, &scheduled);
336
337	/* Make sure we're not setting alarms in the past */
338	err = __rtc_read_time(rtc, &tm);
339	rtc_tm_to_time(&tm, &now);
340	if (scheduled <= now)
341		return -ETIME;
342	/*
343	 * XXX - We just checked to make sure the alarm time is not
344	 * in the past, but there is still a race window where if
345	 * the is alarm set for the next second and the second ticks
346	 * over right here, before we set the alarm.
347	 */
348
349	if (!rtc->ops)
350		err = -ENODEV;
351	else if (!rtc->ops->set_alarm)
352		err = -EINVAL;
353	else
354		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
355
356	return err;
357}
358
359int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
360{
361	int err;
362
363	err = rtc_valid_tm(&alarm->time);
364	if (err != 0)
365		return err;
366
367	err = mutex_lock_interruptible(&rtc->ops_lock);
368	if (err)
369		return err;
370	if (rtc->aie_timer.enabled) {
371		rtc_timer_remove(rtc, &rtc->aie_timer);
372	}
373	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
374	rtc->aie_timer.period = ktime_set(0, 0);
375	if (alarm->enabled) {
376		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
377	}
378	mutex_unlock(&rtc->ops_lock);
379	return err;
380}
381EXPORT_SYMBOL_GPL(rtc_set_alarm);
382
383/* Called once per device from rtc_device_register */
384int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
385{
386	int err;
387	struct rtc_time now;
388
389	err = rtc_valid_tm(&alarm->time);
390	if (err != 0)
391		return err;
392
393	err = rtc_read_time(rtc, &now);
394	if (err)
395		return err;
396
397	err = mutex_lock_interruptible(&rtc->ops_lock);
398	if (err)
399		return err;
400
401	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
402	rtc->aie_timer.period = ktime_set(0, 0);
403
404	/* Alarm has to be enabled & in the futrure for us to enqueue it */
405	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
406			 rtc->aie_timer.node.expires.tv64)) {
407
408		rtc->aie_timer.enabled = 1;
409		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
410	}
411	mutex_unlock(&rtc->ops_lock);
412	return err;
413}
414EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
415
416
417
418int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
419{
420	int err = mutex_lock_interruptible(&rtc->ops_lock);
421	if (err)
422		return err;
423
424	if (rtc->aie_timer.enabled != enabled) {
425		if (enabled)
426			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
427		else
428			rtc_timer_remove(rtc, &rtc->aie_timer);
429	}
430
431	if (err)
432		/* nothing */;
433	else if (!rtc->ops)
434		err = -ENODEV;
435	else if (!rtc->ops->alarm_irq_enable)
436		err = -EINVAL;
437	else
438		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
439
440	mutex_unlock(&rtc->ops_lock);
441	return err;
442}
443EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
444
445int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446{
447	int err = mutex_lock_interruptible(&rtc->ops_lock);
448	if (err)
449		return err;
450
451#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
452	if (enabled == 0 && rtc->uie_irq_active) {
453		mutex_unlock(&rtc->ops_lock);
454		return rtc_dev_update_irq_enable_emul(rtc, 0);
455	}
456#endif
457	/* make sure we're changing state */
458	if (rtc->uie_rtctimer.enabled == enabled)
459		goto out;
460
461	if (rtc->uie_unsupported) {
462		err = -EINVAL;
463		goto out;
464	}
465
466	if (enabled) {
467		struct rtc_time tm;
468		ktime_t now, onesec;
469
470		__rtc_read_time(rtc, &tm);
471		onesec = ktime_set(1, 0);
472		now = rtc_tm_to_ktime(tm);
473		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
474		rtc->uie_rtctimer.period = ktime_set(1, 0);
475		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
476	} else
477		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
478
479out:
480	mutex_unlock(&rtc->ops_lock);
481#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
482	/*
483	 * Enable emulation if the driver did not provide
484	 * the update_irq_enable function pointer or if returned
485	 * -EINVAL to signal that it has been configured without
486	 * interrupts or that are not available at the moment.
487	 */
488	if (err == -EINVAL)
489		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
490#endif
491	return err;
492
493}
494EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
495
496
497/**
498 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
499 * @rtc: pointer to the rtc device
500 *
501 * This function is called when an AIE, UIE or PIE mode interrupt
502 * has occurred (or been emulated).
503 *
504 * Triggers the registered irq_task function callback.
505 */
506void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
507{
508	unsigned long flags;
509
510	/* mark one irq of the appropriate mode */
511	spin_lock_irqsave(&rtc->irq_lock, flags);
512	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
513	spin_unlock_irqrestore(&rtc->irq_lock, flags);
514
515	/* call the task func */
516	spin_lock_irqsave(&rtc->irq_task_lock, flags);
517	if (rtc->irq_task)
518		rtc->irq_task->func(rtc->irq_task->private_data);
519	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
520
521	wake_up_interruptible(&rtc->irq_queue);
522	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
523}
524
525
526/**
527 * rtc_aie_update_irq - AIE mode rtctimer hook
528 * @private: pointer to the rtc_device
529 *
530 * This functions is called when the aie_timer expires.
531 */
532void rtc_aie_update_irq(void *private)
533{
534	struct rtc_device *rtc = (struct rtc_device *)private;
535	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
536}
537
538
539/**
540 * rtc_uie_update_irq - UIE mode rtctimer hook
541 * @private: pointer to the rtc_device
542 *
543 * This functions is called when the uie_timer expires.
544 */
545void rtc_uie_update_irq(void *private)
546{
547	struct rtc_device *rtc = (struct rtc_device *)private;
548	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
549}
550
551
552/**
553 * rtc_pie_update_irq - PIE mode hrtimer hook
554 * @timer: pointer to the pie mode hrtimer
555 *
556 * This function is used to emulate PIE mode interrupts
557 * using an hrtimer. This function is called when the periodic
558 * hrtimer expires.
559 */
560enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
561{
562	struct rtc_device *rtc;
563	ktime_t period;
564	int count;
565	rtc = container_of(timer, struct rtc_device, pie_timer);
566
567	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
568	count = hrtimer_forward_now(timer, period);
569
570	rtc_handle_legacy_irq(rtc, count, RTC_PF);
571
572	return HRTIMER_RESTART;
573}
574
575/**
576 * rtc_update_irq - Triggered when a RTC interrupt occurs.
577 * @rtc: the rtc device
578 * @num: how many irqs are being reported (usually one)
579 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
580 * Context: any
581 */
582void rtc_update_irq(struct rtc_device *rtc,
583		unsigned long num, unsigned long events)
584{
585	schedule_work(&rtc->irqwork);
586}
587EXPORT_SYMBOL_GPL(rtc_update_irq);
588
589static int __rtc_match(struct device *dev, void *data)
590{
591	char *name = (char *)data;
592
593	if (strcmp(dev_name(dev), name) == 0)
594		return 1;
595	return 0;
596}
597
598struct rtc_device *rtc_class_open(char *name)
599{
600	struct device *dev;
601	struct rtc_device *rtc = NULL;
602
603	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
604	if (dev)
605		rtc = to_rtc_device(dev);
606
607	if (rtc) {
608		if (!try_module_get(rtc->owner)) {
609			put_device(dev);
610			rtc = NULL;
611		}
612	}
613
614	return rtc;
615}
616EXPORT_SYMBOL_GPL(rtc_class_open);
617
618void rtc_class_close(struct rtc_device *rtc)
619{
620	module_put(rtc->owner);
621	put_device(&rtc->dev);
622}
623EXPORT_SYMBOL_GPL(rtc_class_close);
624
625int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
626{
627	int retval = -EBUSY;
628
629	if (task == NULL || task->func == NULL)
630		return -EINVAL;
631
632	/* Cannot register while the char dev is in use */
633	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
634		return -EBUSY;
635
636	spin_lock_irq(&rtc->irq_task_lock);
637	if (rtc->irq_task == NULL) {
638		rtc->irq_task = task;
639		retval = 0;
640	}
641	spin_unlock_irq(&rtc->irq_task_lock);
642
643	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
644
645	return retval;
646}
647EXPORT_SYMBOL_GPL(rtc_irq_register);
648
649void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
650{
651	spin_lock_irq(&rtc->irq_task_lock);
652	if (rtc->irq_task == task)
653		rtc->irq_task = NULL;
654	spin_unlock_irq(&rtc->irq_task_lock);
655}
656EXPORT_SYMBOL_GPL(rtc_irq_unregister);
657
658static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
659{
660	/*
661	 * We always cancel the timer here first, because otherwise
662	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
663	 * when we manage to start the timer before the callback
664	 * returns HRTIMER_RESTART.
665	 *
666	 * We cannot use hrtimer_cancel() here as a running callback
667	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
668	 * would spin forever.
669	 */
670	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
671		return -1;
672
673	if (enabled) {
674		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
675
676		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
677	}
678	return 0;
679}
680
681/**
682 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
683 * @rtc: the rtc device
684 * @task: currently registered with rtc_irq_register()
685 * @enabled: true to enable periodic IRQs
686 * Context: any
687 *
688 * Note that rtc_irq_set_freq() should previously have been used to
689 * specify the desired frequency of periodic IRQ task->func() callbacks.
690 */
691int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
692{
693	int err = 0;
694	unsigned long flags;
695
696retry:
697	spin_lock_irqsave(&rtc->irq_task_lock, flags);
698	if (rtc->irq_task != NULL && task == NULL)
699		err = -EBUSY;
700	if (rtc->irq_task != task)
701		err = -EACCES;
702	if (!err) {
703		if (rtc_update_hrtimer(rtc, enabled) < 0) {
704			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
705			cpu_relax();
706			goto retry;
707		}
708		rtc->pie_enabled = enabled;
709	}
710	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711	return err;
712}
713EXPORT_SYMBOL_GPL(rtc_irq_set_state);
714
715/**
716 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
717 * @rtc: the rtc device
718 * @task: currently registered with rtc_irq_register()
719 * @freq: positive frequency with which task->func() will be called
720 * Context: any
721 *
722 * Note that rtc_irq_set_state() is used to enable or disable the
723 * periodic IRQs.
724 */
725int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
726{
727	int err = 0;
728	unsigned long flags;
729
730	if (freq <= 0 || freq > RTC_MAX_FREQ)
731		return -EINVAL;
732retry:
733	spin_lock_irqsave(&rtc->irq_task_lock, flags);
734	if (rtc->irq_task != NULL && task == NULL)
735		err = -EBUSY;
736	if (rtc->irq_task != task)
737		err = -EACCES;
738	if (!err) {
739		rtc->irq_freq = freq;
740		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
741			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742			cpu_relax();
743			goto retry;
744		}
745	}
746	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
747	return err;
748}
749EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
750
751/**
752 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
753 * @rtc rtc device
754 * @timer timer being added.
755 *
756 * Enqueues a timer onto the rtc devices timerqueue and sets
757 * the next alarm event appropriately.
758 *
759 * Sets the enabled bit on the added timer.
760 *
761 * Must hold ops_lock for proper serialization of timerqueue
762 */
763static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
764{
765	timer->enabled = 1;
766	timerqueue_add(&rtc->timerqueue, &timer->node);
767	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
768		struct rtc_wkalrm alarm;
769		int err;
770		alarm.time = rtc_ktime_to_tm(timer->node.expires);
771		alarm.enabled = 1;
772		err = __rtc_set_alarm(rtc, &alarm);
773		if (err == -ETIME)
774			schedule_work(&rtc->irqwork);
775		else if (err) {
776			timerqueue_del(&rtc->timerqueue, &timer->node);
777			timer->enabled = 0;
778			return err;
779		}
780	}
781	return 0;
782}
783
784static void rtc_alarm_disable(struct rtc_device *rtc)
785{
786	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
787		return;
788
789	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
790}
791
792/**
793 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
794 * @rtc rtc device
795 * @timer timer being removed.
796 *
797 * Removes a timer onto the rtc devices timerqueue and sets
798 * the next alarm event appropriately.
799 *
800 * Clears the enabled bit on the removed timer.
801 *
802 * Must hold ops_lock for proper serialization of timerqueue
803 */
804static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
805{
806	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
807	timerqueue_del(&rtc->timerqueue, &timer->node);
808	timer->enabled = 0;
809	if (next == &timer->node) {
810		struct rtc_wkalrm alarm;
811		int err;
812		next = timerqueue_getnext(&rtc->timerqueue);
813		if (!next) {
814			rtc_alarm_disable(rtc);
815			return;
816		}
817		alarm.time = rtc_ktime_to_tm(next->expires);
818		alarm.enabled = 1;
819		err = __rtc_set_alarm(rtc, &alarm);
820		if (err == -ETIME)
821			schedule_work(&rtc->irqwork);
822	}
823}
824
825/**
826 * rtc_timer_do_work - Expires rtc timers
827 * @rtc rtc device
828 * @timer timer being removed.
829 *
830 * Expires rtc timers. Reprograms next alarm event if needed.
831 * Called via worktask.
832 *
833 * Serializes access to timerqueue via ops_lock mutex
834 */
835void rtc_timer_do_work(struct work_struct *work)
836{
837	struct rtc_timer *timer;
838	struct timerqueue_node *next;
839	ktime_t now;
840	struct rtc_time tm;
841
842	struct rtc_device *rtc =
843		container_of(work, struct rtc_device, irqwork);
844
845	mutex_lock(&rtc->ops_lock);
846again:
847	__rtc_read_time(rtc, &tm);
848	now = rtc_tm_to_ktime(tm);
849	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
850		if (next->expires.tv64 > now.tv64)
851			break;
852
853		/* expire timer */
854		timer = container_of(next, struct rtc_timer, node);
855		timerqueue_del(&rtc->timerqueue, &timer->node);
856		timer->enabled = 0;
857		if (timer->task.func)
858			timer->task.func(timer->task.private_data);
859
860		/* Re-add/fwd periodic timers */
861		if (ktime_to_ns(timer->period)) {
862			timer->node.expires = ktime_add(timer->node.expires,
863							timer->period);
864			timer->enabled = 1;
865			timerqueue_add(&rtc->timerqueue, &timer->node);
866		}
867	}
868
869	/* Set next alarm */
870	if (next) {
871		struct rtc_wkalrm alarm;
872		int err;
873		alarm.time = rtc_ktime_to_tm(next->expires);
874		alarm.enabled = 1;
875		err = __rtc_set_alarm(rtc, &alarm);
876		if (err == -ETIME)
877			goto again;
878	} else
879		rtc_alarm_disable(rtc);
880
881	mutex_unlock(&rtc->ops_lock);
882}
883
884
885/* rtc_timer_init - Initializes an rtc_timer
886 * @timer: timer to be intiialized
887 * @f: function pointer to be called when timer fires
888 * @data: private data passed to function pointer
889 *
890 * Kernel interface to initializing an rtc_timer.
891 */
892void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
893{
894	timerqueue_init(&timer->node);
895	timer->enabled = 0;
896	timer->task.func = f;
897	timer->task.private_data = data;
898}
899
900/* rtc_timer_start - Sets an rtc_timer to fire in the future
901 * @ rtc: rtc device to be used
902 * @ timer: timer being set
903 * @ expires: time at which to expire the timer
904 * @ period: period that the timer will recur
905 *
906 * Kernel interface to set an rtc_timer
907 */
908int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
909			ktime_t expires, ktime_t period)
910{
911	int ret = 0;
912	mutex_lock(&rtc->ops_lock);
913	if (timer->enabled)
914		rtc_timer_remove(rtc, timer);
915
916	timer->node.expires = expires;
917	timer->period = period;
918
919	ret = rtc_timer_enqueue(rtc, timer);
920
921	mutex_unlock(&rtc->ops_lock);
922	return ret;
923}
924
925/* rtc_timer_cancel - Stops an rtc_timer
926 * @ rtc: rtc device to be used
927 * @ timer: timer being set
928 *
929 * Kernel interface to cancel an rtc_timer
930 */
931int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
932{
933	int ret = 0;
934	mutex_lock(&rtc->ops_lock);
935	if (timer->enabled)
936		rtc_timer_remove(rtc, timer);
937	mutex_unlock(&rtc->ops_lock);
938	return ret;
939}
940
941