Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, interface functions
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c
9 */
10
11#include <linux/rtc.h>
12#include <linux/sched.h>
13#include <linux/module.h>
14#include <linux/log2.h>
15#include <linux/workqueue.h>
16
17#define CREATE_TRACE_POINTS
18#include <trace/events/rtc.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24{
25 time64_t secs;
26
27 if (!rtc->offset_secs)
28 return;
29
30 secs = rtc_tm_to_time64(tm);
31
32 /*
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
37 */
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
42
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44}
45
46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47{
48 time64_t secs;
49
50 if (!rtc->offset_secs)
51 return;
52
53 secs = rtc_tm_to_time64(tm);
54
55 /*
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
60 */
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
63
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65}
66
67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68{
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 timeu64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
76
77 if (time < range_min || time > range_max)
78 return -ERANGE;
79 }
80
81 return 0;
82}
83
84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85{
86 int err;
87
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
99 }
100
101 rtc_add_offset(rtc, tm);
102
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 }
107 return err;
108}
109
110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111{
112 int err;
113
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
117
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
120
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
123}
124EXPORT_SYMBOL_GPL(rtc_read_time);
125
126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127{
128 int err, uie;
129
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
133
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
137
138 rtc_subtract_offset(rtc, tm);
139
140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142#else
143 uie = rtc->uie_rtctimer.enabled;
144#endif
145 if (uie) {
146 err = rtc_update_irq_enable(rtc, 0);
147 if (err)
148 return err;
149 }
150
151 err = mutex_lock_interruptible(&rtc->ops_lock);
152 if (err)
153 return err;
154
155 if (!rtc->ops)
156 err = -ENODEV;
157 else if (rtc->ops->set_time)
158 err = rtc->ops->set_time(rtc->dev.parent, tm);
159 else
160 err = -EINVAL;
161
162 pm_stay_awake(rtc->dev.parent);
163 mutex_unlock(&rtc->ops_lock);
164 /* A timer might have just expired */
165 schedule_work(&rtc->irqwork);
166
167 if (uie) {
168 err = rtc_update_irq_enable(rtc, 1);
169 if (err)
170 return err;
171 }
172
173 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 return err;
175}
176EXPORT_SYMBOL_GPL(rtc_set_time);
177
178static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 struct rtc_wkalrm *alarm)
180{
181 int err;
182
183 err = mutex_lock_interruptible(&rtc->ops_lock);
184 if (err)
185 return err;
186
187 if (!rtc->ops) {
188 err = -ENODEV;
189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 err = -EINVAL;
191 } else {
192 alarm->enabled = 0;
193 alarm->pending = 0;
194 alarm->time.tm_sec = -1;
195 alarm->time.tm_min = -1;
196 alarm->time.tm_hour = -1;
197 alarm->time.tm_mday = -1;
198 alarm->time.tm_mon = -1;
199 alarm->time.tm_year = -1;
200 alarm->time.tm_wday = -1;
201 alarm->time.tm_yday = -1;
202 alarm->time.tm_isdst = -1;
203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 }
205
206 mutex_unlock(&rtc->ops_lock);
207
208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 return err;
210}
211
212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213{
214 int err;
215 struct rtc_time before, now;
216 int first_time = 1;
217 time64_t t_now, t_alm;
218 enum { none, day, month, year } missing = none;
219 unsigned int days;
220
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
223 *
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
227 *
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
232 *
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
236 *
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
240 * of the -1 fields.
241 *
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
244 *
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
248 *
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
253 *
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
256 *
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
259 * then it's probably best to do it here instead of there..
260 */
261
262 /* Get the "before" timestamp */
263 err = rtc_read_time(rtc, &before);
264 if (err < 0)
265 return err;
266 do {
267 if (!first_time)
268 memcpy(&before, &now, sizeof(struct rtc_time));
269 first_time = 0;
270
271 /* get the RTC alarm values, which may be incomplete */
272 err = rtc_read_alarm_internal(rtc, alarm);
273 if (err)
274 return err;
275
276 /* full-function RTCs won't have such missing fields */
277 err = rtc_valid_tm(&alarm->time);
278 if (!err)
279 goto done;
280
281 /* get the "after" timestamp, to detect wrapped fields */
282 err = rtc_read_time(rtc, &now);
283 if (err < 0)
284 return err;
285
286 /* note that tm_sec is a "don't care" value here: */
287 } while (before.tm_min != now.tm_min ||
288 before.tm_hour != now.tm_hour ||
289 before.tm_mon != now.tm_mon ||
290 before.tm_year != now.tm_year);
291
292 /* Fill in the missing alarm fields using the timestamp; we
293 * know there's at least one since alarm->time is invalid.
294 */
295 if (alarm->time.tm_sec == -1)
296 alarm->time.tm_sec = now.tm_sec;
297 if (alarm->time.tm_min == -1)
298 alarm->time.tm_min = now.tm_min;
299 if (alarm->time.tm_hour == -1)
300 alarm->time.tm_hour = now.tm_hour;
301
302 /* For simplicity, only support date rollover for now */
303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
304 alarm->time.tm_mday = now.tm_mday;
305 missing = day;
306 }
307 if ((unsigned int)alarm->time.tm_mon >= 12) {
308 alarm->time.tm_mon = now.tm_mon;
309 if (missing == none)
310 missing = month;
311 }
312 if (alarm->time.tm_year == -1) {
313 alarm->time.tm_year = now.tm_year;
314 if (missing == none)
315 missing = year;
316 }
317
318 /* Can't proceed if alarm is still invalid after replacing
319 * missing fields.
320 */
321 err = rtc_valid_tm(&alarm->time);
322 if (err)
323 goto done;
324
325 /* with luck, no rollover is needed */
326 t_now = rtc_tm_to_time64(&now);
327 t_alm = rtc_tm_to_time64(&alarm->time);
328 if (t_now < t_alm)
329 goto done;
330
331 switch (missing) {
332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
333 * that will trigger at 5am will do so at 5am Tuesday, which
334 * could also be in the next month or year. This is a common
335 * case, especially for PCs.
336 */
337 case day:
338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
339 t_alm += 24 * 60 * 60;
340 rtc_time64_to_tm(t_alm, &alarm->time);
341 break;
342
343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
344 * be next month. An alarm matching on the 30th, 29th, or 28th
345 * may end up in the month after that! Many newer PCs support
346 * this type of alarm.
347 */
348 case month:
349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
350 do {
351 if (alarm->time.tm_mon < 11) {
352 alarm->time.tm_mon++;
353 } else {
354 alarm->time.tm_mon = 0;
355 alarm->time.tm_year++;
356 }
357 days = rtc_month_days(alarm->time.tm_mon,
358 alarm->time.tm_year);
359 } while (days < alarm->time.tm_mday);
360 break;
361
362 /* Year rollover ... easy except for leap years! */
363 case year:
364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
365 do {
366 alarm->time.tm_year++;
367 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
368 rtc_valid_tm(&alarm->time) != 0);
369 break;
370
371 default:
372 dev_warn(&rtc->dev, "alarm rollover not handled\n");
373 }
374
375 err = rtc_valid_tm(&alarm->time);
376
377done:
378 if (err && alarm->enabled)
379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
380 &alarm->time);
381 else
382 rtc_add_offset(rtc, &alarm->time);
383
384 return err;
385}
386
387int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388{
389 int err;
390
391 err = mutex_lock_interruptible(&rtc->ops_lock);
392 if (err)
393 return err;
394 if (!rtc->ops) {
395 err = -ENODEV;
396 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) {
397 err = -EINVAL;
398 } else {
399 memset(alarm, 0, sizeof(struct rtc_wkalrm));
400 alarm->enabled = rtc->aie_timer.enabled;
401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
402 }
403 mutex_unlock(&rtc->ops_lock);
404
405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
406 return err;
407}
408EXPORT_SYMBOL_GPL(rtc_read_alarm);
409
410static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
411{
412 struct rtc_time tm;
413 time64_t now, scheduled;
414 int err;
415
416 err = rtc_valid_tm(&alarm->time);
417 if (err)
418 return err;
419
420 scheduled = rtc_tm_to_time64(&alarm->time);
421
422 /* Make sure we're not setting alarms in the past */
423 err = __rtc_read_time(rtc, &tm);
424 if (err)
425 return err;
426 now = rtc_tm_to_time64(&tm);
427
428 if (scheduled <= now)
429 return -ETIME;
430 /*
431 * XXX - We just checked to make sure the alarm time is not
432 * in the past, but there is still a race window where if
433 * the is alarm set for the next second and the second ticks
434 * over right here, before we set the alarm.
435 */
436
437 rtc_subtract_offset(rtc, &alarm->time);
438
439 if (!rtc->ops)
440 err = -ENODEV;
441 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
442 err = -EINVAL;
443 else
444 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
445
446 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
447 return err;
448}
449
450int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
451{
452 ktime_t alarm_time;
453 int err;
454
455 if (!rtc->ops)
456 return -ENODEV;
457 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
458 return -EINVAL;
459
460 err = rtc_valid_tm(&alarm->time);
461 if (err != 0)
462 return err;
463
464 err = rtc_valid_range(rtc, &alarm->time);
465 if (err)
466 return err;
467
468 err = mutex_lock_interruptible(&rtc->ops_lock);
469 if (err)
470 return err;
471 if (rtc->aie_timer.enabled)
472 rtc_timer_remove(rtc, &rtc->aie_timer);
473
474 alarm_time = rtc_tm_to_ktime(alarm->time);
475 /*
476 * Round down so we never miss a deadline, checking for past deadline is
477 * done in __rtc_set_alarm
478 */
479 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
480 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
481
482 rtc->aie_timer.node.expires = alarm_time;
483 rtc->aie_timer.period = 0;
484 if (alarm->enabled)
485 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
486
487 mutex_unlock(&rtc->ops_lock);
488
489 return err;
490}
491EXPORT_SYMBOL_GPL(rtc_set_alarm);
492
493/* Called once per device from rtc_device_register */
494int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
495{
496 int err;
497 struct rtc_time now;
498
499 err = rtc_valid_tm(&alarm->time);
500 if (err != 0)
501 return err;
502
503 err = rtc_read_time(rtc, &now);
504 if (err)
505 return err;
506
507 err = mutex_lock_interruptible(&rtc->ops_lock);
508 if (err)
509 return err;
510
511 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
512 rtc->aie_timer.period = 0;
513
514 /* Alarm has to be enabled & in the future for us to enqueue it */
515 if (alarm->enabled && (rtc_tm_to_ktime(now) <
516 rtc->aie_timer.node.expires)) {
517 rtc->aie_timer.enabled = 1;
518 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
519 trace_rtc_timer_enqueue(&rtc->aie_timer);
520 }
521 mutex_unlock(&rtc->ops_lock);
522 return err;
523}
524EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
525
526int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
527{
528 int err;
529
530 err = mutex_lock_interruptible(&rtc->ops_lock);
531 if (err)
532 return err;
533
534 if (rtc->aie_timer.enabled != enabled) {
535 if (enabled)
536 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 else
538 rtc_timer_remove(rtc, &rtc->aie_timer);
539 }
540
541 if (err)
542 /* nothing */;
543 else if (!rtc->ops)
544 err = -ENODEV;
545 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
546 err = -EINVAL;
547 else
548 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
549
550 mutex_unlock(&rtc->ops_lock);
551
552 trace_rtc_alarm_irq_enable(enabled, err);
553 return err;
554}
555EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
556
557int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
558{
559 int err;
560
561 err = mutex_lock_interruptible(&rtc->ops_lock);
562 if (err)
563 return err;
564
565#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
566 if (enabled == 0 && rtc->uie_irq_active) {
567 mutex_unlock(&rtc->ops_lock);
568 return rtc_dev_update_irq_enable_emul(rtc, 0);
569 }
570#endif
571 /* make sure we're changing state */
572 if (rtc->uie_rtctimer.enabled == enabled)
573 goto out;
574
575 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
576 !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
577 mutex_unlock(&rtc->ops_lock);
578#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
579 return rtc_dev_update_irq_enable_emul(rtc, enabled);
580#else
581 return -EINVAL;
582#endif
583 }
584
585 if (enabled) {
586 struct rtc_time tm;
587 ktime_t now, onesec;
588
589 err = __rtc_read_time(rtc, &tm);
590 if (err)
591 goto out;
592 onesec = ktime_set(1, 0);
593 now = rtc_tm_to_ktime(tm);
594 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
595 rtc->uie_rtctimer.period = ktime_set(1, 0);
596 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
597 } else {
598 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
599 }
600
601out:
602 mutex_unlock(&rtc->ops_lock);
603
604 return err;
605}
606EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
607
608/**
609 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
610 * @rtc: pointer to the rtc device
611 * @num: number of occurence of the event
612 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
613 *
614 * This function is called when an AIE, UIE or PIE mode interrupt
615 * has occurred (or been emulated).
616 *
617 */
618void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
619{
620 unsigned long flags;
621
622 /* mark one irq of the appropriate mode */
623 spin_lock_irqsave(&rtc->irq_lock, flags);
624 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
625 spin_unlock_irqrestore(&rtc->irq_lock, flags);
626
627 wake_up_interruptible(&rtc->irq_queue);
628 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
629}
630
631/**
632 * rtc_aie_update_irq - AIE mode rtctimer hook
633 * @rtc: pointer to the rtc_device
634 *
635 * This functions is called when the aie_timer expires.
636 */
637void rtc_aie_update_irq(struct rtc_device *rtc)
638{
639 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
640}
641
642/**
643 * rtc_uie_update_irq - UIE mode rtctimer hook
644 * @rtc: pointer to the rtc_device
645 *
646 * This functions is called when the uie_timer expires.
647 */
648void rtc_uie_update_irq(struct rtc_device *rtc)
649{
650 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
651}
652
653/**
654 * rtc_pie_update_irq - PIE mode hrtimer hook
655 * @timer: pointer to the pie mode hrtimer
656 *
657 * This function is used to emulate PIE mode interrupts
658 * using an hrtimer. This function is called when the periodic
659 * hrtimer expires.
660 */
661enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
662{
663 struct rtc_device *rtc;
664 ktime_t period;
665 u64 count;
666
667 rtc = container_of(timer, struct rtc_device, pie_timer);
668
669 period = NSEC_PER_SEC / rtc->irq_freq;
670 count = hrtimer_forward_now(timer, period);
671
672 rtc_handle_legacy_irq(rtc, count, RTC_PF);
673
674 return HRTIMER_RESTART;
675}
676
677/**
678 * rtc_update_irq - Triggered when a RTC interrupt occurs.
679 * @rtc: the rtc device
680 * @num: how many irqs are being reported (usually one)
681 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
682 * Context: any
683 */
684void rtc_update_irq(struct rtc_device *rtc,
685 unsigned long num, unsigned long events)
686{
687 if (IS_ERR_OR_NULL(rtc))
688 return;
689
690 pm_stay_awake(rtc->dev.parent);
691 schedule_work(&rtc->irqwork);
692}
693EXPORT_SYMBOL_GPL(rtc_update_irq);
694
695struct rtc_device *rtc_class_open(const char *name)
696{
697 struct device *dev;
698 struct rtc_device *rtc = NULL;
699
700 dev = class_find_device_by_name(&rtc_class, name);
701 if (dev)
702 rtc = to_rtc_device(dev);
703
704 if (rtc) {
705 if (!try_module_get(rtc->owner)) {
706 put_device(dev);
707 rtc = NULL;
708 }
709 }
710
711 return rtc;
712}
713EXPORT_SYMBOL_GPL(rtc_class_open);
714
715void rtc_class_close(struct rtc_device *rtc)
716{
717 module_put(rtc->owner);
718 put_device(&rtc->dev);
719}
720EXPORT_SYMBOL_GPL(rtc_class_close);
721
722static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
723{
724 /*
725 * We always cancel the timer here first, because otherwise
726 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
727 * when we manage to start the timer before the callback
728 * returns HRTIMER_RESTART.
729 *
730 * We cannot use hrtimer_cancel() here as a running callback
731 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
732 * would spin forever.
733 */
734 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
735 return -1;
736
737 if (enabled) {
738 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
739
740 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
741 }
742 return 0;
743}
744
745/**
746 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
747 * @rtc: the rtc device
748 * @enabled: true to enable periodic IRQs
749 * Context: any
750 *
751 * Note that rtc_irq_set_freq() should previously have been used to
752 * specify the desired frequency of periodic IRQ.
753 */
754int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
755{
756 int err = 0;
757
758 while (rtc_update_hrtimer(rtc, enabled) < 0)
759 cpu_relax();
760
761 rtc->pie_enabled = enabled;
762
763 trace_rtc_irq_set_state(enabled, err);
764 return err;
765}
766
767/**
768 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
769 * @rtc: the rtc device
770 * @freq: positive frequency
771 * Context: any
772 *
773 * Note that rtc_irq_set_state() is used to enable or disable the
774 * periodic IRQs.
775 */
776int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
777{
778 int err = 0;
779
780 if (freq <= 0 || freq > RTC_MAX_FREQ)
781 return -EINVAL;
782
783 rtc->irq_freq = freq;
784 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
785 cpu_relax();
786
787 trace_rtc_irq_set_freq(freq, err);
788 return err;
789}
790
791/**
792 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
793 * @rtc: rtc device
794 * @timer: timer being added.
795 *
796 * Enqueues a timer onto the rtc devices timerqueue and sets
797 * the next alarm event appropriately.
798 *
799 * Sets the enabled bit on the added timer.
800 *
801 * Must hold ops_lock for proper serialization of timerqueue
802 */
803static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
804{
805 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
806 struct rtc_time tm;
807 ktime_t now;
808 int err;
809
810 err = __rtc_read_time(rtc, &tm);
811 if (err)
812 return err;
813
814 timer->enabled = 1;
815 now = rtc_tm_to_ktime(tm);
816
817 /* Skip over expired timers */
818 while (next) {
819 if (next->expires >= now)
820 break;
821 next = timerqueue_iterate_next(next);
822 }
823
824 timerqueue_add(&rtc->timerqueue, &timer->node);
825 trace_rtc_timer_enqueue(timer);
826 if (!next || ktime_before(timer->node.expires, next->expires)) {
827 struct rtc_wkalrm alarm;
828
829 alarm.time = rtc_ktime_to_tm(timer->node.expires);
830 alarm.enabled = 1;
831 err = __rtc_set_alarm(rtc, &alarm);
832 if (err == -ETIME) {
833 pm_stay_awake(rtc->dev.parent);
834 schedule_work(&rtc->irqwork);
835 } else if (err) {
836 timerqueue_del(&rtc->timerqueue, &timer->node);
837 trace_rtc_timer_dequeue(timer);
838 timer->enabled = 0;
839 return err;
840 }
841 }
842 return 0;
843}
844
845static void rtc_alarm_disable(struct rtc_device *rtc)
846{
847 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
848 return;
849
850 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
851 trace_rtc_alarm_irq_enable(0, 0);
852}
853
854/**
855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
856 * @rtc: rtc device
857 * @timer: timer being removed.
858 *
859 * Removes a timer onto the rtc devices timerqueue and sets
860 * the next alarm event appropriately.
861 *
862 * Clears the enabled bit on the removed timer.
863 *
864 * Must hold ops_lock for proper serialization of timerqueue
865 */
866static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
867{
868 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
869
870 timerqueue_del(&rtc->timerqueue, &timer->node);
871 trace_rtc_timer_dequeue(timer);
872 timer->enabled = 0;
873 if (next == &timer->node) {
874 struct rtc_wkalrm alarm;
875 int err;
876
877 next = timerqueue_getnext(&rtc->timerqueue);
878 if (!next) {
879 rtc_alarm_disable(rtc);
880 return;
881 }
882 alarm.time = rtc_ktime_to_tm(next->expires);
883 alarm.enabled = 1;
884 err = __rtc_set_alarm(rtc, &alarm);
885 if (err == -ETIME) {
886 pm_stay_awake(rtc->dev.parent);
887 schedule_work(&rtc->irqwork);
888 }
889 }
890}
891
892/**
893 * rtc_timer_do_work - Expires rtc timers
894 * @work: work item
895 *
896 * Expires rtc timers. Reprograms next alarm event if needed.
897 * Called via worktask.
898 *
899 * Serializes access to timerqueue via ops_lock mutex
900 */
901void rtc_timer_do_work(struct work_struct *work)
902{
903 struct rtc_timer *timer;
904 struct timerqueue_node *next;
905 ktime_t now;
906 struct rtc_time tm;
907 int err;
908
909 struct rtc_device *rtc =
910 container_of(work, struct rtc_device, irqwork);
911
912 mutex_lock(&rtc->ops_lock);
913again:
914 err = __rtc_read_time(rtc, &tm);
915 if (err) {
916 mutex_unlock(&rtc->ops_lock);
917 return;
918 }
919 now = rtc_tm_to_ktime(tm);
920 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
921 if (next->expires > now)
922 break;
923
924 /* expire timer */
925 timer = container_of(next, struct rtc_timer, node);
926 timerqueue_del(&rtc->timerqueue, &timer->node);
927 trace_rtc_timer_dequeue(timer);
928 timer->enabled = 0;
929 if (timer->func)
930 timer->func(timer->rtc);
931
932 trace_rtc_timer_fired(timer);
933 /* Re-add/fwd periodic timers */
934 if (ktime_to_ns(timer->period)) {
935 timer->node.expires = ktime_add(timer->node.expires,
936 timer->period);
937 timer->enabled = 1;
938 timerqueue_add(&rtc->timerqueue, &timer->node);
939 trace_rtc_timer_enqueue(timer);
940 }
941 }
942
943 /* Set next alarm */
944 if (next) {
945 struct rtc_wkalrm alarm;
946 int err;
947 int retry = 3;
948
949 alarm.time = rtc_ktime_to_tm(next->expires);
950 alarm.enabled = 1;
951reprogram:
952 err = __rtc_set_alarm(rtc, &alarm);
953 if (err == -ETIME) {
954 goto again;
955 } else if (err) {
956 if (retry-- > 0)
957 goto reprogram;
958
959 timer = container_of(next, struct rtc_timer, node);
960 timerqueue_del(&rtc->timerqueue, &timer->node);
961 trace_rtc_timer_dequeue(timer);
962 timer->enabled = 0;
963 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
964 goto again;
965 }
966 } else {
967 rtc_alarm_disable(rtc);
968 }
969
970 pm_relax(rtc->dev.parent);
971 mutex_unlock(&rtc->ops_lock);
972}
973
974/* rtc_timer_init - Initializes an rtc_timer
975 * @timer: timer to be intiialized
976 * @f: function pointer to be called when timer fires
977 * @rtc: pointer to the rtc_device
978 *
979 * Kernel interface to initializing an rtc_timer.
980 */
981void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
982 struct rtc_device *rtc)
983{
984 timerqueue_init(&timer->node);
985 timer->enabled = 0;
986 timer->func = f;
987 timer->rtc = rtc;
988}
989
990/* rtc_timer_start - Sets an rtc_timer to fire in the future
991 * @ rtc: rtc device to be used
992 * @ timer: timer being set
993 * @ expires: time at which to expire the timer
994 * @ period: period that the timer will recur
995 *
996 * Kernel interface to set an rtc_timer
997 */
998int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
999 ktime_t expires, ktime_t period)
1000{
1001 int ret = 0;
1002
1003 mutex_lock(&rtc->ops_lock);
1004 if (timer->enabled)
1005 rtc_timer_remove(rtc, timer);
1006
1007 timer->node.expires = expires;
1008 timer->period = period;
1009
1010 ret = rtc_timer_enqueue(rtc, timer);
1011
1012 mutex_unlock(&rtc->ops_lock);
1013 return ret;
1014}
1015
1016/* rtc_timer_cancel - Stops an rtc_timer
1017 * @ rtc: rtc device to be used
1018 * @ timer: timer being set
1019 *
1020 * Kernel interface to cancel an rtc_timer
1021 */
1022void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1023{
1024 mutex_lock(&rtc->ops_lock);
1025 if (timer->enabled)
1026 rtc_timer_remove(rtc, timer);
1027 mutex_unlock(&rtc->ops_lock);
1028}
1029
1030/**
1031 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1032 * @rtc: rtc device to be used
1033 * @offset: the offset in parts per billion
1034 *
1035 * see below for details.
1036 *
1037 * Kernel interface to read rtc clock offset
1038 * Returns 0 on success, or a negative number on error.
1039 * If read_offset() is not implemented for the rtc, return -EINVAL
1040 */
1041int rtc_read_offset(struct rtc_device *rtc, long *offset)
1042{
1043 int ret;
1044
1045 if (!rtc->ops)
1046 return -ENODEV;
1047
1048 if (!rtc->ops->read_offset)
1049 return -EINVAL;
1050
1051 mutex_lock(&rtc->ops_lock);
1052 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1053 mutex_unlock(&rtc->ops_lock);
1054
1055 trace_rtc_read_offset(*offset, ret);
1056 return ret;
1057}
1058
1059/**
1060 * rtc_set_offset - Adjusts the duration of the average second
1061 * @rtc: rtc device to be used
1062 * @offset: the offset in parts per billion
1063 *
1064 * Some rtc's allow an adjustment to the average duration of a second
1065 * to compensate for differences in the actual clock rate due to temperature,
1066 * the crystal, capacitor, etc.
1067 *
1068 * The adjustment applied is as follows:
1069 * t = t0 * (1 + offset * 1e-9)
1070 * where t0 is the measured length of 1 RTC second with offset = 0
1071 *
1072 * Kernel interface to adjust an rtc clock offset.
1073 * Return 0 on success, or a negative number on error.
1074 * If the rtc offset is not setable (or not implemented), return -EINVAL
1075 */
1076int rtc_set_offset(struct rtc_device *rtc, long offset)
1077{
1078 int ret;
1079
1080 if (!rtc->ops)
1081 return -ENODEV;
1082
1083 if (!rtc->ops->set_offset)
1084 return -EINVAL;
1085
1086 mutex_lock(&rtc->ops_lock);
1087 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1088 mutex_unlock(&rtc->ops_lock);
1089
1090 trace_rtc_set_offset(offset, ret);
1091 return ret;
1092}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, interface functions
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c
9 */
10
11#include <linux/rtc.h>
12#include <linux/sched.h>
13#include <linux/module.h>
14#include <linux/log2.h>
15#include <linux/workqueue.h>
16
17#define CREATE_TRACE_POINTS
18#include <trace/events/rtc.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24{
25 time64_t secs;
26
27 if (!rtc->offset_secs)
28 return;
29
30 secs = rtc_tm_to_time64(tm);
31
32 /*
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
37 */
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
42
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44}
45
46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47{
48 time64_t secs;
49
50 if (!rtc->offset_secs)
51 return;
52
53 secs = rtc_tm_to_time64(tm);
54
55 /*
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
60 */
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
63
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65}
66
67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68{
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 time64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
76
77 if (time < range_min || time > range_max)
78 return -ERANGE;
79 }
80
81 return 0;
82}
83
84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85{
86 int err;
87
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
99 }
100
101 rtc_add_offset(rtc, tm);
102
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 }
107 return err;
108}
109
110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111{
112 int err;
113
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
117
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
120
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
123}
124EXPORT_SYMBOL_GPL(rtc_read_time);
125
126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127{
128 int err;
129
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
133
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
137
138 rtc_subtract_offset(rtc, tm);
139
140 err = mutex_lock_interruptible(&rtc->ops_lock);
141 if (err)
142 return err;
143
144 if (!rtc->ops)
145 err = -ENODEV;
146 else if (rtc->ops->set_time)
147 err = rtc->ops->set_time(rtc->dev.parent, tm);
148 else
149 err = -EINVAL;
150
151 pm_stay_awake(rtc->dev.parent);
152 mutex_unlock(&rtc->ops_lock);
153 /* A timer might have just expired */
154 schedule_work(&rtc->irqwork);
155
156 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
157 return err;
158}
159EXPORT_SYMBOL_GPL(rtc_set_time);
160
161static int rtc_read_alarm_internal(struct rtc_device *rtc,
162 struct rtc_wkalrm *alarm)
163{
164 int err;
165
166 err = mutex_lock_interruptible(&rtc->ops_lock);
167 if (err)
168 return err;
169
170 if (!rtc->ops) {
171 err = -ENODEV;
172 } else if (!rtc->ops->read_alarm) {
173 err = -EINVAL;
174 } else {
175 alarm->enabled = 0;
176 alarm->pending = 0;
177 alarm->time.tm_sec = -1;
178 alarm->time.tm_min = -1;
179 alarm->time.tm_hour = -1;
180 alarm->time.tm_mday = -1;
181 alarm->time.tm_mon = -1;
182 alarm->time.tm_year = -1;
183 alarm->time.tm_wday = -1;
184 alarm->time.tm_yday = -1;
185 alarm->time.tm_isdst = -1;
186 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
187 }
188
189 mutex_unlock(&rtc->ops_lock);
190
191 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
192 return err;
193}
194
195int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
196{
197 int err;
198 struct rtc_time before, now;
199 int first_time = 1;
200 time64_t t_now, t_alm;
201 enum { none, day, month, year } missing = none;
202 unsigned int days;
203
204 /* The lower level RTC driver may return -1 in some fields,
205 * creating invalid alarm->time values, for reasons like:
206 *
207 * - The hardware may not be capable of filling them in;
208 * many alarms match only on time-of-day fields, not
209 * day/month/year calendar data.
210 *
211 * - Some hardware uses illegal values as "wildcard" match
212 * values, which non-Linux firmware (like a BIOS) may try
213 * to set up as e.g. "alarm 15 minutes after each hour".
214 * Linux uses only oneshot alarms.
215 *
216 * When we see that here, we deal with it by using values from
217 * a current RTC timestamp for any missing (-1) values. The
218 * RTC driver prevents "periodic alarm" modes.
219 *
220 * But this can be racey, because some fields of the RTC timestamp
221 * may have wrapped in the interval since we read the RTC alarm,
222 * which would lead to us inserting inconsistent values in place
223 * of the -1 fields.
224 *
225 * Reading the alarm and timestamp in the reverse sequence
226 * would have the same race condition, and not solve the issue.
227 *
228 * So, we must first read the RTC timestamp,
229 * then read the RTC alarm value,
230 * and then read a second RTC timestamp.
231 *
232 * If any fields of the second timestamp have changed
233 * when compared with the first timestamp, then we know
234 * our timestamp may be inconsistent with that used by
235 * the low-level rtc_read_alarm_internal() function.
236 *
237 * So, when the two timestamps disagree, we just loop and do
238 * the process again to get a fully consistent set of values.
239 *
240 * This could all instead be done in the lower level driver,
241 * but since more than one lower level RTC implementation needs it,
242 * then it's probably best best to do it here instead of there..
243 */
244
245 /* Get the "before" timestamp */
246 err = rtc_read_time(rtc, &before);
247 if (err < 0)
248 return err;
249 do {
250 if (!first_time)
251 memcpy(&before, &now, sizeof(struct rtc_time));
252 first_time = 0;
253
254 /* get the RTC alarm values, which may be incomplete */
255 err = rtc_read_alarm_internal(rtc, alarm);
256 if (err)
257 return err;
258
259 /* full-function RTCs won't have such missing fields */
260 if (rtc_valid_tm(&alarm->time) == 0) {
261 rtc_add_offset(rtc, &alarm->time);
262 return 0;
263 }
264
265 /* get the "after" timestamp, to detect wrapped fields */
266 err = rtc_read_time(rtc, &now);
267 if (err < 0)
268 return err;
269
270 /* note that tm_sec is a "don't care" value here: */
271 } while (before.tm_min != now.tm_min ||
272 before.tm_hour != now.tm_hour ||
273 before.tm_mon != now.tm_mon ||
274 before.tm_year != now.tm_year);
275
276 /* Fill in the missing alarm fields using the timestamp; we
277 * know there's at least one since alarm->time is invalid.
278 */
279 if (alarm->time.tm_sec == -1)
280 alarm->time.tm_sec = now.tm_sec;
281 if (alarm->time.tm_min == -1)
282 alarm->time.tm_min = now.tm_min;
283 if (alarm->time.tm_hour == -1)
284 alarm->time.tm_hour = now.tm_hour;
285
286 /* For simplicity, only support date rollover for now */
287 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
288 alarm->time.tm_mday = now.tm_mday;
289 missing = day;
290 }
291 if ((unsigned int)alarm->time.tm_mon >= 12) {
292 alarm->time.tm_mon = now.tm_mon;
293 if (missing == none)
294 missing = month;
295 }
296 if (alarm->time.tm_year == -1) {
297 alarm->time.tm_year = now.tm_year;
298 if (missing == none)
299 missing = year;
300 }
301
302 /* Can't proceed if alarm is still invalid after replacing
303 * missing fields.
304 */
305 err = rtc_valid_tm(&alarm->time);
306 if (err)
307 goto done;
308
309 /* with luck, no rollover is needed */
310 t_now = rtc_tm_to_time64(&now);
311 t_alm = rtc_tm_to_time64(&alarm->time);
312 if (t_now < t_alm)
313 goto done;
314
315 switch (missing) {
316 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
317 * that will trigger at 5am will do so at 5am Tuesday, which
318 * could also be in the next month or year. This is a common
319 * case, especially for PCs.
320 */
321 case day:
322 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
323 t_alm += 24 * 60 * 60;
324 rtc_time64_to_tm(t_alm, &alarm->time);
325 break;
326
327 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
328 * be next month. An alarm matching on the 30th, 29th, or 28th
329 * may end up in the month after that! Many newer PCs support
330 * this type of alarm.
331 */
332 case month:
333 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
334 do {
335 if (alarm->time.tm_mon < 11) {
336 alarm->time.tm_mon++;
337 } else {
338 alarm->time.tm_mon = 0;
339 alarm->time.tm_year++;
340 }
341 days = rtc_month_days(alarm->time.tm_mon,
342 alarm->time.tm_year);
343 } while (days < alarm->time.tm_mday);
344 break;
345
346 /* Year rollover ... easy except for leap years! */
347 case year:
348 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
349 do {
350 alarm->time.tm_year++;
351 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
352 rtc_valid_tm(&alarm->time) != 0);
353 break;
354
355 default:
356 dev_warn(&rtc->dev, "alarm rollover not handled\n");
357 }
358
359 err = rtc_valid_tm(&alarm->time);
360
361done:
362 if (err)
363 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
364 &alarm->time);
365
366 return err;
367}
368
369int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
370{
371 int err;
372
373 err = mutex_lock_interruptible(&rtc->ops_lock);
374 if (err)
375 return err;
376 if (!rtc->ops) {
377 err = -ENODEV;
378 } else if (!rtc->ops->read_alarm) {
379 err = -EINVAL;
380 } else {
381 memset(alarm, 0, sizeof(struct rtc_wkalrm));
382 alarm->enabled = rtc->aie_timer.enabled;
383 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
384 }
385 mutex_unlock(&rtc->ops_lock);
386
387 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
388 return err;
389}
390EXPORT_SYMBOL_GPL(rtc_read_alarm);
391
392static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
393{
394 struct rtc_time tm;
395 time64_t now, scheduled;
396 int err;
397
398 err = rtc_valid_tm(&alarm->time);
399 if (err)
400 return err;
401
402 scheduled = rtc_tm_to_time64(&alarm->time);
403
404 /* Make sure we're not setting alarms in the past */
405 err = __rtc_read_time(rtc, &tm);
406 if (err)
407 return err;
408 now = rtc_tm_to_time64(&tm);
409 if (scheduled <= now)
410 return -ETIME;
411 /*
412 * XXX - We just checked to make sure the alarm time is not
413 * in the past, but there is still a race window where if
414 * the is alarm set for the next second and the second ticks
415 * over right here, before we set the alarm.
416 */
417
418 rtc_subtract_offset(rtc, &alarm->time);
419
420 if (!rtc->ops)
421 err = -ENODEV;
422 else if (!rtc->ops->set_alarm)
423 err = -EINVAL;
424 else
425 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
426
427 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
428 return err;
429}
430
431int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
432{
433 int err;
434
435 if (!rtc->ops)
436 return -ENODEV;
437 else if (!rtc->ops->set_alarm)
438 return -EINVAL;
439
440 err = rtc_valid_tm(&alarm->time);
441 if (err != 0)
442 return err;
443
444 err = rtc_valid_range(rtc, &alarm->time);
445 if (err)
446 return err;
447
448 err = mutex_lock_interruptible(&rtc->ops_lock);
449 if (err)
450 return err;
451 if (rtc->aie_timer.enabled)
452 rtc_timer_remove(rtc, &rtc->aie_timer);
453
454 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
455 rtc->aie_timer.period = 0;
456 if (alarm->enabled)
457 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
458
459 mutex_unlock(&rtc->ops_lock);
460
461 return err;
462}
463EXPORT_SYMBOL_GPL(rtc_set_alarm);
464
465/* Called once per device from rtc_device_register */
466int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
467{
468 int err;
469 struct rtc_time now;
470
471 err = rtc_valid_tm(&alarm->time);
472 if (err != 0)
473 return err;
474
475 err = rtc_read_time(rtc, &now);
476 if (err)
477 return err;
478
479 err = mutex_lock_interruptible(&rtc->ops_lock);
480 if (err)
481 return err;
482
483 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
484 rtc->aie_timer.period = 0;
485
486 /* Alarm has to be enabled & in the future for us to enqueue it */
487 if (alarm->enabled && (rtc_tm_to_ktime(now) <
488 rtc->aie_timer.node.expires)) {
489 rtc->aie_timer.enabled = 1;
490 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
491 trace_rtc_timer_enqueue(&rtc->aie_timer);
492 }
493 mutex_unlock(&rtc->ops_lock);
494 return err;
495}
496EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
497
498int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
499{
500 int err;
501
502 err = mutex_lock_interruptible(&rtc->ops_lock);
503 if (err)
504 return err;
505
506 if (rtc->aie_timer.enabled != enabled) {
507 if (enabled)
508 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
509 else
510 rtc_timer_remove(rtc, &rtc->aie_timer);
511 }
512
513 if (err)
514 /* nothing */;
515 else if (!rtc->ops)
516 err = -ENODEV;
517 else if (!rtc->ops->alarm_irq_enable)
518 err = -EINVAL;
519 else
520 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
521
522 mutex_unlock(&rtc->ops_lock);
523
524 trace_rtc_alarm_irq_enable(enabled, err);
525 return err;
526}
527EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
528
529int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
530{
531 int err;
532
533 err = mutex_lock_interruptible(&rtc->ops_lock);
534 if (err)
535 return err;
536
537#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
538 if (enabled == 0 && rtc->uie_irq_active) {
539 mutex_unlock(&rtc->ops_lock);
540 return rtc_dev_update_irq_enable_emul(rtc, 0);
541 }
542#endif
543 /* make sure we're changing state */
544 if (rtc->uie_rtctimer.enabled == enabled)
545 goto out;
546
547 if (rtc->uie_unsupported) {
548 err = -EINVAL;
549 goto out;
550 }
551
552 if (enabled) {
553 struct rtc_time tm;
554 ktime_t now, onesec;
555
556 __rtc_read_time(rtc, &tm);
557 onesec = ktime_set(1, 0);
558 now = rtc_tm_to_ktime(tm);
559 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
560 rtc->uie_rtctimer.period = ktime_set(1, 0);
561 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
562 } else {
563 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
564 }
565
566out:
567 mutex_unlock(&rtc->ops_lock);
568#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
569 /*
570 * Enable emulation if the driver returned -EINVAL to signal that it has
571 * been configured without interrupts or they are not available at the
572 * moment.
573 */
574 if (err == -EINVAL)
575 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
576#endif
577 return err;
578}
579EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
580
581/**
582 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
583 * @rtc: pointer to the rtc device
584 *
585 * This function is called when an AIE, UIE or PIE mode interrupt
586 * has occurred (or been emulated).
587 *
588 */
589void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
590{
591 unsigned long flags;
592
593 /* mark one irq of the appropriate mode */
594 spin_lock_irqsave(&rtc->irq_lock, flags);
595 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
596 spin_unlock_irqrestore(&rtc->irq_lock, flags);
597
598 wake_up_interruptible(&rtc->irq_queue);
599 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
600}
601
602/**
603 * rtc_aie_update_irq - AIE mode rtctimer hook
604 * @rtc: pointer to the rtc_device
605 *
606 * This functions is called when the aie_timer expires.
607 */
608void rtc_aie_update_irq(struct rtc_device *rtc)
609{
610 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
611}
612
613/**
614 * rtc_uie_update_irq - UIE mode rtctimer hook
615 * @rtc: pointer to the rtc_device
616 *
617 * This functions is called when the uie_timer expires.
618 */
619void rtc_uie_update_irq(struct rtc_device *rtc)
620{
621 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
622}
623
624/**
625 * rtc_pie_update_irq - PIE mode hrtimer hook
626 * @timer: pointer to the pie mode hrtimer
627 *
628 * This function is used to emulate PIE mode interrupts
629 * using an hrtimer. This function is called when the periodic
630 * hrtimer expires.
631 */
632enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
633{
634 struct rtc_device *rtc;
635 ktime_t period;
636 u64 count;
637
638 rtc = container_of(timer, struct rtc_device, pie_timer);
639
640 period = NSEC_PER_SEC / rtc->irq_freq;
641 count = hrtimer_forward_now(timer, period);
642
643 rtc_handle_legacy_irq(rtc, count, RTC_PF);
644
645 return HRTIMER_RESTART;
646}
647
648/**
649 * rtc_update_irq - Triggered when a RTC interrupt occurs.
650 * @rtc: the rtc device
651 * @num: how many irqs are being reported (usually one)
652 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
653 * Context: any
654 */
655void rtc_update_irq(struct rtc_device *rtc,
656 unsigned long num, unsigned long events)
657{
658 if (IS_ERR_OR_NULL(rtc))
659 return;
660
661 pm_stay_awake(rtc->dev.parent);
662 schedule_work(&rtc->irqwork);
663}
664EXPORT_SYMBOL_GPL(rtc_update_irq);
665
666struct rtc_device *rtc_class_open(const char *name)
667{
668 struct device *dev;
669 struct rtc_device *rtc = NULL;
670
671 dev = class_find_device_by_name(rtc_class, name);
672 if (dev)
673 rtc = to_rtc_device(dev);
674
675 if (rtc) {
676 if (!try_module_get(rtc->owner)) {
677 put_device(dev);
678 rtc = NULL;
679 }
680 }
681
682 return rtc;
683}
684EXPORT_SYMBOL_GPL(rtc_class_open);
685
686void rtc_class_close(struct rtc_device *rtc)
687{
688 module_put(rtc->owner);
689 put_device(&rtc->dev);
690}
691EXPORT_SYMBOL_GPL(rtc_class_close);
692
693static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
694{
695 /*
696 * We always cancel the timer here first, because otherwise
697 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
698 * when we manage to start the timer before the callback
699 * returns HRTIMER_RESTART.
700 *
701 * We cannot use hrtimer_cancel() here as a running callback
702 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
703 * would spin forever.
704 */
705 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
706 return -1;
707
708 if (enabled) {
709 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
710
711 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
712 }
713 return 0;
714}
715
716/**
717 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
718 * @rtc: the rtc device
719 * @enabled: true to enable periodic IRQs
720 * Context: any
721 *
722 * Note that rtc_irq_set_freq() should previously have been used to
723 * specify the desired frequency of periodic IRQ.
724 */
725int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
726{
727 int err = 0;
728
729 while (rtc_update_hrtimer(rtc, enabled) < 0)
730 cpu_relax();
731
732 rtc->pie_enabled = enabled;
733
734 trace_rtc_irq_set_state(enabled, err);
735 return err;
736}
737
738/**
739 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
740 * @rtc: the rtc device
741 * @freq: positive frequency
742 * Context: any
743 *
744 * Note that rtc_irq_set_state() is used to enable or disable the
745 * periodic IRQs.
746 */
747int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
748{
749 int err = 0;
750
751 if (freq <= 0 || freq > RTC_MAX_FREQ)
752 return -EINVAL;
753
754 rtc->irq_freq = freq;
755 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
756 cpu_relax();
757
758 trace_rtc_irq_set_freq(freq, err);
759 return err;
760}
761
762/**
763 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
764 * @rtc rtc device
765 * @timer timer being added.
766 *
767 * Enqueues a timer onto the rtc devices timerqueue and sets
768 * the next alarm event appropriately.
769 *
770 * Sets the enabled bit on the added timer.
771 *
772 * Must hold ops_lock for proper serialization of timerqueue
773 */
774static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
775{
776 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
777 struct rtc_time tm;
778 ktime_t now;
779
780 timer->enabled = 1;
781 __rtc_read_time(rtc, &tm);
782 now = rtc_tm_to_ktime(tm);
783
784 /* Skip over expired timers */
785 while (next) {
786 if (next->expires >= now)
787 break;
788 next = timerqueue_iterate_next(next);
789 }
790
791 timerqueue_add(&rtc->timerqueue, &timer->node);
792 trace_rtc_timer_enqueue(timer);
793 if (!next || ktime_before(timer->node.expires, next->expires)) {
794 struct rtc_wkalrm alarm;
795 int err;
796
797 alarm.time = rtc_ktime_to_tm(timer->node.expires);
798 alarm.enabled = 1;
799 err = __rtc_set_alarm(rtc, &alarm);
800 if (err == -ETIME) {
801 pm_stay_awake(rtc->dev.parent);
802 schedule_work(&rtc->irqwork);
803 } else if (err) {
804 timerqueue_del(&rtc->timerqueue, &timer->node);
805 trace_rtc_timer_dequeue(timer);
806 timer->enabled = 0;
807 return err;
808 }
809 }
810 return 0;
811}
812
813static void rtc_alarm_disable(struct rtc_device *rtc)
814{
815 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
816 return;
817
818 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
819 trace_rtc_alarm_irq_enable(0, 0);
820}
821
822/**
823 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
824 * @rtc rtc device
825 * @timer timer being removed.
826 *
827 * Removes a timer onto the rtc devices timerqueue and sets
828 * the next alarm event appropriately.
829 *
830 * Clears the enabled bit on the removed timer.
831 *
832 * Must hold ops_lock for proper serialization of timerqueue
833 */
834static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
835{
836 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
837
838 timerqueue_del(&rtc->timerqueue, &timer->node);
839 trace_rtc_timer_dequeue(timer);
840 timer->enabled = 0;
841 if (next == &timer->node) {
842 struct rtc_wkalrm alarm;
843 int err;
844
845 next = timerqueue_getnext(&rtc->timerqueue);
846 if (!next) {
847 rtc_alarm_disable(rtc);
848 return;
849 }
850 alarm.time = rtc_ktime_to_tm(next->expires);
851 alarm.enabled = 1;
852 err = __rtc_set_alarm(rtc, &alarm);
853 if (err == -ETIME) {
854 pm_stay_awake(rtc->dev.parent);
855 schedule_work(&rtc->irqwork);
856 }
857 }
858}
859
860/**
861 * rtc_timer_do_work - Expires rtc timers
862 * @rtc rtc device
863 * @timer timer being removed.
864 *
865 * Expires rtc timers. Reprograms next alarm event if needed.
866 * Called via worktask.
867 *
868 * Serializes access to timerqueue via ops_lock mutex
869 */
870void rtc_timer_do_work(struct work_struct *work)
871{
872 struct rtc_timer *timer;
873 struct timerqueue_node *next;
874 ktime_t now;
875 struct rtc_time tm;
876
877 struct rtc_device *rtc =
878 container_of(work, struct rtc_device, irqwork);
879
880 mutex_lock(&rtc->ops_lock);
881again:
882 __rtc_read_time(rtc, &tm);
883 now = rtc_tm_to_ktime(tm);
884 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
885 if (next->expires > now)
886 break;
887
888 /* expire timer */
889 timer = container_of(next, struct rtc_timer, node);
890 timerqueue_del(&rtc->timerqueue, &timer->node);
891 trace_rtc_timer_dequeue(timer);
892 timer->enabled = 0;
893 if (timer->func)
894 timer->func(timer->rtc);
895
896 trace_rtc_timer_fired(timer);
897 /* Re-add/fwd periodic timers */
898 if (ktime_to_ns(timer->period)) {
899 timer->node.expires = ktime_add(timer->node.expires,
900 timer->period);
901 timer->enabled = 1;
902 timerqueue_add(&rtc->timerqueue, &timer->node);
903 trace_rtc_timer_enqueue(timer);
904 }
905 }
906
907 /* Set next alarm */
908 if (next) {
909 struct rtc_wkalrm alarm;
910 int err;
911 int retry = 3;
912
913 alarm.time = rtc_ktime_to_tm(next->expires);
914 alarm.enabled = 1;
915reprogram:
916 err = __rtc_set_alarm(rtc, &alarm);
917 if (err == -ETIME) {
918 goto again;
919 } else if (err) {
920 if (retry-- > 0)
921 goto reprogram;
922
923 timer = container_of(next, struct rtc_timer, node);
924 timerqueue_del(&rtc->timerqueue, &timer->node);
925 trace_rtc_timer_dequeue(timer);
926 timer->enabled = 0;
927 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
928 goto again;
929 }
930 } else {
931 rtc_alarm_disable(rtc);
932 }
933
934 pm_relax(rtc->dev.parent);
935 mutex_unlock(&rtc->ops_lock);
936}
937
938/* rtc_timer_init - Initializes an rtc_timer
939 * @timer: timer to be intiialized
940 * @f: function pointer to be called when timer fires
941 * @rtc: pointer to the rtc_device
942 *
943 * Kernel interface to initializing an rtc_timer.
944 */
945void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
946 struct rtc_device *rtc)
947{
948 timerqueue_init(&timer->node);
949 timer->enabled = 0;
950 timer->func = f;
951 timer->rtc = rtc;
952}
953
954/* rtc_timer_start - Sets an rtc_timer to fire in the future
955 * @ rtc: rtc device to be used
956 * @ timer: timer being set
957 * @ expires: time at which to expire the timer
958 * @ period: period that the timer will recur
959 *
960 * Kernel interface to set an rtc_timer
961 */
962int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
963 ktime_t expires, ktime_t period)
964{
965 int ret = 0;
966
967 mutex_lock(&rtc->ops_lock);
968 if (timer->enabled)
969 rtc_timer_remove(rtc, timer);
970
971 timer->node.expires = expires;
972 timer->period = period;
973
974 ret = rtc_timer_enqueue(rtc, timer);
975
976 mutex_unlock(&rtc->ops_lock);
977 return ret;
978}
979
980/* rtc_timer_cancel - Stops an rtc_timer
981 * @ rtc: rtc device to be used
982 * @ timer: timer being set
983 *
984 * Kernel interface to cancel an rtc_timer
985 */
986void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
987{
988 mutex_lock(&rtc->ops_lock);
989 if (timer->enabled)
990 rtc_timer_remove(rtc, timer);
991 mutex_unlock(&rtc->ops_lock);
992}
993
994/**
995 * rtc_read_offset - Read the amount of rtc offset in parts per billion
996 * @ rtc: rtc device to be used
997 * @ offset: the offset in parts per billion
998 *
999 * see below for details.
1000 *
1001 * Kernel interface to read rtc clock offset
1002 * Returns 0 on success, or a negative number on error.
1003 * If read_offset() is not implemented for the rtc, return -EINVAL
1004 */
1005int rtc_read_offset(struct rtc_device *rtc, long *offset)
1006{
1007 int ret;
1008
1009 if (!rtc->ops)
1010 return -ENODEV;
1011
1012 if (!rtc->ops->read_offset)
1013 return -EINVAL;
1014
1015 mutex_lock(&rtc->ops_lock);
1016 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1017 mutex_unlock(&rtc->ops_lock);
1018
1019 trace_rtc_read_offset(*offset, ret);
1020 return ret;
1021}
1022
1023/**
1024 * rtc_set_offset - Adjusts the duration of the average second
1025 * @ rtc: rtc device to be used
1026 * @ offset: the offset in parts per billion
1027 *
1028 * Some rtc's allow an adjustment to the average duration of a second
1029 * to compensate for differences in the actual clock rate due to temperature,
1030 * the crystal, capacitor, etc.
1031 *
1032 * The adjustment applied is as follows:
1033 * t = t0 * (1 + offset * 1e-9)
1034 * where t0 is the measured length of 1 RTC second with offset = 0
1035 *
1036 * Kernel interface to adjust an rtc clock offset.
1037 * Return 0 on success, or a negative number on error.
1038 * If the rtc offset is not setable (or not implemented), return -EINVAL
1039 */
1040int rtc_set_offset(struct rtc_device *rtc, long offset)
1041{
1042 int ret;
1043
1044 if (!rtc->ops)
1045 return -ENODEV;
1046
1047 if (!rtc->ops->set_offset)
1048 return -EINVAL;
1049
1050 mutex_lock(&rtc->ops_lock);
1051 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1052 mutex_unlock(&rtc->ops_lock);
1053
1054 trace_rtc_set_offset(offset, ret);
1055 return ret;
1056}