Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK		0x7fffffff
  12#define ISGN			0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580			40
  70#define IGB_82580_BASE_PERIOD		0x800000000
  71
  72static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  73static void igb_ptp_sdp_init(struct igb_adapter *adapter);
  74
  75/* SYSTIM read access for the 82576 */
  76static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  77{
  78	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  79	struct e1000_hw *hw = &igb->hw;
  80	u64 val;
  81	u32 lo, hi;
  82
  83	lo = rd32(E1000_SYSTIML);
  84	hi = rd32(E1000_SYSTIMH);
  85
  86	val = ((u64) hi) << 32;
  87	val |= lo;
  88
  89	return val;
  90}
  91
  92/* SYSTIM read access for the 82580 */
  93static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  94{
  95	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  96	struct e1000_hw *hw = &igb->hw;
  97	u32 lo, hi;
  98	u64 val;
  99
 100	/* The timestamp latches on lowest register read. For the 82580
 101	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 102	 * need to provide nanosecond resolution, so we just ignore it.
 103	 */
 104	rd32(E1000_SYSTIMR);
 105	lo = rd32(E1000_SYSTIML);
 106	hi = rd32(E1000_SYSTIMH);
 107
 108	val = ((u64) hi) << 32;
 109	val |= lo;
 110
 111	return val;
 112}
 113
 114/* SYSTIM read access for I210/I211 */
 115static void igb_ptp_read_i210(struct igb_adapter *adapter,
 116			      struct timespec64 *ts)
 117{
 118	struct e1000_hw *hw = &adapter->hw;
 119	u32 sec, nsec;
 120
 121	/* The timestamp latches on lowest register read. For I210/I211, the
 122	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 123	 * resolution, we can ignore it.
 124	 */
 125	rd32(E1000_SYSTIMR);
 126	nsec = rd32(E1000_SYSTIML);
 127	sec = rd32(E1000_SYSTIMH);
 128
 129	ts->tv_sec = sec;
 130	ts->tv_nsec = nsec;
 131}
 132
 133static void igb_ptp_write_i210(struct igb_adapter *adapter,
 134			       const struct timespec64 *ts)
 135{
 136	struct e1000_hw *hw = &adapter->hw;
 137
 138	/* Writing the SYSTIMR register is not necessary as it only provides
 139	 * sub-nanosecond resolution.
 140	 */
 141	wr32(E1000_SYSTIML, ts->tv_nsec);
 142	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 143}
 144
 145/**
 146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 147 * @adapter: board private structure
 148 * @hwtstamps: timestamp structure to update
 149 * @systim: unsigned 64bit system time value.
 150 *
 151 * We need to convert the system time value stored in the RX/TXSTMP registers
 152 * into a hwtstamp which can be used by the upper level timestamping functions.
 153 *
 154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 155 * system time value. This is needed because reading the 64 bit time
 156 * value involves reading two (or three) 32 bit registers. The first
 157 * read latches the value. Ditto for writing.
 158 *
 159 * In addition, here have extended the system time with an overflow
 160 * counter in software.
 161 **/
 162static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 163				       struct skb_shared_hwtstamps *hwtstamps,
 164				       u64 systim)
 165{
 166	unsigned long flags;
 167	u64 ns;
 168
 169	memset(hwtstamps, 0, sizeof(*hwtstamps));
 170
 171	switch (adapter->hw.mac.type) {
 172	case e1000_82576:
 173	case e1000_82580:
 174	case e1000_i354:
 175	case e1000_i350:
 176		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 
 177		ns = timecounter_cyc2time(&adapter->tc, systim);
 
 178		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 179
 
 180		hwtstamps->hwtstamp = ns_to_ktime(ns);
 181		break;
 182	case e1000_i210:
 183	case e1000_i211:
 
 184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186						systim & 0xFFFFFFFF);
 187		break;
 188	default:
 189		break;
 190	}
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
 195{
 196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197					       ptp_caps);
 198	struct e1000_hw *hw = &igb->hw;
 199	u64 incvalue;
 
 
 200
 201	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 202
 203	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 204
 205	return 0;
 206}
 207
 208static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 209{
 210	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 211					       ptp_caps);
 212	struct e1000_hw *hw = &igb->hw;
 213	bool neg_adj;
 214	u64 rate;
 215	u32 inca;
 216
 217	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
 
 
 
 
 
 
 218
 219	inca = rate & INCVALUE_MASK;
 220	if (neg_adj)
 221		inca |= ISGN;
 222
 223	wr32(E1000_TIMINCA, inca);
 224
 225	return 0;
 226}
 227
 228static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 229{
 230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 231					       ptp_caps);
 232	unsigned long flags;
 233
 234	spin_lock_irqsave(&igb->tmreg_lock, flags);
 235	timecounter_adjtime(&igb->tc, delta);
 236	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 237
 238	return 0;
 239}
 240
 241static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 242{
 243	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 244					       ptp_caps);
 245	unsigned long flags;
 246	struct timespec64 now, then = ns_to_timespec64(delta);
 247
 248	spin_lock_irqsave(&igb->tmreg_lock, flags);
 249
 250	igb_ptp_read_i210(igb, &now);
 251	now = timespec64_add(now, then);
 252	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 253
 254	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 255
 256	return 0;
 257}
 258
 259static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 260				  struct timespec64 *ts,
 261				  struct ptp_system_timestamp *sts)
 262{
 263	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 264					       ptp_caps);
 265	struct e1000_hw *hw = &igb->hw;
 266	unsigned long flags;
 267	u32 lo, hi;
 268	u64 ns;
 269
 270	spin_lock_irqsave(&igb->tmreg_lock, flags);
 271
 272	ptp_read_system_prets(sts);
 273	lo = rd32(E1000_SYSTIML);
 274	ptp_read_system_postts(sts);
 275	hi = rd32(E1000_SYSTIMH);
 276
 277	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 278
 279	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 280
 281	*ts = ns_to_timespec64(ns);
 282
 283	return 0;
 284}
 285
 286static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 287				  struct timespec64 *ts,
 288				  struct ptp_system_timestamp *sts)
 289{
 290	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 291					       ptp_caps);
 292	struct e1000_hw *hw = &igb->hw;
 293	unsigned long flags;
 294	u32 lo, hi;
 295	u64 ns;
 296
 297	spin_lock_irqsave(&igb->tmreg_lock, flags);
 298
 299	ptp_read_system_prets(sts);
 300	rd32(E1000_SYSTIMR);
 301	ptp_read_system_postts(sts);
 302	lo = rd32(E1000_SYSTIML);
 303	hi = rd32(E1000_SYSTIMH);
 304
 305	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 306
 307	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 308
 309	*ts = ns_to_timespec64(ns);
 310
 311	return 0;
 312}
 313
 314static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 315				 struct timespec64 *ts,
 316				 struct ptp_system_timestamp *sts)
 317{
 318	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 319					       ptp_caps);
 320	struct e1000_hw *hw = &igb->hw;
 321	unsigned long flags;
 322
 323	spin_lock_irqsave(&igb->tmreg_lock, flags);
 324
 325	ptp_read_system_prets(sts);
 326	rd32(E1000_SYSTIMR);
 327	ptp_read_system_postts(sts);
 328	ts->tv_nsec = rd32(E1000_SYSTIML);
 329	ts->tv_sec = rd32(E1000_SYSTIMH);
 330
 331	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 332
 333	return 0;
 334}
 335
 336static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 337				 const struct timespec64 *ts)
 338{
 339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340					       ptp_caps);
 341	unsigned long flags;
 342	u64 ns;
 343
 344	ns = timespec64_to_ns(ts);
 345
 346	spin_lock_irqsave(&igb->tmreg_lock, flags);
 347
 348	timecounter_init(&igb->tc, &igb->cc, ns);
 349
 350	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 351
 352	return 0;
 353}
 354
 355static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 356				const struct timespec64 *ts)
 357{
 358	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 359					       ptp_caps);
 360	unsigned long flags;
 361
 362	spin_lock_irqsave(&igb->tmreg_lock, flags);
 363
 364	igb_ptp_write_i210(igb, ts);
 365
 366	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 367
 368	return 0;
 369}
 370
 371static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 372{
 373	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 374	static const u32 mask[IGB_N_SDP] = {
 375		E1000_CTRL_SDP0_DIR,
 376		E1000_CTRL_SDP1_DIR,
 377		E1000_CTRL_EXT_SDP2_DIR,
 378		E1000_CTRL_EXT_SDP3_DIR,
 379	};
 380
 381	if (input)
 382		*ptr &= ~mask[pin];
 383	else
 384		*ptr |= mask[pin];
 385}
 386
 387static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 388{
 389	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 390		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 391	};
 392	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 393		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 394	};
 395	static const u32 ts_sdp_en[IGB_N_SDP] = {
 396		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 397	};
 398	struct e1000_hw *hw = &igb->hw;
 399	u32 ctrl, ctrl_ext, tssdp = 0;
 400
 401	ctrl = rd32(E1000_CTRL);
 402	ctrl_ext = rd32(E1000_CTRL_EXT);
 403	tssdp = rd32(E1000_TSSDP);
 404
 405	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 406
 407	/* Make sure this pin is not enabled as an output. */
 408	tssdp &= ~ts_sdp_en[pin];
 409
 410	if (chan == 1) {
 411		tssdp &= ~AUX1_SEL_SDP3;
 412		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 413	} else {
 414		tssdp &= ~AUX0_SEL_SDP3;
 415		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 416	}
 417
 418	wr32(E1000_TSSDP, tssdp);
 419	wr32(E1000_CTRL, ctrl);
 420	wr32(E1000_CTRL_EXT, ctrl_ext);
 421}
 422
 423static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 424{
 425	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 426		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 427	};
 428	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 429		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 430	};
 431	static const u32 ts_sdp_en[IGB_N_SDP] = {
 432		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 433	};
 434	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 435		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 436		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 437	};
 438	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 439		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 440		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 441	};
 442	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 443		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 444		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 445	};
 446	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 447		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 448		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 449	};
 450	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 451		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 452		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 453	};
 454	struct e1000_hw *hw = &igb->hw;
 455	u32 ctrl, ctrl_ext, tssdp = 0;
 456
 457	ctrl = rd32(E1000_CTRL);
 458	ctrl_ext = rd32(E1000_CTRL_EXT);
 459	tssdp = rd32(E1000_TSSDP);
 460
 461	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 462
 463	/* Make sure this pin is not enabled as an input. */
 464	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 465		tssdp &= ~AUX0_TS_SDP_EN;
 466
 467	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 468		tssdp &= ~AUX1_TS_SDP_EN;
 469
 470	tssdp &= ~ts_sdp_sel_clr[pin];
 471	if (freq) {
 472		if (chan == 1)
 473			tssdp |= ts_sdp_sel_fc1[pin];
 474		else
 475			tssdp |= ts_sdp_sel_fc0[pin];
 476	} else {
 477		if (chan == 1)
 478			tssdp |= ts_sdp_sel_tt1[pin];
 479		else
 480			tssdp |= ts_sdp_sel_tt0[pin];
 481	}
 482	tssdp |= ts_sdp_en[pin];
 483
 484	wr32(E1000_TSSDP, tssdp);
 485	wr32(E1000_CTRL, ctrl);
 486	wr32(E1000_CTRL_EXT, ctrl_ext);
 487}
 488
 489static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
 490					struct ptp_clock_request *rq, int on)
 491{
 492	struct igb_adapter *igb =
 493		container_of(ptp, struct igb_adapter, ptp_caps);
 494	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
 495		systimh, level_mask, level, rem;
 496	struct e1000_hw *hw = &igb->hw;
 497	struct timespec64 ts, start;
 498	unsigned long flags;
 499	u64 systim, now;
 500	int pin = -1;
 501	s64 ns;
 502
 503	switch (rq->type) {
 504	case PTP_CLK_REQ_EXTTS:
 505		/* Reject requests with unsupported flags */
 506		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 507					PTP_RISING_EDGE |
 508					PTP_FALLING_EDGE |
 509					PTP_STRICT_FLAGS))
 510			return -EOPNOTSUPP;
 511
 512		if (on) {
 513			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 514					   rq->extts.index);
 515			if (pin < 0)
 516				return -EBUSY;
 517		}
 518		if (rq->extts.index == 1) {
 519			tsauxc_mask = TSAUXC_EN_TS1;
 520			tsim_mask = TSINTR_AUTT1;
 521		} else {
 522			tsauxc_mask = TSAUXC_EN_TS0;
 523			tsim_mask = TSINTR_AUTT0;
 524		}
 525		spin_lock_irqsave(&igb->tmreg_lock, flags);
 526		tsauxc = rd32(E1000_TSAUXC);
 527		tsim = rd32(E1000_TSIM);
 528		if (on) {
 529			igb_pin_extts(igb, rq->extts.index, pin);
 530			tsauxc |= tsauxc_mask;
 531			tsim |= tsim_mask;
 532		} else {
 533			tsauxc &= ~tsauxc_mask;
 534			tsim &= ~tsim_mask;
 535		}
 536		wr32(E1000_TSAUXC, tsauxc);
 537		wr32(E1000_TSIM, tsim);
 538		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 539		return 0;
 540
 541	case PTP_CLK_REQ_PEROUT:
 542		/* Reject requests with unsupported flags */
 543		if (rq->perout.flags)
 544			return -EOPNOTSUPP;
 545
 546		if (on) {
 547			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 548					   rq->perout.index);
 549			if (pin < 0)
 550				return -EBUSY;
 551		}
 552		ts.tv_sec = rq->perout.period.sec;
 553		ts.tv_nsec = rq->perout.period.nsec;
 554		ns = timespec64_to_ns(&ts);
 555		ns = ns >> 1;
 556		if (on && ns < 8LL)
 557			return -EINVAL;
 558		ts = ns_to_timespec64(ns);
 559		if (rq->perout.index == 1) {
 560			tsauxc_mask = TSAUXC_EN_TT1;
 561			tsim_mask = TSINTR_TT1;
 562			trgttiml = E1000_TRGTTIML1;
 563			trgttimh = E1000_TRGTTIMH1;
 564		} else {
 565			tsauxc_mask = TSAUXC_EN_TT0;
 566			tsim_mask = TSINTR_TT0;
 567			trgttiml = E1000_TRGTTIML0;
 568			trgttimh = E1000_TRGTTIMH0;
 569		}
 570		spin_lock_irqsave(&igb->tmreg_lock, flags);
 571		tsauxc = rd32(E1000_TSAUXC);
 572		tsim = rd32(E1000_TSIM);
 573		if (rq->perout.index == 1) {
 574			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 575			tsim &= ~TSINTR_TT1;
 576		} else {
 577			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 578			tsim &= ~TSINTR_TT0;
 579		}
 580		if (on) {
 581			int i = rq->perout.index;
 582
 583			/* read systim registers in sequence */
 584			rd32(E1000_SYSTIMR);
 585			systiml = rd32(E1000_SYSTIML);
 586			systimh = rd32(E1000_SYSTIMH);
 587			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 588			now = timecounter_cyc2time(&igb->tc, systim);
 589
 590			if (pin < 2) {
 591				level_mask = (i == 1) ? 0x80000 : 0x40000;
 592				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 593			} else {
 594				level_mask = (i == 1) ? 0x80 : 0x40;
 595				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 596			}
 597
 598			div_u64_rem(now, ns, &rem);
 599			systim = systim + (ns - rem);
 600
 601			/* synchronize pin level with rising/falling edges */
 602			div_u64_rem(now, ns << 1, &rem);
 603			if (rem < ns) {
 604				/* first half of period */
 605				if (level == 0) {
 606					/* output is already low, skip this period */
 607					systim += ns;
 608				}
 609			} else {
 610				/* second half of period */
 611				if (level == 1) {
 612					/* output is already high, skip this period */
 613					systim += ns;
 614				}
 615			}
 616
 617			start = ns_to_timespec64(systim + (ns - rem));
 618			igb_pin_perout(igb, i, pin, 0);
 619			igb->perout[i].start.tv_sec = start.tv_sec;
 620			igb->perout[i].start.tv_nsec = start.tv_nsec;
 621			igb->perout[i].period.tv_sec = ts.tv_sec;
 622			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 623
 624			wr32(trgttiml, (u32)systim);
 625			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
 626			tsauxc |= tsauxc_mask;
 627			tsim |= tsim_mask;
 628		}
 629		wr32(E1000_TSAUXC, tsauxc);
 630		wr32(E1000_TSIM, tsim);
 631		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 632		return 0;
 633
 634	case PTP_CLK_REQ_PPS:
 635		return -EOPNOTSUPP;
 636	}
 637
 638	return -EOPNOTSUPP;
 639}
 640
 641static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 642				       struct ptp_clock_request *rq, int on)
 643{
 644	struct igb_adapter *igb =
 645		container_of(ptp, struct igb_adapter, ptp_caps);
 646	struct e1000_hw *hw = &igb->hw;
 647	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 648	unsigned long flags;
 649	struct timespec64 ts;
 650	int use_freq = 0, pin = -1;
 651	s64 ns;
 652
 653	switch (rq->type) {
 654	case PTP_CLK_REQ_EXTTS:
 655		/* Reject requests with unsupported flags */
 656		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 657					PTP_RISING_EDGE |
 658					PTP_FALLING_EDGE |
 659					PTP_STRICT_FLAGS))
 660			return -EOPNOTSUPP;
 661
 662		/* Reject requests failing to enable both edges. */
 663		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 664		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 665		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 666			return -EOPNOTSUPP;
 667
 668		if (on) {
 669			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 670					   rq->extts.index);
 671			if (pin < 0)
 672				return -EBUSY;
 673		}
 674		if (rq->extts.index == 1) {
 675			tsauxc_mask = TSAUXC_EN_TS1;
 676			tsim_mask = TSINTR_AUTT1;
 677		} else {
 678			tsauxc_mask = TSAUXC_EN_TS0;
 679			tsim_mask = TSINTR_AUTT0;
 680		}
 681		spin_lock_irqsave(&igb->tmreg_lock, flags);
 682		tsauxc = rd32(E1000_TSAUXC);
 683		tsim = rd32(E1000_TSIM);
 684		if (on) {
 685			igb_pin_extts(igb, rq->extts.index, pin);
 686			tsauxc |= tsauxc_mask;
 687			tsim |= tsim_mask;
 688		} else {
 689			tsauxc &= ~tsauxc_mask;
 690			tsim &= ~tsim_mask;
 691		}
 692		wr32(E1000_TSAUXC, tsauxc);
 693		wr32(E1000_TSIM, tsim);
 694		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 695		return 0;
 696
 697	case PTP_CLK_REQ_PEROUT:
 698		/* Reject requests with unsupported flags */
 699		if (rq->perout.flags)
 700			return -EOPNOTSUPP;
 701
 702		if (on) {
 703			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 704					   rq->perout.index);
 705			if (pin < 0)
 706				return -EBUSY;
 707		}
 708		ts.tv_sec = rq->perout.period.sec;
 709		ts.tv_nsec = rq->perout.period.nsec;
 710		ns = timespec64_to_ns(&ts);
 711		ns = ns >> 1;
 712		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 713			   (ns == 250000000LL) || (ns == 500000000LL))) {
 714			if (ns < 8LL)
 715				return -EINVAL;
 716			use_freq = 1;
 717		}
 718		ts = ns_to_timespec64(ns);
 719		if (rq->perout.index == 1) {
 720			if (use_freq) {
 721				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 722				tsim_mask = 0;
 723			} else {
 724				tsauxc_mask = TSAUXC_EN_TT1;
 725				tsim_mask = TSINTR_TT1;
 726			}
 727			trgttiml = E1000_TRGTTIML1;
 728			trgttimh = E1000_TRGTTIMH1;
 729			freqout = E1000_FREQOUT1;
 730		} else {
 731			if (use_freq) {
 732				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 733				tsim_mask = 0;
 734			} else {
 735				tsauxc_mask = TSAUXC_EN_TT0;
 736				tsim_mask = TSINTR_TT0;
 737			}
 738			trgttiml = E1000_TRGTTIML0;
 739			trgttimh = E1000_TRGTTIMH0;
 740			freqout = E1000_FREQOUT0;
 741		}
 742		spin_lock_irqsave(&igb->tmreg_lock, flags);
 743		tsauxc = rd32(E1000_TSAUXC);
 744		tsim = rd32(E1000_TSIM);
 745		if (rq->perout.index == 1) {
 746			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 747			tsim &= ~TSINTR_TT1;
 748		} else {
 749			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 750			tsim &= ~TSINTR_TT0;
 751		}
 752		if (on) {
 753			int i = rq->perout.index;
 754			igb_pin_perout(igb, i, pin, use_freq);
 755			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 756			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 757			igb->perout[i].period.tv_sec = ts.tv_sec;
 758			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 759			wr32(trgttimh, rq->perout.start.sec);
 760			wr32(trgttiml, rq->perout.start.nsec);
 761			if (use_freq)
 762				wr32(freqout, ns);
 763			tsauxc |= tsauxc_mask;
 764			tsim |= tsim_mask;
 765		}
 766		wr32(E1000_TSAUXC, tsauxc);
 767		wr32(E1000_TSIM, tsim);
 768		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 769		return 0;
 770
 771	case PTP_CLK_REQ_PPS:
 772		spin_lock_irqsave(&igb->tmreg_lock, flags);
 773		tsim = rd32(E1000_TSIM);
 774		if (on)
 775			tsim |= TSINTR_SYS_WRAP;
 776		else
 777			tsim &= ~TSINTR_SYS_WRAP;
 778		igb->pps_sys_wrap_on = !!on;
 779		wr32(E1000_TSIM, tsim);
 780		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 781		return 0;
 782	}
 783
 784	return -EOPNOTSUPP;
 785}
 786
 787static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 788				  struct ptp_clock_request *rq, int on)
 789{
 790	return -EOPNOTSUPP;
 791}
 792
 793static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 794			      enum ptp_pin_function func, unsigned int chan)
 795{
 796	switch (func) {
 797	case PTP_PF_NONE:
 798	case PTP_PF_EXTTS:
 799	case PTP_PF_PEROUT:
 800		break;
 801	case PTP_PF_PHYSYNC:
 802		return -1;
 803	}
 804	return 0;
 805}
 806
 807/**
 808 * igb_ptp_tx_work
 809 * @work: pointer to work struct
 810 *
 811 * This work function polls the TSYNCTXCTL valid bit to determine when a
 812 * timestamp has been taken for the current stored skb.
 813 **/
 814static void igb_ptp_tx_work(struct work_struct *work)
 815{
 816	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 817						   ptp_tx_work);
 818	struct e1000_hw *hw = &adapter->hw;
 819	u32 tsynctxctl;
 820
 821	if (!adapter->ptp_tx_skb)
 822		return;
 823
 824	if (time_is_before_jiffies(adapter->ptp_tx_start +
 825				   IGB_PTP_TX_TIMEOUT)) {
 826		dev_kfree_skb_any(adapter->ptp_tx_skb);
 827		adapter->ptp_tx_skb = NULL;
 828		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 829		adapter->tx_hwtstamp_timeouts++;
 830		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 831		 * interrupt
 832		 */
 833		rd32(E1000_TXSTMPH);
 834		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 835		return;
 836	}
 837
 838	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 839	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 840		igb_ptp_tx_hwtstamp(adapter);
 841	else
 842		/* reschedule to check later */
 843		schedule_work(&adapter->ptp_tx_work);
 844}
 845
 846static void igb_ptp_overflow_check(struct work_struct *work)
 847{
 848	struct igb_adapter *igb =
 849		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 850	struct timespec64 ts;
 851	u64 ns;
 852
 853	/* Update the timecounter */
 854	ns = timecounter_read(&igb->tc);
 855
 856	ts = ns_to_timespec64(ns);
 857	pr_debug("igb overflow check at %lld.%09lu\n",
 858		 (long long) ts.tv_sec, ts.tv_nsec);
 859
 860	schedule_delayed_work(&igb->ptp_overflow_work,
 861			      IGB_SYSTIM_OVERFLOW_PERIOD);
 862}
 863
 864/**
 865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 866 * @adapter: private network adapter structure
 867 *
 868 * This watchdog task is scheduled to detect error case where hardware has
 869 * dropped an Rx packet that was timestamped when the ring is full. The
 870 * particular error is rare but leaves the device in a state unable to timestamp
 871 * any future packets.
 872 **/
 873void igb_ptp_rx_hang(struct igb_adapter *adapter)
 874{
 875	struct e1000_hw *hw = &adapter->hw;
 876	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 877	unsigned long rx_event;
 878
 879	/* Other hardware uses per-packet timestamps */
 880	if (hw->mac.type != e1000_82576)
 881		return;
 882
 883	/* If we don't have a valid timestamp in the registers, just update the
 884	 * timeout counter and exit
 885	 */
 886	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 887		adapter->last_rx_ptp_check = jiffies;
 888		return;
 889	}
 890
 891	/* Determine the most recent watchdog or rx_timestamp event */
 892	rx_event = adapter->last_rx_ptp_check;
 893	if (time_after(adapter->last_rx_timestamp, rx_event))
 894		rx_event = adapter->last_rx_timestamp;
 895
 896	/* Only need to read the high RXSTMP register to clear the lock */
 897	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 898		rd32(E1000_RXSTMPH);
 899		adapter->last_rx_ptp_check = jiffies;
 900		adapter->rx_hwtstamp_cleared++;
 901		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 902	}
 903}
 904
 905/**
 906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 907 * @adapter: private network adapter structure
 908 */
 909void igb_ptp_tx_hang(struct igb_adapter *adapter)
 910{
 911	struct e1000_hw *hw = &adapter->hw;
 912	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 913					      IGB_PTP_TX_TIMEOUT);
 914
 915	if (!adapter->ptp_tx_skb)
 916		return;
 917
 918	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 919		return;
 920
 921	/* If we haven't received a timestamp within the timeout, it is
 922	 * reasonable to assume that it will never occur, so we can unlock the
 923	 * timestamp bit when this occurs.
 924	 */
 925	if (timeout) {
 926		cancel_work_sync(&adapter->ptp_tx_work);
 927		dev_kfree_skb_any(adapter->ptp_tx_skb);
 928		adapter->ptp_tx_skb = NULL;
 929		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 930		adapter->tx_hwtstamp_timeouts++;
 931		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 932		 * interrupt
 933		 */
 934		rd32(E1000_TXSTMPH);
 935		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 936	}
 937}
 938
 939/**
 940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 941 * @adapter: Board private structure.
 942 *
 943 * If we were asked to do hardware stamping and such a time stamp is
 944 * available, then it must have been for this skb here because we only
 945 * allow only one such packet into the queue.
 946 **/
 947static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 948{
 949	struct sk_buff *skb = adapter->ptp_tx_skb;
 950	struct e1000_hw *hw = &adapter->hw;
 951	struct skb_shared_hwtstamps shhwtstamps;
 952	u64 regval;
 953	int adjust = 0;
 954
 955	regval = rd32(E1000_TXSTMPL);
 956	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 957
 958	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 959	/* adjust timestamp for the TX latency based on link speed */
 960	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
 961		switch (adapter->link_speed) {
 962		case SPEED_10:
 963			adjust = IGB_I210_TX_LATENCY_10;
 964			break;
 965		case SPEED_100:
 966			adjust = IGB_I210_TX_LATENCY_100;
 967			break;
 968		case SPEED_1000:
 969			adjust = IGB_I210_TX_LATENCY_1000;
 970			break;
 971		}
 972	}
 973
 974	shhwtstamps.hwtstamp =
 975		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 976
 977	/* Clear the lock early before calling skb_tstamp_tx so that
 978	 * applications are not woken up before the lock bit is clear. We use
 979	 * a copy of the skb pointer to ensure other threads can't change it
 980	 * while we're notifying the stack.
 981	 */
 982	adapter->ptp_tx_skb = NULL;
 983	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 984
 985	/* Notify the stack and free the skb after we've unlocked */
 986	skb_tstamp_tx(skb, &shhwtstamps);
 987	dev_kfree_skb_any(skb);
 988}
 989
 990/**
 991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 992 * @q_vector: Pointer to interrupt specific structure
 993 * @va: Pointer to address containing Rx buffer
 994 * @timestamp: Pointer where timestamp will be stored
 995 *
 996 * This function is meant to retrieve a timestamp from the first buffer of an
 997 * incoming frame.  The value is stored in little endian format starting on
 998 * byte 8
 999 *
1000 * Returns: The timestamp header length or 0 if not available
1001 **/
1002int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003			ktime_t *timestamp)
1004{
1005	struct igb_adapter *adapter = q_vector->adapter;
1006	struct e1000_hw *hw = &adapter->hw;
1007	struct skb_shared_hwtstamps ts;
1008	__le64 *regval = (__le64 *)va;
 
1009	int adjust = 0;
1010
1011	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012		return 0;
1013
1014	/* The timestamp is recorded in little endian format.
1015	 * DWORD: 0        1        2        3
1016	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1017	 */
1018
1019	/* check reserved dwords are zero, be/le doesn't matter for zero */
1020	if (regval[0])
1021		return 0;
1022
1023	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024
1025	/* adjust timestamp for the RX latency based on link speed */
1026	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027		switch (adapter->link_speed) {
1028		case SPEED_10:
1029			adjust = IGB_I210_RX_LATENCY_10;
1030			break;
1031		case SPEED_100:
1032			adjust = IGB_I210_RX_LATENCY_100;
1033			break;
1034		case SPEED_1000:
1035			adjust = IGB_I210_RX_LATENCY_1000;
1036			break;
1037		}
1038	}
1039
1040	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041
1042	return IGB_TS_HDR_LEN;
1043}
1044
1045/**
1046 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047 * @q_vector: Pointer to interrupt specific structure
1048 * @skb: Buffer containing timestamp and packet
1049 *
1050 * This function is meant to retrieve a timestamp from the internal registers
1051 * of the adapter and store it in the skb.
1052 **/
1053void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
 
1054{
1055	struct igb_adapter *adapter = q_vector->adapter;
1056	struct e1000_hw *hw = &adapter->hw;
1057	int adjust = 0;
1058	u64 regval;
1059
1060	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061		return;
1062
1063	/* If this bit is set, then the RX registers contain the time stamp. No
1064	 * other packet will be time stamped until we read these registers, so
1065	 * read the registers to make them available again. Because only one
1066	 * packet can be time stamped at a time, we know that the register
1067	 * values must belong to this one here and therefore we don't need to
1068	 * compare any of the additional attributes stored for it.
1069	 *
1070	 * If nothing went wrong, then it should have a shared tx_flags that we
1071	 * can turn into a skb_shared_hwtstamps.
1072	 */
1073	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074		return;
1075
1076	regval = rd32(E1000_RXSTMPL);
1077	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078
1079	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080
1081	/* adjust timestamp for the RX latency based on link speed */
1082	if (adapter->hw.mac.type == e1000_i210) {
1083		switch (adapter->link_speed) {
1084		case SPEED_10:
1085			adjust = IGB_I210_RX_LATENCY_10;
1086			break;
1087		case SPEED_100:
1088			adjust = IGB_I210_RX_LATENCY_100;
1089			break;
1090		case SPEED_1000:
1091			adjust = IGB_I210_RX_LATENCY_1000;
1092			break;
1093		}
1094	}
1095	skb_hwtstamps(skb)->hwtstamp =
1096		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097
1098	/* Update the last_rx_timestamp timer in order to enable watchdog check
1099	 * for error case of latched timestamp on a dropped packet.
1100	 */
1101	adapter->last_rx_timestamp = jiffies;
1102}
1103
1104/**
1105 * igb_ptp_get_ts_config - get hardware time stamping config
1106 * @netdev: netdev struct
1107 * @ifr: interface struct
1108 *
1109 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110 * to deconstruct the settings from the registers, just return a shadow copy
1111 * of the last known settings.
1112 **/
1113int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114{
1115	struct igb_adapter *adapter = netdev_priv(netdev);
1116	struct hwtstamp_config *config = &adapter->tstamp_config;
1117
1118	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119		-EFAULT : 0;
1120}
1121
1122/**
1123 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124 * @adapter: networking device structure
1125 * @config: hwtstamp configuration
1126 *
1127 * Outgoing time stamping can be enabled and disabled. Play nice and
1128 * disable it when requested, although it shouldn't case any overhead
1129 * when no packet needs it. At most one packet in the queue may be
1130 * marked for time stamping, otherwise it would be impossible to tell
1131 * for sure to which packet the hardware time stamp belongs.
1132 *
1133 * Incoming time stamping has to be configured via the hardware
1134 * filters. Not all combinations are supported, in particular event
1135 * type has to be specified. Matching the kind of event packet is
1136 * not supported, with the exception of "all V2 events regardless of
1137 * level 2 or 4".
1138 */
1139static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140				      struct hwtstamp_config *config)
1141{
1142	struct e1000_hw *hw = &adapter->hw;
1143	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145	u32 tsync_rx_cfg = 0;
1146	bool is_l4 = false;
1147	bool is_l2 = false;
1148	u32 regval;
1149
 
 
 
 
1150	switch (config->tx_type) {
1151	case HWTSTAMP_TX_OFF:
1152		tsync_tx_ctl = 0;
1153		break;
1154	case HWTSTAMP_TX_ON:
1155		break;
1156	default:
1157		return -ERANGE;
1158	}
1159
1160	switch (config->rx_filter) {
1161	case HWTSTAMP_FILTER_NONE:
1162		tsync_rx_ctl = 0;
1163		break;
1164	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167		is_l4 = true;
1168		break;
1169	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172		is_l4 = true;
1173		break;
1174	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185		is_l2 = true;
1186		is_l4 = true;
1187		break;
1188	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189	case HWTSTAMP_FILTER_NTP_ALL:
1190	case HWTSTAMP_FILTER_ALL:
1191		/* 82576 cannot timestamp all packets, which it needs to do to
1192		 * support both V1 Sync and Delay_Req messages
1193		 */
1194		if (hw->mac.type != e1000_82576) {
1195			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196			config->rx_filter = HWTSTAMP_FILTER_ALL;
1197			break;
1198		}
1199		fallthrough;
1200	default:
1201		config->rx_filter = HWTSTAMP_FILTER_NONE;
1202		return -ERANGE;
1203	}
1204
1205	if (hw->mac.type == e1000_82575) {
1206		if (tsync_rx_ctl | tsync_tx_ctl)
1207			return -EINVAL;
1208		return 0;
1209	}
1210
1211	/* Per-packet timestamping only works if all packets are
1212	 * timestamped, so enable timestamping in all packets as
1213	 * long as one Rx filter was configured.
1214	 */
1215	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218		config->rx_filter = HWTSTAMP_FILTER_ALL;
1219		is_l2 = true;
1220		is_l4 = true;
1221
1222		if ((hw->mac.type == e1000_i210) ||
1223		    (hw->mac.type == e1000_i211)) {
1224			regval = rd32(E1000_RXPBS);
1225			regval |= E1000_RXPBS_CFG_TS_EN;
1226			wr32(E1000_RXPBS, regval);
1227		}
1228	}
1229
1230	/* enable/disable TX */
1231	regval = rd32(E1000_TSYNCTXCTL);
1232	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233	regval |= tsync_tx_ctl;
1234	wr32(E1000_TSYNCTXCTL, regval);
1235
1236	/* enable/disable RX */
1237	regval = rd32(E1000_TSYNCRXCTL);
1238	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239	regval |= tsync_rx_ctl;
1240	wr32(E1000_TSYNCRXCTL, regval);
1241
1242	/* define which PTP packets are time stamped */
1243	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244
1245	/* define ethertype filter for timestamped packets */
1246	if (is_l2)
1247		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249		      E1000_ETQF_1588 | /* enable timestamping */
1250		      ETH_P_1588));     /* 1588 eth protocol type */
1251	else
1252		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253
1254	/* L4 Queue Filter[3]: filter by destination port and protocol */
1255	if (is_l4) {
1256		u32 ftqf = (IPPROTO_UDP /* UDP */
1257			| E1000_FTQF_VF_BP /* VF not compared */
1258			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259			| E1000_FTQF_MASK); /* mask all inputs */
1260		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261
1262		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263		wr32(E1000_IMIREXT(3),
1264		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265		if (hw->mac.type == e1000_82576) {
1266			/* enable source port check */
1267			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269		}
1270		wr32(E1000_FTQF(3), ftqf);
1271	} else {
1272		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273	}
1274	wrfl();
1275
1276	/* clear TX/RX time stamp registers, just to be sure */
1277	regval = rd32(E1000_TXSTMPL);
1278	regval = rd32(E1000_TXSTMPH);
1279	regval = rd32(E1000_RXSTMPL);
1280	regval = rd32(E1000_RXSTMPH);
1281
1282	return 0;
1283}
1284
1285/**
1286 * igb_ptp_set_ts_config - set hardware time stamping config
1287 * @netdev: netdev struct
1288 * @ifr: interface struct
1289 *
1290 **/
1291int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292{
1293	struct igb_adapter *adapter = netdev_priv(netdev);
1294	struct hwtstamp_config config;
1295	int err;
1296
1297	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298		return -EFAULT;
1299
1300	err = igb_ptp_set_timestamp_mode(adapter, &config);
1301	if (err)
1302		return err;
1303
1304	/* save these settings for future reference */
1305	memcpy(&adapter->tstamp_config, &config,
1306	       sizeof(adapter->tstamp_config));
1307
1308	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309		-EFAULT : 0;
1310}
1311
1312/**
1313 * igb_ptp_init - Initialize PTP functionality
1314 * @adapter: Board private structure
1315 *
1316 * This function is called at device probe to initialize the PTP
1317 * functionality.
1318 */
1319void igb_ptp_init(struct igb_adapter *adapter)
1320{
1321	struct e1000_hw *hw = &adapter->hw;
1322	struct net_device *netdev = adapter->netdev;
 
1323
1324	switch (hw->mac.type) {
1325	case e1000_82576:
1326		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327		adapter->ptp_caps.owner = THIS_MODULE;
1328		adapter->ptp_caps.max_adj = 999999881;
1329		adapter->ptp_caps.n_ext_ts = 0;
1330		adapter->ptp_caps.pps = 0;
1331		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336		adapter->cc.read = igb_ptp_read_82576;
1337		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338		adapter->cc.mult = 1;
1339		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1341		break;
1342	case e1000_82580:
1343	case e1000_i354:
1344	case e1000_i350:
1345		igb_ptp_sdp_init(adapter);
1346		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347		adapter->ptp_caps.owner = THIS_MODULE;
1348		adapter->ptp_caps.max_adj = 62499999;
1349		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351		adapter->ptp_caps.n_pins = IGB_N_SDP;
1352		adapter->ptp_caps.pps = 0;
1353		adapter->ptp_caps.pin_config = adapter->sdp_config;
1354		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360		adapter->cc.read = igb_ptp_read_82580;
1361		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362		adapter->cc.mult = 1;
1363		adapter->cc.shift = 0;
1364		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1365		break;
1366	case e1000_i210:
1367	case e1000_i211:
1368		igb_ptp_sdp_init(adapter);
 
 
 
 
 
 
1369		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370		adapter->ptp_caps.owner = THIS_MODULE;
1371		adapter->ptp_caps.max_adj = 62499999;
1372		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374		adapter->ptp_caps.n_pins = IGB_N_SDP;
1375		adapter->ptp_caps.pps = 1;
1376		adapter->ptp_caps.pin_config = adapter->sdp_config;
1377		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1383		break;
1384	default:
1385		adapter->ptp_clock = NULL;
1386		return;
1387	}
1388
 
 
 
 
 
 
 
 
 
 
 
 
1389	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390						&adapter->pdev->dev);
1391	if (IS_ERR(adapter->ptp_clock)) {
1392		adapter->ptp_clock = NULL;
1393		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394	} else if (adapter->ptp_clock) {
1395		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396			 adapter->netdev->name);
1397		adapter->ptp_flags |= IGB_PTP_ENABLED;
1398
1399		spin_lock_init(&adapter->tmreg_lock);
1400		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401
1402		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404					  igb_ptp_overflow_check);
1405
1406		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409		igb_ptp_reset(adapter);
1410	}
1411}
1412
1413/**
1414 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415 * @adapter: Board private structure.
1416 **/
1417void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418{
1419	int i;
1420
1421	for (i = 0; i < IGB_N_SDP; i++) {
1422		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423
1424		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425		ppd->index = i;
1426		ppd->func = PTP_PF_NONE;
1427	}
1428}
1429
1430/**
1431 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432 * @adapter: Board private structure
1433 *
1434 * This function stops the overflow check work and PTP Tx timestamp work, and
1435 * will prepare the device for OS suspend.
1436 */
1437void igb_ptp_suspend(struct igb_adapter *adapter)
1438{
1439	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440		return;
1441
1442	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1444
1445	cancel_work_sync(&adapter->ptp_tx_work);
1446	if (adapter->ptp_tx_skb) {
1447		dev_kfree_skb_any(adapter->ptp_tx_skb);
1448		adapter->ptp_tx_skb = NULL;
1449		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450	}
1451}
1452
1453/**
1454 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455 * @adapter: Board private structure.
1456 *
1457 * This function stops the PTP support and cancels the delayed work.
1458 **/
1459void igb_ptp_stop(struct igb_adapter *adapter)
1460{
1461	igb_ptp_suspend(adapter);
1462
1463	if (adapter->ptp_clock) {
1464		ptp_clock_unregister(adapter->ptp_clock);
1465		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466			 adapter->netdev->name);
1467		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468	}
1469}
1470
1471/**
1472 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473 * @adapter: Board private structure.
1474 *
1475 * This function handles the reset work required to re-enable the PTP device.
1476 **/
1477void igb_ptp_reset(struct igb_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	unsigned long flags;
1481
1482	/* reset the tstamp_config */
1483	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484
1485	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1486
1487	switch (adapter->hw.mac.type) {
1488	case e1000_82576:
1489		/* Dial the nominal frequency. */
1490		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491		break;
1492	case e1000_82580:
1493	case e1000_i354:
1494	case e1000_i350:
1495	case e1000_i210:
1496	case e1000_i211:
1497		wr32(E1000_TSAUXC, 0x0);
1498		wr32(E1000_TSSDP, 0x0);
1499		wr32(E1000_TSIM,
1500		     TSYNC_INTERRUPTS |
1501		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502		wr32(E1000_IMS, E1000_IMS_TS);
1503		break;
1504	default:
1505		/* No work to do. */
1506		goto out;
1507	}
1508
1509	/* Re-initialize the timer. */
1510	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512
1513		igb_ptp_write_i210(adapter, &ts);
1514	} else {
1515		timecounter_init(&adapter->tc, &adapter->cc,
1516				 ktime_to_ns(ktime_get_real()));
1517	}
1518out:
1519	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520
1521	wrfl();
1522
1523	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524		schedule_delayed_work(&adapter->ptp_overflow_work,
1525				      IGB_SYSTIM_OVERFLOW_PERIOD);
1526}
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   3 *
   4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include <linux/module.h>
  20#include <linux/device.h>
  21#include <linux/pci.h>
  22#include <linux/ptp_classify.h>
  23
  24#include "igb.h"
  25
  26#define INCVALUE_MASK		0x7fffffff
  27#define ISGN			0x80000000
  28
  29/* The 82580 timesync updates the system timer every 8ns by 8ns,
  30 * and this update value cannot be reprogrammed.
  31 *
  32 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  33 * nanoseconds time values for very long. For the 82580, SYSTIM always
  34 * counts nanoseconds, but the upper 24 bits are not available. The
  35 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  36 * register, TIMINCA.
  37 *
  38 * For the 82576, the SYSTIM register time unit is affect by the
  39 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  40 * field are needed to provide the nominal 16 nanosecond period,
  41 * leaving 19 bits for fractional nanoseconds.
  42 *
  43 * We scale the NIC clock cycle by a large factor so that relatively
  44 * small clock corrections can be added or subtracted at each clock
  45 * tick. The drawbacks of a large factor are a) that the clock
  46 * register overflows more quickly (not such a big deal) and b) that
  47 * the increment per tick has to fit into 24 bits.  As a result we
  48 * need to use a shift of 19 so we can fit a value of 16 into the
  49 * TIMINCA register.
  50 *
  51 *
  52 *             SYSTIMH            SYSTIML
  53 *        +--------------+   +---+---+------+
  54 *  82576 |      32      |   | 8 | 5 |  19  |
  55 *        +--------------+   +---+---+------+
  56 *         \________ 45 bits _______/  fract
  57 *
  58 *        +----------+---+   +--------------+
  59 *  82580 |    24    | 8 |   |      32      |
  60 *        +----------+---+   +--------------+
  61 *          reserved  \______ 40 bits _____/
  62 *
  63 *
  64 * The 45 bit 82576 SYSTIM overflows every
  65 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  66 *
  67 * The 40 bit 82580 SYSTIM overflows every
  68 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 
 
 
 
 
 
 
 
  69 */
  70
  71#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
  72#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  73#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  74#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  75#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  76#define IGB_NBITS_82580			40
 
  77
  78static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
 
  79
  80/* SYSTIM read access for the 82576 */
  81static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  82{
  83	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  84	struct e1000_hw *hw = &igb->hw;
  85	u64 val;
  86	u32 lo, hi;
  87
  88	lo = rd32(E1000_SYSTIML);
  89	hi = rd32(E1000_SYSTIMH);
  90
  91	val = ((u64) hi) << 32;
  92	val |= lo;
  93
  94	return val;
  95}
  96
  97/* SYSTIM read access for the 82580 */
  98static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  99{
 100	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 101	struct e1000_hw *hw = &igb->hw;
 102	u32 lo, hi;
 103	u64 val;
 104
 105	/* The timestamp latches on lowest register read. For the 82580
 106	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 107	 * need to provide nanosecond resolution, so we just ignore it.
 108	 */
 109	rd32(E1000_SYSTIMR);
 110	lo = rd32(E1000_SYSTIML);
 111	hi = rd32(E1000_SYSTIMH);
 112
 113	val = ((u64) hi) << 32;
 114	val |= lo;
 115
 116	return val;
 117}
 118
 119/* SYSTIM read access for I210/I211 */
 120static void igb_ptp_read_i210(struct igb_adapter *adapter,
 121			      struct timespec64 *ts)
 122{
 123	struct e1000_hw *hw = &adapter->hw;
 124	u32 sec, nsec;
 125
 126	/* The timestamp latches on lowest register read. For I210/I211, the
 127	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 128	 * resolution, we can ignore it.
 129	 */
 130	rd32(E1000_SYSTIMR);
 131	nsec = rd32(E1000_SYSTIML);
 132	sec = rd32(E1000_SYSTIMH);
 133
 134	ts->tv_sec = sec;
 135	ts->tv_nsec = nsec;
 136}
 137
 138static void igb_ptp_write_i210(struct igb_adapter *adapter,
 139			       const struct timespec64 *ts)
 140{
 141	struct e1000_hw *hw = &adapter->hw;
 142
 143	/* Writing the SYSTIMR register is not necessary as it only provides
 144	 * sub-nanosecond resolution.
 145	 */
 146	wr32(E1000_SYSTIML, ts->tv_nsec);
 147	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 148}
 149
 150/**
 151 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 152 * @adapter: board private structure
 153 * @hwtstamps: timestamp structure to update
 154 * @systim: unsigned 64bit system time value.
 155 *
 156 * We need to convert the system time value stored in the RX/TXSTMP registers
 157 * into a hwtstamp which can be used by the upper level timestamping functions.
 158 *
 159 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 160 * system time value. This is needed because reading the 64 bit time
 161 * value involves reading two (or three) 32 bit registers. The first
 162 * read latches the value. Ditto for writing.
 163 *
 164 * In addition, here have extended the system time with an overflow
 165 * counter in software.
 166 **/
 167static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 168				       struct skb_shared_hwtstamps *hwtstamps,
 169				       u64 systim)
 170{
 171	unsigned long flags;
 172	u64 ns;
 173
 
 
 174	switch (adapter->hw.mac.type) {
 175	case e1000_82576:
 176	case e1000_82580:
 177	case e1000_i354:
 178	case e1000_i350:
 179		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 180
 181		ns = timecounter_cyc2time(&adapter->tc, systim);
 182
 183		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 184
 185		memset(hwtstamps, 0, sizeof(*hwtstamps));
 186		hwtstamps->hwtstamp = ns_to_ktime(ns);
 187		break;
 188	case e1000_i210:
 189	case e1000_i211:
 190		memset(hwtstamps, 0, sizeof(*hwtstamps));
 191		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 192		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 193						systim & 0xFFFFFFFF);
 194		break;
 195	default:
 196		break;
 197	}
 198}
 199
 200/* PTP clock operations */
 201static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 202{
 203	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 204					       ptp_caps);
 205	struct e1000_hw *hw = &igb->hw;
 206	int neg_adj = 0;
 207	u64 rate;
 208	u32 incvalue;
 209
 210	if (ppb < 0) {
 211		neg_adj = 1;
 212		ppb = -ppb;
 213	}
 214	rate = ppb;
 215	rate <<= 14;
 216	rate = div_u64(rate, 1953125);
 217
 218	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 219
 220	if (neg_adj)
 221		incvalue -= rate;
 222	else
 223		incvalue += rate;
 224
 225	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 226
 227	return 0;
 228}
 229
 230static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 231{
 232	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 233					       ptp_caps);
 234	struct e1000_hw *hw = &igb->hw;
 235	int neg_adj = 0;
 236	u64 rate;
 237	u32 inca;
 238
 239	if (scaled_ppm < 0) {
 240		neg_adj = 1;
 241		scaled_ppm = -scaled_ppm;
 242	}
 243	rate = scaled_ppm;
 244	rate <<= 13;
 245	rate = div_u64(rate, 15625);
 246
 247	inca = rate & INCVALUE_MASK;
 248	if (neg_adj)
 249		inca |= ISGN;
 250
 251	wr32(E1000_TIMINCA, inca);
 252
 253	return 0;
 254}
 255
 256static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 257{
 258	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 259					       ptp_caps);
 260	unsigned long flags;
 261
 262	spin_lock_irqsave(&igb->tmreg_lock, flags);
 263	timecounter_adjtime(&igb->tc, delta);
 264	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 265
 266	return 0;
 267}
 268
 269static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 270{
 271	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 272					       ptp_caps);
 273	unsigned long flags;
 274	struct timespec64 now, then = ns_to_timespec64(delta);
 275
 276	spin_lock_irqsave(&igb->tmreg_lock, flags);
 277
 278	igb_ptp_read_i210(igb, &now);
 279	now = timespec64_add(now, then);
 280	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 281
 282	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 283
 284	return 0;
 285}
 286
 287static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 288				 struct timespec64 *ts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289{
 290	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 291					       ptp_caps);
 
 292	unsigned long flags;
 
 293	u64 ns;
 294
 295	spin_lock_irqsave(&igb->tmreg_lock, flags);
 296
 297	ns = timecounter_read(&igb->tc);
 
 
 
 
 
 
 298
 299	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 300
 301	*ts = ns_to_timespec64(ns);
 302
 303	return 0;
 304}
 305
 306static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 307				struct timespec64 *ts)
 
 308{
 309	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 310					       ptp_caps);
 
 311	unsigned long flags;
 312
 313	spin_lock_irqsave(&igb->tmreg_lock, flags);
 314
 315	igb_ptp_read_i210(igb, ts);
 
 
 
 
 316
 317	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 318
 319	return 0;
 320}
 321
 322static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 323				 const struct timespec64 *ts)
 324{
 325	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 326					       ptp_caps);
 327	unsigned long flags;
 328	u64 ns;
 329
 330	ns = timespec64_to_ns(ts);
 331
 332	spin_lock_irqsave(&igb->tmreg_lock, flags);
 333
 334	timecounter_init(&igb->tc, &igb->cc, ns);
 335
 336	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 337
 338	return 0;
 339}
 340
 341static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 342				const struct timespec64 *ts)
 343{
 344	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 345					       ptp_caps);
 346	unsigned long flags;
 347
 348	spin_lock_irqsave(&igb->tmreg_lock, flags);
 349
 350	igb_ptp_write_i210(igb, ts);
 351
 352	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354	return 0;
 355}
 356
 357static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 358{
 359	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 360	static const u32 mask[IGB_N_SDP] = {
 361		E1000_CTRL_SDP0_DIR,
 362		E1000_CTRL_SDP1_DIR,
 363		E1000_CTRL_EXT_SDP2_DIR,
 364		E1000_CTRL_EXT_SDP3_DIR,
 365	};
 366
 367	if (input)
 368		*ptr &= ~mask[pin];
 369	else
 370		*ptr |= mask[pin];
 371}
 372
 373static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 374{
 375	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 376		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 377	};
 378	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 379		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 380	};
 381	static const u32 ts_sdp_en[IGB_N_SDP] = {
 382		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 383	};
 384	struct e1000_hw *hw = &igb->hw;
 385	u32 ctrl, ctrl_ext, tssdp = 0;
 386
 387	ctrl = rd32(E1000_CTRL);
 388	ctrl_ext = rd32(E1000_CTRL_EXT);
 389	tssdp = rd32(E1000_TSSDP);
 390
 391	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 392
 393	/* Make sure this pin is not enabled as an output. */
 394	tssdp &= ~ts_sdp_en[pin];
 395
 396	if (chan == 1) {
 397		tssdp &= ~AUX1_SEL_SDP3;
 398		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 399	} else {
 400		tssdp &= ~AUX0_SEL_SDP3;
 401		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 402	}
 403
 404	wr32(E1000_TSSDP, tssdp);
 405	wr32(E1000_CTRL, ctrl);
 406	wr32(E1000_CTRL_EXT, ctrl_ext);
 407}
 408
 409static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 410{
 411	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 412		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 413	};
 414	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 415		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 416	};
 417	static const u32 ts_sdp_en[IGB_N_SDP] = {
 418		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 419	};
 420	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 421		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 422		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 423	};
 424	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 425		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 426		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 427	};
 428	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 429		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 430		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 431	};
 432	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 433		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 434		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 435	};
 436	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 437		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 438		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 439	};
 440	struct e1000_hw *hw = &igb->hw;
 441	u32 ctrl, ctrl_ext, tssdp = 0;
 442
 443	ctrl = rd32(E1000_CTRL);
 444	ctrl_ext = rd32(E1000_CTRL_EXT);
 445	tssdp = rd32(E1000_TSSDP);
 446
 447	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 448
 449	/* Make sure this pin is not enabled as an input. */
 450	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 451		tssdp &= ~AUX0_TS_SDP_EN;
 452
 453	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 454		tssdp &= ~AUX1_TS_SDP_EN;
 455
 456	tssdp &= ~ts_sdp_sel_clr[pin];
 457	if (freq) {
 458		if (chan == 1)
 459			tssdp |= ts_sdp_sel_fc1[pin];
 460		else
 461			tssdp |= ts_sdp_sel_fc0[pin];
 462	} else {
 463		if (chan == 1)
 464			tssdp |= ts_sdp_sel_tt1[pin];
 465		else
 466			tssdp |= ts_sdp_sel_tt0[pin];
 467	}
 468	tssdp |= ts_sdp_en[pin];
 469
 470	wr32(E1000_TSSDP, tssdp);
 471	wr32(E1000_CTRL, ctrl);
 472	wr32(E1000_CTRL_EXT, ctrl_ext);
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 476				       struct ptp_clock_request *rq, int on)
 477{
 478	struct igb_adapter *igb =
 479		container_of(ptp, struct igb_adapter, ptp_caps);
 480	struct e1000_hw *hw = &igb->hw;
 481	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 482	unsigned long flags;
 483	struct timespec64 ts;
 484	int use_freq = 0, pin = -1;
 485	s64 ns;
 486
 487	switch (rq->type) {
 488	case PTP_CLK_REQ_EXTTS:
 
 
 
 
 
 
 
 
 
 
 
 
 
 489		if (on) {
 490			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 491					   rq->extts.index);
 492			if (pin < 0)
 493				return -EBUSY;
 494		}
 495		if (rq->extts.index == 1) {
 496			tsauxc_mask = TSAUXC_EN_TS1;
 497			tsim_mask = TSINTR_AUTT1;
 498		} else {
 499			tsauxc_mask = TSAUXC_EN_TS0;
 500			tsim_mask = TSINTR_AUTT0;
 501		}
 502		spin_lock_irqsave(&igb->tmreg_lock, flags);
 503		tsauxc = rd32(E1000_TSAUXC);
 504		tsim = rd32(E1000_TSIM);
 505		if (on) {
 506			igb_pin_extts(igb, rq->extts.index, pin);
 507			tsauxc |= tsauxc_mask;
 508			tsim |= tsim_mask;
 509		} else {
 510			tsauxc &= ~tsauxc_mask;
 511			tsim &= ~tsim_mask;
 512		}
 513		wr32(E1000_TSAUXC, tsauxc);
 514		wr32(E1000_TSIM, tsim);
 515		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 516		return 0;
 517
 518	case PTP_CLK_REQ_PEROUT:
 
 
 
 
 519		if (on) {
 520			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 521					   rq->perout.index);
 522			if (pin < 0)
 523				return -EBUSY;
 524		}
 525		ts.tv_sec = rq->perout.period.sec;
 526		ts.tv_nsec = rq->perout.period.nsec;
 527		ns = timespec64_to_ns(&ts);
 528		ns = ns >> 1;
 529		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 530			   (ns == 250000000LL) || (ns == 500000000LL))) {
 531			if (ns < 8LL)
 532				return -EINVAL;
 533			use_freq = 1;
 534		}
 535		ts = ns_to_timespec64(ns);
 536		if (rq->perout.index == 1) {
 537			if (use_freq) {
 538				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 539				tsim_mask = 0;
 540			} else {
 541				tsauxc_mask = TSAUXC_EN_TT1;
 542				tsim_mask = TSINTR_TT1;
 543			}
 544			trgttiml = E1000_TRGTTIML1;
 545			trgttimh = E1000_TRGTTIMH1;
 546			freqout = E1000_FREQOUT1;
 547		} else {
 548			if (use_freq) {
 549				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 550				tsim_mask = 0;
 551			} else {
 552				tsauxc_mask = TSAUXC_EN_TT0;
 553				tsim_mask = TSINTR_TT0;
 554			}
 555			trgttiml = E1000_TRGTTIML0;
 556			trgttimh = E1000_TRGTTIMH0;
 557			freqout = E1000_FREQOUT0;
 558		}
 559		spin_lock_irqsave(&igb->tmreg_lock, flags);
 560		tsauxc = rd32(E1000_TSAUXC);
 561		tsim = rd32(E1000_TSIM);
 562		if (rq->perout.index == 1) {
 563			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 564			tsim &= ~TSINTR_TT1;
 565		} else {
 566			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 567			tsim &= ~TSINTR_TT0;
 568		}
 569		if (on) {
 570			int i = rq->perout.index;
 571			igb_pin_perout(igb, i, pin, use_freq);
 572			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 573			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 574			igb->perout[i].period.tv_sec = ts.tv_sec;
 575			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 576			wr32(trgttimh, rq->perout.start.sec);
 577			wr32(trgttiml, rq->perout.start.nsec);
 578			if (use_freq)
 579				wr32(freqout, ns);
 580			tsauxc |= tsauxc_mask;
 581			tsim |= tsim_mask;
 582		}
 583		wr32(E1000_TSAUXC, tsauxc);
 584		wr32(E1000_TSIM, tsim);
 585		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 586		return 0;
 587
 588	case PTP_CLK_REQ_PPS:
 589		spin_lock_irqsave(&igb->tmreg_lock, flags);
 590		tsim = rd32(E1000_TSIM);
 591		if (on)
 592			tsim |= TSINTR_SYS_WRAP;
 593		else
 594			tsim &= ~TSINTR_SYS_WRAP;
 595		igb->pps_sys_wrap_on = !!on;
 596		wr32(E1000_TSIM, tsim);
 597		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 598		return 0;
 599	}
 600
 601	return -EOPNOTSUPP;
 602}
 603
 604static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 605				  struct ptp_clock_request *rq, int on)
 606{
 607	return -EOPNOTSUPP;
 608}
 609
 610static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 611			      enum ptp_pin_function func, unsigned int chan)
 612{
 613	switch (func) {
 614	case PTP_PF_NONE:
 615	case PTP_PF_EXTTS:
 616	case PTP_PF_PEROUT:
 617		break;
 618	case PTP_PF_PHYSYNC:
 619		return -1;
 620	}
 621	return 0;
 622}
 623
 624/**
 625 * igb_ptp_tx_work
 626 * @work: pointer to work struct
 627 *
 628 * This work function polls the TSYNCTXCTL valid bit to determine when a
 629 * timestamp has been taken for the current stored skb.
 630 **/
 631static void igb_ptp_tx_work(struct work_struct *work)
 632{
 633	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 634						   ptp_tx_work);
 635	struct e1000_hw *hw = &adapter->hw;
 636	u32 tsynctxctl;
 637
 638	if (!adapter->ptp_tx_skb)
 639		return;
 640
 641	if (time_is_before_jiffies(adapter->ptp_tx_start +
 642				   IGB_PTP_TX_TIMEOUT)) {
 643		dev_kfree_skb_any(adapter->ptp_tx_skb);
 644		adapter->ptp_tx_skb = NULL;
 645		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 646		adapter->tx_hwtstamp_timeouts++;
 647		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 648		 * interrupt
 649		 */
 650		rd32(E1000_TXSTMPH);
 651		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 652		return;
 653	}
 654
 655	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 656	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 657		igb_ptp_tx_hwtstamp(adapter);
 658	else
 659		/* reschedule to check later */
 660		schedule_work(&adapter->ptp_tx_work);
 661}
 662
 663static void igb_ptp_overflow_check(struct work_struct *work)
 664{
 665	struct igb_adapter *igb =
 666		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 667	struct timespec64 ts;
 
 668
 669	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 
 670
 
 671	pr_debug("igb overflow check at %lld.%09lu\n",
 672		 (long long) ts.tv_sec, ts.tv_nsec);
 673
 674	schedule_delayed_work(&igb->ptp_overflow_work,
 675			      IGB_SYSTIM_OVERFLOW_PERIOD);
 676}
 677
 678/**
 679 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 680 * @adapter: private network adapter structure
 681 *
 682 * This watchdog task is scheduled to detect error case where hardware has
 683 * dropped an Rx packet that was timestamped when the ring is full. The
 684 * particular error is rare but leaves the device in a state unable to timestamp
 685 * any future packets.
 686 **/
 687void igb_ptp_rx_hang(struct igb_adapter *adapter)
 688{
 689	struct e1000_hw *hw = &adapter->hw;
 690	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 691	unsigned long rx_event;
 692
 693	/* Other hardware uses per-packet timestamps */
 694	if (hw->mac.type != e1000_82576)
 695		return;
 696
 697	/* If we don't have a valid timestamp in the registers, just update the
 698	 * timeout counter and exit
 699	 */
 700	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 701		adapter->last_rx_ptp_check = jiffies;
 702		return;
 703	}
 704
 705	/* Determine the most recent watchdog or rx_timestamp event */
 706	rx_event = adapter->last_rx_ptp_check;
 707	if (time_after(adapter->last_rx_timestamp, rx_event))
 708		rx_event = adapter->last_rx_timestamp;
 709
 710	/* Only need to read the high RXSTMP register to clear the lock */
 711	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 712		rd32(E1000_RXSTMPH);
 713		adapter->last_rx_ptp_check = jiffies;
 714		adapter->rx_hwtstamp_cleared++;
 715		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 716	}
 717}
 718
 719/**
 720 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 721 * @adapter: private network adapter structure
 722 */
 723void igb_ptp_tx_hang(struct igb_adapter *adapter)
 724{
 725	struct e1000_hw *hw = &adapter->hw;
 726	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 727					      IGB_PTP_TX_TIMEOUT);
 728
 729	if (!adapter->ptp_tx_skb)
 730		return;
 731
 732	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 733		return;
 734
 735	/* If we haven't received a timestamp within the timeout, it is
 736	 * reasonable to assume that it will never occur, so we can unlock the
 737	 * timestamp bit when this occurs.
 738	 */
 739	if (timeout) {
 740		cancel_work_sync(&adapter->ptp_tx_work);
 741		dev_kfree_skb_any(adapter->ptp_tx_skb);
 742		adapter->ptp_tx_skb = NULL;
 743		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 744		adapter->tx_hwtstamp_timeouts++;
 745		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 746		 * interrupt
 747		 */
 748		rd32(E1000_TXSTMPH);
 749		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 750	}
 751}
 752
 753/**
 754 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 755 * @adapter: Board private structure.
 756 *
 757 * If we were asked to do hardware stamping and such a time stamp is
 758 * available, then it must have been for this skb here because we only
 759 * allow only one such packet into the queue.
 760 **/
 761static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 762{
 763	struct sk_buff *skb = adapter->ptp_tx_skb;
 764	struct e1000_hw *hw = &adapter->hw;
 765	struct skb_shared_hwtstamps shhwtstamps;
 766	u64 regval;
 767	int adjust = 0;
 768
 769	regval = rd32(E1000_TXSTMPL);
 770	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 771
 772	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 773	/* adjust timestamp for the TX latency based on link speed */
 774	if (adapter->hw.mac.type == e1000_i210) {
 775		switch (adapter->link_speed) {
 776		case SPEED_10:
 777			adjust = IGB_I210_TX_LATENCY_10;
 778			break;
 779		case SPEED_100:
 780			adjust = IGB_I210_TX_LATENCY_100;
 781			break;
 782		case SPEED_1000:
 783			adjust = IGB_I210_TX_LATENCY_1000;
 784			break;
 785		}
 786	}
 787
 788	shhwtstamps.hwtstamp =
 789		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 790
 791	/* Clear the lock early before calling skb_tstamp_tx so that
 792	 * applications are not woken up before the lock bit is clear. We use
 793	 * a copy of the skb pointer to ensure other threads can't change it
 794	 * while we're notifying the stack.
 795	 */
 796	adapter->ptp_tx_skb = NULL;
 797	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 798
 799	/* Notify the stack and free the skb after we've unlocked */
 800	skb_tstamp_tx(skb, &shhwtstamps);
 801	dev_kfree_skb_any(skb);
 802}
 803
 804/**
 805 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 806 * @q_vector: Pointer to interrupt specific structure
 807 * @va: Pointer to address containing Rx buffer
 808 * @skb: Buffer containing timestamp and packet
 809 *
 810 * This function is meant to retrieve a timestamp from the first buffer of an
 811 * incoming frame.  The value is stored in little endian format starting on
 812 * byte 8.
 
 
 813 **/
 814void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 815			 struct sk_buff *skb)
 816{
 
 
 
 817	__le64 *regval = (__le64 *)va;
 818	struct igb_adapter *adapter = q_vector->adapter;
 819	int adjust = 0;
 820
 
 
 
 821	/* The timestamp is recorded in little endian format.
 822	 * DWORD: 0        1        2        3
 823	 * Field: Reserved Reserved SYSTIML  SYSTIMH
 824	 */
 825	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 826				   le64_to_cpu(regval[1]));
 
 
 
 
 827
 828	/* adjust timestamp for the RX latency based on link speed */
 829	if (adapter->hw.mac.type == e1000_i210) {
 830		switch (adapter->link_speed) {
 831		case SPEED_10:
 832			adjust = IGB_I210_RX_LATENCY_10;
 833			break;
 834		case SPEED_100:
 835			adjust = IGB_I210_RX_LATENCY_100;
 836			break;
 837		case SPEED_1000:
 838			adjust = IGB_I210_RX_LATENCY_1000;
 839			break;
 840		}
 841	}
 842	skb_hwtstamps(skb)->hwtstamp =
 843		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 
 
 844}
 845
 846/**
 847 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 848 * @q_vector: Pointer to interrupt specific structure
 849 * @skb: Buffer containing timestamp and packet
 850 *
 851 * This function is meant to retrieve a timestamp from the internal registers
 852 * of the adapter and store it in the skb.
 853 **/
 854void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 855			 struct sk_buff *skb)
 856{
 857	struct igb_adapter *adapter = q_vector->adapter;
 858	struct e1000_hw *hw = &adapter->hw;
 
 859	u64 regval;
 860	int adjust = 0;
 
 
 861
 862	/* If this bit is set, then the RX registers contain the time stamp. No
 863	 * other packet will be time stamped until we read these registers, so
 864	 * read the registers to make them available again. Because only one
 865	 * packet can be time stamped at a time, we know that the register
 866	 * values must belong to this one here and therefore we don't need to
 867	 * compare any of the additional attributes stored for it.
 868	 *
 869	 * If nothing went wrong, then it should have a shared tx_flags that we
 870	 * can turn into a skb_shared_hwtstamps.
 871	 */
 872	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 873		return;
 874
 875	regval = rd32(E1000_RXSTMPL);
 876	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 877
 878	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 879
 880	/* adjust timestamp for the RX latency based on link speed */
 881	if (adapter->hw.mac.type == e1000_i210) {
 882		switch (adapter->link_speed) {
 883		case SPEED_10:
 884			adjust = IGB_I210_RX_LATENCY_10;
 885			break;
 886		case SPEED_100:
 887			adjust = IGB_I210_RX_LATENCY_100;
 888			break;
 889		case SPEED_1000:
 890			adjust = IGB_I210_RX_LATENCY_1000;
 891			break;
 892		}
 893	}
 894	skb_hwtstamps(skb)->hwtstamp =
 895		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 896
 897	/* Update the last_rx_timestamp timer in order to enable watchdog check
 898	 * for error case of latched timestamp on a dropped packet.
 899	 */
 900	adapter->last_rx_timestamp = jiffies;
 901}
 902
 903/**
 904 * igb_ptp_get_ts_config - get hardware time stamping config
 905 * @netdev:
 906 * @ifreq:
 907 *
 908 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 909 * to deconstruct the settings from the registers, just return a shadow copy
 910 * of the last known settings.
 911 **/
 912int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 913{
 914	struct igb_adapter *adapter = netdev_priv(netdev);
 915	struct hwtstamp_config *config = &adapter->tstamp_config;
 916
 917	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 918		-EFAULT : 0;
 919}
 920
 921/**
 922 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 923 * @adapter: networking device structure
 924 * @config: hwtstamp configuration
 925 *
 926 * Outgoing time stamping can be enabled and disabled. Play nice and
 927 * disable it when requested, although it shouldn't case any overhead
 928 * when no packet needs it. At most one packet in the queue may be
 929 * marked for time stamping, otherwise it would be impossible to tell
 930 * for sure to which packet the hardware time stamp belongs.
 931 *
 932 * Incoming time stamping has to be configured via the hardware
 933 * filters. Not all combinations are supported, in particular event
 934 * type has to be specified. Matching the kind of event packet is
 935 * not supported, with the exception of "all V2 events regardless of
 936 * level 2 or 4".
 937 */
 938static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 939				      struct hwtstamp_config *config)
 940{
 941	struct e1000_hw *hw = &adapter->hw;
 942	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 943	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 944	u32 tsync_rx_cfg = 0;
 945	bool is_l4 = false;
 946	bool is_l2 = false;
 947	u32 regval;
 948
 949	/* reserved for future extensions */
 950	if (config->flags)
 951		return -EINVAL;
 952
 953	switch (config->tx_type) {
 954	case HWTSTAMP_TX_OFF:
 955		tsync_tx_ctl = 0;
 
 956	case HWTSTAMP_TX_ON:
 957		break;
 958	default:
 959		return -ERANGE;
 960	}
 961
 962	switch (config->rx_filter) {
 963	case HWTSTAMP_FILTER_NONE:
 964		tsync_rx_ctl = 0;
 965		break;
 966	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 967		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 968		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 969		is_l4 = true;
 970		break;
 971	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 972		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 973		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 974		is_l4 = true;
 975		break;
 976	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 977	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 978	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 979	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 980	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 981	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 982	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 983	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 984	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 985		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 986		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 987		is_l2 = true;
 988		is_l4 = true;
 989		break;
 990	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 991	case HWTSTAMP_FILTER_NTP_ALL:
 992	case HWTSTAMP_FILTER_ALL:
 993		/* 82576 cannot timestamp all packets, which it needs to do to
 994		 * support both V1 Sync and Delay_Req messages
 995		 */
 996		if (hw->mac.type != e1000_82576) {
 997			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 998			config->rx_filter = HWTSTAMP_FILTER_ALL;
 999			break;
1000		}
1001		/* fall through */
1002	default:
1003		config->rx_filter = HWTSTAMP_FILTER_NONE;
1004		return -ERANGE;
1005	}
1006
1007	if (hw->mac.type == e1000_82575) {
1008		if (tsync_rx_ctl | tsync_tx_ctl)
1009			return -EINVAL;
1010		return 0;
1011	}
1012
1013	/* Per-packet timestamping only works if all packets are
1014	 * timestamped, so enable timestamping in all packets as
1015	 * long as one Rx filter was configured.
1016	 */
1017	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1018		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1019		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1020		config->rx_filter = HWTSTAMP_FILTER_ALL;
1021		is_l2 = true;
1022		is_l4 = true;
1023
1024		if ((hw->mac.type == e1000_i210) ||
1025		    (hw->mac.type == e1000_i211)) {
1026			regval = rd32(E1000_RXPBS);
1027			regval |= E1000_RXPBS_CFG_TS_EN;
1028			wr32(E1000_RXPBS, regval);
1029		}
1030	}
1031
1032	/* enable/disable TX */
1033	regval = rd32(E1000_TSYNCTXCTL);
1034	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1035	regval |= tsync_tx_ctl;
1036	wr32(E1000_TSYNCTXCTL, regval);
1037
1038	/* enable/disable RX */
1039	regval = rd32(E1000_TSYNCRXCTL);
1040	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1041	regval |= tsync_rx_ctl;
1042	wr32(E1000_TSYNCRXCTL, regval);
1043
1044	/* define which PTP packets are time stamped */
1045	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046
1047	/* define ethertype filter for timestamped packets */
1048	if (is_l2)
1049		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1050		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1051		      E1000_ETQF_1588 | /* enable timestamping */
1052		      ETH_P_1588));     /* 1588 eth protocol type */
1053	else
1054		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055
1056	/* L4 Queue Filter[3]: filter by destination port and protocol */
1057	if (is_l4) {
1058		u32 ftqf = (IPPROTO_UDP /* UDP */
1059			| E1000_FTQF_VF_BP /* VF not compared */
1060			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1061			| E1000_FTQF_MASK); /* mask all inputs */
1062		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063
1064		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1065		wr32(E1000_IMIREXT(3),
1066		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1067		if (hw->mac.type == e1000_82576) {
1068			/* enable source port check */
1069			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1070			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071		}
1072		wr32(E1000_FTQF(3), ftqf);
1073	} else {
1074		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075	}
1076	wrfl();
1077
1078	/* clear TX/RX time stamp registers, just to be sure */
1079	regval = rd32(E1000_TXSTMPL);
1080	regval = rd32(E1000_TXSTMPH);
1081	regval = rd32(E1000_RXSTMPL);
1082	regval = rd32(E1000_RXSTMPH);
1083
1084	return 0;
1085}
1086
1087/**
1088 * igb_ptp_set_ts_config - set hardware time stamping config
1089 * @netdev:
1090 * @ifreq:
1091 *
1092 **/
1093int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094{
1095	struct igb_adapter *adapter = netdev_priv(netdev);
1096	struct hwtstamp_config config;
1097	int err;
1098
1099	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1100		return -EFAULT;
1101
1102	err = igb_ptp_set_timestamp_mode(adapter, &config);
1103	if (err)
1104		return err;
1105
1106	/* save these settings for future reference */
1107	memcpy(&adapter->tstamp_config, &config,
1108	       sizeof(adapter->tstamp_config));
1109
1110	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1111		-EFAULT : 0;
1112}
1113
1114/**
1115 * igb_ptp_init - Initialize PTP functionality
1116 * @adapter: Board private structure
1117 *
1118 * This function is called at device probe to initialize the PTP
1119 * functionality.
1120 */
1121void igb_ptp_init(struct igb_adapter *adapter)
1122{
1123	struct e1000_hw *hw = &adapter->hw;
1124	struct net_device *netdev = adapter->netdev;
1125	int i;
1126
1127	switch (hw->mac.type) {
1128	case e1000_82576:
1129		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1130		adapter->ptp_caps.owner = THIS_MODULE;
1131		adapter->ptp_caps.max_adj = 999999881;
1132		adapter->ptp_caps.n_ext_ts = 0;
1133		adapter->ptp_caps.pps = 0;
1134		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1135		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1136		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1137		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1138		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1139		adapter->cc.read = igb_ptp_read_82576;
1140		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1141		adapter->cc.mult = 1;
1142		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1143		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1144		break;
1145	case e1000_82580:
1146	case e1000_i354:
1147	case e1000_i350:
 
1148		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1149		adapter->ptp_caps.owner = THIS_MODULE;
1150		adapter->ptp_caps.max_adj = 62499999;
1151		adapter->ptp_caps.n_ext_ts = 0;
 
 
1152		adapter->ptp_caps.pps = 0;
 
1153		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1154		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1155		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1156		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1157		adapter->ptp_caps.enable = igb_ptp_feature_enable;
 
1158		adapter->cc.read = igb_ptp_read_82580;
1159		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1160		adapter->cc.mult = 1;
1161		adapter->cc.shift = 0;
1162		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1163		break;
1164	case e1000_i210:
1165	case e1000_i211:
1166		for (i = 0; i < IGB_N_SDP; i++) {
1167			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168
1169			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1170			ppd->index = i;
1171			ppd->func = PTP_PF_NONE;
1172		}
1173		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1174		adapter->ptp_caps.owner = THIS_MODULE;
1175		adapter->ptp_caps.max_adj = 62499999;
1176		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1177		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1178		adapter->ptp_caps.n_pins = IGB_N_SDP;
1179		adapter->ptp_caps.pps = 1;
1180		adapter->ptp_caps.pin_config = adapter->sdp_config;
1181		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1182		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1183		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1184		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1185		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1186		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1187		break;
1188	default:
1189		adapter->ptp_clock = NULL;
1190		return;
1191	}
1192
1193	spin_lock_init(&adapter->tmreg_lock);
1194	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195
1196	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1197		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1198				  igb_ptp_overflow_check);
1199
1200	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1201	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202
1203	igb_ptp_reset(adapter);
1204
1205	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1206						&adapter->pdev->dev);
1207	if (IS_ERR(adapter->ptp_clock)) {
1208		adapter->ptp_clock = NULL;
1209		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1210	} else if (adapter->ptp_clock) {
1211		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1212			 adapter->netdev->name);
1213		adapter->ptp_flags |= IGB_PTP_ENABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214	}
1215}
1216
1217/**
1218 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1219 * @adapter: Board private structure
1220 *
1221 * This function stops the overflow check work and PTP Tx timestamp work, and
1222 * will prepare the device for OS suspend.
1223 */
1224void igb_ptp_suspend(struct igb_adapter *adapter)
1225{
1226	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1227		return;
1228
1229	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1230		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231
1232	cancel_work_sync(&adapter->ptp_tx_work);
1233	if (adapter->ptp_tx_skb) {
1234		dev_kfree_skb_any(adapter->ptp_tx_skb);
1235		adapter->ptp_tx_skb = NULL;
1236		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1237	}
1238}
1239
1240/**
1241 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1242 * @adapter: Board private structure.
1243 *
1244 * This function stops the PTP support and cancels the delayed work.
1245 **/
1246void igb_ptp_stop(struct igb_adapter *adapter)
1247{
1248	igb_ptp_suspend(adapter);
1249
1250	if (adapter->ptp_clock) {
1251		ptp_clock_unregister(adapter->ptp_clock);
1252		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1253			 adapter->netdev->name);
1254		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1255	}
1256}
1257
1258/**
1259 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1260 * @adapter: Board private structure.
1261 *
1262 * This function handles the reset work required to re-enable the PTP device.
1263 **/
1264void igb_ptp_reset(struct igb_adapter *adapter)
1265{
1266	struct e1000_hw *hw = &adapter->hw;
1267	unsigned long flags;
1268
1269	/* reset the tstamp_config */
1270	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271
1272	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273
1274	switch (adapter->hw.mac.type) {
1275	case e1000_82576:
1276		/* Dial the nominal frequency. */
1277		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1278		break;
1279	case e1000_82580:
1280	case e1000_i354:
1281	case e1000_i350:
1282	case e1000_i210:
1283	case e1000_i211:
1284		wr32(E1000_TSAUXC, 0x0);
1285		wr32(E1000_TSSDP, 0x0);
1286		wr32(E1000_TSIM,
1287		     TSYNC_INTERRUPTS |
1288		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1289		wr32(E1000_IMS, E1000_IMS_TS);
1290		break;
1291	default:
1292		/* No work to do. */
1293		goto out;
1294	}
1295
1296	/* Re-initialize the timer. */
1297	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1298		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299
1300		igb_ptp_write_i210(adapter, &ts);
1301	} else {
1302		timecounter_init(&adapter->tc, &adapter->cc,
1303				 ktime_to_ns(ktime_get_real()));
1304	}
1305out:
1306	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307
1308	wrfl();
1309
1310	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1311		schedule_delayed_work(&adapter->ptp_overflow_work,
1312				      IGB_SYSTIM_OVERFLOW_PERIOD);
1313}