Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK		0x7fffffff
  12#define ISGN			0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580			40
  70#define IGB_82580_BASE_PERIOD		0x800000000
  71
  72static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  73static void igb_ptp_sdp_init(struct igb_adapter *adapter);
  74
  75/* SYSTIM read access for the 82576 */
  76static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  77{
  78	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  79	struct e1000_hw *hw = &igb->hw;
  80	u64 val;
  81	u32 lo, hi;
  82
  83	lo = rd32(E1000_SYSTIML);
  84	hi = rd32(E1000_SYSTIMH);
  85
  86	val = ((u64) hi) << 32;
  87	val |= lo;
  88
  89	return val;
  90}
  91
  92/* SYSTIM read access for the 82580 */
  93static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  94{
  95	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  96	struct e1000_hw *hw = &igb->hw;
  97	u32 lo, hi;
  98	u64 val;
  99
 100	/* The timestamp latches on lowest register read. For the 82580
 101	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 102	 * need to provide nanosecond resolution, so we just ignore it.
 103	 */
 104	rd32(E1000_SYSTIMR);
 105	lo = rd32(E1000_SYSTIML);
 106	hi = rd32(E1000_SYSTIMH);
 107
 108	val = ((u64) hi) << 32;
 109	val |= lo;
 110
 111	return val;
 112}
 113
 114/* SYSTIM read access for I210/I211 */
 115static void igb_ptp_read_i210(struct igb_adapter *adapter,
 116			      struct timespec64 *ts)
 117{
 118	struct e1000_hw *hw = &adapter->hw;
 119	u32 sec, nsec;
 120
 121	/* The timestamp latches on lowest register read. For I210/I211, the
 122	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 123	 * resolution, we can ignore it.
 124	 */
 125	rd32(E1000_SYSTIMR);
 126	nsec = rd32(E1000_SYSTIML);
 127	sec = rd32(E1000_SYSTIMH);
 128
 129	ts->tv_sec = sec;
 130	ts->tv_nsec = nsec;
 131}
 132
 133static void igb_ptp_write_i210(struct igb_adapter *adapter,
 134			       const struct timespec64 *ts)
 135{
 136	struct e1000_hw *hw = &adapter->hw;
 137
 138	/* Writing the SYSTIMR register is not necessary as it only provides
 139	 * sub-nanosecond resolution.
 140	 */
 141	wr32(E1000_SYSTIML, ts->tv_nsec);
 142	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 143}
 144
 145/**
 146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 147 * @adapter: board private structure
 148 * @hwtstamps: timestamp structure to update
 149 * @systim: unsigned 64bit system time value.
 150 *
 151 * We need to convert the system time value stored in the RX/TXSTMP registers
 152 * into a hwtstamp which can be used by the upper level timestamping functions.
 153 *
 154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 155 * system time value. This is needed because reading the 64 bit time
 156 * value involves reading two (or three) 32 bit registers. The first
 157 * read latches the value. Ditto for writing.
 158 *
 159 * In addition, here have extended the system time with an overflow
 160 * counter in software.
 161 **/
 162static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 163				       struct skb_shared_hwtstamps *hwtstamps,
 164				       u64 systim)
 165{
 166	unsigned long flags;
 167	u64 ns;
 168
 169	memset(hwtstamps, 0, sizeof(*hwtstamps));
 170
 171	switch (adapter->hw.mac.type) {
 172	case e1000_82576:
 173	case e1000_82580:
 174	case e1000_i354:
 175	case e1000_i350:
 176		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 
 177		ns = timecounter_cyc2time(&adapter->tc, systim);
 
 178		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 179
 
 180		hwtstamps->hwtstamp = ns_to_ktime(ns);
 181		break;
 182	case e1000_i210:
 183	case e1000_i211:
 
 184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186						systim & 0xFFFFFFFF);
 187		break;
 188	default:
 189		break;
 190	}
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
 195{
 196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197					       ptp_caps);
 198	struct e1000_hw *hw = &igb->hw;
 199	u64 incvalue;
 
 
 
 
 
 
 
 
 
 
 200
 201	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
 
 
 
 
 
 202
 203	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 204
 205	return 0;
 206}
 207
 208static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 209{
 210	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 211					       ptp_caps);
 212	struct e1000_hw *hw = &igb->hw;
 213	bool neg_adj;
 214	u64 rate;
 215	u32 inca;
 216
 217	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
 
 
 
 
 
 
 218
 219	inca = rate & INCVALUE_MASK;
 220	if (neg_adj)
 221		inca |= ISGN;
 222
 223	wr32(E1000_TIMINCA, inca);
 224
 225	return 0;
 226}
 227
 228static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 229{
 230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 231					       ptp_caps);
 232	unsigned long flags;
 
 233
 234	spin_lock_irqsave(&igb->tmreg_lock, flags);
 235	timecounter_adjtime(&igb->tc, delta);
 236	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 237
 238	return 0;
 239}
 240
 241static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 242{
 243	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 244					       ptp_caps);
 245	unsigned long flags;
 246	struct timespec64 now, then = ns_to_timespec64(delta);
 247
 248	spin_lock_irqsave(&igb->tmreg_lock, flags);
 249
 250	igb_ptp_read_i210(igb, &now);
 251	now = timespec64_add(now, then);
 252	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 253
 254	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 255
 256	return 0;
 257}
 258
 259static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 260				  struct timespec64 *ts,
 261				  struct ptp_system_timestamp *sts)
 262{
 263	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 264					       ptp_caps);
 265	struct e1000_hw *hw = &igb->hw;
 266	unsigned long flags;
 267	u32 lo, hi;
 268	u64 ns;
 269
 270	spin_lock_irqsave(&igb->tmreg_lock, flags);
 271
 272	ptp_read_system_prets(sts);
 273	lo = rd32(E1000_SYSTIML);
 274	ptp_read_system_postts(sts);
 275	hi = rd32(E1000_SYSTIMH);
 276
 277	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 278
 279	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 280
 281	*ts = ns_to_timespec64(ns);
 282
 283	return 0;
 284}
 285
 286static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 287				  struct timespec64 *ts,
 288				  struct ptp_system_timestamp *sts)
 289{
 290	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 291					       ptp_caps);
 292	struct e1000_hw *hw = &igb->hw;
 293	unsigned long flags;
 294	u32 lo, hi;
 295	u64 ns;
 
 296
 297	spin_lock_irqsave(&igb->tmreg_lock, flags);
 298
 299	ptp_read_system_prets(sts);
 300	rd32(E1000_SYSTIMR);
 301	ptp_read_system_postts(sts);
 302	lo = rd32(E1000_SYSTIML);
 303	hi = rd32(E1000_SYSTIMH);
 304
 305	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 306
 307	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 308
 309	*ts = ns_to_timespec64(ns);
 
 310
 311	return 0;
 312}
 313
 314static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 315				 struct timespec64 *ts,
 316				 struct ptp_system_timestamp *sts)
 317{
 318	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 319					       ptp_caps);
 320	struct e1000_hw *hw = &igb->hw;
 321	unsigned long flags;
 322
 323	spin_lock_irqsave(&igb->tmreg_lock, flags);
 324
 325	ptp_read_system_prets(sts);
 326	rd32(E1000_SYSTIMR);
 327	ptp_read_system_postts(sts);
 328	ts->tv_nsec = rd32(E1000_SYSTIML);
 329	ts->tv_sec = rd32(E1000_SYSTIMH);
 330
 331	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 332
 333	return 0;
 334}
 335
 336static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 337				 const struct timespec64 *ts)
 338{
 339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340					       ptp_caps);
 341	unsigned long flags;
 342	u64 ns;
 343
 344	ns = timespec64_to_ns(ts);
 
 345
 346	spin_lock_irqsave(&igb->tmreg_lock, flags);
 347
 348	timecounter_init(&igb->tc, &igb->cc, ns);
 349
 350	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 351
 352	return 0;
 353}
 354
 355static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 356				const struct timespec64 *ts)
 357{
 358	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 359					       ptp_caps);
 360	unsigned long flags;
 361
 362	spin_lock_irqsave(&igb->tmreg_lock, flags);
 363
 364	igb_ptp_write_i210(igb, ts);
 365
 366	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 367
 368	return 0;
 369}
 370
 371static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 
 372{
 373	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 374	static const u32 mask[IGB_N_SDP] = {
 375		E1000_CTRL_SDP0_DIR,
 376		E1000_CTRL_SDP1_DIR,
 377		E1000_CTRL_EXT_SDP2_DIR,
 378		E1000_CTRL_EXT_SDP3_DIR,
 379	};
 380
 381	if (input)
 382		*ptr &= ~mask[pin];
 383	else
 384		*ptr |= mask[pin];
 385}
 386
 387static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 388{
 389	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 390		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 391	};
 392	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 393		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 394	};
 395	static const u32 ts_sdp_en[IGB_N_SDP] = {
 396		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 397	};
 398	struct e1000_hw *hw = &igb->hw;
 399	u32 ctrl, ctrl_ext, tssdp = 0;
 400
 401	ctrl = rd32(E1000_CTRL);
 402	ctrl_ext = rd32(E1000_CTRL_EXT);
 403	tssdp = rd32(E1000_TSSDP);
 404
 405	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 406
 407	/* Make sure this pin is not enabled as an output. */
 408	tssdp &= ~ts_sdp_en[pin];
 409
 410	if (chan == 1) {
 411		tssdp &= ~AUX1_SEL_SDP3;
 412		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 413	} else {
 414		tssdp &= ~AUX0_SEL_SDP3;
 415		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 416	}
 417
 418	wr32(E1000_TSSDP, tssdp);
 419	wr32(E1000_CTRL, ctrl);
 420	wr32(E1000_CTRL_EXT, ctrl_ext);
 421}
 422
 423static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 424{
 425	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 426		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 427	};
 428	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 429		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 430	};
 431	static const u32 ts_sdp_en[IGB_N_SDP] = {
 432		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 433	};
 434	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 435		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 436		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 437	};
 438	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 439		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 440		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 441	};
 442	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 443		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 444		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 445	};
 446	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 447		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 448		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 449	};
 450	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 451		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 452		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 453	};
 454	struct e1000_hw *hw = &igb->hw;
 455	u32 ctrl, ctrl_ext, tssdp = 0;
 456
 457	ctrl = rd32(E1000_CTRL);
 458	ctrl_ext = rd32(E1000_CTRL_EXT);
 459	tssdp = rd32(E1000_TSSDP);
 460
 461	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 462
 463	/* Make sure this pin is not enabled as an input. */
 464	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 465		tssdp &= ~AUX0_TS_SDP_EN;
 466
 467	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 468		tssdp &= ~AUX1_TS_SDP_EN;
 469
 470	tssdp &= ~ts_sdp_sel_clr[pin];
 471	if (freq) {
 472		if (chan == 1)
 473			tssdp |= ts_sdp_sel_fc1[pin];
 474		else
 475			tssdp |= ts_sdp_sel_fc0[pin];
 476	} else {
 477		if (chan == 1)
 478			tssdp |= ts_sdp_sel_tt1[pin];
 479		else
 480			tssdp |= ts_sdp_sel_tt0[pin];
 481	}
 482	tssdp |= ts_sdp_en[pin];
 483
 484	wr32(E1000_TSSDP, tssdp);
 485	wr32(E1000_CTRL, ctrl);
 486	wr32(E1000_CTRL_EXT, ctrl_ext);
 487}
 488
 489static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
 490					struct ptp_clock_request *rq, int on)
 491{
 492	struct igb_adapter *igb =
 493		container_of(ptp, struct igb_adapter, ptp_caps);
 494	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
 495		systimh, level_mask, level, rem;
 496	struct e1000_hw *hw = &igb->hw;
 497	struct timespec64 ts, start;
 498	unsigned long flags;
 499	u64 systim, now;
 500	int pin = -1;
 501	s64 ns;
 502
 503	switch (rq->type) {
 504	case PTP_CLK_REQ_EXTTS:
 505		/* Reject requests with unsupported flags */
 506		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 507					PTP_RISING_EDGE |
 508					PTP_FALLING_EDGE |
 509					PTP_STRICT_FLAGS))
 510			return -EOPNOTSUPP;
 511
 512		if (on) {
 513			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 514					   rq->extts.index);
 515			if (pin < 0)
 516				return -EBUSY;
 517		}
 518		if (rq->extts.index == 1) {
 519			tsauxc_mask = TSAUXC_EN_TS1;
 520			tsim_mask = TSINTR_AUTT1;
 521		} else {
 522			tsauxc_mask = TSAUXC_EN_TS0;
 523			tsim_mask = TSINTR_AUTT0;
 524		}
 525		spin_lock_irqsave(&igb->tmreg_lock, flags);
 526		tsauxc = rd32(E1000_TSAUXC);
 527		tsim = rd32(E1000_TSIM);
 528		if (on) {
 529			igb_pin_extts(igb, rq->extts.index, pin);
 530			tsauxc |= tsauxc_mask;
 531			tsim |= tsim_mask;
 532		} else {
 533			tsauxc &= ~tsauxc_mask;
 534			tsim &= ~tsim_mask;
 535		}
 536		wr32(E1000_TSAUXC, tsauxc);
 537		wr32(E1000_TSIM, tsim);
 538		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 539		return 0;
 540
 541	case PTP_CLK_REQ_PEROUT:
 542		/* Reject requests with unsupported flags */
 543		if (rq->perout.flags)
 544			return -EOPNOTSUPP;
 545
 546		if (on) {
 547			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 548					   rq->perout.index);
 549			if (pin < 0)
 550				return -EBUSY;
 551		}
 552		ts.tv_sec = rq->perout.period.sec;
 553		ts.tv_nsec = rq->perout.period.nsec;
 554		ns = timespec64_to_ns(&ts);
 555		ns = ns >> 1;
 556		if (on && ns < 8LL)
 557			return -EINVAL;
 558		ts = ns_to_timespec64(ns);
 559		if (rq->perout.index == 1) {
 560			tsauxc_mask = TSAUXC_EN_TT1;
 561			tsim_mask = TSINTR_TT1;
 562			trgttiml = E1000_TRGTTIML1;
 563			trgttimh = E1000_TRGTTIMH1;
 564		} else {
 565			tsauxc_mask = TSAUXC_EN_TT0;
 566			tsim_mask = TSINTR_TT0;
 567			trgttiml = E1000_TRGTTIML0;
 568			trgttimh = E1000_TRGTTIMH0;
 569		}
 570		spin_lock_irqsave(&igb->tmreg_lock, flags);
 571		tsauxc = rd32(E1000_TSAUXC);
 572		tsim = rd32(E1000_TSIM);
 573		if (rq->perout.index == 1) {
 574			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 575			tsim &= ~TSINTR_TT1;
 576		} else {
 577			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 578			tsim &= ~TSINTR_TT0;
 579		}
 580		if (on) {
 581			int i = rq->perout.index;
 582
 583			/* read systim registers in sequence */
 584			rd32(E1000_SYSTIMR);
 585			systiml = rd32(E1000_SYSTIML);
 586			systimh = rd32(E1000_SYSTIMH);
 587			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 588			now = timecounter_cyc2time(&igb->tc, systim);
 589
 590			if (pin < 2) {
 591				level_mask = (i == 1) ? 0x80000 : 0x40000;
 592				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 593			} else {
 594				level_mask = (i == 1) ? 0x80 : 0x40;
 595				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 596			}
 597
 598			div_u64_rem(now, ns, &rem);
 599			systim = systim + (ns - rem);
 600
 601			/* synchronize pin level with rising/falling edges */
 602			div_u64_rem(now, ns << 1, &rem);
 603			if (rem < ns) {
 604				/* first half of period */
 605				if (level == 0) {
 606					/* output is already low, skip this period */
 607					systim += ns;
 608				}
 609			} else {
 610				/* second half of period */
 611				if (level == 1) {
 612					/* output is already high, skip this period */
 613					systim += ns;
 614				}
 615			}
 616
 617			start = ns_to_timespec64(systim + (ns - rem));
 618			igb_pin_perout(igb, i, pin, 0);
 619			igb->perout[i].start.tv_sec = start.tv_sec;
 620			igb->perout[i].start.tv_nsec = start.tv_nsec;
 621			igb->perout[i].period.tv_sec = ts.tv_sec;
 622			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 623
 624			wr32(trgttiml, (u32)systim);
 625			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
 626			tsauxc |= tsauxc_mask;
 627			tsim |= tsim_mask;
 628		}
 629		wr32(E1000_TSAUXC, tsauxc);
 630		wr32(E1000_TSIM, tsim);
 631		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 632		return 0;
 633
 634	case PTP_CLK_REQ_PPS:
 635		return -EOPNOTSUPP;
 636	}
 637
 638	return -EOPNOTSUPP;
 639}
 640
 641static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 642				       struct ptp_clock_request *rq, int on)
 643{
 644	struct igb_adapter *igb =
 645		container_of(ptp, struct igb_adapter, ptp_caps);
 646	struct e1000_hw *hw = &igb->hw;
 647	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 648	unsigned long flags;
 649	struct timespec64 ts;
 650	int use_freq = 0, pin = -1;
 651	s64 ns;
 652
 653	switch (rq->type) {
 654	case PTP_CLK_REQ_EXTTS:
 655		/* Reject requests with unsupported flags */
 656		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 657					PTP_RISING_EDGE |
 658					PTP_FALLING_EDGE |
 659					PTP_STRICT_FLAGS))
 660			return -EOPNOTSUPP;
 661
 662		/* Reject requests failing to enable both edges. */
 663		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 664		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 665		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 666			return -EOPNOTSUPP;
 667
 668		if (on) {
 669			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 670					   rq->extts.index);
 671			if (pin < 0)
 672				return -EBUSY;
 673		}
 674		if (rq->extts.index == 1) {
 675			tsauxc_mask = TSAUXC_EN_TS1;
 676			tsim_mask = TSINTR_AUTT1;
 677		} else {
 678			tsauxc_mask = TSAUXC_EN_TS0;
 679			tsim_mask = TSINTR_AUTT0;
 680		}
 681		spin_lock_irqsave(&igb->tmreg_lock, flags);
 682		tsauxc = rd32(E1000_TSAUXC);
 683		tsim = rd32(E1000_TSIM);
 684		if (on) {
 685			igb_pin_extts(igb, rq->extts.index, pin);
 686			tsauxc |= tsauxc_mask;
 687			tsim |= tsim_mask;
 688		} else {
 689			tsauxc &= ~tsauxc_mask;
 690			tsim &= ~tsim_mask;
 691		}
 692		wr32(E1000_TSAUXC, tsauxc);
 693		wr32(E1000_TSIM, tsim);
 694		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 695		return 0;
 696
 697	case PTP_CLK_REQ_PEROUT:
 698		/* Reject requests with unsupported flags */
 699		if (rq->perout.flags)
 700			return -EOPNOTSUPP;
 701
 702		if (on) {
 703			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 704					   rq->perout.index);
 705			if (pin < 0)
 706				return -EBUSY;
 707		}
 708		ts.tv_sec = rq->perout.period.sec;
 709		ts.tv_nsec = rq->perout.period.nsec;
 710		ns = timespec64_to_ns(&ts);
 711		ns = ns >> 1;
 712		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 713			   (ns == 250000000LL) || (ns == 500000000LL))) {
 714			if (ns < 8LL)
 715				return -EINVAL;
 716			use_freq = 1;
 717		}
 718		ts = ns_to_timespec64(ns);
 719		if (rq->perout.index == 1) {
 720			if (use_freq) {
 721				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 722				tsim_mask = 0;
 723			} else {
 724				tsauxc_mask = TSAUXC_EN_TT1;
 725				tsim_mask = TSINTR_TT1;
 726			}
 727			trgttiml = E1000_TRGTTIML1;
 728			trgttimh = E1000_TRGTTIMH1;
 729			freqout = E1000_FREQOUT1;
 730		} else {
 731			if (use_freq) {
 732				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 733				tsim_mask = 0;
 734			} else {
 735				tsauxc_mask = TSAUXC_EN_TT0;
 736				tsim_mask = TSINTR_TT0;
 737			}
 738			trgttiml = E1000_TRGTTIML0;
 739			trgttimh = E1000_TRGTTIMH0;
 740			freqout = E1000_FREQOUT0;
 741		}
 742		spin_lock_irqsave(&igb->tmreg_lock, flags);
 743		tsauxc = rd32(E1000_TSAUXC);
 744		tsim = rd32(E1000_TSIM);
 745		if (rq->perout.index == 1) {
 746			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 747			tsim &= ~TSINTR_TT1;
 748		} else {
 749			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 750			tsim &= ~TSINTR_TT0;
 751		}
 752		if (on) {
 753			int i = rq->perout.index;
 754			igb_pin_perout(igb, i, pin, use_freq);
 755			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 756			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 757			igb->perout[i].period.tv_sec = ts.tv_sec;
 758			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 759			wr32(trgttimh, rq->perout.start.sec);
 760			wr32(trgttiml, rq->perout.start.nsec);
 761			if (use_freq)
 762				wr32(freqout, ns);
 763			tsauxc |= tsauxc_mask;
 764			tsim |= tsim_mask;
 765		}
 766		wr32(E1000_TSAUXC, tsauxc);
 767		wr32(E1000_TSIM, tsim);
 768		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 769		return 0;
 770
 771	case PTP_CLK_REQ_PPS:
 772		spin_lock_irqsave(&igb->tmreg_lock, flags);
 773		tsim = rd32(E1000_TSIM);
 774		if (on)
 775			tsim |= TSINTR_SYS_WRAP;
 776		else
 777			tsim &= ~TSINTR_SYS_WRAP;
 778		igb->pps_sys_wrap_on = !!on;
 779		wr32(E1000_TSIM, tsim);
 780		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 781		return 0;
 782	}
 783
 784	return -EOPNOTSUPP;
 785}
 786
 787static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 788				  struct ptp_clock_request *rq, int on)
 789{
 790	return -EOPNOTSUPP;
 791}
 792
 793static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 794			      enum ptp_pin_function func, unsigned int chan)
 795{
 796	switch (func) {
 797	case PTP_PF_NONE:
 798	case PTP_PF_EXTTS:
 799	case PTP_PF_PEROUT:
 800		break;
 801	case PTP_PF_PHYSYNC:
 802		return -1;
 803	}
 804	return 0;
 805}
 806
 807/**
 808 * igb_ptp_tx_work
 809 * @work: pointer to work struct
 810 *
 811 * This work function polls the TSYNCTXCTL valid bit to determine when a
 812 * timestamp has been taken for the current stored skb.
 813 **/
 814static void igb_ptp_tx_work(struct work_struct *work)
 815{
 816	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 817						   ptp_tx_work);
 818	struct e1000_hw *hw = &adapter->hw;
 819	u32 tsynctxctl;
 820
 821	if (!adapter->ptp_tx_skb)
 822		return;
 823
 824	if (time_is_before_jiffies(adapter->ptp_tx_start +
 825				   IGB_PTP_TX_TIMEOUT)) {
 826		dev_kfree_skb_any(adapter->ptp_tx_skb);
 827		adapter->ptp_tx_skb = NULL;
 828		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 829		adapter->tx_hwtstamp_timeouts++;
 830		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 831		 * interrupt
 832		 */
 833		rd32(E1000_TXSTMPH);
 834		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 835		return;
 836	}
 837
 838	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 839	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 840		igb_ptp_tx_hwtstamp(adapter);
 841	else
 842		/* reschedule to check later */
 843		schedule_work(&adapter->ptp_tx_work);
 844}
 845
 846static void igb_ptp_overflow_check(struct work_struct *work)
 847{
 848	struct igb_adapter *igb =
 849		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 850	struct timespec64 ts;
 851	u64 ns;
 852
 853	/* Update the timecounter */
 854	ns = timecounter_read(&igb->tc);
 855
 856	ts = ns_to_timespec64(ns);
 857	pr_debug("igb overflow check at %lld.%09lu\n",
 858		 (long long) ts.tv_sec, ts.tv_nsec);
 859
 860	schedule_delayed_work(&igb->ptp_overflow_work,
 861			      IGB_SYSTIM_OVERFLOW_PERIOD);
 862}
 863
 864/**
 865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 866 * @adapter: private network adapter structure
 867 *
 868 * This watchdog task is scheduled to detect error case where hardware has
 869 * dropped an Rx packet that was timestamped when the ring is full. The
 870 * particular error is rare but leaves the device in a state unable to timestamp
 871 * any future packets.
 872 **/
 873void igb_ptp_rx_hang(struct igb_adapter *adapter)
 874{
 875	struct e1000_hw *hw = &adapter->hw;
 876	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 877	unsigned long rx_event;
 878
 879	/* Other hardware uses per-packet timestamps */
 880	if (hw->mac.type != e1000_82576)
 881		return;
 882
 883	/* If we don't have a valid timestamp in the registers, just update the
 884	 * timeout counter and exit
 885	 */
 886	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 887		adapter->last_rx_ptp_check = jiffies;
 888		return;
 889	}
 890
 891	/* Determine the most recent watchdog or rx_timestamp event */
 892	rx_event = adapter->last_rx_ptp_check;
 893	if (time_after(adapter->last_rx_timestamp, rx_event))
 894		rx_event = adapter->last_rx_timestamp;
 895
 896	/* Only need to read the high RXSTMP register to clear the lock */
 897	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 898		rd32(E1000_RXSTMPH);
 899		adapter->last_rx_ptp_check = jiffies;
 900		adapter->rx_hwtstamp_cleared++;
 901		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 902	}
 903}
 904
 905/**
 906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 907 * @adapter: private network adapter structure
 908 */
 909void igb_ptp_tx_hang(struct igb_adapter *adapter)
 910{
 911	struct e1000_hw *hw = &adapter->hw;
 912	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 913					      IGB_PTP_TX_TIMEOUT);
 914
 915	if (!adapter->ptp_tx_skb)
 916		return;
 917
 918	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 919		return;
 920
 921	/* If we haven't received a timestamp within the timeout, it is
 922	 * reasonable to assume that it will never occur, so we can unlock the
 923	 * timestamp bit when this occurs.
 924	 */
 925	if (timeout) {
 926		cancel_work_sync(&adapter->ptp_tx_work);
 927		dev_kfree_skb_any(adapter->ptp_tx_skb);
 928		adapter->ptp_tx_skb = NULL;
 929		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 930		adapter->tx_hwtstamp_timeouts++;
 931		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 932		 * interrupt
 933		 */
 934		rd32(E1000_TXSTMPH);
 935		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 936	}
 937}
 938
 939/**
 940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 941 * @adapter: Board private structure.
 942 *
 943 * If we were asked to do hardware stamping and such a time stamp is
 944 * available, then it must have been for this skb here because we only
 945 * allow only one such packet into the queue.
 946 **/
 947static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 948{
 949	struct sk_buff *skb = adapter->ptp_tx_skb;
 950	struct e1000_hw *hw = &adapter->hw;
 951	struct skb_shared_hwtstamps shhwtstamps;
 952	u64 regval;
 953	int adjust = 0;
 954
 955	regval = rd32(E1000_TXSTMPL);
 956	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 957
 958	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 959	/* adjust timestamp for the TX latency based on link speed */
 960	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
 961		switch (adapter->link_speed) {
 962		case SPEED_10:
 963			adjust = IGB_I210_TX_LATENCY_10;
 964			break;
 965		case SPEED_100:
 966			adjust = IGB_I210_TX_LATENCY_100;
 967			break;
 968		case SPEED_1000:
 969			adjust = IGB_I210_TX_LATENCY_1000;
 970			break;
 971		}
 972	}
 973
 974	shhwtstamps.hwtstamp =
 975		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 976
 977	/* Clear the lock early before calling skb_tstamp_tx so that
 978	 * applications are not woken up before the lock bit is clear. We use
 979	 * a copy of the skb pointer to ensure other threads can't change it
 980	 * while we're notifying the stack.
 981	 */
 982	adapter->ptp_tx_skb = NULL;
 983	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 984
 985	/* Notify the stack and free the skb after we've unlocked */
 986	skb_tstamp_tx(skb, &shhwtstamps);
 987	dev_kfree_skb_any(skb);
 988}
 989
 990/**
 991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 992 * @q_vector: Pointer to interrupt specific structure
 993 * @va: Pointer to address containing Rx buffer
 994 * @timestamp: Pointer where timestamp will be stored
 995 *
 996 * This function is meant to retrieve a timestamp from the first buffer of an
 997 * incoming frame.  The value is stored in little endian format starting on
 998 * byte 8
 999 *
1000 * Returns: The timestamp header length or 0 if not available
1001 **/
1002int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003			ktime_t *timestamp)
 
1004{
1005	struct igb_adapter *adapter = q_vector->adapter;
1006	struct e1000_hw *hw = &adapter->hw;
1007	struct skb_shared_hwtstamps ts;
1008	__le64 *regval = (__le64 *)va;
1009	int adjust = 0;
1010
1011	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012		return 0;
1013
1014	/* The timestamp is recorded in little endian format.
1015	 * DWORD: 0        1        2        3
1016	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1017	 */
1018
1019	/* check reserved dwords are zero, be/le doesn't matter for zero */
1020	if (regval[0])
1021		return 0;
1022
1023	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024
1025	/* adjust timestamp for the RX latency based on link speed */
1026	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027		switch (adapter->link_speed) {
1028		case SPEED_10:
1029			adjust = IGB_I210_RX_LATENCY_10;
1030			break;
1031		case SPEED_100:
1032			adjust = IGB_I210_RX_LATENCY_100;
1033			break;
1034		case SPEED_1000:
1035			adjust = IGB_I210_RX_LATENCY_1000;
1036			break;
1037		}
1038	}
1039
1040	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041
1042	return IGB_TS_HDR_LEN;
1043}
1044
1045/**
1046 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047 * @q_vector: Pointer to interrupt specific structure
1048 * @skb: Buffer containing timestamp and packet
1049 *
1050 * This function is meant to retrieve a timestamp from the internal registers
1051 * of the adapter and store it in the skb.
1052 **/
1053void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
 
1054{
1055	struct igb_adapter *adapter = q_vector->adapter;
1056	struct e1000_hw *hw = &adapter->hw;
1057	int adjust = 0;
1058	u64 regval;
1059
1060	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061		return;
1062
1063	/* If this bit is set, then the RX registers contain the time stamp. No
1064	 * other packet will be time stamped until we read these registers, so
1065	 * read the registers to make them available again. Because only one
1066	 * packet can be time stamped at a time, we know that the register
1067	 * values must belong to this one here and therefore we don't need to
1068	 * compare any of the additional attributes stored for it.
1069	 *
1070	 * If nothing went wrong, then it should have a shared tx_flags that we
1071	 * can turn into a skb_shared_hwtstamps.
1072	 */
1073	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074		return;
1075
1076	regval = rd32(E1000_RXSTMPL);
1077	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078
1079	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080
1081	/* adjust timestamp for the RX latency based on link speed */
1082	if (adapter->hw.mac.type == e1000_i210) {
1083		switch (adapter->link_speed) {
1084		case SPEED_10:
1085			adjust = IGB_I210_RX_LATENCY_10;
1086			break;
1087		case SPEED_100:
1088			adjust = IGB_I210_RX_LATENCY_100;
1089			break;
1090		case SPEED_1000:
1091			adjust = IGB_I210_RX_LATENCY_1000;
1092			break;
1093		}
1094	}
1095	skb_hwtstamps(skb)->hwtstamp =
1096		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097
1098	/* Update the last_rx_timestamp timer in order to enable watchdog check
1099	 * for error case of latched timestamp on a dropped packet.
1100	 */
1101	adapter->last_rx_timestamp = jiffies;
1102}
1103
1104/**
1105 * igb_ptp_get_ts_config - get hardware time stamping config
1106 * @netdev: netdev struct
1107 * @ifr: interface struct
1108 *
1109 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110 * to deconstruct the settings from the registers, just return a shadow copy
1111 * of the last known settings.
1112 **/
1113int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114{
1115	struct igb_adapter *adapter = netdev_priv(netdev);
1116	struct hwtstamp_config *config = &adapter->tstamp_config;
1117
1118	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119		-EFAULT : 0;
1120}
1121
1122/**
1123 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124 * @adapter: networking device structure
1125 * @config: hwtstamp configuration
1126 *
1127 * Outgoing time stamping can be enabled and disabled. Play nice and
1128 * disable it when requested, although it shouldn't case any overhead
1129 * when no packet needs it. At most one packet in the queue may be
1130 * marked for time stamping, otherwise it would be impossible to tell
1131 * for sure to which packet the hardware time stamp belongs.
1132 *
1133 * Incoming time stamping has to be configured via the hardware
1134 * filters. Not all combinations are supported, in particular event
1135 * type has to be specified. Matching the kind of event packet is
1136 * not supported, with the exception of "all V2 events regardless of
1137 * level 2 or 4".
1138 */
1139static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140				      struct hwtstamp_config *config)
1141{
 
1142	struct e1000_hw *hw = &adapter->hw;
 
1143	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145	u32 tsync_rx_cfg = 0;
1146	bool is_l4 = false;
1147	bool is_l2 = false;
1148	u32 regval;
1149
 
 
 
 
 
 
 
1150	switch (config->tx_type) {
1151	case HWTSTAMP_TX_OFF:
1152		tsync_tx_ctl = 0;
1153		break;
1154	case HWTSTAMP_TX_ON:
1155		break;
1156	default:
1157		return -ERANGE;
1158	}
1159
1160	switch (config->rx_filter) {
1161	case HWTSTAMP_FILTER_NONE:
1162		tsync_rx_ctl = 0;
1163		break;
1164	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167		is_l4 = true;
1168		break;
1169	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172		is_l4 = true;
1173		break;
1174	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185		is_l2 = true;
1186		is_l4 = true;
1187		break;
1188	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189	case HWTSTAMP_FILTER_NTP_ALL:
1190	case HWTSTAMP_FILTER_ALL:
1191		/* 82576 cannot timestamp all packets, which it needs to do to
1192		 * support both V1 Sync and Delay_Req messages
1193		 */
1194		if (hw->mac.type != e1000_82576) {
1195			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196			config->rx_filter = HWTSTAMP_FILTER_ALL;
1197			break;
1198		}
1199		fallthrough;
1200	default:
1201		config->rx_filter = HWTSTAMP_FILTER_NONE;
1202		return -ERANGE;
1203	}
1204
1205	if (hw->mac.type == e1000_82575) {
1206		if (tsync_rx_ctl | tsync_tx_ctl)
1207			return -EINVAL;
1208		return 0;
1209	}
1210
1211	/* Per-packet timestamping only works if all packets are
1212	 * timestamped, so enable timestamping in all packets as
1213	 * long as one Rx filter was configured.
1214	 */
1215	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218		config->rx_filter = HWTSTAMP_FILTER_ALL;
1219		is_l2 = true;
1220		is_l4 = true;
1221
1222		if ((hw->mac.type == e1000_i210) ||
1223		    (hw->mac.type == e1000_i211)) {
1224			regval = rd32(E1000_RXPBS);
1225			regval |= E1000_RXPBS_CFG_TS_EN;
1226			wr32(E1000_RXPBS, regval);
1227		}
1228	}
1229
1230	/* enable/disable TX */
1231	regval = rd32(E1000_TSYNCTXCTL);
1232	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233	regval |= tsync_tx_ctl;
1234	wr32(E1000_TSYNCTXCTL, regval);
1235
1236	/* enable/disable RX */
1237	regval = rd32(E1000_TSYNCRXCTL);
1238	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239	regval |= tsync_rx_ctl;
1240	wr32(E1000_TSYNCRXCTL, regval);
1241
1242	/* define which PTP packets are time stamped */
1243	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244
1245	/* define ethertype filter for timestamped packets */
1246	if (is_l2)
1247		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249		      E1000_ETQF_1588 | /* enable timestamping */
1250		      ETH_P_1588));     /* 1588 eth protocol type */
1251	else
1252		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253
1254	/* L4 Queue Filter[3]: filter by destination port and protocol */
1255	if (is_l4) {
1256		u32 ftqf = (IPPROTO_UDP /* UDP */
1257			| E1000_FTQF_VF_BP /* VF not compared */
1258			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259			| E1000_FTQF_MASK); /* mask all inputs */
1260		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261
1262		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263		wr32(E1000_IMIREXT(3),
1264		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265		if (hw->mac.type == e1000_82576) {
1266			/* enable source port check */
1267			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269		}
1270		wr32(E1000_FTQF(3), ftqf);
1271	} else {
1272		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273	}
1274	wrfl();
1275
1276	/* clear TX/RX time stamp registers, just to be sure */
1277	regval = rd32(E1000_TXSTMPL);
1278	regval = rd32(E1000_TXSTMPH);
1279	regval = rd32(E1000_RXSTMPL);
1280	regval = rd32(E1000_RXSTMPH);
1281
1282	return 0;
1283}
1284
1285/**
1286 * igb_ptp_set_ts_config - set hardware time stamping config
1287 * @netdev: netdev struct
1288 * @ifr: interface struct
1289 *
1290 **/
1291int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292{
1293	struct igb_adapter *adapter = netdev_priv(netdev);
1294	struct hwtstamp_config config;
1295	int err;
1296
1297	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298		return -EFAULT;
1299
1300	err = igb_ptp_set_timestamp_mode(adapter, &config);
1301	if (err)
1302		return err;
1303
1304	/* save these settings for future reference */
1305	memcpy(&adapter->tstamp_config, &config,
1306	       sizeof(adapter->tstamp_config));
1307
1308	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309		-EFAULT : 0;
1310}
1311
1312/**
1313 * igb_ptp_init - Initialize PTP functionality
1314 * @adapter: Board private structure
1315 *
1316 * This function is called at device probe to initialize the PTP
1317 * functionality.
1318 */
1319void igb_ptp_init(struct igb_adapter *adapter)
1320{
1321	struct e1000_hw *hw = &adapter->hw;
1322	struct net_device *netdev = adapter->netdev;
1323
1324	switch (hw->mac.type) {
1325	case e1000_82576:
1326		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327		adapter->ptp_caps.owner = THIS_MODULE;
1328		adapter->ptp_caps.max_adj = 999999881;
1329		adapter->ptp_caps.n_ext_ts = 0;
1330		adapter->ptp_caps.pps = 0;
1331		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336		adapter->cc.read = igb_ptp_read_82576;
1337		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338		adapter->cc.mult = 1;
1339		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
 
1341		break;
1342	case e1000_82580:
1343	case e1000_i354:
1344	case e1000_i350:
1345		igb_ptp_sdp_init(adapter);
1346		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347		adapter->ptp_caps.owner = THIS_MODULE;
1348		adapter->ptp_caps.max_adj = 62499999;
1349		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351		adapter->ptp_caps.n_pins = IGB_N_SDP;
1352		adapter->ptp_caps.pps = 0;
1353		adapter->ptp_caps.pin_config = adapter->sdp_config;
1354		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360		adapter->cc.read = igb_ptp_read_82580;
1361		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362		adapter->cc.mult = 1;
1363		adapter->cc.shift = 0;
1364		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
 
1365		break;
1366	case e1000_i210:
1367	case e1000_i211:
1368		igb_ptp_sdp_init(adapter);
1369		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370		adapter->ptp_caps.owner = THIS_MODULE;
1371		adapter->ptp_caps.max_adj = 62499999;
1372		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374		adapter->ptp_caps.n_pins = IGB_N_SDP;
1375		adapter->ptp_caps.pps = 1;
1376		adapter->ptp_caps.pin_config = adapter->sdp_config;
1377		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382		adapter->ptp_caps.verify = igb_ptp_verify_pin;
 
1383		break;
1384	default:
1385		adapter->ptp_clock = NULL;
1386		return;
1387	}
1388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390						&adapter->pdev->dev);
1391	if (IS_ERR(adapter->ptp_clock)) {
1392		adapter->ptp_clock = NULL;
1393		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394	} else if (adapter->ptp_clock) {
1395		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396			 adapter->netdev->name);
1397		adapter->ptp_flags |= IGB_PTP_ENABLED;
1398
1399		spin_lock_init(&adapter->tmreg_lock);
1400		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401
1402		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404					  igb_ptp_overflow_check);
1405
1406		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409		igb_ptp_reset(adapter);
1410	}
1411}
1412
1413/**
1414 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415 * @adapter: Board private structure.
1416 **/
1417void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418{
1419	int i;
1420
1421	for (i = 0; i < IGB_N_SDP; i++) {
1422		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423
1424		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425		ppd->index = i;
1426		ppd->func = PTP_PF_NONE;
1427	}
1428}
1429
1430/**
1431 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432 * @adapter: Board private structure
1433 *
1434 * This function stops the overflow check work and PTP Tx timestamp work, and
1435 * will prepare the device for OS suspend.
1436 */
1437void igb_ptp_suspend(struct igb_adapter *adapter)
1438{
1439	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440		return;
1441
1442	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
 
1443		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
 
 
 
 
 
 
 
 
1444
1445	cancel_work_sync(&adapter->ptp_tx_work);
1446	if (adapter->ptp_tx_skb) {
1447		dev_kfree_skb_any(adapter->ptp_tx_skb);
1448		adapter->ptp_tx_skb = NULL;
1449		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450	}
1451}
1452
1453/**
1454 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455 * @adapter: Board private structure.
1456 *
1457 * This function stops the PTP support and cancels the delayed work.
1458 **/
1459void igb_ptp_stop(struct igb_adapter *adapter)
1460{
1461	igb_ptp_suspend(adapter);
1462
1463	if (adapter->ptp_clock) {
1464		ptp_clock_unregister(adapter->ptp_clock);
1465		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466			 adapter->netdev->name);
1467		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468	}
1469}
1470
1471/**
1472 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473 * @adapter: Board private structure.
1474 *
1475 * This function handles the reset work required to re-enable the PTP device.
1476 **/
1477void igb_ptp_reset(struct igb_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	unsigned long flags;
1481
1482	/* reset the tstamp_config */
1483	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484
1485	spin_lock_irqsave(&adapter->tmreg_lock, flags);
 
1486
1487	switch (adapter->hw.mac.type) {
1488	case e1000_82576:
1489		/* Dial the nominal frequency. */
1490		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491		break;
1492	case e1000_82580:
1493	case e1000_i354:
1494	case e1000_i350:
1495	case e1000_i210:
1496	case e1000_i211:
 
1497		wr32(E1000_TSAUXC, 0x0);
1498		wr32(E1000_TSSDP, 0x0);
1499		wr32(E1000_TSIM,
1500		     TSYNC_INTERRUPTS |
1501		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502		wr32(E1000_IMS, E1000_IMS_TS);
1503		break;
1504	default:
1505		/* No work to do. */
1506		goto out;
1507	}
1508
1509	/* Re-initialize the timer. */
1510	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512
1513		igb_ptp_write_i210(adapter, &ts);
1514	} else {
1515		timecounter_init(&adapter->tc, &adapter->cc,
1516				 ktime_to_ns(ktime_get_real()));
1517	}
1518out:
1519	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520
1521	wrfl();
1522
1523	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524		schedule_delayed_work(&adapter->ptp_overflow_work,
1525				      IGB_SYSTIM_OVERFLOW_PERIOD);
1526}
v3.15
  1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
  2 *
  3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License as published by
  7 * the Free Software Foundation; either version 2 of the License, or
  8 * (at your option) any later version.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, see <http://www.gnu.org/licenses/>.
 17 */
 18#include <linux/module.h>
 19#include <linux/device.h>
 20#include <linux/pci.h>
 21#include <linux/ptp_classify.h>
 22
 23#include "igb.h"
 24
 25#define INCVALUE_MASK		0x7fffffff
 26#define ISGN			0x80000000
 27
 28/* The 82580 timesync updates the system timer every 8ns by 8ns,
 29 * and this update value cannot be reprogrammed.
 30 *
 31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 32 * nanoseconds time values for very long. For the 82580, SYSTIM always
 33 * counts nanoseconds, but the upper 24 bits are not availible. The
 34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 35 * register, TIMINCA.
 36 *
 37 * For the 82576, the SYSTIM register time unit is affect by the
 38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 39 * field are needed to provide the nominal 16 nanosecond period,
 40 * leaving 19 bits for fractional nanoseconds.
 41 *
 42 * We scale the NIC clock cycle by a large factor so that relatively
 43 * small clock corrections can be added or subtracted at each clock
 44 * tick. The drawbacks of a large factor are a) that the clock
 45 * register overflows more quickly (not such a big deal) and b) that
 46 * the increment per tick has to fit into 24 bits.  As a result we
 47 * need to use a shift of 19 so we can fit a value of 16 into the
 48 * TIMINCA register.
 49 *
 50 *
 51 *             SYSTIMH            SYSTIML
 52 *        +--------------+   +---+---+------+
 53 *  82576 |      32      |   | 8 | 5 |  19  |
 54 *        +--------------+   +---+---+------+
 55 *         \________ 45 bits _______/  fract
 56 *
 57 *        +----------+---+   +--------------+
 58 *  82580 |    24    | 8 |   |      32      |
 59 *        +----------+---+   +--------------+
 60 *          reserved  \______ 40 bits _____/
 61 *
 62 *
 63 * The 45 bit 82576 SYSTIM overflows every
 64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 65 *
 66 * The 40 bit 82580 SYSTIM overflows every
 67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 
 
 
 
 
 
 
 
 68 */
 69
 70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
 71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
 72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
 73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
 74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
 75#define IGB_NBITS_82580			40
 
 76
 77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
 
 78
 79/* SYSTIM read access for the 82576 */
 80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
 81{
 82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 83	struct e1000_hw *hw = &igb->hw;
 84	u64 val;
 85	u32 lo, hi;
 86
 87	lo = rd32(E1000_SYSTIML);
 88	hi = rd32(E1000_SYSTIMH);
 89
 90	val = ((u64) hi) << 32;
 91	val |= lo;
 92
 93	return val;
 94}
 95
 96/* SYSTIM read access for the 82580 */
 97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
 98{
 99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
 
120{
121	struct e1000_hw *hw = &adapter->hw;
122	u32 sec, nsec;
123
124	/* The timestamp latches on lowest register read. For I210/I211, the
125	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126	 * resolution, we can ignore it.
127	 */
128	rd32(E1000_SYSTIMR);
129	nsec = rd32(E1000_SYSTIML);
130	sec = rd32(E1000_SYSTIMH);
131
132	ts->tv_sec = sec;
133	ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137			       const struct timespec *ts)
138{
139	struct e1000_hw *hw = &adapter->hw;
140
141	/* Writing the SYSTIMR register is not necessary as it only provides
142	 * sub-nanosecond resolution.
143	 */
144	wr32(E1000_SYSTIML, ts->tv_nsec);
145	wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166				       struct skb_shared_hwtstamps *hwtstamps,
167				       u64 systim)
168{
169	unsigned long flags;
170	u64 ns;
171
 
 
172	switch (adapter->hw.mac.type) {
173	case e1000_82576:
174	case e1000_82580:
175	case e1000_i354:
176	case e1000_i350:
177		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179		ns = timecounter_cyc2time(&adapter->tc, systim);
180
181		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		hwtstamps->hwtstamp = ns_to_ktime(ns);
185		break;
186	case e1000_i210:
187	case e1000_i211:
188		memset(hwtstamps, 0, sizeof(*hwtstamps));
189		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191						systim & 0xFFFFFFFF);
192		break;
193	default:
194		break;
195	}
196}
197
198/* PTP clock operations */
199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200{
201	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202					       ptp_caps);
203	struct e1000_hw *hw = &igb->hw;
204	int neg_adj = 0;
205	u64 rate;
206	u32 incvalue;
207
208	if (ppb < 0) {
209		neg_adj = 1;
210		ppb = -ppb;
211	}
212	rate = ppb;
213	rate <<= 14;
214	rate = div_u64(rate, 1953125);
215
216	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218	if (neg_adj)
219		incvalue -= rate;
220	else
221		incvalue += rate;
222
223	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225	return 0;
226}
227
228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	struct e1000_hw *hw = &igb->hw;
233	int neg_adj = 0;
234	u64 rate;
235	u32 inca;
236
237	if (ppb < 0) {
238		neg_adj = 1;
239		ppb = -ppb;
240	}
241	rate = ppb;
242	rate <<= 26;
243	rate = div_u64(rate, 1953125);
244
245	inca = rate & INCVALUE_MASK;
246	if (neg_adj)
247		inca |= ISGN;
248
249	wr32(E1000_TIMINCA, inca);
250
251	return 0;
252}
253
254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255{
256	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257					       ptp_caps);
258	unsigned long flags;
259	s64 now;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
 
 
262
263	now = timecounter_read(&igb->tc);
264	now += delta;
265	timecounter_init(&igb->tc, &igb->cc, now);
 
 
 
 
 
 
 
 
 
 
 
 
266
267	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269	return 0;
270}
271
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 
 
273{
274	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275					       ptp_caps);
 
276	unsigned long flags;
277	struct timespec now, then = ns_to_timespec(delta);
 
278
279	spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281	igb_ptp_read_i210(igb, &now);
282	now = timespec_add(now, then);
283	igb_ptp_write_i210(igb, (const struct timespec *)&now);
 
 
 
284
285	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
 
 
287	return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291				 struct timespec *ts)
 
292{
293	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294					       ptp_caps);
 
295	unsigned long flags;
 
296	u64 ns;
297	u32 remainder;
298
299	spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301	ns = timecounter_read(&igb->tc);
 
 
 
 
 
 
302
303	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306	ts->tv_nsec = remainder;
307
308	return 0;
309}
310
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312				struct timespec *ts)
 
313{
314	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315					       ptp_caps);
 
316	unsigned long flags;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	igb_ptp_read_i210(igb, ts);
 
 
 
 
321
322	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324	return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328				 const struct timespec *ts)
329{
330	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331					       ptp_caps);
332	unsigned long flags;
333	u64 ns;
334
335	ns = ts->tv_sec * 1000000000ULL;
336	ns += ts->tv_nsec;
337
338	spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340	timecounter_init(&igb->tc, &igb->cc, ns);
341
342	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344	return 0;
345}
346
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348				const struct timespec *ts)
349{
350	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351					       ptp_caps);
352	unsigned long flags;
353
354	spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356	igb_ptp_write_i210(igb, ts);
357
358	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360	return 0;
361}
362
363static int igb_ptp_enable(struct ptp_clock_info *ptp,
364			  struct ptp_clock_request *rq, int on)
365{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366	return -EOPNOTSUPP;
367}
368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376static void igb_ptp_tx_work(struct work_struct *work)
377{
378	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379						   ptp_tx_work);
380	struct e1000_hw *hw = &adapter->hw;
381	u32 tsynctxctl;
382
383	if (!adapter->ptp_tx_skb)
384		return;
385
386	if (time_is_before_jiffies(adapter->ptp_tx_start +
387				   IGB_PTP_TX_TIMEOUT)) {
388		dev_kfree_skb_any(adapter->ptp_tx_skb);
389		adapter->ptp_tx_skb = NULL;
390		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391		adapter->tx_hwtstamp_timeouts++;
 
 
 
 
392		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
393		return;
394	}
395
396	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398		igb_ptp_tx_hwtstamp(adapter);
399	else
400		/* reschedule to check later */
401		schedule_work(&adapter->ptp_tx_work);
402}
403
404static void igb_ptp_overflow_check(struct work_struct *work)
405{
406	struct igb_adapter *igb =
407		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408	struct timespec ts;
 
409
410	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
 
411
412	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
 
 
413
414	schedule_delayed_work(&igb->ptp_overflow_work,
415			      IGB_SYSTIM_OVERFLOW_PERIOD);
416}
417
418/**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427void igb_ptp_rx_hang(struct igb_adapter *adapter)
428{
429	struct e1000_hw *hw = &adapter->hw;
430	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431	unsigned long rx_event;
432
 
433	if (hw->mac.type != e1000_82576)
434		return;
435
436	/* If we don't have a valid timestamp in the registers, just update the
437	 * timeout counter and exit
438	 */
439	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440		adapter->last_rx_ptp_check = jiffies;
441		return;
442	}
443
444	/* Determine the most recent watchdog or rx_timestamp event */
445	rx_event = adapter->last_rx_ptp_check;
446	if (time_after(adapter->last_rx_timestamp, rx_event))
447		rx_event = adapter->last_rx_timestamp;
448
449	/* Only need to read the high RXSTMP register to clear the lock */
450	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
451		rd32(E1000_RXSTMPH);
452		adapter->last_rx_ptp_check = jiffies;
453		adapter->rx_hwtstamp_cleared++;
454		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
455	}
456}
457
458/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
460 * @adapter: Board private structure.
461 *
462 * If we were asked to do hardware stamping and such a time stamp is
463 * available, then it must have been for this skb here because we only
464 * allow only one such packet into the queue.
465 **/
466static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
467{
 
468	struct e1000_hw *hw = &adapter->hw;
469	struct skb_shared_hwtstamps shhwtstamps;
470	u64 regval;
 
471
472	regval = rd32(E1000_TXSTMPL);
473	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
474
475	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
476	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477	dev_kfree_skb_any(adapter->ptp_tx_skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478	adapter->ptp_tx_skb = NULL;
479	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 
 
 
 
480}
481
482/**
483 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
484 * @q_vector: Pointer to interrupt specific structure
485 * @va: Pointer to address containing Rx buffer
486 * @skb: Buffer containing timestamp and packet
487 *
488 * This function is meant to retrieve a timestamp from the first buffer of an
489 * incoming frame.  The value is stored in little endian format starting on
490 * byte 8.
 
 
491 **/
492void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
493			 unsigned char *va,
494			 struct sk_buff *skb)
495{
 
 
 
496	__le64 *regval = (__le64 *)va;
 
 
 
 
497
498	/* The timestamp is recorded in little endian format.
499	 * DWORD: 0        1        2        3
500	 * Field: Reserved Reserved SYSTIML  SYSTIMH
501	 */
502	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
503				   le64_to_cpu(regval[1]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504}
505
506/**
507 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
508 * @q_vector: Pointer to interrupt specific structure
509 * @skb: Buffer containing timestamp and packet
510 *
511 * This function is meant to retrieve a timestamp from the internal registers
512 * of the adapter and store it in the skb.
513 **/
514void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
515			 struct sk_buff *skb)
516{
517	struct igb_adapter *adapter = q_vector->adapter;
518	struct e1000_hw *hw = &adapter->hw;
 
519	u64 regval;
520
 
 
 
521	/* If this bit is set, then the RX registers contain the time stamp. No
522	 * other packet will be time stamped until we read these registers, so
523	 * read the registers to make them available again. Because only one
524	 * packet can be time stamped at a time, we know that the register
525	 * values must belong to this one here and therefore we don't need to
526	 * compare any of the additional attributes stored for it.
527	 *
528	 * If nothing went wrong, then it should have a shared tx_flags that we
529	 * can turn into a skb_shared_hwtstamps.
530	 */
531	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
532		return;
533
534	regval = rd32(E1000_RXSTMPL);
535	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
536
537	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539	/* Update the last_rx_timestamp timer in order to enable watchdog check
540	 * for error case of latched timestamp on a dropped packet.
541	 */
542	adapter->last_rx_timestamp = jiffies;
543}
544
545/**
546 * igb_ptp_get_ts_config - get hardware time stamping config
547 * @netdev:
548 * @ifreq:
549 *
550 * Get the hwtstamp_config settings to return to the user. Rather than attempt
551 * to deconstruct the settings from the registers, just return a shadow copy
552 * of the last known settings.
553 **/
554int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555{
556	struct igb_adapter *adapter = netdev_priv(netdev);
557	struct hwtstamp_config *config = &adapter->tstamp_config;
558
559	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560		-EFAULT : 0;
561}
 
562/**
563 * igb_ptp_set_ts_config - control hardware time stamping
564 * @netdev:
565 * @ifreq:
566 *
567 * Outgoing time stamping can be enabled and disabled. Play nice and
568 * disable it when requested, although it shouldn't case any overhead
569 * when no packet needs it. At most one packet in the queue may be
570 * marked for time stamping, otherwise it would be impossible to tell
571 * for sure to which packet the hardware time stamp belongs.
572 *
573 * Incoming time stamping has to be configured via the hardware
574 * filters. Not all combinations are supported, in particular event
575 * type has to be specified. Matching the kind of event packet is
576 * not supported, with the exception of "all V2 events regardless of
577 * level 2 or 4".
578 **/
579int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
 
580{
581	struct igb_adapter *adapter = netdev_priv(netdev);
582	struct e1000_hw *hw = &adapter->hw;
583	struct hwtstamp_config *config = &adapter->tstamp_config;
584	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586	u32 tsync_rx_cfg = 0;
587	bool is_l4 = false;
588	bool is_l2 = false;
589	u32 regval;
590
591	if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592		return -EFAULT;
593
594	/* reserved for future extensions */
595	if (config->flags)
596		return -EINVAL;
597
598	switch (config->tx_type) {
599	case HWTSTAMP_TX_OFF:
600		tsync_tx_ctl = 0;
 
601	case HWTSTAMP_TX_ON:
602		break;
603	default:
604		return -ERANGE;
605	}
606
607	switch (config->rx_filter) {
608	case HWTSTAMP_FILTER_NONE:
609		tsync_rx_ctl = 0;
610		break;
611	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614		is_l4 = true;
615		break;
616	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619		is_l4 = true;
620		break;
621	case HWTSTAMP_FILTER_PTP_V2_EVENT:
622	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624	case HWTSTAMP_FILTER_PTP_V2_SYNC:
625	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632		is_l2 = true;
633		is_l4 = true;
634		break;
635	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 
636	case HWTSTAMP_FILTER_ALL:
637		/* 82576 cannot timestamp all packets, which it needs to do to
638		 * support both V1 Sync and Delay_Req messages
639		 */
640		if (hw->mac.type != e1000_82576) {
641			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642			config->rx_filter = HWTSTAMP_FILTER_ALL;
643			break;
644		}
645		/* fall through */
646	default:
647		config->rx_filter = HWTSTAMP_FILTER_NONE;
648		return -ERANGE;
649	}
650
651	if (hw->mac.type == e1000_82575) {
652		if (tsync_rx_ctl | tsync_tx_ctl)
653			return -EINVAL;
654		return 0;
655	}
656
657	/* Per-packet timestamping only works if all packets are
658	 * timestamped, so enable timestamping in all packets as
659	 * long as one Rx filter was configured.
660	 */
661	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664		config->rx_filter = HWTSTAMP_FILTER_ALL;
665		is_l2 = true;
666		is_l4 = true;
667
668		if ((hw->mac.type == e1000_i210) ||
669		    (hw->mac.type == e1000_i211)) {
670			regval = rd32(E1000_RXPBS);
671			regval |= E1000_RXPBS_CFG_TS_EN;
672			wr32(E1000_RXPBS, regval);
673		}
674	}
675
676	/* enable/disable TX */
677	regval = rd32(E1000_TSYNCTXCTL);
678	regval &= ~E1000_TSYNCTXCTL_ENABLED;
679	regval |= tsync_tx_ctl;
680	wr32(E1000_TSYNCTXCTL, regval);
681
682	/* enable/disable RX */
683	regval = rd32(E1000_TSYNCRXCTL);
684	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685	regval |= tsync_rx_ctl;
686	wr32(E1000_TSYNCRXCTL, regval);
687
688	/* define which PTP packets are time stamped */
689	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690
691	/* define ethertype filter for timestamped packets */
692	if (is_l2)
693		wr32(E1000_ETQF(3),
694		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695		      E1000_ETQF_1588 | /* enable timestamping */
696		      ETH_P_1588));     /* 1588 eth protocol type */
697	else
698		wr32(E1000_ETQF(3), 0);
699
700	/* L4 Queue Filter[3]: filter by destination port and protocol */
701	if (is_l4) {
702		u32 ftqf = (IPPROTO_UDP /* UDP */
703			| E1000_FTQF_VF_BP /* VF not compared */
704			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705			| E1000_FTQF_MASK); /* mask all inputs */
706		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707
708		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709		wr32(E1000_IMIREXT(3),
710		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711		if (hw->mac.type == e1000_82576) {
712			/* enable source port check */
713			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715		}
716		wr32(E1000_FTQF(3), ftqf);
717	} else {
718		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719	}
720	wrfl();
721
722	/* clear TX/RX time stamp registers, just to be sure */
723	regval = rd32(E1000_TXSTMPL);
724	regval = rd32(E1000_TXSTMPH);
725	regval = rd32(E1000_RXSTMPL);
726	regval = rd32(E1000_RXSTMPH);
727
728	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729		-EFAULT : 0;
730}
731
 
 
 
 
 
 
 
732void igb_ptp_init(struct igb_adapter *adapter)
733{
734	struct e1000_hw *hw = &adapter->hw;
735	struct net_device *netdev = adapter->netdev;
736
737	switch (hw->mac.type) {
738	case e1000_82576:
739		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740		adapter->ptp_caps.owner = THIS_MODULE;
741		adapter->ptp_caps.max_adj = 999999881;
742		adapter->ptp_caps.n_ext_ts = 0;
743		adapter->ptp_caps.pps = 0;
744		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747		adapter->ptp_caps.settime = igb_ptp_settime_82576;
748		adapter->ptp_caps.enable = igb_ptp_enable;
749		adapter->cc.read = igb_ptp_read_82576;
750		adapter->cc.mask = CLOCKSOURCE_MASK(64);
751		adapter->cc.mult = 1;
752		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753		/* Dial the nominal frequency. */
754		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755		break;
756	case e1000_82580:
757	case e1000_i354:
758	case e1000_i350:
 
759		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760		adapter->ptp_caps.owner = THIS_MODULE;
761		adapter->ptp_caps.max_adj = 62499999;
762		adapter->ptp_caps.n_ext_ts = 0;
 
 
763		adapter->ptp_caps.pps = 0;
764		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
 
765		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767		adapter->ptp_caps.settime = igb_ptp_settime_82576;
768		adapter->ptp_caps.enable = igb_ptp_enable;
 
769		adapter->cc.read = igb_ptp_read_82580;
770		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771		adapter->cc.mult = 1;
772		adapter->cc.shift = 0;
773		/* Enable the timer functions by clearing bit 31. */
774		wr32(E1000_TSAUXC, 0x0);
775		break;
776	case e1000_i210:
777	case e1000_i211:
 
778		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779		adapter->ptp_caps.owner = THIS_MODULE;
780		adapter->ptp_caps.max_adj = 62499999;
781		adapter->ptp_caps.n_ext_ts = 0;
782		adapter->ptp_caps.pps = 0;
783		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
 
 
 
784		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786		adapter->ptp_caps.settime = igb_ptp_settime_i210;
787		adapter->ptp_caps.enable = igb_ptp_enable;
788		/* Enable the timer functions by clearing bit 31. */
789		wr32(E1000_TSAUXC, 0x0);
790		break;
791	default:
792		adapter->ptp_clock = NULL;
793		return;
794	}
795
796	wrfl();
797
798	spin_lock_init(&adapter->tmreg_lock);
799	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800
801	/* Initialize the clock and overflow work for devices that need it. */
802	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803		struct timespec ts = ktime_to_timespec(ktime_get_real());
804
805		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806	} else {
807		timecounter_init(&adapter->tc, &adapter->cc,
808				 ktime_to_ns(ktime_get_real()));
809
810		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811				  igb_ptp_overflow_check);
812
813		schedule_delayed_work(&adapter->ptp_overflow_work,
814				      IGB_SYSTIM_OVERFLOW_PERIOD);
815	}
816
817	/* Initialize the time sync interrupts for devices that support it. */
818	if (hw->mac.type >= e1000_82580) {
819		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820		wr32(E1000_IMS, E1000_IMS_TS);
821	}
822
823	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824						&adapter->pdev->dev);
825	if (IS_ERR(adapter->ptp_clock)) {
826		adapter->ptp_clock = NULL;
827		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828	} else {
829		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830			 adapter->netdev->name);
831		adapter->flags |= IGB_FLAG_PTP;
 
 
 
 
 
 
 
 
 
 
 
 
832	}
833}
834
835/**
836 * igb_ptp_stop - Disable PTP device and stop the overflow check.
837 * @adapter: Board private structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838 *
839 * This function stops the PTP support and cancels the delayed work.
840 **/
841void igb_ptp_stop(struct igb_adapter *adapter)
 
842{
843	switch (adapter->hw.mac.type) {
844	case e1000_82576:
845	case e1000_82580:
846	case e1000_i354:
847	case e1000_i350:
848		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849		break;
850	case e1000_i210:
851	case e1000_i211:
852		/* No delayed work to cancel. */
853		break;
854	default:
855		return;
856	}
857
858	cancel_work_sync(&adapter->ptp_tx_work);
859	if (adapter->ptp_tx_skb) {
860		dev_kfree_skb_any(adapter->ptp_tx_skb);
861		adapter->ptp_tx_skb = NULL;
862		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863	}
 
 
 
 
 
 
 
 
 
 
 
864
865	if (adapter->ptp_clock) {
866		ptp_clock_unregister(adapter->ptp_clock);
867		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868			 adapter->netdev->name);
869		adapter->flags &= ~IGB_FLAG_PTP;
870	}
871}
872
873/**
874 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875 * @adapter: Board private structure.
876 *
877 * This function handles the reset work required to re-enable the PTP device.
878 **/
879void igb_ptp_reset(struct igb_adapter *adapter)
880{
881	struct e1000_hw *hw = &adapter->hw;
 
882
883	if (!(adapter->flags & IGB_FLAG_PTP))
884		return;
885
886	/* reset the tstamp_config */
887	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888
889	switch (adapter->hw.mac.type) {
890	case e1000_82576:
891		/* Dial the nominal frequency. */
892		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893		break;
894	case e1000_82580:
895	case e1000_i354:
896	case e1000_i350:
897	case e1000_i210:
898	case e1000_i211:
899		/* Enable the timer functions and interrupts. */
900		wr32(E1000_TSAUXC, 0x0);
901		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
 
 
 
902		wr32(E1000_IMS, E1000_IMS_TS);
903		break;
904	default:
905		/* No work to do. */
906		return;
907	}
908
909	/* Re-initialize the timer. */
910	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911		struct timespec ts = ktime_to_timespec(ktime_get_real());
912
913		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914	} else {
915		timecounter_init(&adapter->tc, &adapter->cc,
916				 ktime_to_ns(ktime_get_real()));
917	}
 
 
 
 
 
 
 
 
918}