Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4#include <linux/module.h>
5#include <linux/device.h>
6#include <linux/pci.h>
7#include <linux/ptp_classify.h>
8
9#include "igb.h"
10
11#define INCVALUE_MASK 0x7fffffff
12#define ISGN 0x80000000
13
14/* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65#define IGB_PTP_TX_TIMEOUT (HZ * 15)
66#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69#define IGB_NBITS_82580 40
70#define IGB_82580_BASE_PERIOD 0x800000000
71
72static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75/* SYSTIM read access for the 82576 */
76static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77{
78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 struct e1000_hw *hw = &igb->hw;
80 u64 val;
81 u32 lo, hi;
82
83 lo = rd32(E1000_SYSTIML);
84 hi = rd32(E1000_SYSTIMH);
85
86 val = ((u64) hi) << 32;
87 val |= lo;
88
89 return val;
90}
91
92/* SYSTIM read access for the 82580 */
93static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94{
95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 struct e1000_hw *hw = &igb->hw;
97 u32 lo, hi;
98 u64 val;
99
100 /* The timestamp latches on lowest register read. For the 82580
101 * the lowest register is SYSTIMR instead of SYSTIML. However we only
102 * need to provide nanosecond resolution, so we just ignore it.
103 */
104 rd32(E1000_SYSTIMR);
105 lo = rd32(E1000_SYSTIML);
106 hi = rd32(E1000_SYSTIMH);
107
108 val = ((u64) hi) << 32;
109 val |= lo;
110
111 return val;
112}
113
114/* SYSTIM read access for I210/I211 */
115static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 struct timespec64 *ts)
117{
118 struct e1000_hw *hw = &adapter->hw;
119 u32 sec, nsec;
120
121 /* The timestamp latches on lowest register read. For I210/I211, the
122 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 * resolution, we can ignore it.
124 */
125 rd32(E1000_SYSTIMR);
126 nsec = rd32(E1000_SYSTIML);
127 sec = rd32(E1000_SYSTIMH);
128
129 ts->tv_sec = sec;
130 ts->tv_nsec = nsec;
131}
132
133static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 const struct timespec64 *ts)
135{
136 struct e1000_hw *hw = &adapter->hw;
137
138 /* Writing the SYSTIMR register is not necessary as it only provides
139 * sub-nanosecond resolution.
140 */
141 wr32(E1000_SYSTIML, ts->tv_nsec);
142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143}
144
145/**
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
150 *
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
153 *
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
158 *
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
161 **/
162static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 struct skb_shared_hwtstamps *hwtstamps,
164 u64 systim)
165{
166 unsigned long flags;
167 u64 ns;
168
169 memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171 switch (adapter->hw.mac.type) {
172 case e1000_82576:
173 case e1000_82580:
174 case e1000_i354:
175 case e1000_i350:
176 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 ns = timecounter_cyc2time(&adapter->tc, systim);
178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179
180 hwtstamps->hwtstamp = ns_to_ktime(ns);
181 break;
182 case e1000_i210:
183 case e1000_i211:
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 systim & 0xFFFFFFFF);
187 break;
188 default:
189 break;
190 }
191}
192
193/* PTP clock operations */
194static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195{
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 ptp_caps);
198 struct e1000_hw *hw = &igb->hw;
199 u64 incvalue;
200
201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205 return 0;
206}
207
208static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209{
210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 ptp_caps);
212 struct e1000_hw *hw = &igb->hw;
213 bool neg_adj;
214 u64 rate;
215 u32 inca;
216
217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226}
227
228static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229{
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 unsigned long flags;
233
234 spin_lock_irqsave(&igb->tmreg_lock, flags);
235 timecounter_adjtime(&igb->tc, delta);
236 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237
238 return 0;
239}
240
241static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242{
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 unsigned long flags;
246 struct timespec64 now, then = ns_to_timespec64(delta);
247
248 spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250 igb_ptp_read_i210(igb, &now);
251 now = timespec64_add(now, then);
252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253
254 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255
256 return 0;
257}
258
259static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 struct timespec64 *ts,
261 struct ptp_system_timestamp *sts)
262{
263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 ptp_caps);
265 struct e1000_hw *hw = &igb->hw;
266 unsigned long flags;
267 u32 lo, hi;
268 u64 ns;
269
270 spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272 ptp_read_system_prets(sts);
273 lo = rd32(E1000_SYSTIML);
274 ptp_read_system_postts(sts);
275 hi = rd32(E1000_SYSTIMH);
276
277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278
279 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280
281 *ts = ns_to_timespec64(ns);
282
283 return 0;
284}
285
286static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 struct timespec64 *ts,
288 struct ptp_system_timestamp *sts)
289{
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 ptp_caps);
292 struct e1000_hw *hw = &igb->hw;
293 unsigned long flags;
294 u32 lo, hi;
295 u64 ns;
296
297 spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299 ptp_read_system_prets(sts);
300 rd32(E1000_SYSTIMR);
301 ptp_read_system_postts(sts);
302 lo = rd32(E1000_SYSTIML);
303 hi = rd32(E1000_SYSTIMH);
304
305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306
307 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308
309 *ts = ns_to_timespec64(ns);
310
311 return 0;
312}
313
314static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 struct timespec64 *ts,
316 struct ptp_system_timestamp *sts)
317{
318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 ptp_caps);
320 struct e1000_hw *hw = &igb->hw;
321 unsigned long flags;
322
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325 ptp_read_system_prets(sts);
326 rd32(E1000_SYSTIMR);
327 ptp_read_system_postts(sts);
328 ts->tv_nsec = rd32(E1000_SYSTIML);
329 ts->tv_sec = rd32(E1000_SYSTIMH);
330
331 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332
333 return 0;
334}
335
336static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 const struct timespec64 *ts)
338{
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 ptp_caps);
341 unsigned long flags;
342 u64 ns;
343
344 ns = timespec64_to_ns(ts);
345
346 spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348 timecounter_init(&igb->tc, &igb->cc, ns);
349
350 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352 return 0;
353}
354
355static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
357{
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 ptp_caps);
360 unsigned long flags;
361
362 spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364 igb_ptp_write_i210(igb, ts);
365
366 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367
368 return 0;
369}
370
371static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372{
373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 static const u32 mask[IGB_N_SDP] = {
375 E1000_CTRL_SDP0_DIR,
376 E1000_CTRL_SDP1_DIR,
377 E1000_CTRL_EXT_SDP2_DIR,
378 E1000_CTRL_EXT_SDP3_DIR,
379 };
380
381 if (input)
382 *ptr &= ~mask[pin];
383 else
384 *ptr |= mask[pin];
385}
386
387static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388{
389 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 };
392 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 };
395 static const u32 ts_sdp_en[IGB_N_SDP] = {
396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 };
398 struct e1000_hw *hw = &igb->hw;
399 u32 ctrl, ctrl_ext, tssdp = 0;
400
401 ctrl = rd32(E1000_CTRL);
402 ctrl_ext = rd32(E1000_CTRL_EXT);
403 tssdp = rd32(E1000_TSSDP);
404
405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406
407 /* Make sure this pin is not enabled as an output. */
408 tssdp &= ~ts_sdp_en[pin];
409
410 if (chan == 1) {
411 tssdp &= ~AUX1_SEL_SDP3;
412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 } else {
414 tssdp &= ~AUX0_SEL_SDP3;
415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 }
417
418 wr32(E1000_TSSDP, tssdp);
419 wr32(E1000_CTRL, ctrl);
420 wr32(E1000_CTRL_EXT, ctrl_ext);
421}
422
423static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424{
425 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 };
428 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 };
431 static const u32 ts_sdp_en[IGB_N_SDP] = {
432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 };
434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 };
438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 };
442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 };
446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 };
450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 };
454 struct e1000_hw *hw = &igb->hw;
455 u32 ctrl, ctrl_ext, tssdp = 0;
456
457 ctrl = rd32(E1000_CTRL);
458 ctrl_ext = rd32(E1000_CTRL_EXT);
459 tssdp = rd32(E1000_TSSDP);
460
461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462
463 /* Make sure this pin is not enabled as an input. */
464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 tssdp &= ~AUX0_TS_SDP_EN;
466
467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 tssdp &= ~AUX1_TS_SDP_EN;
469
470 tssdp &= ~ts_sdp_sel_clr[pin];
471 if (freq) {
472 if (chan == 1)
473 tssdp |= ts_sdp_sel_fc1[pin];
474 else
475 tssdp |= ts_sdp_sel_fc0[pin];
476 } else {
477 if (chan == 1)
478 tssdp |= ts_sdp_sel_tt1[pin];
479 else
480 tssdp |= ts_sdp_sel_tt0[pin];
481 }
482 tssdp |= ts_sdp_en[pin];
483
484 wr32(E1000_TSSDP, tssdp);
485 wr32(E1000_CTRL, ctrl);
486 wr32(E1000_CTRL_EXT, ctrl_ext);
487}
488
489static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq, int on)
491{
492 struct igb_adapter *igb =
493 container_of(ptp, struct igb_adapter, ptp_caps);
494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 systimh, level_mask, level, rem;
496 struct e1000_hw *hw = &igb->hw;
497 struct timespec64 ts, start;
498 unsigned long flags;
499 u64 systim, now;
500 int pin = -1;
501 s64 ns;
502
503 switch (rq->type) {
504 case PTP_CLK_REQ_EXTTS:
505 /* Reject requests with unsupported flags */
506 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507 PTP_RISING_EDGE |
508 PTP_FALLING_EDGE |
509 PTP_STRICT_FLAGS))
510 return -EOPNOTSUPP;
511
512 if (on) {
513 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
514 rq->extts.index);
515 if (pin < 0)
516 return -EBUSY;
517 }
518 if (rq->extts.index == 1) {
519 tsauxc_mask = TSAUXC_EN_TS1;
520 tsim_mask = TSINTR_AUTT1;
521 } else {
522 tsauxc_mask = TSAUXC_EN_TS0;
523 tsim_mask = TSINTR_AUTT0;
524 }
525 spin_lock_irqsave(&igb->tmreg_lock, flags);
526 tsauxc = rd32(E1000_TSAUXC);
527 tsim = rd32(E1000_TSIM);
528 if (on) {
529 igb_pin_extts(igb, rq->extts.index, pin);
530 tsauxc |= tsauxc_mask;
531 tsim |= tsim_mask;
532 } else {
533 tsauxc &= ~tsauxc_mask;
534 tsim &= ~tsim_mask;
535 }
536 wr32(E1000_TSAUXC, tsauxc);
537 wr32(E1000_TSIM, tsim);
538 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
539 return 0;
540
541 case PTP_CLK_REQ_PEROUT:
542 /* Reject requests with unsupported flags */
543 if (rq->perout.flags)
544 return -EOPNOTSUPP;
545
546 if (on) {
547 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
548 rq->perout.index);
549 if (pin < 0)
550 return -EBUSY;
551 }
552 ts.tv_sec = rq->perout.period.sec;
553 ts.tv_nsec = rq->perout.period.nsec;
554 ns = timespec64_to_ns(&ts);
555 ns = ns >> 1;
556 if (on && ns < 8LL)
557 return -EINVAL;
558 ts = ns_to_timespec64(ns);
559 if (rq->perout.index == 1) {
560 tsauxc_mask = TSAUXC_EN_TT1;
561 tsim_mask = TSINTR_TT1;
562 trgttiml = E1000_TRGTTIML1;
563 trgttimh = E1000_TRGTTIMH1;
564 } else {
565 tsauxc_mask = TSAUXC_EN_TT0;
566 tsim_mask = TSINTR_TT0;
567 trgttiml = E1000_TRGTTIML0;
568 trgttimh = E1000_TRGTTIMH0;
569 }
570 spin_lock_irqsave(&igb->tmreg_lock, flags);
571 tsauxc = rd32(E1000_TSAUXC);
572 tsim = rd32(E1000_TSIM);
573 if (rq->perout.index == 1) {
574 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
575 tsim &= ~TSINTR_TT1;
576 } else {
577 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
578 tsim &= ~TSINTR_TT0;
579 }
580 if (on) {
581 int i = rq->perout.index;
582
583 /* read systim registers in sequence */
584 rd32(E1000_SYSTIMR);
585 systiml = rd32(E1000_SYSTIML);
586 systimh = rd32(E1000_SYSTIMH);
587 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588 now = timecounter_cyc2time(&igb->tc, systim);
589
590 if (pin < 2) {
591 level_mask = (i == 1) ? 0x80000 : 0x40000;
592 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
593 } else {
594 level_mask = (i == 1) ? 0x80 : 0x40;
595 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
596 }
597
598 div_u64_rem(now, ns, &rem);
599 systim = systim + (ns - rem);
600
601 /* synchronize pin level with rising/falling edges */
602 div_u64_rem(now, ns << 1, &rem);
603 if (rem < ns) {
604 /* first half of period */
605 if (level == 0) {
606 /* output is already low, skip this period */
607 systim += ns;
608 }
609 } else {
610 /* second half of period */
611 if (level == 1) {
612 /* output is already high, skip this period */
613 systim += ns;
614 }
615 }
616
617 start = ns_to_timespec64(systim + (ns - rem));
618 igb_pin_perout(igb, i, pin, 0);
619 igb->perout[i].start.tv_sec = start.tv_sec;
620 igb->perout[i].start.tv_nsec = start.tv_nsec;
621 igb->perout[i].period.tv_sec = ts.tv_sec;
622 igb->perout[i].period.tv_nsec = ts.tv_nsec;
623
624 wr32(trgttiml, (u32)systim);
625 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626 tsauxc |= tsauxc_mask;
627 tsim |= tsim_mask;
628 }
629 wr32(E1000_TSAUXC, tsauxc);
630 wr32(E1000_TSIM, tsim);
631 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
632 return 0;
633
634 case PTP_CLK_REQ_PPS:
635 return -EOPNOTSUPP;
636 }
637
638 return -EOPNOTSUPP;
639}
640
641static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642 struct ptp_clock_request *rq, int on)
643{
644 struct igb_adapter *igb =
645 container_of(ptp, struct igb_adapter, ptp_caps);
646 struct e1000_hw *hw = &igb->hw;
647 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
648 unsigned long flags;
649 struct timespec64 ts;
650 int use_freq = 0, pin = -1;
651 s64 ns;
652
653 switch (rq->type) {
654 case PTP_CLK_REQ_EXTTS:
655 /* Reject requests with unsupported flags */
656 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
657 PTP_RISING_EDGE |
658 PTP_FALLING_EDGE |
659 PTP_STRICT_FLAGS))
660 return -EOPNOTSUPP;
661
662 /* Reject requests failing to enable both edges. */
663 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
666 return -EOPNOTSUPP;
667
668 if (on) {
669 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
670 rq->extts.index);
671 if (pin < 0)
672 return -EBUSY;
673 }
674 if (rq->extts.index == 1) {
675 tsauxc_mask = TSAUXC_EN_TS1;
676 tsim_mask = TSINTR_AUTT1;
677 } else {
678 tsauxc_mask = TSAUXC_EN_TS0;
679 tsim_mask = TSINTR_AUTT0;
680 }
681 spin_lock_irqsave(&igb->tmreg_lock, flags);
682 tsauxc = rd32(E1000_TSAUXC);
683 tsim = rd32(E1000_TSIM);
684 if (on) {
685 igb_pin_extts(igb, rq->extts.index, pin);
686 tsauxc |= tsauxc_mask;
687 tsim |= tsim_mask;
688 } else {
689 tsauxc &= ~tsauxc_mask;
690 tsim &= ~tsim_mask;
691 }
692 wr32(E1000_TSAUXC, tsauxc);
693 wr32(E1000_TSIM, tsim);
694 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
695 return 0;
696
697 case PTP_CLK_REQ_PEROUT:
698 /* Reject requests with unsupported flags */
699 if (rq->perout.flags)
700 return -EOPNOTSUPP;
701
702 if (on) {
703 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
704 rq->perout.index);
705 if (pin < 0)
706 return -EBUSY;
707 }
708 ts.tv_sec = rq->perout.period.sec;
709 ts.tv_nsec = rq->perout.period.nsec;
710 ns = timespec64_to_ns(&ts);
711 ns = ns >> 1;
712 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713 (ns == 250000000LL) || (ns == 500000000LL))) {
714 if (ns < 8LL)
715 return -EINVAL;
716 use_freq = 1;
717 }
718 ts = ns_to_timespec64(ns);
719 if (rq->perout.index == 1) {
720 if (use_freq) {
721 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
722 tsim_mask = 0;
723 } else {
724 tsauxc_mask = TSAUXC_EN_TT1;
725 tsim_mask = TSINTR_TT1;
726 }
727 trgttiml = E1000_TRGTTIML1;
728 trgttimh = E1000_TRGTTIMH1;
729 freqout = E1000_FREQOUT1;
730 } else {
731 if (use_freq) {
732 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
733 tsim_mask = 0;
734 } else {
735 tsauxc_mask = TSAUXC_EN_TT0;
736 tsim_mask = TSINTR_TT0;
737 }
738 trgttiml = E1000_TRGTTIML0;
739 trgttimh = E1000_TRGTTIMH0;
740 freqout = E1000_FREQOUT0;
741 }
742 spin_lock_irqsave(&igb->tmreg_lock, flags);
743 tsauxc = rd32(E1000_TSAUXC);
744 tsim = rd32(E1000_TSIM);
745 if (rq->perout.index == 1) {
746 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
747 tsim &= ~TSINTR_TT1;
748 } else {
749 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
750 tsim &= ~TSINTR_TT0;
751 }
752 if (on) {
753 int i = rq->perout.index;
754 igb_pin_perout(igb, i, pin, use_freq);
755 igb->perout[i].start.tv_sec = rq->perout.start.sec;
756 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757 igb->perout[i].period.tv_sec = ts.tv_sec;
758 igb->perout[i].period.tv_nsec = ts.tv_nsec;
759 wr32(trgttimh, rq->perout.start.sec);
760 wr32(trgttiml, rq->perout.start.nsec);
761 if (use_freq)
762 wr32(freqout, ns);
763 tsauxc |= tsauxc_mask;
764 tsim |= tsim_mask;
765 }
766 wr32(E1000_TSAUXC, tsauxc);
767 wr32(E1000_TSIM, tsim);
768 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
769 return 0;
770
771 case PTP_CLK_REQ_PPS:
772 spin_lock_irqsave(&igb->tmreg_lock, flags);
773 tsim = rd32(E1000_TSIM);
774 if (on)
775 tsim |= TSINTR_SYS_WRAP;
776 else
777 tsim &= ~TSINTR_SYS_WRAP;
778 igb->pps_sys_wrap_on = !!on;
779 wr32(E1000_TSIM, tsim);
780 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
781 return 0;
782 }
783
784 return -EOPNOTSUPP;
785}
786
787static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788 struct ptp_clock_request *rq, int on)
789{
790 return -EOPNOTSUPP;
791}
792
793static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794 enum ptp_pin_function func, unsigned int chan)
795{
796 switch (func) {
797 case PTP_PF_NONE:
798 case PTP_PF_EXTTS:
799 case PTP_PF_PEROUT:
800 break;
801 case PTP_PF_PHYSYNC:
802 return -1;
803 }
804 return 0;
805}
806
807/**
808 * igb_ptp_tx_work
809 * @work: pointer to work struct
810 *
811 * This work function polls the TSYNCTXCTL valid bit to determine when a
812 * timestamp has been taken for the current stored skb.
813 **/
814static void igb_ptp_tx_work(struct work_struct *work)
815{
816 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
817 ptp_tx_work);
818 struct e1000_hw *hw = &adapter->hw;
819 u32 tsynctxctl;
820
821 if (!adapter->ptp_tx_skb)
822 return;
823
824 if (time_is_before_jiffies(adapter->ptp_tx_start +
825 IGB_PTP_TX_TIMEOUT)) {
826 dev_kfree_skb_any(adapter->ptp_tx_skb);
827 adapter->ptp_tx_skb = NULL;
828 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
829 adapter->tx_hwtstamp_timeouts++;
830 /* Clear the tx valid bit in TSYNCTXCTL register to enable
831 * interrupt
832 */
833 rd32(E1000_TXSTMPH);
834 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
835 return;
836 }
837
838 tsynctxctl = rd32(E1000_TSYNCTXCTL);
839 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840 igb_ptp_tx_hwtstamp(adapter);
841 else
842 /* reschedule to check later */
843 schedule_work(&adapter->ptp_tx_work);
844}
845
846static void igb_ptp_overflow_check(struct work_struct *work)
847{
848 struct igb_adapter *igb =
849 container_of(work, struct igb_adapter, ptp_overflow_work.work);
850 struct timespec64 ts;
851 u64 ns;
852
853 /* Update the timecounter */
854 ns = timecounter_read(&igb->tc);
855
856 ts = ns_to_timespec64(ns);
857 pr_debug("igb overflow check at %lld.%09lu\n",
858 (long long) ts.tv_sec, ts.tv_nsec);
859
860 schedule_delayed_work(&igb->ptp_overflow_work,
861 IGB_SYSTIM_OVERFLOW_PERIOD);
862}
863
864/**
865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866 * @adapter: private network adapter structure
867 *
868 * This watchdog task is scheduled to detect error case where hardware has
869 * dropped an Rx packet that was timestamped when the ring is full. The
870 * particular error is rare but leaves the device in a state unable to timestamp
871 * any future packets.
872 **/
873void igb_ptp_rx_hang(struct igb_adapter *adapter)
874{
875 struct e1000_hw *hw = &adapter->hw;
876 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877 unsigned long rx_event;
878
879 /* Other hardware uses per-packet timestamps */
880 if (hw->mac.type != e1000_82576)
881 return;
882
883 /* If we don't have a valid timestamp in the registers, just update the
884 * timeout counter and exit
885 */
886 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887 adapter->last_rx_ptp_check = jiffies;
888 return;
889 }
890
891 /* Determine the most recent watchdog or rx_timestamp event */
892 rx_event = adapter->last_rx_ptp_check;
893 if (time_after(adapter->last_rx_timestamp, rx_event))
894 rx_event = adapter->last_rx_timestamp;
895
896 /* Only need to read the high RXSTMP register to clear the lock */
897 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
898 rd32(E1000_RXSTMPH);
899 adapter->last_rx_ptp_check = jiffies;
900 adapter->rx_hwtstamp_cleared++;
901 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
902 }
903}
904
905/**
906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907 * @adapter: private network adapter structure
908 */
909void igb_ptp_tx_hang(struct igb_adapter *adapter)
910{
911 struct e1000_hw *hw = &adapter->hw;
912 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
913 IGB_PTP_TX_TIMEOUT);
914
915 if (!adapter->ptp_tx_skb)
916 return;
917
918 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
919 return;
920
921 /* If we haven't received a timestamp within the timeout, it is
922 * reasonable to assume that it will never occur, so we can unlock the
923 * timestamp bit when this occurs.
924 */
925 if (timeout) {
926 cancel_work_sync(&adapter->ptp_tx_work);
927 dev_kfree_skb_any(adapter->ptp_tx_skb);
928 adapter->ptp_tx_skb = NULL;
929 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
930 adapter->tx_hwtstamp_timeouts++;
931 /* Clear the tx valid bit in TSYNCTXCTL register to enable
932 * interrupt
933 */
934 rd32(E1000_TXSTMPH);
935 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
936 }
937}
938
939/**
940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941 * @adapter: Board private structure.
942 *
943 * If we were asked to do hardware stamping and such a time stamp is
944 * available, then it must have been for this skb here because we only
945 * allow only one such packet into the queue.
946 **/
947static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
948{
949 struct sk_buff *skb = adapter->ptp_tx_skb;
950 struct e1000_hw *hw = &adapter->hw;
951 struct skb_shared_hwtstamps shhwtstamps;
952 u64 regval;
953 int adjust = 0;
954
955 regval = rd32(E1000_TXSTMPL);
956 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
957
958 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
959 /* adjust timestamp for the TX latency based on link speed */
960 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
961 switch (adapter->link_speed) {
962 case SPEED_10:
963 adjust = IGB_I210_TX_LATENCY_10;
964 break;
965 case SPEED_100:
966 adjust = IGB_I210_TX_LATENCY_100;
967 break;
968 case SPEED_1000:
969 adjust = IGB_I210_TX_LATENCY_1000;
970 break;
971 }
972 }
973
974 shhwtstamps.hwtstamp =
975 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
976
977 /* Clear the lock early before calling skb_tstamp_tx so that
978 * applications are not woken up before the lock bit is clear. We use
979 * a copy of the skb pointer to ensure other threads can't change it
980 * while we're notifying the stack.
981 */
982 adapter->ptp_tx_skb = NULL;
983 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
984
985 /* Notify the stack and free the skb after we've unlocked */
986 skb_tstamp_tx(skb, &shhwtstamps);
987 dev_kfree_skb_any(skb);
988}
989
990/**
991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992 * @q_vector: Pointer to interrupt specific structure
993 * @va: Pointer to address containing Rx buffer
994 * @timestamp: Pointer where timestamp will be stored
995 *
996 * This function is meant to retrieve a timestamp from the first buffer of an
997 * incoming frame. The value is stored in little endian format starting on
998 * byte 8
999 *
1000 * Returns: The timestamp header length or 0 if not available
1001 **/
1002int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003 ktime_t *timestamp)
1004{
1005 struct igb_adapter *adapter = q_vector->adapter;
1006 struct e1000_hw *hw = &adapter->hw;
1007 struct skb_shared_hwtstamps ts;
1008 __le64 *regval = (__le64 *)va;
1009 int adjust = 0;
1010
1011 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012 return 0;
1013
1014 /* The timestamp is recorded in little endian format.
1015 * DWORD: 0 1 2 3
1016 * Field: Reserved Reserved SYSTIML SYSTIMH
1017 */
1018
1019 /* check reserved dwords are zero, be/le doesn't matter for zero */
1020 if (regval[0])
1021 return 0;
1022
1023 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024
1025 /* adjust timestamp for the RX latency based on link speed */
1026 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027 switch (adapter->link_speed) {
1028 case SPEED_10:
1029 adjust = IGB_I210_RX_LATENCY_10;
1030 break;
1031 case SPEED_100:
1032 adjust = IGB_I210_RX_LATENCY_100;
1033 break;
1034 case SPEED_1000:
1035 adjust = IGB_I210_RX_LATENCY_1000;
1036 break;
1037 }
1038 }
1039
1040 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041
1042 return IGB_TS_HDR_LEN;
1043}
1044
1045/**
1046 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047 * @q_vector: Pointer to interrupt specific structure
1048 * @skb: Buffer containing timestamp and packet
1049 *
1050 * This function is meant to retrieve a timestamp from the internal registers
1051 * of the adapter and store it in the skb.
1052 **/
1053void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1054{
1055 struct igb_adapter *adapter = q_vector->adapter;
1056 struct e1000_hw *hw = &adapter->hw;
1057 int adjust = 0;
1058 u64 regval;
1059
1060 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061 return;
1062
1063 /* If this bit is set, then the RX registers contain the time stamp. No
1064 * other packet will be time stamped until we read these registers, so
1065 * read the registers to make them available again. Because only one
1066 * packet can be time stamped at a time, we know that the register
1067 * values must belong to this one here and therefore we don't need to
1068 * compare any of the additional attributes stored for it.
1069 *
1070 * If nothing went wrong, then it should have a shared tx_flags that we
1071 * can turn into a skb_shared_hwtstamps.
1072 */
1073 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074 return;
1075
1076 regval = rd32(E1000_RXSTMPL);
1077 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078
1079 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080
1081 /* adjust timestamp for the RX latency based on link speed */
1082 if (adapter->hw.mac.type == e1000_i210) {
1083 switch (adapter->link_speed) {
1084 case SPEED_10:
1085 adjust = IGB_I210_RX_LATENCY_10;
1086 break;
1087 case SPEED_100:
1088 adjust = IGB_I210_RX_LATENCY_100;
1089 break;
1090 case SPEED_1000:
1091 adjust = IGB_I210_RX_LATENCY_1000;
1092 break;
1093 }
1094 }
1095 skb_hwtstamps(skb)->hwtstamp =
1096 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097
1098 /* Update the last_rx_timestamp timer in order to enable watchdog check
1099 * for error case of latched timestamp on a dropped packet.
1100 */
1101 adapter->last_rx_timestamp = jiffies;
1102}
1103
1104/**
1105 * igb_ptp_get_ts_config - get hardware time stamping config
1106 * @netdev: netdev struct
1107 * @ifr: interface struct
1108 *
1109 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110 * to deconstruct the settings from the registers, just return a shadow copy
1111 * of the last known settings.
1112 **/
1113int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114{
1115 struct igb_adapter *adapter = netdev_priv(netdev);
1116 struct hwtstamp_config *config = &adapter->tstamp_config;
1117
1118 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119 -EFAULT : 0;
1120}
1121
1122/**
1123 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124 * @adapter: networking device structure
1125 * @config: hwtstamp configuration
1126 *
1127 * Outgoing time stamping can be enabled and disabled. Play nice and
1128 * disable it when requested, although it shouldn't case any overhead
1129 * when no packet needs it. At most one packet in the queue may be
1130 * marked for time stamping, otherwise it would be impossible to tell
1131 * for sure to which packet the hardware time stamp belongs.
1132 *
1133 * Incoming time stamping has to be configured via the hardware
1134 * filters. Not all combinations are supported, in particular event
1135 * type has to be specified. Matching the kind of event packet is
1136 * not supported, with the exception of "all V2 events regardless of
1137 * level 2 or 4".
1138 */
1139static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140 struct hwtstamp_config *config)
1141{
1142 struct e1000_hw *hw = &adapter->hw;
1143 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145 u32 tsync_rx_cfg = 0;
1146 bool is_l4 = false;
1147 bool is_l2 = false;
1148 u32 regval;
1149
1150 switch (config->tx_type) {
1151 case HWTSTAMP_TX_OFF:
1152 tsync_tx_ctl = 0;
1153 break;
1154 case HWTSTAMP_TX_ON:
1155 break;
1156 default:
1157 return -ERANGE;
1158 }
1159
1160 switch (config->rx_filter) {
1161 case HWTSTAMP_FILTER_NONE:
1162 tsync_rx_ctl = 0;
1163 break;
1164 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167 is_l4 = true;
1168 break;
1169 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172 is_l4 = true;
1173 break;
1174 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185 is_l2 = true;
1186 is_l4 = true;
1187 break;
1188 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189 case HWTSTAMP_FILTER_NTP_ALL:
1190 case HWTSTAMP_FILTER_ALL:
1191 /* 82576 cannot timestamp all packets, which it needs to do to
1192 * support both V1 Sync and Delay_Req messages
1193 */
1194 if (hw->mac.type != e1000_82576) {
1195 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196 config->rx_filter = HWTSTAMP_FILTER_ALL;
1197 break;
1198 }
1199 fallthrough;
1200 default:
1201 config->rx_filter = HWTSTAMP_FILTER_NONE;
1202 return -ERANGE;
1203 }
1204
1205 if (hw->mac.type == e1000_82575) {
1206 if (tsync_rx_ctl | tsync_tx_ctl)
1207 return -EINVAL;
1208 return 0;
1209 }
1210
1211 /* Per-packet timestamping only works if all packets are
1212 * timestamped, so enable timestamping in all packets as
1213 * long as one Rx filter was configured.
1214 */
1215 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218 config->rx_filter = HWTSTAMP_FILTER_ALL;
1219 is_l2 = true;
1220 is_l4 = true;
1221
1222 if ((hw->mac.type == e1000_i210) ||
1223 (hw->mac.type == e1000_i211)) {
1224 regval = rd32(E1000_RXPBS);
1225 regval |= E1000_RXPBS_CFG_TS_EN;
1226 wr32(E1000_RXPBS, regval);
1227 }
1228 }
1229
1230 /* enable/disable TX */
1231 regval = rd32(E1000_TSYNCTXCTL);
1232 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233 regval |= tsync_tx_ctl;
1234 wr32(E1000_TSYNCTXCTL, regval);
1235
1236 /* enable/disable RX */
1237 regval = rd32(E1000_TSYNCRXCTL);
1238 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239 regval |= tsync_rx_ctl;
1240 wr32(E1000_TSYNCRXCTL, regval);
1241
1242 /* define which PTP packets are time stamped */
1243 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244
1245 /* define ethertype filter for timestamped packets */
1246 if (is_l2)
1247 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249 E1000_ETQF_1588 | /* enable timestamping */
1250 ETH_P_1588)); /* 1588 eth protocol type */
1251 else
1252 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253
1254 /* L4 Queue Filter[3]: filter by destination port and protocol */
1255 if (is_l4) {
1256 u32 ftqf = (IPPROTO_UDP /* UDP */
1257 | E1000_FTQF_VF_BP /* VF not compared */
1258 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259 | E1000_FTQF_MASK); /* mask all inputs */
1260 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261
1262 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263 wr32(E1000_IMIREXT(3),
1264 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265 if (hw->mac.type == e1000_82576) {
1266 /* enable source port check */
1267 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269 }
1270 wr32(E1000_FTQF(3), ftqf);
1271 } else {
1272 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273 }
1274 wrfl();
1275
1276 /* clear TX/RX time stamp registers, just to be sure */
1277 regval = rd32(E1000_TXSTMPL);
1278 regval = rd32(E1000_TXSTMPH);
1279 regval = rd32(E1000_RXSTMPL);
1280 regval = rd32(E1000_RXSTMPH);
1281
1282 return 0;
1283}
1284
1285/**
1286 * igb_ptp_set_ts_config - set hardware time stamping config
1287 * @netdev: netdev struct
1288 * @ifr: interface struct
1289 *
1290 **/
1291int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292{
1293 struct igb_adapter *adapter = netdev_priv(netdev);
1294 struct hwtstamp_config config;
1295 int err;
1296
1297 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298 return -EFAULT;
1299
1300 err = igb_ptp_set_timestamp_mode(adapter, &config);
1301 if (err)
1302 return err;
1303
1304 /* save these settings for future reference */
1305 memcpy(&adapter->tstamp_config, &config,
1306 sizeof(adapter->tstamp_config));
1307
1308 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309 -EFAULT : 0;
1310}
1311
1312/**
1313 * igb_ptp_init - Initialize PTP functionality
1314 * @adapter: Board private structure
1315 *
1316 * This function is called at device probe to initialize the PTP
1317 * functionality.
1318 */
1319void igb_ptp_init(struct igb_adapter *adapter)
1320{
1321 struct e1000_hw *hw = &adapter->hw;
1322 struct net_device *netdev = adapter->netdev;
1323
1324 switch (hw->mac.type) {
1325 case e1000_82576:
1326 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327 adapter->ptp_caps.owner = THIS_MODULE;
1328 adapter->ptp_caps.max_adj = 999999881;
1329 adapter->ptp_caps.n_ext_ts = 0;
1330 adapter->ptp_caps.pps = 0;
1331 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336 adapter->cc.read = igb_ptp_read_82576;
1337 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338 adapter->cc.mult = 1;
1339 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1341 break;
1342 case e1000_82580:
1343 case e1000_i354:
1344 case e1000_i350:
1345 igb_ptp_sdp_init(adapter);
1346 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347 adapter->ptp_caps.owner = THIS_MODULE;
1348 adapter->ptp_caps.max_adj = 62499999;
1349 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351 adapter->ptp_caps.n_pins = IGB_N_SDP;
1352 adapter->ptp_caps.pps = 0;
1353 adapter->ptp_caps.pin_config = adapter->sdp_config;
1354 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360 adapter->cc.read = igb_ptp_read_82580;
1361 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362 adapter->cc.mult = 1;
1363 adapter->cc.shift = 0;
1364 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1365 break;
1366 case e1000_i210:
1367 case e1000_i211:
1368 igb_ptp_sdp_init(adapter);
1369 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370 adapter->ptp_caps.owner = THIS_MODULE;
1371 adapter->ptp_caps.max_adj = 62499999;
1372 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374 adapter->ptp_caps.n_pins = IGB_N_SDP;
1375 adapter->ptp_caps.pps = 1;
1376 adapter->ptp_caps.pin_config = adapter->sdp_config;
1377 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1383 break;
1384 default:
1385 adapter->ptp_clock = NULL;
1386 return;
1387 }
1388
1389 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390 &adapter->pdev->dev);
1391 if (IS_ERR(adapter->ptp_clock)) {
1392 adapter->ptp_clock = NULL;
1393 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394 } else if (adapter->ptp_clock) {
1395 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396 adapter->netdev->name);
1397 adapter->ptp_flags |= IGB_PTP_ENABLED;
1398
1399 spin_lock_init(&adapter->tmreg_lock);
1400 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401
1402 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404 igb_ptp_overflow_check);
1405
1406 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409 igb_ptp_reset(adapter);
1410 }
1411}
1412
1413/**
1414 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415 * @adapter: Board private structure.
1416 **/
1417void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418{
1419 int i;
1420
1421 for (i = 0; i < IGB_N_SDP; i++) {
1422 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423
1424 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425 ppd->index = i;
1426 ppd->func = PTP_PF_NONE;
1427 }
1428}
1429
1430/**
1431 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432 * @adapter: Board private structure
1433 *
1434 * This function stops the overflow check work and PTP Tx timestamp work, and
1435 * will prepare the device for OS suspend.
1436 */
1437void igb_ptp_suspend(struct igb_adapter *adapter)
1438{
1439 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440 return;
1441
1442 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1444
1445 cancel_work_sync(&adapter->ptp_tx_work);
1446 if (adapter->ptp_tx_skb) {
1447 dev_kfree_skb_any(adapter->ptp_tx_skb);
1448 adapter->ptp_tx_skb = NULL;
1449 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450 }
1451}
1452
1453/**
1454 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455 * @adapter: Board private structure.
1456 *
1457 * This function stops the PTP support and cancels the delayed work.
1458 **/
1459void igb_ptp_stop(struct igb_adapter *adapter)
1460{
1461 igb_ptp_suspend(adapter);
1462
1463 if (adapter->ptp_clock) {
1464 ptp_clock_unregister(adapter->ptp_clock);
1465 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466 adapter->netdev->name);
1467 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468 }
1469}
1470
1471/**
1472 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473 * @adapter: Board private structure.
1474 *
1475 * This function handles the reset work required to re-enable the PTP device.
1476 **/
1477void igb_ptp_reset(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long flags;
1481
1482 /* reset the tstamp_config */
1483 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484
1485 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1486
1487 switch (adapter->hw.mac.type) {
1488 case e1000_82576:
1489 /* Dial the nominal frequency. */
1490 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491 break;
1492 case e1000_82580:
1493 case e1000_i354:
1494 case e1000_i350:
1495 case e1000_i210:
1496 case e1000_i211:
1497 wr32(E1000_TSAUXC, 0x0);
1498 wr32(E1000_TSSDP, 0x0);
1499 wr32(E1000_TSIM,
1500 TSYNC_INTERRUPTS |
1501 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502 wr32(E1000_IMS, E1000_IMS_TS);
1503 break;
1504 default:
1505 /* No work to do. */
1506 goto out;
1507 }
1508
1509 /* Re-initialize the timer. */
1510 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512
1513 igb_ptp_write_i210(adapter, &ts);
1514 } else {
1515 timecounter_init(&adapter->tc, &adapter->cc,
1516 ktime_to_ns(ktime_get_real()));
1517 }
1518out:
1519 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520
1521 wrfl();
1522
1523 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524 schedule_delayed_work(&adapter->ptp_overflow_work,
1525 IGB_SYSTIM_OVERFLOW_PERIOD);
1526}
1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
21#include <linux/ptp_classify.h>
22
23#include "igb.h"
24
25#define INCVALUE_MASK 0x7fffffff
26#define ISGN 0x80000000
27
28/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not available. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
70#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71#define IGB_PTP_TX_TIMEOUT (HZ * 15)
72#define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580 40
76
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79/* SYSTIM read access for the 82576 */
80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81{
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94}
95
96/* SYSTIM read access for the 82580 */
97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98{
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
103
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter,
120 struct timespec64 *ts)
121{
122 struct e1000_hw *hw = &adapter->hw;
123 u32 sec, nsec;
124
125 /* The timestamp latches on lowest register read. For I210/I211, the
126 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127 * resolution, we can ignore it.
128 */
129 rd32(E1000_SYSTIMR);
130 nsec = rd32(E1000_SYSTIML);
131 sec = rd32(E1000_SYSTIMH);
132
133 ts->tv_sec = sec;
134 ts->tv_nsec = nsec;
135}
136
137static void igb_ptp_write_i210(struct igb_adapter *adapter,
138 const struct timespec64 *ts)
139{
140 struct e1000_hw *hw = &adapter->hw;
141
142 /* Writing the SYSTIMR register is not necessary as it only provides
143 * sub-nanosecond resolution.
144 */
145 wr32(E1000_SYSTIML, ts->tv_nsec);
146 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147}
148
149/**
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
154 *
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
157 *
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
162 *
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
165 **/
166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167 struct skb_shared_hwtstamps *hwtstamps,
168 u64 systim)
169{
170 unsigned long flags;
171 u64 ns;
172
173 switch (adapter->hw.mac.type) {
174 case e1000_82576:
175 case e1000_82580:
176 case e1000_i354:
177 case e1000_i350:
178 spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180 ns = timecounter_cyc2time(&adapter->tc, systim);
181
182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184 memset(hwtstamps, 0, sizeof(*hwtstamps));
185 hwtstamps->hwtstamp = ns_to_ktime(ns);
186 break;
187 case e1000_i210:
188 case e1000_i211:
189 memset(hwtstamps, 0, sizeof(*hwtstamps));
190 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192 systim & 0xFFFFFFFF);
193 break;
194 default:
195 break;
196 }
197}
198
199/* PTP clock operations */
200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201{
202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203 ptp_caps);
204 struct e1000_hw *hw = &igb->hw;
205 int neg_adj = 0;
206 u64 rate;
207 u32 incvalue;
208
209 if (ppb < 0) {
210 neg_adj = 1;
211 ppb = -ppb;
212 }
213 rate = ppb;
214 rate <<= 14;
215 rate = div_u64(rate, 1953125);
216
217 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219 if (neg_adj)
220 incvalue -= rate;
221 else
222 incvalue += rate;
223
224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226 return 0;
227}
228
229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230{
231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232 ptp_caps);
233 struct e1000_hw *hw = &igb->hw;
234 int neg_adj = 0;
235 u64 rate;
236 u32 inca;
237
238 if (ppb < 0) {
239 neg_adj = 1;
240 ppb = -ppb;
241 }
242 rate = ppb;
243 rate <<= 26;
244 rate = div_u64(rate, 1953125);
245
246 inca = rate & INCVALUE_MASK;
247 if (neg_adj)
248 inca |= ISGN;
249
250 wr32(E1000_TIMINCA, inca);
251
252 return 0;
253}
254
255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256{
257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258 ptp_caps);
259 unsigned long flags;
260
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262 timecounter_adjtime(&igb->tc, delta);
263 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264
265 return 0;
266}
267
268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269{
270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271 ptp_caps);
272 unsigned long flags;
273 struct timespec64 now, then = ns_to_timespec64(delta);
274
275 spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277 igb_ptp_read_i210(igb, &now);
278 now = timespec64_add(now, then);
279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283 return 0;
284}
285
286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287 struct timespec64 *ts)
288{
289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290 ptp_caps);
291 unsigned long flags;
292 u64 ns;
293
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296 ns = timecounter_read(&igb->tc);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 *ts = ns_to_timespec64(ns);
301
302 return 0;
303}
304
305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306 struct timespec64 *ts)
307{
308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309 ptp_caps);
310 unsigned long flags;
311
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314 igb_ptp_read_i210(igb, ts);
315
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318 return 0;
319}
320
321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322 const struct timespec64 *ts)
323{
324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325 ptp_caps);
326 unsigned long flags;
327 u64 ns;
328
329 ns = timespec64_to_ns(ts);
330
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333 timecounter_init(&igb->tc, &igb->cc, ns);
334
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337 return 0;
338}
339
340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341 const struct timespec64 *ts)
342{
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
346
347 spin_lock_irqsave(&igb->tmreg_lock, flags);
348
349 igb_ptp_write_i210(igb, ts);
350
351 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353 return 0;
354}
355
356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357{
358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359 static const u32 mask[IGB_N_SDP] = {
360 E1000_CTRL_SDP0_DIR,
361 E1000_CTRL_SDP1_DIR,
362 E1000_CTRL_EXT_SDP2_DIR,
363 E1000_CTRL_EXT_SDP3_DIR,
364 };
365
366 if (input)
367 *ptr &= ~mask[pin];
368 else
369 *ptr |= mask[pin];
370}
371
372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373{
374 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376 };
377 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379 };
380 static const u32 ts_sdp_en[IGB_N_SDP] = {
381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382 };
383 struct e1000_hw *hw = &igb->hw;
384 u32 ctrl, ctrl_ext, tssdp = 0;
385
386 ctrl = rd32(E1000_CTRL);
387 ctrl_ext = rd32(E1000_CTRL_EXT);
388 tssdp = rd32(E1000_TSSDP);
389
390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391
392 /* Make sure this pin is not enabled as an output. */
393 tssdp &= ~ts_sdp_en[pin];
394
395 if (chan == 1) {
396 tssdp &= ~AUX1_SEL_SDP3;
397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398 } else {
399 tssdp &= ~AUX0_SEL_SDP3;
400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401 }
402
403 wr32(E1000_TSSDP, tssdp);
404 wr32(E1000_CTRL, ctrl);
405 wr32(E1000_CTRL_EXT, ctrl_ext);
406}
407
408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409{
410 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412 };
413 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415 };
416 static const u32 ts_sdp_en[IGB_N_SDP] = {
417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418 };
419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422 };
423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426 };
427 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
428 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
429 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
430 };
431 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
432 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
433 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
434 };
435 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
437 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
438 };
439 struct e1000_hw *hw = &igb->hw;
440 u32 ctrl, ctrl_ext, tssdp = 0;
441
442 ctrl = rd32(E1000_CTRL);
443 ctrl_ext = rd32(E1000_CTRL_EXT);
444 tssdp = rd32(E1000_TSSDP);
445
446 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
447
448 /* Make sure this pin is not enabled as an input. */
449 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
450 tssdp &= ~AUX0_TS_SDP_EN;
451
452 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
453 tssdp &= ~AUX1_TS_SDP_EN;
454
455 tssdp &= ~ts_sdp_sel_clr[pin];
456 if (freq) {
457 if (chan == 1)
458 tssdp |= ts_sdp_sel_fc1[pin];
459 else
460 tssdp |= ts_sdp_sel_fc0[pin];
461 } else {
462 if (chan == 1)
463 tssdp |= ts_sdp_sel_tt1[pin];
464 else
465 tssdp |= ts_sdp_sel_tt0[pin];
466 }
467 tssdp |= ts_sdp_en[pin];
468
469 wr32(E1000_TSSDP, tssdp);
470 wr32(E1000_CTRL, ctrl);
471 wr32(E1000_CTRL_EXT, ctrl_ext);
472}
473
474static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
475 struct ptp_clock_request *rq, int on)
476{
477 struct igb_adapter *igb =
478 container_of(ptp, struct igb_adapter, ptp_caps);
479 struct e1000_hw *hw = &igb->hw;
480 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481 unsigned long flags;
482 struct timespec64 ts;
483 int use_freq = 0, pin = -1;
484 s64 ns;
485
486 switch (rq->type) {
487 case PTP_CLK_REQ_EXTTS:
488 if (on) {
489 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
490 rq->extts.index);
491 if (pin < 0)
492 return -EBUSY;
493 }
494 if (rq->extts.index == 1) {
495 tsauxc_mask = TSAUXC_EN_TS1;
496 tsim_mask = TSINTR_AUTT1;
497 } else {
498 tsauxc_mask = TSAUXC_EN_TS0;
499 tsim_mask = TSINTR_AUTT0;
500 }
501 spin_lock_irqsave(&igb->tmreg_lock, flags);
502 tsauxc = rd32(E1000_TSAUXC);
503 tsim = rd32(E1000_TSIM);
504 if (on) {
505 igb_pin_extts(igb, rq->extts.index, pin);
506 tsauxc |= tsauxc_mask;
507 tsim |= tsim_mask;
508 } else {
509 tsauxc &= ~tsauxc_mask;
510 tsim &= ~tsim_mask;
511 }
512 wr32(E1000_TSAUXC, tsauxc);
513 wr32(E1000_TSIM, tsim);
514 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
515 return 0;
516
517 case PTP_CLK_REQ_PEROUT:
518 if (on) {
519 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
520 rq->perout.index);
521 if (pin < 0)
522 return -EBUSY;
523 }
524 ts.tv_sec = rq->perout.period.sec;
525 ts.tv_nsec = rq->perout.period.nsec;
526 ns = timespec64_to_ns(&ts);
527 ns = ns >> 1;
528 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
529 (ns == 250000000LL) || (ns == 500000000LL))) {
530 if (ns < 8LL)
531 return -EINVAL;
532 use_freq = 1;
533 }
534 ts = ns_to_timespec64(ns);
535 if (rq->perout.index == 1) {
536 if (use_freq) {
537 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
538 tsim_mask = 0;
539 } else {
540 tsauxc_mask = TSAUXC_EN_TT1;
541 tsim_mask = TSINTR_TT1;
542 }
543 trgttiml = E1000_TRGTTIML1;
544 trgttimh = E1000_TRGTTIMH1;
545 freqout = E1000_FREQOUT1;
546 } else {
547 if (use_freq) {
548 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
549 tsim_mask = 0;
550 } else {
551 tsauxc_mask = TSAUXC_EN_TT0;
552 tsim_mask = TSINTR_TT0;
553 }
554 trgttiml = E1000_TRGTTIML0;
555 trgttimh = E1000_TRGTTIMH0;
556 freqout = E1000_FREQOUT0;
557 }
558 spin_lock_irqsave(&igb->tmreg_lock, flags);
559 tsauxc = rd32(E1000_TSAUXC);
560 tsim = rd32(E1000_TSIM);
561 if (rq->perout.index == 1) {
562 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
563 tsim &= ~TSINTR_TT1;
564 } else {
565 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
566 tsim &= ~TSINTR_TT0;
567 }
568 if (on) {
569 int i = rq->perout.index;
570 igb_pin_perout(igb, i, pin, use_freq);
571 igb->perout[i].start.tv_sec = rq->perout.start.sec;
572 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
573 igb->perout[i].period.tv_sec = ts.tv_sec;
574 igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 wr32(trgttimh, rq->perout.start.sec);
576 wr32(trgttiml, rq->perout.start.nsec);
577 if (use_freq)
578 wr32(freqout, ns);
579 tsauxc |= tsauxc_mask;
580 tsim |= tsim_mask;
581 }
582 wr32(E1000_TSAUXC, tsauxc);
583 wr32(E1000_TSIM, tsim);
584 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
585 return 0;
586
587 case PTP_CLK_REQ_PPS:
588 spin_lock_irqsave(&igb->tmreg_lock, flags);
589 tsim = rd32(E1000_TSIM);
590 if (on)
591 tsim |= TSINTR_SYS_WRAP;
592 else
593 tsim &= ~TSINTR_SYS_WRAP;
594 wr32(E1000_TSIM, tsim);
595 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
596 return 0;
597 }
598
599 return -EOPNOTSUPP;
600}
601
602static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
603 struct ptp_clock_request *rq, int on)
604{
605 return -EOPNOTSUPP;
606}
607
608static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
609 enum ptp_pin_function func, unsigned int chan)
610{
611 switch (func) {
612 case PTP_PF_NONE:
613 case PTP_PF_EXTTS:
614 case PTP_PF_PEROUT:
615 break;
616 case PTP_PF_PHYSYNC:
617 return -1;
618 }
619 return 0;
620}
621
622/**
623 * igb_ptp_tx_work
624 * @work: pointer to work struct
625 *
626 * This work function polls the TSYNCTXCTL valid bit to determine when a
627 * timestamp has been taken for the current stored skb.
628 **/
629static void igb_ptp_tx_work(struct work_struct *work)
630{
631 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
632 ptp_tx_work);
633 struct e1000_hw *hw = &adapter->hw;
634 u32 tsynctxctl;
635
636 if (!adapter->ptp_tx_skb)
637 return;
638
639 if (time_is_before_jiffies(adapter->ptp_tx_start +
640 IGB_PTP_TX_TIMEOUT)) {
641 dev_kfree_skb_any(adapter->ptp_tx_skb);
642 adapter->ptp_tx_skb = NULL;
643 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
644 adapter->tx_hwtstamp_timeouts++;
645 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
646 return;
647 }
648
649 tsynctxctl = rd32(E1000_TSYNCTXCTL);
650 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
651 igb_ptp_tx_hwtstamp(adapter);
652 else
653 /* reschedule to check later */
654 schedule_work(&adapter->ptp_tx_work);
655}
656
657static void igb_ptp_overflow_check(struct work_struct *work)
658{
659 struct igb_adapter *igb =
660 container_of(work, struct igb_adapter, ptp_overflow_work.work);
661 struct timespec64 ts;
662
663 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
664
665 pr_debug("igb overflow check at %lld.%09lu\n",
666 (long long) ts.tv_sec, ts.tv_nsec);
667
668 schedule_delayed_work(&igb->ptp_overflow_work,
669 IGB_SYSTIM_OVERFLOW_PERIOD);
670}
671
672/**
673 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
674 * @adapter: private network adapter structure
675 *
676 * This watchdog task is scheduled to detect error case where hardware has
677 * dropped an Rx packet that was timestamped when the ring is full. The
678 * particular error is rare but leaves the device in a state unable to timestamp
679 * any future packets.
680 **/
681void igb_ptp_rx_hang(struct igb_adapter *adapter)
682{
683 struct e1000_hw *hw = &adapter->hw;
684 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
685 unsigned long rx_event;
686
687 if (hw->mac.type != e1000_82576)
688 return;
689
690 /* If we don't have a valid timestamp in the registers, just update the
691 * timeout counter and exit
692 */
693 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
694 adapter->last_rx_ptp_check = jiffies;
695 return;
696 }
697
698 /* Determine the most recent watchdog or rx_timestamp event */
699 rx_event = adapter->last_rx_ptp_check;
700 if (time_after(adapter->last_rx_timestamp, rx_event))
701 rx_event = adapter->last_rx_timestamp;
702
703 /* Only need to read the high RXSTMP register to clear the lock */
704 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
705 rd32(E1000_RXSTMPH);
706 adapter->last_rx_ptp_check = jiffies;
707 adapter->rx_hwtstamp_cleared++;
708 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
709 }
710}
711
712/**
713 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
714 * @adapter: Board private structure.
715 *
716 * If we were asked to do hardware stamping and such a time stamp is
717 * available, then it must have been for this skb here because we only
718 * allow only one such packet into the queue.
719 **/
720static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
721{
722 struct e1000_hw *hw = &adapter->hw;
723 struct skb_shared_hwtstamps shhwtstamps;
724 u64 regval;
725
726 regval = rd32(E1000_TXSTMPL);
727 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
728
729 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
730 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
731 dev_kfree_skb_any(adapter->ptp_tx_skb);
732 adapter->ptp_tx_skb = NULL;
733 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
734}
735
736/**
737 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
738 * @q_vector: Pointer to interrupt specific structure
739 * @va: Pointer to address containing Rx buffer
740 * @skb: Buffer containing timestamp and packet
741 *
742 * This function is meant to retrieve a timestamp from the first buffer of an
743 * incoming frame. The value is stored in little endian format starting on
744 * byte 8.
745 **/
746void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
747 unsigned char *va,
748 struct sk_buff *skb)
749{
750 __le64 *regval = (__le64 *)va;
751
752 /* The timestamp is recorded in little endian format.
753 * DWORD: 0 1 2 3
754 * Field: Reserved Reserved SYSTIML SYSTIMH
755 */
756 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
757 le64_to_cpu(regval[1]));
758}
759
760/**
761 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
762 * @q_vector: Pointer to interrupt specific structure
763 * @skb: Buffer containing timestamp and packet
764 *
765 * This function is meant to retrieve a timestamp from the internal registers
766 * of the adapter and store it in the skb.
767 **/
768void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
769 struct sk_buff *skb)
770{
771 struct igb_adapter *adapter = q_vector->adapter;
772 struct e1000_hw *hw = &adapter->hw;
773 u64 regval;
774
775 /* If this bit is set, then the RX registers contain the time stamp. No
776 * other packet will be time stamped until we read these registers, so
777 * read the registers to make them available again. Because only one
778 * packet can be time stamped at a time, we know that the register
779 * values must belong to this one here and therefore we don't need to
780 * compare any of the additional attributes stored for it.
781 *
782 * If nothing went wrong, then it should have a shared tx_flags that we
783 * can turn into a skb_shared_hwtstamps.
784 */
785 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
786 return;
787
788 regval = rd32(E1000_RXSTMPL);
789 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
790
791 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
792
793 /* Update the last_rx_timestamp timer in order to enable watchdog check
794 * for error case of latched timestamp on a dropped packet.
795 */
796 adapter->last_rx_timestamp = jiffies;
797}
798
799/**
800 * igb_ptp_get_ts_config - get hardware time stamping config
801 * @netdev:
802 * @ifreq:
803 *
804 * Get the hwtstamp_config settings to return to the user. Rather than attempt
805 * to deconstruct the settings from the registers, just return a shadow copy
806 * of the last known settings.
807 **/
808int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
809{
810 struct igb_adapter *adapter = netdev_priv(netdev);
811 struct hwtstamp_config *config = &adapter->tstamp_config;
812
813 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
814 -EFAULT : 0;
815}
816
817/**
818 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
819 * @adapter: networking device structure
820 * @config: hwtstamp configuration
821 *
822 * Outgoing time stamping can be enabled and disabled. Play nice and
823 * disable it when requested, although it shouldn't case any overhead
824 * when no packet needs it. At most one packet in the queue may be
825 * marked for time stamping, otherwise it would be impossible to tell
826 * for sure to which packet the hardware time stamp belongs.
827 *
828 * Incoming time stamping has to be configured via the hardware
829 * filters. Not all combinations are supported, in particular event
830 * type has to be specified. Matching the kind of event packet is
831 * not supported, with the exception of "all V2 events regardless of
832 * level 2 or 4".
833 */
834static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
835 struct hwtstamp_config *config)
836{
837 struct e1000_hw *hw = &adapter->hw;
838 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
839 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
840 u32 tsync_rx_cfg = 0;
841 bool is_l4 = false;
842 bool is_l2 = false;
843 u32 regval;
844
845 /* reserved for future extensions */
846 if (config->flags)
847 return -EINVAL;
848
849 switch (config->tx_type) {
850 case HWTSTAMP_TX_OFF:
851 tsync_tx_ctl = 0;
852 case HWTSTAMP_TX_ON:
853 break;
854 default:
855 return -ERANGE;
856 }
857
858 switch (config->rx_filter) {
859 case HWTSTAMP_FILTER_NONE:
860 tsync_rx_ctl = 0;
861 break;
862 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
863 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
864 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
865 is_l4 = true;
866 break;
867 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
868 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
869 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
870 is_l4 = true;
871 break;
872 case HWTSTAMP_FILTER_PTP_V2_EVENT:
873 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
874 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
875 case HWTSTAMP_FILTER_PTP_V2_SYNC:
876 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
877 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
878 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
879 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
880 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
881 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
882 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
883 is_l2 = true;
884 is_l4 = true;
885 break;
886 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
887 case HWTSTAMP_FILTER_ALL:
888 /* 82576 cannot timestamp all packets, which it needs to do to
889 * support both V1 Sync and Delay_Req messages
890 */
891 if (hw->mac.type != e1000_82576) {
892 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
893 config->rx_filter = HWTSTAMP_FILTER_ALL;
894 break;
895 }
896 /* fall through */
897 default:
898 config->rx_filter = HWTSTAMP_FILTER_NONE;
899 return -ERANGE;
900 }
901
902 if (hw->mac.type == e1000_82575) {
903 if (tsync_rx_ctl | tsync_tx_ctl)
904 return -EINVAL;
905 return 0;
906 }
907
908 /* Per-packet timestamping only works if all packets are
909 * timestamped, so enable timestamping in all packets as
910 * long as one Rx filter was configured.
911 */
912 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
913 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
914 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
915 config->rx_filter = HWTSTAMP_FILTER_ALL;
916 is_l2 = true;
917 is_l4 = true;
918
919 if ((hw->mac.type == e1000_i210) ||
920 (hw->mac.type == e1000_i211)) {
921 regval = rd32(E1000_RXPBS);
922 regval |= E1000_RXPBS_CFG_TS_EN;
923 wr32(E1000_RXPBS, regval);
924 }
925 }
926
927 /* enable/disable TX */
928 regval = rd32(E1000_TSYNCTXCTL);
929 regval &= ~E1000_TSYNCTXCTL_ENABLED;
930 regval |= tsync_tx_ctl;
931 wr32(E1000_TSYNCTXCTL, regval);
932
933 /* enable/disable RX */
934 regval = rd32(E1000_TSYNCRXCTL);
935 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
936 regval |= tsync_rx_ctl;
937 wr32(E1000_TSYNCRXCTL, regval);
938
939 /* define which PTP packets are time stamped */
940 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
941
942 /* define ethertype filter for timestamped packets */
943 if (is_l2)
944 wr32(E1000_ETQF(3),
945 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
946 E1000_ETQF_1588 | /* enable timestamping */
947 ETH_P_1588)); /* 1588 eth protocol type */
948 else
949 wr32(E1000_ETQF(3), 0);
950
951 /* L4 Queue Filter[3]: filter by destination port and protocol */
952 if (is_l4) {
953 u32 ftqf = (IPPROTO_UDP /* UDP */
954 | E1000_FTQF_VF_BP /* VF not compared */
955 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
956 | E1000_FTQF_MASK); /* mask all inputs */
957 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
958
959 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
960 wr32(E1000_IMIREXT(3),
961 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
962 if (hw->mac.type == e1000_82576) {
963 /* enable source port check */
964 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
965 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
966 }
967 wr32(E1000_FTQF(3), ftqf);
968 } else {
969 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
970 }
971 wrfl();
972
973 /* clear TX/RX time stamp registers, just to be sure */
974 regval = rd32(E1000_TXSTMPL);
975 regval = rd32(E1000_TXSTMPH);
976 regval = rd32(E1000_RXSTMPL);
977 regval = rd32(E1000_RXSTMPH);
978
979 return 0;
980}
981
982/**
983 * igb_ptp_set_ts_config - set hardware time stamping config
984 * @netdev:
985 * @ifreq:
986 *
987 **/
988int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
989{
990 struct igb_adapter *adapter = netdev_priv(netdev);
991 struct hwtstamp_config config;
992 int err;
993
994 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
995 return -EFAULT;
996
997 err = igb_ptp_set_timestamp_mode(adapter, &config);
998 if (err)
999 return err;
1000
1001 /* save these settings for future reference */
1002 memcpy(&adapter->tstamp_config, &config,
1003 sizeof(adapter->tstamp_config));
1004
1005 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1006 -EFAULT : 0;
1007}
1008
1009void igb_ptp_init(struct igb_adapter *adapter)
1010{
1011 struct e1000_hw *hw = &adapter->hw;
1012 struct net_device *netdev = adapter->netdev;
1013 int i;
1014
1015 switch (hw->mac.type) {
1016 case e1000_82576:
1017 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1018 adapter->ptp_caps.owner = THIS_MODULE;
1019 adapter->ptp_caps.max_adj = 999999881;
1020 adapter->ptp_caps.n_ext_ts = 0;
1021 adapter->ptp_caps.pps = 0;
1022 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1023 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1024 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1025 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1026 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1027 adapter->cc.read = igb_ptp_read_82576;
1028 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1029 adapter->cc.mult = 1;
1030 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1031 /* Dial the nominal frequency. */
1032 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1033 break;
1034 case e1000_82580:
1035 case e1000_i354:
1036 case e1000_i350:
1037 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1038 adapter->ptp_caps.owner = THIS_MODULE;
1039 adapter->ptp_caps.max_adj = 62499999;
1040 adapter->ptp_caps.n_ext_ts = 0;
1041 adapter->ptp_caps.pps = 0;
1042 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1043 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1044 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1045 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1046 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1047 adapter->cc.read = igb_ptp_read_82580;
1048 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1049 adapter->cc.mult = 1;
1050 adapter->cc.shift = 0;
1051 /* Enable the timer functions by clearing bit 31. */
1052 wr32(E1000_TSAUXC, 0x0);
1053 break;
1054 case e1000_i210:
1055 case e1000_i211:
1056 for (i = 0; i < IGB_N_SDP; i++) {
1057 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1058
1059 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1060 ppd->index = i;
1061 ppd->func = PTP_PF_NONE;
1062 }
1063 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1064 adapter->ptp_caps.owner = THIS_MODULE;
1065 adapter->ptp_caps.max_adj = 62499999;
1066 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1067 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1068 adapter->ptp_caps.n_pins = IGB_N_SDP;
1069 adapter->ptp_caps.pps = 1;
1070 adapter->ptp_caps.pin_config = adapter->sdp_config;
1071 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1072 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1073 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1074 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1075 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1076 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1077 /* Enable the timer functions by clearing bit 31. */
1078 wr32(E1000_TSAUXC, 0x0);
1079 break;
1080 default:
1081 adapter->ptp_clock = NULL;
1082 return;
1083 }
1084
1085 wrfl();
1086
1087 spin_lock_init(&adapter->tmreg_lock);
1088 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1089
1090 /* Initialize the clock and overflow work for devices that need it. */
1091 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1092 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1093
1094 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1095 } else {
1096 timecounter_init(&adapter->tc, &adapter->cc,
1097 ktime_to_ns(ktime_get_real()));
1098
1099 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1100 igb_ptp_overflow_check);
1101
1102 schedule_delayed_work(&adapter->ptp_overflow_work,
1103 IGB_SYSTIM_OVERFLOW_PERIOD);
1104 }
1105
1106 /* Initialize the time sync interrupts for devices that support it. */
1107 if (hw->mac.type >= e1000_82580) {
1108 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1109 wr32(E1000_IMS, E1000_IMS_TS);
1110 }
1111
1112 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1113 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1114
1115 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1116 &adapter->pdev->dev);
1117 if (IS_ERR(adapter->ptp_clock)) {
1118 adapter->ptp_clock = NULL;
1119 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1120 } else {
1121 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1122 adapter->netdev->name);
1123 adapter->flags |= IGB_FLAG_PTP;
1124 }
1125}
1126
1127/**
1128 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1129 * @adapter: Board private structure.
1130 *
1131 * This function stops the PTP support and cancels the delayed work.
1132 **/
1133void igb_ptp_stop(struct igb_adapter *adapter)
1134{
1135 switch (adapter->hw.mac.type) {
1136 case e1000_82576:
1137 case e1000_82580:
1138 case e1000_i354:
1139 case e1000_i350:
1140 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1141 break;
1142 case e1000_i210:
1143 case e1000_i211:
1144 /* No delayed work to cancel. */
1145 break;
1146 default:
1147 return;
1148 }
1149
1150 cancel_work_sync(&adapter->ptp_tx_work);
1151 if (adapter->ptp_tx_skb) {
1152 dev_kfree_skb_any(adapter->ptp_tx_skb);
1153 adapter->ptp_tx_skb = NULL;
1154 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1155 }
1156
1157 if (adapter->ptp_clock) {
1158 ptp_clock_unregister(adapter->ptp_clock);
1159 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1160 adapter->netdev->name);
1161 adapter->flags &= ~IGB_FLAG_PTP;
1162 }
1163}
1164
1165/**
1166 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1167 * @adapter: Board private structure.
1168 *
1169 * This function handles the reset work required to re-enable the PTP device.
1170 **/
1171void igb_ptp_reset(struct igb_adapter *adapter)
1172{
1173 struct e1000_hw *hw = &adapter->hw;
1174 unsigned long flags;
1175
1176 if (!(adapter->flags & IGB_FLAG_PTP))
1177 return;
1178
1179 /* reset the tstamp_config */
1180 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1181
1182 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1183
1184 switch (adapter->hw.mac.type) {
1185 case e1000_82576:
1186 /* Dial the nominal frequency. */
1187 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1188 break;
1189 case e1000_82580:
1190 case e1000_i354:
1191 case e1000_i350:
1192 case e1000_i210:
1193 case e1000_i211:
1194 wr32(E1000_TSAUXC, 0x0);
1195 wr32(E1000_TSSDP, 0x0);
1196 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1197 wr32(E1000_IMS, E1000_IMS_TS);
1198 break;
1199 default:
1200 /* No work to do. */
1201 goto out;
1202 }
1203
1204 /* Re-initialize the timer. */
1205 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1206 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1207
1208 igb_ptp_write_i210(adapter, &ts);
1209 } else {
1210 timecounter_init(&adapter->tc, &adapter->cc,
1211 ktime_to_ns(ktime_get_real()));
1212 }
1213out:
1214 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1215}