Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <linux/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
 
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50static DEFINE_IDA(workqueue_ida);
  51
  52/*
  53 * context holding the current state of a multi-part conversion
  54 */
  55struct convert_context {
  56	struct completion restart;
  57	struct bio *bio_in;
  58	struct bvec_iter iter_in;
  59	struct bio *bio_out;
 
  60	struct bvec_iter iter_out;
 
  61	atomic_t cc_pending;
  62	unsigned int tag_offset;
  63	u64 cc_sector;
  64	union {
  65		struct skcipher_request *req;
  66		struct aead_request *req_aead;
  67	} r;
  68	bool aead_recheck;
  69	bool aead_failed;
  70
  71};
  72
  73/*
  74 * per bio private data
  75 */
  76struct dm_crypt_io {
  77	struct crypt_config *cc;
  78	struct bio *base_bio;
  79	u8 *integrity_metadata;
  80	bool integrity_metadata_from_pool:1;
  81
  82	struct work_struct work;
  83
  84	struct convert_context ctx;
  85
  86	atomic_t io_pending;
  87	blk_status_t error;
  88	sector_t sector;
  89
  90	struct bvec_iter saved_bi_iter;
  91
  92	struct rb_node rb_node;
  93} CRYPTO_MINALIGN_ATTR;
  94
  95struct dm_crypt_request {
  96	struct convert_context *ctx;
  97	struct scatterlist sg_in[4];
  98	struct scatterlist sg_out[4];
  99	u64 iv_sector;
 100};
 101
 102struct crypt_config;
 103
 104struct crypt_iv_operations {
 105	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 106		   const char *opts);
 107	void (*dtr)(struct crypt_config *cc);
 108	int (*init)(struct crypt_config *cc);
 109	int (*wipe)(struct crypt_config *cc);
 110	int (*generator)(struct crypt_config *cc, u8 *iv,
 111			 struct dm_crypt_request *dmreq);
 112	int (*post)(struct crypt_config *cc, u8 *iv,
 113		    struct dm_crypt_request *dmreq);
 114};
 115
 
 
 
 
 
 116struct iv_benbi_private {
 117	int shift;
 118};
 119
 120#define LMK_SEED_SIZE 64 /* hash + 0 */
 121struct iv_lmk_private {
 122	struct crypto_shash *hash_tfm;
 123	u8 *seed;
 124};
 125
 126#define TCW_WHITENING_SIZE 16
 127struct iv_tcw_private {
 128	struct crypto_shash *crc32_tfm;
 129	u8 *iv_seed;
 130	u8 *whitening;
 131};
 132
 133#define ELEPHANT_MAX_KEY_SIZE 32
 134struct iv_elephant_private {
 135	struct crypto_skcipher *tfm;
 136};
 137
 138/*
 139 * Crypt: maps a linear range of a block device
 140 * and encrypts / decrypts at the same time.
 141 */
 142enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 143	     DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
 144	     DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
 145	     DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
 146
 147enum cipher_flags {
 148	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 149	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 150	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 151	CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */
 152};
 153
 154/*
 155 * The fields in here must be read only after initialization.
 156 */
 157struct crypt_config {
 158	struct dm_dev *dev;
 159	sector_t start;
 160
 
 
 
 
 
 
 
 
 
 161	struct percpu_counter n_allocated_pages;
 162
 
 
 
 163	struct workqueue_struct *io_queue;
 164	struct workqueue_struct *crypt_queue;
 165
 166	spinlock_t write_thread_lock;
 167	struct task_struct *write_thread;
 
 168	struct rb_root write_tree;
 169
 
 170	char *cipher_string;
 171	char *cipher_auth;
 172	char *key_string;
 173
 174	const struct crypt_iv_operations *iv_gen_ops;
 175	union {
 
 176		struct iv_benbi_private benbi;
 177		struct iv_lmk_private lmk;
 178		struct iv_tcw_private tcw;
 179		struct iv_elephant_private elephant;
 180	} iv_gen_private;
 181	u64 iv_offset;
 182	unsigned int iv_size;
 183	unsigned short sector_size;
 184	unsigned char sector_shift;
 185
 
 
 186	union {
 187		struct crypto_skcipher **tfms;
 188		struct crypto_aead **tfms_aead;
 189	} cipher_tfm;
 190	unsigned int tfms_count;
 191	int workqueue_id;
 192	unsigned long cipher_flags;
 193
 194	/*
 195	 * Layout of each crypto request:
 196	 *
 197	 *   struct skcipher_request
 198	 *      context
 199	 *      padding
 200	 *   struct dm_crypt_request
 201	 *      padding
 202	 *   IV
 203	 *
 204	 * The padding is added so that dm_crypt_request and the IV are
 205	 * correctly aligned.
 206	 */
 207	unsigned int dmreq_start;
 208
 209	unsigned int per_bio_data_size;
 210
 211	unsigned long flags;
 212	unsigned int key_size;
 213	unsigned int key_parts;      /* independent parts in key buffer */
 214	unsigned int key_extra_size; /* additional keys length */
 215	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 216
 217	unsigned int integrity_tag_size;
 218	unsigned int integrity_iv_size;
 219	unsigned int used_tag_size;
 220	unsigned int tuple_size;
 221
 222	/*
 223	 * pool for per bio private data, crypto requests,
 224	 * encryption requeusts/buffer pages and integrity tags
 225	 */
 226	unsigned int tag_pool_max_sectors;
 227	mempool_t tag_pool;
 228	mempool_t req_pool;
 229	mempool_t page_pool;
 230
 231	struct bio_set bs;
 232	struct mutex bio_alloc_lock;
 233
 234	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 235	u8 key[] __counted_by(key_size);
 236};
 237
 238#define MIN_IOS		64
 239#define MAX_TAG_SIZE	480
 240#define POOL_ENTRY_SIZE	512
 241
 242static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 243static unsigned int dm_crypt_clients_n;
 244static volatile unsigned long dm_crypt_pages_per_client;
 245#define DM_CRYPT_MEMORY_PERCENT			2
 246#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 247#define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072
 248#define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072
 249
 250static unsigned int max_read_size = 0;
 251module_param(max_read_size, uint, 0644);
 252MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
 253static unsigned int max_write_size = 0;
 254module_param(max_write_size, uint, 0644);
 255MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
 256static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
 257{
 258	unsigned val, sector_align;
 259	val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
 260	if (likely(!val))
 261		val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
 262	if (wrt || cc->used_tag_size) {
 263		if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
 264			val = BIO_MAX_VECS << PAGE_SHIFT;
 265	}
 266	sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
 267	val = round_down(val, sector_align);
 268	if (unlikely(!val))
 269		val = sector_align;
 270	return val >> SECTOR_SHIFT;
 271}
 272
 273static void crypt_endio(struct bio *clone);
 274static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 275static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 276					     struct scatterlist *sg);
 277
 278static bool crypt_integrity_aead(struct crypt_config *cc);
 279
 280/*
 281 * Use this to access cipher attributes that are independent of the key.
 282 */
 283static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 284{
 285	return cc->cipher_tfm.tfms[0];
 286}
 287
 288static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 289{
 290	return cc->cipher_tfm.tfms_aead[0];
 291}
 292
 293/*
 294 * Different IV generation algorithms:
 295 *
 296 * plain: the initial vector is the 32-bit little-endian version of the sector
 297 *        number, padded with zeros if necessary.
 298 *
 299 * plain64: the initial vector is the 64-bit little-endian version of the sector
 300 *        number, padded with zeros if necessary.
 301 *
 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 303 *        number, padded with zeros if necessary.
 304 *
 305 * essiv: "encrypted sector|salt initial vector", the sector number is
 306 *        encrypted with the bulk cipher using a salt as key. The salt
 307 *        should be derived from the bulk cipher's key via hashing.
 308 *
 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 310 *        (needed for LRW-32-AES and possible other narrow block modes)
 311 *
 312 * null: the initial vector is always zero.  Provides compatibility with
 313 *       obsolete loop_fish2 devices.  Do not use for new devices.
 314 *
 315 * lmk:  Compatible implementation of the block chaining mode used
 316 *       by the Loop-AES block device encryption system
 317 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 318 *       It operates on full 512 byte sectors and uses CBC
 319 *       with an IV derived from the sector number, the data and
 320 *       optionally extra IV seed.
 321 *       This means that after decryption the first block
 322 *       of sector must be tweaked according to decrypted data.
 323 *       Loop-AES can use three encryption schemes:
 324 *         version 1: is plain aes-cbc mode
 325 *         version 2: uses 64 multikey scheme with lmk IV generator
 326 *         version 3: the same as version 2 with additional IV seed
 327 *                   (it uses 65 keys, last key is used as IV seed)
 328 *
 329 * tcw:  Compatible implementation of the block chaining mode used
 330 *       by the TrueCrypt device encryption system (prior to version 4.1).
 331 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 332 *       It operates on full 512 byte sectors and uses CBC
 333 *       with an IV derived from initial key and the sector number.
 334 *       In addition, whitening value is applied on every sector, whitening
 335 *       is calculated from initial key, sector number and mixed using CRC32.
 336 *       Note that this encryption scheme is vulnerable to watermarking attacks
 337 *       and should be used for old compatible containers access only.
 338 *
 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 340 *        The IV is encrypted little-endian byte-offset (with the same key
 341 *        and cipher as the volume).
 342 *
 343 * elephant: The extended version of eboiv with additional Elephant diffuser
 344 *           used with Bitlocker CBC mode.
 345 *           This mode was used in older Windows systems
 346 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 347 */
 348
 349static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 350			      struct dm_crypt_request *dmreq)
 351{
 352	memset(iv, 0, cc->iv_size);
 353	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 354
 355	return 0;
 356}
 357
 358static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 359				struct dm_crypt_request *dmreq)
 360{
 361	memset(iv, 0, cc->iv_size);
 362	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 363
 364	return 0;
 365}
 366
 367static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 368				  struct dm_crypt_request *dmreq)
 369{
 370	memset(iv, 0, cc->iv_size);
 371	/* iv_size is at least of size u64; usually it is 16 bytes */
 372	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 373
 374	return 0;
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 378			      struct dm_crypt_request *dmreq)
 379{
 380	/*
 381	 * ESSIV encryption of the IV is now handled by the crypto API,
 382	 * so just pass the plain sector number here.
 383	 */
 384	memset(iv, 0, cc->iv_size);
 385	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 386
 387	return 0;
 388}
 389
 390static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 391			      const char *opts)
 392{
 393	unsigned int bs;
 394	int log;
 395
 396	if (crypt_integrity_aead(cc))
 397		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 398	else
 399		bs = crypto_skcipher_blocksize(any_tfm(cc));
 400	log = ilog2(bs);
 401
 402	/*
 403	 * We need to calculate how far we must shift the sector count
 404	 * to get the cipher block count, we use this shift in _gen.
 405	 */
 406	if (1 << log != bs) {
 407		ti->error = "cypher blocksize is not a power of 2";
 408		return -EINVAL;
 409	}
 410
 411	if (log > 9) {
 412		ti->error = "cypher blocksize is > 512";
 413		return -EINVAL;
 414	}
 415
 416	cc->iv_gen_private.benbi.shift = 9 - log;
 417
 418	return 0;
 419}
 420
 421static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 422{
 423}
 424
 425static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 426			      struct dm_crypt_request *dmreq)
 427{
 428	__be64 val;
 429
 430	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 431
 432	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 433	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 434
 435	return 0;
 436}
 437
 438static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 439			     struct dm_crypt_request *dmreq)
 440{
 441	memset(iv, 0, cc->iv_size);
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 447{
 448	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 449
 450	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 451		crypto_free_shash(lmk->hash_tfm);
 452	lmk->hash_tfm = NULL;
 453
 454	kfree_sensitive(lmk->seed);
 455	lmk->seed = NULL;
 456}
 457
 458static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 459			    const char *opts)
 460{
 461	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 462
 463	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 464		ti->error = "Unsupported sector size for LMK";
 465		return -EINVAL;
 466	}
 467
 468	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 469					   CRYPTO_ALG_ALLOCATES_MEMORY);
 470	if (IS_ERR(lmk->hash_tfm)) {
 471		ti->error = "Error initializing LMK hash";
 472		return PTR_ERR(lmk->hash_tfm);
 473	}
 474
 475	/* No seed in LMK version 2 */
 476	if (cc->key_parts == cc->tfms_count) {
 477		lmk->seed = NULL;
 478		return 0;
 479	}
 480
 481	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 482	if (!lmk->seed) {
 483		crypt_iv_lmk_dtr(cc);
 484		ti->error = "Error kmallocing seed storage in LMK";
 485		return -ENOMEM;
 486	}
 487
 488	return 0;
 489}
 490
 491static int crypt_iv_lmk_init(struct crypt_config *cc)
 492{
 493	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 494	int subkey_size = cc->key_size / cc->key_parts;
 495
 496	/* LMK seed is on the position of LMK_KEYS + 1 key */
 497	if (lmk->seed)
 498		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 499		       crypto_shash_digestsize(lmk->hash_tfm));
 500
 501	return 0;
 502}
 503
 504static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 505{
 506	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 507
 508	if (lmk->seed)
 509		memset(lmk->seed, 0, LMK_SEED_SIZE);
 510
 511	return 0;
 512}
 513
 514static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 515			    struct dm_crypt_request *dmreq,
 516			    u8 *data)
 517{
 518	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 519	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 520	struct md5_state md5state;
 521	__le32 buf[4];
 522	int i, r;
 523
 524	desc->tfm = lmk->hash_tfm;
 
 525
 526	r = crypto_shash_init(desc);
 527	if (r)
 528		return r;
 529
 530	if (lmk->seed) {
 531		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 532		if (r)
 533			return r;
 534	}
 535
 536	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 537	r = crypto_shash_update(desc, data + 16, 16 * 31);
 538	if (r)
 539		return r;
 540
 541	/* Sector is cropped to 56 bits here */
 542	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 543	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 544	buf[2] = cpu_to_le32(4024);
 545	buf[3] = 0;
 546	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 547	if (r)
 548		return r;
 549
 550	/* No MD5 padding here */
 551	r = crypto_shash_export(desc, &md5state);
 552	if (r)
 553		return r;
 554
 555	for (i = 0; i < MD5_HASH_WORDS; i++)
 556		__cpu_to_le32s(&md5state.hash[i]);
 557	memcpy(iv, &md5state.hash, cc->iv_size);
 558
 559	return 0;
 560}
 561
 562static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 563			    struct dm_crypt_request *dmreq)
 564{
 565	struct scatterlist *sg;
 566	u8 *src;
 567	int r = 0;
 568
 569	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 570		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 571		src = kmap_local_page(sg_page(sg));
 572		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 573		kunmap_local(src);
 574	} else
 575		memset(iv, 0, cc->iv_size);
 576
 577	return r;
 578}
 579
 580static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 581			     struct dm_crypt_request *dmreq)
 582{
 583	struct scatterlist *sg;
 584	u8 *dst;
 585	int r;
 586
 587	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 588		return 0;
 589
 590	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 591	dst = kmap_local_page(sg_page(sg));
 592	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 593
 594	/* Tweak the first block of plaintext sector */
 595	if (!r)
 596		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 597
 598	kunmap_local(dst);
 599	return r;
 600}
 601
 602static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 603{
 604	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 605
 606	kfree_sensitive(tcw->iv_seed);
 607	tcw->iv_seed = NULL;
 608	kfree_sensitive(tcw->whitening);
 609	tcw->whitening = NULL;
 610
 611	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 612		crypto_free_shash(tcw->crc32_tfm);
 613	tcw->crc32_tfm = NULL;
 614}
 615
 616static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 617			    const char *opts)
 618{
 619	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 620
 621	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 622		ti->error = "Unsupported sector size for TCW";
 623		return -EINVAL;
 624	}
 625
 626	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 627		ti->error = "Wrong key size for TCW";
 628		return -EINVAL;
 629	}
 630
 631	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 632					    CRYPTO_ALG_ALLOCATES_MEMORY);
 633	if (IS_ERR(tcw->crc32_tfm)) {
 634		ti->error = "Error initializing CRC32 in TCW";
 635		return PTR_ERR(tcw->crc32_tfm);
 636	}
 637
 638	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 639	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 640	if (!tcw->iv_seed || !tcw->whitening) {
 641		crypt_iv_tcw_dtr(cc);
 642		ti->error = "Error allocating seed storage in TCW";
 643		return -ENOMEM;
 644	}
 645
 646	return 0;
 647}
 648
 649static int crypt_iv_tcw_init(struct crypt_config *cc)
 650{
 651	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 652	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 653
 654	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 655	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 656	       TCW_WHITENING_SIZE);
 657
 658	return 0;
 659}
 660
 661static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 662{
 663	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 664
 665	memset(tcw->iv_seed, 0, cc->iv_size);
 666	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 672				  struct dm_crypt_request *dmreq,
 673				  u8 *data)
 674{
 675	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 676	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 677	u8 buf[TCW_WHITENING_SIZE];
 678	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 679	int i, r;
 680
 681	/* xor whitening with sector number */
 682	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 683	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 684
 685	/* calculate crc32 for every 32bit part and xor it */
 686	desc->tfm = tcw->crc32_tfm;
 
 687	for (i = 0; i < 4; i++) {
 688		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 
 
 
 
 
 
 689		if (r)
 690			goto out;
 691	}
 692	crypto_xor(&buf[0], &buf[12], 4);
 693	crypto_xor(&buf[4], &buf[8], 4);
 694
 695	/* apply whitening (8 bytes) to whole sector */
 696	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 697		crypto_xor(data + i * 8, buf, 8);
 698out:
 699	memzero_explicit(buf, sizeof(buf));
 700	return r;
 701}
 702
 703static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 704			    struct dm_crypt_request *dmreq)
 705{
 706	struct scatterlist *sg;
 707	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 709	u8 *src;
 710	int r = 0;
 711
 712	/* Remove whitening from ciphertext */
 713	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 714		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 715		src = kmap_local_page(sg_page(sg));
 716		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 717		kunmap_local(src);
 718	}
 719
 720	/* Calculate IV */
 721	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 722	if (cc->iv_size > 8)
 723		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 724			       cc->iv_size - 8);
 725
 726	return r;
 727}
 728
 729static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 730			     struct dm_crypt_request *dmreq)
 731{
 732	struct scatterlist *sg;
 733	u8 *dst;
 734	int r;
 735
 736	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 737		return 0;
 738
 739	/* Apply whitening on ciphertext */
 740	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 741	dst = kmap_local_page(sg_page(sg));
 742	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 743	kunmap_local(dst);
 744
 745	return r;
 746}
 747
 748static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 749				struct dm_crypt_request *dmreq)
 750{
 751	/* Used only for writes, there must be an additional space to store IV */
 752	get_random_bytes(iv, cc->iv_size);
 753	return 0;
 754}
 755
 756static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 757			    const char *opts)
 758{
 759	if (crypt_integrity_aead(cc)) {
 760		ti->error = "AEAD transforms not supported for EBOIV";
 761		return -EINVAL;
 762	}
 763
 764	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 765		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 766		return -EINVAL;
 767	}
 768
 769	return 0;
 770}
 771
 772static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 773			    struct dm_crypt_request *dmreq)
 774{
 775	struct crypto_skcipher *tfm = any_tfm(cc);
 776	struct skcipher_request *req;
 777	struct scatterlist src, dst;
 778	DECLARE_CRYPTO_WAIT(wait);
 779	unsigned int reqsize;
 780	int err;
 781	u8 *buf;
 782
 783	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 784	reqsize = ALIGN(reqsize, __alignof__(__le64));
 785
 786	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 787	if (!req)
 788		return -ENOMEM;
 789
 790	skcipher_request_set_tfm(req, tfm);
 791
 792	buf = (u8 *)req + reqsize;
 793	memset(buf, 0, cc->iv_size);
 794	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 795
 796	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 797	sg_init_one(&dst, iv, cc->iv_size);
 798	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 799	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 800	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 801	kfree_sensitive(req);
 802
 803	return err;
 804}
 805
 806static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 807{
 808	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 809
 810	crypto_free_skcipher(elephant->tfm);
 811	elephant->tfm = NULL;
 812}
 813
 814static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 815			    const char *opts)
 816{
 817	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 818	int r;
 819
 820	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 821					      CRYPTO_ALG_ALLOCATES_MEMORY);
 822	if (IS_ERR(elephant->tfm)) {
 823		r = PTR_ERR(elephant->tfm);
 824		elephant->tfm = NULL;
 825		return r;
 826	}
 827
 828	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 829	if (r)
 830		crypt_iv_elephant_dtr(cc);
 831	return r;
 832}
 833
 834static void diffuser_disk_to_cpu(u32 *d, size_t n)
 835{
 836#ifndef __LITTLE_ENDIAN
 837	int i;
 838
 839	for (i = 0; i < n; i++)
 840		d[i] = le32_to_cpu((__le32)d[i]);
 841#endif
 842}
 843
 844static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 845{
 846#ifndef __LITTLE_ENDIAN
 847	int i;
 848
 849	for (i = 0; i < n; i++)
 850		d[i] = cpu_to_le32((u32)d[i]);
 851#endif
 852}
 853
 854static void diffuser_a_decrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = 0;
 860		i2 = n - 2;
 861		i3 = n - 5;
 862
 863		while (i1 < (n - 1)) {
 864			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 865			i1++; i2++; i3++;
 866
 867			if (i3 >= n)
 868				i3 -= n;
 869
 870			d[i1] += d[i2] ^ d[i3];
 871			i1++; i2++; i3++;
 872
 873			if (i2 >= n)
 874				i2 -= n;
 875
 876			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 877			i1++; i2++; i3++;
 878
 879			d[i1] += d[i2] ^ d[i3];
 880			i1++; i2++; i3++;
 881		}
 882	}
 883}
 884
 885static void diffuser_a_encrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 5; i++) {
 890		i1 = n - 1;
 891		i2 = n - 2 - 1;
 892		i3 = n - 5 - 1;
 893
 894		while (i1 > 0) {
 895			d[i1] -= d[i2] ^ d[i3];
 896			i1--; i2--; i3--;
 897
 898			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 899			i1--; i2--; i3--;
 900
 901			if (i2 < 0)
 902				i2 += n;
 903
 904			d[i1] -= d[i2] ^ d[i3];
 905			i1--; i2--; i3--;
 906
 907			if (i3 < 0)
 908				i3 += n;
 909
 910			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 911			i1--; i2--; i3--;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_decrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = 0;
 922		i2 = 2;
 923		i3 = 5;
 924
 925		while (i1 < (n - 1)) {
 926			d[i1] += d[i2] ^ d[i3];
 927			i1++; i2++; i3++;
 928
 929			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 930			i1++; i2++; i3++;
 931
 932			if (i2 >= n)
 933				i2 -= n;
 934
 935			d[i1] += d[i2] ^ d[i3];
 936			i1++; i2++; i3++;
 937
 938			if (i3 >= n)
 939				i3 -= n;
 940
 941			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 942			i1++; i2++; i3++;
 943		}
 944	}
 945}
 946
 947static void diffuser_b_encrypt(u32 *d, size_t n)
 948{
 949	int i, i1, i2, i3;
 950
 951	for (i = 0; i < 3; i++) {
 952		i1 = n - 1;
 953		i2 = 2 - 1;
 954		i3 = 5 - 1;
 955
 956		while (i1 > 0) {
 957			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 958			i1--; i2--; i3--;
 959
 960			if (i3 < 0)
 961				i3 += n;
 962
 963			d[i1] -= d[i2] ^ d[i3];
 964			i1--; i2--; i3--;
 965
 966			if (i2 < 0)
 967				i2 += n;
 968
 969			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 970			i1--; i2--; i3--;
 971
 972			d[i1] -= d[i2] ^ d[i3];
 973			i1--; i2--; i3--;
 974		}
 975	}
 976}
 977
 978static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 979{
 980	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 981	u8 *es, *ks, *data, *data2, *data_offset;
 982	struct skcipher_request *req;
 983	struct scatterlist *sg, *sg2, src, dst;
 984	DECLARE_CRYPTO_WAIT(wait);
 985	int i, r;
 986
 987	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 988	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 989	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 990
 991	if (!req || !es || !ks) {
 992		r = -ENOMEM;
 993		goto out;
 994	}
 995
 996	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 997
 998	/* E(Ks, e(s)) */
 999	sg_init_one(&src, es, 16);
1000	sg_init_one(&dst, ks, 16);
1001	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
1002	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
1003	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1004	if (r)
1005		goto out;
1006
1007	/* E(Ks, e'(s)) */
1008	es[15] = 0x80;
1009	sg_init_one(&dst, &ks[16], 16);
1010	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1011	if (r)
1012		goto out;
1013
1014	sg = crypt_get_sg_data(cc, dmreq->sg_out);
1015	data = kmap_local_page(sg_page(sg));
1016	data_offset = data + sg->offset;
1017
1018	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1019	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1020		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1021		data2 = kmap_local_page(sg_page(sg2));
1022		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1023		kunmap_local(data2);
1024	}
1025
1026	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1027		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1028		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1029		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1030		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1031	}
1032
1033	for (i = 0; i < (cc->sector_size / 32); i++)
1034		crypto_xor(data_offset + i * 32, ks, 32);
1035
1036	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1037		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1038		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1039		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1040		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1041	}
1042
1043	kunmap_local(data);
1044out:
1045	kfree_sensitive(ks);
1046	kfree_sensitive(es);
1047	skcipher_request_free(req);
1048	return r;
1049}
1050
1051static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1052			    struct dm_crypt_request *dmreq)
1053{
1054	int r;
1055
1056	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1057		r = crypt_iv_elephant(cc, dmreq);
1058		if (r)
1059			return r;
1060	}
1061
1062	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1063}
1064
1065static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1066				  struct dm_crypt_request *dmreq)
1067{
1068	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1069		return crypt_iv_elephant(cc, dmreq);
1070
1071	return 0;
1072}
1073
1074static int crypt_iv_elephant_init(struct crypt_config *cc)
1075{
1076	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1077	int key_offset = cc->key_size - cc->key_extra_size;
1078
1079	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1080}
1081
1082static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1083{
1084	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1085	u8 key[ELEPHANT_MAX_KEY_SIZE];
1086
1087	memset(key, 0, cc->key_extra_size);
1088	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1089}
1090
1091static const struct crypt_iv_operations crypt_iv_plain_ops = {
1092	.generator = crypt_iv_plain_gen
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1096	.generator = crypt_iv_plain64_gen
1097};
1098
1099static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1100	.generator = crypt_iv_plain64be_gen
1101};
1102
1103static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 
 
 
 
1104	.generator = crypt_iv_essiv_gen
1105};
1106
1107static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1108	.ctr	   = crypt_iv_benbi_ctr,
1109	.dtr	   = crypt_iv_benbi_dtr,
1110	.generator = crypt_iv_benbi_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_null_ops = {
1114	.generator = crypt_iv_null_gen
1115};
1116
1117static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1118	.ctr	   = crypt_iv_lmk_ctr,
1119	.dtr	   = crypt_iv_lmk_dtr,
1120	.init	   = crypt_iv_lmk_init,
1121	.wipe	   = crypt_iv_lmk_wipe,
1122	.generator = crypt_iv_lmk_gen,
1123	.post	   = crypt_iv_lmk_post
1124};
1125
1126static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1127	.ctr	   = crypt_iv_tcw_ctr,
1128	.dtr	   = crypt_iv_tcw_dtr,
1129	.init	   = crypt_iv_tcw_init,
1130	.wipe	   = crypt_iv_tcw_wipe,
1131	.generator = crypt_iv_tcw_gen,
1132	.post	   = crypt_iv_tcw_post
1133};
1134
1135static const struct crypt_iv_operations crypt_iv_random_ops = {
1136	.generator = crypt_iv_random_gen
1137};
1138
1139static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1140	.ctr	   = crypt_iv_eboiv_ctr,
1141	.generator = crypt_iv_eboiv_gen
1142};
1143
1144static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1145	.ctr	   = crypt_iv_elephant_ctr,
1146	.dtr	   = crypt_iv_elephant_dtr,
1147	.init	   = crypt_iv_elephant_init,
1148	.wipe	   = crypt_iv_elephant_wipe,
1149	.generator = crypt_iv_elephant_gen,
1150	.post	   = crypt_iv_elephant_post
1151};
1152
1153/*
1154 * Integrity extensions
1155 */
1156static bool crypt_integrity_aead(struct crypt_config *cc)
1157{
1158	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1159}
1160
1161static bool crypt_integrity_hmac(struct crypt_config *cc)
1162{
1163	return crypt_integrity_aead(cc) && cc->key_mac_size;
1164}
1165
1166/* Get sg containing data */
1167static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1168					     struct scatterlist *sg)
1169{
1170	if (unlikely(crypt_integrity_aead(cc)))
1171		return &sg[2];
1172
1173	return sg;
1174}
1175
1176static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1177{
1178	struct bio_integrity_payload *bip;
1179	unsigned int tag_len;
1180	int ret;
1181
1182	if (!bio_sectors(bio) || !io->cc->tuple_size)
1183		return 0;
1184
1185	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1186	if (IS_ERR(bip))
1187		return PTR_ERR(bip);
1188
1189	tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1190
 
1191	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1192
1193	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1194				     tag_len, offset_in_page(io->integrity_metadata));
1195	if (unlikely(ret != tag_len))
1196		return -ENOMEM;
1197
1198	return 0;
1199}
1200
1201static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1202{
1203#ifdef CONFIG_BLK_DEV_INTEGRITY
1204	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1205	struct mapped_device *md = dm_table_get_md(ti->table);
1206
1207	/* We require an underlying device with non-PI metadata */
1208	if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1209		ti->error = "Integrity profile not supported.";
1210		return -EINVAL;
1211	}
1212
1213	if (bi->tuple_size < cc->used_tag_size) {
 
1214		ti->error = "Integrity profile tag size mismatch.";
1215		return -EINVAL;
1216	}
1217	cc->tuple_size = bi->tuple_size;
1218	if (1 << bi->interval_exp != cc->sector_size) {
1219		ti->error = "Integrity profile sector size mismatch.";
1220		return -EINVAL;
1221	}
1222
1223	if (crypt_integrity_aead(cc)) {
1224		cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1225		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1226		       cc->integrity_tag_size, cc->integrity_iv_size);
1227
1228		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1229			ti->error = "Integrity AEAD auth tag size is not supported.";
1230			return -EINVAL;
1231		}
1232	} else if (cc->integrity_iv_size)
1233		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1234		       cc->integrity_iv_size);
1235
1236	if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1237		ti->error = "Not enough space for integrity tag in the profile.";
1238		return -EINVAL;
1239	}
1240
1241	return 0;
1242#else
1243	ti->error = "Integrity profile not supported.";
1244	return -EINVAL;
1245#endif
1246}
1247
1248static void crypt_convert_init(struct crypt_config *cc,
1249			       struct convert_context *ctx,
1250			       struct bio *bio_out, struct bio *bio_in,
1251			       sector_t sector)
1252{
1253	ctx->bio_in = bio_in;
1254	ctx->bio_out = bio_out;
1255	if (bio_in)
1256		ctx->iter_in = bio_in->bi_iter;
1257	if (bio_out)
1258		ctx->iter_out = bio_out->bi_iter;
1259	ctx->cc_sector = sector + cc->iv_offset;
1260	ctx->tag_offset = 0;
1261	init_completion(&ctx->restart);
1262}
1263
1264static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1265					     void *req)
1266{
1267	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1268}
1269
1270static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1271{
1272	return (void *)((char *)dmreq - cc->dmreq_start);
1273}
1274
1275static u8 *iv_of_dmreq(struct crypt_config *cc,
1276		       struct dm_crypt_request *dmreq)
1277{
1278	if (crypt_integrity_aead(cc))
1279		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1280			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1281	else
1282		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1283			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1284}
1285
1286static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1287		       struct dm_crypt_request *dmreq)
1288{
1289	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1290}
1291
1292static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1293		       struct dm_crypt_request *dmreq)
1294{
1295	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1296
1297	return (__le64 *) ptr;
1298}
1299
1300static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1301		       struct dm_crypt_request *dmreq)
1302{
1303	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1304		  cc->iv_size + sizeof(uint64_t);
1305
1306	return (unsigned int *)ptr;
1307}
1308
1309static void *tag_from_dmreq(struct crypt_config *cc,
1310				struct dm_crypt_request *dmreq)
1311{
1312	struct convert_context *ctx = dmreq->ctx;
1313	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1314
1315	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1316		cc->tuple_size];
1317}
1318
1319static void *iv_tag_from_dmreq(struct crypt_config *cc,
1320			       struct dm_crypt_request *dmreq)
1321{
1322	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1323}
1324
1325static int crypt_convert_block_aead(struct crypt_config *cc,
1326				     struct convert_context *ctx,
1327				     struct aead_request *req,
1328				     unsigned int tag_offset)
1329{
1330	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1331	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1332	struct dm_crypt_request *dmreq;
1333	u8 *iv, *org_iv, *tag_iv, *tag;
1334	__le64 *sector;
1335	int r = 0;
1336
1337	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1338
1339	/* Reject unexpected unaligned bio. */
1340	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1341		return -EIO;
1342
1343	dmreq = dmreq_of_req(cc, req);
1344	dmreq->iv_sector = ctx->cc_sector;
1345	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1346		dmreq->iv_sector >>= cc->sector_shift;
1347	dmreq->ctx = ctx;
1348
1349	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1350
1351	sector = org_sector_of_dmreq(cc, dmreq);
1352	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1353
1354	iv = iv_of_dmreq(cc, dmreq);
1355	org_iv = org_iv_of_dmreq(cc, dmreq);
1356	tag = tag_from_dmreq(cc, dmreq);
1357	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1358
1359	/* AEAD request:
1360	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1361	 *  | (authenticated) | (auth+encryption) |              |
1362	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1363	 */
1364	sg_init_table(dmreq->sg_in, 4);
1365	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1366	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1367	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1368	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1369
1370	sg_init_table(dmreq->sg_out, 4);
1371	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1372	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1373	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1374	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1375
1376	if (cc->iv_gen_ops) {
1377		/* For READs use IV stored in integrity metadata */
1378		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1379			memcpy(org_iv, tag_iv, cc->iv_size);
1380		} else {
1381			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1382			if (r < 0)
1383				return r;
1384			/* Store generated IV in integrity metadata */
1385			if (cc->integrity_iv_size)
1386				memcpy(tag_iv, org_iv, cc->iv_size);
1387		}
1388		/* Working copy of IV, to be modified in crypto API */
1389		memcpy(iv, org_iv, cc->iv_size);
1390	}
1391
1392	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1393	if (bio_data_dir(ctx->bio_in) == WRITE) {
1394		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1395				       cc->sector_size, iv);
1396		r = crypto_aead_encrypt(req);
1397		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1398			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1399			       cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1400	} else {
1401		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1402				       cc->sector_size + cc->integrity_tag_size, iv);
1403		r = crypto_aead_decrypt(req);
1404	}
1405
1406	if (r == -EBADMSG) {
1407		sector_t s = le64_to_cpu(*sector);
1408
1409		ctx->aead_failed = true;
1410		if (ctx->aead_recheck) {
1411			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1412				    ctx->bio_in->bi_bdev, s);
1413			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1414					 ctx->bio_in, s, 0);
1415		}
1416	}
1417
1418	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1419		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1420
1421	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1422	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1423
1424	return r;
1425}
1426
1427static int crypt_convert_block_skcipher(struct crypt_config *cc,
1428					struct convert_context *ctx,
1429					struct skcipher_request *req,
1430					unsigned int tag_offset)
1431{
1432	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1433	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1434	struct scatterlist *sg_in, *sg_out;
1435	struct dm_crypt_request *dmreq;
1436	u8 *iv, *org_iv, *tag_iv;
1437	__le64 *sector;
1438	int r = 0;
1439
1440	/* Reject unexpected unaligned bio. */
1441	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1442		return -EIO;
1443
1444	dmreq = dmreq_of_req(cc, req);
1445	dmreq->iv_sector = ctx->cc_sector;
1446	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1447		dmreq->iv_sector >>= cc->sector_shift;
1448	dmreq->ctx = ctx;
1449
1450	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1451
1452	iv = iv_of_dmreq(cc, dmreq);
1453	org_iv = org_iv_of_dmreq(cc, dmreq);
1454	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1455
1456	sector = org_sector_of_dmreq(cc, dmreq);
1457	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1458
1459	/* For skcipher we use only the first sg item */
1460	sg_in  = &dmreq->sg_in[0];
1461	sg_out = &dmreq->sg_out[0];
1462
1463	sg_init_table(sg_in, 1);
1464	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1465
1466	sg_init_table(sg_out, 1);
1467	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1468
1469	if (cc->iv_gen_ops) {
1470		/* For READs use IV stored in integrity metadata */
1471		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1472			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1473		} else {
1474			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1475			if (r < 0)
1476				return r;
1477			/* Data can be already preprocessed in generator */
1478			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1479				sg_in = sg_out;
1480			/* Store generated IV in integrity metadata */
1481			if (cc->integrity_iv_size)
1482				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1483		}
1484		/* Working copy of IV, to be modified in crypto API */
1485		memcpy(iv, org_iv, cc->iv_size);
1486	}
1487
1488	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1489
1490	if (bio_data_dir(ctx->bio_in) == WRITE)
1491		r = crypto_skcipher_encrypt(req);
1492	else
1493		r = crypto_skcipher_decrypt(req);
1494
1495	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1496		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1497
1498	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1499	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1500
1501	return r;
1502}
1503
1504static void kcryptd_async_done(void *async_req, int error);
 
1505
1506static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1507				     struct convert_context *ctx)
1508{
1509	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1510
1511	if (!ctx->r.req) {
1512		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1513		if (!ctx->r.req)
1514			return -ENOMEM;
1515	}
1516
1517	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1518
1519	/*
1520	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1521	 * requests if driver request queue is full.
1522	 */
1523	skcipher_request_set_callback(ctx->r.req,
1524	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1525	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1526
1527	return 0;
1528}
1529
1530static int crypt_alloc_req_aead(struct crypt_config *cc,
1531				 struct convert_context *ctx)
1532{
1533	if (!ctx->r.req_aead) {
1534		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1535		if (!ctx->r.req_aead)
1536			return -ENOMEM;
1537	}
1538
1539	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1540
1541	/*
1542	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1543	 * requests if driver request queue is full.
1544	 */
1545	aead_request_set_callback(ctx->r.req_aead,
1546	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1547	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1548
1549	return 0;
1550}
1551
1552static int crypt_alloc_req(struct crypt_config *cc,
1553			    struct convert_context *ctx)
1554{
1555	if (crypt_integrity_aead(cc))
1556		return crypt_alloc_req_aead(cc, ctx);
1557	else
1558		return crypt_alloc_req_skcipher(cc, ctx);
1559}
1560
1561static void crypt_free_req_skcipher(struct crypt_config *cc,
1562				    struct skcipher_request *req, struct bio *base_bio)
1563{
1564	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1565
1566	if ((struct skcipher_request *)(io + 1) != req)
1567		mempool_free(req, &cc->req_pool);
1568}
1569
1570static void crypt_free_req_aead(struct crypt_config *cc,
1571				struct aead_request *req, struct bio *base_bio)
1572{
1573	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1574
1575	if ((struct aead_request *)(io + 1) != req)
1576		mempool_free(req, &cc->req_pool);
1577}
1578
1579static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1580{
1581	if (crypt_integrity_aead(cc))
1582		crypt_free_req_aead(cc, req, base_bio);
1583	else
1584		crypt_free_req_skcipher(cc, req, base_bio);
1585}
1586
1587/*
1588 * Encrypt / decrypt data from one bio to another one (can be the same one)
1589 */
1590static blk_status_t crypt_convert(struct crypt_config *cc,
1591			 struct convert_context *ctx, bool atomic, bool reset_pending)
1592{
 
1593	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1594	int r;
1595
1596	/*
1597	 * if reset_pending is set we are dealing with the bio for the first time,
1598	 * else we're continuing to work on the previous bio, so don't mess with
1599	 * the cc_pending counter
1600	 */
1601	if (reset_pending)
1602		atomic_set(&ctx->cc_pending, 1);
1603
1604	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1605
1606		r = crypt_alloc_req(cc, ctx);
1607		if (r) {
1608			complete(&ctx->restart);
1609			return BLK_STS_DEV_RESOURCE;
1610		}
1611
1612		atomic_inc(&ctx->cc_pending);
1613
1614		if (crypt_integrity_aead(cc))
1615			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1616		else
1617			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1618
1619		switch (r) {
1620		/*
1621		 * The request was queued by a crypto driver
1622		 * but the driver request queue is full, let's wait.
1623		 */
1624		case -EBUSY:
1625			if (in_interrupt()) {
1626				if (try_wait_for_completion(&ctx->restart)) {
1627					/*
1628					 * we don't have to block to wait for completion,
1629					 * so proceed
1630					 */
1631				} else {
1632					/*
1633					 * we can't wait for completion without blocking
1634					 * exit and continue processing in a workqueue
1635					 */
1636					ctx->r.req = NULL;
1637					ctx->tag_offset++;
1638					ctx->cc_sector += sector_step;
1639					return BLK_STS_DEV_RESOURCE;
1640				}
1641			} else {
1642				wait_for_completion(&ctx->restart);
1643			}
1644			reinit_completion(&ctx->restart);
1645			fallthrough;
1646		/*
1647		 * The request is queued and processed asynchronously,
1648		 * completion function kcryptd_async_done() will be called.
1649		 */
1650		case -EINPROGRESS:
1651			ctx->r.req = NULL;
1652			ctx->tag_offset++;
1653			ctx->cc_sector += sector_step;
 
1654			continue;
1655		/*
1656		 * The request was already processed (synchronously).
1657		 */
1658		case 0:
1659			atomic_dec(&ctx->cc_pending);
1660			ctx->cc_sector += sector_step;
1661			ctx->tag_offset++;
1662			if (!atomic)
1663				cond_resched();
1664			continue;
1665		/*
1666		 * There was a data integrity error.
1667		 */
1668		case -EBADMSG:
1669			atomic_dec(&ctx->cc_pending);
1670			return BLK_STS_PROTECTION;
1671		/*
1672		 * There was an error while processing the request.
1673		 */
1674		default:
1675			atomic_dec(&ctx->cc_pending);
1676			return BLK_STS_IOERR;
1677		}
1678	}
1679
1680	return 0;
1681}
1682
1683static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1684
1685/*
1686 * Generate a new unfragmented bio with the given size
1687 * This should never violate the device limitations (but if it did then block
1688 * core should split the bio as needed).
1689 *
1690 * This function may be called concurrently. If we allocate from the mempool
1691 * concurrently, there is a possibility of deadlock. For example, if we have
1692 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1693 * the mempool concurrently, it may deadlock in a situation where both processes
1694 * have allocated 128 pages and the mempool is exhausted.
1695 *
1696 * In order to avoid this scenario we allocate the pages under a mutex.
1697 *
1698 * In order to not degrade performance with excessive locking, we try
1699 * non-blocking allocations without a mutex first but on failure we fallback
1700 * to blocking allocations with a mutex.
1701 *
1702 * In order to reduce allocation overhead, we try to allocate compound pages in
1703 * the first pass. If they are not available, we fall back to the mempool.
1704 */
1705static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1706{
1707	struct crypt_config *cc = io->cc;
1708	struct bio *clone;
1709	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1710	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1711	unsigned int remaining_size;
1712	unsigned int order = MAX_PAGE_ORDER;
1713
1714retry:
1715	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1716		mutex_lock(&cc->bio_alloc_lock);
1717
1718	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1719				 GFP_NOIO, &cc->bs);
1720	clone->bi_private = io;
1721	clone->bi_end_io = crypt_endio;
1722	clone->bi_ioprio = io->base_bio->bi_ioprio;
1723
1724	remaining_size = size;
1725
1726	while (remaining_size) {
1727		struct page *pages;
1728		unsigned size_to_add;
1729		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1730		order = min(order, remaining_order);
1731
1732		while (order > 0) {
1733			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1734					(1 << order) > dm_crypt_pages_per_client))
1735				goto decrease_order;
1736			pages = alloc_pages(gfp_mask
1737				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1738				order);
1739			if (likely(pages != NULL)) {
1740				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1741				goto have_pages;
1742			}
1743decrease_order:
1744			order--;
1745		}
1746
1747		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1748		if (!pages) {
 
1749			crypt_free_buffer_pages(cc, clone);
1750			bio_put(clone);
1751			gfp_mask |= __GFP_DIRECT_RECLAIM;
1752			order = 0;
1753			goto retry;
1754		}
1755
1756have_pages:
1757		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1758		__bio_add_page(clone, pages, size_to_add, 0);
1759		remaining_size -= size_to_add;
 
1760	}
1761
1762	/* Allocate space for integrity tags */
1763	if (dm_crypt_integrity_io_alloc(io, clone)) {
1764		crypt_free_buffer_pages(cc, clone);
1765		bio_put(clone);
1766		clone = NULL;
1767	}
1768
1769	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1770		mutex_unlock(&cc->bio_alloc_lock);
1771
1772	return clone;
1773}
1774
1775static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1776{
1777	struct folio_iter fi;
 
1778
1779	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1780		bio_for_each_folio_all(fi, clone) {
1781			if (folio_test_large(fi.folio)) {
1782				percpu_counter_sub(&cc->n_allocated_pages,
1783						1 << folio_order(fi.folio));
1784				folio_put(fi.folio);
1785			} else {
1786				mempool_free(&fi.folio->page, &cc->page_pool);
1787			}
1788		}
1789	}
1790}
1791
1792static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1793			  struct bio *bio, sector_t sector)
1794{
1795	io->cc = cc;
1796	io->base_bio = bio;
1797	io->sector = sector;
1798	io->error = 0;
1799	io->ctx.aead_recheck = false;
1800	io->ctx.aead_failed = false;
1801	io->ctx.r.req = NULL;
1802	io->integrity_metadata = NULL;
1803	io->integrity_metadata_from_pool = false;
1804	atomic_set(&io->io_pending, 0);
1805}
1806
1807static void crypt_inc_pending(struct dm_crypt_io *io)
1808{
1809	atomic_inc(&io->io_pending);
1810}
1811
1812static void kcryptd_queue_read(struct dm_crypt_io *io);
1813
1814/*
1815 * One of the bios was finished. Check for completion of
1816 * the whole request and correctly clean up the buffer.
1817 */
1818static void crypt_dec_pending(struct dm_crypt_io *io)
1819{
1820	struct crypt_config *cc = io->cc;
1821	struct bio *base_bio = io->base_bio;
1822	blk_status_t error = io->error;
1823
1824	if (!atomic_dec_and_test(&io->io_pending))
1825		return;
1826
1827	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1828	    cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1829		io->ctx.aead_recheck = true;
1830		io->ctx.aead_failed = false;
1831		io->error = 0;
1832		kcryptd_queue_read(io);
1833		return;
1834	}
1835
1836	if (io->ctx.r.req)
1837		crypt_free_req(cc, io->ctx.r.req, base_bio);
1838
1839	if (unlikely(io->integrity_metadata_from_pool))
1840		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1841	else
1842		kfree(io->integrity_metadata);
1843
1844	base_bio->bi_status = error;
1845
1846	bio_endio(base_bio);
1847}
1848
1849/*
1850 * kcryptd/kcryptd_io:
1851 *
1852 * Needed because it would be very unwise to do decryption in an
1853 * interrupt context.
1854 *
1855 * kcryptd performs the actual encryption or decryption.
1856 *
1857 * kcryptd_io performs the IO submission.
1858 *
1859 * They must be separated as otherwise the final stages could be
1860 * starved by new requests which can block in the first stages due
1861 * to memory allocation.
1862 *
1863 * The work is done per CPU global for all dm-crypt instances.
1864 * They should not depend on each other and do not block.
1865 */
1866static void crypt_endio(struct bio *clone)
1867{
1868	struct dm_crypt_io *io = clone->bi_private;
1869	struct crypt_config *cc = io->cc;
1870	unsigned int rw = bio_data_dir(clone);
1871	blk_status_t error = clone->bi_status;
1872
1873	if (io->ctx.aead_recheck && !error) {
1874		kcryptd_queue_crypt(io);
1875		return;
1876	}
1877
1878	/*
1879	 * free the processed pages
1880	 */
1881	if (rw == WRITE || io->ctx.aead_recheck)
1882		crypt_free_buffer_pages(cc, clone);
1883
 
1884	bio_put(clone);
1885
1886	if (rw == READ && !error) {
1887		kcryptd_queue_crypt(io);
1888		return;
1889	}
1890
1891	if (unlikely(error))
1892		io->error = error;
1893
1894	crypt_dec_pending(io);
1895}
1896
1897#define CRYPT_MAP_READ_GFP GFP_NOWAIT
 
 
 
 
 
 
 
 
1898
1899static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1900{
1901	struct crypt_config *cc = io->cc;
1902	struct bio *clone;
1903
1904	if (io->ctx.aead_recheck) {
1905		if (!(gfp & __GFP_DIRECT_RECLAIM))
1906			return 1;
1907		crypt_inc_pending(io);
1908		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1909		if (unlikely(!clone)) {
1910			crypt_dec_pending(io);
1911			return 1;
1912		}
1913		clone->bi_iter.bi_sector = cc->start + io->sector;
1914		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1915		io->saved_bi_iter = clone->bi_iter;
1916		dm_submit_bio_remap(io->base_bio, clone);
1917		return 0;
1918	}
1919
1920	/*
1921	 * We need the original biovec array in order to decrypt the whole bio
1922	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1923	 * worry about the block layer modifying the biovec array; so leverage
1924	 * bio_alloc_clone().
1925	 */
1926	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1927	if (!clone)
1928		return 1;
1929	clone->bi_private = io;
1930	clone->bi_end_io = crypt_endio;
1931
1932	crypt_inc_pending(io);
1933
 
1934	clone->bi_iter.bi_sector = cc->start + io->sector;
1935
1936	if (dm_crypt_integrity_io_alloc(io, clone)) {
1937		crypt_dec_pending(io);
1938		bio_put(clone);
1939		return 1;
1940	}
1941
1942	dm_submit_bio_remap(io->base_bio, clone);
1943	return 0;
1944}
1945
1946static void kcryptd_io_read_work(struct work_struct *work)
1947{
1948	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1949
1950	crypt_inc_pending(io);
1951	if (kcryptd_io_read(io, GFP_NOIO))
1952		io->error = BLK_STS_RESOURCE;
1953	crypt_dec_pending(io);
1954}
1955
1956static void kcryptd_queue_read(struct dm_crypt_io *io)
1957{
1958	struct crypt_config *cc = io->cc;
1959
1960	INIT_WORK(&io->work, kcryptd_io_read_work);
1961	queue_work(cc->io_queue, &io->work);
1962}
1963
1964static void kcryptd_io_write(struct dm_crypt_io *io)
1965{
1966	struct bio *clone = io->ctx.bio_out;
1967
1968	dm_submit_bio_remap(io->base_bio, clone);
1969}
1970
1971#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1972
1973static int dmcrypt_write(void *data)
1974{
1975	struct crypt_config *cc = data;
1976	struct dm_crypt_io *io;
1977
1978	while (1) {
1979		struct rb_root write_tree;
1980		struct blk_plug plug;
1981
1982		spin_lock_irq(&cc->write_thread_lock);
 
 
1983continue_locked:
1984
1985		if (!RB_EMPTY_ROOT(&cc->write_tree))
1986			goto pop_from_list;
1987
1988		set_current_state(TASK_INTERRUPTIBLE);
 
1989
1990		spin_unlock_irq(&cc->write_thread_lock);
1991
1992		if (unlikely(kthread_should_stop())) {
1993			set_current_state(TASK_RUNNING);
 
1994			break;
1995		}
1996
1997		schedule();
1998
1999		spin_lock_irq(&cc->write_thread_lock);
 
 
2000		goto continue_locked;
2001
2002pop_from_list:
2003		write_tree = cc->write_tree;
2004		cc->write_tree = RB_ROOT;
2005		spin_unlock_irq(&cc->write_thread_lock);
2006
2007		BUG_ON(rb_parent(write_tree.rb_node));
2008
2009		/*
2010		 * Note: we cannot walk the tree here with rb_next because
2011		 * the structures may be freed when kcryptd_io_write is called.
2012		 */
2013		blk_start_plug(&plug);
2014		do {
2015			io = crypt_io_from_node(rb_first(&write_tree));
2016			rb_erase(&io->rb_node, &write_tree);
2017			kcryptd_io_write(io);
2018			cond_resched();
2019		} while (!RB_EMPTY_ROOT(&write_tree));
2020		blk_finish_plug(&plug);
2021	}
2022	return 0;
2023}
2024
2025static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2026{
2027	struct bio *clone = io->ctx.bio_out;
2028	struct crypt_config *cc = io->cc;
2029	unsigned long flags;
2030	sector_t sector;
2031	struct rb_node **rbp, *parent;
2032
2033	if (unlikely(io->error)) {
2034		crypt_free_buffer_pages(cc, clone);
2035		bio_put(clone);
2036		crypt_dec_pending(io);
2037		return;
2038	}
2039
2040	/* crypt_convert should have filled the clone bio */
2041	BUG_ON(io->ctx.iter_out.bi_size);
2042
2043	clone->bi_iter.bi_sector = cc->start + io->sector;
2044
2045	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2046	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2047		dm_submit_bio_remap(io->base_bio, clone);
2048		return;
2049	}
2050
2051	spin_lock_irqsave(&cc->write_thread_lock, flags);
2052	if (RB_EMPTY_ROOT(&cc->write_tree))
2053		wake_up_process(cc->write_thread);
2054	rbp = &cc->write_tree.rb_node;
2055	parent = NULL;
2056	sector = io->sector;
2057	while (*rbp) {
2058		parent = *rbp;
2059		if (sector < crypt_io_from_node(parent)->sector)
2060			rbp = &(*rbp)->rb_left;
2061		else
2062			rbp = &(*rbp)->rb_right;
2063	}
2064	rb_link_node(&io->rb_node, parent, rbp);
2065	rb_insert_color(&io->rb_node, &cc->write_tree);
2066	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2067}
2068
2069static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2070				       struct convert_context *ctx)
2071
2072{
2073	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2074		return false;
2075
2076	/*
2077	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2078	 * constraints so they do not need to be issued inline by
2079	 * kcryptd_crypt_write_convert().
2080	 */
2081	switch (bio_op(ctx->bio_in)) {
2082	case REQ_OP_WRITE:
2083	case REQ_OP_WRITE_ZEROES:
2084		return true;
2085	default:
2086		return false;
2087	}
2088}
2089
2090static void kcryptd_crypt_write_continue(struct work_struct *work)
2091{
2092	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2093	struct crypt_config *cc = io->cc;
2094	struct convert_context *ctx = &io->ctx;
2095	int crypt_finished;
2096	blk_status_t r;
2097
2098	wait_for_completion(&ctx->restart);
2099	reinit_completion(&ctx->restart);
2100
2101	r = crypt_convert(cc, &io->ctx, true, false);
2102	if (r)
2103		io->error = r;
2104	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2105	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2106		/* Wait for completion signaled by kcryptd_async_done() */
2107		wait_for_completion(&ctx->restart);
2108		crypt_finished = 1;
2109	}
2110
2111	/* Encryption was already finished, submit io now */
2112	if (crypt_finished)
2113		kcryptd_crypt_write_io_submit(io, 0);
2114
2115	crypt_dec_pending(io);
 
2116}
2117
2118static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2119{
2120	struct crypt_config *cc = io->cc;
2121	struct convert_context *ctx = &io->ctx;
2122	struct bio *clone;
2123	int crypt_finished;
 
2124	blk_status_t r;
2125
2126	/*
2127	 * Prevent io from disappearing until this function completes.
2128	 */
2129	crypt_inc_pending(io);
2130	crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2131
2132	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2133	if (unlikely(!clone)) {
2134		io->error = BLK_STS_IOERR;
2135		goto dec;
2136	}
2137
2138	io->ctx.bio_out = clone;
2139	io->ctx.iter_out = clone->bi_iter;
2140
2141	if (crypt_integrity_aead(cc)) {
2142		bio_copy_data(clone, io->base_bio);
2143		io->ctx.bio_in = clone;
2144		io->ctx.iter_in = clone->bi_iter;
2145	}
2146
2147	crypt_inc_pending(io);
2148	r = crypt_convert(cc, ctx,
2149			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2150	/*
2151	 * Crypto API backlogged the request, because its queue was full
2152	 * and we're in softirq context, so continue from a workqueue
2153	 * (TODO: is it actually possible to be in softirq in the write path?)
2154	 */
2155	if (r == BLK_STS_DEV_RESOURCE) {
2156		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2157		queue_work(cc->crypt_queue, &io->work);
2158		return;
2159	}
2160	if (r)
2161		io->error = r;
2162	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2163	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2164		/* Wait for completion signaled by kcryptd_async_done() */
2165		wait_for_completion(&ctx->restart);
2166		crypt_finished = 1;
2167	}
2168
2169	/* Encryption was already finished, submit io now */
2170	if (crypt_finished)
2171		kcryptd_crypt_write_io_submit(io, 0);
 
 
2172
2173dec:
2174	crypt_dec_pending(io);
2175}
2176
2177static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2178{
2179	if (io->ctx.aead_recheck) {
2180		if (!io->error) {
2181			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2182			bio_copy_data(io->base_bio, io->ctx.bio_in);
2183		}
2184		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2185		bio_put(io->ctx.bio_in);
2186	}
2187	crypt_dec_pending(io);
2188}
2189
2190static void kcryptd_crypt_read_continue(struct work_struct *work)
2191{
2192	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2193	struct crypt_config *cc = io->cc;
2194	blk_status_t r;
2195
2196	wait_for_completion(&io->ctx.restart);
2197	reinit_completion(&io->ctx.restart);
2198
2199	r = crypt_convert(cc, &io->ctx, true, false);
2200	if (r)
2201		io->error = r;
2202
2203	if (atomic_dec_and_test(&io->ctx.cc_pending))
2204		kcryptd_crypt_read_done(io);
2205
2206	crypt_dec_pending(io);
2207}
2208
2209static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2210{
2211	struct crypt_config *cc = io->cc;
2212	blk_status_t r;
2213
2214	crypt_inc_pending(io);
2215
2216	if (io->ctx.aead_recheck) {
2217		io->ctx.cc_sector = io->sector + cc->iv_offset;
2218		r = crypt_convert(cc, &io->ctx,
2219				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2220	} else {
2221		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2222				   io->sector);
2223
2224		r = crypt_convert(cc, &io->ctx,
2225				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2226	}
2227	/*
2228	 * Crypto API backlogged the request, because its queue was full
2229	 * and we're in softirq context, so continue from a workqueue
2230	 */
2231	if (r == BLK_STS_DEV_RESOURCE) {
2232		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2233		queue_work(cc->crypt_queue, &io->work);
2234		return;
2235	}
2236	if (r)
2237		io->error = r;
2238
2239	if (atomic_dec_and_test(&io->ctx.cc_pending))
2240		kcryptd_crypt_read_done(io);
2241
2242	crypt_dec_pending(io);
2243}
2244
2245static void kcryptd_async_done(void *data, int error)
 
2246{
2247	struct dm_crypt_request *dmreq = data;
2248	struct convert_context *ctx = dmreq->ctx;
2249	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2250	struct crypt_config *cc = io->cc;
2251
2252	/*
2253	 * A request from crypto driver backlog is going to be processed now,
2254	 * finish the completion and continue in crypt_convert().
2255	 * (Callback will be called for the second time for this request.)
2256	 */
2257	if (error == -EINPROGRESS) {
2258		complete(&ctx->restart);
2259		return;
2260	}
2261
2262	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2263		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2264
2265	if (error == -EBADMSG) {
2266		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2267
2268		ctx->aead_failed = true;
2269		if (ctx->aead_recheck) {
2270			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2271				    ctx->bio_in->bi_bdev, s);
2272			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2273					 ctx->bio_in, s, 0);
2274		}
2275		io->error = BLK_STS_PROTECTION;
2276	} else if (error < 0)
2277		io->error = BLK_STS_IOERR;
2278
2279	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2280
2281	if (!atomic_dec_and_test(&ctx->cc_pending))
2282		return;
2283
2284	/*
2285	 * The request is fully completed: for inline writes, let
2286	 * kcryptd_crypt_write_convert() do the IO submission.
2287	 */
2288	if (bio_data_dir(io->base_bio) == READ) {
2289		kcryptd_crypt_read_done(io);
2290		return;
2291	}
2292
2293	if (kcryptd_crypt_write_inline(cc, ctx)) {
2294		complete(&ctx->restart);
2295		return;
2296	}
2297
2298	kcryptd_crypt_write_io_submit(io, 1);
2299}
2300
2301static void kcryptd_crypt(struct work_struct *work)
2302{
2303	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2304
2305	if (bio_data_dir(io->base_bio) == READ)
2306		kcryptd_crypt_read_convert(io);
2307	else
2308		kcryptd_crypt_write_convert(io);
2309}
2310
2311static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2312{
2313	struct crypt_config *cc = io->cc;
2314
2315	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2316	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2317		/*
2318		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2319		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2320		 * it is being executed with irqs disabled.
2321		 */
2322		if (in_hardirq() || irqs_disabled()) {
2323			INIT_WORK(&io->work, kcryptd_crypt);
2324			queue_work(system_bh_wq, &io->work);
2325			return;
2326		} else {
2327			kcryptd_crypt(&io->work);
2328			return;
2329		}
2330	}
2331
2332	INIT_WORK(&io->work, kcryptd_crypt);
2333	queue_work(cc->crypt_queue, &io->work);
2334}
2335
2336static void crypt_free_tfms_aead(struct crypt_config *cc)
2337{
2338	if (!cc->cipher_tfm.tfms_aead)
2339		return;
2340
2341	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2342		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2343		cc->cipher_tfm.tfms_aead[0] = NULL;
2344	}
2345
2346	kfree(cc->cipher_tfm.tfms_aead);
2347	cc->cipher_tfm.tfms_aead = NULL;
2348}
2349
2350static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2351{
2352	unsigned int i;
2353
2354	if (!cc->cipher_tfm.tfms)
2355		return;
2356
2357	for (i = 0; i < cc->tfms_count; i++)
2358		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2359			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2360			cc->cipher_tfm.tfms[i] = NULL;
2361		}
2362
2363	kfree(cc->cipher_tfm.tfms);
2364	cc->cipher_tfm.tfms = NULL;
2365}
2366
2367static void crypt_free_tfms(struct crypt_config *cc)
2368{
2369	if (crypt_integrity_aead(cc))
2370		crypt_free_tfms_aead(cc);
2371	else
2372		crypt_free_tfms_skcipher(cc);
2373}
2374
2375static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2376{
2377	unsigned int i;
2378	int err;
2379
2380	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2381				      sizeof(struct crypto_skcipher *),
2382				      GFP_KERNEL);
2383	if (!cc->cipher_tfm.tfms)
2384		return -ENOMEM;
2385
2386	for (i = 0; i < cc->tfms_count; i++) {
2387		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2390			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2391			crypt_free_tfms(cc);
2392			return err;
2393		}
2394	}
2395
2396	/*
2397	 * dm-crypt performance can vary greatly depending on which crypto
2398	 * algorithm implementation is used.  Help people debug performance
2399	 * problems by logging the ->cra_driver_name.
2400	 */
2401	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2403	return 0;
2404}
2405
2406static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2407{
2408	int err;
2409
2410	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2411	if (!cc->cipher_tfm.tfms)
2412		return -ENOMEM;
2413
2414	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2415						CRYPTO_ALG_ALLOCATES_MEMORY);
2416	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2417		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2418		crypt_free_tfms(cc);
2419		return err;
2420	}
2421
2422	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2423	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2424	return 0;
2425}
2426
2427static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2428{
2429	if (crypt_integrity_aead(cc))
2430		return crypt_alloc_tfms_aead(cc, ciphermode);
2431	else
2432		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2433}
2434
2435static unsigned int crypt_subkey_size(struct crypt_config *cc)
2436{
2437	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2438}
2439
2440static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2441{
2442	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2443}
2444
2445/*
2446 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2447 * the key must be for some reason in special format.
2448 * This funcion converts cc->key to this special format.
2449 */
2450static void crypt_copy_authenckey(char *p, const void *key,
2451				  unsigned int enckeylen, unsigned int authkeylen)
2452{
2453	struct crypto_authenc_key_param *param;
2454	struct rtattr *rta;
2455
2456	rta = (struct rtattr *)p;
2457	param = RTA_DATA(rta);
2458	param->enckeylen = cpu_to_be32(enckeylen);
2459	rta->rta_len = RTA_LENGTH(sizeof(*param));
2460	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2461	p += RTA_SPACE(sizeof(*param));
2462	memcpy(p, key + enckeylen, authkeylen);
2463	p += authkeylen;
2464	memcpy(p, key, enckeylen);
2465}
2466
2467static int crypt_setkey(struct crypt_config *cc)
2468{
2469	unsigned int subkey_size;
2470	int err = 0, i, r;
2471
2472	/* Ignore extra keys (which are used for IV etc) */
2473	subkey_size = crypt_subkey_size(cc);
2474
2475	if (crypt_integrity_hmac(cc)) {
2476		if (subkey_size < cc->key_mac_size)
2477			return -EINVAL;
2478
2479		crypt_copy_authenckey(cc->authenc_key, cc->key,
2480				      subkey_size - cc->key_mac_size,
2481				      cc->key_mac_size);
2482	}
2483
2484	for (i = 0; i < cc->tfms_count; i++) {
2485		if (crypt_integrity_hmac(cc))
2486			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2487				cc->authenc_key, crypt_authenckey_size(cc));
2488		else if (crypt_integrity_aead(cc))
2489			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2490					       cc->key + (i * subkey_size),
2491					       subkey_size);
2492		else
2493			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2494						   cc->key + (i * subkey_size),
2495						   subkey_size);
2496		if (r)
2497			err = r;
2498	}
2499
2500	if (crypt_integrity_hmac(cc))
2501		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2502
2503	return err;
2504}
2505
2506#ifdef CONFIG_KEYS
2507
2508static bool contains_whitespace(const char *str)
2509{
2510	while (*str)
2511		if (isspace(*str++))
2512			return true;
2513	return false;
2514}
2515
2516static int set_key_user(struct crypt_config *cc, struct key *key)
2517{
2518	const struct user_key_payload *ukp;
2519
2520	ukp = user_key_payload_locked(key);
2521	if (!ukp)
2522		return -EKEYREVOKED;
2523
2524	if (cc->key_size != ukp->datalen)
2525		return -EINVAL;
2526
2527	memcpy(cc->key, ukp->data, cc->key_size);
2528
2529	return 0;
2530}
2531
2532static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2533{
2534	const struct encrypted_key_payload *ekp;
2535
2536	ekp = key->payload.data[0];
2537	if (!ekp)
2538		return -EKEYREVOKED;
2539
2540	if (cc->key_size != ekp->decrypted_datalen)
2541		return -EINVAL;
2542
2543	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2544
2545	return 0;
2546}
2547
2548static int set_key_trusted(struct crypt_config *cc, struct key *key)
2549{
2550	const struct trusted_key_payload *tkp;
2551
2552	tkp = key->payload.data[0];
2553	if (!tkp)
2554		return -EKEYREVOKED;
2555
2556	if (cc->key_size != tkp->key_len)
2557		return -EINVAL;
2558
2559	memcpy(cc->key, tkp->key, cc->key_size);
2560
2561	return 0;
2562}
2563
2564static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2565{
2566	char *new_key_string, *key_desc;
2567	int ret;
2568	struct key_type *type;
2569	struct key *key;
2570	int (*set_key)(struct crypt_config *cc, struct key *key);
2571
2572	/*
2573	 * Reject key_string with whitespace. dm core currently lacks code for
2574	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2575	 */
2576	if (contains_whitespace(key_string)) {
2577		DMERR("whitespace chars not allowed in key string");
2578		return -EINVAL;
2579	}
2580
2581	/* look for next ':' separating key_type from key_description */
2582	key_desc = strchr(key_string, ':');
2583	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2584		return -EINVAL;
2585
2586	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2587		type = &key_type_logon;
2588		set_key = set_key_user;
2589	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2590		type = &key_type_user;
2591		set_key = set_key_user;
2592	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2593		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2594		type = &key_type_encrypted;
2595		set_key = set_key_encrypted;
2596	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2597		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2598		type = &key_type_trusted;
2599		set_key = set_key_trusted;
2600	} else {
2601		return -EINVAL;
2602	}
2603
2604	new_key_string = kstrdup(key_string, GFP_KERNEL);
2605	if (!new_key_string)
2606		return -ENOMEM;
2607
2608	key = request_key(type, key_desc + 1, NULL);
 
2609	if (IS_ERR(key)) {
2610		ret = PTR_ERR(key);
2611		goto free_new_key_string;
2612	}
2613
2614	down_read(&key->sem);
2615	ret = set_key(cc, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2616	up_read(&key->sem);
2617	key_put(key);
2618	if (ret < 0)
2619		goto free_new_key_string;
2620
2621	/* clear the flag since following operations may invalidate previously valid key */
2622	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2623
2624	ret = crypt_setkey(cc);
2625	if (ret)
2626		goto free_new_key_string;
2627
2628	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629	kfree_sensitive(cc->key_string);
2630	cc->key_string = new_key_string;
2631	return 0;
 
 
2632
2633free_new_key_string:
2634	kfree_sensitive(new_key_string);
2635	return ret;
2636}
2637
2638static int get_key_size(char **key_string)
2639{
2640	char *colon, dummy;
2641	int ret;
2642
2643	if (*key_string[0] != ':')
2644		return strlen(*key_string) >> 1;
2645
2646	/* look for next ':' in key string */
2647	colon = strpbrk(*key_string + 1, ":");
2648	if (!colon)
2649		return -EINVAL;
2650
2651	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2652		return -EINVAL;
2653
2654	*key_string = colon;
2655
2656	/* remaining key string should be :<logon|user>:<key_desc> */
2657
2658	return ret;
2659}
2660
2661#else
2662
2663static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2664{
2665	return -EINVAL;
2666}
2667
2668static int get_key_size(char **key_string)
2669{
2670	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2671}
2672
2673#endif /* CONFIG_KEYS */
2674
2675static int crypt_set_key(struct crypt_config *cc, char *key)
2676{
2677	int r = -EINVAL;
2678	int key_string_len = strlen(key);
2679
2680	/* Hyphen (which gives a key_size of zero) means there is no key. */
2681	if (!cc->key_size && strcmp(key, "-"))
2682		goto out;
2683
2684	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2685	if (key[0] == ':') {
2686		r = crypt_set_keyring_key(cc, key + 1);
2687		goto out;
2688	}
2689
2690	/* clear the flag since following operations may invalidate previously valid key */
2691	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2692
2693	/* wipe references to any kernel keyring key */
2694	kfree_sensitive(cc->key_string);
2695	cc->key_string = NULL;
2696
2697	/* Decode key from its hex representation. */
2698	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2699		goto out;
2700
2701	r = crypt_setkey(cc);
2702	if (!r)
2703		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2704
2705out:
2706	/* Hex key string not needed after here, so wipe it. */
2707	memset(key, '0', key_string_len);
2708
2709	return r;
2710}
2711
2712static int crypt_wipe_key(struct crypt_config *cc)
2713{
2714	int r;
2715
2716	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2717	get_random_bytes(&cc->key, cc->key_size);
2718
2719	/* Wipe IV private keys */
2720	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2721		r = cc->iv_gen_ops->wipe(cc);
2722		if (r)
2723			return r;
2724	}
2725
2726	kfree_sensitive(cc->key_string);
2727	cc->key_string = NULL;
2728	r = crypt_setkey(cc);
2729	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2730
2731	return r;
2732}
2733
2734static void crypt_calculate_pages_per_client(void)
2735{
2736	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2737
2738	if (!dm_crypt_clients_n)
2739		return;
2740
2741	pages /= dm_crypt_clients_n;
2742	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2743		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2744	dm_crypt_pages_per_client = pages;
2745}
2746
2747static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2748{
2749	struct crypt_config *cc = pool_data;
2750	struct page *page;
2751
2752	/*
2753	 * Note, percpu_counter_read_positive() may over (and under) estimate
2754	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2755	 * but avoids potential spinlock contention of an exact result.
2756	 */
2757	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2758	    likely(gfp_mask & __GFP_NORETRY))
2759		return NULL;
2760
2761	page = alloc_page(gfp_mask);
2762	if (likely(page != NULL))
2763		percpu_counter_add(&cc->n_allocated_pages, 1);
2764
2765	return page;
2766}
2767
2768static void crypt_page_free(void *page, void *pool_data)
2769{
2770	struct crypt_config *cc = pool_data;
2771
2772	__free_page(page);
2773	percpu_counter_sub(&cc->n_allocated_pages, 1);
2774}
2775
2776static void crypt_dtr(struct dm_target *ti)
2777{
2778	struct crypt_config *cc = ti->private;
2779
2780	ti->private = NULL;
2781
2782	if (!cc)
2783		return;
2784
2785	if (cc->write_thread)
2786		kthread_stop(cc->write_thread);
2787
2788	if (cc->io_queue)
2789		destroy_workqueue(cc->io_queue);
2790	if (cc->crypt_queue)
2791		destroy_workqueue(cc->crypt_queue);
2792
2793	if (cc->workqueue_id)
2794		ida_free(&workqueue_ida, cc->workqueue_id);
2795
2796	crypt_free_tfms(cc);
2797
2798	bioset_exit(&cc->bs);
 
2799
2800	mempool_exit(&cc->page_pool);
2801	mempool_exit(&cc->req_pool);
2802	mempool_exit(&cc->tag_pool);
2803
2804	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
 
2805	percpu_counter_destroy(&cc->n_allocated_pages);
2806
2807	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2808		cc->iv_gen_ops->dtr(cc);
2809
2810	if (cc->dev)
2811		dm_put_device(ti, cc->dev);
2812
2813	kfree_sensitive(cc->cipher_string);
2814	kfree_sensitive(cc->key_string);
2815	kfree_sensitive(cc->cipher_auth);
2816	kfree_sensitive(cc->authenc_key);
 
2817
2818	mutex_destroy(&cc->bio_alloc_lock);
2819
2820	/* Must zero key material before freeing */
2821	kfree_sensitive(cc);
2822
2823	spin_lock(&dm_crypt_clients_lock);
2824	WARN_ON(!dm_crypt_clients_n);
2825	dm_crypt_clients_n--;
2826	crypt_calculate_pages_per_client();
2827	spin_unlock(&dm_crypt_clients_lock);
2828
2829	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2830}
2831
2832static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2833{
2834	struct crypt_config *cc = ti->private;
2835
2836	if (crypt_integrity_aead(cc))
2837		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2838	else
2839		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2840
2841	if (cc->iv_size)
2842		/* at least a 64 bit sector number should fit in our buffer */
2843		cc->iv_size = max(cc->iv_size,
2844				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2845	else if (ivmode) {
2846		DMWARN("Selected cipher does not support IVs");
2847		ivmode = NULL;
2848	}
2849
2850	/* Choose ivmode, see comments at iv code. */
2851	if (ivmode == NULL)
2852		cc->iv_gen_ops = NULL;
2853	else if (strcmp(ivmode, "plain") == 0)
2854		cc->iv_gen_ops = &crypt_iv_plain_ops;
2855	else if (strcmp(ivmode, "plain64") == 0)
2856		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2857	else if (strcmp(ivmode, "plain64be") == 0)
2858		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2859	else if (strcmp(ivmode, "essiv") == 0)
2860		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2861	else if (strcmp(ivmode, "benbi") == 0)
2862		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2863	else if (strcmp(ivmode, "null") == 0)
2864		cc->iv_gen_ops = &crypt_iv_null_ops;
2865	else if (strcmp(ivmode, "eboiv") == 0)
2866		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2867	else if (strcmp(ivmode, "elephant") == 0) {
2868		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2869		cc->key_parts = 2;
2870		cc->key_extra_size = cc->key_size / 2;
2871		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2872			return -EINVAL;
2873		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2874	} else if (strcmp(ivmode, "lmk") == 0) {
2875		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2876		/*
2877		 * Version 2 and 3 is recognised according
2878		 * to length of provided multi-key string.
2879		 * If present (version 3), last key is used as IV seed.
2880		 * All keys (including IV seed) are always the same size.
2881		 */
2882		if (cc->key_size % cc->key_parts) {
2883			cc->key_parts++;
2884			cc->key_extra_size = cc->key_size / cc->key_parts;
2885		}
2886	} else if (strcmp(ivmode, "tcw") == 0) {
2887		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2888		cc->key_parts += 2; /* IV + whitening */
2889		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2890	} else if (strcmp(ivmode, "random") == 0) {
2891		cc->iv_gen_ops = &crypt_iv_random_ops;
2892		/* Need storage space in integrity fields. */
2893		cc->integrity_iv_size = cc->iv_size;
2894	} else {
2895		ti->error = "Invalid IV mode";
2896		return -EINVAL;
2897	}
2898
2899	return 0;
2900}
2901
2902/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2904 * The HMAC is needed to calculate tag size (HMAC digest size).
2905 * This should be probably done by crypto-api calls (once available...)
2906 */
2907static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2908{
2909	char *start, *end, *mac_alg = NULL;
2910	struct crypto_ahash *mac;
2911
2912	if (!strstarts(cipher_api, "authenc("))
2913		return 0;
2914
2915	start = strchr(cipher_api, '(');
2916	end = strchr(cipher_api, ',');
2917	if (!start || !end || ++start > end)
2918		return -EINVAL;
2919
2920	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2921	if (!mac_alg)
2922		return -ENOMEM;
 
2923
2924	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2925	kfree(mac_alg);
2926
2927	if (IS_ERR(mac))
2928		return PTR_ERR(mac);
2929
2930	if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2931		cc->key_mac_size = crypto_ahash_digestsize(mac);
2932	crypto_free_ahash(mac);
2933
2934	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2935	if (!cc->authenc_key)
2936		return -ENOMEM;
2937
2938	return 0;
2939}
2940
2941static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2942				char **ivmode, char **ivopts)
2943{
2944	struct crypt_config *cc = ti->private;
2945	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2946	int ret = -EINVAL;
2947
2948	cc->tfms_count = 1;
2949
2950	/*
2951	 * New format (capi: prefix)
2952	 * capi:cipher_api_spec-iv:ivopts
2953	 */
2954	tmp = &cipher_in[strlen("capi:")];
2955
2956	/* Separate IV options if present, it can contain another '-' in hash name */
2957	*ivopts = strrchr(tmp, ':');
2958	if (*ivopts) {
2959		**ivopts = '\0';
2960		(*ivopts)++;
2961	}
2962	/* Parse IV mode */
2963	*ivmode = strrchr(tmp, '-');
2964	if (*ivmode) {
2965		**ivmode = '\0';
2966		(*ivmode)++;
2967	}
2968	/* The rest is crypto API spec */
2969	cipher_api = tmp;
2970
2971	/* Alloc AEAD, can be used only in new format. */
2972	if (crypt_integrity_aead(cc)) {
2973		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2974		if (ret < 0) {
2975			ti->error = "Invalid AEAD cipher spec";
2976			return ret;
2977		}
2978	}
2979
2980	if (*ivmode && !strcmp(*ivmode, "lmk"))
2981		cc->tfms_count = 64;
2982
2983	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2984		if (!*ivopts) {
2985			ti->error = "Digest algorithm missing for ESSIV mode";
2986			return -EINVAL;
2987		}
2988		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2989			       cipher_api, *ivopts);
2990		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2991			ti->error = "Cannot allocate cipher string";
2992			return -ENOMEM;
2993		}
2994		cipher_api = buf;
2995	}
2996
2997	cc->key_parts = cc->tfms_count;
2998
2999	/* Allocate cipher */
3000	ret = crypt_alloc_tfms(cc, cipher_api);
3001	if (ret < 0) {
3002		ti->error = "Error allocating crypto tfm";
3003		return ret;
3004	}
3005
3006	if (crypt_integrity_aead(cc))
 
 
 
 
 
 
3007		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
3008	else
3009		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
3010
 
 
 
 
 
 
3011	return 0;
3012}
3013
3014static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
3015				char **ivmode, char **ivopts)
3016{
3017	struct crypt_config *cc = ti->private;
3018	char *tmp, *cipher, *chainmode, *keycount;
3019	char *cipher_api = NULL;
3020	int ret = -EINVAL;
3021	char dummy;
3022
3023	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3024		ti->error = "Bad cipher specification";
3025		return -EINVAL;
3026	}
3027
3028	/*
3029	 * Legacy dm-crypt cipher specification
3030	 * cipher[:keycount]-mode-iv:ivopts
3031	 */
3032	tmp = cipher_in;
3033	keycount = strsep(&tmp, "-");
3034	cipher = strsep(&keycount, ":");
3035
3036	if (!keycount)
3037		cc->tfms_count = 1;
3038	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3039		 !is_power_of_2(cc->tfms_count)) {
3040		ti->error = "Bad cipher key count specification";
3041		return -EINVAL;
3042	}
3043	cc->key_parts = cc->tfms_count;
3044
 
 
 
 
3045	chainmode = strsep(&tmp, "-");
3046	*ivmode = strsep(&tmp, ":");
3047	*ivopts = tmp;
 
 
 
3048
3049	/*
3050	 * For compatibility with the original dm-crypt mapping format, if
3051	 * only the cipher name is supplied, use cbc-plain.
3052	 */
3053	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3054		chainmode = "cbc";
3055		*ivmode = "plain";
3056	}
3057
3058	if (strcmp(chainmode, "ecb") && !*ivmode) {
3059		ti->error = "IV mechanism required";
3060		return -EINVAL;
3061	}
3062
3063	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3064	if (!cipher_api)
3065		goto bad_mem;
3066
3067	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3068		if (!*ivopts) {
3069			ti->error = "Digest algorithm missing for ESSIV mode";
3070			kfree(cipher_api);
3071			return -EINVAL;
3072		}
3073		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3074			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3075	} else {
3076		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3077			       "%s(%s)", chainmode, cipher);
3078	}
3079	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3080		kfree(cipher_api);
3081		goto bad_mem;
3082	}
3083
3084	/* Allocate cipher */
3085	ret = crypt_alloc_tfms(cc, cipher_api);
3086	if (ret < 0) {
3087		ti->error = "Error allocating crypto tfm";
3088		kfree(cipher_api);
3089		return ret;
3090	}
3091	kfree(cipher_api);
3092
3093	return 0;
3094bad_mem:
3095	ti->error = "Cannot allocate cipher strings";
3096	return -ENOMEM;
3097}
3098
3099static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3100{
3101	struct crypt_config *cc = ti->private;
3102	char *ivmode = NULL, *ivopts = NULL;
3103	int ret;
3104
3105	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3106	if (!cc->cipher_string) {
3107		ti->error = "Cannot allocate cipher strings";
3108		return -ENOMEM;
3109	}
3110
3111	if (strstarts(cipher_in, "capi:"))
3112		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3113	else
3114		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3115	if (ret)
3116		return ret;
3117
3118	/* Initialize IV */
3119	ret = crypt_ctr_ivmode(ti, ivmode);
3120	if (ret < 0)
3121		return ret;
3122
3123	/* Initialize and set key */
3124	ret = crypt_set_key(cc, key);
3125	if (ret < 0) {
3126		ti->error = "Error decoding and setting key";
3127		return ret;
3128	}
3129
3130	/* Allocate IV */
3131	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3132		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3133		if (ret < 0) {
3134			ti->error = "Error creating IV";
3135			return ret;
3136		}
3137	}
3138
3139	/* Initialize IV (set keys for ESSIV etc) */
3140	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3141		ret = cc->iv_gen_ops->init(cc);
3142		if (ret < 0) {
3143			ti->error = "Error initialising IV";
3144			return ret;
3145		}
3146	}
3147
3148	/* wipe the kernel key payload copy */
3149	if (cc->key_string)
3150		memset(cc->key, 0, cc->key_size * sizeof(u8));
3151
3152	return ret;
3153}
3154
3155static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3156{
3157	struct crypt_config *cc = ti->private;
3158	struct dm_arg_set as;
3159	static const struct dm_arg _args[] = {
3160		{0, 9, "Invalid number of feature args"},
3161	};
3162	unsigned int opt_params, val;
3163	const char *opt_string, *sval;
3164	char dummy;
3165	int ret;
3166
3167	/* Optional parameters */
3168	as.argc = argc;
3169	as.argv = argv;
3170
3171	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3172	if (ret)
3173		return ret;
3174
3175	while (opt_params--) {
3176		opt_string = dm_shift_arg(&as);
3177		if (!opt_string) {
3178			ti->error = "Not enough feature arguments";
3179			return -EINVAL;
3180		}
3181
3182		if (!strcasecmp(opt_string, "allow_discards"))
3183			ti->num_discard_bios = 1;
3184
3185		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3186			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3187		else if (!strcasecmp(opt_string, "high_priority"))
3188			set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3189
3190		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3191			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3192		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3193			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3194		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3195			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3196		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3197			if (val == 0 || val > MAX_TAG_SIZE) {
3198				ti->error = "Invalid integrity arguments";
3199				return -EINVAL;
3200			}
3201			cc->used_tag_size = val;
3202			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3203			if (!strcasecmp(sval, "aead")) {
3204				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3205			} else if (strcasecmp(sval, "none")) {
3206				ti->error = "Unknown integrity profile";
3207				return -EINVAL;
3208			}
3209
3210			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3211			if (!cc->cipher_auth)
3212				return -ENOMEM;
3213		} else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3214			if (!val) {
3215				ti->error = "Invalid integrity_key_size argument";
3216				return -EINVAL;
3217			}
3218			cc->key_mac_size = val;
3219			set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3220		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3221			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3222			    cc->sector_size > 4096 ||
3223			    (cc->sector_size & (cc->sector_size - 1))) {
3224				ti->error = "Invalid feature value for sector_size";
3225				return -EINVAL;
3226			}
3227			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3228				ti->error = "Device size is not multiple of sector_size feature";
3229				return -EINVAL;
3230			}
3231			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3232		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3233			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3234		else {
3235			ti->error = "Invalid feature arguments";
3236			return -EINVAL;
3237		}
3238	}
3239
3240	return 0;
3241}
3242
3243#ifdef CONFIG_BLK_DEV_ZONED
3244static int crypt_report_zones(struct dm_target *ti,
3245		struct dm_report_zones_args *args, unsigned int nr_zones)
3246{
3247	struct crypt_config *cc = ti->private;
3248
3249	return dm_report_zones(cc->dev->bdev, cc->start,
3250			cc->start + dm_target_offset(ti, args->next_sector),
3251			args, nr_zones);
3252}
3253#else
3254#define crypt_report_zones NULL
3255#endif
3256
3257/*
3258 * Construct an encryption mapping:
3259 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3260 */
3261static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3262{
3263	struct crypt_config *cc;
3264	const char *devname = dm_table_device_name(ti->table);
3265	int key_size, wq_id;
3266	unsigned int align_mask;
3267	unsigned int common_wq_flags;
3268	unsigned long long tmpll;
3269	int ret;
3270	size_t iv_size_padding, additional_req_size;
3271	char dummy;
3272
3273	if (argc < 5) {
3274		ti->error = "Not enough arguments";
3275		return -EINVAL;
3276	}
3277
3278	key_size = get_key_size(&argv[1]);
3279	if (key_size < 0) {
3280		ti->error = "Cannot parse key size";
3281		return -EINVAL;
3282	}
3283
3284	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3285	if (!cc) {
3286		ti->error = "Cannot allocate encryption context";
3287		return -ENOMEM;
3288	}
3289	cc->key_size = key_size;
3290	cc->sector_size = (1 << SECTOR_SHIFT);
3291	cc->sector_shift = 0;
3292
3293	ti->private = cc;
3294
3295	spin_lock(&dm_crypt_clients_lock);
3296	dm_crypt_clients_n++;
3297	crypt_calculate_pages_per_client();
3298	spin_unlock(&dm_crypt_clients_lock);
3299
3300	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3301	if (ret < 0)
3302		goto bad;
3303
3304	/* Optional parameters need to be read before cipher constructor */
3305	if (argc > 5) {
3306		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3307		if (ret)
3308			goto bad;
3309	}
3310
3311	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3312	if (ret < 0)
3313		goto bad;
3314
3315	if (crypt_integrity_aead(cc)) {
3316		cc->dmreq_start = sizeof(struct aead_request);
3317		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3318		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3319	} else {
3320		cc->dmreq_start = sizeof(struct skcipher_request);
3321		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3322		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3323	}
3324	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3325
3326	if (align_mask < CRYPTO_MINALIGN) {
3327		/* Allocate the padding exactly */
3328		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3329				& align_mask;
3330	} else {
3331		/*
3332		 * If the cipher requires greater alignment than kmalloc
3333		 * alignment, we don't know the exact position of the
3334		 * initialization vector. We must assume worst case.
3335		 */
3336		iv_size_padding = align_mask;
3337	}
3338
 
 
3339	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3340	additional_req_size = sizeof(struct dm_crypt_request) +
3341		iv_size_padding + cc->iv_size +
3342		cc->iv_size +
3343		sizeof(uint64_t) +
3344		sizeof(unsigned int);
3345
3346	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3347	if (ret) {
3348		ti->error = "Cannot allocate crypt request mempool";
3349		goto bad;
3350	}
3351
3352	cc->per_bio_data_size = ti->per_io_data_size =
3353		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3354		      ARCH_DMA_MINALIGN);
3355
3356	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3357	if (ret) {
3358		ti->error = "Cannot allocate page mempool";
3359		goto bad;
3360	}
3361
3362	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3363	if (ret) {
3364		ti->error = "Cannot allocate crypt bioset";
3365		goto bad;
3366	}
3367
3368	mutex_init(&cc->bio_alloc_lock);
3369
3370	ret = -EINVAL;
3371	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3372	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3373		ti->error = "Invalid iv_offset sector";
3374		goto bad;
3375	}
3376	cc->iv_offset = tmpll;
3377
3378	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3379	if (ret) {
3380		ti->error = "Device lookup failed";
3381		goto bad;
3382	}
3383
3384	ret = -EINVAL;
3385	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3386		ti->error = "Invalid device sector";
3387		goto bad;
3388	}
3389	cc->start = tmpll;
3390
3391	if (bdev_is_zoned(cc->dev->bdev)) {
3392		/*
3393		 * For zoned block devices, we need to preserve the issuer write
3394		 * ordering. To do so, disable write workqueues and force inline
3395		 * encryption completion.
3396		 */
3397		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3398		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3399
3400		/*
3401		 * All zone append writes to a zone of a zoned block device will
3402		 * have the same BIO sector, the start of the zone. When the
3403		 * cypher IV mode uses sector values, all data targeting a
3404		 * zone will be encrypted using the first sector numbers of the
3405		 * zone. This will not result in write errors but will
3406		 * cause most reads to fail as reads will use the sector values
3407		 * for the actual data locations, resulting in IV mismatch.
3408		 * To avoid this problem, ask DM core to emulate zone append
3409		 * operations with regular writes.
3410		 */
3411		DMDEBUG("Zone append operations will be emulated");
3412		ti->emulate_zone_append = true;
3413	}
3414
3415	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3416		ret = crypt_integrity_ctr(cc, ti);
3417		if (ret)
3418			goto bad;
3419
3420		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3421		if (!cc->tag_pool_max_sectors)
3422			cc->tag_pool_max_sectors = 1;
3423
3424		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3425			cc->tag_pool_max_sectors * cc->tuple_size);
3426		if (ret) {
3427			ti->error = "Cannot allocate integrity tags mempool";
 
3428			goto bad;
3429		}
3430
3431		cc->tag_pool_max_sectors <<= cc->sector_shift;
3432	}
3433
3434	wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3435	if (wq_id < 0) {
3436		ti->error = "Couldn't get workqueue id";
3437		ret = wq_id;
3438		goto bad;
3439	}
3440	cc->workqueue_id = wq_id;
3441
3442	ret = -ENOMEM;
3443	common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3444	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3445		common_wq_flags |= WQ_HIGHPRI;
3446
3447	cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3448	if (!cc->io_queue) {
3449		ti->error = "Couldn't create kcryptd io queue";
3450		goto bad;
3451	}
3452
3453	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3454		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3455						  common_wq_flags | WQ_CPU_INTENSIVE,
3456						  1, devname, wq_id);
3457	} else {
3458		/*
3459		 * While crypt_queue is certainly CPU intensive, the use of
3460		 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3461		 */
3462		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3463						  common_wq_flags | WQ_UNBOUND,
3464						  num_online_cpus(), devname, wq_id);
3465	}
3466	if (!cc->crypt_queue) {
3467		ti->error = "Couldn't create kcryptd queue";
3468		goto bad;
3469	}
3470
3471	spin_lock_init(&cc->write_thread_lock);
3472	cc->write_tree = RB_ROOT;
3473
3474	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3475	if (IS_ERR(cc->write_thread)) {
3476		ret = PTR_ERR(cc->write_thread);
3477		cc->write_thread = NULL;
3478		ti->error = "Couldn't spawn write thread";
3479		goto bad;
3480	}
3481	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3482		set_user_nice(cc->write_thread, MIN_NICE);
3483
3484	ti->num_flush_bios = 1;
3485	ti->limit_swap_bios = true;
3486	ti->accounts_remapped_io = true;
3487
3488	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3489	return 0;
3490
3491bad:
3492	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3493	crypt_dtr(ti);
3494	return ret;
3495}
3496
3497static int crypt_map(struct dm_target *ti, struct bio *bio)
3498{
3499	struct dm_crypt_io *io;
3500	struct crypt_config *cc = ti->private;
3501	unsigned max_sectors;
3502
3503	/*
3504	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3505	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3506	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3507	 */
3508	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3509	    bio_op(bio) == REQ_OP_DISCARD)) {
3510		bio_set_dev(bio, cc->dev->bdev);
3511		if (bio_sectors(bio))
3512			bio->bi_iter.bi_sector = cc->start +
3513				dm_target_offset(ti, bio->bi_iter.bi_sector);
3514		return DM_MAPIO_REMAPPED;
3515	}
3516
3517	/*
3518	 * Check if bio is too large, split as needed.
3519	 */
3520	max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3521	if (unlikely(bio_sectors(bio) > max_sectors))
3522		dm_accept_partial_bio(bio, max_sectors);
3523
3524	/*
3525	 * Ensure that bio is a multiple of internal sector encryption size
3526	 * and is aligned to this size as defined in IO hints.
3527	 */
3528	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3529		return DM_MAPIO_KILL;
3530
3531	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3532		return DM_MAPIO_KILL;
3533
3534	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3535	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3536
3537	if (cc->tuple_size) {
3538		unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3539
3540		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3541			io->integrity_metadata = NULL;
3542		else
3543			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3544
3545		if (unlikely(!io->integrity_metadata)) {
 
 
3546			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3547				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3548			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3549			io->integrity_metadata_from_pool = true;
3550		}
3551	}
3552
3553	if (crypt_integrity_aead(cc))
3554		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3555	else
3556		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3557
3558	if (bio_data_dir(io->base_bio) == READ) {
3559		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3560			kcryptd_queue_read(io);
3561	} else
3562		kcryptd_queue_crypt(io);
3563
3564	return DM_MAPIO_SUBMITTED;
3565}
3566
3567static char hex2asc(unsigned char c)
3568{
3569	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3570}
3571
3572static void crypt_status(struct dm_target *ti, status_type_t type,
3573			 unsigned int status_flags, char *result, unsigned int maxlen)
3574{
3575	struct crypt_config *cc = ti->private;
3576	unsigned int i, sz = 0;
3577	int num_feature_args = 0;
3578
3579	switch (type) {
3580	case STATUSTYPE_INFO:
3581		result[0] = '\0';
3582		break;
3583
3584	case STATUSTYPE_TABLE:
3585		DMEMIT("%s ", cc->cipher_string);
3586
3587		if (cc->key_size > 0) {
3588			if (cc->key_string)
3589				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3590			else {
3591				for (i = 0; i < cc->key_size; i++) {
3592					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3593					       hex2asc(cc->key[i] & 0xf));
3594				}
3595			}
3596		} else
3597			DMEMIT("-");
3598
3599		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3600				cc->dev->name, (unsigned long long)cc->start);
3601
3602		num_feature_args += !!ti->num_discard_bios;
3603		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3604		num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3605		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3606		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3607		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3608		num_feature_args += !!cc->used_tag_size;
3609		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3610		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3611		num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
 
3612		if (num_feature_args) {
3613			DMEMIT(" %d", num_feature_args);
3614			if (ti->num_discard_bios)
3615				DMEMIT(" allow_discards");
3616			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3617				DMEMIT(" same_cpu_crypt");
3618			if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3619				DMEMIT(" high_priority");
3620			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3621				DMEMIT(" submit_from_crypt_cpus");
3622			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3623				DMEMIT(" no_read_workqueue");
3624			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3625				DMEMIT(" no_write_workqueue");
3626			if (cc->used_tag_size)
3627				DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3628			if (cc->sector_size != (1 << SECTOR_SHIFT))
3629				DMEMIT(" sector_size:%d", cc->sector_size);
3630			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3631				DMEMIT(" iv_large_sectors");
3632			if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3633				DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3634		}
3635		break;
3636
3637	case STATUSTYPE_IMA:
3638		DMEMIT_TARGET_NAME_VERSION(ti->type);
3639		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3640		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3641		DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3642		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3643		       'y' : 'n');
3644		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3645		       'y' : 'n');
3646		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3647		       'y' : 'n');
3648		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3649		       'y' : 'n');
3650
3651		if (cc->used_tag_size)
3652			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3653			       cc->used_tag_size, cc->cipher_auth);
3654		if (cc->sector_size != (1 << SECTOR_SHIFT))
3655			DMEMIT(",sector_size=%d", cc->sector_size);
3656		if (cc->cipher_string)
3657			DMEMIT(",cipher_string=%s", cc->cipher_string);
3658
3659		DMEMIT(",key_size=%u", cc->key_size);
3660		DMEMIT(",key_parts=%u", cc->key_parts);
3661		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3662		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3663		DMEMIT(";");
3664		break;
3665	}
3666}
3667
3668static void crypt_postsuspend(struct dm_target *ti)
3669{
3670	struct crypt_config *cc = ti->private;
3671
3672	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3673}
3674
3675static int crypt_preresume(struct dm_target *ti)
3676{
3677	struct crypt_config *cc = ti->private;
3678
3679	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3680		DMERR("aborting resume - crypt key is not set.");
3681		return -EAGAIN;
3682	}
3683
3684	return 0;
3685}
3686
3687static void crypt_resume(struct dm_target *ti)
3688{
3689	struct crypt_config *cc = ti->private;
3690
3691	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3692}
3693
3694/* Message interface
3695 *	key set <key>
3696 *	key wipe
3697 */
3698static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3699			 char *result, unsigned int maxlen)
3700{
3701	struct crypt_config *cc = ti->private;
3702	int key_size, ret = -EINVAL;
3703
3704	if (argc < 2)
3705		goto error;
3706
3707	if (!strcasecmp(argv[0], "key")) {
3708		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3709			DMWARN("not suspended during key manipulation.");
3710			return -EINVAL;
3711		}
3712		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3713			/* The key size may not be changed. */
3714			key_size = get_key_size(&argv[2]);
3715			if (key_size < 0 || cc->key_size != key_size) {
3716				memset(argv[2], '0', strlen(argv[2]));
3717				return -EINVAL;
3718			}
3719
3720			ret = crypt_set_key(cc, argv[2]);
3721			if (ret)
3722				return ret;
3723			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3724				ret = cc->iv_gen_ops->init(cc);
3725			/* wipe the kernel key payload copy */
3726			if (cc->key_string)
3727				memset(cc->key, 0, cc->key_size * sizeof(u8));
3728			return ret;
3729		}
3730		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
3731			return crypt_wipe_key(cc);
 
3732	}
3733
3734error:
3735	DMWARN("unrecognised message received.");
3736	return -EINVAL;
3737}
3738
3739static int crypt_iterate_devices(struct dm_target *ti,
3740				 iterate_devices_callout_fn fn, void *data)
3741{
3742	struct crypt_config *cc = ti->private;
3743
3744	return fn(ti, cc->dev, cc->start, ti->len, data);
3745}
3746
3747static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3748{
3749	struct crypt_config *cc = ti->private;
3750
3751	limits->logical_block_size =
3752		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3753	limits->physical_block_size =
3754		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3755	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3756	limits->dma_alignment = limits->logical_block_size - 1;
 
 
 
 
 
 
 
3757}
3758
3759static struct target_type crypt_target = {
3760	.name   = "crypt",
3761	.version = {1, 28, 0},
3762	.module = THIS_MODULE,
3763	.ctr    = crypt_ctr,
3764	.dtr    = crypt_dtr,
3765	.features = DM_TARGET_ZONED_HM,
3766	.report_zones = crypt_report_zones,
3767	.map    = crypt_map,
3768	.status = crypt_status,
3769	.postsuspend = crypt_postsuspend,
3770	.preresume = crypt_preresume,
3771	.resume = crypt_resume,
3772	.message = crypt_message,
3773	.iterate_devices = crypt_iterate_devices,
3774	.io_hints = crypt_io_hints,
3775};
3776module_dm(crypt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777
3778MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3779MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3780MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
 
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
 
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
 
  37#include <keys/user-type.h>
 
 
  38
  39#include <linux/device-mapper.h>
  40
 
 
  41#define DM_MSG_PREFIX "crypt"
  42
 
 
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47	struct completion restart;
  48	struct bio *bio_in;
 
  49	struct bio *bio_out;
  50	struct bvec_iter iter_in;
  51	struct bvec_iter iter_out;
  52	sector_t cc_sector;
  53	atomic_t cc_pending;
 
 
  54	union {
  55		struct skcipher_request *req;
  56		struct aead_request *req_aead;
  57	} r;
 
 
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65	struct crypt_config *cc;
  66	struct bio *base_bio;
  67	u8 *integrity_metadata;
  68	bool integrity_metadata_from_pool;
 
  69	struct work_struct work;
  70
  71	struct convert_context ctx;
  72
  73	atomic_t io_pending;
  74	blk_status_t error;
  75	sector_t sector;
  76
 
 
  77	struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81	struct convert_context *ctx;
  82	struct scatterlist sg_in[4];
  83	struct scatterlist sg_out[4];
  84	sector_t iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91		   const char *opts);
  92	void (*dtr)(struct crypt_config *cc);
  93	int (*init)(struct crypt_config *cc);
  94	int (*wipe)(struct crypt_config *cc);
  95	int (*generator)(struct crypt_config *cc, u8 *iv,
  96			 struct dm_crypt_request *dmreq);
  97	int (*post)(struct crypt_config *cc, u8 *iv,
  98		    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102	struct crypto_ahash *hash_tfm;
 103	u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107	int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112	struct crypto_shash *hash_tfm;
 113	u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118	struct crypto_shash *crc32_tfm;
 119	u8 *iv_seed;
 120	u8 *whitening;
 121};
 122
 
 
 
 
 
 123/*
 124 * Crypt: maps a linear range of a block device
 125 * and encrypts / decrypts at the same time.
 126 */
 127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 128	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 
 
 129
 130enum cipher_flags {
 131	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
 132	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 
 
 133};
 134
 135/*
 136 * The fields in here must be read only after initialization.
 137 */
 138struct crypt_config {
 139	struct dm_dev *dev;
 140	sector_t start;
 141
 142	/*
 143	 * pool for per bio private data, crypto requests,
 144	 * encryption requeusts/buffer pages and integrity tags
 145	 */
 146	mempool_t *req_pool;
 147	mempool_t *page_pool;
 148	mempool_t *tag_pool;
 149	unsigned tag_pool_max_sectors;
 150
 151	struct percpu_counter n_allocated_pages;
 152
 153	struct bio_set *bs;
 154	struct mutex bio_alloc_lock;
 155
 156	struct workqueue_struct *io_queue;
 157	struct workqueue_struct *crypt_queue;
 158
 
 159	struct task_struct *write_thread;
 160	wait_queue_head_t write_thread_wait;
 161	struct rb_root write_tree;
 162
 163	char *cipher;
 164	char *cipher_string;
 165	char *cipher_auth;
 166	char *key_string;
 167
 168	const struct crypt_iv_operations *iv_gen_ops;
 169	union {
 170		struct iv_essiv_private essiv;
 171		struct iv_benbi_private benbi;
 172		struct iv_lmk_private lmk;
 173		struct iv_tcw_private tcw;
 
 174	} iv_gen_private;
 175	sector_t iv_offset;
 176	unsigned int iv_size;
 177	unsigned short int sector_size;
 178	unsigned char sector_shift;
 179
 180	/* ESSIV: struct crypto_cipher *essiv_tfm */
 181	void *iv_private;
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned tfms_count;
 
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 217	u8 key[0];
 218};
 219
 220#define MIN_IOS		64
 221#define MAX_TAG_SIZE	480
 222#define POOL_ENTRY_SIZE	512
 223
 224static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 225static unsigned dm_crypt_clients_n = 0;
 226static volatile unsigned long dm_crypt_pages_per_client;
 227#define DM_CRYPT_MEMORY_PERCENT			2
 228#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229
 230static void clone_init(struct dm_crypt_io *, struct bio *);
 231static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 232static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 233					     struct scatterlist *sg);
 234
 
 
 235/*
 236 * Use this to access cipher attributes that are independent of the key.
 237 */
 238static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 239{
 240	return cc->cipher_tfm.tfms[0];
 241}
 242
 243static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 244{
 245	return cc->cipher_tfm.tfms_aead[0];
 246}
 247
 248/*
 249 * Different IV generation algorithms:
 250 *
 251 * plain: the initial vector is the 32-bit little-endian version of the sector
 252 *        number, padded with zeros if necessary.
 253 *
 254 * plain64: the initial vector is the 64-bit little-endian version of the sector
 255 *        number, padded with zeros if necessary.
 256 *
 257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 258 *        number, padded with zeros if necessary.
 259 *
 260 * essiv: "encrypted sector|salt initial vector", the sector number is
 261 *        encrypted with the bulk cipher using a salt as key. The salt
 262 *        should be derived from the bulk cipher's key via hashing.
 263 *
 264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 265 *        (needed for LRW-32-AES and possible other narrow block modes)
 266 *
 267 * null: the initial vector is always zero.  Provides compatibility with
 268 *       obsolete loop_fish2 devices.  Do not use for new devices.
 269 *
 270 * lmk:  Compatible implementation of the block chaining mode used
 271 *       by the Loop-AES block device encryption system
 272 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 273 *       It operates on full 512 byte sectors and uses CBC
 274 *       with an IV derived from the sector number, the data and
 275 *       optionally extra IV seed.
 276 *       This means that after decryption the first block
 277 *       of sector must be tweaked according to decrypted data.
 278 *       Loop-AES can use three encryption schemes:
 279 *         version 1: is plain aes-cbc mode
 280 *         version 2: uses 64 multikey scheme with lmk IV generator
 281 *         version 3: the same as version 2 with additional IV seed
 282 *                   (it uses 65 keys, last key is used as IV seed)
 283 *
 284 * tcw:  Compatible implementation of the block chaining mode used
 285 *       by the TrueCrypt device encryption system (prior to version 4.1).
 286 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from initial key and the sector number.
 289 *       In addition, whitening value is applied on every sector, whitening
 290 *       is calculated from initial key, sector number and mixed using CRC32.
 291 *       Note that this encryption scheme is vulnerable to watermarking attacks
 292 *       and should be used for old compatible containers access only.
 293 *
 294 * plumb: unimplemented, see:
 295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 
 
 
 
 
 296 */
 297
 298static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 299			      struct dm_crypt_request *dmreq)
 300{
 301	memset(iv, 0, cc->iv_size);
 302	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 303
 304	return 0;
 305}
 306
 307static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 308				struct dm_crypt_request *dmreq)
 309{
 310	memset(iv, 0, cc->iv_size);
 311	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 312
 313	return 0;
 314}
 315
 316static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 317				  struct dm_crypt_request *dmreq)
 318{
 319	memset(iv, 0, cc->iv_size);
 320	/* iv_size is at least of size u64; usually it is 16 bytes */
 321	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 322
 323	return 0;
 324}
 325
 326/* Initialise ESSIV - compute salt but no local memory allocations */
 327static int crypt_iv_essiv_init(struct crypt_config *cc)
 328{
 329	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 330	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 331	struct scatterlist sg;
 332	struct crypto_cipher *essiv_tfm;
 333	int err;
 334
 335	sg_init_one(&sg, cc->key, cc->key_size);
 336	ahash_request_set_tfm(req, essiv->hash_tfm);
 337	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 338	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 339
 340	err = crypto_ahash_digest(req);
 341	ahash_request_zero(req);
 342	if (err)
 343		return err;
 344
 345	essiv_tfm = cc->iv_private;
 346
 347	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 348			    crypto_ahash_digestsize(essiv->hash_tfm));
 349	if (err)
 350		return err;
 351
 352	return 0;
 353}
 354
 355/* Wipe salt and reset key derived from volume key */
 356static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 357{
 358	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 359	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 360	struct crypto_cipher *essiv_tfm;
 361	int r, err = 0;
 362
 363	memset(essiv->salt, 0, salt_size);
 364
 365	essiv_tfm = cc->iv_private;
 366	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 367	if (r)
 368		err = r;
 369
 370	return err;
 371}
 372
 373/* Allocate the cipher for ESSIV */
 374static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 375						struct dm_target *ti,
 376						const u8 *salt,
 377						unsigned int saltsize)
 378{
 379	struct crypto_cipher *essiv_tfm;
 380	int err;
 381
 382	/* Setup the essiv_tfm with the given salt */
 383	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 384	if (IS_ERR(essiv_tfm)) {
 385		ti->error = "Error allocating crypto tfm for ESSIV";
 386		return essiv_tfm;
 387	}
 388
 389	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 390		ti->error = "Block size of ESSIV cipher does "
 391			    "not match IV size of block cipher";
 392		crypto_free_cipher(essiv_tfm);
 393		return ERR_PTR(-EINVAL);
 394	}
 395
 396	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 397	if (err) {
 398		ti->error = "Failed to set key for ESSIV cipher";
 399		crypto_free_cipher(essiv_tfm);
 400		return ERR_PTR(err);
 401	}
 402
 403	return essiv_tfm;
 404}
 405
 406static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 407{
 408	struct crypto_cipher *essiv_tfm;
 409	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 410
 411	crypto_free_ahash(essiv->hash_tfm);
 412	essiv->hash_tfm = NULL;
 413
 414	kzfree(essiv->salt);
 415	essiv->salt = NULL;
 416
 417	essiv_tfm = cc->iv_private;
 418
 419	if (essiv_tfm)
 420		crypto_free_cipher(essiv_tfm);
 421
 422	cc->iv_private = NULL;
 423}
 424
 425static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 426			      const char *opts)
 427{
 428	struct crypto_cipher *essiv_tfm = NULL;
 429	struct crypto_ahash *hash_tfm = NULL;
 430	u8 *salt = NULL;
 431	int err;
 432
 433	if (!opts) {
 434		ti->error = "Digest algorithm missing for ESSIV mode";
 435		return -EINVAL;
 436	}
 437
 438	/* Allocate hash algorithm */
 439	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 440	if (IS_ERR(hash_tfm)) {
 441		ti->error = "Error initializing ESSIV hash";
 442		err = PTR_ERR(hash_tfm);
 443		goto bad;
 444	}
 445
 446	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 447	if (!salt) {
 448		ti->error = "Error kmallocing salt storage in ESSIV";
 449		err = -ENOMEM;
 450		goto bad;
 451	}
 452
 453	cc->iv_gen_private.essiv.salt = salt;
 454	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 455
 456	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 457				       crypto_ahash_digestsize(hash_tfm));
 458	if (IS_ERR(essiv_tfm)) {
 459		crypt_iv_essiv_dtr(cc);
 460		return PTR_ERR(essiv_tfm);
 461	}
 462	cc->iv_private = essiv_tfm;
 463
 464	return 0;
 465
 466bad:
 467	if (hash_tfm && !IS_ERR(hash_tfm))
 468		crypto_free_ahash(hash_tfm);
 469	kfree(salt);
 470	return err;
 471}
 472
 473static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 474			      struct dm_crypt_request *dmreq)
 475{
 476	struct crypto_cipher *essiv_tfm = cc->iv_private;
 477
 
 
 478	memset(iv, 0, cc->iv_size);
 479	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 480	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 481
 482	return 0;
 483}
 484
 485static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 486			      const char *opts)
 487{
 488	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 489	int log = ilog2(bs);
 490
 491	/* we need to calculate how far we must shift the sector count
 492	 * to get the cipher block count, we use this shift in _gen */
 
 
 
 493
 
 
 
 
 494	if (1 << log != bs) {
 495		ti->error = "cypher blocksize is not a power of 2";
 496		return -EINVAL;
 497	}
 498
 499	if (log > 9) {
 500		ti->error = "cypher blocksize is > 512";
 501		return -EINVAL;
 502	}
 503
 504	cc->iv_gen_private.benbi.shift = 9 - log;
 505
 506	return 0;
 507}
 508
 509static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 510{
 511}
 512
 513static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 514			      struct dm_crypt_request *dmreq)
 515{
 516	__be64 val;
 517
 518	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 519
 520	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 521	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 522
 523	return 0;
 524}
 525
 526static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 527			     struct dm_crypt_request *dmreq)
 528{
 529	memset(iv, 0, cc->iv_size);
 530
 531	return 0;
 532}
 533
 534static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 535{
 536	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 537
 538	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 539		crypto_free_shash(lmk->hash_tfm);
 540	lmk->hash_tfm = NULL;
 541
 542	kzfree(lmk->seed);
 543	lmk->seed = NULL;
 544}
 545
 546static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 547			    const char *opts)
 548{
 549	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 550
 551	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 552		ti->error = "Unsupported sector size for LMK";
 553		return -EINVAL;
 554	}
 555
 556	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 
 557	if (IS_ERR(lmk->hash_tfm)) {
 558		ti->error = "Error initializing LMK hash";
 559		return PTR_ERR(lmk->hash_tfm);
 560	}
 561
 562	/* No seed in LMK version 2 */
 563	if (cc->key_parts == cc->tfms_count) {
 564		lmk->seed = NULL;
 565		return 0;
 566	}
 567
 568	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 569	if (!lmk->seed) {
 570		crypt_iv_lmk_dtr(cc);
 571		ti->error = "Error kmallocing seed storage in LMK";
 572		return -ENOMEM;
 573	}
 574
 575	return 0;
 576}
 577
 578static int crypt_iv_lmk_init(struct crypt_config *cc)
 579{
 580	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 581	int subkey_size = cc->key_size / cc->key_parts;
 582
 583	/* LMK seed is on the position of LMK_KEYS + 1 key */
 584	if (lmk->seed)
 585		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 586		       crypto_shash_digestsize(lmk->hash_tfm));
 587
 588	return 0;
 589}
 590
 591static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 592{
 593	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 594
 595	if (lmk->seed)
 596		memset(lmk->seed, 0, LMK_SEED_SIZE);
 597
 598	return 0;
 599}
 600
 601static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 602			    struct dm_crypt_request *dmreq,
 603			    u8 *data)
 604{
 605	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 606	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 607	struct md5_state md5state;
 608	__le32 buf[4];
 609	int i, r;
 610
 611	desc->tfm = lmk->hash_tfm;
 612	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 613
 614	r = crypto_shash_init(desc);
 615	if (r)
 616		return r;
 617
 618	if (lmk->seed) {
 619		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 620		if (r)
 621			return r;
 622	}
 623
 624	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 625	r = crypto_shash_update(desc, data + 16, 16 * 31);
 626	if (r)
 627		return r;
 628
 629	/* Sector is cropped to 56 bits here */
 630	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 631	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 632	buf[2] = cpu_to_le32(4024);
 633	buf[3] = 0;
 634	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 635	if (r)
 636		return r;
 637
 638	/* No MD5 padding here */
 639	r = crypto_shash_export(desc, &md5state);
 640	if (r)
 641		return r;
 642
 643	for (i = 0; i < MD5_HASH_WORDS; i++)
 644		__cpu_to_le32s(&md5state.hash[i]);
 645	memcpy(iv, &md5state.hash, cc->iv_size);
 646
 647	return 0;
 648}
 649
 650static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 651			    struct dm_crypt_request *dmreq)
 652{
 653	struct scatterlist *sg;
 654	u8 *src;
 655	int r = 0;
 656
 657	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 658		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 659		src = kmap_atomic(sg_page(sg));
 660		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 661		kunmap_atomic(src);
 662	} else
 663		memset(iv, 0, cc->iv_size);
 664
 665	return r;
 666}
 667
 668static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 669			     struct dm_crypt_request *dmreq)
 670{
 671	struct scatterlist *sg;
 672	u8 *dst;
 673	int r;
 674
 675	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 676		return 0;
 677
 678	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 679	dst = kmap_atomic(sg_page(sg));
 680	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 681
 682	/* Tweak the first block of plaintext sector */
 683	if (!r)
 684		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 685
 686	kunmap_atomic(dst);
 687	return r;
 688}
 689
 690static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 691{
 692	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 693
 694	kzfree(tcw->iv_seed);
 695	tcw->iv_seed = NULL;
 696	kzfree(tcw->whitening);
 697	tcw->whitening = NULL;
 698
 699	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 700		crypto_free_shash(tcw->crc32_tfm);
 701	tcw->crc32_tfm = NULL;
 702}
 703
 704static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 705			    const char *opts)
 706{
 707	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708
 709	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 710		ti->error = "Unsupported sector size for TCW";
 711		return -EINVAL;
 712	}
 713
 714	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 715		ti->error = "Wrong key size for TCW";
 716		return -EINVAL;
 717	}
 718
 719	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 
 720	if (IS_ERR(tcw->crc32_tfm)) {
 721		ti->error = "Error initializing CRC32 in TCW";
 722		return PTR_ERR(tcw->crc32_tfm);
 723	}
 724
 725	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 726	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 727	if (!tcw->iv_seed || !tcw->whitening) {
 728		crypt_iv_tcw_dtr(cc);
 729		ti->error = "Error allocating seed storage in TCW";
 730		return -ENOMEM;
 731	}
 732
 733	return 0;
 734}
 735
 736static int crypt_iv_tcw_init(struct crypt_config *cc)
 737{
 738	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 739	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 740
 741	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 742	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 743	       TCW_WHITENING_SIZE);
 744
 745	return 0;
 746}
 747
 748static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 749{
 750	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 751
 752	memset(tcw->iv_seed, 0, cc->iv_size);
 753	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 754
 755	return 0;
 756}
 757
 758static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 759				  struct dm_crypt_request *dmreq,
 760				  u8 *data)
 761{
 762	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 763	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 764	u8 buf[TCW_WHITENING_SIZE];
 765	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 766	int i, r;
 767
 768	/* xor whitening with sector number */
 769	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 770	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 771
 772	/* calculate crc32 for every 32bit part and xor it */
 773	desc->tfm = tcw->crc32_tfm;
 774	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 775	for (i = 0; i < 4; i++) {
 776		r = crypto_shash_init(desc);
 777		if (r)
 778			goto out;
 779		r = crypto_shash_update(desc, &buf[i * 4], 4);
 780		if (r)
 781			goto out;
 782		r = crypto_shash_final(desc, &buf[i * 4]);
 783		if (r)
 784			goto out;
 785	}
 786	crypto_xor(&buf[0], &buf[12], 4);
 787	crypto_xor(&buf[4], &buf[8], 4);
 788
 789	/* apply whitening (8 bytes) to whole sector */
 790	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 791		crypto_xor(data + i * 8, buf, 8);
 792out:
 793	memzero_explicit(buf, sizeof(buf));
 794	return r;
 795}
 796
 797static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 798			    struct dm_crypt_request *dmreq)
 799{
 800	struct scatterlist *sg;
 801	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 802	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 803	u8 *src;
 804	int r = 0;
 805
 806	/* Remove whitening from ciphertext */
 807	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 808		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 809		src = kmap_atomic(sg_page(sg));
 810		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 811		kunmap_atomic(src);
 812	}
 813
 814	/* Calculate IV */
 815	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 816	if (cc->iv_size > 8)
 817		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 818			       cc->iv_size - 8);
 819
 820	return r;
 821}
 822
 823static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 824			     struct dm_crypt_request *dmreq)
 825{
 826	struct scatterlist *sg;
 827	u8 *dst;
 828	int r;
 829
 830	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 831		return 0;
 832
 833	/* Apply whitening on ciphertext */
 834	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 835	dst = kmap_atomic(sg_page(sg));
 836	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 837	kunmap_atomic(dst);
 838
 839	return r;
 840}
 841
 842static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 843				struct dm_crypt_request *dmreq)
 844{
 845	/* Used only for writes, there must be an additional space to store IV */
 846	get_random_bytes(iv, cc->iv_size);
 847	return 0;
 848}
 849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850static const struct crypt_iv_operations crypt_iv_plain_ops = {
 851	.generator = crypt_iv_plain_gen
 852};
 853
 854static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 855	.generator = crypt_iv_plain64_gen
 856};
 857
 858static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 859	.generator = crypt_iv_plain64be_gen
 860};
 861
 862static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 863	.ctr       = crypt_iv_essiv_ctr,
 864	.dtr       = crypt_iv_essiv_dtr,
 865	.init      = crypt_iv_essiv_init,
 866	.wipe      = crypt_iv_essiv_wipe,
 867	.generator = crypt_iv_essiv_gen
 868};
 869
 870static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 871	.ctr	   = crypt_iv_benbi_ctr,
 872	.dtr	   = crypt_iv_benbi_dtr,
 873	.generator = crypt_iv_benbi_gen
 874};
 875
 876static const struct crypt_iv_operations crypt_iv_null_ops = {
 877	.generator = crypt_iv_null_gen
 878};
 879
 880static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 881	.ctr	   = crypt_iv_lmk_ctr,
 882	.dtr	   = crypt_iv_lmk_dtr,
 883	.init	   = crypt_iv_lmk_init,
 884	.wipe	   = crypt_iv_lmk_wipe,
 885	.generator = crypt_iv_lmk_gen,
 886	.post	   = crypt_iv_lmk_post
 887};
 888
 889static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 890	.ctr	   = crypt_iv_tcw_ctr,
 891	.dtr	   = crypt_iv_tcw_dtr,
 892	.init	   = crypt_iv_tcw_init,
 893	.wipe	   = crypt_iv_tcw_wipe,
 894	.generator = crypt_iv_tcw_gen,
 895	.post	   = crypt_iv_tcw_post
 896};
 897
 898static struct crypt_iv_operations crypt_iv_random_ops = {
 899	.generator = crypt_iv_random_gen
 900};
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902/*
 903 * Integrity extensions
 904 */
 905static bool crypt_integrity_aead(struct crypt_config *cc)
 906{
 907	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 908}
 909
 910static bool crypt_integrity_hmac(struct crypt_config *cc)
 911{
 912	return crypt_integrity_aead(cc) && cc->key_mac_size;
 913}
 914
 915/* Get sg containing data */
 916static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 917					     struct scatterlist *sg)
 918{
 919	if (unlikely(crypt_integrity_aead(cc)))
 920		return &sg[2];
 921
 922	return sg;
 923}
 924
 925static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 926{
 927	struct bio_integrity_payload *bip;
 928	unsigned int tag_len;
 929	int ret;
 930
 931	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 932		return 0;
 933
 934	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 935	if (IS_ERR(bip))
 936		return PTR_ERR(bip);
 937
 938	tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
 939
 940	bip->bip_iter.bi_size = tag_len;
 941	bip->bip_iter.bi_sector = io->cc->start + io->sector;
 942
 943	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 944				     tag_len, offset_in_page(io->integrity_metadata));
 945	if (unlikely(ret != tag_len))
 946		return -ENOMEM;
 947
 948	return 0;
 949}
 950
 951static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 952{
 953#ifdef CONFIG_BLK_DEV_INTEGRITY
 954	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 
 955
 956	/* From now we require underlying device with our integrity profile */
 957	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 958		ti->error = "Integrity profile not supported.";
 959		return -EINVAL;
 960	}
 961
 962	if (bi->tag_size != cc->on_disk_tag_size ||
 963	    bi->tuple_size != cc->on_disk_tag_size) {
 964		ti->error = "Integrity profile tag size mismatch.";
 965		return -EINVAL;
 966	}
 
 967	if (1 << bi->interval_exp != cc->sector_size) {
 968		ti->error = "Integrity profile sector size mismatch.";
 969		return -EINVAL;
 970	}
 971
 972	if (crypt_integrity_aead(cc)) {
 973		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 974		DMINFO("Integrity AEAD, tag size %u, IV size %u.",
 975		       cc->integrity_tag_size, cc->integrity_iv_size);
 976
 977		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 978			ti->error = "Integrity AEAD auth tag size is not supported.";
 979			return -EINVAL;
 980		}
 981	} else if (cc->integrity_iv_size)
 982		DMINFO("Additional per-sector space %u bytes for IV.",
 983		       cc->integrity_iv_size);
 984
 985	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 986		ti->error = "Not enough space for integrity tag in the profile.";
 987		return -EINVAL;
 988	}
 989
 990	return 0;
 991#else
 992	ti->error = "Integrity profile not supported.";
 993	return -EINVAL;
 994#endif
 995}
 996
 997static void crypt_convert_init(struct crypt_config *cc,
 998			       struct convert_context *ctx,
 999			       struct bio *bio_out, struct bio *bio_in,
1000			       sector_t sector)
1001{
1002	ctx->bio_in = bio_in;
1003	ctx->bio_out = bio_out;
1004	if (bio_in)
1005		ctx->iter_in = bio_in->bi_iter;
1006	if (bio_out)
1007		ctx->iter_out = bio_out->bi_iter;
1008	ctx->cc_sector = sector + cc->iv_offset;
 
1009	init_completion(&ctx->restart);
1010}
1011
1012static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1013					     void *req)
1014{
1015	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1016}
1017
1018static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1019{
1020	return (void *)((char *)dmreq - cc->dmreq_start);
1021}
1022
1023static u8 *iv_of_dmreq(struct crypt_config *cc,
1024		       struct dm_crypt_request *dmreq)
1025{
1026	if (crypt_integrity_aead(cc))
1027		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1028			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1029	else
1030		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1031			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1032}
1033
1034static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1035		       struct dm_crypt_request *dmreq)
1036{
1037	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1038}
1039
1040static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1041		       struct dm_crypt_request *dmreq)
1042{
1043	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1044	return (uint64_t*) ptr;
 
1045}
1046
1047static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1048		       struct dm_crypt_request *dmreq)
1049{
1050	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1051		  cc->iv_size + sizeof(uint64_t);
1052	return (unsigned int*)ptr;
 
1053}
1054
1055static void *tag_from_dmreq(struct crypt_config *cc,
1056				struct dm_crypt_request *dmreq)
1057{
1058	struct convert_context *ctx = dmreq->ctx;
1059	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1060
1061	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1062		cc->on_disk_tag_size];
1063}
1064
1065static void *iv_tag_from_dmreq(struct crypt_config *cc,
1066			       struct dm_crypt_request *dmreq)
1067{
1068	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1069}
1070
1071static int crypt_convert_block_aead(struct crypt_config *cc,
1072				     struct convert_context *ctx,
1073				     struct aead_request *req,
1074				     unsigned int tag_offset)
1075{
1076	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1077	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1078	struct dm_crypt_request *dmreq;
1079	u8 *iv, *org_iv, *tag_iv, *tag;
1080	uint64_t *sector;
1081	int r = 0;
1082
1083	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1084
1085	/* Reject unexpected unaligned bio. */
1086	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1087		return -EIO;
1088
1089	dmreq = dmreq_of_req(cc, req);
1090	dmreq->iv_sector = ctx->cc_sector;
1091	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1092		dmreq->iv_sector >>= cc->sector_shift;
1093	dmreq->ctx = ctx;
1094
1095	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1096
1097	sector = org_sector_of_dmreq(cc, dmreq);
1098	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1099
1100	iv = iv_of_dmreq(cc, dmreq);
1101	org_iv = org_iv_of_dmreq(cc, dmreq);
1102	tag = tag_from_dmreq(cc, dmreq);
1103	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1104
1105	/* AEAD request:
1106	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1107	 *  | (authenticated) | (auth+encryption) |              |
1108	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1109	 */
1110	sg_init_table(dmreq->sg_in, 4);
1111	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1112	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1113	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1114	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1115
1116	sg_init_table(dmreq->sg_out, 4);
1117	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1118	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1119	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1120	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1121
1122	if (cc->iv_gen_ops) {
1123		/* For READs use IV stored in integrity metadata */
1124		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1125			memcpy(org_iv, tag_iv, cc->iv_size);
1126		} else {
1127			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1128			if (r < 0)
1129				return r;
1130			/* Store generated IV in integrity metadata */
1131			if (cc->integrity_iv_size)
1132				memcpy(tag_iv, org_iv, cc->iv_size);
1133		}
1134		/* Working copy of IV, to be modified in crypto API */
1135		memcpy(iv, org_iv, cc->iv_size);
1136	}
1137
1138	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1139	if (bio_data_dir(ctx->bio_in) == WRITE) {
1140		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1141				       cc->sector_size, iv);
1142		r = crypto_aead_encrypt(req);
1143		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1144			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1145			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1146	} else {
1147		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1148				       cc->sector_size + cc->integrity_tag_size, iv);
1149		r = crypto_aead_decrypt(req);
1150	}
1151
1152	if (r == -EBADMSG)
1153		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1154			    (unsigned long long)le64_to_cpu(*sector));
 
 
 
 
 
 
 
 
1155
1156	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1157		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1158
1159	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1160	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1161
1162	return r;
1163}
1164
1165static int crypt_convert_block_skcipher(struct crypt_config *cc,
1166					struct convert_context *ctx,
1167					struct skcipher_request *req,
1168					unsigned int tag_offset)
1169{
1170	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1171	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1172	struct scatterlist *sg_in, *sg_out;
1173	struct dm_crypt_request *dmreq;
1174	u8 *iv, *org_iv, *tag_iv;
1175	uint64_t *sector;
1176	int r = 0;
1177
1178	/* Reject unexpected unaligned bio. */
1179	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1180		return -EIO;
1181
1182	dmreq = dmreq_of_req(cc, req);
1183	dmreq->iv_sector = ctx->cc_sector;
1184	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1185		dmreq->iv_sector >>= cc->sector_shift;
1186	dmreq->ctx = ctx;
1187
1188	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1189
1190	iv = iv_of_dmreq(cc, dmreq);
1191	org_iv = org_iv_of_dmreq(cc, dmreq);
1192	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1193
1194	sector = org_sector_of_dmreq(cc, dmreq);
1195	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1196
1197	/* For skcipher we use only the first sg item */
1198	sg_in  = &dmreq->sg_in[0];
1199	sg_out = &dmreq->sg_out[0];
1200
1201	sg_init_table(sg_in, 1);
1202	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1203
1204	sg_init_table(sg_out, 1);
1205	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1206
1207	if (cc->iv_gen_ops) {
1208		/* For READs use IV stored in integrity metadata */
1209		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1210			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1211		} else {
1212			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1213			if (r < 0)
1214				return r;
 
 
 
1215			/* Store generated IV in integrity metadata */
1216			if (cc->integrity_iv_size)
1217				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1218		}
1219		/* Working copy of IV, to be modified in crypto API */
1220		memcpy(iv, org_iv, cc->iv_size);
1221	}
1222
1223	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1224
1225	if (bio_data_dir(ctx->bio_in) == WRITE)
1226		r = crypto_skcipher_encrypt(req);
1227	else
1228		r = crypto_skcipher_decrypt(req);
1229
1230	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1231		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1232
1233	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1234	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1235
1236	return r;
1237}
1238
1239static void kcryptd_async_done(struct crypto_async_request *async_req,
1240			       int error);
1241
1242static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1243				     struct convert_context *ctx)
1244{
1245	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1246
1247	if (!ctx->r.req)
1248		ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
1249
1250	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1251
1252	/*
1253	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1254	 * requests if driver request queue is full.
1255	 */
1256	skcipher_request_set_callback(ctx->r.req,
1257	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1258	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
 
 
1259}
1260
1261static void crypt_alloc_req_aead(struct crypt_config *cc,
1262				 struct convert_context *ctx)
1263{
1264	if (!ctx->r.req_aead)
1265		ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
1266
1267	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1268
1269	/*
1270	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1271	 * requests if driver request queue is full.
1272	 */
1273	aead_request_set_callback(ctx->r.req_aead,
1274	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1275	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
 
 
1276}
1277
1278static void crypt_alloc_req(struct crypt_config *cc,
1279			    struct convert_context *ctx)
1280{
1281	if (crypt_integrity_aead(cc))
1282		crypt_alloc_req_aead(cc, ctx);
1283	else
1284		crypt_alloc_req_skcipher(cc, ctx);
1285}
1286
1287static void crypt_free_req_skcipher(struct crypt_config *cc,
1288				    struct skcipher_request *req, struct bio *base_bio)
1289{
1290	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1291
1292	if ((struct skcipher_request *)(io + 1) != req)
1293		mempool_free(req, cc->req_pool);
1294}
1295
1296static void crypt_free_req_aead(struct crypt_config *cc,
1297				struct aead_request *req, struct bio *base_bio)
1298{
1299	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1300
1301	if ((struct aead_request *)(io + 1) != req)
1302		mempool_free(req, cc->req_pool);
1303}
1304
1305static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1306{
1307	if (crypt_integrity_aead(cc))
1308		crypt_free_req_aead(cc, req, base_bio);
1309	else
1310		crypt_free_req_skcipher(cc, req, base_bio);
1311}
1312
1313/*
1314 * Encrypt / decrypt data from one bio to another one (can be the same one)
1315 */
1316static blk_status_t crypt_convert(struct crypt_config *cc,
1317			 struct convert_context *ctx)
1318{
1319	unsigned int tag_offset = 0;
1320	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1321	int r;
1322
1323	atomic_set(&ctx->cc_pending, 1);
 
 
 
 
 
 
1324
1325	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1326
1327		crypt_alloc_req(cc, ctx);
 
 
 
 
 
1328		atomic_inc(&ctx->cc_pending);
1329
1330		if (crypt_integrity_aead(cc))
1331			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1332		else
1333			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1334
1335		switch (r) {
1336		/*
1337		 * The request was queued by a crypto driver
1338		 * but the driver request queue is full, let's wait.
1339		 */
1340		case -EBUSY:
1341			wait_for_completion(&ctx->restart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342			reinit_completion(&ctx->restart);
1343			/* fall through */
1344		/*
1345		 * The request is queued and processed asynchronously,
1346		 * completion function kcryptd_async_done() will be called.
1347		 */
1348		case -EINPROGRESS:
1349			ctx->r.req = NULL;
 
1350			ctx->cc_sector += sector_step;
1351			tag_offset++;
1352			continue;
1353		/*
1354		 * The request was already processed (synchronously).
1355		 */
1356		case 0:
1357			atomic_dec(&ctx->cc_pending);
1358			ctx->cc_sector += sector_step;
1359			tag_offset++;
1360			cond_resched();
 
1361			continue;
1362		/*
1363		 * There was a data integrity error.
1364		 */
1365		case -EBADMSG:
1366			atomic_dec(&ctx->cc_pending);
1367			return BLK_STS_PROTECTION;
1368		/*
1369		 * There was an error while processing the request.
1370		 */
1371		default:
1372			atomic_dec(&ctx->cc_pending);
1373			return BLK_STS_IOERR;
1374		}
1375	}
1376
1377	return 0;
1378}
1379
1380static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1381
1382/*
1383 * Generate a new unfragmented bio with the given size
1384 * This should never violate the device limitations (but only because
1385 * max_segment_size is being constrained to PAGE_SIZE).
1386 *
1387 * This function may be called concurrently. If we allocate from the mempool
1388 * concurrently, there is a possibility of deadlock. For example, if we have
1389 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1390 * the mempool concurrently, it may deadlock in a situation where both processes
1391 * have allocated 128 pages and the mempool is exhausted.
1392 *
1393 * In order to avoid this scenario we allocate the pages under a mutex.
1394 *
1395 * In order to not degrade performance with excessive locking, we try
1396 * non-blocking allocations without a mutex first but on failure we fallback
1397 * to blocking allocations with a mutex.
 
 
 
1398 */
1399static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1400{
1401	struct crypt_config *cc = io->cc;
1402	struct bio *clone;
1403	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1405	unsigned i, len, remaining_size;
1406	struct page *page;
1407
1408retry:
1409	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1410		mutex_lock(&cc->bio_alloc_lock);
1411
1412	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1413	if (!clone)
1414		goto out;
 
 
1415
1416	clone_init(io, clone);
1417
1418	remaining_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419
1420	for (i = 0; i < nr_iovecs; i++) {
1421		page = mempool_alloc(cc->page_pool, gfp_mask);
1422		if (!page) {
1423			crypt_free_buffer_pages(cc, clone);
1424			bio_put(clone);
1425			gfp_mask |= __GFP_DIRECT_RECLAIM;
 
1426			goto retry;
1427		}
1428
1429		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1430
1431		bio_add_page(clone, page, len, 0);
1432
1433		remaining_size -= len;
1434	}
1435
1436	/* Allocate space for integrity tags */
1437	if (dm_crypt_integrity_io_alloc(io, clone)) {
1438		crypt_free_buffer_pages(cc, clone);
1439		bio_put(clone);
1440		clone = NULL;
1441	}
1442out:
1443	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1444		mutex_unlock(&cc->bio_alloc_lock);
1445
1446	return clone;
1447}
1448
1449static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1450{
1451	unsigned int i;
1452	struct bio_vec *bv;
1453
1454	bio_for_each_segment_all(bv, clone, i) {
1455		BUG_ON(!bv->bv_page);
1456		mempool_free(bv->bv_page, cc->page_pool);
 
 
 
 
 
 
 
1457	}
1458}
1459
1460static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1461			  struct bio *bio, sector_t sector)
1462{
1463	io->cc = cc;
1464	io->base_bio = bio;
1465	io->sector = sector;
1466	io->error = 0;
 
 
1467	io->ctx.r.req = NULL;
1468	io->integrity_metadata = NULL;
1469	io->integrity_metadata_from_pool = false;
1470	atomic_set(&io->io_pending, 0);
1471}
1472
1473static void crypt_inc_pending(struct dm_crypt_io *io)
1474{
1475	atomic_inc(&io->io_pending);
1476}
1477
 
 
1478/*
1479 * One of the bios was finished. Check for completion of
1480 * the whole request and correctly clean up the buffer.
1481 */
1482static void crypt_dec_pending(struct dm_crypt_io *io)
1483{
1484	struct crypt_config *cc = io->cc;
1485	struct bio *base_bio = io->base_bio;
1486	blk_status_t error = io->error;
1487
1488	if (!atomic_dec_and_test(&io->io_pending))
1489		return;
1490
 
 
 
 
 
 
 
 
 
1491	if (io->ctx.r.req)
1492		crypt_free_req(cc, io->ctx.r.req, base_bio);
1493
1494	if (unlikely(io->integrity_metadata_from_pool))
1495		mempool_free(io->integrity_metadata, io->cc->tag_pool);
1496	else
1497		kfree(io->integrity_metadata);
1498
1499	base_bio->bi_status = error;
 
1500	bio_endio(base_bio);
1501}
1502
1503/*
1504 * kcryptd/kcryptd_io:
1505 *
1506 * Needed because it would be very unwise to do decryption in an
1507 * interrupt context.
1508 *
1509 * kcryptd performs the actual encryption or decryption.
1510 *
1511 * kcryptd_io performs the IO submission.
1512 *
1513 * They must be separated as otherwise the final stages could be
1514 * starved by new requests which can block in the first stages due
1515 * to memory allocation.
1516 *
1517 * The work is done per CPU global for all dm-crypt instances.
1518 * They should not depend on each other and do not block.
1519 */
1520static void crypt_endio(struct bio *clone)
1521{
1522	struct dm_crypt_io *io = clone->bi_private;
1523	struct crypt_config *cc = io->cc;
1524	unsigned rw = bio_data_dir(clone);
1525	blk_status_t error;
 
 
 
 
 
1526
1527	/*
1528	 * free the processed pages
1529	 */
1530	if (rw == WRITE)
1531		crypt_free_buffer_pages(cc, clone);
1532
1533	error = clone->bi_status;
1534	bio_put(clone);
1535
1536	if (rw == READ && !error) {
1537		kcryptd_queue_crypt(io);
1538		return;
1539	}
1540
1541	if (unlikely(error))
1542		io->error = error;
1543
1544	crypt_dec_pending(io);
1545}
1546
1547static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1548{
1549	struct crypt_config *cc = io->cc;
1550
1551	clone->bi_private = io;
1552	clone->bi_end_io  = crypt_endio;
1553	bio_set_dev(clone, cc->dev->bdev);
1554	clone->bi_opf	  = io->base_bio->bi_opf;
1555}
1556
1557static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1558{
1559	struct crypt_config *cc = io->cc;
1560	struct bio *clone;
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562	/*
1563	 * We need the original biovec array in order to decrypt
1564	 * the whole bio data *afterwards* -- thanks to immutable
1565	 * biovecs we don't need to worry about the block layer
1566	 * modifying the biovec array; so leverage bio_clone_fast().
1567	 */
1568	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1569	if (!clone)
1570		return 1;
 
 
1571
1572	crypt_inc_pending(io);
1573
1574	clone_init(io, clone);
1575	clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577	if (dm_crypt_integrity_io_alloc(io, clone)) {
1578		crypt_dec_pending(io);
1579		bio_put(clone);
1580		return 1;
1581	}
1582
1583	generic_make_request(clone);
1584	return 0;
1585}
1586
1587static void kcryptd_io_read_work(struct work_struct *work)
1588{
1589	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1590
1591	crypt_inc_pending(io);
1592	if (kcryptd_io_read(io, GFP_NOIO))
1593		io->error = BLK_STS_RESOURCE;
1594	crypt_dec_pending(io);
1595}
1596
1597static void kcryptd_queue_read(struct dm_crypt_io *io)
1598{
1599	struct crypt_config *cc = io->cc;
1600
1601	INIT_WORK(&io->work, kcryptd_io_read_work);
1602	queue_work(cc->io_queue, &io->work);
1603}
1604
1605static void kcryptd_io_write(struct dm_crypt_io *io)
1606{
1607	struct bio *clone = io->ctx.bio_out;
1608
1609	generic_make_request(clone);
1610}
1611
1612#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1613
1614static int dmcrypt_write(void *data)
1615{
1616	struct crypt_config *cc = data;
1617	struct dm_crypt_io *io;
1618
1619	while (1) {
1620		struct rb_root write_tree;
1621		struct blk_plug plug;
1622
1623		DECLARE_WAITQUEUE(wait, current);
1624
1625		spin_lock_irq(&cc->write_thread_wait.lock);
1626continue_locked:
1627
1628		if (!RB_EMPTY_ROOT(&cc->write_tree))
1629			goto pop_from_list;
1630
1631		set_current_state(TASK_INTERRUPTIBLE);
1632		__add_wait_queue(&cc->write_thread_wait, &wait);
1633
1634		spin_unlock_irq(&cc->write_thread_wait.lock);
1635
1636		if (unlikely(kthread_should_stop())) {
1637			set_current_state(TASK_RUNNING);
1638			remove_wait_queue(&cc->write_thread_wait, &wait);
1639			break;
1640		}
1641
1642		schedule();
1643
1644		set_current_state(TASK_RUNNING);
1645		spin_lock_irq(&cc->write_thread_wait.lock);
1646		__remove_wait_queue(&cc->write_thread_wait, &wait);
1647		goto continue_locked;
1648
1649pop_from_list:
1650		write_tree = cc->write_tree;
1651		cc->write_tree = RB_ROOT;
1652		spin_unlock_irq(&cc->write_thread_wait.lock);
1653
1654		BUG_ON(rb_parent(write_tree.rb_node));
1655
1656		/*
1657		 * Note: we cannot walk the tree here with rb_next because
1658		 * the structures may be freed when kcryptd_io_write is called.
1659		 */
1660		blk_start_plug(&plug);
1661		do {
1662			io = crypt_io_from_node(rb_first(&write_tree));
1663			rb_erase(&io->rb_node, &write_tree);
1664			kcryptd_io_write(io);
 
1665		} while (!RB_EMPTY_ROOT(&write_tree));
1666		blk_finish_plug(&plug);
1667	}
1668	return 0;
1669}
1670
1671static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1672{
1673	struct bio *clone = io->ctx.bio_out;
1674	struct crypt_config *cc = io->cc;
1675	unsigned long flags;
1676	sector_t sector;
1677	struct rb_node **rbp, *parent;
1678
1679	if (unlikely(io->error)) {
1680		crypt_free_buffer_pages(cc, clone);
1681		bio_put(clone);
1682		crypt_dec_pending(io);
1683		return;
1684	}
1685
1686	/* crypt_convert should have filled the clone bio */
1687	BUG_ON(io->ctx.iter_out.bi_size);
1688
1689	clone->bi_iter.bi_sector = cc->start + io->sector;
1690
1691	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1692		generic_make_request(clone);
 
1693		return;
1694	}
1695
1696	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
 
 
1697	rbp = &cc->write_tree.rb_node;
1698	parent = NULL;
1699	sector = io->sector;
1700	while (*rbp) {
1701		parent = *rbp;
1702		if (sector < crypt_io_from_node(parent)->sector)
1703			rbp = &(*rbp)->rb_left;
1704		else
1705			rbp = &(*rbp)->rb_right;
1706	}
1707	rb_link_node(&io->rb_node, parent, rbp);
1708	rb_insert_color(&io->rb_node, &cc->write_tree);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710	wake_up_locked(&cc->write_thread_wait);
1711	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1712}
1713
1714static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1715{
1716	struct crypt_config *cc = io->cc;
 
1717	struct bio *clone;
1718	int crypt_finished;
1719	sector_t sector = io->sector;
1720	blk_status_t r;
1721
1722	/*
1723	 * Prevent io from disappearing until this function completes.
1724	 */
1725	crypt_inc_pending(io);
1726	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1727
1728	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1729	if (unlikely(!clone)) {
1730		io->error = BLK_STS_IOERR;
1731		goto dec;
1732	}
1733
1734	io->ctx.bio_out = clone;
1735	io->ctx.iter_out = clone->bi_iter;
1736
1737	sector += bio_sectors(clone);
 
 
 
 
1738
1739	crypt_inc_pending(io);
1740	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1741	if (r)
1742		io->error = r;
1743	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
 
 
 
 
 
1744
1745	/* Encryption was already finished, submit io now */
1746	if (crypt_finished) {
1747		kcryptd_crypt_write_io_submit(io, 0);
1748		io->sector = sector;
1749	}
1750
1751dec:
1752	crypt_dec_pending(io);
1753}
1754
1755static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1756{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757	crypt_dec_pending(io);
1758}
1759
1760static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1761{
1762	struct crypt_config *cc = io->cc;
1763	blk_status_t r;
1764
1765	crypt_inc_pending(io);
1766
1767	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1768			   io->sector);
 
 
 
 
 
1769
1770	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1771	if (r)
1772		io->error = r;
1773
1774	if (atomic_dec_and_test(&io->ctx.cc_pending))
1775		kcryptd_crypt_read_done(io);
1776
1777	crypt_dec_pending(io);
1778}
1779
1780static void kcryptd_async_done(struct crypto_async_request *async_req,
1781			       int error)
1782{
1783	struct dm_crypt_request *dmreq = async_req->data;
1784	struct convert_context *ctx = dmreq->ctx;
1785	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1786	struct crypt_config *cc = io->cc;
1787
1788	/*
1789	 * A request from crypto driver backlog is going to be processed now,
1790	 * finish the completion and continue in crypt_convert().
1791	 * (Callback will be called for the second time for this request.)
1792	 */
1793	if (error == -EINPROGRESS) {
1794		complete(&ctx->restart);
1795		return;
1796	}
1797
1798	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1799		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1800
1801	if (error == -EBADMSG) {
1802		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1803			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
 
 
 
 
 
 
 
1804		io->error = BLK_STS_PROTECTION;
1805	} else if (error < 0)
1806		io->error = BLK_STS_IOERR;
1807
1808	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1809
1810	if (!atomic_dec_and_test(&ctx->cc_pending))
1811		return;
1812
1813	if (bio_data_dir(io->base_bio) == READ)
 
 
 
 
1814		kcryptd_crypt_read_done(io);
1815	else
1816		kcryptd_crypt_write_io_submit(io, 1);
 
 
 
 
 
 
 
1817}
1818
1819static void kcryptd_crypt(struct work_struct *work)
1820{
1821	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1822
1823	if (bio_data_dir(io->base_bio) == READ)
1824		kcryptd_crypt_read_convert(io);
1825	else
1826		kcryptd_crypt_write_convert(io);
1827}
1828
1829static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1830{
1831	struct crypt_config *cc = io->cc;
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833	INIT_WORK(&io->work, kcryptd_crypt);
1834	queue_work(cc->crypt_queue, &io->work);
1835}
1836
1837static void crypt_free_tfms_aead(struct crypt_config *cc)
1838{
1839	if (!cc->cipher_tfm.tfms_aead)
1840		return;
1841
1842	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1843		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1844		cc->cipher_tfm.tfms_aead[0] = NULL;
1845	}
1846
1847	kfree(cc->cipher_tfm.tfms_aead);
1848	cc->cipher_tfm.tfms_aead = NULL;
1849}
1850
1851static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1852{
1853	unsigned i;
1854
1855	if (!cc->cipher_tfm.tfms)
1856		return;
1857
1858	for (i = 0; i < cc->tfms_count; i++)
1859		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1860			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1861			cc->cipher_tfm.tfms[i] = NULL;
1862		}
1863
1864	kfree(cc->cipher_tfm.tfms);
1865	cc->cipher_tfm.tfms = NULL;
1866}
1867
1868static void crypt_free_tfms(struct crypt_config *cc)
1869{
1870	if (crypt_integrity_aead(cc))
1871		crypt_free_tfms_aead(cc);
1872	else
1873		crypt_free_tfms_skcipher(cc);
1874}
1875
1876static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1877{
1878	unsigned i;
1879	int err;
1880
1881	cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1882				      sizeof(struct crypto_skcipher *), GFP_KERNEL);
 
1883	if (!cc->cipher_tfm.tfms)
1884		return -ENOMEM;
1885
1886	for (i = 0; i < cc->tfms_count; i++) {
1887		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
 
1888		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1889			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1890			crypt_free_tfms(cc);
1891			return err;
1892		}
1893	}
1894
 
 
 
 
 
 
 
1895	return 0;
1896}
1897
1898static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1899{
1900	int err;
1901
1902	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1903	if (!cc->cipher_tfm.tfms)
1904		return -ENOMEM;
1905
1906	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
 
1907	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1908		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1909		crypt_free_tfms(cc);
1910		return err;
1911	}
1912
 
 
1913	return 0;
1914}
1915
1916static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1917{
1918	if (crypt_integrity_aead(cc))
1919		return crypt_alloc_tfms_aead(cc, ciphermode);
1920	else
1921		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1922}
1923
1924static unsigned crypt_subkey_size(struct crypt_config *cc)
1925{
1926	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1927}
1928
1929static unsigned crypt_authenckey_size(struct crypt_config *cc)
1930{
1931	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1932}
1933
1934/*
1935 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1936 * the key must be for some reason in special format.
1937 * This funcion converts cc->key to this special format.
1938 */
1939static void crypt_copy_authenckey(char *p, const void *key,
1940				  unsigned enckeylen, unsigned authkeylen)
1941{
1942	struct crypto_authenc_key_param *param;
1943	struct rtattr *rta;
1944
1945	rta = (struct rtattr *)p;
1946	param = RTA_DATA(rta);
1947	param->enckeylen = cpu_to_be32(enckeylen);
1948	rta->rta_len = RTA_LENGTH(sizeof(*param));
1949	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1950	p += RTA_SPACE(sizeof(*param));
1951	memcpy(p, key + enckeylen, authkeylen);
1952	p += authkeylen;
1953	memcpy(p, key, enckeylen);
1954}
1955
1956static int crypt_setkey(struct crypt_config *cc)
1957{
1958	unsigned subkey_size;
1959	int err = 0, i, r;
1960
1961	/* Ignore extra keys (which are used for IV etc) */
1962	subkey_size = crypt_subkey_size(cc);
1963
1964	if (crypt_integrity_hmac(cc)) {
1965		if (subkey_size < cc->key_mac_size)
1966			return -EINVAL;
1967
1968		crypt_copy_authenckey(cc->authenc_key, cc->key,
1969				      subkey_size - cc->key_mac_size,
1970				      cc->key_mac_size);
1971	}
1972
1973	for (i = 0; i < cc->tfms_count; i++) {
1974		if (crypt_integrity_hmac(cc))
1975			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1976				cc->authenc_key, crypt_authenckey_size(cc));
1977		else if (crypt_integrity_aead(cc))
1978			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1979					       cc->key + (i * subkey_size),
1980					       subkey_size);
1981		else
1982			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1983						   cc->key + (i * subkey_size),
1984						   subkey_size);
1985		if (r)
1986			err = r;
1987	}
1988
1989	if (crypt_integrity_hmac(cc))
1990		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1991
1992	return err;
1993}
1994
1995#ifdef CONFIG_KEYS
1996
1997static bool contains_whitespace(const char *str)
1998{
1999	while (*str)
2000		if (isspace(*str++))
2001			return true;
2002	return false;
2003}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2006{
2007	char *new_key_string, *key_desc;
2008	int ret;
 
2009	struct key *key;
2010	const struct user_key_payload *ukp;
2011
2012	/*
2013	 * Reject key_string with whitespace. dm core currently lacks code for
2014	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2015	 */
2016	if (contains_whitespace(key_string)) {
2017		DMERR("whitespace chars not allowed in key string");
2018		return -EINVAL;
2019	}
2020
2021	/* look for next ':' separating key_type from key_description */
2022	key_desc = strpbrk(key_string, ":");
2023	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2024		return -EINVAL;
2025
2026	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2027	    strncmp(key_string, "user:", key_desc - key_string + 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
2028		return -EINVAL;
 
2029
2030	new_key_string = kstrdup(key_string, GFP_KERNEL);
2031	if (!new_key_string)
2032		return -ENOMEM;
2033
2034	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2035			  key_desc + 1, NULL);
2036	if (IS_ERR(key)) {
2037		kzfree(new_key_string);
2038		return PTR_ERR(key);
2039	}
2040
2041	down_read(&key->sem);
2042
2043	ukp = user_key_payload_locked(key);
2044	if (!ukp) {
2045		up_read(&key->sem);
2046		key_put(key);
2047		kzfree(new_key_string);
2048		return -EKEYREVOKED;
2049	}
2050
2051	if (cc->key_size != ukp->datalen) {
2052		up_read(&key->sem);
2053		key_put(key);
2054		kzfree(new_key_string);
2055		return -EINVAL;
2056	}
2057
2058	memcpy(cc->key, ukp->data, cc->key_size);
2059
2060	up_read(&key->sem);
2061	key_put(key);
 
 
2062
2063	/* clear the flag since following operations may invalidate previously valid key */
2064	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2065
2066	ret = crypt_setkey(cc);
 
 
2067
2068	if (!ret) {
2069		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2070		kzfree(cc->key_string);
2071		cc->key_string = new_key_string;
2072	} else
2073		kzfree(new_key_string);
2074
 
 
2075	return ret;
2076}
2077
2078static int get_key_size(char **key_string)
2079{
2080	char *colon, dummy;
2081	int ret;
2082
2083	if (*key_string[0] != ':')
2084		return strlen(*key_string) >> 1;
2085
2086	/* look for next ':' in key string */
2087	colon = strpbrk(*key_string + 1, ":");
2088	if (!colon)
2089		return -EINVAL;
2090
2091	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2092		return -EINVAL;
2093
2094	*key_string = colon;
2095
2096	/* remaining key string should be :<logon|user>:<key_desc> */
2097
2098	return ret;
2099}
2100
2101#else
2102
2103static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2104{
2105	return -EINVAL;
2106}
2107
2108static int get_key_size(char **key_string)
2109{
2110	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2111}
2112
2113#endif
2114
2115static int crypt_set_key(struct crypt_config *cc, char *key)
2116{
2117	int r = -EINVAL;
2118	int key_string_len = strlen(key);
2119
2120	/* Hyphen (which gives a key_size of zero) means there is no key. */
2121	if (!cc->key_size && strcmp(key, "-"))
2122		goto out;
2123
2124	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2125	if (key[0] == ':') {
2126		r = crypt_set_keyring_key(cc, key + 1);
2127		goto out;
2128	}
2129
2130	/* clear the flag since following operations may invalidate previously valid key */
2131	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2132
2133	/* wipe references to any kernel keyring key */
2134	kzfree(cc->key_string);
2135	cc->key_string = NULL;
2136
2137	/* Decode key from its hex representation. */
2138	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2139		goto out;
2140
2141	r = crypt_setkey(cc);
2142	if (!r)
2143		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2144
2145out:
2146	/* Hex key string not needed after here, so wipe it. */
2147	memset(key, '0', key_string_len);
2148
2149	return r;
2150}
2151
2152static int crypt_wipe_key(struct crypt_config *cc)
2153{
2154	int r;
2155
2156	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2157	get_random_bytes(&cc->key, cc->key_size);
2158	kzfree(cc->key_string);
 
 
 
 
 
 
 
 
2159	cc->key_string = NULL;
2160	r = crypt_setkey(cc);
2161	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2162
2163	return r;
2164}
2165
2166static void crypt_calculate_pages_per_client(void)
2167{
2168	unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100;
2169
2170	if (!dm_crypt_clients_n)
2171		return;
2172
2173	pages /= dm_crypt_clients_n;
2174	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2175		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2176	dm_crypt_pages_per_client = pages;
2177}
2178
2179static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2180{
2181	struct crypt_config *cc = pool_data;
2182	struct page *page;
2183
2184	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
 
 
 
 
 
2185	    likely(gfp_mask & __GFP_NORETRY))
2186		return NULL;
2187
2188	page = alloc_page(gfp_mask);
2189	if (likely(page != NULL))
2190		percpu_counter_add(&cc->n_allocated_pages, 1);
2191
2192	return page;
2193}
2194
2195static void crypt_page_free(void *page, void *pool_data)
2196{
2197	struct crypt_config *cc = pool_data;
2198
2199	__free_page(page);
2200	percpu_counter_sub(&cc->n_allocated_pages, 1);
2201}
2202
2203static void crypt_dtr(struct dm_target *ti)
2204{
2205	struct crypt_config *cc = ti->private;
2206
2207	ti->private = NULL;
2208
2209	if (!cc)
2210		return;
2211
2212	if (cc->write_thread)
2213		kthread_stop(cc->write_thread);
2214
2215	if (cc->io_queue)
2216		destroy_workqueue(cc->io_queue);
2217	if (cc->crypt_queue)
2218		destroy_workqueue(cc->crypt_queue);
2219
 
 
 
2220	crypt_free_tfms(cc);
2221
2222	if (cc->bs)
2223		bioset_free(cc->bs);
2224
2225	mempool_destroy(cc->page_pool);
2226	mempool_destroy(cc->req_pool);
2227	mempool_destroy(cc->tag_pool);
2228
2229	if (cc->page_pool)
2230		WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2231	percpu_counter_destroy(&cc->n_allocated_pages);
2232
2233	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2234		cc->iv_gen_ops->dtr(cc);
2235
2236	if (cc->dev)
2237		dm_put_device(ti, cc->dev);
2238
2239	kzfree(cc->cipher);
2240	kzfree(cc->cipher_string);
2241	kzfree(cc->key_string);
2242	kzfree(cc->cipher_auth);
2243	kzfree(cc->authenc_key);
2244
2245	mutex_destroy(&cc->bio_alloc_lock);
2246
2247	/* Must zero key material before freeing */
2248	kzfree(cc);
2249
2250	spin_lock(&dm_crypt_clients_lock);
2251	WARN_ON(!dm_crypt_clients_n);
2252	dm_crypt_clients_n--;
2253	crypt_calculate_pages_per_client();
2254	spin_unlock(&dm_crypt_clients_lock);
 
 
2255}
2256
2257static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2258{
2259	struct crypt_config *cc = ti->private;
2260
2261	if (crypt_integrity_aead(cc))
2262		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2263	else
2264		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2265
2266	if (cc->iv_size)
2267		/* at least a 64 bit sector number should fit in our buffer */
2268		cc->iv_size = max(cc->iv_size,
2269				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2270	else if (ivmode) {
2271		DMWARN("Selected cipher does not support IVs");
2272		ivmode = NULL;
2273	}
2274
2275	/* Choose ivmode, see comments at iv code. */
2276	if (ivmode == NULL)
2277		cc->iv_gen_ops = NULL;
2278	else if (strcmp(ivmode, "plain") == 0)
2279		cc->iv_gen_ops = &crypt_iv_plain_ops;
2280	else if (strcmp(ivmode, "plain64") == 0)
2281		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2282	else if (strcmp(ivmode, "plain64be") == 0)
2283		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2284	else if (strcmp(ivmode, "essiv") == 0)
2285		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2286	else if (strcmp(ivmode, "benbi") == 0)
2287		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2288	else if (strcmp(ivmode, "null") == 0)
2289		cc->iv_gen_ops = &crypt_iv_null_ops;
2290	else if (strcmp(ivmode, "lmk") == 0) {
 
 
 
 
 
 
 
 
 
2291		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2292		/*
2293		 * Version 2 and 3 is recognised according
2294		 * to length of provided multi-key string.
2295		 * If present (version 3), last key is used as IV seed.
2296		 * All keys (including IV seed) are always the same size.
2297		 */
2298		if (cc->key_size % cc->key_parts) {
2299			cc->key_parts++;
2300			cc->key_extra_size = cc->key_size / cc->key_parts;
2301		}
2302	} else if (strcmp(ivmode, "tcw") == 0) {
2303		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2304		cc->key_parts += 2; /* IV + whitening */
2305		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2306	} else if (strcmp(ivmode, "random") == 0) {
2307		cc->iv_gen_ops = &crypt_iv_random_ops;
2308		/* Need storage space in integrity fields. */
2309		cc->integrity_iv_size = cc->iv_size;
2310	} else {
2311		ti->error = "Invalid IV mode";
2312		return -EINVAL;
2313	}
2314
2315	return 0;
2316}
2317
2318/*
2319 * Workaround to parse cipher algorithm from crypto API spec.
2320 * The cc->cipher is currently used only in ESSIV.
2321 * This should be probably done by crypto-api calls (once available...)
2322 */
2323static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2324{
2325	const char *alg_name = NULL;
2326	char *start, *end;
2327
2328	if (crypt_integrity_aead(cc)) {
2329		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2330		if (!alg_name)
2331			return -EINVAL;
2332		if (crypt_integrity_hmac(cc)) {
2333			alg_name = strchr(alg_name, ',');
2334			if (!alg_name)
2335				return -EINVAL;
2336		}
2337		alg_name++;
2338	} else {
2339		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2340		if (!alg_name)
2341			return -EINVAL;
2342	}
2343
2344	start = strchr(alg_name, '(');
2345	end = strchr(alg_name, ')');
2346
2347	if (!start && !end) {
2348		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2349		return cc->cipher ? 0 : -ENOMEM;
2350	}
2351
2352	if (!start || !end || ++start >= end)
2353		return -EINVAL;
2354
2355	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2356	if (!cc->cipher)
2357		return -ENOMEM;
2358
2359	strncpy(cc->cipher, start, end - start);
2360
2361	return 0;
2362}
2363
2364/*
2365 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2366 * The HMAC is needed to calculate tag size (HMAC digest size).
2367 * This should be probably done by crypto-api calls (once available...)
2368 */
2369static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2370{
2371	char *start, *end, *mac_alg = NULL;
2372	struct crypto_ahash *mac;
2373
2374	if (!strstarts(cipher_api, "authenc("))
2375		return 0;
2376
2377	start = strchr(cipher_api, '(');
2378	end = strchr(cipher_api, ',');
2379	if (!start || !end || ++start > end)
2380		return -EINVAL;
2381
2382	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2383	if (!mac_alg)
2384		return -ENOMEM;
2385	strncpy(mac_alg, start, end - start);
2386
2387	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2388	kfree(mac_alg);
2389
2390	if (IS_ERR(mac))
2391		return PTR_ERR(mac);
2392
2393	cc->key_mac_size = crypto_ahash_digestsize(mac);
 
2394	crypto_free_ahash(mac);
2395
2396	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2397	if (!cc->authenc_key)
2398		return -ENOMEM;
2399
2400	return 0;
2401}
2402
2403static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2404				char **ivmode, char **ivopts)
2405{
2406	struct crypt_config *cc = ti->private;
2407	char *tmp, *cipher_api;
2408	int ret = -EINVAL;
2409
2410	cc->tfms_count = 1;
2411
2412	/*
2413	 * New format (capi: prefix)
2414	 * capi:cipher_api_spec-iv:ivopts
2415	 */
2416	tmp = &cipher_in[strlen("capi:")];
2417	cipher_api = strsep(&tmp, "-");
2418	*ivmode = strsep(&tmp, ":");
2419	*ivopts = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420
2421	if (*ivmode && !strcmp(*ivmode, "lmk"))
2422		cc->tfms_count = 64;
2423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	cc->key_parts = cc->tfms_count;
2425
2426	/* Allocate cipher */
2427	ret = crypt_alloc_tfms(cc, cipher_api);
2428	if (ret < 0) {
2429		ti->error = "Error allocating crypto tfm";
2430		return ret;
2431	}
2432
2433	/* Alloc AEAD, can be used only in new format. */
2434	if (crypt_integrity_aead(cc)) {
2435		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2436		if (ret < 0) {
2437			ti->error = "Invalid AEAD cipher spec";
2438			return -ENOMEM;
2439		}
2440		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2441	} else
2442		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2443
2444	ret = crypt_ctr_blkdev_cipher(cc);
2445	if (ret < 0) {
2446		ti->error = "Cannot allocate cipher string";
2447		return -ENOMEM;
2448	}
2449
2450	return 0;
2451}
2452
2453static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2454				char **ivmode, char **ivopts)
2455{
2456	struct crypt_config *cc = ti->private;
2457	char *tmp, *cipher, *chainmode, *keycount;
2458	char *cipher_api = NULL;
2459	int ret = -EINVAL;
2460	char dummy;
2461
2462	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2463		ti->error = "Bad cipher specification";
2464		return -EINVAL;
2465	}
2466
2467	/*
2468	 * Legacy dm-crypt cipher specification
2469	 * cipher[:keycount]-mode-iv:ivopts
2470	 */
2471	tmp = cipher_in;
2472	keycount = strsep(&tmp, "-");
2473	cipher = strsep(&keycount, ":");
2474
2475	if (!keycount)
2476		cc->tfms_count = 1;
2477	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2478		 !is_power_of_2(cc->tfms_count)) {
2479		ti->error = "Bad cipher key count specification";
2480		return -EINVAL;
2481	}
2482	cc->key_parts = cc->tfms_count;
2483
2484	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2485	if (!cc->cipher)
2486		goto bad_mem;
2487
2488	chainmode = strsep(&tmp, "-");
2489	*ivopts = strsep(&tmp, "-");
2490	*ivmode = strsep(&*ivopts, ":");
2491
2492	if (tmp)
2493		DMWARN("Ignoring unexpected additional cipher options");
2494
2495	/*
2496	 * For compatibility with the original dm-crypt mapping format, if
2497	 * only the cipher name is supplied, use cbc-plain.
2498	 */
2499	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2500		chainmode = "cbc";
2501		*ivmode = "plain";
2502	}
2503
2504	if (strcmp(chainmode, "ecb") && !*ivmode) {
2505		ti->error = "IV mechanism required";
2506		return -EINVAL;
2507	}
2508
2509	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2510	if (!cipher_api)
2511		goto bad_mem;
2512
2513	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2514		       "%s(%s)", chainmode, cipher);
2515	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
2516		kfree(cipher_api);
2517		goto bad_mem;
2518	}
2519
2520	/* Allocate cipher */
2521	ret = crypt_alloc_tfms(cc, cipher_api);
2522	if (ret < 0) {
2523		ti->error = "Error allocating crypto tfm";
2524		kfree(cipher_api);
2525		return ret;
2526	}
2527	kfree(cipher_api);
2528
2529	return 0;
2530bad_mem:
2531	ti->error = "Cannot allocate cipher strings";
2532	return -ENOMEM;
2533}
2534
2535static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2536{
2537	struct crypt_config *cc = ti->private;
2538	char *ivmode = NULL, *ivopts = NULL;
2539	int ret;
2540
2541	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2542	if (!cc->cipher_string) {
2543		ti->error = "Cannot allocate cipher strings";
2544		return -ENOMEM;
2545	}
2546
2547	if (strstarts(cipher_in, "capi:"))
2548		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2549	else
2550		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2551	if (ret)
2552		return ret;
2553
2554	/* Initialize IV */
2555	ret = crypt_ctr_ivmode(ti, ivmode);
2556	if (ret < 0)
2557		return ret;
2558
2559	/* Initialize and set key */
2560	ret = crypt_set_key(cc, key);
2561	if (ret < 0) {
2562		ti->error = "Error decoding and setting key";
2563		return ret;
2564	}
2565
2566	/* Allocate IV */
2567	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2568		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2569		if (ret < 0) {
2570			ti->error = "Error creating IV";
2571			return ret;
2572		}
2573	}
2574
2575	/* Initialize IV (set keys for ESSIV etc) */
2576	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2577		ret = cc->iv_gen_ops->init(cc);
2578		if (ret < 0) {
2579			ti->error = "Error initialising IV";
2580			return ret;
2581		}
2582	}
2583
2584	/* wipe the kernel key payload copy */
2585	if (cc->key_string)
2586		memset(cc->key, 0, cc->key_size * sizeof(u8));
2587
2588	return ret;
2589}
2590
2591static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2592{
2593	struct crypt_config *cc = ti->private;
2594	struct dm_arg_set as;
2595	static const struct dm_arg _args[] = {
2596		{0, 6, "Invalid number of feature args"},
2597	};
2598	unsigned int opt_params, val;
2599	const char *opt_string, *sval;
2600	char dummy;
2601	int ret;
2602
2603	/* Optional parameters */
2604	as.argc = argc;
2605	as.argv = argv;
2606
2607	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2608	if (ret)
2609		return ret;
2610
2611	while (opt_params--) {
2612		opt_string = dm_shift_arg(&as);
2613		if (!opt_string) {
2614			ti->error = "Not enough feature arguments";
2615			return -EINVAL;
2616		}
2617
2618		if (!strcasecmp(opt_string, "allow_discards"))
2619			ti->num_discard_bios = 1;
2620
2621		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2622			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
 
 
2623
2624		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2625			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
2626		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2627			if (val == 0 || val > MAX_TAG_SIZE) {
2628				ti->error = "Invalid integrity arguments";
2629				return -EINVAL;
2630			}
2631			cc->on_disk_tag_size = val;
2632			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2633			if (!strcasecmp(sval, "aead")) {
2634				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2635			} else  if (strcasecmp(sval, "none")) {
2636				ti->error = "Unknown integrity profile";
2637				return -EINVAL;
2638			}
2639
2640			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2641			if (!cc->cipher_auth)
2642				return -ENOMEM;
 
 
 
 
 
 
 
2643		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2644			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2645			    cc->sector_size > 4096 ||
2646			    (cc->sector_size & (cc->sector_size - 1))) {
2647				ti->error = "Invalid feature value for sector_size";
2648				return -EINVAL;
2649			}
2650			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2651				ti->error = "Device size is not multiple of sector_size feature";
2652				return -EINVAL;
2653			}
2654			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2655		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2656			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2657		else {
2658			ti->error = "Invalid feature arguments";
2659			return -EINVAL;
2660		}
2661	}
2662
2663	return 0;
2664}
2665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666/*
2667 * Construct an encryption mapping:
2668 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2669 */
2670static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2671{
2672	struct crypt_config *cc;
2673	int key_size;
 
2674	unsigned int align_mask;
 
2675	unsigned long long tmpll;
2676	int ret;
2677	size_t iv_size_padding, additional_req_size;
2678	char dummy;
2679
2680	if (argc < 5) {
2681		ti->error = "Not enough arguments";
2682		return -EINVAL;
2683	}
2684
2685	key_size = get_key_size(&argv[1]);
2686	if (key_size < 0) {
2687		ti->error = "Cannot parse key size";
2688		return -EINVAL;
2689	}
2690
2691	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2692	if (!cc) {
2693		ti->error = "Cannot allocate encryption context";
2694		return -ENOMEM;
2695	}
2696	cc->key_size = key_size;
2697	cc->sector_size = (1 << SECTOR_SHIFT);
2698	cc->sector_shift = 0;
2699
2700	ti->private = cc;
2701
2702	spin_lock(&dm_crypt_clients_lock);
2703	dm_crypt_clients_n++;
2704	crypt_calculate_pages_per_client();
2705	spin_unlock(&dm_crypt_clients_lock);
2706
2707	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2708	if (ret < 0)
2709		goto bad;
2710
2711	/* Optional parameters need to be read before cipher constructor */
2712	if (argc > 5) {
2713		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2714		if (ret)
2715			goto bad;
2716	}
2717
2718	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2719	if (ret < 0)
2720		goto bad;
2721
2722	if (crypt_integrity_aead(cc)) {
2723		cc->dmreq_start = sizeof(struct aead_request);
2724		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2725		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2726	} else {
2727		cc->dmreq_start = sizeof(struct skcipher_request);
2728		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2729		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2730	}
2731	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2732
2733	if (align_mask < CRYPTO_MINALIGN) {
2734		/* Allocate the padding exactly */
2735		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2736				& align_mask;
2737	} else {
2738		/*
2739		 * If the cipher requires greater alignment than kmalloc
2740		 * alignment, we don't know the exact position of the
2741		 * initialization vector. We must assume worst case.
2742		 */
2743		iv_size_padding = align_mask;
2744	}
2745
2746	ret = -ENOMEM;
2747
2748	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2749	additional_req_size = sizeof(struct dm_crypt_request) +
2750		iv_size_padding + cc->iv_size +
2751		cc->iv_size +
2752		sizeof(uint64_t) +
2753		sizeof(unsigned int);
2754
2755	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2756	if (!cc->req_pool) {
2757		ti->error = "Cannot allocate crypt request mempool";
2758		goto bad;
2759	}
2760
2761	cc->per_bio_data_size = ti->per_io_data_size =
2762		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2763		      ARCH_KMALLOC_MINALIGN);
2764
2765	cc->page_pool = mempool_create(BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2766	if (!cc->page_pool) {
2767		ti->error = "Cannot allocate page mempool";
2768		goto bad;
2769	}
2770
2771	cc->bs = bioset_create(MIN_IOS, 0, BIOSET_NEED_BVECS);
2772	if (!cc->bs) {
2773		ti->error = "Cannot allocate crypt bioset";
2774		goto bad;
2775	}
2776
2777	mutex_init(&cc->bio_alloc_lock);
2778
2779	ret = -EINVAL;
2780	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2781	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2782		ti->error = "Invalid iv_offset sector";
2783		goto bad;
2784	}
2785	cc->iv_offset = tmpll;
2786
2787	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2788	if (ret) {
2789		ti->error = "Device lookup failed";
2790		goto bad;
2791	}
2792
2793	ret = -EINVAL;
2794	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2795		ti->error = "Invalid device sector";
2796		goto bad;
2797	}
2798	cc->start = tmpll;
2799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2800	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2801		ret = crypt_integrity_ctr(cc, ti);
2802		if (ret)
2803			goto bad;
2804
2805		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2806		if (!cc->tag_pool_max_sectors)
2807			cc->tag_pool_max_sectors = 1;
2808
2809		cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2810			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2811		if (!cc->tag_pool) {
2812			ti->error = "Cannot allocate integrity tags mempool";
2813			ret = -ENOMEM;
2814			goto bad;
2815		}
2816
2817		cc->tag_pool_max_sectors <<= cc->sector_shift;
2818	}
2819
 
 
 
 
 
 
 
 
2820	ret = -ENOMEM;
2821	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
 
 
 
 
2822	if (!cc->io_queue) {
2823		ti->error = "Couldn't create kcryptd io queue";
2824		goto bad;
2825	}
2826
2827	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2828		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2829	else
2830		cc->crypt_queue = alloc_workqueue("kcryptd",
2831						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2832						  num_online_cpus());
 
 
 
 
 
 
 
2833	if (!cc->crypt_queue) {
2834		ti->error = "Couldn't create kcryptd queue";
2835		goto bad;
2836	}
2837
2838	init_waitqueue_head(&cc->write_thread_wait);
2839	cc->write_tree = RB_ROOT;
2840
2841	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2842	if (IS_ERR(cc->write_thread)) {
2843		ret = PTR_ERR(cc->write_thread);
2844		cc->write_thread = NULL;
2845		ti->error = "Couldn't spawn write thread";
2846		goto bad;
2847	}
2848	wake_up_process(cc->write_thread);
 
2849
2850	ti->num_flush_bios = 1;
 
 
2851
 
2852	return 0;
2853
2854bad:
 
2855	crypt_dtr(ti);
2856	return ret;
2857}
2858
2859static int crypt_map(struct dm_target *ti, struct bio *bio)
2860{
2861	struct dm_crypt_io *io;
2862	struct crypt_config *cc = ti->private;
 
2863
2864	/*
2865	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2866	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2867	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2868	 */
2869	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2870	    bio_op(bio) == REQ_OP_DISCARD)) {
2871		bio_set_dev(bio, cc->dev->bdev);
2872		if (bio_sectors(bio))
2873			bio->bi_iter.bi_sector = cc->start +
2874				dm_target_offset(ti, bio->bi_iter.bi_sector);
2875		return DM_MAPIO_REMAPPED;
2876	}
2877
2878	/*
2879	 * Check if bio is too large, split as needed.
2880	 */
2881	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2882	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2883		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2884
2885	/*
2886	 * Ensure that bio is a multiple of internal sector encryption size
2887	 * and is aligned to this size as defined in IO hints.
2888	 */
2889	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2890		return DM_MAPIO_KILL;
2891
2892	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2893		return DM_MAPIO_KILL;
2894
2895	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2896	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2897
2898	if (cc->on_disk_tag_size) {
2899		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
 
 
 
 
 
2900
2901		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2902		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2903				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2904			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2905				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2906			io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2907			io->integrity_metadata_from_pool = true;
2908		}
2909	}
2910
2911	if (crypt_integrity_aead(cc))
2912		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2913	else
2914		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2915
2916	if (bio_data_dir(io->base_bio) == READ) {
2917		if (kcryptd_io_read(io, GFP_NOWAIT))
2918			kcryptd_queue_read(io);
2919	} else
2920		kcryptd_queue_crypt(io);
2921
2922	return DM_MAPIO_SUBMITTED;
2923}
2924
 
 
 
 
 
2925static void crypt_status(struct dm_target *ti, status_type_t type,
2926			 unsigned status_flags, char *result, unsigned maxlen)
2927{
2928	struct crypt_config *cc = ti->private;
2929	unsigned i, sz = 0;
2930	int num_feature_args = 0;
2931
2932	switch (type) {
2933	case STATUSTYPE_INFO:
2934		result[0] = '\0';
2935		break;
2936
2937	case STATUSTYPE_TABLE:
2938		DMEMIT("%s ", cc->cipher_string);
2939
2940		if (cc->key_size > 0) {
2941			if (cc->key_string)
2942				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2943			else
2944				for (i = 0; i < cc->key_size; i++)
2945					DMEMIT("%02x", cc->key[i]);
 
 
 
2946		} else
2947			DMEMIT("-");
2948
2949		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2950				cc->dev->name, (unsigned long long)cc->start);
2951
2952		num_feature_args += !!ti->num_discard_bios;
2953		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
 
2954		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
2955		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2956		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2957		if (cc->on_disk_tag_size)
2958			num_feature_args++;
2959		if (num_feature_args) {
2960			DMEMIT(" %d", num_feature_args);
2961			if (ti->num_discard_bios)
2962				DMEMIT(" allow_discards");
2963			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2964				DMEMIT(" same_cpu_crypt");
 
 
2965			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2966				DMEMIT(" submit_from_crypt_cpus");
2967			if (cc->on_disk_tag_size)
2968				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
 
 
 
 
2969			if (cc->sector_size != (1 << SECTOR_SHIFT))
2970				DMEMIT(" sector_size:%d", cc->sector_size);
2971			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2972				DMEMIT(" iv_large_sectors");
 
 
2973		}
 
2974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975		break;
2976	}
2977}
2978
2979static void crypt_postsuspend(struct dm_target *ti)
2980{
2981	struct crypt_config *cc = ti->private;
2982
2983	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2984}
2985
2986static int crypt_preresume(struct dm_target *ti)
2987{
2988	struct crypt_config *cc = ti->private;
2989
2990	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2991		DMERR("aborting resume - crypt key is not set.");
2992		return -EAGAIN;
2993	}
2994
2995	return 0;
2996}
2997
2998static void crypt_resume(struct dm_target *ti)
2999{
3000	struct crypt_config *cc = ti->private;
3001
3002	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3003}
3004
3005/* Message interface
3006 *	key set <key>
3007 *	key wipe
3008 */
3009static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3010			 char *result, unsigned maxlen)
3011{
3012	struct crypt_config *cc = ti->private;
3013	int key_size, ret = -EINVAL;
3014
3015	if (argc < 2)
3016		goto error;
3017
3018	if (!strcasecmp(argv[0], "key")) {
3019		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3020			DMWARN("not suspended during key manipulation.");
3021			return -EINVAL;
3022		}
3023		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3024			/* The key size may not be changed. */
3025			key_size = get_key_size(&argv[2]);
3026			if (key_size < 0 || cc->key_size != key_size) {
3027				memset(argv[2], '0', strlen(argv[2]));
3028				return -EINVAL;
3029			}
3030
3031			ret = crypt_set_key(cc, argv[2]);
3032			if (ret)
3033				return ret;
3034			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3035				ret = cc->iv_gen_ops->init(cc);
3036			/* wipe the kernel key payload copy */
3037			if (cc->key_string)
3038				memset(cc->key, 0, cc->key_size * sizeof(u8));
3039			return ret;
3040		}
3041		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3042			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3043				ret = cc->iv_gen_ops->wipe(cc);
3044				if (ret)
3045					return ret;
3046			}
3047			return crypt_wipe_key(cc);
3048		}
3049	}
3050
3051error:
3052	DMWARN("unrecognised message received.");
3053	return -EINVAL;
3054}
3055
3056static int crypt_iterate_devices(struct dm_target *ti,
3057				 iterate_devices_callout_fn fn, void *data)
3058{
3059	struct crypt_config *cc = ti->private;
3060
3061	return fn(ti, cc->dev, cc->start, ti->len, data);
3062}
3063
3064static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3065{
3066	struct crypt_config *cc = ti->private;
3067
3068	/*
3069	 * Unfortunate constraint that is required to avoid the potential
3070	 * for exceeding underlying device's max_segments limits -- due to
3071	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3072	 * bio that are not as physically contiguous as the original bio.
3073	 */
3074	limits->max_segment_size = PAGE_SIZE;
3075
3076	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3077		limits->logical_block_size = cc->sector_size;
3078		limits->physical_block_size = cc->sector_size;
3079		blk_limits_io_min(limits, cc->sector_size);
3080	}
3081}
3082
3083static struct target_type crypt_target = {
3084	.name   = "crypt",
3085	.version = {1, 18, 1},
3086	.module = THIS_MODULE,
3087	.ctr    = crypt_ctr,
3088	.dtr    = crypt_dtr,
 
 
3089	.map    = crypt_map,
3090	.status = crypt_status,
3091	.postsuspend = crypt_postsuspend,
3092	.preresume = crypt_preresume,
3093	.resume = crypt_resume,
3094	.message = crypt_message,
3095	.iterate_devices = crypt_iterate_devices,
3096	.io_hints = crypt_io_hints,
3097};
3098
3099static int __init dm_crypt_init(void)
3100{
3101	int r;
3102
3103	r = dm_register_target(&crypt_target);
3104	if (r < 0)
3105		DMERR("register failed %d", r);
3106
3107	return r;
3108}
3109
3110static void __exit dm_crypt_exit(void)
3111{
3112	dm_unregister_target(&crypt_target);
3113}
3114
3115module_init(dm_crypt_init);
3116module_exit(dm_crypt_exit);
3117
3118MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3119MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3120MODULE_LICENSE("GPL");